
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A248 252

DTIC
SI ELECTEQAPR07 1992 UT EI-- D "" THESIS

PATH TRACKING USING SIMPLE PLANAR CURVES

by

LT Richard James Abresch

March 1992

Thesis Advisor: Yutaka Kanayama

Approved for public release; distribution is unlimited.

92-08903

92 4 06 164

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1 a REPORT SECURITY CLASSIFICATION UNCLASSIFIED 'b. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

9 NAME OF gEEIFORMOG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

mputer ctence fept. (if applicable) Naval Postgraduate SchoolNaval Postgraduate School CS

6c. ADDRESS (City. State. and ZIP Code) 7b. ADDRESS (City. State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

ea NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City. State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

I1. TITLE (Include Secunty Classification)
PATH TRACKING USING SIMPLE PLANAR CURVES (U)

12 PERSONgI, . UTH YaQ tS
Abresc, larWaes

aTYP sREPORT 13b TI"E COVERED 14 DATE OF REPORT (Year. Month, Day) 1 PAGE COUNT
Master s'lnesis FROM 03/89 TO 03/92 March 1992 103
16. SUPPLEMENTARY NOTATIOT he views expressed in this theis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD IGROUP SUB-GROUP Path Planning, Obstacle Avoidance, Autonomous Vehicle Motion

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This thesis presents a method of controlling an autonomous vehicle's motion in a two dimensional environment.

Its* purpose is to expand the functionality of a vehicle's motion by complementing a point to point path planning
scheme with a path to path scheme. The method introduced in this paper will use the vehicle's position and the desired
reference path to calculate the necessary curvature to effect movement onto the desired reference path. The reference
path will be a simple planar curve, such as, a circle or line. After successful testing of an operating algorithm, the
method shall be incorporated into a robot's software system. This path tracking method will lay the groundwork for
a dynamic obstacle avoidance system for a mobile robot.

20 DISTIIBUTONIAVAILABILITY MF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED] SAME AS RPT E) DTIC USERS UNCLASSIFIED

AMEyOF KSPONSISLE INDIVIDUAL 22b. TELEPHONE(Include Area Code))22IcOI C YM0
utak anayama (408) 646-2095 12&

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

PATH TRACKING
USING SIMPLE PLANAR CURVES

by
Richard James Abresch

Lieutenant, USN
B.S., United States Naval Academy, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1992

Author: ,-.-., " -'.D
RichaO d Jame Abresch

Approved By: 4Ak°k~ ((.w_..
Yutaka Kanayama, ThesisA9isor

Robert B. McGhee, Second Reader

Robert B., McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

This thesis presents a method of controlling an autonomous vehicle's motion in a two

dimensional environment. Its' purpose is to expand the functionality of a vehicle's motion

by complementing a point to point path planning scheme with a path to path scheme. The

method introduced in this paper will use the vehicle's position and the desired path to

calculate the necessary curvature to effect movement onto the desired reference path. The

reference path will be a simple planar curve, such as, a circle or line. After successful

testing of an operating algorithm, the method shall be incorporated into a robotfs software

system. This path tracking method will lay the groundwork for a dynamic obstacle

avoidance system for a mobile robot.

Accesion For

NTIS CRA& L

U,.a i.O,,-.ed l
ju.-Affcation

o........................

By
D:;t ibutioa i

Av.Ilabil'ty Coces

Avail and/or
D~st Spec:al

~J

-"- --- --

,i1

TABLE OF CONTENTS

1 INTRODUCTION -----
A. BACKGROUND I...................................1I
B. THESIS ORGANIZATION2

II. PROBLEM STATEMENT ... 3
Ill. M ETHOD 5

A. PATH CONTROL BY CURVATURE_.. 5
B. COEFFICIENTS BY APPROXIMATION................................... 7
C. EXPERIMENTAL RESULTS .. ,._.., 13
D. SUMMARY 14

IV. DETAILED ALGORITHMS.._....... 20
A. CLOSEST DISTANCE _............................. 20

1 . Point to Line 20
2. Point to Circle 1. 21

a. Positive Curvature...............2
b. Negative Curvature...............2

3. General Distance Equation 2
B. THELIMAGE...................-.................................. 26

1. Lines.. 26
2. Circles .. 28

C. EVALUATE NEW CONFIGURATION 3
D. SUMMARY 3

V. TRANSITlONING 32................ ...

A. POSSIBLE METHODS.................3
1. 'MinimumnDistance................3
2. Dynamic Transitioning.................33

B. A SUITABLE SCHEME.. 36
1. Inters~ction Point..3

a. Line to Line3

b. Line to Circle/ Circle to Ln........3
2. Transitioning Distance 42
3. Deriving A Transitioning Function 44

a. Relationship Between TD and Turn Angle 44
b. Relationship Between TD) and So0 47

C. SUMMARY.._....53
VI. IMPLEMENTATION...................5

A. OVER VIEW OF SYSTEM 9
1. MML System..... 5

iv

B. PATH TRACKING SYSTEM...............5
1. User Program 5
2. Path A)escriptor- - ..I........ ,..... 58
3. Executor 5

C. SUMMARY.............................6
VDI. SUMMLARY AND CONCLUSIONS 61

A. CONTRIBUTIONS OF RESEARCH 6
B. FUTURE RESEARCH.................6

APPENDIX A 64

APPENDIX B -..................................... 66
APPENDIX C 78
APPENDIX 1...........................- 90
LIST OF REFERENCES 9
BIBLIOGRAPHY...........................4
INITIAL. DISTRIBUTION LIST.................9

LIST OF FIGURES

Vehicle Pulling Away From the Curb .. 3
Vehicle Merging Onto X-axis 7
Simulator Output for Various Pi 1..... I
Simulator Output for Various Values of So 12
Output Cemparison for So =1.0 ... 16
Output Comparison for So = 0.5 17
Output Comparison for So = 0.25 18
Output Comparison for So = 0.125 19
Distance Between Pi and P0 22
Distance Between Pi and Pref 22
Positive Curvature Case .. 23
Negative Curvature Case 23
Calc,lating Pimage for a Line ... 27
Vehicle Overshoot of a 170 Degree Turn 34
Premature Convergence of a 10 Degree Turn :. 35
Intersection of Two Lines ... 38
Calculating Pinter 38
Calculate Pinter Between a Line and Circle 41
Rotation of a Transition Problem 43
Experimental Minimum Transition Distance 45
TD as Calculated by Table 1 and Equation (5.15) 48
Relationship Between TD and So 49
Plot of the Ratios of TD and So 50
Transition From Inner to Outer Circle,..........................54
Transitiona From Outer to Inner Circle ... 55
Transitions Involved in Obstacle Avoidance .. 56
A 15 Degree Turn .. 67
A 30 Degree Turn................................ 68
A 45 Degree Turn 69
A 60 DegreeTurn........................... 70
A 75 DegreeTurn.................................
A 90 Degree Turn...... ... 72
A 105 Degree Turn 73
A 120 Degree Turn .. 74
A 135 Degree Turn 75
A 150 Degree Turn 76
A 165 Degree Turn

vi

I. INTRODUCTION

A. BACKGROUND

Presently, the bulk of research conducted in the area of path planning for an

autonomous vehicle deals with sub-dividing the vehicles desired motion into multiple

independent paths. The most prominent approach has been to describe the desired motion

through a sequence of configurations. These configurations define the vehicles x, y

coordinate position coupled with the vehicle's orientation [Ref. 1]. This method of path

planning can be best described as a point to point control scheme. As such, a path planning

algorithm calculates the path between adjacent configurations to find the independent legs

of the vehicle's motion. This scheme reflects a wide spectrum of motion found within the

world, and it enjoys many advantages, such as; its' simplicity, wide applicability, and ease

of manipulation. However, there are circumstances in which a point to point scheme will

not fully replicate the desires of the user.

An example can best be illustrated by reflecting on the motion of a car. Assume a car

parked alongside the curb desires to pullout into traffic, proceed down the road for two

blocks, and then make a right turn at the light. In this example there are no predetermined

points which describe the motion, rather there exist the concept of traffic lanes which define

and restrict the motion. Although a sequence of points could define a similar range of

motion, the point to point scheme would require the user to have prior knowledge of

transition points. In addition, the point to point scheme places no restrictions on the bounds

of movement between two adjacent configurations. This could raise problems in a dynamic

environment. On the otherhand, the path tracking method which we shall introduce restricts

the vehicle's motion to the interior boundaries set by the intersecting paths. Thereby

increasing control over the vehicle's motion, while reducing the ifonnation needed to

program a vehicle. In the path tracking method the configurations lose their importance to

the more general entity of the paths, which are represented as traffic lanes.

B. THESIS ORGANIZATION

The objective of this paper is to develope a mathematical model to support a path to

path motion control system. The scope of our study will be limited to include simple planar

curves, such as lines and circles. Upon deriving a mathematical foundation, we shall

translate the work into a working simulator. This simulator should give the user the

capability to fully test the algorithm, to include merging a vehicle onto simple planar paths.

and to transition from path to path. After successful development and testing, the algorithm

shall be incorporated into the motion control system of an operating vehicle, specifically

the Yamabico- I I robot.

The layout of the thesis shall reflect the outline of the research. Chapter II presents a

detailed problem statement to include our assumptions and requirements for a path tracking

algorithm- Chapter 11 will discuss the mathematical groundwork necessary to develope our

system. In this section we shall derive a control function which will be suitable to merge an

autonomous vehicles onto a reference path. Chapter IV will then develope the equations

necessary to support the control function. In the development phase we will separate our

study into two cases, lines and circles. With the development of an appropriate framework,

Chapter V will discuss the inherent problems in transitions between paths. and the specifics

of our transition scheme. Chapter VI will elaborate on the details of implementation of the

path tracking algorithm into the software of the Yamabico-11 robot. Finally, Chapter VII

shall be a look at future areas of research and some conclusions. An appendix shall contain

the path tracking simulator which was written in C. and a users manual for operating the

path tracking algorithm.

H. PROBLEM STATEMENT

The problem ca;- be stated as follows: find a smooth path from an initial configuration

pi to a reference path Pref- The basic concept of our method shall be to vary the vehicles

instantaneous curvature in order to manipulate the vehicle's position and heading. To

facilitate this. we shall expand the concept of a configuration to be a quadruple (x, y, 0, I),

which describes the vehicles position by it's cartesian coordinates coupled with it's heading

and instantaneous curvature. The reference path will be defined by a similar quadruple.

This pennits a line or a circle to be represented by the same structure depending on the

value of K. For example, we might want to solve the problem presented earlier, concerning

the car entering a traffic lane from a curb position and then making a right turn. The

vehicles curb position would be represented pi = (0, 0, 0, 0), while the traffic lanes would

be represented by Pefl (0. 10. 0.0), and Pref2 = (50, 0, irJ2. 0) as shown in Figure 1.

- Pref! = (0,10,0,0)
p=(0.0,0 0) r'

_ _I

Figure 1. Vehicle Pulling Away From the Curb

In developing our solution we shall ignore the size and shape of the vehicle by

assuming our vehicle is a point robot, and where the clearance to obstacles has been

3

assessed at a higher level within the system. This will simplify our work by removing tile

finite curvature limitation and clearance requirements necessary for a rigid body robot. In

addition we shall assume the velocity of the vehicle is a constant positive value, and that

the vehicle's motion will be controlled solely through altering the vehicle's instantaneous

curvature. These assumptions will restrict the research to a spatial problem and alleviate the

need to consider the dynamic relationships inheient to the problem. e.g., time, speed,

acceleration, and rotation. By making these assumptions we will simplify the mathematical

model required in finding a suitable path tracking algorithm.

In our initial problem statement we required that the proposed algorithan produce a

smooth path. The derivative of curvature is the only control variable within the

mathematical model. Since the derivative of the curvature dri/ds is finite, the resultant

vehicle's trajectory is "smooth- in the sense that the tangent orientation, curvature, and

derivative of curvature exist at every point on the trajectory [Ref. 2]. Although, this concept

of smoothness is essential, our requirements must be more stringent. The generated path

must be suitable to be followed by a robot's mechanical power train system. However.

smoothness is a subjective quality, which must be clearly defined before attempting to

calculate a viable solution. The problem can be characterized by how rapidly we wish to

converge onto a desired reference path. If we attempt to converge in too short of a distance.

the vehicle's motion will be unstable and the vehicle will lose tracking precision. On the

otherhand. if the distance to converge is too large, then the vehicle's motion will be

inhibited by a need for excessive maneuvering space. Therefore, our method will

incorporate a distance constant. So. to regulate the smoothness of the generated paths. The

distance constant will balance the need for rapid response with the smoothness

requirement. It's value will be dependant on the maneuvering characteristics of the vehicle.

and will not adversely effect the mathematical correctness of our work.

4

III. METHOD

In developing any system the first step is to create a model of the system in order to

analyze the system. The objective of this is to translate the real world mechanics of the

system into a mathematical theory which accurately describes the system. This allows one

to fully explore the nature of the problem and mathematically verify the solution. As the

previous chapter outlined our system. this chapter's purpose is to develope the necessary

mathematical equations to support our previously stated goals and requirements.

A. PATH CONTROL BY CURVATURE

When deriving a mathematical equation to simulate a real world problem. it is often

obvious what type of equation is necessary to solve the problem. Physical models often

directly translate into applicable mathematical models. However, in our situation we

undertook this research without a clear idea of the final form of our mathematical model.

Although we feel it may be possible to solve the problem using traditional control theory

methods, we desire an easier method which may prove to yield equally powerful results.

Therefore. we predicated our solution on the belief that the problem could be solved using

analysis through differential equations.

In our problem statement we introduced the concept of the configuration as a

quadruple. which defines a vehicle's positional status by stating the vehicle's present

coordinate position, its' present direction of motion, and a measure of the change in

direction of motion. We also defined our desired position by way of a reference path

defined by the same variables as that of the vehicle's position. This similarity allows us to

make quick accurate comparisons between the two quadruples. Therefore. we can define a

function which relates our desired motion with respect to the initial and goal positions.

Using this idea consider controlling the vehicle by changing its instantaneous curvature as

determined by a function of the initial and goal quadruples.

dK
dS -=f(K. 0, X, y7) (3.1)

Equation (3.1) can be simplified by using the x, and y coordinates to determine, d, the

distance between the present position and the desired reference path position. However, to

accomplish this we must narrow the infinite number of available points on the reference

path down to a specific point of interest. The most logical point would be the point on the

path closest to the vehicle's position. We shall define this point to be the image of the

vehicle's position, and reference it as Pinage" Therefore. at all times there will be an image

point which will provide the positional information of a theoretical vehicle located and

tracking along the reference path. The establishnent of this point allows us to quickly

calculate the closest distance, d. between the vehicle's position and the reference path.

Theieby equation (3.1) becomes

dK

d= iK, 0, d)
(3.2)

Equation (3.2) restates our desire to control the vehicle through changiag the

instantaneous curvature, which is dependent on the vehicular position, oi, and the reference

path, Pref. The equation does not show the underlying relationship between pi and Pr*ef, or

how their values effect the change in curvature. However, since we are attempting to find

a simple but powerful solution, a logical choice would be to begin with a linear relationship.

Thus, we propose the following general class as a steering function.

s [A (piKl -pi"age K) +B (Pi 0 -Pimagee) +cd] (3.3)

- + A (Pil -PimaeK) + B (Pi0 -Pimage o) + Cd = 0 (3.4)

Where A, B, and C are constants. This steering function is a simple linear equation, in which

the constants can be solved for by using differential equations.

6

B. COEFFICIENTS BY APPROXIMATION

To find the optimal values for A, B, and C, let us analyze the simplest possible case.

That is the case in which the reference path, P,ef, is the x-axis as shown hi Figure 2.

y PYp, (0.,,0)

(0,0) Pref = (0,0,0,0)

Figure 2. Vehicle Merging Onto X-axis

In this case, we can simplify our steering equation due to the following observations.

PinageK = 0

Pimage0 = 0 (3.5)

d = y

That is since the x-axis is the desired reference path, our linear equation can be viewed as

dependent only on the vehicle's positional quadruple. Therefore, equation (3.4) becomes

dK- +AK+BO+Cv = 0 (3.6)

Since we know

W = (x) (3.7)

(3 (y)
atan0y') (3 + ("') (3.8)

3 5

7

K d= (3.9)

S1(23/2
d - d I J (3.10)

ds + () 3YI (,) 2 (1 + (y,) 2) (3.11)

By equation (3.6) to (3.11) the steering function becomes,
(3.12)

____+_ 3v() Ia _v cv = 0
,22 2 2 3/ 2 3

(1+ (V)) (+ (y)) (1+ 0))

However, this equation is too confusing, and as a result very difficult to solve. If we

are to maintain a simple solution, we must make some assumptions, concerning the terms

of equation(3.12). To accomplish this we shall make use of two reasonable assumptions.

2 (v') " 1(3.13)

Both assumptions deal with the relative magnitude of the first three derivatives of y. If these

assumptions hold, which by all indications they do when the value of x is relatively high,

they would significantly simplify our control equation. Using the assumptions of (3.13),

equation (3.12) becomes,

v" +Ay" + By' + Cy = C (3.14)

Written in differential notation, we have

(D 3+AD +BD+C)y = C (3.15)

Our steering function thus becomes an ordinary third order differential equation. Since

the steering function is of the third order, the equation must have at least one real loot. This

8

real ioot can be either a positive or a negative value. However, if the real root is a positive

value the generated solution would diverge from the reference path. Therefore, to generate

a converging solution, the real root must be a negative value. Let's assume that the value

of the root is -k. Then equation (3.15) becomes,

(-k)3+A(-k) 2+B(-k) +C = C (3.16)

By solving this equation for the constants, and substituting their value back into the

equation, we get

(D 3 +AD 2 +BD+k - Ak 2 +Bk))v = C (3.17)

(D+k) [D 2+ (A-k)D+k 3-Ak2+Bk]y = 0 (3.18)

The second order polynomial of equation (3.18) has two roots. If these roots are

imaginary, then the solution would be oscillatory and inappropriate for our goal. Therefore,

we restrict the roots of this polynomial to be negative real roots, which we shall assume to

be -k! and -k2. Equation (3.18) now becomes

(D+k) (D+ki) (D+k2)y = 0 (3.19)

Since, there are no advantages of having three distinct values for k, kj, and k2. we shall

assume the three roots are the same.

k = ki = k2 (3.20)

Therefore, equation (3.19) becomes

(D+k) 3 = 0 (3.21)

Now. solving for y we get

A 2 + Bx + C) C-x (3.22)y = (-x B- C~
2

Using equations (3.15 and 3.21) we can solve the equation for the values of the

constants A, B. and C. This is simply accomplished by expanding the third order

polynomial and individually solving the coefficient for each order.

D3 +AD 2 +BD+C = (D+k) (3.23)

9

D3 +AD 2 +BD+C=D 3 +3kD2 + 3k 2 D + k" (3.24)

Therefore, the value of the constants are as follows.

A =3k

B = 3kr (3.25)

C-k
3

Now that we have calculated the values of the individual constants we can complete

our steering function by substituting these values into equation (3.3).
dK ±3k2 (326
ds 3 (i -ige) + 3k 2 (pi0 - Pimageo) +k3d

T = -[3 k(PiK-PiniageK pe~iae) d (3.26)

Equation (3.26) is the final form of our derived curvature control equation. However, we

still must determine an appropriate value for the constant k. We know that the coefficients

of the derived equation will affect the responsiveness and smoothness of the path generated

by the steering function. Furthermore, we earlier established the distance constant, S0,for

the sune purpose. Thus a logical solution would be to base the value of k on the value of

So. Therefore. for our algorithm we shall assign the value of k to be the inverse of S0 .

I
k = 1 (3.27)

This completes the derivation of our steering function. The output of equation (3.26) should

generate a smooth path which meets our stated requirements. Preliminary results of the

steering function are illustrated in Figures 3 and 4. The output displayed in Figure 3 depicts

the generated paths for various initial configurations and the x-axis being the reference

path. In each of the cases the initial configuration is the point pi = (0,1) while the vehicle's

orientation is the intervals of every 45 degrees. On the otherhand, Figure 4 illustrates the

effects of changing the value So has on the path generated by the algorithm. The output

illustrated in Figures 3 and 4 are similar to what we generally expected, and fully meet our

requirements. However, to verify the output and the equation's suitability, we must check

it through experimental results.

10

4f

L distance constant= 1 00 cm
(X.Y.Theta.Kappa)
(00, 25. 00 00)
(00. 25 450. 00

____ C: 25 135 0. 00)]
(00. 25. -1800. O)

S 00.25. - 1350.0.0)
/ (00., 25. -900. 00)

(025. -450. 0.0)

1- , \

>/
: \ \ ',

-20 2 4 68

X-AXIS (cm.)
Figure 3. Simulator Output for Various P1

27 \ \ Il

distnnce constent= 1.00 c,
d:star.ce con Stanl.=C.5 cmM
d:starce constan:-0 25 cmr
d.starce constan:=C 125 cm i

0 8 L-
i -i

* I

,- 0.67

X

>- 04 - 1

Ir \ i

02- ,

-0.0-

-2 2 4 6 8

X-AXIS (cr.)
Figure 4. Simulator Output for Various Values of So

12

C. EXPERIMENTAL RESULTS

In deriving our curvature control equation we made some assumption vital to

sinplifying our equation. These assumptions dealt with the relative magnitude of the

derivatives of the y component of the vehicle's position, and the values of the roots of a

third order polynomial. Whenever assumptions are made within a mathematical problem

error is introduced into the final solution. In order to validate the solution and the

assumptions. we must offer some substantiative proof that the work was not drastically

flawed by making the assumptions. The best proof is sound mathematical support for the

assumptions. We can not offer this in our case. However, we can support our assertions via

experimental results.

If we can show that the results of our curvature control equation closely match the

output of a similar system which does not take our assumptions in consideration, then we

add a degree of validity to our work. Thus, we intend to verify our work by comparing the

results of our algorithm to the results of an equation derived without our assumptions. Thus,

we shall compare the output results of our curvature control function of equation (3.26) to

the assumption free equation(3.22). To accomplish this we shall make the comparison for

a specific problem. This problem will be the case of merging a vehicle with a initial position

pi = (0,1,0,0) onto the directed line, Pref (0,0,0,0), which is simply the x-axis. By using

this case we can easily calculate the coefficients for equation (3.22). By solving for the

variables and using variable substitution we calculated the coefficients' values;

A k2y0

B = k' 0 (3.28)

C = 0

Details of the actual mathematical process involved can be found in appendix A. Using

these values in the assumption free control function we can compare results.

We conducted four separate cases for comparison using the problem as stated above.

In each case we solved the problem of merging a vehicle onto the x-axis. while we varied

13

the value of S0 for each test case. The graphical results of both oui curvature control

algorithmn and the actual output as found by the assumption free function is depicted in

Figures5 to 8. The results of the comparison are very good. In our results we see that the

output of our path tracking algorithin are very close to the actual values. The test results

show. that as we increase the distance constant, So, the difference in the output becomes

even less significant, which meets our expectations. Although, the difference increases as

the distance constant is significantly decreased, as in the case of So = 0.125, the output is

not inappropriate. The results show, that at no instance does an extreme difference in the

output between the two functions exist. Therefore, the results fully support the assumption

made within our work. Although, this does not fully validate our results, it does provide a

significant degree of confidence in our method. With this degree of confidence we have

faith that we are on the correct track, and that our algorithm is appropriate.

D. SUMMARY

hi this chapter we laid the mathematical groundwork for our path tracking algoritlun.

Initially. we had few concrete ideas on the form of our controlling equation. However, our

guiding factor was to keep the equation simple and powerful. This lead us to guess the

format of a suitable equation to be a linear differential equation. From this we generated a

simple steering function based on the difference between the vehicle's position and the

vehicle's image position on a reference path. The resulting differential equation was

cumbersome and difficult to solve. Therefore, we made some assumption about the relative

values of the various derivatives of v. This enabled us to reduce the problem to a third order

differential equation, which could be solved rather easily. Upon solving the differential

equation, we proposed using So as the basis for the coefficients of the resulting equation.

Thereby. allowing us to balance the need for responsiveness with the requirement of

smoothness. The paths generated by the proposed steering function fully meet our

expectations. In addition, we tested our results by making a comparison between the output

of our derived curvature control function and an assumption free version of the steering

14

function. The graphical results showed no significant deviations or aberrant trends between

the two functions output. Thereby, these experiments fully support the appropriateness of

our equation. lending a degree of validity to our path tracking method.

15

1.0

distance cnst,,t 00 cm
Algorithm Output

. . AssUMption Free I 1\ i

* I
\I

cr l

<1

S 0.6- ,

-0.

04-

'II

0.2-\-

-.i

f6

1.0
, _____ distencc constant=O 5 cm

- -- Algorithm Outu I
Assumption "ree 1

L!
~1

08,-

4

"- 0.6- ,1

c-I

0.2

-0.0
-0 2 4 6 8 10

X-AXIS (cm.)

Figure 6. Output Comparison for S 0.5

17

1.0 ___,,,

d stance constant=C 25 cm.
- Algorithm Output7 Assum l;cn Free

t

0.5.-

F''

\-AX1S (cm

Figure 7. Output Comparison for So 0.25

,8

d.3.arce constarg.=C 3425 cm

Ars~anptzcn F~ree

0.5 -

X A X IS (c m.
Figure 8. Output Comparison for SO =0.1259

19

IV. DETAILED ALGORITHMS

Chapter III successfully derived a curvature control equation for our path tracking

algorithm. In this chapter we shall develope the support equations necessary to incorporate

the control equation into a broader algorithm for path tracking. The overall objective for the

algoritun is to alter a vehicle's location defined by a configuration onto a planar curve. To

accomplish this we shall undertake three steps: to calculate the closest distance between pi

and Prefi to locate Piniage; and to calculate the change in curvature. With these steps

accomplished we can construct a progran which would successfully maneuver a vehicle

onto any given reference path.

A. CLOSEST DISTANCE

The first step in our general scheme is to calculate the shortest distance between pi and

Pef We shall refer to this distance as dclose. There are numerous methods to calculate

distance. However, in our case we desire a method which will be versatile enough to

calculate this distance given configurations, which may either represent a point, a line, or a

circle. We do not know of an equation which will allow us to perform such a calculation.

Therefore, we shall derive a distance equation flexible enough to meet our requirements.

There are two possible cases in our model; point to line, and point to circle. We shall look

at these cases separately, and derive suitable equations for each case.

1. Point to Line

Our objective is to calculate the shortest distance between any directed line Pref

(a, I, c) and a point pi = (x, y). Thus dist(pref, pi) refers to the perpendicular distance

between the point and the line. In preparation for this calculation, let's calculate the

distance between the point of interest and a special directed line, P0 = (0, 0, 09. This directed

20

line is shnply a line parallel to Pref. which originates at the origin. As Figure 9 illustrates,

using simple trigonometry the distance is

dist(popi) = yvcos (cc) -xsin (cc) (4.1)

Using the results of equation (4.1) we can generate a general distance equation.

This general equation will be the difference between the distance from the point to the

refeience path and the distance from the reference path to our special directed line. This

general equation is illustrated in Figure 10. To calculate the difference we simply apply

equation (4.1) twice.

dist(PrefPQ) = dist(popi) - dist(Po.P,.ef) (4.2)

= vcos ((x) -xsin (c) -bcos (ot) +asin (oc) (4.3)

= (y-b) cos (c,) - (x-a) sin(cc) (4.4)

Note. that dist < 0 if the orientation between the directed line and the point is clockwise.

Thus, this provides us with a suitable equation for the shortest distance between a point and

any directed line.

2. Point to Circle

In deriving the shortest distance from a point Pi = (x,y) to a circle Pref = (x,y,0, K),

we must realize that two cases exist. The value of K can be either positive or negative. We

shall examine these two cases separately. Both cases are illustrated in Figure 11 and 12,

respectively.

a. Positive Curvature

Let's first calculate the origin of the reference circle. This can be done by

adding the x, and y components of the radius to the x, and y coordinates of the reference

circle.

21

x
Figure 9. Distance Between Pi and P0

Pref

y pi = (X,Y)

Po
dist(pref,pi)

dist(0,(a,b))

-~x

Figure 10. Distance Between Pi and Pref

22

N dist(pref~pi)

(xc,Yc)

radius P=XY
Pj#XY) N Pimage

Plef (X0 .y0 .00,KO)

Figure 11. Positive Curvature Case

Pimage, \

(xc,Yc)

radius

Pre (xO,Y0,OO-ic 0)

Figure 12. Negative Curvature Case

23

1rc =Po+ (-,)cos(Oo7t/2)

1 (4.5)

Y(. PO + (-) sin (Oo+ t/2)
0

(c ,) Y - I (sin () v0 +)) () Cos (0) (4.6)

C K 0

Now, that we have the coordinates of the origin, we can calculate the distance between the

origin and the point by using Euler's distance equation. Furtherrnore, since we know the

distance between the origin and the reference path, the radius, we can calculate the distance

between pi and Pref. This is accomplished by taking the difference between the two

calculated distances.

dist(P.efPi) = radius - dist(Porigi, pi) (4.7)

x_y2 Cos 0
Fv~v~nOO~ - 0(4.8)

-O - K O (Y) 0H-~ K 0

We can simplify equation (4.8) by multiplying through with an appropriate factor.

(X _ + sin 0 1
2 cos

(xx o) + + I(YYo)
0 0 (4.9)

i+ (x-xo) + + (Y - Yo) + Cos 0 j

By factoring we get.

2sin0 2cos0

(X XO 4.10K)() Y- K0

1+ /(x-x 0) + sin 0
2+ (y +

Finally. we can multiply by icIOiO to simplify equation (4.10).

24

(-x 0) [K (X- x0) + 2sin00] - (y-) 1K (Y-)'0) - 2cos00]
= (4.11)

1+ [0 (x - Xo) + sin0012 + [K (v- 0 yo) - C 2s00l-

This provides us with the final form of our equation. It will calculate the distance between

any point and any positive curvature circle. Also note that with this equation dist(pref, Pi) <

0 if the point p, is not circumscribed by the circle.

b. Negative Curvature

Figure 10 illustrates the situation when Pref curvature is negative. As this

situation is very sinilar to the case with a positive curvature, we use the same method to

calculate the clist(pref, Pi). Howevei, since the curvature of the circle is negative, this will

give us a negative value for the radius. Thus, in this c-¢e we subtract the length of the radius

from the distance between the origin and pi.

dist(pl.cjf))= x- (. - sin%)10 + [- ()?o- _Cose go 12 (4.12)
i IVI 0 K0 K

We can simplify this equation by the method used earlier for the positive curvature case.

The results of this method will produce the same equation as the positive curvature case.

However, in this case dist(pref pi) < 0 when p is circumscribed by the circle.

3. General Distance Equation

Our objective was to derive a single general equation to calculate the shortest

distance between a point and a reference path. However, it seems we have derived two

separate equations to fulfill our needs. Yet, if we take a closer look at the two equations we

shall reveal an interesting fact. We can consider a directed line, a special case of a circle

with an infinite radius. The line's curvature is defined to be equal to zero. Therefore, if we

implement equation (4.11) in the case of a directed line, we get,

dist= - (x -. V0) [K 0 (x- xO) + 2sin 01 - (-)'0) [o0 (' - v0) - 2cos00] (4.13)
I + ,] [0 (.V -.A o) + sinO 0] 2 + [K0 (y - yo) - cosO0 2

25

- (x-xo) [2sin00] - (y-Y 0) [-2cos00] (4.14)

1 + F[sinI %+ [-cos%]2

= - (x - X) sin 0 + 'I - YO) Cos0 (4.15)

This suggests that the distance equation derived in the case that the reference path is a circle

subsumes both possible reference path cases. Thus, we have established a single general

equation to determine the shortest distance between any point and any simple planar

reference curve.

B. THE IMAGE

The control equation derived in chapter II was predicated on the establishment of a

point referred to as Piniage" That is the configuration of a theoretical vehicle, which is

continuously maintaining position along the reference path. This configuration includes the

theoretical vehicle's coordinate position, orientation, and curvature.The difficulty in

calculating Pimage is that the reference path could be either a line or a circle. Unfortunately,

there is not a single method, to our knowledge, that would suffice for both of these cases.

Therefore, we must derive two unique methods to calculate Pirnage- To accomplish this we

shall address the two cases separately.

1. Lines

The case of finding Pimage for a vehicle on a directed line is quite simply. Since

the curvature of a directed line is defined to be equal to zero, and the orientation of all points

on a directed line are defined to be equal to the orientation of the directed line itself, the

calculation of Pimage'S curvature and orientation is trivial. That is.

Pirage0 = Pre? (4.16)

PimageK = 0

Thus. in the case of the reference path being a line, to calculating Piniage is reduced to

calculating the x. and y coordinates of Pinage- Basically, to accomplish this we need to find

26

the shortest distance between the vehicle's position and the directed line. This situation is

illustrated in Figure 13.

Piniage =(x,y,0)

Pref =(x,y,0,JC)

Figure 13. Calculating Pimage for a Line

To calculate the shortest distance between pi and pef we use equation (4.11),

which was developed as a general equation for calculating the closest distance. However,

we can simplify this equation since the curvature of a line is defined as zero. Therefore, the

equation for the shortest distance between a point and a directed line as defined with

configurations is,

dclose = (PiY-PrefY) cos (ca) - (Pix -P re x) sin (ox) (4.17)

Given the closest distance we can now calcl ate the coordinate position of Pimage

using simple trigonometry. Since the distance between the vehicle's position and the

reference path is the shortest possible distance, the orientation of the line segment which

connect the two points must be perpendicular to the orientation of the reference path, as

shown in Figure 13. The coordinates of Pimage can then be calculated by adding the x, and

y components of dclose to the vehicle's coordinate position. Therefore, the coordinates of

Piniage are.

27

Pinzagex = pix + d.,se(COS (piO - t/2))

pimageY = PiY + dcloe(Sin (piO - 7E/2))

2. Circles

Finding Pimage for the case of Pref being a circle is somewhat trickier than the line

case, but mathematically the calculations are straightforward. We shall be able to

distinguish between the two cases by examining Pref K value. If the value is non-zero than

the desired path is a circle. Otherwise, the path is a line. A circle will be defined by an x,

and y point which lies on the circle, with this point's specific orientation and curvature. The

curvature of a circle is defined to be a constant real number. Therefore, each point on the

circle will have the same curvature value as Pref curvature.

PitageK = PrefK (4.19)

The first step in calculating the other components of the image position's

quadruple is to calculate the origin of the reference circle. To do so we calculate the radius

of the circle, which is defined as the inverse of the curvature.

radius = (4.20)

P ref K

The orientation of a point on a circle is perpendicular to the orientation from the origil to

the point on the circle, as shown in Figures 11 and 12. Knowing the orientation of the point

defined as Pref, thus allows us to calculate the orientation from the reference path to the

origin. Now, by dividing the radius into its' x, and y components along this orientation we

will find the coordinates of the origin. The origin shall be referred to as porigin.

Porignx = Pref" + radius (cos (Pref0 - t/2))

P17rtginY = PrefY + radius (sin (PrefO - it/2))

Which can be written as,

'origin = (P,'ef + radius (sin (l"refO)) 'PrefY + radius (cos (PrepO)) (4.22)

28

The next step in calculating the coordinate position of Pimage is to calculate the

orientation between the origin and the initial position, which we shall refer to as y. This

orientation can be found using the inverse-tangent function. Thus, 'y is calculated

y = atan (PY - Porig i,] (4.23)
(pi x - Porig in X_

Unfortunately, this method has two shortcomings. We want to distinguish between pairs of

points which may have the same inverse-tangent value but different orientations, one such

pair is -3704 and x/4. A second problem is that equation (4.24) is undefined for all pairs of

points in which pix = Poriginx. However, we can solve these problems by introducing a

variation of the normal inverse-tangent function [Ref. 21.

y = atan2 (piy -P.igi:Y'PixV- Potiginx) (4.24)

In equation (4.25) we employ an inverse-tangent function of two arguments. This function

has a range between [t. -7t]. Therefore, it distinguishes between equivalent tangent values

of different quadrants, and is defined for all values of x.

With the orientation between pi and Porigin we can now calculate the coordinates

of Pimage for a circle. The image position is simply the distance of the radius from the origin

in the direction of y. Therefore, Pirn age becomes

PimagcX = PoriginX + Iradiusl cos (-y)

PimageY = Porigin-v + Iradius sin (y)

The final value we need to calculate for Pimage is the orientation at the image

point. Once again we shall use the fact that any point on a circle is perpendicular to the

orientation between the origin and the point. Thus, we can calculate the image's orientation

by adding or subtracting 7t/2 to the orientation between the origin and the initial position.

If the reference path's curvatilre is negative we subtract, while if it is positive we add. We

can take advantage of the absolute value function to incorporate both cases into one

equation. Thus, the orientation of the image point is

29

pi,,age8 = y'+ (7c/2) (, (4.26)

We have successfully collected all the data needed to find Pimage. With this point

established we can then go onto creating an algorithm which takes advantage of the

curvature control equation developed in chapter III.

C. EVALUATE NEW CONFIGURATION

We have now calculated all the data we need to assemble a working path tracking

algorithm. After a user inputs the vehicle's configuration and the desired reference path's

configuration, our system would calculate Piniage, then calculate the closest distance

between the vehicle and the reference path by our derived dclose equation, and finally

calculate the necessary change in curvature needed to move the vehicle towards and onto

the reference path. This process would be completed at predetermined intervals, allowing

foi a means to update the vehicle's positional configuration. However, before we could

update the vehicle's configuration we would have to calculate two values, the distance

traveled by the vehicle each interval, &iist, and the change in the vehicle's orientation each

interval due to the vehicle's instantaneous curvature, 80. These values are calculated as

follows.

80 = dist (piK)

if 80 = 0 then 5dist = 8 xv

80 (4.27)
2cos

if 80 #0 then bdist = (2-rtx)--,,

Where 6t is the duration of the interval, and iU is the vehicle's constant velocity. The

difference in the calculations for Mist is a correction factor which is intended to correct the

vehicle's coordinate position when it has a non-zero curvature. By calculating these values

we can update the vehicle's positional configuration

30

dKPi K = pi K + --S

piO = norm(piO + dist (piK))

pix = pix + 5dist(cos (pi0 + 30))

piY = pi + 8dist (sin (piO + 30))

The algorithm would continuously update the vehicle's position, and calculate the needed

change in curvature. This process would effectively smoothly merge the vehicle onto the

path and maintain it on the path after merging.

D. SUMMARY

In this chapter we developed the necessary equation to support an algorithm based on

the curvature control equation developed in chapter III. This basically consisted of the

development of the image point on the reference path, and a consistent method to calculate

distance. With this information we can establish a system which will continuously calculate

the necessary change in the instantaneous curvature, and update the vehicle's position. This

will effectively merge the vehicle onto the desired reference path. With this accomplished

we are ready to implement the algorithm into a vehicle simulator to test the results, and

verify performance. With satisfactory testing accomplished we could then begin to work on

a scheme to transition between multiple path.

31

V. TRANSITIONING

Our path tracking algorithn successfully merged a vehicle onto a reference path,

therefore the next logical step in developing our path tracking algorithm is to expand the

algorithm to be able to handle several successive paths. In transitioning between paths we

must insist that the vehicle's motion is restricted within the boundary formed by the

intersecting paths. This requirement is to ensure vehicle safety within an unknown

environment. Since our algorithm was designed to work for all possible planar lines and

circles, the problem of executing multiple paths in succession is reduced to the transitioning

method between successive paths. The primary question to answer is, when do we begin

our transition from one path onto the next?

A. POSSIBLE METHODS

Since we have limited our research to a spatial problem, we have limited the factors

which effect our transition time. Our problem is not concerned with time. speed. and other

factors which usually have a bearing on the moment which actions are to occur. Rather, our

problem is solely dependent on distance. Thus, we have reduced the question of when to

transition, to at what distance from the next reference path do we begin to transition. There

are many different options available, however we want to limit the complexity while

maximizing the effectiveness and fulfilling our safety requirements. Before actually

detailing our transitioning scheme. let's look at a few possible options.

1. Minimum Distance

The simplest scheme can be devised to transition when the vehicle is within a

given distance from the next reference path. This distance can be either the shortest distance

between the vehicle and reference path. or the distance between the vehicle and the

intersection of the two reference paths. The option chosen is very significant. When the

32

vehicle reaches the detennined mininmum distance, we sinply begin using the next

reference path in the path tracking process. This scheme is simple. and will satisfactorily

,,yoik in manv cases. However. the nininum distance scheme has a serious flaw.

The minimum distance scheme begins its' transition the same distance from the

next reference path for every situation. This scenario works well when the desired turn

angle approaches 90 degrees. However. problems arise when the interior angle between the

present reference path and the next reference path deviate greatly from 90 degrees. When

the turn angle is large the vehicle often does not have sufficient space available to transition

without crossing through the new reference path. An example of this can be seen in Figure

14. where a vehicle attempts a 170 degree turn with a minimum transitioning distance of

three. Although, this distance was sufficient for a 90 degree turn. figure 14 shows that the

vehicle significantly overshoots the desired reference path. This wastes energy and time.

and could represent a very serious hazard in an unknown environment.

Alternatively. when the incident turn angle is small. the moment of transition is

often earlier than desired. This is due to when we execute the transition, the image is often

located a significant distance before the intersection point of the two successive paths. In

many cases this will cause the vehicle to cross the previous reference path during its'

convergence to the new reference path. In extreme cases the vehicle may even merge onto

the new reference path prior to the intersection point of the paths. This scenario is depicted

in figure 15. where the vehicle attempts a ten degree turn with a minimum transitioning

distance of three. Once again this deviation from the desired motion wastes energy and

time. and represents a danger to the vehicle. Therefore. the minimum distance scheme must

be considered unsuitable for our system.

2. Dynamic Transitioning

A second transitioning option would be to vary the transitioning distance

according to the path tracking problem. The system would dynamically calculate the

optimum distance to make a smooth efficient turn. To accomplish this method we would

2

L

L Pref2 (8,0.I'70.0)

Pref I (0.0.0.0),
i

-

L 4

-o2 4 6 8 10
X--AXIS (cm.)

Figure 14. Vehicle Overshoot of a 170 Degree Turn

34

1.5[

10

0.5

i rJ

I-

~i

r

F
F

-0.51- °-

Pref2 = (4.0,10.0)

I-

-0 2 4 6 8 10

X-AXIS (cm.)
Figure 15. Premature Convergence of a 10 Degree Turn

35

establish a turn angle as a reference point on which to vary the transitioning distance. This

benchmaik would be a 90 degree turn, with a transitioning distance of two times the

distance constant. S0 . The dynamic scheme would increase this distance for tighter turns.

and decrease the distance for wider turns. We could further improve this scheme by

incorporating other factors which affect the vehicle's maneuverability, e.g. curvature

linitations, velocity, distance constant, and the vehicle's maneuverability characteristics.

The dynamic transitioning described would be extremely effective in optimizing

the transitions between paths It would maintain the vehicle's movement to within the

perhneter outlined by the reference path. This would increase vehicle efficiency,

maneuverability, and control, which would thereby enhance safety. However, this type of

system has some disadvantages. The system would require a complex function or a large

data table to properly determine the correct transitioning distance. Either me:hod would be

costly in time and hardware support. Fuithermore, both options would require exhaustive

experimentation to derive the necessary data. This would be time consuming and dreary for

a computer science student. Therefore. we feel although this method yields excellent

results, it is not appropriate for our system at this time.

B. A SUITABLE SCHEME

The transitioning schemes we iptroduced were unsatisfactory for our system. The

minimum distance scheme did not fulfill our requirements, while the dynamic scheme was

too costly. Therefore, the scheme which we settled on was a simplified variation of the

dynamic transitioning scheme. Our variation will have a transitioning distance function

based on the turn angle and the distance constant. The transitioning distance will refer to

the distance from the vehicle to the intersection point of the paths. We will conduct

transitioning experiments to collect the necessary data concerning the relationship between

these factors. Given the appropriate data we shall extrapolate a general function which

meets our requirements. The idea is to derive a function which may not provide the

optimum transitionrng distance, but will provide an appropriate distance in all cases.

36

1. Intersection Point

Our transitioning distance shall be measured from the vehicle to the intersection

point of the successive paths. Theiefore, we must have a procedure which locates the

intersection point for all possible transition. There are four tran' .on possibilities; line to

line. line to circle, circle to line, and circle to circle. The use r zs in our path tracking

algorithm is for obstacle avoidance. Therefore, it would -., inappropriate to transition

between two ciicles. This being the case we shall exclu le the circle to circle case in

deriving the intersection point for our research.

a. Line to Line

The normal line to line intersection problem is very simple when we have the

lines in the slope intersect format. However, our lines are in the configuration format. The

method we shall use to calculate the intersection point is based on the Law of Sines. To

calculate the point of intersection we are going to construct a triangle from the two

reference paths. calculate the distance of one of the sides of the triangle, and calculate the

interior angles of the triangle. With this information we can calculate any of the side's

distances, and the coordinates of the intersection point. A graphic description of a line

intersection problem can be seen in Figure 16. We shall now calculate S, the distance

between the two reference configurations. This can be accomplished using the Euler

distance equation,

S = J(Pref2x P,eflx) 2 + (Pref2Y PreflY) 2 (5.1)

We then calculate the orientation between these two configurations, F, using

the inverse-tangent function described in equation (4.25).

F = atan2(p, ef2Y - P,'ef lY P,.t x -Pl.eflx) (5.2)

With this orientation we can construct a triangle from the two directed lines, by projecting

a line segment in the orientation of F between the two reference paths. We now have the

necessary information to calculate the interior angles, as shown in Figure 17.

37

S Pinter =(x,y)

Prefl

Figure 16. Intersection of Two Lines

S Pinter (x,y)

Figure 17. Calculating Pinter

38

P1 = IP,ef 0 - (5.3)

2. = norm (7r - F) -p,.ef2oj (5.4)

D= (t - P - oc) (5.5)

With the interior angles calculated we can use the Law of Sines to calculate

the distance of one of the other two sides of the triangle. We will calculate S1. the distance

from the intersection point and the first reference path.

sin (a)
S1 = S(sin (c) (5.6)

This provides us with the needed information to calculate the intersection point. The

coordinates of the intersection are calculated by dividing S1 into its x, and v components,

and adding to the coordinates of the reference path configuration

Pinteir1 = Prefix + S cos (Prefl 0)

PinterY = Pi ef Y + S1 sin (p, efl 0) (5.7)

Pin ter0 = Prep-0 - Prefl 0

The orientation of Pinter is simply equal to the interior angle formed by the

intersecting reference paths. This value is being calculated for future use in determining the

transition distance required. It will be referred to in the future as the turn angle.

b. Line to Circle! Circle to Line

The transition between line to circle and circle to line are very similar. We

assume the user inputs two path which intersect. Given this assumption, a line will intersect

with a circle in either one or two points. In either case both scenarios reflect both transition

possibilities depending on which point of intersection we choose. This example is

illustrated in Figure 18. The first step in determining the intersection point is to calculate

the origin of the circular reference path. We calculate the radius, and then use equation (4.6)

to find the origin's coordinates.

39

1
radius = P r ef K

PoriginX = Pref' - radius (sin (peO)) (5.8)

Porigi,,Y = PrefY + radius (cos (Prefj))

The trick now is to create a triangle with Porigin and the directed line in order to find the

intersection point. After creating this triangle we can use the properties of a triangle to

calculate the measurements of the sides, and to then find the coordinates of the intersection

point, as shown in Figure 18. To begin let's calculate the distance from the origin to the

directed line, A. using equation (4.18).

(5.9)

A = (Pa, igiY -PrefY) (cos (P,'ef)) - (Poriginx - PoriginX) (sin (prefO))

Using the Pythagorean theorem we can calculate the distance B. If I A I > I radius I, then

there exists no intersection point between the two paths.

S 2
B= 1](p1-eiK 2 A2 (5.10)

We can calculate the image point of the ofigin onto the reference path by

using the value of A, and the fact that this distance is perpendicular from the origin with

respect to the directed line. The image is

Pirnagex = PoriginX + A sin (Prei0)

PimiageY = pOrijiY - A cos (Pref)

With the image calculated we can now find the intersection point.

P inter V = 1i na e 'cc x B cos (P refO)

PinterY = Pinagey ±B sin (Prcfe)

This equation is suitable for both line to circle and circle to line transitions. If

we are transferring from a line to a circle we would subtract the components of B from the

image, and if we go from a circle to line we add the components. To calculate the

40

Pinter

radius

Pinter]

Prefj (X,y.AK)

Figure 18. Calculate Pinter Between a Line and Circle

4'

orientation of tie intersection point we once again use our variation of the inverse-tangent

function.

() = atan2 (pinte -j Porigin)ilIinterx -Porigi X) (5.13)

This orientation is perpendicular to the orientation of the intersection point, which can be

calculated by adding or subtracting t/2 radians, depending on the sign of the curvature of

the circular reference path.

Pintero = ,) + (5.14)

Thus, we have successfully calculate the intersection point for all three

transition possibilities. Using this point we shall be able to calculate the distance from the

intel section to control the time of transition. Now, we are ready to proceed to determining

the transitioning distance function.

2. Transitioning Distance

Our transitioning scheme is based on transferring between successive paths at a

time detennined by the distance from the vehicle to the next path. This distance shall be

referred to as the transitioning distance. To optimize the efficiency of transitioning the

transitioning distance can not be a constant value. Therefore, it is our idea to find a function

that will determine the appropriate distance between the vehicle and path to produce an

efficient transfer. However, it is higlly unlikely that a general function will produce the

optimum transitioning distance for all possible situations. Thus, our objective is to derive a

function which will ensure all transfers between paths meet our requirements for safety in

an efficient manner. The safety requirements are based on maintaining positive control over

the vehicle to the extent that the vehicle avoid oscillation, and does not cross the bounds

established by the reference paths. Our method of deriving the function will be based on

gathering experimental data, which will translate into an appropriate function.

To derive a transitioning function we intend to conduct experimental tests to

determine the critical distance necessary for a safe turn. A safe turn is defined to be a turn

42

in which the vehicle negotiates the intended turn without crossing the present reference

path or overshooting the next successive path. The experimental tests will maintain the turn

angle and the distance constant, while varying the available distance to maneuver the

vehicle. This process will be repeated until we find the minimum distance needed to fulfill

the requirements. The range of the experiment will consist of turn angles between 10, 7r] at

intervals of 7E/12. We shall also complete the experiments for various values of S0 . The

results of our experiments will be put into a table format to enable quick comparison of

results. We shall then develope a distance function which will approximate the results of

our experimental data.

In conducting these experiments the major concern is determining if the generated

path oscillates or crosses the reference path. To accomplish this we shall manipulate the

vehicle's initial position to simulate the desired turn and transitioning distance. To illustrate

this. we refer to Figure 19.

pi =(x,y)

TD

Prefl TD/ N Prefn

/ PreI2Pref2

Figure 19. Rotation of a Transition Problem

The problems displayed in both figures are identical and will be handled by the simulator

in the same manner. We are simply changing the vehicle's initial configuration to simulate

our desired transition. Thus, we convert every transitioning situation into a transition to the

x-axis. In this case we can quickly determine if the path oscillates or crosses the reference

43

path by simply checking the sign of the vehicle's position. If the value of the vehicle's y

component ever goes negative, then the vehicle has crossed the reference path, and the

transitioning distance is insufficient for that scenario. Thus, it is our desire to translate all

experimental transitioning into transitions onto the x-axis.

The graphical results of many of the experiments can be viewed in appendix B.

Table 1 below shows the experimental data for the simulations. Thus, the table is a concise

means to display the relationship between the turn angle, distance constant, and

transitioning distance. The rows represent different distance constants while the columns

are different turn angle. The entry under any specific row /column is the required minimum

transitioning distance for that particular problem. For example, the minimum transitioning

distance for a 90 degree turn with a distance constant of 0.5 is 1.3units, depending on the

units of S0.

3. Deriving A Transitioning Function

Given this experimental data we can now determine a general function for the

transitioning distance. Examining the entries of the Table 1, we quickly come to the

conclusion, that there exists no simple function to determine the transitioning distance for

all different situations. Therefore, let's attack the problem by dividing the problem into two

parts. the relationship between the turn angle and the transitioning distance, and the

relationship between the distance constant and the transitioning distance. By solving these

two simpler problems and then combining the results, we can derive a composite function

which is suitable to fulfill our requirements.

a. Relationship Between TD and Turn Angle

First let us examine the relationship between the turn angle and the

transitioning distance. It is an obvious observation that it takes a greater transitioning

distance to complete a sharper turn than a wider turn. To find the underlying relationship

between the two values we can plot the entries of the Table I for a given value of the

44

distance constant. We can then use this plot to extrapolate a distance function from the

graph. The example we plotted was the case of So = 0.25, and is illustrated in Figure 20.

3

2-
z

- 0 .

-- -- '

-200 -100 0 100 200
TURN ANGL-E (degrees)

Figure 20. Experimental Minimum Transition Distance

We plotted the turn angle along the x-axis from -165 to 165 degrees. Since

the negative turn angles are turns of the same magnitude but in the opposite direction as the

positive turns, they require the same transitioning distance as their positive counterparts.

On the y-axis is plotted the minimum required distance to complete a given turn angle. The

results of our efforts clearly reveal a relationship between these two variables. The shape

of the graph is similar to that of a parabola, however the base of the curve is much flatter.

What we desire is to find a function which will map to this plot as close as possible, but

never produce a transitioning distance smaller than that produced by our experimental data.

Thus, let's assume the relationship is in the form of a fourth order polynomial, which share

the basic shape of the parabola.

1
TD(0) 4 (5.15)

I

45

Table 1: EXPERIMENTAL TRANSITIONING DISTANCE

Turn Angle Distance Constant

(Degrees) SO=l.0 S0=0.5 S0=0.25 S0=0.125

0 0.0 0.0 0.0 0.0

15 2.0 1.1 0.6 0.3

30 2.1 1.1 0.7 0.3

45 2.1 1.2 0.7 0.4

60 2.1 1.2 0.8 0.4

75 2.2 1.2 0.9 0.5

90 2.3 1.3 0.9 0.5

105 2.5 1.4 1.0 0.5

120 2.9 1.6 1.1 0.6

135 3.5 1.9 1.3 0.7

150 4.8 2.6 1.7 1.0

165 8.8 4.8 3.0 1.9

180 ----.-.--.--.

46

Where. is the turn angle in radians and TD is the transitioning distance. By converting the

turn angle into a ratio between the turn angle and the maximum possible turn, we simulate

the curve of Figure 20. Equation (5.15) will produce a flat plot when the turn ratio is close

to zero. while exponentially increasing the transitioning distance as the turn ratio

approaches positive or negative unity.

If we calculate the transitioning distance by this function for those points in

which we collected experimental data. we can determine the appropriateness of the

function. V.e set up a plot similar to that of Figure 20 to display the results of equation

(5.15). However. we included all turn angles between -170 and 170 degrees. Figure 21

displays the results. The plot illustrates a very sinilar curve to that of the experimental data.

A quick check of the individual values also reveals that the function produces results which

at all times is greater than those of the experimental data for the case of So equal to 0.25.

Therefore. this function is an appropriate approximation for determining transitioning

distance. However. further comparisons between the output of this function and entries in

Table I clearly illustrates that this function does not fulfill our needs. The problem is that

the function does not take into account the effect altering the value of the distance constant

has on the minimum transitioning distance.

b. Relationship Between TD and So

Equation (5.15) is unsuitable for non constant So . However. this equation

does provide us with a base case transitioning function. That is we can use this function to

determine the transitioning constant, but modify its' output as appropriate dependent on the

actual value of the distance constant. Thus. we are basically creating a composite function

of a function dependent on the turn angle and a function dependent on the distance constant.

To derive the function dependent on the distant constant we shall follow the same method

we used with the turn angle. Therefore. once again let's plot the experimental results.

47

I

2-

Fiur 21/Da acltdb al n qain(.5

448

o I - ___-

"--i
o 1

-20 - !0 0 0

' 48

This would produce 12 independent curves, one for each turn angle, which illustrate the

relationship between the value of So and TD. The case for turn angles of 150 and 15 degrees

are displayed in Figure 22.
5

,..-
4

< 3 - 150 Degree -url9

Z 2-

2

, 15 Degree Turn

_0
t

-00 02 04 0.6 08 1 0
DISTANCE CONSTANT (cm.)

Figure 22. Relationship Between TD and So

This figures show that the relationship between the value of So and TD is linear. In fact,

each of the twelve plots indicate that this relationship is linear. Therefore, it may be

possible to extrapolate a linear equation from these plots which will provide a correction

factor for different distance constants.

If we begin looking for a relationship between the 12 individual plots, we

quickly realize that the slope of the twelve plots vary significantly. This would make it very

difficult to find a linear equation which would satisfy all possible cases. However, since our

transitioning distance function (5.15) is based on the case of So = 0.25, we can standardize

the entries of Table I. By plotting the standardized results we can more effectively isolate

the effect the value of the distance constant has on the transitioning distance. Thus, Table

2 is an abridged version of Table I with the cntries converted into ratios. The row/ column

entries of Table 2 are the ratios between the transitioning distance for a specific turn angle

49

and So, and the standard transitioning distance for that turn with So = 0.25. The standard

transitioning distance is the value outputted by equation (5.15) for a specific turn angle.

Table 2: TRANSITION DISTANCE RATIO

Turn Angle Standard Distance Constant Ratio

(Degrees) TD 4.0 2.0 1.0 0.5

15 1.000 2.0 1.1 0.6 0.3

90 1.067 2.16 1.22 0.84 0.47

165 3.402 2.56 1.41 0.88 0.56

Now, if we plot the results of Table 2, we can find an appropriate correction

factor. Figure 23 depicts the relationship between the ratios of transitioning distance and

turn angles.

3

-5 1,r- 2 4

IFge3eu anges iude T A

0 5InFr 23 we plte l he unagenlderee Tabe2urn ecn e neahcs

-- 00

can derive a linear correction factor for various distance constants. Using the slope intercept

line equation we get,

2.56-0.88x

CF(So) = (4.0-1.10)x+b (5.16)

CF(So) = 0.56x+b (5.17)

Where CF is the correction factor, x is the distance constant standardized with respect to

the value of 0.25, and b is the y-intercept. Using equation (5.17) and the point (1,0.88) from

our plot we can solve for b. The value of b is 0.32, and equation (5.17) becomes,

SO
CF(SO) = (0.56) -25 +0.32 (5.18)

This equation was a suitable correction factor for various distance constant

values, however we desire to match the experimental data as close as possible. Therefore,

we adjusted this linear equation to pioduce results which -,ould match the results of the

transitioning function witl tioe ft)"he experimental data. We accomplished this simply by

analyzing the twelve cases and interpolating appropriate values for the slope and intercept.

The final results were,

SO
CF(SO) = 0.6(-) +0.3 (5.19)

By combining the results of both relationships we can create our composite

function. Thus, our function for determining the transitioning distance for all turn angle and

distance constants is

TD(,So) = [2.4So+0.31 4 (5.20)

This equation is sinply. but robust enough to apply in all possible transition problems. To

verify the effectiveness of this equation, we shall compare the results of the equation to the

experimental results. Table 3 gives us the transitioning distance results by using the derived

51

Table 3: CALCULATED TRANSITIONING DISTANCE

Turn Angle Distance Constant

(Degrees) S0=I.0 S0=0.5 S0=0.25 S0=0.125

0 0.0 0.0 0.0 0.0

15 2.70 1.50 0.90 0.60

30 2.702 1.501 0.90 0.60

45 2.711 1.505 0.904 0 602

60 2.734 1.519 0.911 0.608

75 2.784 1.547 0.928 0.619

90 2.880 1.60 0.960 0.640

105 3.054 1.696 1.079 0.679

120 3.365 1.869 1.121 0.748

135 3.950 2.194 1.317 0.8-/8

150 5.215 2.897 1.738 1.159

165 9.186 5.103 3.062 2.041

180

52

function. As we can see by simple comparison of the entries of Table 1 and Table 3, in all

cases our derived function outputs a value equal to or greater than that derived by

experimentation. Therefore. we can assume that our derived equation is appropriate, and

will ensure sufficient maneuvering space while minimizing waste.

C. SUMMARY

In this chapter we introduced some possible transitioning schemes for our algorithm.

The scheme on which we settled for is a variation of a dynamic scheme. Our scheme is

based on transitioning a variable distance from the intersection point of two successive

paths. This distance is determined by a general function which takes into account the degree

of turn involved and the desired distance constant. The function was derived by gathering

experinntal data through use of our simulator. With the results of these experiments we

inteipolated a general function, which would fulfill our safety requirements while

maximizing transitioning efficiency. Some graphical results are included in figures24 to 26,

which illustrate the effectiveness of our transitioning system. In Figure 24 we are

completing a simple 90 degree turn with a So value of 1.0. Figure 25 combine the line circle

transitioning combinations, and illustrates the obstacle avoidance problem. In this graph we

can assume the vehicle isolates an obstacle ahead on its' present path. The vehicle thus,

transitions to an appropriate dimension circle to avoid the obstacle. When the vehicle is

clear of the obstacle it transitions back onto its' original path. The remaining figure displays

the transitioning between two circles.

53

distance constant- 050 cm I
XY.7heta KapDa) (Xr.Yr.Thetar.Kappsr)

00 -20 CO05) ,00 -30 00.03)

x12- / 1°
r /

.< - , 4

-4 -2 2

X-AXIS (cm)
Figure 24. Transition From Inner to Outer Circle

54

distance constent-O 6C crr.
, X .Y h e ta K p p a ' (X r.Y r.T h eta r K a p p e r)
'0 0 -30. 00 03) (00 -20. 00. 05)

2-

NJuF 0 -

• /

-4

-4-2 0 24

X-AXIS (cm.)
Figure 25. Transition From Outer to Inner Circle

55

101
dist5nce constent- 0 5C cr'.

X YThete Kappe) (Xr.Yr.Thetar.Xeppar)

0o Cc 00 o) (00 00. 00 00)
•34 -00 00 -00) (NCO. 50, 00. -02)
1- ,47 1.6 -7. -02) (00. COCO. 00)]

5L

-10
-0 5 10 15 20

X-AXIS (cm.)

Figure 26. Transitions Involved in Obstacle Avoidance

56

VI. IMPLEMENTATION

One of the primary objectives of our research was to provide greater flexibility and

maneuverability for an autonomous vehicle. The path tracking method which we propose

would accomplish this by providing a simple, but powerful means to control a vehicle's

motion. However, to maximize the benefits of our pathtracking algorithm, we should

incorporate it with a traditional path planning algorithm, such as that described for

Kanayama's Yamabico-1 I [Ref. 3]. The resultant algorithm will enjoy flexibility,

maneuverability, ease of operation. and increased control. Therefore, our final objective is

to implement our path tracking algorithin into the software system of an autonomous

vehicle. Our system has been designed with regards for all categories of vehicles.

Therefore. our algorithm will be compatible for the Yamabico-1 I robot.

A. OVERVIEW OF SYSTEM

I. MML System

The Yamabico-ll robot presently operates within the MML software

envirounent. MML is an abbreviation for Model-based Mobile robot Language. and is a

on-line library of mobile robot oriented functions. MML is a real time motion control

system for off-line programming of a mobile robot. It consists of three primary

components. a path planner. a motion generator, and a tracking controller module. The

system accepts the user's desires in the form of a user program. The path planning module

takes this input and converts it into a description of the path. This path description is used

in conjunction with the velocity and acceleration specifications to produce reference

configurations which track along the desired path. This data is compared by the tracking

controller module to mininize the difference between the vehicle's position and the

reference configuration. The controller module also consists of all the necessary

mechanisms for locomotion capabilities including the vehicle's motor and wheels [Ref. 31.

57

B. PATH TRACKING SYSTEM

The system we envision shall be comparable to the existing system There shall be two

modules which parallel the path planner, and the generator. These modules shall be referred

to as the path descriptor, and the executor. The output of these modules shall provide input

to the existing tracking controller module. The process shall be initiated by the creation and

linking of a user module to the path tracking system. Our system shall be written in the C

language within the Unix environment.

1. User Program

The user program shall be designed for off-line programming of the robot. Its

purpose is to provide a means for the user to program the robot's motion. The user module

shall consist of an indeterminate number of path tracking locomotion functions, which

describe the robot's desired motion. The available commands are described in appendix D.

The sequence of locomotion conunands must be completed by listing the execute comnand

after all other commands. Execute acts as a signal to the system to transfer control to the

executor module. The user prograni shall be executed under the supervision of the MBIL

operating system. The path tracking functions within the user module shall be linked only

at compile time. This module thereby acts the same as it did for the user program of the

MML system.

2. Path Descriptor

The path descriptor module shall perfonn a similar function to the path planner

module of the MML system. 1' -hall take a user program and convert it into a description

of the desired motion in terms acceptable to the executor module. This shall be

accomplished by taking the sequence of commands of the user program and placing their

corresponding path information onto an instruction stack. The stack shall comprise of three

components: the class, the reference path. and the transition point. An example of a typical

instruction stack is given in Table 4.

58

Table 4: INSTRUCTION STACK

Class Reference Path Intersection

spath (Xr5, Yr5. 0r5, r5) --

ppath (Xr4. Yr4, 0r4. Kr4) (xi3. Yi3. 0j3. Kj3)

path (Xr3. Yr3 0 r3, Kr3) (xi2. Yi2, 0 i2, K 2)

ppath (Xr2- Yr2 0r2. Kr2) (xil, Yil, Oii. Kil)

path (Xrl- Yr- 0rl, Krl)--

The class is the type of path locomotion function. There are only three possible

options: path. ppath. and spath. The path function is an indefinite move command onto the

path described by the given configuration. The function ppath is a partial path function.

which is simply a path with a distinct endpoint for transitioning purposes. The path and the

endpoint are described by the same configuration. The last available class is spath, which

is a stop path function. The accompanying reference configuration refers to the location on

the path for which the robot is to stop.

The reference path and the intersection are configurations which describe the

desired motion. The user program shall have a path configuration for each command

entered to delineate a specific path. This configuration shall be placed on the stack as the

desired reference path. The system shall then use the class and successive reference path

configurations to determine the intersection point. This intersection point shall be used to

determine when to transition between successive paths.

3. Executor

The executor module will be initiated by the user programn. After all locomotion

functions have been placed onto the instruction stack the conunand execute will pass

control to the executor. The objective of the executor is to derive the dic/ds necessary to

59

merge onto the reference path. This is sinply a call to our path tracking algorithn with the

specific instruction stack. After the iobot's image has reached the determined transitioning

point the next entry of the instruction stack shall be executed. This shall be continued until

all instructions have been executed. At this point the robot shall switch to the stop state.

C. SUMMARY

One of the primary objectives of our research was to expand the motion control

capabilities of all categories of autonomous vehicles. In accordance with this we developed

a sinple but powerful path tracking algorithm. To show the benefits of such an algorithm

we intend to implement it within the operating system of a mobile robot, Yamnabico- 11. The

implementation that we decided to undertake was based on a parallel system to the present

Yaniabico- II operating system, MML. This would allow us to employ applicable existing

modules of the MML system, while developing other modules to tailor the system to our

path tracking algorithm. Our ultimate desire is to create a operating system which could be

quickly operational, and expanded to subsume the MML system in the future.

60

VH. SUMMARY AND CONCLUSIONS

A. CONTRIBUTIONS OF RESEARCH

The benefits of our path tracking algorithm are primarily within two areas. The first

area is concerned with the effective control of an autonomous vehicle. Most present motion

control algorithns for autonomous vehicles are based on a exact positioning. That is. the

vehicle is controlled to pass through certain desired points. This method is extremely useful

and versatile. However. many instances exist where the exact positioning of the vehicle is

not as important as the orientation. In our path tracking algorithm we emphasize translating

our desired motion into simple terms. We make it considerably easier for the user to

program a vehicle's motion by alleviating the need to predetermine points along the motion

path. In addition, the general concept of motioa behind our path tracking algorithm

provides a more general approach. which is as encompassing as the more prevalent point

to point approach. The path tracking approach allows the user to maintain the vehicle on

curves which would be impossible to replicate in the point to point approach. Both methods

offer the user some advantages. however it is best when the methods are combined within

a vehicle's software. This greatly enhances the vehicle's motion control flexibility and user

operability.

The second area which this research directly benefits is that of obstacle avoidance. In

our path tracking scheme we included tracking along circular paths. The primary reason we

implemented a path tracking algorithm for circles is to provide a means for obstacle

avoidance. Our intentions are. that when a vehicle's sensors detect an obstacle, we would

have an automatic transition from the path the vehicle is presently on to a circular path

which would circumvent the obstacle. After avoiding the obstacle the vehicle would then

transition from the circle back onto the original path. A more complex scheme can be

61

developed on this idea to handle multiple obstacles and dynanic moving obstacles.

However, the path tracking scheme presents the foundation for these ideas.

B. FUTURE RESEARCH

The path tracking scheme developed in this research is a simple algorithm. This simple

nature provides ample opportunities to improvt or expand the system. The possible

improvements can be conducted mainly in two areas, the mathematical model, and the

transitioning scheme.

We developed the algorithm primarily through experimentation. That is we attempted

to find a valid control method through hunches, and gut instincts. This is not the most

appropriate means, and it usually does not yield the best results. In deriving our

mathematical model we included assumptions to ensure a simple control function. In

addition, the output of the system is not precisely our desired output. A very slight

oscillation exist in simulations conducted with the value of So less than one. Although the

magnitude of the oscillation is on the order of 10.6, it may indicate a problem with oul

method. Therefore, for these reasons it may be beneficial to invest further research into a

similar mathematical model. Thi, 'nay provide a solid mathematical approach, which

produces superior results to those presently attained.

The second area which could be improved upon is the transitioning schcme. We

developed our transitioning scheme priarily as a result of the limits of oo- resources, both

time and money. With greater resources available we could investigate whether an

expanded transitioning scheme would be feasible and economical. If the system mcrited

improvement, we could expand the transitioning scheme by taking more factors into

account m determining the appropriate transitioning distance. The goal would be a fully

dynamic scheme, which provides the safest, most efficient transitions possible.

Other research can be accomplished by expanding the present algorithm. The

algorithm could be expanded by expanding the systems' applicability, and functionality.

The applicability of the system could be expanded by increasing the scope of possible

62

referenc- paths. Thus, we could imlplement a system in which a robot could path track along

any given planiar curve, including ovals, parabolas, and cubic spirals. This would be

extremely useful in developing a path tracking scheme based on voronoi boundaries within

an environment. Another possibility is to expand the algorithn to a three dimensional

system. This could be useful in motion control of an unteathered submarine, or a mobile

drone. These options can be accomplished by manipulating the present motion control

aspects of our system and implementing them in other areas.

Another research area which could be started in conjunction with our work is obstacle

avoidance. The path tracking algorithn lays the groundwork for a possible obstacle

avoidance algorithn for autonomous vehicles. This is by far the most significant area of

possible future iesearch. The path tracking algoritlun is simple, and provides a simple

reliable means to control motion of a vehicle. This is ideal for an obstacle avoidance

scheme. The gioundwork is esta.'.ished. with further work along these lines an effective

means to transit unknown environt,.,,nts could be close at hand.

63

APPENDIX A

To test the correctness of our control equation, we shall compare the results of the

output of our simulator with that of an assumption free equation based on our system. To

do this we shall use equation (3.22) and solve for the coefficients A, B, and C. Let's look

at equation (3.22) and its' first and second derivative.

A 2 kV
v = (-x +Bx+C) (A.1)

'kA 2 (A-k)
y1 =(Ax+B-- .x -kBx-kc) (A.2)

" kA 2 -kv
y = (A-kAx-kB-k(Ax+B--A2 -kBx-kC)) (A.3)

With these equations we can solve for the coefficients.

YA0= C== Y 0 (A.4)

xYx= = tan0 0 B = kY0 + tan0 0 (A.5)
' 3/2

v A- 2kB + k2CI- . = K 0 (A.6)
2 3,,2 2 3/21

(l+ ()) (l+tan 0)
x=O

A = 2k (tanO0 +k 0) -k 2 0yo + l1cosO013 (A.7)

To find the specific solution for the coefficients we use the initial position of the robot

for a given problem. To simplify the problem we shall choose a problem in which the robots

initial .v coordinate is equal to zero. Thus, we shall solve the coefficients for the problem of

the robot merging from an initial position pi = (0, 1. 0, 0) onto the x-axis. Now, we can

calculate the actual coefficients for this problem. Using equation (A.4) we solve for C.

C = Y0= 1 (A.8)

Now, we solve for B using equations (A.5) and (A.8).

64

B = k(1) +tan(0) = k (A.9)

And the value of A is calculated,

A = 2k(k) -k 2 (1) + (0)I1 = k (A.10)

Since, we have assigned the value of k to be equal to the inverse of S0 , we have all the

infonnation to plot the desired path free from our earlier assumptions. Thus, we established

an algorithm which would plot the following function.

k2k x (x+kx,,+ 1) - k v (A.1 1)

Thus the output of this equation was plotted in conjunction with the output of our simulator

for various values of S0 . The results of both outp,ts clearly show the degree of difference

between our simulator and the assumption free output.

65

APPENDIX B

In deriving our transition distance function, TD, we conducted numerous simulations

of transitioning between paths. The objective was to find the minimum distance required to

complete a specific turn angle. We also conducted these experiments to determine the effect

varying the value of So had on the minimum distance. The results where reported in Table

1. and the graphical results can be found in figure 22 to 32.

i conducting the minimum transitionhig distance simulation we found a problem with

the output of our algorithm. The objective of the testing was to find the minimum distance

to complete the turn without any oscillations or crossing of the reference path. However, as

we conducted the experiment we found that this requirement was impossible to meet in

some circumstances. As we decreased the value of So we found that a small degree of

oscillation was present, regardless of how much we increased the transitioning distance.

This oscillation was present when the value of So was 0.5, 0.25, and 0.125. The oscillation

was a single crossing of the x-axis on the order of 10-6. Therefore, we regarded this

oscillation as insignificant, and proceeded with our testing. However, in the cases where

the oscillation existed we detennined the minimum distance as the point where this slight

oscillation first appears.

The output of our testing was four individual paths for each specific turn angle. All of

the paths were plotted on the same graph for easy comparison. The paths can be

distinguished from one another since those with the widest and slowest turns have the

higher values for S0. Also included on the graph was a dotted directed line, which provides

the vehicle's initial reference orientation. The ledger found in the lower right-hand comer

of each graph tell the necessary initial position of the vehicle to complete the turn for a

given So value.

66

06

Distanlce Corstant Inatia. Position
-- :0cm (-19.05 -150 00'

C-cm - :.03 -150 0 0
025cm (06 02 -150 00
r :25 c.r -03 C I. -150. 00)

04-

: \ \

~' 02- ;, ,

5<\

a'I

-0.2

-2 02 4 6 8
N :\N'. (ema)

Figure 27. A 15 Degree Turn

67

1),stance Constant Inaital Position
I0cmr (1 8. 10-3000.,
0 5cmr (1 0. 065 -30 0 0 0

- 0 25cm (-6. 0 3 -300 0 0
--- 225 cl- (-03 C 1. -30 0 00~ 1

1 01

05-

00-

-20 2 468

X --AXIS (cm.)

Figure 28. A 30 Degree Turn

68

Mstance Cons5tant Initia: Position
0 0crr. (-125. 15 -45 0. 00)
5 cn ~ -8 08 -453 00)

26 cm. ~ 5C 5. -45C0. 0 0$
C 125 cmr (-03 C3 -450 00),

1 5

1.0-

05-

00-

-05 - -- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-2 0 2 q68

X-AXIS (cm.)

Figure 29. A 45 Degree Turn

69

- - D:stance Co'.tart Initia: Position I
0 ct. r-:. I e -600 00 -

0.5 cm. -06. IC -600. 0 0
-025 cm. -04" 07. -600 001.J

C225 crr. (-02 C3. -600 OC)

2:-- 4

2- ,,

-- ," "

-i

-1-

-2 2 4 6 8

X-AXI'S (cm.)
Figure 30. A 60 Degree Turn

70

3

Dstance Constant InItmc. PO,,lon I
- :0 C-1 -C6 2 1 -75 0. 00 1

-- 5crr. 0-C3 12 -750 00,
C 25c -2.C9. -750, 00)
0 125 c-.. I C 5 -750 00)

6!

71

711

O:stence Constant Inits : Position
:- 0Ocm -C0.22 -900 0.01
C cm -00. 13 -900 00 ;C- 025 crr C-00 C 9 - 90 0 004

, __2 5 c m G 5

2k

E ,,
ii~

0 -

-0 2 6 10

--AXIS (cm.,

Figure 32. A 90 Degree Turn

72

- DIst ce ors to-., :n.tia. Position I
10cm (C6. 24 -1050 00,
- 5 .-.. (4 "4 -1050 00;
- 25 C--- (33 10. -050. 00)

- G C125 c-n (31: CS -1050. 00)

i

2--

-0 "2 6 1 0

X -AX4S (cm.)
Figure 33. A 105 Degree Turn

73

3,i

-- Dlst&ec¢e Cnste:.' nm:al: POSiit=On

0- : 14. -120 00.,

- 025 (C5 10. -1200 00,
0125 c (03 C5. -!2C OC)

x

-0 *--00

Figure 34. A 120 Degree Turn

74

3

cm Zt 25 -1350 001,
- 5-- !:sI:-€ 3'.:t * % . 38.. 5 $J**'O* ;

- - ?2- c- 9 C-_;,. - 135C C -;

-C 2! C 6 3 .00

N AXIS (e-r.2

Figure 35. A 135 Degree Turn

75

- Dstance Constent Initial Position IO"- ;0cm^42. 24 -ISCO0) 1
0 c 450 c 23 13. -150 0. 00)-- 025 cm (5 09 -1500. 00) 1

0 25 cm (, 05 -1500. 00)

0. 12 c

/

<

0!

'714

1~

I"-
X /

\ "- ____

-0 2 4 6 8 10

X-AXIS (cm.)

Figure 36. A 150 Degree Turn

76

3 1
Dis'¢nce Constant Initial Posstionc - 2 0 c... (85 53 -I650, 00)
1- 00 cm-. (46.! . -1650, 00)

-- 025 cm 908. -1650. 00 0
- 0125 cm (18 05. -1650. 00

I
2-'

5 10* 15

r I"

Figur l3'-. A 16 Dere Turn

7j7t- \ 1

I
1

OK -

- 1 1

-0 5 10 15

X-AXIS (cmn.)

Figure 37. A 165 Degree Turn

77

APPENDIX C

/* The header file used in conjunction with the path tracking
algorithm of pathld.c */

/* Constants needed within the program. */
#define PI 3.14159265
#define DPI 6.28318530
#define RAD 57.2957795 /* 180 / PI *1
#define DELTA TIME 0.001
#define MAXSTRING 80
#define VELOCITY 10.0
#define MAX DELTA KAPPA 1.0
#define N 10

/* Structure for reference paths, vehicle's position, image,
and the intersection point between paths. */
typedef struct

double x;
double y;
double theta;
double kappa;

} CONFIG;

/* Global variables. */
typedef struct I

double x0;
double yO;

}POINT;

/* Procedures defined within the program. *1
CONFIG currentconfig, intersect;
FILE *out_path, *info file;
CONFIG patharray[N];
POINT intersect;
int ITERATIONS;

78

double i xO, i-yO, dkappa, delta-d, DIST-CONSTANT;

CONFIG initial -configurationo;
CONFIG initial referenceo;
v-oid initializeyparameters 0;
void initialize fileso;
CONFIG intersectionypoint 0;
void print to fileo;
void update velocity();
CONFIG update configuration();
double calc_kappa();
CONFIG calc imageo;
double calc _kappa -dot 0;
void time-to-transition(,;
double normo;

79

#include 'Stdio.h'
#include "math. h"
#include "path.h"

maino(

int path nun-v = 0;
int done = 0;
double dkappa -ds - 0.0, speed, delta dist, aa, bb, cc;
CONFIG path, image;

-vehicle = initial configrurationo;
path = initial ref---renceo;
initializeyParameters (&aa, &bb, &cc);
initialize files (path);
intersect = intersection point(path num);
do
print to file(irnage path, dkappa-ds);
update-speed(&speed, &delta dist);
update_image(&image, vehicle, path);
delta -d = delta-distance(vrehicle, image);

dkappa ds =kappa_dot(-vehicle, image, delta-d, delta dist,
aa, bb, cc);

update -configuration(&vehicle, dkappa Tds, delta-dist);
time -to Ttransition(&path, &path-num, &done, image);
while (!(done));

CONFIG initial configuration()

CONFIG vehicle;
double dgre;

printf('Enter the robots current configuration (X Y DEGREES

KAPPA) : ") ;

scanf (l%f $.f ", &vehicle. x, &-vehicle. y, &dgre,
&vehicle.kappal;

vehicle.theta = norm(dgre / RAD);

return (vehicle);
)

CONFIG initial reference()
{

double degree, kpa;
int i, num-of paths;

printf("How many reference paths do you desire in the robots
motion: ");

scanf ("%d", &numof_paths);
for (i=0; i< num of paths; ++i)

printf("\n%s%d%s", "Enter the equation for number ",

(i+l)," reference path (X Y THETA KAPPA)");
scanf("%lf%lf%lf%lf", &path array[i].x, &path array[i].y,

°ree, &kpa);
patharray[i].theta = norm(degree / RAD);
patharray[ij.kappa = kpa;

p
path array[num ofpaths].x = 0.0;
patharray[num of pathsl.y = 0.0;

path array[num of_paths].theta = 6.28;
patharray[num-ofpaths].kappa = 0.0;
return (path-array[OJ);

void initializeparameters(aa, bb, cc)
double *aa, *bb, *cc;
{
double kk;

printf("What is the desired value of the distance
constant: ");

scanf("%if", &DIST CONSTANT);
kk = 1.0 / DIST CONSTANT;
*aa 3.0 * kk;

81

*bb = *aa * kk;
*c= *Jbb * kk / 3.0;

void initialize files (path)
CONFIG path;

char name [MAXSTRINGJ, namel [MAXSTRING);

printf ("What is the name of the graph output file?)

scanf ("%s", name);
printf("What is the name of the info output file?)

scanf("%s", namel);
info file =fopen(namel, "w");
out-Path =fopen (name, "W");
fprintf(out path, "1%s%.lf\n%s\n", tt #cs ", 0.5, 1"#lg 2");
fprintf(outypath, "%s%.2f%s\n",I

'#leg \"distance constant=", DIST_-CONSTANT, "")

fprintf (out -path, "'%s%27s\n", "#leg \" (X,Y,The-ta,.Kappa)',
"1(Xr,Yr, Thetar,Kappar) \""); fprintf(outypath,
"%s%.lf, %.lf, %.lf, %.lf%s%5s%.lf, %.lf, %.lf,
%.lf%s\n", "#leg \"(", vehicle.x, vehicle.y,
vehicle.theta*RAD, vehicle.kappa,")",(",
path.x,path.y,path.theta * RAD, path.kappa,")\"1);

void print -to -file(image, path, dkappa-ds)
CONFIG image, path;
double dkappa-ds;

{rnf %f" eil~)

printf(" %lfn ", vehicle.);
fprintf(ou " th %lIn ", vehicle~y)

fprintf(outy- ath, " %lf ", vehicle.);
fprintf (iofpat, "%%lfn "x= vehicle~y)
fprintf(info file, "%s%lf "y"x 1 , vehicle.y);
fprintf(info-file, "%s%lf "thea=", vehicle.; a)

82

fprintf(info file, "%slf\n ", "kappa=", vehicle.kappa);
fprintf(info file, "%s -lf ","itheta=", image.theta);
fprintf(info file, "%s%.-5f ","image x=", i xO).;
fprintf (info file, "-%s%.5f ","image_y=", i_yO);
fprintf(info -file, "%s ,lf\n ","close dist=", delta-d);
fprintf(info file, "%s%lf ","dkappa ds=", dkappa-ds);
fprintf(info file, "%s~ilf ","inter -x=", intersect.x);
fprintf (info file, "%s%lf\n ","inter-y=", intersect.y);
fprintf (info file, "%s%lf ", 'path.x=", path.x);
fprintf (info file, "%s- lf ", "path.y=", path-y);
fprintf (info file, "%s-'lf ", "path.t=", path.theta);
fprintf (info file, "%s%lf\n\n ", "path.k=", path.kappa);

vroid update_speed(speed, delta-dist)
double *speed, *delta-dist;

*speed =VELOCITY;
*delta dist =DELTA TIME * *speed;

double delta -distance(vehicle, path)
CONFIG vehicle, path;

double distance;

distance =(-(vehicle.x - path.x) * (path.kappa*
(viehi;cle.x - path.x) + 2 * sin(path..theta))
(vehicle-y - path.y) *(path.kappa *

(vehicle.y - path.y) -2 * cos(paththeta)))
(1 + sqrt(pow(path-kappa *(vehicle..-- - path.x)
+ sin(path.theta), 2.0) + pow(path-kappa *

(vehicle.y - path.y) - cos(path.theta), 2.0)));
return (distance);

83

void update -image(image, vehicle, path)
CONFIG *image, vehicle, path;

double radius, gamma, close-dist;
POINT origin;

if (path.kappa ==0.0){
close dist = (((vehicle.y - path.y) * cos(path.theta))-

((vehicle.x - path.x) * sin(path.theta)));
(*image).x = vehicle.x + close dist * sin(path.theta);
(*image).y = vehicle.y - close dist * cos(path.theta);
(*image) .theta = path.theta;
(*image) .kappa = path.kappa;

else{
radius = (1.0 / path.kappa);
origin.xO = path.x - radius * (sin(path.theta));
origin.yO = path.y + radius * (cos(path.theta));
gamma = atan2(vehicle.y - origin.yO,

vehicle.x - origin.xO);
(*image).x = origin.xO + fabs(radius) * (cos(gamma));
(*image).y =origin.yO + fabs(radius) * (sin(ganima));
(*image).theta = norm(ganima + (PI/2)*(path.kappa/

f abs (path.kappa)));
(*image) .kappa = path.kappa;

j-x = (*image).x;
j yO = (*image).y;

double kappa-dot(vehicle, image, delta-d, delta dist,
aa, bb, cc)

CONFIG vehicle, image;
double delta-dist, delta-d, aa, bb, cc;

double delta-kappa, dkappal;

84

dkappal =-aa * (vehicle.kappa - image.kappa)
-bb * (norm(vehicle.theta -image.theta))

-c*delta d;
delta-kappa dkappal *delta dist;
return (delta kappa);

void update configuration(vehicle, dkappa,.ds, delta dist)
CONFIG *vehicle;
double dkappa ds, delta dist;

double delta theta, delta disti, kappa;
double epsilon = 0-00001;

kappa = (*-vehicle) .kappa + dkappa,_ds;
delta theta = delta dist * kappa;
delta disti delta-dist;
if (fabs(delta theta) <= epsilon){
delta-distl =delta dist * (sin(delta theta/12)/

(delta theta/2));

(*vehicle).x += (cos((*vehicle).theta + delta-theta /2.0)
* delta-disII) ;

(*vehicle).y += (sin((*ivehicle).theta + delta-theta /2.0)
" delta disti);

(*vehicle).theta = norm((*v.ehicle).theta + delta-theta);
(*vehicle).kappa = kappa;

-void time -to -transition(path, path-num, done, image)
C0O4FIG *path, image;
int *path-num, *done;

double distance, turn-angle, TDist;

if (path -array[*path-num+lII.theta 6.28)(
if (((fabs(delta -d) < 0.00001) &&(fabs((*path).kappa
vrehicle.kappa) <= 0.00001) && (fabs',norm(vehicle.theta-

irnge~het))<= 0.00001)) 11 (ITERATIONS > 2900))
*done =1

else{
*done 0;

ITERATIONS +1;

else
turn angle intersect.theta;
distance = sqrt(pow(image.x - intersect.x, 2.0) +

pow(irnage.y - intersect.y, 2.0));
TMist = (2.4 * DIST CONSTANT + 0.3) *(1/(1- pow (turn angle

/PI, 4.0)));
if (distance < TDist){

*path = path array[*path num + 1];
,*path-num += 1;
intersect = intersection-point(*path-num);
*done = 0;

fprintf (outpath,"%s%.lf, %.If, %.If, %.lfis%5s%.lf, %.if,

-ehicle.theta*RAD, vehicle.kappa,"t) ,It(?

(*path).x,(*path)-v, (*path).theta * RAD,

else
*done = 0;

CONFIG intersectionypoint (path-num)
mnt path num;

double dist refs, ref-orient, beta, alpha, sigma, inter-d,
distance, distancel, phi, intersect-orient;

POIN4T imagel, origin;
C0ONFIG inter;

if (path-array[path-num+lJ.theta == 6.28) {
inter.x=path arrayfpath num].x%- +

l000*cos (path_array [path _num] .theta);

86

ite.yati42L- ah numl y +

10 0C*sin (p: -.:zrray path-num) .theta);

else if ((path array[p.-a' numi.kappa 0-0) &&
(path-array[pa-_h_'ium+l3.kappa 0.))

dist refs=sqrt(pow(path-arraylpath num +1].x-
path-array[path-num).x, 2.0) +
pow(path-array[path-num +1].y-
path array[path-numj.y, 2.0));

ref-orient = atan2(path-array[E-ath num +l].y-

path arraylpath-numj.y,
path-arraylipath -nuim +1]-x-
path-array[path nurnhx);

beta =path arraytpath num].theta - ref orient;
alpha =norm(PI - ref orient) - path-arraylpath num +

1.thet%-'a;
sigma =norm(PI - beta - alpha);
inter -d =dist refs *(sin(alpha)/sin(sigma));
inter-X=path -array[path-nun].x +

inter__d*cos(path-array~path-num].theta);
inter.y=path-array[path -numj.y +

inter -d*sin (path-array [path-numi.theta);
inter.theta = norm(path-ar-ray[path-num + l].theta-

path-array[path num].theta);

else if(path -array~path-num].kappa == 0.0){
origin.-xO. = path-array[path-numIl].x - (1/

path -array~path-num+llkappa) *

(sin (path array [path num+lJ .theta));
origin.yO = path -arraylpath-num+lI.y + (1/

path-arraylpath-nun+l].kappa)
(cos (path -array [path-num+l] .theta));

distance = (origin.yO - path -array[path -numl.y)
cos(path-array[path-numI-theta) - (origin.xO-
path-array[path num).x) *

sin(path-array[path-numl.theta);
distancel =sqrt (pow(l/path -array[path_num+l) .kappa, 2.0)-

pow (distance,". 0));
imaael.xO-: = origin.xO + distance

sin(path-array[path-numj.theta):
imagel-yO = origin.yO - distance *

cos(path -arrayfpath-nun].theta);
inter..--= imagel.xO-. - distance!

*cos(path -arrayfipath-nurn].theta);

inter.y= imagel-yO - distance"L
*sin(path -arraylpath-num].theta);

phi = atan2(inter.y - origin.yO, inter.x - origin.xO);
intersect orient = norm(phi + (P112)*

(path-arraylpath-num +1]..kappa/
fabs(path_array[path num + 1].kappa)));

inter.theta =norm(intersect orient-
path arrayilpath num].theta);

else{
origin.xQ =O path array~path-num].x -(1/

path-array [path num] .kappa)*
(sin(path -array [path-num) .theta));

origin~yO = path arraylipath-num].y + (1/
path-array~path -num].kappa) *

(cos (path array [path num] .theta));
distance = (origin.yO - path -array[path -numIl].y)

cos (path-arraylpath-num+1].theta) - (oriain.xO-
path-arraylpath-num+1).x) *

sin (patlh-arravi;path num,.1] .theta);
distancel = sqrt (pow (1/path-array [path-nu.n) .kappa, 2.0)-

pow (distance.2-0));
image1%.x = originxO + distance~

sin(path arraylpath num+l].theta);
imagel.yO = origin.yQ - distance*

cos(path arraylpath nun+1].theta);
inter.-= imagel.xO + distancel

*cos (path array [path num+1] .theta);
inter-y= imagel.yO + distancel

*sin(path-array [pat'h-nun+l] .theta);
phi = atan2(inter.y - origin.yO, inter.X - origin.xO);
intersect orient = norm(phi + (P1/2)

(path array[path -num]..kappa/
f abs (path array [path nun] .kappa)));

inter.theta = normn(- intersect orient +
path_arraylpath_num + !].theta);

return (inter);

double norm(angle)
double angle;
f

while ((angle > PI) ii (angle <= -PI))
if (angle > PI)

angle -= DPI;
else

angle += DPI;

)
return (angle);

I

APPENDIX D

We propose a path tracking algorithm which is applicable to any autonomous vehicle.

This algorithm would be operable in conjunction with the present motion control software

system MML for Yamabico. An overview of the present locomotion functions is presented

by Kanayama [Ref. 4], which seconds as Yamabico's user manual. This reference gives the

reader a clear understanding of the MML software environment, and the available motion

control commands. The modification which would be necessary to combine the two

independent systems was explained in chapter VII. In this appendix we would like to

explain the additions necessary to the library functions in the MML language by expanding

the user's manual.

The changes which are necessary are concerned exclusively with the sequential

locomotion functions, such as move and stop. To append the users manual we must simply

add three locomotion functions to the system. These three commands shall allow the user

to intersperse the functional features of the path tracking algorithm with the established

point to point motion control scheme. The added commands will be labeled as follows;

path, ppath, and spath. It is our hope, that by incorporating both systems together with as

few as possible additional commands, we can maintain the entire MML environment. In

addition, we feel this will greatly expand the robot's functionality and versatility without

complicating the operating procedure of the robot. Let's take a in-depth look at each new

sequential locomotion function.

PATH TRACKING LOCOMOTION FUNCTIONS:

MOVE PATH

SYNOPSIS: path(c);

CONFIGURATION *c;

90

DESCRIPTION: This function moves the robot from the robot's current
configuration pi = (xi, yi, 0i, Ki) onto the directed

reference path = (x, y, 0, K). The present speed and
acceleration, vc and ac, are used for the motion. The

robot's motion should smoothly merge onto the
reference path and continue to track along the path
indefinitely or until another motion function is
encountered. The only acceptable command following a
path() is another path tracking locomotion function,
or an inmediate function. The locomotion function
which follows this command must consist of a path
which intersects the present desired path. If the two
consecutive paths do not intersect, the robot stays on the
curent reference path.

ERROR: If the command following path() is not an acceptable
option, the robot stops and an error code is returned.

SEE ALSO: ppatho, spathO, speedo, acco, moveio.

MOVE PARTIAL PATH

SYNOPSIS: ppath(c);
CONFIGURATION *c;

DESCRIPTION: This function is a variation of the path function. It moves
the robot from the robot's

current configuration pi = (xi, Yi, 0i, K) onto the

desired reference path. The present speed and
acceleration, vc and ac, are used for the motion. The
robot's should smoothl, merge onto the desired
reference path and continue to track along the path until
its image reaches c = (x, y, 0, K). At this point control

goes to the next path function.

ERROR: If the destination point c is the same as the current
nominal point, the robot stops and an error code is
returned.

SEE ALSO: patho, spatho, speedo, accO, moveio, moveo,
stop().

91

STOP PATH

SYNOPSIS: spath(c);
CONFIGURATION *c;

DESCRIPTION: This function is a variation of the patho function. It
moves the robot from the robot's current configuration
pi = (xi, yi, Oi, K) onto the desired reference path. The

present speed and acceleration, vc and ac, are used for

the motion. The robot should smoothly merge onto the
desired reference path and continue to track along the
path until its image stops at c = (x, y, 0, K). At this point
the robot switches to the STOP state. In this state the
robot can complete any command of either system.

SEE ALSO: patho. ppatho. speedo, acco, moveio. moveo.

stop().

SPECIFYING So

SYNOPSIS: distconst(x);
double x;

DESCRIPTION: This function allows the user to adjust the value of So

for a particular maneuver. The command can only be
used while the robot is in the STOP state.

ERROR: If the user inputs a negative value for the distance
constant. the robot stops and an error code is returned.
If this command is given while the robot is not in the
STOP state, the robot shall stop and an error code
returned.

92

LIST OF REFERENCES

1. Kanayama, Y., and Hartman B.I., "Smooth Local Path
Planning for Autonomous Vehicles, Part I:

Symmetetricity," Proceedings IEEE Journal of Robotics
and Automation, pp. 1265-1270, 3989.

2. Kanayama, Y., "Introduction to Two Dimensional Spatial
Reasoning," paper presented at the Naval Postgraduate
School, Monterey, CA., 24 March 1991.

3. Technical Report of Naval Postgraduate School,
"Locomotion Functions in the Mobile Robot Language,
MML," Kanayama, Y., and Onishi, M., pp.1 - 23, 1990.

93

BIBLIOGRAPHY

1. Akman, V., Unobstructed Shortest Paths in
Polyhedral Environments, Springer-Verlag, 1987.

2. Brady, M., Robot Motion: Planning and Control, MIT
Press, 1982.

3. Canny, J., The Complexity of Robot Motion Planning,
MIT Press, 1988-

4. Gordpasture, R. P., A Computer Simulation Study of
an Expert System for Walking Machine Motion
Planning, National Technical Information Service,
1987.

5. Kanayama, Y., and Hartman B.I., "Smooth Local Path
Planning for Autonomous Vehicles, Part II:
Cubic Spirals," Proceedings IEEE Journal of Robotics
and Automation, 1989.

6. Kanayama, Y., and Noguchi, T., "Locomotion Functions
for a Mobile Robot Language," Proceedings IEEE/RSJ
International Workshop on Robot Programming
Languages, 1989.

7. Kanayama, Y., and Onishi, M., "Locomotion Functions
in the Mobile Robot Language, MML," Proceedings IEEE
Journal of Robotics and Automation, pp. 1110 -1115,
1991.

8. Kanayama, Y., and Yuta, S., "Vehicle Path
Specification by a Sequence of Straight Lines," IEEE
Journal of Robotics and Automation, vol. 4, no. 3,
1988.

9. Nelson, W., and Cox, I., "Local Path Control for an
Autonomous Vehicle," Proceedings IEEE Conference on
Robotics and Automation, 1988.

94

10. Richbourg, R. F., Solving a Class of SpatialReasoning Problems: Minimal-Cost Path Planning in the

Cartesian Plane, National Technical Information
Service, 1987.

11. Sanders, D. W., A feasibility Study in Path Planning
Applications Using Optimization Techniques, National
Technical Information Service, 1987.

12. Schwartz, J. T., Sharir, M., and Hopcroft, J.,
Planning Geometry, and Complexity of Robot Motion,
Ablex Pub, 1987.

13. Smith, W., Local Path Planning using Optimal
Control Techniques, National Technical Information
Service, 1988.

95

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria. VA 22304-6145

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943

Chairman. Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. Yutaka Kanayama, Code CS/Ka 2
Computer Science Department
Naval Postgraduate School
Monterey. CA 93943

LT Richard J. Abresch 2
1640 Amberlea Dr.
Dunedin, FL 33528

96

