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ABSTRACT

This thesis presents a method of controlling an autonomous vehicle’s motion in a two
dimensional environment. Its’ purpose is to expand the functionality of a vehicle’s motion
by complementing a point to point path planning scheme with a path to path scheme. The
method introduced in this paper will use the vehicle’s position and the desired path to
calculate the necessary curvature to effect movement onto the desired reference path. The
reference path will be a simple planar curve, such as, a circle or line. After successful
testing of an operating algorithm, the method shall be incorporated into a robot’s software
system. This path tracking method will lay the groundwork for a dynamic obstacle

avoidance system for a mobile robot.
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I. INTRODUCTION

A. BACKGROUND

Presently, the bulk of research conducted in the area of path planning for an
autonomous vehicle deals with sub-dividing the vehicles desired motion into multiple
independent paths. The most prominent approach has been to describe the desired motion
thirough a sequence of configurations. These configurations define the vehicles x, y
coordinate position coupled with the vehicle’s orientation [Ref. 1]. This method of path
planning can be best described as a point to point control scheme. As such, a path planning
algorithm calculates the path between adjacent configurations to find the independent legs
of the vehicle's motion. This scheme reflects a wide spectrum of motion found within the
world. and it enjoys many advantages. such as; its” simplicity. wide applicability, and ease
of manipulation. However, there are circumstances in which a point to point scheme will
not fully replicate the desires of the user.

An example can best be illustrated by reflecting on the motion of a car. Assume a car
parked alongside the curb desires to pullout into traffic, proceed down the road for two
blocks, and then make a right tum at the light. In this example there are no predetermined
points which describe the motion, rather there exist the concept of traffic lanes which define
and restrict the motion. Although a sequence of points could define a similar range of
motion, the point to point scheme would require the user to have prior knowledge of
transition points. In addition, the point to point scheme places no restrictions on the bounds
of movement between two adjacent configurations. This could raise problems in a dynamic
environment. On the otherhand, the path tracking method which we shall introduce restricts
the vehicle’s motion to the interior boundaries set by the intersecting paths. Thereby
increasing control over the vehicle’s motion, while reducing the information needed to
program a vehicle. In the path tracking method the configurations lose their importance to

the more general entity of the paths, which are represenied as traffic lanes.




B. THESIS ORGANIZATION

The objective of this paper is to develope a mathematical model to support a path te
path motion control system. The scope of our study will be limited to include simple planar
curves, such as lines and circles. Upon deriving a mathematical foundation, we shall
translate the work into a working simulator. This simulator should give the user the
capability to fully test the algorithm., to include merging a vehicle ento simple planar paths,
and to transition from path to path. After successful development and testing, the algorithm
shall be incorporated into the motion control system of an operating vehicle, specifically
the Yamabico-11 robot.

The layout of the thesis shall reflect the outline of the research. Chapter II presents a
detailed problem statement to include our assumptions and requirements for a path tracking
algorithm. Chapter III will discuss the mathematical groundwork necessary to develope our
system. In this section we shall derive a control function which will be suitable to merge an
autoncmous vehicles onto a reference path. Chapter IV will then develope the equations
necessary to support the control function. In the development phase we will separate our
study into two cases, lines and circles. With the development of an appropriate framework,
Chapter V will discuss the inherent problems in transitions between paths. and the specifics
of our transition scheme. Chapter VI will elaborate on the details of implementation of the
path tracking algorithm into the software of the Yamabico-11 robot. Finally, Chapter VII
shall be a look at future areas of research and some conclusions. An appendix shall contain
the path tracking simulator which was written in C. and a users manual for operating the

path tracking algorithm.

to




II. PROBLEM STATEMENT

The problem can be stated as follows: find a smooth path from an initial configuration
p; to a reference path Pref The basic concept of our method shall be to vary the vehicles
instantaneous curvature in order to manipulate the vehicle’s position and heading. To
facilitate this, we shall expand the concept of a configuration to be a quadruple (x, y, 6, X),
which describes the vehicles position by it’s cartesian coordinates coupled with it’s heading
and instantaneous curvature. The reference path will be defined by a similar quadruple.
This pennits a line or a circle to be represented by the same structure depending on the
value of x. For example, we might want to solve the problem presented earlier, conceming
the car entering a traffic lane from a curb position and then making a right tum. The

vehicles curb position would be represented p; = (0, 9, 0, 0), while the traffic lanes would

be represented by p, o7 = (0. 10. 0. 0), and pp = (50, 0, 772, 0) as shown in Figure 1.

J Pre1 = (0,10,0,0)

p; =(0.0,0,0) e

Pref = (50,0.7/2,0)

Figure 1. Vehicle Pulling Away From the Curb

In developing our solution we shall ignore the size and shape of the vehicle by

assuming our vehicle is a point robot. and where tite clearance to obstacles has been




assessed at a higher level within the system. This will simplify our work by removing the
finite curvature limitation and clearance requirements necessary for a rigid body robot. In
addition we shall assume the velocity of the vehicle is a constant positive value. and that
the vehicle’s motion will be controlled solely through altering the vehicle’s instantaneous
curvature. These assumptions will restrict the research to a spatial problem and alleviate the
need to consider the dynamic relationships inheient to the problem. e.g.. time, speed,
acceleration, and rotation. By making these assumptions we will simplify the mathematical
model required in finding a suitable path tracking algorithm.

In our initial problem statement we required that the proposed algorithm produce a
smooth path. The derivative of curvature is the only control variable within the
mathematical model. Since the derivative of the curvature dx/ds is finite, the resultant
vehicle’s trajectory is “smooth™ in the sense that the tangent orientation. curvature. and
derivative of curvature exist at every point on the trajectory [Ref. 2]. Although. this concept
of smoothness is essential, our requirements must be more stringent. The generated path
must be suitable to be followed by a robot’s mechanical power train system. However,
smoothness is a subjective quality. which must be clearly defined before attempting to
calculate a viable solution. The problem can be characterized by how rapidly we wish to
converge onto a desired reference path. If we attempt to converge in too short of a distance.
the vehicle’s motion will be unstable and the vehicle will lose tracking precision. On the
otherhand. if the distance to converge is too large, then the vehicle’s motion will be
inhibited by a need for excessive mancuvering space. Therefore, our method will
incorporate a distance constant. Sy,. to regulate the smoothness of the generated paths. The
distance constant will balance the need for rapid response with the smoothness
requirement. It’s value will be dependant on the maneuvering characteristics of the vehicle.

and will not adversely effect the mathematical correctness of our work.




1. METHOD

In developing any system the first step is to create a model of the system in order to
analyze the system. The objective of this is to translate the real world mechanics of the
system into a mathematical theory which accurately describes the system. This allows one
to fully explore the nature of the problem and mathematically verify the solution. As the
previous chapter outlined our system. this chapter’s purpose is to develope the necessary

mathematical equations to support our previously stated goals and requirements.

A. PATH CONTROL BY CURVATURE

When deriving a mathematical equation to simulate a real world problem, it is often
obvious what type of equation is necessary to solve the problem. Physical models often
directly translate into applicable mathematical models. However. in our situation we
undertook this research without a clear idea of the final form of our mathematical model.
Although we feel it may be possible to solve the problem using traditional control theory
methods. we desire an easier method which may prove to yield equally powerful results.
Therefore. we predicated our solution on the belief that the problem could be solved using
analysis through differential equations.

In our problem statement we introduced the concept of the configuration as a
quadruple. which defines a vehicle’s positional status by stating the vehicle’s present
coordinate position, its’ present direction of motion, and a measure of the change in
direction of motion. We also defined our desired position by way of a reference path
defined by the same variables as that of the vehicle’s position. This similarity allows us to
make quick accurate comparisons between the two quadruples. Therefore. we can define a
function which relates our desired motion with respect to the initial and goal positions.
Using this idea consider controlling the vehicle by changing its instantaneous curvature as

determined by a function of the initial and goal quadruples.




dx
7 = fix. 0,x,v) (3.1)

Equation (3.1) can be simplified by using the x, and y coordinates to determine, d, the
distance between the present position and the desired reference path position. However, to
accomplish this we must narrow the infinite number of available points on the reference
path down to a specific point of interest. The most logical point would be the point on the
path closest to the vehicle’s position. We shall define this point to be the image of the
vehicle’s position, and reference it as pjpqe,- Therefore, at all times there will be an image
point which will provide the positional information of a theoretical vehicle located and
tracking along the reference path. The establishment of this point allows us to quickly
calculate the closest distance, d. between the vehicle’s position and the reference path.

Theieby equation (3.1) becomes

dx
i fix, 0.d) (3.2)

Equation (3.2) restates our desire to control the vehicle through changing the
instantaneous curvature, which is dependent on the vehicular position, o;, and the reference
path, ;. The equation does not show the underlying relationship between p; and p,..p, or
how their values effect the change in curvature. However, since we are attempting to find
a simple but powerful solution, a logical choice would be to begin with a linear relationship.

Thus, we propose the following general class as a steering function.

dx

ds = ~[A (piK-pimageK) +8B (pie—pimagee) +Cd] 3.3)
a4 B(p.® 0) +Cd = 0 (3.4)
Ts FAPE = Pipage™) +B (P9~ Pipgg,0) +Cd =

Where 4, B, and C are constants. This steering function is a simple linear equation, in which

the constants can be solved for by using differential equations.




B. COEFFICIENTS BY APPROXIMATION

To find the optimal values for A, B, and C. let us analyze the simplest possible case.

That is the case in which the reference path, p,.p, is the x-axis as shown in Figure 2.

Y b =0.1,00)

(0,0) Prcf = (0’010,0) 5;’

Figure 2. Vehicle Merging Onto X-axis

In this case, we can simplify our steering equation due to the following observations.

pimageK =0
pimagee =0 (3.5)
d=y

That is since the x-axis is the desired reference path, our linear equation can be viewed as
dependent only on the vehicle’s positional quadruple. Therefore, equation (3.4) becomes

dx

+Axk+BO0+Cy =0 (3.6)
ds
Since we know
y=y (A) 3.7)
N3 S
6 = atan (y’) =y’—£3)—+—(-zsi-—... (3.8)




N

K= — (3.9)
(1+(¥)7)

vll
d —_— e
= "2, 2
dx _dx _ g1 (d+00)7) (3.10)
ds ~ds x| [TT 0 '
dax -
d -2 -3
_]S - _\””(1 + (yl)z) _3),1 ()’11)2(1_*_ ()’1)2) (3.11)

ds
By equation (3.6) to (3.11) the steering function becomes,
(3.12)

re ” 2 ” ’ 2

¥ 3_\” (v) ay () J _
(L+(y))

.2
(I+(x)) (d+(@())

However, this equation is too confusing, and as a result very difficult to solve. If we
are to maintain a simple solution, we must make some assumptions, concerning the terms
of equation(3.12). To accomplish this we shall make use of two reasonable assumptions.

(_v') 2 «1

'\_1 ()‘”) 2 « ylll

(3.13)

Both assumptions deal with the relative magnitude of the first three derivatives of y. If these
assumptions hold, which by all indications they do when the value of x is relatively high,
they would significantly simplify our control equation. Using the assumptions of (3.13),
equation (3.12) becomes,
y'"+Ay"+By +Cy = € (3.14)
Written in differential notation, we have
(D} +AD*+BD+C)y = C (3.15)

Our steering function thus becomes an ordinary third order differential equation. Since

the steering function is of the third order, the equation must have at least one real 1o0t. This




real 100t can be either a positive or a negative value. However, if the real root is a positive
value the generated solution would diverge from the reference path. Therefore, to generate
a converging solution, the real root must be a negative value. Let’s assume that the value

of the root is -k. Then equation (3.15) becomes,

(k) +A(-K)*+B(~k) +C = C (3.16)
By solving this equation for the constants, and substituting their value back into the
equation, we get

(D +AD* +BD + K> — A +Bk) vy = C (3.17)

(D+k) [D*+ (A-k)D+F — AP +Bk]y = 0 (3.18)
The second order polynomial of equation (3.18) has two roots. If these roots are
imaginary, then the solution would be oscillatory and inappropriate for our goal. Therefore,
we restrict the roots of this polynomial to be negative real roots, which we shall assume to
be -k} and -k,. Equation (3.18) now becomes
(D+k)y (D+k1) (D+k2)y =0 (3.19)
Since, there are no advantages of having three distinct values for k, &y, and k. we shall

assume the three roots are the same.

k=hk =k (3.20)
Therefore, equation (3.19) becomes
(D+k)3y =0 (3.21)
Now. solving for y we get
y= (%x? +Bx+C) e (3.22)

Using equations (3.15 and 3.21) we can solve the equation for the values of the
constants A, B. and C. This is simply accomplished by expanding the third order

polynomial and individually solving the coefficient for each order.

D +AD? +BD+C= (D +k)° (3.23)




D3+ AD?+BD+C=D +3kD? +31PD + K

Therefore. the value of the constants are as follows.

A =3k
B =3k (3.25)
c=#

Now that we have calculated the values of the individual constants we can complete

our steering function by substituting these values into equation (3.3).

dx 2 3
T = —[3k(p’-K—pimageK) + 3k (pie—pimagee) +k7d] (3.26)

Equation (3.20) is the final forn of our derived curvature control equation. However, we
still must determine an appropriate value for the constant £&. We know that the coefficients
of the derived equation will affect the responsiveness and smoothness of the path generated

by the steering function. Furthermore, we earlier established the distance constant, S, for

the same purpose. Thus a logical solution would be to base the value of & on the value of

S. Therefore. for our algorithm we shall assign the value of & to be the inverse of Sy,

1

(= = 3.
k 50 (3.27)

This completes the derivation of our steering function. The output of equation (3.26) should
generate a smooth path which meets our stated requirements. Preliminary results of the
steering function are illustrated in Figures 3 and 4. The output displayed in Figure 3 depicts
the generated paths for various initial configurations and the x-axis being the reference
path. In each of the cases the initial configuration is the point p; = (0,1) while the vehicle’s
orientation is the intervals of every 45 degrees. On the otherhand, Figure 4 illustrates the

effects of changing the value Sy has on the path generated by the algorithm. The output

illustrated in Figures 3 and 4 are similar to what we generally expected, and fully meet our

requirements. However, to verify the output and the equation’s suitability, we must check

it through experimental results.
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C. EXPERIMENTAL RESULTS

In deriving our curvature control equation we made some assumption vital to
simplifying our equation. These assumptions dealt with the relative magnitude of the
derivatives of the y component of the vehicle’s position, and the values of the roots of a
third order polynomial. Whenever assumptions are made within a mathematical problem
error is introduced into the final solution. In order to validate the solution and the
assumptions. we must offer some substantiative proof that the work was not drastically
flawed by making the assumptions. The best proof is sound mathematical support for the
assumptions. We can not offer this in our case. However, we can support our assertions via
experimental results.

If we can show that the results of our curvature control equation closely match the
output of a similar system which does not take our assumptions in consideration, then we
add a degree of validity to our work. Thus, we intend to verify our work by comparing the
results of our algorithm to the results of an equation derived without our assumptions. Thus,
we shall compare the output results of our curvature control function of equation (3.26) to
the assumption free equation(3.22). To accomplish this we shall make the comparison for
a specific probleni. This problem will be the case of merging a vehicle with a initial position
p; = (0,1,0,0) onto the directed line, pr = (0,0,0,0), which is simply the x-axis. By using
this case we can easily calculate the coefficients for equation (3.22). By solving for the

variables and using variable substitution we calculated the coefficients’ values;

2
A=Ky
B =ky, (3.28)
C=1y

Details of the actual mathematical process involved can be found in appendix A. Using
these values in the assumption free control function we can compare results.
We conducted four separate cases for comparison using the problem as stated above.

In each case we solved the problem of merging a vehicle onto the x-axis. while we varied




the value of S, for each test case. The graphical results of both our curvature control

algorithm and the actual output as found by the assumption free function is depicted in
Figures5 to 8. The results of the comparison are very good. In our results we see that the
output of our path tracking algorithm are very close to the actual values. The test results

show, that as we increase the distance constant, Sy, the difference in the output becomes

even less significant, which meets our expectations. Although, the difference increases as
the distance constant is significantly decreased, as in the case of S, = 0.125, the output is
not inappropriate. The results show, that at no instance does an exireme difference ir the
output between the two functions exist. Therefore, the results fully support the assumptjon
made within our work. Although, this does not fully validate our results, it does provide a
significant degree of confidence in our method. With this degree of confidence we have

faith that we are on the correct track, and that our algorithm is appropriate.

D. SUMMARY

In this chapter we laid the mathematical groundwork for our path tracking algorithm.
Initially. we had few concrete ideas on the form of our controlling equation. However, our
guiumg factor was to keep the equation simple and powerful. This lead us to guess the
format of a suitable equation to be a linear differential equation. From this we generated a
simple steering function based on the difference between the vehicle’s position and the
vehicle’s image position on a reference path. The resulting differential equation was
cumbersome and difficult to solve. Therefore, we made some assumption about the relative
values of the various derivatives of v. This enabled us to reduce the problem to a third order
differential equation, which could be solved rather easily. Upon solving the differential
equation, we proposed using S as the basis for the coefficients of the resulting equation.
Thereby. allowing us to balance the need for responsiveness with the requirement of
smoothness. The paths generated by the proposed steering function fully meet our
expectations. In addition, we tested our results by making a comparison between the output

of our derived curvature control function and an assumption free version of the steering
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function. The graphical results showed no significant deviations or aberrant trends between
the two functions output. Thereby, these experiments fully support the appropriateness of

our equation, lending a degree of validity to our path tracking method.
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IV. DETAILED ALGORITHMS

Chapter III successfully derived a curvature control equation for our path tracking
algorithm. In this chapter we shall develope the support equations necessary to incorporate
the control equation into a broader algorithm for path tracking. The overall objective for the
algorithun is to alter a vehicle’s location defined by a configuration onto a planar curve. To

accomplish this we shall undertake three steps: to calculate the closest distance between p;
and pyeft to locate pipgee; and to calculate the change in curvature. With these steps

accomplished we can construct a program which would successfully maneuver a vehicle

onto any given reference path.

A. CLOSEST DISTANCE
The first step in our general scheme is to calculate the shortest distance between p; and
Pres We shall refer to this distance as dys,. There are numerous methods to calculate

distance. However, in our case we desire a method which will be versatile enough to
calculate this distance given configurations, which may either represent a point, a line, or a
circle. We do not know of an equation which will allow us to perform such a calculation.
Therefore, we shall derive a distance equation flexible enough to meet our requirements.
There are two possible cases in our model; point to line, and point to circle. We shall look

at these cases separately, and derive suitable equations for each case.
1. Point to Line
Our objective is to calculate the shortest distance between any directed line pps=
(a, b, o) and a point p; = (x, y). Thus dist(pes, p;) refers to the perpendicular distance

between the point and the line. In preparation for this calculation, let's calculate the

distance between the point of interest and a special directed line, py = (0, 0, o). This directed
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line is simply a line parallel to p,.¢. which originates at the origin. As Figure 9 illustrates,
using simple trigonometry the distance is
dist(pyp;) = ycos (o) —xsin (o) 4.1)
Using the results of equation (4.1) we can generate a general distance equation.
This general equation will be the difference between the distance from the point to the
reference path and the distance from the reference path to our special directed line. This

general equation is illustrated in Figure 10. To calculate the difference we simply apply

equation (4.1) twice.

distQp,,cp) = disr(po,p,-)—dist(po.p,.ef) (4.2)
= vcos (o) —xsin (o) —bcos (o) +asin () 4.3)
= (v=Db)cos(0) — (x—a) sin(Q) 4.4)

Note, that dist < 0 if the orientation between the directed line and the point is clockwise.
Thus, this provides us with a suitable equation for the shortest distance between a point and

any directed line.

2. Point to Circle
In deriving the shortest distance from a point p; = (x,y) to a circle ps= (1,y,8, K),
we must realize that two cases exist. The value of k can be either positive or negative. We
shall examine these two cases separately. Both cases are illustrated in Figure 11 and 12,
respectively.
a. Positive Curvature

Let’s first calculate the origin of the reference circle. This can be done by

adding the x, and y components of the radius to the x, and y coordinates of the reference

circle.
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1
v.=pg+ (K—O)cos(90+n/2)

) 4.5)
y(,=p0+(§—)sin(90+7t/2)
0
v ) = (g = (=) sin (8,) g+ (o) cos (8,)) 4
(xov) = (xy- (E:)) sin ( 0).)0+(E(—))cos( o) 4.6)

Now, that we have the coordinates of the origin, we can calculate the distance between the
origin and the point by using Euler’s distance equation. Furthenmore, since we know the
distance between the origin and the reference path, the radius, we can calculate the distance

between p; and ps This is accomplished by taking the difference between the two
calculated distances.

dist(p, ep;) = radius - dist(p 4.7

origin'pi)

. 2 2
1 sin© cos0
= K_ - [\/lix— (,\'0 - " 0):| + ['\1 - (yo.- = 0):' 4.8)
0 0 0

We can simplify equation (4.8) by multiplying through with an appropriate factor.

1 2 sinGO 2 cosGO 2
(K—O) [(A xp) + %, J +[() ¥o) % J
= = = 4.9
1 sinBo - cosOO -
= [(x—xo) + ] +[(,\'—y0) + ]
o ! %o %o
By factoring we get,
2sin6 2cos8,,
= (x—2xg) (x-xo"‘ " )— (y=y¢) (.V—)’()" ” )
0 0
= = (4.10)
i / sinOO “ cosOO 2
— + [(.\'—.\'O)+ } +{(y—_\'0)+ ]
Ko N o %o .

Finally. we can multiply by k¢/K; to simplify equation (4.10).




T (¥ —xp) [ (¥ =) +2si1160] = (y=Y¢) [KO(_\'—)‘O) - 2c0590j @i
1+ ,\;[KO (x—xy) + sinOO]2 + [KO Y=Yy - cosGO]2

This provides us with the final form of our equation. It will calculate the distance between
any point and any positive curvature circle. Also note that with this equation dist(pg¢. p;) <

0 if the point p, is not circumscribed by the circle.

b. Negative Curvature
Figure 10 illustrates the situation when pg¢ curvature is negative. As this
situation is very similar to the case with a positive curvature, we use the same method to
calculate the dist(prr. p;). However, since the curvature of the circle is negative, this will
give us a negative value for the radius. Thus, in this c2<e we subtract the length of the radius

from the distance between the origin and p;.

—

sineo 2 cosOO 2 |
dis,([)l't‘fpi) = ’Y {,\-_ (_\-0_ ” J:!l +Iiy— ():0_ KO )] ——-K— (4.12)

0 0

We can simplify this equation by the method used earlier for the positive curvature case.
The results of this method will produce the same equation as the positive curvature case.

However, in this case dist(p¢. p;) < 0 when p, is circumscribed by the circle.

3. General Distance Equation

Our objective was to derive a single general equation to calculate the shortest
distance between a point and a reference path. However, it seems we have derived two
separate equations to fulfill our needs. Yet, if we take a closer look at the two equations we
shall reveal an interesting fact. We can consider a directed line, a special case of a circle
with an infinite radius. The line’s curvature is defined to be equal to zero. Therefore, if we

implement equation (4.11) in the case of a directed line, we get,

i = (v —xy) [KO(.\‘—.\'O) +23in901 - (= [KO (y=xp) - 2005901
18t=

(4.13)

. 2 2
1+ ,‘/[KO (.\'—.\'0) + smGO] + [KO(_\’—_\*O) - cose(,]
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~ (x=xq) [2sin6,] = (v —v,) [-2c0s9O ]
= ‘ ¢ - ¢ 4.14)
t+,/[5in0,] %+ [—c0s6,)

= —(x-xy) sin90+ (=) coseo 4.15)
This suggests that the distance equation derived in the case that the reference path is a circle
subsumes both possible reference path cases. Thus, we have established a single general

equation to determine the shortest distance between any point and any simple planar

reference curve.

B. THE IMAGE

The control equation derived in chapter III was predicated on the establishment of a
point referred t0 as Piyage. That is the configuration of a theoretical vehicle, which is
continuously maintaining position along the reference path. This configuration includes the
theoretical vehicle’s coordinate position, orientation, and curvature.The difficulty in
calculating pimage is that the reference path could be either a line or a circle. Unfortunately,
there is not a single method. to our knowledge, that would suffice for both of these cases.

Therefore, we must derive two unique methods to calculate pyy,a0e- To accomplish this we

shall address the two cases separately.

1. Lines
The case of finding pjmage for a vehicle on a directed line is quite simply. Since
the curvature of a directed line is defined to be equal to zero, and the orientation of all points
on a directed line are defined to be equal to the orientation of the directed line itself, the
calculation of a0 "s curvature and orientation is trivial. That is,

pinmgee = prcfe

k=0 (4.10)

p image

Thus. in the case of the reference path being a line, to calculating pjyage is reduced to

calculating the x. and y coordinates of pjm,ge- Basically, to accomplish this we need to find
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the shortest distance between the vehicle’s position and the directed line. This situation is

illustrated in Figure 13.

Pimage =(x,y,0)

Pref =(X,)',9~K)

Figure 13. Calculating P;y,,,, for a Line

To calculate the shortest distance between p; and p.r we use equation (4.11),
which was developed as a general equation for calculating the closest distance. However,
we can simplify this equation since the curvature of a line is defined as zero. Therefore, the
equation for the shortest distance between a point and a directed line as defined with
configurations is,

ditose = (-’7i3"'l’reﬁ") cos (o) — (pi.r—prcf\') sin (o) 4.17)

Given the closest distance we can now calcvlate the coordinate position of piyzee
using simple trigonometry. Since the distance between the vehicle’s position and the
reference path is the shortest possible distance, the orientation of the line segment which
connect the two points must be perpendicular to the orientation of the reference path, as

shown in Figure 13. The coordinates of pjyage Can then be calculated by adding the x, and

v components of d ... to the vehicle’s coordinate position. Therefore, the coordinates of

Pimage ar¢.
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x=px+d

(cos (p;0—m/2))

pmzage close

: (4.18)
17lmage~v =py+ dclo.se(sm ([7,-9 -n/2))

2. Circles
Finding piyage for the case of pyes being a circle is somewhat trickier than the line

case, but mathematically the calculations are straightforward. We shall be able to
distinguish between the two cases by examining pgs K value. If the value is non-zero than
the desired path is a circle. Otherwise, the path is a line. A circle will be defined by an x,
and v point which lies on the circle, with this point’s specific orientation and curvature. The
curvature of a circle is defined to be a constant real number. Therefore, each point on the

circle will have the same curvature value as p..¢ curvature.

pimageK = prefK 4.19)
The first step in calculating the other components of the image position’s
quadruple is to calculate the origin of the reference circle. To do so we calculate the radius

of the circle, which is defined as the inverse of the curvature.

radius =

(4.20)
p refK

The orientation of a point on a circle is perpendicular to the orientation from the origin to
the point on the circle, as shown in Figures 11 and 12. Knowing the orientation of the point
defined as pef, thus allows us to calculate the orientation from the reference path to the
origin. Now, by dividing the radius into its’ x, and ¥ components along this orientation we

will find the coordinates of the origin. The origin shall be referred to as poggin-

Porigin® = Pref® +radius ( cos (p,.(,fG -n/2))

) . 4.21)
Porigin® = Pref radius (sin (prcfe -n/2))

Which can be written as,

Porigin = (p,_cf.\'+radius(sin (preje)).preﬂr+radius(cos (prefﬂ))) (4.22)
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The next step in calculating the coordinate position of pyagc I to calculate the

orientation between the origin and the initial position, which we shall refer to as y. This

orientation can be found using the inverse-tangent function. Thus, v is calculated

Py ’porigin-"J 4.23)

= atan 2o
PiX = Porigin®

Unforiunately, this method has two shortcomings. We want to distinguish between pairs of

points which may have the same inverse-tangent value but different orientations, one such

pair is -37t/4 and n/4. A second problem is that equation (4.24) is undefined for all pairs of

points in which pix = PyiginX. However, we can solve these problems by introducing a

varijation of the normal inverse-tangent function {Ref. 2].

Yy = atan2(p;y—p Xx) (4.24)

origin¥Pi* = Porigin
In equation (4.25) we employ an inverse-tangent function of two arguments. This function
has a range between [r. -it]. Therefore, it distinguishes between equivalent tangent values
of different quadrants, and is defined for all values of x.

With the orientation between p; and Py, We can now calculate the coordinates
of Pymage for a circle. The image position is simply the distance of the radius from the origin
in the direction of Y. Therefore, Pinaec becomes

l)imagc'\‘ = porigin'\‘ +lradiusicos (Y) (4.25)
y=

pimagc- pm-,'g,',,_\' + [radiusi sin ('y)

The final value we need to calculate for pjpmage is the orientation at the image
peint. Once again we shall use the fact that any point on a circle is perpendicular to the
orientation between the origin and the point. Thus, we can calculate the image s orientation
by adding or subtracting 1/2 to the orientation between the origin and the initial position.
If the reference path’s curvatvre is negative we subtract, while if it is positive we add. We
can take advantage of the absolute value function to incorporate both cases into one

equation. Thus, the orientation of the image point is
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Pimage® = 7+ (7/2) (. ! ) 4.26)

P rchi
We have successfully collected all the data needed to find pjage. With this point
established we can then go onto creating an algorithm which takes advantage of the

curvature control equation developed in chapter III.

C. EVALUATE NEW CONFIGURATION

We have now calculated all the data we need to assemble a working path tracking
algorithm. After a user inputs the vehicle’s configuration and the desired reference path’s

configuration, our system would calculate pjn,0e. then calculate the closest distance
between the vehicle and the reference path by our derived dgose €quation, and finally

calculate the necessary change in curvature needed to move the vehicle towards and onto
the reference path. This process would be completed at predetermined intervals. allowing
for a means to update the vehicle's positional configuration. However, before we could
update the vehicle’s configuration we would have to calculate two values, the distance
traveled by the vehicle each interval, ddist, and the change in the vehicle’s orientation each
interval due to the vehicle’s instantaneous curvature, 36. These values are calculated as
follows,
80 = ddist (p;x)

if 89 =0 rhen ddist = dTXV

4.27)

ZCOST
if 86#0 then odist = (STX‘U) —S'e--

Where 07 is the duration of the interval, and v is the vehicle’s constant velocity. The
difference in the calculations for &dist is a correction factor which is intended to correct the
vehicle’s coordinate position when it has a non-zero curvature. By calculating these values

we can update the vehicle’s positional configuration
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dx
p;Kx=px+ 7

p;9 = norm(p,8 +ddist (p;K))
. (4.28)
p;ix = p;x + 0dist(cos (p,0+ 69))

p;y = p;y+ddist (sin (p;6 +89) )

The algorithm would continuously update the vehicle’s position, and calculate the needed
change in curvature. This process would effectively smoothly merge the vehicle onto the

path and maintain it on the path after merging.

D. SUMMARY

In this chapter we developed the necessary equation to support an algorithm based on
the curvature control equation developed in chapter III. This basically consisted of the
development of the image point on the reference path, and a consistent method to calculate
distance. With this information we can establish a system which will continuously calculate
the necessary change in the instantaneous curvature, and update the vehicle’s position. This
will effectively merge the vehicle onto the desired reference path. With this accomplished
we are ready to implement the algorithm into a vehicle simulator to test the results, and
verify performance. With satisfactory testing accomplished we could then begin to work on

a scheme to transition between multiple path.




V. TRANSITIONING

Our path tracking algorithm successfully merged a vehicle onto a reference path,
therefore the next logical step in developing our path tracking algorithm is to expand the
algorithm to be able to handle several successive paths. In transitioning between paths we
must insist that the vehicle’s motion is restricted within the boundary formed by the
intersecting paths. This requirement is to ensure vehicle safety within an unknown
environment. Since our algorithm was designed to work for all possible planar lines and
circles. the problem of executing multiple paths in succession is reduced to the transitioning
method between successive paths. The primary question to answer is, when do we begin

our transition from one path onto the next?

A. POSSIBLE METHODS

Since we have limited our research to a spatial problem, we have lumited the factors
which effect our transition time. Our problem is not concemed with time. speed. and other
factors which usually have a bearing on the moment which actions are to occur. Rather, our
problem is solely dependent on distance. Thus, we have reduced the question of when to
transition, to at what distance from the next reference path do we begin to transition. There
are many different options available, however we want to limit the complexity while
maximizing the effectiveness and fulfiling our safety requirements. Before actually

detailing our transitioning scheme. let’s look at a few possible options.

1. Minimum Distance

The simplest scheme can be devised to transition when the vehicle is within a
given distance from the next reference path. This distance can be either the shortest distance
between the vehicle and reference path. or the distance between the vehicle and the

intersection of the two reference paths. The option chosen is very significant. When the

(Y]
ro




vehicle reaches the determined minimum distance. we simply begin using the next
reference path in the path tracking process. This scheme 1s simple. and will satisfactorily
wotk in many cases. However, the minimum distance scheme hias a serious flaw.

The minimum distance scheme begins its” transition the same distance from the
next reference path for every situation. This scenario works well when the desired tum
angle approaches 90 degrees. However, problems arise when the interior angle between the
present reference path and the next reference path deviate greatly from 90 degrees. When
the tum angle is large the vehicle often does not have sufficient space available to transition
without crossing through the new reference path. An example of this can be seen in Figure
14. where a vehicle attempts a 170 degree tum with a minimum transitioning distance of
three. Although. this distance was sufficient for a 90 degree tum. figure 14 shows that the
vehicle significantly overshoots the desired reference path. This wastes energy and time,
and could represent a very serious hazard in an unknown environment.

Altematively. when the incident turn angle is small. the moment of transition is
often earlier than desired. This is due to when we execute the transition. the image is often
lacated a significant distance before the intersection point of the two successive paths. In
many cases this will cause the vehicle to cross the previous reference path during its’
convergence to the new reference path. In extreme cases the vehicle may even merge onto
the new reference path prior to the intersection point of the paths. This scenario is depicted
in figure 15, where the vehicle attempts a ten degree tum with a minimum transitioning
distance of three. Once again this deviation from the desired motion wastes energy and
time. and represents a danger to the vehicle. Thercfore, the minimum distance scheme must

be considered unsuitable for our system.
2.  Dynamic Transitioning
A second transitioning option would be to vary the transitioning distance

according to the path tracking problem. The system would dynamically calculate the

optimum distance to make a smooth efficient tum. To accomplish this method we would
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establish a tum angle as a reference point on which to vary the transitioning distance. This
benchmatk would be a 90 degree tum, with a transitioning distance of two times the

distance constant, Sy. The dynamic scheme would increase this distance for tighter turns.

and decrease the distance for wider tums. We could further improve this scheme by
incorporating other factors which affect the vehicle’s maneuverability, e.g. curvature
limitations, velocity, distance constant, and the vehicle’s maneuverability characteristics.
The dynamic transitioning described would be extremely effective in optimizing
the transitions between paths It would maintain the vehicle’s movement to within the
perimeter outlined by the reference path. This would increase vehicle efficiency,
maneuverability. and control, which would thereby enhance safety. However, this type of
system has some disadvantages. The system would require a complex function or a large
data table to properly determine the correct transitioning distance. Either method would be
costly in time and hardware support. Furthermore, both options would require exhaustive
experimentation to derive the necessary data. This would be time consuming and dreary for
a computer science student. Therefore. we feel although this method yields excellent

results, it is not appropriate for our system at this time.

B. A SUITABLE SCHEME

The transitioning schemes we introduced were unsatisfactory for our system. The
minimum distance scheme did not fuifill our requirements, while the dynamic scheme was
too costly. Therefore, the scheme which we settled on was a simplified variation of the
dynamic transitioning scheme. Our variation will have a transitioning distance function
based on the turn angle and the distance constant. The transitioning distance will refer to
the distance from the vehicle to the intersection point of the paths. We will conduct
transitioning experiments to collect the necessary data conceming the relationship between
these factors. Given the appropriate data we shall extrapolate a general function which
meets our requirements. The idea is to derive a function which may not provide the

optimum transitioning distance, but will provide an appropriate distance in all cases.
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1. Intersection Point

Our transitioning distance shall be measured from the vehicle to the intersection
point of the successive paths. Theiefore, we must have a procedure which locates the
intersection point for all possible transition. There are four tran _on possibilities; line to
line. line to circle, circle to line, and circle to circle. The use ¢ ¢s in our path tracking
algorithm is for obstacle avoidance. Therefore, it would . inappropriate to transition
between two citcles. This being the case we shall exclu te the circle to circle case in

deriving the intersection point for our research.

a. Lineto Line

The normal line to line intersection problem is very simple when we have the
lines in the slope intersect format. However, our lines are in the configuration format. The
method we shall use to calculate the intersection point is based on the Law of Sines. To
calculate the point of intersection we are going to construct a triangle from the two
reference paths. calculate the distance of one of the sides of the triangle, and calculate the
interior angles of the triangle. With this information we can calculate any of the side’s
distances, and the coordinates of the intersection point. A graphic description of a line
intersection problem can be seen in Figure 16. We shall now calculate S, the distance
between the two reference configurations. This can be accomplished using the Euler

distance equation,

S = j (Prefa = Preft®) 24 (Prefa¥ = Pregi »? (5.0
We then calculate the orientation between these two configurations, I', using
the inverse-tangent function described in equation (4.25).
I' = atan2(p, ef2Y P roftYr Pref2X = Prop ) (5.2)
With this orientation we can construct a triangle from the two directed lines. by projecting
a line segment in the orientation of I" between the two reference paths. We now have the

necessary information to calculate the interior angles, as shown in Figure 17.




Pref2

Pigter = (%,¥)

Prefl1

Figure 16. Intersection of Two Lines

Pinter = (X,y)

Figure 17. Calculating P; o,
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B=1pen®-1] (5.3)
x = |norm (n=-T) —prcﬂei 54
®=(n-p-o) (5.5)
With the interior angles calculated we can use the Law of Sines to calculate
the distance of one of the other two sides of the triangle. We will calculate S;. the distance
from the intersection point and the first reference path.

sin (o)

This provides us with the needed information to calculate the intersection point. The

coordinates of the intersection are calculated by dividing S into its x, and ¥ components,
and adding to the coordinates of the reference path configuration
Pinter™ = Prefi ¥+ S cos (p,.efl 0)
PinterY = Pyep1 ¥+ Sysin(p, ef1 6) 5.7
Pinter® = p,.eﬁe —p,.eﬂe
The orientation of pyyer is simply equal to the interior angle formed by the

intersecting reference paths. This value is being calculated for future use in determining the

transition distance required. It will be referred to in the future as the tumn angle.

b. Line to Circle/ Circle to Line

The transition between line to circle and circle to line are very similar. We
assume the user inputs two path which intersect. Given this assumption, aline will intersect
with a circle in either one or two points. In either case both scenarios reflect both transition
possibilitics depending on which point of intersection we choose. This example is
illustrated in Figure 18. The first step in determining the intersection point is to calculate
the origin of the circular reference path. We calculate the radius, and then use equation (4.6)

to find the origin’s coordinates.




radius =

Prefs
Porigin® = Pref¥ =~ radius (sin (p,.efe) )
Porigin® = Pref¥ +radius (cos (prefe) )
The trick now is to create a triangle with pyrgi, and the directed line in order to find the
intersection point. After creating this triangle we can use the properties of a triangle to
calculate the measurements of the sides, and to then find the coordinates of the intersection
point, as shown in Figure 18. To begin let’s calculate the distance from the origin to the

directed line, A. using equation (4.18).

(5.9)

4= Py, iginy_prefv") (cos (preje)) - (poriginx_poriginx) (sin (prefe))
Using the Pythagorean theorem we can calculate the distance B. If | A | > | radius |, then

there exists no intersection point between the two paths.

B = Aj( ) —A (5.10)

Pref€
We can calculate the image point of the o1igin onto the reference path by

using the value of A, and the fact that this distance is perpendicular from the origin with

respect to the directed line. The image is

pimagex = poriginx +Asin (prefe)

_ (5.11)
Pimage® = Porigin¥ = Acos (prefe)
With the image calculated we can now find the intersection point.
Pinter® = Pimage™ * Bcos (prefe) (5.12)

Pinter¥ = pimagey * Bsin (prcfa)
This equation is suitable for both line to circle and circle to line transitions. If
we are transferring from a line to a circle we would subtract the components of B from the

image. and if we go from a circle to line we add the components. To calculate the
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- radius
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Pinter]

Prefl = (X,¥.6.K)

Figure 18. Calculate P;; .., Between a Line and Circle
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orientation of the intersection point we once again use our variation of the inveise-tangent
function.

@ = atan2(p, v-—p ) (5.13)

inter origin® Linter® ~Porigin*
This orientation is perpendicular to the orientation of the intersection point, which can be
calculated by adding or subtracting n/2 radians. depending on the sign of the curvature of
the circular reference path.
Pinterd = @+ (p”’f - ) (5.14)
(17 lefKI

Thus, we have successfully calculate the intersection point for all three

transition possibilities. Using this point we shall be able to calculate the distance from the
intersection to control the time of transition. Now, we are ready to proceed to detenmining

the transitioning distance function.

2. Transitioning Distance

Our transitioning scheme is based on transferring between successive paths at a
time determined by the distance from the vehicle to the next path. This distance shall be
referred to as the transitioning distance. To optimize the efficiency of transitioning the
transitioning distance can not be a constant value. Therefore, it is our idea to find a function
that will determine the appropriate distance between the vehicle and path to produce an
efficient transfer. However, it is highly unlikely that a general function will produce the
optimum transitioning distance for all possible situations. Thus, our objective is to derive a
function which will ensure all transfers between paths meet our requirements for safety in
an efficient manner. The safety requirements are based on maintaining positive control over
the vehicle to the extent that the vehicle avoid oscillation, and does not cross the bounds
established by the reference paths. Our method of deriving the function will be based on
gathering experimental data, which will translate into an appropriate function.

To derive a transitioning function we intend to conduct experimental tests to

determine the critical distance necessary for a safe turn. A safe tum is defined to be a turn
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in which the vehicle negotiates the intended turn without crossing the present reference
path or overshooting the next successive path. The experimental tests will maintain the turn
angle and the distance constant. while varying the available distance to maneuver the
vehicle. This process will be repeated until we find the minimum distance needed to fulfill
the requirements. The range of the experiment will consist of turn angles between [0, ] at

intervals of n/12. We shall also complete the experiments for various values of Sg. The

results of our experiments will be put into a table format to enable quick comparison of
results. We shall then develope a distance function which will approximate the results of
our experimental data.

In conducting these experiments the major concemn is determining if the generated
path oscillates or crosses the reference path. To accomplish this we shall manipulate the
vehicle’s initial position to simulate the desired turn and transitioning distance. To illustrate

this. we refer to Figure 19.

pi =(x,y)

“KK \‘\ .
D \

Prefl Prefl

Pref2
Pref2 "

Figure 19. Rotation of a Transition Problem
The problems displayed in both figures are identical and will be handled by the simulator
in the same manner. We are simply changing the vehicle’s initial configuration to simulate
our desired transition. Thus, we convert every transitioning situation into a transition to the

x-axis. In this case we can quickly determine if the path oscillates or crosses the reference
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path by simply checking the sign of the vehicle’s pesition. If the value of the vehicle's ¥
component ever goes negative, then the vehicle has crossed the reference path, and the
transitioning distance is insufficient for that scenario. Thus, it is our desire to translate all
experimental transitioning into transitions onto the x-axis.

The graphical results of many of the experiments can be viewed in appendix B.
Table 1 below shows the experimental data for the simulations. Thus, the table is a concise
means to display the relationship between the tum angle, distance constant, and
transitioning distance. The rows represent different distance constants while the columns
are different turn angle. The entry under any specific row /column is the required minimum
transitioning distance for that particular problem. For example, the minimum transitioning
distance for a 90 degree tum with a distance constant of 0.5 is 1.3units, depending on the

units of S.

3. Deriving A Transitioning Function

Given this experimental data we can now determine a general function for the
transitioning distance. Examining the entries of the Table 1, we quickly come to the
conclusion, that there exists no simple function to determine the transitioning distance for
all different situations. Therefore. let’s attack the problem by dividing the problem into two
parts. the relationship between the tum angle and the transitioning distance, and the
relationship between the distance constant and the transitioning distance. By solving these
two simpler problems and then combining the results, we can derive a composite function

which is suitable to fulfill our requirements.

a. Relationship Between TD and Turn Angle
First let us examine the relationship between the tum angle and the
transitioning distance. It is an obvious observation that it takes a greater transitioning
distance to complete a sharper tum than a wider tumn. To find the underlying relationship

between the two values we can plot the entries of the Table 1 for a given value of the




distance constant. We can then use this plot to extrapolate a distance function from the

graph. The example we plotted was the case of Sy = 0.25, and is illustrated in Figure 20.
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Figure 20. Experimental Minimum Transition Distance

We plotted the tumn angle along the x-axis from -165 to 165 degrees. Since
the negative tum angles are tumns of the same magnitude but in the opposite direction as the
positive turns, they require the same transitioning distance as their positive counterparts.
On the y-axis is plotted the minimum required distance to complete a given turn angle. The
results of our efforts clearly reveal a relationship between these two variables. The shape
of the graph is similar to that of a parabola, however the base of the curve is much flatter.
What we desire is to find a function which will map to this plot as close as possible, but
never produce a transitioning distance smaller than that produced by our experimental data.
Thus, let's assume the relationship is in the form of a fourth order polynomial, which share

the basic shape of the parabola.

S
4
-

TD(¢) = (5.15)




Table 1: EXPERIMENTAL TRANSITIONING DISTANCE

l Tum Angle Distance Constant l
(Degrees) | g.-1.0 Se05 | Sg=025 | Sg=0.125
0 0.0 0.0 0.0 0.0
5 || 20 11 0.6 0.3
30 2.1 1.1 0.7 0.3
45 2.1 12 0.7 0.4
60 2.1 12 0.8 0.4
75 22 1.2 0.9 0.5
90 23 13 0.9 0.5

L
105 2.5 1.4 1.0 0.5
120 29 1.6 1.1 0.6
135 35 1.9 13 0.7
150 48 2.6 1.7 1.0
165 8.8 48 3.0 1.9
g0 |
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Where. ¢ is the tun angle in radians and TD is the transitioning distance. By converting the
turn angle into a ratio between the tum angle and the maximum possible tum, we simulate
the curve of Figure 20. Equation (5.15) will produce a flat plot when the tum ratio is close
to zero. while exponentially increasing the transitioning distance as the tum ratio
approaches positive or negative unity.

If we calculate the transitioning distance by this function for those points in
which we collected experimental data. we can determine the appropriateness of the
function. We set up a plot similar to that of Figure 20 to display the results of equation
(5.15). However. we included all tumn angles between -170 and 170 degrees. Figure 21
displavs the results. The plot illustrates a very similar curve to that of the experimental data.
A quick check of the individual values also reveals that the function produces results which
at all times is greater than those of the experimental data for the case of Sy equal to 0.25.
Therefore. this function is an appropriate approximation for determining transitioning
distance. However, further comparisons between the output of this function and entries in
Table 1 clearly illustrates that this function does not fulfill our needs. The problem is that
the function does not take into account the effect aitering the value of the distance constant

has on the minimum transitioning distance.

b. Relationship Between TD and Sy

Equation (5.15) is unsuitable for non constant Sy. However. this equation
does provide us with a base case transitioning function. That is we can use this function to
determine the transitioning constant, but modify its” output as appropriate dependent on the
actual value of the distance constant. Thus. we are basically creating a composite function
of a function dependent on the tum angle and a function dependent on the distance constant.
To derive the function dependent on the distant constant we shall follow the same method

we used with the tum angle. Therefore, once again let’s plot the experimental results.




(cm.)

-
)
i

TRANSITION DISTANCE

B Sl sttt Sl |

- qe——

R = .

———

b=
s

- 100 0 100

TURN ANGLE (degrees)
Figure 21. TD as Calculated by Table 1 and Equation (5.15)
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This would produce 12 independent curves, one for each turn angle, which illustrate the

relationship between the value of S and 7D. The case for turn angles of 150 and 15 degrees

are displayed in Figure 22.
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Figure 22. Relationship Between TD and S,
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This figures show that the relationship between the value of Si and TD is linear. In fact,

each of the twelve plots indicate that this relationship is linear. Therefore, it may be
possible to extrapolate a linear equation from these plots which will provide a correction
factor for different distance constants.

If we begin looking for a relationship between the 12 individual plots, we
quickly realize that the slope of the twelve plots vary significantly. This would make it very
difficult to find a linear equation which would satisfy all possible cases. However, since our
transitioning distance function (5.15) is based on the case of Sy = 0.25, we can standardize
the entries of Table 1. By plotting the standardized results we can more effectively isolate
the effect the value of the distance constant has on the transitioning distance. Thus, Table
2 is an abridged version of Table 1 with the cntries converted into ratios. The row/ column

entries of Table 2 are the ratios between the transitioning distance for a specific tum angle
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and S, and the standard transitioning distance for that tum with Sy = 0.25. The standard

transitioning distance is the value outputted by equation (5.15) for a specific turn angle.

Table 2: TRANSITION DISTANCE RATIO

Tum Angle | Standard I Distanc:amstam Ratio l
(Degrees) D 4.0 2.0 1.0 0.5
15 1.000 2.0 1.1 0.6 03
90 1.067 2.16 1.22 0.84 0.47
165 3.402 2.56 1.41 0.88 0.56

Now, if we plot the results of Table 2, we can find an appropriate correction

factor. Figure 23 depicts the relationship between the ratios of transitioning distance and

turn angles.

150 Tegree Turn

1& Degree Turn

TRANSITION DISTANCE (RATIO)

-0 1 2 3 4
DISTANCE CONSTANT (S0 (¢ 25)

Figure 23. Plot of the Ratios of TD and S,

In Figure 23 we plotted all three tumn angles included in Table 2. As we can see in each case

the resultant curve is very similar, with nearly the same slope. Thus, this indicates that we
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can derive a linear correction factor for various distance constants. Using the slope intercept

line equation we get,

2560,
cF(sy = (502098 14p (5.16)
CF(Sy) = 0.56x+b 5.17)

Where CF is the correction factor, x is the distance constant standardized with respect to
the value of 0.25, and b is the y-intercept. Using equation (5.17) and the point (1, 0.88) from
our plot we can solve for b. The value of b is 0.32, and equation (5.17) becomes,
CF(Sy = (0.56) 6-55 +0.32 (5.18)

This equation was a suitable correction factor for various distance constant
values. however we desire to match the experimental data as close as possible. Therefore,
we adjusted this linear equation to produce results whick would match the results of the
transitioning function with thuse of the experimentai data. We accomplished this simply by
analyzing the twelve cases and interpolating appropriate values for the slope and intercept.
The final results were,

So
CF(Sy) = 06(025

)+0.3 (5.19)

By combining the results of both relationships we can create our composite
function. Thus, our function for determining the transitioning distance for all turn angle and
distance constants is
-

1

TD($.Sy) = [245,+0.3] (5.20)

4

- ()

This equation is simply. but robust enough to apply in all possible transition problems. To
verify the effectiveness of this equation, we shall compare the results of the equation to the

experimental results. Table 3 gives us the transitioning distance results by using the derived
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Table 3: CALCULATED TRANSITIONING DISTANCE

Distance Constant

Tum Angle
(Degrees) | 5.=1.0 $¢=0.5 S¢=0.25 | S=0.125
0 0.0 0.0 0.0 0.0
15 2.70 1.50 0.90 0.60
30 2702 1.501 0.90 0.60
45 2711 1.505 0.904 0 602
60 2734 1.519 0.911 0.608
75 2.784 1.547 0.928 0.619
90 2.880 1.60 0.960 0.640
105 3.054 1.696 1.079 0.679
120 3.365 1.869 1.121 0.748
135 3.950 2.194 1317 0.878
150 5215 2.897 1.738 1159
165 9.186 5.103 3.062 2.041
180
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function. As we can see by simple comparison of the entries of Table 1 and Table 3, in all
cases our derived function outputs a value equal to or greater than that derived by
experimentation. Therefore. we can assume that our derived equation is appropriate, and

will ensure sufficient maneuvering space while minimizing waste.

C. SUMMARY

In this chapter we introduced some possible transitioning schemes for our algorithm.
The scheme on which we settled for is a variation of a dynamic scheme. Our scheme is
based on transitioning a variable distance from the intersection point of two successive
paths. This distance is determined by a general function which takes into account the degree
of turn involved and the desired distance constant. The function was derived by gathering
experimental data through use of our simulator. With the results of these experiments we
inteipolated a general function, which would fulfill our safety requirements while
maximizing transitioning efficiency. Some graphical results are included in figures24 to 26,
which illustrate the effectiveness of our transitioning system. In Figure 24 we are
completing a simple 90 degree turn with a S, value of 1.0. Figure 25 combine the line circle
transitioning combinations. and illustrates the obstacle avoidance problem. In this graph we
can assume the vehicle isolates an obstacle ahead on its’ present path. The vehicle thus,
transitions to an appropriate dimension circle to avoid the obstacle. When the vehicle is
clear of the obstacle it transitions back onto its’ original path. The remaining figure displays

the transitioning between two circles.
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V1. IMPLEMENTATION

One of the primary objectives of our research was to provide greater flexibility and
maneuverability for an autonomous vehicle. The path tracking method which we propose
would accomplish this by providing a simple, but powerful means to control a vehicle’s
motion. However, to maximize the benefits of our pathtracking algorithm, we should
incorporate it with a traditional path planning algorithm, such as that described for
Kanayama's Yamabico-11 [Ref. 3]. The resultant algorithm will enjoy flexibility,
maneuverability. ease of operation. and increased control. Therefore, our final objective is
to implement our path tracking algorithm into the software system of an autonomous
vehicle. Our system has been designed with regards for all categories of vehicles.

Therefore. our algorithm will be compatible for the Yamabico-11 robot.

A. OVERVIEW OF SYSTEM

I. MMIL System

The Yamabico-11 robot presently operates within the MML software
environment. MML is an abbreviation for Model-based Mobile robot Language. and is a
on-line library of mobile robot oriented functions. MML is a real time motion control
system for off-line programming of a mobile robot. It consists of three primary
components; a path planner. a motion generator, and a tracking controller module. The
system accepts the user’s desires in the form of a user program. The path planning module
takes this input and converts it into a description of the path. This path description is used
in conjunction with the velocity and acceleration specifications to produce reference
configurations which track along the desired path. This data is compared by the tracking
controller module to minimize the difference between the vehicle’s position and the
reference configuration. The controller module also consists of all the necessary

mechanisms for locomotion capabilities including the vehicle s motor and wheels [Ref. 3].
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B. PATH TRACKING SYSTEM

The system we envision shall be comparable to the existing system There shall be two
modules which parallel the path planner, and the generator. These modules shall be referred
to as the path descriptor, and the executor. The output of these modules shall provide input
to the existing tracking controller module. The process shall be initiated by the creation and
linking of a user module to the path tracking system. Our system shall be written in the C

language within the Unix environment.

1. User Program

The user program shall be designed for off-line programming of the robot. Its
purpose is to provide a means for the user to program the robot’s motion. The user module
shall consist of an indeterminate number of path tracking locomotion functions, which
describe the rotot’s desired motion. The available commands are described in appendix D.
The sequence of locomotion commands must be completed by listing the execute comuand
after all other commands. Execute acts as a signal to the system to transfer control to the
executor module. The user program shall be executed under the supervision of the MML
operating system. The path tracking functions within the user module shall be linked only
at compile time. This module thereby acts the same as it did for the user program of the

MML system.

2. Path Descriptor

The path descriptor module shall perform a similar function to the path planner
module of the MML system. I+ <hall take a user program and convert it into a description
of the desired motion in terms acceptable to the executor module. This shall be
accomplished by taking the sequence of commands of the user program and placing their
corresponding path information onto an instruction stack. The stack shall comprise of threc
components: the class. the reference path. and the transition peint. An example of a typical

instruction stack is given in Table 4.




Table 4: INSTRUCTION STACK

Class Reference Path Intersection
spath (Xr5. ¥r5- O¢5. Kps) ---

ppath (X4. Yoo Opg. Kpg) (%43. ¥i3- 6;3. K3)
path (X2 ¥r2. 052, Kp3) (xi2. ¥i2, 02, Kjp)
ppath (2. ¥r2. Op2. %p2) (it Yit. Oy, Kip)
path (Xr1- ¥e1- Or15 Kpp) ---

The class is the type of path locomotion function. There are only three possible
options: path, ppath, and spath. The path function is an indefinite move command onto the
path described by the given configuration. The function ppath is a partial path function,
which is simply a path with a distinct endpoint for transitioning purposes. The path and the
endpoint are described by the same configuration. The last available class is spath, which
is a stop path function. The accompanying reference configuration refers to the location on
the path for which the robot is to stop.

The reference path and the intersection are configurations which describe the
desired motion. The user program shall have a path configuration for each command
entered to delineate a specific path. This configuration shall be placed on the stack as the
desired reference path. The system shall then use the class and successive reference path
configurations to determine the intersection point. This intersection point shall be used to

determine when to transition between successive paths.

3. Executor

The executor module will be initiated by the user program. After all locornotion
functions have been placed onto the instruction stack the command execute will pass

control to the executor. The objective of the executor is to derive the dx/ds necessary to
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merge onto the reference path. This 1s simply a call to our path tracking algorithm with the
specific instruction stack. After the 10bot’s image has reached the determined transitioning
point the next entry of the instruction stack shall be executed. This shall be continued until

all instructions have been executed. At this point the robot shall switch to the stop state.

C. SUMMARY

One of the primary objectives of our research was to expand the motion control
capabilities of all categories of autonomous vehicles. In accordance with this we developed
a simple but powerful path tracking algorithm. To show the benefits of such an algorithm
we intend to implement it within the operating system of a mobile robot, Yamabico-11. The
implementation that we decided to undertake was based on a parallel system to the present
Yamabico-11 operating system, MML. This would allow us to employ applicable existing
modules of the MML system. while developing other modules to tailor the system to our

path tracking algorithm. Our ultimate desire is to create a operating system which could be

quickly operational, and expanded to subsume the MML system in the future.




VI. SUMMARY AND CONCLUSIONS

A. CONTRIBUTIONS OF RESEARCH

The benefits of our path tracking algorithm are primarily within two areas. The first
area is concemed with the effective control of an autonomous vehicle. Most present motion
contro} algorithms for autonomous vehicles are based on a exact positioning. That is. the
vehicle is controlled to pass through certain desired points. This method is extremely useful
and versatile. However, many instances exist where the exaci positioning of the vehicle is
not as important as the orientation. In our path tracking algorithm we emphasize translating
our desired motion into simple terms. We make it considerably easier for the user to
program a vehicle’s motion by alleviating the need to predetermine points along the motion
path. In addition. the general concept of motioa behind our path tracking algorithm
provides a more general approach. which is as encompassing as the more prevalent point
to point approach. The path tracking approach allows the user to maintain the vehicle on
curves which would be impossible to replicate in the point to point approach. Both methods
offer the user some advantages. however it is best when the methods are combined within
a vehicle ‘s software. This greatly enhances the vehicle’s motion control flexibility and user
operability.

The second area which this research directly benefits is that of obstacle avoidance. In
our path tracking scheme we included tracking along circular paths. The primary reason we
implemented a path tracking algorithm for circles is to provide a means for obstacle
avoidance. Our intentions are. that when a vehicle’s sensors detect an obstacle. we would
have an automatic transition from the path the vehicle is presently on to a circular path
which would circumvent the obstacle. After avoiding the obstacle the vehicle would then

transition from the circle back onto the original path. A more complex scheme can be

61




developed on this idea to handle multiple obstacles and dynamic moving obstacles.

However, the path tracking scheme presents the foundation for these ideas.

B. FUTURE RESEARCH

The path tracking scheme developed in this research is a simple algorithm. This simple
nature provides ample opportunities to improve or expand the system. The possible
improvements can be conducted mainly in two areas, the mathematical model, and the
transitioning scheme.

We developed the algorithm primarily through experimentation. That is we attempted
to find a valid control method through hunches, and gt inctincts. This is not the most
appropriate means, and it usually does not yield the best results. In deriving our
mathematical model we included assumptions to ensure a simple control function. In
addition. the output of the system is not precisely our desired output. A very slight

oscillation exist in simulations conducted with the value of S less than one. Although the

magnitude of the oscillation is on the order of 10°, it may indicate a problem with our
method. Therefore, for these reasons it may be beneficial to invest further research into a
similar mathematical model. Thit may provide a solid mathematical approach, which
produces superior results to those presently attained.

The second area which could be improved upon is the transitioning schcme. We
developed our transitioning scheme primarily as a result of the limits of ov~ resources, both
time and money. With greater resources available we could investigaie whether an
expanded transitioning scheme would be feasible and economical. If the system merited
improvement, we could expand the transitioning scheme by taking more factors into
account mn determining the appropriate transitioning distance. The goal would be & fully
dynamic scheme. which provides the safest, most efficient transitions possible.

Other research can be accomplished by expanding the present algorithm. The
algorithm could be expanded by expanding the systems’ applicability, and tunctionality.

The applicability of the system could be expanded by increasing the scope of possible
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referenc= paths. Thus, we could implement a system in which a robot could path track along
any given planar curve, including ovals, parabolas. and cubic spirals. This would be
extremely useful in developing a path tracking scheme based on voronoi boundaries within
an environment. Another possibility is to expand the algorithm to a three dimensional
system. This could be useful in motion control of an unteathered submarine, or a mobile
drone. These options can be accomplished by manipulating the present motion control
aspects of our system and implementing them in other areas.

Another research area which could be started in conjunction with our work is obstacle
avoidance. The path tracking algorithm lays the groundwork for a possible obstacle
avoidance algorithm for autonomous vehicles. This is by far the most significant area of
possible future 1esearch. The path tracking algorithm is simple, and provides a simple
reliable means to control motion of a vehicle. This is ideal for an obstacle avoidance
scheme. The groundwork is estaliished, with further work along these lines an effective

means to transit unknown environn..nts could be close at hand.
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APPENDIX A

To test the correctness of our control equation, we shall compare the results of the
output of our simuiator with that of an assumption free equation based on our system. To
do this we shall use equation (3.22) and solve for the coefficients A, B, and C. Let’s look

at equation (3.22) and its’ first and second derivative.

v = (’%,\-2 +Bx+C)e™ (A.1)
y’ = (Ax+B - %.\2 —kBx—kc) gk (A.2)
¥ = (A—kAx—kB -k (Ax+B - 5’;_\-2 —kBx—kC)) ek (A3)

With these equations we can solve for the coefficients.

.“_\ =( = .\‘0 C = .‘.0 (A'4)
y;=0 = tanGO B = kyo-f-taneo (A.5)
Y| _ A-meedc A
ez 26 72 0 (A.0)

(1+ (1)) (I+tan 0)

X =
o]

A = 2k (tan@), +kyg) —k"yO+K0|cos(90‘3 (A7)

To find the specific solution for the coefficients we use the initial position of the robot
for a given problem. To simplify the problem we shall choose a problem in which the robots
initial x coordinate is equal to zero. Thus, we shall solve the coefficients for the problem of
the robot merging from an initial position p; = (0, 1. 0, 0) onto the x-axis. Now, we can
calculate the actual coefficients for this problem. Using equation (A.4) we solve for C.

C = Yo = 1 (A3)

Now, we solve for B using equations (A.5) and (A.8).
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B = k(1) +tan(0) =k (A9)
And the value of A is calculated,
A= 2k(k) -k (1) + (O)11F = & (A.10)
Since. we have assigned the value of & to be equal to the inverse of S, we have all the

information to plot the desired path free from our earlier assumptions. Thus, we established
an algorithm which would plot the following function.
i kv
y= (Fx+hat e (A.11)
Thus the output of this equation was plotted in conjunction with the output of our simulator

for various values of Sj. The results of both outpnts clearly show the degree of difference

between our simulator and the assumption free output.
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APPENDIX B

In deriving our transition distance function, TD, we conducted numerous simulations
of transitioning between paths. The objective was to find the minimum distance required to
complete a specific tum angle. We also conducted these experiments to determine the effect

varying the value of Sy had on the minimum distance. The results where reported in Table

1. and the graphical results can be found in figure 22 to 32.

In conducting the minimum transitioning distance simulation we found a problem with
the ontput of our algorithm. The objective of the testing was to find the minimum distance
to complete the tum without any oscillations or crossing of the reference path. However, as
we conducted the experiment we found that this requirement was impossible to meet in

some circumstances. As we decreased the value of Sy we found that a small degree of

oscillation was present, regardless of how much we increased the transitioning distance.

This oscillation was present when the value of S was 0.5, 0.25, and 0.125. The oscillation

was a single crossing of the x-axis on the order of 10°5. Therefore, we regarded this
oscillation as insignificant, and proceeded with our testing. However, in the cases where
the oscillation existed we determined the minimum distance as the point where this slight
oscillation first appears.

The output of our testing was four individual paths for eack: specific tum angle. All of
the paths were plotted on the same graph for easy comparison. The paths can be
distinguished from one another since those with the widest and slowest tums have the
higher values for Sj. Also included on the graph was a dotted directed line. which provides
the vehicle’s initial reference orientation. The ledger found in the lower right-hand comer

of each graph tell the necessary initial position of the vehicle to complete the tum for a

given Sy value.
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APPENDIX C

/* The header file used in conjunction with the path tracking
algorithm of pathld.c */

/* Constants needed within the program. */

#define PI 3.14159265

#define DPI 6.28318530

#define RAD 57.2957795 /* 180 / PI */
#define DELTA TIME 0.001

#define MAXSTRING 80

#define VELOCITY 10.0

#define MAX DELTA KAPPA 1.0

#define N 10

/* Structure for reference paths, vehicle’s position, image,
and the intersection point between paths. */
typedef struct {

double x;

double Vs

double theta;

double kappa;
} CONFIG;

/* Global wvariables. */
typedef struct {

double x0;
double v0;
}POINT;

/* Procedures defined within the program. */
CONFIG current config, intersect;

FILE *out_path, *info file;

CONFIG path_array([N];

POINT intersect;

int ITERATIONS;




double i x0, i_y0, dkappa, delta d, DIST CONSTANT;

CONFIG initial_configuration();
CONFIG initial reference();
void initialize_parameters();
void initialize_files();
CONFIG intersection_point();
void print_to_file();

void update velocity (),
CONFIG update configuration();
double calc_kappa();

CONFIG calc_image () ;

double calc kappa dot();

void time_to transition(};

double norm{() ;
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#include “stdio.h'
#include "math.h"
#include "path.h"

main ()

{
int path nun = C;
int done = 0;

S~

double dkappa ds = 0.0, speed, delta dist, aa, bb, cc;
CONFIG path, image;

vehicle = initial configuration();
path = initial ref-rence():
initialize parameters(&aa, &bk, &cc);
initialize files(path);
intersect = intersection_point(path_num);
do {
print_to file(image path, dkappa ds);
update_ speed (&speed, &delta dist);
update image (&image, vehicle, path);
delta d = delta distance(vehicle, image);
dkappa_ds =kappa_dot (vehicle, image, delta d, delta dist,
aa, bb, cc);
update_configuration(&vehicle, dkappa ds, delta dist);
time_to_transition (&path, &path num, &done, image);
} while (! (done));

CONFIG initial_ configuration ()

{

CONFIG vehicle;
dcuble dgre;

printf ("Enter the robots current configuration (X Y DEGREES
KAPPRA): ") ;

scanf ("$1£%1£f%1£%1£f", &vehicle.x, &vehicle.y, &dgre,
&vehicle. kappa);
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vehicle.theta = norm(dgre / RAD);
return (vehicle) ;

CONFIG initial reference ()
{

double degree, kpa;

int i, num_of paths;

print £ ("How many reference paths do you desire in the robots
motion: ");
scanf ("%d", &num_of paths);
for (i=0; i< num of paths; ++i) {
printf ("\n%s%d%s", "Enter the equation for number ",
(i+1)," reference path (X Y THETA KAPPA)");
scanf ("%1£f%1£%$1£%1£f", &path_array[i].x, &path_array[i].y,
&degree, &kpa);
path _array[i].theta = norm(degree / RAD);
path _array([i].kappa = kpa;
}
path _array[num of paths].x = 0.
path_array[num of paths].y = 0.
path_array[num of paths].theta
path _array[num of paths].kappa =
return(path_array([0]) s

I © o

|
o
(=
-

void initialize parameters(aa, bb, cc)
double *aa, *bb, *cc;

{
double kk;

printf ("What is the desired value of the distance
constant: ");

scanf ("%1£", &DIST CONSTANT) ;

kk = 1.0 / DIST CONSTANT;

*aa = 3.0 * kk;

&1




*
o
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*aa * kk;
*cc = *bb * kk / 3.0;

void initialize files(path)
CONFIG path;
{
char name [MAXSTRING], namel [MAXSTRING];

printf ("What is the name of the graph output file? "):
scanf ("%$s", name);

printf ("Wwhat is the name of the info output file? ");

scanf ("%s", namel);

info file = fopen(namel, "w");

out path = fopen (name, "w");

fprintf (out_path, "%s%.1f\n%s\n", "#cs ", 0.5, "#lg 2");

fprintf (out_path, "%s%.2f%s\n",
"#leg \"distance constant=", DIST_CONSTANT, "\"");

fprintf (out_path, "%s%27s\n", "#leg \" (X,Y,Theta,Kappa)",
" (Xr,Yr, Thetar,Kappar) \""); fprintf (out_path,
"$s5%.1f, %.1f, %.1f, %.1f%s%5s%.1f, %.1f, %.1f,
%.1£f%s\n", "#leg \" (", vehicle.x, vehicle.y,
vehicle.theta*RAD, vehicle.kappa,")"," (",
path.x,path.y,path.theta * RAD, path.kappa,”)\"");

void print_to_file(image, path, dkappa ds)
CONFIG image, wvath;
double dkappa_ds;

{

printf( "%1f ", wvehicle.x);

printf( " %1f\n ", vehicle.y);

fprintf (out_path, "$%1f ", vehicle.x);

fprintf (out_path, " %1f\n ", vehicle.y);

fprintf (info file, "%s%1f ", "x=", vehicle.x);

fprintf (info_file, "%s%1f ", "y=", vehicle.y);
fprintf(info file, "$%s%1f ", "theta=", vehicle.theta);




fprintf (info_file, "%s%lf\n ", "kappa=", vehicle.kappa);
fprintf (info_file, "$s%lf ", 6 "itheta=", image.theta);
fprintf(info_ file, "%s%.5f ", "image_x=", i_x0);
fprintf(info_file, "%s%.5f ", "image y=", i_y0);
fprintf (info_file, "$s%lf\n ", "close dist=", delta_d):;
fprintf(info_file, "%s%1f ", "dkappa ds=", dkappa_ds);
fprintf (info_file, "%s%1f ", "inter x=", intersect.x);
fprintf (info_file, "%s%1f\n ", "inter y=", intersect.y);
fprintf (info_file, "%s%1f ", "path.x=", path.x);
fprintf (info file, "%s%1f ", "path.y=", path.y);
fprintf(info_file, "%s%1f ", "path.t=", path.theta);
fprintf(info file, "%s%1f\n\n ","path.k=", path.kappa);

veid update speed(speed, delta dist)
double *speed, *delta dist;
{

*speed = VELOCITY;
*delta dist = DELTA TIME * *sgpeed;
}

double delta distance (vehicle, path)
CONFIG wvehicle, path;
{

double distance;

distance = (-(vehicle.xz - path.x) * (path.kappa *
(vehicle.x - path.x) + 2 * sin(path.theta)) -
(vehicle.y - path.y) * (path.kappa *

(vehicle.y - path.y) - 2 * cos(path.theta))) /

(1 + sgrt (pow(path.kappa *(vehicle.x - path.x)

+ sin(path.theta), 2.0) + pow(path.kappa *

(vehicle.y - path.y) - cos(path.theta), 2.0)));
return (distance);
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void update image (image, wvehicle, path)
CONFIG *image, vehicle, path;
{
double radius, gamma, close dist;
POINT origin;

if (path.kappa == 0.0) {
close _dist = (((vehicle.y - path.y) * cos(path.theta)) -
((vehicle.x - path.x) * sin(path.theta)));
(*image) .x = vehicle.x + close_dist * sin(path.theta);
(*image) .y = vehicle.y - close_dist * cos(path.theta);
(*image) .theta = path.theta;
(*image) . kappa = path.kappa;
}
else {
radius = (1.0 / path.kappa);
origin.x0 = path.x - radius * (sin(path.theta));
origin.y0 = path.y + radius * (cos(path.theta)):;
gamma = atan2 (vehicle.y - origin.yo0,
vehicle.x - origin.=xz0):;
(*image) .x = origin.x0 + fabs(radius) * (cos{gamma));
(*image) .y = origin.y0 + fabs(radius) * (sin(gamma));
(*image) .theta = norm(gamma + (PI/2)* (path.kappa/
fabs (path.kappa)) )
(*image) .kappa = path.kappa;
}
i x0
i y0

(*image) . x;
(*image) .y

}

double kappa_ dot (vehicle, image, delta d, delta dist,
aa, bb, coc)

CONFIG vehicle, image;

double delta dist, delta d, aa, bb, cc;

{

double delta kappa, dkappal:;




dkappal = -aa * (vehicle.kappa - image.kappa)
-bb * (norm(vehicle.theta - image.theta))
-cc * delta d;
delta kappa = dkappal * delta_ dist;
return(delta kappa);

void update configuration(vehicle, dkappa ds, delta dist)
CONFIG *vehicle;

double dkappa_ds, delta_dist;

{

{

double delta_theta, delta_distl, kappa;
double epsilon = 0.00001;

kappa = (*vehicle) .kappa + dkappa_ds;
delta_theta = delta dist * kappa;
delta distl delta_dist;
if (fabs(delta theta) <= epsilon) ({
delta distl =delta dist * (sin(delta_theta/2) /
(delta_theta/Z));

}

(*vehicle) .x += (cos((*vehicle).theta + delta theta / Z.0)
* delta distl);

(*vehicle) .y += (sin((*vehicle).theta + delta theta / 2.0)
* delta_distl);

(*vehicle) .theta = norm((*vehicle).theta + delta_theta);
(*vehicle) .kappa kappa;

void time_to_transition(path, path num, done, image)
CONFIG *path, image;
int *path num, *done;

double distance, turn_angle, TDist;

if (path_array[*path num+l].theta == 6.28) {
if (((fabs(delta d) < 0.00001) && (fabs((*path).kappa -
vehicle.kappa) <= 0.00001) && (fabs{(norm(vehicle.theta -




image.theta)) <= 0.00001)) || (ITERATICNS > 2900))

*done = 1;
else {
*done = 0;

ITERATIONS += 1;

} .

else {
turn_angle = intersect.theta;
distance = sqrt (pow(image.x - intersect.x, 2.0) +

pow (image.y - intersect.y, 2.0));
TDist = (2.4 * DIST_CONSTANT + 0.3) * (1/(1- pow (turn_angle
/ PI, 4.0)));
if (distance < TDist ) {
*path = path array({*’path_num + 1};
*path_num += 1;
intersect = intersection_point (*path_num);
*done = 0;
fprint £ (out_path,"%s%.1f, %.1f, %.1f, %.1£f%s%5s%.1f, %.1f,
%.1f, %.1f%s\n","$#leg \" (", vehicle.x, vehicle.y,
~vehicle.theta*RaD, vehicle.kappa,™)"," (",
(*path) .x, (*path) .y, (*path).theta * RAD,
(*path) .kapra,")\"");

else
*done = 0;

CONFIG intersecticn_point (path_num)
int path_ num;
{
double dist refs, ref orient, beta, alpha, sigma, inter_d,
distance, distancel, phi, intersect orient;
POINT imagel, origin;
CONFIG inter;

if (path_array([path_num+l].theta == 6.28) {
inter.x=path_array([path num].z +
1000*cos (path_array[path _num].theta):
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inter.y=patlh arisrinath num].y +
1006*sin(poth zrray([path num].theta);
}
else if ((path_array[p>:% num].kappa == 0.0) &&
(path_array[path_num+l] .kappa == 0.0)){
dist_refs=sqgrt (pow(path_array[path pnum +1}.x -
path _array[path num].x, 2.0) +
pow(path_array[path num +1].y -
path_array[path_pum].y, 2.0)):
ref orient = atanZ(path_array|[rath num +1].y -
path_array[path _num].y,
path_array[path num +1].x -
path_array([path_num].=x);
beta = path array(path num].theta - ref orient;
alpha = norm(PI - ref orient) - path_array[path num +
1] .thetz2;
sigma = norm(PI - beta - alpha);
inter d = dist refs * (sin(alpha)/sin(sigma));
inter.x=path array[path num].x +
inter d*cos(path array[path _num].theta);
inter.y=path_array[path_num].y +
inter_d*sin(path_array[path_num].theta);
inter.theta = norm(path arrayipath num + 1].theta -
path_array[path num].theta);

}
else if(path_array[path num].kappa == 0.0) {
origin.x0 = path array{path num+l}.xz - (1/
path_array{path_num+tll.kappa) *
(sin(path array[path num+l].theta)});
origin.y0d = path array[path num+l}.y + (1/
path_array[path_num+l].kappa) *
{cos(path_array[path_num+l].theta));
distance = (origin.y0 - path array{path num]l.y) *
cos (path_array[path_num].theta) - (origin.x0 -
path_array[path num].x) *
sin(path array[path num].theta);
distancel =sqrt (pow(l/path _array[path num+l].kappa,2.0)-
pcew (distance,2.0));

imagel.x0 = origin.x=0 + distance *
sin(path_array|[path_num].theta):
imagel.y0 = origin.y0 - distance *

cos (path_array[path_num].theta):
inter.x= imagel.xz0 - distancel




*cos (path_array{path num].theta);

inter.y= imagel.y9 - distancel
*sin(path_array[path_num].theta);

rhi = atan2(inter.y - origin.y9, inter.x - origin.=x0):;

intersect_ orient = norm(phi + (P1/2) *
(path_array[path num +1].kappa /
fabs (path_array([path num + 1) .kappa)));

inter.theta = norm(intersect orient -
path _array[path num].theta);

}
else {

origin.xz0 = path array[path num].xz - (1/
path_array[path num].kappa) *
(sin(path_array[path num].theta));

origin.y0 = path array[path num].y + (1/
path_array([path num].kappa) *
(cos (path_array[path_num].theta));

distance = (origin.y0 - path array[path num+l].y) *
cos (path_array[path num+l].theta) - (origin.x0 -
path_array([path_num+l].xz) *
sin(path_array[path_numtl].theta);

distancel = sqrt (pow(l/path_array(path num].kappa,2.0)-
pow(distance.2.0));

imagel.x0 = origin.x=0 + distance *
sin(path_array([path num+l].theta);

imagel.y0 = origin.y0 - distance *
cos (path_array[path num+l].theta):

inter.x= imagel.x0 + distancel
*cos (path_array[path num+1].theta);

inter.y= imagel.y0 + distancel
*sin(path_array[path num+l].theta);

phi = atan2(inter.y - origin.y0, inter.x - origin.x0);

intersect orient = norm(phi + (P1/2) *
(path_array([path num].kappa /
fabs (path_array([path_num].kappa))):

inter.theta = norm(- intersect orient +
path_array[path num + 1].theta);

}

return(inter);
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double norm{angle)
double angle;
{

while ((angle > PI) || (angle <= -FI)) {
1f (angle > PI)
angle -= DFI;
else
angle += DFPI;

}
return (angle) ;

}
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APPENDIX D

We propose a path tracking algorithm which is applicable to any autonomous vehicle.
This algorithm would be operable in conjunction with the present motion control software
system MML for Yamabico. An overview of the present locomotion functions is presented
by Kanayama [Ref. 4], which seconds as Yamabico’s user manual. This reference gives the
reader a clear understanding of the MML software environment, and the available motion
control commands. The modification which would be necessary to combine the two
independent systems was explained in chapter VII. In this appendix we would like to
explain the additions necessary to the library functions in the MML language by expanding
the user’s manual.

The changes which are necessary are concemed exclusively with the sequential
locomotion functions, such as move and stop. To append the users manual we must simply
add three locomotion functions to the system. These three commands shall allow the user
to intersperse the functional features of the path tracking algorithm with the established
point to point motion control scheme. The added commands will be labeled as follows;
path, ppath, and spath. It is our hope, that by incorporating both systems together with as
few as possible additional commands, we can maintain the entire MML environment. In
addition, we feel this will greatly expand the robot’s functionality and versatility without
complicating the operating procedure of the robot. Let’s take a in-depth look at each new

sequential locomotion function.

PATH TRACKING LOCOMOTION FUNCTIONS:
MOVE PATH

SYNOPSIS: path(c),
CONFIGURATION *c;
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DESCRIPTION:

This function moves the robot from the robot’s current
configuration p; = (¥ ¥;. ;. ;) onto the directed
reference path = (x, v, 6, x). The present speed and
acceleration, v, and a_, are used for the motion. The
robot’s motion should smoothly merge onto the
reference path and continue to track along the path
indefinitely or until another motion function is
encountered. The only acceptable command following a
path() is another path tracking locomotion function,

or an immediate function. The locomotion function
which follows this command must consist of a path
which intersects the present desired path. If the two
consecutive paths do not intersect, the robot stays on the
cu-rent reference path.

ERROR: If the command following path() is not an acceptable
option, the robot stops and an error code is returned.
SEE ALSO: ppath(), spath(), speed(), acc(), movei().
MOVE PARTIAL PATH
SYNOPSIS: ppath(c);
CONFIGURATION *c;
DESCRIPTION: This function is a variation of the path function. It moves

the robot from the robot’s

ERROR:

SEE ALSO:

current configuration p; = (y;, ;, 6;, K;) onto the

desired reference path. The present speed and
acceleration, v, and a,, are used for the motion. The
robot’s should smoothly merge onto the desired
reference path and continue to track along the path until
its image reaches c = (x, ¥, 6, k). At this point control
goes to the next path function.

If the destination point c is the same as the current
nominal point, the robot stops and an error code is

returned.

path(), spath(), speed(), acc(), movei(), move(),
stop().
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STOP PATH

SYNOPSIS:

DESCRIPTION:

SEE ALSO:

SPECIFYING Sy

SYNOPSIS:

DESCRIPTION:

ERROR:

spath(c),
CONFIGURATION *c;

This function is a variation of the path() function. It
moves the robot from the robot’s current configuration
pi = (%3, ¥4, 6;, X;) onto the desired reference path. The
present speed and acceleration, v and a,, are used for

the motion. The robot should smoothly merge onto the
desired reference path and continue to track along the
path until its image stops at ¢ = (x, ¥, 9, ). At this point
the robot switches to the STOP state. In this state the
robot can complete any command of either system.

path(). ppath(). speed(), acc(), movei(). move().
stop().

dist_consi(x),
double x;

This function allows the user to adjust the value of Sy

for a particular maneuver. The command can only be
used while the robot is in the STOP state.

If the user inputs a negative value for the distance
constant, the robot stops and an error code is returned.
If this command is given while the robot is not in the
STOP state, the robot shall stop and an error code
retumed.
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