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1. INTRODUCTION: NEW SHIP STRUCTURE AND MODEL

The proposed new surface ship hull concept consists of a double skin that wraps

around the bottom, sides, and main deck. The two skins are connected by plates normal

to the surfaces forming a cellular structure similar to a cardboard box, as shown in Figure

1. The advantages of this type of construction have been described by Okamoto, et. al.

[1], and Beach [2].

The object of this report is to develop formulas for estimating the principal stresses

in such a structure. In order to be able to obtain simple analytical formulas, we model a

ship hull as a circular cylindrical orthotropic shell surrounding an elastic core. Under a

pure end bending moment M and a lateral pressure loading q which does not vary along

the length, the cylinder bends into a curved tube of oval cross section, as shown in Figure

2.



2. SHELL EQUATIONS AND SOLUTION

The theory governing the deformation of thin shells is well developed and available in

many forms. Here we use the semi-momentless shell theory of Axelrad [3]. ** When spe-

cialized to the linear St. Venant problem for circular cylindrical shells, Axelrad's equations

(2.122) - (2.123) reduce to

a, K2 +0 2
2  R 2 8 2q

84+ =9T

-4 1 9 0 (2)
8i74 a 7

Here the coordinate ql denotes the circumferential angle and R denotes the radius of the

undeformed cylinder, as shown in Figure 2. The principal values of the change in curvature

tensor are denoted by ,zl(7) and , 2 (1); their geometrical definitions arc illustrated in

Figure 3. The longitudinal membrane force T1( 7 ) (force per unit length of the shell

midsurface) is related to the longitudinal strain el(v7) by the constituitive law

Ti = Elie, (3)

Here h is the thickness of the shell, and E is Young's modulus. The longitudinal bending

moment M1(r,) and transverse bending moment M 2 ( 7 ) (moments per unit length of the

shell midsurface) are related to the curvature changes ,(q7) and ,K2 (71) by the constituitive

laws

All = Dl(,c, + v, 2), M 2 = D 2 (K2 + Vtl) (4)

** Our equations may also be obtained from other shell theories, such as that of Sim-

monds [4].



Here D1 and D2 are bending stiffnesses, and Y is Poisson's ratio. The longitudinal

curvature change xCi(i) and transverse membrane force T2(i') are given in terms of the

above variables by

'vi I 227 T 2 = Rq+ I 2(5)
EhR 12 , R 12

The net bending moment M acting on any cross section of the tube may be calculated

from the formula

M = R2 o  T cos i dqr (6)

The strain measures are related to the displacement components by the equations

1 02wKI = -- 0- (7)

/ T 2 w (8)
, C2 W + W

- 2awa3 O v + 1 3o ,v0 (9 )
7-W2---- = (9) a

1 Ou
= 1-- (10)

e2 = (- 9 + w -0 (11)

(= U + v 0 (12)

Here R denotes the distance measured along the axis of the undeformed tube, as shown in

Figure 2, and (u, v, w) denote displacement components in the (C ,rT ,radial) directions.

We suppose that the pressure loading q(rj) acting normal to the surface of the shell

can be expressed as

= -Kw(i7 ) + w(r+7 +)] - 6(1 + cos 2 17) (13)
2



at i7 = 0 is the longitudinal curvature of the cylinder axis due to the beam-like bending.

The terms in (15), (17), (19), (20) which are underlined are secondary quantities arising

from ovalization of the cross section. Proper design requires that these quantities be made

relatively small by having a large enough foundation modulus K.



3. APPLICATION TO DOUBLE HULL

As an example of the application of these formulas, let us consider the double hull

sketched in Figure 1. An average hull section contains 3 plates each of thickness t and

width b, as shown in Figure 5, so the average hull thickness is

h = 3t (21)

The bending stiffnesses corresponding to this double hull geometry are

= 7Eb2t - Eb 2t (22)
=12(1-V2) D2 2(1- V2 ).

Of interest for design purposes are tiie maximum stresses arising in the double hull. The

magnitudes of the membrane stresses corresponding to the membrane forces (14) - (15)

are less than

S3(23)

6R 2 + vb 2M 4R 2

aM2 =4t 127r(1 - v 2)tR 4 + 12t(1 + a- I)

The magnitudes of the bending stresses corresponding to the bending forces obtained from

(4) and (16) - (17) are less than

bM vR
a2i= + bR' (25)

aR = 77r(1 - v 2 )tR 3 7bt(1 + 2KR4

a R 3  vbM
0 B2 = 6bt(1 + 2KR4 ) + 67r(1 - v 2)tR 3  (26)

From the architextural drawings of the double hull cross section sketched in Figure

1, we have computed the average values displayed in the Table of the various geometrical

and material parameters in our formulas. The value of M is the maximum value of the



design hogging bending moment. I is the moment of inertia of the hull cross section about

its centroid. If we choose the cylindrical cross section to have the same moment of inertia

as the hull, this determines the radius of the cylinder to be R = 25.75 ft. We suppose that

the foundation stiffness K is the same as the bulkhead stiffness. From experiments on

pyramidal truss cores typical of those which are proposed for the bulkhead structure, we

have determined the average value of K shown in the Table.

Now let us put some of the numbers shown in the Table into the formulas (23) - (26):

aMI = 21.6 (27)

.7
aM2 = 2 .1 + + (28)

3.2

CrBi 1 -1 5  + 2KI (29)
9 D2

12.4
CB2 = + .4 (30)

+ 2KR41+9D2

Here all stresses are in units of ksi. Note that if there were no elastic foundation (K = 0),

the secondary stresses (those terms underlined in (28) -(30)) would be a sizeable fraction of

the primary stresses. But r- 3733, from the values in the table, so these secondary

stresses are rendered negligible by the bulkhead stiffness.



4. CONCLUSION AND FUTURE WORK

Our analytical formulas indicate that the stiffness of the proposed bulkheads could

be reduced by a factor of 10 without incurring significant secondary stresses in the double

hull. A less bulky bulkhead design would have obvious cost and weight benefits.

This analysis models only the most fundamental aspects of the complex state of stress

which could actually exist in the hull of a ship at sea. In future work the model should be

refined to make its predictions correspond more closely to reality. Features which should

be included are:

1. A more rectangular cross section corresponding to the actual hull shape. This could

perhaps be included within the framework of the present analysis by conformal map-

ping techniques.

2. A more realistic applied loading, including torsion and internal pressures.

3. Discrete treatment of the bulkheads and other stiffeners. Also, allowance for nonuni-

form stiffness properties.

4. Geometric and material nonlineaities. This is essential for an ultimate strength anal-

ysis.
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Figure 1: Double hull designed by David Taylor Research Center.
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Figure 2: Idealized Model of Double Hull
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Figure 3: Geometrical Definitions of Curvature Changes
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q=-IR(1+cos2Tj)
2

Figure 4: Lateral Pressure Loading

31 .AO69



0 YM2

CYB2

Figure 5: Stresses Acting in Double Hull Wall
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Table 1: Typical Parameter Values

M 665,000 kip-ft

6 0.0624 kiplft'

E 29,500 ksi

v 0.3

t 0.41 in

b 35 in

I=~TR 3h 5500 ft4

K 15 kip/in 3
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