/N

REPORT DOCUMENTATION PAGE oo\

1 1007 POr response, including the time for reviewing instructions, seasching existing data sources gathering and maintaining the data
ne s burden estimate or any other aspact of this collection of information, including suggestions for reducing this burden, to Washingion
N ™ AD—A248 Jetierson Davis Highway, Sulte 1204, Arington, VA 222024302, and to the Office of information and Reguistory Alfairs, Office of
M
1. , mm, lm m m ,m "m "m ”” m ORT DATE 3. REPORT TYPE AND DATES COVERED
, Final: 01 Jun 1991 to 01 Jun 1993
[4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Validation Summary Report: intermetrics, Inc., Intermetrics MVS Ada, Version 7.0,
Amdahl 5890/180E, MVS/XA Release 2.2 (Host & Target) 910622W1.11170

6. AUTHOR(S)
Wright-Patterson AFB, Dayton, OH
USA
" PERFORAMING O IZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION |
Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY |
Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

ELECTE

MAR 19 1992
12a. DISTRIBUTION/AVAILABILITY STATEMENT DISTRIBUTION CODE
Approved for public release; distribution unlimited. D

13. ABSTRACT (Maximum 200 words)
Intermetrics, Inc., Intermetrics MVS Ada, Version 7.0, Wright-Patterson AFB, OH,Amdahi 5830/180E, MVS/XA Release
2.2 (Host & Target), ACVC 1.11.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prescribed by ANS| Std. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 22 June 1991.

Compiler Name and Version: Intermetrics MVS Ada, Version 7.0
Host Computer System: Amdahl 5890/180E, MVS/XA Release 2.2

Target Computer System: Amdahl 5890/180E, MVS/XA Release 2.2

Customer Agreement Number: 91-05-20-INT

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
910622wW1.11170 is awarded to Intermetrics, Inc. This certificate expires
on 1 March 1993.

This report has been reviewed and is approved.

va 1dation Fac1l1ty

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

n Organization

ter and Software Engineering Division
Institute ¥Yor Defense Analyses

Alexandria VA 22311

355 Jo1nt Program Offlce

Dr. John Solomond, Director
Department of Defense
Washington DC 20301

2 3 1% oa 92-06993
9 WRRAR

AVF Control Number:

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 910622W1.11170
Intermetrics, Inc.
Intermetrics MVS Ada, Version 7.0
Amdahl 5890,/180E => Amdahl 5890/180E

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

AVF-VSR-478.0691
4 February 1992
91-05-20-INT

Accesion For

\
NTIS CRA&I)
DTIC TAB [
Unannouncad {3
Justification

Distribution |
Avaiichiily Cedies
T [Avail andfor
Dist Special

A-l

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 22 June 1991.

Compiler Name and Version: Intermetrics MVS Ada, Version 7.0
Host Computer System: Amdahl 5890/180E, MVS/XA Release 2.2

Target Computer System: Amdahl 5890/180E, MVS/XA Release 2.2

Customer Agreement Number: 91-05-20-INT

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
910622w1.11170 is awarded to Intermetrics, Inc. This certificate expires

on 1 March 1993.

This report has been reviewed and is approved.

Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

n Organization

ter and Software Engineering Division
Institute for Defense Analyses

Alexandria VA 22311

Ada Joint Program Office

Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Intermetrics, Inc., Cambridge, MA

Ada Validation Facility: ASD/SCEL Wright-Patterson AFB, OH 45433-6503
ACVC Version: 1.11

Ada Implementation

Compiler Name and Version: Intermetrics MVS Ada Compiler, Version 7.0
Host Computer System: Amdahl 5890/180E, MVS/XA Release 2.2
Target Computer System: same

Customer's Declaration

I, the undersigned, representing Intermetrics, Inc., declare that
Intermetrics, Inc. has no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-181SA in the implementation listed
in this declaration. I declare that Intermetrics, Inc. is the owner
of record of the above implementation and the certificates shall be

awarded in Intermetrics' corporate name.

Date: 5/’0/7/

Dennis Struble, Deputy General Manager,
Development Systems Group, Intermetrics, Inc.

WWW W NN N e

APPENDIX A

APPENDIX B

APPENDIX C

¢« .
[N VAN SN

L[] L[]
w N -

LI Y
W=

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES. . « « « « « « &
ACVC TEST CLASSES
DEFINITION OF TERMS

* L]

¢ o
L] L] L)
* o @
s o o
L] L] L] L]
* L] . .
L[] L] L] L[]
s o o 0
e & o o
¢ e 8 o

IMPLEMENTATION DEPENDENCIES
WI mm mm * L] L] L] L L d L]

INAPPLICABLE TESTS. . « & v «o o ¢ o ¢ ¢ ¢ o s o &
TEST MODIFICATIONS.

PROCESSING INFORMATION

TESTING ENVIRONMENT ¢ & ¢« « o o & « o .
SUMMARY OF TEST RESULTS + ¢ &« « o & & & &
TESTEXECUTION. . &« + ¢ ¢ v v o o ¢ o o s o o o &

MACRO PARAMETERS

COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

1-1
1-2
1-2
1-3

2-1
2-1
2-5

CHAPTER 1
INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90}. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

(Ada83]) Reference Manual for the Ada Programming Language,
ANST/MIL-STD-1815A, February 1983 and 1S0 5325—%987.

(Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

(UG89] Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,

respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illeyal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program
Office (AJPO)

Ada
Validation
Facility (AVF)

Ada
validation
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’'s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
quidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
quidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uszs common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0
LRM

Operating
System

Target

Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
test

INTRODUCTION

Fulfillment by a product, process, or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

|
Software that controls the execution of programs and that |
provides services such as resource allocation, scheduling, |
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect 2nd not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming

language.

CHAPTER 2
IMPLEMENTATION DEPENDENCIES

2,1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 3 May 1991.

E28005C B28006C C34006D C355081 €35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A B49008B A74006A C74308a B83022B B83022H
B83025B B83025D C83026A B83026B C83041A B85001L
C86001F C94021A Cc97116A €98003B BA2011A CB7001A
CB7001B CB7004A CcCla223a BC1226A CC1226B BC3009B
BD1B02B BD1B06A AD1B0SA BD2A02A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C BD3006A
BD4008A CDb4022A CD4022D CD4024B CD4024C CD4024D
CD4031A CD4051D CDS111A CD7004C ED7005D CD7005E
AD7006A CD7006E AD7201A AD7201E CD7204B AD7206A
BD8002A BD8004C CD9005A CD9005B CDAZ01E CE21071
CE2117A CE2117B CEZ119B CE2205B CE2405A CE3111C
CE3116A CE3118A CE3411B CE3412B CE3607B CE3607C
CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as

appropriate.

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..2 (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2Z (15 tests)
C45524L..Z (15 tests) C45621L..2 (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

The following 21 tests check for the predefined type SHORT INTEGER;
for this implementation, there is no such type:

€35404B B36105C C45231B C45304B C45411B
454128 C45502B C45503B - C45504B C45504E
C45611B C456138 C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONG INTEGER; for
this implementation, there is no such type:

€35404C C45231cC €45304C C45411C C45412C
€45502C €45503C €45504C C45504F C45611C
C45613C C45614cC C45631C C€45632C B52004D
C55BO7A B55B09C B86001W €86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or
SHORT_INTEGER; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type
LONG_FLQAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating~point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

C45423A..B (2 tests), C45523A, and C45622A check that the proper
exception is raised if MACHINE OVERFLOWS is TRUE and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINE TVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C46013B, (€46031B, C46033B, and C46034B contain length clauses that

specify values for ‘SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

2-2

IMPLEMENTATION DEPENDENCIES

DS5A03E..H (4 tests) uses 31 levels of loop nesting; this level of
loop nesting exceeds the capacity of the compiler.

D56001B uses 65 levels of block nesting; this level of block nesting
exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before the separate compilation of its body (and any of its subunits);
this implementation requires that the body and subunits of generic be
in the same compilation as the specification if instantiations precede
them. (See section 2.3.)

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support a
floating-point representation of other than 32 or 64 bits.

CD2AB4A, CD2AB4E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BDB004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINE CODE.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL IO with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT IO
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported "for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIAL IO
CE2102E CREATE OUT FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT IO
CE21021 CREATE IN FILE DIRECT IO
CE2102J CREATE OUT FILE DIRECT IO
CE2102N OPEN IN FILE SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIAL 10
CE2102Q RESET OUT_FILE SEQUENTIAL_IO
CE2102R OPEN INOUT FILE DIRECT IO ~

2-3

IMPLEMENTATION DEPENDENCIES

CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT_IO
CE2102U RESET IN FILE DIRECT IO
CE2102V OPEN OUT FILE DIRECT IO
CE2102W RESET OUT FILE DIRECT IO
CE3102E CREATE IN FILE TEXT_IO
CE3102F RESET Any Mode TEXT_I0
CE3102G DELETE —_— TEXT IO
CE31021 C EATE OUT_FILE TEXT 10
CE3102J OPEN IN FILE TEXT_ IO
CE3102K OPEN OUT FILE TEXT IO

CE2107C..D (2 tests) apply function NAME to temporary sequential files
in an attempt to associate multiple internal files with the same
external file; for this implementation, temporary files have no name
and so USE_ERROR is raised by NAME.

CE2107E checks operations on direct and sequential temporary files
when files of both kinds are associated with the same external file;
this implementation does not support simultaneous association of an
external file to files of different file types. (See section 2.3.)

CE2107L checks operations on direct and sequential files when files of
both kinds are associated with the same external file; USE_ERROR is

raised when this association is attempted.

CE2108B and CE3112B use the names of temporary sequential and text
files that were created in other tests in order to check that the
temporary files ave not accessible after the completion of those
tests; for this implementation, temporary sequential and text files
have no name.

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot

restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is excseded; this implementation cannot restrict

file capacity.

CE3111B and CE3115A associate multiple internal text files with the
same external file and attempt to read from one file what was written
to the other, which is assumed *t~ be immediately available; this

implementation buffers output. (See section 2.3.)

CE3304A checks that SET_LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an Inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the

page number exceeds COUNT’LAST; for this implementation, the value of
COUNT’'LAST is greater than 150000, making the checking of this

2~4

IMPLEMENTATION DEPENDENCIES
objective impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for seven tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

BA1101C BC3205D

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the separate compilation of that unit’s body; as allowed by
AI-257, this implementation requires that the bodies of a generic unit be
in the same compilation if instantiations of that unit precede the bodies.
The instantiations were rejected at compile time.

CE2107E was graded inapplicable based on the Report.Result output, without
critical consideration to the intermediate, Report.Not Applicable output
which was generated by line 56 ("NAME ERROR RAISED; SEQUENTIAL CREATE WITH
OUT FILE MODE"). After validation testing was completed, AVO and AVF
analysis led to the conclusion that the particular Report.Not Applicable
output was an unexpected consequence, possibly due to the existence of a
file named "X2107E" in the working directory. Upon subsequent
consultation the customer confirmed that the expected

Report.Not Applicable output, from line 76 ("UNABLE TO ASSOCIATE A
SEQUENTIAL FILE AND A DIRECT FILE TO THE SAME EXTERNAL FILE"), is
generated by processing the test.

CE3111B and CE3115A were graded inapplicable by Evaluation Modification as
directed by the AVO. The tests assume that output from one internal file
is unbuffered and may be immediately read by another file that shares the
same external file. This implementation raises END ERROR on the attempts
to read at lines 87 and 101, respectively.

CHAPTER 3
PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Mr. Mike Ryer
Intermetrics, Inc.

733 Concord Avenue
Cambridge, MA 02138-1002

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation’s maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system — if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b

and £, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3749

b) Total Number of Withdrawn Tests 94
c) Processed Inapplicable Tests 125
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 326 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded ontc the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The default options were invoked implicitly for
validation testing during this test.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN—also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line

length.

Macro Parameter Macro Value
$MAX IN LEN 255 — Value of V
$BIG_ID1 (1..Vv-1 => 'A’, V => '1’)
$BIG_ID2 (1..V-1 => 'A’, V => 2')
$BIG_ID3 (1..V/2 => 'A’") & '3’ &
(1..V=1-V/2 => 'A’)
$BIG_ID4 (1..V/2 => 'A’) & "4’ &
(1..V~1-v/2 => 'A’)
$BIG_INT LIT (1..v-3 => *0’) & "298"
$BIG_REAL LIT (1..v-5 => r0’) & "690.0"
$BIG_STRING1 N & (1.2 = 'A’) & '
$BIG_STRING2 Mg (1..V=1-V/2 => 'A’) & ‘1’ & '"
SBLANKS (1..v-20 => ’)

$MAX LEN INT BASED LITERAL
"2:" & (1..v=5 => ’0") & "11:"

$MAX_LEN REAL BASED LITERAL
"16:" & (1..V=7 => 0’) & "F.E:"

A-1

MACRO PARAMETERS

$MAX STRING LITERAL

rme g (1..V=2 => 'A’) & '

The following table lists all of the other macro parameters and their

respective values.

Macro Parameter

Macro Value

$ACC_SIZE
SALIGNMENT
$COUNT_LAST
$DEFAULT MEM SIZE
$DEFAULT_STOR_UNIT
$DEFAULT_SYS_NAME
$DELTA DOC
$ENTRY_ADDRESS
$ENTRY_ADDRESS1
$ENTRY_ADDRESS2
$FIELD LAST
SFILE_TERMINATOR
$FIXED NAME
$FLOAT NAME
$FORM_STRING
$FORM_STRING2

32

4

2 147_483_647

2#%31

8

UTS

2.0%%(-31)

SYSTEM.MAKE ADDRESS(16#40%)
SYSTEM.MAKE_ADDRESS(16#80%)
SYSTEM.MAKE_ADDRESS (16#1004)
2 147_483_647

TEST WITHDRAWN
NO_SUCH_FIXED TYPE
NO_SUCH_FLOAT_TYPE

CANNOT RESTRICT FILE CAPACITY

SGREATER THAN DURATION

90_000.0

$GREATER THAN DURATION BASE LAST

T0_000_000.0

SGREATER THAN FLOAT BASE LAST

1.0E+63

SGREATER THAN FLOAT SAFE_LARGE

16%0.FFFFFFFFFFFFEL4E+63

A-2

MACRO PARAMETERS
$GREATER_THAN SHORT FLOAT SAFE LARGE
16#0.FFFFFI4E+63
$HIGH PRIORITY 127

$ILLEGAL EXTERNAL FILE NAMEl
BAD-CHARAC,/TER

$ILLEGAL EXTERNAL FILE NAME2
NO/MUCH-TOO-LONG-NAME-FOR-A-FILE

$INAPPROPRIATE LINE LENGTH

-1
$INAPPR0PRIATE_PAGE_LENC15'I'I-I
$INCLUDE_PRAGMAL "PRAGMA INCLUDE ("A28006D1.TST")"
$INCLUDE_PRAGMA2 "PRAGMA INCLUDE ("B28006F1.TST")"
$INTEGER_FIRST -2147483648
$INTEGER_LAST 2147483647

$INTEGER LAST PLUS 1 2 147 483 648
$INTERFACE LANGUAGE AIE ASSEMBLER
$LESS_THAN DURATION -90_000.0
$LESS_THAN DURATION BASE FIRST

-10_000_000.0
$LINE_TERMINATOR ASCII.LF
$LOW_PRIORITY -127

$MACHINE CODE STATEMENT
NULL;

$MACHINE CODE_TYPE NO_SUCH TYPE

$MANTISSA DOC 31
$MAX_DIGITS 15

$MAX INT 2147483647

$MAX_INT PLUS 1 2147483648

$MIN_INT -2147483648

SNAME NO_SUCH_INTEGER TYPE

A-3

MACRO PARAMETERS

$NAME_LIST
SNAME_SPECIFICATIONL
$NAME SPECIFICATION2
$NAME _SPECIFICATION3
$NEG_BASED INT
SNEW_MEM SIZE
$NEW_STOR_UNIT
$NEW_SYS_NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME
$TASK_SIZE
$TASK_STORAGE SIZE
$TICK

$VARIABLE ADDRESS
$VARIABLE ADDRESS1
SVARIABLE ADDRESS2
$YOUR_PRAGMA

UTS, MVS, CMS, PRIMES0, SPERRY1100, MIL_STD_1750A
=BIGGA.X2120A
=BIGGA.X2120B
=BIGGA.X3119A
164FFFFFFFE$
TEST_WITHDRAWN

8

TEST_WITHDRAWN
TEST_WITHDRAWN
TEST_WITHDRAWN
TEST_WITHDRAWN

96

1024

1.0E-3
FCNDECL . VARIABLE_ADDRESS ;
FCNDECL . VARIABLE_ADDRESS1 ;
FCNDECL.VARIABLE_ADDRESS2;

TEST WITHDRAWN

APPENDIX B
COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

The compilation defaults are as follows:
SRCLIB='I2ADA.ACVC111.ADA’
HLI=I2ADA
VERSION='WORK’
TSOID=I2ADA
SIZE='6000K’
AMSLIST='DUMMY’
ERRDCB=' (RECFM=FB, LRECL=120,BLKSIZE=120)’
LISTDCB=' (RECFM=VB, LRECL=136 ,BLKSIZE=140)"’
SYSOUT=’** (WHICH DEFAULTS TO MSGCLASS)

Por more information please see the compilation options listing that
follows.

B-1

COMPILATION SYSTEM OPTIONS

COMPILER OPTIONS

Note that the compiler can either take a source file or to increase

performance, a "script" file containing a list of files and options.

V4

//* Ada Compile (single phase compiler).

/™

PROC

//* Ada Compile

//*

//*% Compiles a

PROC

SRCLIB=’I2ADA.ACVC111.ADA’,

SRCMEM=, PDS MEMBER CONTAINING ADA SOURCE
HLI=I2ADA, HIGH LEVEL INDEX,
VERSION='WORK’, LEVEL OF THE COMPILER

PTN=, PARTITION NAME

TSOID=I2ADA, HIGH LEVEL QUALIFIER FOR PGQMLIB
MONO=, COMPILER OPTIONS

SIZE='6000K’, REGION SIZE

AMSLIST='DUMMY’, AMS LISTING FILE

ERRDCB=' (RECFM=FB, LRECL=120,BLKSIZE=120)’,
LISTDCB=’(RECFM=VB, LRECL=136,BLKSIZE=140)"’,
SYSOUT=’ */ OUTPUT CLASS (DEFAULTS TO MSGCLASS)

(single phase compiler).
chapter of ACVC tests using a script.

HLI=I2ADA, HIGH LEVEL INDEX,

VERSION='WORK’, LEVEL OF THE COMPILER

CHAPTER='"', CHAPTER OF ACVC SCRIPT TO COMPILE
PTN= PARTITION NAME

SIZE='6000K’, REGION SIZE

AMSLIST='DUMMY’, AMS LISTING FILE

ERRDCB=' (RECFM=FB, LRECL=120,BLKSIZE=120)’,

LISTDCB=' (RECFM=VB, LRECL=136 ,BLKSIZE=140)"’,

SYSOUTs' *’ OUTPUT CLASS (DEFAULTS TO MSGCLASS)

B-2

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not

to this report.

The linker defaults are as follows:
LOAD=ACVC1
TSOID=I2ADA
USERLIB=’I2ADA . NULLPDS.LOAD’
VIO=VIO
HLI=I2ADA
VERSION=’"WORK'
SIZE=’6000K’
AMSLIST='DUMMY’
ERRDCB=’ (RECFM=FB, LRECL=120,BLKSIZE=120)"
LISTDCB=' (RECFM=VB, LRECL=136 ,BLKSIZE=140)"
SYSOUT=’*’ (WHICH DEFAULTS TO MSGCLASS)

For more information please see the linker options listing that follows.

B-3

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

//*

//* Ada Link and Go

/rt

//ACVCLG PROC LUNIT=, MAIN PROGRAM

// PTN=, PARTITION NAME

// MEM, EXECUTABLE NAME

// LOAD=ACVCL, MIDDLE QUALIFIER FOR LOADLIB

// TSOID=I2ADA, HIGH LEVEL QUALIFIER FOR LOADLIB
// USERLIB='I2ADA.NULLPDS.LOAD’, RTS TEST LIBRARY

// VIO=VIO, SCRATCH UNIT

J// HLI=I2ADA, HIGH LEVEL INDEX,

// VERSION='WORK’, LEVEL OF THE COMPILER

// SIZE='6000K’, REGION SIZE

// AMSLIST=’/DUMMY’, AMS LISTING FILE

// ERRDCB=’ (RECFM=FB, LRECL=120,BLKSIZE=120)’,

// LISTDCB=’ (RECFM=VB , LRECL=136 ,BLKSIZE=140)",

/5* SYSOUTw' *’ QUTPUT CLASS (DEFAULTS TO MSGCLASS)
Ve

B-4

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation—dependent pragmas, to certain machine~dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -2147483648 .. 2147483647;
type FLOAT is digits 15
range ~-16#0.fLEEEFELEFEFffHe63 .. 1640.FEEEEELEEFEEEERe63;
type SHORT FLOAT is digits 6 range -16#0.ffffff#e63 .. 16#0.fL££ff#e63;
type DURATION is delta 2.0 ** (-14) range -86400.0 .. 86400.0;

end STANDARD;

Appendix F. IMPLEMENTATION DEPENDENCIES

This section constitutes Appendix F of the Ada LRM for this
implementation. Appendix F from the LRM states:
The Ada language allows for certatn machine-dependencies in a controlled
manner. No machine-dependent syntaz or semantic eztensions or
restrictions are allowed. The only allowed implementation-dependencies
correspond to implementation-dependent pragmas and attributes, certain
machine-dependent conventions as mentioned in Chapter 18, and certain
allowed restrictions on representation clauses.

The reference manual of each Ada implementation must include an appendiz
(called Appendiz F) that describes all implementation-dependent
characteristics. The Appendiz F for a given implementation must list in

particular:

1. The form, allowed places, and effect of every implementation-
dependent pragma.

The name and the type of every implementation-dependent attribute.
The specification of the package SYSTEM (see 18.7).

The list of all restrictions on represcatution clauses (see 15.1).

S o

The conventions wused for any implementation-generated name
denoting implementation-dependent components (see 18.4).

6. The interpretation of expressions ihat appear in address clauses,
including those for interrupts (see 13.5).

Any restriction on unchecked conversions (see 13.10.2).
Any smplemen:.._.. 'spendent characteristics of the tnput-output
packages (see 14).

In addition, the present section will describe the following topics:

9. Any implementation-dependent rules for termination of tasks
dependent on library packages (see 9.4:13).

10. Other implementation dependencies.

11. Compiler capacity limitations.

F-1

F.1 Pragmas
This section describes the form, allowed places, and eflect of every
implementation-dependent pragma.

F.1.1 Pragmas LIST, PAGE, PRIORITY, ELABORATE

Pragmas LIST, PAGE, PRIORITY and ELABORATE are supported exactly
in the form, in the allowed places, and with the effect as described in the LRM.

F.1.2 Pragma SUPPRESS

Form:

Pragma SUPPRESS (identifier)
where the identifier is that of the check that can be omitted. This is as
specified in LRM B(14), except that suppression of checks for a particular
name is not supported. The name clause (ON=>>name), if given, causes
the entire pragma to be ignored.

The suppression of the following run-time checks, which correspond
to situations in which the exceptions CONSTRAINT_ERROR,
STORAGE_ERROR, or PROGRAM_ERROR may be raised, are
supported:

ACCESS_CHECK
DISCRIMINANT_CHECK
INDEX_CHECK
LENGTH_CHECK
RANGE_CHECK
STORAGE_CHECK
ELABORATION_CHECK

The checks which correspond to situations in which the exception
NUMERIC_ERROR may be raised occur in the hardware and therefore
pragma SUPPRESS of DIVISION_CHECK and OVERFLOW_CHECK

are not supported.

Allowed Places: As specified in LRM B(14) : SUPPRESS.

Effect:

Permits the compiler not to emit code in the unit being compiled to
perform various checking operations during program execution. The
supported checks have the effect of suppressing the specified check as
described in the LRM. A pragma SUPPRESS specifying an unsupported
check is ignored.

F.1.8 Pragma SUPPRESS_ALL

Form:

Pragma SUPPRESS_ALL

Allowed Places: As specified in LRM B(14) for pragma SUPPRESS.

Effect: The implementation-defined pragma SUPPRESS_ALL has the same
effect as the specification of a pragma SUPPRESS for each of the
supported checks.

F.1.4 Pragma INLINE
Form: Pragma INLINE (SubprogramNameCommalList)
Allowed Places: As specified in LRM B(4) : INLINE

Effect:

Effect: If the subprogram body is available, and the subprogram contains no
nested subprograms, packages, or tasks, the code is expanded in-line at
every non-recursive call site and is subject to all optimizations.

The stack-frame needed for the elaboration of the inline subprogram will
be allocated as a temporary in the frame of the containing code.

Parameters will be passed properly, by value or by reference, as for non-
inline subprograms. Register-saving and the like will be suppressed.
Parameters may be stored in the local stack-frame or held in registers, as
global code generation allows.

Exception-handlers for the INLINE subprogram will be handled as for
block-statements.

Use: This pragma is used either when it is believed that the time required for
a call to the specified routine will in general be excessive (this for
frequently called subprograms) or when the average expected size of
expanded code is thought to be comparable to that of a call.

F.1.5 Pragma INTERFACE

Form: Pragma INTERFACE (language_name, subprogram_name)
where the language_name must be an enumeration value of the type

SYSTEM.Supported_Language_Name (see Package SYSTEM
below).

Allowed Place: As specified in LRM B(5) : INTERFACE.
Unit must include "with" of package SYSTEM.

Effect: Specifies that a subprogram will be provided outside the Ada program
library and will be callable with a specified calling interface. Neither an
Ada body nor an Ada body_stub may be provided for a subprogram for
which INTERFACE has been specified. In the absence of a Pragma

F-3

LINK_NAME, the first eight characters of the Ada name are assured to
match the entry point name.

Use: Use with a subprogram being provided via another programming
language and for which no body will be given in any Ada program. See

also the LINK_NAME pragma.

F.1.6 Pragma LINK_NAME

Form: Pragma LINK_NAME (subprogram_name, link_name)

Allowed Places: As specified in LRM B(5) for pragma INTERFACE.

Effect: Associates with subprogram subprogram_name the name link_name

Syntax: The value of link_name must be a character string literal. as its entry
point name.

Use: To allow Ada programs, with help from INTERFACE pragma, to
reference non-Ada subprograms. Also allows non-Ada programs to call
specified Ada subprograms.

F.1.7 Pragma CONTROLLED
Form: Pragma CONTROLLED (AccessTypeName)
Alilowed Places: As specified in LRM B(2) : CONTROLLED.

Effect: Means that heap objects are not automatically reclaimed but are
explicitly reclaimable by use of unchecked_deallocation.

F.1.8 Pragma PACK

Form: Pragma PACK (type_simple_name)

Allowed Places: As specified in LRM 13.1(12)

Effect: Components are allowed their minimal number of storage units as

provided for by their own representation and/or packing.

Floating-point components are aligned on storage-unit boundaries, either
4 bytes or 8 bytes, depending on digits.

Use: Pragma PACK is used to reduce storage size. This can allow records
and arrays, in some cases, to be passed by value instead of by reference.

Size reduction usually implies an increased cost of accessing components.
The decrease in storage size may be offset by increase in size of accessing
code and by slowing of accessing operations.

F.1.9 Pragmas SYSTEM_NAME, STORA GE_UNIT,
MEMORY_SIZE, SHARED

These pragmas are not supported and are ignored.

F.1.10 Pragma OP TIMIZE
Pragma OPTIMIZE is ignored; optimization is always enabled.

F.2 Implementation-dependent Attributes
This section describes the name and the type of every implementation-
dependent attribute.

There are no implementation defined attributes. These are the values for
certain language-defined, implementation-dependent attributes:

Type INTEGER.
INTEGER’SIZE == 32 - bits.
INTEGER'FIRST = - (2**31)
INTEGER’LAST = (2**31-1)

Type SHORT_FLOAT.
SHORT.FLOAT'SIZE == 32 — bits.
SHORT_FLOATDIGITS =8
SHORT_FLOAT'MANTISSA = 21
SHORT_FLOAT'EMAX = 84
SHORT_FLOAT’EPSILON = 2.0*%(-20)
SHORT_FLOAT’SMALL = 2.0**(-85)
SHORT_FLOAT'LARGE = 2.0**84
SHORT_FLOAT'MACHINE_ROUNDS == false
SHORT_FLOAT'MACHINE_RADIX = 18
SHORT.FLOAT'MACHINE_MANTISSA =6
SHORT_FLOAT'MACHINE_EMAX == 83
SHORT.FLOAT'MACHINE_EMIN =-64
SHORT_FLOAT'MACHINE_OVERFLOWS == false
SHORT_FLOAT'SAFE_EMAX = 252
SHORT_FLOAT'SAFE_SMALL == 16#0.800000#E-33
SHORT_FLOAT’SAFE_LARGE == 16#0.FFFFF8#EG3

Type FLOAT.
FLOAT'SIZE == 84 - bits,
FLOAT’DIGITS == 15
FLOAT'MANTISSA = 51
FLOATEMAX = 204
FLOAT'EPSILON = 2.0**{-50)
FLOAT’SMALL = 2.0**(-205)
FLOAT'LARGE = (1.0-2**(-51))*2.0**204
FLOAT'MACHINE_ROUNDS == false
FLOAT'MACHINE_RADIX =16
FLOAT'MACHINE_MANTISSA = 14
FLOAT'MACHINE_EMAX = 63
FLOAT'MACHINE_EMIN = -84
FLOAT'MACHINE_OVERFLOWS = false

FLOAT'SAFE_EMAX
FLOAT'SAFE_SMALL
FLOAT'SAFE_LARGE

Type DURATION.
DURATION'DELTA
DURATIONFIRST
DURATION'LAST
DURATION'SMALL

Type PRIORITY.
PRIORITY’FIRST
PRIORITY'LAST

= 252
— 1640.80000000000000#E-63
— 1640 FFFFFFFFFFFFEO#ES3

2.0*%(-14) — seconds
- 86,400

86,400

2.0*%(-14)

-127
127

F.3 Package SYSTEM
package SYSTEM is

-- | OVERVIEW
-

--| This is the predefined library package "System”, which contains
--| the definitions of certain configuration-dependent
--|] characteristics.

type ADDRESS is private; ~« "=", "/=" defined implicitly;
type NAME is (UTS, MVS, CMS, Prime50, Sperry1100, MIL_STD_1750A);

SYSTEM_NAME : constant NAME := UTS;

STORAGE_UNIT : constant = 8;
MEMORY_SIZE : constant = 2%+3];
-- In storage units

-- System-Dependent Named Numbers:

MIN_INT : constant := INTEGER'POS(INTEGER'FIRST);

MAX_INT : constant := INTEGER'POS(INTEGER'LAST);

MAX_DIGITS : constant = 15;

MAX_MANTISSA : constant = 31;

FINE_DELTA : constant :== 2.0°**(-31);

TICK : constant = 1. 0E-3; -. CLOCK function has msec resolution

-« Other System-Dependent Declarations

subtype PRIORITY is INTEGER range -127..127;

--

..

NULL_ADDRESS : constant ADDRESS;
-- Same bit pattern as "null” access valye
-« This is the value of 'ADDRESS for named numbers.
-- The 'ADDRESS of any object which occup.es storage
- is NOT equal to this value.

ADDRESS_SIZE : constant = 32;
-- Number of bits in ADDRESS objects, = ADDRESS'SIZE, but static.

ADDRESS_SEGMENT_SIZE : constant == 2¢%*24;
-~ Number of storage units in address segment

type ADDRESS_OFFSET is new INTEGER; -- Used for address arithmetic

type ADDRESS_SEGMENT is new [NTEGER; -- Always zero on targets with
-- unsegmented address space.

subtype NORMALIZED_ADDRESS_OFFSET is
ADDRESS _OFFSET range 0 . ADDRESS_SEGMENT_SIZE - 1;

F-8

-- Range of address offsets returned by OFFSET_OF

function "+"(addr : ADDRESS;, offset : ADDRESS_OFFSET) return ADDRESS;
function "+"(offset : ADDRESS_OFFSET; addr : ADDRESS) return ADDRESS;

EFFECTS

Add an offset to am address. May cross segment boundaries on
targets where objects may span segments. On other targets,

CONSTRAINT_ERROR will be raised when
OFFSET_OF(addr) + offset not in NORMALIZED_ADDRESS_OFFSET.

function “-"(left, right : ADDRESS) return ADDRESS_OFFSET;

EFFECTS

|
|
| Subtract two addresses, returning an offset. This
--| offset may exceed the segment size on targets where
| objects may span segments. On other targets,
| CONSTRAINT_ERROR will be raised if SEGMENT.OF(left) /=
!

SEGMENT_OF (right) .

function "-"(addr : ADDRESS; offset : ADDRESS_OFFSET) return
ADDRESS ;

--| EFFECTS
-

-« | Subtract an offset from an address, returning an address.
--| May cross segment boundaries on targets where

--| objects may span segments.

--| On other targets, CONSTRAINT_ERROR will be raised when

--] OFFSET.OF(addr) - offset not in NORMALIZED_ADDRESS_OFFSET.

function OFFSET_OF (addr : ADDRESS) return NORMALIZED_ADDRESS_OFFSET,;

-- | EFFECTS

-
--| Returns offset part of ADDRESS

--| Always in range 0. .seg_size - 1

function SEGMENT_OF (addr : ADDRESS) return ADDRESS_SEGMENT;

--| Returns segment part of address (zero on targets with
--| unsegmented address space).

function MAKE_ADDRESS (offset : ADDRESS_OFFSET;
segment . ADDRESS_SEGMENT := 0) return ADDRESS;

-- | EFFECTS
-

--] Builds an address given an offset and a segment.
--} Offsets may be > segment size on targets where objects may
--| span segments,in which case it is equivalent to

F-9

--|] "MAKE_ADDRESS (0, segment) + offset”.
-] On other targets, CONSTRAINT_ERROR will be raised when

~-| offset not in NORMALIZED_ADDRESS_OFFSET.

type Supported_Language_Name is (-- Target dependent
-~ The following are "foreign" languages:
ASSEMBLER,
FORTRAN_MAIN,
FORTRAN,
COBOL_MAIN,
COBOL,
JOVIAL_MAIN,
PL1_MAIN,

AIE_ASSEMBLER, -- NOT a "foreign" language - uses AIE RTS
UNSPECIFIED_LANGUAGE_MAIN,
UNSPECIF lED_LANGUAGE

),

-~ Most/least accurate built-in integer and float types

subtype LONGEST._INTEGER is STANDARD.INTEGER;
subtype SHORTEST_INTEGER is STANDARD. INTEGER;

subtype LONGEST.FLOAT is STANDARD.FLOAT,;
subtype SHORTEST_FLOAT is STANDARD.SHORT_FLOAT;

private
type ADDRESS is access INTEGER;
-« Note: The designated type here (INTEGER) is irrelevant.

ADDRESS is made an access type simply to guarantee it has
the same size as access values, which are single addresses.

Allocators of type ADDRESS are NOT meaningful.
NULL_ADDRESS : constant ADDRESS := null;

end SYSTEM ;

F-10

F.4 Representation Clauses
This section describes the list of all restrictions on representation clauses.

"NOTE: An implementation may limit its acceptance of representation clauses
to those that can be handled ssimply by the underlying hardware.... If a program
contains a representation clause that is not accepted [by the compiler], then the

program is illegal." (LRM 13.1(10)).
There are no restrictions except as follows:

a. Length clauses:

Size specification must be a multiple of 8 bits. Note that this represents
only an upper bound. The compiler may allocate fewer bits for components
of packed arrays or records, or when fewer bits are specified by a record
representation clause. Size specifications are most useful for record types, in
which case the specified size is always used.

Collection Size specifications--not supported. All collections draw from a
single heap.

Task storage size specifications--not supported. All task stacks
automatically extended as needed.

Specification of SMALL: Specified value must be a power of 2, less than or
equal to the DELTA for the type.

b. Enumeration Representation Clauses:
Fully supported for non-derived types. Not supported for derived types.

Note that enumeration types with a representation clause require more code
for looping, 'SUCC, 'PRED, 'POS, 'VAL, 'IMAGE and 'VALUE even if the

specified representation is contiguous.

¢. Record-representation-clause:
Alignment clause is not supported.

Only integer, fixed, and enumeration types may have a non-zero first bit
number. All other types must start at bit zero of the specified storage unit,

and end on a storage unit boundary.

If the first bit is non-zero, the last bit number must be less than or equal to
31.

Record components, including those generated implicitly by the compiler,
whose locations are not given by the representation-clause, are layed out by
the compiler following all the components whose locations are given by the

F-11

representation-clause. Such components of the invariant part of the record
are allocated to follow the user-specified components of the invariant part,
and such components in any given variant part are allocated to follow the

user-specified components of that variant part.

- Fa12

F.5 Implementation-dependent Components

This section describes the conventions used for any implementation-generated
name denoting implementation-dependent components.

There are no implementation-generated names denoting implementation-
dependent (record) components, although there are, indeed, such components.
Hence, there is no convention (or possibility) of naming them and, therefore, no
way to offer a representation clause for a record containing such components.

NOTE: Records containing dynamic-sized components will contain (generally)
unnamed offset components which will "point” to the dynamic-sized components
stored later in the record. There is no way to specify the representation of such

components.

F-13

F.8 Address Clauses

This section describes the interpretation of expressions that appear in address
clauses, including those for interrupts.

For an object--fully suppcrted; address expression may be any run-time
expression of type System.Address. The object address clause is interpreted to
mean that the object is "already” at that address. No additional space is allocated

for the object.

Typically this means that the address specified is an expression involving the
address of some pre-existing object, for instance, a buffer, and the address clause
is being used to gain access to some part of this object, perhaps a message
embedded withia the buffer.

For a subprogram—supported only subprograms with a pragma Interface. The
subprogram address clause is interpreted to mean that the subprogram is
"already” at that address. This provides a means to call a subprogram given only
its address, passed as a parameter or stored in a data structure.

For a package, task, or task entry—not supported.

F-14

F.7 Unchecked Conversions
This section describes any restrictions on unchecked conversions.

The source and target subtypes must occupy the same number of bits. Note
that access to unconstrained arrays actually point at a "dope vector” followed by
the array, so unchecked conversion of an address to or from such an access value
will generally procduce unpredictable resuits. Given the address of an array, it is
more meaningful to convert it to an access to a constrained array subtype with

the appropriate bounds.

_F-15

F.8 Input-Output

This section describes implementation-dependent characteristics of the input-

output packages.

(a)
(b)
(<)
(d)

(f)
()
(h)

(i)

()

(k)
(1)

Declaration of type Direct_JO.Count? [14.2.5]
0..Integer’last;

Effect of input/output for access types?
Not meaningful if read by different program invocations

Disposition of unclosed IN_FILE files at program termination? [14.1(7)]
Files are closed.

Disposition of unclosed OUT_FILE files at program termination? [14.1(7)]
Files are closed.

Disposition of unclosed INOUT_FILE files at program termination? [14.1(7)]
Files are closed.

Form of, and restrictions on, file names? [14.1(1)]
MVS filenames.

Possible uses of FORM parameter in I/O subprograms? [14.1{1)]
See Appendix A.

Where are I/O exceptions raised beyond what is described in Chapter 14?

[14.1(11)]
None raised.

Are alternate specifications (such as abbreviations) allowed for file names? If
so, what is the form of these alternatives? [14.2.1(21)]
No.

When is DATA_ERROR not raised for sequential or direct input of an
inappropriate ELEMENT_TYPE? [14.2.2(4), 14.2.4(4)]
Unresolved issue.

What are the standard input and standard output files? [14.3(5)]
MVS standard input (SYSIN) and output (SYSPRINT).

What are the forms of line terminators and page terminators? [14.3(7)]
Line terminator is ASCILLF (line feed).
Page terminator is ASCILFF (form feed).

(m) Value of Text_I0.Count'last? [14.3(8)]

(n)
(0)

integer’last.

Value of Text_I10.Field’'last? [14.3.7(2)]
integer'last.

Effect of instantiating ENUMERATION_IO for an integer type? [14.3.9(15)]
The instantiated Put will work properly, but the instantiated Get

will raise Data_Error.

... F-16

(p) Restrictions on types that can be instantiated for input/output?
No direct I/O on unconstrained types.

(q) Specification of package Low_Level_10? [14.6]
Low_Level_IO is not provided.

F-17

F.9 Tasking

This section describes implementation-dependent characteristics of the tasking
run-time packages.
The scheduler of the MVS/Ada run-time tasking system runs tasks of equal

priority in the order that they became eligible to run and allows them to run until
blocked or until interrupted by the eligibility of a task of higher priority.

A task whose priority is higher than the task currently running may be made
eligible to run by an interrupt or timer runout. Such an event will cause the
currently running task to be immediately blocked so that the higher priority task

may run.

Even though a main program completes and terminates (its dependent tasks, if
any, having terminated), the execution of the program as a whole continues until
each task dependent upon a library unit package has either terminated or reached
an open terminate alternative. See LRM 9.4(13).

F-18

F.10 Other Matters
This section describes other implementation-dependent characteristics of the
system.

a. Package Machine_Code
This package is not provided.

b. Order of compilation of generic bodies and subunits (LRM 10.3:9):
Body and subunits of generic must be in the same compilation as
the specification if instantiations precede them (see AI-00257/02).

F-19

F.11 Compiler Limitations

(a) Maximum length of variable of type STRING?
2**31-1 characters (Address space size).

(b) Maximum length of a record?
2+*31-1 bytes (Address space size).

(¢) Maximum length of an array?
2**31-1 bytes. (Address space size).

(d) Maximum size of Ada Program Library?
Limited by available disk storage.

(e) Maximum length of source line?
255 characters.

(f) Maximum number of “use" scopes?
Limit is 50, set arbitrarily by SEMANTICS as maximum number of

distinct packages actively "used.”

() Maximum number of co-existing tasks?
Limited by available memory space.

(h) Maximum number of tasks initially allocated?
One if any tasking constructs exist; zero if no tasking constructs

exist.

(i) Maximum length of identifier?
255 characters.

(}) Maximum number of nested loops?
24 nested loops.

(k) Maximum number of identifiers in symbol table?
Limited only by address space.

(I) Package nesting limit?
Limited by parse-stack nesting limit, 200.

(m) Subprogram nesting limit?
Limited by parse-stack nesting limit, 200.

(n) Logical expression nesting limit?
Limited by parse-stack nesting limit, 200.

(o) Minimum storage requirement for compiler’s operation?
5 megabytes.

(p) Can compiler provide listing files in variable block format?
Yes.

(q) Can compiler provide object in fixed block 80 format?
Yes.

F-20

(r) What storage is required, beyond the storage-units for an object, for
allocators in heaps; in collections?
Approximately 8 bytes per element plus sixteen bytes for collection
as a whole.

F-21

