
a REPORT DOCUMENTATION PAGEom Aoo

P mt per rspoq, kvludig Ut Uir for rmi~um1 nim cto, q sed i autn dfla wcss

-i% Jefimn D"e Hhway, Suie 1204, Arkon, VA an-4302. mnd to ft. Office of ftiomain and rAgAry Miala. Offce o1

1111II1111hI liilii ~f~ ORT DATE 3.REPORT TYPE AND DATES COVERED
I Final: 01 Jun 1991 to 01 Jun 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Validation Summary Report: Intermetrics, Inc., Intermetrics MVS Ada, Version 7.0,
Amdahl 5890/180E, MVS/XA Release 2.2 (Host & Target) 910622W1.11170

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

ELECTE
MAR 19 1992

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 0 DISTRIBUTION CODE

Approved for public release; distribution unlimited. D

13. ABSTRACT (Maximum 200 words)

Intermetrics, Inc., Intermetrics MVS Ada, Version 7.0, Wright-Patterson AFB, OH,Amdahl 5890/180E, MVS/XA Release
2.2 (Host & Target), ACVC 1.11.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE COOE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED I UNCLASSIFIED
NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prescribed by ANSI Std. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 22 June 1991.

Compiler Name and Version: Intermetrics MVS Ada, Version 7.0

Host Computer System: Amdahl 5890/180E, MVS/XA Release 2.2

Target Computer System: Amdahl 5890/180E, MVS/XA Release 2.2

Customer Agreement Number: 91-05-20-INT

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
910622W1.11170 is awarded to Intermetrics, Inc. This certificate expires
on 1 March 1993.

This report has been reviewed and is approved.

Validtion Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada T La~n organization

Dir ctor, 9oputer and Software Engineering Division
Institute r Defense Analyses
Alexandria VA 22311

Aa Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

92 I V / 92-06993• 11111111111m1h11I

AVF Control Number: AVF-VSR-478.0691
4 February 1992

91-05-20-INT

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 910622W1.11170
Intermetrics, Inc.

Intermetrics KVS Ada, Version 7.0 ..
Amdahl 5890/180E -> Amdahl 5890/180E

Prepared By:
Ada validation Facility Accesion For

ASD/SCEL
Wright-Patterson AFB OH 45433-6503 NTIS CRA&I

DT!C TAB
U nail, o,,Qd i
Justif;cation

By

Dist' ibution I

Avaiijbi!;1y Cr,-de s

Avail a ,- I or
Dist

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 22 June 1991.

Compiler Name and Version: Intermetrics MVS Ada, Version 7.0

Host Computer System: Amdahl 5890/180E, MVS/XA Release 2.2

Target Computer System: Amdahl 5890/180E, NVS/XA Release 2.2

Customer Agreement Number: 91-05-20-INT

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
910622W1.11170 is awarded to Intermetrics, Inc. This certificate expires
on 1 March 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Dir ktor, , Wter and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Intermetrics, Inc., Cambridge, MA

Ada Validation Facility: ASD/SCEL Wright-Patterson AFB, OH 45433-6503

ACVC Version: 1.11

Ada Implementation

Compiler Name and Version: Intermetrics XVS Ada Compiler, Version 7.0
Host Computer System: Amdahl 5890/180E, KVS/XA Release 2.2
Target Computer System: same

Customer' s Declaration

I, the undersigned, representing Intermetrics, Inc., declare that
Intermetrics, Inc. has no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A in the implementation listed
in this declaration. I declare that Intermetrics, Inc. is the owner
of record of the above implementation and the certificates shall be
awarded in Intermetrics' corporate name.

A,:1 Date: ____

Dennis Strublie, Deputy General Manager,
Development Systems Group, Intermetrics, Inc.

TABLE OF COTETS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATICN SUMMARY REPORT 1-1
1.2 REF CES. 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITIO OF TERMS.. 1-3

CHAPTER 2 IMPLETATION DEPENDENCIES

2.1 WITDRA.N TESTS2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIO4NS2-5

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Sunuary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide (UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRDUCTION

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programing Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

(UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INRODCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and (UG891).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that us:- common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTICN

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro901.

Validation The process of checking the conformity of an Ada compiler to
the Ada programing language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect .?nd not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada progranming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDECIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 3 May 1991.

E28005C B28006C C34006D C35508I C35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A B49008B A74006A C74308A B83022B B83022H
B83025B B83025D C83026A B83026B C83041A B85001L
C86001F C94021A C97116A C98003B BA2011A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
BDlBO2B BD1BO6A ADlBO8A BD2AO2A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A41E CD2A87A CD2Bl5C BD3006A
BD4008A CD4022A CD4022D CD4024B CD4024C CD4024D
CD4031A CD4051D CDS1A CD7004C ED7005D CD7005E
AD7006A CD7006E AD7201A AD7201E CD7204B AD7206A
BD8002A BD8004C CD9005A CD9005B CDA201E CE21071
CE2117A CE2117B CE2l9B CE2205B CE2405A CE3111C
CE3116A CE3118A CE3411B CE3412B CE3607B CE3607C
CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type SHORT INTEGER;
for this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONGINTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or
SHORT INTEGER; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type
LCM _FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45423A..B (2 tests), C45523A, and C45622A check that the proper
exception is raised if MACHINE OVERFLOWS is TRUE and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINE ' ERFLOS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAXMANTISSA is less than 47.

C46013B, C46031B, C46033B, and C46034B contain length clauses that
specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

2-2

IMPLEMENTATION DEPENDENCIES

D55A03E..H (4 tests) uses 31 levels of loop nesting; this level of
loop nesting exceeds the capacity of the compiler.

D56001B uses 65 levels of block nesting; this level of block nesting
exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before the separate compilation of its body (and any of its subunits);
this implementation requires that the body and subunits of generic be
in the same compilation as the specification if instantiations precede
them. (See section 2.3.)

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support a
floating-point representation of other than 32 or 64 bits.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINE CODE.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT IO
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported -for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL-IO
CE2102F CREATE INCUT FILE DIRECT 10
CE2102I CREATE IN FILE DIRECT-IO
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN -FILE SEQUENTIAI-IO
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE21020 RESET OT-FILE SEQUENTIAL-IO
CE2102R OPEN INOUT FILE DIRECT 10

2-3

INPLMMMTATION DEPENDENCIES

CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN--FILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT-FILE DIRECT-IO
CE3102E CREATE IN FILE TEXT IO
CE3102F RESET Any Mode TEX-I0
CE3102G DELETE TEXT 10
CE3102I CEATE OUT FILE TEXT-IO
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEX-IO

CE2107C..D (2 tests) apply function NAME to temporary sequential files
in an attempt to associate multiple internal files with the same
external file; for this implementation, temporary files have no name
and so USEERROR is raised by NAME.

CE2107E checks operations on direct and sequential temporary files
when files of both kinds are associated with the same external file;
this implementation does not support simultaneous association of an
external file to files of different file types. (See section 2.3.)

CE2107L checks operations on direct and sequential files when files of
both kinds are associated with the same external file; USE ERROR is
raised when this association is attempted.

CE2108B and CE3112B use the names of temporary sequential and text
files that were created in other tests in order to check that the
temporary files aze not accessible after the completion of those
tests; for this implementation, temporary sequential and text files
have no name.

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded;- this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3111B and CE3115A associate multiple internal text files with the
same external file and attempt to read from one file what was written
to the other, which is assumed tT !be immediately available; this
implementation buffers output. (See section 2.3.)

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this Tmplementation, the value of
COUNT'LAST is greater than 150000, making the checking of this

2-4

IMPLEMETATION DEPENDENCIES

objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for seven tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

BA1101C BC3205D

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the separate compilation of that unit's body; as allowed by
AI-257, this implementation requires that the bodies of a generic unit be
in the same compilation if instantiations of that unit precede the bodies.
The instantiations were rejected at compile time.

CE2107E was graded inapplicable based on the Report.Result output, without
critical consideration to the intermediate, Report.Not Applicable output
which was generated by line 56 ("NAME ERROR RAISED; SEQUENTIAL CREATE WITH
OUT FILE MODE"). After validation testing was completed, AVO and AVF
analysis led to the conclusion that the particular Report.NotApplicable
output was an unexpected consequence, possibly due to the existence of a
file named "X2107E" in the working directory. Upon subsequent
consultation the customer confirmed that the expected
Report.NotApplicable output, from line 76 ("UNABLE TO ASSOCIATE A
SEQUENTIAL FILE AND A DIRECT FILE TO THE SAME EXTERNAL FILE"), is
generated by processing the test.

CE3111B and CE3115A were graded inapplicable by Evaluation Modification as
directed by the AVO. The tests assume that output from one internal file
is unbuffered and may be immediately read by another file that shares the
same external file. This implementation raises END ERROR on the attempts
to read at lines 87 and 101, respectively.

2-5

CHAPT 3

PROCESSING INFORKATICN

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Mr. Mike Ryer
Intermetrics, Inc.
733 Concord Avenue
Cambridge, MA 02138-1002

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system - if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

3-1

PROCESSING INEanaM

a) Total Number of Applicable Tests 3749
b) Total Number of Withdrawn Tests 94
c) Processed Inapplicable Tests 125
d) Non-Processed I/ Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 326 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTICN

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The default options were invoked implicitly for
validation testing during this test.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG891. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LEN-also listed here. These values are expressed
here as Ada string-aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 255 - Value of V

$BIGIDI (1..V-1 -> 'A', V -> 'I')

$BIGID2 (i..V-1 -> 'A', V -> '2')

$BIG ID3 (1..V/2-> 'A') & '3' &
(l..V-1-V/2 -> 'A')

SBIG ID4 (1..V/2 -> 'A') & '4' &
(1..V-l-V/2-> 'A')

$BIG INT_LIT (l..V-3-> '0') & "298"

$BIG REALLIT (l..V-5-> '0') & "690.0"

$BIG STR!NG1 '"' & (1../2 -> 'A') & '"'

$BIGSTRING2 "' & (1..V-l-V/2 -> 'A') & 'I' &I'l

SBLANKS (l..V-20 -> ' ')

$MAXLEN INT BASED LITERAL
"2:" & (1..V-5-> '0') & "11:"

$MAX LEN REALBASEDLITERAL
"16:" & (1..V-7-> '0') & "F.E:"

A-1

NAM PARAMETERS

$MAXSTRINGLITERAL '"' & (i..V-2 -> 'A') & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2147_483_647

$DEFAULTME1_SIZE 2**31

$DEFAULT STORUNIT 8

SDEFAULT SYSNAME UTS

$DELTADOC 2.0**(-31)

SENTRYADDRESS SYSTEM. MAKE_ADDRESS (16#40#)

$ENTRYADDRESS1 SYSTEM.MAKE_ADDRESS(16#80#)

SENTRY ADDRESS2 SYSTEM.MAKEADDRESS(16#100#)

$FIELDLAST 2_147_483_647

$ FILE_TERMINATOR TESTWITHDRAWN

$ FIXEDNAME NOSUCHFIXED TYPE

$FLOATNAME NOSUCHFLOAT TYPE

$FORM_STRING

$FORMSTRING2 CANNOT RESTRI CT FILECAPACITY

SGREATER THANDURATION
90_000.0

$GREATER THAN DURATION BASE LAST
TO OO_ 000.0

$GREATERTHAN FLOAT BASE LAST
- 1.'UE+63

SGREATER_THAN FLOAT SAFE LARGE
16'10.FFFFFFFFFFFFE1#E+63

A-2

MACRO PARAMETERS

SGREATER THAN SHORT FLOAT SAFE LARGE
16#*. FFFFF9#E+63

SHIGH PRIORITY 127

$ILLEGAL EXTERNAL FILE NAMEI
BAD-CHARAC/TER

$ILLEGAL EXTERNAL FILE NAIE2
- NO/MUCH-TOO-LNG-NAME-FOR-A-FILE

$INAPPROPRIATE LINE LENGTH
-1

$INAPPROPRIATE PAGE LENGTH
-1

$INCLUDE PRAGMA1 "PRAGMA INCLUDE ("A28006D1 . TST")"

$INCLUDEPRAGMA2 "PRAGA INCLUDE ("B28006FI.TST")"

$INTEGER FIRST -2147483648

$INTEGER LAST 2147483647

$INTEGER LAST PLUS_1 2_147 483 648

$INTERFACELANGUAGE AIE ASSEMBLER

SLESSTHANDURATION -90000.0

SLESS THAN _DURATION BASE FIRST

-0 _000_000.0

$LINETERMINATOR ASCII.LF

$LOW PRIORITY -127

$MACHINE CODE STATEMENT
NULL;

$MACHINE CODE TYPE NO SUCH TYPE

$MANTISSA DOC 31

SMAXDIGITS 15

SMAXINT 2147483647

SMAXINT PLUS 1 2147483648

SMININT -2147483648

SNAME NO SUCH INTEGER TYPE

A-3

rJMA. PARAMETERS

$NAMIELIST UTS,MVS, CMS,PRIM5 , SPERRY1100 ,MILSTV_1750A

SNAI'IESPECIFICATICN1 -BIGGA.X2120A

$NAMESPECIFICATIC242 -BIGGA.X2120B

$NAMESPECIFICATIWN3 -BIGGA.X3119A

$NEGBASED INT 16#FFFFFFFE#

$NEW 'E'ISIZE TESTWITHDRAWN

$NEWSTORUNIT 8

$NEWSYSNAME TEST WITHDRAWN

SPAGETERMINATOR TEST WITHDRAWN

$RECORDDEFINITION TESTWITHDRAWN

$RECORDNAME TESTWITHDRAWN

STASKSIZE 96

$TASKSTORAGESIZE 1024

STICK 1.OE-3

$VARIABLEADDRESS FCNDECL.VARIABLEADDRESS;

$VARI.ABLEADDEESS1 FCNDECL .VARIABLEADDRESS1;

$VARIABLE ADDRESS2 FCN1DECL .VARIABLEADDRESS2;

$YOU3RPRAG4A, TEST WITHDRAWN

A-4

APPENDIX B

COMPILATICK SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

The compilation defaults are as follows:
SRCLIB-' I2ADA.ACVClll .ADA'
HLI-I2ADA
VERSICN- 'hRK'
TSOID-I2ADA
SIZE-' 6000K'
AMSLIST- ' DUMMY'
ERRDCB-' (RECFM-FB, LRECL-120,BLKSIZE-120)'
LISTDCB-' (RECFM-VB, LRECL-136,BLKSIZE-140)'
SYSOUT-'*' (WHICH DEFAULTS TO MSGCLASS)

For more information please see the compilation options listing that
follows.

B-I

C01PILATICN SYSTEM OPTIONS

COMPILER OPTIONS

Note that the compiler can either take a source file or to increase
performance, a "script" file containing a list of files and options.

/1*
/* da Compile (single phase compiler)./1*
//ADAlC PROC SRCLIB-'I2ADA.ACVC111.ADA',
// SRCMEM-, PDS MEMBER CONTAINING ADA SOURCE
// HLI-I2ADA, HIGH LEVEL INDEX,
// VERSION-'WORK', LEVEL OF THE COMPILER
// PTN-, PARTITION NAME
// TSOID-I2ADA, HIGH LEVEL QUALIFIER FOR PGMLIB

/ MCNO-, COMPILER OPTIONS
// SIZE-'6000K', REGION SIZE
// AMSLIST- 'DUMMY', AMS LISTING FILE
// ERRDCB-' (RECFM-FB, LRECL-120,BLKSIZE-120)',
// LISTDCB-' (RECFI4-VB,LRECL-136,BLKSIZE-140)',

SYSOUT-' *' OUTPUT CLASS (DEFAULTS TO MSGCLASS)
//*

/A* da Compile (single phase compiler).//*
//* Compiles a chapter of ACVC tests using a script.

//ADAIC PROC HLI-I2ADA, HIGH LEVEL INDEX,
// VERSION-'W)RK', LEVEL OF THE COMPILER
// CHAPTER-', CHAPTER OF ACVC SCRIPT TO COMPILE
// PN-, PARTITION NAME
// SIZE-'6000K', REGION SIZE
// AMSLIST- 'DUMMY', AMS LISTING FILE
// ERRDCB-' (RECFM-FB,LRECL-120,BLKSIZE-120)',
// LISTDCB-' (RECFM-VB, LRECLl136,BLKSIZE-140)',
// SYSOUT-'*' OUTPUT CLASS (DEFAULTS TO MSGCLASS)
/B*

B-2

CMPILATION SYSTEM OPTIOS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

The linker defaults are as follows:
LOAD-ACVC1
TSOID-I2ADA
USERLIB-' I2ADA. NULLPDS. LOAD'
VIO-VIO
HLI-I2ADA
VERSICX1W-'RK'
SIZE-'6000K'
AMSLI ST-' DUM IY'
ERRDCB-' (RECFM-FB, LRECL-120, BLKSIZE-120)'
LISTDCB-' (RECFMuVB, LRECL-I 36,BLKSIZE-140)'
SYSrT-' *' (WHICH DEFAULTS TO MSGCLASS)

For more information please see the linker options listing that follows.

B-3

COM~PItATI(14 SYSTEM OPTIONS

LINKER OPTIONS

/*Ada Link and Go

//ACVCLG PROC LUNIT-, MAIN P!ROGRAM
IIPTN-, PARTITION NAME
II MEM', CUTABLE NAM
// LOaa-ACVC1, MIDDLE WJALIFIER FOR LOADLIB
1/TSOID-12ADA, HIGH LEVEL QUTALIFIER FOR LOADLIB
// USERLIB..' 2ADA.NULLPDS .LOAD', RTS TEST LIBRARY
IIVIOUVIO, SCRATCH UNIT
/1HLI-I2ADA, HIGH LEVEL INDEX,
//VERSIN-'WORK' LEVEL OF THE COMPILER
//SIZE-'6000K', REGION SIZE

AMSLIST- 'DUMMY', AMlS LISTING FILE
1/ ERRDCB-' (RECFM-FB,LRECL-120,BLKSIZE-120)',
1/ LISTDCB-' (RECFI'-VB,LRECL-136,BLKSIZE-140)',
1/SYSo~JT-' OU ~ TPUT CLASS (DEFAULTS TO MSGCLASS)

B-4

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 15
range -16t0. ffffffffffffff#e63 .. 16#0. ffffffffffffff#e63;

type SHORTFLOAT is digits 6 range -16#0.ffffff#e63 .. 16#0.ffffff#e63;

type DURATION is delta 2.0 ** (-14) range -86400.0 .. 86400.0;

end STANDARD;

C-i

Appendix F. IMPLEMENTATION DEPENDENCIES

This section constitutes Appendix F of the Ada LRM for this
implementation. Appendix F from the LRM states:

The Ada language allows for certain machine-dependencies in a controlled
manner. No machine-dependent syntax or semantic extensions or
restrictions are allowed. The only allowed implementation-dependencies
correspond to implementation-dependent pragmas and attributes, certain
machine-dependent conventions as mentioned in Chapter 19, and certain
allowed restrictions on representation clauses.

The reference manual of each Ada implementation must include an appendix
(called Appendix F) that describes all implementation-dependent
characteristics. The Appendix F for a given implementation must list in
particular:

1. The form, allowed places, and effect of every implementation-
dependent pragma.

2. The name and the type of every implementation-dependent attribute.

3. The specification of the package SYSTEM (see 13. 7).

4. The list of all restrictions on represtatation clauses (see 15.1).

5. The conventions used for any implementation-generated name
denoting implementation-dependent components (see 13.4).

6. The interpretation of expressions Jhat appear in address clauses,
including those for interrupts (see 13.5).

7. Any restriction on unchecked conversions (see 18.10.2).

8. Any implemen.-L.. -,pendent characteristics of the input-output
packages (see 14).

In addition, the present section will describe the following topics:

9. Any implementation-dependent rules for termination of tasks
dependent on library packages (see 9.4:13).

10. Other implementation dependencies.

11. Compiler capacity limitations.

V-1

F.1 Pragmas

This section describes the form, allowed places, and effect of every
implementation-dependent pragma.

F.1.1 Pragmas LIST, PAGE, PRIORITY, ELABORATE

Pragmas LIST, PAGE, PRIORITY and ELABORATE are supported exactly
in the form, in the allowed places, and with the effect as described in the LRM.

F.1.2 Pragma SUPPRESS

Form: Pragma SUPPRESS (identifier)
where the identifier is that of the check that can be omitted. This is as
specified in LRM B(14), except that suppression of checks for a particular
name is not supported. The name clause (ON=>name), if given, causes
the entire pragma to be ignored.

The suppression of the following run-time checks, which correspond
to situations in which the exceptions CONSTRAINT-ERROR,
STORAGE.-ERROR, or PROGRAM.ERROR may be raised, are
supported:

ACCESS-CHECK
DISCRIMINANTCHECK
INDEX-CHECK
LENGTH-CHECK
RANGECHECK
STORAGECHECK
ELABORATION-CHECK

The checks which correspond to situations in which the exception
NUMERIC-ERROR may be raised occur in the hardware and therefore
pragma SUPPRESS of DIVISIONCHECK and OVERFLOWCHECK
are not supported.

Allowed Places: As specified in LRM B(14) : SUPPRESS.

Effect: Permits the compiler not to emit code in the unit being compiled to
perform various checking operations during program execution. The
supported checks have the effect of suppressing the specified check as
described in the LRM. A pragma SUPPRESS specifying an unsupported
check is ignored.

F.1.3 Pragma SUPPRESS-ALL

Form: Pragma SUPPRESS.ALL

F-2

Allowed Places: As specified in LRM B(14) for pragma SUPPRESS.

Effect: The implementation-defined pragma SUPPRESSALL has the same
effect as the specification of a pragma SUPPRESS for each of the
supported checks.

F.1-4 Pragma INLINE

Form: Pragma INLINE (SubprogramNameCommaList)

Allowed Places: As specified in LRM B(4) : INLINE

Effect:

Effect: If the subprogram body is available, and the subprogram contains no
nested subprograms, packages, or tasks, the code is expanded in-line at
every non-recursive call site and is subject to all optimizations.

The stack-frame needed for the elaboration of the inline subprogram will
be allocated as a temporary in the frame of the containing code.

Parameters will be passed properly, by value or by reference, as for non-
inline subprograms. Register-saving and the like will be suppressed.
Parameters may be stored in the local stack-frame or held in registers, as
global code generation allows.

Exception-handlers for the INLINE subprogram will be handled as for

block-statements.

Use: This pragma is used either when it is believed that the time required for
a call to the specified routine will in general be excessive (this for
frequently called subprograms) or when the average expected size of
expanded code is thought to be comparable to that of a call.

F.1. 5 Pragma INTERFACE

Form: Pragma INTERFACE (language-name, subprogram-name)
where the language-name must be an enumeration value of the type
SYSTEM.SupportedLanguageName (see Package SYSTEM
below).

Allowed Place: As specified in LRM B(5): INTERFACE.
Unit must include "with" of package SYSTEM.

Effect: Specifies that a subprogram will be provided outside the Ada program
library and will be callable with a specified calling interface. Neither an
Ada body nor an Ada body..stub may be provided for a subprogram for
which INTERFACE has been specified. In the absence of a Pragma

•- ,6.............= '°

LINK...AME, the first eight characters of the Ada name are assured to
match the entry point name.

Use: Use with a subprogram being provided via another programming
language and for which no body will be given in any Ada program. See
also the LINKNAME pragma.

F.1.6 Pragma LINKNAME

Form: Pragma LINK-NAME (subprogramname, link-name)

Allowed Places: As specified in LRM B(5) for pragma INTERFACE.

Effect: Associates with subprogram subprogram name the name link-name

Syntax: The value of link-name must be a character string literal, as its entry
point name.

Use: To allow Ada programs, with help from INTERFACE pragma, to
reference non-Ada subprograms. Also allows non-Ada programs to call
specified Ada subprograms.

F.1.7 Pragma CONTROLLED

Form: Pragma CONTROLLED (AccessTypeName)

Allowed Places: As specified in LRM B(2) : CONTROLLED.

Effect: Means that heap objects are not automatically reclaimed but are
explicitly reclaimable by use of unchecked-deallocation.

F.1.8 Pragma PACK

Form: Pragma PACK (type-simple.name)

Allowed Places: As specified in LRM 13.1(12)

Effect: Components are allowed their minimal number of storage units as
provided for by their own representation and/or packing.

Floating-point components are aligned on storage-unit boundaries, either
4 bytes or 8 bytes, depending on digits.

Use: Pragma PACK is used to reduce storage size. This can allow records
and arrays, in some cases, to be passed by value instead of by reference.

Size reduction usually implies an increased cost of accessing components.
The decrease in storage size may be offset by increase in size of accessing
code and by slowing of accessing operations.

F.1.9 Pragmas SYSTEM-NAME, STORAGE-UNIT,-
MEMOR Y..SZSHARED

These pragmas are not supported and are ignored.

F.1.10 Pragma OPTIMIZE

Pragma OPTMZE is ignored; optimization is always enabled.

F .2 Implementation- dependent Attributes

This section describes the name and the type of every implementation-
dependent attribute.

There are no implementation defined attributes. These are the values for
certain language-defined, implementation-dependent attributes:

Type ITEGER.
CNTGER'SIZE 32 - bits.
U-NTEGER'FIRST =- (2**31)
INTGER'LAST -(2**31-1)

Type SIIORTSLOAT.
SHORTSFLOATISZE =w32 - bits3.
SHORT.YLOATVDIGITS ==8
SHORT-FLOATMIANTISSA =21
SHORTFLOATEMfAX =84
SHORTJFLOATEPSILON -2.O**(-2O)
SIIORT.YLOAT'SMALL - 2.O**(.85)
SIIORTFLOATIARGE - 2.O**84
SIIORTJLOATMACMhE..ROUNDS =9false
SIIORTJLOATMACHINE.R IX =18
SHORTJWLATMACJE..MANTISSA -6
SHORT-LOATUACHMN..EMAX =63
SHORTJLOATMACHNE.EMIN -=4
SHORTJLOATMACHINM.OVERFLOWS = false
SHORTJLOATSAFE..EMAX - 252
SHORT-FLOATSAF&S3MALL - 16#0.800000#E-63
SHORTJ'LOAT'SAFEJARGE - 16#0.kFtF8 #E63

Type FLOAT.
FLOAT'SIZE = 84 - bits.
FLOAT'DIGIT =15
FLOAT'MANTISSA =51
FLOATVMAX = 204
FLOAT'EPSILON - 2.0**(.50)
FLOAT'SMALL - 2.O**(-2O5)
FLOAT'LARGE - (1.0-2*(-51))_.*204
FLOAT'MACWNE..ROUNDS = as
FLOAT'MACHINLRADDC = 16
FLOAT'MACHNE.MANTISSA =14
FLOAT'MACHIE..EAX =83
FLOATIMCHINEM1N -64
FLOAT'MACHINE..OVERFLOWS = raise

FLOATSAFEEA= 252-6

FLOAT'SAFE-SMAL
l6#0.soooooooooo#E~

FLOAT'SAFE-LARGE
16#01TFFFFFFFFFFEO#EO

3

Type DURATION-
DURLATIONYDELTA =2.0**(-14) -seconds

DURATIONTFIRST
=-86,400

DURATIONLAST
88,400

DURATION'SMAa
= 2.0**(44)

Type PRIORITY-.w-2
pRIoRITY'FIRT =127

pRIoRITY'LAST12

F.3 Package SYSTEM
package SYSTEM is

-- OVERVIEW

-- This is the predefined library package "System*, which contains
-- I the definitions of certain configuration-dependent
-- jcharacteristics.

type ADDRESS is private; -- "=, f/n" defined implicitly;

type NAME is (UTS, MVS, CWAS, PrimeSO, Sperry1l00, MILSTD_1750A);

SYSTEM-NAME " constant NAME := UTS;

STORAGE-UNIT : constant -- 8;
MEDRYSIZE : constant "- 231;

-- In storage units

System-Dependent Named Numbers:

MININT : constant :- INTEGER'POS(INTEGER'FIRST);
MAXINT : constant := INTEGER'POS(INTEGER'LAST);
MAX-DIGITS : constant := 15;
MAX..MANTISSA : constant :- 31;
FINE-DELTA : constant :- 2.0'(-31);
TICK : constant :- 1.OE-3; -- CLOCK function has msec resolution

-- Other System-Dependent Declarations

subtype PRIOR[TY is INTEGER range -127..127;

-- Implementation-dependent additions to package SYSTEM --

NULL-ADDRESS : constant ADDRESS;
-- Same bit pattern as "null" access value
-- This is the value of 'ADDRESS for named numbers.
-- The 'ADDRESS of any object which occupies storage
-- is NOT equal to this value.

ADDRESS-SIZE : constant :- 32;
-- Number of bits in ADDRESS objects, --ADDRESS'SIZE, but static.

ADDRESSSEGIMENTSIZE : constant :- 2'*24;
-- Number of storage units in address segment

type ADDRESS-OFFSET is new INTEGER; -- Used for address arithmetic
type ADDRESS-SEGMENT is new INTEGER; -- Always zero on targets with

-- unsegmented address space.

subtype NORMALIZED_.ADDRESSOFFSET is
ADDRESS-OFFSET range 0 ADDRESSSEGMENTSIZE - 11

F-8

Range of address offsets returned by OFFSET-OF

function "+"(addr : ADDRESS; offset : ADDRESS-OFFSET) return ADDRESS,
function *+"(offset : ADDRESS-OFFSET; addr : ADDRESS) return ADDRESS;

-- EFFECTS
-- I
-- Add an offset to an address. May cross segment boundaries on
--j targets where objects may span segments. On other targets,
-- CONSTRAINT-ERROR will be raised when
-- OFFSETOF(addr) + offset not in NORMALIZEDADDRESSOFFSET.

function *-*(left, right : ADDRESS) return ADDRESS-OFFSET;

-- EFFECTS
-- I
-- Subtract two addresses, returning an offset. This

offset may exceed the segment size on targets where
-- objects may span segments. On other targets,

- CONSTRAINT-ERROR will be raised if SEGMENTOF(Ieft) ,

-- SEGMENTOF(right).

function *-*(addr : ADDRESS, offset : ADDRESS-OFFSET) return
ADDRESS,

-- EFFECTS

-- Subtract an offset from an address, returning an address.
o- May cross segment boundaries on targets where
-- I objects may span segments.
-- On other targets, CONSTRAINT-ERROR will be raised when
-- OFFSETOF(addr) offset not in NORMALIZEDADDRESSOFFSET.

function OFFSET-OF (addr : ADDRESS) return NORMALIZEDADDRESSOFFSET,

*-- EFFECTS
.--

-- I Returns offset part of ADDRESS
-- I Always in range 0..segsize - 1

function SEGMENT-OF (addr : ADDRESS) return ADDRESSSEGMENT;

.- I
-- I Returns segment part of address (zero on targets with
-- I unsegmented address space).

function MAKE-ADDRESS (offset i ADDRESS-OFFSET;
segment . ADDRESS-SEGMENT := 0) return ADDRESS;

-- EFFECTS

-- Builds an address given an offset and a segment.
-- Offsets may be > segment size on targets where objects may

- span segments,in which case it is equivalent to

F-9

.-- "MAKEADDRESS (0, segment) + offset".
On other targets, CONSTRAINT-ERROR will be raised when

.-- offset not in NORMALIZEDADDRESSOFFSET.

type SupportedLanguageName is (-- Target dependent
-- The following are "foreign" languages:
ASSEMBLER,
FORTRAN-MAIN,
FORTRAN,
COBOLMAIN,
COBOL,
JOVIALMAIN,
PLI-MAIN,

AIE-ASSEMBLER, -- NOT a "foreign" language - uses AIE RTS
UNSPECIFIEDLANGUAGEMAIN,
UNSPECIFIED-LANGUAGE

-- Most/least accurate built-in integer and float types

subtype LONGEST-INTEGER is STANDARD.INTEGER;
subtype SHORTEST-INTEGER is STANDARD.INTEGER;

subtype LONGEST-FLOAT is STANDARD.FLOAT;
subtype SHORTEST-FLOAT is STANDARD.SHORTFLOAT;

private

type ADDRESS is access INTEGER;
-- Note: The designated type here (INTEGER) is irrelevant.
.- ADDRESS is made an access type simply to guarantee it has
-- the same size as access values, which are single addresses.
-- Allocators of type ADDRESS are NOT meaningful.

NULL-ADDRESS : constant ADDRESS :- null;

end SYSTEM

.-1

F.4 Representation Clauses
This section describes the list of all restrictions on representation clauses.

"NOTE: An implementation may limit its acceptance of representation clauses
to those that can be handled simply by the underlying hardware.... If a program
contains a representation clause that is not accepted /by the compiler], then the
program is illegal." (LRM 13.1(10)).

There are no restrictions except as follows:

a. Length clauses:

Size specification must be a multiple of 8 bits. Note that this represents
only an upper bound. The compiler may allocate fewer bits for components
of packed arrays or records, or when fewer bits are specified by a record
representation clause. Size specifications are most useful for record types, in
which case the specified size is always used.

Collection Size specifications-not supported. All collections draw from a
single heap.

Task storage size specifications--not supported. All task stacks
automatically extended as needed.

Specification of SMALL: Specified value must be a power of 2, less than or
equal to the DELTA for the type.

b. Enumeration Representation Clauses:
Fully supported for non-derived types. Not supported for derived types.
Note that enumeration types with a representation clause require more code
for looping, 'SUCC, 'PRED, 'POS, 'VAL, 'IMAGE and 'VALUE even if the
specified representation is contiguous.

c. Record-representation-clause:

Alignment clause is not supported.

Only integer, fixed, and enumeration types may have a non-zero first bit
number. All other types must start at bit zero of the specified storage unit,
and end on a storage unit boundary.

If the first bit is non-zero, the last bit number must be less than or equal to
31.

Record components, including those generated implicitly by the compiler,
whose locations are not given by the representation-clause, are layed out by
the compiler following all the components whose locations are given by the

F- 11

representation-clause. Such components of the invariant part of the record
are allocated to follow the user-specified components of the invariant part,
and such components in any given variant part are allocated to follow the
user-specified components of that variant part.

F- 12

F.5 Implementation-dependent Components

This section describes the conventions used for any implementation-generated
name denoting implementation-dependent components.

There are no implementation-generated names denoting implementation-
dependent (record) components, although there are, indeed, such components.
Hence, there is no convention (or possibility) of naming them and, therefore, no
way to offer a representation clause for a record containing such components.

NOTE: Records containing dynamic-sized components will contain (generally)
unnamed offset components which will "point" to the dynamic-sized components
stored later in the record. There is no way to specify the representation of such
components.

F.6 Address Clauses
This section describes the interpretation of expressions that appear in address

clauses, including those for interrupts.

For an object-fully supported; address expression may be any run-time
expression of type System.Address. The object address clause is interpreted to
mean that the object is "already" at that address. No additional space is allocated
for the object.

Typically this means that the address specified is an expression involving the
address of some pre-existing object, for instance, a buffer, and the address clause
is being used to gain access to some part of this object, perhaps a message
embedded within the buffer.

For a subprogram-supported only subprograms with a pragma Interface. The
subprogram address clause is interpreted to mean that the subprogram is
"already" at that address. This provides a means to call a subprogram given only
its address, passed as a parameter or stored in a data structure.

For a package, task, or task entry-not supported.

F-i14

F.7 Unchecked Conversions
This section describes any restrictions on unchecked conversions.

The source and target subtypes must occupy the same number of bits. Note
that access to unconstrained arrays actually point at a "dope vector" followed by
the array, so unchecked conversion of an address to or from such an access value
will generally produce unpredictable results. Given the address of an array, it is
more meaningful to convert it to an access to a constrained array subtype with
the appropriate bounds.

F-15

F.8 Input-Output

This section describes implementation-dependent characteristics of the input-
output packages.

(a) Declaration of type Direct-JO.Count? [14.2.51
O..Integer'last;

(b) Effect of input/output for access types?
Not meaningful if read by different program invocations

(c) Disposition of unclosed IN-FILE files at program termination? [14.1(7)]
Files are closed.

(d) Disposition of unclosed OUT-FILE files at program termination? [14.1(7)]
Files are closed.

(e) Disposition of unclosed INOUT..FILE files at program termination? [14.1(7)]
Files are closed.

(f) Form of, and restrictions on, file names? [14.1(1)]
MVS filenames.

(g) Possible uses of FORM parameter in I/O subprograms? [14.1(1)]
See Appendix A.

(h) Where are I/O exceptions raised beyond what is described in Chapter 14?
[14.1(11)1

None raised.

(i) Are alternate specifications (such as abbreviations) allowed for file names? If
so, what is the form of these alternatives? [14.2.1(21)

No.

(j) When is DATA-ERROR not raised for sequential or direct input of an
inappropriate ELEMENT-TYPE? [14.2.2(4), 14.2.4(4)]

Unresolved issue.

(k) What are the standard input and standard output files? [14.3(5)]
MVS standard input (SYSIN) and output (SYSPRINT).

(1) What are the forms of line terminators and page terminators? [14.3(7)]
Line terminator is ASCI.LF (line feed).
Page terminator is ASCII.FF (form feed).

(m) Value of Text.JO.Count'last? [14.3(8)]
integer'last.

(n) Value of Text.JO.Field'last? [14.3.7(2)]
integer'last.

(o) Effect of instantiating ENUMERATIONJO for an integer type? [14.3.9(15)]
The instantiated Put will work properly, but the instantiated Get
will raise Data-Error.

.F -1 6

(p) Restrictions on types that can be instantiated for input/output?
No direct I/O on unconstrained types.

(q) Specification of package LowLevel-JO? [14.61
LowLeveUO is not provided.

F- 17

F.9 Tasking
This section describes implementation-dependent characteristics of the tasking

run-time packages.

The scheduler of the MVS/Ada run-time tasking system runs tasks of equal
priority in the order that they became eligible to run and allows them to run until
blocked or until interrupted by the eligibility of a task of higher priority.

A task whose priority is higher than the task currently running may be made
eligible to run by an interrupt or timer runout. Such an event will cause the
currently running task to be immediately blocked so that the higher priority task
may run.

Even though a main program completes and terminates (its dependent tasks, if
any, having terminated), the execution of the program as a whole continues until
each task dependent upon a library unit package has either terminated or reached
an open terminate alternative. See LRM 9.4(13).

F-i8

F.1O Other Matters

This section describes other implementation-dependent characteristics of the
system.

a. Package Machine-Code
This package is not provided.

b. Order of compilation of generic bodies and subunits (LRM 10.3:9):
Body and subunits of generic must be in the same compilation as
the specification if instantiations precede them (see AI-00257/02).

F-109

F.11 Compiler Limitations

(a) Maximum length of variable of type STRING?
2**31-1 characters (Address space size).

(b) Maximum length of a record?
2**31-1 bytes (Address space size).

(c) Maximum length of an array?
2**31-1 bytes. (Address space size).

(d) Maximum size of Ada Program Library?
Limited by available disk storage.

(e) Maximum length of source line?
255 characters.

(f) Maximum number of "use" scopes?
Limit is 50, set arbitrarily by SEMANTICS as maximum number of
distinct packages actively "used."

(g) Maximum number of co-existing tasks?
Limited by available memory space.

(h) Maximum number of tasks initially allocated?
One if any tasking constructs exist; zero if no tasking constructs
exist.

(i) Maximum length of identifier?
255 characters.

(U) Maximum number of nested loops?
24 nested loops.

(k) Maximum number of identifiers in symbol table?
Limited only by address space.

(1) Package nesting limit?
Limited by parse-stack nesting limit, 200.

(in) Subprogram nesting limit?
Limited by parse-stack nesting limit, 200.

(n) Logical expression nesting limit?
Limited by parse-stack nesting limit, 200.

(o) Minimum storage requirement for compiler's operation?
5 megabytes.

(p) Can compiler provide listing files in variable block format?
Yes.

(q) Can compiler provide object in fixed block 80 format?
Yes.

F-20

-b

(r) What storage is required, beyond the storage-units for an object, for
allocators in heaps; in collections?

Approximately 8 bytes per element plus sixteen bytes for collection
as a whole.

F-21

