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Abstract

The purpose of this study was to determine the most

robust frequency assignment for a search and rescue network.

The focus was to assign weights to the transmitter areas of

the network to determine which weight sequence produced the

most robust frequency assignment. The Department of Defense

furnished weight sequences for twelve two-hour time blocks.

These weight sequences were compared to a weight sequence

with all weights of equal value. Network and linear

programming were used to solve this problem and generate

frequency assignments for all weight sequences. Classical

sensitivity analysis and tolerance analysis were used to

analyze the frequency assignments generated by the different

weight sequences. The weight sequence with all weights

having equal value produced the most robust frequency

assignments for all time blocks.

ix



An A Pricri Multiobjective

Optimization Model of a

Search and Rescue Network

I. Introduction

1.1 Background

The United States currently operates a network of search

and rescue (SAR) stations around the world over extensive

ocean areas. These stations receive and process distress

signals from airplanes or ships that experience emergencies.

SAR missions occur only when three or more stations receive

and process the same distress signal because it takes at least

three stations to geolocate the source of the signal (7:1).

Each station has two types of systems that perform the

geolocation process. The receiving subsystem's (RS) primary

mission is detecting the distress signal and initiating the

geolocation process. On the other hand, the high frequency

direction finding subsystem (HFDF) estimates the location of

the signal transmitter in association with the RS (7:1).

Signal acquisition by the RS is the sole element in

starting the successful geolocation of a distress signal.

When a station acquires a signal via the RS, the station

operator alerts Central Control (CC) of the acquisition. CC



then prompts the other stations requesting lines of bearing

(LOB) for the signal of interest. The other operators check

their RS and HFDF systems for the signal of interest and

transmit a LOB back to CC if available. CC uses the LOBs to

compute a best pint estimate and a concidence region for

geolocation of the signal transmitter. If a HFDF system

receives a signal but a RS system does not, no attempt at

geolocation is made because HFDF systems cannot notify CC of

the signal (7:1).

Every station in the network contains one RS system, but

the number of HFDF receivers at each station varies. The

minimum number of HFDFs is 0 and the maximum number is 10.

The RS samples the entir: frequency spectrum of interest but

is less sensitive than the HFDF. The RS cannot acquire

signals with small signal-to-noise ratio like the HFDF can.

Each HFDF receiver covers a 1 MHz b-nd 7ithin the frequency

spectrum. These HFDF receivers are optimally allocated to

frequencies at the stations so that the probability of

successfully geolocating a vehicle in distress is maximized

(7:1).

Prior research efforts in this area have produced optimal

methods to locate the stations and the frequency assignments.

Steppe used a two-stage, network-flow multiobjective linear

integer programming (MOLIP) model to determine the optimal

locations of the stations for the SAR problem (15). Another
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effort in this area by Johnson found the optimal frequency

assignments using a MOLIP network-flow model (10).

1.2 Research Objective The purpose of this research is to

use a priori optimization to show that the optimal assignment

of HFDF receivers in a generalized search and rescue (GSAR)

network is independent of the weighting of the transmitter

areas. This is accomplished by investigating the effect of

changing the weight value of a particular transmitter area on

the probability of geolocation for that area.

1.3 Overview

The next chapter is a literature review covering a priori

optimization, network programming and sensitivity analysis.

Chapter three describes a network model and a linear program

model formulation for this problem. The next chapter contains

a sample problem formulation and solution. Chapter four

describes the solution methodology for both the network and

linear program models and the sensitivity analysis to be

performed. The last chapter lists the results from the

solution methodologies, draws some conclusions from the

results and makes some recommendations for future research.
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II. Literature Review

This chapter presents an overview of the literature that

will contribute to the formulation of this problem. A general

overview of networks is provided in the first section. The

second section will describe a particular type of network

that will be used to formulate this problem. The third

section will cover a priori optimization and how it can be

applied to four different combinatorial optimization problems.

The fourth and final section will cover sensitivity analysis

and its value for linear programming and network programming

problems.

2.1 Networks.

A network consists of a set of nodes connected by a set

of arcs where the arcs represent flow between the nodes.

Examples of networks are highway intersections, telephone

exchanges, and airline terminals (12:6). The corresponding

arcs are roads, telephone lines, and airline routes (12:6).

The arc flow is usually constrained by the capacity each arc

can handle. The nodes are constrained by the conservation of

flow. Conservation of flow means that the total flow into a

node must equal the total flow out of that node. Minimizing

4



the cost and maximizing the flow are two objectives sometimes

associated with network programming problems.

2.2 Maximum-Flow Network.

The frequency assignment of HFDF receivers in a search

and rescue network can be formulated and solved as a maximum-

flow network. The next section discusses the concepts of a

maximum-flow network.

The maximum-flow problem is equivalent to a directed,

connected network with one supply node and one demand node.

The other nodes are considered transshipment nodes which

simply means they preserve conservation of flow. The

objective is to maximize the total flow through the network

from the supply node to the demand node subject to the arc

capacities given for each arc and the cost associated with

each arc. The assignment of HFDF receivers is represented by

a set of nodes corresponding to the receivers and a set of

nodes corresponding to the frequencies to be covered. The

arcs between the two sets of nodes have a capacity of one,

meaning one receiver can cover one frequency. Also, the arcs

have a cost which represents the probability of detecting a

signal of interest (8:359-366).
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2.3 A Priori Optimization.

Bertsimas, Jaillet, and Odoni describe a priori

optimization as "a strategy competitive to the strategy of

reoptimization, under which the combinatorial optimization

problem is solved optimally for every instance" (6:1019). A

priori optimization consists of two parts. The first part is

a measure of effectiveness and the second part is a method to

update the a priori solution for each problem occurrence

(6:1020). Bertsimas, Jaillet, and Odoni made a logical choice

of the expected cost as the measure of effectiveness. They

also provide the following three properties necessary for the

updating procedure:

First, for every choice of an updating
procedure proposed, the updating of the
solution to a particular instance can be
done very easily. Next, these updating
methods are well suited for applications.
And finally, the a priori optimization
strategies coupled with the particular
choices of the updating procedure are
asymptotically very close in terms of
performance to the reoptimization
strategies under reasonable probabilistic
assumptions. (6:1020)

Berman and Simchi-Levi introduce two motivations for this

type of problem. First, a company may not be able to

reoptimize every day because some demands may not be known

until just before the work day begins (3:148). The second

reason the company may not want to reoptimize is that the cost

may be too high (3:148).
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2.3.1 Probabilistic Traveling Salesman Problem. The

first combinatorial optimization problem where a priori

optimization is used is the probabilistic traveling salesman

problem (PTSP). The traveling salesman problem (TSP) is one

of the most extensively covered problems in optimization

(9:929). It deals with finding the minimum distance a

salesman travels while visiting each of a set of n cities. In

the TSP, the salesman visits every city in his area of

responsibility on each trip. Therefore, the TSP is a

deterministic problem. On the other hand, in the PTSP, the

salesman visits only k out of the n cities on any given trip

(9:930). The cities have probability pi of being visited on

each trip. The probabilities are independent and are not

necessarily equal.

Jaillet defines the PTSP as "finding an a priori tour of

minimum length in the expected value sense" (9:929). In order

to solve this problem, an a priori tour through all n points

is determined. For any new tour of k points, the solution for

this new tour will visit the k points in the same order as the

a priori tour of n points (6:1020). The updating procedure is

to visit the k points for every possible tour combination in

the same sequence as the a priori tour (6:1020). As Merrill,

Chan, and Schuppe deduced from Hardgrave and Nemhauser, "the
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order of visitation around the convex hull circumscribing a

network does not change in reaching the optimal solution"

(11:6).

2.3.2 Probabilistic Minimum Spanning Tree Problem. A

priori optimization is also applicable to a problem known as

the probabilistic minimum spanning tree problem (PMSTP). The

classical minimum spanning tree problem finds a tree that

connects all n network nodes with no cycles and has the

shortest overall length possible. In contrast, in the PMSTP

only a subset S of the n nodes is present at any given time

with probability pS) (5:245).

Bertsimas describes the PMSTP as "finding an a priori

spanning tree of minimum expected length over all possible

problem instances" (5:245). In order to accomplish this, an

a priori spanning tree must be found. This tree is used as

follows:

On any given instance of the problem, the
a priori tree is retraced deleting only
the nodes that are not present, provided
the deletion of those nodes does not
disconnect the tree. In this way, there
would be nodes that will not be present
but are still included in the tree. Thus,
the updating method is to include all
nodes in the instance S and also those
other nodes in the network that are
necessary to prevent the resulting tree
from becoming disconnected. (6:1021)
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2.3.3 Probabilistic Vehicle Routing Problem. The third

area where a priori optimization is used is the probabilistic

vehicle routing problem (PVRP). Like the previous two

problems, the stochastic problem is an extension of the more

familiar deterministic vehicle routing problem (VRP). The VRP

contains n cities or nodes, all of which must be visited. The

solution is a set of routes with minimum length covering all

n nodes. On the other hand, the PVRP contains nodes with

probabilistic, rather than deterministic, demands (6:1021).

Bertsimas, Jaillet, and Odoni describe the PVRP as

"determining a fixed set of routes of minimal expected total

length, which corresponds to the expected total length of the

fixed set of routes plus the expected value of extra travel

distance that might be required" (6:1021). The extra distance

occurs when the demand of a route exceeds the capacity of the

vehicle, a condition which forces the vehicle to return to the

warehouse to reload before continuing the route (6:1021). Two

updating procedures are proposed by Bertsimas, Jaillet, and

Odoni. In the first procedure, the designated vehicle visits

every point in the same order as the a priori tour. However,

the vehicle only provides service to the points that have a

requirement during a particular occurrence (6:1021). The

second procedure is very similar to the first. The only

difference is a point with no demand during a particular

9



occurrence is skipped entirely on the a priori tour and the

next point with a demand is serviced (6:1021).

2.3.4 Probabilistic Traveling Salesman Facility Location

Problem. The final problem discussed in relation to a priori

optimization is the probabilistic traveling salesman facility

location problem (PTSFLP). This problem is a traveling

salesman facility location problem with demands for service

represented by a probability Ri. The problem consists of a

network with a set of n nodes that need service and a single

service facility. A service unit leaves the service facility

each day at a given time and proceeds to the nodes that have

a demand for that day (14:479). It is assumed that only one

call can arrive from a given node on a given day. Hence, the

maximum number of calls on any day is n (14:479). Also, the

probability of a demand from a given node is assumed to be

independent of the probability of a demand from a different

node (14:479).

Bertsimas describes the PTSFLP as "the problem of finding

simultaneously an optimal location for the service facility

and an optimal a priori tour" (4:184). The optimal a priori

tour for this problem is calculated using the probability for

each node. The updating procedure is the same as for the PTSP

10



described above. A node is skipped on the a priori tour when

no demand exists for the node for a particular occurrence

(4:185).

2.4 Sensitivity Analysis.

The purpose of sensitivity analysis is to determine how

much the parameters of the model can be changed without

changing the optimal solution. This is important because in

many models the coefficients of the parameters are estimates

whose true values are not known. Therefore, if one of the

estimates is not accurate and the optimal solution is very

sensitive to that parameter the given optimal solution may not

be the real optimal solution. The rest of this section

discusses how sensitivity analysis evaluates changes in the

coefficients of a variable and in the right hand side values

of the constraints. It also shows how a new constraint and a

new variable may affect an optimal solution.

2.4.1 ChanQe in Variable Coefficients. There are two

cases to be examined when a variable has one or more

coefficients changed. The first case is when the coefficients

of a nonbasic variable of the optimal solution are changed.

The coefficients that may be changed are the objective

function coefficients or the constraint coefficients. An easy

method of determining if the solution is still optimal is to

check that the dual problem complementary solution still

11



satisfies the single dual constraint that was changed. If it

is satisfied, the solution is still optimal. On the other

hand, if the dual constraint is violated, the column of the

optimal tableau that has been changed must be recalculated

using the new numbers, the reduced cost, CB1a - c., valuebf- =j-i -=

that is positive enters the basis and the simplex method is

applied so that a new optimal solution is determined (8:175-

176).

The second case is when the coefficients of a basic

variable are changed. In this case, the new column of the

optimal tableau is calculated and the tableau is put in proper

form via Gaussian elimination. If the new tableau is either

not optimal or infeasible, the simplex or dual-simplex method

is applied to produce a new optimal solution. However, if the

tableau is still optimal no further calculations are required

(8:175-177).

2.4.2 Change in the Riqht-Hand-Side Value. When the

right-hand-side of one or more constraints is changed, the

right-hand-side value column of the optimal tableau is

recalculated. Because this is the only change in the tableau,

Gaussian elimination is not required and optimality does not

need to be tested. But, the feasibility of the solution must

be examined. If it is optimal no further calculations are

required. However, if the solution is infeasible, the dual-

12



simplex method must be applied to produce a new optimal

feasible solution (8:172-174).

2.4.3 Add a New Variable. When a new variable is added

to a model after the optimal solution has been found, a new

column is added to the tableau. The easiest way to handle

this situation is to treat it like a nonbasic variable whose

original cost coefficients are zero. Therefore, check if the

complementary basic solution satisfies the new dual

constraint. If it does, the solution is still optimal. If it

does not, use the same procedure as above for the nonbasic

variable with different coefficients to determine the new

optimal solution (8:176-177).

2.4.4 Add a New Constraint. The quickest way to

determine if the optimal solution is still valid when a new

constraint is added is to check if the current solution

satisfies the new constraint. If it does, then no

calculations are required. If it does not, a new row

representing the new constraint is added to the optimal

tableau. The tableau is put into proper form via Gaussian

elimination and the dual simplex method is applied to the new

tableau and a new optimal solution is obtained (8:180).

13



2.4.5 The Tolerance Approach. Another method employed

in sensitivity analysis is called the tolerance approach.

This approach differs from the methods of sensitivity analysis

discussed previously in that it deals with simultaneous and

independent perturbations of the objective function

coefficients and the right-hand-side values. It produces a

maximum tolerance percentage for both the objective function

coefficients and the right-hand-side values. This tolerance

percentage is the maximum percentage any value can vary from

its original estimated value while retaining the same optimal

solution. The rest of this section covers how the tolerance

approach can be applied to linear programming and network

programming problems.

2.4.5.1 Linear Programming. For linear

programming, the tolerance approach uses information from the

original tableau and the optimal tableau in order to determine

T and R!. T! is the maximum tolerance percentage for the

objective function coefficients and R* is the maximum

tolerance percentage for the right hand side values. The

equation for calculating T is

Min cb B -' A k-ckT=kEK M

Ck + 4 ChiB A.k

14



The set {K} contains the subscripts of all the nonbasic

variables. The numerator is the reduced cost of Xk, ck is the

cost coefficient of the kth variable, and B-1 Ak is the ith

term in the kth column of the optimal tableau. Also, ch is

the coefficient of the ith variable of the cost vector. If

the denominator for any term is zero, then the value for that

term is infinity. Additionally, if T*= 0 then there may be

alternate optimal solutions (16:566-567).

The maximum allowable tolerance for the right hand side

values is determined by the following equation:

R* Min Bj'b1ii IR"=k=l, .... ,m m

j-1

The numerator is the kth element of the right-hand-side column

of the optimal tableau and B-1 ki is the kth element of the ith

column of the optimal tableau and b is the ith element of the

original right-hand-side vector. Again, if the denominator of

any term is zero then the value for that term is infinity and

if R*= 0 then an alternate optimal solution is possible

(16:566-567).

2.4.5.2 Network Programming. In network

programming, the tolerance approach is adapted from the linear

programming approach so that computations can be performed

15



directly on the network. The equation for T* is

Min I CkI 1k~J

"If J is empty, then T* -s infinite. If J is not empty then

T* is finite iff for some k an element of J there exists an

edge ek with a nonzero coefficient ck in the fundamental cycle

corresponding to the chord ek. The set Sk is the index set of

the edges in the fundamental cycle corresponding to the chord

ek" (13:164).

The corresponding equation for the right hand side values

is

Min max b

"The maximum tolerance R* is finite iff for some k an element

of I - {n+l} there exists some i and j an element of {1,...,m}

such that b. not equal to zero and b. not equal to zero and Bki

not equal to Bkj" (13:164).

2.5 Conclusion.

The search and rescue problem can be formulated as a

maximum flow network and as a linear programming problem. The

16



network will consist of nodes representing each receiver

station and each frequency. It will also have a supply node,

a slack node, an excess coverage node, a non-excess coverage

node, and a sink node. The frequency nodes are given a demand

to ensure each frequency has a minimal coverage of at least

two receivers. The arc costs of the excess coverage node are

used to penalize the objective function for excess coverage of

a frequency.

Sensitivity analysis is used to investigate the robustness

of the frequency assignments produced by the network for

different weights sequences. The network solution is used

with the tolerance approach to produce an optimal range for

the given weights of interest. The linear program solution is

used to produce classical sensitivity analysis for the weight

ranges.

17



III. Model Formulation

This chapter presents the multiobjective linear

programming and network programming formulations of the search

and rescue network. A literature review on this subject area

suggests a mathematical model for this problem can be adapted

from previous research by Johnson and Steppe (10;15). Both

Johnson and Steppe showed a linear approximation of the actual

non-linear network proved to be accurate in determining near-

optimal frequency assignments and station locations. The only

modification required is the addition of a weighting factor

for the transmitter areas. Although several approaches exist

to formulate this problem, linear programming and network

programming are the techniques investigated in this study.

The weights for the transmitter areas are provided by the

Department of Defense (DOD). The key factors in determining

the different weight combinations are existing data bases and

insight of DOD personnel. The next section describes the

notation used in the linear formulation of this problem and

the last section presents the entire multiobjective

formulation.

18



3.1 Notation

The notation described in this section is used in the

linear formulation of this problem for this study.

1. Subscripts.

i = transmitter locations.

d = receiving station locations.

k = frequency bands.

2. Decision Variables.

X ={1, if station j is assigned cover frequency k.
otherwise.

y-n, if frequency k has excess coverage by n stations.
0, otherwise.

3. Probabilities.

Fi =the probability of a distress signal from

location i on frequency k.

P-_uk the probability that a distress signal from

location i on frequency h is acquired by

station j.
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W. = the probability that a line of bearing from

station j is within the acceptable

circularized error region defined for

location i.

Ui = the normalized weight (0 - 1 range) of a

distress signal from location i.

4. Other.

TN = the total number of HFDF receivers.

FS = the fairshare of HFDF receivers for each

frequency. Where FS is the integer greater than

or equal to the total number of HFDF receivers

divided by the total number of frequencies to be

covered.

3.2 Objective Function 1. The first objective function adds

the weight for area i to Steppe's first objective function

(15:22). This objective function maximizes the expected number

of accurate lines of bearing for HFDF receivers. The

mathematical formula for the objective function is

Max E ulwijFkPIJXjk
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3.3 Objective Function 2. The second objective function is

identical to Johnson's third objective function (10:19). It

minimizes the amount of excess coverage of HFDF receivers to

each frequency. Excess coverage of a frequency is considered

to be the number of HFDF receivers covering a frequency more

than the "fairshare" number of HFDF receivers allowed to cover

the frequency. The mathematical formula for this objective

function is

k

which is identical to

MaxE7 (-k)
k

3.4 Constraints. The linear formulation of this problem

contains three constraints. The first constraint limits the

number of HFDF frequency assignments at each station to the

number of receivers located at each station. The formulation
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for this constraint is:

, Xjk :mJ Vj
k

The second constraint requires at least two HFDF receivers be

assigned to cover every frequency. This constraint is needed

because it takes three lines of bearing (LOB) to detect a

distress signal. The third LOB comes from a RS system. The

formulation for this constraint is:

X, z 2 Vk

The third constraint determines the amount of excess coverage

given to each frequency. The variable Xk is the measure for

excess coverage. The formulation for this constraint is:

SXjk-Yk s FS Vk
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3.5 Complete Formulation. The complete linear model to be

used in this study is:

Max ;: UjI wiJFIkPIJ.Xjk

Max4 (-Yk)
k

subject to

XXJ g MJ Vi
k

Xjk 2 2 Vk

SXJk-Yk 4 FS Vk

Xk=O, 1 Vj,k

Y 0 Vk (k is integer)
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This model is formulated and solved as a max flow network and

as a linear program. The solutions are analyzed with

sensitivity analysis to determine the robustness of the

frequency assignments with regard to the weights associated

with the transmitter areas. The next chapter describes the

methodology used to solve and analyze this problem.
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IV. Methodology

This chapter presents a brief description of the

techniques used to solve and evaluate this problem. Linear

programming is described in the first section. A general

overview of network programming is provided in the next

section. The third section covers multiobjective programming

and includes a discussion about lambda values and scaling with

regard to objective functions. The fourth section details a

third method of sensitivity analysis used in this project.

The next section describes a DOD software program used to

evaluate the freanei-y assignments generated by the models.

It also discus c a FORTRAN program created for this research

project to ivaluate the areas of interest. Finally, the last

section presents the solution methodology used for this

project.

4.1 Linear Programming.

Linear programming is a fairly recent discovery (conceived

in 1947 by George Dantzig) which has met wide acceptance in

many mathematical arenas because of "(1) its ability to model

important and complex management decision problems and (2) its

capability for producing solutions in a reasonable amount of

time" (1:1). Linear programming uses a mathematical model
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consisting of decision variables, an objective function, and

constraints. The object is to find the optimal value of the

objective function subject to the constraints of the problem.

The optimal solution not only produces the maximum (or

minimum) value of the objective function but it also yields

the optimal values of the decision variables.

Linear programming models implicitly contain four

assumptions for each problem (1:3). The first assumption is

proportionality. The main idea of this assumption is if the

level of a decision variable, say X, is doubled, then its

contribution to the objective function is also doubled. The

second assumption is additivity. Additivity means the sum of

the individual costs equals the total cost and the

contribution of each constraint is the sum of the individual

activities in that constraint. It also assures no interaction

effects between the activities (1:3-4). The third assumption

is divisibility. This means the decision variables may have

any positive rational value, integer or fractional. The

fourth and final assumption is called deterministic. This

assumption means the objective function coefficients,

constraint coefficients, and right-hand-side values for the

constraints are known quantities. This means any randomness

is assumed to be accounted for in the given values.

Although these assumptions are part of every model they do

not necessarily hold completely true for every problem. The
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reason for this is too much detail is required for large

problems to ensure the assumptions are not violated. The

exception being the divisibility assumption. This assumption

holds for every linear (not integer) programming problem. The

assumption that may be most violated is the deterministic

assumption. This is why sensitivity analysis has gained so

much importance in this field (8:33).

The simplex method developed by Dantzig is an algorithm

for solving linear programs. The simplex method consists of

three phases. The first phase is the initialization phase.

This phase puts the problem into canonical form and finds an

initial basic feasible solution. This is done by introducing

slack variables into the constraints. These slack variables

are the basic variables for the initial basic feasible

solution. The second phase is the iterative phase. This

phase determines the entering basic variable, the leaving

basic variable, and the new basic feasible solution. The

third and final phase is the optimality phase. This phase

tests the current basic feasible solution to see if any

feasible solutions are better. If no solution is better, then

stop. If there are better solutions then go to the iterative

phase. Continue until an optimal solution is found or until

the problem is shown to be unbounded or infeasible (8:63-64).
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4.2 Network Programming.

Network programming uses a modified version of the simplex

method to generate optimal solutions. "This specialization,

known as the network simplex algorithm, performs the simplex

operations directly on the graph or the network itself"

(1:419). The solution times for problems using the network

simplex algorithm are several hundred times faster than

solutions from the standard simplex algorithm (1:419). The

network simplex algorithm accomplishes faster execution times

by taking advantage of the special structure of the network

problem. The algorithm still determines the entering basic

variable, the leaving basic variable, and the feasible

solution for each iteration but it does not generate any

tableaux (8:379).

One of the concepts that the algorithm employs is an upper

bounding technique. This technique provides constraints which

limit the capacity for some or all of the arcs in the network.

These constraints are treated like non-negativity constraints

rather than functional constraints in the network algorithm.

This means they are only used for determining the leaving

basic variable at each iteration (8:379).

The second and most important concept of the network

simplex algorithm is the correspondence between basic feasible

solutions and feasible spanning trees (8:380). "A key

property of basic arcs is that they never form undirected
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cycles. Therefore, any set of basic arcs forms a spanning

tree" (8:381). A feasible spanning tree is a spanning tree

solution from the node constraints that also satisfies

capacity and non-negativity constraints (8:381). By using

these two main concepts the network simplex algorithm is able

to solve many problems faster and easier than standard simplex

operations.

4.3 Multiobiective Programming.

This research project is a multiobjective programming

problem. It seeks to maximize the probability of detecting a

distress signal while also minimizing the excess coverage

provided to each frequency. The ADBASE program used on the

problem in chapter four is not capable of optimizing a problem

of this size (10). The problem is so large that ADBASE uses

all the memory allocated to it before it can find the

efficient points. Therefore, the two objective functions are

combined into a single objective function using the lambda

values determined in previous research and by scaling. The

single objective problem is solved by linear and network

programming described above.

The lambda values for the two objective functions were

calculated by Johnson and Steppe. The lambda value for the

first objective function is taken to be 0.91 and the lambda

value for the second objective function is 0.09 (15). As
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required, the lambda values sum to unity. Also, the magnitude

of the second objective function is 100 times greater than the

first objective function. Therefore, the second objective

function is divided by one hundred in order to bring the two

to the same magnitude.

4.4 Sensitivity Analysis.

In addition to the methods of classical sensitivity

analysis and the tolerance approach described in the

literature review, a third approach to sensitivity analysis is

applied to this project. This third approach manually

increments and decrements weights , f particular areas to

determine how large of a range exists for the weights in which

the same solution remains optimal. This approach looks at

five weights in time block one and six weights in time block

6. These weights are alsn used to examine how the optimal

value of the project changes as the weights change. In

addition, the results from a DOD program to evaluate the

optimal frequency assignments are compared to the change in

the weight values.

4.5 Assignment Evaluation.

EVAL is a FORTRAN computer program developed by the DOD.

It evaluates the frequency assignments generated in Lhe linear

formulation of this project by computing the approximate
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objective function value for the true non-linear network for

the given assignments. EVAL has proven to be accurate to

within five percent of the non-linear objective function while

using 1/106 of the processing time to solve the non-linear

problem. In order to provide a basis for comparison, the DOD

produced 5050 random frequency assignments for time block 6

and 10000 random assignments for time block 1. These random

assignments were then input to EVAL to produce a mean,

variance, and a standard deviation for the random assignments

for each time block. The results of these random assignments

and the results from this research project are compared in the

chapter six.

Another method of evaluation comes from a FORTRAN program

created for this project that computes the probability of

detecting a distress signal for each of the forty areas. The

probabilities for the areas of interest are computed for each

weight sequence and these values are compared to similar

probabilities computed by EVAL for each of the weight

sequences.

4.6 Solution Methodology.

1. For time blocks 1 and 6, formulate problem as a

network and solve for various weight sequences. This is a

multiobjective problem with a single objective function of the

form Z = lambdal*f 1+lambda2*f2.
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2. For time blocks 1 and 6, use the tolerance approach to

determine the maximum range that the weights of interest may

change while keeping the same optimal solution.

3. For time blocks 1 and 6, formulate as a linear program

and solve for the initial weights given by the DOD and produce

classical sensitivity analysis.

4. Input the optimal frequency assignments from above to

EVAL and compare to the random assignments generated by the

DOD.

5. Compare the probability of detection for the areas of

interest for EVAL and the research project.
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V. Sample Problem

In order to gain insight into and experience with this

project, a sample problem from a subset of the entire project

data was generated. This problem was formulated both as a

network problem and as a linear program. The sample problem

consists of four transmitter areas, five receiving stations,

and three frequencies. Each model was solved nine different

times, each time with a different weighting sequence for the

four areas of interest. The first solution for each model had

equal weights for the four areas. This solution was labelled

the a priori frequency assignment. The value of the a priori

frequency assignment solution value was then calculated for

each of the other eight weight sequences. Also, the "true"

optimal solutions were obtained by running the models for the

eight remaining weight sequences. The a priori and "true"

solutions were then compared for the eight sequences to

determine the percent difference in the two solutions.

Additionally, the problem was formulated as a

multiobjective linear program. The multiobjective program was

solved by two techniques. The first technique is the

constraint reduced feasible region technique. The second

technique is the multicriteria simplex method. A linear

programming package was used for the first technique and a
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software package called ADBASE was used for the second. The

ADBASE program is used to determine all efficient extreme

points for the problem and to produce a lambda cone for the

problem. An efficient extreme point consists of values for

each objective function. A point is an efficient extreme

point when the value for one objective function cannot be

increased without decreasing the value of another objective

function. The lambda cone refers to the multipliers for each

objective function whose sum equals unity and whose value each

is limited to the interval from zero to unity.

5.1 Model Formulation

a. Linear Program Formulation. This problem was

formulated as a linear program and was solved using SAS PROC

LP. The objective function consists of two parts. The first

part selects which frequencies are covered by the HFDFs at

each station and the second part penalizes the excess coverage

given to any frequency. The second part ensures a better

balance of coverage for all frequencies. The A matrix for

this problem is totally unimodular (TUM) which guarantees an

integer solution.

All subscripts, decision variables, probabilities, and

other notation are the same as indicated in chapter three.

Also, the objective functions and constraints are exactly the

same as in chapter three.
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b. Max Flow Network Formulation. This problem was also

formulated as a max flow network flow problem and was solved

using SAS PROC NETFLOW. There are five nodes representing the

receiving stations and three nodes representing the

frequencies. The arcs between the receiving station nodes and

the frequency nodes represent the frequency assignments. The

capacity of these arcs is one and the costs of these arcs are

the coefficients of the first part of the objective function

from the linear programming formulation above. Excess and

non-excess coverage are represented by two separate nodes.

The costs of the arcs from the frequency nodes to the excess

coverage node are the objective function coefficients from the

second part of the linear formulation and have a capacity of

infinity. The cost of the arcs from the frequency nodes to

the non-excess coverage node is zero because there is no cost

for non-excess coverage. Also, the capacity of these arcs is

3 because more than 3 frequency assignments for the same

frequency would cause an excess in coverage. There is also a

slack node that is assigned all HFDFs not assigned to the

receiving station nodes.

c. Multiobjective Formulation. "Pareto preference is

based on the concept of more is better for each criterion f1,

i=1, ...,q; and no other information about the tradeoff of

{fi} is established or available" (17:21). In Pareto
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optimality, the N-points with respect to Pareto preference are

the Pareto optimal solutions. N-points are the set of

nondominated solutions for the problem. N-points are also

called efficient points, noninferior points, nondominated

points, or admissible points (17:22). The alternative set X

consists of the same constraints listed previously and the

criteria set f consists of the two objective functions already

listed above.

d. Constraint Reduced Feasible Region Formulation. In

order to find the N-points for this multiobjective problem,

the problem was converted into a single-criterion mathematical

programming problem. The single criterion is the first

criterion, fI(X). The second criterion, f2(X), becomes a

greater-than-or-equal to constraint with a right-hand-side of

r2, where r2 is the satisficing level for f2(X). The new

constraint is maximized and minimized over the X space to

yield a range of right-hand-side values for the constraint.

The linear program is then solved with r2 varying from the

minimum value to the maximum value. The solutions to the

linear program are the N-points in the X-space. These points

are then used in the criterion functions to find the N-points

in the Y-space. The problem looks like this:
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max f 1 (X) = 0.0043x11 + 0.004275x 12 + 0.004725x1 3

+ 0.007325x21 + 0.00726x 22 + 0.00736x 23

+ 0.001938x31 + 0.0032x 32 + 0.002725x 33

+ 0.001183x 41 + 0.0013x42 + 0.001103x43

+ 0.007813x5 + 0.007495x 52 + 0.0076x 53

subject to:

f 2 (x) = - Yl - Y2 - Y3 >= r2

xli + x12 + X13 + x 21 + x 22 + x 2 3 + x 31 + X32 + x33

+ x 41 + x 42 + x 43 + x 51 + x 52 + x 53 <= 15

x1i + x21 + x 3 1 + x 41 + x 5 1 - el <= 3

x12 + x 22 32 + x + x52 - e 2 <= 3

X13 + x 23 + X33 + x 4 3 + X53 - e 3 <= 3

x11 + x 2 1 + x 31 + x 4 1 + x 51 >= 2

x12 + x22 + x 32 + x 4 2 + x 52 >= 2

x13 + x 23 + x3 3 + x 43 + x 53 >= 2

e. Multicriteria Simplex Formulation. The Multicriteria

Simplex (MC Simplex) algorithm is a generalized form of the

single-criteria simplex algorithm. It is used to solve linear

problems with more than one objective function. The procedure

for performing the algorithm is as follows: (1) set up a

tableau just as in the standard simplex method except that the

z - cj row is actually numerous z3 - c rows, one for each

objective function; (2) variables are pivoted into the basis

based on revised regular simplex rules to include dominance of
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variables; (3) an N-point is achieved when a variable cannot

be introduced into the basis without decreasing the value of

one of the objective functions; (4) all N-points have been

found when the addition of a new variable to the basis yields

the tableau for the first N-point that was found.

The problem for MC Simplex is:

max f 1 (X) = 0.0043x11 + 0.004275x 12 + 0.004725x 13

+ 0.007325x21 + 0.00726x22 + 0.00736x23

+ 0.001938x31 + 0.0032x32 + 0.002725x33

+ 0.001183x41 + 0.0013x2 + 0.001103x43

+ 0.007813xs5 + 0.007495x 52 + 0.0076x53

max f 2 (X) = - yl - Y2 - Y3

subject to:

x11 + x 12 + x 13 + x 21 + x 22 + x 23 + x 3 1 + x 32 + x 33

+ x 4 1 + x42 + x 43 + x 51 + x 52 + x 53 <= 15

Xli + x 2 1 + x 31 + x 41 + x 5 1 - el <= 3

x12 + x 22 + x 3 2 + x42 + x 52 - e 2 <= 3

X13 + x 23 + X3 3 + X43 + x 53 - e 3 <= 3

Xll + x21 + x 3 1 + x 41 + x 51 >= 2

X12 + X 2 2 + X3 2 + X42 + X 5 2 >= 2

X13 + x 23 + x 33 + x 43 + x 53 >= 2
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5.2. Data

Table 1 Probability of a Signal from Transmitter i on
Frequency k.

i/k I Frequency 1 Frequency 2 T Frequency 3

Trans 1 .04 .04 .04

Trans 2 .00 .00 .01

Trans 3 .03 .05 .05

Trans 4 .00 .00 .00

Table 2 Probability of a Signal from Transmitter i on
Frequency k is Acquired by Station j.

j Transmitter Transmitter Transmitter

1 2 3 4 1 2 3 4 1 2 3 4

1 98 32 51 01 95 13 35 01 96 33 52 01

2 98 44 13 01 98 08 01 01 98 30 01 01

3 97 01 01 01 92 46 71 01 83 31 51 01

4 97 97 01 01 98 01 12 01 90 01 01 01

5 98 29 01 01 94 04 01 01 94 19 00 01

Table 3 Probability Station j will Receive a Signal from
Transmitter i Given that a Signal was Transmitted.

i/j Station 1 Station 2 Station 3 Station 4 Station 5

Trans 1 .3808 .7407 .1951 .1210 .7956

Trans 2 .1477 .1301 .1140 .0596 .2504

Trans 3 .1471 .0892 .1580 .0834 .1509
Trans 4 .0515 .7679 .0615 .0820 .0427
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Table 4 Weighting Sequences for the Nine Solutions to the
Sample Problem (i represents the four areas of interest and
s represents the nine sequences).

i/sEiII1 2 3 4 5 6 7 8 9

1 .25 .50 .167 .167 .167 .70 .10 .10 .10

2 .25 .167 .50 .167 .167 .10 .70 .10 .10

3 .25 .167 .167 .50 .167 .10 .10 .70 .10

4 .25 .167 .167 .167 .50 .10 .10 .10 .70

5.3. Problem Solution

a. Linear Formulation. This problem was solved nine

times using linear programming with different weighting

sequences. The first solution was for all the uis set to

0.25. This solution's assignment of frequencies is the a

priori solution and will be used to find the a priori solution

for the other eight weighting sequences. Only two of the

weight sequences resulted in different values for the optimal

and a priori solutions.

b. Network Formulation. This problem was solved for

the same weighting sequences used in the linear problem above.

In addition, the problem was solved manually for the nine

weighting sequences using the a priori solution of the

original problem. The a priori solution and the true optimal

solution are then compared to determine the percent difference

in the two solutions. The solutions are shown in Appendix A.

40



c. Constraint Reduced Solution. Minimizing and

maximizing f2(X) over the X space yields a minimum value of r2

= -6 and a maximum value of r2 = 0. This problem was solved

using SAS PROC LP for the range of r2 listed above. The

following N-points were obtained:

X space N-points Y space N-points

r (x11, .. , x53, e,, e2, e3) (f1 (X) , f2 (X))

-6 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2) (0.069602, -6) A

-5 (1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,2,2,1) (0.068499, -5) B

-4 (1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,2,1) (0.067316, -4) C

-3 (1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1) (0.066016, -3) D

-2 (iiiiii,0,1,i,0,0,0,iii,0,ii) (0.064078, -2) E

-1 (1,1,1,1,1,1,0,1,0,0,0,0,1,1,1,0,1,0) (0.061353, -1) F

0 (1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0) (0.058153, 0) G

d. MC-Simplex Solution. ADBASE is a software package

that uses MC Simplex to find the N-points and the lambda cone

for multicriteria problems. ADBASE is FORTRAN-based and it

requires two input files to operate correctly. The first file

has an extension of .QFI. The aaa.QFI file contains settings

for the different phases and aspects of ADBASE. It also

contains settings for what type of output is printed. The
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.QFI file is divided into two sections. The first section is

for mode 1 and the second section is for mode 2. Both

sections must be completed for every problem, eveii i the

problem is only using a single mode, or the ADBASE software

will generate a FORTRAN READ ERROR. The second file hab an

extension of .IFI. The aaa.IFI file contains the data ADBASE

uses. It contains the objective function coefficients, the

constraint coefficients, the constraint right-hand-side

values, and the lambda ranges for the objective functions.

The .IFI file has specific fields that data must be in or the

ADBASE software will not work properly.

The following N-points in the X space and the Y space were

found by ADBASE:

X space N-points Y space N-points

r2  (X11, .. , x53, el, e2, e3 ) (f1(X) , f2 (X))

-6 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2) (0.069602, -6) A

-5 (1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,2,2,1) (0.068499, -5) B

-4 (1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,2,1) (0.067316, -4) C

-3 (1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1) (0.066016, -3) D

-2 (1,1,1,1,1,1,0,1,1,0,0,0,1,1,1,0,1,1) (0.064078, -2) E

-1 1,1.I,1,1,1,0,1,0,0,0,0,1,1,1,0,1,0) (0.061353, -1) F

0 (1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0) (0.058153, 0) G
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These are the same N-points as were found in the previous

section. Therefore, the graphs of the X space and the Y space

are the same as above as well.

e. Lambda Cone for f1 and f The lambda cone for this

problem was calculated by ADBASE. The point G is the maximum

point for (lambdaI, lambda2) = (0,1) to approximately

(0.997,0.003). The point F is the maximum point for (lambda,,

lambda2) = (0.997,0.003) to (0.998,0.002). The point E is the

maximum point for (lambda, lambda2) = (0.998,0.002) to

(0.9985,0.0015). The point D is the maximum point for

(lambda,, lambda2) = (0.9985,0.0015) to (0.9987,0.0013). The

point C is the maximum point for (lambdal, lambda) =

(0.9987,0.0013) to (0.9988,0.0012). The point B is the

maximum point for (lambda,, lambda2 ) = (0.9988,0.0012) to

(0.9989,0.0011). The point A is the maximum point for

(lambda,, lambda2) = (0.9989,0.0011) to (1,0).

5.4. Conclusion

This problem was formulated as a linear programming

problem, a max flow network problem, and a multiobjective

problem. Both the linear and network formulations gave the

same values for all nine weighting sequences. The sample

problem solutions have shown that the a priori solution was at

most 7% less than the optimal solution and at best the same as

the optimal solution. This indicates the optimal solutions

43



form a plateau in the Y-space void of any sharp peaks and that

the solution for any weight sequence of this problem will lie

on the plateau. Because this is only a very small subset of

the real problem, the results and conclusions obtained in this

chapter cannot be used to predict the behavior of the real

problem.

This problem, when formulated to find Pareto-optimal

solutions, is shown to have seven Pareto-optimal points. It

was not difficult to determine the N-points for this problem

because the range for r2 was small, as was the size of the

problem.

When ADBASE was used to formulate and solve this problem

it produced the same seven N-points as determined by SAS. It

was also used to produce the lambda cone for this problem.

Although ADBASE is not user-friendly, it is much more

convenient to use than either of the SAS programs. It also

makes it much easier to compute the lambda cone.

The next chapter presents the results for the entire

research problem. It also draws some conclusions from the

results and makes some recommendations for future research.
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VI Results, Conclusions, and Recommendations

This chapter reports the results of the solution

methodology listed in the chapter four. The first section

compares how the optimal value from the network and the EVAL

program change as the weights increase from zero to ten times

the magnitude from the original DOD weight sequence. The

second section evaluates the probability of geolocation of

each area of interest from the project and EVAL with the

weight sequences. The real measures of merit in the first two

sections are the values from the EVAL program. The EVAL

values represent what is happening in the true nonlinear

network whereas the linear network value has no real meaning

to the nonlinear problem. The next section presents the

optimal weight ranges for the weights of interest for the

three sensitivity analysis approaches. The next section

compares the network solutions to the random assignment EVAL

solutions. The fifth section draws some conclusions from

these results and the last section presents some

recommendations for further research.

6.1 Solution Comparisons.

This section describes how the solutions from the linear

network and the EVAL program change as the weights of interest
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change. Each weight is described by two graphs. The first

graph compares the change in the linear network and the change

in the EVAL program. The second graph shows how the measure

of geolocation for each weight area of interest changes as the

weight changes. This section is divided into two sections.

The first section is for time block one and the second for

time block six.

6.1.1 Time Block 1. The five weights of interest for

time block one are number 20, 22, 27, 30, and 31. The weight

ranges for these weights are listed in Appendix A. Weights

20, 27, and 31 range in value from 0.0 to 0.717949 and weights

22 and 30 range from 0.0 to 0.628931. Weights 20, 22, 30, and

31 have fifteen different values to be evaluated. Weight 27

has sixteen values to be evaluated.

The first weight to be examined is weight number 20. The

linear network was solved for each weight value and EVAL

produced a numerical evaluation of each optimal frequency

assignment for the true non-linear network. The optimal

linear network solutions and the EVAL solutions are displayed

in Figure 1 and the network area of interest geolocation

values and the EVAL area of interest geolocation values are

shown in Figure 2.
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Figure 1 Network and EVAL
Overall Solutions for Weight 20,
Time Block 1

Figure 1 shows that weight 20 and the network solution

have a linear relationship where the network value increases

as the weight value increases. On the other hand, the EVAL

solution has a non-linear relationship with weight 20. The

EVAL solution increases for very small values of weight 20 but

it decreases for values over 0.1.
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Figure 2 Network and EVAL Area
of Interest Detection Values for
Weight 20, Time Block 1
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Figure 2 indicates a linear relationship for weight 20 and

the geolocation value for area 20 in the linear network. It

also shows a nonlinear relationship between the weight value

and the EVAL geolocation value for area 20. The EVAL

geolocation value increases faster for small values of the

weight than for large values. These two figures show that

large values of weight 20 will increase the geolocation value

for area 20 but causes a decrease in the overall geolocation

value for the non-linear network.

The next weight to be discussed is weight number 22. Like

weight 20, the first graph shows the overall solutions and the

second shows the area geolocation values.
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Figure 3 Network and EVAL
Overall Solutions for Weight 22,
Time Block 1

Figure 3 shows that weight 22 and the network

solution, like weight 20, are linearly related with the
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network value increasing as the weight value increases. But,

the EVAL solution decreases with weight values over 0.1.
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Figure 4 Network and EVAL Area
of Interest Detection Values for
Weight 22, Time Block 1

This figure indicates a linear relationship for weight 22

and the geolocation value for area 22 in the network. It also

shows a non-linear relationship between the weight value and

the EVAL detection value for area 22. The EVAL geolocation

value increases slowly for weight values between 0.0 and 0.49

and then decreases for values over 0.49. These two figures

show that moderate values of weight 22 produce the largest

geolocation values for area 22 but any value over 0.1 causes

a decrease in the overall geolocation value for the non-linear

network.

The third weight to be discussed is weight number 27.

Weight 27 was given sixteen different values for which the
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network and EVAL solutions were obtained. Figures 5 and 6

describe the overall and area geolocation value relationships

with weight 27.
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Figure 5 Network and EVAL
Overall Solutions for Weight 27,
Time Block 1

The figure shows a nonlinear relationship for weight

27 and the network solution. But, again, the EVAL solution

varies over the weight values. EVAL increases as the weight

increases from 0.0 to 0.2 but then decreases over the range

0.29 to 0.72.
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Figure 6 Network and EVAL Area

of Interest Detection Values 
for

Weight 27, Time Block 1
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Figure 6 shows a nonlinear relationship between weight 27

and the EVAL geolocation value for area 27. The EVAL

geolocation value steadily increases slowly for weight values

between 0.0 and 0.49 and then levels off. These two figures

for weight 27 again show that large values of weight 27

produce the largest geolocation values for area 27 but also

cause a decrease in the overall geolocation value for the

nonlinear network.

The fourth weight to be discussed for time block one is

weight number 30. Weight 30 was varied for fifteen different

values for which the network and EVAL solutions were obtained.

The relationships between the solutions and the weight are

shown in the next two figures.
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Figure 7 Network and EVAL
Overall Solutions for Weight 30,
Time Block 1

Figure 7 shows a linear relationship between weight 30 and

the total network value but it is an inverse relationship. As
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the weight increases in value, the network decreases in value.

The EVAL relationship to the weight is also non-linear. The

EVAL solution increases as the weight increases from 0.0 to

0.25 and then decreases for larger values of weight 30.
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Figure 8 Network and EVAL Area
of Interest Detection Values for
Weight 30, Time Block 1

Figure 8 also shows that a linear relationship exists

between the network area geolocation value and the weight

value. It also shows a nonlinear relationship for the EVAL

area geolocation value and the weight value. The geolocation

value increases for weight 30 values between 0.0 and 0.27 and

oscillates for weight values over 0.27. These two figures

indicate a moderate value for weight 30, somewhere close to

0.27, produce the highest overall and area values for EVAL.

The fifth and final weight to be discussed for time block

one is weight number 31. Figures 9 and 10 show the

relationships between the network and EVAL solutions and

weight 31.
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Figure 9 Network and EVA
Overall Solutions for Weight 31,
Time Block 1

This figure shows the same inverse linear relationship

between the network solution and the weight value as Figure 7.

And again, a nonlinear relationship exists between the EVAL

solution and weight 31. The EVAL solution increases for

weight 31 values below 0.3 and decreases for values over 0.3.
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Figure 10 Network and EVAL Area
of Interest Detection Values for
Weight 31, Time Block 1
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Figure 10 shows an oscillating nonlinear relationship

between the weight value and the EVAL area geolocation value.

The only range where the EVAL area 31 value always increases

is between 0.27 and 0.49. Values below and above this range

have oscillating values for area 31. These figures show that

in order to increase area 31 geolocation value the weight

value must increase but the overall geolocation value for EVAL

will decrease. Therefore, a trade-off exists between the

overall geolocation value and the area geolocation value for

all five weights examined in this section.

6.1.2 Time Block 6. There are six weights of interest

for time block six. They are number 9, 20, 27, 30, 31, and

40. The weight range for weights 9, 20, and 27 is from 0.0 to

0.636574. The range for weights 30 and 40 is 0.0 to 0.610501

and weight range for weight 31 is from 0.0 to 0.700701. All

six weights have fifteen different values to be evaluated.

Weight number 9 is examined first. The linear network

solution for each weight value and the EVAL evaluation of each

optimal frequency assignment for the true nonlinear network

are plotted on two graphs. The optimal linear network

solutions and the EVAL solutions are displayed in Figure 11

and the network area of interest geolocation values and the

EVAL area of interest geolocation values are shown in Figure

12.
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Figure 11 Network and EVAL
Overall Solutions for Weight 9,
Time Block 6

This figure shows that weight 9 and the network solution

have a linear relationship where the network value increases

as the weight value increases. The EVAI solution has a near

inverse linear relationship with weight 9. The EVAL solution

decreases for as the weight value increases.
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Figure 12 Network and EVAL Area
of Interest Detection Values for
Weight 9, Time Block 6
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Figure 12 indicates a linear relationship exists between

weight 9 and the geolocation value for area 9 in the linear

network. It also shows a nonlinear relationship between the

weight value and the EVAL geolocation value for area 9. The

EVAL geolocation value increases faster for small values of

the weight than for large values. These two figures show that

large values of weight 20 increases the geolocation value for

area 9 but causes a decrease in the overall geolocation value

for the nonlinear network.

The next weight to be evaluated is weight number 20. As

with weight 9, the first graph shows the overall solutions and

the second shows the area geolocation values.
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Figure 13 Network and EVAL
Overall Solutions for Weight 20,
Time Block 6

Figure 13 show- basically the same relationships for

the network solution and EVAL solutions with the weight value.
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The network value increases as the weight value increases and

the EVAL solution decreases as the weight increases.
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Figure 14 Network and EVAL Area
of Interest Detection Values for
Weight 20, Time Block 6

This figure indicates a linear relationship for weight 20

and the network geolocation value for area 20. It also shows

a non-linear relationship between the weight value and the

EVAI. geolocation value for area 20. The EVAL geolocation

value increases quickly for weight values between 0.0 and 0.13

and then decreases for values over 0.32. These two figures

show that small values of weight 20 produce the la:gest

overall solutions and geolocation values for area 20 for the

nonlinear network.

The third weight to be discussed is weight number 27.

Weight 27 was given fifteen different values for which the

network and EVAL solutions were obtained. Figures 15 and 16
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describe the overall and area geolocation value relationships

with weight 27.
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Figure 15 Network and EVAL
Overall Solutions for Weight 27,
Time Block 6

Figure 15 shows the same nonlinear relationship for weight

27 and the network solution as Figure 5 did for time block

one. But, once again, the EVAL solution varies over the

weight values. EVAL decreases as the weight increases from

0.0 to 0.07, increases over the range 0.07 to 0.35, and then

decreases for values over 0.35.
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Figure 16 Network and EVAL Area
of Interest Detection Values for
Weight 27, Time Block 6
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Figure 16 shows a nonlinear relationship between weight 27

and the EVAL geolocation value for area 27. The EVAL

geolocation value increases for weight values between 0.0 and

0.19, is relatively flat between 0.19 and 0.41, and decreases

sharply for weight values larger than 0.41. These two figures

for weight 27 show that large values of weight 27 produce the

smallest geolocation values for area 27 and the smallest

overall geolocation value for the nonlinear network. The best

range for both values is 0.22 and 0.36.

The fourth weight to be discussed for time block six is

weight number 30. Weight 30 was varied for fifteen different

values for which the network and EVAL solutions were obtained.

The relationships between the solutions and the weight are

shown in the next two figures.
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Figure 17 Network and EVAL
Overall Solutions for Weight 30,
Time Block 6
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Figure 17 shows a nonlinear relationship between weight 30

and the total network value where the network value decreases

as the weight value increases. The EVAL relationship to the

weight is also nonlinear. The EVAL solution is mainly flat

for the ranges 0.0 to 0.22 and 0.29 and 0.6 but it increases

drastically for the weight range from 0.22 to 0.29.
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Figure 18 Network and EVAL Area
of Interest Detection Values for
Weight 30, Time Block 6

Figure 18 also shows that a linear relationship exists

between the network area geolocation value and the weight

value. It also shows a nonlinear relationship for the EVAL

area geolocation value and the weight value. The geolocation

value increases for weight 30 values between 0.0 and 0.21 and

then decreases rapidly for weights between 0.21 and 0.32.

These two figures indicate that the total EVAL solution and
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the area EVAL solution are opposites of each other. As one

increases, the other decreases, sometimes very quickly.

The fifth weight to be discussed for this time block is

weight number 31. Figures 19 and 20 show the relationships

between the network and EVAL solutions and weight 31.
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Figure 19 Network and EVAL
Overall Solutions for Weight 31,
Time Block 6

This figure shows the same nonlinear relationship exists

between the EVAL solution and weight value as Figure 17. The

EVAL solution is flat for values between 0.0 and 0.29 and

values over 0.36 and it increases rapidly for weight values

between 0.29 and 0.36.
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Figure 20 shows an oscillating nonlinear relationship

between the weight value and the EVAL area geolocation value

for values between 0.0 and 0.15 and values larger than 0.49.

The range 0.29 to 0.41 shows a rapid decrease in the EVAL area

31 geolocation value. These figures again show that in order

to increase the area 31 geolocation value the weight value

must be small but the overall geolocation value for EVAL will

decrease. Therefore, a trade-off exists between the overall

geolocation value and the area geolocation value for the five

weights examined so far in this section.

The sixth and final weight to be evaluated for time block

six is weight 40. Figures 21 and 22 represent the

relationships for weight 40 and the total solutions and the

area geolocation values.
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Figure 21 network and EVAL
overall Solutions for Weight 40,
Time Block 6

This figure shows a linear relationship for the network

solution and a nonlinear relationship for the EVAL solution.

The EVAL solution increases over the entire weight range

investigated but smaller values for weight 40 produced larger

increases than larger values for weight 40.
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Figure 22 Network and EVAL Area
of Interest Detection Values for
Weight 40, Time Block 6
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Figure 22 shows a nonlinear relationship for the EVAL area

geolocation values and weight 40. The geolocation value

increases as weight 40 increases from 0.0 to 0.31 and then

decreases as weight 40 increases over 0.31. The network

relationship is linear with weight 40 where the network value

increases as the weight increases. These two figures show the

largest weight range for any of the weights investigated for

which both the EVAL overall solution and the EVAL area

geolocation value increase as the weight value increases.

6.2 Sensitivity Analysis

This section describes three approaches used to determine

the range for each weight of interest where the optimal

solution remains unchanged. The range is calculated from the

original weight sequences for time blocks one and six supplied

by the DOD. The first approach is the tolerance approach to

sensitivity analysis which looks at simultaneous independent

variations in the cost coefficients. The second approach uses

traditional sensitivity analysis generated by the linear

formulation of the problem to calculate the weight ranges.

The third and final approach is a manual change in the weight

of interest. This approach re-solved the network for small

increases and decreases in the weight values and determined

where the optimal solution changed frequency assignments.
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6.2.1 Tolerance Approach. The tolerance approach was

performed on the network solutions for the original weight

sequences for time block one and six. It was also performed

n the optimal solutions for time blocks one and six where the

weights for all forty areas are equal. The ranges for each

solution in time block one and time block six compared to

determine which produces the most robust frequency assignment.

6.2.1.1 Time Block One. The original weight sequence

for time block one contained weights 20, 27, and 31 with a

value of 0.203 and weights 22 and 30 with a value of 0.145.

The other weights have a value of 0.003. The sum of the forty

weights is unity. The percent change in the weights are

listed in Table 5 below.

Table 5 Range for Original Weights in Time Block 1

Weight # -Original Value Percent Change

20 .203 .00

22 .145 .00

27 .203 .00

30 .145 .00

31 .203 .00

The reason for the zero percent change in the original

value is the reduced cost of one of the non-basic variables is

zero. The reduced cost of the non-basic variables is the
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numerator in the equation used to calculate the minimum

percent change allowed. Therefore, if the reduced cost is

zero, the percent change is zero.

The network was also solved for all forty weights equal to

0.025. The tolerance approach ranges for the original five

weights are listed in table 6. The equal weights were used

because of the results obtained using equal weights in the

sample problem in chapter 4.

Table 6 Range for Equal Weights in Time Block 1

Weight # [Original Value JPercent Change
20 .025 .0128

22 .025 .0060

27 .025 .0040

30 .025 .0112

31 .025 .0024

The numbers in Table 6 show that weight 20 has the largest

optimality range, followed by weight 30, weight 22, weight 27,

and finally, weight 31. Because the original weights have no

optimality range, the equal weights are more robust in

maintaining the same optimal solution.

6.2.1.2 Time Block Six. The original weight sequence

for time block six consisted of weights 9, 20, and 22 having

a value of 0.1491, weights 30 and 40 have a value of 0.1355,
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and weight 31 has a value of 0.1897. All other weights have

a value of 0.0027. The sum of these weights is unity. The

optimal ranges for the original six weights of interest are

listed in Table 7.

Table 7 Range for Original Weights in Time Block 6

Weight # Jl Original Value Percent Change ]

9 .1491 .00054

20 .1491 .00094

27 .1491 .00087

30 .1355 .00052

31 .1897 .00100

40 .1355 .00111

The results shown in this table indicate that weight 40

has the largest optimality range and weight 30 has the

smallest. The percentages are very small for the tolerance

approach and indicate that the weights given are not very

robust.

The network was also solved for all forty weights equal to

0.025. The tolerance approach ranges for the same six weights

are listed in table 8. The equal weights were used because of

the results obtained using equal weights in the sample problem

in chapter 4.
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Table 8 Range for Equal Weights in Time Block 6

LWeight # IOriginal Value Percent Change

9 .025 .0040

20 .025 .0032

27 .025 .0108

30 .025 .0048

31 .025 .0020

40 .025 .0244

Table 8 shows percentages that are still relatively small

but all are greater than the percentages for the original

weight values. The percentage are eight times greater for

weight 9, four times greater for weight 20, twelve times

greater for weight 27, nine times greater for weight 30, two

times greater for weight 31, and twenty-two times greater for

weight 40. These results show that the equal weights are more

robust than the original weight sequence.

6.2.2 Traditional Approach. I(- linear program

formulation was solved for the original weight sequences for

both time blocks. The SAS Linear Programming Procedure

produced the ranges for each objective function coefficient

where the optimal solution remained unchanged. These ranges

were used to produce the optimal ranges for weights of

interest for each time block. The optimal ranges are shown in

Tables 9 and 10 below.
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Table 9 Classical Sensitivity Analysis Range for Time Block
One Weights

Weight # ifOriginal ValueJ Low Value I High Value

20 .203 4% 14%

22 .145 20% 6%

27 .203 3% 2%

30 .145 33% 8%

31 .203 13% 10%

Table 10 Classical Sensitivity Analysis Range for Time Block
Six Weights __ _ __ _ __ _ ValueHighValu

Weight # Original Value Low Value High Value

9 .1491 10% 15%

20 .1491 23% 4%

27 .1491 3% 27%

30 .1355 28% 4%

31 .1897 11% 14%

40 .1355 2% 13%

The ranges shown in both tables above are larger,

significantly larger in some cases, than the ranges produced

by the tolerance approach. This is not surprising given the

fact that the tolerance approach looks at all the basic

variables at one time, whereas the classical approach looks at

them individually.

6.2.3 Manual Approach. For this approach, the network

problem was solved for various values of each weight above and

below the original value to determine where the optimal
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solution changed. The difference in this approach and the

classical approach is that in this approach the weights were

renormalized for each solution. In the classical approach

only the change in an individual weight was determined. The

results for time block one and six are shown in Tables 11 and

12.

Table 11 Manual Sensitivity Analysis Range for Time Block
One Weights

IWeight # I[Original Value Low Value I High Value

20 .203 1% 10%

22 .145 16% 4%

27 .203 6% 0%

30 .145 28% 5%

31 .203 11% 8%

Table 12 Manual Sensitivity Analysis Range for Time Block
Six Weights

Weight # I[Original Value Low Value I High Value

9 .1491 10% 15%

20 .1491 23% 4%

27 .1491 3% 27%

30 .1355 28% 4%

31 .1897 11% 14%

40 .1355 2% 13%

These tables also show larger ranges for the weights of

interest for both time blocks than the tolerance approach.
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But, they are not as large as the ranges produced by classical

sensitivity analysis.

6.3 EVAL Comparisons

This section compares the overall EVAL results for time

blocks one and six to an average EVAL value calculated by the

DOD. This average value is calculated from the EVAL value for

a large number of random frequency assignments generated by

the DOD. The average EVAL value is used to determine if the

network formulated for this problem produces a better

frequency assignment on average than just picking any random

frequency assignment.

For time block one, the EVAL numbers were calculated from

10,000 random frequency assignments. The average for these

assignments is 12.6148 and the standard deviation is 0,3265

(10). The average EVAL result generated for this project for

time block one is 26.65. This is forty-three standard

deviations above the mean of the random assignments which

means the network frequency assignments are far superior to a

random frequency assignment.

For time block six, 5050 random frequency assignments were

generated to produce a mean of 10.1835 and a standard

deviation of 0.3233. The average EVAL result for a time block

six network solution is 23.87. This is more than forty-two

standard deviations above the mean of the random assignments
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and means the network is producing far more productive

frequency assignments than could be expected randomly.

6.4 Conclusions

This section draws some conclusions from the r.,alts

presented in the previous sections. The conclusions cover

what affect increasing the weights of interest have on the

overall and area geolocation values and which frequency

assignment produced the most robust frequency assignments.

The same basic pattern emerged for all five of the weights

investigated for time block one with regard to the EVAL

overall and area geolocation values. Slightly increasing the

weight from zero produces a small increase for the overall

EVAL result but when the weight gets larger than approximately

0.3 the EVAL value starts to decrease at a fairly steep rate.

The range for the area geolocation value is bigger than the

ovcrall value, approximately 0.0 to 0.5, but it to starts to

decrease if the weight is larger than 0.5.

For time block six, no one statement can describe the

behavior of increasing the weight values. For weight 9 and

weight 20, increasing the weight value decreases the overall

EVAL value and causes the area geolocation value to increase.

Increasing the weight value for weight 27 causes tlie overall

EVAL value to oscillate where large weight values strictly

decrease the value. The same is true of the area geolocation
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value for weight 27, it increases and decreases for small

weight values and decreases for large values. Weights 30 and

31 have interesting effects on the two EVAL -Talues. The

overall value is flat for small values, increases for medium

values, and is flat again for large values. The area

geolocation values increase slightly for small weight values,

decreases sharply for medium values, and is flat for large

values. Lastly, weight 40 increases both the overall and the

area geolocation values for EVAL as the weighL increases.

Looking at the results from the sensitivity analysis

generated by the tolerance approach, the weight sequence with

equal weights for all areas produced the most robust frequency

assignments for the network. This is true for both time block

one and for time block six. In time block one, the original

weight sequence produced no optimality range for the five

weights where the equal weight sequence produced ranges for

all five weights. For time block six, both sequences

generated optimality ranges for all six weights, but the equal

weight sequence produced ranges that were at most twenty-two

times greater and at least two times greater than the original

sequence ranges. Therefore, the equal weight sequence

produced the most robust frequency assignments for both time

blocks.

Additionally, based on the results from time blocks one

and six, the other ten time blocks were evaluated for equal
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weights. The purpose is to determine if the equal weight

sequence is more robust for frequency assignments than the

original weight sequences furnished by the DOD. The results

showed that the equal weight sequences are the most robust for

all time blocks. The optimality ranges for the weights of

interest were much larger for most weights and at least as

large for all weights of the equal weight sequence.

Finally, comparing the EVAL solution to the network

solution as the weight values increase shows an interesting

result. The network solution does not predict how the EVAL

solution changes with respect to the weight changes. But,

looking at the overall EVAL solutions and comparing them to

random solutions generated by the DOD, the network generated

for this project appears to produce good frequency assignments

for the true nonlinear network.

6.5 Recommendations

Some areas of interest that merit investigation in future

research projects are:

1. Investigate other weights for time blocks one and six

to determine if the equal weight sequence is more robust than

all weight sequences.

2. Investigate other time blocks for the weight sequences

used in this project to determine how the time block data

changes the weights effects on the EVAL results.
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Appendix A

This appendix contains the solutions from the linear
formulation of the sample problem in chapter four.
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SOLUTION 1 - A PRIORI SOLUTION:

Optimal Solution = 0.058153

Receiving Station Frequency Assignment

1 1
1 2
1 3

2 1
2 2
2 3

3 0
3 0
3 0

4 0
4 0
4 0

5 1
5 2
5 3
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SOLUTION 2:

Optimal Solution = 0.112772 A Priori Solution = 0.112772

Station Frequency Station Frequency

1 1 1 1
1 2 1 2
1 3 1 3

2 1 2 1
2 2 2 2
2 3 2 3

3 0 3 0
3 0 3 0
3 0 3 0

4 0 4 0
4 0 4 0
4 0 4 0

5 1 5 1
5 2 5 2
5 3 5 3

Percent Difference = 0%
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SOLUTION 3:

Optimal Solution = 0.039313 A Priori Solution = 0.039313

Station Frequency Station Frequency

1 1 1 1
1 2 1 2
1 3 1 3

2 1 2 1
2 2 2 2
2 3 2 3

3 0 3 0

3 0 3 0
3 0 3 0

4 0 4 0
4 0 4 0
4 0 4 0

5 1 5 1
5 2 5 2
5 3 5 3

Percent Difference = 0%
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SOLUTION 4:

Optimal Solution = 0.042193 A Priori Solution = 0.041913

Station Frequency Station Frequency

1 1 1 1
1 0 1 2
1 3 1 3

2 1 2 1
2 2 2 2
2 3 2 3

3 0 3 0
3 2 3 0
3 0 3 0

4 0 4 0
4 0 4 0
4 0 4 0

5 1 5 1
5 2 5 2
5 3 5 3

Percent Difference = 1%

79



SOLUTION 5:

Optimal Solution = 0.038847 A Priori Solution = 0.038847

Station Frequency Station Frequency

1 1 1 1

1 2 1 2
1 3 1 3

2 1 2 1
2 2 2 2
2 3 2 3

3 0 3 0
3 0 3 0
3 0 0

4 0 4 0
4 0 4 0
4 0 4 0

5 1 5 1
5 2 5 2
5 3 5 3

Percent Difference = 0%
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SOLUTION 6:

Optimal Solution = 0.156461 A Priori Solution = 0.156461

Station Frequency Station Frequency

1 1 1 1
1 2 1 2
1 3 1 3

2 1 2 1
2 2 2 2
2 3 2 3

3 0 3 0
3 0 3 0
3 0 3 0

4 0 4 0
4 0 4 0
4 0 4 0

5 1 5 1
5 2 5 2
5 3 5 3

Percent Difference = 0%
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SOLUTION 7:

Optimal Solution = 0.024101 A Priori Solution = 0.024101

Station Frequency Station Frequency

1 1 1 1
1 2 1 2
1 3 1 3

2 1 2 1
2 2 2 2
2 3 2 3

3 0 3 0
3 0 3 0
3 0 3 0

4 0 4 0
4 0 4 0
4 0 4 0

5 1 5 1
5 2 5 2
5 3 5 3

Percent Difference = 0%
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SOLUTION 8:

Optimal Solution = 0.030811 A Priori Solution 0.028577

Station Frequency Station Frequency

1 1 1 1
1 2 1 2
1 3 1 3

2 1 2 1
2 0 2 2
2 0 2 3

3 0 3 0
3 2 3 0
3 3 3 0

4 0 4 0
4 0 4 0
4 0 4 0

5 1 5 1
5 2 5 2
5 3 5 3

Percent Difference = 7%
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SOLUTION 9:

Optimal Solution = 0.023261 A Priori Solution = 0.023261

Station Frequency Station Frequency

1 1 1 1
1 2 1 2
1 3 1 3

2 1 2 1
2 2 2 2
2 3 2 3

3 0 3 0
3 0 3 0
3 0 3 0

4 0 4 0
4 0 4 0
4 0 4 0

5 1 5 1
5 2 5 2
5 3 5 3

Percent Difference = 0%
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APPENDIX B

THIS PROGRAM WAS ADAPTED FROM KRISTA JOHNSON'S
THESIS TO COMPUTE THE OBJECTIVE FUNCTION
COEFFIENTS FOR THE FIRST OBJECTIVE FUNCTION AND
IT CREATES THE INPUT FILE FOR SAS PROC NETFLOW.
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PROGRAM NET

PARAMETER (I = 40,J = 30,K = 31)
REAL F(I,K) ,RP(I,J,K) ,DP(I,J,K) ,COEF(J,K) ,W(I,J) ,U(I)
& LAMB1,LAMB2,SCAIJE,D,DIV
INTEGER I1,J1,K1,CAP,COV,ECAP,MTOTAJ,M(J),

& SUP(J,K),DEM(J,K),DEMAND

ccCCCCCCCcccccCCcCccCCCCCCCCCCccccccccCCCCCcc
C C
C OPEN DATA FILES AND READ THE DATA C
C C
CCCCCCCCcccCccCCCCCCCCCCCCCCCCcccccccccCCcCcCCCCCcc

OPEN (1O,FILE='D1.DAT',STATUS='OLD')
OPEN (11,FILE='F1.DAT',STATUS='OLD')
OPEN (12,FILE='FAN.DAT',STATUS='OLD')
OPEN (13,FILE='MM1.DAT',STATUS='OLD')
OPEN (14,FILE='U.DAT',STATUS='OLD')
OPEN (20,FILE='TEMP.SAS',STATUS='NEW')
OPEN (21,FILE='TEMP.DAT',STATUS='NEW')

CAP = 1
COV = 2
ECAP =5

LAMBI .91
LAMB2 =-.09

SCALE =.01

D = LAMB2*SCALE

DO 100 11=1,1
READ (11,500) (F(I1,K1), K1=1,K)
READ (14,503) U(I1)

100 CONTINUE

DO 110 I1=1,I
DO 105 J1=1,J

READ (10,502) (DP(I1,J1,K1), K1=1,K)
105 CONTINUE
110 CONTINUE

DO 115 I1=1,I
DO 112 J1=1,J

READ (12,501) W(I1,J1)

86



112 CONTINUE
115 CONTINUE

ccCCCCCCCccCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCC
C C
C COMPUTE COEFFICIENTS FOR THE FIRST OBJECTIVE FUNCTION C
C AND CREATE FILE CVECTOR FOR SENSITIVITY ANALYSIS C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DO 140 J1=1,j
DO 130 K1=1,K

COEF(J1,K1) = 0.0
DO 120 I1=1,I

COEF(J1,K1) = COEF(J1,K1)+F(I1,K1)
& *DP(I1,J1,K ) *W(Il,J1 )*U(I1)

120 CONTINUE
COEF(J1,K1) = LAMB1*COEF(J1,K1)
WRITE (21,520) COEF(J1,K1)

130 CONTINUE
140 CONTINUE

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C COMPUTE SUPPLY AND DEMAND REQUIREMENTS FOR THE NETWORK C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

MTOTAL = 0
DO 160 J11l,J

READ (13,506) M(J1)
MTOTAL = MTOTAL + M(J1)

160 CONTINUE

DEMAND = MTOTAL - K*COV

DO 180 j1=1,j
DO 170 K1=1,K

IF (K1.EQ.1) THEN
SUP(J1,K1) =M(J1)

ELSE
SUP(J1,K1) = 0

END IF

IF (J1.EQ.30) THEN
DEM(J1,K1) = COV

ELSE
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DEM(JI,KI) = 0
END IF

170 CONTINUE
180 CONTINUE

CCCCCCCCCCcCCCcCCCCCCCCcCCCCCCCCCCCCCCCCCCcCCCcCCCcCCCCCC
C C
C CREATE SAS NETFLOW INPUT FILE C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

WRITE (20,*) 'TITLE ''WORLD-WIDE SENSOR SYSTEM'';'
WRITE (20,*) 'OPTIONS LINESIZE=78;'
WRITE (20,*) 'DATA XXX;'
WRITE (20,*) 'INPUT INNODE $ OUTNODE $ MIN CAP COST SUP
& DEM;'
WRITE (20,*) 'CARDS;'
WRITE (20,*)

DO 200 Jl=l,J
DO 190 KI=1,K

WRITE (20,510) J1, 'R', K, 'F', .

& COEF(J1,K1), SUP(JI,KI), DEM(J1,KI)
190 CONTINUE

WRITE (20,515) J1, 'R S . . 0 0 0'
200 CONTINUE

DO 210 K1=1,K
WRITE (20,511) Ki, 'F E . .', D, '0 0'

210 CONTINUE

DO 220 K1=1,K
WRITE (20,512) K1, 'F N ', ECAP, '0 0 0'

220 CONTINUE

WRITE (20,513) 'E T . . 0 0 0'
WRITE (20,513) 'N T . . 0 0 0'
WRITE (20,514) 'S T . . 0 0', DEMAND
WRITE (20,*) ';'
WRITE (20,*)
WRITE (20,*) 'PROC NETFLOW MAXIMUM DATA=XXX',

& 'ARCOUT=SOLUTION;'
WRITE (20,*) ' HEADNODE OUTNODE;'
WRITE (20,*) ' TAILNODE INNODE;'
WRITE (20,*) ' MINFLOW MIN;'
WRITE (20,*) ' CAPACITY CAP;'
WRITE (20,*) ' COST COST;'
WRITE (20,*) ' SUPPLY SUP;'
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WRITE (20,*) ' DEMAND DEM;'
WRITE (20,*) 'PROC PRINT DATA=SQLUTIQN;'
WRITE (20,*) 'SUM _FCOST ;'

500 FORMAT(1X,31(F3.2,1X))
501 FORMAT(24X,F6.4)
502 FORMAT(1X,31(F3.2,1X))

503 FORMAT(F8.1)
506 FORMAT(I2)
508 FORMAT(1X,A14,1X,I3,lX,Al)
509 FORMAT(lX,A1,lX,I2,A1,1X,A1,1X,I2,1X,A1,I2,1X,I2)
510 FORMAT(1X,2(I2,A1,1X),A1,2X,A1,1X,F11.6,1X,2(I2,1X))
511 FORMAT(1X,12,A1O,2X,F6.4,2X,A4)
512 FORMAT(1X,12,A7,1X,12,7X,A7)
513 FORMAT(3X,A24)
514 FORMAT(3X,A21,1X,13)
515 FORMAT(1X,12,A28)
520 FORMAT(1X,F9.6)
530 FORMAT(3X,A1,2X,I2,A15, 1X,I3,3X,A1)
531 FQRMAT(3X,A1,2X,12,A23)

END
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APPENDIX C

THIS PROGRAM CREATES THE LP FORMULATION OF THE
WORLD-WIDE SENSOR SYSTEM NETWORK FOR SAS PROC LP
IN THE SPARSE INPUT FORMAT.
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PROGRAM SPARSE

PARAMETER (I = 40,J = 30,K = 31)
REAL COEF(J,K)
INTEGER 11,J1,K1,COV,COUNT,MAX,MXCOV,MNCOV,M1 (J)
CHARACTER*6 XNAME(J,K)
CHARACTER*3 YNAME(K)

CccCcCCCCCCCccCCccccccccCCCccccCccccCccCCCcCC
C C
C OPEN DATA FILES AND READ THE DATA C
C C
CCCCCCCCCCCCCCccCcCCCCCCCCccccccccCCCCCcCCCCCCCc

OPEN (1O,FILE='XNAME.DAT',STATUS='OLD')
OPEN (11,FILE='YNAME.DAT',STATUS='OLD')
OPEN (12 ,FILE='CVECTOR.DAT' ,STATUS='OLD')
OPEN (13,FILE='MM1.DAT',STATUS='OLD')
OPEN (20,FILE='SPARSE6.SAS',STATUS='NEW')

MXCOV = 7
MNCOV = 2
MAX = 240
COUNT = 100

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C READ VARIABLE NAMES C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DO 110 J11l,J
DO 100 K1=1,I(

READ (10,500) XNAME(J1,K1)
100 CONTINUE
110 CONTINUE

DO 120 K1=1,K
READ (11,501) YNAME(K1)

120 CONTINUE

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C READ OBJECTIVE FUNCTION COEFICIENTS C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DO 140 Jl=1,J
DO 130 K1=1,K

READ (12,502) COEF(J1,K1)
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130 CONTINUE

READ (13,503) MI(J1)
140 CONTINUE

CCCCCCCCCCCCCCcCCCCCCCCcccCCCCCCCCCcCCCccCcCCCCCCCcCCCCCC
C C
C CREATE SAS LP INPUT FILE C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

WRITE (20,*) 'TITLE ''WORLD-WIDE SENSOR SYSTEM'';'
WRITE (20,*) 'OPTIONS LINESIZE=78;'
WRITE (20,*) 'DATA;'
WRITE (20,*)
WRITE (20,*) 'INPUT -TYPE_ $ _COL_ $ _ROW_ $ _COEF_;'
WRITE (20,*)
WRITE (20,*) 'CARDS;'
WRITE (20,*)
WRITE (20,*) 'MAX . DETECT
WRITE (20,*) 'UPPERBD . AVAIL

DO 145 Jl=l,J
WRITE (20,504) 'LE CON',COUNT,'

COUNT = COUNT + 1
145 CONTINUE

DO 150 K1=1,K
WRITE (20,504) 'LE CON',COUNT,'

COUNT = COUNT + 1
150 CONTINUE

DO 160 K1=1,K
WRITE (20,504) 'GE CON',COUNT,'

COUNT = COUNT + 1
160 CONTINUE

DO 180 Jl=1,J
DO 170 K1=1,K

WRITE (20,505) '. ',XNAME(Jl,Kl),
& 'DETECT', COEF(Jl,Kl)

WRITE (20,506) '. ',XNAME(JI,Ki),
& 'AVAIL',' 1'

170 CONTINUE
180 CONTINUE

DO 190 K1=,K
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WRITE (20,507) '. ',YNAME(KI),
& 'DETECT',' -.0009'

190 CONTINUE

COUNT = 100

DO 210 Jl=l,J
DO 200 KI=I,K

WRITE (20,509) '. ',XNAME(JI,KI),
& 'CON', COUNT,' 1'

200 CONTINUE
COUNT = COUNT + 1

210 CONTINUE

DO 230 K1=1,K
DO 220 Jl=l,J

WRITE (20,509) '. ',XNAME(J1,K1),
& 'CON', COUNT,' i'

220 CONTINUE
WRITE (20,510) '. ',YNAME(K1),' CON',

& COUNT,' -1'
COUNT = COUNT + 1

230 CONTINUE

DO 250 K1=1,K
DO 240 Jl=l,J

WRITE (20,509) '. ',XNAME(J1,KI),
& 'CON',COUNT,' 1'

240 CONTINUE
COUNT = COUNT + 1

250 CONTINUE

COUNT = 100

DO 255 Jl=l,J
WRITE (20,512) '. RHS CON',COUNT,

& ' ', MI(JI)
COUNT = COUNT + 1

255 CONTINUE

DO 260 K1=1,K
WRITE (20,512) '. RHS CON',COUNT,

& ' ', MXCOV
COUNT = COUNT + 1

260 CONTINUE

DO 270 K1=1,K
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WRITE (20,512) '. -RHS- CON',COUNT,
& f , MNCOV

COUNT = COUNT + 1
270 CONTINUE

WRITE (20,*) ;

WRITE (20,*) 'PROC LP SPARSEDATA RANGEPRICE
WRITE (20,*) 'MAXIT1=40000 MAXIT2=40000;'

500 FORMAT(A6)
501 FORMAT(A3)
502 FORMAT(F15.7)
503 FORMAT(I2)
504 FORMAT(1X,A23,I3,A6)
505 FORMAT(1X,A1O,A6,A1O,A4,F15.7)
506 FORMAT(1X,A1O,A6,A9,A6)
507 FORMAT(1X,A1O,A3,A14,A7)
508 FORMAT(1X,A1O,A6,A8,A7)
509 FORMAT(1X,A10,A6,A7,I3,A6)
510 FORMAT(1X,A1O,A3,A11,I3,A6)
511 FORMAT(1X,A30,I3)
512 FORMAT(1X,A23,I3,A5,12)

END
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APPENDIX D

THIS PROGRAM COMPUTES THE PROBABILITY OF
GEOLOCATING A DISTRESS SIGNAL FOR EACH AREA
OF TRANSMISSION GIVEN AN OPTIMAL ASSIGNMENT OF
FREQUENCIES.
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PROGRAM GEOLOCAT ION

PARAMETER (I = 40,J = 30,K = 31)
REAL F(I,K),DP(I,J,K),G(I),W(I,J),U(I),SUM
INTEGER I1,J1,K1,OPT(J,K)

CCCCCCCCCCCcccccCCcCCcCCCcccCCCCCCCCCCCCCCCCCCCCc
C C
C OPEN DATA FILES AND READ THE DATA C
C C
cCCCCCCCCCCCCCCCCCCCCCCccCccCCCCCCCCCCCCCCCCCCCCcc

OPEN (10,FILE='D6.DAT',STATUS='OLD')
OPEN (11,FILE='F6.DAT',STATUS='OLD')
OPEN (12,FILE='FAN.DAT',STATUS='OLD')
OPEN (13,FILE='OPT6.DAT',STATUS='OLD')
OPEN (14,FILE='UU.DAT',STA.TUS='OLD')
OPEN (20,FILE='GEO.DAT',STATUS='NEW')

SUM = 0.0

READ (14,503) WEIGHTS
DO 100 11=1,1

READ (11,500) (F(I1,K1), K1=1,K)
READ (14,503) U(I1)
U(I1) = U(I1)/WEIGHTS

100 CONTINUE

DO 120 I1=1,I
DO 110 J11l,J

READ (10,502) (DP(I1,J1,K1), K1=1,K)
110 CONTIVUE
120 CONTINUE

DO 140 I1=1,I
DO 130 J1=1,J

READ (12,501) W(I1,J1)
130 CONTINUE
140 CONTINUE

DO 150 J1=1,J
READ (13,504) (OPT(J1,K1), K1=1,K)

150 CONTINUE
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CcccCCcccCccCCCcccccccCCCCccCCCcccccCccccccCCCcccCCCc
C C
C COMPUTE THE PROBABILITY OF GEOLOCATION FOR EACH C
C INTEREST AREA AND WRITE THEM TO AN OUTPUT FILE. C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DO 180 I1=1,I
G(I1) = 0.0
DO 170 J1=1,J

DO 160 K11l,K
IF (OPT(J1,K1).EQ.1) THEN

G(I1) = G(I1)+F(I1,Kl)*DP(Il,J1,K1)*W(I1,J1)
& *U(I1)

END IF
160 CONTINUE
170 CONTINUE

WRITE (20,505) 'The Probability for location', Il,
& 'is' ,G(I1)

SUM = SUM + G(I1)
180 CONTINUE

WRITE (20,506) 'The Total is', SUM

500 FORMAT(1X,31(F3.2,1X))
501 FORMAT(24X,F6.4)
502 FORMAT(lX,31(F3.2,1X))
503 FORMAT(F8.3)
504 FORMAT(31(I1,1X))
505 FORMAT(1X,A28,1X,I2,1X,A2 ,F9 .6)
506 FORMAT(1X,A12,1X,F1O.6)

END
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APPENDIX E

PROGRAM TO PERFORM NETWORK TOLERAN~CE ANALYSIS
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PROGRAM TOLERANCE

PARAMETER (I=40,J=30,K=31)
INTEGER I1,12,J1,K1,CNT,OPT(J,K),SEQ(K),T1,T2
REAL CK(J,K),TAU(J*K),DUMMY,RED(J,K),TAUSTAR,

& RANGE(2000,2),TEMP,F(I,K),RP(I,J,K),DP(I,J,K),
& COEF(J,K),W(I,J),U(I),COEF2(J,K),U1HIGH,U1LOW,
& U1RANGE ,TEMPHIGH, TEMPLOW, SUM

CcCCCCCCCccccccccccccccCCcccccCCCCCCCcCCccccccc
C C
C OPEN INPUT AND OUTPUT FILES C
C C
ccCcccccccccccccCCCCC~~~ccccCCCCCCcCCCccccCCCc

OPEN (1O,FILE='CVECTOR6.DAT' ,STATUS='OLD')
OPEN (11,FILE='NETT6.OUT',STATUS='OLD')
OPEN (12,FILE='RED6.DAT',STATUS='OLD')
OPEN (13,FILE='NETSEQ.DAT' ,STATUS='OLD')
OPEN (14,FILE='NETTOL6.DAT' ,STATUS='NEW')
OPEN (20,FILE='D6.DAT',STATUS='OLD')
OPEN (21,FILE='F6.DAT',STATUS='OLD')
OPEN (22,FILE='FAN.DAT',STATUS='OLD')
OPEN (23,FILE='U.DAT',STATUS='OLD')

SUM = 0.0
CNT = 0
TAUSTAR = 1.0

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C READ IN DATA AND SUM COST COEFFICIENTS C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DO 50 K1=1,K
READ (13,502) SEQ(K1)

50 CONTINUE

DO 70 K1=1,K
DO 60 J1=1,J

READ (12,500) RED(J1,SEQ(K1))
60 CONTINUE
70 CONTINUE

DO 300 I1=1,I
READ (21,520) (F(I1,K1), K1=1,K)
READ (23,523) U(I1)
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300 CONTINUE

DO 310 11=1,1
DO 305 J1=1,J

READ (20,522) (DP(I1',J1,K1), K1=1,K)
305 CONTINUE
310 CONTINUE

DO 315 11=1,1
DO 312 J1=1,J

READ (22,521) W(I1,J1)
312 CONTINUE
315 CONTINUE

DO 340 J1=1,J
DO 330 K1=1,K

CK(J1,K1) = 0.0
DO 320 I1=1,I

CK(J1,K1) = CK(J1,K1 )+F(I1,K ) *DP(I1,J1,K1)
& *W(I1,J1)*U(I1)

320 CONTINUE
330 CONTINUE
340 CONTINUE

DO 120 J1=1,J
READ (11,501) (OPT(J1,K1), K1=1,K)

120 CONTINUE

DO 140 J1=1,J
DO 130 K1=1,K

IF(OPT(J1,K1).EQ.1) THEN
SUM =SUM +CK(J1,K1)

END IF
130 CONTINUE
140 CONTINUE

WRITE (14,600) 'THE SUM IS ', SUM

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C CALCULATE TAU STAR VALUES AND FIND MINIMUM C
C TAU STAR VALUE C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DO 160 J1=1,J
DO 150 K1=1,K

CNT = CNT + 1
IF(OPT(J1,K1).EQ.0) THEN
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TAU(CNT) = ABS(RED(J1,K1))/(SUM +
& CK(J1,K1))

ELSE
TAU(CNT)=1

END IF
IF(TAUSTAR.GT.TAU(CNT)) THEN

TAUSTAR = TAU(CNT)
Ti = Ji
T2 = Ki

END IF
150 CONTINUE
160 CONTINUE

ccccCccCCCCCCCCcccccccccccccCCccCCCCCCCCCCcc
C C
C OUPUT MINIMUM TAU STAR VALUE C
C C
CcCcccCccCcccCcccccccccccCCCCCcCCCccCcCCCc

WRITE (14,601) 'THE MINIMUM TAU STAR VALUE IS ',TAUSTAR,
& T1,T2

CCccccCCCccCCCCcccccccc~c~cccCCCCCCCCCcccCcccc
C C
C CALCULATE AND OUTPUT RANGE FOR BASIC C
C COEFFICIENTS TO REMAIN OPTIMAL C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CNT = 1
DO 180 J1=1,J

DO 170 K1=1,K
TEMP = CK(J1,K1) * TAUSTAR
IF(OPT(J1,K1).GT.1) THEN

RANGE(CNT,1) = CK(J1,K1) - TEMP
RANGE(CNT,2) = CK(J1,Kl) + TEMP

ELSE
RANGE(CNT,1) = CK(J1,K1)
RANGE(CNT,2) = CK(J1,K1)

END IF
CNT = CNT + 1

170 CONTINUE
180 CONTINUE

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C DETERMINE WEIGHT RANGES WHERE SOLUTION C
C REMAINS OPTIMAL C
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C C
CCCCCccCccCCCCCCCcccccCCccCcccCcccCcccCCc

DO 440 J1=1,J
DO 430 K11l,K

COEF(J1,K1) = 0.0
DO 420 I1=1,26

COEF(J1,K1) = COEF(J1,K1)+F(I1,K1)*DP(I1,Jl,K1)
& *W(I1,J1)*U(I1)

420 CONTINUE
430 CONTINUE
440 CONTINUE

DO 443 J1=1,J
DO 442 K1=1,K

DO 441 11=28,1
COEF(J1,K1) = COEF(J1,K1)+F(I1,K1)*DP(I1,J1,K1)

& *W(I1,J1)*U(I1)
441 CONTINUE
442 CONTINUE
443 CONTINUE

CNT = 1
DO 360 J1=1,J

DO 350 K11l,K
COEF2(J1,K1) = F(27,K1)*DP(27,J1,K1)*W(27,J1)
CNT = CNT + 1

350 CONTINUE
360 CONTINUE

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C COMPUTE AND OUTPUT RANGE FOR WEIGHT 1 C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

UlPERCENT = 1.0
CNT = 1
DO 380 J1=1,J

DO 370 K1=1,K
IF((OPT(J1,K1).EQ.2) .AND. (COEF2(J1,K1).

& NE.0)) THEN
UlTEMP = ((RANGE(CNT,2)-COEF(J1,K1))/

& COEF2(J1,K1))
IF(U1PERCENT.GT.U1TEMP) THEN

UlPERCENT = UlTEMP
WRITE (14,620) Jl,K1,U1PERCENT

END IF
END IF
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CNT = CNT + 1
370 CONTINUE
380 CONTINUE

U1HIGH =UlPERCENT
UILOW =U(9) - (UlPERCENT-U(9))
WRITE (14,603) 'RANGE FOR WEIGHT 009 IS ',U1LOW, 'TO '

& U1HIGH

500 FORMAT(F15.10)
501 FORI4AT(31(I1,lX))
502 FORMAT(I3)
520 FORMAT(1X,31(F3.2,lX))
521 FORMAT(24X,F6.4)
522 FORMAT(1X,31(F3.2,1X))
523 FORMAT(F6.4)
600 FORMAT(1X,A11,F1O.7)
601 FORMAT(1X,A30,F15.13,2X,I2,2X,I2)
603 FORMAT(1X,A24,F19.13,1X,A3,F19. 13)
605 FORMAT( lX, 4,2X,I4,2X,F9.7,2X,F9.7,2X,F9.7,2X,F9.7,

& 2X,F9.7)
610 FORMAT(I3,I3, 1X,F9.7, 1X,F9.7, 1X,F9.7, 1X,F9.7)
620 FORMAT(I3,I3,1X,F15.12)

END
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