T

ll

AD-A248 207

SR
' BN B !
) @Wﬂw?“b“‘ ad '

DLVELUPNIEN L UY
A FLIGHT INFORMATION SYSTEM
USING
THE sSTRUCTUKED METHOU

THESIS

Yeong-Lae Kwak
Captain, ROKAF

AFIT/GCS/ENG/92M-03

92-0

8125---

RN
\ e o

/‘ DEPARTMENT OF THE AIR FORCE

AR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Qhio

N .h-‘f’

i

e

Rt x T gle NG a5 N SR R o PNINIA L VRS ARG B S RAr PN v
R O R e LA

AFIT/GCS/ENG/92M-03

DEVELOPMENT OF
A FLIGHT INFORMATION SYSTEM
USING
THE STRUCTURED METHOD

THESIS

Yeong-Lae Kwak
Captain, ROKAF

AFIT/GCS/ENG/92M-03

Approved for public release; distribution unlimited

R
=t N

~ e

PP N

AFIT/GCS/ENG/92M-03

DEVELOPMENT OF
A FLIGIT INFORMATION SYSTEM
USING
THE STRUCTURED METHOD

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Systems

Acoession For

NTIS GRARI 4

Yeong-Lae Kwak, B.S. TIC 1R 0
Unciwrs preed D
Captain, ROKAF Justuticntton]
By
Distributten/
March 1992 Avallability Codes
[Avail and/or

Suoecial

&y Disg\:;
|]

s f(/

Approved for public release; distribution unlimitéd

Preface

The purpose of this thesis was to develop a Flight Information System (FIS) using the Struc-
tured Method as a software development method and ORACLE as a database management system.
The Korean Air Force was selected as a model. This thesis covered only the core part of the FIS.
This thesis focused on two points: the application of software development tools and the application

of the ORACLE products.

This thesis was accomplished through mauy people’s encouragement and support. I would

like to express my deep appreciation to those people who helped me during the last 21 months.

First of all, T would like to thank my thesis advisor Dr. Ilenry Potoczny and thesis committee
members, Maj. Mark Roth and Maj. Paul Bailor. Their continuous guidance made it possible for

me to complete my thesis.

I would also like to thank two USAT officers and an ORACLE contractor: Capt. Armin
Sayson, Capt. Andrew Dymek, and David Roliff. They spent much of their time helping me. They

helped my thesis work by checking grammar and solving miscellaneous problems.

Additionally, T would like to thank my family members and my wife’s family members for

their continuous support and encouragement from the other side of the globe.
Finally, I would like to thank my wife Yangsook Lee for sharing all my difficulties, giving her

devoted support, and for enduring a long lonely time.

Yeong-Lae Kwak

il

Preface

L N I BT S

Table of Contents

List of Figures . . .

List of Tables

Abstract

L.

1.

Introduction .
1.1
1.2
13
1.4

Literature Review

2.1 Introduction

Background

User Requirements

Approach and Methodology

Sequence of Presentation .

I R T T T I)

2.2 Structured Method . . .

.

2.2.1 Structured Analysis.

2.2.2 Structured Design.
2.3 ORACLE ..

231

2.3.2

2.3.3

2.34

235

ORACLE RDBMS.

SQL.

SQL*Menu.

SQL*Forms.

Prc*Ada.

.

Page

iii

<
=.
=:
=

10
11
12
12
12
14

Page

24 Normalization. ittt 16
2.4.1 Tirst Normal Form (ANF).. vt 16

2.4.2 Second Normal Form (2NF). 16

2.4.3 Third Normal Form (3NF). 16

2.44 Boyce-Codd Normal Form (BCNF). EEREEEEE 17

2.5 SUIMIMATY. ¢ v ¢ v v v e v o v o vt e oo o b o v et o e i e e U
JII. Analysis of User Requirements« v v o v v v it i vt i e v e s 18
3.1 Imtroduction . . v v v v it i e e e 13
3.2 Identify User Required Datao, 18
321 ContextDiagram. v v i vt i e e 18

3.2.2° Partitionof the FIS. C e e e 18

8.2.3 Partition of Organization. i i i 21

3.24 Partitionof Pilot. C e e s 25

3.2.5 Partitionof Aircraft. L e e 28

3.2.6 Partitionof Mission. 31

3.2,7 Partition of Flight-order., 33

3.2.8 Partition of Flight-sortie. 36

3.3 DavabaseModelling o i i, 40
33.1 Modelling of Organization. 42

3.3.2 ModellingofPilot. o .. 43

3.3.3 Modellingof Aircraft. 44

3.34 Modellingof Mission. 45

3.3.5 Modelling of Flight-order. 46

3.3.6 Modelling of Flight-sortie. 48

B S 1 1+ - 50

iv

IV. Designof theFIS . . . oo s .

41 Introduction . ..o v v v i it P e e e e e
4.2 Database Design e e e
4.2,1 Database Design of Organization..
42,2 Database Designof Pilot.
423 Database Design of Aircraft.,
4,24 Database Design of Mission.. o it
42,5 Database Design of Flight-order. ., e
4.2,6 Database Design of Flight-sortie. e
42,7 Compleie Database Tables. e e e s .
4.3 StructureChart e e e s
4.3.1 High-Level Design, e e
4-3-2 LOW‘LQVQ] DeSign. L I I R T R) AT T L T I R LI
V. Implementation and Testing e e e e
VI. Conclusion and Recommendation v on.. e
6.1 Summary i it e e e e e e
6.2 Conclusion v i i i it e e e e e e
6.3 Recommendation i e e
Appendix A. Data Dictionary 00 i i e e e e
Appendix B. Dztabase Table and Index Creation Program
Appendix C. Screen Design of the High-TLevel FIS oot
Bibliography e e e
VI v s v et i e e e e e e e e e e e e e e e e

73

77
77
7
78

81

85

88

92

94

Tigure
1.

2.

e =

o

=

11,
12.
13.

15.
16.
17.
18.
19.
20.
21,
22.
23.7
24.

25.

List of Figures

Notation of Data Source & Destination of Decomposed DFD
Notation of ERD . v .« v v v vt i e e
Degree & Connectivity of ERD e e e e e
Oracle Facilities e e e et e e e e e s
T gger Types v v vt e e e e
Context DIagram . . o v v v vt e it e e e e
Querview DED of the FIS o 0 v i i i i i e e i
DFD of Organizabion < i-v v v v v v v v it e e e e e
DFDofPilof e e .
DEFDof Aireralt v v v v vt it s it et i s e Cas

DFDofMission . v . v v v ittt i st ettt v
DFD of Flight-order e e e et s
DFD of Flight-sortie. e e e e e Ve e

Overview ERDof the FISo 0 oot i i i e e Cewe s
ERDof Organizations . . . v v v v v v v v v i vi s e i e a e e
ERDof Pilot . . . o i it i i i e i s e e
ERDof Aircraft 0 v vt i i i i e s
ERDof Mission it e e e
ERDof Flight-order v vttt i i et e e ns
ERDof Flight-sortie v ittt i i et e it e et e s
High-level Structure Chartof the FIS
Structure Chart of Organization '. .
Structure Chart of Pilot 0 i i
Structure Chartof Aircraft e

Structure Chart of Mission & v v v v v it e e s e e e e e e e e e e e e

vi

Page

‘Figure

96.. Structure:Chart of-Flight-Order .

27. Structure Chart of Flight-Sortie .

0

N Ry SRR T
e
s,

\

R 4

oy

.
N
c,
o

2

:

¥

- %

4

List of Tables

Table- Page
1. Notation of Data Dictionary P a e 8
2. Data Source and Destination i i i i e e e 20
3. Entity/Weak Entity Setsof the FIS v v i oo veee. 40
4. Entity/Weak Entity Sets & Attributes of Organization e e 43
5. DEntity/Weak Enuity Sets & Attributesof Piloto v v v v v ceee o 43
6. Dntity/Weak Entity Sets & Attributesof Aireraft, ..o v vl 44
7. Entity/Weak Entity Sets & Attributesof Mission 0o vy . 46
8. Dntity/Weak Entity Sets & Attributes of Flight-Order., .. . [
9. Entity/Weak Entity Sets & Attributes of Flight-Sortie. I £
10. Incomplete Database Tables of Organization e aa. B2
11. Complete Database Tables of Organization e B2
12. Incomplete Database Tablesof Pilot et B &
13. Complete Database Tables of Pilot e et Ve so.. 83
14, Incomplete Database Tablesof Aireraft v 53
15, Complete Database Tablesof Aireraft v i v v oo 54
16. Incomplete Database Tablesof Mission 54
17. Complete Database Tablesof Missiont i it v v s 54
18. Incomplete Database Tables of Flight-order 55
19. Complete Database Tables of Flight-order. 55
20. Incomplete Database Tables of Flight-sortie., ... 56
21. Complete Database Tables of Flight-sortie 56
22. Complete Database Tablesofthe FIS 57
23. Reference Tablesfor Datalnput 76

viii

ATIT/GCS/ENG/92M:(3

v eer— A R N T L R R} AP IV

Abstract

This thesis documents the development of a database system for the Flight Information
System (FIS) of the Korean Air Force. The scope of the FIS is too large to be covered by this
thesis. Thus, this thesis covers only the core part of the FIS due to the limitation of time and man-
power, The usecs of the FIS can be grouped into five categories: Combat Air Command (CAC),
wing, squadron, control tower, and other departments. The scope of the FIS can be divided into

six categories: organization, pilot, aircraft, flight mission, flight order, and flight sortie.

This thesis uses the structured method. Structured analysis and structuraed design techniques
are mainly used two techniques. Many tools such as Data Flow Diagram (DFD), Data Dictio-
nary (DD), Process Specification, Entity Relationship Diagram (ERD), and Structure Chart are
used. ORACLE was used as a database management system. 3QL, SQL*Forms, SQL*Menu, and
Pro*Ada are ORACLE producis used in this thesis, This thesis was developed by following three

steps.

The first step was the Analysis. The user required data were identified using DFD, DD,
and Process Specification. Then, the perception of the real world of the FIS was modeled into a

database structure nsing ERD.

The second step was the Design. Database tables were generated from the ERD and the

Structure Chart with Module Description were generated.

The third step was the Implementation and Test. Each module of the structure chart were
implemented and tested using top-down development method. Pro*Ada and SQL¥Forms were used

as programming tools.

This thesis focused not only the developmeni of the FIS but also the application of the
software development method, the structured method, and its tools sa.h as DFD, DD, ERD, and

so on. Also, the use of ORACLE was a important part of this thesis too.

ix

Development of
a Flight Information System
using

the Structured Method

1. Iniroduction

1.1 Background

In 1985, the Republic.of Korean Air Force (ROKAT) developed a database system called-the-
Flight Information System:(FIS), The purpose of this system was to gather information related to
air operations and to support the policy decisions of the Air Force. The FIS included information
related to pilots, aircraft, flight-time, flight-sorties, flight missions, and others. It was a big system
with. more than 200 programs (ipproximately 50,000 lines of code). However, the FIS was not a
successful system. It contained many structural problems and program errors. The system failed
for a number of reasons. The cause of software failure was due to the designer’s lack of software
development experience using database systems, insufficient understanding of database systems,

and incorrect use of software development tools,

At this time, the FIS does not support the users sufficiently and contains many incorrect data.
Due to the lack of computer assistance, much of the data management tasks are done manually.
Therefore, much time is spent gathering, processing, and extracting required information. However,
due to human errors and inconsistent extraction of the required information by different people,

the reliability of the extracted information is questionable.

1.2 User Requirements

The users of the FIS require a reliable and convenient new FIS. The following five groups
are the users of the FIS and will become the users of the new FIS which will be developed in this

thesis:

. Combat.Air Command: (CAC),

 Flight Wing,

Flight Squadron.

Other Departments,

Control Tower.

The CAC is the top department of the Air Force related to the air operations. It issues
regular and immediate flight-orders to each wing. It also watches the current flight status of cach
wing and analyzes the flight result data such as flight-time, flight-sortie, and flight-missions. The

CAC also orders a pilot to move to certain organizations.

A wing receives flight-orders from the CAC at any time. Like the CAC, each wing writes
flight-orders and dispatches them to each of their squadrons to accomplish the flight-orders reccived
from the CAC. Additionally, each of the wing sends flight-orders for the squadrons to perform the

missions which are planned by itself and to upgrade the wing's mission capability.

A flight squadron is an organization which flies with its own aircraft. It receives flight-orders
frem the wing at any time. Everyday, it writes flight-plans and executes them. Flight plans change
continnously until take-off because of new flight-orders and bad weather conditions. Each flight
squadron has several types of aircraft and numerous pilets. The pilots of ¢ ©. «,.. Iyon fly often

to perform their squadron’s flight-plans,

Other departments are not related to flight directly but need information related to the flight.
Other departments include Headquarter, Academy, Logistics Command, Department of Defense

and others. The pilots of other departments fly regularly to maintain their own flight capability.

A control-tower is an organization which controls and records the exacy take-off and landing
time of each aircraft to prevent collisions. Each air-base has a control-tower to support aircrafts
which uses the air-base’s runway. Sometimes aircraft land at unscheduled bases. Therefore, every

control-tower needs continuously updated current flight plans and statuses of all the Air Force.

A new FIS developmenf team was organized and surveyed the requirements of the users.
The category of the new FIS is too large and the users require much detail. However, due to the

limitation of time and manpower, this thesis tries to develop only the core part of the new FIS.

The core par* of the new FIS manages important data of the FIS and require complex program

application. It consists of three categories and each of them are discussed below.

The first category of requirements is information on pilots and aircraft. The data on each
pilot and aircraft changes continuously. All the users, with the exception of the control-tower,

require correct and detailed current information on each pilot and aircraft.

The second category is the flight-order transfer system. There are two kinds of flight orders:
cac-order and wing-order. Cac-orders are sent from CAC to each wing continuously. And wing-
orders are sent from each wing to their squadrons continuously. The purpose of flight-orders can be
grouped into three. The first is to confront emergency situations. By sending flight-orders with a
specific flight mission, the Air Force can confront an emergency situation. The second is to initiate
regular and special military operations. The CAC or cach wing may plan air operations for various
reasons. The air operations are initiated by sending flight-orders with flight mission. And the third
is to increase or to maintain the flight capability of wings or squadrons. The CAC, each wing, and

cach squadron require a reliable, fast flight-order transfer system.

The last category of user requirements is flight status display system. Each squadron and
several other departments plan and conduct flight continuously. All the organizations must ex-
change flight status information which includes flight planning and current flying information. By
sharing flight status information, all organizations have the flight status information available on
screens which show how many sorties are ready to fly, how many aircraft are in the air, and how

many flights were executed that day. More detailed information can be known with such a system.

1.3 Approach and Methodology

The ncw FIS is a data processing oriented system. Almost all information such as pilots, air-
craft, missions, and flight-sorties can be stored in a database system and displayed or printed easily
for the users. However, other information, suck as flight order and flight status, require complex
software application techniques. Such information must be prucessed and displayed simultanecusly

as the users input them.

The Korean Institute of Defense Analysis (KIDA) recommends the structured method, dis-

cussed in section 2.2, as the Korean military software development method. The ORACLE Re-

Ié,tibnal~IDat5,i)ase Mzinageiiient System (RDBMS), discusséd in: detail in sectig‘):n,.fZ;;{}f? *‘iS—?pVé*of’tlié
‘most widely known Data Base Management System (DBMS) and is éxpected to be used inore

widely than-others.

In this thesis, the VAX 8650! with the Virtual Memory System (VMS) operating system will
be used in the development of the FIS. "Che structured method, a software development method,
using ORACLE Relational Database Manzgement System (RDBMS) Version 6.0 will be used to
develop the FIS. Almost all programs will be developed using SQL*Forms. However, some programs
which require complex procedures and/or concurrent processing, will be developed with Pro*Ada

which will also be discussed in section 2.3.

Following are the selected software development steps which will be applied in this thesis. The
analysis phase begins by identifying the required data of the users. Data Flow Diagrams (DFDs),
Data Dictionary (DD) and process specifications will be used as analysis tools. The next step is
modelling the database. Entity-Relationship Diagrams (ERDs) are to be used in this step. In'the
design phase, database tables will be generated from the ERDs and DD using relational scheme
normalization technique which will be discussed in section 2.4. Then, a structure chart will be
derived from the DI'D which was derived previously in the analysis phase. What happens inside
each module of the structure chart will be described in detail using module deccription to aid the

implementation of it. The final phase is the implementation and testing of each module.

1.4 Sequence of Presentation

Chapter 2 briefiy reviews the required knowledge to understand this thesis and the rules used
in this thesis. The structured method with its tools such as DFD, DD, ERD and Structured Chart
with their notations are discussed briefly. Also, the relational scheme normalization technique will
be discussed. Chapter 3 describes the structured analysis process used in the development of the
FIS. The ERD, DFD and DD are used as structured analysis tools. Chapter 4 describes the process
of structured design of the FIS. Database design and structured charts will be discussed. Chapter
5 describes the process of implementation and testing of the FIS system. Finally, conclusions and

recommendations are presented in Chapter 6.

1VAX 8650 is made by Digital Equipment Corporation {DEC) and has 48 Megabytes of main memory.

Il. Literature Review

2.1 Iniroduction

This chapter provides the basic knowledge required to write or to understand this thesis and
the notations used in this thesis. The basic knowledge can be divided into three major categories:
structured method, ORACLE, and normalization technique. The structured method is a software
development methodology which is appropriate for a data processing system. ORACLE is one
of the most widely known relational database management systems. Normalization techniques
are an important database design technique to keep the relational scheme in high integrity and

maintainability.

2.2 Structured Method

The causes of failure of conventional electronic data processing (EDP) systems can be found

from the following (5):

e Poor system analysis,
¢ Littie or no control over design and code,

¢ Bottom-up development and integration.

Structured techniques are new software development techniques opposite to conventional tech-
niques. One of the first structured techniques developed is structured programming, and was intro-
duced in 1972-73. Structured design and analysis are two other structured techniques introduced
in 1974-75 and 1976-77, respectively. A fourth structured technique is top-down development.
Following are discussions on structured analysis, structured design, and the tools used in those

techniques.

2.2.1 Structured Analysis. Structured analysis is one of the most important structured tech-
niques. In classical analysis, the analyst prepares a document describing the proposed system.
However, the document requires too much time to understand and even makes it impossible to be
understood by the users. The reasons for the users’ difficulty with classic. functional specifications

can be summarized as follows (5):

e T,

A BT WTEE T

_Classical"functional specifications' are monolithic;.

Classical functional specifications are redundant,

Classical functional specifications are difficult to modify and maintain,

Classical functional specifications make too many assumptions about implementation details.

Structured analysis introduces a new and different kind of functional specification called
structured specification which uses graphical documentation tools. Graphical tools make the spec-
ifications easily understood by the users. Data flow diagrams, data dictionaries, entity relationship

diagrams, state transition diagrams and structured English are the most commonly used tools.

2.2,1.1 Data Flow Diagrams. One of the key goals of structured analysis is to partition
the area to be specified. Then, an integrated set of process specifications can be written rather

than a monolithic one. DeMarco defines a DFD as (24)

A Data Flow Diagram is a network representation of a system, The system may be
automated, manual or mixed. The data flow diagram portraits the system in terms of
its component pieces, with all interfaces among the components indicated.

DFDs used in this thesis are made up of the following five items:

o Terminators, represented by named boxes,

» Processes, represented by circles,

¢ Data storages, represented by long ovals,

¢ Data flows, represented by named arrows with solid lines,

¢ Control flows, represented by named arrows with dotted lines.

A terminator is a person or organization lying outside the context of a system that is a net
originator or receiver of system data. A process is a transformation of incoming data flow(s) into
outgoing data flow(s). A data storage is a temporary or permanent data rep(;sitory. A data flow
is a pipeline through which one or more pieces of information flow. A control flow is a pipeline

through which one or more control signals flow.

The first step in drawing a DFD starts with a drawing of a context diagram which shows net
input and output data flows between terminators and a process which includes a whole system.
Then, the system must be broken down into several processes. Considering the capacity of the
human brain, DeMarco says breaking the system into seven or fewer pieces is the best partition
for managing them efficiently (24). If a decomposed process is too vig to be a functional primitive,
break it down again until all processes become functional primitives. A functional primitive is a

process which can’t or need not be decomposed any more.

A decomposed DFD does not show the source or destination of the data which flows from/to
outside of the domain. If a decomposed DFD has many data flows from/to outside of the domain,
it is difficult to figure out the source or destination of them. In this thesis, the source or destination
of data, which flows between decomposed DFD and outside of the decomposed DFD, are described

as in Figure 1.

datal datad

T(terminator-name] T[terminator-name]

data2 datab
P[process-name]//__—-\ DECOMPOSED \— > P[process-name]

data6
D[data-storage-name] \di‘_tfg'/’ \D[data-storage-name]

Figure 1. Notation of Data Source & Destination of Decomposed DFD

2.2.1.2 Dala Dictionaries, The DD is an important part of the structured specifica-
tion. Without DDs, DFDs are just pictures that show some idea of a system. DI'Ds and the DD
have to be considered together. The DD defines data flows, components of data flows, files, and

processes. Yourdon describes a DD as follows (6):

The data dictionary is an organized listing of all data elements that are pertinent to
the system, with precise, rigorous definitions so that both user and systems analyst
will have a common understanding of all inputs, outputs, components of stores and
intermediate calculations.

There are many common notational schemes used by system analysts. Table 1 shows the

notations which will be used in this thesis.

NOTATION | MEANING

' is composed of

and

enclosed component is optional

eunclosed component is iterative

select one of the options enclosed in the brackets
comment

separates alternative choices in the [] construct

e |
% LI 77

Table 1. Notation of Data Dictionary

2.2.1.8 Process Specifications. A process spacification describes what happens inside
the each primitive process in a DFD using structured English, pre-post conditions and decision
tables. It should state what has to be accomplished by the process rather than how the process
should accomplish it. Each primitive process must be described by a process specification precisely

but clearly.

2.2.1.4 Entity Relationship Diagrams. An ERD is a type of database modelling tool
which was first introduced in 1976. Becausc of its simplicity, readability, and because it is easy to
learn, it is known widely und applied to a variety of industrial and business applications. The basic
ERD consists of three classes of objects: entities, relationships, and attributes. Figure 2 shows the

notation of these three classes.

Entities are the principal data objects on which information is to be collected; they usually
denote a person, place, thing, or event of informational interest (23). A weak entity, on the other
hand, is different from an entity. The existence of a weak entity is dependent on the existence
of a strong entity. A weak entity set, in an ERD, is represented by a doubly outlined box and is
connected to a strong entity set by arrowed lines. For example, in Figure 2, the existence of a weak

entity set dependent, depends on the existence of a strong entity set officer.

Relationships represent the real-world assuciations among one or more entities and, as such,
have no physical or conceptual existence other than that which is inherited from their entity asso-

ciations (23). Relationships are described in terms of degree and connectivity as shown in Figure 3.

CLASS REPRESENTATION CLASS

*military-iic i
entity _______________________________ > ofﬁcer t rank oo, attrlbute
name
 1-1 “rrsreneniie e tei ettt A AR e n e a s connectivity

relationship

e te—r l__ P (113 111 unique-attribute
weak-entity ..o > || dependent ' relation

Figure 2. Notation of ERD

The degree of a relationship is the number of entities associated in the relationship. The connectiv-

ity of a relationship- describes the mapping of the associated entity occurrences in the relationship.

Attributes are characteristics of entities or relationships that provide descriptive detail-about
them (23). A particular occurrence of an attribute within an entity or relationship is called an

attribute value.

2.2.2 Structured Design. The term structured design was introduced by IBM in the IBM
Systems Journal in 1974 (4). Structured design is not the same as top-down design. Structured
design is a collection of guidelines and techniques to help the designer distinguish between good

design and bad design at the modular level (4). The structure chart is a tool of structured design.

A structure chart is a graphical technique for documenting the overall architecture of a large
program or system (4). Structure charts do not show all the detailed decisions and loops inside the

module but show all input and output data between other modules.

CONCEPT REPRESENTATION MEANING
DEGREE
. unary A <}> -Entity A has relationship R with entity A
itself
- bi N -Chere is relationship R between entity A
i A “\R>_' and entity B
- ternary A |- -There is relationship R among entity A,
entivy B, and entity C
C
. . -Entity A has minimum y, maximum 2z
CONNECTIVITY| A L‘{_<I>y_ relationship to entity B
-Entity B has minimum w, maximum x
relationship to entity A
Figure 3. Degree & Connectivity of ERD
2.8 ORACLE

ORACLE ia a relational Database Management S .tem (DBMS) developed by the ORACLE
Corporation!. The first version of ORACLE was developed in 1979 and installed on a DEC PDP-11

computer system. Oracle evol.ed into a 4GL product that can be run on a variety of mainframes,

mini computers, and personal coniputers. It supports a large number of operating systems such

as MS-DOS, UNIX, VM/SP, MVS/SP, MVX/XA, and VMS (25). The structure of the ORACLE

system is shown in Figure 4.

!ORACLE Corporation, formerly Relational Scftwarc Inc., was formed in 1977 and is located in Belmont, CA.

ORACLE DAIA

" DATABASE

DIACIONARY |

Multiuser
Support

“Security and

Auditing
SQL/DS o ORACLE Distributed
| RDBMS Data Processing
-SQL*Net
-SQL*Connect
-SQL*Star
-SQL*Link
g — Application Tools
ind-Users | edcecccccccam—a- , atic
Tools -SQL*Forms "’,1;;3%; ammatic
- -D- - -*—S-(.Q} """" SQL*Plus []
Lasy . -SQL*Report/Write -Precompilers
gqggr?’ph -SQL*Menu -Subroutines
QL*Caic -SQL*Design -Call Interfaces

Figure 4. Oracle Facilities

23.1 ORACLE RDBMS. The ORACLE RDBMS is the central ORACLE product. It in-
cludes the database manager and several tools intended to assist users and Database Administrators

(DBAs). The core of the RDBMS is the kernel which handles the following tasks:

¢ manages storage and destination of data,
¢ controls and limits data access and concurrency,
r allows backup and recovery of data,

z iaterprets QL and Procedural SQL (PL/SQL).

11

TERIR, daedds E

2.8:2 SQL. SQL is an English-like language that:is used. for most database activities. SQL
was developed and defined by IBM Research, and has. beén refined by the American National
Standards Institute (ANSI) as the standard language for relational database management systems.

SQL language statements can be divided into four categories (10):

o Queries: Queries are statements that retrieve data, in any combination, expression, or order.

‘Queries usually begin with the SQL reserved word SELECT,

e Data Manipulation statements (DML): DML statements are used to change data by insert-
ing, updating, or deleting. DML statements include INSERT, UPDATE, DELETE, LOCK,
COMMIT WORK, and ROLLBACK WORK statements,

o Data Definition statements (DDL): DDL statements are used to define and maintain database
objects and database tables. DDL statements include CREATE, ALTER, and DROP state-

ments,

e Data Control statements (DCL): DCL statements allow one user to let another users privi-

leges. DCL statements include GRANT and AUDIT statements.

2.3.8 SQL*Menu. SQL*Menu is one of ORACLE products which allows the creation of
customized menu systems. It provides uniform access to all ORACLE software products such as
the ORACLE RDBMS, SQL*Forms, SQL*Plus, and SQL*Graph (19). Also, it is used to access
any software product which runs on the computer operating system. Without any programming,

it provides high security.

2.8.4 SQL*Forms. SQL*Forms is one of Oracle products which lets a user to interact with
his/her database through screen forms. With SQL*Forms, the user can design a form on the screen
and use it to access and read or update data inside the ORACLE databasc. SQL*Forms provides

the ability to

e insert data into the database by typing the data directly into the fields,
¢ view, update, or delete several records on the screen at one time,

o type query conditions directly into the fields you want to query.

12

2.8.4.1 SQL*Forms Components. The components of SQL*Forms include:

SQL*Forms(also called IAD), the Interactive Application Designer, which creates or modifies
the form in the database. It is the main component which can call all the others, It is also

executed when you choose CREATE or MODIFY from the CHOOSE FORM window,

IAC, the Interactive Application Converter, which conv erts a form between database and INP

format. It is executed when you sclect GENERATE or LOAD from the CHOOSE FORM

window,

IAG, the Interactive Application Generator, which reads an INP file and generates a FRM file.
It is executed after IAC when you select GENERATE from the CHOOSE FORM window,

IAP(also called RUNFORM), the Interactive Application Processor, which reads a form from
a FRM file and runs it. It is executed when you choose RUN from the CIIOOSE FORM

windows,

2.8.4.2 Triggers. A trigger is a set of commands vhat are started by a certain event

when a form is being run. Each trigger may be composed of one or more steps, each of which

contains one command. Triggers can:

validate data entry several ways,

protect the database from operator errors such as the entry of duplicate records, or the

deletion of vital records,

limit operator access to specified forms,

display related field data by performing table look-ups,

compare values between fields in the form,

calculate field values and display the results of field calculations in different fields,
enforce block coordination during insert, update, or query operations,

expand the functionality of function keys,

perform complex transactions, such as verifying batch totals.

13

“Threekinds:of coinmands- can-be tsed. in-triggers:

¢ SQL commands, such as

SELECT name

INTO :pilot.name

FROM pilot

WHERE pilot-id = :pilot.pilot-id;

o SQL*Forms commands, such as

#EXECMACRO GOBLK pilot; EXEQRY;
o User exits which call user programs written in a programming language such as C or Ada.

Triggers are leveled into three (FORM, BLOCK, and FIELD) and each of them can be
associated with five kinds of events (Eatry, Query, Change, Exit, and Key-strokes). User-named

trigger is a another kind of trigger which can be used from other triggers. Figure 5 shows details

of that (14).

2.3.5 Pro*Ada. The data associated with an ORACLE RDBMS can be accessed and ma-
nipulated by application programs written in COBOL, FORTRAN, C, PL/I, Pascal, Ada, and
assembly language. The Pro*Ada precompiler, an application programming tool, allows an Ada
program to utilize embedded SQL language constructs (12). A Pro*Ada source program contains
both SQL and Ada language constructs. The Pro*Ada precompiler translates each SQL statements

in the program into ORACLE runtime calls.

Using Pro*Ada can take both advantage features of Ada and SQL. Ada provides the procedu-
ral language support needed for the application, while the embedded SQL statements provide direct
access to ORACLE along with the data manipulation functionality of SQL. Thus, it is possible to

develop more powerful and more flexible programs.

A Pro*Ada program can be developed through the following steps:

14

BLOCK
| TRIGGER EVENT | FIELD RECORD BLOCK FORM

Entry Pre-Field ‘| Pre-Record Pre-Block " Pre-Form
~ Query .- Post-Query Pre-Query
Change Post-Change Pre-Delete

Post-Delete

Pre-Insert

Pre-Update

Post-Update
Exit Post-TField Post-Record Post-Block Post-Form
Key-strokes Key
User-named User-named

Figure 5. Trigger Types

1. Define the abstract problem, including the selection of algorithms, etc,

2. Design the software, including package and main procedure specification. Code the specifica-

tions first and then the bodies,

3. Precompile the Pro*Ada program (filename.pad), resulting in Pro*Ada output files (file-

name.ora.dcl and filename.ada),

4, Compile the Pro*Ada output files, resulting in compilation units which are added to the Ada

program library,
5. Link the object modules with the required ORACLE and Ada runtime libraries,

6. Run the program.

15

2.4 Normalization

In general, the goal of a relational database design is to generate a set of rélation schemes
that allow stering information without unnecessary redundancy, yet allow easy retrieval. A badly

designed relational database scheme may have the following undesirable properties (7):

¢ Repetition of information,
o Inability to represent certain information,

e Loss of information.

Normalization is a process to generate relation schemes in Normal Form (NF) which make it possible

to maintain relation schemes in high integrity and maintainability.

2.4.1 First Normal Form (INF). A relation scheme is INF if all underlying domains contain
only atomic values, that is, there are no repeating groups (domains) within a tuple. The advantage
of INT over unnormalized relations is its simplicity and the ease with which one can develop a

query language for it., The disadvantage is the requirement for duplicate data.

2.4.2 Second Normal Form (2NF). A relation scheme is in 2NF if it is in 1NF and every
nonkey attributes is fully dependent on the primary key. This means that any Functional Depen
dency (F'D) within the relation must contain all components of the primary key as the determinant,

cither directly or transitively.

2.4.8 Third Normal Form (3NF). A relation scheme R is in 3NF if for all functional depen-
dencies that hold on R of the form .X — A, where X C R and A € R, at least one of the following

conditions holds (7):

o Xis a superkey for scheme R,
¢ A is a member of a candidate key for scheme R,

e X — A is a trivial functional dependency. (that is, A € X)

16

2.4.4 Boyce-Codd Normal Form (BCNF). BCNF is a stronger form of. normalization than
3NF. BCNF eliminates the second condition for 3NF, which allowed the right side of the FD to be a
member of a candidate key. A relation scheme R is in BCNT if for all functional dependencies that
hold on R of the form X — A, where X C R and A € R, at least one of the following conditions
holds:

e Xis a superkey for scheme R,

¢ X — A is a trivial functional dependency (that is, A € X).

2.5 Summary.

This chapter presented the basic knowledge required to understand this thesis and the no-
tations used in this thesis. The structured method of software development was described first.
The structured analysis technique and the tools used in the technique such as DFDs, DDs, process
specifications and DRDs were described. The structured design technique with the structure chart,
a structured design tool, were discussed. Second, the ORACLE RDBMS and its several products

were described briefly. Finally, the relational scheme normalization technique was described.

17

IIl. Analysis of User Requirements

3.1 Introduction

This chapter analyzes the I'IS using the structured analysis technique which was discussed
in Section 2.2.1. The analysis phase of the FIS is divided into two major steps. The first step
is identifying the user required data using the structured analysis tools such as the DFD, DD,
and process specification. The next step is database modelling which generates the structure of a

database from the perception of the real FIS. ERD will be used as a database modelling tool.

3.2 Identify User Required Data

The top-down approach will be used to identify user-required data. The first step is to derive
context diagram which shows all terminators, input data, and output data of the FIS. The FIS
will be decomposed into several processes until each process becomes a functional primitive. The
definition of all data, represented on the DIFD, will be described in detail in the DD which will
be placed in Appendix A. The functions of each functional primitives will be described by process

specifications.

3.2.1 Context Diagram. Tigure 6 is the context diagram of the FIS. This context diagram
consists of one processor, five terminators, fourteen input data, and twenty output data. It shows
all user groups around the FT1S and all data flows between each user and the FIS. Table 2 shows
the source(s) or destination(s) of each input and output data. It shows that almost of all data are
shared by different users. Each input data with the exception of ac-rec, pilot-rec, and sortie-rec
comes from one terminator, but each output data with the exception of org all, after processed by

the FIS, is shared by two or more user groups.

3.2.2 Partition of the FIS. The context diagram was partitionad into six major groups
depending on the characteristics and functions of each. Figure 7 shows the partitioned DFD of
the I'IS. It consists of six processes, nine data-storages, and many data flows. It does not show
the terminators around the system. However, one end of each arrow which connects between the
Figure 7 and the outside of it shows the source or destination of the data on the arrow. Functions

of each processes are:

18

CAC

CONTROL

TOWER

GH,LJ

INPUT DATA

. ac-rec

. ac-type

. cac-order-rec
. exec-time

. exercise

. grand-msn

. msn-rec

. other-dept

. pilot-rec

10. rank

11. sortie-plan
12. sq-rec

13. wing-rec

14. wing-order-rec

WOo0—~1C UL QO =

E. exercise

F. flight-record

G. flight-status-all
H. flight-status-list
I. flight-status-org

J. flight-status-wing

K. grand-msn
L. msn-rec
M. org-all
N. other-dept

Figure 6. Context Diagram

19

5Q
A)B)01E7F1GaHaI,
J7I ,L,O,P,Q,R,S;T
1,9,11
0
FLI\(;‘%IHT
TN AB,CERGHL,
K)L’N)OaPaQ:R)S
1,9,11
OTHER-
DEPT
OUTPUT DATA
A. ac-rec 0. pilot-list1
B. ac-tot-status P, pilot-list2
C. ac-type Q. ran!(
D. cac-order-rec R. sq-list

S. wing-list

T. wing-order-rec

R S TR L A ¥

=
O

DATA-NAME

SOURCE/DESTINATION

CAC

WING

5Q

OTHER-DEPT

CONTROL-TOWER

sSav=z

—
QWO 1O ULk WK =

—t
ot

ac-rec
ac-type
cac-order-rec
exec-time
exercise
grand-msn
msn-rec
other-dept
pilot-rec

rank
sortie-plan
sq-rec
wing-rec
wing-order-rec

Vv

Vv

<

HaoYH oGO

—
O 0 ~I O OV N WK

ac-rec

ac-type
cac-order-rec
cac-order-rec
exercise
flight-record
flight-status-all
flight-status-org
flight-status-list
flight-status-wing
grand-msn
msn-rec

org-all
other-dept
pilot-list1
pilot-list2

rank

sq-list

wing-list
wing-order-rec

LU R R R R R R R R R R R R

G N NS NN NN N NN AN

LKL~

LR

LK

LR R R kL

R

Table 2. Data Source and Destination

20

FEOAA e R TY LS 4 T I R L R ATRS T LR LR) il AR T e M NI e G o3 et e s

» Process 1 Input and output. all information related to oiganization,
¢ Process 2 Input and output all information related to pilot,

¢ Process 3 Input and output all information related to aircraft,

¢ Process 4 Input and output all.information related to flight mission,
. Process 5 Input and output all information related to flight-order,

¢ Process 6 Input and output all information related to flight-sortie.

3.2.8 Partition of Organization. Figure 8 shows the decomposed DFD from Process 1. Or-
ganization consists of four groups: CAC, wing, squadron, and other-depariment. CAC commands
all wings and each wing commands their squadrons. Each wing is committed to a grand-msn such as
flight, carry, observe, or train. Other-departments such as the headquarter, the logistic command,
and the Air Force academy are organizations which are not directly related to air operation. Since
the I'IS focuses to wing and squadron, the size of an other-department is much bigger than that of
a wing or a squadron. For example, the headquarters of the Air Force are a unit organization like

a squadron is.

Sometimes wings and squadrons may be created or deactivated. CAC inputs all changed
information related to organizations and current information related to organizations are shared
by all organizations with the exception of control-tower. The following are process specifications of

each functional primitive shown in Figure 8:

Process 1.1
begin
repeat until user exit the program
accept wing-code;
if the wing-code exists in wing table
then display wing-rec;
end if;
accept wing-rec;
check validity of grand-msn-code;
if wing-code exists in wing table
then update wing-rec;
else insert wing-rec;

21

& eavne MENp TR e 3 (T

wing-rac,sq-rec,
other-dept

Tcac] -

org-all
m
wing-rec

T(cac,wing,s
other-depa

Tcac} wing-

other-dept-

rank code

2
MANAGE

PILOT mll
li

pilot-list1,
pilot-list2,
rank

T{cac,wing,
sq,other-dept]

T{control-tower]

exec-time
T(sq,other-dept]
sortie-plan

T[cac,wing,sq
other- ept’]

flight-record

grand-msn
/ sq-rec
ing-rec
other-dept sq Tlcac]
cac
ilot-

T[cac,other-dept]

—— Tleac]
odonses
- T{wing|

other-dept wing-order-rec

cac-order-rec
T[cac,wing]
wing-order-rec

Tleac,sq)

sq-code msn-rec,
code . exerclse
exercise

orgtode

MANAGE
MISSION

grand-

grand-msn msn
-code grand-msn,
msn-rec,

m exercise
T[cac,wing,sq,
ac-type other-dept]
Tlcac] T[sq,other-dept]
! ac-type ac-
\\ yP ac-rec

15 T[cac,wing,sq,

other-dept]
3

MANAGE
AIRCRAFT,

~

MANAGE
SORTIE

ac-tot-status,
ac-type,
ight-status-all ac-ree
Hight-status-wing
1ght-status-org [cac,wing,sq,
flight-status-list control- ower,other-dept]

Figure 7. Overview DFD of the FIS

22

a
EY
8
-
#
x
4
*

D{grand-msn) Digrand-msn],

rand-msn-code

~wing-rec

rand-msn-name

—\input wing ' _wing-rec

‘wing-rec

T|cac)

14
display
wing

1.2 wing-code

other-dept input sq

wing-code

other-dept

other-dept

other-dept

wing-rec

other-dept

T{cac,wing,sq

T[cac,other-dept] T(cac] other-dept)

Figure 8. DFD of Organization

23

RS

k endsif;,
send: repeat]
- énd;
‘Process 1.2
s 7 begin. ’
Tepéat until user exit the program
accept.sq-code;
if sg-code exists'in sq table
then display sg-rec;
end if;
accept sg-rec;
check validity of wing-code;
if sq-code exists in. sq table
then update sg-rec;
else insert sg-rec;
end if;
end repeat;
end;
Process 1.3
begin
repeat until user exit the program
accept other-dept-code;
if other-dept-code exists in other-dept table
then display other-dept; "
end if;
accept other-dept;
if other-dept-code exists in other-dept-table
then update other-dept;
else insert other-dept;
end if;
end repeat;
end;
Process 1.4
begin
display all wing-rec from wing order by grand-msn-code, wing-code;
end;
Process 1.5
begin
display all s¢-rec from sq order by wing-code, sq-code;
end;
Process 1.6
begin
display all other-dept from other-dept order by other-dept-code;
end;
Process 1.7

24

¢,
£
l
g
N
H
:
i

S Y TGN TS AV (a1 AT g M R DA B A e NS TS RA N g Rt S X Y iR e 8 e b

begin:
display ’cac’ on the screén;
repeat until data end

display next record of wing table;

display all sg-rec of the wing from sq order by sg-code;.
énd repeat; -
-display all .other-dept from other-dept-order by other-dept-éode;
end; '

8.2.4 Partition of Pilot. A pilot is a person who'is committed to:control-a spfeciﬁc aircraft

type to perform-the flight mission of the Air Force. Pilot includes all persons-who are-enrolled to.

any pilot training course of the Air Force whether he is a student or an instructor: Each pilot has
a unique pilot-id, name, class, blood-type, pilot-date, job, and pilot-status. All pilots are qualified
to control a specific aircraft type. Occasionally, a pilot moves from one organization to another.
Sq¢uadron must continuously check whether a pilot is in ready-to-take-off, on temporarily. duty-off,

in-hospital, or in-vacation to estimate the ready-mission status.

Figure 9 shows the decomposed DFD from the Process 2. Pilots are recorded in the FIS when
they enter a pilbt training course of the Air Force and deleted when they retire or leave the Air
Force. Each organization must update information of the pilot continuously to make it possible for
users to read the newest information at any time. The following are process specifications of each

functional primitive of Iigure 9:

Process 2.1
begin
repeat until user exit the program
accept rank-code;
if the rank-code exists in rank table
then display rank;
end if;
accept rank;
if rank-code exists in rank table
then update rank;
else insert rank;
end if;
end repeat;
end;
Process 2.2

25

O Ry P

Tcac,wing,sq,
other-dept]

D(ac-type]

Diwing]
wing-code

D(sq}

%

other-dept-code

rank-code

pilot-rec
D[other-dept]

pilot-rec pilot-rec

T[wing,sq
other~d’ept’]

2.5
display
pilot2

org-code
org-code

pilot-list2 pilot-list1

T[cac,wing,sq,
other-dept] _
Figure 9. DFD of Pilot

26

[N IN T e P e R L e o N 7P P D A i T T N TR M MO N L2 g WY R Y T

begm
repeat untll user exit the program
-accept pilot-code;
if pzlot—code\emsts in, pilot: ta,ble
then -display. pilot-rec;
send-if;. ‘
accept pilot-rec;
check:validity of ac-type and .org-code;.
ifpilot-code-exists in pilot. table
then-update. pilot-rec;
elsesinsert-pilot-rec;
end if;
end repeat;
end;
Process 2.3
begin
display all rank from rank table;
end;
‘Process 2.4
begin
repeat until user exit the program
select one from [all:wing:org);
if selection = all then
display .all pilot-rec from pilot order-by pilot-id;
else if selection = wing then
display all pilot-rec of the wing from pilot order by pilot-id;
else if selection = org then
display all pilot-rec of the org from pilot order by pilot-id;
end if;
end repeat;
end;
Process 2.5
begin
repeat until user exit the program
select one from [all:wing];
if selection = all
then compute pilot-number of cac;
* pilot-nimber = pilot-tot+hospt+vact-+off+ready *
display pilot-number of cac;
repeat until data end of wing table;
compute pilot-number of the wing and their sgs;
display pilot-number of the wing and their s¢s;
end repeat;
repeat until data end of other-dept table
compute pilot-number of the other-dept;

27

~

display-pilot-humbet of the other-dept;
-enid répeat;
end if;
if selection = wing then
réapeat until data end of wing-table
compute pilot:-number of the wing;
display pilot-number of the wing,
repeat until.data end of sg table;
compute pilot-number of the sq;
display pilot-number of the sg;
end repeat;
end repeat;
end if;
end repeat;
end;

3.2,5 Partition of Aircraft. The Air Force has several types of aircraft and each airerafi-
type is dictated.a grand-mission (fight, carry, observe, or training). Each aircrafi-type is located
in one or more wing(s). Each aircraft has its own unique ac-no and start-dale to run. Some
organizations such as squadrons, and logistic comx;land have aircraft while others do not. Aircraft
can be transferred to another organization. Organizations which have aircraft must continuously
count how many aircraft are on maintenance and how many aircraft are ready to take off to estimate

the ready-mission status.

CAC is responsible for maintaining the information on aircraft-type, and each organization
which has aircraft is responsible for maintaining the newest information on their own aircraft. Each
organization can read the newest information of aircraft-type and aircraft. CAC reads the aircraft-
status which shows each aircraft-type’s percentage of how many aircraft are ready to take-off. If
the percentage is lower than a specific level, CAC does some act to increase the percentage. The

following are process specifications of each functional primitive:

Process 3.1
begin
repeat until user exit the program
accept ac-type;
if the ac-type exists in ac-type table
then display ac-type-rec;
end if

28

§
3
3
5
K
%
»
&

Tlcac] Dfgrand-msh]

w——) érand-msn-coV

T[sq,other-dept]

ac-rec
ac-type-rec

ac-type

ac-rec

ac-type-rec

org-code »

D[pilot) ac-rec
ac-type
ac-rec
3.5
ac-type i
display ac ac-type-rec

org-code org-code ac-tot-sta,tus
T] T[cac wing,sq,
cac,wing,sq ther-dept
other-:lept]) , D[wing,sq,other-dept] other-dept]

Figure 10. DFD of Aircraft

29

accept ac-iype-rec;,
check-validation of grand-msn-code;
if ac-type exists in ac-type table
then update ac-type-rec;
else insert ac-type-rec;
end if;
end repeat;
end;
Process 3.2
begin
repeat until user exit the program
accept ac-no;
if ac-no exists in ac table
then display ac-rec;
end if;
accept ac-rec;
check validation of ac-type, org-code;
if ac-no exists in ac table
then update ac-rec;
else insert ac-rec;
end if}
end repeat;
end;
Process 3.3
begin
repeat until user exit the program
select from [all-ac-type:one-ac-type);
if selection = all-ac-type then
repeatuntil data end of ac-type table
compute ac-tot-status of the ac-type;
* ac-tol-status=ac-rdy-+ac-maini+ac-tot-+ac-pet *
display ac-tot-status of the ac-type;
end repeat;
end if;
if selection = one-ac-type then
accept ac-lype;
repeat until data end of org
compute ac-tot-status of the org, of the ac-type;
display ac-tot-status of the org, of the ac-type;
end repeat;
end if;
end repeat;
end;
Process 3.4
begin

30

display all ‘ac-type-rec from ac-type order by grand-msn-code, ac-type;
end;
Process 3.5
begin
repeat until data end-of ac-type table
display all ac-réc of ac table;
end repeat;
end;

8.2.6 Partition of Mission. Flight missions of the Air Force can be grouped into four grand-
missions: fight, carry, observe and train. Each wing and aircraft-type is charged with a grand-
mission. These grand-missions are subdivided into several missions each of which is assigned to
each flight-order and flight-sortie. An ezercise is a set of military practices to prepare for an
emergency situation. An ezercise can be initiated by assigning some flight-orders which include
a specific flight-mission to it, Squadrons transform the flight-orders into a flight-plan of a specific

date,

CAC manages the contents of grand-mission, mission, and exercise. It may merge two or
more items of each into one and may subdivide one item of each into two or more. Also, it may
change the grand-mission of a certain wing. Each of the flying organizations refers to the grand-
mission, mission, and exercise when they plan a flight. The following are process specifications of

each functional primitive:

Process 4.1
begin
repeat until user exit the program
accept grand-msn-code;
if the grand-msn-cede exists in grand-msn table
then display grand-msn;
end if;
accept grand-msn;
if grand-msn-code exists in grand-msn table;
then update grand-msn;
else insert grand-msn;
end if;
end repeat;
end;
Process 4.2

31

grand-msn

T{cac]

grand-msn

msn-rec

grand-msn-code
grand-msn
exercise

msn-rec

exercise

exercise

4.6

display
execution

msn-rec

exercise

T[cac,wing,sq,other-dept]
Figure 11. DFD of M?ssion

32

begin
repeat until user exit the program
accept msn-code;.
if msn-code exists in mission table’
then display msn-rec;
end if;
accept msn-rec;
check validity. of grand-msn-code;
if msn-code exists in mission table
then update msn-rec;
else insert msn-rec;
end if;
end repeat;
end;
Process 4.3
begin
repeat until user exit the program
accept ex-code;
if ex-code exists in ezercise table
then display ezercise;
end if;
accept exercise;
if ex-code exists in ezercise table
then update exercise;
else insert ezercise;
end if;
end repeat;
end;
Process 4.4
begin
display all grand-msn of grand-msn table order by grand-msn-code;
end;
Process 4.5
begin
display all mission-rec of mission table order by msn-code;
end;
Process 4.6
begin
display all ezercise of exercise table order by ez-code;
end;

3.2.7 Partition of Flight-order. There are two kinds of flight-order: cac-order and wing-
order. Cac-orders are sent from CAC to each wing and wing-orders are sent from each wing to each

of their squadron. The purpose of flight-orders are described in Section 1.2. A flight-order consists

33

‘of a order-number, Tecéiving organization-code; takezoff tite, a mission code, an: exercise code!, an
aircraft-type, number-of-aircraft required, and description of that flight-order.

CAC sends cac-orders to each wing continuously at any time. In the emergency situation,
alarm system works before sending flight-orders. As soon as each wing receives a cac-order, they
write wing-order(s) and send them to their squadron(s). Each wing may initiate wing-orders and
send them to their squadrons at any time. Each squadron must perform wing-orders at the specified

take-off time.

The FIS must support CAC to input and change cac-orders easily. Cac-orders of each wing
must be displayed on the screen of each wing simultaneously as CAC inputs them. Like cac-
orders, the FIS must support each wing inserting and changing wing-orders easily. Wing-orders
of each squadron must be displayed on the screen of each squadron simultaneously as wing inputs
them. Since flight-orders are sent at unexpected times, they must be displayed automatically at the
screen of destination. Each wing deletes a received cac-order after reordering it to their squadron(s)
through wing-order(s). Similarly, each squadron deletes a received wing-order after translating it
to flight-plan(s) which is to be executed by pilots. The following are process specifications of each

functional primitive:

Process 5.1
begin
repeat until user exit the program
accept caz-order-no;
if the cac-order-no exists in cac-order table
then display cac-order-rec;
end if;
accept cac-order-rec;
check validity of ac-type, ex-code, msn-code, and wing-code;
if cac-order-no exists in cac-order table
then update cac-order-rec;
else insert cac-order-rec;
end if;
update change-time of data-change table to current time;
end repeat;
end;

1An ezercise code is required only if the flight-order is for an ezercise

34

D[wing] Dmission] D[exércis’e]

Dlac-type]

msn-code ex-code

wing-code
T[cac]

——————————
- ~a
~

5.1

cac-order-rec

input RN
i ~
T(wing] cac-order .
cac-order-rec o .
\(\hsplay-&gn
i \
D[exercise] wing-order-rec \
ex-code data-change \\
\\\
D[mission] 5.2 Y
input data-change cac-order-rec
msn-code

—=\wing-order

e (datarchange)

H . data-change
i wing-order-rec
\
Dsq] b
' cac-order
\ : data-change
\ wing-order
s \\
wing-code \ . d
\\
Y
-y . . cac-order-rec
[wing] display-sign~~_

e display
7= ==\ wing-order
D[ac-type]

Twing,sq) T|cac,wing]

wing-order-rec
Figure 12. DFD of Flight-order

35

Nt e AT

" ‘Process 5.2

RN

begin ‘ i
repeat until user exit the program
accept wing-code + wing-order-no;
if wing-code + wing-order-no exists in wing-order table
‘then display wing-order-rec;
end if;
accept wing-order-rec;
check validity of ac-type, ex-code, msn-code, sq-code, and wing-code;
if wing-code + wing-order-no exists in wing-order table
then update wing-order-rec;
else insert wing-order-rec;
end if;
update change-time of data-change table to current time;
end repeat;
end;
Process 5.3
begin
lime := 0;
accept wing-code;
repeat until user exit the program
read change-time of the wing-code from data-change table;
if change — time > time
then display cac-order of the wing-code from cac-order table;
end if;
time := change-lime;
end repeat;
end;
Process 5.4
begin
time := 0;
accept cac-code;
repeat until user exit the program;
read change-time of the cac-code from data-change table;
if change — time > time
then display wing-order of the cac-code from wing-order table;
- ‘end if}
time := change-time;
end repeat;
end;

3.2.8 Partition of Flight-sortie. Each flying organization writes flight-plans to perform wz'n.g-
orders or to perform its missions. A flight-plan consists of a sel-sortie and one or more sorties.

The contents of sei-sortie and sortie are shown in DD of Appendix A. A flight-plan can be added,

36

‘\‘;.

delayed, or canceled continuously because of the weather and wing-order. The flight-plan is very
important for the safety of flight. For.example, planned take-off time of an organization’s flight-plan
must be avoided by other organizations’s flight-plan when they share a runway to avoid aircraft

collision. Therefore, all information related to flight-plan must be shared by all organizations of
the FIS.

Each air base has a control-tower and one or more wings. A control-tower controls and inputs
the take-off and landing-time of all aircraft which use its runway or airfield. Each control-tower can
anticipate the take-off and landing of aircraft not only through communication with aireraft but

also through the computer screen displaying flight-plan of each organization.

All the information related to a flight-sortie is required to be processed simultaneously as
the input from each organizations, and all the information related on flight-sorties required to be
shared by all organizations of the FIS. Thus, all organizations of the FIS can read detailed, reliable,
and current information on flight-sorties on the computer screen. For example, flight-status of an
organization, of a wing, or of the Air Force can be known easily. Also, flight record of a pilot or of

a group can be known easily. The following are process specifications of each functional primitive:

Process 6.1
begin
repeat until user exit the program

accept plan-take-off + sq-code + set-no;

if the plan-take-off+sq-code+set-no exists in set-sortie table
then display set-sortie-rec;

end if;

accept set-sortie-rec;

check validity of ac-type, ex-code, msn-code, and org-code;

if plan-take-off+sq-code-+set-no exists in set-sortie table
then update set-sortie table;
else insert set-sortie table;

end if;

update change-time of data-change table to current time;

repeat until user exit the routine;
accept plan-take-off+sg-code+set-no+position-no;
if the plan-take-off4sq-code+set-no-+position-no exists in sortie table

then display sortie-rec;

end if;
accept sortie-rec;

37

) .

Dlexercise] Dlac-type] Dlac]

‘Dipilot]
pilot-id display-sign

ac-type sacno _~pilotida POV VT OT
ex-code A e
D{mission]
msn-code
sq-code

D(sq]

flight-plan
Tsq,other-dept]

. flight-status-
exec-time 3 2 11 all
6.2
input [_.-- -] ,6'5 R
exec-time g:;fl’lltay
status-
1 wing

exec-time flight-status-

sortie-rec

wing
6.7
g:;;l)llta.y flight-status-
record flight-record flight-status-sq list
T[cac,wing,sq,other-dept,
Tcontrol-tower] T[cac,wing,sq,0ther-dept) control-tower]

*COMMENTS
-1,2, and 3 denotes set-sortie-rec, data-change, and sortie-rec respectively.

Figure 13. DFD of Flight-sortie

38

check validity of ac-no and pilot-id; -
if plan-take-off+sq-code-+sel- no+position-no exists in sortie: table
then 1ipdate sortie table;
else.insert sortie table;
end if;
update change-time of data-change table to currént time;
end repeat;
end repeat;
‘ end;
Process 6.2
" begin
repeat until.user exit the program
update take-off or update landing of sortie table;
update change-time of data-change table;
end repeat;
end;
Process 6.3
begin
time := 0
repeat until user exit the program;
read change-time of data-change table;
if change — time > time then
repeat until data end of wing table
display wing-code of wing table;
repeat until data end of sq table
display sg-code of sq table;
compute flight-status-list of the sq;

display flight-status-list of the sg;
end repeat;

end repeat;
end if}
time := change-time;
end repeat;
end;
Process 6.4
begin
display all set-sorties from set-sortie table;
display all sorties from sortie table;
end;
Process 6.5
begin
accept wing-code;
display all set-sorties of the wing-code from set-sortie table;

display all sorties of the wing-code from sortie table;
end;

39

Process 6:6
‘ " begin |
accept sg-code; ,
display-all set-sorties of the sg-code from set-sortie table;
display all sorties of the sg-code from sortie table;

) end;
Process 6.7
begin

accept conditions (from-date, to-date, org-code, and/or pilot-id);
display all.sorties which satisfy the conditions from sortie table;

end;

3.8 Database Modelling,

This section presents the process of database modelling of the FIS using DIFDs and DD
which were genérated from the last section. ERD is a tool to be used in this section. All entities,
relationships, and their attributes of the FIJ will be described on the ERDs. Comments which

are difficult to describe by entities and/or relationships will be described by short English on the

bottom part of the ERDs.

Figure 14 shows an overview of the ERD for the FIS, The ERD of the FIS can be grouped
into six major parts: organization, pilot, aircraft, mission, flight order, and flight-sortie depend on
the characteristic of each entities. The scope of each part is similar to the scope of corresponding
process of Figure 7 which was decomposed from the context diagram. Each of the six parts will be

discussed in detail in this section. The entity sets and weak entity sets of each part are shown in

Table 3.

| No | Part | Entity Sets & Weak Entity Sets
1 | organization | cac, wing, sq, org, other-dept, data-change
2 | pilot pilot, rank
3 | aircraft ac, ac-type
4 | mission grand-msn, mission
5 | flight-order | cac-order' wing-order, exercise
6 | flight-sortie | set-sortie, sortie

Table 3. Entity/Weak Entity Sets of the FIS

40

™ 1 1:1 1:1 ‘)
,other-dept I+ @ cac assign : . grand.msn 1.1 Tctane

1:n
1: n 1lin
1:1 cwrite
comman
. cacsord
Lin 1in :—'—:r—l -
1:1 : mission
data.change | wing exerclse 1:1

1:1 N ac«iype ’ it
O:m Il wwrite i N
@cur <u> 1:1 1:n

l:n].:Il 1:n classify
org 1:1 o3 1 5q 1:1 ac partsof

> i1 1s
. . n
11 .
1:1 N PN 1:n use
engoll 1:1] In
Lin plan Omn

1:1

: i ; : - .) I
rank P 21 pilot "3"“. sortie ”" setsontie fice

* COMMENTS
-Data-changes occur at wing and organizations which perform flight.
-Pilots promote to another rank ocassionally.
-Pilots can be assigned to another AC-TYPE.
-The role of each pilot in a sortie is different.

Figure 14. Overview ERD of the FIS

41

":5’:8;’1‘ \Mgdélli'hg: of -Organization.. Figure 15-shows the ERD of "{):rg‘@nijziaﬁibjn; The ERD of
organization consists of six entitysets, four relationship sets,-and their attributes. Entity-sets-and

their-attiibites of the organization are shown in Table 4.

OTHER-
DEPT CAC
[Fcac-name
111

L *other-dept-code
L other-dept-name

DATA-
CHANGE WING
L*chzmge-code _'*\viné-code
O:im __ wing-name
1:1 {L. wing-establish
OCCUR
. n 11
1m change-time
Lin
111 :
ORG IS A - Lin ,
sq-code
sq-name 3— SQ
| *org-code. sq-establish
* COMMENTS

-Data-changes occur at wing and organizations which perform flight.

Figure 15. ERD of Organizations

Org is an entity set produced by generalizing four entity sets cac, wing, sq, and other-dept.

Entity set org makes it possible to validate an organization code easily. Data-change is an entity set

42

| Entity/Weak Entity Set]| Occurrence! | Attributes |

cac 1| cac-name *

wing 50 | wing-code, wing-name, wing-establish
sq 200 | sg-code, sq-name, sq-establish
other-dept 50 | other-dept-code, other-dept-name

org 500 | org-code

data-change 4 | change-code

Table 4. Entity/Weak Entity Sets & Attributes of Organization

required to read the newest change time of certain data of certain an organization. Relationships

between entities and further descriptions which are not shown on the ERD are described below.

1. Cac commands all wings.
2. A wing directs their squadrons.
3. Cac orders each pilot of other-dept to move to certain org in emergency case.

4, Data-change® occurs at wing and orgs which perform flights.

3.3.2 Modelling of Pilot. Figure 16 shows the ERD of pilot. The ERD of pilot consists of
two entity sets and three relationship sets and their attributes. Entity sets and their atiributes are

described in Table 5.

| Entity/Weak Entity Set || Occurrence | Attributes |
pilot " 10,000 | pilot-id, name, class, blood-type, pilot-date,

job, pilot-status
50 | rank-code, rank-name

rank

Table 5. Entity/Weak Entity Sets & Attributes of Pilot

Relationships between entities and further descriptions which are not shown on the ERD are

described below.

Occurrence means the maximum number of the occurrence of each entity/weak entity.
ZPrimary key attributes are italicized.

8 Data-change includes receiving flight-order, changing flight-plan, and/or executing flight-sortie.

43

i A

¥): !

ORG *ac-type_| AGATYPE |
L *org-code
1:1
ENROLL lin
1:1 .

RANK Has -1 PILOT
—*rank-code *pilot-id
L. rank-name name

class
blood-type

pilot-date

* COMMENTS
- Pilots promote to another rank ocassionally.
- Pilots can be assigned to another AC-TYPE.

Figure 16, ERD of Pilot

FTTT111

Job
pilot-status

1. A pilot has a rank and he is promoted to another rank occasionally.
2. A pilot is enrolled to an org and he may move to another org.

3. A pilot is assigned to control a specified ac-type.

3.8.8 Modelling of Aircraft. Figure 17 shows the ERD of aircraft which consists of two

entity sets and two relationship sets. Entity sets and their attributes are shown in Table 6.

[Entity/Weak Entity Set || Occurrence | Attributes |

ac-type I 50 | ac-type
ac | 5,000 | ac-no, ac-status, start-date

Table 6. Entity/Weak Entity Sets & Attributes of Aircraft

44

— F - \ '
. : : 1: :
I ora %@i AC 3'1 ! AC-TYPE

. — *ac-no .
org-code . | cstatus ac-type
[start-date

Figure 17. ERD of Aircraft

Relationships between entities and further descriptions which are not shown on the ERD are

described below.

1. Acs are classified into many ac-types.

2. Some orgs have acs.

3.3.4 Modelling of Mission. Figure 18 shows the ERD of mission which consists of two

entity sets and three relationship sets. Entity sets and their attributes are shown in Table 7.

*grand-msn-code
GRAND- L grand-msn-name

MSN

L*msn-code

* *
WING MISSION msn-name AC-TYPE

Figure 18. ERD of Mission

Relationships between entities and further descriptions which are not shown on the ERD are

described below.

1. A wing is assigned to a grand-msn.

45

| Entity/Weak Entity Set || Occutrence | Attributes

grand-nmisn

10 | grand-msn-code, grand-msn-name

mission

1,000 | msn-code, msn-name

Table 7. Entity/Weak Entity Sets & Attributes of Mission

2. An ac-type is dictated a grand-msn,

3. A grand-msn is classified into many missions.

8.3.6 Modelling of Flight-order. Tigure 19 shows the ERD of flight-order which consists of

one entity set, two weak entity sets, and ten relationship sets. The existence of a weak entity

cac-order depends on the existence of a strong entity cac. Also, the existence of another weak

entity wing-order depends on the existence of a strong entity wing. Entities and their attributes

are shown in Table 8.

[Entity/Weak Entity Set || Occurrence | Attributes |

exercise 100 | ez-code, ex-name
cac-order! 1,000 | cac-order-no, number-ac, take-off, cac-descript
wing-order 1,000 | wing-order-no, take-off, wing-descript

Table 8. Entity/Weak Entity Sets & Attributes of Flight-Order

Relationships between entities and further descriptions which are not shown on the ERD are

described below.

1. Cac writes cac-orders.
2. A cac-order includes a mission.

3. A cac-order require an ac-type.

4. A cac-order may be for an exercise.

5. A cac-order is assigned to a wing.

'Weak entity sets are italicized.

46

¥
CAC
1:n /<CINCLUDI 1:1
CAC'ORDEﬁ 10 CISFOR D2\0:1
| *cac-order-no
-;lukmbc};:-ac
B €-0 . v .
% -c?tc-descript Lin CREQ_\1:1
WING
- wing-order-no
- take-off 1in INCLUDE:1
- wing-descript
1:1
Ln || WING- Lin - -
WWRITE ORDER IS-FOR
1:n WREQ 1:1
1
*
5Q WASSIGN

Figure 19. ERD of Flight-order

47

*

MISSION

EXERCISE

- *ex-code
L ex-name

*

AC-TYPE

o0 - =3

=]

10

». .‘A;,wéhg;'Wi'itfeSWwihg-éiﬁdei‘s.~

i A wing-order includes:a-mission.
LA iuz'ng-order require an ac-type.

. A wing-order may be for an ezercise.

. A wing-order is assigned to a sq.

3.8.6 Modelling of Flight-sortie. Figure 20 shows the ERD of flight-sortie which consists

of two weak entity sets and seven relationship sets. The existence of a weak entity set-sortie is

dependent on the strong entity org. The existence of another weak entity sortie is dependent on

the
Tab

weak entity set-sortie and the strong-entity org. Entity sets and their attributes are shown in

le 9,

| Tntity/Weak Entity Set [l Occurrence | Attributes |

set-sortie 500,000 | set-no, plan-take-off
sortie 1,500,000 | position-no, take-off, landing

Table 9. Entity/Weak Entity Sets & Attributes of Flight-Sortie

Relationships between entities and further descriptions which are not shown on the ERD are

described below,

. Some org plan set-sortie.

2. A set-sortie needs an ac-type.

3. A setl-sortie may or may not be a part of an ezxercise.

4. A sel-sortie commits a mission.

5. A set-sortie require one, two , three, or four sorties.

6. A sortie is performed by one, two, or three pilots.

7. A sortie uses an ac.

48

¥ £ ——%

© MISSION - EXERCISE ' ACG-TYPE

1 1:1
COMMIT NEED
1:n I
SET 0m 11 *
SORTIE ORG
| set-
-f)?axﬁ%ake-off —*org-code

. . . ¥
AC 1:1 tn \[eorTE |Lim 1.3 PILOT

— position-no
— take-off
— landing

* COMMENTS

- The role of each pilot in a sortie is different.

Figure 20. ERD of Flight-sortie

49

A At

B S sl S A I
ke

3.4 Summary

This chapter presented an analysis of the FIS using the structured analysis technique. User
required data was identified by using the DFD, DD, and process specification tools. Database
modelling activity is followed to generate the structure of a database from the perception of the

real world of the IFIS. ERD was used as a tool in this step.

50

IV. Design of the FIS

4.1 Introduction

This chapter describes the design of the FIS using the structured design technique. The
database will be designed from the DD and ERD which were produced in Chapter 3. After that,
structure charts will be derived from the DFD which were also produced in Chapter 3. The module
design which describes the implementation method of each module will be described to aid the

programming activity.

4.2 Database Design

This section shows how the relational database tables are generated from the DD and ERD.
Normalization techniques will be used to generate the tables to a high degree of integrity and
maintainability. This thesis sets two goals for the database design. One of the goals is achieving
BCNF in the normalization, If it is not possible, however, 3NT is acceptable. Another goal of the
database design in this thesis is to generate an appropriate number of database tables. Too large a
number of database tables increases the complexity of the database system and requires redundant
efforts for development, Too small a number of database tables, on the other hand, increases the

size of a table and the computational cost.

To achieve the above goals, two steps will be performed. The first step is required to achieve
the normalization goal. All entity sets and relationship sets of the ERD will be transformed into
database tables. Then, these database tables will be transformed into the form which satisfy BCNF
or 3NF. The second step is to decrease the number of tables which are generated in the first step.
Some tables generated in the first step can be rejected or merged into a neighboring table to simplify
the database system. For example, a table which has only one tuple can be rejected and a table
which was generated by burrowing primary key attributes of each neighboring table can be merged

into one of the neighboring tables.

4.2.1 Database Design of Organization. Each of the entity sets and relationship sets of
organization shown in Figure 15 are transformed into tables as shown in Table 10. All of the tables

satisfy BCNF.

51

| Table | Attributes & Primary key

cac cac-name'

command wing-code, cac-name

data-change | change-code

direct sq-code, wing-code

occur org-code, change-code, change-time
order other-dept-code, cac-name

org org-code

other-dept | other-dept-code, other-dept-name

sq sg-code, sq-name, sq-establish

wing wing-code, wing-name, wing-establish

Table 10. Incomplete Database Tables of Organization

Tables cac, command, and order need to be rejected since table cac has only one tuple. Table
direct can be merged into table sgsince cach of those tables has the same primary key s¢-code.
Also, table data-change can be merged into table occur since table data-change is 2 subset of table
occur, Since table org is a generalization of tables cac, wing, sq, and other-dept, and has other
general attributes other than the org-code, there is no need for it to exist as a table. Table assign
of Section 4.2.4 is merged into table wing since the primary key of each is the same. The complete

database tables of organization are shown in Table 11.

| Table | Attributes & Primary key
occur org-code, change-code, change-time
other-dept | other-dept-code, other-dept-name
5q s¢-code, sq-name, sq-establish, wing-code
wing wing-code, wing-name, wing-establish, grand-msn-code

Table 11. Complete Database Tables of Organization

4.2.2 Database Design of Pilot. Each of the entity sets and relationship sets of pilot, shown
in Figure 16, are transformed into a table as shown in Table 12. All of the tables satisfy BCNT'.

Tables enroll, has, and assign are merged into a table pilot since the primary key of each is the

talicized attribute(s) denote primary key of the database table

52

| Table | Attributes & Primary key

assign | pilot-id, ac-type

enroll | pilot-id, org-code

has pilot-id, rank-code

pilot | pilot-id, name, class, blood-type, pilot-date, job, pilot-status
rank | rank-code, rank-name

Table 12. Incomplete Database Tables of Pilot

same. Table 13 shows the complete database tables generated from pilot.

| Table | Attributes & Priinarj key 7 B
pilot | pilot-id, name, class, blood-type, pilot-date, job, pilot-status, rank-code,
org-code, ac-type

rank | rank-code, rank-name

Table 13. Complete Database Tables of Pilot

4.2.3 Database Design of Aircraft. Each of the entity sets and relationship sets of aircraft,
shown in Figure 17, are transformed into a table as shown in Table 14, Al of the tables satisfy

BCNF. Tables classify and has are merged into a table ac since the primary key of each is the same.

| Table | Attributes & Primary key |

ac ac-no, ac-status, start-date
ac-type | ac-type

classify | ac-no, ac-type

has ac-no, org-code

Table 14. Incomplete Database Tables of Aircraft

Table dictate of Section 4.2.4 is merged into table ac-type since the primary heys of each are the

same. Table 15 shows the complete database tables generated from aircraft.

53

| Table | Attributes & Primary key |

ac ac-no, ac-status, start-date, ac-type, org-code
ac-type | ac-type, grand-msn-code

Table 15. Complete Database Tables of Aircraft

4.2.4 Database Design of Mission. Each of the entity sets and relationship sets of mission,
shown in Figure 18, are transformed into a database table as shown in Table 16. All of the tables

satisfy BCNF.

Table | Attributes & Primary key

assign wing-code, grand-msn-code
classify msn-code, grand-msn-code
dictates ac-type, grand-msn-code
grand-msn | grand-msn-code, grand-msn-name
mission msn-code, msn-name

Table 16. Incomplete Database Tables of Mission

Tables assign, classify, and dictates are merged into table wing, mission, and ac-type respec-
tively, since the primary key of each is the same. Table 17 shows the complete databuse tables

generated from mission.

| Table | Attributes & Primary key
grand-msn | grand-msn-code, grand-msn-name
mission msn-code, msn-name

Table 17. Complete Database Tables of Mission

4.2.5 Database Design of Flight-order. Each of the entity sets and relationship sets of flight-
order, shown in Figure 19, are transformed into a table as shown in Table 18. Table wing-order
imported a key wing-code from the entity set wing which is the strong entity of weak entity set
wing-order. Table cac-order, however, did not import a key since the entity set cac has only one

e.utity value. All of the tables satisfy BCNF. Table cwrite is regarded to be a database table since

54

| Table | Attributes & Primary key |
cac-order | cac-order-no, number-ac, take-off, cac-descript

cassign cac-order-no, wing-code

cinclude cac-order-no, msn-code

cis-for cac-order-no, ex-code

creq cac-order-no, ac-type

cwrite cac-order-no, cac-name

exercise ez-code, ex-name

wassign wing-code, wing-order-no, sq-code

winclude wing-code, wing-order-no, msn-code
wing-order | wing-code, wing-order-no, take-off, wing-descript

wis-for wing-code, wing-order-no, ex-code
wreq wing-code, wing-order-no, ac-type
wwrite wing-code, wing-order-no

Table 18. Incomplete Database Tables of Flight-order

the entity set cac has only one entity value. Tables cassign, cinclude, cis-for, and creq are merged
into table cac-order since the primary key of each is the same. Similarly, tables wassign, winclude,
wis-for, and wreg are merged into table wing-order for the same reason. Table 19 shows the complete

database tables generated from flight-order.

| Table | Attributes & Primary key |
cac-order | cac-order-no, number-ac, take-off, cac-descript, wing-code,
msn-code, ex-code, ac-type

exercise ez-code, ex-name

wing-order | wing-code, wing-order-no, take-off, wing-descript, sq-code,
msn-code, ex-code, ac-type

Table 19. Complete Database Tables of Flight-order

4.2.6 Database Design of Flight-sortie. Each of the entity sets and relationship sets of flight-
sortie, shown in Figure 19, are transformed into a table as shown in Table 20. Table set-sortie
imports a key from the entity set org which is a strong entity set of weak entity set set-sortie. Also,
table sortie imports a key frum entities set-surtic and org which are strong entity sets of weak entity

set sortie. All of the tables satisfy BCNF. Tables cornmit, part-of, need, and plan are merged into

55

e AL %

| Table | Attributes & Primary key

commit | org-code, set-no, plan-take-off, msn-code !
need org-code, set-no, plan-take-off, ac-type
part-of org-code, set-no, plan-take-off, ex-code
perform | org-code, set-no, plan-take-off, position-no, take-off, landing, front-pilot,
rear-pilot, stand-by-pilot
plan org-code, set-no, plan-take-off
require org-code, set-no, plan-take-off, position-no
set-sortie | org-code, set-no, plan-take-off
[sortie org-code, set-no, plan-take-off, position-no, take-off, landing
use org-code, set-no, plan-take-off, position-no, take-off, landing, ac-no

Table 20. Incomplete Database Tables of Flight-sortie

table set-sortie since the primary key of each is the same. Also, tables require, perform, and use are
merged into table sortie since the primary key of each is the same. Table 21 shows the complete

tables generated from flight-sortie.

| Table | Attributes & Primary key |
| set-sortie | org-code, set-no, plan-take-off, msn-code, ex-code, ac-type |

sortie org-code, sel-no, plan-take-off, position-no, take-off, landing, ac-no,
front-pilot, rear-pilot, stand-by-pilot

Table 21. Complete Database Tables of Flight-sortie

4.2.7 Complete Database Tables. Table 22 shows the complete database tables generated
from Section 4.2.1 through 4.2.6. It consists of 15 tables and their attributes. Appendix B shows

the database creation program which was written by SQL language.

4.3 Structure Chart

This section describes how the structure chart of the FIS from the DFD is generated. Top-
down design technique is used. The overview DFD of the FIS shown in Figure 7 shows that the

FIS consists of six sub-systems. Figure 7 is transformed into a high-level structure chart and the

| No | Table

| Attributes & Primary key

1] ac ac-no, ac-status, start-date, ac-type, org-code
2 | ac-type ac-type, grand-msn-code
3 | cac-order | cac-order-no, number-ac, take-off, cac-descript, wing-code,
msn-code, ex-code, ac-type
"4 | exercise ex-code, ex-name
5 | grand-msn | grand-msn-code, grand-msn-name
6 | mission msn-code, msn-name
7 | occur org-code, change-code, change-time
8 | other-dept | other-dept-code, other-dept-name
9| pilet pilot-id, name, class, blood-type, pilot-date, job, pilot-status, rank-code,
org-code, ac-type
10 | rank rank-code, rank-name
11 | set-sortie | org-code, set-no, plan-take-off, msn-code, ex-code, ac-type
12 | sortie org-code, set-no, plan-take-off, position-no, take-off, landing, ac-no,
front-pilot, rear-pilot, stand-by-pilot
13 | sq sq-code, sq-name, sq-establish, wing-code
14 | wing wing-code, wing-name, wing-establish, grand-msn-code
15 | wing-order | wing-code, wing-order-no, take-off, wing-descript, sq-code,

msn-code, ex-code, ac-type

sub-DFDs of Figure 7 are transformed into low-level structure charts. The functions of each module

Table 22. Complete Database Tables of the FIS

of structure chart are described in detail.

4.3.1 High-Level Design. The overview-DFD of the FIS shown in Figure 7 is transformed
into a high-level structure chart of the FIS. The high-level structure chart is shown in Figure 21.

Module 0 calls each of the sub-modules and each of the sub-modules calls its sub-modules also.

The high-level modules, module 0 through module 6, need not exchange any data between is sub

modules. Those modules will be developed using SQL*Menu. The functions of each high-level

module described below are similar since the functions of each are just to call its sub-modules.

Modules 0, 1, 2, 3, 4, 5, and 6

begin

repeat until user exit the program
display menu on the screen;

57

select 2 menu;
call selected menu;

end repeat;
end;

0

1 MANAGE
ORG

2MANAGE
PILOT

3 MANAGE
AIRCRATT

MANAGE
MISSION

SMANAGE
ORDER

O MANAGE
SORTIE

Figure 21. High-level Structure Chart of the FIS

4.3.2 Low-Level Design. The detailed DFDs of the FIS which are shown in Figure 8 through

Figure 13 are transformed into the low-level structure chart of the FIS. Figure 22 through Figure

27 show the low-level structure chart of the FIS. Each of the modules of the low-level structure

chart, with the exception of module 1.7.1, are transformed from a process of DFDs as shown in

Figure 8 through Figure 13. Each of the low level modules will be developed using SQL*Forms or

Pio*Ada.

Many modules such as 1.7, 2.4, 2.5, 3.3, and 6.3 need to read the information of orgs in a

specific sequence. Module 1.7.1 is designed to support these modules. Module 1.7.1 stores item (=

org-code + org-name) of specific orgs to a circular-queue and returns one at a time when it is called

by higher level n.udules. The order of storing and returuing item depends un the value of sel which

is to be accepted from user.

The DFD of organization shown in Figure 8 is transformed into a structure chart as shown
in Figure 22. Each of the processes are transformed into a module. Module 1.7 calls module 1.7.1
to receive specific items and then to display them. The functions of module 1.1 through module

1.7 and module 1.7.1 are described below.

! MANAGE
ORG

L put “input L e Y digp
. . . ispla;
wing other-dept display sq all I())Tg
1.2 14 106 .
) 4 displa display
input sq : v‘isxygmy other-dept "
sel e
1.7.1
CQ

Figure 22. Structure Chart of Organization

Module 1.1

begin

repeat until user exit the program
accept wing-code;
if the wing-code exists in wing table

then display wing-rec;

end if;
accept wing-rec;
check validity of grand-msn-code;
commit;

end repeat;

end;

59

Module 1.2
begin
repeat until user exit the program
accept sg-code;
if sg-code exists in sq table
then display sg-rec;
end if;
accept sg-rec,
check validity of wing-code;
commit;
end repeat;
end;
Module 1.3
begin
repeat until user exit the program
accept other-dept-code;
if other-dept-code exists in other-dept table
then display other-depr;

end if;
accept other-dept;
commit;
end repeat;
end;
Module 1.4
begin
display wing-rec from wing table order by grand-msn-code, wing-code;
end;
Module 1.5
begin
display s¢-rec from sq table order by wing-code, sq-code;
end;
Module 1.6
begin
display other-dept from other-dept table order by other-dept-code;
end;
Module 1.7
begin
call ADDORG of module 1.7.1 giving sel = 1;
if circular queue is not empty then
call POPORG of medule 1.7.1 and display item;
end if;
end;

Module 1.7.1
define circular queue with100 items;
item = {what-org + org-code + org-name + wing-code};

60

procedure ADDCQ (CQ: in out queue;
IM: in item);
add an item to the tail of the CQ and return it;
end ADDCQ;
procedure CLEARCQ (CQ: in out queue);
delete all items in the CQ;
end CLEARCQ;
function ISEMPTYCQ (CQ: queue) return boolean;
if CQ is empty then return true else return false;
end CLEARCQ;
procedure ADDORG (CQ:in out queue;
SEL: in integer;
OCODE: in string);
select SEL from [1:2:3];
if SEL = 1 then
add items to the CQ in the sequence of
cac — {wing — {sq}} — {other-dept};
end if;
if SEL = 2 then
add items to the CQ in the sequence of
wing — {sq};
end if;
if SEL = 3 then
add items to the CQ in the sequence of
{sa};
end if;
end ADDORG;
procedure POPORG (CQ: in out queue;
IM: out item);
return one item by one item from CQ;
end POPORG;

The DID of pilot shown in Figure 9 is transformed into a structure chart as shown in Figure
23. Each of the processes are transformed into a module. Module 2.4 and module 2.5 calls module

1.7.1. The functions of module 2.1 through module 2.5 are described below.

Module 2.1
begin
repeat until user exit the program
accept rank-code;
if the rank-code exists in rank table

61

2.1
input rank

2 MANAGE
PILOT

2.2 input

pilot

Module 2.2

2.3
display
rank

2.4
displa
pilot-data

then display rank;

end if}

accept rank;

commit;
end repeat;
end;

begin

repeat until user exit the program

accept pilot-code;

if pilot-code exists in pilot table
then display pilot-rec;

end if;

accept pilot-rec;
check validity of ac-type and org-code;

commit;

end repeat;
end;
Module 2.3

62

N

2.5
displa;
pilgt-sytatus

selo\ \86msel/o C/ﬁem
*

171

CQ

Figure 23. Structure Chart of Pilot

begin
display rank from rank table order by rank-code;
end;
Module 2.4
begin
repeat until user exit the program
select one from [all:wing:org);
if selection = all then
display all pilot-rec from pilot table order by pilot-id;
else if selection = wing then
display all pilot-rec of the wing from pilot table order by pilot-id;
else if selection = org then
display all pilot-rec of the org from pilot table order by pilot-id;
end if; '
end repeat;
end;
Module 2.5
begin
repeat until user exit the program
select one from [all:wing];
if selection = all
then compute pilot-number of cac;
* pilot-number = pilot-tot+hospt-+vact+off+ready *
display pilot-number of cac;
repeat until data end of wing table
compute pilot-number of the wing including their s¢s;
display pilot-number of the wing and their s¢s;
end repeat;
repcat until data end of other-dept table
compute pilot-number of the other-dept;
display pilot-number of the other-dept;
end repeat;
end if;
if selection = wing then
reapeat until data end of wing table
compute pilot-number of the wing;
display pilot-number of the wing;
repeat until data end of sq table
compute pilot-number of the sg;
display pilot-number of the sq;
end repeat;
end repeat;
end if;
end repeat;
end;

63

e
=

= XD -

The DFD of az'réfaft shown in Figure 10 is transformed into a sfructure chart as shown in

Figure 24. Each of the processes are transformed into a module. Module 3.3 calls module 1.7.1.

The functions of module 3.1 through module 3.5 are described below.

3.1
input
ac-type

Module 3.1

Module 3.2

MANAGE
AIRCRAFT

3.2
input ac

3.3
display
ac-number

3.4
display
ac-type

s eli gitem

1.7.1 *
cQ

Figure 24. Structure Chart of Aircraft

repeat until user exit the program
accept ac-type;

if the ac-type exists in ac-type table
then display ac-type-rec;

end if;

accept ac-type-rec;

check validation of grand-msn-code;

commit;

end repeat;

64

ispl
aieplay

begin
repeat until user exit the program
accept ac-no;
if ac-no exists in ac table
then display ac-rec;
end if;
accept ac-rec;
check validation of ac-type, org-code;
commit;
end repeat;
end;
Module 3.3
begin
repeat until user exit the program
select from [all-ac-type:one-ac-type);
if selection = all-ac-type then
repeatuntil data end of ac-type table
compute ac-tol-status of the ac-type;
* ac-tot-status=ac-rdy-+ac-maint-+ac-tot-+ac-pct *
display ac-tot-status of the ac-type;
end repeat;
end if;
if selection = one-ac-type then
accept ac-type;
repeat until data end of org
compute ac-tot-status of the org, of the ac-type;
display ac-tot-status of the org, of the ac-type;
end repeat;

end if;
end repeat;
end;
Module 3.4
begin
display all ac-type-rec from ac-type order by grand-msn-code, ac-type;
end;
Module 3.5
begin
display ac-rec of ac table order by ac-no;
end;

The DFD of mission shown in Figure 11 is transformed into a structure chart as shown in
Figure 25. Each of the processes are transformed into a module. The functions of module 4.1

through module 4.6 are described below.

65

4 MANAGE

MISSION
1Jinput 4"‘Zinpu_t ? input. 4Adisplgy Lsdi.spl.ay 4'6di§plqy
grand-msn mission exercise grand-msn mission exercise
Figure 25, Structure Chart of Mission
Module 4.1
begin
repeat until user exit the program
accept grand-msn-code;
if the grand-msn-code exists in grand-msn table;
then display grand-msn;
end if;
accept grand-msn;
commit;
end repeat;
end;
Module 4.2
begin

repeat until user exit the program
accept msn-code;
if msn-code exists in mission table
then display msn-rec;
end if;
accept msn-rec;
check validity of grand-msn-code;
commit;
end repeat;
end;

66

Module 4.3
begin
repeat until user exit the program
accept ez-code;
if ex-code exists in ezercise table
then display ezercise;
end if;
accept exercise;
commit;
end repeat;
end;
Module 4.4
begin
display grand-msn of grand-msn table order by grand-msn-code;
end;
Module 4.5
begin
display mission-rec of mission table order by msn-code;
end;
Module 4.6
begin
display ezercise of ezercise table order by ez-code;
end;

The DFD of flight-order shown in Figure 12 is transformed into a structure chart as shown
in Figure 26, Each of the processes are transformed into a module. The functions of module 5.1

through module 5.4 are described below.

Module 5.1
begin
repeat until user exit the program
accept cac-order-no;
if the cac-order-no exists in cac-order table;
then display cac-order-rec;
end if;
accept cac-order-rec;
check validity of ac-type, ez-code, msn-code, and wing-code;
update change-time of data-change table to current time;
commit;
end repeat;
end;
Module 5.2

67

P T

5.1,
mput
cac-order

Module 5.3

5 MANAGE
ORDER
. 5.3]
5.2 display input ° ‘tlispla.y
cac-order wing-order wing-order

Figure 26. Structure Chart of Flight-Order

repeat until user exit the program

accept wing-code + wing-order-no;
if wing-code + wing-order-no exists in wing-order table;
then display wing-order-rec;
end if}
accept wing-order-rec;
check validity of ac-type, ez-code, msn-code, sq-code, and wing-code;
update change-time of data-change table to current time;
cominit;

end repeat;

time := 0;
task get-command is

loop
accept command,
end loop;

end task;
task main-prog is

loop
if command = 999’

68

then exit this loop;
end if;
wing-code := command;
read change-time of the wing-code from data-change table;
if change — time > time or wing-code changed
then display cac-order of the wing-code from cac-order table;

end if;
time := change-time;
end loop;
terminate task get-command;
end task;
end;
Module 5.4
begin
time ;= 0;
task get-command is

loop
accept command;
end loop;
end task;
task main-prog is
loop
if command = 999’
then exit this loop;
end if;
org-code := command;
read change-time of the org-code from data-change table;
if change — time > time or org-code changed
then display wing-order of the org-code from cac-order table;

end if}

time := change-time;
end loop;
terminate task get-command;
end task;

end;

The DFD of flight-sortie shown in Figure 13 is transformed into a structure chart as shown

in Figure 27. Each of the processes are transformed into a module. Module 6.3 calls module 1.7.1.

The functions of module 6.1 through module 6.7 are described below.

Module 6.1

69

input
sortie

6 MANAGE
SORTIE

6.3
displa
flight-list

6.2
input
exec-time

\
6.5

displa
ﬂiglht-)\,ving

sl
is
ﬂigrl)ltzi);,dl

sel ? gxtem

1.7.1 *
cQ

6.7 dis

1
ﬁig&itzfy

record

6.6
disll)lay

flight-org

Figure 27. Structure Chart of Flight-Sortie

begin
repeat until user exit the program;
accept plan-take-off + s¢-code + set-no;
if the plan-take-off+sq-code+set-no exists in set-sortie table

then display set-sortie-rec;

end if;

accept set-sortie-rec;
check validity of ac-type, ez-code, msn-code, and org-code;
update change-time of data-change table to current time;

commit;

repeat until user exit the routine
accept plan-take-off+sq-code+set-no+position-no;
if the plan-take-off+sq-code+set-no-+position-no exists in sortie table

then display

end if;

accept sortie-rec;
check validity of ac-no and pilot-id;
update change-time of data-change table to current time;

commit;

sortie-rec;

70

end repeat;

end repeat;

end;

Module 6.2

begin

repeat until user exit the program
update take-off or update landing of sortie table;
update change-time of data-change table;

commit;
end repeat;
end;
Module 6.3
begin
time := 0;
task get-command is
loop
accept command,
end loop;
end task;
task main-prog is
loop
if command = 999’
then exit this loop;
end if}
end loop;
loop
read MAX(change-time) of data-change table;
if change — time > time then
repeat until data end of wing table
display wing-code of wing table;
repeat until data end of sq table
display sq-code of sq table;
compute flight-status-list of the sq;
display flight-status-list of the s¢;
end repeat;
end repeat;
repeat until data end of other-dept table
if sort — tot # 0 then
compute flight-status-list of the other-dept,
display flight-status-list of the other-dept;
end if;
end repeat
end if;
time := change-time;
end loop;

71

terminate task get-command,
« end;
Module 6.4
begin
display set-sorties from set-sortie table order by plan-take-off, org-code,
set-no;
display sorties from sortie table order by plan-take-off, org-code, set-no,
position-no;
end;
Moduje 6.5
berin
accept wing-code;
display set-sorties of the wing-code from set-sortie table order by
plan-take-off, org-code, set-no;
display sorties of the wing-code from sortie table crder by plan-take-off,
cg-code, set-no, position-no;
end;
Module 5.6
begin
accept org-code
display set-sorties of the org-code from set-sortie table order by
plan-take-off, org-code, set-no;
display corties of the org-code from sortie table order by
plan-tare-off, org-code, sei-no, position-no;
end
Module 6.7
begin
accept selections (from-date, to-date, org-code, and/or pilot-id);
display so1ties which satisfy the selections from sortie table order by take-off;
end;

72

V. Implementation and Testing

This chapter presents the process of implementation and testing of the FIS. A top-down
development technique was applied in this process. The implementation and the test were done
simultaneously. Each module of the structure chart was implemented and tested. The top modules
were implemented before the bottom modules and the left-side modules were implemented before
the right-side modules. The functions and procedures of each module were derived from the module

descriptions generated in Chapter 4.

Whenever a module was implemented, two testing steps were followed. The first step was
the test of the module itself. In this step, each function and constraint of the written program was
compared with the module descrintion generated in Chapter 4 by inserting or displaying sample
data. The second step was the connection test of each module between the modules with which data
items were exchanged. This step of the test included the entire modules implemented previously.

The modules being tested were called by other modules to verify a connection exists between them.

SQL*Menu, SQL*Forms, and Pro*Ada were used to implement the FIS. The process of
implementation and testing of the FIS can be grouped into four steps each of which are presented

below.

The first step was the implementation and test of the high-level structure chart. Each module
of the high-level structure chart does not .change data items. The only required function of each
module is calling of its sub-modules. The high-level structure chart consisting of module 0, 1, 2,
3,4, 5, and 6 were implemented and tested using SQL*Menu. Appendix C shows the high-level of

the I'IS shown on the screen.

The second step was the implementation and test of the module 1.7.1. Though module 1.7.11is
the lowest level module, it was developed carlier than some of other higher level mudules because it
is called by many higher level modules. By implementiig it earlier, each module which calls medule
1.7.1 can be tested with a real sub-program. Pro*Ada was used as the programnming language and

Circular-Queue data structure! was used. Module 1.7.1 consists of several functions/procedures

YThis Circular-Queue has a capacity of 100 items which can add or pop the information related to an org.

73

and it returns information of org one at a time. The sequence of returning information depends

the user input as shown in Module 1.7.1.

The third step was the implementation and test of each of the cub-modules of module 1
through module 6. Pro*Ada and SQL*Forms were used in this step. The modules which require
complex procedures such as modules 1.7, 2.4, 2.5, 3.3, 3.5, 5.3, 5.4, and 6.3 were implemented using

Pro*Ada. And the rest of the modules were implemented using SQL*Forms.

Modules 5.3, 5.4, and 6.3 required peculiar data manipulation procedures. Many users may
input data through four kinds of input programs (Modules 5.1, 5.2, 6.1, and 6.2) and many users
may display them at the same time. Modules 5.3, 5.4, and 6.3 require the data to be displayed
simultaneously on the screen as the user insert it. Data-change is an intermediate table between
input programs and output programs (Modules 5.3, 5.4, and 6.3). Data-change table keeps each
org’s change-time which contains newest change time of data and each input programs update the
change-time of a certain org into current time. Then three output programs display newest data
continuously by comparing latest display-time with the change-time. Pro*Ada’s tasks were used to
implement this problem. Each of the three modulee, 5.3, 5.4, 6.3, consists of a main program and
a task. The task accepts commands from the user keyboard and the main program responds to it.

The following program shows how the task was used to implement this problem.

1 with ..; use ...}
procedure p53 is

3 change-time : string(1..20) := (1..20 => ’0");
4 pre-change-time : string(1..20) := (1..20 =>’0’);
5 q ! cq.queune;

6 command : cq.item;

7 outfile : file-mode;

8 out-file : file-type;

9 task get-command;

10 task body get-command is

11 begin

12 loop

13 get(command.org-code);

14 CQ.ADDCQ(q, command);

15 if command.org-code = ”999” then exit; end if;
16 end loop;

74

17 end get-command;

18 begin

19 loop

20 getcom: loop

21 if not CQ.ISEMPTYCQ(q) then

22 CQ.POPORG(q, command);

23 exit when command.org-code = ”999”;

24 org-code := command.org-code;

25 end if;

26 EXEC SQL.SELECT to-char(change-time,’DD-MON-YYYY HH24:MI:SS")
27 INTO :change-time

28 FROM data-change

29 WHERE org-code = :org-code and change-code = :change-code;
30 exit when change-time /= pre-change-time;

31 TEXT-10.0PEN(out-file, outfile, ”[ykwak.thesis|dummy-file.”);
32 TEXT-10.CLOSE(out-file);

33 end loop getcom;

34 if command.org-code = "999” then exit; end if;

........ DISPLAY FLIGHT-ORDER

35 pre-change-time := change-time;
36 end loop; ‘

37 end p53;

cleared to insert and display new sample data. Insertion of data into a database table required
reference to data of another table to validate it. Table 23 shows the database tables which should
be referred to when inserting data into a database table. For example, the sq table must refer to

the wing table and the wing table must refer to the grand-msn table. Input programs were tested

The final step was the testing of the FIS. Before this test, all data in the database tables were

by inserting sample data in the following sequence:

1.

2.

3.

grand-msn, rank, exercise, other-dept, data-change
wing, mission, ac-type

sq, cac-order

. pilot, ac, wing-order, set-sortie

. sortie

75

| No | Input Table | Reference Table(s)

1 |ac ac-type, sq, other-dept

2 | ac-type grand-msn

3 | cac-order wing, mission, ac-type, exercise
4 | data-change

5 | exercise

6 | grand-msn

7 | mission grand-msn

8 | other-dept

9 | pilot sq, other-dept, rank

10 | rank

11 | set-sortie ac-type, exercise, mission, sq, other-dept
12 | sortie set-sortie, ac, pilot

13 | sq wing

14 | wing grand-msn

15 | wing-order | ac-type, exercise, mission, sq

Table 23. Reference Tables for Data Input

Output programs were tested by displaying sample data inserted previously.

76

!
}

VI. Conclusion and Recommendation

This chapter summarizes the work accomplished in this thesis. Also, it presents the conclu-
sions of this thesis work. Finally, it recommends a better way for FIS development and the better

use of the software products.

6.1 Summary

The goal of this thesis, the development of a FIS database system, was successfully accom-
plished. The FIS was developed using the structured methods and the ORACLE RDBMS through

the following three steps.

The first step was the analysis of the FIS. In this step, the requirements of the users were
identified and the perception of the real world of the FIS was modeled into a database structure.
The structured analysis technique using tools such as DI D, DD, process specification, and ERD

were used,

The second step was the design of the IS, ORACLE database tables were generated from
DD using the relational scheme normalization technique. Also, a structure chart with a module

description for each of the modules was constructed.

The third step was the implementation and testing of the FIS. Each module of the structure
chart were implemented and tested one by one, from top to bottom. The high-level modules of the
structure chart were implemented using SQL*Menu while the rest of the modules were implemented
using SQL*Forms or Pro*Ada. Finally, the whole system was tested by inserting and displaying

sample data.

6.2 Conclusion

This thesis work employed the structured method using a varievy of tools as well as ORACLE
which is expected to be the most popular database system in Kourea. Several kinds of the ORACLE
products, available, SQL*Menu, SQL*Forms, and Pro*Ada, were used in this thesis. The following

paragraphs summarizes the conclusions of this thesis work.

7

e e

ORACLE is useful for the development of data processing systems. Much development time
could be saved by using ORACLE products such as SQL*Menu and SQL*Forms. For example,
SQL*Forms could save approximately 50% of the coding time compared with Pro*Ada, a high-
level programming language. Also, several of the ORACLE product allows easy to develop and
easy to change. For example, SQL*Menu can be used to combine sub-programs into a menu and
SQL*Forms can design the input or output format of the program quickly. Once developed, the
programs can be updated continuously as required. This allows the programmer to develop a

proto-type of a system easily.

The module descriptions of the structure chart are important especially when they are im-
plemented with SQL*Forms. The programming style of SQL*Forms is different from that of other
high-level programming languages such as Ada, C, Cobol, etc. While it is easy to develop a pro-
gram using SQL*Forms it is difficult to read the written program. It is easier to read a program
written in a high-level language compared with one written using SQL*Forms. There are two ways
of reading a program written in the SQL*Forms. One is by reading an .INP file which is generated
by SQL*Forms automatically. Because the .INP file is a dialogue type program and the size of it
is much larger than that of a program written in a high-level language, it is difficult to understand
it. The other way is by tracing each BLOCK and FIELD of each FORM of the program on the
screen using SQL¥Forms. This also is difficult to understand since one need to read many screens
to understand the whole program and it is hard to remember the contents of the previous screens.
Thus, the module specification need to be specified the functions of the program in structured detail
format. By reading the module description instead of the program, oue can understand easily and

save time.

6.3 Recommendation

This thesis work does not provide the best solution to the questions “What (o develop?” and
“How to develop?” the FIS. This thesis work limited the scope of the FIS and kept the software
engineering life cycle on track using the selected methudology and tools. Based on this thesis
work, the following recommendations are propused tu better develop the FIS or any other database

system in the future.

78

This thesis work assumed that all users use only one computer located at the CAC with one
or more terminal(s) connected to the computer. The scope of the real FIS includes many sites and
each of them have a mainframe connected to another sites’s mainframe through computer network.
Also, the real FIS requires more than 150 terminais, some of them are located at great distances
from the mainframe. The FIS implemented with only one mainframe cannot support the users
satisfactorily. This situation forces the use of distributed database system techniques. SQL*Net is

an ORACLE product which supports distributed database system (11).

Oracle’s SQL*Net network software and the ORACLE RDBMS make data distributed
over multiple, incompatible networks and computers appear as a single database on a
single computer. With SQL*Net, you can integrate diverse hardware, operating systems,
databases, communications protocols, and applications to create a unified computing
information resource.

With a distributed database system, the load on the mainframe of the CAC can be decreased.

Distributed database systems, however, require a highly reliable computer network between cites.

In this thesis, the module description for each module of the structure chart did not consider
the characteristics of programming in SQL*Forms. As a result, the module descriptions are not
useful enough for programming and maintaining the programs. As discussed in Section 6.2, the
modules of a structure chart implemented with SQL*Forms need to be well-described. An organized

and unified module description form is needed to provide a well described module description.

By using ORACLE products, much of the development time could be saved. This thesis
applied five kinds of ORACLE products. As of 1991, ORACLE Corporation provides a variety of
ORACLE products as shown below (19):

1. Database and Networking
- ORACLE Relational DBMS N6.C
- SQL*Net
- SQL*Connect to DB2 and SQL/DS
- SQL*Connect to TurboIMAGE

2. CASE and Application Development Tools
~ CASE*Method

e AR gy RS

~ CASE*Dictionary
- CASE*Designer

- CASE*Generator

- PL/SQL

~ The ORACLE Precompilers
- SQL*Forms V3.0

- SQL*Menu V5.0

- SQL*ReportWriter
~ ORACLE Graphics
- SQL*Plus

- SQL*TextRetrieval

3. Office Automation and Iind-User Tools
- Oracle*Mail
- SQL*QMX
-~ ORACLE database add-in for Lotus 1-2-3
- ORACLE for 1-2-3 DataLens
~ Basy*SQL
- SQL*Calc

Through careful selection of the ORACLE products, one can save much software development

time and can generate a good quality software system.

80

Appendix A. Date Dictionary

| DATA | DESCRIPTION
ac = ac-no + ac-status + start-date
ac-maint = *number of aircrafts which are on maintenance*
ac-no = *an unique number given to an aircraft which is running*
ac-pct = ac-rdy / ac-tot * 100
ac-rdy = *number of aircrafts which are ready to take-off*
ac-rec = {ac-no + ac-type + ac-code + ac-status + start-date}

ac-status

= [R:M]

*status of an aircraft
R = ready to take-off,
M = on maintenance*

ac-tot

= *total number of aircrafts*
ac-rdy + ac-maint

ac-tot-status

= ¥statistic data of aircrafts status®
{ac-rdy + ac-maint + ac-tot + ac-pct}

ac-type = *name of an aircraft kind which is running in the Air Force*
ac-type-rec {ac-type + grand-msn-name}

blood-type | = [A:B:0:AB]

cac-order = *flight-orders from CAC to each wing*

{cac-order-no + number-ac + take-off + cac-descript}

cac-descript

= *description about a flight order of cac*

cac-order-no

= *unique number of a cac-order*

cac-order-rec

={cac-order-no + wing-code + take-off + msn-code - ex-code
+ ac-type + number-ac + cac-descript}

change-code

= [0C:OW:SC:SLE}

*OC = cac-order added or changed,
OW = wing-order added or changed,
SC = flight-plan added or changed,
SE = aircraft took-off or landed*

change-time

= *change-code updated time*

class

= *class of pilots which denotes the flight capability
of them*
{(IP:FC:EC:WM:ST}

data-change

= *this data is used to display some important data
simultaneously as it changed*
{org-code + change-code + change-time}

date = [year + month + day : day + month + year]
exec-time = [take-off : landing]
exercise =*military exercise of Air Force which require aircraftS*

{ex-code + ex-name}

81

ex-code

code of an exercise of Air Force

ex-name

= *name of an exercise of Air Force*

flight-status

= [R:0:F]
this data is used to denote the status of a sortie
R=ready, O--on air, : =finish*

| flight-status-all

={plan-take-off-d+plan-take-off-t+org-code+set-no+msn-code
+ ex-codet-ac-type+1{position-no+ac-no+take-off-d+take-off-t+
landing-d+landing-t+front-pilot+rear-pilot+stand-by-pilot 4
flight-status}4}

flight-status-list

= {org-code + sort-tot + sort-rdy + sort-air + sort-fin
+ pct-rdy + pct-air + pet-fin}

flight-status-org

= org-code + flight-status-all

flight-status-wing

wing-ccde 4 flight-status-all

front-pilot

1}

pilot-id of front-seat or main seat pilot

grand-msn = *grand mission of Air Force assigned to a wing or a ac-type*
{grand-msn-code + grand-msn-name}

grand-msn-code | = [A:C:0:T)
A=hyht, C=carry, O=observe, T=training
—_ %

grand-msn-name

= *name of a grand-msn-code*

hospt

total number of pilots in hospital

job = *a job name of a pilot*
landing = *landing ti.".e*
date 4 time
maint = *total number of aircrafts on maintenance*
mission = *a flight mission assigned to a set of sortie*
msn-code + msn-name
msn-code = *a code of an Air Force flight mission*
msn-name = *name of an Air Force flight mission*
I.Sn-rec = {msn-code + msn-name 4 grand-msn-code}
name = *name of a pilot*
first name + , + initial of last name
number-ac = *number of aircraft required by a cac-order v a wing-order*
off *total number of pilots on duty off*
org-all ={org-code + org-name}
org-code = [CAC:wing-code:sq-code:other-dept-code]

other-dept

= *departments where pilots stay except CAC, wing and sq*
{other-dept-code + other-dept-name}

other-dept-code

code of an other-dept

other-dept-name

name of an other-dept

pilot

= *a person who is committed to control aircraft of Air Force*
pilot-id + name + class + blood-type + pilot-date + job +
pilot-status

pilot-date

= *pilot qualified date*

82

pilot-id

= *an unique number given to a pilot*
range= 10,000 - 99,999

pilot-list1

= {org-code + pilot-id + name + rank-code + ac-type + pilot-status}

pilot-list2

= {org-code + pilot-tot + hospt + vact + off + ready}

pilot-rec

={pilot-id + name + rank-code + ac-type + class + blood-type
+ pilot-date 4 job 4 pilot-status}

pilot-status

= [R:H:0:V]
*status of a pilot
R=ready to take off,
H=in hospital,
O=duty off,

V=on vacation*

)u.Ot-tOt

= *total number of pilot*

plan-take-off

take-off time of a flight-plan

position-no

= *position number of an aircraft in a set of sortie*

rank

= *military grade of Air Force officer*
{rank-code + rank-name}

rank-code = *code of rank*

rank-name = *name of rank*

ready = *total number of pilots who are ready to take-off*
rear-pilot = *pilot-id of a rear seated pilot*

run = *total number of aircrafts that are ready to take-off*
set-no = *sequential number of set of flight plan*

set-sortie = *a set of flight sortie which consist one to four sortie*

set-no + plan-take-off

set-sortie-rec

={plan-take-off + org-code + set-no + msn-code + ex-code + ac-type}

sortie

= *a flight action between take off to landing by one to three
pilot(s) with an aircraft*
position-no + take-off + landing

sortie-rec ={plan-take-off + org-code + set-no + position-no + ac-no +
take-off + landing + front-pilot + rear-pilot + stand-by-pilot
+ flight-status

sq = *a flight squadron of Air Force*
sq-code + sq-name + sq-establish

sq-code = *squadron code*

sq-establish = *squadron established date*

sq-name = *squadron name*

sq-rec = {wing-code + sq-code + sq-name + sq-establish

stand-by-pilot | = *pilot-id of a stand-by-pilot in a carrier ac*

start-date = *start date to run of an aircraft*

take-off = *take off time of an aircraft*
date + time

time = hour + minute + [second]

vact =*total number of pilots who are on vacation*

83

wing = *flight wing of Air Force*
wing-code + wing-name + wing-establish
wing-code = *wing code*

wing-descript

description of flight order from wing

wing-establish

i

wing established date

wing-rec

{grand-msn-code + wing-code + wing-name + wing-establish}

wing-name

name of a wing

wing-order

flight-order from wing to each of their squadron
wing-order-no + take-off + wing-descript

wing-order-no

= *sequential number of flight-order from wing*

wing-order-rec

={org-code + wing-order-no + take-off + msn-code + ex-code
+ ac-type + number-ac + wing-descript}

84

Appendix B. Database Table and Index Creation Program

create table ac

create table ac-type

create table cac-order

create table data-change

create table exercise

create table grand-msn

create table mission

create table other-dept

create table pilot

(ac-no
ac-type
org-code
ac-status
start-date

(ac-type
grand-msn-code

(cac-order-no
wing-code
take-off-d
take-off-t
msn-code
ex-code
ac-type
number-ac
cac-descript

(org-code
change-code
change-time

(ex-code
ex-name

(grand-msn-code
grand-msn-name

(msn-code
msn-name
grand-msn-code

(other-dept-code
other-dept-name

(pilot-id
name
rank-code
org-code
ac-type

number(4)
char(6)
char(3)
char(1)
date

char(6)
char(1)

number(3)
char(3)
date,
number(4),
char(2)
char(2),
char(6)
number(1)
char(200));

char(3)
char(2)
date

char(2)
char(15)

char(1)
char(10)

char(2)
char(10)
char(1)

char(3)
char(16)

number(5)
char(10)
char(2)
char(3)
char(6)

85

not null,
not null,
not null,
not null,
not null);

not null,
not null);

not null,
not null,

not null,

not null,
not null,

not null,
not null,
not null);

not null,
not null);

not null,
not null);

not null,
not null,
not null);

not null,
not null);

not null,
not null,
not nuli,
not null,
not null,

create table rank

create table set-sortie

create table sortie

create table sq

create table wing

create table wing-order

class
blood-type
pilot-date
job
pilot-status

(rank-code
rank-name

(plan-take-off-d
plan-take-off-t
org-code

set-no
msn-code
ex-code

ac-type
number-ac

(plan-take-off-d
plan-take-off-t
org-code
set-no
position-no
ac-no
take-off-d
take-off-t
landing-d
landing-t
front-pilot
rear-pilot
stand-by-pilot
flight-status

(sq-code
sq-name
sq-establish
wing-code

(wing-code
wing-name
wing-establish
grand-msn-code

(sq-code
wing-order-no

char(2)
char(2)
date,
char(10),
char(1)

char(2)
char(10)

date
number(4)
char(3)
number(2)
char(2)
char(2),
char(6)
number(1)

date
number(4)
char(3)
number(2)
number(1)
number(4)
date,
number(4),
date,
number{4),
number(3)
numbez(5),
number(5),
char(1)

char(3)
char(10)
date
char(3)

char(3)
char(10)
date
char(1)

char(3)
number(2)

86

not null,
not null,

not null);

not null,
not null);

not null,
not null,
not null,
not null,
not null,

not null,
not null);

not null,
not nuil,
not null,
not null,
not null,
not null,

not null,

not null);

rot null,
not null,
not null,
not null);

not null,
not null,
not null,
not null);

not null,
not null,

create unique
crexie unique
sreate unique
create unique index data-change-i

create unique
create unique
create unique
create unique
create unique
create unique
creafe unique

create unique
create unique

create unique
create unique

take-off-d date,

take-off-1 number(4),

msn-code char(2) not null,
ex-code char(2) not null,
ac-type char(6) not null,
number-ac number(1) not null,
wing-descript char(200));

index aci
index ac-type-i
index cac-order-i

index exercise-i
index grand-msn-i
index mission-i
index other-dept-i
index pilet-i
index rank-i
index set-sortie-i

index sortie-i
index sq-i

index wing-i
index wing-order-i

on ac(ac-no);

on ac-type(ac-type);

on cac-order(cac-order-no);

on data-change(org-code, change-code);

on exercise(ex-code);

on grand-msn{grand-msn-code);

on mission(msn-code);

on other-dept{other-dept-code);

on pilot(pilot-id);

on rank(rank-code);

on set-sortie(plun-take-off-d, plan-take-off-t, org-code,
set-no);

on sortie(plan-take-off-d, plan-take-off-t, org-code, set-no,
position-no);

on sq(sq-code);

on wing(wing-code);

on wing-order(sq-code, wing-order-no);

87

Appendix C. Screen Design of the High-Level FIS

<< MODULE 0 >>

| Flight Information System

| Main Menu

| 1 Manage Organization
Manage Pilot
Manage Aircraft

Manage Flight Mission

g W W N

Manage Flight Order

N

Manage Flight Sortie

| 1 Input Wing
Input Squadron

Input Other Department

Display Squadron

2
3

l 4 Display Wing
5
6 Display Other Department
7

Display All Organization

<< MODULE 2 >>

e e et mmmm——m oo e
| 2. Manage Pilot

| e

|

| 1 Input Rank

| 2 Input Pilot

| 3 Display Rank

| 4 Dpisplay Personal Information of Pilot

| 5 Display Statistic Number of Pilot

|

|

|

e e e e e e e 2 e

| 1 Input Aircraft Type
Input Aircraft
Display Statistic Numbers of Aircraft

Display Aircraft Type

g s W N

Display Detail Information of Aircraft

39

<< MODULE 4 >>

| 1 Input Grand Mission

N

Input Mission
It put Exercise
Display Grand Mission

Display Mission

[« TR 4 2 RN S ¥V]

Display Exercise

o o e v o e s e o o e e e T T > W S e T T e e Y T . e T e R D S0 W e - e o = = = - - ae
| 5. Marage Flight Order

| emmemmemm e e e e e cmcemmeme e

|

| 1 Input/Delete C.C Flight Order

| 2 Input/Delete Wing Flight Order

I 3 Display CAC Flight Order

| 4 Display Wing Flight Order

|

!

o e o 1 e e e e et o . e T - . e = e = = = e = = e 8 e W m e Em e e Am e A e +

90

<< MODULE 6 >>

| 1 Input Flight Sortie I
Input Flight Execution Time |
Display Statistic Number of Sortie |

Display Flight Status of All Organization !

2
3
4
| 5 Display Flight Stlatus of a Wing
6 Display Flight Suatus of an Organization |
7

Display Flight Record |

O U P ————————— e mm e uE——————— e mmnmemem—a————

91

JRPSERORS

TN (' B

Bibliography

. Adnan Altunisik. Transfering JGL Applications from Ingres to Oracle. MS thesis,

AFIT/GCE/ENG/91M-01. School of Engineering, Air Force Institute of Technology(AU),
Wright Patterson AFB OII, 1991.

. Antonio I. Silva. Document Control and Retrieval System for the Brazilian Air Force. MS

thesis, AFIT/GCS/ENG/89J-2. School of Engineering, Air Force Institute of Technology (AU},
Wright Patterson AFB OH, 1989.

. Department of Defense. Ada Programming Language. Military Standard, ANSI/MIL-STD-

1815A. 1980.

. Edward Yourdon. Managing The Structured Techniques. New York: Yourdon Press, 1979.
. Edward Yourdon. Managing The System Life Cycle. Englewood Cliffs, NJ: Yourdon Press,

1988,
Edward Yourdon. Modern Structured Analysis. Englewood Cliffs, NJ: Yourdon Press, 1989.

. Henry F. Kortl.. Database System Concepts. New York: McGraw-1ill Book Company, 1986.
. Jamaes Martin, Fourth Gen:ration Languages. Englewood Cliffs, NJ: Prentice-Hall, 1986.

. Oracle Corporation Database Administrator’s Guide. Version 6.0. 1988.

. Oracle Corporation. Error Message and Codes Manual, Version 6.0. 1988.

. Oracle Corporation. Guide to Oracle Products. 1991,

. Oracle Corporation. Pro*Adu Precompiler User’s Guide. Version 1.2, 1987,

. Oracle Corporation. Pro*Ada User’s Guide. Version 1.1. 1986.

. Oracle Corporation. SQL*Ferns Designer’s Reference Manual. Version 2.0. 1988.

. Oracle Corporation. SQL*Forms Designer’s Tutorial. Version 2.3. 1987.

. Oracle Corporation. SQL*Forins Documentation Addendum. Version 2.2 1988.

. Oracle Corporation. SQL*Forms Operator’s Guide Version. 2.3. 1987.

. Oracle Corporation. £ QL Language Reference Manual. Version 6.9. 1989.

. Oracle Corporation. SQL*Menu Jser’s Guide. Version 4.0. 1937.

. Oracle Cotporation. SQL*PLUS User’s Guide and Reference. Version 3.0, 1989.

. Ralph B. Bisland, JR Dctabase Management: Developing Application Systems using Oracle.

Englewood Cliiiy, NJ: Prentice-Hall Inc.. 1989.

Roger S. Pressman. Software Engineering: A Practitioner’s Approuch (Second Edition). New
York: McGraw-1iil} Publishing Company, 1987.

Toby J. Teorey. ! atabase Modelling and Design: The Entity-Relationship Approach. San Ma-
teo, CA: Morgan Kaufmann Publishers, Inc., 1990.

92

24. Tom DeMarco. Structured Analysis and System Specification. Englewood Cliffs, NJ: Prectice-
Hall Inc., 1979.

25. Wojtkowski W. Gregory and Wojtkowski, Wita. Applications Suftware Programming with
Fourth-Generation Langu-ges. Boston: Boyd and Fraster Publishing Company, 1986.

93

Vita

Captain Yeong-Lae Kwak was born on October 18, 1962, in Geumsan, Korea. lle graduated
from Kumoh Technical High School in Gumi, in 1981. He entered the Air Force Academy in Seoul,
in 1981, where he received Bachelor of Science degree in Electronic Engineering. Upon graduation
he was assigned as a second licutenant of the Air Force. In 1985, he completed the Elementary
Computer Course which was offered by Education Command for the officers who are assigned as
computer engineers. Also,in 1986, he completed the Software Development Education Course which
was offered by Korean Institute of Defense Analysis for the computer engineers of government. Ile
served three years as a computer engineer in the 8th and 15th Wing Computer Center. In 1988,
he was assigned to the Headquarter of the Air Force where he served as the Software Development
Officer. He entered the School of Engineering, Air Force Institute of Technology of United States,

in June, 1990.

Permanent address: 471 Deogchun Namil
Gumsan Chungnam
South Korea

94

T e BT I R e e T e AT R T ts oy

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for thrs collection of information is esimated to average ! hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, ang compieting and reviewing the woliection of information. Send comments re?aldmg this burden estimate or any other aspect of this
collection of information, including suggestions for reducing thi burden to washington Headguarters Services, Directorate for information Operations and Reports, 1215 jetterson
Davis Highway, Suite 1204 Arlington, VA 222024302, and 10 the Office ut Management and Budget, Paperwork Reduction Project (0704-0188), washington, DC 20503.

1. AGENCY USE ONLY (leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

‘March 1992 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

IDevelopment of a Flight Information System using the Stractured Method

6. AUTHOR(S)
Yeong-lae Kwak, Capt, ROKAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING OKGANRIZATION
Air T Institute of Technol WPAFB OH 45433-6583 REPORT NUMBER
Ir rorce institute o ecnnoio =00
¢ &Y AFIT/GCS/ENG/92M-03
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

Abstract

This thesis documents the development of a database system for the Flight Informution System (FIS) of
the Korean Air Force. The scope of the FIS is too large to be covered by this thesis. Thus, this thesis covers
only the core part of the FIS due to the limitation of time and man-power,

This thesis uses the structured method. Structured analysis and structured design techniques are mainly
used two techniques.

This thesis focused not only the development of the FIS but also the application of the suftware devel-
opment method, the structured methsd, and its tools such as DFD, DD, ERD, and so on. Alsu, the use of

ORACLE was a important part of this thesis too.

15. NUMBER OF PAGES
94
16. PRICE CODE

14. SUBJECT TERMS
Patabase, Oracle, Structured Method

17 SECURITY CLASSIFICATION |18 SECURITY CLASSIFICATION |19 SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACY

JUNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Deaccs o m G Lra 220 1R

T B

“carn

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
instructions for filling in each block of the farm follow It is important to stay within the lines to meet

optical scanning requirements.

Block1 Agency Use Only (Leave biank)

Block 2. Report Date. Full publication date
inciuding day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether reportisinterim, final, etc. if
applicable, enter inclusive report dates (e.g. 10
Jun 87-30Jun 88).

Block 4. Title and Subtitie. A titleistaken from
the part of the repuort that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classiiied documents enter the title classification
in parentheses.

Block 5. Funding Numbers. Toinclude contract
and grant numbers; may inziude program
element number(s), project number(s), task
number(s), and work unit number{s). Use the
following labels:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s) Name(s) of person(s)
responsible for writing the report, perferming
the research, or credited with the content of the
report. If editor or compsler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory

Block 8. Performing Orqanization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number (If known)

Block 11. Supplementary Notes Enter
information not.included elsewhere such as.
Prepared in cooperation with , Trans of |, Tobe
publishedin When areport s revised, include
astatement whether the new report supersedes
or supplements the older report

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings 1n all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents.”

DOE - Seeauthorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank,

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave biank

NTIS - Leaveblank

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages Enter the (otal
number of pages

Block 16. Price Code Enter appropriate price
code (NTIS only)

Blocks 17.-19. Secunty Classifications. Self-
explanatory EnterU S Secunty Classificationin
accordance withU S Sec. "ty Regulations (i e,
UNCLASSIFIED) If form contains classified
information, stamn classification on the top and
bottom of the page

Block 20. Limitation of Abstract This block must
be compieted to assign a limitation to the
abstract Enter either UL (unlimited) or SAR (same
asreport) Anentryin this block s necessary «f
the abstractis to be imited If blank, the abstract
15 assumed to be unlimited

Standard Form 298 Back (Rev 2 89)

