
N
00

USINGI 'P~THE STRWCTUICE) MIETHIOD

AFlT!GCS/ENG/92Nl ARO. i03i

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Bose, Ohio

AFIT/GCS/ENG/92M-03

DEVELOPMENT OF
A FLIGHT INFORMATION SYSTEM

USING
THE STRUCTURED METHOD

THESIS

Yeong-Lae Kwak
Captain, ROKAF

AFIT/GCS/ENG/92M-03

Approved for public release; distribution unlimited

AFIT/GCS/ENG/92M-03

DEVELOPMENT OF

A FLIGHT INFORMATION SYSTEM

USING

THE STRUCTURED METHOD

THESIS

Presented to the Faculty of the School of Engitieering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems

Acoession For

NTIS qPA&I

Yeong-Lae Kwak, B.S. DTI0 T. .[f
UOnLW viced 0

Captain, ROIKAF Ju:t vi ! on

By-
Ditiibut ton/-

March 1992 Av_. lability Codos
jAvail and/or

Di fo ibial

Approved for public release; distribution unlimite

Preface

The purpose of this thesis was to develop a Flight Information System (FIS) using the Struc-

tured Method as a software development method and ORACLE as a database management system.

The Korean Air Force was selected as a model. This thesis covered only the core part. of the FIS.

This thesis focused on two points: the application of software development tools and the application

of the ORACLE products.

This thesis was accomplished through many people's encouragement and support. I would

like to express my deep appreciation to those people who helped me during the last 21 months.

First of all, I would like to thank my thesis advisor Dr. Henry Potoczny and thesis committee

members, Maj. Mark Roth and Maj. Paul Bailor. Their continuous guidance made it possible for

me to complete my thesis.

I would also like to thank two USAF officers and an ORACLE contractor: Capt. Armin

Sayson, Capt. Andrew Dymek, and David Roliff. They spent much of their time helping me. They

helped my thesis work by checking grammar and solving miscellaneous problems.

Additionally, I would like to thank my family members and my wife's family members for

their continuous support and encouragement from the other side of the globe.

Finally, I would like to thank my wife Yangsook Lee for sharing all my difficulties, giving her

devoted support, and for enduring a long lonely time.

Yeong-Lae Kwak

ii

'Table ofC06iients

Page

Preface

Table of Contents....

List of Figures v

List of Tables. viii

Abstract. ix

I. Introduction I

1.1 Background. 1

1.2 User Requirements 1

1.3 Approach and Methodology 3

1.4 Sequence of Presentation 4

II. Literature Review 5

2.1 Introduction.

2.2 Structured Method 5

2.2.1 Structured Antalysis 5

2.2.2 Structured Design. 9

2.3 ORACLE 10

2.3.1 ORACLE RDBMS 11

2.3.2 SQL. 12

2.3.3 SQL*Menu. 12

2.3.4 SQL*Forms 12

2.3.5 Prc*Ada 14

iii

Page

'2.4 Noumalization 16

2.4.1 First Normal Form,(1NF) 16

2.4.2 Second Normal Form (2NF). 16

2.4.3 Third Normal Form (3NF) 16

2.4.4 Boyce-('odd Normal Form (BCNF) 17

2.5 Sumumary 17

111. Analysis of User Requirements. Is

3.1 Introductioii 18

3,2 Identify User Required Data. 1

3'.2.1 Context Diagram. 18

3.2.2* Partition of the FIS 18

*3.2.3 Partition of Organization. 21

3.2.4 Partition of Pilot. 25

3.2.5 Partition of Aircraft. 28

3.2.6 Partition of Mission. 31

3.2.7 Partition of Flight-order 33

3.2.8 Partition of Plight-sortie 36

3.3 Database Modelling 40

3.3.1 Modelling of Organization 42

3.3.2 Modelling of Pilot 43

3.3.3 Modelling of Aircraft 44

3.3.4 Modelling of Mission 45

3.3.5 Modelling of Flight-order. 46

3.3.6 Modelling of Flight-sortie. 48

3.4 Summary 50

iv

4.1 introduction.....

4.2.1 Database Design of Organization 51

4.2.2 Database Design of Pilot 52

4.2.3 Database Design of Aircraft. 53

4.2.4 Database Design of Mission 54

4.2.5 Database Design of Flight-ordcr. 54

4.2.6 Database Design of Plight-sortie 55

4.2.7 Cornplcie Database Tables 56

4.3 Structure Chart 56

4.3.1 High-Level Design 57

4.3.2 Lowv-Level Design

V. Implementation and Testing. 73

VI. Conclusion and Recommendation. 77

6.1 Summary 77

6.2 Conclusion. 77

6.3 Recommendation. 78

Appendix A. Data Dictionary. 81

Appendix B. Dtabase Table and Index Creation Program 85

Appendix C. Screen Design of the High-Level PIS. 88

Bibliography 92

Vita

V

List of Figures

Figure Page

I., Notation of Data Source & Destination of Decomposed DFD

2. Notation of liRD...

3. Degree & Connectivity of ERD. 10

4i. Oracle Facilities 11

5. Trigger Types 15

6. Context Diagram 19

it Overview DPD of the PIS 22

8. DYED of Organization 2

9. 1)FD ofPilot. 6

10. DF Dof Aircizft. 29

1. DD of Mission. 32

12. DFD of light-order 36

13. DFD of Flight-sortie 3$

14. Overviw EfD of thePIS 4

15. ERD of Organizations

16. ERD of Pilot 44

17. ERD of Aircraft 45

18. ERD of Mission. 45

19. ERD of Plight-order 47

20. ERD of Flight-sortie. 49

21. High-level Structure Chart of the PIS 58

22. Structure Chart of Organization 59

23. Structure Chart of Pilot. 62

24. Structure Chart of Aircraft. 64

25. Structure Chart of Mission. 66

vi

19p~ "~e

'Sidr' hr of**gt,0de '6-

26. Struicture Chart of-Flight-Soio. .68 .. 7

vii

List -of Tables

Table- Page

1. Notation of Data Dictionary

2. Data Source and Destination 20

3. Entity/Weak Entity Sets of the PIS. 40

4. Entity/Weak Entity Sets &Attributes of Organization 43

S. Entity/Weak E ntity Sets &Attributes of Pilot 43

6. E ntity/Weak Entity Sets &Attributes of Aircraft 44

7. Enutity/Weak E ntity Sets &.Attributes of Mission '16

S. BEntity/Weak E ntity Sets $4 Attributes of Plight-Order 46

9. E ntity/Weak Entity Sets & Attributes of Flight-Sortie. 418

10. Incomplete Database Tables of Organization. , 10 . 52

11. Complete Database Tables of Organization 52

12. Incomplete Database Tables ofPilot. 53

13. Complete Database Tables of Pilot 3

14. Incomplete Database Tables of Aircraft. 53

15. Complete Database Tables of Aircraft 54

16. Incomplete Database Tables of Mission. 54

17. Complete Database Tables of Mission 54

18, Incomplete Database Tables of Plight-order 55

19. Complete Database Tables of Flight-order. 55

20. Incomplete Database Tables of Flight-sortie 56

21. Complete Database Tables of Flight-sortie. 56

22. Complete Database Tables of the FIS 57

23. Reference Tables for Data Input 76

viii

.,AFIT,]GCS/ENG/92MO3'

Abstract

This thesis documents the development of a database system for the Flight Information

System (FIS) of the Korean Air Force. The scope of the FIS is too large to be covered by this

thesis. Thus, this thesis covers only the core part of the FIS due to the limitation of time and man-

power. The users of the PIS can be grouped into five categories: Combat Air Command (CAC),

wing, squadronu, control tower, and other departments. The scope of the FIS can be divided into

six categories: organization, pilot, aircraft, flight mission, flight order, and flight sortie.

This thesis uses the structured method. Structured analysis and structured design techniques

are mainly used two techniques. Many tools 4uch as Data Flow Diagram (DFD), Data Dictio.

nary (DD), Process Specification, Entity Relationship Diagram (ERD), and Structure Chart are

used. ORACLE was used as a database management system. -QL, SQL*Forms, SQL*Menu, and

Pro*Ada are ORACLE product used in this thesis. This thesis was developed by following three

steps.

Th first step was the Analysis. The user required data were identified using DED, DD,

and Process Specification. Then, the perception of the real world of the FIS was modeled into a

database structure using ERD.

The second step was the Design. Database tables were generated from the ERD and the

Structure Chart with Module Description were generated.

The third step was the Implementation and Test. Each module of the structure chart were

implemented and tested using top- down development method. Pro*Ada and SQL*Form:, were used

as programming tools.

This thesis focused not only the development of the FIS but also the application of the

software development method, the structured method, and its tools sahl as DFD, DD, ERD, and

so on. Also, the use of ORACLE was a important part of this thesis too.

ix

Development of

a Flight Information System

using

the Structured Method

L Introduction

1.1 Background

In 1985, thRepublicrofKorean Air Force (R.OKAF) developed a database system called-the

Flight Information Systemi(FIS). The-purpose of this system was to gather information related to

air operations and to support the policy decisions of the Air Force. The FIS included information

related to pilots, aircraft, flight-time, flight-sorties, flight missions, and others. It was a big system

with. more than 200 programs (approximately 50,000 lines of code). However, the FIS was not a

successful system. It contained many structural problems and, program errors. The system failed

for a number of reasons. The cause of software failure was due to the designer's lack of software

development experience using database systems, insufficient understanding of database systems,

and incorrect use of software development tools.

At this time, the FIS does not support the users sufficiently and contains many incorrect data.

Due to the lack of computer assistance, much of the data management tasks are done manually.

Therefore, much time is spent gathering, processing, and extracting required information. However,

due to human errors and inconsistent extraction of the required information by different people,

the reliability of the extracted information is questionable.

1.2 User Requirements

The users of the PIS require a reliable and convenient new PIS. The following five groups

are the users of the PIS and will become the users of the new FIS which will be developed in this

thesis:

1

.o Combat.Air -Command, (CAC),

p Flight Wing,

Flight Squadron.

* Other Departments,

* Control Tower.

The CAC is the top department of the Air Force related to the air operations. It issues

regular and immediate flight-orders to each wing. It also watches the current flight status of each

wing and analyzes the flight result data such as flight-time, flight-sortie, and flight-missions. The

CAC also orders a pilot to move to certain organizations.

A wing receives flight-orders from the CAC at any time. Like the CAC, each wing writes

flight-orders and dispatches them to each of their squadrons to accomplish the flight=orders received

from the CAC. Additionally, each of the wing sends flight-orders for the squadrons to perform the

missions which are planned by itself and to upgrade the wing's mission capability.

A flight squadron is an organization which flies with its own aircraft. It receives flight-orders

frem the wing at any time. Everyday, it writes flight-plans and executes them. Flight plans change

continuously until take-off because of new flight-orders and bad weather conditions. Each flight

squadron has several types of aircraft and numerous pilots. The pilots of e, I, .,,,. J;on fly often

to perform their squadron's flight-plans.

Other departments are not related to flight directly but need information related to the flight.

Other departments include Headquarter, Academy, Logistics Command, Department of Defense

and others. The pilots of other departments fly regularly to maintain their own flight capability.

A control-tower is an organization which controls and records the exact take-off and landing

time of each aircraft to prevent collisions. Each air-base has a control-tower to support aircrafts

which uses the air-base's runway. Sometimes aircraft land at unscheduled bases. Therefore, every

control-tower needs continuously updated current flight plans and statuses of all the Air Force.

A new FIS development team was organized and surveyed the requirements of the users.

The category of the new FIS is too large and the users require much detail. However, due to the

limitation of time a'id manpower, this thesis tries to develop only the core part of the new FIS.

2

The core pall of the new FIS manages important data of the PIS and require complex program

application. It consists of three categories and each of them are discussed below.

The first category of requirements is information on pilots and aircraft. The data on each

pilot and aircraft changes continuously. All the users, with the exception of the control-tower,

require correct and detailed current information on each pilot and aircraft.

The second category is the flight-order transfer system. There are two kinds of flight orders:

cac-order and wing-order. Cac-orders are sent from CAC to each wing continuously. And wing-

orders are sent from each wing to their squadrons continuously. The purpose of flight-orders can be

grouped into three. The first is to confront emergency situations. By sending flight-orders with a

specific flight mission, the Air Force can confront an emergency situation. The second is to initiate

regular and special military operations. The CAC or each wing may plan air operations for various

reasons. The air operations are initiated by sending flight-orders with flight mission. And the third

is to increase or to maintain the flight capability of wings or squadrons. The CAC, each wing, and

each squadron require a reliable, fast flight-order transfer system.

The last category of user requirements is flight status display system. Each squadron and

several other departments plan and conduct flight continuously. All the organizations must ex-

change flight status information which includes flight planning and current flying information. By

sharing flight status information, all organizations have the flight status information available on

screens which show how many sorties are ready to fly, how many aircraft are in the air, and how

many flights were executed that day. More detailed information can be known with such a system.

1.3 Approach and Methodology

The ncw FIS is a data processing oriented system. Almost all information such as pilots, air-

craft, missions, and flight-sorties can be stored in ,t database bystem and dibplayed or printed easily

for the users. However, other information, such as flight order and flight status, require complex

softu are appliLotion techniques. Such information must be prUcebsed and dibplayed bimultaneoubly

as the users input them.

The Korean Institute of Defense Analysis (KIDA) recommends the structured method, dis-

cussed in section 2.2, as the Korean military software development method. The ORACLE Re-

3

- N--

l tional:DttabaseMaiageifient Systen i(IDBMS), discuss0d in detati in section..23, is one-of the

-most widely known Data Base Management System (DBMS) and is expected to be used more

widely than others.

In this thesis, the VAX 86501 with thc Virtual Memory System (VMS) operating system will

be used in the development of the PIS. "he structurd method, a software development method,

using ORACLE Relational Database Man:gement System (RDBMS) Version 6.0 will be used to

develop the FIS. Almost all programs will be developed using SQL*Forms. However, some programs

which require complex procedures and/or concurrent processing, will be developed with Pro*Ada

which will also be discussed in section 2.3.

Following are the selected software development steps which will be applied in this thesis. The

analysis phase begins by identifying the required data of the users. Data Flow Diagrams (DFDs),

Data Dictionary (DD) and process specifications will be used as analysis tools. The next step is

modelling the database. Entity-Relationship Diagrams (ERDs) are to be used in this step. In'the

design phase, database tables will be generated from the ERDs and DD using relational scheme

normalization technique which will be discussed in section 2.4. Then, a structure chart will be

derived from the DFD which was derived previously in the analysis phase. What happens inside

each module of the structure chart will be described in detail using module deccription to aid the

implementation of it. The final phase is the implementation and testing of each module.

1.4 Sequence of Presentation

Chapter 2 briefly reviews the required knowledge to understand this thesis and the rules used

in this thesis. The structured method with its tools such as DFD, DD, ERD and Structured Chart

with their notations are discussed briefly. Also, the relational scheme normalization technique will

be discussed. Chapter 3 describes the structured analysis process used in the development of the

FIS. The ERD, DFD and DD are used as structured analysis tools. Chapter 4 describes the process

of structured design of the PIS. Database design and structured charts will be discussed. Chapter

5 describes the process of implementation and testing of the FIS system. Finally, conclusions and

recommendations are presented in Chapter 6.

'VAX 8650 is made by Digital Equipment Corporation (DEC) and has 48 Megabytes of main memory.

4

I1. Literature Review

2.1 Introduction

This chapter provides the basic knowledge required to write or to understand this thesis and

the notations used in this thesis. The basic knowledge can be divided into three major ctegories:

structured method, ORACLE, and normalization technique. The structured method is a software

development methodology which is appropriate for a data processing system. ORACLE is one

of the most widely known relational database management systems. Normalization techniques

are an important database design technique to keep the relational scheme in high integrity and

maintainability.

2.2 Structured Method

The causes of failure of conventional electronic data processing (EDP) systems can be found

from the following (5):

9 Poor system analysis,

* Little or no control over design and code,

e Bottom-up development and integration.

Structured techniques are new software development techniques opposite to conventional tech-

niques. One of the first structured techniques developed is structured programming, and was intro-

duced in 1972-73. Structured design and analysis are two other structured techniques introduced

in 1974-75 and 1976-77, respectively. A fourth structured technique is top-down development.

Following are discussions on structured analysis, structured design, and the tools used in those

techniques.

2.2.1 Structured Analysis. Structured analysis is one of the most important structured tech-

niques. In classical analysis, the analyst prepares a document describing the proposed system.

However, the document requires too much time to understand and even makes it impossible to be

understood by the users. The reasons for the uers' difficulty with classicl functional specifications

can be summarized as follows (5):

5

.Cl assicalfuiftitional specifications are monolithic.

e Classi'cal functional specifications are redundant,

& Classical functional specifications are difficult to modify and maintain,

* Classical functional specifications make too many assumptions about implementation details.

Structured analysis introduces a new and different kind of functional specification called

structured specification which uses graphical documentation tools. Graphical tools make the spec-

ifications easily understood by the users. Data flow diagrams, data, dictionaries, entity relationship

diagrams, state transition diagrams and structured English are the most commonly used tools.

2.2.1.1 Data Flow Diagrams. One of the key goals of structured analysis is to partition

the area to be specified. Then, an integrated set of process specifications can be written rather

than a monolithic one. DeMarco defines a DFD as (24)

A Data Flow Diagram is a network representation of a system. The system may be
automated, manual or mixed. The data flow diagram portraits the system in terms of
its component pieces, with all interfaces among the components indicated.

DFDs used in this thesis are made up of the following five items:

* Terminators, represented by named boxes,

* Processes, represented by circles,

* Data storages, represented by long ovals,

* Data flows, represented by named arrows with solid lines,

a Control flows, represented by named arrows with dotted lines.

A terminator is a person or organization lying outside the context of a system that is a net

originator or receiver of system data. A process is a transformation of incoming data flow(s) into

outgoing data flow(s). A data storage is a temporary or permanent data repository. A data flow

is a pipeline through which one or more pieces of information flow. A control flow is a pipeline

through which one or more control signals flow.

6

The first step in drawing a DFD starts with a drawing of a context diagram which shows net

input and output data flows between terminators and a process which includes a whole system.

Then, the system must be broken down into several processes. Considering the capacity of the

human brain, DeMarco says breaking the system into seven or fewer pieces is the best partition

for managing them efficiently (24). If a decomposed process is too big to be a functional primitive,

break it down again until all processes become functional primitives. A functional primitive is a

process which can't or need not be decomposed any more.

A decomposed DFD does not show the source or destination of the data which flows from/to

outside of the domain. If a decomposed DFD has many data flows from/to outside of the domain,

it is difficult to figure out the source or destination of them. In this thesis, the source or destination

of data, which flows between decomposed DFD and outside of the decomposed DFD, are described

as in Figure 1.

T[terminator-name] d- -T[terminator-name]

data2 /DOMAIN OF A ' data5

P (process-name] - - DECOMP OSED . ~P [process-name]
DFD data6

D[data-storage-name] data3 - - D [data-storage-name]

Figure 1. Notation of Data Source & Destination of Decomposed DFD

2.2.1.2 Data Dictionaries. The DD is an important part of the structured specifica-

tion. Without DDs, DFDs are just pictures that show some idea of a system. DFDs and the DD

have to be considered together. The DD defines data flows, components of data flows, files, and

processes. Yourdon describes a DD as follows (6):

The data dictionary is an organized listing of all data elements that are pertinent to
the system, with precise, rigorous definitions so that both user and systems analyst
will have a common understanding of all inputs, outputs, components of stores and
intermediate calculations.

There are many common notational schemes used by system analysts. Table 1 shows the

notations which will be used in this thesis.

7

NOTATION MEANING
- is composed of

+ and
() enclosed component is optional
{ } enclosed component is iterative
[] select one of the options enclosed in the brackets
* * comment

I separates alternative choices in the [] construct

Table 1. Notation of Data Dictionary

2.2.1.3 Process Specifications. A process specification describes what happens inside

the each primitive process in a DFD using structured English, pre-post conditions and decision

tables. It should state what has to be accomplished by the process rather than how the process

should accomplish it. Each primitive process must be described by a process specification precisely

but clearly.

2.2.1.4 Entity Relationship Diagrams. An ERD is a type of database modelling tool

which was first introduced in 1976. BecausQ of its simplicity, readability, and because it is easy to

learn, it is known widely and applied to a variety of industrial and business applications. The basic

ERD consists of three classes of objects: entities, telationships, and attributes. Figure 2 shows the

notation of these three classes.

Entities are the principal data objects on which information is to be collected; they usually

denote a person, place, thing, or event of informational interest (23). A weak entity, on the other

hand, is different from an entity. The existence of a weak entity is dependent on the existence

of a strong entity. A weak entity set, in an ERD, is represented by a doubly outlined box and is

connected to a strong entity set by arrowed lines. For example, in Figure 2, the existence of a weak

entity set dependent, depends on the existence of a strong entity set officer.

Relationships represent the real-world associations among one or more entities and, as such,

have no physical or conceptual existence other than that which is inherited from their entity asso-

ciations (23). Relationships are described in terms of degree and connectivity as shown in Figure 3.

8

CLASS RIEPRESENTATION CLASS

*military-fle
entity officer ranke- attribute

Lname

S corn ectivity

relationship - , has >

< 1O:n
*name<. unique-attribute

weak-entity >. dependent - relation

Figure 2. Notation of ERD

The degree of a relationship is thenumber of entities associated in the relationship. The connectiv-

ity of a relationship describes the mapping of the associated entity occurrences in the relationship.

Attributes are characteristics of entities or relationships that provide descriptive detail about

them (23). A particular occurrence of an attribute within an entity or relationship is called an

attribute value.

2.2.2 Structured Design. The term structured design was introduced by IBM in the IBM

Systems Journal in 1974 (4). Structured design is not the same as top-down design. Structured

design is a collection of guidelines and techniques to help the designer distinguish between good

design and bad design at the modular level (4). The structure chart is a tool of structured design.

A structure chart is a graphical technique for documenting the overall architecture of a large

program or system (4). Structure charts do not show all the detailed decibions and loops inside the

module but show all input and output data between other modules.

9

CONCEPT REPRESENTATION MEANING

DEGREE

unary -Entity A has relationship R with entity A
L~L itself

binary],I -* here is relationship R between entity A
It andl entity B

ternary F71.--- [B -There is relationship R anmong entity A,
entity B, and entity C

C C T-Entity A has minimum y, maximum z
CONNECTIVITY relationship to entity B

-Entity B has minimum w, maximum x
relationship to entity A

Figure 3. Degree & Connectivity of ERD

2.3 ORACLE

ORACLE ia a relational Database Management Si tem (DBMS) developed by the ORACLE

Corporation'. The first version of ORACLE was developed in 1979 and installed on a DEC PDP-11

computer system. Oracle evol'.ed into a 4GL product that can be run on a variety of mainframes,

mini computers, and personal computers. It supports a large number of operating systems such

as MS-DOS, UNIX, VM/SP, MVS/SP, MVX/XA, and VMS (25). The structure of the ORACLE

system is shown in Figure 4.

'ORACLE Corporation, formerly Relational Scftwarc Inc., was formed in 1977 and is located in Belmont, CA.

10

DATA -SQL

ORACLE DAA

DATABASE
/IuprMl u e '

'Security adI

SQ/D ORACLE !Distributed
DB2 RDBMSData Processing

-SQL*Net
. -SQg*Connect

-SQL*Star
-SQL*Link

Application Tools
End-Users -- Programmatic
Tools -SQL*Forms Tools

-SQL*Plus
Easy*SQL -SQL*Report/Write -Precompilers
SQL*Graph -SQL*Menu -Subroutines
SQL*Ca-c _SQL*Design -Call Interfaces

Figure 4. Oracle Facilities

2 3.1 ORACLE RDBMS. The ORACLE RDBMS is the central ORACLE product. It in-

cludes the database manager and several tools intonded to assist users and Database Administrators

(DBAs). The core of the RDBMS is the kernel which handles the following tasks:

* manages storage and destination of data,

* controls and limits data access and concurrency,

allows backup and recovery of data,

inte.prets SQL and Procedural SQL (PL/SQL).

11

A, V ,,,,-,

2.342, 'SQL. SQL is anEhglish-like'language that01s used, fo" most database actiities. -SQL

vvas developed and defined by IBM Research, and has, been refined by the American National

Standards Institute (ANSI) as the standard language for relational database management systems.

'SQL language statements can be divided into four categories (10):

" Queries: Queries are statements that retrieve data, in any combination, expression, or order.

Queries usually begin with the SQL reserved word SELECT,

" Data Manipulation statements (DML): DML statements are used to change data by insert-

ing, updating, or deleting. DML statements include INSERT, UPDATE, DELETE, LOCK,

COMMIT WORK, and ROLLBACK WORK statements,

" Data Definition statements (DDL): DDL statements are used to define and maintain database

objects and database tables. DDL statements include CREATE, ALTER, and DROP state-

ments,

" Data Control statements (DCL): DCL statements allow one user to let another users privi-

leges. DCL statements include GRANT and AUDIT statements.

2.3.3 SQL*Menu. SQL*Menu is one of ORACLE products which allows the creation of

customized menu systems. It provides uniform access to all ORACLE software products such as

the ORACLE RDBMS, SQL*Forms, SQL*Plus, and SQL*Graph (19). Also, it is used to access

any software product which runs on the computer operating system. Without any programming,

it provides high security.

2.3.4 SQL*Fo,.ms. SQL*Forms is one of Oracle products which lets a user to interact with

his/her database through screen forms. With SQL*Forins, the user can design a form on the screen

and use it to access and read or update data inside the ORACLE databas(. SQL*Forms provides

the ability to

• insert data into the database by typing the data directly into the fields,

" view, update, or delete several records on the screen at one time,

" type query conditions directly into the fields you want to query.

12

2.3.4.1 SQL*Forms Components. The components of SQL*Forms include:

" SQL*Forms(also called IAD), the Interactive Application Designer, which creates or modifies

the form in the database. It is the main component which can call all the others. It is also

executed when you choose CREATE or MODIFY from the CHOOSE FORM window,

" IAC, the Interactive Application Converter, which corn erts a form between database and INP

format. It is executed when you select GENERATE or LOAD from the CHOOSE FORM

window,

* IAG, the Interactive Application Generator, which reads an INP file and generates a FRM file.

It is executed after IAC when you select GENERATE from the CHOOSE FORM window,

" IAP(also called RUNFORM), the Interactive Application Processor, which reads a form from

a FRM file and runs it. It is executed when you choose RUN from the CHOOSE FORM

windows.

2.3.4.2 Triggers. A trigger is a set of commands that are started by a certain event

when a form is being run. Each trigger may be composed of one or more steps, each of which

contains one command. Triggers can:

* validate data entry several ways,

* protect the database from operator errors such as the entry of duplicate records, or the

deletion of vital records,

" limit operator access to specified forms,

" display related field data by performing table look-ups,

" compare values between fields in the form,

• calculate field values and display the results of field calculations in different fields,

" enforce block coordination during insert, update, or query operations,

" expand the functionality of function keys,

" perform complex transactions, such as verifying batch totals.

13

'Thieekindsoft6mmands- cahb used. ino triggers:

* SQL commands, such as,

SELECT name
INTO :pilot.name
FROM pilot
WHERE pilot-id = :piiot.pilot-id;

* SQL*Forms commands, such as

#EXECMACRO GOBLK pilot; EXEQRY;

* User exits which call user programs written in a programming language such as C or Ada.

Triggers are leveled into three (FORM, BLOCK, and FIELD) and each of them can be

associated with five kinds of events (Entry, Query, Change, Exit, and Key-strokes). User-named

trigger is a another kind of trigger which can be used from other triggers. Figure 5 shows details

of that (14).

2.3.5 Pro*Ada. The data associated with an ORACLE RDBMS can be accessed and ma-

nipulated by application programs written in COBOL, FORTRAN, C, PL/I, Pascal, Ada, and

assembly language. The Pro*Ada precompiler, an application programming tool, allows an Ada

program to utilize embedded SQL language constructs (12). A Pro*Ada source program contains

both SQL and Ada language constructs. The Pro*Ada precompiler translates each SQL statements

in the program into ORACLE runtime calls.

Using Pro*Ada can take both advantage features of Ada and SQL. Ada provides the procedu-

ral language support needed for the application, while the embedded SQL statements provide direct

access to ORACLE along with the data manipulation functionality of SQL. Thus, it is possible to

develop more powerful and more flexible programs.

A Pro*Ada program can be developed through the following steps:

14

LEVEL

BLOCK

TRIGGER EVENT FIELD RECORD BLOCK FORM

Entry Pre-Field Pre-Record Pre-Block Pre-Form

Query Post-Query Pre-Query

Change Post-Change Pre-Delete
Post-Delete
Pre-Insert
Pre-Update
Post-Update

Exit Post-Field Post-Record Post-Block Post-Form

Key-strokes Key

User-named User-named

Figure 5. Trigger Types

1. Define the abstract problem, including the selection of algorithms, etc,

2. Design the software, including package and main procedure specification. Code the specifica-

tions first and then the bodies,

3. Precompile the Pro*Ada program (filename.pad), resulting in Pro*Ada output files (file-

name.ora-dcl and filename.ada),

4. Compile the Pro*Ada output files, resulting in compilation units which are added to the Ada

program library,

5. Link the object modules with the required ORACLE and Ada runtime libraries,

6. Run the program.

15

2.4 Normalization,

In general, the goal of a relational database design is to generate a set of relation schemes

that allow storing information without unnecessary redundancy, yet allow easy retrieval. A badly

designed relational database scheme may have the following undesirable properties (7):

e Repetition of information,

* Inability to represent certain information,

e Loss of information.

Normalization is a process to generate relation schemes in Normal Form (NF) which make it possible

to maintain relation schemes in high integrity and maintainability.

2.4.1 First Normal Form (JNF). A relation scheme is INF if all underlying domains contain

only atomic values, that is, there are no repeating groups (domains) within a tuple. The advantage

of 1NF over unnormalized relations is its simplicity and the ease with which one can develop a

query language for it. The disadvantage is the requirement for duplicate data.

2.4.2 Second Normal Form (2NF). A relation scheme is in 2NF if it is in 1NP and every

nonkey attributes is fully dependent on the primary key. This means that any Fnctional Depen

dency (FD) within the relation must contain all components of the primary key as the determinant,

either directly or transitively.

2.4.3 Third Normal Form (3NF). A relation scheme R is in 3NF if for all functional depen-

dencies that hold on R of the form X -- A, where X C R and A E R, at least one of the following

conditions holds (7):

* X is a superkey for scheme R,

* A is a member of a candidate key for scheme R,

* X - A is a trivial functional dependency. (that is, A E X)

16

2.4.4 Boyce-Codd Normal Form (BCNF). BCNF is a stronger form of normalization than

3NF. BCNF eliminates the second condition for 3NF, which allowed the right side of the FD to be a

member of a candidate key. A relation scheme R is in BCNF if for all functional dependencies that

hold on R of the form X i A, where X C R and A E R, at least one of the following conditions

holds:

e X is a superkey for scheme R,

* X - A is a trivial functional dependency (that is, A E X).

2.5 Summary.

This chapter presented the basic knowledge required to understand this thesis and the no-

tations used in this thesis. The structured method of software development was described first.

The structured analysis technique and the tools used in the technique such as DFDs, DDs, process

specifications and DRDs were described. The structured design technique with the structure chart,

a structured design tool, were discussed. Second, the ORACLE RDBMS and its several products

were described briefly. Finally, the relational scheme normalization technique was described.

17

III. Analysis of User Requiremehas

3.1 Introduction

This chapter analyzes the FIS using the structured analysis technique which was discussed

in Section 2.2.1. The analysis phase of the FIS is divided into two major steps. The first step

is identifying the user required data using the structured analysis tools such as tie DFD, DD,

and process specification. The next step is database modelling which generates the structure of a

database from the perception of the real FIS. ERD will be used as a database modelling tool.

3.2 Identify User Required Data

The top-down approach will be used to identify user-required data. The first step is to derive

context diagram which shows all terminators, input data, and output data of the FIS. The FIS

will be decomposed into several processes until each process becomes a functional primitive. The

definition of all data, represented on the DFD, will be described in detail in the DD which will

be placed in Appendix A. The functions of each functional primitives will be described by process

specifications.

3.2.1 Context Diagram. Figure 6 is the context diagram of the FIS. This context diagram

consists of one processor, five terminators, fourteen input data, and twenty output data. It shows

all user groups around the FIS and all data flows between each user and the FIS. Table 2 shows

the source(s) or destination(s) of each input and output data. It shows that almost of all data are

shared by different users. Each input data with the exception of ac-rec, pilot-rec, and sortie-rec

comes from one terminator, but each output data with the exception of org all, after processed by

the FIS, is shared by two or more user groups.

3.2.2 Partition of the FIS. The context diagram was partitione3d into six major groups

depending on the characteristics and functions of each. Figure 7 shows the partitioned DFD of

the FIS. It consists of six processes, nine data-storages, and many data flows. It does not show

the terminators around the system. However, one end of each arrow which connects between the

Figure 7 and the outside of it shows the source or destination of the data on the arrow. Functions

of each processes are:

18

2,35,67,8 14 A,B,CD,E,F',G,HI, S '

SWiNG

'921042,K,3,OP,,,RST/ \ ...

A,B,C,D,E,P,G,'. 1,9,11
HI,I,J,K,L,M,N, \

INF R M A IOA ,B,C E F G ,tI I,J,

CTO L- OTER-

INPUT DATA OUTPUT DATA

1. ac-rec A. ac-rec 0. pilot-list1
2. ac-type B. ac-tot-status P. pilot-list2
3. cac-order-rec C. ac-type Q. rank
4. exec-time D. cac-order-rec f. sq-list
5. exercise E. exercise S. wing-list
6. grand-msn F. flight-record T. ing-order-rec
7. msn-rec G. flight-status-all
8. other-dept H. flight-status-list
9. pilot-rec I. flight-status-org

10. rank J. flight-status-wing
11. sortie-plan K. grand-msn
12. sq-rec L. msn-rec
13. wing-rec M. org-all
14. wing-order-rec N. other-dept

Figure 6. Context Diagram

19

SOURCE/DESTINATION
NO DATA-NAME CAC WING SQ OTHER-DEPT CONTROL-TOWER

1 ac-rec V V
2 ac-type V
3 cac-order-rec V
4 exec-time V

I 5 exercise V
N 6 grand-msn V
P 7 msn-rec V
U 8 other-dept V/
T 9 pilot-rec ./ V V V

10 rank V
11 sortie-plan V
12 sq-rec V
13 wing-rec V
14 wing-order-rec V
1 ac-rec Vv V
2 ac-type V V/ /
3 cac-order-rec V V N/ V /
4 cac-order-rec V V
5 exercise V / / v
6 flight-record V V V V
7 flight-status-all V V V V V/

0 8 flight-status-org V / v v V
U 9 flight-status-list V / V v V
T 10 flight-status-wing V V v / /
P 11 grand-msn V V V V
U 12 Insn-rec V V V V
T 13 org-all V

14 other-dept V V
15 pilot-listl N/ N/ V/ /
16 pilot-list2 v I/ / /
17 rank V V v V
18 sq-list V V V V
19 wing-list V V V V
20 wing-order-rec I_ V_

Table 2. Data Source and Destination

20

. rocess 1 input ,and output. all information related- to oiganization,

* Process 2'Input and output all information related to pilot,

a Process 3 Input and output all information related to aircraft,

o Process 4 Input and output all information related, to flight, mission,

4 Process 5 Input and output all information related to flight-order,

o Process 6 Input and output all information related to flight-sortie.

3.2.3 Partition of Organization. Figure 8 shows the decomposed DFD from Process 1. Or-

ganization consists of four groups: CAC, wing, squadron, a pd other-department. CAC commnds

all wings and each wing commands their squadrons. Each wing is committed to a grand-msn such as

flight, carry, observe, or train. Other-departments such as the headquarter, the logistic command,

and the Air Force academy are organizations which are not directly related to air operation. Since

the FIS focuses to wing and squadron, the size of an other-department is much bigger than that of

a wing or a squadron. For example, the headquarters of the Air Force are a unit organization like

a squadron is.

Sometimes wings and squadrons may be created or deactivated. CAC inputs all changed

information related to organizations and current information related to organizations are shared

by all organizations with the exception of control-tower. The following are process specifications of

each functional primitive shown in Figure 8:

Process 1.1
begin
repeat until user exit the program

accept wing-code;
if the wing-code exists in wing table

then display wing-rec;
end if;
accept wing-rec;
check validity of grand-maSn-code;
if wing-code exists in wing table

then update wing-rec;
else insert wing-rec;

21

wi.grec,sq-rec,

T[cacj 'other-dept T[cac,other-dept])cc

/cac-order-rec
org-Tlcacwing]

MAAG cac-dptMAAGinggorefse

wircT[cac,wing, ioti

sq-rother-deptr-re

T~qother-dept] nncd

T[cac] wing-code~ exeht-sttxe-ais

il-etj ier [cc ig sq

fih-ttslscor1-twrother-dept iSo

Fioguroe 4.Oeve FDo h I

MANAE griid-sn MNA2

D [grand.-msn] P[grihd-mnsn],
rand-msn-code- 1.grd-snam

- whi -recVi i rc

T~cac, wing~s

Tacother-dept] ipu sqac otherodeptng

Figre 8.inDgf-rgaizaio

23

,- P,- -s -.2

en 1'j

, :begin

repeat fintil user exit the program,
accept, sq-code;
if sq4code exists in sq table

then display sq-rec;"
end if;
accept sq-rec;.
checl validity of wing-code;
if sq-code exists in sq table

then update sq-rec;
else insert sq-rec;

end if;
end repeat;
end;

Process 1.3
begin
repeat until user exit the program

accept other-dept-code;
if other-dept-code exists in other-dept table

then display other-dept;
end if;
accept other-dept;
if other-dept-code exists in other-dept table

then update other-dept;
else insert other-dept;

end if;
end repeat;
end;

Pr ocess 1.4
begin
display all wing-rec from wing order by grand-rsn-code, wing-code;
end;

Process 1.5
begin
display all sq-rec from sq order by wing-code, sq-code;
end;

Process 1.6
begin
display.all other-dept from other-dept order by other-dept-code;
end;

Process 1.7

24

begin,
display 'cat' on the s'creeh;,
repeat ,until data end

display :ndxt record of wiing table;
display all sq-re¢ of the wing from sq order by sq-code;.

6ndrepeat;
-display all other-dept ,from other-dept order by other-dept-code;
end;

3.2.4 Partition of Pilot; A pilot is a person who-is committed to controla specific aircraft

type to perf6irm-the flight mission of the Air Force. Pilot includes all persons who areenrolled to,

any pilot training course of the Air Force whether he is a student or an instructor. Each pilot has

a unique pilot-id, name, class, blood-type, pilot-date, job, and pilot-status. All pilots are qualified

to control a specific aircraft type. Occasionally, a pilot moves from one organization to another.

Squadron must continuously check whether a pilot is in rcady-to-take-off, on temporarily, duty-off,

in-hospital, or in-vacation to estimate the ready-mission status.

Figure 9 shows the decomposed DFD from the Process 2. Pilots are recorded in the FIS when

they enter a pilot training course of the Air Force and deleted when they retire or leave the Air

Force. Each organization must update information of the pilot continuously to make it possible for

users to read the newest information at any time. The following are process specifications of each

functional primitive of Figure 9:

Process 2.1
begin
repeat until user exit the program

accept rank-code;
if the rank-code exists in rank table

then display rank;
end if;
accept rank;
if rank-code exists in rank table

then update rank;
else insert rank;

end if;
end repeat;
end;

Process 2.2

25

D[ac-type] T~cac,wing,sq,rnk"ca]
other-depti ak'~a]

ac-type
Djin]pilot-recinu

wing-code rn

D s sq-code 2 2r n -o er n

/ther- dept- code io-erakan

D[othier-dept]

T[wing,sq,
2.5 other-dept]

other-dept]
Figure 9. DFD of Pilot

26

begin
repeat untiluser exit the program

addet pilot code;.
if pilot-cod&exi sts 1nvpilot table.

then -display, pil t-rec;
end, if;.
accept pilot-rec;
check;..validity of ac-type and-,org-code;.
ifp(lot-codeexists in pilot table

then update, pilot-rec;
elselinsert -pilot-re';

end if;
end repeat;
end;

Process 2;3,
begin

display all rank from rank table;
end;

-Process 2.4
begin
repeat until user exit the program

select one from [all:wing:org];
if selection = all then

display all pilot-rec from pilot order by pilot-id;
else if selection = wing then

display all pilot-rec of the wing from pilot order by pilot-id;
else if selection = org then

display all pilot-rec of the org from pilot order by pilot-id;
end if;

end repeat;
end;

Process 2.5
begin
repeat until user exit the program

select one from [all:wing];
if selection = all

then compute pilot-number of cac;
* pilot-number = pilot-tot+hospt+vact+off+ready *
display pilot-number of cac;
repeat until data end of wing table;

compute pilot-number of the wing and their sqs;
display pilot-number of the wing and their sqs;

end repeat;
repeat until data end of other-dept table

compute pilot-number of the other-dept;

27

displaypilot-num&e of the othi- dep t,
'end repeat;

end if;
if selection = wing then

reapeat until data end of wing.,table
compute pilot-number of thewing;
display pilot-number of-the. wing;
repeat until data end of sq. table;

compute pilot-number of the sq;
display pilot-number of the sq;

end repeat;
end repeat;

end if;
end repeat;
end;

3.2.5 Partition of Aircraft. The Air Force has several types of aircraft and each aircraft-

type is dictated a grand-mission (fight, carry, observe, or training). Each aircraft-type is located

in one or more wing(s). Each aircraft has its own unique ac-no and start-date to run. Some

organizations such as squadrons, and logistic command have aircraft while others do not. Aircraft

can be transferred to another organization. Organizations which have aircraft must continuously

count how many aircraft are on maintenance and how many aircraft are ready to take off to estimate

the ready-mission status.

CAC is responsible for maintaining the information on aircraft-type, and each organization

which has aircraft is responsible for maintaining the newest information on their own aircraft. Each

organization can read the newest information of aircraft-type and aircraft. CACreads the aircraft-

status which shows each aircraft-type's percentage of how many aircraft are ready to take-off. If

the percentage is louer than a specific level, CAC does some act to increase the percentage. The

following are process specifications of each functional primitive:

Process 3.1
begin
repeat until user exit the program

accept ac-type;
if the ac-type exists in ac-type table

then display ac-type-rec;
end if;

28

T[cac] -D[gtafid-msh]'

ad-type 3.1 grand-mnsn-code

T[§q,otlier-dept] acptp

ac-totstatu

aca~in~q

oth rg-pta]3
Figure10. DD ofiArcraf

D~pilt) acrec a-t29

accept ac-type-red;.
check validation of grand-msn-code;
if ac-type exists in ac-type table

then update ac-type-rec;
else insert ac-type-rec;

end if;
end repeat;
end;

Process 3.2
begin
repeat until user exit the program

accept ac-no;
if ac-no exists in ac table

then display ac-rec;
end if;
accept ac-rec;
check validation of ac-type, org-code;
if ac-no exists in ac table

then update ac-rec;
else insert ac-recq

end if;
end repeat;
end;

Process 3.3
begin
repeat until user exit the program

select from [all.ac-ttype:one-ac-type];
if selection = all-ac-type then

repeatuntil data end of ac-type table
compute ac-tot-status of the ac-type;
* ac-tot-status=ac-rdy+ac-maint+ac-tot+ac-pct *
display ac-tot-status of the ac-type;

end repeat;
end if;
if selection = one-ac-type then

accept ac-type;
repeat until data end of org

compute ac-tot-status of the org, of the ac-type;
display ac-tot-status of the org, of the ac-type;

end repeat;
end if;

end repeat;
end;

Process 3.4
begin

30

display all ac-type-rec from ac-type order by grand-msn-code, ac-type;
end;

Process 3.5
begin
repeat until data end of ac-type'table

display all ac-rec of ac table;
end repeat;
end;

3.2.6 Partition of Mission. Flight missions of the Air Force can be grouped into four grand-

missions: fight, carry, observe and train. Each wing and aircraft-type is charged with a grand-

mission. These grand-missions are subdivided into several missions each of which is assigned to

each flight-order and flight-sortie. An exercise is a set of military practices to prepare for an

emergency situation. An exercise can be initiated by assigning some flight-orders which include

a specific flight-mission to it. Squadrons transform the flight-ordes into a flight-plan of a specific

(late.

CAC manages the contents of grand-mission, mission, and exercise. It may merge two or

more items of each into one and may subdivide one item of each into two or more. Also, it may

change the grand-mission of a certain wing. Each of the flying organizations refers to the grand-

mission, mission, and exercise when they plan a flight. The following are process specifications of

each functional primitive:

Process 4.1
begin
repeat until user exit the program

accept grand-msn-code;
if the grand-msn-code exists in grand-msn table

then display grand-msn;
end if;
accept grand-msn;
if grand-msn-code exists in grand-msn table;

then update grand-asn;
else insert grand-msn;

end if;
end repeat;
end;

Process 4.2

31

T[cac] grand-msn 4.1
input
grand-
Insn granld-msn

msn-rec
grand-msn-code r d-msfl

4.2 grand-msii
exercise input

mission
grand-msn

msn-ree
mission 4.4

4.3 display
input

exercise xercise grand-
IMSn

msn-rec

exercise 4.5

exercise display
mission

4.6 msn-rec grand-msn
display

execution
exercise

T[cacwingsqot ier-dept]

Figure 11. DFD of Wssion

32

begin
repeat until user exit the program

accept msn-code;,
if msh-code exists in mission table'

then display msn-rec;
eiad if;
accept msn-rec;
check validity of grand-msn-code;
if msn-code exists in mission table

then update msn-rec;
else insert msn-rec;

end ,if;
end repeat;
end;

Process 4.3
begin
repeat until user exit the program

accept ex-code;
if ex-code exists in exercise table

then display exercise;
end if;
accept exercise;
if ex-code exists in exercise table

then update exercise;
else insert exercise;

end if;
end repeat;
end;

Process 4.4
begin

display all grand-msn of grand-,rsn table order by grand-msn-code;
end;

Process 4.5
begin

display all mission-rec of mission table order by msn-code;
end;

Process 4.6
begin

display all exercise of exercise table order by ex-code;
end;

3.2.7 Partition of Flight-order. There are two kinds of flight-order: cac-order and wing-

order. Cac-order are sent from CA C to each wing and wing-orders are sent from each wing to each

of their squadron. The purpose of flight-orders are described in Section 1.2. A flight-order conbists

33

-of a order-number, receiving organization-code) take-off time, a mission code, an, exercise code1, an

aircraft-type, number-of-aircraft required, and description of that flight-order.

CAC sends cac-orders to each wing continuously at any time. In the emergency situation,

alarm system works before sending flight-orders. As soon as each wing receives a cac-order, they

write wing-order(s) and send them to their squadron(s). Each wing may initiate wing-orders and

send them to their squadrons at any time. Each squadron must perform wing-orders at the specified

take-off time.

The FIS must support CAC to input and change cac-orders easily. Cac-orders of each wing

must be displayed on the screen of each wing simultaneously as CAC inputs them. Like cac-

orders, the FIS must support each wing inserting and changing wing-orders easily. Wing-orders

of each squadron must be displayed on the screen of each squadron simultaneously as wing inputs

them. Since flight-orders are sent at unexpected times, they must be displayed automatically at the

screen of destination. Each wing deletes a received cac-order after reordering it to their squadron(s)

through wing-order(s). Similarly, each squadron deletes a received wing-order after translating it

to flight-plan(s) which is to be executed by pilots. The following are process specifications of each

functional primitive:

Process 5.1
begin
rep6at until user exit the program

accept cac-order-no;
if the cac-order-no exists in cac-order table

then display cac-order-rec;
end if;
accept cac-order-rec;
check validity of ac-type, ex-code, msn-code, and wing-code;
if cac-order-no exists in cac-order table

then update cac-order-rec;
else insert cac-order-rec;

end if;
update change-time of data-change table to current time;

end repeat;
end;

'An exercise code is required only if the flight-order is for an exercise

34

D[wing] D[missibn]' D[exercise] D~ac-typej

D~~rnission] dat-chane cacorcer-ec

wingg-code dtachng 5

5.4o cac-order-Ne

TTwingnsq cvig-rdr-ecTraevng

Figur 12. FD ofFligh-orde

D~ mi sio) 5 . d a a-ch ng ecac- rd e-35

" rcess 5.2'

begin
repeat until user exit the program)

accept wing-code + wing-order-no;
if wing-code + wing-order-no exists in wing-order table

then display wing-order-rec;
end if;
accept wing-order-rec;
check validity of ac-type, ex-code, msn-code, sq-code, and wing-code;
if wing-code + wing-order-no exists in wing-order table

then update wing-order-rec;
else insert wing-order-rec;

end if;
update change-time of data-change table to current time;

end repeat;
end;

Process 5.3
begin
time := 0;
accept wing-code;

repeat until user exit the program
read change-time of the wing-code from data-change table;
if change - time > time

then display cac-order of the wing-code from cac-order table;
end if;
time := change-time;

end repeat;
end;

Process 5.4
begin
time := 0;
accept fac-code;
repeat until user exit the program;

read change-time of the cac-code from data-change table;
if change - time > time

then display wing-order of the cac-code from wing-order table;
'end if;
time := change-time;

end repeat;
end;

3.2.8 Partition of Flight-sortie. Each flying organization writes flight-plans to perform wing-

orders or to perform its missions. A flight-plan consists of a set-sortie and one or more sorties.

The contents of set-sortie and sortie are shown in DD of Appendix A. A flight-plan can be added,

36

delayed, or canceled continuously because of the weather and wing-order. The flight-plan is very

important for the safety of flight. For.example, planned take-off time of an organization's flight-plan

must be avoided by other organizations's flight-plan when they share a runway to avoid aircraft

collision. Therefore, all informat'ion related to flight-plan must be shared by all organizations of

the FIS.

Each air base has a control-tower and one or more wings. A control-tower controls and inputs

the take-off and landing-time of all aircraft which use its runway or airfield. Each control-tower can

anticipate the take-off and landing of aircraft not only through communication with aircraft but

also through the computer screen displaying flight-plan of each organization.

All the information related to a flight-sortie is required to be processed simultaneously as

the input from each organizations, and all the information related on flight-sorties required to be

shared by all organizations of the FIS. Thus, all organizations of the FIS can read detailed, reliable,

and current information on flight-sorties on the computer screen. For example, flight-status of an

organization, of a wing, or of the Air Force can be known easily. Also, flight record of a pilot or of

a group can be known easily. The following are process specifications of each functional primitive:

Process 6.1
begin
repeat until user exit the program

accept plan-take-off + sq-code + set-no;
if the plan-take-off+sq-code+set-no exists in set-sortie table

then display set-sortie-rec;
end if;
accept set-sortie-rec;
check validity of ac-type, ex-code, msn-code, and org-code;
if plan-take-off+sq-code+set-no exists in set-sortie table

then update set-sortie table;
else insert set-sortie table;

end if;
update change-time of data-change table to current time;
repeat until user exit the routine;

accept plan-take-off+sq-code+set-no+position-no;
if the plan-take-off+sq-code+set-no+position-no exists in sortie table

then display sortie-rec;
end if;
accept sortie-rec;

37

,D[exercise]' D [ac-type] D[ac] -D pilot]

D[mission) tts

2 flitstats

Figured 13. DFD ofFlightsorti

383

check validity of ac-no and pilot-id;
if plan-take-off,+sq-code+set-no4position-no exists in, sortie'-table

then fpdate sortie table;
else insert sortie table;

end if;
update change-time of data-change table to current time;

end repeat;
end repeat;
end;

Process 6.2
begin
repeat untiluser exit the program

update take-off or update landing of sortie table;
update change-time of data-change table;

end repeat;
end;

Process 6.3
begin
time := 0
repeat until user exit the program;

read change-time of data-change table;
if change - time > time then

repeat until data end of wing table
display wing-code of wing table;
repeat until data end of sq table

display sq-code of sq table;
compute flight-status-list of the sq;
display flight-status-list of the sq;

end repeat;
end repeat;

end if;
time := change-time;

end repeat;
end;

Process 6.4
begin

display all set-sorties from set-sortie table;
display all sorties from sortie table;

end;
Process 6.5

begin
accept wing-code;
display all set-sorties of the wing-code from set-sortie table;
display all sorties of the wing-code from sortie table;

end;

39

o 66
begin,
accept sq-,-code;,

display, all set-sorties of the sq-code from set-sortie'tabie;
display all sorties of the sq-code from sortie table;

end;
Process 6.7

begin
accept conditions (from-date, to-date, org-code, and/br pilot-id);
display allsorties which satisfy the conditions from sortie table;

end;

3.3 Database Modelling,

This section presents the process of database modelling of the FIS using DFDs and DD

which were generated from the last section. ERD is a tool to be used in this section. All entities,

relationships, and their attributes of the PM will be described on. the ERDs. Comments which

are difficult to describe by entities and/or relationships will be described by short English on the

bottom part of the ERDs.

Figure 14 shows an overview of the E RD for the PIS. The ERD of the FIS can be grouped

into six major parts: organization, pilot, aircraft, mission, flight order, and flight-sortie depend on

the characteristic of each entities. The scope of each part is similar to the scope of corresponding

process of Figure 7 which was decomposed from the context diagram. Each of the six parts will be

discussed in detail in this section. The entity sets and weak entity sets of each part are shown in

Table 3.

No Part FEntity Sets & Weak Entity Sets
1 organization cac, wing, sq, org, other-dept, data-change
2 pilot pilot, rank
3 aircraft ac, ac-type
4 mission grand-msn, mission
5 flight-order cac-order' wing-order, exercise
6 flight-sortie set-sortie, sortie

Table 3. Entity/Weak Entity Sets of the PIS

40

1: w1:ni~or~I~w~~o

-iotse p p r tet aohe rakoassin ally.m'l dctt

-Pltscn beasge o anothern h ACTP . 0i-o
-The. roeo1ac:io n a : soti isidffeent

Figue 1. Oerviw E.D f te FI

41:

J 3 1 M'oelling: of Organieati in. Figure 15 shows theERD oforganization; heED of

organization consists of six entity sets, four relationship sets, and their attii-butes. Entity,sets ,and

'their attributes of the organization are shown in Table,4.

OTHER- l:n @ i:IE CAC
DEPT

*otherde . L-*cac-name

-*othier- dept- code MM-other-dept-name

CHANGE WING

L*change-code '*wing-code
0wing-name

1:1 wing-establish

.;nn

OP G *sq-code

*org..codesetalh

* COMMENTS

-Data-changes occur at wing and organizations which perform flight.

Figure 15. ERD of Organizations

Org is an entity set produced by generalizing four entity sets cac, wing, sq, and other-dept.,

Entity set org makes it possible to validate an organization code easily. Data-change ib an entity set

42

Entity/Weak Entity Set Occurrence' Attributes

cac 1 cac-name 2

wing 50 wing-code, wing-name, wing-establish
sq 200 sq-code, sq-name, sq-establish
other-dept 50 other-dept-code, other-dept-name
org 500 org-code
data-change 4 change-code

Table 4. Entity/Weak Entity Sets & Attributes of Organization

required to read the newest change time of certain data of certain an organization. Relationships

between entities and further descriptions which are not shown on the ERD are described below.

1. Cac commands all wings.

2. A wing directs their squadrons.

3. Cac orders each pilot of other-dept to move to certaiin org in emergency case.

4. Data-change3 occurs at wing and orgs which perform flights.

3.3.2 Modelling of Pilot. Figure 16 shows the ERD of pilot. The ERD of pilot consists of

two entity sets and three relationship sets and their attributes. Entity sets and their attributes are

described in Table 5.

Entity/Weak Entity Set Occurrence JAttributes
pilot 10,000 pilot-id, name, class, blood-type, pilot-date,

I job, pilot-status
rank 50 1 rank-code, rank-name

Table 5. Entity/Weak Entity Sets & Attributes of Pilot

Relationships between entities and further descriptions which are not shown on the ERD are

described below.

'Occurrence means the maximum number of the occurrence of each entity/weak entity.
2 Primary key attributes are italicized.
3 Data-change includes receiving flight-order, changing flight-plan, and/or executing flight-sortie.

43

OR*ac-tyPe AC-TYPE*or code
1 l~n

11

[RANK AS @ ~ PILOT

[-*rank-code - *pilot-id
_rank-name - name

- class
- blood-type

- pilot-date
* COMMENTS job

- Pilots promote to another rank ocassionally. pilot-status

- Pilots can be assigned to another AC-TYPE.

Figure 16. ERD of Pilot

1. A pilot has a rank and he is promoted to another rank occasionally.

2. A pilot is enrolled to an org and he may move to another org.

3. A pilot is assigned to control a specified ac-type.

3.3.3 kIodelling of Aircraft. Figure 17 shows the ERD of aircraft which consists of two

entity sets and two relationship sets. Entity sets and their attributes are shown in Table 6.

Entity/Weak Entity Set IOccurrence Attributes

ac-type 50 ac-type
ac 5,000 ac-no, ac-status, start-date

Table 6. Entity/Weak Entity Sets & Attributes of Aircraft

44

ORG HAS AC CLASSIF AC-TYPE

*org-code *ac-no *ac-type-- ac-status
_start-date

Figure 17. ERD of Aircraft

Relationships between entities and further descriptions which are not shown on the ERD are

described below.

1. Acs are classified into many ac-types.

2. Some orgs have acs.

,.8.4 Modelling of Mission. Figure 18 shows the ERD of mission which consists of two

entity sets and three relationship sets. Entity sets and their attributes are shown in Table 7.

*grand-msn-code

MSN

WING MISON - msn-nameAC-TYPE*

Figure 18. ERD of Mission

Relationships between entities and further descriptions which are not shown on the ERD are

described below.

1. A wing is assigned to a grand-msn.

45

Entity/Weak'Entity Set jr Occuirenie Attributes

grand-msn 10 grand-msn-code, grand-msn-name
mission 1,000 msn-code, msn-name

Table 7. Entity/Weak Entity Sets & Attributes of Mission

2. An ac-type is dictated a grand-msn.

3. A grand-msn is classified into many missions.

3.3.5 Modelling of Flight-order. Figure 19 shows the ERD of flight-order which consists of

one entity set, two weak entity sets, and ten relationship sets. The existence of a weak entity

cac-order depends on the existence of a strong entity cac. Also, the existence of another weak

entity wing-order depends on the existence of a strong entity wing. Entities and their attributes

are bhown in Table 8.

Entity/Weak Entity Set 11 OccurrenceI Attributes

exercise - 100 ex-code, ex-name
cac-order' 1,000 cac-order-no, number-ac, take-off, cac-descript
wing-order 1,000 wing-order-no, take-off, wing-descript

Table 8. Entity/Weak Entity Sets & Attributes of Plight-Order

Relationships between entities and further descriptions which are not shown on the ERD are

described below.

1. Cac writes cac-orders.

2. A cac-order includes a mission.

3. A cac-order require an ac-type.

4. A cac-order may be for an exercise.

5. A cac-order is assigned to a wing.

'Weak entity sets are italicized.

46

CAC * RIT

CASGCAC-ORDEB1 isFO : MISSION

1:1 -*cac-order-no
umber-ac

take-off i: CIREQ 1:
caluc-descript

WING EXERtCISE
wing-order-no

-take-off 1:n:1 \ D :1 *ex-code
_wing-descript , x-name

[SQ * 1 :1:

Figure 19. ERD of Flight-order

47

7. A wing-oider includes, a.nission.

8. A Wing-order require an ac-type.

9. A wing-order may be -for an exercise.

10. A wing-order is assigned to a sq.

3.3.6 Modelling of Flight-sortie. Figure 20 shows the ERD of flight-sortie Which consists

of two weak entity sets and seven relationship sets. The existence of a weak entity set-sortie is

dependent on the strong entity org. The existence of another weak entity sortie is dependent on

the weak entity set-sortie and the strong-entity org. Entity sets and their attributes are shown in

Table 9.

Entity/Weak Entity Set Occurrence Attributes

set-sortie 500,000 set-no, plan-take-off
sortie 1,500,000 position-no, take-off, landing

Table 9. Entity/Weak Entity Sets & Attributes of Flight-Sortie

Relationships between entities and further descriptions which are not shown on the ERD are

described below.

1. Some org plan set-sortie.

2. A set-sortie needs an ac-type.

3. A set-sortie may or may not be a part of an exercise.

4. A set-sortie commits a mission.

5. A set-sortie require one, two, three, or four sorties.

6. A sortie is performed by one, two, or three pilots.

7. A sortie uses an ac.

48

MISSION EXERCISE AC-TYPE

0:1

COMTPAR.T-O' NEED

:n1 :n 1 :n

platk-of *org..codlc

-position-no
- take-off

* COMMENTS

- The role of each pilot in a sortie is different.

Figure 20. ERD of Flight-sortie

49

3.4 Summary

This chapter presented an analysis of the FIS using the structured analysis technique. User

required data was identified by using the DFD, DD, and process specification tools. Database

modelling activity is followed to generate the structure of a database from the perception of the

real world of the FIS. ERD was used as a tool in this step.

50

IV. Design of the FIS

4.1 Introduction

This chapter describes the design of the FIS using the structured design technique. The

database will be designed from the DD and ERD which were produced in Chapter 3. After that,

structure charts will be derived from the DFD which were also produced in Chapter 3. The module

design which describes the implementation method of each module will be described to aid the

programming activity.

4.2 Database Design

This section shows how the relational database tables are generated from the DD and ERD.

Normalization techniques will be used to generate the tables to a high degree of integrity and

maintainability. This thesis sets two goals for the database design. One of the goals is achieving

BCNF in the normalization. If it is not possible, however, 3NF is acceptable. Another goal of the

database design in this thesis is to generate an appropriate number of database tables. Too large a

number of database tables increases the complexity of the database system and requires redundant

efforts for development. Too small a number of database tables, on the other hand, increases the

size of a table and the computational cost.

To achieve the above goals, two steps will be performed. The first step is required to achieve

the normalizatioi, goal. All entity sets and relationship sets of the ERD will be transformed into

database tables. Then, these database tables will be transformed into the form which satisfy BCNF

or 3NF. The second step is to decrease the number of tables which are generated in the first step.

Some tables generated in the first step can be rejected or merged into a neighboring table to simplify

the database system. For example, a table which has only one tuple can be rejected and a table

which was generated by borrowing primadry key attributes of etch neighboring table can be merged

into one of the neighboring tables.

4.2.1 Database Design of Organization. Each of the entity sets and relationship sets of

organization shown in Figure 15 are transformed into tables as shown in Table 10. All of the tableb

satisfy BCNF.

51

-N ,

Table Attributes & Primary key
cac cac-namel

command wing-code, cac-name
data-change change-code
direct sq-code, wing-code
occur org-code, change-code, change-time
order other-dept-code, cac-name
org org-code
other-dept other-dept-code, other-dept-name
sq sq-code, sq-name, sq-establish
wing wing-code, wing-name, wing-establish

Table 10. Incomplete Database Tables of Organization

Tables cac, command, and order need to be rejected since table cac has only one tuple. Table

direct can be merged into table sq since each of those tables has the same primary key sq-code.

Also, table data-change can be merged into table occur since table data-change is a subset of table

occur. Since table org is a generalization of tables cac, wing, sq, and other-dept, and has other

general attributes other than the org-code, there is no need for it to exist as a table. Table assign

of Section 4.2.4 is merged into table wing since the primary key of each is the same. The complete

database tables of organization are shown in Table 11.

Table Attributes & Primary key

occur org-code, change-code, change-time
other-dept other-dept-code, other-dept-name
sq sq-code, sq-name, sq-establish, wing-code
wing wing-code, wing-name, wing-establish, grand-insn-code

Table 11. Complete Database Tables of Organization

4.2.2 Database Design of Pilot. Each of the entity sets and relationship sets of pilot, bhown

in Figure 16, are transformed into a table as shown in Table 12. All of the tables satisfy BCNF.

Tables enroll, has, and assign are merged into a table pilot since the primary key of each is the

'Italicized attribute(s) denote primary key of the database table

52

ITable Attributes & Primary key

assign pilot-id, ac-type
enroll pilot-id, org-code
has pilot-id, rank-code
pilot pilot-id, name, class, blood-type, pilot-date, job, pilot-status
rank rank-code, rank-name

Table 12. Incomplete Database T-ables of Pilot

same. Table 13 shows the complete database tables generated from pilot.

Table Attributes & Primary key

pilot pilot-id, name, class, blood-type, pilot-date, job, pilot-status, rank-code,
____org-codle, ac-type

rank rank-code, rank-name

Table 13. Complete Database Tables of Pilot

4.2.3 Database Design of Aircraft. Each of the entity sets and relationship sets of aircraft,

shown in Figure 17, are transformed into a table as shown in Table 14. All of the tables satisfy

BCNF. Tables classify and has are merged into a table ac since the primary key of each is the same.

Table I Attributes & Primary key

ac ac-no, ac-status, start-date
ac-type ac-type
classify ac-no, ac-type
has ac-no, org-code

Table 14. Incomplete Database Tables of Aircraft

Table dictate of Section 4.2.4 is merged into table ac-type since the prim,ry keys of each are the

same. Table 15 shows the complete database tables generated from aircraft.

53

Table Attributes & Primary key

ac ac-no, ac-status, start-date, ac-type, org-code
ac-type ac-type, grand-msn-code

Table 15. Complete Database Tables of Aircraft

4.2.4 Database Design of Mission. Each of the entity sets and relationship sets of mission,

shown in Figure 18, are transformed into a database table as shown in Table 16. All of the tables

satisfy BCNF.

Table Attributes K Primary key

assign wing-code, grand-msn-code
classify nosn-code, grand-msn-code
dictates ac-type, grand-msn-code
grand-osaI grand-msn-code, grand-msn-name
mission msn-code, msn-name

Table 16. Incomplete Database Tables of Mission

Tables assign, classify, and dictates are merged into table wing, mission, and ac-type respec-

tively, since the primary key of each is the same. Table 17 shows the complete database tables

generated from mission.

Table Attributes & Primary key

grand-msn grnd-msn-code, grand-msn-name
mission rsn-code, msn-name

Table 17. Complete Database Tables of Mission

4.2.5 Database Design of Flight-order. Each of the entity sets and relationship sets of flight-

order, shown in Figure 19, are transformed into a table as shown in Table 18. Table wing-order

imported a key wing-code from the entity bet wing which is the strong entity of weak entity set

wing-order. Table cac-order, however, did not import a key since the entity set cac has only one

etity value. All of the tables satibfy BCNF. Table cwrite is regarded to be a database table since

54

Table Attributes & Primary key

cac-order cac-order-no, number-ac, take-off, cac-descript
cassign cac-order-no, wing-code
cinclude cac-order-no, msn-code
cis-for cac-order-no, ex-code
creq cac-order-no, ac-type
cwrite cac-order-no, cac-name
exercise ex-code, ex-name
wassign wing-code, wing-order-no, sq-code
winclude wing-code, wing-order-no, msn-code
wing-order wing-code, wing-order-no, take-off, wing-descript
wis-for wing-code, wing-order-no, ex-code
wreq wing-code, wing-order-no, ac-type
wwrite wing-code, wing-order-no

Table 18. Incomplete Database Tables of Flight-order

the entity set cac has only one entity value. Tables cassign, cinclude, cis-for, and creq are merged

into table cac-order since the primary key of each is the same. Similarly, tables wassign, winclude,

wis-for, and wreq are merged into table wing-order for the same reason. Table 19 shows the complete

database tables generated from flight-order.

Table Attributes & Primary key

cac-order cac-order-no, number-ac, take-off, cac-descript, wing-code,
msn-code, ex-code, ac-type

exercise ex-code, ex-name
wing-order wing-code, wing-order-no, take-off, wing-descript, sq-code,

I msn-code, ex-code, ac-type

Table 19. Complete Database Tables of Flight-order

4.2.6 Database Design of Flight-sortie. Each of the entity sets and relationship sets of flight-

sortie, shown in Figure 19, are transformed into a table as shown in Table 20. Table set-sortie

imports a key from the entity set org which is a strong entity set of weak entity set set-sortie. Also,

table burtit imports a ke) from entities st-surtit and org which are strong entity sets of weak entity

set sortic. All of the tables satisfy BCNF. Tables commit, part-of, rtacd, and plan are merged into

55

[Table Attributes & Primary key

commit org-code, set-no, plan-take-off, msn-code
need org-code, set-no, plan-take-off, ac-type
part-of org-code, set-no, plan-take-off, ex-code
perform org-code, set-no, plan-take-off, position-no, take-off, landing, front-pilot,

rear-pilot, stand-by-pilot
plan org-code, set-no, plan-take-off
require org-code, set-no, plan-take-off, position-no
set-sortie org-code, set-no, plan-take-off
sortie org-code, set-no, plan-take-off, position-no, take-off, landing
use org-code, set-no, plan-take-off, position-no, take-off, landing, ac-no

Table 20. Incomplete Database Tables of Plight-sortie

table set-sortie since the primary key of each is the same. Also, tables require, perform, and use are

merged into table sortie since the primary key of each is the same. Table 21 shows the complete

tables generated from flight-sortie.

Table Attributes & Primary key

set-sortie ~org-code, set-no, plan-take-off, msn-code, ex-code, ac-type
sortie oty-code, set-no, plan-take-off, position-no, take-off, landing, ac-no,

front-pilot, rear-pilot, stand-by-pilot

Table 21. Complete Database Tables of Flight-sortie

4.2.7 Complete Database Tables. Table 22 shows the complete database tables generated

from Section 4.2.1 through ,.2.6. It consists of 15 tables and their attributes. Appendix B shows

the database creation program which was written by SQL language.

4.3 Structure Chart

This section describes how the structure chart of the FIS from the DFD is generated. Top-

down design technique is used. The overview DFD of the FIS shown in Figure 7 shows that the

FIS consists of six sub-systems. Figure 7 is transformed into a high-level structure chart and the

56

- No I Table Attributes & Primary key

1 ac ac-no, ac-status, start-date, ac-type, org-code
2 ac-type ac-type, grand-msn-code
3 cac-order cac-order-no, number-ac, take-off, cac-descript, wing-code,

msn-code, ex-code, ac-type
4 exercise ex-code, ex-name
5 grand-msn grand-msn-code, grand-msn-name
6 mission msn-code, msn-name
7 occur org-code, change-code, change-time
8 other-dept other-dept-code, other-dept-name
9 pilot pilot-id, name, class, blood-type, pilot-date, job, pilot-status, rank-code,

org-code, ac-type
10 rank rank-code, rank-name
11 set-sortie org-code, set-no, plan-take-off, msn-code, ex-code, ac-type
12 sortie org-code, set-no, plan-take-off, position-no, take-off, landing, ac-no,

front-pilot, rear-pilot, stand-by-pilot
13 sq sq-code, sq-name, sq-establish, wing-code
14 wing wing-code, wing-name, wing-establish, grand-msn-code
15 wing-order wing-code, wing-order-no, take-off, wing-descript, sq-code,

msn-code, ex-code, ac-type

Table 22. Complete Database Trables of the FIS

sub-DFDs of Figure 7 are transformed into low-level structure charts. The functions of each module

of structure chart are described in detail.

4.3.1 High-Level Design. The overview-DFD of the FIS shown in Figure 7 is transformed

into a high-level structure chart of the FIS. The high-level structure chart is shown in Figure 21.

Module 0 calls each of the sub-modules and each of the sub-modules calls ith sub-modules also.

The high-level modules, module 0 through module 6, need not exchange any data between is sub

modules. Those modules will be developed using SQL*Menu. The functions of each high-level

module described below are similar since the functions of each are just to call its sub-modules.

Modules 0, 1, 2, 3, 4, 5, and 6
begin
repeat until user exit the program

display menu on the screen;

57

select a menu;
call selected menu;

end repeat;
end;

FIS

E AG 2 MANGEJ 'MANAGE 4MANAGE 5 MANAGE 6MANAGE
OR PILOT AIRCRAFT MISSION ORDER SORTIE

Figure 21. High-level Structure Chart of the FIS

4.3.2 Low-Level Design. The detailed DFDs of the FIS which are shown in Figure 8 through

Figure 13 are transformed into the low-level structure chart of the FIS. Figure 22 through Figure

27 show the low-level structure chart of the FIS. Each of the modules of the low-level structure

chart, with the exception of module 1.7.1, are transformed from a process of DFDs as ,hown in

Figure 8 through Figure 13. Each of the low lekel modules will be developed using SQL*Furmns or

P o*Ada.

Many modules such as 1.7, 2.4, 2.5, 3.3, and 6.3 need to read the information of orgs in a

specific sequence. Module 1.7.1 is designed to support these modules. Module 1.7.1 stores item (;

org-code + org-name) of specific orgs to a circulai-quezu and returns ont At a time lien it is called

by higher level n.uduleb. The order of storing and retuming item depends on the %alue of .l w hich

is to be accepted from user.

58

The DFD of organization shown in Figure 8 is transformed into a structure chart as shown

in Figure 22. Each of the processes are transformed into a module. Module 1.7 calls module 1.7.1

to receive specific items and then to display them. The functions of module 1.1 through module

1.7 and module 1.7.1 are described below.

1 MANAGE

ORtG

ue1.5 1.7

S wigohde;display sq

if th wi g dee
all org

input sq disldiysplay win disple
acceptewi

1 item

1.7.1 C

Figure 22. Structure Chart of Organization

Module 1.1
begin
repeat until user exit the program

accept wing-code;
if the wing-code exists in wing table

then display wing-rec;
end if;
accept wing-rec;
check validity of grand-rnsn-code;

commit;
end repeat;
end;

59

Module 1.2
begin
repeat until user exit the program

accept sq-code;
if sq-code exists in sq table

then display sq-rec;
end if;
accept sq-rec;
check validity of wing-code;
commit;

end repeat;
end;

Module 1.3
begin
repeat until user exit the program

accept other-dept-code;
if other-dept-code exists in other-dept table

then display other-dept;
end if;
accept other-dept;
commit;

end repeat;
end;

Module 1.4
begin

display wing-rec from wing table order by grand-msn-code, wing-code;
end;

Module 1.5
begin

display sq-rec from sq table order by wing-code, sq-code;
end;

Module 1.6
begin

display other-dept from other-dept table order by other-dept-code;
end;

Module 1.7
begin

call ADDORG of module 1.7.1 giving sel = 1;
if circular queue is not empty then
call POPORG of module 1.7.1 and display item;
end if;

end;
Module 1.7.1

define circular queue withlOO items;
item = {what-org + org-code + org-name + wing-code};

60

procedure ADDCQ (CQ: in out queue;
IM: in item);

add an item to the tail of the CQ and return it;
end ADDCQ;
procedure CLEARCQ (CQ: in out queue);

delete all items in the CQ;
end CLEARCQ;
function ISEMPTYCQ (CQ: queue) return boolean;

if CQ is empty then return true else return false;
end CLEARCQ;
procedure ADDORG (CQ:in out queue;

SEL: in integer;
OCODE: in string);

select SEL from [1:2:3];
if SEL = 1 then

add items to the CQ in the sequence of
cac - {wing - {sq}} -- {other-dept};

end if;
if SEL = 2 then

add items to the CQ in the sequence of
wing - {sq};

end if;
if SEL = 3 then

add items to the CQ in the sequence of
{sq};

end if;
end ADDORG;
procedure POPORG (CQ: in out queue;

IM: out item);
return one item by one item from CQ;

end POPORG;

The DFD of pilot shown in Figure 9 is transformed into a structure chart as shown in Figure

23. Each of the processes are transformed into a module. Module 2.4 and module 2.5 calls module

1.7.1. The functions of module 2.1 through module 2.5 are described below.

Module 2.1
begin
repeat until user exit the program

accept rank-code;
if the rank-code exists in rank table

61

2 MANAGE
PILOT

2.1 22 in ut a 2.42.5

pilot rank dipla displayp pilot-status
, XN"it emse . te

1.7.1Q *

Figure 23. Structure Chart of Pilot

then display rank;
end if;
accept rank;
commit;

end repeat;
end;

Module 2.2
begin
repeat until user exit the program

accept pilot-code;
if pilot-code exists in pilot table

then display pilot-rec;
end if;
accept pilot-rec;
check validity of ac-type and org-code;
commit;

end repeat;
end;

Module 2.3

62

begin
display rank from rank table order by rank-code;

end;
Module 2.4

begin
repeat until user exit the program

select one from [all:wing:org];
if selection = all then

display all pilot-rec from pilot table order by pilot-id;
else if selection = wing then

display all pilot-rec of the wing from pilot table order by pilot-id;
else if selection = org then

display all pilot-rec of the org from pilot table order by pilot-id;
end if;

end repeat;
end;

Module 2.5
begin
repeat until user exit the program

select one from [all:wing];
if selection = all

then compute pilot-number of cac;
* pilot-number = pilot-tot+hospt+vact+off+ready *
display pilot-number of cac;
repeat until data end of wing table

compute pilot-number of the wing including their sqs;
display pilot-number of the wing and their sqs;

end repeat;
repeat until data end of other-dept table

compute pilot-number of the other-dept;
display pilot-number of the other-dept;

end repeat;
end if;
if selection = wing then

reapeat until data end of wing table
compute pilot-number of the wing;
display pilot-number of the wing;
repeat until data end of sq table

compute pilot-number of the sq;
display pilot-number of the sq;

end repeat;
end repeat;

end if;
end repeat;
end;

63

Tkhe DFD of aircraft shown in Figure 10 is transformed into a structure chart as shown in

Figure 24. Each of the processes are transformed into a module. Module 3.3 calls module 1.7.1.

The functions of module 3.1 through module 3.5 are described below.

SMANAGE

AIRCIRAFTI

3.1 3.2 3.3 3.4
input ac display lisplay[allPut ac-number ac-lype ac

Figure 24. Structure Chart of Aircraft

Module 3.1
begin
repeat until user exit the program

accept ac-type;
if the ac-type exists in ac-type table

then display ac-type-rec;
end if;
accept ac-type-rec;
check validation of grand-msn-code;
commit;

end repeat;
end;

Module 3.2

64

begin
repeat until user exit the program

accept ac-no;
if ac-no exists in ac table

then display ac-rec;
end if;
accept ac-rec;
check validation of ac-type, org-code;
commit;

end repeat;
end;

Module 3.3
begin
repeat until user exit the program

select from [all-ac- type:one-ac- type];
if selection = all-ac-type then

repeatuntil data end of ac-type table
compute ac-tot-status of the ac-type;
* ac-tot-status=ac-rdy+ac-maint+ac-tot+ac-pct *

display ac-tot-status of the ac-type;
end repeat;

end if;
if selection = one-ac-type then

accept ac-type;
repeat until data end of org

compute ac-tot-status of the org, of the ac-type;
display ac-tot-status of the ory, of the ac-type;

end repeat;
end if;

end repeat;
end;

Module 3.4
begin

display all ac-type-rec from ac-type order by grand-msn-code, ac-type;
end;

Module 3.5
begin

display ac-rec of ac table order by ac-no;
end;

The DFD of mission shown in Figure 11 is transfoimed into a structure chart as shown in

Figure 25. Each of the processes are transformed into a module. The functions of module 4.1

through module 4.6 are described below.

65

4 MANAGE

MISSION

grand-msn imssion exercise gran -msn mission e c

Figure 25. Structure Chart of Mission

Module 4.1
begin
repeat until user exit the program

accept grand-masn-code;
if the grand-mas-code exists in grand-msan table;

then display grand-msn;
end if;
accept grand-masn;
commit;

end repeat;
end;

Module 4.2
begin
repeat until user exit the program

accept msn-code;
if rnsn-code exists in mission table

then display msn-rec;
end if;
accept msn-rec;
check validity of grand-msn-code;
commit;

end repeat;
end;

66

Module 4.3
begin
repeat until user exit the program

accept ex-code;
if ex-code exists in exercise table

then display exercise;
end if;
accept exercise;
commit;

end repeat;
end;

Module 4.4
begin

display grand-msn of grand-msn table order by grand-msn-code;
end;

Module 4.5
begin

display mission-rec of mission table order by msn-code;
end;

Module 4.6
begin

display exercise of exercise table order by ex-code;
end;

The DFD of flight-order shown in Figure 12 is transformed into a structure chart as shown

in Figure 26. Each of the processes are transformed into a module. The functions of module 5.1

through module 5.4 are described below.

Module 5.1
begin
repeat until user exit the program

accept cac-order-no;
if the cac-order-no exists in cac-order table;

then display cac-order-rec;
end if;
accept cac-order-rec;
check validity of ac-type, ex-code, msn-code, and wing-code;
update change-time of data-change table to current time;
commit;

end repeat;
end;

Module 5.2

67

c-odrIc ac-ord er 'ving-ordei wing-order

Figure 26. Structure Chart of Flight-Order

begin
repeat until user exit the program

accept woing-code + wving-order-no;
if woing-code + wing-order-no exists in win g-order table;

then dlislplay win g- orde r-rec;
end if;
accept win g- ordet- rec;
check validity of ac-type, ex-code, msn-code, sq-code, and woing-code;
update change-time of data-change table to current time;
commit;

end repeat;
end;

Module 5.3
begin
time :=0;
task get-command is

loop
accept command;

end loop;
end task;
task main-prog is

loop
if command = '999'

68

then exit this loop;
end if;
wing-code := command;
read change-time of the wing-code from data-change table;
if change - time > time or wing-code changed

then display cac-order of the wing-code from cac-order table;
end if;
time := change-time;

end loop;
terminate task get-command;
end task;

end;
Module 5.4

begin
time := 0;
task get-command is

loop
accept command;

end loop;
end task;
task main-prog is

loop
if command = '999'

then exit this loop;
end if;
ory-code := command;
read change-time of the ory-code from data-change table;
if change - time > time or ory-code changed

then display wing-order of the org-code from cac-order table;
end if;
time := change-time;

end loop;
terminate task get-command;
end task;

end;

The DFD of flight-sortie shown in Figure 13 is transformed into a structure chart as shown

in Figure 27. Each of the processes are transformed into a module. Module 6.3 calls module 1.7.1.

The functions of module 6.1 through module 6.7 are described below.

Module 6.1

69

6MANAGE

SORTIE

6.1. .3 56.7 i6.a

n 'nu ut displadislaigy ..

exe-ti e tig't- l gl- fii tlg t-r

Figure 27. Structure Chart of Flight-Sortie

bcgin

repeat until user exit the program;
accept plan-take-off + sq-code + set-no;
if the plan-take-off+sq-code+set-no exists in set-sortie table

then display set-sortie-rec;

end if;
accept set-sortie-rec;

check validity of ac-type, ex-code, msn-code, and org-code;
update change-time of data-change table to current time;
commit;
repeat until user exit the routine

accept plan-take-off +sqcode+set-noposition-no;
if the plan-take-off+sq-code+set-no+position-no exists in sortie table

then display sortie-rec;
end if;
accept sortie-rec;
check validity of ac-no and pilot-id;
update change-time of data-change table to current time;

commit;

70

end repeat;
end repeat;
end;

Module 6.2
begin
repeat until user exit the program

update take-off or update landing of sortie table;
update change-time of data-change table;
commit;

end repeat;
end;

Module 6.3
begin
time := 0;
task get-command is

loop
accept command;

end loop;
end task;
task main-prog is

loop
if command = '999'

then exit this loop;
end if;

end loop;
loop

read MAX(change-time) of data-change table;
if change - time > time then

repeat until data end of wing table
display wing-code of wing table;
repeat until data end of sq table

display sq-code of sq table;
compute flight-status-list of the sq;
display flight-status-list of the sq;

end repeat;
end repeat;
repeat until data end of other-dept table

if sort - tot # 0 then
compute flight-status-list of the other-dept;
display flight-status-list of the other-dept;

end if;
end repeat

end if;
time := change-time;

end loop;

71

terminate task get-command;
end;

Module 6.4
begin

display set-sorties from set-sortie table order by plan-take-off, org-code,
set-no;
display sorties from sortie table order by plan-take-off, org-code, set-no,
position-no;

end;
Module 6.5

berin
accept wing-code;
display set-sorties of the wing-code from set-sortie table order by
plan-take-off, org-code, set-no;
display sorties of the wing-code from sortie table order by plan-take-off,
c-'g-code, set-no, position-no;

end;
Module 9.6

begin

accept org-code
display set-sorties of the ory-code from set-sortie table order by
plan-take-off, ory-code, set-no;
display sorties of the org-code from sortie table order by
plan-take-off, ory-code, set-no, position-no;

end
Module 6.7

bc-in
accept selections (from-date, to-dait, org-code, and/or pilot-id);
dislay s.n ties which satisfy the selections from sortie table order by take-off;

end;

72

V. Implementation and Testing

This chapter presents the process of implementation and testing of the FIS. A top-down

development technique was applied in this process. The implementation and the test were done

simultaneously. Each module of the structure chart was implemented and tested. The top modules

were implemented before the bottom modules and the left-side modules were implemented before

the right-side modules. The functions and procedures of each module were derived from the module

descriptions generated in Chapter 4.

Whenever a module was implemented, two testing steps were followed. The first step was

the test of the module itself. In this step, each function and constraint of the written program was

compared with the module description generated in Chapter 4 by inserting or displaying sample

data. The second step was the connection test of each module between the modules with which data

items were exchanged. This step of the test included the entire modules implemented previously.

The modules being tested were called by other modules to verify a connection exists between them.

SQL*Menu, SQL*Forms, and Pro*Ada were used to implement the FIS. The process of

implementation and testing of the FIS can be grouped into four steps each of which are presented

below.

The first step was the implementation and test of the high-level structure chart. Each module

of the high-level structure chart does not .change data items. The only required function of each

module is calling of its sub-modules. The high-level structure chart consisting of module 0, 1, 2,

3, 4, 5, and 6 were implemented and tested using SQL*Menu. Appendix C shows the high-level of

the F1S shown on the screen.

The second step was the implementation and tist of the module 1.7.1. Though module 1.7.1 is

the lowest level module, it was developed carlier than some of other higher lexel modules because it

is called by many higher level modules. By implementi.g it earlier, each module which calls module

1.7.1 can be tested with a real sub-program. Pro*Ada was used as the programming language and

Circular-Queue data structure' was used. Module 1.7.1 consists of several functions/procedures

'This Circular- Queue has a capacity of 100 items which can add or pop the information related to an org.

73

and it returns information of org one at a time. The sequence of returning information depends

the user input as shown in Module 1.7.1.

The third step was the implementation and test of each of the cub-modules of module 1

through module 6. Pro*Ada and SQL*Forms were used in this step. The modules which require

complex procedures such as modules 1.7, 2.4, 2.5, 3.3, 3.5, 5.3, 5.4, and 6.3 were implemented using

Pro*Ada. And the rest of the modules were implemented using SQL*Forms.

Modules 5.3, 5.4, and 6.3 required peculiar data manipulation procedures. Many users may

input data through four kinds of input programs (Modules 5.1, 5.2, 6.1, and 6.2) and many users

may display them at the same time. Modules 5.3, 5.4, and 6.3 require the data to be displayed

simultaneously on the screen as the user insert it. Data-change is an intermediate table between

input programs and output programs (Modules 5.3, 5.4, and 6.3). Data-change table keeps each

org's change-time which contains newest change time of data and each input programs update the

change-time of a certain org into current time. Then three output programs display newest data

continuously by comparing latest display-tme with the change-time. Pro*Ada's tasks were used to

implement this problem. Each of the three modulev, 5.3, 5.4, 6.3, consists of a main program and

a task. The task accepts commands from the user keyboard and the main program responds to it.

The following program shows how the task was used to implement this l)roblem.

1 with ...; use ...;
2 procedure p53 is

3 change-time string(1..20) (1..20 => '0');
'1 pre-change-time: string(1..20) (1..20 => '0');

5 q cq.queue;
6 command cq.item;
7 outfile file-mode;
8 out-file file-type;
9 task get-command;
10 task body get-command is
11 begin
12 loop
13 get(command.org-code);
14 CQ.ADDCQ(q, command);
15 if command.org-code = "999" then exit; end if;
16 end loop;

74

17 end get-command;
18 begin

19 loop
20 getcom: loop
21 if not CQ.ISEMPTYCQ(q) then
22 CQ.POPORG(q, command);
23 exit when command.org-code = "999";
24 org-code := command.org-code;
25 end if;
26 EXEC SQL SELECT to-char(change-time,'DD-MON-YYYY HH24:MI:SS')
27 INTO :change-time
28 FROM data-change
29 WHERE org-code = :org-code and change-code = :change-code;
30 exit when change-time /= pre-change-time;
31 TEXT-IO.OPEN(out-file, outlile, "[ykwak.thesis]dummy-file.");
32 TEXT-IO.CLOSE(out-file);
33 end loop getcom;
34 if command.org-code = "999" then exit; end if;

.... DISPLAY FLIGHT-ORDER
35 pre-change-time := change-time;
36 end loop;

37 end p53;

The final step was the testing of the FIS. Before this test, all data in the database tables were

cleared to insert and display new sample data. Insertion of data into a database table required

reference to data of another table to validate it. Table 23 shows the database tables which should

be referred to when inserting data into a database table. For example, the sq table musr refer to

the wing table and the wing table must refer to the grand-nsn table. Input programs were tested

by inserting sample data in the following sequence:

1. grand-msn, rank, exercise, other-dept, data-change

2. wing, mission, ac-type

3. sq, cac-order

4. pilot, ac, wing-order, set-sortie

5. sortie

75

No Input Table Reference Table(s)

1 ac ac-type, sq, other-dept
2 ac-type grand-msn
3 cac-order wing, mission, ac-type, exercise
4 data-change
5 exercise
6 grand-msn
7 mission grand-msn
8 other-dept
9 pilot sq, other-dept, rank
10 rank
11 set-sortie ac-type, exercise, mission, sq, other-dept
12 sortie set-sortie, ac, pilot
13 sq wing
14 wing grand-msn

15 wing-order ac-type, exercise, mission, sq

Table 23. Reference Tables for Data Input

Output programs were tested by displaying sample data inserted previously.

76

VI. Conclusion and Recommendation

This chapter summarizes the work accomplished in this thesis. Also, it presents the conclu-

sions of this thesis work. Finally, it recommends a better way for FIS development and the better

use of the software products.

6.1 Summary

The goal of this thesis, the development of a FIS database system, was successfully accom-

plished. The FIS was developed using the structured methods and the ORACLE RDBMS through

the following three steps.

The first step was the analysis of the FIS. In this step, the requirements of the users were

identified and the perception of the real world of the FIS was modeled into a database structure.

The structured analysis technique using tools such as DI D, DD, process specification, and ERD

were used.

The second step was the design of the FIS. ORACLE database tables were generated from

DD using the relational scheme normalization technique. Also, a structure chart with a module

description for each of the modules was constructed.

The third step was the implementation and testing of the FIS. Each module of the structure

chart were implemented and tested one by one, from top to bottom. The high-level modules of the

structure chart were implemented using SQL*Menu while the rest of the modules were implemented

using SQL*Forms or Pro*Ada. Finally, the whole system was tested by iiserting and displaying

sample data.

6.2 Conclusion

This thesis work employed the structured method using a variety of tools as well as ORACLE

which is expected to be the most popular database system in Korea. Several kinds of the ORACLE

products, available, SQL*Menu, SQL*Forms, and Pro*Ada, were used in this thesis. The following

paragraphs summarizes the conclusions of this thesis work.

77

ORACLE is useful for the development of data processing systems. Much development time

could be saved by using ORACLE products such as SQL*Menu and SQL*Forms. For example,

SQL*Forms could save approximately 50% of the coding time compared with Pro*Ada, a high-

level programming language. Also, several of the ORACLE product allows easy to develop and

easy to change. For example, SQL*Menu can be used to combine sub-programs into a menu and

SQL*Forms can design the input or output format of the program quickly. Once developed, the

programs can be updated continuously as required. This allows the programmer to develop a

proto-type of a system easily.

The module descriptions of the structure chart are important especially when they are im-

plemented with SQL*Forms. The programming style of SQL*Forms is different from that of other

high-level programming languages such as Ada, C, Cobol, etc. While it is easy to develop a pro-

gram using SQL*Forms it is difficult to read the written program. It is easier to read a program

written in a high-level language compared with one written using SQL*Forms. There are two ways

of reading a program written in the SQL*Forms. One is by reading an .INP file which is generated

by SQL*Forms automatically. Because the .1NP file is a dialogue type program and the size of it

is much larger than that of a program written in a high-level language, it is difficult to understand

it. The other way is by tracing each BLOCK and FIELD of each FORM of the program on the

screen using SQL*Forms. This also is difficult to understand since one need to read many screens

to understand the whole program and it is hard to remember the contents of the previous screens.

Thus, the module specification need to be bpecified the functions of the program in structured detail

format. By reading the module description instead of the program, one can understand easily and

save time.

6.3 Recommendation

This thesis work does not provide the best solution to the questions "What to develop?" and

"flow to develop?" the FIS. This thesis work limited the scope of the FIS and kept the software

engineering life cycle on track using the selected methodology and tools. Based on this thesis

work, the folloN ing recommendations are proposed to better develop the FIS or any other database

system in the future.

78

This thesis work assumed that all users use only one computer located at the CAC with one

or more terminal(s) connected to the computer. The scope of the real FIS includes many sites and

each of them have a mainframe connected to another sites's mainframe through computer network.

Also, the real FIS requires more than 150 terminais, some of them are located at great distances

from the mainframe. The FIS implemented with only one mainframe cannot support the users

satisfactorily. This situation forces the use of distributed database system techniques. SQL*Net is

an ORACLE product which supports distributed database system (11).

Oracle's SQI,*Net network software and the ORACLE RDBMS make data distributed
over multiple, incompatible networks and computers appear as a single database on a
single computer. With SQL*Net, you can integrate diverse hardware, operating systems,
databases, communications protocols, and applications to create a unified computing
information resource.

With a distributed database system, the load on the mainframe of tht CAC can be decreased.

Distributed database systems, however, require a highly reliable Lomputer network between cites.

In thi3 thesis, the module description for each module of the structure chart did not consider

the characteristics of programming in SQL*Forms. As a result, the module dcscriptions are not

useful enough for progiamming and maintaining the programs. As discussed in Section 6.2, the

modules of a structure chart implemented with SQL*Forms need to be well-described. An organized

and unified module description form is needed to provide a xkell described module description.

By using ORACLE products, much of the development time could be saved. This thesis

applied five kinds of ORACLE products. As of 1991, ORACLE CorIoration provides a variety of

ORACLE products as shown below (19):

1. Database and Networking
- ORACLE Relational DBMS N6.C
- SQL*Net
- SQL*Connect to DB2 and SQL/DS
- SQL*Connect to TurbolMAGE

2. CASE and Application Development Tools
- CASE*Method

79

fl

- CASE*Dictionary
- CASE*Designer
- CASE*Generator
- PL/SQL
- The ORACLE Precompilers
- SQL*Forms V3.0
- SQL*Menu V5.0
- SQL*ReportWriter
- ORACLE Graphics
- SQL*Plus
- SQL*TextRetrieval

3. Office Automation and End-User Tools
- Oracle*Mail
- SQL*QMX
- ORACLE database add-in for Lotus 1-2-3
- ORACLE for 1-2-3 DataLens
- Easy*SQL
- SQL*Calc

Through careful selection of the ORACLE products, one can save much software development

time and can generate a good quality softwvare system.

80

Appendix A. Data Dictionary

[DATA DESCRIPTION
ac = ac-no + ac-status + start-date
ac-maint = *number of aircrafts which are on maintenance*
ac-no = *an unique number given to an aircraft which is running*
ac-pct = ac-rdy / ac-tot * 100
ac-rdy = *number of aircrafts which are ready to take-off*
ac-rec = {ac-no + ac-type + ac-code + ac-status + start-date)
ac-status = [R:M]

*status of an aircraft
R ready to take-off,
M = on maintenance*

ac-tot = *total number of aircrafts*
ac-rdy + ac-maint

ac-tot-status - *statistic data of aircrafts status*
{ac-rdy + ac-maint + ac-tot + ac-pct)

ac-type = *name of an aircraft kind which is running in the Air Force*
ac-type-rec {ac-type + grand-msn-name}
blood-type = [A:B:O:AB]
cac-order = *flight-orders from CAC to each wing*

{cac-order-no + number-ac + take-off + cac-descript)
cac-descript = *description about a flight order of cac*
cac-order-no = *unique number of a cac-order*
cac-order-rec ={cac-order-no + wing-code + take-off + msn-code + ex-code

+ ac-type + number-ac + cac-descript}
change-code = [OC:OW:SC:SE]

*OC = cac-order added or changed,
OW = wing-order added or changed,
SC = flight-plan added or changed,
SE = aircraft took-off or landed*

change-time = *change-code updated time*
class = *class of pilots which denotes the flight capability

of them*
[IP:FC:EC:WM:ST]

data-change = *this data is used to display some important data
simultaneously as it changed*
{org-code + change-code + change-time}

date = [year + month + day : day + month + year]
exec-time = [take-off : landing]
exercise =*military exercise of Air Force which require aircraftS*

{ex-code + ex-name}

81

ex-code = *code of an exercise of Air Force*
ex-name = *name of an exercise of Air Force*
flight-status = [R:O:FJ

this data is used to denote the status of a sortie
R=ready, O--on air, I =finish*

flight-status-all =f {plan- take-off- d+plan- take- off- t+org- code+ set- no+ msn- code
+ ex-code+ac-type+l1 position-no+ac-no+take-ofl'-d+take-off-t+
landing- d+landi ng- t+front- pilot+ rear- pilot +s tan d- by-pilot +

______________flight-status}4}

flight-status-list = {org-code + sort-tot + sort-rcly + sort-air + sort-fin
____________+ pct-rdy + pct-air + pct-fin}

flight-status-org =org-code + flight-status-all ________________

flight-status-wving = wing-ccde + flight-status-all
front-pilot = *pilot-id of front-seat or main scat pilot*
grand.msii = *grand mission of Air Force assigned to a wing or a ac-ty1)e*

f grand-miisi- code + grand- msn- name}
grand-msn-code = [A:G:O:T]

_______________*A=ijh~t, C=carry, O=observe, T= training *
grand-misi-narne = * name of a granid-msni-code*
hospt - *total number of pilots in hospital*
job = *a job name of a pilot*
landing = *laniding ti. '.e*

date + time
maint = *total number of aircrafts on maintenance*
mission = *a flight mission assigned to a set of sortie*

msii-code + misn-name
msni-codle = *a code of an Air Force flight mission*
mnsn-name = *name of an Air Force flight mission*
ir~sn-rec = {misn-codle + misn-naine + grand- nsn- code}
name = *nlame of a pilot*

first name + , + initial of last name
number-ac = *number of aircraft required by a cac-order -6r a wing-order*
off *total number of pilots on dluty off'*
org-all = {org-code + org-iinme}
org-code = [CAC:wing-code:sq-code:othier-dept-code]I
other-dept = *depar~tmen~ts where pilots stay except CAC, wing and sq*

{ other-dept-code + othier-dept-nami-e}
other-dept-code *code of an other-dept*
other-dept-name *namne of an othier-dept*
pilot =* a person wvho is committed to control aircraft of Air Force*

pilot-id + name + class + blood-type + pilot-date + job +
pilot-status

pilot-date -*pilot qualified date*

82

pilot-id *an unique number given to a pilot*

range= 10,000 - 99,999

pilot-listi = {org-code + pilot-id + name + rank-code + ac-type + pilot-status}
pilot-list2 = {org-code + pilot-tot + hospt + vact + off + ready}
pilot-rec ={pilot-id + name + rank-code + ac-type + class + blood-type

+ pilot-date + job + pilot-status}
pilot-status = [R:H:O:VJ

*status of a pilot
R=ready to take off,
H=in hospital,
O=duty off,
V=on vacation*

... ot-tot = *total number of pilot*
plan-take-off = *take-off time of a flight-plan*
position-no = *position number of an aircraft in a set of sortie*
rank = *military grade of Air Force officer*

{rank-code - rank-name}
rank-code = *code of rank*
rank-name = *name of rank*
ready = *total number of pilots who are ready to take-off*
rear-pilot = *pilot-id of a rear seated pilot*
run = *total number of aircrafts that are ready to take-ofl*
set-no = *sequential number of set of flight plan*
set-sortie = *a set of flight sortie which consist one to four sortie*

set-no + plan-take-off
set-sortie-rec ={plan-take-off + org-code + set-no + mnsn-code + ex-code + ac-type}
sortie = *a flight action between take off to landing by one to three

pilot(s) with an aircraft*
position-no + take-off + landing

sortie-rec ={plan-take-off + org-code + set-no + position-no + ac-no +
take-off + landing + front-pilot + rear-pilot + stand-by-pilot
+ flight-status

sq = *a flight squadron of Air Force*
sq-code + sq-name + sq-establish

sq-code = *squadron code*
sq-establish = *squadron established date*
sq-name = *squadron name*
sq-rec = {wing-code + sq-code + sq-name + sq-establish
stand-by-pilot = *pilot-id of a stand-by-pilot in a carrier ac*
start-date = *start date to run of an aircraft*
take-off = *take off time of an aircraft*

date + time
time = hour + minute + [second]
vact =*total number of pilots who are on vacation*

83

wing = *flight wing of Air Force*
wing-code + wing-name + wing-establish

wing-code = *wing code*
wing-descript = *description of flight order from wing*
wing-establish *wing established date*
wing-rec = {grand-msn-code + wing-code + wing-name + wing-establishi}
wing-name = *name of a wing*
wing-order = *flight-order from wing to each of their squadron*

wing-order-no + take-off + wing-descript
wing-order-no = *sequential number of flight-order from wing*
wing-order-rec ={org-code + wing-order-no + take-off + msn-code + ex-code

+ ac-type + number-ac + wing-descript}

84

Appendix B. Database Table and Index Creation Program

create table ac (ac-no number(4) not null,
ac-type char(6) not null,
org-code char(3) not null,
ac-status char(l) not null,
start-date date not null);

create table ac-type (ac-type char(6) not null,
grand-msn-code char(l) not null);

create table cac-order (cac-order-no number(3) not null,
wing-code char(3) not null,
take-off-d date,
take-off-t number(4),
rasn-code char(2) not null,
ex-code char(2),
ac-type char(6) not null,
number-ac number(l) not null,
cac-descript char(200));

create table data-change (org-code char(3) not null,
change-code char(2) not null,
change-time date not null);

create table exercise (ex-code char(2) not null,
ex-name char(15) not null);

create table grand-msn (grand-msn-code char(l) not null,
grand-msn-name char(10) not null);

create table mission (msn-code char(2) not null,
msn-name char(10) not null,
grand-aisn-code char(l) not null);

create table other-dept (other-dept-code char(3) not null,
other-dept-name char(16) not null);

create table pilot (pilot-id number(5) not null,
name char(10) not null,
rank-code char(2) not null,
org-code char(3) not null,
ac-type char(6) not null,

85

class char(2) not null,
blood-type char(2) not null,
pilot-date date,
job char(1O),
pilot-status char(1) not null);

create table rank (rank-code char(2) not null,
rank-name char(1O) not null);

create table set-sortie (plan- take-off-d date not null
plan-take-off-t number(4) not null,
org-code chiar(3) not null,
set-no number(2) not null,
msn-code chiar(2) not null,
ox-code char(2),
ac-type char(6) not null,
number-ac nuinber(1) not null);

create table sortie (plan- take-ofT- d date not null,
plan-takc-off-t number(4) not null,
org-code char(3) not null,
set-no nuniber(2) not null,
position-no number(1) not null,
ac-no number(4) not null,
take-off-d date,
take-off-t number(4),
landing-d date,
landing-t number(4),
front-pilot uumber(6) not null,
rear-pilot number45),
stand-by-pilot number(3),
flight-status chiar(l) not null);

create table sq (sq-code char(3) not null,
sq-name char(1O) not null,
sq-establish date not niull)
wing-code char(3) not null);

create table wing (wing-code char(3) not null,
wing-name char(IO) not null,
win-establish date not null,
grand-msn-code char(1) not null);

create table wing-order (sq-code char(3) not null,
wving-order-no number(2) not niull,

86

k W, x

take-off-d date,
take-off-t number(4),
msn-code char(2) not null,
ex-code chiar(2) not null,
ac-type chiar(6) not null,
number-ac nurnber(1) not null,
wing-(lescript chiar(200));

create unique idex af--i on ac(ac-no);
cr(,- Ie unique index ac-type-i (in ac- type(ac- type);
:.reate unique index cac-order-i on cac-order(cac-order-no);
create unique index data-change-i on data- change(org-code, chiange-code);
create unique index exercise-i on exerci se(ex- code);
create unique index grand- isn-i on grand-m-snk'grand(-niisni-codec);
create unique indIex mission-i on xnission(iisn- code);
c rea te unique index other-dept-i on othier-decpt(othier-dIept-codle);
create unique index pilot-i Onl pilot(pilot-idl);
create unique index rank-i on rank(rank-code);
create unique indIex set-sortie-i on set- sortie(plan- take-ofr-d, I)Ian-take-off- t, org-code,

set-no);
create unique index sortie-i on sortie(pl an- take- off-d(, plani-take-off-t, org-code, set- no,

position-n o);
create unique indlex sq-i on sq(sq-code);
create unique index wing-i on wi ng(wi ng- code);
create unique indcx wing-order-i on Nvi ng-order(sq- code, wing-order-no);

87

Appendix C. Screen Design of the High-Level FIS

<< MODULE 0 >>

Flight Information System

Main Menu

1 Manage Organization

2 Manage Pilot

3 Manage Aircraft

4 Manage Flight Mission

5 Manage Flight Order

6 Manage Flight Sortie

«< MODULE 1 >>

1. Manage OrganizationI

-- - - - - - -- --- - - -- - - - - --

1 input Wing

2 Input Squadron

3 Input Other Department

4 Display Wing

5 Display Squadron

6 Display Other Department

7 Display All Organizatior

+---

88

<< MODULE 2 >>

-- -----------------------

2. Manage Pilot

I-- I

I Input Rank

I2 Input Pilot

I 3 Display RankI

I 4 Display Personal Information of PilotI

5 Display Statistic Number of Pilot

+--

«< MODULE 3 >>

+--+

3.1 Manage Aircraft

I---I

I Input Aircraft Type

I2 Input Aircraft

3 Display Statistic Numbers of AircraftI

I 4 Display Aircraft TypeI

5 Display Detail Information of Aircraft

-- +

89

<< MODULE 4 >>

+-------------------- --

I 4. Manage Mission

1--Input----Grand----Mission ---

2 Input Missdi io

3 Itput Exercise

4 Display Grand Mission

5 Display Mission

6 Display Exercise

+--

«< MODULE 5 >>

+--

I 5. Manage Flight Order

1-- Input/Delete---C----Flight--Order

2 Input/Delete Wing Flight Order

3 Iputay et WinC Flight Order

4 Display Wing Flight Order

+---

90

5 - . ,

<< MODULE 6 >>

+--

6. Manage Flight Sortie

1 Input Flight Sortie

2 Input Flight Execution Time

3 Display Statistic Number of Sortie

4 Display Flight Status of All Organization

5 Display Flight Status of a Wing

6 Display Flight S,,dtus of an Organization

7 Display Flight Record

91

Bibliography

1. Adnan Altunisik. Transfering 4GL Applications from lngres to Oracle. MS thesis,
AFIT/GCE/ENG/91M-01. School of Engineering, Air Force Institute of Technology(AU),
Wright Patterson AFB 011, 1991.

2. Antonio F. Silva. Document Control and Retrieval System for the Brazilian Air Force. MS
thesis, AFIT/GCS/ENG/89J-2. School of Engineering, Air Force Institute of Technology (AU),
Wright Patterson AFB OH, 1989.

3. Department of Defense. Ada Programming Language. Military Standard, ANSI/MIL-STD-
1815A. 1980.

,1. Edward Yourdon. Managing The Structured Techniques. New York: Yourdon Press, 1979.

5. Edward Yourdon. Managing The System Life Cycle. Englewood Cliffs, NJ: Yourdon Press,
1988.

6 Edward Yourdon. Modern Structured Analysis. Englewood Cliffs NJ: Yourdon Press, 1989.

7. Ht nry F. (ortl. Databaze System Concepts. New York: McGraw-Hill Book Company, 1986.

,1. James Martin. Fourth Genmration Languages. Englewood Cliffs, NJ: Prentice-Ilall, 1986.

9. Oracle Corporati, n Database Administrator's Guide. Version 6.0. 1988.

10. Oracle Corporation. Error Message and Codes Manual. Version 6.0. 1988.

11. Oracle Corporation. Guide to Oracle Products. 1991.

12. Oracle Corporation. Pro*Ada Piecompiler User's Guide. Version 1.2. 1987.

13. Oracle Corporation. Pro*Ada User's Guide. Version 1.1. 1986.

14. Oracle Corporation. SQL *pro-s Designer's Reference Manual. Version 2.0. 1988.

15. Oracle Corporation. SQL *Forms Designer's Tutorial. Version 2.3. 1987.

16. Oracle Corporation. SQL *1ortas Documentation Addendum. Version 2.3 1988.

17. Oracle Corporation. 5QL*Forms Operator's Guide Version. 2.3. 1987.

18. Oracle Corporation. . QL Langiag, Reference Manual. Version 6.0. 1989.

1. Oracle Corporation. SQL -IMenu User's Guide. Version 4.0. 1987.

20. Oracle Coiporatioa. SQL*PLUS User's Guide and Reference. Version 3.0. 1989.

21. Ralph B. Bisland, JR Dwtabase Alanagement: Developing Application System, using Oracle.
Englewood Cliffs, NJ: Prentice-Hall Inc.. 1989.

22 Roger S. Pressm'tn. 5oftware Engineering: A Practitiozrs Approach (Second Edition). New
York: McGraw- 1111 Publishing Company, 1987.

23 Toby J. Teorey. I atabase Modelling and Design: The Ei.tity-Relatioubhip Approach. San Ma-
teo, CA: Morgan Kaafmarin Publishers, Inc., 1990.

92

24. Tom DeMarco. Structured Analysis and System Specification. Englewood Cliffs, NJ: Prectice-
Hall Inc., 1979.

25. Wojtkowvski W. Gregory and Wojtkowski, Wita. Applications Soft ware Programming with
F ourth- Gene ra tion Langtv.ges. Boston: Boyd and Fraster Publishing Company, 1986.

93

Vita

Captain Yeong-Lae Kwak was born on October 18, 1962, in Geumsan, Korea. lie graduated

from Kumoli Technical High School in Gumi, in 1981. lie entered the Air Force Academy in Seoul,

in 1981, where he received Bachelor of Science degree in Electronic Engineering. Upon graduation

he was assigned as a second lieutenant of the Air Force. In 1985, he completed the Elementary

Computer Course which was offered by Education Command for the officers who are assigned as

computer engineers. Also, in 1986, he completed the Software Development Education Course which

was offered by Korean Institute of Defense Analysis for the computer engineers of government, lie

served three years as a computer engineer in the 8th and 15th Wing Computer Center. In 1988,

lie was assigned to the Headquarter of the Air Force M here he served ,b the Softwvre Development

Officer. lie entered the School of Engineering, Air Force Institute of Technology of United Stttes,

in June, 1990.

Permanent address: 471 Deogchun Namil
Gumsan Chungnam
South Korea

94

REPRTDOUMNTTIN AG Form Approved

REPORT~~~~ DOUETTONPGO MB No. 0704-01788

Public reporting burden for thi'. collection of information is estimated to a~erage I hour per response. including the time for reviewing instructions, searching existing data sources.

Iatlhering and maintaining the data needed. ano completing and reviewing th olleclion of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing thi, burden tco ~vashngton Headquarters Services. Directorate for information Operations and Reports. 10 tSJefferson
Davis Highway, Suite 1204 Arlington. VA 222 02A4302, and to the Offite J~ Management and Budget. Paperwork Reduction Project (0704.0188). Washington, DC 20303.

1. AGENCY USE ONLY (Leave blak 2.IEOT DATE ~ 3. REPORT TYPE AND DATES COVERED

_____________________ arh 092 iMaster's Thesis _______________

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Development of a Flight Information System using the Struictured Method

6. AUTHOR(S)

ceong-lac Kwak, Capt, ROKAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB 011 45433-6583 A EPT/ NUMERG9M0

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/IMONITORING
AGENCY REPORT NUMBER

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT (Maimium 200 words)

Abstract

This thesis documents the development of a database system for the Flight Jnufrntstin Sy~sterei (FIS) uf
the Korean Air Force. The scope of the P15 is too large to be covered by this thesis. Thtus, this thesis4 kuveib
only the core part of the FIS due to the limitation of time and mant-power.

This thesis uses the structured method. Structured analysis and structured design tediniqueb aic inaeasdy
used two techniques.

This thesis focused not only the development Of the FIS but also the application of the suftwvtre desel-
opmnent method, the structured mnethod, and its tools such as DFD, DD, ERD, and so on. Alsu, the ube uf
ORACLE was a important part of this thesis too.

14. SUBJECT TERMS 15. NUMBER OF PAGES

)atabase, Oracle, Structured Method 94____________

16. PRICE CODE

17 SECURITY CLASSIFICATION I 8 SECURITY CLASSIFICATION 19g SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE j OF ABSTRACT

ENCLASSIFIED JNCLASSIFIED NCLASSIFIED UL

NSN 7540-01-280-5500 Standard ;orm 298 (Rev 2-89)

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The. Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow It is important to stay within the lines to meet
optical scanning requirements.

Block 1 Agency Use Only (Leave biank) Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
incuding day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If DOD See DoDD 5230.24, Distribution
applicable, enter inclusive report dates (e.g. 10 Documents."Jun 87- 30 Jun 88). DOE See authorities.

Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Eae blank.in paetee.DOE Enter DOE distribution categories

parentheses. from the Standard Distribution for
Block S. Funding Numbers. To include contract Unclassified Scientific and Technical
and grant numbers; may include program Reports.
element number(s), project number(s), task NASA- Leave biank
number(s), and work unit number(s). Use the NTIS - Leave blank

following labels:

C Contract PR Project Block 13. Abstract. Include a brief (Maximum
G Grant TA - Task 200 words) factual summary of the most
PE Program WU - Work Unit significant information contained in the report,

Element Accession No.

Block 6. Author(s) Name(s) of person(s) Block 14. Subiect Terms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block 15. Number. of Pages Enter the total

number of pages
Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory Block 16. Price Code Enter appropriate price

Block 8. Performing Organization Report code (NTIS only)
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.- 19. Security Classifications. Self-

explanatory Enter U S Security Classification in

Block 9. Sponsoring/Monitoring Agency Nam accordance with U S Se,., !ty Regulations (i e,
and Address(es). Self-explanatory UNCLASSIFIED) If form contains classified

information, stamp classification on the top and
Block 10. Sponsoring/Monitoring Agency bottom of the page
Report Number (If known)

Block 11. Supplementary Notes Enter Block 20. Limitation of Abstract This block must
information not included elsewhere such as. be completed to assign a limitation to the
Prepared in cooperation with ,Trans uf , To be abstract Enter either UL (unlimited) or SAR (same
published in When a report is revised, include as report) An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited If blank, the abstract
or supplements the older report is assumed to be unlimited

Standard Form 298 Back ,Rev 2 89)

