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Preface

The purpose of this thesis was to develop a mechanical analysis tool for composite

materials that models the matrix and fibers separately. We intended this tool to be

suitable for viscoelastic analysis, since the aerodynamic heating anticipated for future

high-speed aerospace applications is expected to cause either the matrix, the fibers, or

both, of the most promising composites to behave viscoelastically. However, we saw

other possible applications of this model, including being able to account for

delaminations, incorporation of piezoelectric materials into a composite panel, and

forming the basis of a new type of finite element.

Once we got started, we concluded that we needed a rigorous demonstration of

the validity of this model, which required a slight change in direction during my

research. Also, I encountered a few road blocks and blind alleys along the way. Both of

these kept me from accomplishing as much as I had originally thought I would, but I feel

that I have established a solid foundation upon which other research can build.

This research was sponsored by Mr. Jerome Pearson, WL/FIBGD, and Dr. T.

Nicholas, WL/MLLN.

I want to thank my thesis advisor, LtCol. R.L. Bagley, for helping me find the

way around those roadblocks and blind alleys, and for putting-up with some of my dumb

mistakes. I also want to thank Drs. P.J. Torvik and A.N. Palazoto, as members of my

thesis committee, for their contributions.

Alan L. Lesmerises
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Abstract

--'A new model for composites represents a composite panel as an alternating stack of

isotropic matrix and orthotropic fiber-dominated layers. An energy approach results in

a set of partial differential equations and boundary conditions where the mechanicai

properties of the matrix and fibers appear separately. Two solution methods are

developed. The first, called--"Strata Theory" is developed for general applications, while

a second, called the "Exact Stratified Plate", is used as a benchmark for comparison to

Strata Theory. Both solutions assume zero gradients of displacement through the

thickness of a fiber layer. They are compared for an isotropic material and a two-ply

composite with cross-plies, using simply-supported cases of a square plate ano cylindrical

bending. .
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DEVELOPMENT OF A STRATIFIED PLATE MODEL

FOR COMPOSITE PANELS

L Introduction

Background

A composite material typically consists of a relatively soft matrix material that

contains stiffer fibers. The length of the fibers used may vary, depending on the

application, from very short fibers (i.e. particles) to long continuous strands. These fibers

endow the composite material with increased mechanical stiffness. The increase in

stiffness depends primarily on the fiber density, properties, and orientation.

When the composite is formed into a panel, it is usually built-up as a sciies of

layers of parallel fibers known as plies. If each fiber i 1 :, is : iodeled as an orthotropic

plate, the panel as a whole could be modeled as a set of '",ese orthotropic plate stacked

upon one another. In fact, a commonly used method for the analysis of composite panels,

known as Classic Laminated Plate Theory (CPT), models laminated composites this way.

In CPT, the elastic properties of the matrix are "averaged" with those of the fibers, and

the ability to separately model the matrix and the fiber materials is lost.

At high temperatures, many of the materials used for the matrix and fibers in

today's composites can become viscoelastic. In such a case, there is no reason to expect

that the fibers and matrix will become viscoelastic at the same time, or that the fibers and



matrix would maintain the same elastic relationships once they do become viscoelastic.

Therefore, it is essential that any type of vibration analysis where viscoelasticity will be

considered is able to deal with the matrix and fiber elasticity terms separately.

Scope

There is a need for an alternate method of modeling composites, such that the

matrix and fiber elasticity terms appear separately in the governing equations.

Furthermore, a formulation suitable for viscoelastic stress and vibration analyses is

needed.

This thesis details the development of a new model for the analysis of laminated

composites called the Stratified Plate Model. A composite is modeled as an alternating

stack of isotropic matrix strata and orthotropic fiber strata. As a result, the matrix and

fiber properties have an identifiable and distinct contribution to the overall mechanical

characteristics of the composite.

A new analysis technique, called Strata Theory, arises from the Stratified Plate

Model and is intended for general applications. Strata Theory will be validated by

comparing it with a more accurate formulation called the "Exact Stratified Plate".

Idealization of Fiber Layers

The Stratified Plate Model treats each fiber ply somewhat differently than the

CPT model. First, each fiber is idealized [Figure 1.] with a square cross-section of equal

cross-sectional area. The thickness of a fiber stratum hf is then given as

2



where Df is the average diameter of the actual fibers. The shape of the fibers now define

three distinct regions within the ply: a fiber-dominated stratum sandwiched by two thin

matrix strata above and below [Figure 2.]. The matrix strata consist of purely

homogeneous matrix material, while the fiber strata contains the idealized fibers and the

matrix material between the fibers within the ply.

Composite Panel

,/ "0
X'U Y.v

Stratified Plate CPT Model

Figure 1. Comparison between Stratified Plate and CPT models of a composite panel

Notice that when the fibers are modeled this way, the idealized fibers span the

entire thickness of the fiber stratum. Since the fiber's elastic modulus is typically at least

3



Composite Ply Strata Idealization

Figure 2. Strata Theory idealization of fibers

an order of magnitude larger than that of the matrix, it seems reasonable to assume that

the z-direction displacement gradients through the fiber strata will be much smaller than

those through the matrix. Indeed, this assumption is a key feature of the Stratified Plate

Model. This will become important in the development of the governing partial

differential equations (PDEs), as it will allow all the z-direction displacement derivatives

through the fiber strata to be set to zero.

Development and Validation

The governing differential equations and associated boundary conditions are

derived using the principle of minimum potential energy. The Strata Theory model is

developed using an assumed displacement field. The Exact Stratified Plate model, on the

other hand, finds the z-dependent portion of the displacement field through an eigenvalue

formulation once a set of x- and y-dependent functions are found that satisfy the

boundary conditions.

Exact orthotropic plate solutions have been found for composites in cylindrical

bending and for rectangular bidirectional sandwich composite plates [8:398-411; 9:20-

34]. These solutions were used for comparison with CPT. Both CPT and these exact

4



orthotropic plate solutions model a composite as a set of stacked orthotropic plates. This

is considerably different from the way the Stratified Plate Model represents a composite.

These two different representations of a composite may predict radically different

behaviors for the composites they model. As a result, it was felt that using results

obtained from either CPT or the exact orthotropic plate methods as a basis of comparison

for Strata Theory would not be appropriate. Strata Theory needed a different standard

against which it could be compared, hence the development of the Exact Stratified Plate

solution.

Figure 3. Relationships between the various models for composites

5



IL The 'Strata Theory"

Basic Concepts and Assumptions

The Strata Theory, hereafter referred to as ST, is based on the Stratified Plate

Model described above. The Stratified Plate Model assumes that the z-direction

displacement gradients through the fibers are zero. This means that e, will be zero

through the fibers. The ST model makes the additional assumption that ez is zero through

the matrix strata as well. Since ST was intended to form the basis of a new vibration

analysis tool and not for detailed stress and strain estimation, it seems to be a reasonable

approximation that the contributions of E, from the matrix strata will be negligible.

Another approximation is that ST assumes that the displacement field can be

represented as a polynomial in z, leaving the x and y dependencies as unknowns that

need to be found.

The presence of fibers in a composite endow the composite with complex

mechanical properties such that coupling may occur between the fiber plies. When there

is coupling, it means that plane sections neither remain plane nor perpendicular to the

midplane. In other words, what would start as a vertical line through the thickness of an

unloaded, undeflected composite panel will become a complex 3-dimensional curve when

the panel is deformed. To represent this complex 3-D curve, the following expressions

for the displacements u, v, and w will be used for displacements through the fibers

6



N

uf(xyz) = z,*1(xy)
1-0

N (2)

1-0

wfx,yz) = w(xy)

while the displacement field through the matrix will use the following expressions for u,

v, and w.

NU=(x,y,Z) = E (cc,+ P') *,(x~y)
1-0

N (3)
vn(x,y,z) = E (a(+Dz)' 4(x,y)

1-0

w=(x,y'z) = w(xy)

The term zf that appears in the fiber displacement terms above is the z coordinate of the

midplane of a fiber stratum referenced to the midplane of the entire stack [Figure 4.].

The values of z that are used in the matrix displacement field expressions must be a z

coordinate that lies within a matrix stratum. Also, the w, Oi, and r terms that appear in

the assumed displacement field expressions are the same for both the matrix and fibers.

The complex 3-D curve described above can be decomposed by taking projections

onto the x-z and y-z planes. The in-plane displacements u and v are polynomials in z that

approximate these projections, and the Oi and r, terms are the x and y dependent

coefficients of these polynomials in z. It should be noted that the number "N", the order

of the assumed polynomial, is not directly related to the number of fiber plies. However,

the more twisting and warping anticipated, the larger N should be to better approximate

7



this deformation. Ultimately, N is dictated by the accuracy required, and the complexity

of the problem.

fZ

__-zti zt

Figure 4. Definition of the fiber strata parameter zj with respect to the z axis origin

The a's and O's that appear in the matrix displacement functions are mapping

terms. Since the z gradients through the fibers are assumed to be zero, the x and y

displacements are constant through a given fiber stratum. This implies that there must

be continuity of in-plane displacements (u and v) from the bottom of one matrix stratum

to the top of the next lower matrix stratum. This continuity of displacement is established

by a linear mapping of the z coordinate of the lower surface of the ith matrix stratum and

the z coordinate of the upper surface of the (i+ l)th matrix stratum to the z coordinate

of the midplane of the intervening fiber stratum, denoted by zf.

+ P

IN+ IZO, = f. (4)

Each matrix stratum has its own a and 0. Finding a and 0 for a given matrix

stratum is a simple linear problem of 2 equations and 2 unknowns. The first equation

maps the z coordinate of the upper surface of the matrix stratum to the midplane of the

8



fiber stratum immediately above; the second equation maps the z coordinate of the lower

surface of the matrix stratum to the midplane of the fiber stratum immediately below.

For a matrix stratum at the top or bottom of the composite, the free surface coordinate

(h/2 or -h/2) is used in place of zf.

a + +3 , Z, = Zf. (upper fiber layer)

ant+ P. z.z = zf (lower fiber layer)

When all the fiber plies of the original composite being modeled are of equal thickness,

/ is the same for all the matrix strata

PI (6)

where tp is the thickness of the original fiber ply. Note that this is not a requirement for

the ST approach. However, for the sake of simplicity, this assumption will be used for

the remainder of the ST development.

These assumed displacement field expressions can now be substituted into the

expressions for strain, which will later be used to determine the strain energy

N

'Ex U E:

Cy V0a, , 0

S Wx - i(7)

17Y UV+ Vr 0

Y~~ .ft WY+ Aft WA+.: t*i.0
N

w,+Ei zf C
9-0

9



N

i=0
NX u, E (a + 13 z)iCiy

Ey V j 01 0
E Z I N (8)

yzz ,z % ,z U - N

Yy 'd w,,+ vz W"+F Pa+Pz
i-O
N

Stress and strain for the matrix strata are related through the expression

{a} =[K]{e}, where the elasticity matrix [K] for the matrix material is given by

1-val v., v 0 0 0

v" 1-v MI v ̂  0 0 0

v"M val 1-va 0 0 0

E= 0 0 0 1-2v, 0 0 (9)
[K]. (I -2 vd)( +v,,) 2

1 -2vad
0 0 0 0 0

2

0 0 0 0 0
2

or in simplified notation KI, K2.w K2W 0 0 0

K~ K , 0 0 0k K
[r]xd o o K 0 0 0(10)

o 0 0 K3

0 0 0 0 K3.4 0

0 0 0 0 0 K3.

10



where

Em1(1-v~) K_ _ _ E (11)
Kf.i (1- 2 v,)( +v 2.,= (1 -2v)(1 +v,,) K3., 2(1 +v)

As discussed previously, the fiber strata are modeled as orthotropic layers. The

elastic constants for such a layer are derived using a "rule of mixtures". For this

derivation, the following fiber elasticity terms will be defined

=vol E1(l-vf) + vol E.(1-v.)
(I1-2vf)(l +vf) (l-2v .)(1 +v,.)

g2 1 x E,(1-v.)
vol. (1-2v.)(1 +v.)

g3 = Vol, Efv _ + vol EmVm
(1-2vf)(1 +vf) (1-2v =)(1+v) (12)

Evm,
S (I -2v.)(1 +v')

SS = G. / Vol.

96= vol1 Gf + vol, G,

S7 = G. / vol,

The terms volf and vol. are the volume fractions of fibers and matrix in a given fiber

stratum. This must not be confused with the global volume fractions of fibers and matrix,

but there is a direct relationship between the two.

The elastic stiffness for each fiber stratum in its principal axis directions will have

the form [2:35]

11



S~f S3f S3f 0 0 0

1 f S2, S41 0 0 0 

U2 S, 0 0 0 E2
a

2  
_ _ g~f s , , s (13)

12 00 0OS 0 0 'Y 2

T2z 0 00 0 S6f0 y 2z

0 0 0 0 0 S7

where the "1" direction is parallel to the fibers, and the "2" direction is perpendicular

to the fibers in the plane of the fiber stratum. The coordinate transformation matrix [0]

for an orthotropic material is given by [2:48-49]

coS2 o sm?01  0 -sin2eo o o
x sin2O1  cos2o1  0 sin2o 1  0 0 E
Y 0 0 1 0 0 0 2  (14)
Ez,= 1-l I ez
'YX -se- - s2-iO20 0 cos2o 0 0 Y2

y ~ z - z -- Y1z

yo 0 0 cos0! -sino Y2,

0 0 0 0 sinOf oe

This transformation can be used for stresses as well. This is now applied to the principal

axis elasticity matrix by means of the similarity transformation

({o} =l [][(][-Ifo (15)

where [9] is the rotation matrix above. This produces the general constitutive relation

[2:341

12



S1 , S3f Sl S5f 0 0

Uzy 55, S61 Sln, S~1  0 0 Y,
Y ~ ~ Is S Y

Xz 0 0 0 7 9 '

.0 0 0 0 SqfSsf

Y

01

Figure 5. Definition of fiber orientation angle Of

Development of the PD~s

The development is based on the principle of minimum potential energy, given

by

ba M Zat

f f E f a z-1 81f d px)8 x = 0 (17)
0 0 1- -k-

The expressions for the strain energy for the matrix and fiber strata are given by

13



1 T

2 I(18)

1 T T

where F = the number of fiber strata, and M = the number of matrix strata. The strain

energy is derived using the assumed displacement field expressions, along with the [K]

and [S] matrices given above. The work and strain energy expressions are combined, and

the principle of minimum potential energy is applied.

Since the z dependence has already been assumed, the z derivatives that arise

from the expressions for strain can be evaluated directly, and integration with respect to

z can be performed. However, integration by parts is necessary to produce the boundary

conditions, and to eliminate the x and y derivatives of +-- variations on w, 0,, and r.

The governing PDEs look like higher or'!.-r piate theory with coefficients that depend on

material (matrix or fiber) propertiks. The PT)Es that result are

! . .,, i -2. ..i~j .il . ..tj
+($4 +K w (')K, +X +(S+'SI jt j=0,1,,...,N (19)

jPK W. =o E oi N , (19) x'iJ

• ..,2 ,,j 1-2,, .i 21j ..II+ , , 2 ..+j.i
N- ,1 I j=O,1,2,...,N (20)

"(S3 +S4 +K +K')s.

and
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N

(K4+S;)w,=+2S~w,,y+(K;+ S)wjy+EipmK; (4x+C .)+p(xy) =0o (21)
i=O

where

zuI (22)

F

k-1

There are 2N+2 sets of boundary conditions that result from this energy

derivation, and they are

a

N EI f (a 1+p 1zYJ'K1 N *4+K2 C1 ) dz (3

i-0 F

k-i 0

a

N E1 f (aWl+pmiZ)'+K 3ia(*,.Y+C,:) dz
1-0~ 4 =0 (24)

1-0 F

+E ZJVIS5 ,,,. +S6,Civ+S 4,(*4+ C')] hft
k-i 0

b

N F, f (ant 1 eP 1z)''(K2 4'i. +K1 ,C4 ) =0 25

1-0 F
+4's 4'S 6 ( +' +C.)] h

E ~ Zf I~kyxa~k~y+~k(fk

k-I10



b

N E f C&,+P3+, K3.,,+ C,,) iz
Z64i6 =j 0 (26)

1-0 F+E Z} J'S3 4'.+s 6k C. +S4,k(*,+Ci,,)Jhfk
k-1 a .Y 1 0

a
M N

f, +K3 wz

bw =0 (27)
F

+E [S7ftW,+S 9ftWy,]hfk

b
M N

11 I3,(.,P.z) 1K C+Kw~z w = 0 (28)

F

+E [Sglwx +SsftwjI lift0
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I1. The "Exact Stratified Plate"

Basic Concepts and Assumptions

The Exact Stratified Plate model, hereafter referred to as ESP, is intended to be

a standard against which the results of ST can be compared. Both ST and ESP are based

on the same Stratified Plate Model, where it is assumed that z-direction displacement

gradients are zero through the fiber strata. Further, ESP is somewhat similar to ST in

that the differential equations are developed using the principle of minimum potential

energy. However, that is where the similarity ends.

There are two primary differences between ESP and ST methods. The first is that

ESP allows Ez to be non-zero through the matrix. Recall that one of the first assumptions

of ST was that E, could be neglected in both the fiber and matrix strata. This

approximation seems reasonable, but lacks analytical justification. By allowing ez to be

nonzero, ESP will be useful for estimating the effects of assuming z=0.

The second major difference between ESP and ST is that ESP is restricted to

modeling only simply-supported composites with cross-plies. This limitation arises

because of the choice of the assumed displacement field. For this analysis, ESP assumes

that the form of the x and y dependence of the displacement field is the same as the ST

displacement field expressions used for the simply-supported example problems. This is

not really a drawback, it simply means that ESP and ST can only be directly compared

for a simply-supported plate.

Another consequence of using this form of the assumed x and y dependence is

that it cannot accommodate angle plies. In developing the governing differential

17



equations, all coupling terms that arise from having angle plies would not have the same

x and y dependence as the rest of the terms. If these coupling terms were nonzero, the

x and y dependent functions would not result in the set of ODEs that result from this

analysis. Therefore, only a composite with cross-plies can be modeled using the ESP

approach.

For ST, it was assumed that the z dependence of u and v could be described by

a polynomial in z. However, the ESP solution leaves the form of the z dependence

through the matrix strata as unknown functions that are determined by the system of

ODE's that result. Since this approach lets the problem dictate what the z dependence

should be, ESP can be used to gauge how well the polynomial used in ST represents the

more complex stress, strain, and displacement behavior that a composite would

experience.

Development of the ODEs

All strain terms are treated as being nonzero for the matrix, but strains through

the fibers are assumed to have no z dependence. Therefore, the expressions for the

strains become

EY 1, L V.V

(C) £ 0 CZ {Ew (29)
f Y z, O + tX7  l4Y + Vr

yxr w, .,zi % wr
y' W .ZYZ U v+ w
.. 7 f 'm f .VZ Z .v+ w.

The ESP solution is developed using the principle of minimum potential energy,
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just as with ST. The strain energy is initially developed using the expressions for the

strains shown above. Integration-by-parts is performed to eliminate the derivatives of the

variational terms. This results in a set of PDEs and boundary conditions. The integration-

by-parts produces a set of stress/displacement boundary condition expressions for the 4

"edges" of the composite plate, as well as for the horizontal (x-y plane) surfaces of the

composite. The resulting expression for the energy is

M F ba

E a . - E 8Ufk + ffp(xy) 8wdx dy = 0 (30)
i-1 k-I 00

where p(x,y) is applied at the top and/or bottom surface (±h/2),

b a zL [K 1 uU~+K 3, u j7 +K3,,, ~+ (K2. +K3 )(vm~ +wx) ]8 u

8U.,- -fff +[ K , +Kv,,+KZ +(K+K 3)(u+w) ]8K

bff 3zWVi a.V, 2.1 3 (U )6 jdzdx
0 ff' [K ~Rv+K wA]6uwdzdY + fbb bZb

" ff ] d +K J d dy + ff K +v)6 dzdx

oz-. o 01(31)

a b bv-

ab ab

anda

+ ff [KA+w'W "+f 8 19

ZjW

andbX~

" f [ + .K,,w.]I ddx+ K + )w19d



b a [Si.U,g,+S 4 Uy,+(S3 +S4f)Vqr4 8U
=-ffhA, +[S4 V m+S2, v,+(S3 +S4 )Ux,,]8V

00 1+[S7 W, +S$,w,,4]W
b a

+ fh'ft[Sj'u.,sv luady + fh.&S4Au, )ubx(2
0 0

a b
+ hA*[S 3,u,,+SvJ]8vlbdx + hS 4 a+46Id

0 
0

b a

+ fh, s7 W.8WladY fhysI Jwlbdx
0 0

The term h& represents the thickness of the kAb fiber stratum, which arises from the

integration with respect to z through a fiber stratum.

This energy expression results in three "field equations", a set of coupled PDEs,

for each matrix stratum. The remaining terms form the boundary conditions for this set

of PDEs (see discussion below).

As described above, the x and y portions of the displacements u, v, and w

through the matrix are assumed to have the same form as the ST displacement field

expressions for a simply-supported composite with cross-plies. The assumed displacement

field and loading expressions are given by

u (xy,z) U(z) cos(px) sin(qy)

v(x,y,z) V(z)sin(px)cos(qy) (33)

w(x,y,z) W(z) sin(px) sin(qy)

P(x,y) Psin(px)sin(qy)

where p=Yr/a and q='r/b. Since the displacements u, v, and w for the fibers are assumed

to have no z dependence, U(z), V(z), and W(z) are constant through the fiber strata.
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The form of the surface load "P" dictates this choice of the assumed displacement

field. These displacement field expressions and the subsequent differential equations can

be generalized for more complex surface loads using Fourier analysis.

When these displacement field expressions are substituted into the PDEs, the x

and y derivatives can be evaluated directly, and a set of ODEs for U(z), V(z), and W(z)

result. The functions that are used for the variational analysis are the U(z), V(z), and

W(z) of the assumed displacement field, and the x- and y-dependent functions can be

factored out to produce the following 3 second-order coupled ODE's for each matrix

stratum "1".

2Kj.+q 2K3 .]U-[K 2.+K.pqV+[K 2 +K ,pW +K3. U"I = 0

-[K2. +K.]pqU-[q2K, m+p2K 3.]V+[K. +KJ3 ,]qW'+K 3 V'1 - 0 (34)

-[p2K3 +q 2K3 ]W-p[j14 +K3 U'-q[K2 +K. ]V'+K, W/= 0

The solution of this set of ODEs is obtained by an associated Eigenvalue formulation.

The field equations for each matrix stratum "I" can be manipulated into matrix

form to become

13 0 0 0 0 pK

0 K/ 0+ 0 0 qK

0 0 K. W// -pK4  -qK 0 1
(35)

-p 2 KN#-q 2,K -pqKm 0

+ -pqK 2 -q2 K. -p2 K3. 0 0

0 0 - 3 (p2 +q I 1
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where K4=K2+K3. These can be recast as a set of six first-order coupled ODEs to get

0 0 0 K.3  0 0

0 0 0 0 K3.1 0 U/

o 0 0 0 0 K1. V
K 0 0 0 0 pK dz U

V/

o K31 0 0 0 qK4

0 0 K1. -pK -qK4  0 (36)

K, 0 0 0 0 0

0 K, 0 0 0 0 U ' 0

0 0 Kl. 0 0 0 V/ 0
W/ 0

00 +0 3.K pqK4 0U 0
V 0

pqK4., q2K 0 W 0
0 0 0 0 0 3.,( 2 +q2)

If the solutions for U, V, and W are assumed to have the form of Uoe)", the governing

equations can be expressed as a system of 6 coupled algebraic equations

-r., 0 0 A,.K 0 0

0 -K,. 0 0 XK3  0 xu 0

0 0 -K1at 0 0 IK 1 d IV 0
W 0

3., o o -p2j--q q. K -p 23,. -q, U o

0 IKW 0 -pqK4. -q2K,.,.- , qK4, W 0
0 0 IKK -XpK -IqK 4  -K (p2 +q2)

(37)
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Rewriting this in state-space form, this becomes

[[Q] + X[I]]{ 0 } {6} (38)

where

IUo

xvo
NuOJ I- (39)

WO

and

K K
0 o pj f~ ( p2K'M+q2) p . 0

o o Ko

-Pq-p --q 0
K3. K K

_[ 4.1 _qJ4. 0 0 0 -(p2 +q) 4d

-1 0 0 0 0 0

0 -1 0 0 0 0

0 0 -1 0 0 0

The eigenvalues of this system are two sets of three repeated roots. The two values of

the roots are

S= ± 1p 2 + q2  (41)

Note that these roots are independent of the material stiffness coefficients.

The repeated roots means that an ordinary eigenvector solution technique cannot
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be employed here. However, Chen [1:53-57] outlines a more general method for

generating an eigenvector matrix.

The basis of this method is as follows: let [A] be an nxn matrix with n

eigenvalues (they do not have to be distinct), and f(X) be a function defined on the

spectrum of [A]. If a polynomial g(X) is constructed such that g(X) and f(X) have the

same values on the spectrum of [A], then f([A]) can be calculated using the polynomial

defined by g([A]). When the n eigenvalues are distinct, f(X) and g(X) must be equated

to solve for the coefficients in the polynomial g(X). When there are repeated roots,

derivatives of f(X) and g(X) must be equated as well.

For the eigenvalue problem given by ESP, this approach starts by defining the

following terms

g(zA) = Oe + a(z)X +a 2(z)X 2 + a 3(z) 3 + a 4(z) ;4 + a(z) 5  (42)

f(z ".) = e-

where the ai's are unknown functions of z, and X is an eigenvalue as defined above.

Since there are repeated roots, the derivatives of f(z,X\) and g(z,X) are equated

such that

f(z,,) = g(z,L) , d-' d g(z,X) , and _-L f(z,;.) = d 9 (z, ) (43)

Next, these expressions are manipulated to solve for the ai's. For this problem, when

there are two sets of triple roots, the a 's are found by the relation
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1 ) )2  ).3  ).4 .5
f(z,) e of('z) z0 1 21 3) 2  4)3 5k 4  ao
fl(z,).) ze 1
f"(z,)) e= 0 0 2 61 12) 2 20).3 a2 (44)
f(z,-;L) e-_Z 1 _ X2 _).3 x4 _)5 a 3

f ;(z,-X) ze; 4

fAZ,--) x Z 2 e - XZ 0 1 -21 3) -4)3 5 a
0 0 2 -61 12) 2 -20)3

Finally, exponentiation of a matrix [Q] can be obtained by the relation

e IQIz = £t01!] + a 1[Q] + M2[Q] 2 + a 3[Q]3 + a4Q]4 + as[Q]5  (45)

Assembling the Boundary Conditions

The PDEs are solved subject to boundary conditions along the four edges (at

x=0, x=a, y=0, and y=b), at the top and bottom horizontal faces, as well as at each

fiber stratum. At the fiber strata, these internal boundary conditions represent stresses

r.1 , ryy, and q,, at the top and bottom surfaces of each matrix stratum. External loads (P)

applied at the upper and lower surfaces of the composite are also incorporated into these

boundary conditions.

When the x and y portions of the displacements u, v, and w through the matrix

are assumed to have the same form as the ST displacement field expressions for a

simply-supported composite with cross-plies, all the edge boundary conditions are

satisfied exactly.

The assumption of no z-gradients of displacement through the fiber strata also

implies a set of continuity boundary conditions. The values of u, v, or w are constant
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through a fiber stratum, therefore values of U, V, and W at the bottom of the matrix

stratum just above this fiber stratum must be equal to the corresponding values at the top

of the matrix stratum just below the fiber stratum.

Since U, V, and W are constant through each fiber stratum, integration through

the fibers can be performed directly. The results of the integration through a fiber

stratum are combined with the boundary condition terms of the matrix strata immediately

above and below this fiber stratum. In other words, the sum of all terms that are

evaluated at the i* fiber stratum (the terms at the bottom of the upper matrix stratum, the

fiber stratum itself, and the top of the matrix stratum below) must sum to zero. This

forms a set of internal stress boundary conditions between the matrix strata.

For M matrix strata, there will be 3(M-l) internal stress boundary conditions, and

the presence (or lack of) external loads at the upper and lower surfaces of the composite,

i.e. at z=h/2 or z=-h/2, specify a total of 6 more stress boundary conditions.

Additionally, it is necessary to specify 3(M-l) displacement (continuity) boundary

conditions to tie the bottom surface of one matrix stratum to the top of the next matrix

stratum below it. In all, there will be a total of 6M boundary conditions (both stress and

continuity) specified for M matrix strata that will be used to solve for the functions U,

V, and W.

The exponential expressions for U, V, and W describes how U, V, and W vary

with z, subject to the boundary conditions specified in Equations (31) and (32). The

boundary conditions are assembled into a series of stress balance equations for r , y,

and a,. Equilibrium is established at the upper surface, at each fiber stratum, and finally

at the lower surface. For a composite with two fiber plies, this would be given as
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0( 0 Iz-N2
Normal Stress) I),
@ h2 j Zj;

C1I~ (46)
BC[BC o

0
0

(Norml Stress) i

where

M11 M21  0 0 0 0 0 0 0 0 0 0

0 0 -Mil -M2 1 M12 M2fl 0 0 0 0 0 0

0 0 0 I 0 -I 0 0 0 0 0 0
[BC] 0 0 0 0 0 0 -Mi 2 -M22 Mi 3 M22  0 0

0 0 0 0 0 0 0 1 0 -I 0 0

0 0 0 0 0 0 0 0 0 0 -M1 3 -M23

(47)

and

K3. 0 0 0 0 pK3.

= 0 K 0 = 0 0 qK

0 0 K 1 ., -pK2., -qK2 0

(48)

p 2S,+q 2S 4, pq(S3 +S4 ) 0

M2 ft- pq(S+Si) p2 St+q2S t 0 ft + M2k

0 0 p2S7 +q2S8

27



The submatrices M 11 and M21 are the boundary conditions given in Equation (31)

expressed in matrix form. Submatrix M2j, incorporates the interstrata boundary

conditions imposed by the fiber strata given in Equation (32). Continuity of displacement

across the fiber strata is established by the 3x3 identity submatrices, denoted by "I"

above.

Determining the solution for U(z), V(z), and W(z) depends on finding a UO, Vo,

and Wo for each matrix stratum. Another matrix must be constructed to specify the

relationship between the values of U, V, and W at the upper and lower surfaces of a

matrix stratum. The matrix shown below expresses U, V, and W at the top surface of

each matrix stratum in terms of U, V, and W at the bottom of the matrix stratum.

Expressed this way, the values of Uo, V0, and WO that are found are equal to U, V, and

W at the lower surface of the matrix stratum.

o U < [0],6 ] [0] O[ L,0U°I(49
oI=,[0] J1 <  [0] LO I.3  (49

o t+](,-'A. )
oIz-,W e 2') [) 0

6 - [0] [01

[0] [0] [l] X6

where ) Uo

X~o (50)
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evaluated for matrix stratum "1". The displacements for any value of z are found using

the expression

CJ(z) = e[Q](z- ) 0 o  (51)

where Z. is the z-coordinate of the lower surface of the matrix stratum in which "z" lies.

Equation (49) is now substituted into Equation (46), so that the external loads are

expressed in terms of the unknowns Uo, Vo, and Wo. The coefficients Uo, Vo, and Wo are

found by inverting the matrix and then multiplying the inverse by the force vector.
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IV. A Simply-Supported Square Plate with Cross-Plies

Strata Theory

The strata theory's assumed displacement field does not, at the outset, explicitly

assume the x and y dependence of u, v, and w. The restriction of the problem to a

simply-supported plate with cross-plies permits the use of sinusoidal functions to describe

the x and y dependencies in the general PDEs. The x and y dependence can be assumed

to have the form

w(x,y) A sin(px) sin(qy)

*r(X,y) Bt cos(px)sin(qy) (52)

C (x,y) Cjsin(px) cos(qy)

P(x,y) Psin(px) sin(qy) i= I,,...N

where p = ir/a and q= ir/b. The form of the surface load "P" dictates this choice of the

assumed displacement field. These displacement field expressions and the subsequent

differential equations can be generalized for more complex surface loads using Fourier

analysis.

Considering a composite with cross-plies further simplifies the equations

previously developed, since it says that S5=S=S9 =O. When the assumed displacement

field expressions are substituted into Equations (19), (20), and (21), the x and y

dependence drops out entirely. This results in a system of algebraic equations in the

unknown coefficients A, B, and Ci
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B[~~ ij, 2+ p2S+J+1
N [ B PN31 +}

A2 ,2 ;+j + q 2 S j.+ q 2 K i j + (53)0 A[ jP .K3- ]p ES4 3

=, [n 1 - "i+S+ ii+K +i N

l0 [ I ii~2 1j 2  i~i+ 1 )

N jC1  +1-2 + q 2 +54

o- =Aij[ Kf 1 .+i~ ..{ j J, ~
1-0 j S2
1 B [ S i'+i'+Ki+Ki' 3 ] pq j=0,1,2,...,N

and

N

P= A [(K+4)p2+(K' +S° ) q 2] +E (iPK3j1)[Bjp + Cjq] (55)
i-0

When this is expressed in matrix form, this system of equations can be decomposed into

a matrix of constants multiplied by the vector of unknown coefficients A, A , and Ci.

Using the same displacement functions for u, v, and w in Equations (23) through

(28), the associated boundary conditions are now given by

NEf (au,+ [Iz)' I(pKj.B,+qK2C)d
N - - ., dz (6

*35 sin(px)sin(qy)b& 4, = 0 (61-0 Pr

+ E B.(ps,,, +qS3.,)hj
k-I0
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a

N ~ ~t,,+P,1z)'+'K3 (qEp,)d
N Er f L(P'l 3.d

E ~ 41-'S ;;1 pC) cos(px)cos(qy) 64j 0 (57)

k-i 0

MZUI b

N fI f~cl.+ P 1Z)'~j'(PI4B 1 +qK1 ;C1) dz
E 1-0 ;lsin(px)smn(qy)~ 64 (58)

E~ 4jkPS3 B3 +SC 5 ) hf 0

N~ ~~~~J Y1fc1 p 1 )i (qBj +pC1 ) dz

-0 cos(px)cos(qy) 6 * = 0 (59)

ZA z'S 4f (qP +Ci ) hft

a

f1I iP~j(d,+ PmiZY 1-K3 B, +pK3 4 dZ
cos(px)sin(qy) 6w =0 (60)

F
+E PS7 A hfk

k-i 0

b

~ f ~iPi(a.,,+P,z) 1 lK3 C1+qK3 Adz
iisin(px)cos(qy)8w =0 (61)

F

+ E qSsfA hI
k-I fk
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By the definition of a simply supported plate, bu=0 at y=0 and y-=b, 6v=0 at x=0 and

x=a, and bw=O at all four edges. This accounts for the boundary equations given in

Equations (57), (59), (60), and (61). Equations (56) and (58) are satisfied because a,, and

a are defined to be zero at the edges of a simply supported plate.

Specific Results

Comparison calculations were made for both isotropic plates and 2-ply composite

lay-ups. The following values were assumed for these test cases

Table 1. Assumed values for comparison calculations (square plate)

_= 2.01 ,f = 0.35 velf = N'2/2
E, = 3.0x10 P. = 0. 40 vol. = I1-V212

p = w/a a = 10 ly = I

q = lr/o b =10 h=lI

Of = 0°  hn = V'2/4
Of2 = 90 °  hr2 = 1/2/4

a'M1 = -(1 +V2)/2 0.1 = 2 +v"2

a.2 = 0 f,,2 = 2+V2

a.3 = (1 +V2)12 0.3 = 2 +V2

Volume fraction terms vol. and volf were derived by assuming global volume

fractions of 50% fibers and 50% matrix. Recall that vol= and volf refer to the fractions

of matrix and fiber in an idealized fiber ply, whereas the term "global volume fraction"

refers to the fractions of matrix and fibers that exist before the fiber plies are idealized

and dictates the thicknesses of the matrix and fiber plies.
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A fifth-order polynomial in z for the ST displacement field is assumed, i.e. N=5

in Equations (2) and (3), unless otherwise indicated. Also, the applied load in ESP is

split half and half between the upper and lower surfaces of the plate. Loading the plate

this way introduces symmetry into the ESP solution that approximates the way a load is

applied in ST.

The values for h and (9 were chosen to normalize the governing equations. The

x, y, and z coordinates, plate dimensions and displacements are normalized to the plate

thickness (x/h, y/h, z/h, a/h, b/h, u/h, v/h, and w/h). Also, the elastic moduli are

normalized to the applied pressure (F/(6 and Ef/6').

The Isotropic Square Plate

Since the plate consists of matrix only and fibers are not present, Er and 1Vf are set

to zero in the governing equations. When these terms are set to zero and N =1, the ST

equations simplify to the Mindlin plate equations [7:33]. Application of the ESP approach

to an isotropic plate is the same as for a composite, except that no inter-strata boundary

conditions exists.

The complete set of displacements, stresses and strains are shown in Figures 6.

through 21. The displacements are obtained directly for both ST and ESP. The strains

are derived from the displacement information, and stresses are calculated using the

constitutive stress-strain relations, given in Equations (9) and (16).

The following plots for the stresses, strains, and displacements include only the

z-dependent portion of these parameters. In other words, the x- and y-dependent sine and

cosine functions are divided out for the presentation of this data.
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Figure 14. y. for square isotropic plate
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Figure 18. ry, for square isotropic plate
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The following tables list the values of the parameters that were calculated for the

preceding plots:

Table 2. Matrix strata elastic coefficients (square isotropic plate)

K__ 6.4286E+005

K2. 4.2857E+005

K3., 1.0714E+005

Table 3. Strata Theory coefficients (square isotropic plate)

A = 5.3574E-004
Bo = 0.0 Co = 0.0
B, = -1.4613E-004 C1  = -1.4613E-004
B2  = 0.0 C2  = 0.0
3  = -2.8843E-005 C3  = -2.8843E-005

B4  = 0.0 C4  = 0.0
B5  = -1.7313E-006 C5  = -1.7313E-006

Table 4. ESP displacement function coefficients (square isotropic plate)

Uo -2.6824E-004

XV0  -2.6824E-004

XWo -2.7244E-005

Uo -6.6316E-005

V0  -6.6316E-005

Wo 9.0704E-004

Evaluated at z=-h/2

For an isotropic plate, there was a reasonable degree of agreement between ESP

and ST. There was excellent agreement for r,, -ry, y,,,, and yy, when a cubic (or higher
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order) polynomial was used for ST. The assumed order of the polynomial N for ST

determines the variation of -y, and yy,, through the thickness. When N= l, ST predicts

that -y.,, 7y,, r,, and r'y, are constants. But as N is increased, i.e. N=3 or larger, ST and

ESP agree to within 1 % for these shear terms. The remaining stresses and strains as well

as the displacements displayed the same general behavior for both ESP and ST, although

the actual values calculated disagreed by nearly a factor of 2 in some cases.

The amount by which ESP and ST disagree appears to be primarily dependent

upon th value of the Poisson's ratio (P). When the Poisson's ratio , is allowed to vary,

it is immediately apparent from Figure 21. that ESP and ST agree exactly when ,=0,

and the two solutions diverge as v increases. At ,=0.5, which represents an

incompressible material, ST predicts that w=0, whereas ESP predicts a non-zero z

displacement. Intuitively, the ESP results seem more reasonable when one realizes that

shear becomes the primary form of deformation for an incompressible material, and some

displacement is still possible.

Clearly, the effect of shear is diminished in ST. ST assumes that 6,=0, while ESP

expects a nonzero e. Since the normal stresses are coupled through ,, elimination of one

of the normal stresses, in this case eV introduces an error that is not present in ESP.

The 2-Ply Square Composite Plate

The complete set of displacements, stresses and strains are shown in Figures 22.

through 36. The displacements are obtained directly from both ST and ESP. The strains

are derived from the displacement information, and stresses are calculated using the

constitutive stress-strain relations, given in Equations (9) and (16).
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The following plots for the stresses, strains, and displacements include only the

z-dependent portion of these parameters. In other words, the x- and y-dependent sine and

cosine functions are divided out for the presentation of this data.
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Figure 22. In-plane displacement u for square 2 -ply composite plate
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Figure 24. Out-of-plane displacement w for square 2-ply composite plate
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Figure 25. e,, for square 2-ply composite plate
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Figure 29. y,, for square 2-ply composite plate
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Figure 32. ay for square 2-ply composite plate
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Figure 35. r., for square 2 -ply composite plate
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The following tables list the values of the parameters that were calculated for the

preceding plots:

Table 5. Matrix strata elastic coefficients (2-ply square plate)

KI_ 6.4286E+005

K21 4.2857E+005

K3. 1.0714E+005

Table 6. Fiber strata elastic coefficients (2-ply square plate)

Fiber Stratum 1 Fiber Stratum 1

Sf 2.2886E+007 2.1949E+006

S2f 2.1949E+006 2.2886E+007

S3f 1.2347E+007 1.2347E+007

Sf 3.6581E+005 3.6581E+005

Sf 0.0000E+000 O.OOOOE+000

Saf O.OOOOE+000 O.OOOOE+000

Sf 5.2692E+006 3.6581E+005

Ssf 3.6581E+005 5.2692E+006

S9f 0.0000E+000 0.0000E+000

SIM 1.2347E+007 4.2857E+005

S_f 4.2857E+005 1.2347E+007

S 2.2886E+007 2.2886E+007

SI3f O.OOOOE+000 0.0000E+000

When fibers are present, the agreement between ST and ESP for the

displacements u, v, and w are very good. Also, there is very good agreement between
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Table 7. Strata Theory coefficients (2-ply square plate)

A = 2.5179E-006
B0  = -3.1637E-007 Co = 3.1637E-007
B, = 1.0810E-007 C1  = 1.0810E-007
* = -3.2442E-010 C2 = 3.2442E-010
3  = -1.3121E-006 C3 = -1.3121E-006

B4  = 2.1974E-009 C4 = -2.1974E-009
B5  = 2.1453E-006 C5 = 2.1453E-006

Table 8. ESP displacement function coefficients (2-ply square plate)

Matrix Stratum 1 Matrix Stratum 2 Matrix Stratum 3

XU0  -7.1529E-007 1.0012E-007 -8.0927E-007

XV0  -7.2279E-007 9.2623E-008 -8.0927E-007

XW0  7.8046E-007 -9.7706E-009 -7.573 1E-007

U0  -2.5245E-007 -2.6659E-007 -2.1051E-007

V0  2.6659E-007 2.5245E-007 3.0825E-007

W0 2.5197E-006 2.5197E-006 2.5760E-006

Evaluated at the z coordinate at the bottom of each matrix stratum

ESP and ST in the general behavior for all the stresses and strains, with the obvious

exception of e.. The polynomial form of the z dependence of the assumed displacement

field is clearly evident in the plots of the shear stresses and shear strains.

In comparing the results of the 2-ply composite with the isotropic plate, it is

obvious that the fibers dominate the behavior of the composite. While the general

behavior of the ST results echo those of ESP, there is still some disagreement in the

actual values calculated for displacements, stresses, and strains. Other test cases for a

square plate were examined, and they revealed that the level of agreement between ESP

and ST seems to be most highly dependent upon the Poisson's ratio for the fibers (Vf),

and the order of the polynomial (N) assumed for ST.
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Just as with the isotropic plate, there is considerable disagreement in C. between

ST and ESP for a composite panel, but this should be expected. In the matrix strata that

comprise the top and bottom surfaces of the composite, note that Ez increases slightly as

z gets farther away from the free surfaces at z= +h/2. This demonstrates a coupling of

the normal stresses. At the free surfaces of the composite, the matrix is allowed to

deform freely through Poisson effects. However, at the matrix-fiber strata interface, the

matrix is forced to match the displacements of the fibers, and so it cannot deform freely.

Because e is allowed to be nonzero for ESP, ESP predicts that the presence of

fibers results in significant jumps in E, through the thickness. Through-the-thickness shear

through the fiber strata affects how c, varies for the ESP solution. Since a square plate

is being considered here, and since the plies are rotated 900 with respect to each other,

dimensional symmetry causes the fiber strata to absorb equal amounts of strain energy.

If the aspect ratio of the plate (a/b) is allowed to increase, more strain energy is absorbed

by the fiber stratum whose fibers are aligned with the shorter dimension of the plate than

by a stratum whose fibers are parallel with the long dimension of the plate. This will be

more clearly evident in the cylindrical bending case that follows.

Assuming that the aspect ratio b/a is constant, both ST and ESP predict that the

z displacement (w) of a composite varies as a function of the plate width squared (a2).

In other words, the limit of w/a2 as "a" goes to infinity is a constant. When the given

load distribution is used, and a linear polynomial is assumed for ST (i.e. N=1), the

solution for the coefficient "A" of the ST assumed displacement field predicts this limit

to be
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A
Jim A P (62)ao--a 2  it2[S' +

This is a fundamentally different behavior than that of an isotropic plate or for a set of

stacked orthotropic plates. CPT, the exact orthotropic plate solutions developed by

Pagano [8:398-411; 9:20-34], ESP, or ST (when applied to an isotropic plate) predicts

that the limit of w/a4 as "a" goes to infinity is a constant. Note the dependence on the

characteristic plate width "a". Using the Kirchhoff plate assumptions for a thin isotropic

plate (Navier's Solution), this limit is given as [11:548-549]

urp 3(1-V 2 )lira -

a-- a4  h 3 ' E
(63)

w = w(x=2 ,Y=2 =)

When "a" is allowed to get large, the ESP results corresponds to this value. Notice that

the material property terms correspond to what would be a K, term for a plane stress

elasticity problem.

The expression for an isotropic plate using ST becomes

in A = 39(1-2vm)(1+V.) (64)
a-. a' h3 4E(lV,)

Similar expressions arise for CPT or the exact orthotropic plate solutions as well. Notice

that the material property terms corresponds to an expression for a K, term that would

be used for a plane strain elasticity problem.
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V. The Cylindrical Bending Case

Cylindrical bending is a special case of the rectangular plate formulation

developed above. The dimension in the y direction (given as "b") is assumed to be

infinite, therefore v and derivatives with respect to y are zero. As a result, some strain

terms are defined as being zero. Because "b" is infinite, %, -, and r, are zero

throughout the composite.

Strata Theory

Using the fact that b = co, and that v and derivatives with respect to y equal 0, the

PDEs in Equations (19) and (21) reduce to

N

jImK3j'1 W~ = -jp K,+-*+(S"+K:'+), } j=0,1,2,...,N (65)
i-o

and

N

(K3 + = 0 (66)
i,,o

where

M Z~I

K~f f(a,+13,jzy'K dz

l' (67)

F

k-1 rft

.-} 7



These are the same definitions as used for the rectangular plate. Note that Equation (20)

vanishes for the cylindrical bending case.

The boundary conditions that remain are

NV M F
f' (.,+P..Iz) fk *4 a,.,4, dS +SIf , o (68)

i-O i1-0- k-I

ZM1  0fM ;; N F a
iP,(cg,,+,z)'-1K,.+l 3 w + u7 hytw ] 8w+K 0 (69)

0

Simply-Supported Cylindrical Bending with Cross-Plies

For simply-supported cylindrical bending, the x dependence of w, *'i, and P can

be assumed to have the following formIw(x) 1 JA smn(px)1
=x) Blcos(px) (70)

P(x) J P sin(px)

where p= -/a.

These expressions are now used in the above PDEs, which results in a system of

equations in the unknown coefficients A and Bi

N

0 A[ ,3K'-'p Bi j 3i-2+ p 2(S]+K') (71)
=j=0,1,2,...,N
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and

N

= A(K; +S)p + Bj[i.Ki 1 p] (72)
i.O

When this is expressed in matrix form, this system of equations can be decomposed into

a matrix of constants multiplied by the vector of unknown coefficients A and Bi.

Exact Stratified Plate

As with the ST approach, cylindrical bending is a special case of the rectangular

plate formulation developed above. Again, the dimension in the y direction (given as "b")

is assumed to be infinite, therefore v and derivatives with respect to y are zero. The

assumed displacement field expressions are

{:(XIZ)1 U(ospx) }(73)
w(x,z) W(z) sin(px)

where p=T/a.

When v and the y derivatives are set to zero in the rectangular plate formulation,

and b is defined to be infinite, the ODEs that result are

K , U1, + 0 .I( il 0 {-.}={o (74

K W11 -pK W 0 _p2~L K of

whfre K4=K 2+K3. When the 2 second-order ODEs are recast as a set of four first-order

coupled ODEs, U and W are assumed to have the form of Uoe, and the governing

equations are expressed as a system of 4 coupled algebraic equations. Rewritten in state-
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space form, they become

[[Q] + ;A[]] { (o0 } (0O (75)

where

I Wo (76)
(Oo0) UoWO

and

-pK 4  p2K1
0 K4. P2" 0

K3. 3K.

p i,2 k'_(77)

K,. K1.

-1 0 0 0

o -1 0 0

The eigenvalues of this system are 2 sets of repeated roots

A = ± p (78)

The same method for generating an eigenvector matrix as described above for the

rectangular plate is used [1:53-57], but it is tailored for a system with four eigenvalues.

First, the functions f(z,X) and g(z,X) are defined as

g(z,A) = ao(Z) + al(z) 1 + *2(z) A2 + C3(z) X3

f(z,,) = eZ
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and these expressions are manipulated to solve for the ai's as before.

f(z).) 'I IZ X2 )3Ig

IzA) - 0 1 2X 3)%2 £I (80)
fjz'-) e-zf 1 -- .2 -) 3  12

) ze 0 1 -21 3 %2  d3

Finally, exponentiation of the matrix [Q] can be obtained by the relation

e [Q = 0[I] +al[Q] +a2 [Q] 2 +d [Q] 3  (81)

The boundary conditions are constructed in the same fashion as for the rectangular

plate, using a series of force balance equations for the x-z shear and normal stress.

Equilibrium is established at the upper surface, at each fiber stratum, and finally at the

lower surface.

The boundary conditions are setup the same as for the rectangular plate, given by

MI1 M21  0 0 0 0 0 0 0 0 0 0

0 0 -Mi1 -M2 1 M12 M2fl 0 0 0 0 0 0

0 0 0 1 0 -1 0 0 0 0 0 0
[BC]= 0 0 0 0 0 0 -MI 2 -M2 2 M13 M2f2 0 0

0 0 0 0 0 0 0 1 0 -I 0 0

0 0 0 0 0 0 0 0 0 0 -M13 -M23

(82)

but the submatrices are defined as
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l=[K3.1 0

MI 0 K.,]

M2 0 p3.1 (83)M2=-P/2.1 0

M2k= 0 p2S j ht + M2 1

instead. These represent stresses r,,, and q, at the top and bottom surfaces of the

composite stack, and at the fiber strata.

Specific Results

Comparison calculations were made for both isotropic plates and 2-ply composite

lay-ups. 'he following values were assumed for these test cases

Table 9. Assumed values for comparison calculations (cylindrical bending)

Ef = 10 f = 0.25 volf =V2/2

E, = 10C O. = 0.25 vol. = 1-v'2/2

p = Tr/a a= 10 _ P = !

q=0 b=co h=l

Of = 00 hn = V2/4

Of2 = 90 ha = V'214

aci = -(1 +V2)/2 0.1 = 2 +v2

U.2 = 0 _.2 = 2+V2

o. = (I+V'2)12 0. = 2+V2
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Volume fraction terms vol. and volf were derived by assuming global volume

fractions of 50% fibers and 50% matrix. Recall that vol. and volf refer to the fractions

of matrix and fiber in an idealized fiber ply, whereas the term "global volume fraction"

refers to the fractions of matrix and fibers that exist before the fiber plies are idealized

and dictates the thicknesses of the matrix and fiber plies.

A fifth-order polynomial in z for the ST displacement field is assumed, i.e. N=5

in Equations (2), unless otherwise indicated. Also, the applied load is split half and half

between the upper and lower surfaces of the plate.

The values for h and (P were chosen to normalize the governing equations. The

x and z coordinates and the plate width are normalized to the plate thickness (x/h, z/h,

and a/h), and the elastic moduli are normalized to the applied pressure (Ea/6 and Ef/(P).

Displacements are also normalized to the plate thickness (u/h and w/h).

The Isotropic Cylindrical Bending Case

Since the plate consists of matrix only and fibers are not present, Ef and ,f are set

to zero in the governing equations. The complete set of displacements, stressef and

strains are shown in Figures 37. through 45. The displacements are obtained directly

from both ST and ESP. The strains are derived from the displacement information, and

stresses are calculated using the constitutive stress-strain relations, given in Equations (9)

and (16).

The following plots for the stresses, strains, and displacements include only the

z-dependent portion of these parameters. In other words, the x- and y-dependent sine and

cosine functions are divided out for the presentation of this data.
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Figure 37. In-plane displacement u for cylindrical bending isotropic plate
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Figure 38. Out-of-plane displacement w for cylindrical bending isotropic plate
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Figure 39. e,, for cylindrical bending isotropic plate
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Figure 41. 'y., for cylindrical bending isotropic plate
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Figure 42. a. for cylindrical bending isotropic plate
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Figure 43. or, for cylindrical bending isotropic plate
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Figure 44. r.~ for cylindrical bending isotropic plate
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Figure 45. Displacement w for cylindrical bending isotropic plate vs. P

The following tables list the values of the parameters that were calculated for the

preceding plots:

Table 10. Matrix strata elastic coefficients (cylindrical bending isotropic plate)

KI, 6.4286E+005

K2. 4.2857E+005

K3 I 1.0714E+005

Just as with the rectangular plate, there was a reasonable degree of agreement

between ESP and ST. There was excellent agreement for r,, a,, and y,, when a cubic

(or higher order) polynomial was used for ST. The remaining stresses and strains as well
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Table 11. Strata Theory coefficients (cylindrical bending isotropic plate)

A = 2.0297E-003
Bo = 0.0
B, = -5.9320E-004
B2  = 0.0
3 = -5.8545E-005

B4  = 0.0
B5 = -1.7452E-006

Table 12. ESP displacement function coefficients (cylindrical bending isotropic plate)

XUo -1.1051E-003

XWo 1.1245E-004

U0  5.4064E-004

W0 3.5178E-003

Evaluated at z=-h/2

as the displacements displayed the same general behavior for both ESP and ST, although

the actual values calculated disagreed by nearly a factor of 2 in some cases.

The amount by which ESP and ST disagree appears to be primarily dependent

upon the value of the Poisson's ratio (v). When the Poisson's ratio v is allowed ro vary,

it is immediately apparent from Figure 45. that ESP and ST agree exactly when v=0,

and the two solutions diverge as v increases.

Just as with the rectangular plate, ST assumes that E,=O, while ESP expects a

nonzero E,. Since the normal stresses are coupled through v, elimination of F, introduces

an error that is not present in ESP. Again, and there is poor agreement for e, and a.
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The 2-Ply Cylindrical Bending Case

The complete set of displacements, stresses and strains are shown in Figures 46.

through 53. The displacements are obtained directly from both ST and ESP. The strains

are derived from the displacement information, and stresses are calculated using the

constitutive stress-strain relations, given in Equations (9) and (16).

The following plots for the stresses, strains, and displacements include only the

z-dependent portion of these parameters. In other words, the x- and y-dependent sine and

cosine functions are divided out for the presentation of this data.
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Figure 46. In-plane displacement u for cylindrical bending 2-ply composite plate
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Figure 47. Out-of-plane displacement w for cylindrical bending 2-ply composite plate
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Figure 48. e, for cylindrical bending 2-Ply composite plate
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FIgure 50. -y,,, for cylindrical bending 2-Ply composite plate
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Figure 51. or,, for cylindrical bending 2-Ply composite plate
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Figure 52. a, for cylindrical bending 2-Ply composite plate
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Figure 53. -r., for cylindrical bending 2-Ply composite plate

The following tables list the values of the parameters that were calculated for the

preceding plots:

Table 13. Matrix strata elastic coefficients (2-ply cylindrical bending plate)

KI, 6.4286E+005

K2_ 4.2857E+005

K, 1.0714E+005

When fibers are present, the agreement between ST and ESP for the

displacements u, v, and w are very good. Also, there is very good agreement between

ESP and ST in the general behavior for all the stresses and strains, with the obvious
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Table 14. Fiber strata elastic coefficients (2-ply cylindrical bending plate)

Fiber Stratum 1 Fiber Stratum 1

Sf 2.2886E+007 2.1949E+006

S2f 2.1949E+006 2.2886E+007

Sf 1.2347E+007 1.2347E+007

S4f 3.6581E+005 3.6581E+005

Sf O.OOOOE+O0 O.000E+O0

S6f 0.0000E+000 0.0000E+000

Sf 5.2692E+006 3.6581E+005

Ssf 3.6581E+005 5.2692E+006

S9f O.OOOOE+000 0.0000E+000

Sl_ f 1.2347E+007 4.2857E+005

S__f 4.2857E+005 1.2347E+007

S2 2.2886E+007 2.2886E+007

S13f O.OOOOE+000 O.OOOOE+000

Table 15. Strata Theory coefficients (2-ply cylindrical bending plate)

A = 5.0817E-006
B0 = 8.6071E-008
B, = -4.1525E-007
%2 = 2.6488E-010
B3 = -1.9537E-007
B4 = -1.7935E-009
B5  = 3.1359E-007

exception of c. The polynomial form of the z dependence of the assumed displacement

field is clearly evident in the plots of the shear stresses and shear strains.

In comparing the results of the 2-ply composite with the isotropic plate, it is

obvious that the fibers dominate the behavior of the composite. While the general

behavior of the ST results echo those of ESP, there is still some disagreement in the
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Table 16. ESP displacement function coefficients (2-ply cylindrical bending plate)

Matrix Stratum 1 Matrix Stratum 2 Matrix Stratum 3

XU0  -1.5197E-006 -1.4293E-006 -1.6406E-006

XWo 7.7067E-007 -6.4056E-007 -7.1890E-007

U0  -3.3253E-008 1.6444E-007 2.8112E-007

W0 5.0720E-006 5.1687E-006 5.2223E-006

Evaluated at the z coordinate at the bottom of each matrix stratum

actual values calculated for displacements, stresses, and strains. Other test cases for a

square plate were examined, and they revealed that the level of agreement between ESP

and ST seems to be most highly dependent upon the Poisson's ratio for the fibers ('f),

and the order of the polynomial (N) assumed for ST.

Just as with the isotropic plate, there is considerable disagreement in e between

ST and ESP for a composite panel, but this should be expected. In the matrix strata that

comprise the top and bottom surfaces of the composite, note that E, increases slightly as

z gets farther away from the free surfaces at z= +h/2. This demonstrates a coupling of

normal stresses. At the free surfaces of the composite, the matrix is allowed to deform

freely through Poisson effects. However, at the matrix-fiber strata interface, the matrix

is forced to match the displacements of the fibers, and so it cannot deform freely.

Because e. is allowed to be nonzero for ESP, ESP predicts that the presence of

fibers results in significant jumps in ez through the thickness. As indicated for the

rectangular plate case, the through-the-thickness shear through the fiber strata affects how

C. varies for the ESP solution. A fiber ply where the fibers span the width of the plate

will absorb much more strain energy than a ply with fibers that run parallel to the

simply-supported edges. This induces a larger jump in e between the top and middle
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matrix strata than between the middle and bottom matrix strata [Figure 49.]. If the fiber

plies were reversed (90 & 0 instead of 0 & 90), there would be a greater difference in

ez across the second fiber ply than the first, and ez through the middle matrix stratum

would be positive by the same average magnitude (i.e. it would be "flipped" to the

positive side of the graph). The cylindrical bending case is the limiting case of a

rectangular plate with a high aspect ratio.

As was indicated for a rectangular plate, both ST and ESP predict that the z

displacement (w) of a composite varies as a function of the plate width squared (a2). In

other words, the limit of w/a2 as "a" goes to infinity is a constant. When the given load

distribution is used, and a linear polynomial is assumed for ST (i.e. N= 1), the solution

for the coefficient "A" of the ST assumed displacement field predicts this limit to be

li -A (84)
a-- a2 W 2 0

This is a fundamentally different behavior than that of an isotropic plate or for a set of

stacked orthotropic plates. CPT, the exact orthotropic plate solutions developed by

Pagano [8:398-411; 9:20-34], ESP, or ST (when applied to an isotropic plate) predicts

that the limit of w/a as "a" goes to infinity is a constant. Note the dependence on the

characteristic plate width "a". Applying Navier's solution to the cylindrical bending case

for an isotropic material, the normalized displacement is

lim W = 126p(1-v 2 )
a-. a4  h 3 74 E

(85)

= w X=2',z=O
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The expression for an isotropic plate using ST becomes

lir A _ 12P(1-2v,)(l+v,) (86)

a-- a 4  h 34E(l-V.)

Similar expressions arise for CPT or the exact orthotropic plate solutions as well.
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V1. Conclusions and Recommendations

Interpretation of Results

For an isotropic plate, there was a reasonable degree of agreement between ESP

and ST. There was excellent agreement for r,, ryt, y,., and y,. when a cubic (or higher

order) polynomial was used for ST. The remaining stresses and strains as well as the

displacements displayed the same general behavior for both ESP and ST, although the

actual values calculated disagreed by nearly a factor of 2 in some cases. Since the normal

stresses are coupled through v, and since C- is set to zero in ST, this introduces an error

that is not present in ESP. As a result, the amount by which ESP and ST disagree is

heavily dependent on the value of the Poisson's ratio (v).

When fibers are present, however, the agreement between ST and ESP for the

displacements u, v, and w are very good. Also, there is very good agreement between

ESP and ST in the general behavior for all the stresses and strains, with the obvious

exception of c-. While it is clear that the fibers dominate the behavior of the composite,

the level of agreement in the actual values calculated seems to be most highly dependent

upon the Poisson's ratio for the fibers (vf).

Since the difference in the displacements between the ESP and ST solutions for

a composite are very small, the approximation that epsilon z is zero appears to be a

reasonably valid assumption for ST. Although ST was not really intended to be used for

detailed stress/strain prediction, the fact that ST and ESP agree so well is another

confirmation of the general validity of the ST approach. It also reinforces the potential

of ST as a dynamic analysis tool.
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The applied load used for the example calculations had a simple sinusoidal

distribution, but Fourier analysis can be used to decompose any arbitrary load into an

infinite sum of sines and cosines. The equations used for the example problems can

readily be generalized for more complex loads by modifying the values of p and q.

However, if many terms of the Fourier series are needed to represent the applied load,

considerable computation time may be required.

Areas for Further Research

It is not clear whether the behavior of the normalized displacement w as a

function of plate width represents the true behavior of a composite panel. This would

seem to be an important characteristic of the Stratified Plate Model that needs to be

verified, or refuted, experimentally.

The ST equation development readily lends itself to a formulation that includes

a dynamic term. If the ST method is to be used for mode shape prediction, verification

of the behavior of ST with respect to the plate dimensions, as suggested above, is needed

as a preliminary and preparatory step to determine the suitability of ST as a vibration

analysis tool.

There are indications that the ST formulation would lend itself well to the

development of a new type of finite element. Indeed, some preliminary work in this area

has already been done. Once the formulation of such an element is developed, validation

and verification is needed to determine such aspects as convergence and compatibility

within and between elements.

One of the strengths of the ST method is that the order of the polynomial (N) for
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the assumed z dependence in ST can be selected as necessary to obtain the desired level

of accuracy. This study did not explicitly examine the effect of N on the accuracy of the

results, particularly for multi-ply composites, but it is likely that the value of N that

yields the best trade-off between computation time and accuracy will be a matter of

experience and the specific details of the problem being studied. Nevertheless, ST should

be applied to multi-ply composites to ensure convergence and determine the order of the

polynomial (N) required for adequate accuracy.

Also, ST should be applied to lay-ups with angle plies to examine the coupling

effects, and to determine possible forms of solutions for such cases. The x- and y-

dependent portions of the assumed displacement field for a simply-supported rectangular

plate with cross-plies were fairly easy to obtain, but the form of the displacement field

expressions when angle-plies are present are not so obvious and should be explored

further.
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Appendix A: MATL1AB Routines for Finite Rectangular Composite Panel

SOL VE

A-10
B- 10
setparam
calparam
exactsol
stxpl ies
quit

SETPARAM

%SETPARAM.M routine for PC-MATLAB

format short e
global n m A B p q matprops fibprops zdist N alpha beta tf tm FM R RMI
diary setparam.log

iso-0
n-1
rn-1

Em-0.3e6
NUm-.40
Gm-Em! ( +NUm) /2

ki-Em* (l-NUm) / ( -2*Nm) /(l+NUm)
k2-Em*NUm/ (i-2*NUm)/ (i+NUm)
k3-Gm

KM4[ki k2 k2 0 0 0;
k2 ki k2 0 0 0;
k2 k2 ki 0 0 0;
0 0 0 k3 0 0;
0 0 0 0 U3 0;
0 0 0 0 0 k3];

matprops-fki kI2 k3]

if iso--i
tf-[0 01
tm-[.25 .5 .25]
alpha-0
;3eta-i

fibprops-(0 0 0 0 0 0 0 0 0;
0 0 C 0 0 0 0 0 0]

alse
sqrt2=sqrt (2)
volf-sqrt2/2
volmil-volf

tf-[oqrt2/4 sqrt2/4]
tm-( .25-sqrt2/8 .5-sqrt2/4 .25-sqrt2/BJ
alpha-- ( +sqrt2 )/2
beta-2 +sqrt2
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Ef=20e6
NUf =.3 5
Gf=Ef/(1+NUf)/2

f1=volf*Ef*(1-NUf)/(1-2*NUf)/(1+NUf)+volm*kl
s2=kl/voJlm
s3=volf*Ef*NUf/ (1-2*NUf)/ (1+NUf )+volm*k2
s4=Gm/volm
s5-0

97=volf*Gf+volm*Gm
88=Gm/volm
.9=0
910-k2

fibprops=(a1 s2 s3 94 s5 96 s7 98 s9;
s2 .1 s3 s4 s5 s6 s8 s7 89]

5M1-(sl 93 0 0 0;
s3 .2 0 0 0;
s3 910 0 0 0;
0 0 .4/2 0 0;
0 0 0 s7/2 0;
0 0 0 0 .8/2]

SM2-[s2 s3 0 0 0;
93 .1 0 0 0;
9109s3 0 0 0;
0 09s4/2 0 0;
0 0 0 s8/2 0;
0 0 0 0 97/2]

end

zdit-[.25, -.25]
N=5

CALPARAM

%CALPARAM.M routine for PC-HATLAB

p-n*pi/A
q-m*pi/B

R2-p*p+q*q
R-sqrt (R2)

RM(1l R R2 R*R2 R2*R2 R*R2*R2;
0 1 2*R 3*R2 4*R*R2 5*R2*R2;
0 0 2 6*R 12*R2 20*R*R2;
1 -R R2 -R*R2 R2*R2 -R*R2*R2;
0 1 -2*R 3*R2 -4*R*R2 5*R2*R2;
0 0 2 -6*R 12*R2 -20*R*R2]

RMI-Inv (RM)
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EXACTS CL

%EXACTSOL.M routine for PC-MATLAB

diary exactuol. log
(fieldi, field2, bc]I=gmatlmat
zero-zeros(6,6);

zvl-expmat(tm(l));
zv2=expmat(tm(2));
zv3=expmat(tm(3));

bcl=[zvl zero zero;
eye(6) zero zero;
zero zv2 zero;
zero eye(6) zero;
zero zero zv3;
zero zero eye (6)]

bc0=bc*bc 1
Cond~um=rcond (bc0)
bcinv-inv (bco)

force=(0;0; .5;0;0;0;0;0;0;0;0;0;0;0;0;0;0; .5]

UVW=bcinv* force
uvw=zeros (7,11);
uvw(7,1:l1)=( .5, .46, .5-tm(1),tm(2)/2, .04,0.,-.04,-tm(2)/2,tm(3)-.5,-.46,-.5];

UVWuet=(UVW(1:6)];
tmBottom=. 5-tm( 1);

for ii-(l:ll)
if 11--4

UVWset=(UVW(7:12) 1;
tmBottom--tm (2) /2;

elseif ii==9
UVWset=fUVW(13:18) J;
tmBottoi- * 5;

end
uvw(1:6,ii)=expmat(uvw(7,ii)-tmBottom)*UVWset;

end
uvw

diary exactsol.prn
uvw,

strema-zeros (7,11);
utreuu(7,l:11)-( .5, .46, .5-tm(1) ,tm(2)/2, .04,0.,

-.04,-tm(2)/2,tm(3)-.5,-.46,-.5J;
utrain-zerog (7,11);
utrain(7,1:11)-( .5, .46, .5-tm(1) ,tm(2)/2, .04,0.,

-.04,-tm(2)/2,tm(3)-.5,-.46,-.5);

Strainl~at-(0 0 0 -p 0 0;
0 00 0 -qO0;
0 0 1 0 0 0;
0 0 0 q p 0;
1 0 0 0 0 P;
0 1 0 0 0 qJ;

for ii-(1:11)
utrain( 1:6, ii)=Strain~at*uvw(1: 6, ii) ;
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streuu(1:6,ii)=KM*Straindat*uvw(1:6,ii);
end
diary exstresu.prn
strain,
stress'

diary off
if iso-mO

uvwf-zeros(3,2);
stress-zeros (7,2);
stress(7,1:2)=(tf(l) tf(2)];
utrain-zeros(6,2);
strain(6,1:2)=(tf(1) tf(2)I;

StrainMat=[-p 0 0;
o -q 0;
q p 0;
o o p;
o o q);

for 11-(1:2)
uvwf(1,ii)=UVW(ii*6-2);

uvwf(3,ii)=UVW(ii*6-);

strain(1: 5, ii)=StrainiMat*uvwf (1:3, ii) ;
end
stress(1:6,1)=SM1*StrainJat*uvwf(1:3,1);
stress(1:6,2)=SM2*StrainMat*uvwf(1:3,2);
diary ex-fstr.prn
strain'
stress'

diary off
end

S7XPLES

% STXPLIES - The name stands for "STRATA THEORY, CROSS-PLIES". This routine
% creates the matrix of coefficients that arise from the PDEs
% when using the assumed form of psi, zeta, and w.

cl-matprops (1);
c2-matprops (2);
c3-matprops(3);
ps-p*p;
qsinq*q;
pq-p'q;
bsmbeta*beta;
otheory-zeros (2 *N+3, 2*N+3);
stheory(1,l)-(c3*ks(0)+ss(7,0) )*ps+(c3*ks(O)+ss(8,O) )*qs;

for ii-(1:N)
itheory (1,ii+2 ) ii*beta*c3*p*ks (ii-i);
utheory (1,ii+N+3 ) ii*beta*c3*q*ks ( u-i);

end

for jj-(0:N)
stheory(jj+2,1)mJj*beta*c3*p*ks(jj-1);
for ii-(O:N)

kstif f-ks (ii+j j);
stheory(jj+2,ii+2)=ii*jj*bs*c3*ks(ii+jj-2)

+(ss(i,ii+jj)+cl*kstiff)*ps+(ss(4,ii+jj)+c3*kstiff)*qs;
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stheory(jj+2,ii+N+3)=(ss(3,ii+jj )+es(4,ii+jj )+(c2+c3)*kstiff)*pq;
end

end

for jj=(0:N)
atheory(jj+N+3,1)=jj*beta*c3*q*ks(jj-1);
for ii=(0:N)

kstiff=ks( ii+jj);
utheory(jj+N+3,ii+2)=(ss(3,ii+jj )+ss(4,ii+jj)+(c2+c3)*kstiff)*pq;
Etheory (j j+N+3, ii+N+3 )=ii*j j*bs*c3*k ( ii+j j-2)

+(99(2,ii+jj)+cl*kstiff)*qs+(ss(4,ii+jj)+c3*kstiff)*ps;
end

end

diary *trtheor.log
atheory
force-zeroa(2*N+3, 1);
force ( ) =1;
Condlium-rcond(otheory)

UVW-inv ( theory) *force
uvw-zerou (7,11);
uvw(7,1:11)=[ .5, .46, .5-tm(1) ,tm(2)/2, .04,0. ,-.04,-tm(2)/2,tm(3)-.5,-.46,-.5];

alphafactor=[1,1,1,0,O,O,0,0,-l,-1,-1];
for ii=(1:11)

uvw(1, ii)=O;
uvw(2,ii)t0;
uvw(4,ii)=0;
uvw(5, ii)=0;
apluubz=alpha*alphafactor (ii) +beta*uvw (7, ii);
for jj-(0:N)

uvw(l,ii)=uvw(l,ii)+UVW(jj+2)*Ij*beta*aplusbz (jj-1);
uvw(2,ii)-uvw(2,ii)+UVW(jj+N+3)*jj*beta*aplusbz~(j-1);
uvw(4, ii)-uvw(4, ii)+UVW(JJ+2) *apluubzjj;
uvw(5,ii)=uvw(5,ii)+UVW(jj+N+3)*aplusbz'jj;

end
uvw(3,ii)=0;
uvw(6,ii)-UVW(l);

end
Uvw
diary strtheor.prn
Uvw,

utreuuzzeros(7,11);
utress(7,1:11)w( .5, .46,O.50-tm(l) ,tm(2)/2, .04,0.,

-.04,-tm(2)/2,tm(3)-0.50,-.46,-.5J;
utrain-zeros (7,11);
mtrain(7,1:11)-( .5, .46,O.50-tm(1) ,tm(2)/2, .04,0.,

-.04,-tm(2)/2,tm(3)-O.50,-.46,-.5);

Straini~at-[O 0 0 -p 0 0;
0 0 0 0 -q 0;
0 0 1 0 0 0;
o o 0 q p 0;
1 0 0 0 0 P;
o 1 0 0 0 q];

for ii-(1:11)
strain(1: 6, ii) mStrainNat*uvw( 1: 6,ii) ;
stres(1:6,ii)-KN*Strain~at*uvw(1:6,ii);

end
diary *tstress.prn
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st rain'
stress'

diary off
if iso==0

uvwf-zeros(5,2);
stress=zeros (7,2);
stress(7,1:2)=(tf(l) tf(2)J;
strain-zeros(6, 2);
strain(6,1:2)-(tf(l) tf(2)J;

StrainMat=[0 0 -p 0 0;
0 0 0 -qO0;
0 0 q p 0;
1 0 0 0 p;
0 1 0 0 q];

for 11i(1:2)
uvwf(1,ii)=0;
uvwf(2,ii)=0;
uvwf(3,ii)=0;
uvwf(4,ii)0O;
zfinzdist(ii);
for jj=(0:N)

uvwf(1,ii)=uvwf(1,ii)+UVW(JJ+2)*Jj*zfA(jjl1);
uvwf(2,ii)=uvwf(2,ii)+UVW(JJ+N+3)*jj*zf"(j-);
uvwf(3,ii)-uvwf(3,ii)+UVW(jj+2)*zf~jj;
uvwf(4,ii)-uvwf(4,ii)+UVW(JJ+N+3)*zf~jj;

end
uvwf(5,ii)-UVW(l);
strain(1:5,ii)=Strain~at*uvwf(1:5,ii);

end
stress(1:6,1)=SMI*StrainMat*uvwf(1:5l1);
streas(1:6,2)=SN2*StrainMat*uvwf(1:5,2);
diary st-f str.prn
strain'
stress'

diary off
end

EXPMAT

function em-expmat (z)
%EXPMAT - Function to generate the matrix exponential for the boundary

condition matrices of the nEXACT STRATIFIED PLATE SOLUTION" for
the analysis of composite panels.

etpinexp(R*z);
ezm-exp(-R*z);
eVector-(ezp; z*ezp; z*z*ezp; ezm; z*ezm; z*z*ezmj;
aV-R4I *oVector
em-aV(1)*eye(6)+aV(2)*FM+aV(3)*FM*FM+aV(4)*FM*FM*FM+aV(5)*FM*FM*FM*FM

+&V( 6) *FM*FM*FM*FM*FN;

GMA TLMA T

function [fml, fm2, bc J gmatlmat
%GMATLNAT Function to generate the material property matrices for the

"EXACT" solution of the cross-ply composite panel problem.
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%Syntax: (FMl,FH2,BC)=GI4ATLMAT

p M nw/a
q M mw/b
mp M Vector of material properties (1x3)
fp M Vector of fiber strata properties (lx9)

BC = Boundary condition matrix
FMl - Field matrix #1
F342 - Field matrix #2

u = Displacement vector
where (FM1] u = L (FM2] u L = Eigenvalue (aka lambda)

% This function is used in conjunction with other MATLAB routines to
% verify the "STRATA THEORY" of composite panel analysis. Written by
% Alan L. Lesmerises.

cl-matprops (1)
c2-matprops (2)
c3-matprops (3)
c4-c2+c3
z-zeros (3,3);

ml=[c3 0 0;
o c3 0;
o 0 ci);

m2-c4*[ 0 0 p;
0 0 q;
-p -q 0];

m3=-[(p*p*cl+q*q*c3) p*q*c4 0
p*q*c4 (p*p*c3+q*q*cl) 0

0 0 (p*p+q*q)*c31;

9Above matrices appear in PDE as:

9' ml~u"+(m2]u'+[m3]u=0
9or

9 'l [ 1[ ' m u[(0] -[m3] =u L [[ml) [m2] )

9'J

fml=(ml z
z -m3);

fm2=[ z ml;
ml m2];

F14=inv( fm2) *fml

m2-( 0 0 p*c3;
0 0 q*c3;

-.p*c2 -q*c2 0 J;

a1-f ibprops(l, 1);
s2-f ibprops(l,2);
s3-f ibpropu(l,3);
s4-f ibprops( 1,4);
s7-f ibpropu(l,7);
@8-f ibpropu(l,8);
m2flinm2+tf(l)*((p*p*a1+q*q*84) p*q*(53+s4) 0
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p*q*(s3+e4) (p*p*94+q*q*s2) 0
0 0 (p*p*87+q*q*sS)J;

si-f ibpropu(2, 1);
s2-fibpropu(2,2);
s3-fibpropu(2, 3);
s4-f ibprops(2,4);
*7-fibprops(2,7);
s8-f ibprops(2,S);
m2f2inm2+tf(2)*( (p*p*sl+q*q*s4) p*q*(u3+o4) 0

p*q*(s3+s4) (p*p*.4+q*q*s2) 0
0 0 (P*P*87+q*q*s8)J;

I3 -eye(3);
bc-(ml m2 z z z z z z z z z Z;

"z -ml -m2 ml m2fl z z z z z z;
Z £ 2 13 z -13 z z z z z Z;
z z z z z z -ml -m2 ml m2f2 z z;
z z z z z z z 13 z -13 z z;
z z z z z z z z z z -ml -m2J

%End of function GMATLMAT.M

TREND

setparam
extrend-zeros (4,50);
for jndex-l:50

A-Jndex
B-A;
extrend (1, ndex) A;
extrend(2, jndex)-B;
calparam
exactuol
extrend(3, jndex)-uvw(6,6);
*txplieu
extrend(4, jndex)-uvw(6,6);

end
diary trend.prn
extrend,
diary of f
quit

KS

funct ion k-ks (order)
% KS - Evaluates the integral in z that is associated with the k's that

% appear in the P.D.E.'s for the "STRATA THEORY" for the analysis of
% composite panels.

if order < 0
elmeif (order/2 -- fix(order/2)i

k-if (order+l) /2 order/beta;
and
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ss
function sstiff=us (sterm,order)

%SS - Sum the terms of E s(f,j) * z~n

%Syntax SS(J,order)

%where:
s(f,j) - membrane elasticity terms

f = fiber number
j = the elasticity term of interest
n = the "order" of the z term

sterm - membrane properties vector
order = the order of the z term (n above)

(n,numfibersJ=size(zdist);
sstiff=O;
for index= (1:numfibers)

ustiff=sstiff+fibprops(index,sterm)*zdist(index)'order*tf(index);
end

%End of 55.14 function
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Appendix B.MA 7L4B Routines for Composite Panel in Cylindrical Bending

SOLVE

A-10
setparam
calparam
exactuol
stxplieu
quit

SETFARAM

%SETPARAM.M routine for PC-MATLAB

format short e
global ni A p matprops fibprops zdist N alpha beta tf tm FM RMI
diary setparam.log

n-i

Em=.3e6
NUm=.40
Gm-Em/ ( +NUm) /2

ki=Em* (1-NUm) / (12*NUm) /(l+NUm)
k2=Em*NUm/ (1-2*NUm)/ (i+NUm)
k3-Gm

KM-(ki k2 0;
k2 ki 0;
o 0 k3];

matpropa-tkl k2 k3l

if iuo--i
tf-[0 0]
tm-(.25 .5 .25)
a lpha-0
beta-i

fibprops-(0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0];

else
sqrt2-sqrt(2)
volf-sqrt2 /2
volm-1-volf

tfm ( qrt2 /4 *qrt2 /4)
tm-( .25-mqrt2/8 .5-sqrt2/4 .25-sqrt2/8)
alpha--(i+uqrt2)/2
beta-2+sqrt2

Zf-20e6
NUf-.35
Gf-Ef/(l+NUf)/2

*lrnvolf*Ef* ( -NUf)/ (i-2*NUf) /(l+NUf )+volm*kI
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.2-ki /volm
s3=volf*Ef*NUf/ (1-2 *Ntf) / ( +NUf) +volm*k2
s4-Gm/voim
s5-0
s6-0
87-volf*Gf+volm*Gm
8Gm/volm
39=0
910-k2

fibprop.=[sl s2 s3 s4 s5 s6 Vs8 us.9;
.2 .1 s3 s4 s5 s6 88 07 89)

% SM1(81l .3 0 0 0;
% .3 .2 0 0 0;
% .3.10O 0 0 0;
%0 0.s4/2 0 0;

%0 0 0 s7/2 0;
%0 0 0 0 .8/2]

% SM2(us2 s3 0 0 0;
% 3 al 0 0 0;
% 106 3 0 0 0;
%0 0.94/2 0 0;

% 0 0 0 -s8/2 0;
%0 0 0 0 -97/2]

SN1-[B1 0;
0 .7/2]

SM2-(.2 0;
0 .8/2]

end

zdist-[.25, -.25]
N-5

CALPARAM

%CALPARAM.M routine for PC-HATLAB

p-n*pi IA
pu-p*p
RM-(1 p p. p*ps;

0 1 2*p 3*ps;
1 -p p. -p*p3;
C 1 -2*p 3*ps]

RMI-iriv(RM)

EMM7OL

E XACTSOL.* routine for PC-MATLAB

diary .xactsol.log
(fieldi, field2, bc ]-gmat imat
zero-zerom (4,4);

zv1=expmat(tm(l));
zv2-expmat(tm(2));
zv3-expmat(tm(3));
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bcl=(zvl zero zero;
eye(4) zero zero;
zero zv2 zero;
zero eye(4) zero;
zero zero zv3;
zero zero eye (4)]

bcO=bc*bcl
CondNutu-rcond (bc0)
bcinvsinv (bc0)

force=(0; .5;0;0;0;0;0;0;0;0;0; .5)

UW=bcinv*force
uw-zeroa (5,11);
uw(5,1:11)=(.5,.46,.5-tm(1),tm(2)/2,.04,0.,-.04,-tm(2)/2,tm(3)-.5,-.46-.5J;

UWuet=(UW(1:4)];
tmflottom=.5-tni(l);

for index=(1:11)
if index--4

UWuet-(UW(5:8)];
tmBottom=-tm (2) /2;

elseif index==9
UWoet=(UW(9:12)];
tmBottom=-. 5;

end
uw( 1:4, index) =expmat (uw( 5, index) -tmBottom) *UWset;

end
uw

diary exactuol.prn
uw,
diary of f

stres=zeros (4,11);
strss(4,1:11)=[ .5, .46, .5-tm(l) ,tm(2)/2, .04,0.,

-.04,-tm(2)/2,tm(3)-.5,-.46,-.5];
*train-zeros(4, 11);
strain(4,1:11)=( .5,.46, .5-tm(1),tm(2)/2, .04,0.,

-.04,-tm(2)/2,tm(3)-.5,-.46,-.5];

Strain~at=(0 0 -p 0;
0 1 0 0;
1 0 0 P);

for iiin(1:11)
strain( 1:3, ii)-Straindat*uw(1: 4, ii) ;
etres( 1: 3, ii)=KM*Straini~at*uw(1: 4, ii) ;

end
diary exetres . pmn
strain'
stress'
diary of f

if iuo-0
uwfinzeros(2.2);
streus-zerom (3,2);
stremm(3,1:2)-(tf(1) tf(2)J;
*train-zeros(3,2);
strain(3,1:2)-itf(1) tf(2)];
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Strainl~at-[-p 0;

0 pJ;

for ii=(l:2)

uwf(2,ii)=UW(ii*4);
strain(1:2,ii)=StrainMat*uwf(1:2,ii);

end
stress(1:2,1)=SMl*Straindat*uwf(l:2,1);
atress(l:2,2)=SM2*StraintMat*uwf(l:2,2);
diary ex-futr.prn
strain'
stress'

diary off
end

SiXPLES

% STXPLIES - The name stands for "STRATA THEORY, CROSS-PLIES". This routine
% creates the matrix of coefficients that arise from the PDEs
% when using the assumed form of psi and w.

cl-matpropu(1);
c2-matprops (2);
c3-matprops(3);
ps-p*p;
bsmbta*beta;
stheory-zeros (N+2, N+2);
stheory(1,1u-(c3*ks(0)+ss(7,0) )*ps;

for ii-(l:!%,
stheory(l. 42)-ii*beta*c3*p*ks(ii-1);

end

for jj-(0:N)
stheory(jj+2,1)inJj*beta*c3*p*ks(jj-1);
for ii-(0:N)

stheory(jj+2,ii+2)=ii*jj*bs*c3*ks(ii+jj-2)+(ss(l,ii+jj)+cl*ks(ii+jj))*ps;
end

end

diary strtheor. log
stheory
force-zeros (N+2, 1);
force(11-1;
CondNum-rcond (stheory)
UW-inv (stheory) *force
uw-zeros(5,ll);
uw(5,l:ll)-( .5, .46, .5-tm(l) ,tm(2)/2, .04,0. ,-.04,-tm(2)/2,tm(3)-.5,-.46,-.5];
alphafactor-1l,l,l,0,0,0,0,0,-l,-l,-l];
for ii-(l:1l)

uw(l, ii)inO;
uw(3,ii)inO;
aplusbz-alpha*alphafactor( ii)+beta*uw( 5,ii);
for jj-(0:N)

uw(l,ii)inuw(l,ii)+TJW(JJ+2)*Jj*beta*aplusbz'(j-l);
uw(3,ii)u-uw(3,ii)+UW(JJ+2)*aplusbzjj;

and
uw(2, ii)0O;
uw(4, ii.)-UW(l);

end
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uw
diary strtheor.prn
uw'
diary off

stress=zeros(4, 11);
stress(4,1:11)=tj5,.46,0.50-tm(1),tm(2)/2,.04,0.,

-.04,-tm(2)/2,tm(3)-0.50,-.46,-.5];
strain=zeros (4,11);
strain(4,1:11)= .5, .46,0.50-tm(1) ,tm(2)/2, .04,0.,

-.04,-tm(2)/2,tm(3)-0.50,-.46,-.5];

Strain~at=(0 0 -p 0;
0 1 0 0;
1 0 0 PJ;

for ii-(1:11)
strain(1:3,ii)=StrainiMat*uw(1:4,ii);
stress(1:3,ii)=KM*Strainilat*uw(1:4,iL);

end
diary ststress.prn
strain'
stress'

diary of f
if iso==0

uwfzeros(3,2);
stress=zeros(4,2);
streus(4,1:2)=[tf(l) tf(2)];
strain=zeros(4,2);

StrainMat=10 -p 0;
1 0 p);

for ii=(1:2)
uwf(1, ii)0O;
uwf(2,ii)=0;
zf-zdist(ii);
for jj=(0:N)

uwf(1,ii)=uwf(1,ii)+UW(jj+2)*jj*zf^(jj-1);
uwf(2,ii)=uwf(2,ii)+UW(jj+2)*zf'jj;

enduwf (3, ii)=UW(1) ;

end
stress(1:2,1)=SM1*StrainLMat*uwf(1:3,1);
stress(1:2,2)-SM2*StrainMat*uwf(1:3,2);
diary st-f str.prn
strain'
stress'

diary off
end

EXPMAT

function em=expmat (z)
% EXPMAT - Function to generate the matrix exponential for the boundary

% condition matrices of the "EXACT STRATIFIED PLATE SOLUTION" for
% the analysis of composite panels.
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ezp-exp(p*z);
ezm-exp(-p*z);
eVector=[ezp; z*ezp; ezm; z*ezm];
aV=RMI*eVector
em=aV(1)*eye(4)+aV(2)*FM+aV(3)*FM*FM+aV(4)*FMF*F*FM;

GWl TLMA T

function [fml,fm2,bc]=gmatlmat
% GMATLMAT Function to generate the material property matrices for the

"EXACT" solution of the cross-ply composite panel problem.

% Syntax: [FM1,FM2,BC]=GMATLMAT

p = nit/a
mp = Vector of material properties (ix3)
fp = Vector of fiber strata properties (lx9)

BC = Boundary condition matrix
FMl = Field matrix #1
FM2 = Field matrix #2

u = Displacement vector
where [FMl] u = L (FM2] u L = Eigenvalue (aka lambda)

% This function is used in conjunction with other MATLAB routines to
% verify the "STRATA THEORY" of composite panel analysis. Written by
% Alan L. Lesmerises.

cl=matprops(l);
c2=matprops(2);
c3=matprops(3);
c4=c2+c3;
z=zeros(2,2);

ml=[c3 0;
0 ci];

m2=c4*p*[O 1;
-l 03;

m3=[-p*p*cl 0

0 -p*p*c3];

% Above matrices appear in PDE as:

fml]u"+[m2]u'+[m3]u=0
% or

% [ml] (0] Lu [0] ml] L
% [(0] -[m3L] = L (ml] [m2]

fml-[ml z ;
z -m3];

fm2-[ z ml;

ml m2];

FM-inv(fm2)*fml

mln[c3 0;
0 cl];
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m2=( 0 p*c3;
-p*c2 0 J

sl-fibprops (1, 1)*tf(1) ;
92=fibprops(l,2)*tf(l);
o3=fibprops C1, 3)*tf(1) ;
s4=fibprops C1, 4)*tf (1)
s7=fibprops(1,7)*tf(l);
sB=fibpropo(1,8)*tf(l);
m2fl-m2+(p*p*sl 0

0 p*p*s7 ];

*l=fibprops(2,l)*tf(2);
s2=fibprops(2,2)*tf (2);
s3=fibprops(2,3)*tf(2);
s4-f ibprops (2 ,4)*tf (2) ;
s7=fibprops(2,7)*tf(2);
sB-f ibprops (2 ,8)*tf (2);
m2f2=m2+(p*p*sl 0

o p*p*s7J;

12=eye(2);
bc=(ml m2 z z z z z z z z z Z;

" z -ml -m2 ml m2fl z z z z z z;
z z z 12 z -12 z z z z z z;
z z z z z z -ml -m2 ml m2f2 z z;
z z z z z z z 12 z -12 z z;
z z z z z z z z z z -ml -m2)

%End of function GHATLMAT.M

TREND

setparam
extrend-zeros (3, 50);
for jndex-l:50

A-J ndex
extrend(1, Jndex)=A;
calparam
exactuol
extrend(2, jndex)=uw(4,5);
stxplies
extrend(3,jndex)-uw(4,5);

end
diary trend.prn
ext rend'
diary of f
quit

KS

function k-ks (order)
% KS - Evaluates the integral in z that is associated with the k's that

% appear in the P.D.E.'s for the "STRATA THEORY" for the analysis of
% composite panels.

k-0o;
if order < 0
elseif (order/2 -- fix(order/2))
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k=l/(order+l)/2^order/beta;
end

ss
function sutiff=ss(sterm,order)

% SS - Sum the terms of E s(f,j) * z^n

% Syntax SS(j,order)

% where:
s(f,j) = membrane elasticity terms

f = fiber number
j = the elasticity term of interest

'n = the "order" of the z term

% sterm = membrane properties vector
% order = the order of the z term (n above)

(n,numfibers]=size(zdist);
sstiff=O;
ssum=O;
for index=(1:numfibers)

sstiff=sstiff+fibprops(index,sterm)*zdist(index}^order*tf(index);
end

' End of SS.M function
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