
AL-TR-1 991-0085-VoI-1

AD-A248 201

DESIGN SPECIFICATIONS FOR THE ADVANCED " -
INSTRUCTIONAL DESIGN ADVISOR (AIDA)

A (VOLUME 1 OF 2)

R
M
S Albert E. Hickey

TMel Assocate Iorporated DTI'
R o 1°5° MA sHo1 jELECTLENIEN
0 %APR0 3.199S
N 0t
G J. Michael Spector

Daniel J. Muralda

HUMAN RESOURCES DIRECTORATE
TECHNICAL TRAINING RESEARCH DIVISIONL Brooks Air Force Base, TX 78235-5000

A
BO
R January 1992

A Final Technical Report for Period August 1989 - July 1991

T
0
R
y Approved for public release; distnbution is unlimited.

92-08418
HIl/I 'l;til !IliIii lIiI /i If/

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5000- -



NOTICES

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely Government-related procurement, the United
States Government incurs no responsibility or any obligation whatsoever. The fact that
the Government may have formulated or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication, or otherwise in any
manner construed, as licensing the holder, or any other person or corporation; or as
conveying any rights or permission to manufacture, use, or sell any patente.J invention
that may in any way be related thereto.

The Office of Public Affairs has reviewed this paper, and it is releasaible to the
National Technical Information Service, where k will be available to the ger -ral public,
including foreign nationals.

This paper has been reviewed and is approved for publication.

DANIEHJ. UHENDRICKW. PUCK Director

Project Scientist Technical Training Research Div -ion

RODGER BALLENTINE Colonel, USAF
" Chief, Technical Training Research Division



REPOT DCUM NTATON AGEForm ApprovedREPOT DCUM NTATON AGEOMB No. 0704-0188
Public "ioting burden tr thi oiled0on of Infomaon is estmaed to aveage I hour be a., for rvewng Inrtructimns, seathting exisng data rmcs, O.-a n
end mainari te dama needed, and - ninn d Mvewng "e cclledAn of In d innomert regarding this burden estimate or any oer aspect of thOis coll.n of
Iuetnfeo n. I nC suggestons for educng t burden, to Wahngton Headquartr Servies, Diretoat for Inforame ro and 2port, 1215 Jefferson Davis Highwe Suite
1 n04, AtenVA 2202 -. nd to Bee c of Management and Budget. Papework Reduction Project (0704-0188), Washington. DC 20S03

1. AGENCY USE ONLY (Leav, bknk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 1992 Final - August 1989 - July 1991
4. TITLE ANO SUBTITLE S. FUNDING NUMBERS

Design Specifications for the Advanced Instructional Design Advisor (AIDA) C - F33615-88-C-0003
(Volume 1 of 2) PE - 62205F

PR - 1121

6. AUTHOR(S) TA - 10

Albert E. Hickey WU - 43
J. Michael Spector
Daniel J. Muraida

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Mei Associates, Incorporated
1050 Waltham Street
Lexington, MA 02173

9. SPONSORING7ONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
Armstrong Laboratory REPORT NUMBER

Human Resources Directorate AL-TR-1 991-0085-Vol-1
Technical Training Research Division
Brooks Air Force Base, TX 78235-5000

11. SUPPLEMENTARY NOTES

Armstrong Laboratory Technical Monitor: Daniel J. Muraida, (512) 536-2981

12a. DISTRIBUTONJAVAILABIUITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Madmum 200 words)

This is the final report for the second phase effort on the Advanced Instructional Design Advisor (AIDA)
project. An experimental system called XAIDA is described. The proposed XAIDA is intended to assist
subject-matter experts in the design and development of computer-based instructional materials. The
functional requirements for an automated and intelligent advisor that would be appropriate for Air Force
technical development are presented, along with a system specification.

14. SUBJECT TERMS 15. NUMBER OF PAGES
automated instruction instructional development 184
computer-based instruction interactive technology 16. PRICE CODE
courseware design

17. SECURITY CLASSIFICATION j8. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGEUL

Unclassified Unclassified SATc1asfed
PON 7540-01 -momlrd

plw yANIOl.Z30111



TABLE OF CONTENTS

PREFACE vii
SUMMARY viii

SECTION 1. BACKGROUND 1

1.1 HISTORY OF THE AIDA CONCEPT 1
1.2 THE LONG RANGE PLAN FOR AIDA 3
1.3 THE LONG-RANGE SCHEDULE 5
1.4 BENEFITS OF THE LONG-RANGE AIDA PROGRAM 6

SECTION 2. INTRODUCTION TO PHASE II (TASK 0013) 7

2.1 INTRODUCTION 7
2.2 SCOPE 7
2.3 BACKGROUND 7
2.4 BRIEF REVIEW OF PHASE I PROCEDURE

(TASK 0006) 7
2.5 MEI ASSOCIATES APPROACH TO

PHASE II (TASK 0013) 8

SECTION 3. METHODOLOGY FOR PHASE II 14

3.1 THE CONSULTANTS 14
3.2 THE MILITARY ADVISORS 14
3.3 PROJECT MANAGEMENT 14
3.4 THE PROCEDURE 15
3.5 TECHNICAL REPORTS 15

SECTION 4. OVERVIEW OF TASK RESULTS 18

4.1 INTRODUCTION 18
4.2 ISD AND AIDA 20
4.3 TASK ANALYSIS 20

SECTION 5. INSTRUCTIONAL DESIGN FOR
MAINTENANCE TRAINING 21

5.1 INTRODUCTION 21
5.2 AUTOMATING MAINTENANCE TRAINING (AMT) 21
5.3 TEACHING TROUBLESHOOTING PROCEDURES(TTP) 44
5.4 COMPUTER-BASED MAINTENANCE TRAINING 75
5.5 ANALYSIS OF MAINTENANCE TASKS 81
5.6 XAIDA FUNCTIONS APPLIED TO THE T-38

ENGINE STARTING SYSTEM 90

SECTION 6. A GENERAL THEORY OF INSTRUCTIONAL DESIGN 97

6.1 INTRODUCTION 97
6.2 KNOWLEDGE ANALYSIS 97
6.3 TRANSACTION AUTHORING 108
6.4 STRATEGY ANALYSIS 131
6.5 INSTRUCTIONAL DELIVERY 138

iii



TABLE OF CONTENTS (CONT'D)

SECTION 7. XAIDA FUNCTIONAL BASELINE 142

7.1 INTRODUCTION 142

SECTION 8. XAIDA SYSTEM DESIGN 155

8.1 INTRODUCTION 155
8.2 THE KNOWLEDGE BASE MANAGEMENT

SYSTEM (KBMS) 155
8.3 KNOWLEDGE BASE STRUCTURE 156

SECTION 9. RESEARCH ISSUES 166

9.1 INTRODUCTION 166
9.2 KNOWLEDGE REPRESENTATION 166
9.3 SKILLED TROUBLESHOOTING 166
9.4 GOMS EDITOR 167
9.5 LEARNING MODEL FOR GOMS 167
9.6 CURRICULUM STUDIES 168

REFERENCES 169

iv



TABLE OF CONTENTS (CONT'D)

FIGURES

Section 2

Figure 2.1 AIDA Concept 9
Figure 2.2 Organization of Phase II Team 11
Figure 2.3 Schematic of AIDA Expert System 12

Section 3

Figure 3.1 Documentation Flow Diagram 16

Section 5

Figure 5.1 T-38 Supersonic Trainer Engine
Start System 45

Figure 5.2 T-38A No-Start Fault Tree 50
Figure 5.3 Structural Breakdown of the T-38A 56
Figure 5.4 Functional Breakdown of the T-38A 57
Figure 5.5 Components Involved in the Fuel Flow

Branch of the No-Start Fault Tree
(Figure 5.2) 64

Figure 5.6 Use of Subtree and Highlighting
to Focus Attention 66

Section 6

Figure 6.1 Components of an Instructional
Transaction Shell 99

Figure 6.2 Transaction Family for Acquiring an
Equipment Mental Model 114

Figure 6.3 Transaction Family for Acquiring
Equipment Operation Enterprises 115

Figure 6.4 Transaction Family for Acquiring
Equipment Calibration and Adjustment
Enterprises 116

Figure 6.5 Transaction Family for Acquiring
Equipment Testing Enterprises 117

Figure 6.6 Transaction Family for Acquiring
Equipment Access and Disassembly
Enterprises 118

Figure 6.7 Transaction Family for Acquiring
Equipment Repair Enterprises 119

Figure 6.8 Transaction Family for Acquiring
Equipment Troubleshooting
Enterprises 120

Figure 6.9 Transaction Family for Acquiring
Equipment Redesign and Jury Rig
Enterprises 122

v



TABLE OF CONTENTS (CONT'D)

Section 8

Figure 8.1 AIDA System/Knowledge Base Overview 157

TABLES

Table 3.1 Phase II Schedule 15
Table 5.1 Faults Causing No-Start Condition 49
Table 5.2 Fault-Tree Interpretation Schema 51
Table 5.3 Functionality Tests for Fault Tree

Components 53

APPENDIXES

A. LIST OF DOCUMENTS PRODUCED 1

B. AIDA STORYBOARD PROTOTYPE 4

C. SYSTEM/SEGMENT SPECIFICATION (DI-CMAN-80008A) 36

D. DATA BASE DESIGN DOCUMENT (DI-MCCR-80028) 85

vi



PREFACE

This is the Final Report for Task Order No. 0013 of Contract No.
F33615-88-C-0003. The report is the joint effort of the
Armstrong Laboratory, Human Resources Directorate (ALHRD), the
sponsor of the research, and the contractor, Mei Associates, Inc.

Section 1, describing the history of the AIDA concept within
ALHRD and the Laboratory's long-range plan for AIDA, was written
by ALHRD.

Sections 2 and 3, describing the purpose, detailed requirements,
approach, and plan for Task 0013, were prepared by Mei
Associates.

Section 4 presents an overview of the results obtained in Task
0013. It was prepared by Mei Associates.

The purpose of XAIDA is to assist subject-matter experts to
design instruction for maintenance training. Section 5 is an
analysis of the requirements for successful maintenance training
derived from three papers prepared for Mei Associates by Dr.
Henry M. Halff during Task 0013.

In Task 0006 it was agreed that AIDA would be based on the
general theory of instructional design developed by Dr. M. David
Merrill and his associates. Section 6 is a summary of that
theory prepared by Dr. Merrill for Mei Associates during Task
0013.

In Section 7 the functional requirements for maintenance training
described by Dr. Halff in Section 5, are restated in Dr.
Merrill's more general instructional design theory, as presented
in Section 6. This section, prepared by Mei Associates,
comprises the functional baseline for XAIDA.

In Section 8 Mei Associates proposes a software architecture to
implement the functional requirements for XAIDA. It is a summary
of Appendix D, the Data Base Design Document.

Finally, Section 9 outlines additional research questions which
were identified for both near-term and long-term resolution by
ALHRD. This section was prepared by Mei Associates.

Mei Associates compiled the appendixes and edited the complete
manuscript.

Dr. Dan Muraida was the contract monitor for ALHRD. Dr. Mike
Spector conceptualized the AIDA project under the direction of
Dr. Scott Newcomb, Branch Chief for the Training Technology
Branch of the Training Systems Division of ALHRD. Dr. Albert E.
Hickey was project manager for the contractor, Mei Associates.

vii



SUMMARY

This is the final report for the second phase effort on the
Advanced Instructional Design Advisor (AIDA). It consists of two
volumes. The first contains the report; the second contains all
of the appendixes. AIDA is an effort aimed at providing on-line
and intelligent assistance to developers of computer-based
instruction (CBI). Contained in this report is a summary of the
project's methodology and progress. The results of the second
phase are a set of functional requirements and a software system
specification for an experimental system (XAIDA) which would
satisfy those requirements. It is proposed that XAIDA be built
around a second generation instructional theory involving the
use of highly flexible transaction shells (Merrill, 1990).
Transaction shells have built-in intelligence with regard to the
pedagogy of particular types of subject matter. In addition,
they are configurable and executable, which should result in a
highly productive and effective courseware authoring environment.
XAIDA will support the construction of scenarios and simulations
so as to facilitate student acquisition of mental models
considered crucial to instruction involving complex problem-
solving tasks. It is recommended that the Air Force build and
evaluate XAIDA.

viii



DESIGN SPECIFICATIONS FOR THE ADVANCED INSTRUCTIONAL DESIGN
ADVISOR (AIDA): VOLUME I

SECTION 1. BACKGROUND*

The purpose of this section is to provide background information.
The discussion is divided into four parts: 1) a short history of
the AIDA concept, 2) ALHRD/IDC's long range plan for AIDA, 3) the
long range schedule, and 4) the benefits of the long range AIDA
program.

1.1 History of the AIDA Concept

The Advanced Instructional Design Advisor (AIDA) was first
described in Preliminary Design Considerations for an Advanced
Instructional Design Advisor, Dr. Michael Spector's final report
for his 1988 Summer Faculty Research Program grant at the
Armstrong Laboratory Human Resources Directorate (ALHRD)
[formerly Air Force Human Resources Laboratory (AFHRL)]. That
research was conducted under the supervision of Dr. Scott
Newcomb, Branch Chief for the Training Technology Branch of the
Training Systems Division (ALHRD/IDC).

Newcomb assigned Spector the task of conceptualizing a next-
generation courseware authoring system for the U.S. Air Force
(USAF). Spector conducted an extensive literature search,
reviewed several authoring systems used by the DoD including the
Air Force's ISS and SOCRATES and the Navy's AIM and CBESS
systems, and had many engaging discussions with Newcomb and other
researchers about what the future held in store for courseware
authoring.

The central problem in courseware authoring was identified as the
difficulty and expense of designing effective instructional
materials given the complexities of advanced hardware and
software technologies and the variety of instructional settings.
Existing systems did not address the issue of effective
instructional design at the course level.

Spector proposed a computer-based tool to assist in the
instructional design process. The tool would reduce course
development time while assisting in the production of
consistently effective instructional materials. AIDA would
incorporate prescriptive advice about course authoring based on
established theories of knowledge, learning, and instruction.

* This section was prepared by ALHRD/IDC.



AIDA would contain a variety of tools. Some would automate
established processes. Others would assist or advise authors
about designing effective instructional materials. The tools
might be used as stand-alone, special purpose tools, or as
integrated tools using a shared database of course and content
information.

Since a variety of tools were envisioned, it was recommended that
a modular approach be adopted and that a standard design
philosophy be specified in order to provide for the graceful
growth of the system. To incorporate the best instructional
knowledge available, Spector recommended using a team of experts
in the fields of epistemology, cognitive psychology, artificial
intelligence, computer systems, and curriculum and instructional
design. The team of experts would develop specifications for a
standard design philosophy and a requirements specification for
AIDA. A prototype AIDA based on a minimal functional subset
would then be built and evaluated.

ALHRD/IDC decided to continue the exploratory development of AIDA
under Work Unit 1121-10-43, Computer-Based Training (CBT)
Software Development and Technical Support. The AIDA project is
primarily a response to the Air Training Command (ATC) MPTN 89-
14T, Research and Development of Computer-Based Instruction
(CBI).

In a follow-on 1989 Research Initiation Program grant, Spector
submitted a report entitled Refinement Considerations for an
Advanced Instructional Design Advisor. In that document, the
instructional design process was divided into three phases: 1)
front-end analysis (FEA), 2) design, development, and delivery
(DDD), and 3) rear-end anal?sis (REA). One finding was that the
design phase of DDD, as well as FEA and REA, had received
inadequate support in the form of research and development.

Spector also evaluated the potential :ole for artificial
intelligence (AI) in the instructional design process. AI
applications were divided into two large groups: artificial
neural networks and expert systems. While neural networks hold
great promise in the general area of pattern recognition, there
does not appear to be an immediate application in the area of
instructional design. As automated learning environments become
more interactive and conversational, perhaps neural networks will
have a significant role to play in the area of speech processing.

There does appear to be a significant role for expert systems in
instructional design. Diagnostic expert systems have already
been successfully incorporated into intelligent tutoring systems.
Expert planning systems were envisioned to aid courseware
designers in the development of consistently effective course
materials for a variety of subject matter domains and knowledge
types.

2



Task 13 is the second in a series of tasks (see Section 1.2
below) to refine, elaborate, and evaluate the AIDA concept. This
report reflects progress on AIDA through 8 February 1991. The
ALHRD/IDC AIDA Project Manager is Dr. Dan Muraida. The
contractor for Task 13 is Mei Associates, Inc. of Lexington,
Massachusetts. Mei Associates' Principal Investigator is Dr.
Albert Hickey. Spector has continued working with ALHRD on the
AIDA project under a University Resident Research Program grant.

1.2 The Long Range Plan for AIDA

This section represents ALHRD/IDC's current overarching plan for
the AIDA project.

The purpose of the AIDA program is to provide reliable,
effective, and efficient instructional design guidelines for 6AF
course designers. The approach to this goal contains four
thrusts. Each is described below.

1.2.1 Status and Structure of Instructional Design Knowledge

The first thrust is an effort to assess what is currently known
about instruction and instructional design. This assessment
focuses on the major validated findings of instructional design
research. The purpose is to derive critical instructional design
information and initial estimates of the necessary detail for
instructional design guidelines. This effort wili identify areas
of contradictory research findings and produce recommendations
for an instructional design research and development agenda. It
was conducted under a task order contract (Task 6).

1.2.2 Instructional Design Guidelines: Functional Requirements

The second thrust attempts to identify optimal methods of
organizing and presenting validated instructional design
information in the form of guidelines. Part of this effort
builds on prior work which will have identified relationships
among different areas of instructional design knowledge.

The focus is on functional requirements for an organized
collection of guidelines which accurately represent the
complexities of instructional design without exposing the user to
those complexities. The functional requirements will be based on
a model of instructional design which embraces the processes of
design, development and delivery. A subsequent task will
elaborate the functional requirements and develop a set of design
specifications for an automated system of guidelines. This work
was conductea under two task order contracts (Tasks 6 and 13).

The computer architecture and human factors issues involved in
producing automated guidelines will be studied in a Small
Business Innovation Research (SBIR) effort.

3



1.2.3 Empirical Studies of Instructional Guidelines Delivery and
Supporting Instructional Strategies

In the third thrust, empirical research will be planned in
parallel with the development of elaborated functional
requirements and specifications. The elaborated functional
requirements and specifications will encompass a complete
automated guideline system, although they will be used to build
an experimental testbed system which implements only certain
basic functions of an automated guideline system.

All empirical research done prior to the development of the
experimental testbed system will be conducted under the auspices
of an in-house work unit. All development work devoted to
building the testbed will be conducted under a Broad Agency
Announcement (BAA) contracting vehicle. Empirical research using
the testbed system to conduct studies on guideline
characteristics or instructional strategies will be conducted
under the auspices of the BAA.

a. Prior to Completion of the Experimental Testbed:

Guidelines research will focus on identifying critical variables
in the automated instructional design process. Existing
prototypes which automate a limited number of basic instructional
design processes will be used for this purpose. The data and the
conclusions of this stage of the guidelines research will provide
useful information for design of the experimental testbed system
and the subsequent research which it will support.

Research in the effectiveness of instructional strategies with
computer-based interactive technologies will also employ existing
instructional authoring tools. The first set of instructional
strategy studies will address the lack of instructional
principles for the use of audio reinforcement in a CBT setting.
A second set of studies will examine Merrill's transaction theory
and the usefulness of transaction shells in CBT. The results of
the work accomplished prior to the completion of the experimental
testbed system, will add to the knowledge base of instructional
design principles required for a system of instructional
guidelines.

b. After Completion of the Experimental Testbed:

At this point most of the guidelines research will be conducted
using the testbed's capability to present different types of
instructional design guidance and different methods of
interacting with the user. Likewise, most of the instructional
strategy research will use the capability of the testbed system
to implement basic instructional functions (e.g., establishing
linkages between instructional objectives and plausible
instructional strategies).

4



The research and development conducted during this phase of the
AIDA project will provide new information about the optimal
nature and delivery characteristics of instructional design
guidance for the non-expert instructional designer. Second, this
research phase will begin to produce conclusions about the extent
to which instructional strategies (new or old) can be
extrapolated to a computer-based interactive setting.

1.2.4 Empirical Test of an Instructional Design Guidance
Methodology

The fourth thrust of the AIDA research program wi-l--consi-st of
design, development, and testing the complete experimental model.
This will include tests of all functions of the automated
guideline system, continued experimentation on optimal guideline
characteristics, and continued research on instructional
strategies in the automated delivery of instruction. This work
will be conducted under a fully specified contract.

1.3 The Long-Range Schedule

1.3.1 Milestones

Complete work in first thrust area with the following products:

Review of current instructional design theory;
A cognitive model of the instructional design process;
Functional requirements for instructional design guidelines;
A research and development agenda for instructional design;
Recommendations for instructional design research.

.................... 3rd QTR90

Business Strategy: Task Order Contract

Contract award for functional and design specifications for a
subsystem of instructional design guidelines ... 3rd QTR90

Business Strategy: Task Order Contract

Completion of instructional design guidelines ......... 1st QTR91

Contract award for (1) design, development and testing an
experimental model of an automated guideline
system and (2) initial instructional strategies and
guidelines research ......... 1st QTR91

Business Strategy: Broad Agency Announcement

Completion of experimental model tests and associated
instructional strategies and guidelines studies.. .st QTR94

5



Contract award for (1) Construction and test of the
complete experimental model of automated guideline
system and (2) continuation of instructional strategies
and guidelines research ........ 1st QTR94

Completion of experimental model tests and instructional
guidelines and strategies research ........ 1st QTR98

1.3.2 List of Relevant Work Units

Thrust:
1st: 1121-10-43, Task 6
2nd 1121-10-43, Task 6 and 13; 1121-10-70 (SBIR)
3rd 1121-10-66, In-House Work Unit; 1121-10-71 Direct BAA
4th 1121-10-67, Fully Specified Contract.

1.4 Benefits of the Long-Range AIDA Proaram

1.4.1 Payoff

The expected contributions of AIDA to Air Force training are:

o reduced training costs

o increased utility of CBT technologies

o increased instructor productivity

o reduced student time under instruction

o increased student comprehension and learning transfer

o establishment of instruction standards

o improved quality assurance.

1.4.2 Opportunity

Subject Matter Experts 'SMEs) with little or no experience in
instructional design or ISD will be able to use a theoretically
oriented and empirically validated collection of instructional
design tools to determine optimal instructional designs. As a
result, novice instructional designers will be able to produce
efficient and effective instruction in a variety of delivery
modes.

6



SECTION 2. INTRODUCTION TO PHASE II (TASK 0013)*

2.1 Introduction

The purpose of the AIDA is to make the creation of training
materials, particularly computer-based training (CBT), more cost
effective through the application of advances in cognitive,
instructional, and computer sciences. The goal in Phase II was
to develop design specifications to support knowledge base
development of AIDA and present recommendations for resolving
instructional issues pertinent to knowledge base content. The
design specifications will be the basis for building an
experimental AIDA subsystem in Phase III.

2.2 Scope

The development of AIDA is proceeding in several tasks or phases.
In Phase I, the objective was to design, develop, and document
the concept and functional specifications for AIDA, as the first
step in building an experimental AIDA subsystem in a subsequent
task.

In Phase II, the objectives were to: (1) Develop a plan to
resolve discrepancies or close gaps in the justifications for the
use of an integrated instructional theory; (2) Identify
implications of a (revised) integrated instructional theory for
instructional research; (3) Describe the knowledge base
sufficient to support the varieties of knowledge to be
represented in the AIDA model; (4) Document the feasibility of
continuing the development of the AIDA model.

2.3 Background

In Phase I of the AIDA project (Task 0006), (1) the AIDA concept
was defined, (2) the functional characteristics were defined, and
(3) related research issues were listed. The functional
requirements of AIDA were related to underlying theories of
knowledge, cognition, learning, instruction, and instructional
design, and the way in which AIDA might be incorporated into the
ISD procedure was described. Existing advanced authoring aids
were evaluated.

2.4 Brief Review of Phase I Procedure (Task 0006)

To accomplish Phase I, Mei Associates assembled a team of seven
consultants among the most creative psychologists in both
theoretical and practical instructional design. Five of these
seven psychologists functioned as design consultants and two as a
review panel. In each of two five-month design cycles, the
design consultants were charged with specific tasks. The tasks,
in the form of concept papers, were then critiqued by the
reviewers.

* This section was prepared by Mei Associates, Inc.

7



At the same time, the ALHRD organized a team of nine military
advisors from the Army, Navy, and Air Force to comment on the
utility of the functional characteristics specified by the design
consultants. ALHRD also performed a needs analysis at the
request of the consultants.

The 12-month design process was focused on five meetings: a
kick-off meeting and four concept design meetings, held at ALHRD.
Documentation was extensive, consisting of (1) the needs
analysis, (2) fourteen concept papers, (3) four review papers,
(4) the proceedings of the meetings, (5) progress reports
prepared by ALHRD, and (6) the final report/functional
specification prepared by Mei Associates.

2.5 Mei Associates Approach to Phase II (Task 0013)

2.5.1 Rationale

A principal product of Phase I, Cycle 1 was the AIDA concept,
shown in Figure 2.1. It consists of six functions: five knowledge
bases and the executive, as listed here:

1. Information about the:
students
instructional environment
maintenance task

2. Subject-matter content
3. Executive
4. Instructional strategies
5. Instruction delivery
6. Evaluation

The output of AIDA Phase I also included statements of the facts,
rules, heuristics, and procedures used in instructional design.
These psychological statements were solicited from the experts --
the consultant psychologists -- in Phase I as functions,
variables/attributes/characteristics within functions, and scales
of values for the variables.

The further definition of AIDA in Phase II resulted in
refinements of the functional specifications produced in Phase I.
Another requirement was to integrate the psychological statements
obtained in Phases I and II within a uniform systems framework.
Since AIDA is a knowledge-based system, Mei Associates used the
conventions of knowledge-based or expert systems, including
production rules, frames, and an object-oriented language.

Transposing the psychological statements that make up the
knowledge domain into conventions used in expert systems revealed
gaps in the integrated theory of instruction design.

8



Students
Envwron. Content

Task

AMA

(i

Figure 2.1 AIDA concept.

9



2.5.2 Prccedure

There are two major components in an expert or knowledge-based
system: (1) the knowledge content, and (2) the system
architecture. To accomplish Phase II, Mei Associates assembled a
team consisting of (1) experts in the knowledge domain of
instructional design, and (2) a knowledge engineer (KE). The
domain experts included the seven consultant psychologists
employed in Phase I, plus an eighth consultant, Dr. Douglas M.
Towne. Organization of the Phase II team is shown in Figure 2.2.

The result of knowledge acquisition is a specification of the
knowledge contained in the expert system, in this case AIDA.
Methods for the representation of the knowledge in the expert
system must be developed. The expert knowledge is represented in
frame- and object-oriented design. In Phase III, the
representation scheme for the expert knowledge will be
implemented in a prototype system for test and evaluation.

The basic characteristics of the knowledge representation scheme
were defined during Cycle 1 of Phase II and presented in a
technical interchange meeting attended by domain experts, KE, and
representatives of ALHRD four months after task assignment. A
schematic representation of the expert system proposed during the
kick-off meeting is shown in Figure 2.3.

2.5.3 Knowledge Acquisition

Knowledge was gleaned from the domain experts during Phase II.
These experts, including the consultant psychologists, pointed
out the most useful and reliable information, and structured
testable hypotheses where the necessary data were lacking. The
domain experts also drew from refereed psychological journals the
theoretical and/or empirical justification for the domain
knowledge. Where facts, rules, heuristics, or procedures could
not be found in the literature, or where the data reported in the
literature were equivocal, the psychologists formulated testable
hypotheses to resolve the issues empirically.

2.5.4 Expert System Architecture

Modeling of the AIDA system in Phase II was the result of
interaction between the Mei Associates psychologist, representing
the knowledge domain (i.e., instructional design), and the Mei
Associates KE in an iterative process. Transposing the
psychological facts, rules, heuristics, and procedures into more
rigorous paradigms disclosed conflicts, missing links, etc. in
the knowledge domain.

10



KNOWLEDGE SYSTEMENGINEER KE SSE
EG E ARCHITECTURE

PSYCHOLOGIST DE DOMAIN
KNOWLEDGE

CONSULTANT PSYCHOLOGISTS

Figure 2.2 Organization of the Phase II team.

11



SYNTAX SEMAICS
(FORM) (CONt'M

TXM,,Tanscion.hell ange

T R F P El S S S I"S
SMIE K~a -8 E'- • M 1 3 ,-CB1

R R. R, R ,

TXSM =Trasaton Shell Manager

SME = Subject Mater Expert TXS1 - TXSn a Transaction Shells

SETKAS a Student. Environment, Task Knowledge Acquisiton System MMRT = Multi-media Resource Toolkit

ITRB = Insruconal Theory Rule Base (Paint. Draw, Scanner, Audio)

2NFENG a Intcertcc Engine RESI -. RESn = Resource Files

CSPF = Course-Specific Parameter Fle CBI = Computer Based Insruction

Not Shown: Help System
Audit Trail

Figure 2.3 Schematic of AIDA Expert System.

12



2.5.5 Demonstration of the AIDA Model

A paper-based demonstration of the AIDA instructional design
model was performed by using the model to develop a minimal
application, a course in troubleshooting aviation equipment.
This exercise employed a subset of the facts, rules, heuristics,
and procedures in each of the knowledge bases and the executive:
Information, Subject matter, Executive, Strategies, Delivery, and
Evaluation (see Figure 2.1). The domain experts, both consultant
psychologists and military advisors, were asked to evaluate the
model in TIM-2.

Mei Associates, in consultation with ALHRD, selected the
application, the T-38 engine start scenario, after considering
the F-16, and WSC-3, a shipboard communication system.

The team of 12 military advisors assembled by ALHRD for Phase I
continued to play an important role in Phase II; they received
copies of documents and attended technical interchange meetings.

13



SECTION 3. METHODOLOGY FOR PHASE II*

3.1 The Consultants

To accomplish Phase II, Mei Associates carried forward as
consultants the seven psychologists retained in Phase I, and
added an eighth consultant. The eight consultants were chosen
from among academic researchers with a reputation and
demonstrated research in fields related to instruction design.
They are:

1. Dr. Robert M. Gagne Florida State University
2. Dr. Henry M. Halff Halff Resources, Inc.
3. Dr. M. David Merrill Utah State University
4. Dr. Martha C. Polson University of Colorado
5. Dr. Robert D. Tennyson University of Minnesota
6. Dr. Harold F. O'Neil University of Southern California
7. Dr. Charles Reigeluth Indiana University
8. Dr. Douglas M. Towne University of Southern California

3.2 The Military Advisors

At the same time, the Armstrong Laboratory Human Resources
Directorate (ALHRD) carried forward from Phase I a board of
Military Advisors. The 14 military advisors, representing the
three services, are:

1. Dr. Dee Andrews ALHRD/OTT
2. LCOL Jerry Barucky USAFRS/RSCD
3. LCOL Mike Bush USAFA/DFF
4. LCOL Larry Clemons ATC/XPCRI
5. CAPT James Coward HQ ATC/XPCRI
6. Mr. Brian Dallman 3400 TCHTW/TTOZLCOL
7. LCOL Mike Dickinson HQ HSD/YA
8. Dr. John A. Ellis NPRDC
9. Dr. Mary Marlino USAFA/DFT
10. Dan Meigs (Retired) 3302d TCHTS/CC
11. MAJ Robert Mongillo ATC/XPCRR
12. Rich Ranker AWC/DFP
13. MAJ Karen Reid ATC/TTIP
14. Dr. Robert Seidel Army Research Inst.

3.3 Project ManaQement

The Project Manager for the contractor, Mei Associates, was Dr.
Albert E. Hickey. The Project Monitor for ALHRD was Dr. Daniel
Muraida.

* This section was prepared by Mei Associates, Inc.

14



3.4 The Procedure

As described in detail in Sections 1 and 2, the objective of
Phase II (Task 0013) was to design, develop, and document the
system specifications for AIDA. The nine-month task was
organized around three two-day meetings: A Kick-off Meeting and
two Technical Interchange Meetings (TIM-i and TIM-2). There was
also a three-day meeting of a four-person working group
interpolated between TIM-i and TIM-2 and a concluding three-day
meeting between ALHRD and Mei Associates, Inc. to review the data
items to be delivered by the contractor. The schedule is shown
here.

TABLE 3.1 PHASE II SCHEDULE

1. Kick-off Meeting 26 Apr 90

2. TIM-i 1-2 Aug 90

3. Working Group Meeting 3-7 Sep 90

4. TIM-2 7-8 Nov 90

5. Final Technical Review 15-17 Jan 91

3.5 Technical Reports

As Ph-ase- II progressed and the functional specifications became
more detailed, technical interchange among the consultants was
enhanced by the exchange of working papers, orchestrated by the
Project Manager. A diagram of information flow during the last
three months of Phase II is shown in Figure 3.1. The key to
Figure 3.1 is given below. The documents are also listed in
Appendix A: List of Documents Produced.

Merrill

G'L TH./ID (ID2) General Theory of Instructional Design
IXT/MT ID Theory for Maintenance Training
FBL/XAIDA Functional Baseline/XAIDA

Halff

AMT Automating Maintenance Training
TTP Teaching Troubleshooting Procedures
LTR Letter Report

15



'44

rI

0

41I

0

c-4

'-4

16



Polson

TA/GOMS Cognitive Task Analysis (with GOMS)

Hickey

FBL/XAIDA Functional Baseline/XAIDA
F.R. Final Report
SSS System/Segment Specification

Mei Associates

DBDD Database Design Document
ES/XAIDA Expert System/XAIDA

17



SECTION 4. OVERVIEW OF TASK RESULTS

4.1 Introduction

In Cycle 1 of AIDA Phase I, the design consultants were asked to
"provide a concept of how AIDA would support the design cf
instruction.. .and identify the principles of learning and
instruction that apply to the design of the two AIDAs and to
their instructional products." This resulted in the AIDA concept
diagram. In Cycle 2, the consultants were asked to respond to a
set of questions about the AIDA concept. The eventual result was
a list of 21 guidelines for XAIDA, listed below:

Key System Attributes

1. Targeted Users: intermediate

2. Type of Assistance: templates, shells
and explanations

3. Subject Domain(s): avionics maintenance

4. ID Theory: ID-2

5. Starting Input: learning capabilities

6. Halff's Three Levels facilitator (using ID-2)

7. Tennyson's Three Levels shells and some
sophisticated shells

8. Control of ID Process: primarily user control

9. Priority Components: procedure transaction
shells

10. System Organization: Merrill

11. ISD Scope: DDD not bound by AF model

12. Use of AI: intelligent interface to
transaction shells

13. Media Support: text, graphics, audio,
video

14. Use Interface: pull-down menus with
buttons

15. Data Collection: built-in

16. Databases: instructional rulesets,
and examples

18



17. On-Line Support: help, limited authoring

mgt. and storyboard

18. Learning Theory: existing theories

19. Instructional Setting: computer-based

20. Organizing Strategy: transactions

21. Knowledge Acquisition: built-in

During Phase I, then, the design of the AIDA became more focused.
This process of convergence continued in Phase II, and was
accelerated in the last few months. Figure 3.1 is a flow diagram
showing, paper by paper, the exchange of information leading to
the three CDRL items: the System Specification (SS), the Data
Base Design Document (DBDD), and the Final Report (FR). Sections
5, 6, and 7 which follow, contain abstracts of selected papers
developed by Mei Associates and its consultants during this
period of convergence.

The Data Item Description (DID) for the System/Segment
Specification (SS) describes the SS as the "Functional Baseline"
(FBL) for the system, in this case AIDA. Section 5 is an
abstract of Halff's three papers describing the instructional
design task for maintenance training. Halff's description of
maintenance training for the T-38 engine start system is the -
functional baseline most specific to the demonstration
instructional design (ID) task. Certain concepts used in
maintenance training, such as the fault tree, are discussed in
depth, i.e., (1) how the SME/ID builds it, (2) how the S
interacts with it, (3) how it fits into a lesson or course, etc.
(ALHRD intends to publish each of these papers as a Technical
Report. See References.)

Guideline #4 in the above list declares that, to gain generality,
AIDA should be built around Merrill's second generation theory of
instructional design (ID-2). Section 6 is a description of ID-2
written after Merrill had studied Halff's description of
maintenance training (Section 5.2.6). Merrill's paper accommodates
several concepts introduced by Halff.

It should be possible to restate Halff's description of
maintenance functions in the language of Merrill's more general
theory of ID-2. Section 7 is a function-by-function abstract of
Halff's paper, with each function accompanied by a transcript in
Merrill's ID-2 language. Some Halff functions, such as "Describe
the system," slip easily into the ID-2 scheme; other Halff
functions, like "Develop a hierarchical fault tree," do not.

Halff, asked to comment on the step-by-step transcript of his
functional baseline and to visualize in more detail the screen-
by-screen interaction between XAIDA and the SME/ID, responded by
describing an authoring system in terms of the authoring

19



functions provided to the SME/ID and the instructional products
provided by the system (see Section 5.4).

Halff agreed that the instructional products should be built up
from transactions as defined in ID-2.

Merrill, in turn, was asked to look at Halff's functional
baseline and describe how Halff's (H) functions could be
expressed in ID-2. He responded with the three-column table
presented in Section 5.5.

4.2 ISD and AIDA

It was agreed in Guideline #11 that in XAIDA instructional
design, development, and delivery (DDD) would not be bound by the
USAF model for Instructional System Design (ISD). In fact,
however, the functions to be implemented in XAIDA and later in
AIDA coincide with several steps in the ISD process, particularly
the ISD steps to:

I.1 Analyze job (task)
1.2 Select tasks/functions
11.4 Determine sequence and structure
III.1 Specify learning events/activities
111.3 Select materials
111.4 Develop instruction
111.5 Validate instruction
IV.2 Conduct instruction

The output of XAIDA and AIDA represents microinstruction when
compared with the ISO process. It is expected that a closer
correlation between the two systems will occur later in the AIDA
life cycle.

4.3 Task Analysis

One conclusion reached in the final planning session in Phase II
was that "some kind of task analysis will be provided within
XAIDA." The kind of task analysis to be provided in XAIDA is
discussed in Section 5.5.

20



5. INSTRUCTIONAL DESIGN FOR MAINTENANCE TRAINING

5.1 Introduction

Henry Halff contributed three valuable papers to Phase II, all
dealing with maintenance training. In the three papers, Halff
takes maintenance training from (1) a consideration of general
principles drawn from cognitive psychology, through (2) the
application of the principles to a particular case, the T-38
maintenance scenario, to (3) a brief description of a computer-
based authoring system based on the concepts developed in the
earlier papers. This section is an abstract of Halff's three
papers, taken in series. The reader is urged to read the
original papers for important information necessarily omitted
from this abstract.

5.2 Automating Maintenance Training (AMT)

Halff's first paper (Halff, 1990) is divided into two sections.
In the fi--st section, Halff describes six tasks that constitute
effective maintenance and the mental structures that support
proficiency in these tasks. Then he describes a curriculum that
supports development of the mental structures required for
proficiency.

The second section of the paper is concerned with automation of
the training process and the development of materials. Halff
suggests a design for automated, interactive maintenance training
based directly on the results of the first section, and points
out aspects of this design that can be automatically implemented
by computers.

5.2.1 Instructional Design for Maintenance Training

5.2.1.1 Maintenance Tasks

Halff lists six tasks that a maintainer must master in order to
effectively maintain a piece of equipment. The tasks are
equipment oriented; they describe what must be done to the
equipment. They do not say how the tasks are to be performed by
the maintainer.

(1) Operation

In most maintenance contexts the maintainer must be able to
operate, to some degree, the equipment being maintained.
Operational skills are used to verify the status of the
equipment, to prepare the equipment for maintenance, and to
interpret reports from operators.

21



(2) Calibration and Adjustment

Many devices must be configured for particular operating
environments, calibrated, and adjusted on occasion. Maintenance
personnel are routinely called on to effect such adjustments.

These adjustments are often a part of preventive maintenance, and

they often constitute repairs.

(3) Testing

Equipment testing is a critical part of maintenance.-Maintainers
must be able to test an equipment's operational status. They must
also be able to conduct particular diagnostic tests during the
course of troubleshooting. These tests often require the use of
general-purpose and specialized test equipment, and this test
equipment must itself be properly calibrated and operated.

(4) Access and Disassembly

In the course of repair, testing, and calibration, maintainers
must gain access to particular components for observation and
manipulation. The procedures used to gain access can be
straightforward in some cases. In others, special procedures are
required to ensure that gaining access to one part of the
equipment will not damage other parts. These procedures are
normally specified by the manufacturer of the device.

(5) Repair

By repair, Halff means the operations needed to restore the
operation of a device to specifications once a fault has been
isolated. Repairs include replacement of faulted components,
cleaning, adjusting, patching, and a host of other operations.

(6) Troubleshooting

Perhaps the most challenging maintenance operation from a
training viewpoint, troubleshooting is the process of identifying
the physical cause (fault) of an existing or potential
malfunction of the equipment's operational capabilities. For the
most part, troubleshooting takes place after a malfunction
occurs, but troubleshooting also comes into play when a test -

for example, during preventive maintenance - reveals a potential
fault.

5.2.1.2. Cognitive Components of Maintenance Skills

Halff then describes three mental structures that support the six
maintenance tasks described above: i.e., (1) a mental model of
the equipment, (2) the execution of fixed procedures, and (3)
fault isolation skills.

22



(1) Mental Models of Equipment

Mental models, in the context of maintenance, are the cognitive
structures used to reason about the equipment being maintained.
They take account of the device's structure, function and
physical manifestation.

Structure

Structural knowledge can be cast in terms of the equipment's
components and its topoloqy. The device is represented as a
directed graph with individual components at the nodes. Each
component is represented by a device model used to derive the
component's outputs as a function of inputs. Components can
operate in any of a number of modes, including fault modes, so
that differential predictions can be derived for faulted and not
faulted cases.

Reasoning within this model takes the form of propagating changes
from component to component. Informed of an input or change in
input to one component, the model derives the consequences for
that component's outputs and then propagates the result to the
components connected to the original component's outputs. The
general term for this interpretation process is qualitative
reasoninq, as opposed to quantitative reasoning which derives
predictions from the joint application of mathematical
constraints (e.g., Kirchoff's law).

Function

Functional knowledge of a device (and its subsystems and
components) is less well understood. Intuition argues that
functional knowledge forms the cornerstone of structural
knowledge. Functional knowledge can explain or rationalize the
structure of a device and thus serve, at least, as a mnemonic for
device structure. (For the importance of mnemonics in cognitive
skills, see Chase and Ericsson (1982) .) In addition, as was
mentioned above, functional knowledge may be used to resolve
impasses in qualitative reasoning. At the least, functional
knowledge guides the technician's evaluation of the device's
operational status.

Research on mental models of device functionality is sparse.
One of the most interesting analyses can be found in Kieras
(1988).

Imagery

Mental models are of little use unless they can be correlated in
some fashion with the actual equipment. There is considerable
evidence (Kosslyn, 1980) that imagery plays a significant role in
making sense of the outside world. Indeed, some assumption about

23



imagery underlies any depiction of the actual equipment -
pictures, high fidelity simulators, the equipment itself - in
training and documentation.

Imagery also plays an important role in providing internal
cognitive support for the mental model. Graphics are pervasive in
maintenance training and documentation, providing concrete
imaginal representations of the abstract notions that make up the
working part of the mental model.

The Importance of Mental Models

Kieras (1988) and Kieras and Boviar (1984) point to the
importance of mental models in device operation. Some of their
arguments apply also to maintenance. Looking at the list of six
maintenance tasks, we can see the pervasive support provided by
mental models.

(1) Mental models provide constraints that enable effective
operation of the equipment with less than perfect memory of
the operating procedures themselves.

(2) Calibration and adjustment are, by definition, goal-oriented
procedures that are supported by a knowledge of the
structural relations between controls and indicators.

(3) While some aspects of testing relate directly to the
equipment's functionality, most tests are conducted to
establish the condition of particular components or
subsystems. In these cases mental models provide coherence
to the formulation and interpretation of tests.

(4) The conceptual structure of equipment is at least roughly
reflected in its physical structure. Single circuit boards,
for example, often implement single modules. Thus, a mental
model of the device offers considerable advantage to the
technician who must disassemble that device to Qain access
to a particular subsystem, module or component.

(5) Whenever technicians face some choices in making repairs,
their mental device models can be used to guide their
decision. E.g., a basic knowledge of how conductors
function makes it easier to determine how to repair an open
circuit.

(6) Troubleshooting often amounts to testing hypotheses about
the location of a fault. Mental models support this
hypothesis-testing procedure by providing predictions from
various hypotheses.

24



(2) Procedures

Looking at the list of six maintenance tasks, one is impressed by
how often the maintainer is required to execute simple
procedures.

Definition of a Procedure

Halff's definition of a procedure has three parts (which happen
to correspond to the three aspects of mental models).

(1) A procedure's control structure defines the sequence of
steps to be taken when executing the procedure and can be
represented a number of ways, including augmented transition
networks, and-or graphs, production systems, and others.
All have the capability to represent both branching
(decisions) and sequential constraints (stepwise
progression).

(2) A procedure's function defines its teleology or goal. This
term, like that of device function is theoretically
dispensable (and, indeed, may never become apparent to some
learners); however, most would argue that an understanding
of a procedure's function is an indispensable part of its
definition. At the least, functional knowledge supports the
use of the procedure in problem solving activities.

(3) Procedures also interact with the outside world. I-n human
terms, therefore, the perceptual-motor (input-output)
concomitants of a procedure are an important part of its
definition. When a procedure calls for, say, setting
switches or reading dials, the technician must know how to
accomplish these actions and make these observations.

Procedure Implementation

Effective execution of any procedure depends on getting
procedural knowledge into the head of the technician, but how
this knowledge gets in, when it gets in, and in what form are
open questions dependent on the nature of the maintenance
enterprise.

In some cases procedures must be fully represented in procedural
form in the head of the maintainer. To take an extreme case, as
soon as the fire light goes on in the cockpit of an aircraft, the
pilot becomes a maintainer whose initial procedure for dealing
with the situation must be highly automated.

In other cases, procedures can be interpreted, usually from
descriptions found in job aids and other documentation. Both
preventive maintenance and repairs in steam power plants are
heavily guided by these sorts of procedures.

25



In still other cases, procedures are needed that are not
available through training or documentation, but are invented by
technicians to accomplish particular aims. For example, combat
has been known to inflict widespread damage to weapon systems and
their subsystems. The task of dealing with such widespread damage
is not covered in detail in either training or documentation.
Nonetheless competent technicians can often deal with these
situations by redesigning the system on the basis of a mental
model.

The invention of procedures to meet certain goals is a special
case of problem solving, and the situations that require this
sort of problem-solving in the maintenance arena are of two
types: complex malfunctions and difficult repairs.

Complex malfunctions include such cases as multiple faults,
intermittent malfunctions, faults in systems too complex for
standard troubleshooting practices (e.g., feedback systems),
unreliable test equipment, and parts inventories contaminated
with faulty components. These problems have many of the
characteristics of decision making under uncertainty.

Difficult repairs can be attempted when large portions of a
system are damaged, when parts needed for particular repairs are
not available, when the equipment or parts thereof are not
accessible, or when other circumstances prevent normal repairs.
Solutions to these problems often involve Jury rigs in which some
part of the system is redesigned and rebuilt to restore
functionality.

(3) Fault Isolation

Troubleshooting is a problem in a space where devices are viewed
as networks of components. One or more component is in a fault
mode, and the troubleshooting problem is to devise a sequence of
actions that isolate and repair the faulted components. Actions
in the solution sequence include:

(1) Observe the outputs of some components.

(2) Observe the states of some components (e.g., LEDs).

(3) Manipulate the states of some components (e.g., switches).

(4) Replace certain components.

Costs, in terms of time and money, can be assessed for each of
these actions.

Troubleshooting skills are a mix of "strong" knowledge-based
methods and "weak" context-independent skills. Knowledge-based
methods are associations between familiar patterns of
observations and troubleshooting actions. Context free methods
require analysis of the topology of the device to determine which

26



troubleshooting actions discriminate among a set of plausible or
hypothetical faults.

In addition to these two selection principles, troubleshooters
are also guided by the information-theoretic value of potential
observations, and will choose those that provide the greatest
reduction in uncertainty (Towne, Johnson, & Corwin, 1983).

Formal competence models of the troubleshooting process are
available (Hunt and Rouse, 1984; Towne, Johnson, and Corwin,
1983) and are eminently suitable for use in training (Towne and
Munro, 1988; Towne, Munro, Pizzini, Coller, and Wogulis, 1990).
What is not available at this time are valid performance models
of troubleshooting. For example, it is obvious that skilled
troubleshooters do not compute the information associated with
each potential observation in order to choose among them. Rather,
they probably use heuristics based on a structured view of the
device topology. Sorely needed is a theory of how technicians
arrive at this structured view, and how they interpret the view
in the course of choosing observations.

5.2.2 Instruction of Maintenance Skills

In this section Halff describes a curriculum that corresponds
directly to the structure of the instructional objectives.

5.2.2.1. Orientation to the Equipment

Halff first describes the instruction that is needed to convey a
mental model of the equipment being maintained. The main
components of such a model are (1) the device's function,
including its operation, and (2) the device's structure,
including its topology and component behavior.

Device Function and Operation

Device function can be conveyed to students in a number of ways.

(1) The device can be identified as one of a larger class of
devices whose functions are known to the student. What
distinguishes the device from others of its class should
also be made known to the student.

(2) The device, or a model thereof, can be shown in operation,
preferably under student control, and preferably in such a
way as to cover all of the major operating states of the
machine.

Device Structure: Topology and Component Behavior

As with device function, any aspect of a device's structure can
be identified as a member of a larger class with the same
structural characteristics. Of more interest are mechanisms for
directly conveying device structure. Traditional methods rely on

27



paper documentation and consist, usually, of a block diagram, a
narrative description, and data on the specifications of each
component. More recently, computer simulations such as STEAMER
(Hollan, Hutchins, and Weitzman, 1984), have offered a number of
benefits not to be found in conventional documentation. Among
these are:

o support for practice of causal reasoning,

Students can be given partial information about the state of
the device and asked to predict some aspect of device state
not evident in the display. Both the sequence of exercises
of this sort and the structure of feedback can be based on
the structure of the device itself.

o exhibition of complex component functions,

Students can be shown (interactively) how a component or
subsystem reacts to different combinations of inputs and
changes in inputs. For example, students can be given some
of the inputs to a component and asked how the others might
be set to put the component in a particular state.

o exhibition of component, subsystem, and device behavior
under any normal or faulted operating states,

Simulations of the sort described can be designed to reflect
the conceptual structure of the device. Thus, for example,
components that are structurally related can be shown in the
same display even though they are physically separate in the
equipment itself.

o association of the mental model's components with their
imaginal manifestations,

Video and other devices can be exhibited in connection with
their conceptual counterparts in a simulation.

o presentation of mnemonics and other mechanisms for cognitive
support of learning.

Symbolic depictions of device components can be designed to
reflect their state or function. The traditional use of
icons in electronic diagrams is an obvious example of this
mechanism.

5.2.2.2 Procedures

Earlier, Halff described three ways the maintainer can
implement procedures:

(1) directly from the technician's procedural knowledQe,

(2) from interpretation of a job aid, or

28



(3) through composition as the result of problem-solving
(troubleshooting) activity.

To implement a procedure, attention must be paid to the control
structure of the procedure, its function and its perceptual-motor
aspects.

Procedural Knowledge

Certain well-known prescriptions apply to the teaching of
procedures (in the sense of helping the student achieve unaided
execution of the procedure).

0 Depict the control structure of the procedure along with its
function, and the constraints that the function imposes on
the control structure.

o Make intermediate results available to_ students during
training.

o Provide practice in the procedure under conditions that
preserve a consistent mapping of stimulus to response.

o Provide examples that span the space of choices that must be
made in executing the procedure.

o Provide enough practice with real equipment or high-fidelity
simulators to ensure mastery of the sensory-motor aspects of
the target procedures.

If a procedure has more than one choice point, make sure tlat the
student is able to make each choice in isolation of the others.

Interpretation Skills

Training technicians to interpret written instructions is (or
should be) more a matter of designing the instructions than
training the students. The task of interpreting instructions is
partly one of inducing the procedure from examples and partly one
of deducing the procedure from written descriptions.

o Devise a procedure for interpreting the set of job aids used
on the job and teach this procedure using the principles
suggested above for Procedural Knowledge. The procedure
should function to find the right job aid for the occasion
and properly interpret the aid.

Problem-Solving Skills

Problem solving is almost always taught on the job, where most of
the opportunities for training of this sort occur. Acquisition
of problem solving skills can be promoted in school in several
ways.

29



o Since effective problem solving depends crucially on a
technician's facility with the mental model of the system
being maintained, extensive practice with this model should
enhance the ability to create effective procedures in
unanticipated situations.

o Case study, at least by default, is the preferred method for
promoting problem-solving expertise. In many situations, it
should not be difficult to import this method from the job
site to the schoolroom by recording and packaging selected
cases.

o Certain general problem-solving techniques (e.g., decision
theory, heuristic reasoning) seem to describe effective
solutions so well that they bear considerable promise in
instruction. Configuring these methods to difficult
maintenance problems might yield substantial benefit.

5.2.2.3 Troubleshooting

Troubleshooting is generally taught through a series of
troubleshooting exercises, and practice will no doubt be the
backbone of the most effective methods of troubleshooting
training. This said, what needs to be specified are the sequence
of problems to be used in troubleshooting practice and the
practice environment.

Problem Selection in Troubleshooting Practice

The aim of troubleshooting practice is to build both knowledge-
based and context-independent skills. This goal suggests that
certain problems, which exercise neither type of skill, should be
excluded from consideration in practice sets, and that other
problems should be included. Earlier, Halff (1989) listed a set
of simplifying restrictions that exclude non-instructive
problems:

In typical training situations, certain simplifying assumptions
govern the behavior of the equipment.

o Every malfunction is the result of a single faulted compo-
nent, although in real equipment multiple faults often
occur.

o Faults can be characterized as a change in the state or
possible states of a component, not in the topology of the
equipment, although in real equipment faults can change the
nature of the connections among components.

o Neither testing nor replacing a component will fault another
component, although in real equipment a faulted component
can protect another component from damage.

30



0 Finally, we assume that there are no faulty replacements,
even though real world technicians will on occasion returr. a
faulted component to inventory.

In addition to these exclusion criteria, certain types of faults
should always be included in troubleshooting practice.

o Mission critical malfunctions should be included so
that students learn the pattern of observations associated
with these faults.

o Principles of discrimination learning dictate that close
relatives of mission critical malfunctions should be
included in practice sets. These close relatives are those
whose patterns closely match those of the corresponding
mission-critical faults.

o To exercise context-free troubleshooting skills, students
should be given a set of structure spanning malfunctions,
i.e., faults should be chosen that allow for application of
all context-independent strategies.

The Practice Environment

The practice environment is as critical to successful training as
is the selection of problems. Many general principles of
procedure learning also apply to troubleshooting practice.

o Density of practice is important. Simulators should be used
and designed to engage students in as many practice problems
as possible.

o Hidden cognitive operations should be made evident to the
student. Thus, students should be forced to track, actively
or passively, the results of each troubleshooting action.
Typically this means they should identify which faults are
eliminated by each action.

o Strategic information should be made evident to the student.
This can be accomplished though the advice and critiques of
a human or machine tutor.

5.2.2.4 Curricular Issues

The suggestions made above for meeting general instructional
objectives present a significant challenge to curriculum design.
The objectives themselves are interrelated and so it seems that
the curriculum should reflect this interrelatedness. Any of the
instructional paradigms that address the objectives can be
configured in many different ways. Different components can be
chosen for exercises, different degrees of support can be
provided. The division of effort between student(s) and
instructor can vary. It may, therefore, be of some use to recall
a few general principles that have guided curriculum development.

31



Lesson Structure

The course should be divided into discernable lessons and/or
other recognizable units. The goals of each lesson and the
methods used to achieve those goals should be made clear to
students.

Teach Prerequisites First

The subskills or prerequisites of a skill should be addressed in
training before the skill itself. Thus, for example, since
troubleshooting involves certain inferences to be made from a
mental model of the device, exercises addressing these inferences
should be provided prior to troubleshooting training.

Whole- and Part-Task Training

There are two approaches to training tasks that involve distinct
subtasks. Part-task training calls for practice of the subtasks
in isolation. The whole-task approach allows students to practice
the entire task using external cognitive support for subtasks
that have not yet been mastered. Maintenance training can, and
should employ both methods. For example, whole-task training in
diagnostic maintenance can focus on replacement procedures by
allowing an expert to walk the student through the trouble-
shooting stage of a repair. Part-task training in troubleshooting
itself may be of some benefit because eliminating non-essential
tasks such as equipment disassembly can increase the density cf
practice.

Completeness

When procedures or problem-solving skills involve branching,
exercises should be provided that address all significant
variation in input to these procedures. Thus, students should be
given troubleshooting exercises that introduce them to all
significant topological patterns in the structure of the
equipment.

Fading

Any exercise can be configured with a variety of cognitive
supports. Among these are techniques that exhibit the correct
moves to the student, those that provide structural aids such as
qualitative simulation, providing intermediate steps such as
subgoals, and many others. Students should begin working in
heavily supported environments and should graduate to
successively less heavily supported environments until they are
practicing in an environment close or identical to the actual
task environment.

32



Review

Old material should be reviewed when new material is introduced.
Review functions not only to space practice but also to show
students how to discriminate the situations appropriate for the
application of old and new skills.

The Trials Effect

Skill increases with the amount of practice.

5.2.3 Computer-Based Maintenance Training

5.2.3.1 Automating the Training Process

Interactive maintenance training (e.g., Towne, 1986) has
generally been restricted to high-fidelity simulators. 1h t is,
simulators that physically resemble the equipment being
maintained. This physical resemblance is implemented either with
three-dimensional mockups, with film, and more recently, with
video. Instruction usually consists of pure troubleshooting
exercises, other aspects of maintenance training being covered by
more traditional media.

Recent developments in instructional technology and the design
philosophy described above suggest a different approach to
interactive maintenance training systems. This new approach would
differ from existing methods in several respects.

o Because of the primacy of mental models in effective
maintenance, qualitative simulation with an explicit
representation of a mental model would play a primary role
in maintenance training.

o The scope of interactive instruction could be expanded to
include instruction in reasoning from a mental model and
procedure trairing (in addition to troubleshooting
training).

o Functions such as critiques and coaching now often removed
from the practice context would be incorporated into that
context.

o Depictions of actual equipment (using video, sound, and
other means) would be used for the explicit purpose of
associating elements of the mental model with their real-
world counterparts.

The remainder of this section contains some suggestions for
implementing this approach.

33



(1) The Infrastructure of Interactive Maintenance Training

Halff strongly recommends the development of an infrastructure
representing the knowledge to be acquired during training.
Instructional methods for conveying this knowledge employ the
infrastructure as a source of instructional material. Halff
defines the infrastructure's main components in this section and
makes some suggestions for its instructional use in the next
section.

Qualitative Simulation

By qualitative simulation, Halff means a presentation of a
device's function and structure in terms of the kind of mental
model described earlier. This presentation could be implemented
using a program such as the Intelligent Maintenance Training
Simulator (IMTS) (Towne and Munro, 1988; Towne et al., 1990)
where the mechanics of the mental model form the basis of the
simulation program itself, or a computational approach such as
the mathematical model of a steam plant used in STEAMER (Hollan,
Hutchins, and Weitzman, 1984). What is important for our purposes
is that the simulation appear to the student in the form of a
mental model. This means that

o the topoloQy of the device is reflected in the display by
showing the connections among components;

o the conceptual structure of the device should be reflected
in the simulation by appropriate grouping of systems and
subsystems;

o the state of each component can be made evident to the
student through the use of color, icons, or other
mechanisms;

o changes in each component's inputs and outputs can be made
evident to the student;

o the student should have full access to the model through
simulated controls, indicators, test points, and replacement
operations; and

0 provision should be made for the instructional system to
configure the simulation in any normal or faulted mode.

Physical Simulation

Maintenance concepts and procedures have imaginal as well as
conceptual aspects. The use of qualitative simulation does not,
therefore, imply that training should not treat the physical
characteristics of the equipment or procedures. Needed,
therefore, is a physical simulation that reflects the actual
appearance of the equipment. Two considerations drive the design
of the physical simulation.

34



First, physical depictions of the equipment must be tied to
corresponding qualitative depictions.

Second, just as the conceptual structure of the equipment is
reflected in the qualitative simulation, its physical structure
should be represented in its physical simulation. Views of the
equipment's main assemblies and subassemblies should be
constructed to reflect the access paths to particular components.
The means for simulating assembly and disassembly of the
equipment should be provided.

ConveyinQ Functionality

Along with structural and physical aspects of maintenance
training, we have pointed out the importance of information
relating the function of devices. Technicians can rely on
functional information -- about the function of the device itself
and about the function of its subsystems and components -- in
most or all-of the reasoning tasks required-for maintenance.

Functional knowledge of a device, its subsystems, and its
components is used primarily in maintenance to determine whether
or not the device, subsystem, or component is functioning
properly. This implies that, available within the qualitative
simulation, should be a characterization of the function of each
element so that students can be asked or informed about the
functional status of the element. Such a characterization could
describe how the system functions under normal operating
conditions, indicate the range of acceptable outputs, and contain
contextual information such as the elements with immediate
connection to the one in question.

For other reasoning tasks, the design or goal structure of the
equipment may be of use. If for example, a subsystem cannot be
restored to a fully operational state, the maintainer can use
information describing the purpose of the subsystem to decide on
the most effective partial repair. Material should be
incorporated into the training system that indicates the role of
each component and subsystem in the goal structure(s) employing
that component or subsystem.

Representing Procedures

Another component in the infrastructure of automated maintenance
training is the computational representation of maintenance
procedures. From the discussion in Section 1.2.2, we can derive
the following elements:

o a description of the procedure's control structure, that is,
its steps and choice points,

o how the procedure employs and manipulates the mental and
physical models of the device, and

35



o the functionality or goal structure of the procedure.

It almost goes without saying that the representation should be
executable. That is, an interpreter should be constructed that
can execute the procedure in conjunction with a particular
configuration of the mental and physical model.

Any number of formalisms can be used to satisfy these
requirements. Perhaps the leading contenders are ATN grammars,
production systems, and and-or graphs. The use of one formalism
does not exclude others, and in some cases mixtures,
combinations, and redundant representations may be useful.

Troubleshooting Expertise

Effective troubleshooting practice in both automated and
traditional environments depends critically on the availability
of troubleshooting expertise. For the purposes of automated
training, this troubleshooting expert should reflect the nature
of human troubleshooting skills. Thus, something on the order of
Hunt and Rouse's (1984) fuzzy rule-based model would be
appropriate. The essential features of this model are rules that
implement both knowledge-based and context-free troubleshooting
methods and an explicit representation of the course of the
troubleshooting process. Thus, the model could be used to exhibit
each step in troubleshooting, its rationale for taking the step,
and changes to the problem state after the step has been taken.
Hunt and Rouse's model suffers, along with others, from a
psychologically unrealistic model of the evaluation of the
utility of alternative observations and a simplified mental model
of the equipment. It, nonetheless, contains the major features of
an instructionally useful model for troubleshooting expertise.

(2) Instructional Methods

With at least a vague conception of the infrastructure for
interactive maintenance training, we can be more specific about
the instructional paradigms and curricula. A top-level approach
to curriculum design might divide the course into three sections,
corresponding to the three main instructional objectives
described in Sections 1.2 and 1.3: mental models, procedures, and
troubleshootinQ, and also, incidentally, reflecting the structure
of more traditional maintenance training.

Some specifics of each major course section are given below. In
treating each section, we briefly describe some of the exercises
that might be used, and we provide guidelines for curriculum
design within each section.

Teaching a Mental Model

1. Physical and Conceptual Structure. Students are shown
images of the physical equipment and asked to identify

36



individual components, their function, and their immediate
connections.

2. Causal Reasoning. Students are given information about all
inputs to a component or subsystem and required to predict
the state of the component or subsystem, its outputs under
normal operating conditions, and its outputs in each
possible fault mode.

3. Functional Reasoning (a). Students are shown some of the
inputs to an element of the device and asked how its other
inputs must be set in order to achieve a desired function or
state.

4. Functional Reasoning (b). Students are shown the actual
outputs and inputs to an element and asked to determine
whether or not the element is faulted.

5. Physical and conceptual appearance. Students are asked to
discriminate among component states on the basis of some
physical depiction of those states.

The exact sequence of these exercises should be designed to
reflect and convey the overall structure of the equipment. In the
typical case, where the equipment can be hierarchically
decomposed, the exercises can traverse this decomposition in a
depth-first fashion so that students learn to reason about a
subsystem immediately after learning to reason about each of its
components.

These exercises should also be implemented with a view to whole-
task training. Many, if not all, of them could be embedded in
mini-troubleshooting problems in order to illustrate the
application of qualitative reasoning to troubleshooting.

Teaching Procedures

1. Operation. Students are required to perform certain
operational functions using both a physical and conceptual
simulator. That is, each step in the procedure must be
executed within the physical simulator and the conceptual
simulator. For complex procedures the goal structure of the
procedure should be tracked during procedure execution.

2. Calibration. Students work with a physical simulation of
the device to practice required calibration and adjustment
tasks. A conceptual simulation of the system being adjusted
or calibrated shows relations among the components involved
in the process.

3. Testing. Students are required to carry out fixed testing
procedures on a physical simulation of the equipment. A
conceptual simulation of the components being tested is used

37



to exhibit or query the student on the states of these
components.

4. Access and Disassembly. Students are given the task of
gaining access to a particular component. They use a
physical simulation of the device to practice the task. A
matching conceptual simulation shows which components are
accessible at each point in the procedure.

Curriculum design for procedure training is difficult because of
subtask relations among procedures often violate the natural
coherence relations. The best recommendation to be made in this
regard is that subprocedures should be taught before their
procedures and that related procedures should be taught in
succession. Thus, for example, if a particular test requires
disassembly of the equipment, the disassembly procedure should be
addressed before the testing procedure. Furthermore, all
disassembly procedures should be submitted to a structural
analysis that reveals how different branches provide access to
different components. The results of this analysis should be
reflected in the curriculum so that students are taught how to
access (structurally) neighboring components together.

5. Procedure Selection and Use of Job Aids. Students are
asked to identify the procedures needed to deal with
particular situations and to select any appropriate job
aids. Support is provided for this exercise in the form of
subgoals and intermediate steps needed to arrive at the
proper selection.

Curriculum design for job aids is (or should be) a simpler matter
since the curriculum can be designed to reflect the structure of
the aids themselves. Even if the aids are not designed
systematically, the instructional designer should develop a
procedure for selecting the correct aid and design the curriculum
to reflect the structure of that procedure.

Considerations pertinent to whole-task training should be given
to all (1-5) of the above methods for procedure training. Some of
the procedures addressed by this training constitute whole tasks
in and of themselves. Others (e.g., disassembly) are enlisted in
the service of superordinate tasks. Whole task training can be
partially implemented using an apprentice model in which the
student observes an automated expert engaged in some difficult
task (say troubleshooting) and practices component procedures,
testing, for example, as they arise in the course of the task.

6. Redesign and Jury Rigs. Students are provided with
conceptual simulations of tasks requiring complete or
partial reconstruction of the equipment. For example,
students could be required to restore as much functionality
as possible with a limited inventory of spare parts or with
other constraints on the reconstruction.

38



Lessons employing exercises of Type 6 should be arranged to
traverse the major systems and subsystems in a systematic (depth
first) fashion.

Teaching Troubleshooting

1. Troubleshooting. Students are provided with a conceptual
simulation containing a single faulted component. At each
point in the troubleshooting exercise, students would choose
an action and exhibit the consequences of the action. The
exercise could take many forms. For example, students might
be prompted to select actions diagnostic of-a--particular
fault or sets of faults. Other forms of troubleshooting
practice can be found in Brown, Burton, and de Kleer (1982).

2. Reverse Troubleshooting. Students are told that a
particular component is faulted. They are required to
predict the results of certain observations based on this
information. Causal reasoning patterns can be elicited or
exhibited during the course of these exercises.

3. Case Studies. Students could be given real case studies of
intractable troubleshooting problems. Computer support
could be provided for collaborative problem solving and for
peer and expert critiques of proposed solutions.

A typical troubleshooting curriculum might have the following
lessons.

1. A set of reverse troubleshooting and troubleshooting
problems that cover the major topological patterns found in
the device. Each pattern would be addressed first by reverse
troubleshooting exercises and then by troubleshooting
exercises.

2. A set of reverse troubleshooting and troubleshooting
problems that cover the equipment's mission-critical faults
and their nearest neighbor. Students would first reverse
troubleshoot each major fault and its neighbor and then
troubleshoot the pair.

3. A repetition of Lesson 1 without reverse troubleshooting.

4. A repetition of Lesson 2 without reverse troubleshooting.

5. A mixture of Lessons 3 and 4.

Reverse troubleshooting in this curriculum plays the role of a
cognitive support which is gradually faded from the curriculum.
Other cognitive supports (e.g. external hypothesis lists) should
also be withdrawn in the last lesson.

39



(3) Instructional Support

In implementing computer-based training it is important not to
lose sight of certain critical functions normally provided by
instructors in traditional classroom settings. Of particular
concern are functions that establish overall goals, motivation,
and coherence to the effort. Instruction of this type is related
to what Gagn6 and Merrill (1990) call the enterprise addressed by
the instruction. Of equal importance are the tutoring and
coaching functions whereby instruction is adapted to the moment-
to-moment needs of individual students.

Enterprise-Oriented Instruction

Traditional classroom methods may play a role i establishing a
student's sense of the maintenance enterprise, but in interactive
environments, enterprise-oriented instruction should perhaps be
viewed more in terms of arts and entertainment (taken seriously)
than traditional instructional methods. Thus, mechanisms such as
video clips, computer games, and special effects may be
appropriate vehicles for conveying the overall significance of
maintenance skills.

Tutorinq in Interactive Environments

Some tutoring capabilities have been offered in maintenance
training (e.g., Brown, Burton, and de Kleer, 1982; Towne and
Munro, 1988; Towne et al.. 1990), and some general techniques
have been developed that might have a place in maintenance
training. Some approaches to computer-based tutoring and coaching
(e.g., Anderson, Boyle, and Reiser, 1985) attempt to derive a
student's particular understanding (in an information-processing
sense) of an exercise (including the nature of impasses and
misconceptions) and to direct advice to that particular
understanding. Others (e.g., Burton and Brown, 1982) make a more
global evaluation and direct advice to the student whenever
specific deviations from optimal behavior are observed. Both
types are appropriate to the type of maintenance training
suggested here. Since the former requires considerable
investigation of intermediate states of learning, the latter are
more easily implemented.

5.2.3.2 Automating the Instructional Design Process

What follows is a treatment of each of the major components of
the training system described above with a view to determining
which aspects of its development are amenable to automation.

(1) Mental and Physical Simulations

Since the instruction described is based on mental and physical
representations of the equipment to be maintained, Halff would
first ask what sorts of computational machinery is available for
these representations.

40



Representation of qualitative reasoning structures and practices
has received considerable attention in the literature and a
number of computational approaches are available for representing
mental models. In addition, as was mentioned above, it may be
possible to use a quantitative model of the equipment and provide
that mathematical model with the conceptual interface of a mental
model.

However, a signal shortcoming of available mechanisms for
representing mental models is the lack of an approach to the
problem of chunkinM. All current approaches either model the
equipment as a flat network of components or rely on the model's
designer to provide a hierarchical decomposition. Lacking any
progress in automatic chunking of mental models, the division of
a device into meaningful systems and subsystems will remain the
responsibility of the instructional developer.

Computer representation of the physical aspects of a device
appear to be less of a problem than representation of its
conceptual structure. The maintenance training community has
considerable experience with what is known as "2-D simulation,"
and a number of systems appear to offer adequate power, typically
through the use of videodisc and computer graphics. It should be
noted that little in the way of knowledge representation is
provided with these systems, thus precluding any reasoning about
the physical structure of the device.

Perhaps the most complete and interesting effort on modeling of
equipment for maintenance training is the IMTS (Towne & Munro,
1988; Towne et al., 1990). Developers using the IMTS can create a
qualitative simulation of a device along the lines suggested
earlier. In addition, the IMTS provides an interface to an older
type of training simulator, the General Maintenance Training
Simulator (GMTS) (Towne, 1986), that provides a physical
representation of the device under maintenance. The combination
of these two devices offers all the representational power that
is needed for a wide range of devices.

(2) Representation of Procedures

Like devices, the representation of procedures has attracted
considerable attention in the cognitive science community. As was
mentioned above, a number of devices are available for
representing procedures. Unfortunately, no one has found it
profitable to provide a system devoted to the representation of
maintenance procedures. The hardest part of developing such a
system, however, would probably be design of the knowledge
structures that it employs and manipulates. These knowledge
structures are nothing more than the mental and physical models
which put the prospect of a viable system for representing
maintenance procedures well within reach.

41



(3) Building an Automated Troubleshooting Expert

The automated troubleshooting expert must possess both context-
independent and context-specific skills. The context-independent
skills, by definition, will be common to all maintenance courses
and, therefore, need not concern the developer of any particular
course. Knowledge-based, context-specific strategies vary from
equipment to equipment and do, therefore, concern instructional
developers. The best approach to deriving knowledge-based
troubleshooting skills is a machine learning mechanism that could
derive them automatically in simulated troubleshooting exercises.
Since the creation of such a mechanism would be a major research
project in its own right, for practical purposes knowledge-based
methods would have to be formulated by subject matter experts for
each equipment.

(4) Exercise and Curriculum Development

Computers show considerable promise as devices for generating
curricula of exercises and examples. The instructional approach
described above relies heavily on such curricula, so that it
behooves us to ask how computers might assist in their
generation. Needed are:

o a template for the curriculum itself or part of the
curriculum to be generated by the computer,

o frames for representing exercises in such a way that they
can be fit to the template, and

o a search mechanism for filling the template with particular
exercises.

In the absence of precise specifications for any of the lessons
suggested above, curriculum templates would employ a special-
purpose programming language. The frames for representing
individual exercises might contain slots for content, procedure,
prerequisites, subtasks, and cognitive support. The search
mechanism is essentially an implementation problem and will not
be considered here.

(5) Instructional Support

Two kinds of instructional support for the training activities
were suggested earlier: enterprise-oriented instruction that
provides coherence, motivation, and a sense of the overall
significance of the maintenance task; and tutorial functions that
provide advice appropriate to a student's moment-to-moment
situation during the course of an exercise.

Halff does not consider the automated generation of enterprise-
oriented instruction to be feasible. Thus, any system that serves
as a vehicle for maintenance training should provide for the
inclusion of human-generated materials of the sort needed to

42



maintain the cognitive integrity of the enterprise under
instruction.

By contrast, it is entirely feasible to provide for some forms of
automated tutoring with no extra effort on the part of
instructional developers. A case in point is the IMTS, which
evaluates troubleshooting action against an optimal trouble-
shooting model so that it can suggest more fruitful approaches at
appropriate times. The optimal model used by IMTS suffers from
the fact that it is more of a competence model than a performance
model, and no attempt is made within IMTS to derive an
information-processing account of student actions. However, Halff
sees no intrinsic difficulties in improving the tutor along these
or any of a number of other lines. Some of these improvements,
such as the use of empirical bug catalogs in diagnosing student
problems, might entail considerable extra effort on the
developer's part. Others, however, such as a more psychologically
valid method for choosing troubleshooting actions, would require
very little extra effort on the developer's part.

43



5.3 Teaching Troubleshooting Procedures (TTP)

In this section Halff extends the ideas presented in Section 5.2
in two respects.

First, in this section Halff focuses on procedure learning and,
in particular, on learning a class of standard troubleshooting
procedures based on fault trees. This class of methods reduces
troubleshooting tasks from the problem-solving activity described
in Section 5.2 to one of implementing a general procedure to deal
with particular malfunctions. The data needed to implement the
procedure for a particular malfunction can be found in the
troubleshooting sections of the equipment's technical documentation.

Second, it is more specific to the training methods and
requirements for one particular troubleshooting procedure,
namely, that of repairing an Air Force T-38A aircraft that fails
to start on the ground. This procedure is described in U. S. Air
Force (1989).

In this approach to instructional design, Halff first describes
the content to be taught, organizing the discussion around the
no-start troubleshooting procedure. He then derives a set of
instructional objectives. Finally, relying on recommendations in
Halff (1990), he draws out major implications for instructional
design and practice.

5.3.1 Instructional Content: The T-38A Maintenance Scenario

5.3.1.1 The T-38A Starting System

Since the malfunction used as an example here is that of a T-38A
that fails to start, understanding the troubleshooting task
obviously requires some understanding of the starting system of
the T-38A.

The T-38A is a two-engine jet aircraft. Each engine must be
started independently, and the right engine is started first. In
this discussion of the no-start troubleshooting procedure and
related issues, Halff assumes that the procedure addresses the
right engine.

44



- - -- -- ---

cna cn C

Z< <L>..

~~m M

(b Uu

.z - -- - - ---- 4

> to

LU U-

~~C11

Z4E-



Figure 5.1 is a grossly oversimplified schematic view of the
starting system of the T-38A. It contains only those components
that figure significantly in the no-fault troubleshooting
procedure.

Needed to start an engine are compressed air (used to air-motor
or rotate the engine), fuel, and ignition. On the ground, air is
supplied by an external compressor attached through an air hose
to a diverter valve on the aircraft. The diverter valve is
positioned by the ground crew to direct air to the engine (left
or right) being started.

Fuel for each engine is supplied through fuel lines controlled by
the throttle. An additional control over fuel flow is an
overspeed governor that is subject to leaks which can impede the
fuel needed for a normal start. A boost pump, designed to
supplement gravity feed at high altitudes, can be used to purge
air from the fuel line.

Ignition for each engine is supplied through two igniters, a main
engine igniter and an afterburner (AB) igniter. Each of these
igniters provides a train of sparks at a steady rate (3 sparks
every 2 seconds).

The delivery of air, fuel, and ignition to the engine takes place
under partial control of an electrical starting system, the main
elements of which are shown in Figure 5.1. The pilot starts the
engine by depressing a starter switch and advancing the throttle
to its IDLE position. Depressing the starter switch engages a
timer and holding relay that, in turn, arms an ignition circuit
for about 30 seconds. Once the circuit is armed, moving the
throttle to IDLE closes a throttle cutoff switch and thereby
causes the igniters to fire. Advancing the throttle also delivers
fuel to the engine.

A final important element in the starting system is the delivery
of electrical power to the igniters and control circuits. DC
power is needed for the ignition control circuit (i.e., the timer
and holding relay); AC power is needed to fire the ignition. On
the ground, power can be supplied by two sources: a (DC) battery
in the aircraft and an external AC power source. The battery is
controlled by a switch which must be turned off if external power
is used. If the aircraft is started under battery power, a static
inverter is used to convert this power to AC for the igniters. If
the battery is not used to supply DC power, a transformer-
rectifier on the aircraft converts AC power to DC. Also of
importance to troubleshooting is the fact that the static-
inverter circuit powers a subset of the right-engine cockpit
instruments and, in particular, the right-engine fuel/oxygen
indicator. After starting, electricity (AC) is supplied by
generators (not shown in Figure 5.1) powered by each engine.
These generators begin to operate when the engines reach a set
cut-in speed.

46



5.3.1.2 StartinQ the T-38A

With this background, the starting procedure for the T-38A should
be clear. To paraphrase the Flight Manual,

1. Make sure nothing is in the way of the aircraft.

2. Set the diverter to the right engine.

3. Apply compressed air to rotate the engine.

4. When the engine speed reaches 14% RPM (or at least 12% RPM),
push the right starter switch.

5. Advance the throttle to idle.

6. Wait for the engine to start.

Ignition should occur before fuel flow reaches 360 lb/hr. If not,
turn the throttle off, maintain air flow for 2 minutes to
evacuate fuel from the engine, and restart.

The EGT (engine thrust) should begin to rise within 12 seconds of
start of fuel flow. If it does not, abort the start.

The generator should cut in before the 30 sec. ignition circuit
times out. If this does not occur, check to make sure that the
engine light is Normal. If it is, push the start button again to
provide electrical power for the start.

7. Check the engine instruments, the hydraulic power, and the
caution light panel.

8. Repeat steps 2-7 for the left engine.

9. Disconnect the air supply and, if connected, the external
power.

10. Make sure the battery is switched on.

5.3.1.3 Possible Faults

Any of a vast number of faults could cause the T-38A engine not
to start. Halff's analysis, however, is limited to the small
number of faults actually listed in Table 5.1. The reader will
note that, in many cases, identification of a fault is not that
specific; a fault is any determination that terminates the no-
start troubleshooting procedure. By the same token, what appears
in the Repair column of Table 5.1 is, in some instances, a
repair, and, in others, directions for further troubleshooting.

47



5.3.1.4 The Troubleshooting Procedure

Figure 5.2 shows the fault tree for the no-start troubleshooting
procedure. Notice that the terminals of the tree correspond to
the faults identified in Table 5.1. Also notice that some of the
terminals are marked as "Last Resort." In the troubleshooting
procedure, each such fault is assumed as a last resort when all
other faults on its branch have been eliminated.

The fault tree is nothing more than a description of the
troubleshooting procedure's structure. Needed to convert that
description into an actual procedure is a fault-tree
interpretation procedure or schema. Table 5.2 contains a
description of this schema in pseudocode. A more colloquial
description is as follows. To troubleshoot any component, first
check its overall functionality. If the component is
nonfunctional, then either repair it, if it is a terminal in the
fault tree, or troubleshoot its subcomponents. However, any
last-resort fault (that is, one isolated solely by eliminating
other possibilities) should be repaired without further ado.

A critical aspect of this fault-tree approach is the structure of
the tree itself. In particular, the structure of the tree (a)
reflects the structure of the equipment itself as a hierarchy of
subsystems and (b) is predicated, by virtue of Line 2.1, on the
availability of tests of the functions of all components except
last resorts.

Needed to instantiate the schema for the no-start troubleshooting
procedure are Table 5.1, Figure 5.3, and the observations needed
to perform the tests called for in Line 2.1. These observation
procedures, are listed in Table 5.3.

A fault tree is a hierarchical structure typical of those found
in most highly developed cognitive skills to simplify overly
complex procedures and thus render them amenable to skilled
execution (Chase and Ericsson, 1982). A fault-tree representation
of a troubleshaooting procedure offers cognitive benefits that
outweigh any inefficiency that it may introduce into the
troubleshooting process. Using more efficient but less
structured approaches would inevitably result in slower learning
and in lower terminal speed and accuracy of performance.
The instructional design proposed below is predicated on the
assumption that a fault-tree representation of the no-fault
troubleshooting procedure (and other procedures of the same sort)
is the most appropriate representation for instructional
purposes.

48



Table 5.1 FAULTS CAUSING NO-START CONDITION.

Fault I Descriotion I Reair

- _ _ _ _ _nitlonFaults

Ignition Circut Breakers Not Three cicuit breakers are present
Engaged. in the igiuon contol circuitry: R

E'NGEWE START & AS
CONTtOL NG24E
IGNrION & R AUTOSYN
INST. and IGNMI ON
eVEUR4 r Any or all of these
could be imorerlv enzgaged. -

Defec=ve Static Enverter. T suc inverter can fail Wa Replace the static invee.
__ sulv AC oowe" to the i~niters. I

Dciecv E1e_-craci System. The enptne's demcal system T roubleshoot thm eiccmrcal
=u be faulted in such a way that sysm using ocedures dedned

even external AC power is not in dhe Elcrai;L Systems Manual.
beinig delivered to the inite.s.

Defectve Igniters. The ignurs themselves may not Remove the ei nee.
fre,- even When Property

___________________vowered. __________

Fuel S-.stam Faults
Defctive Airraft Throle The throttle ngging connects the
Rigging throttle to the fuel control system.

fdef~ective. fuel flow may not be
adequate for startnn.

Fuel System Circuit Br-aker Not The fuel control system will not
Engaged. operate if its circuit breakers are

Snot rooerlv ei3ied.
Air in System. Air in the fu system may retard Apply external power and start

fuel flow. ensine with boost vuras on.
Altitude P:oolem. Fuel feed may not achieve

required pressure at high
altitdes.

Fuel Shutoff Valve Closed A fuel shutoff valve must be open
I to oerrnit te now of Iuel.

Excessive Drain frm Engine Fuel may be draining off through
ComoonentsI nine drin Iia6e I

Internal Leakage 6rom Engine Eacessive amounts of fuel are RepLace the overspeed governor.
Drain Indicator. drained off through the bypass

hose of the overeed fove.nor.
Unknown Fuel System Falt. Fuel may not flow for reasons Remove engine.

other than those listed above. _

Starting System Faults
Defective Ignition T7ime-Delay Relay is not engaged for 30 sec
Relay upon depressing starter. thus

preventing elec:mcal power from
rochini the ijruter.

Defective Diverter Valve The diverter valve is not! oasitioned provertv.

Blocked Air Duct The hose from the compresor to
the aircraft may be blocked or
kinked. thus preventing
compresed air from reaching the
en.zine.

Defetuve Engine Staring Air Ducts from the diverter to the
IWle. Duct and/or C.-ssove: Duct engines may not allow passage of

air.
Enne Seized or Binding The engine may not be rotating Remove engine and determine

Sfree fv. cause of orol1em.

Oceratlonal Proolerms
AluJC .:de ?-ooiem E.g;n:e .-ay not start a-t .,;"

al u-des.

49



J~Ls InesteoStti

ACSystem Invrter Last Resort

Ig~tersLast Resort

Thrtle

VaelvUes

Lastui Reo

Figure 5.No8 oSar al re

Start



-- Table 5.2 FAULT-TREE INTERPRETATION SCHEMA.

To troubleshoot a component
1.0 If the component is a Last Resort then

1.1 Repair the component
1.2 Concludea that the component was faulted

2.0 Else (component is not a last resort)
2.1 Check the overall functionality of the component
2.2 It the component is OK then

2.2.1 Conclude that the component is not faulted
2.3 Else (component is not OK)

2.3.1 If the component has no subcomponents
2.3.1.1 Repair the component
2.3.1.2 Conclude that the component was faulted

2.3.2 Else (component has sub~components)
2.3.2.1 For each subcomponent of the component

2.3.2.1.1 Troubleshoot the subcomponent.
2.3.2.1.2 If the subcomponent was faulted then

2.3.2.1.2.1 Conclude the component was faulted
2.3.2.1.3 End If

2.3.2.2 End For
2.3.2:3 Conclude fault is unknown

2.3.3 End if
2.4 End if

3.0 End If

Nort: a"Conclude" statements are equivalent to funcuon returns in thaz they terminae the
troubleshooting procedure and return a value describing the fault thus isolated.

51



5.3.2 Instructional Objectives

Since much of this effort relies on the general scheme described
in Section 5.2, we need to frame the particular content described
above in terms of the general objectives described there. Recall
that these instructional objectives consist of (1) a mental model
of the equipment, (2) the procedures used to maintain the
equipment, and (3) the special skills needed for troubleshooting
as problem solving.

5.3.2.1 Mental Models

Mental models of equipment, as described in Section 5.2, have
three aspects structure, function, and imagery.

52



Table 5.3 FUNCTIONALITY TESTS FOR FAULT TREE COMPONENTS.

Component Test

T-38A No Start Standard staiung procedure

Ignition Observe AB and main4phl uingduring ignition without external power

Inverter System Check Fuel/Oxy Indicator without external power

Cluitt Breakers Check engagement

Sttc !nveiier Last Resort4

AC System Observe AB and main plug ring with external power

Elecutcal System Check voltage at Pin N in engine ignition and accessories disconnect plugb

Igniters Last Resort

Fuel Check for fuel mist in exhaust

Throttle rigging Advance throttle past idle and check for fuel flowor ignition

Fuel Lines Attempt repair by running boost pumps to clear air

Cirvuit breakers Check for engagement

Shutoff Valve Observes stats

Engine Drain Lines Check for excessive fuel drainage

Overspeed governor Check flow rate through bypass hose

Fuel System Last Resort

Starter Engine achieves 14% RPM with proper air flow

Holding Relay Check engagement for 30 sec.

Diverter valve Inspect position

Air Duct [Check for kinks. obstruction

Duct valves Check position

Engine Last resort

Note: "Last-Resort components are always deemed to be faulted by a process of elimination.
bNot shown in Figure 1.

53



(1) Device Structure

The structure of a device is a formal qualitative description of
that device, often called a qualitative model. Such a model
describes the behavior of individual components, that is, how
they change state in response to changes in input and how their
outputs vary according to state. It also describes the behavior
of the device as a whole, that is, how the outputs of one device
are connected to the inputs of another.

Fault trees of the type described above are closely related to
qualitative models of equipment in that the qualitative model,
therefore, provides cognitive support for the troubleshooting
procedure. For example, inspection of the right engine
fuel/oxygen indicator for evidence that the static inverter
system is functioning correctly only makes sense within the
context framed by a mental model of the ignition system as shown
in Figure 5.2.

A qualitative model of the entire starting system could be
(indeed has been) created from a conception like that shown in
Figure 5.2 and this figure would make a reasonable basis for a
qualitative model if our only concern was the no-start
troubleshooting procedure. However, any realistic maintenance
course must also address many other malfunctions and
troubleshooting procedures. The model shown in Figure 5.2 is not
really a system, but rather the components of several systems
that, taken together, are responsible for starting the aircraft
or failing to start it. A different function (e.g., establishing
radio communications) or even a different malfunction of the same
system (e.g., failure to start in flight) would involve different
components of the same or different systems. If troubleshooting
training were to be based on models like that of Figure 5.2, a
different model would be needed for each malfunction in the
curriculum. The proliferation of such models would easily defeat
any advantage of model-based training.

Needed, therefore, is one or a small number of models that can
support troubleshooting training for all malfunctions of
interest. Function or malfunction-specific models like that of
Figure 5.2 may still have a place in training and may even take a
measure of cognitive reality. However, a more general scheme is
needed to define the mental models that constitute instructional
objectives in this context.

The design of such a scheme for the T-38A is beyond the scope of
this paper. Nonetheless, we can describe a strategy for
constructing a mental model of the aircraft. This strategy has a
bottom-up and a top-down component. The bottom-up component calls
for a fault-tree analysis of each malfunction covered in the
Engine Conditioning Manual, the Electrical Systems Manual, and
other such documents. One result of this analysis will be a
collection of tables like Table 5.1 and Table 5.3, specifying
components and elementary procedures for repair and observation.

54



This information can be used (along with other technical
documentation) to construct component models that reflect normal
and faulted behavior and that can be appropriately manipulated
during troubleshooting.

The top-down component of the strategy calls for analysis of the
aircraft's systems using the scheme laid out in the Flight
Manual. As illustrated in Figure 5.4, this scheme describes the
major systems of the aircraft: fuel, fuel control, electrical,
etc., together with their subsystems.

Combining the bottom-up and top-down analyses is a matter of
merging the primarily component-wise information in the former
with the topological and structural information in the latter.

(2) Device Function

For purposes of troubleshooting, device function is best thought
of in terms of operating functions and malfunctions. Section VI
of the T-38A Engine Conditioning Manual is an excellent starting
point for such an analysis. Identified in that section (entitled
"Troubleshooting Engine and Related Problems") are a number of
operating modes of the aircraft. For each operating mode is a
list of malfunctions. For each malfunction, a troubleshooting
procedure (theoretically based on a fault tree) is provided which
identifies particular components and subcomponents. Thus, it is
possible to construct a functional hierarchy based on operations,
potential malfunctions, and the normal or faulted operation of
individual components. This hierarchy for T-38A engine functions
is shown in Figure 5.5.

This functional hierarchy is not the same as the structural
breakdown by system shown in Figure 5.4, particularly since
several systems are usually involved in each operation. Starting
Operation, for example, involves the starter system, the fuel
system, the fuel control system, the ignition system, the
electrical power system, and the engine. The functional hierarchy
of Figure 5.5 is organized around the T-38's functions or
missions, and it comprises a distinct, important aspect of the
instructional objectives. In Section 5.3.2.2, we will discuss the
part that it plays in curriculum design.

(3) Imagery

Imagery, as described in Section 5.2, is the perceptual face of
the technician's conception of the equipment. As such, it covers
the appearance (in sight, sound, and other senses) of the
equipment, the physical actions that implement observations and
repairs, and knowledge of the physical location of components and
subsystems.

Direct formal representation of the imaginal aspects of a mental
model are well beyond current methods of knowledge repre-
sentation. What can be constructed, however, is a system of

55



Engines Oil System

Control Ignition..

Pump Control

Figure 5.3 Structural breakdown of the T-38A.

56



System Engine
and

Group Related
Systems

Operation StaringIe
peration eraon

Malfunction No Start

System . Ignition W

Componen Circuit
Breakers \nee~e

Figure 5.4 Functional breakdown of the T-38A.

57



tokens that stand for different perceptual chunks. These tokenis
would include, in the case at hand,

o the perceptual aspects of all observations, such as the
sound of the main igniter sparking and the appearance of the
fuel-flow indicator;

o the actions needed to effect operations and repairs, such as
shorting out the afterburner igniter and engaging a circuit
breaker; and

0 transitional items needed to refocus attention from one
component or operation to another; for example, locating the
ignition-system circuit breakers or moving from the cockpit
to the rear of the aircraft.

5.3.2.2 The Troubleshooting Procedure

The second type of instructional objective proposed in Section
5.2 is that of procedural knowledge. Some aspects of procedural
knowledge representation are discussed there, but a more informed
description can be found in Polson and Polson (1990). To a large
extent, both of these general discussions are superseded by the
specific description of troubleshooting in Section 1.4.

Section 5.3.1.4 suggests that three distinct items of procedural
knowledge are involved in mastering the no-start troubleshooting
procedure:

o the general troubleshooting schema of Table 5.2,

o the testing and repair procedures listed in Table 5.1 and
Table 5.3, and

0 the structural information in the fault tree itself (Figure
5.2).

These items constitute three, almost independent, procedural
objectives for instruction in the no-fault troubleshooting
procedure. By "almost independent" Halff means first that the
fault-tree interpretation schema can be learned in such a way
that it will apply to any fault tree, not just the one presented
in Figure 5.2. Also, the testing and repair procedures can be
mastered outside of no-fault troubleshooting procedure and most
will probably be useful in other maintenance tasks. Mastery of
the fault tree (Figure 5.2) does, however, depend on mastery of
tht fault-tree interpretation schema.

Representation mechanisms for the types of procedural knowledge
of concern here are well discussed in Polson and Polson (1990).
Recommended there is the use of Card, Moran, and Newell's (1983)
GOMS scheme for representing procedural knowledge. Repre-
sentational schemes such as GOMS constitute important, but

58



not complete tools for expressing fault-tree based trouble-

shooting procedures.

(1) Representing the Fault-Tree Interpretation Schema

The fault-tree interpretation schema of Table 5.2 is basically a
control structure wrapped around retrieval operations that fetch
the appropriate elementary repair and operation procedures. The
control structure in this schema can be translated in a straight-
forward manner directly into GOMS. Not specified in Table 5.2,
however, are the operations needed to retrieve information that
instantiates the schema. For-eampler Line 2.1 requires retrieval
of a procedure of the sort listed in Table 5.1. Line 2.3.1
requires the retrieval of structural information of the type
specified in Figure 5.2. These retrieval operations will vary
according to situation and skill level of the technician. Novices
will use technical documentation, instructors and other external
sources. Intermediate technicians will retrieve this information
from long-term memory. In highly-skilled technicians, the schema
and its instantiating data will be compiled into a single
procedure. A GOMS representation of the schema in Table 5.2
must, therefore, provide different strategies for retrieval
operations to reflect the circumstances and skill levels of the
technician.

(2) Representing Elementary Procedures

The elementary procedures listed in Table 5.1 and Table 5.3 are
eminent-ly suited for representation as GOMS structures. Indeed, a
preliminary GOMS analysis of the entire no-start troubleshooting
procedure is available as an analysis of the operations in Table
5.1 and Table 5.3.

In a representation of the procedure used by a highly skilled
technician, control knowledge and operational knowledge are
compiled into one procedure and the fault tree is given no
explicit representation at all. Most of the literature on skill
development indicates that this composition or compilation is a
characteristic of highly automated skills.

(3) Representing the Fault Tree

Fault trees such as that shown in Figure 5.2 are, on the face of
it, declarative knowledge, and, in students, they may begin life
in declarative form. To be of use, however, their fundamental
representation must be procedural. The procedural requirements of
the interpretation schema (Table 5.2) are the following
functions.

o Retrieve the procedure for checking the functionality of a
component (Table 5.2, Line 2.1).

o Retrieve the procedure for repairing a terminal component

(Table 5.2, Lines 1.1 and 2.3.1.1).

59



o Decide whether or not a component is terminal (Table 5.2,
Line 2.3.1).

o Retrieve successive subcomponents of a non-terminal
component. (Table 5.2, Line 2.3.2.1).

A minimal representation of a fault tree must therefore implement
these four functions. For instructional purposes a declarative
representation will also be needed together with procedures
(perhaps GOMS procedures) for implementing these functions by
interpreting the declarative representation.

5.3.2.3 Troubleshooting as Problem Solving

The last category of instructional objective mentioned in Halff
(1990) is that of troubleshooting. Halff's concern in including
that category was for troubleshooting as a problem-solving
activity in which the technicians need to discover the
appropriate fault isolation strategy. In particular, my reading
of the literature in this area suggested a problem-solving
procedure with three main components:

0 context free rules for isolating faults based on topological
patterns,

0 device-specific rules for troubleshooting based on known
symptom-fault associations, and

0 procedures for choosing the most information-laden actions
at particular choice points.

This problem-solving approach to troubleshooting relies only on
connectivity information in the mental model and a set of
device-specific observation-action associations.

By contrast, the focus of this paper is on troubleshooting
procedures, in which the isolation strategy is provided through
documentation and instruction and need only be implemented by the
technician.

Troubleshooting as problem solving is an important aspect of
skilled troubleshooting and, therefore, of maintenance training,
even when a large body of troubleshooting procedures is
available. In a system of any complexity, no troubleshooting
guide offers complete coverage of the possible faults, and seldom
will a guide offer procedures for dealing with complex situations
such as test-equipment unreliability, multiple interdependent
faults, and intermittent faults.

Schemes are available for representing troubleshooting as problem
solving (Hunt and Rouse, 1984; Towne, Johnson, and Corwin, 1983),
and instructional systems are available for implementing these
schemes.

60



Of central concern, however, is the relationship between the
procedural approach to troubleshooting presented in Section
5.3.1.4 and problem-solving approaches such as those of Hunt and
Rouse (1984) and Towne, Johnson, and Corwin (1983). The fault-
tree approach, by sacrificing generality, provides the structure
needed to render the troubleshooting process manageable with
limited time and cognitive resources. Methods for troubleshooting
a3 problem solving have greater generality, but are expensive in
terms of both time and resources. A combination could use the
fault-tree procedure in the initial stages and invoke a problem-
solving process to deal with cases not covered in the falt tree.- -

Earlier Halff mentioned that the last-resort faults in Figure-52 -
seemed to be guards against the impasse that might occur if a
component malfunctions, but each of the tested subcomponents
functions properly (see Line 2.3.2.3 of Table 5.2). In addition
to guarding the procedure against impasses, these last-resort
faults may also play the role of place holders that mark
occasions for troubleshooting as problem solving. If so, then the
fault tree could be redesigned to eliminate the last-resort
faults, and an impasse itself (i.e., Line 2.3.2.3) could signal
the occasion for invoking a problem-solving process.

The implications of this suggestion for curriculum design are
clear. That is, troubleshooting as problem solving should be
taught after, and in conjunction with procedures based on fault
trees, and students should be explicitly taught when to enter a
problem-solving mode of troubleshooting. These points of
transition are the Last Resort items in Figure 5.2 or,
alternatively the impasses marked by Line 2.3.2.3 of Table 5.2.

H4iff also made brief mention of problem-solving approaches to
troubleshooting that select local troubleshooting moves or
actions based on device topology, known observation-action
associations, and the information value of potential actions. We
suggested that students need to be taught these problem-solving
techniques and should be trained to invoke them when the fault-
tree approach arrives at an impasse.

5.3.3 Instructional Material and Methods

In Section 5.2 Halff proposes certain methods for using computers
in maintenance training. The discussion is organized around three
aspects of a computer-based instructional system.

5.3.3.1 Infrastructure

An instructional infrastructure for computer-based maintenance
training consists of computational representations of the
instructional objectives. In particular, it contains mechanisms
that can simulate and describe the equipment under maintenance in
both qualitative and physical terms. It also contains mechanisms
that can interpret and describe procedures to be learned. In

61



addition, an expert troubleshooting system should be available

for teaching troubleshooting as problem solving.

(1) Qualitative and Physical Simulation

Recall that the mental model consists of a qualitative model of
device behavior, a description of device function, and a
collection of tokens that stand for imaginal (perceptual) aspects
of the device. The qualitative model can be implemented in a
computer using available qualitative simulation systems such as
that described in Towne, Munro, Pizzini, Surmon, Coller, and
Wogulis (1990). These systems have the following basic
capabilities.

o They can instantiate any qualitative model of the sort
described in Section 5.2.

o They can carry out qualitative reasoning on the model and
thereby determine the states and outputs of specified
components based on information regarding states and state-
changes in the rest of the device.

0 They present to the student a graphical depiction of the
system being simulated. This depiction does not generally
resemble the physical appearance of the system. Rather, it
represents components as icons that can be manipulated by
the student and whose appearance reflects the states of the
corresponding components. A display from such a system
might, for example, bear a passing resemblance to Figure 5.1.

o They provide different views of the system. Presented to the
student not just as one view of all components, but rather a
collection of views, each showing only the components
selected for that view. Some of these views might show the
behavior of major subsystems, and thus conform to the
breakdown illustrated in Figure 5.4. Others might conform
to the functional breakdown illustrated in Figure 5.5 in
that, like Figure 5.2, they show all of the components
involved in a particular function.

Constructing a qualitative model of the T-38A, then is a matter
of entering the qualitative model of the aircraft into a
qualitative simulation system, designing the graphical
representation of the model, and constructing the views needed
for instruction. For troubleshooting training, three types of
views are needed.

1. Global subsystem views are needed that present each major
subsystem as an independent unit.

2. Views like that in Figure 5.1 should be constructed to show
all of the components involved in the functions and
malfunctions selected for troubleshooting.

62



3. A third type of view conjoins the first two and thereby
depicts only the components involved in particular lower
level nodes of the fault tree. Figure 5.5, for example,
provides a view of the Fuel System branch of the fault tree
in Figure 5.2.

Needed to support the imaginal aspects of the model is a physical
(as opposed to qualitative) simulation of the aircraft. This
physical simulation presents to the student, through appropriate
media, the sights, sounds, and manipulanda associated with each
of the tokens in the imaginal model (see Section 5.3.2.1(3)).
These requirements include:

o a simulation of all observations that might be made in the
course of troubleshooting, including indicators such as the
Right Fuel/Oxygen Indicator and other sorts of observations
such as the appearance of fuel mist in the exhaust;

o a simulation of all actions that might-be-undertaken in the
course of troubleshooting, including controls such as the
throttle and other actions such as that of shorting out the
AB ignition plug; and

o a simulation of transitions that refocus attention from one
component of the aircraft to another, including views of
panels such as the instrument panels and gross changes of
view such as descending from the cockpit and moving to the
rear of the aircraft.

As a development strategy, the team developing instruction should
walk through every branch of every troubleshooting procedure,
noting the views and manipulations needed to support the
procedure. These notes can then form the basis for production of
the physical simulation in appropriate media.

Naturally, the physical and qualitative simulations should be
linked in their implementation so that manipulations of the
physical simulation are manifest as state changes in the
qualitative simulation, and manipulations in the qualitative
simulation are manifest in displays of the physical simulation.
For example, if the student, in the qualitative model closes the
fuel shutoff valve, then a view of the exhaust in the physical
simulation (with the throttle on) should reveal no fuel mist.
Conversely, if the student, in the physical simulation, applies
external power to the aircraft, then the Ignition Power Transfer
Relay should be shown to energize in the qualitative simulation.

63



Boost Purnp Fue

Fuel Shutoff Valve

Throttle Rigging Control
M

> Overspeed Governor' Fuel Flow Indcator

Pressurizing and Drain Valve

Left
Engin

*11

Figure 5.5 Components involved in the Fuel Flow Branch
of the No-Start Fault Tree (Figure 5.2).

64



(2) Procedure Interpretation

A second component of the instructional infrastructure is a
computational implementation of the procedures needed for, in our
case, troubleshooting. Recall that the formalism used for
representing these procedures is the fault tree described in
Sections 5.3.1.4 and 5.3.2.2. The components of this formalism
are:

o a fault-tree interpretation schema, represented in GOMS or
some similar formalism,

o the fault-tree itself, represented in both procedural and
declarative forms, and

o the observation and repair procedures attached to nodes in
the fault tree, also represented in GOMS or some other
appropriate formalism.

Needed to computerize these formal models are an interpreter that
can execute the troubleshooting procedure, appropriate links to
the simulation models discussed above, and a means of presenting
the structure of the procedures themselves to the student. The
first two items pose no particular challenges since interpreters
are available for this purpose and since the simulations
themselves possess the mechanisms needed to link them to a
procedure interpreter.

The third item, the means of presenting the procedure itself to
the student, is a critical aspect of the instructional design
proposed here. Mechanisms are needed for explicit presentation of
each of the three parts of the fault-tree approach.

Presenting the Fault-Tree Interpretation Schema

Support for navigating the fault-tree interpretation schema of
Table 5.2 should be provided by a display that either indicates
the major milestones in the schema or allows the student to
indicate these milestones. These milestones include

1. checking the functionality of the component under
consideration (Table 5.2, Line 2.1),

2. isolation and repair of a component (Table 5.2, Line 2.3.1),

3. troubleshooting the subcomponents of a component (Table 5.2,
Line 2.3.2.1), and

4. dealing with unsolved cases (Table 5.2, Line 2.3.2.3).

We can distinguish several ways of presenting milestone
transitions to students, depending on the level of guidance
required.

65



o In heavily guided practice, the computer should be capable
of dictating the next milestone to be reached in the
procedure. For example, "We have just determined that no
fuel is flowing. We will examine each of the potential
causes of this problem in turn."

0 In more relaxed guidance, the student should be required to
indicate the next milestone. For example, "We have just
determined that no fuel is flowing. What do we do next in
the fault tree?"

o Under even more relaxed guidance, the computer might simply
note milestones as they occur and check to ensure that the
student's actions are consistent with the schema. For
example, "We have just determined that no fuel is flowing.
You are checking the Starter Air Inlet Duct. Re-examine the
fault tree to make sure that this is the next step."

PresentinQ the Structure of the Fault Tree

As with the interpretation schema, both a declarative and
procedural interpretation of the tree itself is needed. The
declarative presentation is perhaps best done graphically, using
a display like that of Figure 5.3. As the procedure traverses the
tree, the active elements can be highlighted in some way and/or
subtrees can be displayed as a means of focusing attention (see
Figure 5.6 for examples).

Breaker

.:-S stem

Figure 5.6 Use of subtree and highlighting to focus attention.

The procedural aspects of fault tree structure are defined as a
list of functions in Section 5.3.2.2(3). A computer implementation of
these functions should make their results available to students
and should be able to query students about the structure of the
tree. In particular, and referring to Section 5.3.2.2(3), the
computer should have the means to:

66



o inform the student of the procedure needed to check the
functionality of any component - for example, "To check for
low fuel flow, use the procedure that checks fuel mist in
the exhaust;"

o ask the student to designate or execute the procedure needed
to check the functionality of a component - for example
"Select the procedure for checking the overspeed generator;"

o inform the student of the procedure for repairing any
faulted component - for example, "To repair the static
inverter, use the procedure for replacing the-static--
inverter;"

o ask the student to designate the procedure for repairing a
faulted component - for example, "Select the procedure used
to repair the disengaged IGNITION INVERTER circuit breaker."

These functions, can, like those listed in the previous section,
be used in guided practice to ensure that the student learns how
to properly manipulate the fault tree.

PresentinQ Procedures for Observation and Repair

Procedures for repair of faulted starting system components are
presented in Table 5.1. Procedures for checking the functionality
of components are listed in Table 5.3. As instructional
objectives, both types of procedures are represented in some
formalism such as GOMS (see Section 5.3.2.2(2)).

In a computer-based instructional system, these procedures need
to be given a declarative, verbal description, such as plain-
English paraphrase of the GOMS representation, and a procedural
implementation in the qualitative and physical simulations. In
this way students can be shown or asked how the procedure unfolds
through interactions conducted in verbal terms, in terms of
physical actions and observations, or in qualitative, conceptual
terms.

The power of these separate presentation schemes is multiplied by
jcining them together in complete or partial presentations of the
entire troubleshooting procedure. As the procedure is presented
and practiced, the system or the student can focus on any of five
critical aspects of the procedure:

o strategy - the status of the procedure with respect to the
fault-tree interpretation schema;

o tactics - the status of the procedure with respect to the
fault tree itself;

o stepwise descriptions - the elementary observation and
repair procedures;

67



o conceptual aspects - the theoretical description (in the
qualitative model) of the procedure;

o implementation - the physical actions and observations (in
the physical simulation) that implement the procedure.

With the computer implementation suggested above, Halff views
each of these aspects as being potentially available for
presentation or practice at any point in the procedure.

(3) Problem Solving and Troubleshooting

Above, in Section 5.3.2.3, we discussed troubleshooting as a
problem-solving activity as opposed to the fault-tree procedural
approach described in Section 5.3.1.4. In Section 5.2 Halff
suggests that the computational support needed for effective
training of these problem-solving skills is a troubleshooting
expert based on the problem-solving methods that students should
master to solve particular problems.

Two such experts are available, namely, PROFILE (Towne, Johnson,
and Corwin, 1983) and the Fuzzy Rule-Based Model of Hunt and
Rouse (1984). The former is an almost pure information-theoretic
approach that achieves not only efficient troubleshooting but
also an impressive match to human troubleshooters. The latter,
however, offers more face validity in that it incorporates some
of the heuristics known to be used by human troubleshooters.

Halff doezs not say which of these models is more appropriate for
training in this situation, but does say, however, that, whatever
model is used, that model should operate within the context of
the qualitative simulation described above. It should also be
able to start in mid problem and, in particular, when the fault-
tree procedure reaches an impasse. It should also be able to
present or explain its choice of each troubleshooting action as
problem-solving proceeds.

5.3.3.2 Instructional Methods

Instructional methods constitute the procedures for engaging the
student in instructional interactions. Consistent with the view
of instructional objectives described in Section 5.2, Halff
proposes that some of these procedures address the acquisition of
a mental model of the equipment. Some should address acquisition
of procedures. Some should address the problem-solving skills
needed for effective troubleshooting.

The foregoing section has provided us with a powerful set of
tools for addressing these goals. To specify the instructional
methods completely, we need to configure these tools and assemble
them into a curriculum. The discussion above suggests that the
curriculum for troubleshooting training should be organized
around a few major types of activities that reflect advancing
levels of knowledge and skill.

68



(1) System Behavior and Structure

The first level of understanding to be attained by students is
that of a mental model of the device. Activities promoting such
attainment include exercises with both the qualitative and
physical simulations within a framework of the structural
breakdown of the aircraft (Figure 5.3). Students at this stage will
master fundamental qualitative reasoning tasks such as predicting
the behavior of individual components and determining the
implications of certain states of the equipment.

Exercises to be used in this phase of the curriculum are listed
in Section 5.2.1.2. To quote from that section,

1. Physical and Conceptual Structure. Students are shown
images of the physical equipment and asked to identify
individual components, their function, and their immediate
connections.

2. Causal Reasoning. Students are given information about all
inputs to a component or subsystem and required to predict
the state of the component or subsystem, its outputs under
normal operating conditions, and its outputs in each
possible fault mode.

3. Functional Reasoning (a). Students are shown some of the
inputs to an element of the device and asked how its other
inputs must be set in order to achieve a desired function or
state.

4. Functional Reasoning (b). Students are shown the actual
outputs and inputs to an element and asked to determine
whether or not the element is faulted.

5. Physical and conceptual appearance. Students are asked to
discriminate among component states on the basis of some
physical depiction of those states.

The exact sequence of these exercises should be designed to
reflect and convey the overall structure of the equipment. In the
typical case, where the equipment can be hierarchically
decomposed, the exercises can traverse this decomposition in a
depth-first fashion so that students learn to reason about a
subsystem immediately after learning to reason about each of its
components.

These exercises should also be implemented with a view to whole-
task training. Many if not all of them could be embedded in
mini-troubleshooting problems in order to illustrate the
application of qualitative reasoning to troubleshooting.

69



(2) System Function

A second phase of the curriculum should give students an
understanding of how components function, or fail to function,
together to meet the operational purposes of the aircraft. Put
differently, students in this phase should learn:

o what the system and its components are supposed to do,

o how to make the system fulfill those functions, and

o how to determine when the system is not meeting its
functions.

Activities at this level are organized around the functional
breakdown of the aircraft, illustrated schematically in Figure
5.4. By making this structure evident in instruction, students
should be able to induce the basic operations of the system and
how its components are involved in those operations.

Activities addressing system function are operational in nature.
Some exercises provide guided practice procedures such as in
starting the engines and in elementary repair and observations of
the type listed in Table 5.1 and Table 5.3. Practice should begin
with the qualitative simulation alone, pass to a stage with joint
qualitative and physical simulations, and end with the physical
simulation alone. Each subphase should begin with demonstration
of the procedure followed by practice.

The order of presentation of different procedures in this phase
should conform to a depth-first traversal of the functional
breakdown, and, more importantly to the subgoal structure of the
procedures themselves. Specifically, the GOMS representation of
each procedure breaks the procedure into small manageable
subgoals that can be mastered individually. The curriculum should
obviously take advantage of this feature of the representation.

A second type of activity in this phase should teach the students
the tests or observations needed to check the functionality of
each component of the aircraft. Several types of exercises can be
used to effect such teaching.

o Students can participate in qualitative reasoning exercises
that address the test procedures. For example, they might be
asked to predict the behavior of the Right Fuel/Oxygen
Indicator in aircraft that have normal or faulted static
inverters.

o Students can practice observational procedures, such as
checking fuel flow in the overspeed governor, in the context
of testing the system's functionality. Exercises that place
the student in an apprenticeship role can be used
to implement this strategy.

70



o Students can be asked to both select and execute test or
observational procedures. For example, where a beginning
student would practice testing the AC bus by being informed
that the test involved checking Pin N in the engine ignition
and accessories disconnect plug, more advanced students
would practice the same operation by simply being instructed
to test the AC bus.

By the end of the second phase of training, students should have
many of the component skills of fault-tree based troubleshooting
procedures. In particular, they should know how to test any of
the aircraft's components and subsystems for normal functioning,
and they should have a good idea, from exposure to structures
like that of Figure 5.4, of the structure of the fault trees to
be used in troubleshooting.

(3) Troubleshooting Procedures

In the third phase, students should be introduced to fault-tree
interpretation and to the fault trees that define the set of
troubleshooting procedures to be learned. The activities that
address these topics are described in some detail above in (2)
Procedures Interpretation. Arranging these exercises into a
curriculum is not a difficult task. The following guidelines seem
reasonable in this respect.

o Every malfunction's fault tree should be covered first in a
depth-first traversal of the tree and then in a random
order.

o Initial exercises should provide explicit support for use of
the fault-tree interpretation schema (see Section 5.3.1.2)
This support can be withdrawn after practice with a few
malfunctions.

o The first exercises with each malfunction should rely
heavily on an explicit representation of the fault tree for
the malfunction. This support should be faded with advanced
practice.

o Exercises should begin first in the qualitative simulation.
As students master the structure of the fault tree, use of
the physical simulation can be phased in and support from
the qualitative simulation can be faded.

o Documentation that is normally available in the field should
be available on-line.

(4) Problem Solving

We have noted above the importance of teaching troubleshooting as
a problem-solving activity. In Section 5.3.1.3, Halff suggested
that problem-solving activities have a particular place whenever
fault-tree methods arrive at an impasse (Line 2.3.2.3 of Table

71



5.2). Although students in the trouble-shooting procedure phase
(Section 5.3.2.3) of the curriculum should be protected from such
impasses, students ready for this problem-solving level should
be presented with impasses as opportunities to practice problem

lving.

Section 5.2 contains Halff's propczals for instruction in
troubleshooting as problem solving. The following is a list of
suggested exercises taken from that paper.

1. Troubleshooting. Students are provided with a conceptual
simulation containing a single faulted component. At each
point in the troubleshooting exercise, students would choose
an action and exhibit the consequences of the action. The
exercise could take many forms. For example, students might
be prompted to select actions diagnostic of a particular
fault or sets of faults. Other forms of troubleshooting
practice can be found in Brown, Burton, and de Kleer (1982).

2. Reverse Troubleshooting. Students are told that a
particular component is faulted. They are required to
predict the results of certain observations based on this
information. Causal reasoning patterns can be elicited or
exhibited during the course of these exercises.

3. Case Studies. Students could be given real case studies of
intractable troubleshooting problems. Computer support could
be provided for collaborative problem solving and for peer
and expert critiques of proposed solutions.

A typical troubleshooting curriculum might have the following
lessons.

1. A set of reverse troubleshooting and troubleshooting
problems that cover the major topological patterns found in
the device. Each pattern would be addressed first by reverse
troubleshooting exercises and then by troubleshooting
exercises.

2. A set of reverse troubleshooting and troubleshooLing
problems that cover the equipment's mission-critical faults
and their nearest neighbor. Students would first reverse
troubleshoot each major fault and its neighbor and then
troubleshoot the pair.

3. A repetition of Lesson 1 without reverse troubleshooting.

4. A repetition of Lesson 2 without reverse troubleshooting.

5. A mixture of Lessons 3 and 4.

Reverse troubleshooting in this curriculum plays the role of a
cognitive support which is gradually faded from the curriculum.

72



Other cognitive supports (e.g. external hypothesis lists) should

also be withdrawn in the last lesson.

What needs to be added to this description is:

o that these exercises should be introduced only in the
context of an impasse in the fault-tree procedure, when, for
example, all components under "Fuel" in Figure 5.2 function
properly, but fuel is still not evident in the exhaust;

o that the exercises should be introduced only when the
student has mastered the fault tree for the malfunction, and

o that thexercises should be conducted in the presence of a
tutor working the problem under the same set of initial
conditions as is the student.

5.3.4 Summary

The central contribution of Section 5.3 is the instructional
analysis of troubleshooting procedures based on fault trees. The
general approach suggested here to the teaching of fault-tree
based troubleshooting can be summarized with the following
points.

A fault-tree based troubleshooting procedure consists of a
hierarchical fault tree, a general schema for interpreting the
tree, and the elementary observation and repair procedures needed
to implement the procedure. All three aspects of the procedure
need to be mastered by students.

Training should begin, not with the procedure itself, but rather
with instruction oriented to the structure and behavior of the
equipment and its components. This initial instruction
establishes the student's mental model and can be implemented
using qualitative and physical simulations of the equipment.

Training on elementary observation and repair procedures should
be introduced in conjunction with instruction on device
functionality. This instruction should teach students how the
cquipment is used, how components operate together to achieve the
functions of the equipment, and how to determine when the device
or any of its components is not functioning properly.

Training on the use of fault trees shculd be based on guided
practice. Iiritially the interpretation schema and the trees
shoul2 be made explicit in the instruction. As students advance,
this explicit support can be withdrawn.

When students are ready to master troubleshooting as problem
solving, practice opportunities should be provided within the
context of fault-tree procedures. In particular each problem-

73



solving exercise should begin by driving the fault tree procedure
to an impasse in which a component malfunction cannot be traced
to a malfunction in any of its subcomponents.

74



5.4 Computer-Based Maintenance Traininq

Halff thinks of an authoring system in terms of the authoring
functions provided to the SME and the instructional products
produced by the system. The instructional products are built up
from transactions.

5.4.1 Authoring Functions

Authors should be provided with three editors. An equipment
editor would be used to create simulated equipment. A procedure
editor would be used to specify all of the operating and
maintenance procedures to be taught. An Instfuction editor would
be used to create exercises and lessons.

5.4.1.1 The Equipment Editor

The equipment editor should be nothing more than RAPIDS, at least
in its first version. RAPIDS works and works well although t--]ee-
is no explicit distinction between physical and qualitative
simulation, and there is no explicit requirement for a structural
breakdown of the equipment. RAPIDS permits the development of
these features.

5.4.1.2 The Procedure Editor

The author uses the procedure editor to specify all main
operations of the equipment (see Figure 5.5 in Section 5.3), and,
in the course of so doing, specify the maintenance procedures
(including fault trees) that make up the course content. The
procedure editor would normally be used in conjunction with
simulation created by the equipment editor. The main stages of
specifying the operations are as follows:

1. List the target operations of the equipment, for example,
ground start of the T-38. Then, for each operation, execute
the following steps.

2. Create a GOMS procedure (called the operating procedure) for
executing the operation. This procedure would be created
with a GOMS editor that worked in conjunction with a
simulation of the equipment.

3. Specify all of the malfunctions that might occur in the
course of the operation. These malfunctions would be
specified in terms of observable states of the equipment
simulation at particular points in the operation.

4. Specify all of the faults that could produce each of the
malfunctions identified in Step 3.

75



(Steps 3 and 4 could be partially automated by running the
operating procedure under all possible fault conditions of
the device.

5. Write fault trees for each of the malfunctions identified in
Step 3.

6. Use the GOMS editor to formulate the procedures needed to
implement the fault trees created in Step 5. (See Section
5.3.2.2 and Tables 5.1 and 5.3 in Section 5.3).

The computational machinery needed to implement the procedure
editor will consist of structure editors, text editors, and list
editors.

A GOMS editor, in itself, would constitute a signal contribution
to RAPIDS. The main components of the GOMS editor are:

o a recorder that would watch the SME operate the simulation
and record the steps taken using the GOMS formalism;

o a control-structure editor that allows the SME to complete
GOMS If, Decide, and Goto operators, and;

o a working-memory model that tracks the contents of working
memory from step to step in the procedure.

5.4.1.3 The Instruction Editor

The instruction editor is the SME's interface to the
instructional products, described next. Neede;2d for this purpose
is a facility for configuring transactions and a facility for
constructing curricula.

The TRX editor permits the SME/ID to configure transactions with
two sorts of data: (1) the material to be taught and (2)
parameters that govern instruction. For example, Merrill's
"parts" transaction must be informed of the system and its parts
(the material to be taught) and the procedure used to teach these
parts (the instructional parameters). An editor for configuring
a transaction should allow the author to set both sets of
parameters. It should also permit the author to systematically
sample some parameters while constraining others.

The curriculum editor permits the author to assemble either
author-specified or system-generated transactions into a
curriculum; a bookkeeping system that represents the division of
a canonical curriculum into phases and lessons, and permits the
author to fill the slots in this curriculum.

5.4.2 Transactions

Curricula are to be constructed out of building blocks called
transactions. (Transaction shells can be viewed as building-

76



block factories.) Here is a list of transactions derived from

Sections 5.2 and 5.3.

System Behavior and Structure

1. Physical and Conceptual Structure. Students are shown
images of the physical equipment and asked to identify
individual components, their function, and their immediate
connections.

2. Causal Reasoning. Students are given information about all
inputs to a component or subsystem and required to predict
the state of the component or subsystem, its outputs under
normal operating conditions, and its outputs in each
possible fault mode.

3. Functional Reasoning (a). Students are shown some of the
inputs to an element of the device and asked how its other
input-s must be set in order-to- achieve a desired function or
state.

4. Functional Reasoning (b). Students are shown the actual
outputs and inputs to an element and asked to determine
whether or not the element is faulted.

5. Physical and Conceptual Appearance. Students are asked to
discriminate among component 3tates on the basis of some
physical depiction of those states.

System Operation and Function

1. System Operation. Students practice all of the operating
procedures in an unfaulted environment.

2. Repair Procedures. Students practice repair of particular
faults using procedures such as those given in Table 1 of
TTP.

3. Observation Procedures. Students practice the observations
needed in the course of troubleshooting. See Table 3 of TTP
for examples.

4. Functionality Testing (a). Students predict the results of
functionality checks in normal and faulted conditions.

5. Functionality Testing (b). Students practice choosing a
functionality test for particular subsystems and components.

6. Functionality Testing (c). Students practice testing the
functionality of particular subsystems and components (i.e.,
a combination of 5 and 3 above).

Three general considerations drive the design of each of these
transactions. First, all of these trnsactions should be taught

77



in an apprenticeship paradigm where the student is assisting a
computer-based master technician. Thus, the practice called for
in any transaction is provided in the context of a specific
operational or maintenance task.

Second, procedure practice, such as that called for in
Transactions 1-3, should be generated by formalizing epitome
theory so that it applies to GOMS-modeled procedures. A single
shell (which Halff calls the E-G Procedure Shell) might be
designed to generate all of these transactions. Halff believes
the result would look very much like VanLehn's step theory.

Third, all of these transactions are configurable as to the level
of instructional support to be provided. In particular,

o the practice environment can inciude views from the

qualitative model, and/or the physical model;

o guidance and feedback can be selectively-provided;

o hidden or intermediate results (working memory in the case
of GOMS procedures) can be explicitly shown;

o the control structure of the procedure can be shown and
traced during execution.

Troubleshooting

1. Fault Tree Interpretation. Students practice the general
interpretation of fault trees. The transaction shell for
this transaction might well be a specialization of the E-G
Procedure Shell mentioned above.

2. Malfunction-Specific Troubleshooting Procedures. Students
practice troubleshooting the malfunctions identified in Step
3 of the process described above in the Procedure Editor
section.

3. Troubleshooting Problems. Students practice troubleshooting
faults not covered by any defined fault trees. A single
exercise in this transaction should have the following
steps:

a. Drive the troubleshooting procedure to an impasse
(Section 5.2, Table 5.2, Line 2.3.2.3).

b. Use the IMTS Profile-based intelligent tutor to guide
the student in completing the fault-isolation process.

These three transactions might be generated with successive
modifications of the same shell. The configuration parameters of
this shell include the following:

78



0 Explicit support can be provided for the fault-tree
interpretation process.

o The fault tree itself (appropriately depicted) can be made
available to the student during the course of the exercise.

o Any of the configuration parameters identified above in the
System Operation and Function section apply here as well.

0 Faults requiring problem solving (i.e., not in any fault
tree) can be excluded or included.

0 Varyin 4ndegrees of support, guidance, and feedback can be
provided during the problem-solving process.

5.4.3 Instructional Support

The transactions described above ignore many of the aspects of
instruction that contribute to coherence and motivation.
Mechanisms are needed for orienting students to the curriculum,
to individual lessons, and to special problems. Halff mentioned
some of these functions briefly in Section 5.2.

5.4.4 Instructional Products

The instructional products of the authoring system are computer-
based maintenance-training curricula. These curricula consist
mainly of sequences of the transactions described above. In
Sections 5.2 and 5.3, Halff describes the main constraints on
these curricula, but does not describe how the authoring system
can turn this list of constraints into a complete curriculum.

At this point, only three approaches suggest themselves to Halff,
none of them ideal.

First, SMEs could construct curricula by hand. Each exercise
would be constructed by choosing a transaction shell, selecting
the subject matter needed to configure the shell, and setting the
instructional parameters of the shell. This method could be
supported with on-line documentation and bookkeeping to promote
systematic and effective curriculum construction, but it would
still impose an incredible burden on authors of new courseware.

A second approach would use the sequential constraints defined in
Sections 5.2 and 5.3 to generate exhaustive curricula containing
every possible transaction. SMEs could then select transactions
from the complete set to form a realistic curricula. Since the
exhaustive curriculum would be generated from explicit
constraints, the system could warn authors of any constraints
violated in the curricula that they construct.

A third approach is to develop a programming language that would
provide access to transaction shells. This language, properly
designed, could be used to define curricula in much the same way

79



as conventional languages do now (including that provided with
RAPIDS). It could also be used to design individualized
instruction (as opposed to a fixed curriculum) and could be used
to implement the first two approaches described above.
The AIDA specification might well call for the development of all

three of these approaches.

5.4.5 Other Considerations

What is described above is far less than a complete authoring
system. Halff has limited himself to those central components
that implement the concepts in Sections 5.2 and 5.3, two
components being critical.

o On-line help is needed to guide instructional development
and provide assistance on system functions.

o A library is needed for retention and reuse of any and all
products of the authoring system. These products may range
from individual component models to complete curriculum.
Obviously, an appropriate database should be used to
organize the library.

General design considerations include:

o Authors should be able to work in parallel or multiple
aspects of a course whenever possible. The system should
propagate constraints from one aspect of the course to
others and should make available only those options that
apply at any particular time.

o Authors should be able to try out any product or subproduct
of the authoring process, including the simulation,
procedures, and transactions.

80



5.5 Analysis of Maintenance Tasks*

5.5.1 Introduction

The first step in the design of any instruction is a task
analysis to determine what should be taught. From the cognitive
science information processing approach, it is argued that a
behavioral analysis is not sufficient. A cognitive analysis
needs to be performed because education and training should take
into account the cognitive processes involved in learning and
performance, not just the objective behaviors required (See
Glazer & Bassock; 1989, as well as several chapters in Psotka,
-Massey, & Mutter, 1988 for a recent discussion of this issue).

In Section 5.2 Halff identified three types of cognitive
structures important to the maintenance enterprise: the execution
of procedures, a mental model of the equipment, and fault
isolation skills. Thus, an adequate cognitive task analysis
should identify the information and skills that must be imparted
to the student to support the acquisition of these c6gnitive
structures. Only the procedures and mental models are addressed
in this section.

The walk-through of generating with AIDA, training materials on
the T-38A aircraft, is partly based on two cognitive task
analyses performed by David Kieras of the University of Michigan.
The first, presented in Kieras (1988b), centered on the issue of
what mental model should be taught concerning the engine ignition
system of the T38; it was used in constructing the example
training materials in the RAPIDS II Authoring Manual. The
second, generated by a subcontract to this effort, is a cognitive
task analysis of the troubleshooting procedures for the fault of
"no start" in the T38 engine.

While the current walk-through is based in part on Kieras's
cognitive task analysis, little attention has been paid to date
to specifying the nature of the task analysis in the AIDA system.
The primary focus of this paper is to explore the task analysis
conducted by Kieras as a basis for specifying the task analysis
requirements in an AIDA designed for maintenance training. The
questions to be considered include:

- What is the nature of the cognitive task analysis?
- How detailed does the analysis need to be?
- How should that task analysis be represented in AIDA?
- How do you map the representation onto the instructional

materials?
- What kinds of aids and/or guidance could be provided to an

instructional designer, who might also a be subject matter

* This secti.n was prepared by Martha C. Polson, Univ. of
Colorado, and David Kieras, Univ. of Michigan.

81



expert (SME), but a novice instructional designer to perform
the task analysis?

This section does not attempt to provide complete or final
answers to the above questions, but primarily strives to spell
out the issues that need to be addressed and to list some of the
relevant literature.

5.5.2 Cognitive Analysis of Procedures

The analysis of the troubleshooting procedures done by Kieras is
a particular type of analysis known as a GOMS (Goals, Operators,
Methods, and Selection Rules) analysis, which derives from the
Cognitive Complexity Theory (CCT) of Kieras and Polson, (Bovair,
Kieras, & Polson, 1990) and has as its intellectual predecessor
the work of Card, Moran and Newell, (Card et al., 1983). This
approach entails analyzing the tasks to be accomplished into a
meaningful series of goals and subgoals. Each goal to be
accomplished is recursively broken into a series of subgoals
until a level is reached in which accomplishing the subgoal can
be achieved by either a primitive level motor or a mental act.
Such a simple act for the T-38 start system would be to press the
left start button or apply the shorting stick.

Goals represent a person's intention to perform a task, subtask,
or single cognitive or physical operation. Goals are organized
into structures of interrelated goals that sequence methods and
operations. An example goal from troubleshooting the engine
would be to determ.ne if the ignition system is functioning
correctly.

Operations characterize elementary physical actions (e.g.,
pressing a button, setting a switch, or attaching a probe) and
cognitive or mental operations (e.g., perceptual operations,
retrieving an item from memory, or reading a voltage and storing
it in working memory). The most primitive mental operations are
actions such as receiving perceptual information, making a basic
decision, depositing facts from working memory into long term
memory, retrieving facts from long term memory and activating
them in working memory, forming a goal, etc.

Methods generate sequences of operations that accomplish
specific goals or subgoals. The goal structure of a method
characterizes its internal organization and control structure.
The GOMS model assumes that execution of a task or procedure
involves decomposition of the task into a series of subtasks. A
skilled person executing a procedure has effective methods for
each subtask. A novice may have less efficient methods.
Accomplishing a task involves executing the series of specialized
methods that perform each subtask. There are several kinds of
methods. High-level methods decompose the initial task into a
sequence of subtasks. Intermediate-level methods describe the
sequence of functions necessary to complete a subtask. Low-level

82



methods generate the actual user actions necessary to perform a
function.

A person's knowledge of how to do a complex task is a mixture of
task-specific information - the high-level methods - and system-
specific knowledge - the low-level methods. A high-level method
for troubleshooting the T-38 engine would be:

- check out the starting operations of the engine.

Intermediate methods which are part of the high-level method for
checking out the symptom of no-start would include:

- check for bad ignition
- check for fuel flow problem
- check for defective starting system
- check for altitude-limitation problem

Low leve.L-methods for the intermediate- methods include:

For checking for bad ignition:

apply shorting stick to after burner plug
check the ENGINE IGNITION, R AUTOSYN INST & IGNITION
INVERTER circuit breakers for proper engagement

For fuel flow problem:

- check fuel system circuit breakers for proper engagement

Selection rules determine which method to select. In an expert,
selection rules are compiled pieces of problem-solving knowledge.
The selection rule must state the appropriate context for using
any given method. If there is more than one method, the rule must
state when each method is appropriate.

In summary, the GOMS model characterizes the user's knowledge as
a collection of hierarchically organized methods and associated
goal structures that sequence methods and operations. The
knowledge captured in the GOMS representation describes both
general knowledge of how the task is to be decomposed and
specific information on how to execute the methods required to
complete the task.

One of the greatest advantages of this approach is that Kieras
has prepared a detailed guide for doing task analysis of
procedures using the GOMS methodology (Kieras, 1988a). He has
also defined a language call (NGOMSL) or "Natural" GOMS Language
which is relatively easy to read and write. Kieras' guide also
includes procedures for doing a GOMS analysis by using a
breadth-first expansion of methods rather than trying to describe
goal structures directly.

83



5.5.3 Mental Models Analysis

Halff (1990) summarized the importance, for maintenance training,
of imparting correct and adequate mental models of the equipment.
Kieras (1988b, 1990) pointed out that the most accurate way of
determining the mental model to be taught would be to do a
complete cognitive simulation. However, realizing that this is
not always a feasible approach, Kieras (1988b) spelled out some
heuristics that could be used to determine the mental model that
should be taught in lieu of a complete simulation. The heuristics
are:

- relevance to task goals
- accessibility to use
- critical Frocedures and inference strategies

All of these heuristics involve doing an analysis equivalent to a
GOMS analysis of the task at hand. In addition two other
hierarchical cognitive analyses are required,--an explanation
hierarchy and a hierarchical decomposition of the device
structure and mechanisms.

The first heuristic, relevance to task goals, states that
explanations should be given only if they are relevant to a task
goal. To carry out this heuristic, an explanation hierarchy is
constructed. The first pass at what goes into this hierarchy can
be what is in the existing documentation. The goals of the GOMS
analysis are then mapped to the explanation hierarchy, which will
reveal any missing explanatory information as well as any
extraneous material which need not be taught. Constructing the
explanation hierarchy is not really extraneous work since this
material is needed for the instructional material. For instance
this is the material that goes into the message windows in the
RAPIDS system.

The second heuristic, accessibility to use, implies that the
device illustration or simulation which is presented to the
technician should not contain parts which he cannot access.

Again this involves mapping the GOMS analysis, but onto the
device description, rather than the explanation hierarchy.

The third heuristic says that the GOMS analysis should be
examined for procedures that will be difficult to learn due to
what appears to be arbitrary content. These procedures should
then be analyzed to determine what inferences would need to be
made in order for the content to appear logical rather than
arbitrary. The information necessary to make those inferences
should then be made explicit in the training materials. This
information will need to be included either in the explanation
hierarchy or the device description.

84



5.5.4 Level of Detail of the Task Analysis

Kieras (Kieras, 1990) as well as Anderson (Anderson, Boyle,
Corbett, & Lewis, 1990) has advocated doing a complete cognitive
simulation of a given task which is based on a cognitive analysis
of the task in order to determine the content of instructional
materials and training procedures. The advantage of a simulation
is that it insures that the analysis is complete. Also, as
Kieras and Polson (Bovair, Kieras & Polson, 1990) have shown, a
tremendous amount of information about the task at hand can be
gained if the analysis is completed down to the level of simple
operations or operators for most aspects of the task. The
information that can be derived from-the-simulation includes the
time to learn the task, the amount of transfer of training from
one procedure to another, and the execution time for various
procedures or methods. The disadvantage is that a complete
cognitive simulation requires a tremendous amount of effort to
implement, even after the cognitive analysis of the content of
the instruction -is complete. However, as can be-seen from the
GOMS analysis of Kieras, the use of the GOMS method for cognitive
analysis of procedures does not require that it be followed
through by a complete simulation or that all tasks be analyzed to
the level of simple operators.

How low the level of analysis needs to be for the procedures for
any given instructional package, will be determined in large part
by the level of expertise of the trainees. For instance, for the
problem of No-Start with the Probable Cause of no ignition or
poor ignition, the first step is to check ignitor plugs for
firing and proper spark rate. This step is followed by a note
that the proper spark rate is 3 sparks in 2 seconds (See Figure
5.3). Presumably this is as low as the analysis needs to go. In
terms of a computer-based instructional system, this detail could
be represented by clicking on a designated ignitor plug icon
handle (handles are mouse sensitive areas) which will give its
status. If the status had been set to bad, then the simulation
would continue with the procedure (the next step, if the ignitor
plugs do not fire, is to check the static inverter). The actual
motor and perceptual operations necessary in checking the spark
rates would not have to be explicitly laid out. However, for a
novice technician, some of the steps in the T-38 troubleshooting
manual, such as "remove the engine" do seem rather high level and
may need to be broken down into subtasks. Anderson (Anderson,
Boyle, Farrell, & Reiser, 1984) refers to this subtasking as
adjusting the grain level of the instruction.

As a way of decreasing the workload of authoring the simulation
and/or doing the GOMS analysis for a given domain, a library of
generic low-level procedures such as testing ignitor plugs (as
well as their corresponding simulations) could be provided in an
AIDA configured for that domain. In fact this library could
include a set of separate modules that are given as screening
tests to insure that these low-level methods or methods which

occur in many different troubleshooting situations, such as

85



"remove the engine" are learned before entering simulations which
are higher level or aimed at specific problems. A problem for a
generic system, as opposed to a system written explicitly for a
domain such as electronic maintenance or airplane maintenance, is
knowing what skills and knowledge can be assumed. If the domain
is known, there is probably a reasonably finite set of testing
skills, mechanical procedures, etc. that are known to be required
to perform the task. For instance if the student is said to be at
a particular skill level in a particular field, is there a list
of basic procedures that the student can be expected to know and
which would not h(dve to represented in detail in a particular
domain?

5.5.5 Representing The Task Analysis

In the CCT approach of Kieras and Polson, a simple production
system is used to implement the results of a NGOMSL analysis into
a working simulation. The device knowledge necessary to carry
out the simulation is represented in a Generalized Transition--
Network (GTN)2 (Kieras & Polson, 1985). However a number of
representation schemes are possible. A scheme used by Anderson
in his PUPS system is a candidate representation that is probably
compatible with the Transaction Shell representation discussed by
Merrill (Jones, Li, & Merrill, 1990). Anderson's PUPS
(Penultimate Production Systems) theory holds that procedures are
acquired by compiling declarative knowledge (Anderson et. al.,
1990). The declarative knowledgk necessary for compiling the
procedures which model the task performance is represented in
schema-based structures called PUPS structures. These schema
include slots for the function of the entity being represented by
the schema, a form slot for the physical appearance of the
entity, and a precondition slot which state the preconditions
necessary for the function to be achieved (Anderson et. al.,
1990). In compiling the productions which are the basis of
procedural knowledge, the function slot maps to the goal to be
achieved which will require knowledge of the entity represented;
the preconditions slot maps onto the condition of the condition-
action pair in a production. The form slot in the PUPS tutors
holds the form of the current action to be carried out such as a
particular LISP function. A similar scheme could be used for
representing the GOMS analysis. Merrill has proposed an activity
frame that has paths or sequences of actions. This frame could
also have slots for the function, the operators, and the outcome.
The values for these slots could probably be automatically
generated from a NGOMSL analysis just as it is technically
feasible to generate a running production rule-based simulation
from a NGOMSL analysis.

The explanation hierarchy can be represented in numerous
different ways. It appears that the representation scheme already
proposed by Merrill for AIDA (Jones et. al., in press) would be
adequate to represent the explanation hierarchy. The device
knowledge will ultimately be represented in the graphical
simulation. The initial representation may be a hierarchical

86



listing of the names of the devize components or perhaps a block
diagram, which car. serve as a guide for constructing the sketch
which, in turn, will guide the constructior. of the graphical
simulation.

5.5.6 Mapping the Content of GOAS and Mental Model Analysis To the
Device Simulation

Following Kieras's approach will yield three hierarchically
arranged representations. The GOMS analysis will spell out the
steps to be followed in carrying out procedures for operating,
calibrating, troubiesh oting, or repairing the equipment starting

_with the highest level goals and methods. The-e are succesively
decomposed to lower-level subgoals and methods. The GOMS
analysis will also identify any device components that need to be
included in the representation of the device structure as well as
the declarative knowledge that needs to be conveyed about them --
function, location, name, etc. The explanation hierarchy will
contain the causal and declarat.ve knowledge necessary to execute
the procedures, support inferences necessary for constructing a
mental model of the equipment, and define the attributes and
rules of objects, etc.

The device simulation in a system such as RAPIDS contains a
graphic representation of the device structure and qualitative
simulations of its functioning. Authoring in the RAPIDS II
simulation starts with a temporary sketch which is derived from
the prior cognitive analysis, particularly the mental model
analysis which entails inter-relating the GOMS analysis, the
explanation hierarchy and the hierarchical device structure
decomposition. However, the construction of the simulation is
done in bottom-up fashion starting with the lowest level of the
device hierarchy. The lowest level objects are the bottom items
in the device structure analysis. These correspond to the
objects manipulated by the lowest level operators in the GOMS
model. For this reason, it is not feasible to develop the
simulation and do the GOMS analysis and explanation hierarchy in
parallel, which might be tempting to the novice instructional
designer, who wants to get on with "real" work. The analyses
have to be complete before the construction of the simuiation can
begin.

The behavior of the objects are defined by attribute handles and
rules. These aspects of the simulation are drawn from the
explanation hierarchy. Once the basic simulation is complete,
procedures which are carried out on the device are authored by
carrying out a sequence of actions which correspond to actions
spelled out to accomplish the goals in the GOMS analysis. The
individual actions correspond to the operators. What is missing
from the simulation representation is any indication of the
function or purpose, i.e. goals, of the procedure which have to
be represented in the dialogue windows.

87



5.5.7 Aids for Doing a Cognitive Analysis

As mentioned in Polson & Polson (1990) it should not be difficult
to implement a shell which can guide a novice in doing a GOMS
analysis of a particular task using either the documentation at
hand or the knowledge of a subject matter expert. The shell can
be based on the previous work of Kieras (Kieras, 1988a) who has
invested a large amount of time in writing a manual on how to do
GOMS analysis and in developing an English-like language for
representing the analysis. Included in the guide are many rules
of thumb which could be implemented in a knowledge-based shell to
give guidance to the SME or instructional designer. For instance,
Kieras recommends that a given method contain no more than five
steps. If there is more than that, some may need to be grouped
into a higher level method. There is also guidance on creating
generic methods to represent methods which occur often in
slightly different context. For instance, rather than a method
for checking each specific circuit breaker, there would be a
check circuit breaker method, which has as a variable which
circuit breaker to check. This variable information is held in
working memory.

This shell could do much of the bookkeeping necessary for a GOMS
analysis such as creating a list of methods and information
identified by the methods that need either already to be known or
taught, such as their location, etc. A more sophisticated shell
could automatically map the results of the analysis into the
knowledge representation system. A less sophisticated system
would create a paper guide for what should be hand entered into
the representation system. Similar shells could also be created
for the explanation hierarchy and the device structure and
function knowledge. Explicit guidelines for doing such analyses
are not yet available, however.

How difficult a given task analysis will be, and the type of
guidance that will be needed, will depend to a large part on the
nature of the documentation. In some T.O.s the steps in carrying
out a procedure are spelled out in excruciating detail. However,
the T.O. lacks any hint of a goal structure or any supporting
material for creating a mental model which could guide the
performance of the task. The problem in doing a cognitive
analysis of the task would be providing the information in the
form of the higher level goals and methods and the explanation
hierarchy. It could be noted that many T.O.s could benefit from
the heuristic of presenting a general method and noting with
variables to which segments of the equipment that it would apply.

Other T.O.s, notably Technical Order lT-38A-2-6-2 for engine
conditioning of the T-38A aircraft, go to the other extreme in
that single steps are at the level of "remove the engine".
However, the general goal structure is represented in the
"trouble" and "probable cause" headers which are always visible.

88



Conclusions

Polson recommends that the task analysis approach developed by
Kieras and his colleagues be adopted for the task analysis module
of AIDA (KARS). This includes a GOMS analysis for the procedural
aspects of the task and performing a mental model analysis by way
of developing an explanation hierarchy and a decomposition of
device structure and function and relating them to the GOMS
analysis. Developing shells to aid in the cognitive task analysis
is technically feasible. However, a great deal of care will need
to be taken to be sure that the shells are implemented in such a
way that the instructional designer perceives them as an aid, not
as a hindrance Dr-an extraneous useless requirement.

89



5.6 XAIDA Functions Applied to the T-38 Engine Starting System*

Reigeluth visualized 14 steps or functions XAIDA would perform to
guide the instructional designer.

5.6.1 Confirm Sequencing Strategy

Input: An expert (SME) in the maintenance of the T-38 engine
starting system.

Process: XAIDA prompts the instructional designer to interview
the SME to find out whether the task can be easily proceduralized.

Output: Confirmation that the task is procedural; Selection of
the template for "procedure" task analysis.

5.6.2 Identify a "Just Simple Enough" Class of Cases

Input: Job situation; Several task experts; Several marginal
target learners (lowest entering ability) or an instructor very
familiar with their entry-level abilities; Information about the
environment and learners to decide on the optimal size of a
module.

Process:
o XAIDA prompts the designer to have the SME think about what

makes some "engine starting system maintenance" cases easier
than others, and then to think of the simplest class of
cases the SME ever performed.

o It then prompts the designer to develop (with an experienced
instructor) an estimate as to how many hours of intensive
learning time it would take a target learner to learn to
perform that simplest class of cases as an expert would
perform it (including time to develop all necessary mental
models).

o XAIDA prompts the designer to decide how long a module of a
training course should be (approx. 3-10 hours of learning
time). If the amount of time required is too long or too
short for a single module, XAIDA prompts the designer and
task expert to further simplify or expand the simplest class
of cases.

o Then XAIDA prompts the designer and task expert to list the
conditions that make the simplest class simpler than the
most complex class of cases.

Output: Identification of simplest class of cases and its
simplifying conditions:

* This section was prepared by Charles M. Reigeluth, Indiana
University.

90



o Simplest class: Restart left engine when right engine is
running.

o Simplifying conditions: Right engine already running (no
need for power connections), Functional testing (no exterior
or interior inspections needed), No engine testing needed,
No troubleshooting needed, No emergency procedures
needed, ...

5.6.3 Identify Progressively More Complex Classes of Cases (Can

be done after 4)

Input: Simplifying conditions (output of Function 2).

Process: Rank order the simplifying conditions on the basis of
how important and representative of the whole task its
corresponding class of cases is.

Output: A simple-to-complex sequence of classes of cases for the
task:

o Start right engine when plane is on ground (requires power
hook-ups).

0 Restart engine after maintenance (requires interior and
exterior inspections).

o Engine problems--diagnosis [Section IV): operating limits,
instrument tolerance, ... (requires diagnosis procedures).

o Engine maintenance testing [Section V] (requires operating
tests and inspections).

0 Engine troubleshooting (Section VI]: No start, slow start,
RPM hang-up, hot start (requires troubleshooting
procedures).

0 Engine problems--emergencies: fire, overtemperature,
overspeed, smoke/fumes, oil system, generator, hydraulic
system, compressor stall, engine flameout (requires
emergency procedures).

5.6.4 Conduct Task Analysis on Each Class of Cases

Input: Output of Functions 2 and 3; Job situation; Several task
experts; Several marginal target learners (lowest entering
ability) or an instructor very familiar with their entry-level
abilities.

Process: For each class of cases, XAIDA presents templates for
the designer to fill in while interviewing the SME.

o There is a device template which prompts the designer to
input a diagram of each device (or each variation of a

91



device) operated upon in performance of the task for the
simplest class of cases.

o Then XAIDA prompts the designer to identify (from the SME)
the alternative procedures that an expert would use to
perform the simplest class of cases, and to input a label
for each. (In some situations there may be only one
alternative.)

o Then XAIDA sets up a procedure template for each alternative
procedure and prompts the designer to conduct a procedural
task analysis with the SME) to fill in the template. This
analysis identifies all steps (at description entry level)
in each alternative procedure, in the order in which they
need to be performed, along with the objects (or parts of
devices) that are acted upon in each step of the procedure
and the tools that are used in performing each step.

o Using the results of the procedure analysis, XAIDA generates
kinds taxonomies and parts taxonomies for the objects and
tools, using appropriate templates. The SME is asked to
modify and expand them as appropriate. It also develops a
graphic physical model of each device, by asking the SME to
label each of the parts (objects) on the diagrams entered
earlier.

0 There is a functional model template (referred to by Henry
Halff as a conceptual model) which prompts the SME to create
a schematic representation of how each device works. It can
also be applied to tools when appropriate.

0 XAIDA prompts the designer on how to confirm the results of
the analysis with other SMEs and designer observation of the
task.

Output: A procedural model for each alternative procedure, kinds
and parts taxonomies for all objects and tools, and a physical
model and a functional model for each device (and each tool as
appropriate), all validated by several SMEs.

For simplest class: Restart left engine when right engine is
running:

o Procedural model [2-6]: 1) Clear danger areas; 2) Signal
ground crewman to apply external air; 3) Push engine start
button momentarily; 4) Advance throttle to idle at 14% min.
RPM; 5) Check ... ; 6) ... ; 7) ....

o Taxonomies: Certain kinds of instruments and controls in
cockpit (only those that will be used during the procedure).

92



o Physical model for each device: Cut-away drawing of parts
of airplane the learner will be using in the simplest class
of cases.

o Functional model for each device: Schematic drawing
(preferably dynamic) of parts of airplane the learner will
be using in the simplest class of cases.

5.6.5 Design the Sequence of Major Content

Input: Output of Function 4.

Process: XAIDA executes an algorithm which prepares an outline
of the sequence for teaching each class of cases. For a given
class of cases, one alternative procedure is picked for one kind
of device, and:

1. The functional model for that device comes first.

2. The physical model for that device (including all of its
parts or objects) comes next and is related to the
functional model.

3. The parts taxonomy for the device comes next (as a
synthesizer).

4. The procedural model comes next, with its entry-level steps
sequenced in the order in which they are performed on the
job, and each tool being listed just before it is needed in
the procedure.

5. The remaining taxonomies are presented as synthesizers.

The same kind of sequence is outlined for each additional device
and procedure for this class of cases, and for each subsequent
class of cases.

The designer and SME can modify the outline as they see fit.

Output: An outline of the sequence for all major content to be
taught for all classes of cases.

For simplest class of cases: Since there is only one functional
model, one physical model, one taxonomy, and one procedural
model, the sequence is as outlined under process above.

5.6.6 Analyze Supporting Content (Can be done after Function 3
or 4)

Input: Output of Function 3 or 4; Several SMEs; Several marginal
target learners or an instructor very familiar with their entry-
level abilities.

93



Process: For each class of cases, XAIDA prompts the designer and
SME to fill out slots for supporting content. The supporting
content includes primarily principles, z.titudes, information,
and prerequisite concepts and discriminations. The templates are
based on the Elaboration Theory's content analysis procedures,
including Gagne's hierarchical analysis, and on Merrill's recent
work. The designer can also modify any template for any given
step.

Output: List all supportinq content to be taught with each step
of the procedure. This includes learning prerequisites, relevant
principles and concepts, related attitudes and values, and useful
information.

5.6.7 Design a Content Sequence for Each Module

Input: Output of Function 5.

Process:

o Based on the earlier decision about how long a module should
be, XAIDA prompts the designer to allocate major content and
its related supporting content to modules, using estimates
from an experienced instructor as to how long it will take
to teach the content.

o Then XAIDA applies rules (asking questions of the designer
or task expert when necessary) to generate an outline for a
within-module sequence of content for each module.

The designer can modify the content allocation and module
sequences as needed.

Output: A clusterinQ of all major and supporting content into
instructional modules; An outline for the sequence of all content
within each module, including simulations that provide integrated
demonstrations or practice for the whole task or part-tasks.

5.6.8 Classify Micro Content

Input: Output of Function 5; Several SMEs.

Process:

o XAIDA presents default classifications for type of learning
(based on a few simple decision rules) for each piece of
content, and asks for confirmation from the SME (with the
help of the designer), based on that person's determination
of post-instructional requiremetts. It then requests
confirmation from a second SME, time permitting.

Output: Classification of type of learning for each piece of
content in each module.

94



5.6.9 Decide on a Strategy for Each Cluster of Content

Input: Output of Functions 6 and 7.

Process: For each module, decide what will be taught by
programmed tutorial, by drill and practice, and by simulation.
Some content may be taught by several strategies (e.g., the
procedural model may be taught via generality-demonstration-
practice-feedback in a tutorial flow fidelity of representation],
followed by additional demonstration-practice-feedback in a
simulation). Revise the sequence of content for the module, as
appropriate.

Output: Allocation of content to strategies, and revised
sequence of content.

5.6.10 Select Appropriate Template for Tactics for Each Piece or
Cluster of Content for Each Strategy

Input: Output of Function 8.

Process: XAIDA uses a simple matching algorithm based on type of
learning and type of strategy to select a "lean" template for
each piece or cluster of content.

Output: Allocation of a lean template to every piece or cluster
of content that has been selected for instruction.

5.6.11 Analyze Micro Content

Input: Output of Functions 5, 7, and 9; Several SMEs;
instructors familiar with the target learners.

Process:

o For each piece or cluster of content, XAIDA prompts the
designer to elicit learning difficulty levels (on, say, a
scale of 1-5) from an instructor familiar with the target
learners. It also requests confirmation from a second
instructor, time permitting. (Later, during the formative
evaluation, it will test and revise those estimates.)

o For each skill, XAIDA prompts the designer to elicit
dimensions of divergence and the important variations for
each dimension from the SME.

0 For each simulation, XAIDA prompts the designer to elicit a
scenario and a causal model (qualitative or quantitative) to
govern the computer's actions in the simulation.

o XAIDA also requests confirmation from a second SME, time
permitting.

95



5.6.12 Modify Micro Templates

Input: Outputs of Functions 9 and 10.

Process: XAIDA uses production rules to expand existing lean
templates (from Function 9), including slots for examples and
practice for each variation of each dimension of divergence; and
it uses decision rules to replace existing templates (from
Function 9) with more elaborate templates. It also uses matching
algorithms to select appropriate templates for the proctor's
guide for each template in the computer-based instruction.

Output: Expansions of the templates from Function 9, to include
slots for tactics appropriate for higher levels of difficulty,
and slots for examples and practice for each-variation of each
dimension of divergence; a template for a proctor's guide for
each module.

5.6.13 Develop Instructional System

Input: The output of Functions 6 and 11; Several task experts.

Process: XAIDA prompts the SME, under the watchful eye and
clarifications of the designer, to fill in all templates with
words and graphics, modifying any templates as they see fit.
XAIDA automatically programs and compiles the CBI and
automatically prints out the proctor's guide after each has been
reviewed and confirmed by other SMEs.

Output: A complete instructional system, including computer-
based instruction, tests, and proctor's guide.

5.6.14 Formatively Evaluate and Revise

Input: The output of Function 12; Several learners from the
target population; Several task experts.

Process: XAIDA collects data from learners from the target
population as they proceed through the instruction. It
identifies weak points in the instruction, and proposes solutions
for approval or modification by the designer and task experts.
All approved solutions are automatically made by XAIDA, the
program is recompiled, and the proctor's manual is reprinted.

Output: A revised instructional system that is proven effective.

96



SECTION 6. A GENERAL THEORY OF INSTRUCTIONAL DESIGN*

6.1 Introduction

This section describes Merrill's Second Generation Instructional
Design Theory. It combines the details of the instructional
design process with a walkthrough of an example based on
maintenance troubleshooting of the starting process for the T-38
dual engine jet aircraft.

The balance of this section is divided into four sections:

6.2 Knowledge analysis
6.3 Transaction authoring
6.4 Strategy analysis
6.5 Instructional delivery

These steps comprise the course development process. While
presented in order, it should be recognized that the steps are
actually performed iteratively, in a spiral fashion, with
important linkages and sharing of data between the steps.

6.2 Knowledge Analysis

Knowledge analysis is the step whereby knowledge of the domain
to be instructed (in this case, aircraft maintenance procedures)
is elicited from subject matter experts and represented in a
domain knowledge base which may be used by all other steps and
tools in the course development process. For this purpose
Merrill developed a domain-independent knowledge representation
model (Figure 6.1).

6.2.1 The Knowledge Representation Model

Knowledge is represented by objects Merrill calls frames; each
frame has an internal structure, and external links to other
frames. These external links are termed elaborations of the
frame. A set of elaborated frames linked together, containing
all the knowledge required for instruction leading to acquisition
of an integrated human performance, or enterprise, is called an
elaborated frame network.

There are three kinds of frames:

o entities, corresponding to some thing, for example a device,
object, person, creature, place, or symbol;

o activities, groups of related actions to be performed by the
learner; and

* This section was prepared by M. David Merrill, Utah State

University.

97



o processes, groups of related actions entirely external to

the learner.

There are four kinds of elaborations. These are:

o attributes, which represent characteristics of a frame;

o components, which represent constituents of a frame. For an
entity, the components would be parts of the entity; for an
activity, steps; and for a process, events and causes;

o abstractions, which correspond to a "kinds-of" class/sub-

class hierarchy into which the frame may be classified;

o assoc.iations, links to other frames in the network.

The network structure of the knowledge representation allows
information to move through the structure, so that data contained
in one part of the net affects the data stored elsewhere. Two
principal means by which this occurs are:

o inheritance, in which attributes of a class or super-class
in an abstraction hierarchy are passed to a sub-class or
instance;

o propagation, in which the contents of a frame influence the
contents of another frame connected to it via an association
link.

98



S-thDENTS

W NT.AC TION MODES

*TRANS ACTION
INSTRUCTOR CONFIGURATION

SUBJECT KNOWLEDGE ________

MATTER ACOUISITION
.XL-ZTSYSTEM

AUTIHORING
ENV RCN~1ENT

Figure 6.1 Components of an instructional transaction shell.

99



The knowledge representation model focuses on idLntifying aspects
of knowledge which may serve as a basis for making instructional
decisions.

6.2.1.1 Entity Frames

Entities are things in the real or imagined world including
objects (natural objects and manufactured devices), creatures
(animals and persons), places (natu:al and constructed),
and symbols.

Examples of entities include the Eiffel Tower, a tractor, George
Washington, 1.

We assume that there can be no instruction without at least one
entity involved. The only enterprise that may be performed with
only an entity is denoting.

6.2.1.2 Activity Frames

An activity is some group of actions performed, or whic could be
performed, by the learner.

Examples of activities include operating a device, using a
formula to perform a calculation, and participating in a social
interaction, such as group decision-making.

6.2.1.3 Process Frames

A process is some group of actions outside the learner including
physical and social events in the real or imagined world.
Examples of processes include the functioning of a device, the
transmission of a disease, decertification, cell replication,
planetary motion, group decision-making, and evolution.

The distinction between an activity and a process has to do with
the role of the learner. If the learner would be, or could be an
actor, then th- actions are analyzed as an activity, with the
learner's potential role central to the analysis and instruction.
If, on the other hand, the learner could not be an actor and the
actions occur entirely external to the learner, then the actions
are analyzed as a process. For example, the procedure to service
a machine, which will be performed by the learner, is an
activity; replicating a cell in biology is a process.

6.2.2 Relations

In addition to the frame, the other fundamental structure in ID2
is the relation.

Relations are structures that link and attach meaning to a set of
frames. Each frame links to the relation, and from the relation

100



to other frames in the set, in a manner specified by the relation.
The semantics of the particular relation give meaning to the
individual links.

6.2.2.1 Elaboration, and Elaborated Frame Networks

Frames, as previously defined, have an external structure of
links to other frames. These are termed elaboraticis of the
frame. The identification of relations (links) to a frame we
call elaborating a frame.

A set of linked elaborated frames is termed an elaborated frame
network, or EFN. A single EFN corresponds to the knowledge
elements and interrelations required to support performance of an
enterprise. A course may include instruction to facilitate
acquisition of one, or several, enterprises, thus the domain
knowledge base for a course may contain one or a set of EFN. A
set of EFN is itself an EFN.

There are four kinds of elaborations.

o attributes, which repiesent characteristics of a frame;

o components, which are thp constituents of a frame;

o abstraction, which -epresents the generality of frames;

o association, non-hierarchical aggregations of frames.

6.2.2.2 Attributes

An attribute is a labeled set of values from which objects and
their properties may take values over time. Attributes define
the characteristics of frames. The constraints placed on a
particular attribute determine the legal values that may be taken
by objects possessing that attribute. For example, an attribute
labeled "color" defined for a frame "Apple" may have legal
values "red", "green", "yellow". The set (red, green, yellowl
associated with the label "color" and the constraint that only
one value from the set may be applied to any single object,
together define this attribute.

The following operatoLs may be used to define legal values for
attributes: the booleans AND, OR, XOR, NOT; the logicals =, <>,
<, <=, >, >=; and the range operator.

Attributes take values from the set of legal values defined for
the attribute. The value selected during analysis is termed the
"initial" value. In addition, storage may also be reserved for a
current value.

101



6.2.2.3 The Component Elaboration

Each kind of frame has its unique component structure. Entities
have parts, activities have steps, processes have both events
and causes.

Attributes and components are similar in structure. The
distinction has to do with independence of existence. A
component has independent status, and therefore, can be
independently inserted and deleted; an attribute is an essential
part of an entity's definition. For example, a "computer" frame
might be defined as the aggregate of the attributes
"manufacturer", "model", "id #"; and also as the aggregate of the
parts "monitor", "circuit boards", "disk drive", "keyboard". A
computer without a monitor still retains its identity as a
computer (one that lacks a monitor). On the other hand, a
computer without a manufacturer violates the definitional
character of computer (at least in terms of the schema defined
for that knowledge base).

6.2.2.3.1 Entity Components. An entity can be described by its
parts. Each part has at least a name, and an associated
function. If the entity is a physical object, then each of its
parts may also have a location and a graphical description.

A part, of course, can have sub-parts.

6.2.2.3.2 Activity Components. Learning to perform activities
is central to maintenance training. Examples of maintenance
activities include repair procedures, diagnostic and
troubleshooting procedures, and applying safety rules.

An activity consists of one or a series of steps. Steps are
performed in a specified sequence, including loops and
conditions. Each step has a set of actions associated.

These actions may be performed in a specified sequence
(algorithm), including loops and conditions, or they may be
triggered by events (heuristics). All actions are represented in
the analysis as action + trigger(s) + consequence(s). Triggers
and consequences are either sequence data, changes in attributes,
time values, or a combination.

Each activity must link to at least one entity which is an actor
(performs action and is capable of varying its behavior in the
activity based on some internalized knowledge).

A step, or an action, of an activity may itself be an activity,
with its own sub-steps.

6.2.2.3.3 Process Components. The understanding of processes
plays an important part in maintenance activities, for example in
troubleshooting mechanical, electrical, and electronic devices.
The constituents of a process are its stages; each stage has an

102



associated event topology. An event may itself be a process, or
in this context, a sub-process.

An event is a transformation of inputs to outputs. Inputs are
either attributes, actions, or time values. Outputs are either
attributes, actions, time values, or stage transitions.
Transformations are either mathematical, logical, or both. An
event may be encapsulated within an entity, or be abstract.

Events may be linked together into event topologies. A topology
is like a network, except that it need not be fullyinterconnected. The network structure supports dependencies
among events (the output of event A is the input to event B),
feedback (the output of event B becomes an input back into event
A), and self-regulation. The addition of timing signals as inputs
and outputs (these may be relative or absolute) supports
synchronization and temporal dependencies. An event topology
describes how a process behaves in respect to changes in its
inputs.

A stage is a sequentiable phase within a process which has an
event topology that is distinct from those of other stages. In
other words, a process behaves fundamentally differently in
respect to changes in its inputs from one stage to another. A
process need have only one stage. Examples of processes with
stages are an electronic device, with stages Off, Power-up, and
Operating; and reproduction in a seed, with stages Dormant and
Active.

6.2.2.4 The Abstraction Elaboration

Abstraction represents the generality of entities, activities,
and processes. The levels of abstraction are instance and class,
with relationships among classes in a multi-level generalization
hierarchy represented by sub-class and super-class links. The
abstraction elaboration is exactly equivalent to generalization.
An instance represents a specific entity such as a particular
object, person, symbol, or place. It may also represent a
particular activity, or a particular process. The instance
represents the lowest level of abstraction with no subordinates.

A class is an abstract frame that represents general features
held in common by two or more frames. Attributes, and their
legal values, help define the class. Instances in the class
share these attributes.

6.2.2.5 The Association Elaboration

Associations are non-hierarchical aggregations of frames. Unlike
the other aggregation elaborations (attributes and components) in
which one frame is viewed as the aggregate of the others in the
relation; for an association, each frame in the relation may be
thought of as an aggregate of the other frames. An example of an

103



association is a process linked with another process, each of
which may be used as an analogy for the other. The relation is
the same seen from the point of view of either process.

Classes of Associative Relations. There are numerous relations
among things in the world. Only those relations that have
instructional value are included in the knowledge representation.
These relations either provide meaningful information for
prescribing instruction, or combine with other knowledge
structures and relations to promote acquisition of an enterprise.

6.2.2.6 Collections

Collections are sets of frames all of the same class. For
example, if the class "passenger" were defined, as well as a
number of instances of passenger, such as "J. Smith", then a
collection of passengers could be defined that would include a
group of passenger instances. This collection could be labeled,
for example "passengers-flight-75".

Collections, unlike the other relations, are not considered to be
elaborations. This distinction, though somewhat arbitrary, is
based on the collection being able to be substituted for frames
in certain situations. Collections, however, do not have the same
status as frames; rather it is the objects of which a collection
is formed that are frames. In semantic data model terms, a
collection is a grouping relation.

Collections should not be confused with classes, in that they are
not more abstract than the frames which form the collection.
Hence, there can be no inheritance from a collection to its
members. Generalization and inheritance are defined on the class
structure of the underlying frame, not the collection. However,
collections may have attributes associated with them. These
non-inheritable attributes perform functions such as summarizing
across the collection. For example, "passengers - flight-75"
might have an attribute "count".

The relationship between a collection and its underlying frames
is extended to allow defining collections of collections. A
sub-collection of "passengers-flight-75" might be "ist-Class-
passengers-flight-75".

Collections may take the place of frames in associations. For
example, it may be most appropriate to represent that an activity
frames "uses" a collection of entity frames, rather than a single
entity.

Collections may also take the place of frames as attributes, and
as components. For example, the parts of a "computer" entity may
include a collection of "memory chips".

104



A single frame, of course, may be a member of more than one
collection. Collection membership is defined by an expression
using a syntax equivalent to that for defining class membership.

6.2.3 Integrating a Simulation Capability

Knowledge analysis, which is the process of representing subject
matter using the knowledge representation model, is relatively
straightforward. Knowledge acquisition, which is the process of
eliciting the subject matter from an SME in such a form that it
can be represented using the knowledge representation model, is
more difficult.

The challenge is to find methods of eliciting knowledge from the
subject matter experts that are intuitive and couched in
terminology and conceptual structures relevant to the domain, but
which are sufficiently structured to allow automatic translation
to the formalisms of the KR model.

Building a device simulation is also a method for the
identification of entity and process components. The use of a
simulation editor, such as RAPIDS to produce objects identifies
entities and their components; the specification of behavior of
objects in effect identifies the events topologies of processes.
The simulation editor can be extended so that it generates parts
of the EFN knowledge structure automatically as a result of
building the device simulation. This would then be augmented by
other methods to acquire other elements of the subject matter,
such as activity components, and abstraction.

6.2.4 Example Knowledge Analysis for T-38 Maintenance Training

This example is for the engine starting procedure.

6.2.4.1 Entities

left engine starting circuitry
right engine starting circuitry
left start button
right start button
left timer
right timer
left igniter
right igniter
left engine
right engine
external power
left generator
right generator
left generator light
right generator light
diverter valve
air
fuel

105



ignition spark
left AC bus
right AC bus
battery
throttle
front panel
left engine instruments
right engine instruments
left transformer rectifier
right transformer rectifier
static inverter

6.2.4.2 Activities

start right engine
start left engine
on-ground start
emergency start, no engines running
in-air start, one engine running

6.2.4.3 Processes

engine ignition
generation of ac power
diverter valve operation
cross-over system

6.2.4.4 Attributes

diverter valve
state: (centered, left, right)
air-in, air-out-left, air-out-right (numeric)
actuator
force (numeric)

6.2.4.5 Entity Components

left engine starting circuitry
left start button
left timer
left igniter
left generator
left generator light
left AC bus
left transformer rectifier
right engine starting circuitry
right start button
right timer
right igniter
right generator
right generator light
right AC bus
right transformer rectifier

106



6.2.4.6 Activity Components

start engine (right or left)
1 check fore, aft, and under aircraft
2 apply external air
3 depress engine start button 14% rpm
4 advance throttle to idle
5 if fuel flow >= 360 lb/hr and no ignition, retard throttle to
off; wait 2 minutes; go to 3
6 check engine instruments
7 check hydraulic pressure
8 check caution light panel

6.2.4.7 Process Components

diverter valve operation
inputs: (leftactuator.force, right_actuator.force,
diverter valve.air in);
outputs: (divertervalve.airoutright,
diverter valve.air out left);
transformation:
(if left actuator.force >= right actuator.force then
diverter valve.air out left <- diverter valve.air in;
diverter -valve.air-out-right <- 0
else if right actuator.force >= left actuator.force then
divertervalve.airoutright <- divertervalve.airin;
diverter valve.air out left <- 0
else diverter valve.air out left <- 1/2 diverter valve.air in;
divertervalve.airoutright <- 1/2 diverter valve.air in)

6.2.4.8 Abstractions

engine starting procedures
on ground start
emergency start
in air start
engine
left engine
right engine
engine starting circuitry
left engine starting circuitry
right engine starting circuitry
starting button
left starting button
right starting button
timer
left timer
right timer
igniter-
left igniter
right igniter
generator light
left generator light
right generator light

107



AC bus
left AC bus
right AC bus
engine instruments
left engine instruments
right engine instruments
transformer rectifier
left transformer rectifier
right transformer rectifier

6.2.4.9 Associations

process diverter valve_operation involves entities leftactuator,
right actuator
activity startengine uses entities air, throttle, start button,
fuel, engine_instruments
activity startengine applies process engine_ignition

6.3 Transaction Authoring

TRX provides a library of reusable instructional programs, or
transaction shells, for the delivery of instruction. These
programs contain generalized instructional algorithms, each
appropriate for teaching a certain type of content, but do not
contain any content. Each shell incorporates a number of
parameters, configurable by the author, which control the
functioning of the shell during course delivery. An
instructional transaction (TRX) is a particular instructional
interaction with a student. A transaction is characterized as a
bounded interchange between an instructional system and a
student, which facilitates the acquisition by the student of a
specified competence. Transactions comprise the entire range of
instructional interactions including: one-way transmission of
information (e.g. video, lecture, or document -- which are not
very good transactions because they lack interaction);
discussions and conversations; tutoring (e.g. traditional CAI and
Intelligent Tutoring Systems); simulations; and micro-worlds
(with or without coaching).

The effectiveness of a transaction is determined by the extent of
the relevant active mental processing required and the nature of
the learner's interaction with the content to be learned. An
adequate transaction can assume both expository and inquisitory
modes; it allows the degree of learner or system control to be
adjusted; it includes display and response parameters which
allow the transaction to be customized for different learners,
different subject matters and different delivery systems. Each
transaction is also capable of being invoked to perform different
instructional functions with its content: overview; familiarity
instruction; basic instruction; example; practice; remediation;
and assessment.

A transaction shell (TRXS) is a piece of computer code which when
executed causes a given transaction to take place. A transaction

108



shell knows what knowledge it must have in order to execute its
interaction with the learner. It is able to query the domain-
knowledge base to find the required knowledge and thus be able to
instantiate its knowledge slots. If the domain knowledge base
does not contain the necessary knowledge, the transaction shell
can direct the user/designer to supply the required content. Once
a transaction has been selected or prescribed, it must then be
configured and authored. Configuration involves setting the
parameters, modifying the strategy, and attaching the content.
Authoring involves attaching domain specific instructional
materials to the instructional structure set up by the
transaction. For example, in concept learning by compare/
contrast, the transaction would contain all the elements to
generate examples, practice, and assessment items for concept
learning. However, it would require that images of the different
concepts, with the defining attributes indicated, be provided by
the designer. Each transaction shell knows what domain specific
data it requires, and will guide the designer in preparing and
entering that data.

Each transaction shell (TRXS) has default values for each of its
parameters, including its strategy elements. While most
practical instruction will require the modification of these
parameters, the acceptance of default values allows the rapid
prototyping of instruction incorporating the content and
instructional strategies identified. This rapid prototyping
allows the designer to get a feel for the structure and look of
the finished course while still early enough in the design
process to easily change design decisions. The effects of making
different design choices can also be easily compared.
Transaction shells reside in a transaction library. In addition,
configured and authored components are also stored in the
library. The library supports the reuse of components, and is a
key element in improving the efficiency of the design process.

6.3.1 Classes of Transaction Shells

There are several classes of transactions, with each class
differentiated from the others in terms of the knowledge
structures and performance components instructed. The primary
transaction classes are component, abstraction, association, and
enterprise. Component transactions instruct all or part of one
component hierarchy (parts, steps, or events) in the elaborated
frame network. Abstraction transactions instruct all or part of
an abstraction hierarchy. Association transactions instruct two
or more frames linked by an association relation. Enterprise
transactions require as a knowledge base all frames and their
interrelations for a given enterprise (Enterprise transactions
will be discussed further in the section on Strategy Analysis).

Within each primary class are a number of subclasses. There are
12 subclasses: for components, the subclasses of identify,
execute, and interpret; for abstraction, the subclasses of judge,

109



classify/decide, generalize, and transfer; for association,

propagate, analogize, and substitute.

6.3.1.1 Component Transactions

There are three classes of component transactions corresponding
to the three types of knowledge frames: identify for entity
frames, execute for activity frames, and interpret for process
frames.

An identify transaction requires either an instance or class
entity frame. It enables the student to acquire the names,
functions, properties, and relative location of all the parts
which comprise an entity. The student knows what it is.

An execute transaction requires either an instance or class
activity frame. It enables the student to acquire the steps of
the activity. The student knows how and is able to do the
activity.

An interpret transaction requires either an instance or class
process frame. It enables the student to acquire the events and
causes in a process. This means that the student knows why it works
and can explain the events which lead to a given consequence or
can predict the consequence from a series of events.

6.3.1.2 Abstraction Transactions

Different types of abstraction transactions can be discriminated
on the basis of the performance required and the different
combinations of frames from an abstraction hierarchy involved in
the transaction. We have identified at least four classes of
abstraction transactions: judge, classify/decide, generalize,
and transfer.

A judge transaction requires a class frame with two or more
subordinate instance frames. These frames can be entity,
activity, or process frames. It enables the student to acquire
the ability to order the instances of a given class on the basis
of some dimension (criterion). The dimensions can be any
attribute or combination of attributes. Judging the performance
of others as they perform an activity is an example. Ordering a
set of objects is an example.

A classify/decide transaction requires a superclass frame with
two or more subordinate class frames each of which have two or
more instance frames. These frames can be entity, activity, or
process frames. It enables the student to acquire the ability to
sort or classify instances as to class membership. It enables
the student to know when to select one alternative from another.
Concept identification is an example. Deciding among alternative
activities to accomplish some goal is an example. Editing
(selecting the appropriate usage) is an example.

110



A generalize transaction requires a superclass frame with two or
more subordinate class frames each of which have two or more
instance frames. These frames can be entity, activity, or
process frames. Generalization transactions enable the student
to acquire the ability to combine instances of two or more
classes into a more general class. Generalization is the inverse
of classification.

A transfer transaction requires a superclass frame and one or
more class frames. These frames can be entity, activity or
process frames. It enables the student to acquire an abstraction
model, that is, a generalized set of steps for an activity, or a
generalized set of events for a process, and to apply this
abstraction model to a previously unencountered class or
instance of the activity or process.

6.3.1.3 Association Transactions

Different types of association transactions can be discriminated
on the basis of the performance required and the different
combinations of frames from a set of associated frames involved
in the transaction. We have identified at least five classes of
association transactions: propagate, analogize, substitute,
design, and discover.

A propagate transaction requires two or more associated frames.
The most common relations between knowledge frames, uses,
requires, applies -- all involve propagation. A propagation
transaction makes a deliberate effort to facilitate the student's
integration of information from two or more associated knowledge
frames. One of the most important propagation associations is
the link between an application activity and a tool activity;
another is the link between a method activity and a process.
Propagation enables the student to acquire one set of skills in
the context of another set of skills. While learning an
application activity the student can simultaneously learn the
tool activity for doing the application. While learning a tool,
the student can simultaneously learn application activities for
the tool. While learning a process, the student can
simultaneously learn a method activity for studying or observing
the process. While learning a method activity, the student can
simultaneously learn the process for which the method was
devised.

An analogize transaction requires two or more knowledge
frames linked by the relation analogy for. It enables the
student to acquire the steps from one activity by likening it to
an analogous activity; or to acquire the events in one process
by likening it to an analogous process or activity.

A substitute transaction requires two or more knowledge frames
linked by the relation alternative for. It enables the student
to learn an alternative activity or process by comparison,

ill



elaboration, or extension of a previously learned activity or
process. It also enables the student to acquire alternative ways
to accomplish a given activity or to explain a given process.

6.3.2 Transaction Shells for T-38 Maintenance Training

An instructional transaction approach to curriculum development
enables us to think of the knowledge and skills to be learned at
a more integrated level. Rather than thinking of individual
skills, it is desirable to identify complex sets of related
activities and to build the curriculum around the acquisition of
these complex human enterprises. The interactions necessary to
promote the acquisition of all of the knowledge and skill
associated with a given enterprise, comprises a transaction
family.

Henry Halff suggested a "rough list of the tasks that a
maintainer must master in order to effectively maintain a piece
of equipment." We suggest that this list provides a first cut
list of the kinds of human enterprises that an Air Force
maintenance curriculum might enable a learner to acquire.
Halff's list includes the following enterprise classes:
equipment operation, equipment calibration and adjustment,
equipment testing, access and disassembly, equipment repair, and
troubleshooting. The curriculum consists of a number of
specific instances of each of these classes. A more detailed
analysis of the curriculum will identify each of these specific
enterprises and the knowLedge and skill which comprises each of
these enterprises.

The type and sequence of interactions necessary to acquire each
of these complex enterprises is different. It is proposed that a
high level transaction manager be designed and developed for each
of the different types of curriculum enterprises. This
transaction manager would be a program that could be easily
configured to call and sequence the primary transactions
identified as necessary for this curriculum. We would propose
the development of transaction families to support the enterprise
classes of the maintenance curriculum. Halff also suggested that
acquiring a model of the equipment was a necessary component of
any maintenance training. In addition to transaction families
for each of the six maintenance training enterprises identified,
we also suggest an equipment model family of transactions which
will be a component of each of the other transaction families.
In addition he suggested as a possible procedure "redesign and
jury rig". This is a complex enterprise for which we have also
defined a separate transaction family.

Figure 6.2 identifies the five transaction shell instances which
enable learners to construct a mental model of a particular
device or piece of equipment. This particular transaction family
does not represent a "stand-alone" enterprise, but is a
necessary component of the transaction family required for every
other maintenance training enterprise. Two classes of

112



transactions are represented: identify - (1) physical &
conceptual structure; and interpret - (2) device functioning,
(3) device configuration, (4) fault recognition, and (5)
prediction.

Figure 6.3 identifies the two transaction shell instances and the
two nested transaction families which enable learners to operate
a particular device or piece of equipment. Two classes of
transactions are represented: execute - (6) equipment operation
procedures; and decide/classify - (7) operation procedure or
job aid selection.

Figure 6.4 identifies the three transaction shell instances and
the nested transaction family which enable learners to calibrate
and adjust a particular device or piece of equipment. Three
classes of transactions are represented: execute - (8)
calibration and adjustment procedures; judge - (9) calibration
and adjustment judgment; and decide/classify - (10) calibrate
and adjust procedure or job aid selection.

Figure 6.5 identifies the three transaction shell instances and
the nested transaction family which enable learners to test a
particular device or piece of equipment. Three classes of
transactions are represented: execute - (11) testing procedures;
judge - (12) testing judgment; and dccide/classify - (13) test
procedure or job aid selection.

Figure 6.6 identifies the two transaction shell instances and the
nested transaction family which enable learners to access and
disassemble a particular device or piece of equipment. Two
classes of transactions are represented: execute - (14) access
and disassembly procedures; and decide/classify - (15) access and
disassembly procedure or job aid selection.

Figure 6.7 identifies the two transaction shell instances and the
four nested transaction families which enable learners to repair
a particular device or piece of equipment. Two classes of
transactions are represented: execute - (16) repair procedures;
and decide/classify - (17) repair procedure or job aid selection.

Figure 6.8 identifies the four transaction shell instances and
the four nested transaction families which enable learners to
troubleshoot a particular device or piece of equipment. Two
classes of transactions are represented: execute - (18) logical
fault isolation procedures, and (19) intuitive fault isolation
procedures; and decide/classify - (20) logical fault isolation
procedure or job aid selection and (21) intuitive fault isolation
procedure or job aid selection.

113



Device sucture )

H Device function

EQ U IPM ENe i e co f g r t o

MODE IrI Fault recognitionJ

LH Prediction

Figure 6.2 Transaction family for acquiring
an equipment mental model.

i14



-H Device strure

_ EQUIP'MEN evc unto

EQUIPME-NT

OPERATION
DeiPrceduro jfbAidigu

C & A procedures_]

_ CALIBRATION &

A~jUSNIEC & A judgment__

. Procedure jobAid

selection

Figure 6.3 Transaction family for acquiring
equipment operation enterprises.

115



H Device structure

MDEQL --NDevice function

Device configuration

CALIBRATION _ADUT- Prediction

C & A procedures

C&A judgment

LProcedure jobAid
selection

Figure 6.4 Transaction family for acquiring equipment
calibration and adjustment enterprises.

116



- Device structure

- Device function 1

EQtJIPMENT Device configuration
MODEL H

Fault recognition]

TESTING

Testing procedures

Testing judgment__

Procedure jobAid
selection

Figure 6.5 Transaction family for acquiring
equipment testing enterprises.

117



EQUIPMELNT Dvice sucrure
MODEL

ACCES &Access Disassembly1
DISASSEMBLY procedures

Procedure jobAid
selection

Figure 6.6 Transaction family for acquiring equipment
access and disassembly enterprises.

118



Device suucture

Device function

. EQUIPMENT Dvc ofg

Fal ecognition

Prediction

Repair proceduresJ

rProccedur jobAid
selection

I REAIR . Access Disassembly

_ A AESS & procedure~s

DISASSEMBLY 
Procedure jobAid

selection

_ CALIBRATION &, C udmn

. Procedure jobd

selection

-- Testing procedures I

Figure 6.7 Transaction family for acquiring
equipment repair enterprises.

119



EQUIPMENT

MODEL

SLogical 
fault LIpoeue

isolation J
LFI procedure ]

- REPAIR

- REDESIGN &

JURY RIG

Figure 6.8 Transaction family for acquiring
equipment trouble-shooting enterprises.

120



Figure 6.9 identifies the six transaction shell instances and the
three nested transaction families which enable learners to design
or jury rig a particular device or piece of equipment. Five
classes of transactions are represented: execute - (22)
heuristic jury rig procedures; decide/classify - (23) redesign
or jury rig procedure selection; transfer - and (24) procedural
transfer; analogize - (25) conceptual and procedural analogies;
substitute - (26) conceptual, functional, and procedural
substitution; and design - (27) redesign techniques.

Merrill previously identified transaction classes. The
transactions assigned to each of the transaction families
employed in maintenance training have been identified as to
transaction class. This classification has implications for the
design of maintenance training transaction shells. First, all of
the transactions in a given class share common features in terms
of the nature of the interaction modes, their interaction
strategies, etc. It should be possible to construct a common-
base transaction shell for each class and then customize this
transaction shell to particularize this shell according to the
variations and transaction families of which it is a part. In
addition, a particular transaction shell instance may occur in
several families. Its interaction modes, interaction strategies,
knowledge representation, and interaction parameters will vary
depending on the family of which it is a part. Here again some
development efficiencies can be realized by designing a common
transaction shell and then developing variations of this shell
for the various transaction families of which it is a part.

Maintenance training will utilize nine of the twelve transaction
classes: identify, interpret, execute, judge, decide/classify,
transfer, analogize, substitute, and design. In the following
list each of the nine transaction classes is associated with the
maintenance transaction families in which it is employed.

Identify:
(1) Physical and conceptual structure
Interpret:
(2) Device functioning
Performance.
Device functioning enables the learner to explain the operation
of a given device by knowing the sequence of events, and the
conditions under which different events occur.
Knowledge required.
An operational controllable simulation of the device. The
simulation should have both functional and some degree of
structural fidelity.
Interactions.
The transaction must present the operation of the device via a
simulation that enables the learner to change conditions and
parameter values and observe the effects on the operation of the
device. The transaction must be able to illustrate the operation
of the device in a structured manner as well as enabling the
learner to manipulate the operation.

121



EQUIPMENT
MODEL

EQUIPMENT
OPERATION

- Repair procdurs

Procedure jobAid
selection

REPAIR ACCESS&
DISASSEMBLY

REDESIGN &
JURY RIG TESTING

Heuristic redesign
procedures

R &JR procedure
selection

R & Rtrnsfer

R & JR substitute ]
R &IR design

Figure 6.9 Transaction family for acquiring equipment
redesign and jury rig enterprises.

122



(3) Device configuration
(4) Fault recognition
(5) Prediction
Execute:
(6) Equipment operation procedures
(8) Calibration and adjustment procedures
(11) Testing procedures
(14) Access and disassembly procedures
(16) Repair procedures
(18) Logical fault isolation procedures
(19) Intuitive fault isolation procedures
(22) Heuristic jury rig procedures
Judge:
(9) Calibration and adjustment judging
(12) Testing judging
Decide/Classify:
(7) Equipment operation procedure or jobAid selection
(10) Calibration and adjustment procedure or jobAid selection
(13) Test procedure or jobAid selection
(15) Access and disassembly procedure or jobAid selection
(17) Repair procedure or jobAid selection
(20) Logical fault isolation procedure or jobAid selection
(21) Intuitive fault isolation procedure or jobAid selection
(23) Redesign or jury rig procedure selection
Transfer:
(24) Redesign or jury rig procedure transfer
Analogize:
(25) Redesign or jury rig analogies
Substitute:
(26) Redesign or jury rig substitution
Design:
(27) Redesign or jury rig redesign techniques.

The following paragraphs identify the principal performance
enabled by each transaction, a preliminary identification of the
knowledge base required for each and a preliminary identification
of the interaction modes required.

Identify:
(1) Physical and conceptual structure
Learning the names, location, and function of the parts of a
device is a prerequisite to learning how a device works or how to
operate a device.
Performance.
"Students are shown images of the physical equipment and asked to
identify individual components, their function, and their
immediate connections" (Halff, p17). Students are shown
diagrams representing the conceptual structure of the equipment
and asked to identify individual components, their function, and
their immediate connections. Students are shown both the
physical and conceptual representations and asked to demonstrate
the correspondence between these two representations.

123



Knowledge required.
The knowledge base required includes some representation of the
device, probably a graphic representation, with the parts
isolated and an associated name and function available.
A graphical representation of the conceptual representation of
the system. A pairing of the conceptual symbols with the
physical representation of the device.
Interactions.
The transaction must both present the names to the learner and
enable the learner to practice locating the parts and identifying
the part name and function.
The transaction must present the conceptual names to the learner,
must pair the conceptual names with their physical referents.
The transaction must enable the learner to practice identifying
conceptual symbols given referents; referents given the
conceptual symbols; names of conceptual symbol given its graphic
representation; and reproducing the symbol.
Interpret:
(2) Device functioning
Performance.
"Students are asked to discriminate among component states on the
basis of some physical depiction of those states" (Halff, p. 17).
The student can explain hca the device functions, recognize the
various states.
(3) Device configurat on
Performance.
"Students are shrwn some of the inputs to an element of the
device and asked how its other inputs must be set in order to
achieve a desired function or state" (Halff, p. 17).
(5) Fault recognition
Performance.
"Students are shown the actual outputs and inputs to an element
and asked to determine whether or not the element is faulted"
(Halff, p. 17).
(5) Prediction
Performance.
"Students are given information about all inputs to a component
or subsystem and required to predict the state of the component
o,. subsystem, its outputs under normal operating conditions, and
izs outputs in each possible fault mode" (Halff).
Execute:
(6) Equipment operation procedures
Performance.
"Students are required to perform certain operational functions
using both a physical and conceptual simulator. That is, each
step in the procedure must be executed within the physical
simulator and the conceptual simulator. For complex procedures
the goal structure of the procedure should be tracked during
procedure execution" (Halff).
(8) Calibration and adjustment procedures
Performance.
"Students work with a physical simulation of the device to
practice required calibration and adjustment tasks. A conceptual
simulation of the system being adjusted or calibrated shows

124



relations among the components involved in the process" (Halff).
(11) Testing procedures
Performance.
"Students are required to carry out fixed testing procedures on a
physical simulation of the equipment. A conceptual simulation of
the components being tested is used to exhibit or query the
student on the states of these components" (Halff).
(14) Access and disassembly procedures
Performance.
"Students are given the task of gaining access to a particular
component. They use a physical simulation of the device to
practice the task. A matching conceptual simulation shows which
components are accessible at each point in the procedure"
(Halff).
(16) Repair procedures
Performance.
(18) Logical fault isolation procedures
Some forms of troubleshooting are best solved by acquiring an
accurate operational model of the device or circuit that is
malfunctioning and then systematically testing and or replacing
components to eliminate potential trouble spots.
Performance.
Logical fault isolation enables the learner to acquire an
accurate functional model of the device or circuit. The learner
acquires a set of systematic procedures for testing and/or
replacing the components of the device or circuit. "Students are
provided with a conceptual simulation containing a single faulted
component. At each point in the troubleshooting exercise,
students would choose an action and exhibit the consequences of
the action. The exercise could take many forms. Fir example,
students might be prompted to select actions diagnostic of a
particular fault or sets of faults" (Halff).
Knowledge required.
An accurate logical operational model of the device or circuit.
A set of malfunctioning components which can be inserted into the
device or circuit. A functional simulation of the device or
circuit.
Interactions.
The transaction must present the functional model of the device
or circuit and enable the learner to use this model in isolating
faults that the system inserts into the functional model. The
interactions must provide guidance which leads the learner
through systematic fault isolation activities.
(19) Intuitive fault isolation procedures
Logical fault isolation is often less efficient than the use of a
set of heuristic guidelines (rules of thumb) to identify and
correct faults in a device or circuit.
Performance.
Intuitive fault isolation enables the learner to acquire a set of
heuristic guidelines and to apply these guidelines in isolating a
fault.
Knowledge required.
;A accurate logical functional model of the device or circuit. A
set of malfunctioning components which can be inserted into the

125



device or circuit. A functional simulation of the device or
circuit. A set of heuristic guidelines for troubleshooting the
device or circuit.
Interactions.
The transaction must present the functional model of the device
or circuit and enable the learner to use this model in isolating
faults that the system inserts into the functional model. The
transaction must also present and enable the learner to acquire
the heuristic fault isolation rules. The interactions must
provide guidance which enables the learner to use the heuristics
for fault isolation activities.
(22) Heuristic jury rig procedures
Performance.
"Students are provided with conceptual simulations of tasks
requiring complete or partial reconstruction of the equipment.
For example, students could be required to restore as much
functionality as possible with a limited inventory of spare parts
or with other constraints on the reconstruction" (Halff).
Judge:
(9) Calibration and adjustment judging
(12) Testing judging
Decide/Classify:
Performance.
The following performance applies to transactions 7, 10, 13, 15,
17, 20, 21, and 23. Each of these transactions is a minor
variation of the same transaction. "Students are asked to
identify the procedures needed to deal with particular situations
and to select any appropriate job aids. Support is provided for
this exercise in the form of subgoals and intermediate steps
needed to arrive at the proper selection" (Halff).
(7) Equipment operation procedure or jobAid selection
(10) Calibration and adjustment procedure or jobAid selection
(13) Test procedure or jobAid selection
(15) Access and disassembly procedure or jobAid selection
(17) Repair procedure or jobAid selection
(20) Logical fault isolation procedure or jobAid selection
(21) Intuitive fault isolation procedure or jobAid selection
(23) Redesign or jury rig procedure selection
Transfer:
(24) Redesign or jury rig procedure transfer
Analogize:
(25) Redesign or jury rig analogies
Substitute:
(26) Redesign or jury rig substitution
Design:
(27) Redesign or jury rig redesign techniques.

6.3.3 Integrating Simulations and Shells

While many shells will require simulations, these simulations
need not be separately created. A single simulation may serve
most or all shells for that content. For example, a simulation
of the engine starting process can be used by an Interpret shell
for teaching device operation, an Execute shell for teaching the

126



engine starting procedure, and an Identify shell for teaching

nomenclature of the entities of the starting mechanism.

6.3.4 Shell Parameters

Each shell has a number of parameters which configure the
operation of the shell for a particular instructional
instantiation. These parameters are set by the instructional
designer. Examples of parameters for a naming transaction for
the components of an entity include:

6.3.4.1 Focus

Focus is a pointer to an entity frame in the EFN. The component
hierarchy in which this frame participates will be instructed by
the shell.

6.3.4.2 Content

Indicates how much of the component hierarchy is available for
instruction. Takes one of the following (default is All):
All: entire hierarchy;
(list): a list of frames (subset of the hierarchy)

which are the content.

6.3.4.3 Coverage

Indicates how much of the component hierarchy for the focus is to
be instructed. Takes one of the following (default is Focus):
All: entire hierarchy;
Focus: the focus, its superpart (the single frame

directly above the focus in the hierarchy),
and its first level of subparts;

Levels: requires an additional integer argument,
which indicates how many levels of subparts
of the focus are instructed;

Exemplar, <label>: the focus and a single, specified subpart are
instructed;

Random Exemplar: the focus and a single, randomly selected subpart
are instructed.

6.3.4.4 Guidance Level

Sets the level of guidance to the learner. Takes one of the
following (default is Full):
None: no guidance;
OnDemand: guidance presented on learner request only;
Full: guidance at all times;
Faded: begin with full guidance, fade to OnDemand by

end of transaction.

127



6.3.4.5 Guidance Type

Takes one of two values (default is Verbose):
Concise: guidance interactions are short and to the

point;
Verbose: guidance interactions are detailed and

complete.

6.3.4.6 View

Representation of the subject matter. Takes one or more of the
following (default is Structural):
Structural: displays the component relation in terms of

the knowledge structures, in tree format;
Physical: displays an author-supplied graphic or

illustration of the object whose parts are
being instructed, representing the physical
appearance of the object;

Functional: displays an author-supplied graphic or
illustration of the object whose parts are
being instructed, representing the functional
appearance of the object.

6.3.4.7 Vertical Sequence

Order of introduction of the parts. Takes one of the following
values (default is TopDownBreadth):
TopDownBreadth: ordering is from the highest superpart to the

lowest level, breadth first (an entire level
is introduced before any components of the
next level are introduced);

TopDownDepth: ordering is from the highest superpart to the
lowest level, depth first;

BottomUp: ordering is from the lowest subpart level to
the highest, breadth first.

6.3.4.8 Temporal Sequence

Within the vertical sequence is the order of introduction of the
parts on the same level (default is LeftRight):
LeftRight: ordering is according to the representation

in the EFN, from left to right;
LowHigh,
<attribute label>: ordering is according to the ranking of a

named attribute, from low to high;
HighLow,
<attribute label>: ordering is according to the ranking of a

named attribute, from high to low.

6.3.4.9 Trials

The number of times to sequence through the set of parts. Takes
a positive integer value (default is 1).

128



6.3.4.10 Mastery Level

The percent correct for mastery. Takes a value between 0 and 100
(default is 80%).

6.3.4.11 Response Mode

Type of response performance required of the learner. Takes one
of two values, either Recognition or Recall (default is
Recognition).

6.3.4.12 Feedback

Timing of feedback. Takes one of the following values (default
is PrePractice):
None: no feedback is given;
PostResponse: corrective feedback is given immediately

after a response;
PrePractice: corrective feedback is given just before the

next opportunity to practice.

6.3.4.13 Replacement

Whenever sampling is used in'the transaction, this parameter
controls whether a new sample may or may not include items from
previous samples (default is With):
With: a new sample may include items previously

used;
Without: new samples are distinct from previous samples.

6.3.4.14 Items

Whenever a pool of items is practiced or tested, this parameter
sets the maximum size of the pool. It takes a positive integer
value (default is 3).

6.3.4.15 Timeout

The amount of time to wait for a user response before timing out.
If the user response involves typing rather than pointing, the
timeout occurs after a base interval, plus a fraction of the base
interval multiplied by a number derived from the length of the
expected response. If the user response is pointing only, the
timeout occurs after the base interval. The value of the
parameter is the base interval, a positive integer (default is 3
(seconds)).

6.3.4.16 Item Order

Whenever a pool of items are practiced or tested more than once,
this parameter controls whether the ordering is the same or
different (default is Random):
Random: the ordering is random;
Same: the ordering is fixed.

129



6.3.4.17 Mode

The mode is the method of interaction with the student. One or
more of the following may be selected (default is Overview):
Overview: presents the knowledge structure from the

knowledge base in the Structural view;
Presentation: presents an author-supplied graphic in either

the Physical or the Functional view, and
demonstrates the parts to the learner;

Practice: provides practice for the learner using the
author-supplied graphic, in either the
Physical or Functional view;

InstanceAssessment: tests the student's mastery of the material,
using the author-supplied graphic, in either
the Physical or Functional view.

6.3.4.18 Strateg%

Strategy is defined as a sequence of modes. Because modes are
fully determined by strategy, the arguments to the Mode parameter
are ignored unless the Strategy parameter is None (default is
None):
Overview: the Overview mode;
Familiarity: the Overview mode followed by the

Presentation mode;
Basic: Overview plus Presentation plus Practice

modes;
Mastery: Overview plus Presentation plus Practice plus

InstanceAssessment;
BasicRemediation: InstanceAssessment, followed by Basic

Strategy to remediate errors;
MasteryRemediation: InstanceAssessment, followed by Mastery

Strategy to remediate errors;
Assessment: InstanceAssessment mode;
Summary: Overview with Coverage set to Focus, plus

Presentation followed by InstanceAssessment,
with Coverage set to Random Exemplar for
both;

None: no strategy.

6.3.4.19 Strategic Control

Determines the level of control granted the learner over the
selection of strategy, mode, and content. Takes one of the
following (default is System):
System: the strategy, mode, content, and coverage are

delivered as set by the parameter values;
Learner: the learner may select alternate strategies,

mode, content, and coverage.

6.3.4.20 Tactical Control

Determines control over the initiation and termination of
interactions. Also determines whether the learner may alter the

130



values of the Guidance, View, and Sequence parameters. Takes one

of two values, System or Learner (default is System).

6.3.5 Configuring Shells

Configuring is the setting of parameters to a shell, and
attaching content.

For example, a call to a shell in the Identify class to instruct
the names and locations of the left engine starting circuitry
might be configured as follows:
focus: left engine starting circuitry
content: all
coverage: all
guidance level: faded
guidance type: concise
view: structural, functional
vertical sequence: topDownBreadth
temporal sequence: leftRight
trials: 1
mastery level: 100%
response mode: recall
feedback: postResponse
replacement: without
items: 3
timeout: 3
item order: random
mode: presentation
strategy: basic
strategic control: system
tactical control: learner.

6.3.6 Detailing Shells

Detailing is the attachment of graphics and text, prepared
off-line, to the knowledge base for use by the shells.

With the use of simulations, detailing requirements are replaced
in large measure by simulation authoring.

6.4 Strategy Analysis

Strategy Analysis identifies the enterprises to be learned, and
selects and sequences transactions to instruct the enterprises.
Information about the audience and the instructional setting are
gathered in this phase.

6.4.1 Enterprise Transactions

An enterprise is a complex human performance that requires an
integrated set of knowledge and skills. The goal of instruction
is the acquisition by the learner of one or more enterprises.
The primary transaction shells, previously described, facilitate
the acquisition of the knowledge and skills which comprise

131



enterprises, but by themselves cannot effect their integration.
This integration must be accomplished by transactions at the
enterprise level.

An enterprise transaction accomplishes two principal purposes.
First, it functions as a transaction manager, providing the
overall direction of the execution of the primary transaction
instances which instruct the knowledge and skills necessary to
the enterprise. Second, it provides for an integration of the
learning facilitated by the primary transactions, ideally in the
context of a performance or simulation of an authentic activity
that is representative of the real-world performance of the
enterprise.

The integration is accomplished by focusing the enterprise on a
particular performance that is integrative of the elements of the
enterprise. The primary transaction that directly instructs the
integrative performance becomes the focus transaction for the
enterprise. Other transactions are introduced to support the
performance on the focus transaction.

A course, then, is defined as a set of enterprise transactions,
and their supporting families of primary transactions. A course
organization is a nesting and/or ordering of the enterprise
transactions.

6.4.1.1 Classes of Enterprise Transactions

Different types of enterprises can be discriminated on the basis
of the level of performance required and the type of knowledge
involved with this performance. We have identified six classes
of enterprises: denote, evaluate, execute, design, interpret, and
discover. This class structure may also be used to classify the
enterprise transactions according to the class of enterprise
beina facilitated.

A Denote enterprise transaction requires as a focus one of the
following: a primary transaction from the Component class, either
an Identify transaction for an entity, an Execute transaction at
the Denote level of perfotmance for an activity, or an Interpret
transaction at the Denote level of performance for a process
frame; or a Classify/Decide primary transaction from the
Abstraction class. (Performance level is a parameter to Execute
and Interpret transaction shells. For Execute, the values may be
either Denote or Perform; for Interpret, values are either
Denote, Explain, or Predict.) Primary transactions from the
component, abstraction, and association classes would be included
to support the focus transaction. Performance for a denote
enterprise is characterized as knowing about something. With a
Component class primary transaction as focus, the enterprise
transaction enables the student to describe the parts, their
functions and locations for an entity; describe the steps for an
activity, or describe the events for a process. With a
Classify/Decide primary transaction as focus it enables the

132



student to identify instances or discriminate kinds.

An Evaluate enterprise transaction requires as a focus a Judge
primary transaction, of the Abstraction class. The Judge
transaction instructs an abstraction hierarchy of either
entities, activities, or processes. Primary transactions from
the component, abstraction, and association classes would be
included to support the focus transaction. Performance for an
Evaluate enterprise is characterized as classifying and ranking
the adequacy of an entity, the performance of an activity, or the
effectiveness of a process.

An Execute enterprise transaction requires as a focus an Execute
primary transaction (at the Perform level) from the Component
class. The content for the focus transaction is the steps of an
activity frame. Primary transactions from the component,
abstraction, and association classes would be included to support
the focus transaction. Performance for an Execute enterprise is
characterized as performing some activity.

A Design enterprise transaction requires as a focus a Design
primary transaction from the Association class. Primary
transactions from the component, abstraction, and association
classes would be included to-support the focus transaction.
Performance for a Design enterprise is characterized as inventing
or creating a new artifact. It enables the student to design a
new entity or activity not previously instructed.

An Interpret enterprise transaction requires as a focus an
Interpret primary transaction, at the Explain or Predict level of
performance, from the Component class. The content for the focus
transaction is the events and causal network of a process frame.
Primary transactions from the component, abstraction, and
association classes would be included to support the focus
transaction. Performance for an Interpret enterprise is
characterized as knowing why some process works.

A Discover enterprise transaction requires as a focus a Discover
primary transaction from the Association class. Primary
transactions from the Component, Abstraction, and Association
classes would be included to support the focus transaction.
Performance for a Discover enterprise is characterized as finding
a new relationship or process. It enables the student to
discover a new entity or process not previously instructed.

6.4.2 Authoring Enterprise Transactions

The enterprise transaction is responsible for integrating the
instruction of the knowledge and skills necessary to the
enterprise. This integration is accomplished by the selection of
a focus transaction that instructs an integrative performance,
and by sequencing the focus transaction in conjunction with the
supporting primary transactions.

133



Course organization comprises the sequencing of the enterprise
transactions themselves, plus the sequencing of primary
transactions within each enterprise transaction.

6.4.2.1 Sequencing Alternatives

There are two dimensions of sequencing at the enterprise level,
yielding seven sequencing alternatives. The first dimension,
Primary Sequence, includes Encyclopedic, Case Study, and
Situational.

The Encyclopedic sequence systematically calls each primary
transaction to instruct elements of the content, eventually
integrating these at the enterprise level. This type of
sequencing is often found in textbooks and reference manuals.

The Case Study sequence presents a sequence of carefully selected
examples, scenarios, or cases of the focus transaction and the
necessary supporting transactions, with each case being complete
in and of itself. The sequence of cases is graded on some
dimension, such as familiarity, frequency, or criticality.

The Situational sequence is characterized as on-the-job learning,
where instruction is delivered on an as-needed basis. Only that
instruction necessary to the immediate task is presented;
integration must occur opportunistically. Situational sequence
is facilitated by an on-line advisor system and student
modeling.

The second dimension, which we call Secondary sequence, includes
Elaboration, Prerequisite, and Flat sequence.

Elaboration sequence starts with a simple, representative element
or elements of the focus content, and progressively adds layers
of detail as the instruction progresses. This is similar in many
respects to Riegeluth's Elaboration Theory.

Prerequisite sequence orders elements of subject matter according
to their dependency interrelations based on Gagne's learning
hierarchies. The focus content is at the top level of the
hierarchy.

Flat sequence involves no systematic ordering at the secondary
level.

The primary and secondary sequences may be combined into seven
approaches to sequencing: elaborated, prerequisite, and flat case
study; elaborated, prerequisite, and flat encyclopedic; and
situational.

Elaborated case study requires a number of cases of the focus
transaction, each complete in and of itself. In our earlier
example of a Circuit Functioning enterprise transaction, the
focus transaction was an Interpret primary transaction to

134



instruct circuit functioning. Suppose that the specific
enterprise involved the functioning of AC circuits. The
enterprise would require a set of cases, each of which would be
instructed by the focus transaction. The cases would be drawn
from an abstraction hierarchy of circuits, and would be ordered
on some relevant dimension, such as complexity, familiarity,
frequency of occurrence, etc. Examples might include specific
instances of capacitance reactive circuits, resonant circuits,
and transformers. Each case would be an instance of a class in
the abstraction hierarchy. However, instructing the abstraction
hierarchy is not the focus; rather it is the interpretation of
circuit functioning which is the focus. The instructing of the
abstraction hierarchy is supporting instruction to the focus.

As each case is selected in turn, it is introduced by the focus
transaction to the student, following an elaboration secondary
sequence. Other information would then be brought into the
instruction, from the focus and from supporting transactions,
until the circuit had been fully instructed. The next case would
then be presented, refreshing and reviewing content that had
already been introduced in earlier cases, and introducing
additional content.

Prerequisite case study selects cases equivalently, but the
secondary sequence follows a prerequisite hierarchy. The case
would be overviewed by the focus transaction, but then
instruction would build bottom-up following the prerequisites.
Each supporting transaction might be called one or more times at
different nodes in the hierarchy. Then the next case would be
handled in a similar way, refreshing and reviewing content that
had already been introduced in earlier cases, and introducing
additional content.

Flat case study has no systematic secondary ordering. Once a
case has been selected, instruction begins with an overview from
the focus; then each supporting transaction would be called in
turn to present all required content for that case, finally
returning to the focus for a full presentation. Then the next
case would be selected.

The encyclopedic sequences are not built on cases. Any
abstraction hierarchy is taught as part of the supporting
content, rather than being used to generate cases.

Elaborated encyclopedic sequence begins with a representative
element or elements of the focus content, introduces supporting
content as needed, then builds to the full focus content.
Prerequisite encyclopedic sequence begins with an overview of the
focus content, then goes to the lowest levels of a prerequisite
hierarchy and sequences the primary transactions to deliver
instruction for nodes on the hierarchy, building eventually to
full focus transaction.

135



Flat encyclopedic sequence begins with an overview of the focus;
then each supporting transaction would be called in turn to
present all required supporting content, finally returning to the
focus for a full presentation.

Situational sequencing delivers instructional elenents on demand,
either as a result of user request or based on an online
determination by an advisor program of the learning requirements
of the user.

6.4.2.2 Making Sequence Decisiors

Authoring the sequence for an enterpri - transaction involves the
following steps:
1 determine enterprise content
2 select the focus transaction
3 for each content grouping, select supporting transactions
4 select primary and secondary sequence
5 if case study, create instances for the focus content
6 identify content for each case
7 if prerequisite sequence, identify prerequisite relations
8 if elaboration sequence, identify elaboration levels
9 configure parameters for each call to a transaction

We now examine the roles of the author and the system for
performing each step.

Step 1, determine enterprise content, begins by the author
selecting the focus content, such as an activity or process
frame. The system then initiates a spreading activation search
of the EFN, following relations from that frame. For each
relation leading from the frame, the author indicates whether
that relation should be included in the enterprise. The search
continues from the related frames for any relation that is
included; while a path is terminated for any relation not
included. This continues until all paths have either reached
their end or been terminated. The system then creates the
enterprise transaction structure, and stores a representation of
the subset of the EFN that has been selected as the content for
the enterprise.

Step 2, select the focus transaction, is performed by the author
based on a recommendation by the system. The recommendation is
based upon the transaction class appropriate for the content
structure of the focus.

Step 3, select supporting transactions for each content grouping,
is performed by the author with consultation from the system.
The system parses the content into content groupings according to
the classes of primary transactions (component and abstraction
hierarchies, and association links). Each grouping is presented
in turn to the author, along with recommended transactions for
that grouping. Recommendations are based first on the
transaction class appropriate for the content grouping, and may

136



be further refined by environmental parameters, such as the
availability of specific resources. Recommendations may also
take into account compatibility with the focus transaction. For
example, if the selected focus transaction uses video, employs a
particular instructional technique, or is optimized for a given
domain area, then the recommended supporting transactions will
take this into account. Recommendations are ranked if there is
more than one possible choice.

Step 4, select primary and secondary sequence alternatives for
the enterprise transaction, is performed by the author based on
recommendation of the system.
Step 5, if case study, create instances for the focus content.
The author selects an abstraction hierarchy from which cases will

be drawn, and identifies the attribute which will be used to
order cases. The system then prompts the author to return to
knowledge analysis to identify the instances for the classes in
the hierarchy which will form the cases.

Step 6, identify content for each case, is performed
automatically by the system by parsing the subset of the EFN
selected in step 1, selecting any content related to the focus or
the instance.

Step 7, if prerequisite sequence, identify prerequisite
relations, is performed by the author using a system tool to
identify dependency relations. This relation structure is stored
with the enterprise. If prerequisite case study, the
prerequisite relations for each case may be derived automatically
from this structure.

Step 8, if elaboration sequence, identify elaboration levels, is
performed by the author. The number of levels, and the content
for each level of elaboration, is identified. If case study,
this is performed for each case. This data is stored with the
enterprise transaction. Secondary content for each level of
elaboration will be sequenced by the prerequisite relations, if
available, or flat. At this point, all primary and secondary
sequencing has been completed.

Step 9, configure parameters for each call to each transaction,
is performed by the author. The system brings up the
configuration for each call in turn, and presets as many
parameters as possible. These include the content for the call,
based on the earlier steps, and the values of other parameters
based on either student attributes and/or earlier configuration
decisions for that enterprise. In addition to the normal
configuration capabilities, the author may set a parameter for
all calls to the transaction from this enterprise, for all calls
to any transaction having the parameter from this enterprise, or
for all calls to any transaction having the parameter from this
course. (An example of the latter might be setting display or

137



response parameters to establish a uniform interface across the

course.)

6.4.3 Example Strategy Analysis for T-38 Maintenance Training

The example is for the engine-starting procedure.

Step 1. Determine enterprise content. The focus content is the
abstract activity Start-engine. The remainder of the content
would be selected by following links in the knowledge base from
that frame.

Step 2. Select the focus transaction. The appropriate
transaction is from the primary class Execute.

Step 3. Select supporting transactions. At a minimum,
transactions from the classes Identify (for the devices) and
Interpret (for the processes) will be required.

Step 4. Select primary and secondary sequence. Case study is
selected as the primary sequence, elaboration as the secondary
sequence.

Step 5. Create instances for each case. At minimum, three cases
are identified: ground start, emergency start, and in-air start.

Step 6. Select content for each case. The author performs this
step with guidance from the system, by traversing the EFN. For
example, the content for an Identify transaction for the
instrument panel would require the names and locations of all
instruments used in starting procedures.

Step 7. Identify prerequisite relations. Even though the
secondary sequence is elaboration, prerequisite relations are
needed for ordering supporting content. The author identifies
these relationships among the supporting transactions. For
example, knowing the locations and names of the controls would be
prerequisite to performing the engine-start activity.

Step 8. Identify elaboration levels. For each case, one or more
elaboration levels may be identified. For example, the ground
start activity may first be taught with no glitches, then with
one or more problems introduced.

Step 9. Configure parameters to each call to a transaction
shell. This step is performed by the author using the
transaction configuration system.

6.5 Instructional Delivery

This section describes the actual delivery of instruction to the
student.

138



6.5.1 Instructional Modes and Strategies

The type of transaction and the components of its knowledge base
limit the interactions that are possible within a given
transaction shell. Different classes of transactions will have
different types of interactions. Nevertheless, all transactions
should include interactions that are characterized by certain
interaction modes. Interaction mode alternatives determine the
method of interaction with the student.

Interaction modes assume different values on the form of the
interaction (expository or inquisitory) and the degree of learner
control involved (learner control or system control). Five
interaction modes have been identified: overview, presentation,
practice, generality assessment, and instance assessment.

viview mode presents the knowledge structure, as repr=seried in
the EFN. For example, in an Identify transaction, overview would
show the parts hierarchy of an entity in tree format. Text
instruction may accompany the diagrams. The overview serves as
an advance organizer, and as a review.

Example Overview mode for an entity component hierarchy.

Presentation demonstrates and presents the content represented by
the knowledge structure, in terms of both generalities and
instances. For example, an Interpret transaction for device
operation would simulate the operation of the device, explaining
the events associated with the process.

Example Presentation mode for an Identify transaction.

Example Presentation Mode for an Interpret transaction.

Practice provides opportunity for the learner to work with the
content directly. For example, an Execute transaction for an
activity would provide a simulation which could be manipulated by
the learner with the consequences of actions displayed. Practice
for an Interpret transaction would allow the learner to adjust
controls, regulate inputs, and modify the functioning of devices,
and to predict the consequences of these actions.

Practice Mode for an Interpret Shell.

Generality and instance assessment test at the generality and
instance level, respectively. Test results are recorded by the
delivery system, under parametric control of the transaction
shell.

Interaction strategy is the combination and sequence of
interaction modes available to the student. We have identified
seven interaction strategy alternatives: overview, familiarity,
basic mastery, basic remediation, mastery remediation, summary,
and assessment.

139



Overview consists of the overview interaction mode.

Familiarity consists of an overview interaction plus a
presentation.

Basic instruction consists of an overview plus presentation plus
practice.

Mastery instruction consists of overview plus presentation plus
practice plus generality and/or instance assessment; if the
criterion is not met, a new presentation, practice, and
assessment for missed items is engaged until the criterion is
met.

Basic remediation consists of generality or instance assessment;
if the criterion is not met, then basic instruction is provided
for the missed items.

Mastery remediation consists of generality or instance
assessment; if the criterion is not met, then mastery
instruction is provided for the missed items until the criterion
is met. Summary is an overview plus presentation followed by
instance assessment; both the presentation and the assessment are
for a single representative element of the knowledge structure,
rather than the full knowledge structure.

Assessment consists of generality or instance assessment.

6.5.2 Interaction of Simulations and Shells

In order to integrate the shells with the simulations at delivery
time, there must be a communications interface established. This
interface would establish conventions whereby shells would be
able to:

o query simulations to determine their capabilities

o query status information from simulations

o issue commands to simulations to set the simulation directly
into a state

o replace direct learner input with commands from the shell.

6.5.3 On-line Delivery Advisor

The authoring decisions made at design time are based on the
designer's best estimate of the learner population. During the
delivery of instruction, information about the learner including
aptitude, specific goals, motivation, familiarity, and other
factors, as well as the learner's expressed preferences, may be
taken into account to modify those decisions.

140



An on-line delivery advisor would have access to the domain
knowledge base and the configurations. In addition, it would
maintain information about the learner (see Section 9). Using
the information gathered about the student, the adviso- wo:"
adjust design decisions to customize the instruction t% atre
adequately meet the characteristics of the student. The advisor
could also engage in a mixed-initiative dialogue with the student
which would allow the student to participrte in this decisiol
making.

Example Instruction for T-38 Maintenance Training

Instruction would be extended in transaction shells of the
classes Identify, Execute, and Interpret in the following ways:

o Instruction that presented the structure of the knowledge
would be incorporated, for example displaying the parts of a
device in tree format.

o the parameters governing practice and test would be
included, for example item order, replacement, feedback.

Example of pre-practice feedback.

o the capability to invoke a transaction for a specific
purpose, such as a single example, or a summary.

Example of a shell being called under Summary Strategy. A single
problem is presented to test whether the student needs a
refresher.

o system-control presentation, practice, and assessment.

o integration with other transactions via the enterprise
transactions, and the structuring of the instruction
according to primary and secondary sequencing.

Additional shells would be provided for the classes of Judge,
Decide/Classify, Transfer, Analogize, Substitute, and Design.
Sample displays from these transactions are shown below.

Example interaction from a Judge transaction.

An interaction from a Classify/Decide transaction for comparing
and contrasting related activities.

Example interaction from a Transfer transaction for repair
procedures.

141



SECTION 7. XAIDA FUNCTIONAL BASELINE

7.1 Introduction

The "System/Segment Specification" (DI-CMAN-80008A), one of the
data requirements for AIDA Phase II, is described in the DID as
the "Functional Baseline" for the system, in this case AIDA.
Halff's description of maintenance training for the T-38 engine
start system, (see Section 5.2) seems to be the functional
baseline or description most specific to the demonstration
instructional design (ID) task.

In AIDA Phase I it was agreed that, to gain generality, AIDA
would be built around Merrill's second generation theory of
instructional design (ID-2) (see Section 6). That means that it
must be possible to restate Halff's maintenance training
functions in terms of Merrill's ID-2. For example, the concept
of the fault tree, widely used in maintenance training and cited
by Halff, must be explained in terms of ID-2.

Merrill is clearly the person best able to restate Halff's
description of the instructional design task using the language
of ID-2. Nevertheless, to get things started, Hickey wrote a
function-by-function abstract of Halff's paper. He then
undertook to describe each Halff function in Merrill's ID-2
language.

In the following outline, Halff's functions are printed in bold
face and preceded by an (H); statements from Merrill's ID-2
theory are preceded by an (M). Some Halff functions, like
"Describe the system," slip easily into the ID-2 scheme; other
Halff functions, like "Develop a hierarchical fault tree," do
not.

142



STAGE 1. KNOWLEDGE ACQUISITION

AIDA will guide the SME to...

7.1.1

a: Describe the system to be maintained.

M: (Develop entity frames as follows.)

M: List the entities of the system to be maintained.

M: List the components (parts) of the entity or system.

M: List the processes of the system to be maintained.

M: List the events and causes of the processes.

T: Using RAPIDS,

7.1.2

R: Describe the operator procedure.

M: (Develop activity frames as follows.)

M: List the operator activities, actions or procedures.

M: List the steps in each activity or action.

7.1.3

H: List all possible faults.

M: (Develop process frames as follows.)

M: List all possible faulted processes.

M: List the cause(s) of each faulted process.

7.1.4

N: Develop a hierarchical fault tree. (see Ralff's Fig. 2)

M: (How?)

143



7.1.5

B: Duvelop a fault tree interpretation scheme.

M: (How?)

M: Classify each frame into a class/subclass hierarchy.

M: Link each frame to other frames in the elaborated frame
network (EFN).

144



STAGE 2. DEVELOP INSTRUCTIONAL OBJECTIVES

AIDA will guide the SME/ID to...

7.2.1 N: Develop a mental model.

7.2.1.1 K: Develop a qualitative model.

K: (1) from the bottom up, using a fault tree analysis.

M: (How?)

K: (2) from the top down, by describing the major systems.
(a structural breakdown.)

M: (Use results from 7.1.1)

N: (3) combine the results of the bottom-up and top-down

analyses.

M: (How?)

7.2.1.2 H: Construct a functional hierarchy (see Fig. 5.5)

M: (Develop process frames as follows.)

M: List all processes.

M: (Elaborate the process frames as follows.)

M: Order the process frames in a systems/components
hierarchy (see Fig. 5.5) (see M. 7.2.2.1).

7.2.1.3 K: Construct the images associated with the system and its
functions. (This step is not adequately explained.)

M: (How?)

7.2.2 N: Acquire procedural knowledge, using GOMS to develop...

a: (1) a fault tree (see also 7.1.4).

M: (How?)

a: (2) a fault tree interpretation schema (see Table
5.2).

M: (How?)

N: (3) Testing and repair procedures (see Tables 5.1
and 5.3).

M: (Develop activity frames as follows.)

145



M: List the operator activities or actions.

M: List the steps in each activity or action.

7.2.2.1 H: Use the fault tree interpretation schema (Fig. 5.3) to
retrieve procedures and structural information

(from Table 5.1, Fig. 5.3, etc.).

M: (How?)

7.2.2.2 H: Represent the elementary procedures.. .using GOMS.

M: (Develop activity frames as follows.)

M: List the operator activities or actions.

M: List the steps in each activity or action.

7.2.2.3 H: Teach the use of the fault tree as follows.

H: (1) S names the parts (in the declarative mode).

M: (Author the "Identify/Naming" TRX as follows.)

Generate a graphical representation of the fault
tree, with each node isolated and an associated name
and function available.

R: (2) Then S uses the fault tree to...

(a) retrieve the procedure for checking the
functioning of the component (Table 5.2,
Line 2.1).

M: "Do you want to see if the component is
working?" Y/N
If Y, the procedure to check out the
component is displayed.

M: If the component is not working, then...

(b) retrieve the procedure for repairing a
terminal component (Table 5.2, Lines 1.1 and
2.3.1.1).

M: "Do you want to repair the faulted
component?" Y/N
If Y, the repair procedure is displayed.

(c) decide whether or not a component is terminal
(Table 5.2, Line 2.3.1).

146



(d) retrieve successive subcomponents of a
non-terminal component (Table 5.2, Line
2.3.2.1).

7.2.3 B: Develop ???? for trouble-shooting, in which...

(1) S discovers the appropriate fault isolation strategy.
(2) S learns a problem-solving procedure, comprised of...

(1) context free rules
(2) device-specific rules
(3) procedures for choosing the most information-

laden actions.

147



STAGE 3. DEVELOP INSTRUCTIONAL MATERIALS AND METHODS (TOOLS)

AIDA will guide the SME/ID to...

7.3.1 9: Develop the infrastructure, to...

(1) Simulate and describe the equipment to be maintained,
in both qualitative and physical terms (using RAPIDS).

(2) Interpret and describe the procedures to be learned.

troubleshooting as problem solving.

7.3.1.1 Develop the qualitative and physical simulations,
i.e., to...

(1) Develop three types of views:

(a) Global subsystem views.

(b) Views that show all of the components involved in the
functions and malfunctions selected for trouble-
shooting.

(c) Views that depict only the components involved in
particular lower level modes of the fault tree.

(2) Use to generate...

(a) a simulation of all observations that might be made in
the course of troubleshooting.

(b) a simulation of all actions.

(c) a simulation of all transitions that refocus the S's
attention from one component of the aircraft to another.

Method: SME/ID will walk through every branch of every
troubleshooting procedure, noting the views and manipulations
needed to support the procedures.

(The physical and qualitative simulations will be linked.)

7.3.1.2 B: Interpret and describe the procedures to be learned

AIDA will guide the SME/ID to...

H: (1) Develop a fault tree, in both declarative and
procedural terms. (See 2.2.3 above, Author the TRXs.)

H: (2) Develop a fault-tree interpretation schema,
using GOMS.

148



H: (3) the observation and repair procedures attached to
nodes in the fault tree, using GOMS.

(With guidance from AIDA, the SME/ID will use an interpreter to

computerize these models.)

7.3.1.2.1 Fault-tree interpretation schema

With guidance from AIDA, the SME/ID will develop a display that
indicates to the S the following milestones in the fault-tree
interpretation schema, or allows the S to indicate these
milestones:

(1) S has checked the functionality of the component under
consideration (Table 5.2, Line 2.1),

(2) S has isolated and repaired a component (Table 2, Line
2.3.1),

(3) S has completed troubleshooting the subcomponents of a

component (Table 5.2, Line 2.3.2.1),

(4) S deals with unsolved cases (Table 5.2, Line 2.3.2.3).

S's progress from one milestone to another will be under three
alternative levels of guidance:

(1) Heavily guided practice: computer dictates next
milestone to S.

(2) Relaxed guidance: S selects next milestone.

(3) Very relaxed guidance: computer monitors S's actions
for consistency with fault-tree interpretation schema.

7.3.1.2.2 Structure of the fault tree

With guidance from AIDA, SME/ID develops both a declarative
(graphic display) and procedural interpretation (verbal) of the
fault tree.

(1) Develops a graphic display of the fault tree (Figs.
5.2, 5.7).

(2) Develops a computer display which...

(a) describes to the S the procedure s/he should use
to check the functionality of any component,

(b) asks the S to designate or execute the procedure,

(c) describes to the S the procedure for repairing
any faulted component,

149



(d) asks the S to designate the procedure.

S can progress under three alternative levels of guidance:

(1) Heavily guided practice: computer dictates next
procedure to S.

(2) Relaxed guidance: S selects next procedure.

(3) Very relaxed guidance: computer monitors S's actions

for consistency with fault-tree.

7.3.1.2.3 Procedures for observation and repair

With guidance from AIDA, the SME/ID:

(1) Develops a declarative, verbal description of the
procedures for repairing faulted components,
paraphrasing the GOMS representation.

(2) Develops a representation of the repair procedure in
the linked qualitative and physical simulations.

(a) describes to S the procedure S should use to repair
any faulted component,

(b) asks S to designate or execute the procedure.

With guidance from AIDA, the SME/ID develops computer-based
presentation/practice routines for five attributes of S's
performance:

(1) Strategy -- status of a procedure vs. the fault-tree
interpretation schema,

(2) Tactics -- status of the procedure vs. the fault tree,

(3) Stepwise descriptions -- the elementary observation and
repair procedures,

(4) Conceptual aspects -- the theoretical description in
the qualitative model of the procedure. (What does this
mean? Does this refer to S's performance?)

(5) Implementation -- the physical actions and observations
of the S, in the physical simulation, that implement the
observation or repair procedure.

7.3.1.3 Problem-solving and troubleshooting

Guided by AIDA, the ID will consult a mini-expert incorporated in
AIDA, either PROFILE or the Fuzzy Rule-Based Model of Hunt and
Rouse, and, operating within the RAPIDS-based qualitative simulation,

150



develop presentation and practice routines for troubleshooting
and problem-solving. It will be possible to start the routines
in mid problem, particularly when the fault-tree procedure reaches
an impasse. The mini-expert will have an explanation facility.

151



STAGE 4. DEVELOP INSTRUCTIONAL PROCEDURE (CURRICULUM)

AIDA will guide the ID in configuring and assembling the tools
listed in Section 3 into a curriculum (multiple lessons)
organized in four phases:

(1) System Behavior and Architecture
(2) System Function
(3) Troubleshooting Procedure
(4) Problem Solving

7.4.1 System Behavior and Architecture

Guided by AIDA, the ID will develop exercises with both the
qualitative and physical simulations.

Qualitative reasoning tasks will include:

(1) predicting the behavior of individual components,

(2) predicting for the system as a whole the consequences
of certain states of the equipment.

Guided by AIDA, the ID will develop the following kinds of
exercises: (Are these, or could they be, transaction shells?)

7.4.1.1 Physical and conceptual structure. Students are shown
images of the physical equipment and asked to identify (name?)
individual components, their function, and their immediate
connections.

7.4.1.2 Causal reasoning. Students are given information
about all inputs to a component or subsystem and required to
predict the state of the component or subsystem, its outputs
under normal operating conditions, and its outputs in each
possible fault mode.

7.4.1.3 Functional reasoning (a). S is shown some of the
inputs to an element of the device and asked how its other inputs
must be set in order to achieve a desired function or state.

7.4.1.4 Functional reasoning (b). S is shown the actual
outputs and inputs to an element and asked whether or not the
element is faulted.

7.4.1.5 Physical and conceptual appearance. S is asked to
discriminate among component states on the basis of some
physical depiction of those states.

With guidance from AIDA, the ID will arrange these exercises in a
sequence. Some may be embedded in troubleshooting problems.

152



7.4.2 System Function

Guided by AIDA, the ID will develop exercises based on the
functional breakdown of the aircraft (Figure 4.1). Some
exercises will provide guided practice in...

(1) system operation (e.g., starting the engines),
(2) elementary observation and repair.

Practice exercises will be arranged in the following order:

(1) qualitative simulation
(2) joint qualitative and physical simulation
(3) physical simulation

Each exercise will begin with a demonstration of the
procedure, followed by practice.

Guided by AIDA, the ID will arrange the exercises in a depth-
first traversal of the functional breakdown, and to the subgoal
structure of the procedures, following the GOMS representation of
the procedures.

(2) Guided by AIDA, the ID will create exercises to teach S
the tests or observations required to check the
functionality of each component of the aircraft.

(a) Qualitative reasoning
(b) Observational procedures
(c) Select and execute test or observational procedures

7.4.3 Troubleshooting Procedures

Guided by AIDA, the ID will develop exercises arranged in the
following order...

(1) Depth-first traversal (DT) of the fault tree for each
malfunction.

(2) Random traversal (RT) (?) of the fault tree for each

malfunction.

AIDA will guide the SME/ID to create exercises in which...

(a) The initial exercises or traversal of each
fault tree will provide support for the use of
the fault-tree interpretation schema. This
support to be withdrawn after practice with a
few malfunctions.

(b) Initial exercises with each malfunction will
display the fault tree for the malfunction.
This support will be faded with practice.

153



(c) Each exercise will begin in the qualitative
simulation. When S masters the fault tree,
the physical simulation will be phased in and
the qualitative simulation faded.

Documentation available to the S in the field will be available

on line.

7.4.4 Problem-Solvina Exercises

With guidance from AIDA, the ID will develop problem-solving
exercises for Ss ready to cope with impasses in the fault-tree
method of trouble-shooting. These exercises are to be...

(1) introduced only when S has mastered the fault tree for
the malfunction, and

(2) conducted in the presence of a "tutor" working the
problem under the same initial condition as the S.

7.4.4.1 Troubleshooting exercises

S is presented with a qualitative simulation containing
a single faulted component. At each point in the
troubleshooting exercise, the S is prompted to choose
an action and exhibit the consequences of the action.

7.4.4.2 Reverse troubleshooting exercises

S is told that a particular component is faulted and is
asked to predict the results of designated observations.

7.4.4.3 Case studies

S is given real case studies of intractable trouble-
shooting problems.

7.4.5 Typical Troubleshootina Curriculum

Lesson 1. A set of reverse troubleshooting (RT) and
troubleshooting (TS) problems that cover the major topological
patterns in the device, each pattern addressed first by RT
exercises, followed by TS exercises.

Lesson 2. A set of RT and TS problems that cover the
equipment's mission-critical faults and their nearest
neighbors. S first RTs each major fault and its neighbor,
then troubleshoots the pair.

Lesson 3. A repetition of Lesson 1 without RT.

Lesson 4. A repetition of Lesson 2 without RT.

Lesson 5. A mixture of Lessons 3 and 4.

154



SECTION 8. XAIDA SYSTEM DESIGN

8.1 Introduction

The design of XAIDA is described in detail in the Data Base
Design Document (DBDD) and summarized in this section.

The data base identified as the Knowledge Base (KB) for the
Advanced Instructional Design Advisor (AIDA) expert system
(AIDA.KB), is the repository of the knowledge required to support
the AIDA expert system (ES). It consists of the following sub-
KBs:

a. Domain Knowledge Base (DOMAIN.KB)
b. Transaction Knowledge Base (TRANSACTION.KB)
c. Enterprise Knowledge Base (ENTERPRISE.KB)
d. Student Knowledge Base (STUDENT.KB)
e. Environment Knowledge Base (ENV.KB)
f. Task Knowledge Base (TASK.KB)
g. Session Knowledge Base (SESSION.KB)

8.2 The Knowledge Base Management System (KBMS)

A knowledge base management system (KBMS) contains the composite
software for storing, accessing, manipulating, reasoning, and
otherwise controlling the knowledge embodied in the expert system
(ES). In AIDA, the KBMS will manage (1) the knowledge that
defines and drives the instruction configuration and authoring
functions, (2) the instruction configuration and authoring
knowledge acquired from subject matter experts (SME) and
instructional designers (ID), and (3) the knowledge that defines
and drives the instruction delivery functions.

XAIDA will be implemented within an expert system shell (ESS)
approved by ALHRD, rather than being developed from scratch using
a conventional programming language. The knowledge base manager
(KBM) is the core component of the KBMS which controls the base
level storage of the knowledge base. AIDA will employ the
knowledge base manager (KBM) provided by the approved ESS.

The knowledge base definition language (KBDL) is the "front-end"
syntax used for a specific KBMS to define/declare the objects in
the knowledge base. The KBDL proposed for the AIDA KBMS will take
a generalized, object-oriented (OOD) approach (using frames as
objects). The specific KBDL will be the one provided by the
approved ESS.

The knowledge base query language (KBQL) is the "front-end"
syntax used for a specific KBMS to insert, retrieve, update, and
delete the objects in a knowledge base. AIDA will employ the
specific knowledge base query language (KBQL) provided by the
approved ESS.

155



The following general terms are herewith defined for use in the
description of the AIDA knowledge base structure:

a. knowledge base (KB): The structured knowledge stored in an
expert system. In AIDA, a named collection of related frames
viewed as a unit.

b. object: A data structure that contains all the information
related to a particular entity. It might be considered a
frame with additional features allowing it to contain and
invoke methods and to send and receive messages.

c. frame: A named set of one or more related slots; equivalent
to a record in conventional data base terminology. Frame is
the object in this OOD.

d. slot: A named set of one or more related facets; sometimes
equivalent to a data field in conventional data base
terminology.

e. facet: A variable or a parameter name designating an
attribute (value, constraint, link, procedure, etc.) of a
slot; sometimes equivalent to a data item in conventional
data base terminology.

f. value: The lowest level item of knowledge stored in a KB.

8.3 Knowledge Base Structure

AIDA is comprised of 6 major subsystems and 7 knowledge bases as
illustrated in Figure 8.1. The Knowledge Acquisition/
Representation, Strategy Analysis, Transaction Authoring and
Instruction Delivery systems closely correspond to the steps in
the course development process. The Evaluation System further
supports the cyclic nature of this process by providing the
capability to analyze an instance of a configured and authored
course or lesson. The Courseware Generation System may provide
the capability to generate courseware for instruction delivery
systems external to AIDA at some future date (e.g., ATS, ISS,
ME!WIN, etc.).

a. The Knowledge Acguisition/Representation System (KARS)
interacts with the SME and/or the ID to gather information
on (1) the task to be learned, (2; the student who must
learn this task, (3) the environment in which the student
will be instructed, and (4) a model of the subject matter
associated with the task to be learned, as well as supporting
instructional material such as figures, diagrams, and
descriptions. This knowledge is stored in the Task, Student,
Environment, and Domain Knowledge Bases. The KARS may
provide the capacity to accept inputs from an external
cognitive task analysis system at some future date, such as
the ALHRD/MO cognitive task analysis system.

156



Future Expansion

Acquisitn /
Representation

Sys tem

Student Env. Task
Knowledge Knowledge Knowledge

Figure 8. AID KnSysem/nwldeBaeoeriw

Transacion 157



b. The Strategy Analysis System analyzes the content of
Student, Environment, Task, and Domain Knowledge Bases then
invokes the Transaction Authoring System to interact with
the SME/ID to specify the approach, organization, and
additional content of the curriculum, course, or lesson. The
approach and organization is stored in the Transaction and
Enterprise Knowledge Bases. The content is stored in the
Domain Knowledge Base.

c. The Transaction Authoring System contains a library of
reusable instructional programs, or transaction shells, for
the delivery of instruction. These programs contain
generalized instructional algorithms, each appropriate for
teaching a certain type of content, but do not contain any
content. A transaction shell is a piece of computer code
which when executed, causes a given transaction to take
place. Each shell incorporates a number of parameters,
configurable by the author, which control the functioning of
the shell during course delivery. Each shell knows what
knowledge it must have in order to execute its interaction
with the learner. It is able to query the domain knowledge
base to find the required knowledge, and thus be able to
instantiate its knowledge slots. If the domain knowledge
base does not contain the necessary knowledge, the
transaction shell can direct the SME/ID to supply the
required content. Once a transaction has been selected or
prescribed, it must then be configured and authored.
Configuration involves setting the parameters, modifying the
strategy, and attaching the content. Authoring involves
attaching domain specific instructional materials to the
instructional structure set up by the transaction. Each
transaction shell has default values for each of its
parameters, including its strategy elements.

d. The Instruction Delivery System. Authoring decisions made
at design time are based on the designer's best estimate of
the student population. During the delivery of instruction,
information about the students, their aptitudes, specific
goals, motivation, familiarity, and other factors, as well
as their expressed preferences, may be taken into account to
modify those decisions. The on-line delivery advisor has
access to the domain knowledge base and the configurations.
In addition, it maintains a student model that contains
information about the student. Using the information
gathered about the students, the advisor adjusts design
decisions to customize the instruction to more adequately
meet the characteristics of the student. The advisor also
can engage in a mixed-initiative dialogue with the students
which allows them to participate in this dec.sion-making.

The basic unit of instruction delivery is the interaction
with the students. Transactions are comprised of
interactions that are characterized by certain interaction
modes, methods of interaction with the students. Interaction

158



modes assume different values on the form of the interaction
(expository or inquisitory) and the degree of learner
control involved (learner control or system control). Five
interaction modes have been identified: overview,
presentation, practice, generality assessment, and instance
assessment. Interaction strategy is the combination and
sequence of interaction modes available to the students.
There are seven interaction strategies: overview,
familiarity, basic, mastery, basic remediation, mastery
remediation, summary, and assessment.

e. The Evaluation System. AIDA needs both author management

and course management systems. Without computer-managed
instruction there can be no benchmarks with which to
determine progress in the evolution of the AIDA system.

Furthermore, if XAIDA is to be a research tool, then
measurement and evaluation issues must be confronted
directly by adding a data gathering capability. The built-
in evaluation system will enable users to turn in data to be
used in refining AIDA. Data will be collected on both
instructors and students.

The data gathered will be useful for both formative and
summative evaluation of the performance of the SME/ID in
authoring courseware, particularly the benchmark lesson on
restarting the T-38 jet engine. It will make it possible to
generate statistics such as the ratio of author hours to
student contact hours.

f. Courseware Generation System. Delivery of instruction
to a large number of students may not be a function of the
AIDA system. Instruction delivery is more likely to be
accomplished via a multi-terminal, multi-media system
optimized for instruction delivery, such as ISS, WISE,
QUEST, PILOT, TENCORE, etc. The Courseware Generation
System analyses the configured and authored transactions and
generates courseware in a format that can be used by other
instruction delivery systems. XAIDA will, however, have a
student mode which will enable the SME/ID to view the
instruction sequence as seen by the student in order to
evaluate it.

8.3.1 Domain Knowledge Base (DOMAIN.KB)

The function of the Domain Knowledge Base (DOMAIN.KB) is to
represent "all the knowledge required for instruction leading to
[the] acquisition of an integrated human performance, or
enterprise." This knowledge includes the cognitive model(s) of
the domain knowledge as well as the instructional material
associated with that knowledge.

159



The three kinds of domain knowledge are entities, activities, and
processes. For each of these three kinds of domain knowledge, the
DOMAIN.KB must specify the following:

a. Attributes: Attributes represent the characteristics of an
entity, activity, or process such as its name and function.
In the DOMAIN.KB, attributes also represent instructional
material such as figures and explanations.

b. Components: Components "represent the constituents of a
frame. For an entity, the components would be parts of the
entity; for an activity, steps; and for a process, events
and causes."

c. Abstractions: Abstractions represent the class/sub-class
hierarchy into which an entity, activity, or process may be
classified.

d. Associations: Associations represent other associations
(relationships) that an entity, activity, or process can
have with other entities, activities, and processes. These
include relations such as (1) analogy for, (2) alternate
for, (3) uses, (4) involves, ana (5) applies.

The DOMAIN.KB is self-contained and does not reference other
knowledge bases. It is comprised of the following frames:

(1) The Domain Knowledge Frame is the basic unit of the Domain
Knowledge Base. It describes content, which can be an entity,
activity or process, and specifies the following:

The Attributes Frame, which specifies the attributes of the
entity, activity, or process;

The Components Frame, which specifies the component
hierarchy to which the entity, activity, or process belongs;

A list of Abstraction Frames, which specify the class/sub-
class hierarchy to which the entity, activity, or process
belongs; and

A list of Association Frames, which specify the associations
(relations) of the entity, activity or process to other
entities, activities and processes.

(2) Entity Attributes Frame - specifies the attributes of
entities: e.g., Name, Description, Location, and Figure.

(3) Activity Attributes Frame - specifies the attributes of
Activities: e.g., Name, Description, Event, and Sequence.

(4) Process Attributes Frame - specifies the attributes of
Processes: e.g., Name, Description, Inputs, Outputs,
Transformations, Events, and Timing.

160



(5) Components Frame - specifies the component hierarchies of
entities, activities, and processes.

(6) Abstraction Frame - specifies the class/sub-class
hierarchies of entities, activities, and processes. The
Abstraction Frame can also be used to represent "Collections".

(7) Association Frame - Together, the frames in the DOMAIN.KB
are organized into an "Elaborated Frame Network".

8.3.2 Transaction Knowledge Base (TRANSACTION.KB)

Transaction Knowledge Base (TRANSACTION.KB) contains descriptions
of instructional transactions, where a transaction (TRX) is
defined as a "particular interaction with a student." For each
transaction, the TRANSACTION.KB will specify the following:

Transaction Shell (TRXS): When executed, the TRXS causes a
particular transaction to take place.

Focus: The focus is the domain knowledge required to perform
a particular interaction.

TRXS Parameters: TRXS parameters configure the operation of
a TRXS. The parameters are Content, Coverage, Guidance
Level, Guidance Type, View, Vertical Sequence, Temporal
Sequence, Trials, Mastery Level, Response Mode, Feedback,
Replacement, Items, Timeout, Item Order, Modes, Strategy,
Strategic Control, and Tactical Control.

The Transaction Knowledge Base is comprised of Transaction Frames
and Transaction Shell (TRXS) Parameter Frames. These describe a
transaction by specifying (1) the Transaction Shell (TRXS) which
will perform the transaction, (2) the focus knowledge of the
transaction, and (3) the parameters specifying the performance
characteristics of the particular transaction.

8.3.3 Enterprise Knowledge Base (ENTERPRISE.KB)

The Enterprise Knowledge Base (ENTERPRISE.KB) represents
Enterprise Transactions. An enterprise is a complex human
performance that requires an integrated set of knowledge and
skills. The goal of instruction is the acquisition by the
learner of one or more enterprises. Integration must be
accomplished by enterprise transactions. The transactions
necessary to acquire all the knowledge and skill associated with
a given enterprise comprise a transaction family. In
maintenance, the six enterprises are equipment operation,
equipment calibration and adjustment, equipment testing, access
and disassembly, equipment repair, and troubleshooting.

A high level transaction manager (TRXM) is required for each of
the enterprises. The transaction manager is a program that calls

161



and sequences the primary transactions identified as necessary
for a particular curriculum.

In addition to transaction families for each of the 6 maintenance
training enterprises, an equipment model family of transactions
is a component of each of the other transaction families.

A course is a set of enterprise transactions and their supporting
families of primary transactions. A course organization is a
nesting and/or ordering of the enterprise transactions.

8.3.4 Student Knowledge Base (STUDENT.KB)

XAIDA will be designed with basic information about the students
already in the system. The instructional designer will be given
the performance capabilities to be acquired by the student, e.g.
name the parts. XAIDA will then select and configure transaction
shells appropriate to the specified capabilities. The
instructional designer will then be prompted to enter any needed
content knowledge, e.g., from the T-38 starting system, to
complete a frame appropriate to the particular knowledge type.

8.3.5 Environment Knowledge Base (ENV.KB)

Because we are assuming a fixed environment (small class,
computer-based instruction, located at a TTC), information about
the instructional environment will be hard-coded into the XAIDA
EXECUTIVE for the time being.

8.3.6 Task Knowledge Base (TASK.KB)

The first Ftep in the design of any instruction is a task
analysis tc determine what should be taught. In XAIDA we are
focusing on teaching procedures for maintenance training.
Therefore, we will customize an enterprise analysis pertinent to
that domair and also customize an elaborated frame network shell
pertinent to maintenance training procedures. At some future
time, however, the KARS in XAIDA will be enhanced to include a
Task Analy-is capability. To insure future compatibility, the
KARS in XADA will be developed around the concepts of cognitive
task analysis, as described below.

A GOMS (Go~ls, Operations, Methods, and Selection Rules)
analysis, in which the tasks to be accomplished are broken down
into a meaningful series of goals and subgoals. Goals represent
a person's intention to perform a task, subtask, or single
cognitive or physical operation. Operations characterize
elementary physical actions (e.g., pressing a button, setting a
switch, or attaching a probe) and cognitive or mental operations
(e.g., perceptual operations, retrieving an item from memory, or
reading a voltage and storing it in working memory). Methods
generate sequences of operations that accomplish specific goals
or subgoals. Selection rules determine which method to select.

162



One way to determine the content of instructional materials and
training procedures is to do a complete cognitive simulation of a
given task. The advantage of a simulation is that it insures
that the analysis is complete.

The most accurate way of determining the mental model to be
taught would be to do a complete cognitive simulation. This is
not always feasible. Kieras has described three heuristics that
can be used to determine the mental model that should be taught
in lieu of a complete simulation.

- relevance to task goals
- accessibility to use
- critical procedures and inference strategies

To carry out the first heuristic, an explanation hierarchy is
constructed. The second heuristic, "accessibility to use",
implies that the device illustration or simulation which is
presented to the technician should not contain parts which cannot
be accessed. Again this involves mapping the GOMS analysis, but
onto the device description, rather than the explanation
hierarchy. The third heuristic says that the GOMS analysis should
be examined for procedures that will be difficult to learn due to
what appears to be arbitrary content.

To decrease the workload of authoring the simulation and/or doing
the GOMS analysis for a given domain, XAIDA will contain a
library of generic low-level procedures, such as testing igniter
plugs. These modules can also be given as screening tests to
insure that these low-level methods are learned before entering
simulations at a higher level or aimed at specific problems.

Kieras has defined a language call (NGOMSL) or "Natural" GOMS
Language. The results of an NGOMSL analysis are implemented in a
working simulation. The device knowledge necessary to carry out
the simulation will be represented using Anderson's PUPS system,
which is compatible with the Transaction Shell representation.
Anderson's PUPS (Penultimate Production Systems) theory holds
that procedures are acquired by compiling declarative knowledge.
The declarative knowledge necessary for compiling the procedures
which model the task performance is represented in schema-based
structures called PUPS structures. These schema include slots for
the function of the entity being represented by the schema, a
form slot for the physical appearance of the entity, and a
precondition slot which states the preconditions necessary for
the function to be achieved. In compiling the productions which
are the basis of procedural knowledge, the function slot maps to
the goal to be achieved which will require knowledge of the
entity represented; the preconditions slot maps onto the
condition of the condition-action pair in a production. The form
slot in the PUPS tutors holds the form of the current action to
be carried out such as a particular LISP function. A similar
scheme could be used for representing the GOMS analysis. Merrill
has proposed an activity frame that has paths or sequences of

163



actions. This frame could also have slots for the function, the
operators, and the outcome. The values for these slots could
probably be automatically generated from a NGOMSL analysis just
as it is technically feasible to generate a running production
rule-based simulation from an NGOMSL analysis.

The representation scheme proposed by Merrill for AIDA will be
used to represent the explanation hierarchy. The device
knowledge will ultimately be represented in the graphical
simulation. The initial representation may be a hierarchical
listing of the names of the device components or a block diagram,
which can serve as a guide for constructing the sketch which will
guide the construction of the graphical simulation.

8.3.7 The Device Simulation

The device simulation contains a graphic representation of the
device structure and qualitative simulations of its functioning.
Authoring the simulation starts with a temporary sketch which is
derived from the prior cognitive analysis.

The construction of the simulation is done in bottom-up fashion
starting with the lowest level objects in the device hierarchy.
The behavior of the objects is defined by attribute handles and
rules. These aspects of the simulation are drawn from the
explanation hierarchy. Once the basic simulation is complete,
procedures which are carried out on the device are authored by
carrying out a sequence of actions which correspond to actions
spelled out to accomplish the goals in the GOMS analysis. The
individual actions correspond to the operators. What is missing
from the simulation representation is any indication of the
function or purpose, i.e. goals, of the procedure. These have
to be represented in the dialogue windows.

The task analysis approach developed by Kieras and his colleagues
will be used in the task analysis module of AIDA (KARS). This
includes (1) a GOMS analysis for the procedural aspects of the
task, (2) a mental model analysis to develop an explanation
hierarchy, and (3) a decomposition of device structure and
function and relating them to the GOMS analysis. Shells will aid
in the analysis. A shell guides the novice in doing a GOMS
analysis of a particular task using either the documentation at
hand or the knowledge of a subject matter expert. Similar shells
will be created for the explanation hierarchy and the device
structure and function knowledge.

8.3.8 Knowledge Base Design

The Data Base Design Document (DBDD) describes representative
frames for the AIDA knowledge bases by listing for each knowledge
base the constituent frames and each frame's slots and facets.

The TRXS slot specifies the transaction shell which will be used

to perform the transaction. In AIDA, there will be a TRXS for

164



each of the twelve primary transactions. In XAIDA, four TRXSs
will be implemented. They are:

a. Identify: An identify transaction requires either an
instance or class entity frame. It enables the student to
acquire the names, functions, properties, and relative
location of 1 the parts which comprise an entity. The
student knows what it is.

b. Execute: An execute transaction requires either an instance
or class activity frame. It enables the student to acquire
the steps of an activity. The student knows how and is able
to (perform] the activity.

c. Interpret: The interpret transaction requires either an
instance or class process frame. It enables the student to
acquire the events and causes in a process. This means that
the student knows why it works and can explain the events
which lead to a given consequence or can predict the
consequence from a series of events.

d. Classify/Decide: A classify/decide transaction requires a
superclass frame with two or more subordinate class frames
each of which have two or more instance frames. These frames
can be entity, activity, or process frames. It enables the
student to acquire the ability to sort or classify instances
as to class membership. It enables the student to know when
to select an alternative.

165



SECTION 9. RESEARCH ISSUES

9.1 Introduction

In the Final Report for Task 0006, ALHRD listed 29 AIDA-related
research issues for near- and long-term resolution. The
following additional research requirements were defined during
Task 0013.

9.2 Knowledge Representation

Many of the suggestions Halff made in Section 5 rest on certain
assumptions concerning current maintenance practices and
maintenance training. He suggested, for example, that

0 equipment to be maintained can be represented within a
qualitative reasoning framework;

0 equipment types are decomposable into certain hierarchies
defined by their structure and their functions; and

0 troubleshooting practices, as taught, are derived, albeit
implicitly, from fault trees.

Each of these assumptions is open to questions and none could be
expected to hold for the full range of maintenance scenarios.
Needed is an overall evaluation of their validity. Research to
address this need would survey technical documentation and
training materials for selected equipment with a view to
establishing how well these assumptions are met in practice. The
restarch would be constructive in the sense that it would
produce, whenever possible, representations of the equipment
that could be used in AIDA.

9.3 Skilled Troubleshooting

Studies of skilled troubleshootez are needed as another aspect
of validation. The aim of these studies would be to determine
whether or not the general conception of troubleshooting
suggested in PTT is descriptive of skilled troubleshooters. That
conception described troubleshooting as a two-stage process. In
Stage 1 the troubleshooter uses a fault tree to carry the
troubleshooting process either to completion or to an impasse.
Stage 2, invoked only when Stage 1 reaches an impasse, employs
context-free strategies like those described by Rouse or by Towne
to resolve the impasse.

166



Research to validate this conception could be carried out by
examining how skilled troubleshooters approach problems in a
RAPIDS simulation. Halff sees three specific goals of these
studies:

o determine how closely experts adhere to a fault-tree
approach in initial troubleshooting,

o adopt Rouse's and/or Towne's model to account for
troubleshooting faults not covered in the fault tree, and

o determine how Stage 1 and Stage 2 troubleshooting are
related (i.e., how results of Stage 1 are employed in Stage
2).

9.4 GOMS Editor

One of the most exciting developments under AIDA will be a GOMS-
oriented procedure editor for RAPIDS. This editor is actually a
CASE project (although authors will never know it as such) in
which machine learning methods are brought to bear on example
procedure traces provided by the author. Put another way, the
author's tasks in specifying a procedure are to provide examples
of all important cases, to designate the variables that
distinguish among cases, and to choose the appropriate version of
a procedure when two or more versions appear equally good. The
machine's role is that of inducing or creating a GOMS model of
the procedure from data provided by the author.

Development of this editor is a serious research effort in its
own right. It should begin with the collection of a corpus of
procedures typical of those addressed by the editor. A second
stage might involve the collection of protocols from SMEs using
RAPIDS in a Wizard-of-Oz mode to describe procedures in the
corpus. Finally, machine-learning methods could be designed to
substitute for the Wizard in order to provide a completely
automatic editor.

9.5 Learning Model for GOMS

GOMS originated in studies of human-machine interfaces and is
still very much a tool for interface design. Although some of
Kieras' work addresses the notion of ease of learning in terms of
GOMS, there is no complete GOMS-oriented account of how people
learn procedures or how procedures should be taught. Since the
development of GOMS representations of maintenance procedures
within RAPIDS is part of the proposed AIDA, some attention should
be given to developing learning and training models for
procedures that are based on these representations.

167



9.6 Curriculum Studies

One of the most interesting issues to surface in Phase II was the
position ,f Elaboration Theory with respect to training that
addresses how-it-works knowledge. In both Sections 5.2 and 5.3
Halff recommends that students first be taught how the target
equipment functions by certain exercises involving the
qualitative modeJ (e.g., asking how a change in state of one
component will affect the state of another). Reigeluth pointed
out at the meeting that these exercises don't epitomize anything
and should, in his view, be eliminated from the curriculum.
Kieras suggests that explicit how-it-works training can have
positive effects on learning and performance. A series of
empirical studies could serve to illuminate this issue. These
studies would examine the effects of how-it-works pretraining on
effectiveness of subsequent troubleshooting training.

In addition to studying the effects of how-it-works knowledge,
this research would have the important side effects of providing
curricula that would be directly transferable to AIDA. While
Halff's papers provide a general view of the design of curricula
for AIDA, they are far from specific. Many other issues, besides
the how-it-works issue, will arise in the development of
curricula, and the success of AIDA will depend on an integrated
set of studies to address these issues.

The studies proposed above would clearly require a team effort.
RAPIDS and someone with RAPIDS expertise would be needed for just
about all of them. To the extent that the Air Force is
interested in particular equipment, Air Force SMEs would be
needed to define the equipment characteristics. Researchers
versed in knowledge representation would be required for most
studies. Certain individuals (Kieras and Reigeluth in
particular) should be involved in some aspects of the work.

168



REFERENCES

Anderson, J. R., Boyle, C. F., Corbett, A. T., & Lewis, M. W. (1990).
Cognitive modeling and intelligent tutoring. Artificial
Intelligence, 42, 7-49.

Anderson, J. R., Boyle, C. F., Farrell, R., & Reiser, B. J. (1984).
Cognitive principles in the design of computer tutors. In Sixth
Annual Conference of the Cognitive Science Society Program (pp.
2-16).

Anderson, J. R., Boyle, C. F., & Reiser, B. J. (1985). Intelligent
tutoring systems. Science, 228, 456-462.

Bovair, S., Kieras, D. E., & Polson, P. G. (1990). The acquisition
and performance of text-editing skill: A cognitive complexity
analysis. Human Computer Interaction, 5, 1-48.

Brown, J. S., Burton, R. R., & de Kleer, J. (1982). Pedagogical,
natural language and knowledge engineering techniques in SOPHIE
I, II and III. In D. Sleeman & J. S. Brown (Eds.) Intelligent
tutoring systems (pp. 227-282). London: Academic Press.

Burton, R. R., & Brown, J. S. (1982). An investigation of computer
coaching for informal learning activities. In D. Sleeman & J.
S. Brown (Eds.) Intelligent tutoring systems (pp. 79-98).
London: Academic Press.

Card, S. K., Moran, T., & Newell, A. (1983). The psychology of
human computer interaction. Hillsdale, NJ: Erlbaum.

Chase, W. G., & Ericsson, K. A. (1982). Skill and Working Memory.
In Bower, G. H. (Ed.), The psychology o learning and motivation
(Vol. 16, pp. 1-58). New York: Academic Press.

Gagne, R. M., & Merrill, M. D. (1990) Integrative goals for
instructional design. Unpublished manuscript.

Glaser, R., & Bassok, J. (1989). Learning theory and the study of
instruction. In M. R. Rosenwig & L. W. Porter (Eds.), Annual
Review of Psychology, (Vol. 40 pp. 631-666). Palo Alto, CA:
Annual Reviews, Inc.

Half f, H. M. (1989). Prospects for automating instructional design.
Arlington, VA: Halff Resources, Inc.

Halff, H. M. (1990). Automating maintenance training. Arlington,
VA: Halff Resources, Inc.

169



Hollan, J. D., Hutchins, E. L., & Weitzman, L. (1984). STEAMER:
An interactive inspectable simulation-based training system.
The AI Magazine, 5(2), 15-27.

Hunt, R. M., & Rouse, W. B. (1984). A fuzzy rule-based model of
human problem solving. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-14, 112-120.

Jones, M. K., Li, Z., & Merrill, M. D. Domain knowledge representa-
tion for instzuctional analysis. Educational Technology,
October 1990.

Kieras, D. E. (1988b). What mentalmodelshouldbe taught: Choosing
instructional content for complex engineered system. In J.
Psotta, L. D. Marzey, & S. A. Mutter (eds.), Intelligent tutoring
systems: Lessons learned, pp. 85-111, Hillsdale, NJ: Erlbaum.

Kieras, D. E. (1988a). Towards a practical GOMS model methodology
for user interface design. In M. Helander (Ed.), Handbook of
Human-Computer Interaction (pp. 135-157). North Holland:
Elsevier.

Kieras, D. E. (1990). The role of cognitive simulation models in
the development of advanced training and testing systems. In N.
Frederiksen, R. Glaser, Alan Lesgold, & M. Shafto (Eds.)
Disgnostic monitoring of skill knowledge acquisition (pp. 51-74).
Hillsdale, NJ: Erlbaum.

Kieras, D. E., & Bovair, S. (1984). The role of a mental model in
learning to operate a device. Cognitive Science, 8, 255-273.

Kieras, D. E., & Polson, P. G. (1985). An approach to the formal
analysis of user complexity. International Journal of
Man-Machine studies. 22, 365-394.

Kosslyn, S. M. (1980' Image and mind. Cambridge, MA: Harvard
University Press.

Merrill, M. D., & Li, Z. An instructional design expert system.
Journal of Computer-Based Instruction, Summer 1989, v. 15, no.
3, 95-101.

Polson, M. C., & Polson, P. G. (1990). AIDA: Procedural Training.
Boulder, CO: Institute of Cognitive Science, University of
Colorado.

Psotka, J., Massey, L. D., & Mutter, S. A. (Eds.). (1988).
Intelligent tutoring systems: Lessons learned. H±llsdale, NJ:
Erlbaum.

170



Towne, D. M. (1986). The generalized maintenance trainer:
Evolution and revolution. In W. B. Rouse (Ed.), Advances in
man-machine systems research (Vol 3). Greenwich, CT: JAI Press.

Towne, D. M., Johnson, M. C., & Corwin, W. H. (1983). A
performance-based technique for assessing equipment
maintainability (Tech. Rep. 102). Los Angeles, CA: Behaviorgl
Technology Laboratories, University of Southern California.

Towne, D. M., & Munro, A. (1988). The intelligent maintenance
training system. In J. Psotka, L. D. Massey, & S. A. Mutter
(Eds.), Intelligent tutoring systems: Lessons learned. (pp.
479-530) Hillsdale, NJ: Erlbaum.

lowne, D. M., Munro, A., Pizzini, Q. A., Surmon, D. S., Coller, L.
D., & Wogulis, J. L. (1990). Model-building tools for
simulation-based training. Interactive Learning Environments,
1, 33-50.

U.S. Air Force. Flight Manual: USAF Series T-38A and AT-38B
Aircraft. T.O. lT-38A-I, 1 Jul 87 (Change 2, 1 May 89).

U.S. Air Force. Organizational Maintenance, Engine Conditioning:
USAF Series T-38A Aircraft, T.O. IT-38A-2-6-2, 1 Aug 77 (Change
35, 1 May 89).

171


