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INTRODUCTTON

The following report summarizes our activities under the Office of Naval Re-

search (DARPA) Contract No. N0014-38-K-0657. We have organized this report
under the following five categories:

I. Deliverables: computer tape and disk with instructions, and summary of ac-

complishments related to the proposed projects.
IT. List of publications for the period of this report.

ITI1. Appended respective reprints and preprints.
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I. Deliverables: Computer Tape and Disk with Instructions

aiid Summary of Accomplishments Related to the Proposed Projects

PROJECT I

Deliverable: We are dclivering a tape with a software package for UNIX worksta-
tions with documentat.on for analyzing low dimensional dynamical behavior from
time series. In particulzr, the Lyapunov exponent code will, together with the di-
mension code, permit the user to distinguish between periodic. chaotic, and random
processes. “Random processes™ here means behavior whose dimension is too high
to compute. The code computes the information dimension of the time series. We

are also including in the same tape a noise-reduction code with documentation.

Summary of Project 1: Nonlinear Noise Filtering of Ezperimental Data from Chaotic

Processes

Many attempts have been made to apply ideas from dynamical systems to the
analysis of experimental data including cstimates of attractor dimension and mea-
surement of Lyapunov exponents. A1 essential problem is that noise often compli-
cates the analysis. For example, noise obscures the fractal structure of the attrac-
tor, so that estimates of the attractor dimension cun be difficult to obtain. Various
methods have been proposed to estimate the noise levels in the data, and these
are useful for determining the smallest scales at which dimension measurements are
feasible. However, up until now no systematic method has been developed for noise

reduction.

We have developed a method which we believe is a potential breakthrough in the
analysis of experimental data. Typically, attractors are reconstructed from a scalar
time series of experimental data using time delays. Conventional signal filtering
techniques are not useful in this case, because they examine only portions of the

signal which are close in time. We examine points on an attractor which are close in




phase space; the corresponding parts of the original signal in general are far apart

in time.

Our method is a linearization technique which uses the dynamics of the recon-
structed attractor to estimnate and correct errors in the trajectories. The method
relies on the assumption that in a small neighborhooa about a point on the tra-
jectory, the dynamics on the attractor is nearly linear. In other words, given a
point x; on the attractor, its image 1s x;31 = f(x;) for some nonlinear, unknown
function f. We asswire that it is possible to find a matrix A and a vector b such
that x,4; = Ax; + b. The meihod has two steps: first, to compute the matrices A
and vectors b for each point on the trajectory, and second, to find a new trajectory
near the original one which best satisfies the linear approximation. We believe that
a reliable prccedure like the one outlined above will be invaluable for the analysis

of experimental data.
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PROJECT 2

Deliverable: We are delivering a disk containing a Dynamics code (for IBM com-
patible PCs and for UNIX/X window workstations) with a Manual for computing
and evaluating dynamical processes. ‘The source code contains 20,000 lines of code.
In particular, the program wiil compute stable and unstable manifolds as described

below.

Summary of Project 2: A fast Reliable Method for the Numerical Computation of
Stable Manifolds of Chaotic Piocesses

Saddle points often play a crucial role in the dynamics of a particular map f. A
schematic illustration of a saddle piint in two dimensions is given in the following

figure:

Because p is an unstable fixed point, any point p’ ¢ventually moves away from
p as [ is iterated, even though f(p) = p. For example, in Fig. 1, initial conditions
slightly to the right of the curve labeled S move toward p for a few iterates, then
are repelled to the right thereafter, eventually approaching the curve U. Initial
conditions slightly to the left of S will move close to p, then off to the left. The
carve S is the stable manifold of p: it is the set of initial conditions which are
attracted to p. The curve U is the unstable manifold. If f is invertible then U is the
stable manifold of p for the inverse map f~!. More generally, U is the set of points

whose preimages tend to p.
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In many cases, the stable and unstable manifolds wind around in complicated
ways. Because the manifolds are intertwined so closely, initial conditions can ap-
proach and be repeiled from the saddle point repeatedly, leading to complex behav-
ior. Stable manifolds of fixed points often form part of the boundary between two
basins of attraction. In this case, the structure of the stable manifold determines
how sensitive the system is to small errors in measuring an initial condition. In
addition, it is often important to know whether the stable and unstable manifolds
cross at a point other than the saddle point p. Such homoclinic intersections are
often of interest, especially in cases where the map depends on a parameter. Hence,
a knowledge of the structure of the stable and unstable manifolds is essential to un-
derstanding the dynamics. We have developed efficient, reliable numerical methods

to calculute them.
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A novel method 1s desenbed for nowse reduction in chaotic expenmental data whose dynamues are low dimensional In
ad lition, we show how the approach allows cxpenmentalists to use muny of the same techniques that have been essentual for
the analysis of nonhnear systems of ordinary differential equations and difference equations.

1. Introduction

Numerical computation and computer graphics
have been essential tools for investigating the be-
havior of nonlinear maps and differential equa-
uons. The pioneering work of Lorenz {25} was
made possible by numerical integration on a com-
puter, allowing him to take nzarby pairs of initial
conditions and compare the trajectories. Hénon
{19] discovered he complex dynamcs of his cele-
brated quadratic map with the aid of a pro-
grammable calculator. A variety of classical and
modern techniques has been exploited to find pen-
odic orbits, their stable and unstable manifolds
[14], basins of attraction [26}, fractal dimension
(27], and Lyapunov exponents [10, 31, 37}. In
some cases, numerical methods can establish rig-
vrou.ly the existence of witial conditions whose
trajectories have essenuially the same intricate
structure that one sees on a computer screen [18).

'Curient address Department of Mathematics, Anzona State
University, Tempe, AZ 85287, USA

0167-2789/90/303 50 < Elsevier Science Publishers BV
(North-Holland)

Unul recently, experimentalists have not been
able to apply most of these methods to the analy-
s1s of experimental data, stnce they do not in
genetal have explicit equations to model the be-
havior of their apparatus. In cases where 1t is
possible to find accurate models of the physical
system, yuantitattve predictions about the behav-
wor of actual experiments are possible {17]. How-
ever, all that 1s available 1n a typical experiment 1s
the time-dependent output (e.g. voltage) from one
or more probes, which is a function of the dynam-
ics.

One fundamental problem in the analysis of
experimental data concerns the correspondence
between the dynamics that governs the behavior
of the apparatus and the discretely sampled time
series that comprises the data. Another question 1s
how to minirmize the effect of notse. In this paper,
we show how the ume deluy embedding method,
row commonly used to reconstruct an attractor
from experimental data, yields a novel procedure
for reducing noise in data whose dynamucs can be
characterized as low dimensional. Moreover, we
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show how the approach can be extended 10 allow
experimentalists access to many of the analytical
tools mentioned above.

Section 2 reviews the time delay embedding
method and soine of its applications. Section 3
introduces some of the problems associated with
traditional filters and outlines our noise reduction
method.

2. The time delay embedding method

As stated in section 1. one problem in analyvzing
experimental data is how to relate the measure-
ments with the dvnamics. Before the early 1980's.
power spectra were the principal method for ana-
lyzng such data. For instance, Fenstermacher
et al. [13] relied heavily on power spectra to detect
transitions from periodic to weakly turbulent flow
between concentric rotating cvlinders. However.
Founer analysis alone is inadequate for describing
the dynamics.

Other methods also have been used to analvze
time series output from dynamical systems. Lorenz
{25] used next amplitude maps 10 describe some
features of the dynamics: that is. he plotted -, .,
against =, where z, is the nth relative maximum
of the third coordinate of the numerically calcu-
lated solution. Such maps are often useful. not
only for investigating features of the Lorenz at-
tractor [32}, but also for instance in experiments
on intermittency in oscillating chemical reactions
[30].

In the past decade, the time delay embedding
method has come into common use as a wayv of
reconstructing an attractor from a time series of
expenimental data. In this approach. one supposes
that the dynamical behavior is governed by a
solution traveling along an attractor® (which is
not observable directly). However, one assumes
there is a smooth function that maps points on
the attractor to real numbers (the experimental

*!Existing numencal methods require the attractor to be low
dimensional

measurements). In the embedding method. one
generates a set of m-dimensional points whose
coordinates are values in the time series separated
by a consyant delay [11]. For example. when m = 3.
the reconstructed attractor is the set of points
{x,=(5,.5,,,.5,.,,)} where 7 is the time delay.
Takens {34] has shown that under suitable hy-
potheses. :his procedure vields a set whose prop-
ertics are cquivalent 10 those of the original
attractor provided that the embedding dimension
m is large enough.

In principle. the embedding method allows one
10 study the dvnamics in dewail. The earliest appli-
cations may be called szaric in that the analysis
focuses on the geometric properties of the set of
points on the reconstructed attractor. For exam-
ple. phase portraits and Poincaré sections are used
in ref. (5] 10 help determine the transition between
quasiperiodic and chaotic flow in a Couette-
Taylor experiment. Another important application
is the estimation of attractor dimension from
experimental data. for which theze 1s a largz litera-
ture {27]. In addition. various .nfornation theo-
retic notions can be used to find good choices of
embedding dimension and time delay {15].

More recent applications of the embedding
method are quite different in nature and can be
called dynanuc in that information about the dy-
namics i1s stored in the compuier for analysis.
With each data vector x,, one stores the “next™
vector. for example, x,,; for some & >0. This
makes it possible to compute a linear approxima-
tion of the dynamics in a neighborhood of x,.
assuming, that there is a low-dimensional dynami-
cal system underlying that data®>, In particular. a
linear approximation provides an estimate of the
Jacobian of the map at x, [11]. Eckmann et al. [10]
use linear maps computed in this way to integrate
a set of variational equations and find the positive
Lyapunov exponents=".

*2This matcnal was first presented by D Ruclle at a Nobel
s_vm?osmm n 1954

*Wolf et al. [37] have proposed a different method 1n which
nearbr pairs of points are followed to estimate the largest
Lyapunov cxporent

|
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In fact. the time delay embedding method pro-
vides a powerful set of tools for analyzing the
dynamcs. the breadth of which may not have
been realized by Eckmann and Ruelle. In the
remainder of this paper., we discuss two novel

(1) Noise reduction. Since one can approximate
the dvnamics at cach point. it becomes possible to
identify and correct inaccuracies in trajectories
anising from random errors in the original time
series. Numerical evidence suggests that the noise
reduction procedure described below improves the
accuracy of other analvses. such as Lvapunov
exponents and dimension calculations.

(2) Simplicial approximations. Linear approxi-
mations can be computed at each point on a grid
in a neighborhyod of the attractor to form a
simplicial approximation of the dynamical system.
This can be used to locate unstable periodic orbits
near the attractor.

We consider noise reductior: in section 3.

3. Noise reduction

The ability to extract information from time-
varying signals is limited by the presence of noise.
Recent experiments to study the transition to tur-
bulence in systems far from equilibrium, like those
by Fenstermacher et al. [13], Behringer and Ahlers
[2], and Libchaber et al. [24], succeeded largely
because of instrumentation that enabied them to
quantify and reduce the noise. However, it is often
expensive and time consuming to redesign experi-
mental apparatus to improve the signal to noise
ratio.

An important question, therefore, 1s how the
experimental data can be filtered or otherwise
preprocessed before it is analyzed further. One
common approach is to use Fourier analysis: one
might model the noise as a collection of high-
frequency components and subtract them from a
power spectrum (or Fourier transform) of the in-
put data. The transform can be inverted to yield a

new time senes with some of the high-frequency
components removed. This is the basic idea be-
hind Wiener and other bandpass filters [29]

However. as noted previously, power spectral
analysis is insufficient to characterize the dynam-
ics when the data are chaotic. Since the power
spectrum of 2 low-dimensional chaotic signal re-
sembles that of a noisy one, the suppression of
certain frequencies can alter the dynamics of the
filtered output signal. Badii et al. [1] have shown
that a simple low-pass filter effectively introduces
an extra Lyapunov exponent that depends on the
cutofl frequency. If the cutoff frequency is suffi-
ciently low. then the filter can increase the fractal
dimension of the reconstructed attractor. This re-
sult also has beer confirmed by Mitschke et al.
(28] with data from an electronic circuit.

We now consider a different approach and show
how the time delay embedding method can be
exploited to reduce the noise. at least in cases
where the time series can be viewed as a dynami-
cal system with a low-dimensional attractor. Qur
objective is to use the dynamics to detect and
correct errors in trajectories that result from noise.
This is done in two steps once an embedding
dimension m and a time delay r have been fixed.

In the first step. we consider the motion of an
ensemble of points in a small neighborhood of
each point on the attractor in order to compute a
linear approximation of the dynamics there. In the
second step, we use these approximations to con-
sider how well an mdividual trajectory obeys them.
That is, we ask how the observed trajectory can be
perturbed slightly to yield a new trajectory that
satisfies the linear maps better. The trajectory
adjustment is done in such a way that a new time
series is output whose dynamics are more consis-
tent with those on the phase space attractor.

This approach is fundamentally different from
traditional noise reduction methods. Because we
consider the motion of points on a phase space
attractor, we are using information in the original
signal that is not localized in a time or frequency
domain. Points that are close in phase space corre-
spond to data that in general are widely and
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irregularly spaced in time. due 10 the sensitive
depende ice on initial conditions on chaotic ai-
tractors. In contrast. Kaiman {4] and similar filters
examine data that are closely spaced in time:
bandpass filters operate in the frequency domain.

4. Eclkinann-Ruelle linearization

The discrete sampling of the original signal
means that the points on the reconstructed attrac-
tor can be treated as iterates of a nonlinear map f
whose exact form is unknown. We assume that f
is nearly linear in a small neighborhood of each
attractor point x and write

(x)=Ax+b=L(.)

for some m X m matrix A and m-vector b. (The
matrix A is the Jacobian of f at x.)

This approximation, which we call the Eck-
mann-Ruelle linearization at x, can be computed
with least-squares methods similar to those de-
scribed in refs. [11, 10]. Given a reference point
X, let {x,}7_, be a collection of the n points
which are closest to x,,. With each pomnt x, we
store the next point (i.e., the image of x,), denoted
»,*. The kth row a, of A and the kth compo-
nent b, of b are given by the least-squares solu-
tion of the equation

v=b t+a,x, (1)

where y, is the kth component of y and the dot
denotes the dot product. Fig. 1 illustrates the
idea®™>,

*4The points x, are points on the attractor which are not
consecutive 1n time. The subscnpt : merely enumerates all the
points on the attractor contawned within a small distance ¢ of
X, In this notation, x, and y, are consecutive in ime.

*SFarmer and Sidorowich [12] observe that the Eckmann-
Ruelle lineanzation can be used for prediction Given a refer-
ence point x,, find the Eckmann-Ruelle ineanzation 4,x + b,,
compute x,,, = A,x, + b, and repeat the process to get the
predicted trajectory

N4

Fig. 1. Schematic diagram for the first stage of the noise
reduction method. A collection of points in an ¢-ball about the

reference peint x, ., is used to tind a linear approximation of
the dynamics there.

We mention three difficulties in computing the
local linear approximatious in the subsections be-
low.

4.1. Il conditioned least squares

There is a particular problem when one tries to
compute solutions to eq. (1) with a finite data set
of limited accuracy that has not been addressed in
previous papers [10. 21). Suppose for example that
all the points in a neighborhood of x, lie nearly
along a single line, i.e., the attractor appears one
dimensional within the available resolution. Al-
though it is possible to measure the expansion
along the unstable manifold at x ., there are not
enough points in other directions to measure the
contraction. Hence it is not possible to compute a
2 X 2 Jacobian matrix accurately. Any attempt to
do so will result 1n an estimate of the Jacobian
whose elements have large relative errors. This
kind of least-squares problem 1s i/l conditioned.

The ill conditioning can be avoided by changing
coordinates so that the first vector in the new basis
points in the unstable direction®®. A one-dimen-
sional approximation of the dynamics is com-
puted using the new coordinates; that is, we
approximate the dynamics only along the unstable
manifold. We recover the matrix A4 by changing
coordinates back to the onginal basis.

For example, if we are working 1n the plane and
the unstable direction is the line y = x, then we
rotate the coordinate axes by 45°. The dynamics
are approximated by a one-dimensional linear map

*$This 15 done by compuung the nght singular vectors {9] of
the n X m matnx whose jth row 15 x, The procedure 1s called
principal component analvsis 1n the statistical literature.

l
I
!
!
I
I
1
I
!
1
1
1
i
i
I
i
i
i
1




EJ. Kostelich and J.A. Yorke / Noise reduction 187

computed along the line v =x. Then we rotate
back to the original coordinates. (The resulting
matrix A has rank 1 in this example.) This ap-
proach substantially enhances the robustness of
the numerical procedure.

4.2. Finding nearest neighbors

A second problem is finding an efficient way to
locate all of the points closest to a given reference
point. The dynamical embedding method imposes
stringent requirements on any nearest-neighbor
algorithm. The storage overhead for the corre-
sponding data structures must be small, because
there are tens of thousands of attractor points.
The algorithm must be fast, since there is one
nearest-neighbor problem for each linear map to
be computed.

We solve this problem by partitioning the phase
space into a grid of boxes that is parallel to the
coordinate axes. Each coordinate axis is divided
into B intervals. (Fig. 2 illustrates the gnd in two
dimensions.) Each point on the attractor is as-
signed a box number according to its cocrdinates.
For example, a point on the plane whose first
coordinate falls in the jth interval (counting from
0) along the x axis and whose second coordinate
falls in the kth interval along the y axis is as-
signed to box number kB +;. The list of box
numbers is sorted, carrying along a pointer to the
original data point. Given a reference point x,,
its box number is found using the above formula.
A binary search in the list of box numbers then
locates the address of x,; and all the other points

B'-B|{B-B+1|B'-B+2 Bi-1
B B+1 B+2 28-1
0 1 2 B-1

Fig. 2. Box numbenng scheme in two dimensions. The attrac-
tor is normalized to fit in the umt square. The bottom row of
boxes rests against the x axis and the leftmost row of boxes
against the y axs.

in the same box number. The search is extended if
necessarv to adjacent boxes.

Only a crude partition is needed for this algo-
rithm to work efficiently (typically we choose B =
40), and the grid is extended only to the first three
coordinate axes. v 'hen the embedding dimension
is larger than three. a preliminary list of nearest
neighbors is obtained using only the first three
coordinates of each attractor point. The final list is
extracted by computing the distances from x . to
each point in the preliminary list.

Although there are circumstances where this
algorithm can perform poorly (e.g.. when most of
the attractor points are concentrated m a handful
of boxes), the distribution of points on typical
attractors 1s sufficiently uniform that the running
time is very fast. Memory use 15 also efficient: a
set of N attracto. points requires 3N storage loca-
tions. In contrast, the tree-search algorithm ad-
vocated 1n ref. [12] requires several times more
storage (although the lookup time is probably
slightly less). Because N = 10° in typical applica-
tions, we believe that the box-grid approach (or
some variant) is the most practical. A survey of
other nearest-neighbor algonthms 1s given in ref.

{3).
4.3. Errors in variables

There 1s a potential difficulty in the use of
ordinary least squares to compute the linear maps.
In the usual statistical problem of fitting a straight
line, one has observauons (x, y,) where x, 1s
known exactly and y, 1s measured. One assumes
that y, =a,+ a,x, + ¢, where the ¢, are indepen-
dent errors drawn from the same normal distri-
bution. (Analogous assumptions hold in the
multivariate case.) In the present situation, how-
ever, both x, and y, are measured with error. It
can be shown that the ordinary least-squares
methoa produces biased estimates of the parame-
ters a, and a, in this case [16, 23]. In practice this
does not seem to be a serious problem, but statis-
tical procedures to handle this situation (the so-
called “errors in vanables” methods) may provide
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0

Fig. 3. Schematic diagram of the trajectory adjustment proce-
dure. The trajectory defined by the s2quence ( x,} is perturbed
10 a new trajectory given by { X, } which is more consistent with
the dvnamics. In this exampie we show what the perturbed
trajectory might look like .f the dvnamucs were approximately
honzontal translation to the nght.

an alternative approach to noise reduction. We
consider this question in the appendix.

5. Trajectory adjustment by ra’nimizing
self-inconsistency

The Eckmann-Ruelle linearization proceduvre
described above is computed and the resulting
maps are stored for a sequence of reference points
along a given trajectory (for the results quoted
here, the sequence usually contains 24 points). We
now consider how to perturb this trajectory so
that it is more consistent with the dynamics. The
objective is to choose a new sequence of points £,
to minimize the sum of squares

-~ 3
LwliE - x

+“f,—'L,_l(f,_l)“2+“f”|—L,(f,)”z, (2)

where L(x,)=A4,x,+b, w is a weighting factor,
and the sum runs over all the points along the
trajectory®’. Eq. (2) can be solved using least
squares. Heuristically, eq. (2) measures the ssif-
inconsistency of the data, assuming that the linear
approximations of the dynamics are accurate. See
fig. 3. We say the new sequence {x,} is more
self-consistent.

*7In the results descnbed in this paper, the Eckmann-Ruelle
lLinearization procedure 1s done using a collection of points
within a radius of 1-6% of each r.ference point, depending on
the embedding dimension, the dimension of the attractor, and
the number of attractor pomnts. This results in collecuons of
50-200 pcants per ball, which gives reasonably accurate map
approximations without making the computer program too
slow. The weighting factor w 1s set to 1.

The trajectory adjustment can be iterated. That
is, once a new trajectory £, has been found. one
can replace each x, 1n eq. (2) by £, and compute a
new sequence { f:, }.

We place an upper limit on the distance a point
can move. Points which seem to require especially
large adjustments can be flagged and output un-
changed. (This may be necessary 1f the input ume
senes contains large “glitches™ or if nonhnearities
are significant over small distances tn certain re-
gions of the attractor.)

When the input 1s a time series, we modify the
above procedure slightly since we require a time
series as output. The trajectory adjustment 1s done
so that changes to the coordinates of x, (corre-
sponding to particular time senes values) are made
consistently for all subsequent points whose co-
ordinates are the same time series values. For
example, suppose the time delay is 1 and the
e¢mbedding dimension is 2. Then trajectories are
perturbed so that the second coordinate of the :th
point 1s the same as the first coordinate of the
(i + Dst point. That is, when x,=(s,s,,,) is
moved to the point £, =(§, § ), we require that
the first coordinate of x,,, be §, .

6. Results using experimental data

We note that the attractor need not be chaotic
for this noise reduction procedure to be effective,
Fig. 4a shows a phase portrait of noisy measure-
ments of wavy vortex flow in a Couette-Taylor
experiment {20]. This flow is periodic, so the at-
tractor is a limit cycle (widened into a band be-
cause of the noise) and the power spectrum
consists of one fundamental frequency and its
harmonics above a noise floor. See fig. 4b. Figs.
4c, 4d show the same data after noise reduction.
The noise reduction procedure makes the limit
cycle much narrower, and the noise floor in the
power spectrum is reduced by almost two orders
of magnitude. However, no power is subtracted
from any of the fundamental frequencies, and in
fact some harmonics are revealed which previously
were obscured by the noise.
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Fig 4 Phase portraits and power spectra for measurements of wavy vortex flow in a Couette-Taylor expenment. (a). (b} Phase
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to the onginal data The verucal axis in (b), (d) and (f) 1s the base-10 loganthm of the power spectral density. the honzontal axis 1 in

multiples of the Nyqust frequency.

These results are significantly different from
those obtained by low-pass filtering. Figs. de, 4f
show the phase portrait and power spectrum when
the original data are passed through a 12th-order
Butterworth filter with a cutoff frequency of 0.35.
The dynamical noise reduction procedure is more

effective than low-pass filtering since the noise
appears to have a broad spectrum.

However, the dynamical noise reduction method
appears to subtract power from a mode whose
fundamental frequency is approximately 0.3 times
the Nyquist frequency. We do not know exactly
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are the same as those n ref. {5}

why this occurs. However, this peak corresponds
to the rotation frequency of the inner cylinder and
may result from a defect in the Couette-Taylor
apparatus {33]. We do not consider this to be a
serious problem. because the power associated with
this mode is several orders of magnitude srnaller
than that of the wavy vortex flow.

We emphasize that our objective is to find a
simple dynamucal system that is consistent with
the data. It is possible for this method to elim:nate
certain dynamical behavior from an attractor if
those dynamics have very small amplitude, as fig.
4f shows. This situation is most likely to arise
when there are not enough data to distinguish
such dynarmcs from random noise. In the present

example, the noise reduction procedure reveals the
limit cycle behavior quite well®*,

The results obtained by applying the method to
chaotic data from the Couette-Taylor fluid flow
experiment described in ref. {5] are shown in fig. 5.
Fig. 5a shows a two-dimensional phase portrait of
the raw time series at a Reynolds number R/R_ =
12.9, which corresponds to weakly chaotic flow [$].
The corresponding phase portrait from the filtered
time series is shown in fig. 5b. Figs. 5¢. 5d show

**We have not attempted to find the smallest amplhitude at
whach the noise reduction procedure can disunguish quasipen-
odic from penodic flow In general this will depend on the
amount of data, the sampling rate. the embedding dimension,
and other factors.
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the power spectra for the coiresponding time
series™’,

It is difficult to estimate how much noise is
removed froin the data in this example on the
basis of power spectra. One problem is that the
transition from quasiperiodic to weakly chaotic
fluid flow is markad by a sudden rise in the noise
floor in the power spectrum (cf. fig. 3 in ref. [5]).
Hence one carnot determine how much of the
noise floor is cue to deterministic chaos and how
much results from broad-band noise. The noise
reduction procedure described here has the effect
of reducing the power in the high-frequency com-
ponents of the signal. One question therefore 1s
whether reducing the high-frequency noise corre-
sponds to discovering the true dynamics which
have been masked by noise. We believe that the
answer is yes, based on those c.ses where there is
an underlying low-dimensional dynamical system.
However, in chaotic processes some high-frequency
components remain, because they are appropriate
to the dynamics.

7. Numerical experiments on noise reduction

One important question is how much noise ths
method removes from the data. The power spectra
above suggest that the method eliminates most of
the noise, but 1t is impossible to give a precise
estimate for typical chaotic experimental data.

However, the Hénon map [19] provides a conve-
nient way to quantify the noise reduction, because
it can be written as a tinie delay map of the form

X, =f(x,x_)=1-ax}+Bx,_,. (3)

We use eq. (3) to generate a time series as follows
(with the standard parameter values a=14, 8=
0.3). We choose an initial condition and discard
the first 100 iterates. The next 32768 iterates are

*%The ume senes consists of 32768 values. from which an
attractor 1s reconstructed in four dimensions Linear maps are
computed using 50-100 pownts i each ball Trajectones are
fitted using sequences of 24 points.

stored. and a time series is generated by adding a
vntformly distributed random number to each it-
erate. This simulates a time series with measure-
ment noise, i.e., a time series where noise results
from errors in measuring the signal, not from
perturbations of the dynamics.

We measure the improvement in the signal after
processing by considering the pointwise error

e: = "x:$l —f(xﬂ xl-l)“’

i.e., the distance between the observed image and
the predicted one. Let the mean error be

the rms value of the pointwise error over ail N
points on the attractor. We define the nose reduc-
non as

R=1- Elnued/Enon.v‘

where the mean errors are computed for the ad-
justed and original noisy time series, respectively.
The quantity R 1s a measure of the self-con-
sistency of the time series. (In other words. R
measures how much better on the average the
output attractor obeys eq. (3) as one hops from
point to point.)

When 1% noise is added to the input as de-
scribed above, the noise reduction (measured with
the actual map; is 79%'°. Nearly identical rest.is
are obtained when the input contains only 0.1%
noise. In addition. noise levels can be reduced
almost as much in cases where the noise is added
to the dynamics. i.e., where the input is of the
form {x,,,:x,.,=flx,+0,%x_,+79_) .
7,., random}. When the program is run on noise-
less input, the mean error in the output is 0.025%
of the attractor extent, which suggests that errors

*10The pointwise error 1s measured using eq (3) However,
the attractor can be embedded in more than two dimensions
when performung the noise reduction
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ansing from small nonlinearities are neghgible
when the input contains enough points.

8. Simplicial approximations of dysamical systems

Recent work has shown that simplicial approxi-
mations of dynamical systems can reproduce the
behavior of the original system to high accuracy
[36]. (See also ref. [35] for a bilinea: approach.) In
particular, the fractal structure of the original
attractors and basin boundaries 1s preserved over
many scales. Such approximations can yield sig-
nificant computational savings, especially when
the onginal svstem consists of ordinary differential
equations.

This approach can be extended in a natural way
to generate simplicial app: >ximations of the dy-
namics on attractors reconstructed from experi-
mental data. Our objective here is to find an
approximate dynamical system tn a neighborhood
of the attractor as follows.

A simplex in an m-dimensional space is a trian-
gle with m + 1 vertices. Suppose the map is known
at each poiat on a grid. Then there is a unique
way lo extend the map linearly to the interior of
the simplex § whose vertices are grid pomts.
Given a pont P ia the interior of S, let {b,}/L,
be 1ts corresponding barycentric coordinates (see
ref. {36] for an algonthm to compute them). Let
J(v,) be the map at the ith vertex. The dynamical
system at P i+ rated by compu.ing

m

o(Pi= Y bf(v,). (4)

t={)

We apply this method to experimenial data by
finding a Linear approximation of the dynamice at
each vertex v, with the least-squares method de-
sc- :d above, :sing a collection of points 1n a
st .l ball around v,. The maps are stored and
retrieved using a hashing algorithm similar to that
described in ref. [36]. This yields a piecewise linear
spproximation of the dynamics from a set of
experimental data which can be analyzed with the

2 I J. Kostelich and J.A Yorke / Noise red:uction

methods that previously were available only to
theonsts=!!,

We illustrate the approach using a time series of
32768 values from the Hénon map with a = 1.2,
B =0.3 using eq. (3) and adding 0.1% noise as
described above. The original attractor is shown in
fig. 6a. We take a grid of points wh:ch aie spaced
at 1% intervals tihis and subsequen: distances are
expressed as a fraction of the original attractor
extent), The tire series is embedded in two di-
mensions. and a linear approximation of the dy-
namics is computed at each grid point for which
50 or more attractor points can be collected with a
ball of radius 0.03: the set of such gnd points s
shown in fig. 6b. We take an initial condition near
the onginal attractor and show the first 3000 iter-
ates using eq. (4) in fig. 6¢c. Although some defects
are visible, the attractor produced by the approxi-
mate dynamical system looks almost identical to
the original one.

One application of simplicial approximations is
the location of periodic saddles and the estimation
of the largest cigenvalue of the corresponding
Jacobian. That s, if x is a periodic point of period
p. then we tind the cigenvalue of Df?(x) of
largest modulus, where Df?(¢) refers to the ma-
irix of parual derivauves of the pth iterate of the
map f evaluated at x.

Given an initial guess for x, one can apply
Newton's method using the maps computed at the
grid points and eq. (4) to locate the saddle using
the simplicial approximations. Likewise. ¢q. (3)
can be used to locate the corresponding “exact”
saddle. Saddle orbits up to period 8 have been
computed in this way. In all cases. the saddle
point for the simplicial approximation 1s within
2% of the corresponding saddle pomnt for the
Hénon map. Table 1 shows the largest eigenvalues
of the saddle orbits. (The columns labeled m =2
and m = 3 refer to the embedding dimension used
to reconstruct the attractor.) In most cases, the

*"This approach 1s less ambitious than that of Crutchfield
{8]. who attempts to find a single set of nonlinear difference
equations that creates the observed attractor
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relative crror is only a few percent, and in no case
exceeds 25%. (The largest relative error is for the
period 8 saddles, where one finds the eigenvalue of
the product of 8 Jacobians computed from the
leasi squares.)

“’his methrd can be extended to experimental
d iz sets. However, there are relatively stringent
w-gairemzats on the data that can be handled: the
time se:z¢s must be long ensugh to trace out many
trajeciories near the principal unstable saddle or-
bits, and the noise ‘evel must be low. (Presumably,
noisy data can be preprocessed using the approach

Fig. 6. (a) Hénon attractor computed fromeq. (3) witha = 1 2,
B=03 (b) 1% gnd on which linear approximatons of the
dynamucs are computed from the available attractor points. (c)
Attractor produced by the simphcial approximauons

described in section 4.) The current computer im-
plementation uses a large amount of disk space to
store the linear map approximations at the grid
points.

We have constructed a simplicial approximation
for an attractor obtained from a Belousov-
Zhabotinskii chemical reaction (7, 30]. The attrac-
tor is reconstructed in three dimensions from a set
of 32768 measurements of bromide ion concentra-
tion. The phase portrait is shown in fig. 7a.

Linear approximations of the dynamics are
computed at each point of a grid consisting of 50
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Table 1

The largest eigenvalues of the Jacobian of the penodic orbits
located using the simplicial approximaticn of the Hénon
attractor.

Penod mwm2 Exact mw=3
i 1.793 1.695 1.787
2 2178 2.199 2183
4 4226 4.329 4051
6 10,38 10.70 9.626
6 10.38 11.32 1212
] 25.80 24.88 30.25
L 20.02 20.60 20.38
] 17.70 4.3 2L.70

intervals along each coordinate axis for which 50
or more attractor points can be located within an
8% radius of the grid point. This produces a
« database of 59 550 maps. We observe from graphi-
cal evidence that many traje. tories approach what
appears to be a period-3 saddle in the middle of
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Fig 7. (a) The attractor reconstructed from a time senes of
bromude 10n concentrauons 1n a Belousov-Zhabounsku chem-
cal reacuon. (b) The penod-3 saddle orbit

the attractor. Using initial guesses from some of
the trajectories, we apply Newton's method to
locate the saddle orbit shown in fig. 7b. Moreover,
we obtain estimates of the Jacobian Df of the map
evaluated at a point on the saddle orbit. The
eigenvalues of Df are estimated as A, =114,
A, =0102, and A\;= —1.53. These quantitative
results confirm that the orbit is a saddle since A, >
0> A,. (Note that one expects A, =0 for a flow
generated from a set of differential equations.)

9, Conclusion

Methods for approximaung the dynamics of
attractors reconstructed from experimental data
provide powerful tools. Most of the same proce-
dures that have been so important for theoretical
insight, such as Poincaré maps, unstable fixed
points and their manifolds, basin boundarics. and
the like, are now available to experimenters, at
least in cases where the dynamics are low dimen-
sional. There is little doubt that these tools will
lead to breakthroughs in the understanding of a
wide variety of physical systems. However, consid-
erable effort is needed before we learn which kinds
of systems will benefit most from these types of
analyses. Significant improvements in technique
will certainly extend the applicability of dynami-
cal embedding methods. for example to higher-
dimensional attractors.

Appendix

In this appendix we outline a possible alierna-
tive noise reduction method based on the theory
of least squares when all the quantities in the
regression are measured with error.

In ordinary least squares, the variables in the
problem fall into two classes: the independent
variables, which are known exactly, and the de-
pendent variables, which are observations assumed
to be functions of the independent variables. The
dependent variables are subject to random errors
that are assumed independent and identically dis-
tributed (i.i.d.).
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On an attractor reconstructed from experimen-
tal data, we assume that the mapping which takes
points in a sufficiently small ¥ i io their images is
approximately linear, Howeve:, «he locations of all
the points are subject to small random errors
because of the noise. Hence one cannot describe
the points as independent variables and their im-
ages as dependent variables. The usual least-
squares method produces a biased estimate of the
linear map, and this bias does not decrease if more
observations are added [16. 23],

The so-called “errors in variables™ least-squares
methods can be used to handle the latter problem.
This approach can be used to obtain both an
estimate of the linear map as well as estimates of
the **true” values of each of the observations.

At first this appears to be an underdetermined
problem: from n pairs of observations one wants
to compute the parameters of the functional rela-
tion between them as well as estimates of the »
actual pairs®?. However, it is possible to solve
this problem by making some assumptions about
the errors (16, 23},

In our case, we assume that the errors in the
location of each point and its image are i.i.d. In
particular, we let the covanance matrix of the
errors in the vanabies be the identity matrix. This
assumption is valid whenever the noise is indepen-
dent of the dynamics™!3.

We illustrate the procedure for the case where
we are given a collection of n points (in R™) and
their images. Following Jefferys [21), we form a set
of n equations of condition given by

f,(x,)=x,,,,—Ax,-b,5x,,,—~L(x‘), (5)

where x, is the ith point, x,_, is its observed
image, A is an m X m matrix, and b is an m-vec-
tor. The goal is to find estimates of L (i.e.. A4 and

*In the stausucal Lterature. the problem 1s said to be
unidentified

“YDynarucal noise (1e., each point 1s perturbed shightly
before 1teraung, yelds a covanance matnx which depends on
the point However, as long as the dynamical noise 15 small,
our assumptions about the covanance matnx of the errors
should not compromuse the accuracy of the method.

b). together with perturbations ¢. such that
jl(xl + '3:) - (xntl +6nw) - L(X,“" 61) =

and such that the quadratic form
So = % 6'0 - 1'3 (6)

is minimized. The superscript t denotes transpose
and o is the covariance matrix of the observations
(which we assume is the identity matrix here).

This minimization problem can be solved using
Lagrange multipliers (see refs. {21, 22 for a nu-
merical algorithm). The solution gives 4 and b
together with estimates x, + ¢, of the “tirue” ob-
servations, [t can be shown (16} under fairly mild
hypotheses that the estimates of L and the obser-
vations are the best in the class of linear estima.
tors,

One way to approach noise reduction is to
extend eq. (5) to include several iterations of the
observed points. Given a collection of points in a
ball, together with the next p iterates of each
point, the method above is used to find a collec-
tion of linear maps L,, L,..... L, approximating
the dynamics. The method also finds estimates
of the actual observations. In this approach.
therefore, the calculation of the maps and the
adjustment of the trajectones is done in one step.
Moreover, each point and its image exacily satisfy
a linear relationship.

Of course, p cannot be o large, because
nonlinear effects eventually will become significant
when the dynamics are chaotic. On the other
hand, eq. (5) provides a natural way to include
quadratic or other nonlinear terms,

We have written a computer program to imple-
ment this aliernative noise reduction algorithm. So
far, the results of this approach have not been as
good as those from the method described in the
main part of the paper, but further refinement
should improve them.
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ANTIMONOTONICITY: CONCURRENT CREATION
AND ANNIHILATION OF PERIODIC ORBITS

. KAN AND J. A. YORKE

ABSTRACT. One-parameter families /, of diffeomorphisms ot
the Euciidean piane are known to have a compiicated bifur-
cation pattern as » sartes near certain values. namely where
homoclintc tangencies are created. We argue that the bifurca-
tion pattern 1s much more irregular than previously reported.
Our results contrast with the monotomcity result for the weil-
understood one-dimensional family g, (x) = 4x(1 - ). where
1t 1s known that periodic orbits are created and never annihi-
lated as ~ increases. We show that this monotonicity in the
creation ot pertodic orbits never occurs tor any one-parameter
tamilv of (° area contracting diffeomorphisms of the Euchid-
¢an plane. excluding certain technical degenerate cases where
our analysis breaks down. It has been shown that in cach
neighborhood ot a parameter value at which a homoclhinic tan-
gency occurs. there are enher infimtely many parameter values
at which periodic orbits are created or infinitely many at which
pertodic orbits are anmihilated. We show that there are foth
infimtely many values at which periodic orbits are created and
imfinitely many at which pertodic orouts are unmhilated. We
call this phenomenon antimonotonicity.

[. INTRODUCTION

The orbit ot point v under a diffeomorphism of the plane 1 1s
the sequence {/"(x)}. where for kK > 0. /" denotes the k-fold
composition of /. /™% denotes the k-fold composition of /™'
and 1 is the wdentity map. Let p be a periodic point with penod
n. The stable manifold H#”(p) of the point p is the set {x :

lim, _ ™ %) = p}. Similarly, the unstable manifold 1"“/p) of

pis {x:lim _ f7" = p}. We assume that p is a hyperbolic
saddle. that 1s. the eigenvalues e, . e, of Df"(p) are such that
le)l <1 < le,|. Since f is a diffecomorphism of the plane. both
W*'(p) and W"“(p) are curves. There exists a homoclinic tangency
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of p at g if W’ip; and I“ip, intersect tangentially a1 q. The
homoclinic tangency of p at ¢ for a one-parameter family 7
at 2 = 4, is called nondegenerate ii W*{p) and W"(p) have
quadratic contact at ¢ and 1#{p) has nonzero velocity transverse
to W¥p) at ¢ as 2 varies [R]. Any value /4, at which this occurs
is called a nondegenerate tangency value.

A one-parameter family of maps g is called monotone increas-
ing (decreasing) on an interval J of parameter values 1if there are
no bifurcations for 2 € J in wiich periodic orbits are anmhilated
as ~ increases (decreases. respectively). We say 1. is antimone-
tone at 4, if periodic orbits are both created and annihilated as -
increases in each neighborhood of the parameter value -, .

The only smooth family for which monotonicity has been
proved is the quadrauc famly ¢.ix; = 2xil - ¢y : Douady. Hub-
bard. Milnor. Thurston. Sullivan. see {MT];. By contrast we have
the following theorem.

Antimonotonicity Theorem. Each dissipatuve ( planar diffeomor-
phism family is antimonotone at each nondegenerate homociinic
tangency value.

Note that this result savs nothing about what happens ncar de-
generate homoclinic tangency values. but we believe this situation
ts essentially the same as for the nondegenerate case.

We sketch the proof for a model case. A paper detailing the
proot of the general result is in preparation. If two curves are
tangent at £ = 4, and move apart. so that they do not intersect as
4 increases (decreases) bevond 4,. then we say contact is hroken
at 4, {contact is made at 4q . Tespectively). and we say 2, is a
contact-breaking value (contact-making value. respectively).

Bubble Lemma. If 4, is a nondegenerate tangency value at which
contact 1s made. then there are nondegenerate tangencyv values ar-
bitrarilv close 10 4, at which contact 1s broken (and vice versa).

The theorem follows immediately from the Bubble Lemma be-
cause in each neighborhood of a contact-making nondegenerate
tangency value. infinitely many periodic orbits are created (and
near contact-breaking ones, infinitely many are annihilated) {N.
GS]. Thus, in each neighborhood of a nondegenerate tangency, or-
bits are both created and annihilated. as is illustrated in Figure |
for the example of the Henon family.
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-0089
£i14702

1147062 =

FIGURE |. SMALL BUBBLE IN HENON FAMILY / ix .1 =

£=x"=0.3v. x1. 3.000 PREITERATES. \-COORDINATE
OF 30.000 ITERATES PLOTTED PER -~ VALLE.

[I. PRELIMINARIES

For cach Cantor set (" .= 2 Newhouse [N] defines a number 1n
{0. x: called the thickness (") associated with €. \ “madle-
" Cantor set C, = I\ G is constructed inductively as follows:
I'=1{0.1] and I, and I | are the left and right component
of I \ G . respectively. where ‘7 15 an open interval of length
#-1[ | in the middle of / . The thickness of C, s (1 - #)/20.
Newhouse proves the tollowing lemma.

Thickness Lemma. Let £ and H he Cantor sets in R. with H©
hulll F) and hulllHY N F hoth nonempty, and t HY - t(F) > |
Then HN F 1s nonempty.

A Newhouse horseshoe family N, 1s defined as tollows. (See
Figure 2 on page 472 for symbols. coordinates. and the role of
the constants. and see Figure 3 on page 472 for the first iterate
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FIGURE 3. FIRST ITERATE OF .V, .

V;1. Define .V, (x.y) = ax. fy) for (x.v1€ 4 V(x.v) =
(I —ax Bl =v)forix.p)e B .N(x.¥)=(r. -4+l =)
+o(y - 1/2)2) for (x.y) € C: and continue N smoothly to
the rest of R*.

We choose nf < | so .V is dissipative (i.e. |detD(N,)| < 1)
throughout 4 U B, and we choose «, .. 0. ¢ such that Vs
one-to-one on AU BUC. This implies # > 2. Let A denote the
maximal invariant subset of 4 U B; A is a Cantor set and is the
product A <A, of two Cantor sets. A is the projection of A
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onto the x-axis and A onto the y-axis. We assume that « and
B are selected so that (A ) -t(A,) =8 - 2)"(1(1 ~2a) " > 1.

A primarv stable (unstable) segment is a line segment of the
form [0, 1] x {v} where v € A, ({x} x[0. 1] where x € A, .
respectively). A primaryv unstable parabola is a parabolic arc of the
form V (x.[1/2-¢.1/2 +¢]) where x€A .

Newhouse and Robinson show in [N. R]. that in effect. there
exist parameter values + near homoclinic tangencies where for a
proper choice of coordinates the map 1s similar to Figure 3. We
are assuming that the map changes in a regular way as ~ varies.
thereby avoiding technical complications.

I1I. PROOF OF BUBBLE LEMMA
ASSUMING NEWHOUSE HORSESHOE FAMILIES OCCUR

Let 4, be a nondegenerate tangency value. which we assume to
be a contact-making tangency. We assume that on a small interval.
arbitrarily near 4,. there 1s a Newhnuse horseshoe family. We
rescale that small interval to be {0. 1]. The primary tangencies
(the tangencies of primary parabolas with primary stable segments)
are all conta  making., We will show that arbutranily near ~ = 0.
there 1s a nondegenerate tangency which 1s contact-breaking and
1S not primary.

The parabolic arc of the form v(¢, &) =(1/2+t. 7 =& 1)
for 0 < &< (1= ™", 6" < B =287""" —¢. <.
lies 1n a gap in the Cantor sct of primary stable leaves as shown in
Figure 4.

"

FIGURE 4. THE ARC (¢, ).
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Let (&) denote the set of parameters such that (. Z) lies
or a primary parabola. For each . the vertices of the primary
parabolas have v-coordinatesat (—A+7A ). so we see that ['() =
—;'Au—é—ﬂ'" and the thickness of I'(S) isequalto ttA,). The
nth image of v(r. ) under N, 1s

. . -1 - -1 \ -1 2
rL G A =T = EBNT <0,

. 1|
~r=2 )2+ -

+6(B-l *éﬂ”—l ...()'"_l

=27

Thereisa & =&, ¢ =1 at which the r-coordinate has a sta-
tonary inflecion point as shown in Figure 5b. and Z and 7 sat-
sty 49877 BT < EBTT S /2 = =TT Y and T =
T s 87 Notice

Ez(l/z)“"Zf’ﬂ)/f"",.(a/}):"”()(/}’:"\
so for large n we have 0 <3 < (1-2/p)8'™".

Claim. For fixed & < . with & - & sufficiently small. there ex-
ists a 4 € [(&) such that the nth iterate of the primary parabola
containing ¢(¢. <) has a tangency with a primary stable secgment.
This tangency s contact-breaking and is nondegenerate tor & .. 2.

The first part of this claim follows trom the tact that the local
maximum (. 4A) (see Figure Sa) of the y-coordinate of

»,(t.$.A) depends linearly on 4. That s,
WE ML el@)} =&, 0 —aae T,

and so {y(.,A)A € T(&)} has thickness ttA ). By the Thick-
ness Lemma, there exists some 4 € (&) such that v(&. 21 e A |
Note that 4 is 0(8~"). Since + isin ['(3). there 1s a primary
unstable parabola which contains r(¢.3). so v, (.. 41 is con-
tained in the unstable manifold of A and 1s tangent to a pn-
mary stable segment of A. As A varies near O, the position of
this primary unstable parabola 1s v, S+ 4). Nondegeneracy and
contact-breaking can be verified by considering the y-coordinate of
d(v,(t, E+4, 4))/dAi and noting that for sufficiently small $-& > 0
and large n this derivative is negative for ¢ sufficiently close to
t.

We have shown that there is a primary stable leaf S and a pri-
mary unstable parabola U’ so that the nth iterate of U has a
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inflection
point

FIGURE 5. THE INFLECTION VALUE = .

fxn(“)
A<A

S

N
R /
s 4

—
A> X /; xn(“) /

&

FIGURE 6. CONTACT-BREAKING TANGENCY ¢ AT 4 =~

S

contact-breaking tangency with § (see Figure 6). Since the sta-
ble and unstable manifold ot the fixed point p at (0. 0) contain
curves arbitranly close 1o § and U'. respectively. we see that p
will have contact-breaking tangencies at parameter values arbitrar-
ly near 4. Finally, for n large, this 4 is near 0.
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For chaotic scattenng 1n two-degree-of-freedom (N=2), time-independent, Hamiltoman systems, scattering functions (1.e.,
plots of the dependence of a phase space vanable ailer scattening versus a phase space vanable before scattering ) typically display
singularitics on a fractal set. For &> 2, however, scaitening functioas typically do not have fractal properties (cven when the
chaotic invanant set 1s fractal ), unless the fzactal dimension of the chaotic sct 1s large enough. A numerical investigation of this
phenomenon is presented for a scatterer consisting of four reflecting spheres at the vertices of a regular tetrahedron.

Recentiy, there nas been much interest in the phe-
nomenon of chaotic scattering (see reviews [1]) due
to its appearance in a variety of applications, in-
cluding fluid mechanics, celestial mechanics, and,
especially, molecular dynamics. In addition, the im-
plications of classical chaotic scattering for the cor-
responding quantum scattering problem is a subject
of active rescarch [2]. Another line of study con-
cerns the question of how chaotic scattering comes
about and evolves as a system parameter is varied
(3]. In all of these past works, when specific systems
or examples are¢ investigated, they have almost al-
ways been effectively Hamiltonians with two degrees
of freedom. Since many situations that will arise in
practice can be expected to involve Hamiltonians
with more than two degrees of freedoms, it is im-
portant to see whether new phenomena, not present
in two-degree-of-freedom systems, can be anuci-
pated in these situations.

In particular, let us consider plotiing variables
characterizing the st1te of the system after scattering
as a function of a single variable characterizing the
state of the system betore scattering (with the other
“before-scattering variables” held fixed). We call
such plots *‘scattering functions”. {t is a striking hall-
mark of chaotic scattering in two-degree-of-freedom

' Also at Department of Physics.
* Also at Department of Electncal Engineenng and Physics.

systems that these functions are typically singular on
a Cantor set of values of the variable characterizing
the state before scattering. Here we consider whether
this situation persists in systems with more than two
degrees of freedom. We find that the scattering func-
tion does not typically display fractal properties in
N-degree-of-freedom chaotic scattering systems with
N> 2, unless the Hausdorff dimension D, of the frac-
tal chaotic invariant set exceeds a critical value. In
particular, if the Hamiltonian is time reversible, then
fractal behavior of scattering functions can typically
be expected only if

D.>2N-3. (1)

Since D, is greater than or equal to one, eq. (1) is
satisfied for two-degree-of-freedom chaotic scatter-
ing systems (N=2). For N>2, fractal behavior of
the scattering function is typically always absent even
though the chaotic invariant set itself is fractal, pro-
vided that 1 <D.<2N-3. (Because the chaotic set
lies in the Dg-dimensional energy surface
(Dg=2N-1), we always have D.<2N-1.) Since
D. depends on system parameters, one expects that
a qualitative change in the scattering function can be
observed as a parameter of the system is varied
through the critical value at which D.=2N-3. Eq.
(1) is derived below.

We consider N-degree-of-freedom, time-indepen-
dent, open Hamiltonian systems, such that the dy-

0375-9601/90/$ 03.50 © Elsevier Science Publishers B.V. ( North-Holland ) 93
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narnics is time reversible, That is, if x=X(¢), p=P(?)
are solutions of Hamilton’s equations (where x and
p are the N-dimensional configuration and momen-
tum vectors), then x=X(~t), p=-P(-t) are also
solutions. The dynamics will be reversible if the
Hamiltonian is an even function of p. For example,

H={p*+V(x). (2)

Let D, and D, denote the dimensions of the stable
and unstable manifolds of the chaotic invariant set.
Due to the assumed time reversibility of the dynam-
ics. these dimensions must be equal.

D.=D,. 3

( Non-time-reversible dynamics occurs, for example,
when magnetic fields are present and leads to Ham-
illonians which are not even functions of p. In these
cases, (3) need not hold.)

We shall be interested in e dimension of inter-
sections of sets lying in the energy surface. As'back-
ground. we note the following. Let S, and S, denote
two subsets of a D,-dimensional manifold, and let
their dimensions be denoted D(S,) and D(S;). If S,
and S, are smooth surfaces, then generically

D(8,nS;)=D(8,)+D(S,;)~D. ., (4)

if the right hand side is nonnegative and §,nS; is
not empty. If it is negative, then S, and S; do not
have a generic intersection, For example, two one-
dimensional lines in a three-dimensional space may
intersect at a point, but .. .iight perturbation of the
position of the lines typically removes the intersec-
tion. Thus the original intersection is not “‘generic™,
We wish 1o apply (4) also to the case where S, is
fractat and D(S,) is its Hausdorff dimension with
noninteger value *'. For this purpose, we refer to the
theorems in ref. [4]. As an example of these results,
consider the case of a fractal set S, lying in a rec-
tangular region of a plane (D, =2). Now randomly
choose a straight line S, in the plane by first choosing
a point with uniform probability distribution in the
rectangle and then placing the line through this point
at an angle chosen randomly with uniform proba-
bility in [0, 2x]. If the left hand side of (4) is neg-

* Formula (4) applies if S, 1s a Soushin set and S, is a smooth
surface. A Souslin set 1s the union of countable intersection of
closed sets. Sce ref. [4].

94

PHYSICS LETTERS A

2 April 1990

ative (i.e., D(S5,) <! since D,=2 and D(S,)=1),
then the probability that the randomly chosen line
intersects the fractal set S, is zero. If the right hand
side of (4) is positive (i.e., D(S,)> 1), then there
is a positive probability that S, n S, is not empty; and,
furthermore, if S, S, is not empty, then D(8,nS;)
is given by (4) with probability one.

We now apply (4) to the chaotic scattering situ-
ation. Since the intersection of the stable and un.
stable manifolds is the chaotic set, we see that (3)
and (4) with D, =Dg=2N-1 yield

D,=N+d,, (5)
with
dy=4(D;~1). (6)

We now observe that the fractal set of singular values
for the scattering function corresponds *  ints on
the stable manifold of the chaotic s¢- . he orbits
originating from such points asymptote to the cha-
otic set. Orbits originating ncar these points will
spend a long time “*bouncing aroupd” in the scat.
terer before leaving the scattering region; that is, they
stay close to the chaotic set for a long time and hence
are sensitive to small perturbations of their initial
conditions. Let 4, denote the fractal dimension of
the set of singular values of the variable in the scat-
tering function which characterizes the orbit before
scattering. Sweeping this single, before-scattering
variable corresponds to moving along a curve in the
Dg-dimensional energy surface. Thus 4, is the di-
mension of the intersection of the stable manifold of
the chaotic set with a one-dimensional set, and (4)
yields, d, =D, + 1 - D, or

di=d,+2--N, (7a)
dy={D.+3=N, (7b)

where in (7b) we have used (6). (Note that (7a)
applies whether or not the Hamiitonian is time re-
versible, while (6) and hence (7b) require time re-
versible dynamics.) If the right hand side of (7) is
negative, then there is zero “probability” of inter-
section, and we will typically never observe fractal
properties of the scattering function. Requiring d, >0
in (7b) vyields the previously stated condition for
fractal behavior in the scattering function, eq. (1).

We emphasize that the critical value, D.=2N¥-3,




T——,

" " > -
o
A .,

Volume 145, number 2.3

for observation of fractal behavior in the scattering
function results under the assumption that the scat-
tering function is obtained by varying a single be-
fore-scattering variable holding all the others fixed.
If instead, we choose to consider scattering functions
which depend on # independent before-scattering
variables with the others held fixed, then similar
considerations can be applied. In this case, fractal
behavior in the n-independent-variable scattering
function is typically observable if D.>2(N=n)~1
(for time reversible systems): and the fractal di-
mension of the set on which the scattering function
is singular is d,=d,+n+ | ~ N, In such cases we say
that the chaouic scattering is an "n-dimensional ob-
servable™, Since, as a practical matter, it is much eas-
1er to examine a function of a single independent
variable, we expect the one-dimensional observable
case to be of most interest.

We check the above qualitative features in a sim-
ple system exhibiting chaotic scattering. It consists
of a point particle of unit speed bouncing between
four identical hard spheres. The centers of the spheres
are located at the vertices of a regular tetrahedron
(fig. 1) of unit edge length. The spheres are labeled
by {0, 1, 2, 3}. The coordinates of their centers { (.x,,
Yo 2 i=001, 2, 3} are:

(-"00)’0! :0)"-(0' 0. \/-§) .
o s =0, = 1/2/3,0),

Fig. 1. The geometry of the scavterer, four reflecting hard spheres
sittsng at the vertices of a regular tetrahedron.
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(X2, Yoo ) =(=4, =1/2/3,0),
(X3, 3, 33) =(0,1//3,0) .

Thus the bottom of the tetrahedron sits on the plane
>=0. The radius of the spheres R is the only ad-
justable parameter in the system, and the spheres do
not intersect as long as R<|.

There are an infinite number of trapped orbits. pe-
riodic or aperiodic, in our system. These orbits are
all unstable since small displacements from a trap-
ped orbit are magnified exponentially by the defo-
cusing effect of the spheres. All trapped orbits can be
uniquely coded by a bi-infinite sequence {a,} of four
symbols {0, |, 2. 3} in the following way, We intro-
duce a discrete time as the tume of collision of the
particle with one of the four spheres. The symbol g,
is set to & if the particle collides with sphere & at time
i, Obviously, the particle cannot hit the same sphere
it collided with at the immediately previsus time.
Therefore, when R is small enough, the sole con-
straints on the symbol sequence of trappéed orbits is
a,#a,.,. If the symbol sequence is periodic. the cor-
responding orbit is also periodic. For instance, the
orbit bouncing between sphere one and sphere iwo
is of period two, and its symbol sequence is {..., 1, 2,
1, 2, ..}=[1, 2], where the square bracket denotes
the periodicity. There are a total of six period-two
orbits: [0, 1], {0, 21, {0, 3], {1. 2), {1, 3). (2, 3}.
There is no penod-one orbit due to the constraint
a,#4a,_,. The number of trapped periodic orbits
grows exponentially with the period. The exponent
is the topological entropy of the set of trapped orbits.
For our system, when R is small enough, the topo-
logical entropy is log(3).

To proceed, imagine the following situation. We
choose a plane below the scattering tetrahedron of
spheres, 2= — K, K> R. We then consider trajectories
originating from initial conditions (xp, o) on this
plane and with initial velocity straight upward (i.e..
parallel to the z-axis). We refer to (xo, Jo) as the im-
pact parameters. For all initial conditions (xo, Vo),
we define a nonnegative integer valued function
T'(xo, ¥o) which we call the time delay function. Its
value is given by the toial number of coilisions with
the hard spheres experienced by the particle with im-
pact parameters (X, Jo). For almost all impact pa-
rameters, this function 1s finite, corresponding to a
finite trapping time of the partcle in the system.
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0.1 0 0.1 0.2 03 0.4

Fig. 2. (a) Hierarchical construction of the Cantor set structure
of the stable mamfold, R=0.4; (b) blowup of (a).

However, there are certain trajectories which remain
in the system for an arbitrarily long time. Initial con-
ditions (xo, yo) for these trajectories are distributed
on a Cantor set. This Cantor set is the intersection
in the five-dimensional energy surface of the stable
manifold of the trapped unstable set with the two-di-
mensional plane z= - K, p,=p,=0. The time delay
function is singular on this Cantor set.

To see the Cantor set structure of the stable man-
ifold, we consider the particle trajectories in more
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Fig. 3. The intersection of the stable mamifold with the hyper-
plane plane 2= - K, p, = p, =0, R=0.48.

Rc 1/2 - R

Fig. 4. Schemauic illustration of the dimension 4, as a function of
R.

detail. For some impact parameters, the particle will
not hit any of the four hard spheres and will go
straight off to infinity. Those initial conditions from
which the particle hits one of the four spheres at least
once are the vertical projection of the four spheres
onto the plane of initial conditions. They are the four
big circular disks in fig. 2. We denote this set from
which orbits experience at least one bounce by C,.
Inside each big disk, there are three small deformed
disks, from which the particle hits the four spheres
at least twice. These are images of the other three
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spherc§ in the mirror of the first sphere. Thus we have
a set C, of nine small disks from which orbits bounce
at least twice. Within each small disk, there are three
smaller disks C,, from which the particle hits the hard
spheres three or more times, The resulting set of this
hierarchical disk organization, given by N, C,, is
the Cantor set illustrated in fig. 3. Starting from any
point in this set, the particle bounces between the four
hard spheres forever, never escaping to infinity.
The fractal dimension of this Cantor set is d, and
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is related to the dimension of the stable manifold D,
by D,=13+d, It is reasonable to presume that 4, is
a monotonically increasing function of the radius R.
When R is zero, there is no strange set on the plane
of initial conditions, and hence d, is zero. For small
R, the dimension d, increases sharply with R,

dy~1/In(R™})

as can be shown by an argument similar to one given
inref. [3]. On the other hand, if R2 1,/3, the region

25 Y T T
bi
0 { 4 Il 3
0.54 0.56 0.58 0.6 0.62 0.64

Fig. 5. (a) The ume delay as a funcuon of the distance / along
the one-dimenstonal line cut in a case exhibiting chaotic scatter
1ng, R=0.48; (b) blowup of (a); (¢) blowup of ().
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between the four spheres is closed to the outside (in
this case, the spheres intersect since k> {), and all
the points in this closed region are trapped. Hence,
all the points in the closed region are on the stable
manifold (i.e., the chaotic set and its stable manifold
are the same set). The dimension of the stable man-
ifold in this case is equal to the dimension of the en-
crgy surface, D,= 35, and thus d,=2. Therefore, if we
vary R between 0 and l/ﬁ. the dimension 4, in-
creases from 0 to 2. Thus there will be a value R=R,

! ' 8
| ' X
| |
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8 ’
1 . ) Il
02 0 02 04 06 08 1 12
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l H 1
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at which d,=1, and the scattering will change qual-
itatively as R increases through R.. Below R,, we will
not see chaotic scattering from a one-dimensional cut
in the plane of initial conditions. A question of prime
interest in this context is whether R. < {. If it is, then
we will be able to see chaotic scattering for typical
one-dimensional cuts for R in a range of values
(R.<R< 1) such that the spheres do not intersect.

We used a box counting algorithm to determine
the fractal dimension d,, We cover the Cantor set

\

1 . ! ]
0.54 0.56 0.58 0.6 0.62 0.64

oy

Fig. 6. (a) The cosine of the angle to the z-axis made by the ex-
iting direction of the particle as a function of the distance / for
the same one-dimensional cut asn fig. 5; (b) blowup of (a); (¢)
blowup of (b).
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generated above by squares of edge length ¢, then in
the limit €~0, the number of squares N(¢) needed
for the covering scales as

N(€) e,

The exponent d, can be determined by a least-squares
fit of N(¢). When R=0.48. we found d, is approx-
imately 1.4, Thus we verify the important result that
R.<}. See the schematic illustration in fig. 4. We also
computed d, at a smaller R value, R=0.4, at which
we obtain d, = 1.07. Using a linear extrapolation from
these two computed values of d,, we estimate
R.~0.38.

We now describe some of our numerical results at
R=0.48. Since d,~1.4> |, we expect. with positive
probability, to see chaotic scattering from a ran-
domly chosen one-dimensional cut in the plane of
initial conditions. The fractal dimension of the non-
es.aping set on this one-dimensional line should "¢
equal 10 d, =d,—~ | =0.4. We check this by generating
one-dimensional random cuts in the plane. We pick
a random point in the square centered at the point
x=v=0, of edge length 2R. Then we draw a line at
a random angle through this point. Restricting initial
conditions to this line, we then plotted the “time de-
fay” (i .., the total number of bounces from spheres
experienced by a particle) as a function of distance
[ along this line. Out of thirty such lines. we found
nineteen cases exhibiting a tractal set of singularities
of the time delay function. A typical form of the time
delay function restricted to the one-dimensional line
in cases where we observe chaotic scattenng is shown
in fig. 5a. From the blowups plotted in figs. 5Sb and
Sc, we conclude that the singularities in the time de-
lay function are apparently distributed in a fracial
set. Another way to confirm this is to examine the
dependence of the scattering function giving the ex-
wing particle direction. Fig. 6a shows plots of the co-
sine of the angle 6 to the --axis made by the veiocity
of an exating particle as a function of distanc: / along
the same randomly chosen line as was used for fig.
5. In regions near singularities, this function oscil-
lates wildly. Successive blowups of this function (figs.
6b and 6¢) show qualitative similarity, again indi-
cating fractal singuiarities.

To determine the fractal dimension of the set of
singularities on a one-dimensional line, we use the
following algorithm (the usual box counting method
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Fig. 7 (a) The Hausdorff sum K'(s) as a function of s for differ-
ent level ©; {(b) the same plot for a diffet .nt one-dimensional cut

yields an error comparable to the fractal dimen-
ston). The time delay function assigns naturally a
level structure to the one-dimensional line. At level
1, we measure the length of all the intervals where the
time delay function is greater than or equal to : and
denote them by /. Then we form the Hausdorff sum

K'(s)=3 (), (8)
J
where the sum 1s taken over all intervals at level «.

When 1 tends to infinity, this sum should give the
Hausdorff s-dimensional measure [5]. Therefore, it
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. is ufinite when s is less than the Hausdorff dimen-
siond, of the frac-  .c1. and is zero when s is greater
than d,. Hence. we expect that for sufficiently large
level 1. the sums K“(s) for different levels will all in-
tersect with cach other at approximately the same
point s=d, given by the Hausdorff dimension of the
one-dimensional fractal set.

For R=0.48. numerical calculation indeed shows
that the sums K’(s) for large levels all intersect at
approximately the same value, thus vielding an ap-
proximation to d,. Figs. 7a and 7b plot K*(s) as a
function of s for different 1 for iwo one-dimensional
line cuts of the plane of initial conditions. (Small i
data are not shown herc. since they do not reflect the
fractal property of the singular set.) Within numer-
ical errors. the intersection points are all centered at
d,=0.4£0.05. This value is also consistent with re-
sults obtained for other cuts exhibiting chaotic scat-
tering and is also consistent with our box counting
result d,~1.4.

When R=0.25, the fractal dimension d, is less than
one. Consistent with this. from 100 random line cuts
of the plane of initial conditions, we did not see any
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fractal behavior in the scanering function.

We thank litai Kan for discussion. This work was
supporied by the Office of Naval Rescarch (Phys-
ics). by the Depaniment of Energy (Basic Energy
Sciences) and by the Advanced Rescarch Projects
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We present an efficient algonithm for constructing cross-sections of chaotic attractors. The techmque 1s parucularly useful for
studving the structure and fractal dimension of higher dimensional attractors.

One of the central topics in nonlincar dynamical
systems theory is the siudy of the structure and or-
ganization of invariant sets under the dynamics. In
particular, the geometry of strange attractors [ 1] is
of particular interest. For such studies, the visual-
1zation of the strange attractor i1s important for re-
vealing structure as well as characterizing the at-
tractor. This presents problems when higher
dimensional attractors are encountered. For exam-
ple. the projection of an attractor whose fractal di-
menston is greater than two to a plane yields a fuzzy
blob. Questions such as whether the local structure
of a typical higher dimenstonal strange attractor 1s
the product of a continuum with a Cantor set {2] or
1s more complex than this cannot be answered by
simply taking a projection of the attractor. In ad-
dition, numerical determination of the dimension of
higher dimensional fractal sets by box-counting al-
gorithms can require enormous memory storage and
CPU time. If feasible, taking cross-sections of the at-
tractor (i.e.. intersections of the attractor with a sur-
face) might offer a way of both elucidating the ge-
ometry of the attractor and of estimating its
dimension.

In this regard. two procedures for taking a cross-
section of a chaotic attractor were proposed by Lor-

- enz [2]. and the first of them was extended and fur-

ther developed by Kostelich and Yorke [3}. Thus lat-
ter procedure is basically as follows. An orbit on the

' Also at Department of Electrical Engineering and Depart-
ment of Physics

chaotic attractor 1s followed until it comes near the
desired cross-section plane. Through a subsidiary
calculation, a local approximation to the vastable
manifold through that point is found. Then the in-
tersection of the approximate unstable manifold and
the desired cross-section plane is determined. thus
projecting the orbit point onto the cross-section plane.
Assuming the attractor is smooth in the unstable di-
rection (or directions), this intersection approxi-
mates to a point in the cross-section of the attractor.
Repeating this procedure many times as an orbit is
followed. a cross-section picture of the attractor is
built up.

In this note. we consider Lorenz’s second proce-
dure for taking numencal cross-section. Compared
to the first procedure. this procedure can be easter to
implement and yield faster computer computation.
On the other hand. the method has certain limita-
tions which will be discussed. Consider an N-dimen-
sional invertible map, x,,,=F(x,). Choose a com-
pact volume V which contains the chaotic attractor.
We shall find the cross-section of an m-dimensional
hyperplane with the unstable manifolds of the in-
variant sets contained in V. This will typically in-
clude the attractor. By inverting the map, the at-
tractor becomes a repellor. Consider a point x 1n V
and examine 1ts premmages F ~'(x), F~%(x), ...
F —"(x). Let T(x) denote the smallest value of n such
that F ~"(x) 1s not in V. We call T(x) the inverse
escape ime from V. Under the inverse map, all points
1n the region V will finally escape except for those on
the unstabie manifolds of the invariant sets con-

450 0375-9601/90/$ 03.50 © 1990 ~ Elsevier Science Publishers B.V. ( North-Holland )
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tained in V. This set, of course, includes the repellor
of the inverse map originating from the chaotic at-
tractor of the forward map. Points on the unstable
manifolds of the invariant sets in V correspond to
singular points of the inverse escape time function
(T(x)=00). (We assume that the inverse map has
no attractors in V. For example, the inverse of a
strictly contractive map (e.g., the Hénon map) can
have no attractors.) Thus, if we start initial condi-
tions from a hyperplane and collect all the singular
points of the inverse escape time function of the map,
we find the intersection of the hyperplane with the
unstable manifolds of the invariant sets in V, and this
tvpically includes the cross-section of the attractor
with the hyperplane. In practice, we not not deter-
mine the singuiar points but rather we determine a
succession of nested sets containing the singular
points. We do this by computing x values for which
T(.z) = N for successively la; _er values of N. To ob-
tain the intersection with the attractor, one should
reject points which satisfy T'(x) >N but do not lie
approximately on the attractor. In principle, this can
be done by calculating the Lyapunov exponents (or
other ergodic quantities) of F ' for each x satisfy-
ing T(x)>N along the orbit x, F-'(x), ..,
F-"W-1(x), For large N, these exponents will ap-
proximate the negatives of the Lyapunov exponents
of the forward map on the attractor, provided that
x lies approximately on the attractor. If x does not
lie approximately on the attractor, then the Lyapu-
nov exponents for the inverse map starting from x
will approximate those for another invariant set in
V and will differ substantiaily from the exponents of
the attractor. In this case the point x is rejected. It
will not always be possible to apply this Lyapunov
exponent test, because N must be sufficiently large
1o obtain reliable estimates of the Lyapunov expo-
nents of the inverse map. Alternatively, one can omit
the Lyapunov exponent test altogether. In this case,
the set obtained may be larger than that for the at-
tractor. Thus a calculation of the fractal dimension
of this set yields an upper bound for the fractal di-
mension of the attractor. In our numerical examples,
we have not applied the Lyapunov exponent test.
Nonetheless, as shown below, for these examples, the
method appears to yield very good approximations
to the actual attractor, and the calculated dimen-
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sions agree with previous calculations which re-
solved only the attractor set.

The dimension of the intersection set in the cross-
section plane is related to the dimension of the un-
stable manifold set by a result of Mattila [6]. If the
Hausdorff dimension D of a bounded fractal set lying
in an N-dimensional space is greater than N—m, then
a random cut by an m-dimensional hyperplane in-
tersects the set with positive probability; if it does
intersect the fractal set, the dimension d of the in-
tersection set is related to D by

D=d+(N-m) (1)

with probability one. Hence, by generating the cross-
section of the attractor and measuring the dimension
of the cross-section set, we determine the dimension
of the strange attractor.

To illustrate out algorithm, we first calculate one-
dimenstonal cross-sections of the Hénon attractor.
The Hénon attractor is generated by the following
map,

x,,“=a—x,’,+by,,, Ynet =Xn . (2)

At parameter values a= 1.4, b=0.3, Hénon observed
that there exists a chaotic attractor. Numerical box
counting techniques for the calculation of the di-
mension of a strange attractor were first applied by
Russell et al. {4], who obtained a resuit for the di-
mension of the Hénon attractor. A more accurate re-
sult was obtained by Grassberger who found that the
capacity dimension is approximately 1.28 £0.01 [5].
However, from different least squares fits of the slope,
the dimension takes values between 1.22 and 1.30.

Fig. 1 shows the Hénon attractor. It can be shown
that the attractor is included in the square [ -2.0,
2.0) X[ —2.0, 2.0]. This is the region V which we
use for calculating the inverse escape time function.
We take a horizontal one-dimensional cross-section
through the point x=0, y=0 and calculate T(x) at
regularly spaced intervals along this line. This is
shown in fig, 2a. We see there is a natural Cantor set
level structure in the inverse escape time function,
At level 0, there is one interval from which it re-
quires at least one backward iterate to escape the
square; at level 1, there are two intervals from which
it requires at least two backward iterates to escape
the square; etc. The intersection of all these ntervals
is the cross-section of the Hénon attractor. Fig. 2b
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Fig. 1. The Hénon attractor.
11 —
shows the same function for the vertical cross-sec-
tion through the same potnt x=0, y=0. t
To get the fractal dimension of these cross-section 9
sets, we use the following procedure. We denote the
lengths of the intervals at level 1 by /;. Then we form
the Hausdorff sum TF 1
Ki(s)= ¥ (1), 3 T
! 5+ 4
where the sum is taken over all intervals at level /.
When : tends to infinity, this sum is the Hausdorff
s-dimensional measure {7]. Therefore, it is infinite 3l | | )
when s is less than the Hausdorff dimension 4 of the
fractal set, and is zero when s is greater than d. Hence,
we expect that for large 1, the sums K'(s) versus s for 1 1 {_ -‘
different levels wall intersect with each other at ap- -2 0 2
proximately the same point s=d given by the Haus- b ¢

dorff dimension of the one-dimensional fractal set *'.
In fig. 3, we show results for the Hausdorff sums for
different levels for a typical one-dimensional cut. The
lines for this case have intersections in the range

The numerica! application of the Hausdorff sum (3) to find
the fractal dimension has been previously used to study cha-
otic scattering [8]. Results of Nusse and Yorke [9) guarantee
that for hyperbolic horseshoes, an interval with successive
nested increasing T(x) contains a point where T'(x) = .

452

Fig. 2. Inverse escape time function for the Hénon map. (a) Hor-
1zontal cut through x=.0, y=0. (b) Vertical cut through x=0,
y=0.

d~0.24 to 0.30. Examining many different one-di-
mensional horizontal and vertical cuts, we estimate
dto lie in the range 0.20 to 0 34. From formula (1),
the dimension of the Hénon attractor is approxi-
mately D= 1.20-1.34. The whole calculation for a
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Fig. 3. The Hausdorff sum K'(s) as a function of + for different
levels ¢ for the one-dimensional vertical cut through x=0.8,
y=0.0.

cut involved very little computer memory and took
less than 5 seconds on the Cray XMP computer.

Our second example is the double rotor attractor
generated by the following four-dimensional, vol-
ume-contracting map [10],

n+1 n n
(':,'M>=M.(i;)+<':,',)mod L,
X2 3 <3

y’.‘“)_ Gr;) ((C,/Zn)sin(an';*')>
(}"z‘” =M, 2 + (c2/2m)sin(2rx3*Y) /" @)
Here x|, x; take values from the unit interval {0, 1),

and p, and v, t ke values from the real line. At pa-
rameter valucs iven by

~58 —6.602
M, =(-6.6oz - 12.40)’

M _(0.7496 0.1203)
27\0.1203 0.8699/°

¢; =0.3536, ,=0.5,

Kostelich and Yorke [3] find that there is a chaotic
attractor. Since the two x-directions of the double
rotor map are compact, we choose for V the hyper-
cube box given by max({y,], |¥2|) € Vmax- Starting
from a uniform distribution of 1nitial points in the
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cross-section plane, we collect those points from
which after some chosen maximum number of it-
rrates of the inverse map 7,,,,, the point remains in
the hypercube region. Fig. 4 shows two two-dimen-
sional cross-sections of the attractor using our al-
gorithm (Vmex=0.5 and n,,,,=15). The pictures in
fig. 4 appear 10 be identical to those in ref. {3].
To find the fractal dimension of the chaotic at-

Fig. 4. Cross-sections of the double rotor autractor. (a) Cross-
section at y; =0, y,=0. (b) Cross-secuon at y, =0, x,=22/2x
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Fig. 5. (a) N(e) as a function of ¢ for the cross-section set tn fig.
4a. The least squares fit gives a capacity dimension d=1.67 £ 0.05.
(b) The same plot for fig. 4b. The least squares fit gives
d=1.63+0.05.

tractor, we used a box counting algorithm. We cover
the resulting cross-section set with squares from a grid
of edge length ¢. In the limit €~0, the number of
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squares N(¢) needed for the covering scales as
N(e)~e-9, (5)

The exponent d is determined by a least squares fit
of a straight line to a log-log plot of N(¢). In fig. §,
we calculate the capacity dimension d for the cross-
section sets of figs. 4a and 4b. The two values of
D=d+2 determined from least squares fitting are
3.67 and 3.63. According to the estimates of ref, {3},
the information dimension lics in the range 3.61 to
3.68. Thus we find that the values of the capacity and
information dimensions (the latter must be smaller)
are apparently quite close to each other.

In conclusion, we have presented an efficient
algorithm for calculating cross-sections of strange at-
tractors. This method may be useful for the esti-
mation of the fractal diménsion of higher dimen-
sional chaotic attractors.

We acknowledge helpful conversations with Ming-
zhou Ding and James Yorke. This work was sup-
ported by the Office of Naval Research (Physics),
by the Department of Energy (Basic Energy Sci-
ences) and by the Advanced Research Projects
Agency. The computation was done at the National
Energy Research Supercomputer Center.
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Abstract, We present a new techmg ¢ for constructing a compuler-assisted proof of
the reliability of a long computer-generated trajectory of a dynamical system. Auxiliary
calculations made along the noise-corrupted computer trajectory determine whether there
exists a true trajectory which follows the computed trajectory closely for long times. A
major application is to verify trajectories of chaotic differential equations and discrete
systems. We apply the main results to computer simulations of the Hénon map and the
forced damped pendulum.

AMS classification scheme numbers: 58F13, S8F1S, 65GO0S, 65L70

1. Introduction

Are numerical studies of chaotic systems reliable? More specifically, do computer
trajectories ‘correspond’ to actual trajectories of the system under study? The answer is
sometimes no. In other words, there is no guarantee that there exists a true trajectory
that stays near a given computer-generated pumerical trajectory.

The question is especiaily pivotal for chaotic systems. Chaotic trajectories exhibit
sensitive dependence on initial conditions: two trajectories with initial conditions that
are extremely close tend to diverge exponentially from one another. At the same time, a
great deal of phenomenological research on chaotic systems relies heavily on computer
simulation.

Therefore, the use of an ODE solver on a finite-precision computer to approximate
a trajectory of a chaotic dynamical system leads to a fundamental paradox. Because
of sensitive dependence on initial conditions, a small truncation or rounding error
made at any step during the computation will tend to be greatly magnified by future
evolution of the system. Under what conditions will the computed trajectory be close
to a true trajectory of the model?

Consideration of simple examples of nonlinear maps illustrate that there are critical
points of trajectories where round-off error or other noise can introduce new behaviour.
We discuss typical examples in section 2. At such ‘glitches’ the true trajectories all

t Research supported by the Applied and Computational Mathematics Program of DARPA.
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diverge from the numerical trajectory. In this case, there will be no true trajectory that
stays near the numerical trajectory. In other cases, the numerical trajectory can be
shadowed : some true trajectory remains close to the numerical trajectory.

In the present work we state a result (theorem 3.3) which says that if certain
quantities evaluated at points of the computer-generated trajectory, called a pseudo-
trajectory. are not too large, then there exists a true trajectory near the computer-
generated one. Rigorous upper bounds for these quantities can be generated by the
computer as it produces the pseudo-trajectory. If these quantities satisfy the hypotheses
of the thecorem. which again can be rigorously checked by the computer, the result
is a computer-assisted proof of*the existence of a true trajectory near the computer-
generated pseudo-trajectory. For example, if the one-step errors in the pseudo-trajectory
occur in the tenth decimal place. then the true trajectory that results from the theorem
differs from the computer-generated trajectory in approximately the fifth decimal place.
In particular, the initial point of the true trajectory can differ from the initial condition
of the pseudo-trajectory at most in the fifth decimal place.

A typical application of the theorem is to the forced damped pendulum

y+ay+siny = bcost.

Setting the parameters a = 0.2 and b = 2.4, we prove the existence of an apparently
chaotic trajectory with initial cor “itions y{0) = y(0) = 0 for time ¢ ranging from t =0
to t = 10*r. This trajectory, for all 0 < ¢ < 10%, lies within 107° of an explicit
computer-generated (noisy) trajectory produced with a one-step error of 10~'%. There
are similar results for other initial conditions and other choices of a and b.

To describe the theorem, we make a distinction between discrete and continuous
models. Computational methods for approximating trajectories of systems of ordinary
differential equations work by a series of small, discrete steps. We can therefore consider
computer simulation of discrete systems and autonomous differential equations at the
same time if we define a dynamical system to be an invertible map f on R™. (We
actually define dynamical system a little more generally, as a sequence of maps {f,} on
R™, 15 also cover the non-autonomous differential equations case.) We will try to keep
this distinction clear by using the word trajectory for continuous systems and orbit for
discrete systems.

Consider then a J-pseudo-orbit of a discrete system f, which we can imagine
having resulted from applying a one-step quadrature method with truncation error 6
to a system of differential equations on R™, m > 2. Assume that we have subspaces S,
and U, at each point x, of the pseudo-orbit, which are self-consistent with tolerance 4.
By this we mean that S, and U, are complementary subspaces of the tangent space R™
at x, (see figure 1), that unit vectors in U, are mapped by f to within é of U,_,, and
similarly for S,. Define the positive number r, to be an upper bound for the expansion
rate of the linearization Df along S,, and ¢, to be an upper bound for the expansion
rate of Df ™! along U,. See section 3 for precise definitions.

The quantities which need to be measured to assure the existence of a nearby true
orbit are most easily expressed as recurrence relations. Set up a recurrence relation C,
by beginning with C;, =0, and recursively defining C, =csc6, +r,_,C,_,, where 6, is
the angle between S, and U,. Define D, similarly: Dy = 0, where N is the length of
the pseudo-orbit, and D, =cscf, +1¢,D,,, for n < N. Then as long as the quantities
C, and D, are not too large for all n, there is a true orbit of f near the pseudo-orbit.
More precisely:
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Figure 1. The sphitting of the tangent space at the nth point of the pseudo-orbit.

Theorem 3.3. Assume 0 < 1/20m* and let B be a bound on the first and second
partial derivatives of f and f~'. If

l
mS2B2/3

for all n =0,...,N, then there exists an orbit {w,} of f such that |x, — w,| < V3 for
n=0,..,N.

max{C,,D,} <

Note that we do not need to assume uniform contraction and expansion along the
directions S, and U,. In other words, r, and t, do not need to be less than one for
all n.

The proof of the theorem is constructive, in the sense that it uses a procedure for
refining noisy orbits originally given in [6). The essential point of the proof is to show
that under the conditions of the theorem, the iterated application of the refinement
procedure, beginning with the pseudo-orbit, results in a sequence of refined pseudo-
orbits with decreasing noise level, and whose limit is a true orbit. In addition, the true
orbit is not too far from the onginal pseudo-orbit.

The proof can also be considered a justification for using the refinement process
computationally on the actual noisy orbit to reduce noise to near machine-precision,
but that is a separate issue from the main question we are answering here. This
direction is taken up in (7).

A true orbit that stays near the pseudo-orbit is said to shadow the pseudo-orbit.
Several years ago, Anosov and Bowen proved shadowing results for hyperbolic maps
on a differential manifold. The conclusion of Anosov [1] for a hyperbolic map says
that, given any prescribed shadowing distance ¢ (between the pseudo-orbit and true
orbit) there exists a 6 > 0 so that any J-pseudo-orbit can be e-shadowed by a true
orbit. Bowen 2] showed that the same result holds if the map is required only to be
hyperbolic on a basic set containing the orbit. Other proofs have been given, and one
more is a consequence of the present work.

There are two factors that make the approach of Anosov and Bowen impractical for
use in computer experiments. First, the  that is produced can be orders of magnitude
smaller than the machine epsilon of existing digital computers. Second, most interesting
dynamical systems currently being studied are not hyperbolic.

Theorem 3.3 does not assume that the dynamical system is hyperbolic. Our
approach is to prove that as long as the system is sufficiently hyperbolic along the
(finite length) numerical trajectory, then that piece of the numerical trajectory can be
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shadowed by a true trajectory. On the other hard, when f is hyperbolic, C, and D,
stay uniformly bounded for all iterates n, in which case arbitrarily long shadowing
trajectories are constructed by the theorem for sufficiently small 6. Thus the shadowing
theorem of Anosov and Bowen is a consequence of theorem 3.3, as is noted in [9).

In [5,6) a method is developed which creates computer-assisted proofs of the
existence of finite length shadowing orbits on a case-by-case basis. In two dimensions,
a small parallelogram is constructed near each point of the numerical orbit in such a way
that there is a guarantee of a true orbit whose nth point lies in the nth parallelogram.
They apply the method to one-dimensional maps and the two-dimensional Henon and
Ikeda maps, none of which are hyperbolic. These papers use auxiliary calculations in
96-bit precision to verify that there are true orbits near the pseudo-orbit, which was
produced in 48-bit precision.

The advantage of the present method over [6] is that the auxiliary calculations
can now be done in the same precision in which the orbit was calculated. For the
maps mentioned above, only 48-bit precision is nceded to verify the existence of a
pseudo-orbit produced in 48-bit precision.

This fact is especially important when attempting to shadow differential equations.
We found that the methods of [6] were not practical, at least for the differential
cquations we tried. For example, in order to produce long shadowable pseudo-
trajectories for the forced damped pendulum, we needed to use a one-step error of no
more than 10~'*, which already requires 96-bit precision, In this case, there is no extra
precision available for the auxiliary calculations of [6).

Thus the new method, superior even for maps, is evidently essential for shadowing
differential equations. The improvement is largely gained by sublimating the refinement
process, done explicitly in a computer-aided proof in [6}, into the proof of theorem
3.3. It is proved here that under the hypotheses of the theorem, the refinement process,
when iterated, theoretically converges to a true trajectory.

The main result of this paper was announced in [9)], in a slightly less streamlined
form. Other work along these lines for the one-dimensional case is reported in [3).

In the next section, it is shown by example that shadowing can fail for some
pseudo-trajectories. The details of the main theorem (theorem: 3.3) are presented in
section 3. Section 4 consists of a number of remarks relevant to the implementation
of the computer algorithm based on theorem 3.3. Examples are given in section S, and
section 6 contains the proof of the main theorem.

2. Why shadowing works

What makss it possible to find a true orbit near a pseudo-orbit in the presence of
sensitive dependence on initial conditions? The short answer is hyperbolicity along the
pseudo-orbit. Even for a non-hyperbolic dynamical system, as long as the pseudo-orbit
avoids areas of phase space that lack hyperbolicity, it may be possible to find a nearby
true orbit. Of course, on typical ergodic chaotic attractors, this avoidance is only done
as a matter of degree. Roughly speaking, the pseudo-orbit must stay far away from
non-hyperbolic areas compared with the size of the errors being made. Our method
essentially relies on measuring how successful the trajectory is in staying hyperbolic.
As a simple example, imagine a map which contracts distances. Assume that the
distance between any two points x and y is decreased by a factor of K by the map f,
where 0 < K < 1. Thus |[f*(x) — f*(y)i £ K"|x — y|. It follows that any pseudo-orbit
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can be shadowed by the true orbit beginning at its own initial condition. All distances
are contracted, ircluding errors that are made along the pseudo-orbit.

To be more precise, let a §-pseudo-orbit be denoted by {x; x,.....xy}. Then
If (xg) = x| < J, and further

1£2(%g) = X3l € 1f 2(x0) = £ (x)l +1f (%) = X,
< Kif(xg) = x;1 +1f(x)) = x|
< (K+1)d.

Continuing in this way, [f*(xy) — x,| € (K" +K"2 +... +1)J, and we can see that
the true orbit {xg, f(Xgh....f¥(xo)} shadows the pseudo-orbit within 6/(1 - K).

Although this hyperbolic map is not sensitive to initial conditions, it is an
instructive example. C-nsider next a diffeomorphism which expands distances, so
that |f7(x) = f"{(y)l = K"Ix — y| for K > 1. This map is sensitive to initial conditions,
yet any pscudo-orbit {xg.x,..... Xy} can casily be shadowed. The inverse of the map
contracts distances. so the true orbit {f~N(xy),f~N*'(xy).....xy} will shadow the
pseudo-orbit within 6/(1 — 1/K).

A general hyperbolic dynamical system is a combination of the above t o examples.
At cach point, some directions are expanding and the rest are contracting. To construct
a true orbit, one needs to use information from the beginning of the pseudo-orbit in
the contracting directions and from the end of the pseudo-orbit in the expanding
directions. This idea is the basis of theorem 3.3,

On the other hand, not every pseudo-orbit can be shadowed. This is not a failure of
any particular shadowing procedure. The simplest examples of nonlinear maps provide
cases of pseudo-orbits for which there is no corresponding true orbit nearby. Consider
the one-dimensional logistic map f(x) = | —2x2, shown in figures 2 and 3. The interval
I =[—1, 1] maps onto itself under f and so is an invariant set. True orbits which begin
in / remain in / for all time.

Figure 2. A pseudo-orbit of f(x) = 1 —2x? which cannot be shadowed. The iniual condition
1s the dot at the ongin. An error of size 4 is made in computing f(0), which causes the
orbit to eventually approach —c.

Now consider the d-pseudo-orbit which begins with x; =0,x, = | +4, and which
from then on is computed without error. Then x, = f{x;) < -1, and the pseudo-orbit
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Figure 3. For the map f(x) = | — 2x*, an nivial condition in the open interval o1 length
v83 around zero can be attracted 1o —x i an error of size & 15 made.

diverges to —x. See figure 2. Clearly, there .10 true orbit of the system f which
shadows the pseudo-orbit by a distance of less than 1. Any true orbit within | unit of
X = 0 must stay wivain / for all time.

In this simple case, points escape from true behaviour near the critical point, or
fold, of the map. Informally, we call such a divergence from legal behaviour a glitch.
In general, the logistic map f(x) = a(l — x*) — 1 will have pscudo-orbits that cannot
be shadowed not only for a = 2 as above, but when the parameter a is less than and
within 6 of 2, where 4 is the noisc level of the process. (This corresponds to the criticai
value of the fold in figure 2 being between | — & and 1) Thus the occurrence of a
glitch is a robust phenomenon. The same phenomenon occurs in higher-dimensional
chaotic dynamical systems, because of the folds caused by homoclinic tangencies and
near-tangencies of stable and unstable manifolds.

How often should we expect glitches? The answer should depend on the noise level
d. In the logistic map example f(x) = 1 —2x?, there is an interval of length V83 around
2= for which 1t is possible for an error of size o to cause a glitch. This 1s illustrated

:ure 3. Any initial condition in the designated interval around O is susceptible to

ag mapped to a value greater than |, and therefore mapped out of /, towards —w.
A computer-generated oroit of that type does not correspond to any true orbit,

If we assume that this interval of length v/33 is sampled by the dynamical systen.
approximately in proportion to its length, we expect a glitch to occur on the order of
every /3 steps. Numerical studies in [6) on two-dimensional maps and the studies
of differential equations undertaken for this work roughly support this scaling.

3. Shadowing theorem

The theorem can be used to shadow diffeomorphisms or differenual equations. To
include both cases, we will consider a dynamical system to be a sequence f,...,fy of
C2-diffeomorphisms on R™ for some positive integer N.

When attempting to shadow a discrete map f, we will use f, = f for all n. For a
non-autonomous differential equation % = F(t, x), we would let f, be the map on phase
space which takes an initial point x at time t to the point on the trajectory time at time
t + h,, where h, 1s the current step size of the ODE solver. If we assume, for simplicity,
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that the differential equation is being solved with a constant step size h, then h, = h for
all n. In this case, the ODE solver induces a map called the time-h map of the system.

In the case of an autonomous differential equation, the induced time-h map will be
the same for all t. On the other hand, if the differential equation is non-autonomous,
the time-h map will depend on ¢. The following definition of an orbit of a dynamical
system is made to include both the autonomous and non-autonomous cases.

Definition 3.1. Let N be a positive integer, and let f, : R™ — R™ be a C%
diffeomorphism for cach 0 < n < N. The finite sequence {y,},n =0....,N of points ir
R™ is called an orbit of the dynamical system {f,},n=0,....N = 1 if f,(y,) = y,,, for
n=0,,...N — L. An orbit is sometimes referred to as a true arbit to contrast with the
notion of pseudo-orbit. The finite sequence {x,} is called a d-pseudo-orbit of {f,} if
ifalxg) =X, l <8 for n=0,...,N — 1. The é-pseudo-orbit {x,| is £-shadowed by the
orbit {y,} of the dynamical system {f,} if |x, — y,| <eforn=0,....N.

Here, as below, we use the Euclidean norm:

. (5:0‘2):/2

for a vector v = (v),....0,).

We also need to define the concept of moving frame from the point of view
of computer simulation. The moving frames we will require will be numerical
approximations S, and U, to the stable tangent space and the unstable tangent
space at x,, if they exist, and the next best thing, if they do not.

Let N and k be positive integers. For ecach n=0,...,N -- |, let J, be a non-singular
m x m matrix. For each n =0,....N let {v,,....v,}Y., be a set of k vectors in R™, and
define 4, to be the m > k matrix with columns v,,,..., 0.

Definition 3.2. The set {r,,,....tu )Y, is culled a d-pseudo-frame for .he dynamical
system {J,} ifforall 0 < n< N,

1. The entries of the k x k matrix ATA4, — I, are no larger than J in absolute value;
2. Jvg... oy are each within o of range(4,, ).

Informally, we call property | of the definition almost-orthogonality, and property
2 consistency.

The usefulness of this definition for computer-assisted proofs lies in the fact that
a d-pseudo-frame consisting of’ machine-representable numbers can be constructed
using standard computational procedures. Assume that we begin with a set of k
vectors {tg;,....Vg} in R™ which form an orthonormal set. (That is, the vectors in
the set are mutually orthogonal unit vectors.) Assume further that the components
of the vectors vy,,..., vy are machine-representable floating point numbers. Then we
use the Gram-Schmidt orthogonalization procedure on the set {Jy(vg, ), ... Jy(vg)}, and
define {v,;,...,v;,} to be the machine-stored vectors that result from this finite-precision
computation. (In some cases we found thai a more stable form of orthogonalization [4]
improved this step.) Continuing in this way for 0 € n < N we define a J-pseudo-frame
for a small number 4, such that each vector v,, in the frame 1s machine representabie.
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We can now describe the main theorem. For each 0 < n< N, let f, : R™ —» R"
be a C2.diffeomorphism. Let {x,}¥_, be a 5-pseudo-orbit of the dynamical system
{f.}. Define J, = Df(x,) to be the matrix of first partial derivatives of f,. Let B,
(respectively B,) be an upper bound for the absolute values of the first (respectively,
second) partial derivatives of the component functions of f, and f,;! on the union of
balls of radius 6!/2 centred at x, for n =0,...,N. Set B = max{2, B,, B,}. For positive
integers k+1 = m, let {s,,... . Sp}Noo (resnectively, {u,,...,uy}.0) be a 5-pseudo-frame
for {J;'} (respectively, {J,}) such that {s,;, ..., Syy Unps. .., 4y} SPans R™ for each n.

Define the subspaces S, = span{s,,,...,Sx}, U, =span{u,,,...,u,}, and define 6,
to be the angle between S, and U, Let r, and ¢, be numbers satisfying

ayl < rylyl fory €S,
Izl < 2 forz e U,,,

Define C, = 0.C, = cscl, +r,_,C,_, for n > 0. Similarly, define Dy = 0,D, =
csct, +1,D,,, forn<N.

Theorem 3.3. Let {x,}¥, be a é-pseudo-orbit for the dynamical system {f,} on

R™ m > 2, and assume that & < 1/20m?. If
'
max{C,,.D,,} < m

for all n =0,...,N, then there exists an orbit {w,} of {f,} such that |x, —w,| < V3 for
n=0,...N.

Theorem 3.3 gives an alternative approach to Bowen's shadowing lemma [2]. Let
f :R™ - R™ be a C2.diffromorphism. A compact invariant set A is called hyperbolic
if there is a continuous splitting of the tangent space T R™ = E} @ E! for x € A, and
positive constants 4 < 1,C > 0 such that
Df (x)N(E}) = E}
Df (x)(EY) = Ey,
IDf*x) ()l € CA™"v| for v € E}
[IDf~"(x)(v)] £ CAi™"v) forv e EY

forall xe Aand forall = 0.

el

Theorem 3.4. [2]. Assume A is a hyperbolic set for f. For every ¢ > O thereisa é >0
so that every d-pseudo-orbit in A can be e-shadowed.

Theorem 3.4 is a direct consequence of theorem 3.3 (see [9]).

4. Computer-assisted shadowing

In this section we describe a computer algorithm which uses the above theorem 3.3
to verify the existence of true orbits of a dynamical system near the pseudo-orbit
determined by a numerical computation. Along with the pseudo-orbit being computed,
there are some auxiliary calculations to be made to check that the hypotheses of the
theorem are satisfied. Namely, it is necessary to find upper bounds for the constants
B,cscd,r,,t,, and finally C, and D,. We next describe these auxiliary calculations,
which if successful provide a computer-assisted proof of the existence of a true orbit.
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4.1. Construction of stable and unstable frames

The algorithm works best when the J-pseudo-frames Is,,,....s.)%, and
.. Ug)Y o are chosen to approximately encompass the stable and unstable
directions. respectively, for the dynamical system {1} at the particular mag f,. One way
10 accomplish this is as follows. Begin with an orthonormal set fuy,,....uy} of vectors
in R™ chosen arbitrarily. Inductively define the orthonormal set {u,,, ,....%4,,,,} to be
the computed results of applying the technique of Gram-Schmidt orthogonalization.
followed by normalization. to the set {|Df (x )u,,.....Df (X, Juy;. Because of computer
round-off, these computations will be only approximate. which is not important.

Fo: which & is {u,,,....uy}Y o a 6-pseudo-frame? It is straightforward to find a
& for which both parts of definition 3.2 are satisfied. Part I is casily checked with
the computed {u,,.....u,}> . and depends on the residual error of the Gram-Schmidt
orthogonalization. In most cases of following a irajectory of a system of ordinary
differennal equations. the ¢ will be determined by part 2 of definition 3.2, which
depends on the error bound of the ODE solver being used to follow the tangent vectors
along the pseudo-orbit.

The frame !s,.....5.}Y, is defined analogously. Begin with an arbitrary
orthonormal set {sy;,-....sy} fiom R™. Giver {s,.....s,} for n < N, apply
Gram-Schmidt to the set {Df;}(x,_)5,p.--- . Df Y (x,_ )5} The stored values of
the resulting computation are {s,_, ;..-..S,_, ;. by definition.

The calculation of cscd,, where 8, is the angie between S, and U,, is simple if the
dimension m is small, but for higher dimensions the following scheme may be helpful.
Define 4, to be the m x m matrix whose columns are {s,,,.....Sy. Uy, -... Uy}, and let
B, = A;'. Let B: be the m x m matrix whose top k rows arc the same as those of B,
and whose bottom I rows are filled with zeros. Let B be the m x m matrix whose top
k rows are the filled with zeros and whose bottom !/ rows are the same as those of B,.
Note that B, = B; + B}.

Now define S, = A B} and U, = 4,BZ. It is clear that §, and U, are projections
omto S, and U, respectively. and that

S, +U,=A/(B,+8B,))=1.
Further, S, and U, are the unique m x m matrices with these properties.
It is a standard fact that csc 8, = |S,| = |U,]. where as usual we use the Euclidean

matrix norm. This scheme provides a computationally stable method for computing a
strict upper bound on cscf,, which is necessary for bounding the C, and D,.

4.2. Calculation of r, and t,

We have defined r, to be a positive number that bounds the growth of f, in the
direction S, at x,. That is. r, satisfies |J,y| < r,ly| for vectors y in S,. Such a number
is impossible to find by measuring |J,)| on a general basis of S,. This 1s the reason
that aimost-orthogonal frames are needed 1n the calculation. Lemma 4.1, using A =J,
and W =§_, shows how to find an upper bound on r, solely using information about
the action of J, on the almost-orthogonal basis of S,. Analogously, ¢, can be found
by using lemma 4.1 with A =J', on the subspace U, .

Lemma 4.1. Let A be an m x m matrix and W a subspace of R™ with basis {w,....w}.
Let W be the m x k matrix with columns |w,,...,w,}. Then
AW
max |Avl < ld

€Wt i=] VI—IWTW — ||
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when the night-hand side exists.
Lemma 4.1 is proved in section 3.

43. Culculation of C, and D,

Computing C, and D, appears simple once csc8,, r, and t, are known. There are
two more details. however. that greatly reduce the data requirements of this task. In
applications of this algorithm. it is typical for N. the number of points in the pseudo-
orbit. 10 be of the order of several million. On the other hand, we have previously
suggested that the computation of the stable frame {s,,,....s.}" o (and therefore 6,)
be done by beginning with a random frame at n = N. and applying J;' to create
frames N — 1...., 0. To avoid the problem of storing all frames simultaneously, we
suggest building {s,,,....s,.}_, in pieces of length N, < N. For example. we found
N, =5000 to be reasonable.

The idea is to find each block of 5000 nearly-orthogonal bases by stopping after
each bl-zk of 5000 points in the pseudo-orbit, finding the next 1000 points, and then
applying J! 6000 times to a random starting orthogonal basis to produce stable
directions. and then go on tc the next block of 5000. In all cases we ha.e tried, the
stable frame produced this way satisfied definition 3.2 within the prescribed 4.

The sccond problem is deciding whether the recurrence relation D, stays within the
bound of the thcorem. given that it is defined beginning at the end of the trajectory.
The following simple lemma shows how to verify the bound on D, in forward time. In
short. a new recurrence relation E, is defined wiiich is computed in forward time. The
lemma shows how to tell by computing E, whether D, violates a given bound.

Lemma 4.2. Let Dy =0:D, =a,+b,D,,, be a recurrence relation for n =0,....N
and let 4 be a real number. Define another recurrence relation E, = A:
E,., = min}{(E, ~a,)/b, A} for n = 0,..... N. IfE, 2 0forn=0.,.... N, then

D, < Aforn=0..... V.

4.4. Calculation of B

The calculation of B, the upper bound on the magnitudes of the first and second

partial derivatives of the f,, is normally trivial if we are given the explicit map. In

more interesting cases, we are following the (possibly time-dependent) flow of a system

of differcntial cquations. and nced bounds on the denivatives of the time-h map for

step size h. It is this map which is being approximated by the numerical ODE solver.
To this end. consider the first-order system

y=F(ty)

where v is a vector in R™ and t denotes the independent variable. Define g(t,s,z) to
be the value of the solution with initial condition y(s) = = at time 1. Then the time-h
map of the differential equation which maps the value at time ¢, to the value at time
1o+ h is given by

Sun ) = 8ltg +h.tg, 3).

The following lemma establishes upper bounds on the partial derivatives of the m
component functions of f =f, , =(f},....f,)
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Lemma 4.3.
|GF, ¢
I. Define E, = maxj—|. Then max .—f'- < ek,
i |€y, 1o|Cy;
-} -~
5 °r, | c-f, 2 3hmE,
2. Define E, = max|——=——|{. Then max{ ———}{ < hm-E.e"™"".
Tk |Cyoy, Lk |Cy ey -

The proof is an exercise in using the Gronwall inequality (see for example lemma
4.1 of [8]) on the first and second variational equations of the system.

4.5. Quadrature method

To apply theorem 3.3 to a differential equation such as the forced damped pendulum.
we need a quadrature method which has high accuracy. and which has an explicit error
formula. The former is necessary to allow application of the theorem with a reasonably
smail  (and therefore a long shadowing time). The latter 15 necessary to assure that
we have a rigorous bound on 4.

The simplest method that satisfies these two criteria is the Taylor method. The
formula for the one-step error is explicit, being essentially the Taylor remainder.
However, the major diffici.Ity with implementation of the Taylor methoos in general
is that they require explicit differentiation of the right-hand side of the differential
equation. Thus, applying the seventh-order Taylor method to the differential equation

j+ay+siny =hcost (N

evidently requires differentiating the differential equation five times. The formulae fill
a few pages.

Fortunately, there 1s a trick which allows application of the Taylor method as
an ODE solver without doing the symbolic caiculation of higher derivatives of the
differential equation. We illustrate the trick in terms of equauon (1). Set z, =siny and
s, =cosy. Then

I =(cosy)y =z,
Iy =(=smy)y =-—zy.
Now given a point (y, y) in phase space at time t, we show how to calculate the higher

derivatives of y at time t. First of all, we can calculate =, z, from the definitions and ¥
from equation (1). Then, for i > |, we recursively calculate

-1
(1= i—1 -
::l) = (:‘_'Y)“ n_ Z( j > :Z’(,ﬁy“ A

=0

-1
. i—1 -
:(2:) = (—2|y)" h_ _ Z( ) ) z}’)y" »

7=0
YD = gyt 2 o pcos )t

using the differential equation and the product rule of Leibmz. The higher derivatives of
y at time ¢ are therefore known, so we can apply the Taylor method of arbitrary order
with no symbolic calculation beforehand. A similar trick applies to the variational
equation of (1). We applied the seventh-order Taylor method to follow solutions of
both the differential equation and the variatioral equation. The latter is necessary for
calculating a rigorous J-pseudo-frame for the computer-generated trajectory.
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5. Examples

As a first example, consider the Hénon map
f(x,y) =(a—x* +by,x)

of the plane. For parameter values a = 1.4, b - 0.3, this map has an apparently chaotic
orbit. Using the method described above, a computer-generated J-pseudo-orbit with
initial condition (0,0) and & = 10~"* was found to have a true orbit within 10~7 for
over one million iterates. Similar statements apply for other initial conditions, and for
other parameter values.

The pseudo-orbits generated by our computer satisfied [x| < 2, |y| € 2 in every
case. In this range, the magnitudes of the first partial derivatives of f = (f}, f,) and
the easily-computed inverse f ' = (g, g,) are bounded above by 4. The magnitudes of
the second partial derivauves are bounded by 2. Therefore we used m =2, B =4 in
the hypotheses of theorem 3.3.

This map was originally shadowed 1n (6}, and similar results were reported. In that
paper, a different approach was taken, which uses 96-b‘t arithmetic (machine-epsilon =
107%%) to venfy shadowing of a &-pseudo-orbit ¢ lcula . in 48-bit arithmetic, 1.e. with
0 = 10~**. The method of the present paper does not require such higher precision for
this map.

This point becomes especially relevant when systems are studied that are inherently
more difficult to shadow. Consider the forced damped pendulum, which satisfies the
.iferential equation

y+ay+siny = bcost.

To achieve good shadowing results for this differential equation we needed to generate
a d-pseudo-trajectory with § = 107'3, We accomplish this by using a seventh-order
one-step quadrature method with an explicit truncation error formula, using a step
size of h = n/1000. The implementation details of the quadrature method are given n
section 4.5. The fact that the quadrature error formula is explicit 1s critical. Without it
we could not get a ngorous bound on J.

For the forced damped penduium with parameters a = 0.2 and b = 2.4, there 1s an
appareatly chaotic trajectory with initial conditions y(0) = p(0) = 0. Using theorem
3.3, we proved the existence of a true trajectory within 10~° of the computer-generated
trajectory for time t ranging from O to 10*n. This trajectory corresponds to 107 time
steps of the ODE solver. Again, there are simular results for other initial conditions, and
other values of a and b

The maps f, used i1 rem 3.3 were the time-h maps of the non-autonomous
differential equation, where . = n/1000. The derivation of B for the forced damped

~dulur uses lemma 4.3. Write the pendulum equation as a first-order system. Then
“in lemma 43 is

F(t,y,,y,) = (v, - siny, — ay, + bcost).

It is easy to check that the first and second partial derivatives of F with respect to
¥, and y, are bounded in absolute value by 1, so that E, = E;, = |. Lemma 4.3 says
that B = max{2,e? 4he%*}. Since h = 10~', we use B =2,m =2 in the hypotheses of
theorem 3.3. Note that the inverse of a time-h map 1s a time-'minus h’ map, so that
the same B works for f.
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6. Proof of theorem

The convention in this section, as in the entire paper, is that all vector and matrix
norms are I* (Euclidean) norms. The norm of an m x m matrix 4 is defined in terms
of the vector norm, as follows:

|[Al = max |Avl.
veR™jri=1

It follows from the definitions that |4] = /6(4TA), where o(B) denotes the
maximum absolute value of the eigenvalues of the symmetric matrix B.

Lemma 61. 1If A is an m x m matrix whose entries are at most & in absolute value,
then |A] < md.

Proof. 4| < |Alg, where |Al} =371, 37, a7, See [4].

Lemma 6.2. If W is an m x k matnix and x = Wy, then
|x|

<
i VI=IWTIW =1

when the right-hand side exists.

Proof.
yl2=yTy = yTWTwy +|x?
=y = WIW)y + I
< Iyl = wTW)y| +|xf?
< W =WTWyl +
Proof of lemma 4.1. Let x € W. Then x = Wy, and Ax = AWy, By lemma 6.2,

3 1 .
max |Ax|*= ———— max |dWy|"
‘\rl=|.xEW| | 1 - \WTW -] n:R‘.m:I' |
and

max AWy = max yTAW)TAWy =o((AW)T4W).
yERK yl=1 yER: Iy =1

Lemma 6.3. Let {v,.....v,}\.o be a &-pseudo-frame for the matrix J, where
0 < 3/(4k). Let 4, be the matrix with columns {v,,,...,v,}. For each v € range
A, there is a w € range A, such that |Jv — w| < 2Vkd|ul.

Proof. Letrv = Z;, ¢,Ug,; that is. v = 4yc. Define w = A,c = Z;, ¢,by,. Then

k
Zcx(‘lv()x - vll)

1=1
k
< 8 lel < SVKic]

[Jv—w|=

« VR s R
Vi- lAng -1
where the last line follows from lemma 6.2. O
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The next two lemmas refer to a C2-map f which maps a convex subset S of R™ to
R™.- Define B, (respectively, B,) to be an upper bound on the magnitude of all first
(respectively, second) partial derivatives of all component functions of f on S. Assume
that x and x + 4 lie in S.

Lemma 6.4.

Loif(x+h) — f(x)| < mB,lh.
2. IDf(x+h) = Df(x)| € my/mB,lhl.

Proof. For a scalar function g,

2.
X

m
{
2 Zlhjl < |h)y'mmax

7=l

lg(x + M —g(x)] < max

‘g l
X, 0x,

Applying this to each entry of the vector f, and the matrix Df, respectively, one gets
the stated cstimates.

Lemma 6.5.
If(x +h)— f(x) = Df(x}h| £ '—"-\/—'i—szﬂi
Proof. Each component g of f sausfics
1(x + ) — ¢(x) = Df (k] < '"'thf
from which the result follows casily. 0
Now assume that {s,,,. ..su 1, and {u,.....u, )N, are d-pseudo- frames for the

dynamical system {J,} on R™ where k +/ = m. Let B be an upper bound for the
magnitude of all entries of the J,. Let S, and U, be the subspaces spanned by the
moving frames and let S, and U, be the projections onto the subspaces such that
S, +U, =1

Lemma 6 6.

l. Forue U,
(@) 1S, J,ul < 2mb281S, , llul, and
(b} 1S,_,J,\ul < 2m**B3iS,_,ilul.

2. Forses,
(@) |U,_J\sl < 2m23|U, ,,lIs], and
(b) U, S8l € 2m*2B3IU, _ sl
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Proof. To prove 1, we use the fact that {u,,...,u,} o is a 6-pseudo-frame for {J, N

If we are given u € U,, there is w € U, such that }J,u —w| < 2V/16|u|, by lemma 6.3.
Isn+l"n“| = ’Sn-o—l"nu - Sn+lw + SIH'IWI
= IanJnu - S,,“Wl
€ IS, 4 — wi
< 2/md|S, . llul.

Secondly, we use the fact that {u,,,.... Uy} e is 2 SmB-pseudo-frame for {J;' A5

Given u € U,, there is w € U, _, such that |J;\u—w| < 2VImBé |ul.

iS,,_lJ;_llul = ‘Sﬂ—l‘]';-“u - S,,_lW +sn_l\V'
= |S _lJ"-_||u - S,,_lw|
< ISyt = wi

< 2m**B5|S,_, |lul.
Part 2 is similar. q

Proof of theorem 3.3. Foreach0< n< N, f, : R™ — R™is a C*-diffcomorphism. Let
{x,}¥_, be a J-pseudo-orbit of the dynamical system { [} Define J, = Df (x,). Let B,
(respectively, B,) be an upper bound for the absolute value of the first (respectively,
second) partial derivatives of the component functions of f, and f ' on the union of
balls of radius 8'/? centred at x, for n =0,...,N. Set B = max({2, B,, B,}. For positive
integers k+1 = m, let {s,),.... Sy} oo (respectively, {ty,. .. Uy }omo) be a O-pseudo-frame
for {J;") (respectively, {J,}) such that {s,,..., Sy tyys- - Uy} SPans R™ for each n.

Define S, = span{s,;.... 5.}, U, = span{u,,....u,}, and define 0, to be the angle
between S, and U,. Let S, (respectively, U,) be the (unique) projection onto S,
(respectively, U,) such that S, + U, = I. Recall that |S,} =|U,| =cscf,. Let 7, and t,
be numbers satisfying

Mayl < ralyl fory €8,

U7tz < gzl forzeU,,,.

Define X0 = x,, 3 ==y =0for:1=0,1,2,..., and define

Yo = Sf (X)) = X+ s i¥nnt) forn=1,..,N. )
2= U ) = +d702,) forn=0,.. N~ L 3)
Xt =t for n=0,...,N. @)

The sequence {x }_; 1s the result of applying the refinement technique i times to the

original pseudo-orbit {x,}_,. Define p by 6 ¢ =m*?B% Let Cy =0,C, =15,|+7,-,C-y
for n > 0. Similarly, let Dy =0,D, =|U,| +t,D,,, forn <N.
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Lemma 6.7. Assume that C, < 6°~'/2 and D, < 6°"V2 for n = 0,...,N. Then for
n=0,.. . Nandi> 0:

(@) lysl < 276C, < 271604172

(b) Iz}| € 276D, < 2-igp+12

(C) IX:H _x"| < 2I—|6p+l/2

W
(@) ' = xfl < 487712 < wm,\J‘

Proof. Statement (d) follows from (c). Statements (a), (b) and (c) are proved by double
inductiononiandn. If i =0:

(a) 1y =0, and for n > 0,

|y2| £ |Sn]6 +ru—lly2—ll <€ Isnl‘s +rn-ldc -1 < Cn(S

(b) 1201 € D,3, by reasoning similar to (a).
© Ixh =% < 1O +12% < 8(C, +Dy) < 826P712 = 250412,

Now we assume that (a) holds for i — 1, and prove it for case i. We induct on n.
The n = 0 case is trivial, since |y} = 0. Assume that (a) holds for the case i,n — 1 and
prove it for i,n:

y:l = Sn(fn-l(x:l—l) - X' +Jn-ly:|-l)
= (jn—l(xn-l) = fa (%) I) + [ (i 1)
- xn - yn - z:l—l +"n—lyn—l)
=§ Ull-l(x:l—l) —fn—l(“ Dfn-l(t |)(X,,_ - ‘ |)
+(Df oy = n-i)(y L+ 2 iz + ]

where we have used the facts that S,(z:™') =0 and
S( -l ‘+‘}"— _fn I(‘ l)) "'S (Jn l}n—l)

by the definition of y'".
We will bound the Euclidean norm of each of the four terms of the last sum
separately.

L
323,

1S, am i (X4—p) = facy (X52h) = Df oy (X2 = XD IS, x_, = xR

3/2
m 282 (22—|5p+|/2)2

S,162772 32B,27'm* 5%
S 16272

< S,

<
<

since m > 2, B > 2 implies that 6= > m*B* = 32Bm*? (m"/2B%)/32 > 32Bm*.
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2
1S, (Df py (X5 = Jo DO + 22 SIS, ImP2 Byl — x,yllyich + 200
< Is"m3/232“p+l/222-16p+l/2
< 15,1627 326 B, 6% m*"?
< IS,16272

since 0=% > 32B,m’/2.
3.

ISy dpaizishl S 218, 1V/mblze,
26p—|/2\/""‘62—wl‘sp+l/2
= 166%/m 27-%
< 2—1-25

I/

since 6% > 16/m.
4

lSan—ly;-ll s U,....y:,_.l + 'Uan—ly:n-l‘
Facil¥hot] +2m¥2BSIU,|27504 12
FuclVicy| +88%m*2B 271735

Pacil¥ioyl +277%8

N ININ

since 6 > 8m**B.

Adding up the four bounds we have
< 48,1627 4yl
< 15,1627 +r,_27'6C,_,
=C,02™".

|yl

This proves (a) for the case i. The proof of (b) is similar, except that we use descending
induction on n. The n = N initial case of (b) is trival, since |z§;| = 0. Finally, (c) is a
simple consequence of (a) and (b). a

Lemma 6.7 shows that for each n, y4 — 0,2z, — 0, and that {x}}<, is a Cauchy
sequence. Therefore x!, converges to some w, in R™. The sequence {w,}~_, is the limit
of the refinement process applied to {x,} . Moreover, lemma 6.7 (d) implies that
lw, — x,| <82

We will complete this section by showing that f,(w,) =w,,, forn=0,....N -1,
so that the {w,} represents a true shadowing orbit of {x,}. According to equations (2)
and (3),

Sn+l(fn(wn) - wn+l) =0 (5)
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and

Upf Wyt = wa) =0 (6)
forn=0....,N = 1. Furthermore, we have

Ifn(wn) - wn+l| < lfn(wn) - fn(xn)l + lfn(xn) = Xyl + 1Xnet = Wagl
< mBy|w, — X,| + 8 +46°%/2
< (mB, + 146712 45

51/2 (61/2 + 4(mB + ”)

om0 IS

N

mS/1B?

V) ] 4(4 | l)
12
s 0 (\/8—0 25/222 )

< 8'?
A simular calculation shows that
U W) = wol < 8'2,
Secondly, corollary to this calculation are the facts that
falWa) = Xpal < 872
and
S (W) = gl < 8

Theretore f,(w,) and f,'(w,,,) are within the balls around x,,, x,, respectively, for
which the lemmas 6.4-6.5 concerning growth bounds on f, apply.

Lemma 6.8. The sequence {w,}"_, is an orbit of the dynamical system {f,}. That is,
faw,) =w,  forn=0,... N1

Proof. Equation (6) says that U,(w, f;'(w,,,) =0.Since S,+U, =1, w,—f'(w,,))
belongs to the subspace S,. We evaluate |S,,,(J,(w, — f,'(w,,,))| in two ways. First,
using the fact that S, + U,,, =1

‘Sn+l"n(wn - n‘l(wno‘))l

z [Jlw, .:Tl(wn-fl))' = Ui dnlWy —f;l(wnﬂ})'
1 - 2ns -
2 _lwn - fn l(wnd—l)] - 2m3/.Ba|Un+l“wn —fn l(WnH“
mB,
1 -
= (5 — 28U )by = 1500

where the last inequality uses lemma 6.6.
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On the other hand,

Jn(wn - n-'(wnﬂ” =fn(wn) W Un(wn) Wp T Dfn(wn)(wn - fn-l(wn-’-l)))

+ Uy = Df (W) (Wy = 7 (W)
Since S, (f,\w,) — w,, ) =0 by equation (5), we have

|Sn+l(‘]n(wn - f:l(wnﬂ)))l

- b 2 -
< %mJ/ZBllan“wn - fn l(wnﬁ-l)l. +m3/-BZ|Sn+l“xn - Wn“wn - fn l(Wru-l)l

= m2By|S, 131w, = 17 (W )l + 48P Dlw, — £ 7w, )

Putting the two inequalities together, we have that either w, = f"'(w,_,), in which
case we are done, or else

i = 2B U3 < mBAS, (= 17 ) +407°1)
]

L < Bm5P(26' + | +467)

mBl ©

where we use the bound 67~'2 on |S,,,! and |U,,,I. This inequality implies that

! 2 4
—Ps /22 - el ———
o m”’°B (2+ '—IOm+m5/232)

< mS/ZBZ

since m > 2, B > 2. This contradicts the assumption 0" = m*B*. Therefore
Wy = [ (W) for n =0, N = 1. O
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Abstract. In dynamical systems examples are common in waich there are regions
containing chaotic sets that are not attractors, e.g. systems with horseshoes have
such regions. In such dynamical systems one will observe chaotic transients. An
important problem is the ‘Dynamical Restraint Problem’: given a region that contains
a chaotic set but contains no attractor, find a chaotic trajectory numerically that
remains in the region for an arbitrarily long period of time.

We present two procedures (‘PIM triple procedures’) for finding trajectories which
stay extremely close to such chaotic sets for arbitrarily long periods of time.

1. Introduction
Studying dynamical systems, one often observes transient chaotic behaviour,
apparently due to the presence of horseshoes. For example, for suitably chosen
parameter values, the Hénon map has an attracting period orbit with period 5 and
also a non-attracting chaotic set, and one observes that the duration of the transient
chaotic behaviour of many trajectories is rather short before they settle down on
the period S attractor. Other famous examples with chaotic transients are: the Hénon
map for large parameter values where almost all trajectories go to infinity and there
is a bounded non-attracting invariant set; the forced damped pendulum; and the
Lorenz equations for values of the Rayieigh number below the standard values that
have a chaotic attractor. Transient chaos is also present whenever there is a fractal
boundary separating the basins of two or more attractors.

Let M be a smooth n-dimensional mamifold without boundary, and let F be a
C*-diffeomorphism from M to itself. We denote by p the distance function on M.
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A region R is an open and bounded set in M. We say a region R is a transient region
if it contains no attractor. We will be studying these regions in cases where the
trajectory through almost every initial point eventually leaves the region. We investi-
gate special trajectories that remain in such a transient region for all positive time.
For example, the horseshoe is usually pictured mapping a rectangle to a horseshoe
shape; the rectangle is a transient region. The great majority of the trajectories of
the horseshoe map will leave the region after a few iterates. We are looking for
numerical procedures for finding chaotic trajectories that stay in the transient region
as long as we wish to compute them for ¢ =0. The main problem that we would
like to address is:

The dvnamic restraint problem. Find a (nonperiodic) orbit numerically that remains
in a specified transient region for an arbitrarily long period of time.

The above problem explicitly concerns numerical (i.e. computer) procedures of
finite precision. It leads to the following problem where it is assumed all computa-
tion: can be made exactly.

The static restraint problem. Find an initial point whose orbit stays in a specified
transient region for an arbitrarily long period of time.

We will establish a procedure (the PIM triple procedure) for finding points whos:
orbits will stay in specified regions in M for dynamical systems in ideal cases that
are uniformly saddle-hyperbolic systems. The unstable manifold of each nonwander-
ing point in the transient region is assumed to be one dimensional.

et R be a transient region for F, The stable set S(R) of F is {xe R: F"(x)e
Rforn=0,1,2,...}; the unstable sct U(R) of F is {xe R: F""(x)eR forn=
0,1,2,...}. The set of points x for which F"(x) is in R for all integers n is called
the wnvanant set Inv (R) of F in R, that is, Inv(R) = S(R)n U(R). A component
of S(R) (resp., U(R)), which contains a point of Inv (R) is called a stable (resp.,
unstable) segment, We call Inv (R) a chaotic saddle when it includes a Cantor set.
We assume that for the transient region ° the set Inv (R) is nonempty.

We will refer to R\S(R), the complement of the stable set S(R) in the transient
region R, as the transient set. We will say that a point p in S(R) is accessible from
the transient set R\S{R) if there is a continuous curve K ending at p so that K\{p}
is  the transient set R\S(R). For uses in dynamics, see [GOY] and [AY]. We
wouwa like to address the following problem:

Accessible static restraint problem. Given a segment J that intersects the stable set
S(R) transversally, describe a procedure for finding a point (in J ~ S(R)) which is
ac  ible (from R\S(R)).

We will establish a procedure (the Accessible PIM triple procedure) for finding
such accessible points in M for the same class of dynamical systems as above.

Both our procedures are based on our presumed ability to specify an initial point
p and compute the time Tg(p) its trajectory takes to escape from R. In the PIM
(Proper Interior Maximum) triple procedure, we seek out triples of points a, ¢, and
b on a curve segment with ¢ the ‘interior’ point, that is, ¢ is between a and b. The
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triples are selected with an ‘interior maximum’ of the escape time, which means
Tr(c)> Tr(a) and Tg(c)> Tr(b). We then look for new triples that lie in the a, b
segment but are closer together and so are ‘proper’. The most challenging cases are
those in which the average escape tin.: 1s short so that the transient trajectories of
typical points in R do not come close (0 ths unstable chaotic set.

The organisation of the paper is as follows. In § 2 we present the PIM triple
procedure and the Accessible PIM triple procedure; the main results for the validity
of these procedures for hyperbolic systems are stated precisely in § 3. § 4 is devoted
to the proofs of the results in § 3. In § 5, we will discuss the associated numerical
procedures (including the shadowing of the numerical orbits by real orbits of the
dynamical system). Finally in § 6, we will explain why the PIM tripie methods also
can be used for basin boundaries; we will describe how the results carry over to
higher dimensional systems; and we also will argue that it is sufficient to assume
that F is of class C°.

2. The procedures
Let the manifold M, the diffeomorphism F, and the transient region R be as in the
introduction.

The escape time Tp(x) of a point x in M for R is defined by

T (x)_{min{n =0: F"(x)g R}
B2 1o if F*(x)e R for all n =0,

For the example of the horseshoe map, the escape time function T, has the following
properties: (1) Tg(x) =00 for x on a Cantor set of stable segments; (2) if a, ¢, and
b are three points on a segment L of an unstable segment J so that: (i) ¢ is between
a and b and (ii) Te(c)> max {Tz(a), Te(b)}, then the segment [a, b], < J from a
to b intersects the stable set S(R). These properties play a crucial role in the PIM
triple procedures, and lead to the following definitions. Let J be an unstable segment
in R. Then J is homeomorphic to an interval, and we may assume it has the ordering
of an interval. The notation (a, ¢, b) for a triple means that a, ¢, and b lie on J and
¢ is between a and b. Let L<J be a ‘segment’, that is, a connected subset of J.
Assume L intersects the stable set S(R) transversally, and let (a, ¢, b) be a triple
on L. Since L is homeomorphic to an interval it has an ordering. We assume that
the ordering on J {and hence on L) is such that a <c¢<b; and for points x and y
in J we write [x, y], for the segment on J joining x and y». The triple (a, ¢, b) is
called an Interior Maximum triple if Tg(c)> max{Tr(a), Tr(b)}; and (a, ¢, b) is
called a Proper Interior Maximum (PIM) twniple on L, if (a,c, b) is an Interior
Maximum triple and at least one of the points a and b is in tue intevior of L.

For each € >0, an e-refinement of {a, b} (w.r.t. J) is a finite set of points a = g, <
&1 <---<gn=bin[a,b], such that

(¢/2) - p([a, b],) < p((& 8k+1)s) =€~ p([a, b],)
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for all kK, 0<k=< N -1, and an e-refinement of (a, c, b) is an e-refinement of {a, b}
as abovesothat c=g, forsome k, I=sk=N -1

The outline of the PIM triple procedure is the following. Let R be an appropriately
chosen transient region for F, and let L be a segment on an unstable seement J
(intersecting the stable set transversally). Let £ >0 be sufficiently small. Given a
PIM triple (a,, c., b,) in L, starting with n =0, choose some - refinement P, of the
triple (a.. c., b.) in [a., b.];, select any three not necessarily consecutive points
from P, which constitute a new PIM triple (a,.,, ¢,.y, b..,;) on [a,, b.},. The new
triple must be ‘proper’; proper here means [ a,.,, b,.,], is a proper subset of {a,, b.],.
The condition guaranteeing the existence of such a PIM triple when ¢ is sufficiently
smail. will be described in § 3. Note that, according the definition of PIM triple.
pilan.,, b..1],)=(1-0.5¢)p({a., b.],). Thus the nested sequence of the intervals
{[a., b.],}.-0 converges to a point which we will call a PIM limit point. The £ above
can be chosen small enough that it is independent of n. We will show that under
reasonable conditions the orbit of the PIM limit point stays in the transient region
R. The choice of the PIM triple i> typically not unique and different choices will
result in different PIM limit poin‘s. This "static’ problem’s solution is not directly
implementable on a computer because computations are made with finite preciston,
but it lead to a practical solution of the dyra:ric restraint problem as discussed in
§5s.

The idea of the Accessible PIM triple procedure is like the PIM triple procedure
except that the PIM triples (a,, c,, b,) are selected more precisely so that {a.,, @...],
does not intersect the stable set S(R) for all n= N for some N eN. The difficuity
here is that we o1ly compute the escape times of the grid points and yvet we must
be sure that [ a,, a,.,], contains no points of S( R). We must guarantee the procedure
will succeed if £>0 is small enough, where ¢ is fixed, depending only on the
diffeomorphism and region.

Our objective is to describe the Accessible PIM triple procedure that selects in a
unique way a nested sequence of PIM triple intervals on J which leads to an
accessible point in S(R) on J. The accessible point p in J n S(R) that we will find,
will be accessible using the curve [r, p], for some r in J, so we say p will be "accessed
from the left’, that is from the side containing r. We could alternatively have chosen
to approach from the right and we would expect to find a different point.

Given an £/3-refinement P, ={x,: 0<i=< N(¢)} on J of a PIM triple (a,, c,, b.)
in J with a,=x,<x,<: - <Xn() = b,. Assuming that P, includes a PIM triple,
then we chocse the next PIM triple (a,+,, Cy«1, Dasy) in P, in the following way:

(1) Select h,.,, to be the leftmost point in P, such that it is the right point of a
PIM triple in P,:

(2) Select c,., to be the adjacent point to the left of b,., in P,;

(3) The systematic choice of a,., in P, is the following: Let M, be the minimum
value of {Tr(x,): x,€ P,, x, < ¢,+,}. We write:

a’., is the rightmost pnint of {x,€ P,: X, <C,+y, Tr(x,) = M,};
a., is the adjacent point to the right of a’., in P,;
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a.., is the rightmost point of {x,€ P,: x,<c,.,, To(x,)= Ta(a;.,)}.

Case (i). If cither M, < Tp(a,) or M,>min{Tx(x,): x,€ P,}, then choose a,.,=
al.,: otherwise,

Case (i1). If M,=Tg(a,) and P, is not an ¢-refinement of (a,, ¢,.;, b..:), then
choose a,., = a,; otherwise,

Case (iit). If M,=Tg.a,) and P, is an e-refinement of (a,, ¢,.y, b,.,), and if
al.,>a, oral.,=c,.,, then choose a,., = a’.,; otherwise,

Case {iv). f M,=Tgla,) and P, is an ¢-refinement of (a,, C,.y, b,.,), and if

a’.,=a, and al.,<c,.,, then choose a,.,=a..,.

Repeatedly applying the Accessible PIM triple procedure leads to an accessible
point on S(R).

To understand rule 3, notice that rules 1 and 2 imply that the graph of Ty is
rather simple on P, n{a,, c,.,] ,,' namely, T, is monotonic increasing on P, between
a%.,and c,.,, and T is non-increasing on P, between a, and a., . These properties
follow from the fact that b, ., was chosen as far left as possible. We will show that
after the first few iterates Tge(a,) =min {Tg(x,): x,€ P,}.

3. Results

In § 2 we presented the idea of the procedure for finding a point whose orbit stays
in the transient region. In this description, we assumed that there exists an £ >0
for which every e-refinement of a PIM triple includes a new PIM triple. Furthermore,
the associated curve segment from a,., to b,., has a length at most (1 ~£/2) times
the length of the previous one (from a, to b,). We will justify these concepts.

Let the manifold M and diffeomorphism F be as in the introduction. A subset
A of M is hyperbolic if it is closed and F-invariant and the tangent bundle T\ M
splits into dF-invariant subbundles £ and E* on which dF is uniformly contracting
and uniformly expanding respectively. A hyperbolicset A is called a saddle-hyperbolic
setifdim ' = 1and dim E“ = 1. We will call a region R a saddle-hvperbolic transient
region if R satisfies all the following conditions:

(A1) R is a transient region;

(A2) Hyperbolicity property: Inv (R) is a nonempty saddle-hyperbolic set;

(A3) Boundary property: U{R)aR is mapped outside the closure of R;

(A4) Intersection property: cach nontrivial component y of U(R) is an unstable
segment, that is, y intersects Inv ( R); note that such a segment y must intersect
S(R) transversally.

We assume throughout that dim E* = 1. For the sake of simplicity. we 1ssume
that n = 2; the more difficult case n =3 will be discussed in § 6.

For a saddle-hyperbolic transient region R and ¢ >0, the properties (Al) and
(A2) imply that the escape time of almos' every point on an unstable segment is
finite. (A resuit due to Bowen and Ruelle [BR] shows that S(R) has Lebesgue
measure zero.) Hence, one may assume that such a refinement does not intersect
the stable set S(R).
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If R is a saddle-hyperbolic transient regicn, then the escape time map T restricted
to an unstable segment J c U(R) has the following two properties, which foliow
from Proposition 1 and the T-Jump Lemma below.

(i) All the points in a chosen segment {a, b], on J will escape from R if and only
if no g-refinement of {a, b} includes a PIM triple;
(ii) Ty is locally constant on an open subset of full measure of J, and if Tr(x)<x
and x is a point of discontinuity of T, then
liI:l‘i"nf Te(y)=Te(x) and limsup Te(y)= Tg{x)+1.

r-x
Application. The objective of the paper is to present procedures which enable us to
obtain numericai trajectories lying on chaotic saddles, and to justify that these
procedures work in ideal cases. The examples ot interest will rarely satisfy all our
hypotheses, and yet we observe that frequently we can successfully use the procedures
to obtain pictures of Inv(R) by plotting the numerical trajectory. Consider the
following example.
Let t... diffcomorphism F acting on the plane be given by 2

F(x,y)=(A-x"+M-y,x).

It is well known that the map F is equivalent under a linear change of variables
with the Hénon map. We choose the parameter values M =0.3, and A =3 in figure
1(a), A=4.2 in figure 1(b) (and figure 2) and A =2.0 in figure 1(c). Then a result
due to Devaney and Nitecki [DN] implies that B={(x, y): -3<x<3,~-3<y<3}
includes the nonwandering set of F, so we select B for the transient region. When
A =42, the nonwandering set is a uniformly hyperbolic chaotic saddle. We start
the numerical procedure with the horizontal line segment with v = t extending from
the left side of B to the right side. By using the ‘PIM triple procedure’ we obtain
a numerical trajectory consisting of tiny intervals. The resuit is presented in figure 1.

When A =4.2, the region B is a saddle-hyperbolic transient region: the results
due to Devaney and Nitecki [DN] imply that B satisfies the conditions { A1)-(A4).
When A =3 we do not know if condition (A2) will hold, and for A =2.0 we have
a non-fully developed horseshoe.

In figure 2 we present the sets U(B) and S(B) for A =4.2 (the chaotic saddle is
the intersection S(B)~ U(B)), and the accessible fixed point on the chaotic saddle
is indicated by an arrow.

The reader is referred to [NY] for other applications such as the Lorenz equations,
the pulsed rotor map, and the forced pendulum equation.

Rather than state one or two theorems the results seem best stated a progression
of ideas: (1) PIM triples exist, (2) refinement of PIM triples incluae PIM triples,
and (3) the resulting sequence of PIM triples convexge to a desirable point. The
special case of accessible PIM triple sequences must be discussed separately.

From now on, we will assume that R is a saddle-hyperbolic transient region for
F with dim E* =1, and that J < U(R) denotes an unstable segment. That implies
that both ends of J are in the boundary of the transient region R. We know by the
Intersection assumption that J intersects the stable set S(R). Clearly, this property
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FiGURE 1. (a) Numencal trajectory obtained by the PIM tnple procedure for the Hénon map in the
iransient region -3 < x, y <3, and parameter values A=3, M =03 (b) Numencal trajectory obtained
by the PIM triple procedure for the Hénon map in the transient region ~3<x, v <3, and parameter
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FIGURE l—continued.

will not hold for each subsegment L of J, since J ~ S(R) is nowhere dense in J and
one can choose the segment L lying entirely in the complement of J~ S(R). Our
first resuit ‘PIM Existence Proposition’ characterizes the segments intersecting the
stable set S(R).

ProrosiTioN 1. (PIM existence.) Let L =[a, b], be a segment in J. The following
statements are equivalent:

(1) there exists € >0 such that every e-refinement of {a, b} includes a PIM triple;
(it} L contans a point of Inv (R) in us interior.

In the PIM Existence Proposition the segment L can be chosen so that it intersects
€1 R) only at points extremely close to one of the end points of L and so £ must
.= extremely small, so € depends on the choice of L. However, the PIM Refinement
Proposition, stated below, shows that a single ¢ (depending on F and R) can be
used, once we have found our first PIM triple. One might expect that our assumptions
of uniform hyperbolicity would imply that the uniformity of ¢ would be an easy
corollary. In fact, the existence of an ¢ for each PIM triple is much easier than ¢
can be chosen uniformly, and this uniformity is essential for the PIM triple pro-
cedures. In principle it can be difficult to find the first PIM triple if the initial interval
L is chosen badly.

ProrosITION 2. (PIM refinement.) There exists € > 0 (depending on F and R) such
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FIGURE 2. The stable and the unstable manifold for the fixed point at approx. (1 729, 1 729) for the
Hénon mup n the transient region =3 < x, y <3, and parameter values A =4.2, M = 0.3 The accessible
fixed point on the chaotic saddle is indicated by an arrow.

that there i1s a PIM triple in each e-refinement in J of each Interior Maximum triple
in J, for everv unstable segment J < U(R).

The next result deals with the convergence of the sequence of nested PIM triple
segments [a,.,, b.+]; <[a,, b,]; on J, in other words, the PIM triple procedure is
valid. A sequence of PIM triples {(a,, ¢,, b,)}.z0 On J is called a PIM triple sequence
if (@n+1, Carrs bayy) is in an g-refinement of the Interior Maximum triple (a,, ¢,, b,)
for all n. We say {(ay, ¢,, ba)}a-0 is the accessible PIM triple sequence 1f (a,, ¢,, b,)
is selected using the Accessible PIM triple procedure for all n.

ProprosiTION 3. (PIM convergence.) Let € > 0 be as in Proposition 2. Every sequence
of nested segments {[a,, b,];},- that 1s associated with the PIM inple sequence
{(a., ., ba)}azo 0n J, converges to a point on S(R).

The next resu't is the key in proving that the 'Accessible PIM triple procedure’
is valid.

ProprosiTION 4 (Accessible PIM Refinement.) Let ¢ > 0 be as in Proposition 2. Let
{(@n, ny by)}azo be an Accessible PIM triple sequence on J. Then there exists integer
N =0 such that (a,, a,.,], does not intersect S(R) for every n= N.

Recall that a nested sequence of PIM triple intervals obtained from e-refinements
will converge to a PIM limit point on S(R). Note that the PIM limit point of the
PIM triple intervals associated with PIM triples in Proposition 4 is an accessible
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point on S(R). The next resuit implies that the Accessible PIM triple procedure is
valid.

ProrosiTioN 5. (Accessible PIM convergence.) Let € >0 be as in Proposition 2. If
the PIM triple sequence {(@,, Cn, bs)}n=o in Proposition 3 is an accessible PIM triple
sequence, then the sequence of nested segments {[a,, b,];},-0 0n J, converges to an
accessible point on S(R).

4. Proofs

4.1. Preliminaries

We assume that R is a saddle-hyperbolic region for the diffeomorphism F. By
Smale's ‘Spectral Decomposition Theorem' [S] we know that we can decompose
the nonwandering set ) into a finite collection of disjoint closed invariant subsets
and on each of these subsets F has a dense orbit; these maximal invariant subsets
of ) appearing in the decomposition are called the basic sets (see e.g. [Ni] and
{GH] for the definitions and several properties of uniformly hyperbolic systems).
From now on, let I denote  basic set of F. From the definition of Inv (R) it follows
immediately that either "< Inv (R) or I'nInv (R) = . This implies that we can
decompose Inv (R) into finitely many basic sets. Note that ‘T~ Inv (R) =& does
not imply Tn R=C, and ‘'I'n R# " does not imply ‘T nInv(R) % &'

Recall that for z €  the stable manifold W*(z) (resp. unstable manifold W*(z))
of z is the set of points x for which p(F"(z), F"(x))->0(resp. p( F~"(z), F "(x))=0)
as n-00; the local stable manifold Wi, (z) (resp. the local unstable manifold
Wie(2)) of z of size B is the set of points x in W*(z) (resp. W*(z)) so that p(F"(z),
F"(x))=p (resp. p(F™".z), F7"(x)) = B) for all integers n =0, where 8> 0. When
the stable or unstable manifold is a curve, we write W:(z) and Wi,.(z) for the
two components of Wi, .(z)\{z}, where o is either s or w.

We will call I' a trivial basic set if T’ consists of one periodic orbit, and we call
' a nontrivial basic set if T’ includes more than one periodic orbit. Assume that I’
is nontrivial, we call T periodic if there exists m € N such that F™ has no dense orbit
on I', and we call I nonperiodic if it is not periodic. The following results 4.1, 4.2,
and 4.4 are reformulated from [NP] and [PT]).

ProposiTION 4.1. There exists fimite sets P, P*, and P* of periodic points, P = P* U P",

such that for all x € Inv (R):

(1) If x is not a limit point of both W, i(x) " Q) and Wi (x)nQ, then x is in W*(p)
for some pe P".

(2) If x is not a limit point of both Wi,.(x)nQ and Wi (x)~Q, then x€ W*(p) for
some pe P’.

Proof. For a proof, see Newhouse and Palis [NP].

ProPOSITION 4.2. Let P* and P" be as in Proposition 4.1. Let T be a nontrivial
nonperiodic basic set in Inv (R). Then there exist finitely many disjoint regions R,
being diffeomorphic images of the square B=[~1,1]x[~1,1]}, say R, =g(B), 1si=<
N for some N €N, such that: (1) 'R, #J foralli, (2)T < U:, R,; (3) FOR) <=

U}'i, 3,Rand F'(3,R)= " d.R, where 3R, = g,({(x,y): x| =1, -1=y=1}) resp.

1=1
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3.R =g ({(x,y): =1=x=1,|y|=1}) are segments in the stable set W*(P") resp.
the unstable set W*(P*).

Proof. For a proof, see Palis and Takens [PT].

Remark. The intersection of I' with the union of the regions in Proposition 4.2 is a
Markov partition for I, see Bowen [B] for the notion of Markov partition.

PropPOSITION 4.3. Let PY be as in Proposition 4.1. Then we have x € S(R) is accessible
if and only if xe W*(p) for some p € P",

Proof. Apply the Propositions 4.1 and 4.2,

From now on, let ze I'< [nv (R) be fixed, and let I < W*(z) be a segment such
that I" crosses each region R, at least once, where R,, 1=k = N, is as in Proposition
4.2. Palis and Takens [PT] have shown that there exist finitely many disjoint regions
denoted R,(1") in U,"f,, R, that have the same properties as the R,'s such that [*
crosses each R (I") exactly once, 1 <j= N(I"), for some N(I")eN. Therefore, we
will assume that I" crosses each region R, from Proposition 4.2 precisely once.
There exist a C'*“ stable foliation &' on a neighborhood Uy of T for some a >0,
and it is no restriction to assume that every region R, is contained in U, 1=i< N;
see [PT].

Let 7:R-> W"“(z) be a C* parametrization, and define a projection :[ -
U,N_, R, n I" by taking in each region R,, 1=i= N, the projection along the local
stable manifolds into the intersection I'¥ with that region. This projection can be
extended from I to the union of the regions R,, by projecting along the leaves of
the foliation ;§°. This extension will also be denoted by . We obtain (see [PT]) the
following result that says that for some iterate M, the map F can be viewed as
expansive along unstable segments.

PROPOSITION 4.4. There exist a positive integer M and a C'*" map ¢:\ UL, v (1" A
R)-R defined by ¢(x)=71"omo F¥ o r(x) such that |¢'(x)|> 1, for some a > 0.

From now on, let I,,..., Iy be N disjoint compact intervals on the real line,
and we write Y=U,’i, I.Let f: Y>Rbe a C'"" map, for some a >0, with the
following properties:

(1) fis C'** on an open neighborhood U of Y,

(2) Yclnterior(f(Y));

(3) there exists numbers A, > 1 such that |f'(x)|= A, for every xe I, 1=j= N,

(4} the transition matrix A, , is primitive, that is, there is an integer Q > 0 so that
all the entries of (Ay ;) are positive; where Ay, is defined by A, ,(j, m)=1
if f(L)n 1, #3, and Ay ((j,m)=0if f(L)n],=B, 1<), m=<N.

Note that condition (2) implies that either [, f(I,) = or [ nInt (f(I.))=1,
forall1=j m= N.

The escape time Ty (x) of x € Y under f is the minimum value n with the property
S"(x) is not in Y. We define for every integer k= 1:

A={xe Y: Tyv(x)=k}
D.={xe Y: T, (x)=k}.
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In particular, A, = Y. Hence, for each integer k =1 we have A, ., is the set of points
in A, whose escape time from Y is at least k; hence A,., is the set of pointsin Y
that stay in Y under f* The points in Y which will stay in Y under all iterates will
be denoted by
Ay={xeY: Ty(x) =}
For every integer k =1 we have:

(a) Ax=Ais1V Dy;

(b) Y= Aquf,, D, that is, Y is the union of the set of points A,., whose
escape time from Y is at least k+ 1, and the set of points D, whose escape time
from Y is ), where I =j=k.

Denote the length of an interval L by |L],

GEOMETRIC LEMMA |. There exists 8, > 0 such that for every integer k = |, the following

holds:

(i) Every component of A, contains components of D, and of Aq.,;

(i  For each component D of D, N A, one has |D|/|A|= §,, and each component U
of Acs) O A, satisfies |U|/|A| = 8, with A an arbitrarily chosen component of A,.

Proof of the Geometric Lemma I. For each integer i 2 1, we write R, for the sum of
the entries on the ith row of Ay ;, L =i= N. Assumption (4) implies R, is at least
1 for all i, and the sum of the R,'s is greater than N.

Proof of (i). Let k=1 be a given integer. First, we assume k= 1. Let L be a given
component of A, =Y, say L=1, for some j, 1 =j= N, The assumptions (1)-(4)
imply f(L) contains R,+1 components of D,. Since L={xeL: Ty(x)=2}u
{xe L: Ty(x) =1}, we have that L contains R, components of A,.

Now w= assume k> 1. Let A be a given component of A,. By the definition of
A, and the assumptions on f, we have f*~'(A) is a component of A,, say /**'(A) = I,
for some j, 1=j= N. Therefore, A contains R,+1 components of D, and R,
components of A.,,.

Proof of (ii). We are looking for 8, >0 such that for each integer k=1 and for
each component A in A,, we have u(D)/u(A)=§,, and u(U)/u(A) = 8, for each
component D of D, n A, and each component U of A, A.

From (i) and the assumptions on f we obtain that for each k = 1, the number of
components of A, and that of D, is finite. Let, for each integer k=1, N(A;) be
the number of components of A;, and let N(D,) be the number of components of
D.. We write, tor each k =1, the sets A, and D, as the union of their components

in the following way:
NUAY) N(D,)

A= U A, D= U D...

1= t1m}
For each kK =1 and each component A in A,, we define
8(A) = min |V|/|Al,

where the minimum is taken over all components V of the sets D, and A,.,; and
we define

8. =min 6, (A),
A
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where the minimum is taken over all components A of the set A,. We are done if
there exists 8, >0 so that &, = §, for all k.

Let k> 1 be a given integer. Let A be a given component of A, and let D be an
arbitrary component of either D, or .4, ., such that A includes D. From the foregoing,
we can fix an integer n(k), 1 = n(k)=< N(Ay), such that A=A, ,..,. and an integer
m(k), 1 =m(k)= N(D,) if D is a component of [y, and 1 = m(k)< N(A,.,) if D
is a component of A, such that D= D, ...

Set for each integer i, 2= i=<k:

Al-—l.nu—ll=f(A|,n(n) Dl*l.mll<li= ’( Dn,mln)-

Applying the mean value theorem, we can find for every integer i, 2<i=< &, real
numbers a, in A, and d, in D, ., such that [£'(a)| A v =141 si-0h
'f'(d')l ' iDumni = lDd-l‘mq,-“I- This leads to:

k
|Dk.m|A)|/]Ak.mU| =( rl2 |j”(a,)/j'(d,)|) ' (|D|.mllll/|Al,r'H“‘ (l)

From now on, we can mimick the proof of Lemma 5.5 in [Nu], and we obtain;
lim [1 |f'(a)/ S (d)]>0. (2)

The results (1) and (2) imply that there exists ¥ > 0 such that | Dy i l/ 1Ak niil 2 ¥
Therefore, 5, = y for each k =2,

We conclude: | D|/|A| = 8, for every component A in A,, for every component D
with D< A, where D is either a component of D, or D is a component of A,,,,
for 8, = min {§,, y}. This completes the proof of the Geometric Lemma L.

4.2. Proofs of the PIM propositions
Let J= U(R) denote an unstable segment. Recall that both end points are on the
boundary of the transient region R, and that J intersects the stable set S(R).

We define for every integer k= 1:

A)={xel: Te(x)=k} D(J)={xeJ: Te(x)=k}.

In particular, A\(J) =J. Hence, for each integer k =1 we have A,.,,(J) is the set of
points in A, (J) whose escape time from R is at least k +1; hence, A,.,(J) is the
set of points in J that stay in R under F*. The points in J which will stay in R
under all iterates will be denoted by A.(J). For every integer k =1 we have:

A
(@) A=A (NHuD)) (b) J=A. (JyuU D)),
7-=1

that is, J is the union of the set of points A,.,(J) the escape time of which from
R is at least k+1, and the set of points D,(J) the escape time of which from R is
J» where 1= j=k We write Do(J)=\J.., Di(J). Note that A(J) =y, Ac(J),
and J = A (J)u Dy(J). In the lemma below we will state that, if the value of the
escape time map T, changes then it changes in steps of 1.



202 H. E. Nusse and J. A. Yorke

T-sump LEMMA. For every x€ Dy \J) there exists an ¢ >0 such that for each ye J
with p([x, y1,) <€ one has | Tg(x) - Te(y)|=1.

Proof of the 7-Jump Lemma. Let xe D.(J) be given. We will write D'2'(J) =
Uf_, Int (D, (J)), where Int (D (J)) means the interior of D,(J) for each k=1.
First, consider the case where x € D'Z'(J). Then, by the definitions, Tx is constant
on the component of D}'(J) including x. Consequently, there exists an £ >0 so
that Tr(y) = Ta(x) for all v in J with p([x,y],)<e.

Now we consider the case where x& D(J)\DX'(J). Let M =0 be the integer for
which F" (x)e Bndy (R), where Bndy (R) means the boundary of R. From the fact
that each point in Bndy ( R) is mapped outside R it follows that Tx(x)= M +1. We
obtain that there exists € > 0 so that for each v € J with p([x, v],) < ¢ either Tp(y) =
Mor Ty(y)=M+1.

We conclude: there exists £ >0 so that for every y e J with p([x, v];) <€ either
Ta(x) = To(y) or |Te(x) - Te(y)|=1. This completes the proof of the T-Jump
Lemma.

Denote the length of a segment L< J by p(L).

GeoMETRIC Lemma [1. There exists § > 0 such that jor every J in U(R), and for

each integer k = 1, the following holds:

(1) Each component of A, (J) contains components of D,(J)} and A, (J);

{2) Let A be an arbitranly chosen component of A,(J). For each component D of
D.(J)n A, one has p(D)/p(A) =8, and each component U of A,. (J)N A,
satisfies p(U)/ p(A) = 8.

Proof of Geometric Lemma 1. Let J € U(R). Proof of {1). For k = 1, the assumptions
{Al)-(A4) imply that A\(J) = J contains at least two components of D,(J), and it
contains at least one component of A.(J). Now assume k> 1, and let A be a
component of A,(J). By the definition of A,(J) and the assumptions on F, we have
F“"'(A) is a component of U(R). Hence, A contains at least two components of
D,(J) and at least one component of 4, ,,(J).

Proof of (2). Let U be a neighborhood of Inv (R) on which a C'"* stable foliation
& exists, for some a > 0. The case that a basic set is nontrivial periodic is similar
to that of a nonperiodic basic set but the notation is more complicated. Therefore,
we assume that every basic set in Inv (R) is either nontrivial nonperiodic or trivial.
For each nontrivial nonperiodic basic set I' et /" and the regions R,(I'), 1 =1 = N(T),
be as in Proposition 4.2, and let U, be an open neighborhood of I such that (1)
U,NJ.” R(D) < U, < U, (2) the set 77 '(I“ ~ Uy) and its closure consist both of N(I")
components, and (3) the map ¢ in Proposition 4.4 may be extended to 7' (I* A U, ).
For each trivial basic set I', let U; be an open neighborhood of I' in U such that
Urn U, is empty, fo: each basic set A in Inv (R)\I'. Select an integer K =1 such
tha: the union of the U's include Ax(J); the existence of K is guaranteed by the
fact that A (J)-> W*(Inv (R)})~J as k » . From the assumptions on F we obtain
that the number of components of both A.(J) and D.(J) is finite for all k. For
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every k=1 and sach basic set " in Inv (R), we define 8,(J) = min, miny p(V)/p(A)
and 8,(J; I') =min, {miny p(V)/p(A): AT is nonempty}, where the minimum is
taken over all components V of the sets D,(J) and A,.,(J), and all components
A of the set A,(J) such that V < A. Obviously, 6,(J) = 8.(J; I, for all k.

Let T be a basic set in Inv(R). Write U(R)={Je U(R): J AT is nonempty}.
We first show: there exists 81> 0 such that for each J e Up(R), for all k=1, and
for every component A of A,(J) that intersects I, one has every component D of
D,(J) ~ A satisfies p(D)/p(A) = 6, and each component U of A, ,(J) N A satisfies
p(U)/ p(A) = ;. The case that I is a periodic orbit is left to the reader. We assume
that [ is a nontrivial nonperiodic basic set.

Applying Proposition 4.4 and Geometric Lemma | we obtain that there exists
8,(J:F)>0 such that 6,(J; N 268,(J;T) for all k>K. We wnte 6,(J; =
min ok 8(J; ), then 8,(J; )= 8,(J; I for all 1=k=sK. Now we define
8(J; M) =min{6,(J;T), 85(J; ')} >0 and get p(V)/p(A)=8(J;T) for every com-
ponent A of A,(J) and every component V with V< A, where V is either in D,(J)
orin A,.,(J). Now, we define 6, = inf {81J; I'): J € Uy(R)}. Since U, (R) is compact
we obtain &, =min {8(J;'): J € U;(R)} > 0. Finally, since I was arbitrarily given,
we define 6 = min {§;: I basic set in Inv (R)}, and conclude §,(J) =5 for all k=1,
This completes the proof of Geometric Lemma 11.

Proof of Proposition 1. Let L be as in the proposition.

"(i)=>(ii)’: We assume that there exists € > 0 such that every ¢-refinement of {a, b}
includes a PIM triple. If the interior of L does not include a point of Inv (R), then
AJ)n Lis empty, and thus no e-refinement of {a, b} includes a PIM triple. Hence,
the interior of L contains a boundary point of D, (J) for some integer k = 0. Therefore,
the interior of L intersects A(J).

"(ii)=>(i)": Now we assume that the interior of L contains a point g of A«(J)N T,
for some basic set I in Inv(R). Select integer M =1, such that L contains a
component A of Ay(J) that includes ¢. Let 8 >0 be as in the Geometric Lemma
1. Now we select £ =8 p(A). From the Geometric Lemma 11 we know that A
contains at least two components of Dy,(J) whose length of each of them 1s at least
8- p(A), and A contains one or more components of Ay,,, whose length of each
of them is at least 5+ p(A). We obtain that each e-refinement of a and b includes
a PIM triple in A. This completes the proof of Proposition 1.

From now on, we fix & as in Geometric Lemma I and ¢ = 6%

Proof of Proposition 2. Let (a, c, b) be an Interior Maximum triple in J. First, we
assume that Tg(a) = Tr(b) < Tp(c).

Case 1. Assume k =min,..,., Tr(x) < Tg(a). Let D be the component of D,(J)
containing at least one point of [a, b, for which Tx(y)=k for all y in D. Then
Dcint({a, b],) = A, where A is the component of A,(J) for which D< A. Since
p(la, b],)=p(A), applying the Geometric Lemma Il gives p(D)/p([a, b],)= 6.
Then, for every B-refinement P; of (a, ¢, b), with 0<B =5 we have P,nD# Q.
We obtain: for each pe P; ~ D either (p, ¢, b) or (q, ¢, p) is a PIM triple in P,.




204 H. E. Nusse and J. A. Yorke

Case 2. Assume min,.,=, Tr(x)= Tg(a) and Tr(c)= Tr(a)+2=m-+1. Then, by
the 7-Jump Lemma, there exists a component D of D, (J) in the interval [a, c],.
Since (a, b], lies in a component A of A,,.,(J), the Geometric Lemma II implies
p(D)/p([a, b],) = 5. Hence, every B-refinement of (a, ¢, b) includes a point p of D,
so (p, ¢, b) is a PIM triple, where 0< 8§,

Case 3. Assume Tg(c) = Tp{a)+1=m and that Case 1 does not apply. This implies
Ta(b)=Tr(a). Set B=8% let P, be a B-refinement of (a,c b), say Py=
{x:0sisN(B)cJ witha=x<x,<:  <xnp =band x,=c forsome | sk=
N(Bg) -1

From the Geometric Lemma 11 we get that [a, b], contains a component D of
D...\(J), and p(D)/p([a, b],) = 5°. We obtain that every B-refinement of (a, ¢, b)
includes a PIM triple for each 0< 8 <§".

The case Tr(b) = Ta(a) < Tr(c) is similar. The conclusion is: For £ = &° we have:
every e-refinement of a PIM triple in J includes a PIM triple. This completes the
proof of Propositicn 2.

Proof of Proposition 3. Left to the reader.

Before we will prove Proposition 4, we will present a monotonicity property for
the escape time map as well as an auxiliary observability result for Accessible PIM
triple sequences.

MonNoToNicITY LEMMA. Let a and ¢ be two points on J, and let P<{a,c), be a
B-refinement of a and ¢, say P={x,:0si=s N(B)) anda=x,<x,<** ' <Xnp =0
where 8> 0. Assume that Ty is monotonic on P (that is, Te(x,,,)= Ta(xc), 0s k=
N(B)=1), and Tp(c)> Tpla). Write m =min {Tg(x): xe(a, c],;}.

Then, for every B, 0< B <8, D,(J)n{a,c}, consists of one component, and it
includes ¢

Proof of the Monotonicity Lemma. Let 8, a, ¢, P, Tg, and m be as in the Lemma.
By the definition of m, we know that [a, c¢], is contained in a component A of
A,(J). Assume that 0< B < 4.

Suppose that Tp{(a)> m. Then there is a component D of D,(J) such that
Dc{a, c¢];. (Note that neither a nor ¢ is contained in D.) From Geometric Lemma
Il we know that p(D)/p([a, c],) = p(D)/p(A) = 8 > B; this implies P~ D # . But
this contradicts the assumption T is monotonic on P. Hence, m = Tg(a).

Suppose D.(J)n[a, cl, consists of two components, say D and D’. We will
assume D' includes a. The Geometric Lemma Il implies there exists a component
U of A, ,(J) between D and D’ such that p(U)/p([a, c],)=p(U)/p(A)2 5> 8.
We obtain that P includes a PIM tniple (a,c¢’, ') with ¢’e PA U and b'e PnD
(since both p(D)/p{(a, c),)>B and p(U)/p([a, c];)> B), which contradicts the
monotonicity of Tz on P. This completes the proof of the Monotonicity Lemma.

OBSERVABILITY LEMMA. Let P< J be an e/3-refinement of an Interior Maximum
triple (ay, ¢y, bo) in J, and assume Tg(x,) = Tp(a,) for every x,€ P. Let (ay, ¢, by)
be the PIM triple in P, in which b, and c, are selected as in the Accessible PIM triple
procedure, and let a) and a| be defined as in the Accessible PIM triple procedure.
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If P is an e-refinement of (a,, ¢\, b,), then
(iy Ifa> a, then [a,, al], does not intersect S(R); otherwise,
(ii) if a)=a, then To(b,)> Tr(ay), al<c¢, and [a,, a}), does not intersect S(R).

Proof of Observability Lemma. Let P, (a,, ¢,, b)), a} and a} be as in the Lemma,
and assume P~ {ag, b,], is an e-refinement of (a,, ¢,, b;). Note that from this latter
assumption it follows that Pn|a,, ], is a B-refinement of {ay, c,} for some
0<B<é.

Let m =min {Tx(x): x€[ao, b},;}. The assumptions *Tx(x,) = Tr(a,) for all x, €
P, ‘Pn{a,, b)), is an e-refinement of (aq, ¢, by)', and the Geometric Lemma 11
imply that m = Tr(a,).

Proof of (i). Assume that a\> a,. By the Monotonicity Lemma we obtain that
Ta(x) = Tx(ay) for all x&[a,, a\},; hence, [a,, a}], does not intersect S(R).

Proof of (ii). Assume that a}=a,. Suppose Tgr(b,) = Tr(a,)=m. From the
Geometric Lemma 1] and the assumptions we get that the interval [a,, b,], contains
one component A of A,,.(J), and p(A)/p([as, b\],) > 8. Applying the Geometric
Lemma I1 again, we get that there are at least 2 components U, and U, of D,,.,(J)
and at least one component U, of A,.x(J) in A, and for each k, 1sk=3,
p(U)/ p(lay, b)) =(p(U)/ p(AN(p(A)/ p([as, b)),) > 8" =¢. Hence, each U,
1= k =<3, contains at least one point of P. This implies b, is not the leftmost point
in P that is the right point in a PIM triple, which contradicts the assumption.
Conclusion: Tyib,)> Te(ay).

The facts “(ao, ¢,, b)) is a PIM triple’ and ‘Ty(ag) < Tr(b))' imply Tk(c))=
Tr(ay)+2. We obtain from the Geometric Lemma II that there is a component D
of D,,,,(J) in [a,, ¢|], such that p( D)/ pt[aq, b,],) = 8. Using the T-Jump Lemma,
we obtain that there is a point ge D P with Ty(q) = Tp(as) +1 and for all x in
P between a, and g one has Ty(ay) = Tr(x) = Tgla,) + 1. It follows that the point
a) exists. Applying the Monotonicity Lemma we obtain m = Ty(a,)< Tr(x)=
Tr(a})=m+1 for all xe[ay, ajl,; hence, [a,, a}], does not intersect S(R). This
completes the proof of the Observability Lemma.

Proof of Proposuion 4. Let ¢ be as in Proposition 2, and let {(a,, ¢, ba)}azo be an
Accessible PIM triple sequence in J, that is, (ay, ¢, by) is an Interior Maximum
triple and for n=1, (a,, ¢., b,) is obtained by the Accessible PIM tniple pro-
cedure. For n=0, let P, be an ¢/3-refinement of the Interior Maximum triple
(a,, ¢, b,), and recall that M, =min{Tg(x,): x, € P,, x, < ¢..,}. Further, we write
m, =min {Tg(x,): x,e P,}. Note that the Geometric Lemma Il implies
m, =min {Tg(x): x€{a,, b,1,}.

We will show that there exists an integer N =0 such that for every integer
n=N: Tg(a,) =M,;|Te(a,..) - Tr(a,)| <1, and [a,,a...]; does not intersect
S(R).

From the T-Jump Lemma, the Geometric Lemma II, and the assumption that
{(an, €1, ba)}azy is Obtained by the Accessible PIM triple procedure we obtain for
each n =0, the following properties:

(1) if Tg(a,)> M, then Tela,..)=M,;
(2) if Tr(b,) =m, then Tg(b,.1)= Trib,) +1;
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3) if Te(b)=m,and M,>m, thenm,_,=m.+1;

(4) if Ta(b,)>m, and M,> m, then Ty(b..,)=m,.

These properties imply that there exists a minimal integer N =0 such that Tr(x,) =
My =my = Telay) for each x, € P..

Case 1. P, is no e- ~finement of (ay, cx .y, buy.y). Since ag., =a.,, we have (1)
Ta(x)= M. ., =mqy,, = Talan.,) for cach x, € Py.,, and (2) [ax, d«.,], does not
intersect S(R). Obviously, Te(x)= Te(a) for all x in [ay., a...]),-

Case 2. Py is an e-refinement of (A, Cu.y, By.y). First, assume that a _; > a..
By the Monotonicity Lerama. and the Observability Lemma we obtain for a..., =
al.,: 1) Tp{x) = Tglas) for all xe{ay, av_,],,

(2) Taix)=My.,=mqy., = Tgla...i for each x,e P, .,, and

(3) [a~. a~.,), does not intersect S{R).

Now assurie that a . , = a. Applying the Monotonicity Lemma, and the Observa-
bility Lemma yields for ax., = a\.;; (1) Te(x) = Tp(ay) for every x € {ax, ax.,],,
2) Talx)zMy,=my =T, ‘ay.,)=Trlax)+1 for each x,€Py,,, and (3)
{an, an 1], does not intersect S(R).

By induction, one vbtains the desired result. This completes the proof of Proposi-
tion 4.

Proof of Proposition 5. Left to the reader.

S. Discussion of the numeri-al procedures

Now we will return 1o the "dynamic’ question addressed ir the beginning, namely,
how can you numerically follow a trajectory on an invanian: set for an arbitrarily
long period of time?

A line segment [ 4, b} straddles the stable manifold of a point P i, {a, b] intersects
this manifold transversallv. In the cases we sivdy, P will be replaced by chaotic
saddles (noatrivial basic sets) and {a, b] will straddle a subset of S{R). Furthermore,
in practice [a, b] will be very short and will be extremely clnse to the invariant set
Inv(R).

The numerical procedure goes as follows: (1) Choose (with some experimenting)
a straight line segment 1 (2) Apply PIM triple proced- efine and choose PIM
triple int_rval) repeatedly until the length of the PIM triple interval is less than
some distance o (e.g. o = 107"%); call this interval I,=PIM,, (I); (3) For a straight
line sexment L with end points a and b, we write PIM_, (L) to denote either {q, b]
if |[a, b]j < o or the resulting interval when some PiM tnple procedure is applied
* ntil an interval of length less ihan o is reached. Note that this operator depends
oniy on the end points of L. The basic process then is iterai:ng PIM, (F(L)).
While F(L) is an interval, only F/a) and F(b) are relevant. Thus we obtain
I+ =cFiM,(F(I,)), a sequence of straight line segments.

We thus obtain a trajectory of tiny straight line segments I, and to the precision
of the computer (.bout 107'*) we typically have I,.,< F(I,), and selecting any
point x, from I,,, perhaps the mrdpoint, we have that |x,., — F(x,)| is smail, typicaily
of the order of . Since computers can never be expected to produce true trajectories
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(except in trivial cases such as fixed points), we may say {x,}.., is a numerical
trajectory. We call the sequence of intervals {I.}.., a saddle siraddle trajectory
because the interval straddles a piece of the stable set S(R) of a chaotic saddle set.
It typically approximates (after a few iterates) a basic set in the invariant set (which
is a chaotic saddie) in the interesting cases. Furthermore, a saddle trajectory approxi-
mates the trajectory of a point in the Static Restraint Problem. Despite the complexity
of the construction, we will refer to x,,., as the ‘iterate’ of x,,.

Remark. In zractice we find that every e-refinement of two points {a, b}, with
€ =1/30, includes several PIM triples. In computing the sequence of PIM triples
(a,, ., b,) defined by the Accessible PIM triple procedure, once either case 3(iii)
or 3(iv) holds, and if ¢ is more than ¢ - jb—a| from a and b, then it can be shown
that every £-refinement of the end points {a, b} of a PIM triple (a. c, b) includes a
PIM triple; in the computer program we do not use ¢ at all. For the examples in
this paper and in [NY] we find that the Accessible PIM triple procedure leads to
accessible fixed poinis or periodic points, which is in agreement with the fact that
all the accessible points for two dimensional hyperbolic systems are on the stable
manifolds of finitely many periodic points.

In this paper we have shown that our procedures are valid in ideal situations.
We find it works well in practice even in less than ideal cases. From the examples
in {NY], we have seen that the PIM triple procedure works quite well for a variety
of dynamical systems.

It is important to ask if such straddle trajectorics represent true trajectories of
the system. In other words, does there exist a true trajectory of the system that
shadows (i.e., stays close to) the numerical trajectory obtained by the PIM triple
pracedure? When a map is sufficiently hyperbolic on the invariant set in question,
Bowen [B] obtained a result saying that each noisy trajectory in the nonwandering
set can be shadowed by a true trajectory if the perturbation is small; see [B] for
the precise statement. We will say that Inv (R) satisfies the ‘no cycie condition’ if
for every family of basic sets I'y,1,, ..., Tieary in Inv (R) such that the stable set of
[« has a nonempty intersection with the unstable set of I'y,.,, forall 1 i< M,
the stabie manifold of I, s, does not intersect the unstable manifold of ['y,,.
Assuming Inv (R) satisfies the ‘no cycle condition’ and & is sufficiently small, we
can show that every saddle straddle trajectory of a two dimensional uniformly
hyperbolic system with a chaotic sadale obtained by the PIM triple procedure, can
be shadowed by a true trajectory for as long as the saddle straddle trajectory can
be computed.

6. Concluding remarks

6.1. Higher dimensional systems. One of the ingredients 1n the analysis of the validity
of the PIM triple procedures in dimension two, is the existence of a C'** foliation
%’ on a neighborhood of a basic set. The existence of such a foliation for the two
dimensional case, is guaranteed by a result due to De Melo [M]. Unfortunately,
the existence of a foliation ;5 on a neighborhood of a basic set in higher dimensions
is not known, see e.g. [PT).
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Let from now on, the dimension n=3. Let F be an Axiom A diffeomorphism,
let R be a2 saddle-hyperbolic transient region for which dim E“ =1, and assume
that for cach basic set I' in Inv (R) there exists a C'™* stable foliation x* on a
neighborhood of I, for some a > 0. Then the Propositions 1. 2, 3. 4, and 5 are still
valid. The proof is almost the same, except instead of Propositions 4.1 and 4.2 one
should use the properties of Markov partitions of basic sets, see Bowen [B].

6.2. Order of Differentiability of the Diffeomorphism. We assumed that the
diffeomorphism F is C>. This assumption implied the existence of a C' ™" expanding
map, for some a >0, in Proposition 4.4. If F is of class C". then it is known that
such an expanding map is C'. We would like to point out. that the Holder exponent
a is only used to obtain (2} in the proof of the Geometric Lemma 1. Forunately.
we can prove the Geometric Lemma 1 tin particul: - property (2)) for the C'-map
¢ of Proposition 4.4 by combining the techniques of the proof of Proposition 6 in
[Ne] and Lemma 5.5 in [Nu). Thus in fact, it is sufficient to assume £ is C’ to
guarantee the main results of the paper.

-
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Whitney showed that a generic smooth map £ from a J-dimensionai
smooth compact mamiold M to R* ™! is actually a diffeomorphism on M.
That 1s. M and F(Y) are diffeomorphic. We generaiize this in two ways:
first. o repiacing “genenic” vith “propability-one™ tin a prescribed sense!.
and second. by replacing the mamfold A/ by a compact invanant set A
contained in R* that may have nominteger box-counting dimension
tboxdim). In that case. we show that almost every smooth map from a
neighborhood of 4 to R” is one-to-one uas long as

n>2 boxdimt.{)

We aiso show that almost cvery smooth map is an embedding on compact
subsets of smooth manifolds within 1. This suggests that “+1ding
techniques can be used to compute posiive Lvapunov c¢xi 13 thut
sot necessarily negauve Liapunov cxponents). The positive Ltdpunoy
sxponents are usuaifv carried by smooth unstable manufoids on atiraciors.
We give precise defimuions of one-to-one. embedding. 2nd aimost crery in
the next section.

Takens de.it with a restricted class of maps called delay-coordinate
mzps. A delay-coordinate map is constructed from a time series of & single
observed quanuty from an experiment. Because of this. 4 typical delay-
coordinate map is much more likely to be accessible to an expenimentalist
than a typreal map Tikens=™ showed that if the dynamical system and the
observed quanuty are gencric. then the delay-coordinate map from .
d-dimensional smooth compact mamifold M to R* ™' 1s a diffeomorphism
on M.

Our rosults generalize those of Takens'™™ m the same two ways as for
Whitney's theorem. Nameiv. we repiace seneric with probabihity-one ind
the manifold V/ by a possibly tractal ~et. Thus, lor a compact mvariant
subset . of R*. under mild conditions on the dynamical system. Jimost
every delay-coordinate map F from R* to R" 1s one-to-one on provided
that n>2 boxdimi.4). Also. any mamifold structure within 1 will be
preserved in F(.4). These results hold for lower box-counting dimension
(see Section 4} if boxdim does not exist. The ambient spacc R* can be
replaced by ua k-dimensional smooth manifold 1in the general case. In
addition. we have made explicit the hypotheses on the dynamical >ystem
(discrete or continuous) that are needed to ensure that the delay-coor-
dinate map vives un embedding. In particular. only C' smoothness s
needed. For flows. the delay must be chosen so that there are no periodic
orbits whose period is exactly equal to the ume delay used or twice the
delay. (A finite number of periodic orbits of a flow whose pertods ure p
times the delay are allowed for p>3.) Further. we explain what happens
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case that n<2-boxdimiA). In that case we put bounds on the
on of the seif-intersection set. which is the set on which the one-
property fails. Finally. we give more general versions of the delay-
ate theorem which deals with filtered delay coordinates. which
1ore versatile and useful applications of embedding methods.

ere are no analogues of these results where the box-counting
on is replaced by Hausdorff dimension (see Theorem 4.7 and the
on that follows). In an Appendix to this work written by I. Kan.
:s are described of compact subsets of R*. for any positive integer
1 have Hausdorff dimension 4 = 0. and which are difficult to project
2-to-one way. The requirement » > 2d discussed above transiates in
e to n>0. However. crery projection of such a set to R". n <k, fails
ne-to-one.

Section 2 we explain the new version of the Whitney and Tuakens
ing theorems. In Section 3 we discuss filtered delay coordinates.
4 contains proofs of the resuits.

W 7O EMBED MANIFOLDS AND FRACTAL SETS

-actal Whitney Embedding Prevalence Theorem

sume @ is a flow on Euclidcan space R“. generated. {or example. by
momous system of k differential cquations. Assume further that all
ries are asymptotic to an attractor 4. The study of long-ume
it of the system will involve the study of the set .1.

a typical scientific expenment. the phase space R cannot be
ly seen. The experimenter tries to infer properties of the system by
measurements. Since each state of the dynamucal system 15 uniquely
4 by a point in phase space. & measured quantity 15 a function {rom
pace to the real number line. If n independent quantities ¢,..... @,
measured simultancously. then with cach pomnt in phase space 1s
ted a point in Euclidean space R". We can then talk about the
:ment function

F(stater=1(Q,.... @,

naps R“ to R".

r example. suppose all trajectores 1n phase space R* are attracted
riodic cycle. Thus. .{ is topologically a circle lying in R*. Imagine
o available measurement quantities 0, and Q, are plotted in the
Then there is a measurement map F from A to R* given by
)=(Q,, 0.). To what extent are the properties of the hidden
)r 4 preserved in the observable “reconstruction space” R*?
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The answer depends on how the circle is mapped to R? under F.
Consider the case where R* = R* and @, and ( re simply the two coor-
dinate functions x, and x.. In Fig. la. the relauve position of the pornts 15
preserved upon projection. and we may view F(.4) as a faithful reconstruc-
uon of the attractor A. If distinct ponts on the attractor 4 map under /-
to distinct points on F(.4), we say that F is one-fo-one on A.

[n the case of Fig. Ib. on the other hand. two different states of the
dvnamical system have been identified together in F{.4). In the reconstruc-
tion space. which 1s all the expenimenter actually sees. the two disunct
states cannot be distinguished. and information has been lost.

The one-to-one property is useful because the state of a deterministic
dynamucal system. and thus its future evolution. is completely specified by
1 point 1 phasc spacc. Suppose that at a given state v one observes the
value Fix) i the reconstruction space. and that this 1s followed 1 sec later
ov a particular event. I F 1 one-to-ome. cach appearance of the
measurements represented by Fiv) will be followed [ ~ec iater by the ~ame
event. This 15 because there 15 a one-to-one correspondence between the
attractor points in phase space and thetr images n rcconstruction space
There 1s predictive power .n finding a4 one-to-one map.

Perhaps the measurcments F{x) would not be repeated precisely. Yot
if the - Fis reasonable. similar measurements will predict similar events.
This approach to prediction and noise reduction of data 13 being pursued
by a number of research groups.

Although most of the interest lies in the cuse that .{ 15 an attractor of
a dynamical system. the main question can be posed in more generality
Let 4 be a compact subset of Euclidean space R*. and let £ mup R* to
another Euchidean space R”. Under what conditions can we be assured that
{ 1s "embedded” in R by typical maps /7

The precise defimtion of embedding involves differential structure A
one-to-one map is a4 map that does not collapse points. that 1. no*
points are mapped to the same image point. An embedding s a map that
does not collapse points or tangent dirccuions. Thus. to define cmbedding.
we need to be working on a compact set . that has well-defined tangent
spaces.

Let 1 be a compact smooth differentiable mamfold. (Here. as i the
remainder of the paper. the word smoorh wiil be used to mean continuously
differenuable. or C'.) A smooth map F on .1 1s an unmersion 1f the
denvative map DF(x) (represented by the Jucobian matnx of Fat \)s
one-to-one at every point x of . Since DF(x) s a hinear map. this i
equivalent to DF(x) having full rank on the tangent space. This can happen
whether or not £ is one-to-one. Under un immersion. no differental
structure is lost in going from .4 to r(A).
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An ¢mbedding of A is a smooth diffeomorphism from .4 onto its image
F(A). that 1s. 2 smooth one-to-one map which has a smooth inverse. For
a compact manifold 4. the map F is an embedding if and only if Fis a one-
to-one immerston. Figure 1a shows an example of an embedding of a circle
into the plane. Figure 1b shows an immersion that is not one-to-one. and
Fig. Ic shows a one-to-one map that fails to be an immersion.

Whether or not a typical map from 4 to R” is an embedding of A
depends on the set 4. and on what we mean by “typical.” \ celebrated
result ot this (vpe 1s the embedding genencity theorem of Whitney."™”
which savs that if 4 1s a smooth mamifold of dimension . then the set of
maps into R-*' that are embeddings of .4 1s an open and dense set 1n the
C'-topology of maps.

The 1act that the set of embeddings 1s open in the set of smooth maps
means that ynen each embedding. aroitraniy smail perturbations will sull
be emocadings. The tact that the set oi emoeddings b wnse 1n the set ol
maps means that cvery smooth map. whether 1t 1s an emoedding or not. i
arbitrarily near an embedding. One would like to conclude from Whuney s
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Fig. | 1a) An embedding F of the smooth mamfold 4 into R* (b) An immersion that fails

to be one-to-one. (C) A one-to-one map that fails to be an immerston.
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theorem that #n =24 + | simultaneous measurements are typically sufficient
to reconstruct a J-dimensional state manifold .{ in the measurement
space R".

However. open dense subsets. even of Euclidean space. can be thin in
terms of probability. There are standard examples. many from recent
studies in dynamics. of open dense sets that have arbitranly small Lebesgue
measure. and therefore arbitranly small probability of being realized.

A well-known example is the phenomenon of Arnold tongues.
Consider the family of circle ditfeomorphisms

gusl¥)=Xx+w+Aksiny mod 2z

where 0 S w <27 and 0 <k < | are parameters. For each A we can define
the set

Stabik)r='0<, <231 ¢,,, has a stable periodic orbit:

For 0<hk < 1. the set Stabik) 1s a countable unon of disjoint open
intervals of positive length. and is an open dense subset of [0.2x1.
However, the total lengtt (Lebesguc measurt) of the open dense et
Stab(k) approaches zero us K — 0. For small 4. the prebauility of landing
in this open dense set is very small. See ref. 3 for more details.

With such examples 1n mind. un experimentalist would like to make a
stronger statement than that the set of embeddings 1s an open and dense
set of smooth maps. Instead. one would like to know that the parucular
map that results from analyzing the experimental data 15 an embedding
with probability one.

The problem with such a statement is that the space of all smooth
maps is infinite-dimensional. The notion of probability vone on nfinite-
dimensional spaces does not have an obvious generahization lrom fintte-
dimensional spaces. . 15 no measurc on 4 Banach space that
corresponds to Lebesgue measure on finite-dimensional subspaces. None-
theless. we would lilkke to make sense of “almost cvery™ map having some
property. such as being an embedding. Following ref. 24. we propose the
following definiuon of prevalence.

Definition 2.1. A Borel subset S of a normed linear space I s
precalent if there 1s a finite-dimensional subspace £ of 1" such that for cach
vin V. v+ ¢ belongs to S for (Lebesgue) almost cvery ¢ in £

We give the distinguished subspace £ the nickname of prohe \pace.
The fact that S is prevalent meuans that if we start at any point in the
ambient space /” and explore along the finite-dimensional space of direc-
tions specified by E, then almost every point encountered will lie n S.
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Notice that any space containing a probe space for S is itself a probe space
for S. In other words. if E’ is any finite-dimensional space containing £.
then perturbations of any element of ¥ by elements of E” will be in S with
probability one. This 1s a simple consequence of the Fubini theorem.'**’

From this fact 1t is easy to see that a prevalent subset of a finite-
dimensional vector space is simply a set whose compiement has zero
measure. Also. the union or intersection of a finite number of prevalent sets
is again prevalent. We will often use the notion of prevalence to describe
subsets of functions. It follows from the definition that prevalent implies
dense in the C*-topology for any k. More generally, prevalent implies dense
in any normed linear space.

When a condition holds for a prevalent set of functions. it is usually
lluminating to determine the smallest. or most efficient. probe subspace E.
This corresponds to the mnimal amount of perturbation that must be
available to the system in order for the condition to hold with virtual
certainty.

As stated above. for subsets of finite-dimensional spaces the term
prevalent 1s synonomous with “almost every,” in the sense >f outside a set
of measure zerv. When there is no possibility of confusion. we w.il say that
“almost cvery” map satisfies a property when the set of such maps is
prevalent. cven in the infinite-dimensional case. For cxample. consider
convergent Fourier series 1in one variable. which form an infinite-dimen-
sional vector space with basis {¢”*) . .. In the sense of prevalence.
almost cvery Fourier series has nonzero integral on [0, 2z]. The probe
spacc £ in this case 1s the one-dimensional space of constant functions. If
E’ 1s a vector space of Fourier series which contains the constant functions,

. then for cvery Fourier series /. the integral of / - ¢ will be nonzero for

dimost every ¢ in £°

With this definiion. we mtroduce a prevalence version of the Whitney
embedding theorem.

Theorem 2.2 (Whitney Embedding Prevalence Theorem). Let . be
a compact smooth manifold of dimension ¢ contained in R* Almost every
smooth map R* — R**~' is an embedding of .

In particular. given any smeoth map £. not only are there maps
arbitranly near F that are embeddings. but 1n the sense of prevalence,
almost ull of the maps near I are embeddings. The probe space £ of
Definition 2.1 is the A(2d + | )-dimensional space of linear maps from R* to
R¥**' This theorem. which 1s proved in Section 4. gives a stengthemng of
the traditicnal statement of the Whitney embedding theorem.

It is quite interesting that Whitney later proved the different result that
under the same circumstances. there cxists an embedding into R*. (This
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could be called the Whitney embedding existence theorem.) However. an
existence theorem 1s of little help to an experimentalist. whe needs informa-
tion about maps near the parucular one that happens to be avaiable.
Knowledge that an embeddin: cxists sheds little informauon on the
particular £ under study.

The cxample of Fig. Ib shows that the dimension 2.+ of
Theorem 2.2 is the best possible. The map F is not one-to-one on the
twisted circle 4. thus does not embed .4 into R*. Further. no nearby map
teven I1n the C"-topology) embeds 4. On the other hand. if a given map of
the arcle .1 mto R’ was not one-to-one. there would necessaniy be u
prevalent set of nearby maps that arc embeddings.

The tirst main goal of this section was .o express Whitney's embedding
theorem (and Takens theorem: sce below) in this probabulistic sense. The
wecond 1s 10 extend Whitney's theorem 1o sets .1 that are not mamtoids
Here we use the tractal dimension hnown as box-counting dimension.

The box-counung tor capacity 1 dimension ot 4 compact st {in K7
defined ds tollows. For 4 positive number .. let .1 be the set of all points
within . of .1, te. .1, = xeR™ \—u <. for some asd;. Let volt.l]
denote the n-dimensional outer volume of .1,. Then ie box-countny
dimension of .1 s

. . log volld )
boxdimt.4)=un - hm ————
- i) log i

f the imut custs. If not. the upper (respectively. lower) box-counting
dimenston can be defined by replacing the himut by the Lmnf (resp.
lim sup). When the box-counting dimension exists. the appronimate scahing
law

vol(.t 1z

holds. wherc « = boxdim(.1).

Therc are several cquivalent definitions of box-counting dimension.
For example. R” can be divided 1nto «-cubes by a4 grid based. say. at points
whose coordinates are w-multiples ot integers. Let \(&) be the number ol
boxes that intersect { Then

log .\V(+)
boxdimt.{) = lim ———
,-u —loge

with similar provisions for upper and lower box-counting dimension. The
scaling 1n this case 13

N(e)xe -
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Even i we know the box-counung dimension of an attractor ..
Theorem 2.2 gives no estimate on the lowest dimension tor which almost
every map Is an embedding. Suppose we know that 4 is the invariant set
of a flow on R'™. and that the box-counting dimension of A is 1.4. In the
absence of any knowiedge about the containment of 4 in a smooth
manifold of dimension less than 100, the use of Theorem 2.2 to get a one-
to-one reconstruction requires the use of maps into R*' [n fact. the
smallest smooth manifold that contains the !.4-dimensional attractor may
indeed have dimension 100. But as the next result shows. one can do much
better: almost every reconstruction map into R* will be one-to-one on 4.

Theorem 2.3 (Fractal Whitney Embedding Prevalence Theorem.
Let .1 be a compact subset of R* ot box-counung dimension «. and let n
be un integer greater than 2. For almost every smooth map £~ R* — R"™.

. Fis one-to-one on .1

2 Fisanimmersion on cach compact subset C of a smooth mamifold
contained in .

The proof of the one-to-one half v’ the fra.:al Whitney embedding
prevalence theorem may be sketched as follows. Choose unv bounded
finite-dimensional space £ of smooth maps £ so that varying F by clements
of E results in perturbing F(x) - F{y) throughout R” for each pair v = 1 in
A. For example. the probe space £ can be taken to be the space of lincar
maps from R to R" Then the probability (measured in £) that the
perturbed F(x) and F(y) lie within 2 is on the order of «". Similarly. if B,
and B, are r-boxes on .1. the probability that F(B,) and F(B.,) intersect 15
on the order of +". Here we assume that there 1 a4 bound on the magmifica-
tton ot F.as when £ 1s 4 smooth map near the compact set | The set |

can be covered by essenually . * boxes ot size «.. ana the number ol pairs
of boxes is proportional to 1« ~*)*. The probability that no distinct patr of
boxes collide 1n the image F(4) 15 proportional to (%" =" |f

n> 2d. this probability of choosing a perturbation of £ that fwls to be one-
to-one s neghgible for small .. More precise details ol the proof. 4s well as
the immersion part. are m Section +

2.2. Fractal Delay Embedding Prevaience Theorem

Despite the beauty of Whitney's embedding theorem. 1t 1s rare for a
scientist to be able to measure a large number of independent quantities
simultaneously. In fact. 1t is a rather subtle problem to decide whether two
different simultaneous measurements are indeed independent. These
problems can be sidestepped to some degree by introducing the use of
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delay coordinates. In this approach. only one measurable quantity 1s
needed.

In a typical experiment. the single measurable quantity 1s sampied at
intervals T time units apart. The resulting list of sampies ; Q,) is cailed a
ttme sertes. Think of the measurable quanuty as an observation function 7
on the state space R* on which the dynamical system & is acting. Each
reading Q, = Atx,) is the result of evaluating the observauon funcuon / at
the current state ..

Definition 2.4. [f ® is a flow on a mamiold M. T is a4 positine
number (called the delavy. and /i M — R is a smooth function. define the
delay-coordinate map Fih. b, T): M — R" by

Flthod Ty = thix) i (x0 ® XV D v

To start with a simple example. et 1 be a periodic orbit or the tow
b We tound above that in the aosence ot dyvnamics. three ingependent
coordinates are required to embed | in reconstruction space. or more
precisely. that almost cvery -mooth map F=1/,,/:. 1) from
neighborhood of 4 0 R' is un embeddin- on .1.

Now the sttuation 1s difierent. Instesd of three funcuions /.. /.. 1. that
must be independent. there 1s a single function /. und the corresponding
map Flh. . T) pictured 1n Fig. 2. We want to know that for almost every
function /1 from .1 to the real numbers R. the delay-coordinate map
Fth. . T) from 4 into R" 1s an embedding. It should be stressed that this
docs not follow from Theorems 2.2 und 2.3. The maps Fih . I form o
restricted subset of all maps: whether they contain cnough vanation to
perturb away sclf-crossings of 4 needs to be determined. In fact. the general

R R

A ! Foxpz= tagb i b o)
F ( 4 A
O )=
e

» v

1] r' \) ®
: %)
LT
Fig. 2. The attractor on the left 1s mapped using delav coordinates into the reconstruction
space on the nght.
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answer is that they do not contain enough variation. Extra hypotheses on
the dvnamical system ¢ are required to ensure that almost every / icads to
an embedding of .

To see the need for extra hypotheses. consider the case thas . is a
periodic orbit of a continuous dynamical system whose period is equal to
the sampling interval T. Topologically. 4 is a circle. In this case. F{h. @. T)
cannot be one-to-one for uny observation function /4. Let x be a point

on the topological circle 1. Since the pertod of 4 is T. htx)=
M@ = =@ ., _,, rx)). so that F=F(h &, T) maps x to the
diagonal line |(x,...x,): x, = .- =x,} in R" A circle cannot be mapped

ceotinuously to a line tin this case. the diagonal line in R") in a one-to-one
fashion. See Fig. 3.

The one-to-one property also fails when { is a periodic orbit of period
=7T. Define the luncton atx)=hnix)=m@ ix) on 1. The tunction « 13
cither identicaily zero or 1t 1s nonzero tor some x on 4. in which case 1t has
the opposite sign at the rmage point  _,(x). and changes sign on .. In
any case. d(x) has a root x,, on 1. Since the period of .1 1s 2T, we have
hixy) =@ (x4))=hd .px. = -. Then Flh.®.T) maps \, and
@ ,(xy) to the same point 1n R . If x, and @ _,(x,) are distnct. this
says that Fis not one-to-one. If x,=® _,(x,), then the orbit actually has
period T. ard F fails to be one-to-one as above. In the presence of periodic
orbits of period 2T, Flh, . T) cannot be one-to-one for any ohservation
function /.

On the other hand. when .1 is a periodic orbit of period 3T, or any
period not =qual to T or 2T. therc 1s no such problem. In this case the
delay-coordinate map of a periodic orbit .1 into R™ 15 an embedding for
Almost cvery observition tunction # as fong us the reconstruction dimen-
ston s at feast three. The siatement tor more general attractors 1 a4y
follows.

o]

Fig. 3. A two-to-one map from a topological circle to the reai line.
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Theorem 2.5 (Fractal Delay Embedding Prevaience Theorem). ..t
& be a flow on an open subset {" of R*. and let 4 be a compact subset of
U of box-counting dimension «. Let n>2d be an integer. and let T>0.
Assume that 4 contains at most a finite number of equiiibria. no periodic
orbits of @ of period T or 2T. at most “~itelv many periodic orbits i
period 3T, 47._. aT. and that the lineanzauons of those periodic oroits
have distinct eigenvalues. Then for almost every smooth function /1 on (.
the delay coordinate map Fih. . T): L' — R" is:

1. One-t0-one on A.

2. An immersion on each compact subset ¢ «f a smooth manifold

contained in 4.

Where Takens ="' showed that the delav-coordinate maps zenencally
1 the C*-topology 1 mive embeddines of smooth manmtiolds ot dimension /.
“we substitute compact sets of box-vounting .imension .. and ot
senernc with prevalent.

The assumption of Theorem 2.5 that there are no periodic ordies
period T or 2T can be satisfied by choosing the ume delav 7 0 be
sufficiently small. In fact. 1 we assume thut the vector field on . sausfics
a Lipschitz condition. that is. t=I(x). where If{x)—i{v} <Ll .v— .
then it is known' " that each periodic orbit must have period at least 2= L.
Hence. if T < a:L. there will be no periodic orbits of period 7 or 2T

Theorem 2.5 ussumes #>20 to avoid -clf-intersection of the
reconstructed mmage of 4. To see that this requircment cannot he reiaxed
in general. comsider the cuse d=1. n=2d=2 shown i Fig da. Let the
observation function /1 be the coordinate function v,. and consider the
delay coordinate map R* - R* defined by

Flx,.®d Ti=(x v vid oo

In the situavon lus. ..o in Fig. da. (@, h) <y (@ ,1uN<
Vilal=vith) and vi(@ e < v (P idN <= v(d) Setung 7=
F(x,.#. T\ this means that in the reconstruction space R, Fia) hes
directly above Fih). and Fld) lies directly chove F(o) See Fig. 4b. The map
F is continuous on the traiectory. ~o there v a continuous path.
parametrized by v,. connecting Flu) and (). There 15 also such 4 path
connecting £(h) and F(d). According to Fig. 4b. there must be 4 value of
vy in between where the curves meet. and two different points on the crcle
map rogether under £ Otherwise said. somewhere 1n between there iy an
¢, coordinate such that the upper and lower parts of the trajectory advance
the same amount in the x, direction during the time inerval T. and thus
have identical delay coordinates. The map Flh. @. T) 1s not an embedding.
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If thie observation function or flow s perturbed' a smail amount. the same
topologi:ai argument can be made. Thus. this exampie is robust. No smail
perturbation of the map is an embedding. . :

Theorem 2.5 is a special case of a statement about diffeomorphisms.
Before stating that version. we redefine delay coordinate maps for
diffeomorphisms.

Definition 2.6. If g is a diffefomorphism of an open subset L of R*.
and A: U — R is a luncuon. define the delay coordinate map Fih, ¢y: U — R”
by

Fth.g)x=1htx) Mtgixn, Mg (x ... ig™ "'t xn)

a x]
A
| o Fid)
. ‘ Frer
' Fla)
; F(b)
L -
b X

Fig. 4 (a) A trajectory of a flow that cannot be mapped using two detay coordinates in a
one-to-one way. (b) The point at which the paths cross corresponds 1o a set of delay coor-

dinates shared by two points on the trajectots
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We get the previous theorem by substituting g =& _, in the following
statement.

Theorem 2.7. Let g be a diffeomorphism on an open subset (" of
R and let 4 be a compact subset of U. boxdimi41=d. and let n > 21 be
an integer. Assume that for every positive integer p<n. the set .1, of
periodic points of period p satisfies boxdimt4.)< p-2. and that the
linearization Dg” for cach of these orbits has distinct cigenvalues.

Then for aimost every smooth function /# on (. the delay coordinate
map Flh. g): U — R" is:

1. One-to-one on 4.

2. An‘immersion on cach compact subset ¢ of a smooth manifold

contained in 1.

Remark 2.8. The probe space tor this previtient et can be Liker (o
e any set /... ol poivnomiais 1n 4 vanaoles wnich inctudes ai ronno-
mials of total degree up 10 21 Given any smooth function . vn (.
for almost all choices of z=(x, ..x,) from R'. the function 1, =
hy+ 35 o) 2.h satisfies properties 1 and 2.

Remark 2.9. The proof of Theorem 2.7 15 cusily cxtended to the
more general case where the reconstruction map F consists ol a mixture of
lagged observations. The more general result savs that

FOxy =, g™ = e I (g oo

satisfies the conclusions of Theorem 2.7 as long as n, +  +n, 3 2d and
the corresponding conditions on the pertodic points are satsfied. Those
conditions are that boxdimt 4. )« p 2 for p-emax:n, ...,

The reconstruction of cha “tractors using independent coordinates
from a ume series was advocatea in 1980 by Packard or ul.'""" The delay-
coordinate map is attributed in that work to a communicauon with
D. Ruelle. The metho  .ctually illustrated i ref, 21 1s somewhat different:
namely. 1t 1s to use the value u, of the ume series and its ume denvatines
i, i,... as independent coordinates.

In 1981, Takens'"" published the first mathematical results on the
delay-coordinate map. Around the same time. Roux and Swinney -
exhibited plots of delay-coordinate reconstructions of experimental data
from the Belousov-Zhabotinski reaction.

In 1985, Eckmann and Ruelle'' took the i1dea one step further and
suggested examining not only the delay coordinates of a pont. but also the
relation between the delay coordinates of a point and the next point which
occurs T time units later. In principle. one can then approximate not only
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the autractor. but the attractor together with its dvnamics. Since ref. 9 it has
become common practice to gath.r points that are close in reconstruction
space. and use their next images to construct a low-order parametric model
which approximates the dvnamics in a small region. This idea has begun
to be used for prediction and noise reduction applications. See. for
example. refs. 1. 6. 12, 13. 15. 16. 18. and 28.

2.3. Self-Intersection

In the case that the reconstruction dimension n is not greater than
twice the box-counung dimension d of the set A. the map F in the fractal
Whitney embedding prevalence thecorem (Theorem 2.3) will often not be
an embedding. However. if d < n. most of 4 will still be embedded. In the
case that .1 i1s a smooth manifold of dimension . almost every I will be
an embedding outside a subset of 4 of dimension at most 2. -« If <.
then 2/ —n < d. and so this excepuional subset will have positive codimen-
sion in . :

If 4 is simply a compact set of box-counting dimension . then the
situation is slightly different. We will call the paic x. » of points J-distant
if the distance between them is at least 5. Then we define the o-distant self-
intersection set of F to be the subset of 4 consisting of all A such that there
1s a J-distant point » with F(x) = F(v); that is.

S(F.o)=xe A, Fx)=F(y)forsomeye 4, jn — 1 20)

Then the result is that for every & >0, the lower box-counting dimension
of the o-distant self-intersection set S(F, d) 1s at most 2/ - for almost
everv [\ precise statement 1s given by the next theorem.

Theorem 2.10 (Self-Intersecion Theorem). Let 4 be 4 compuct
subset of R* of box-counting dimenston d. let n < 2d be an integer. and let
0>0. For almost every smooth map F: R* — R":

. The J-distant self-intersection set S(F.0) of F has lower box-
counting dimension at most 2d —n.

F is an immersion on cach compact subset C of an m-manifold
contained in 4 except on a subset of C of dimension at most
dm—n-—1.

9

For example. consider mapping a circle to the rcal line. In this case
d=m=n=1, and Theorem 2.10 says that a prevalent set of F are immer-
sions outside a’ zero-dimensional set. This 1s clear from Fig. 3. where the
zero-dimensional set consists of a pair of points. The map 1s at least 2 to
| outside this set. and hence nowhere an embedding.
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On the other hand. setting d =m=1 and 7 =2 in the theorem. we see
that a prevalent set of maps F from the circle to the piane are immersions.
and are embeddings outside a zero-dimensionai subset. Thus. the maps
shown in Figs. 1a and 1b are of the prevalent type. immersions which are
one-to-one except for at most a discrete (zero-dimensional) set of pomts.
Figure lc. on the other hand. is nonprevalent. Almost any map near F wiil
perturb away the cusp.

There is also a elf-intersection version of the fractal delay embedding
prevaience theorem (Theorem 2.5) which one gets by making the obvious
changes. Thus. if n < 2d. then for each J >0 there exists a subset S(F. o),
whose box-counung dimension is at most 2/—n. on which the delay-
coordinate map fails to be one-to-one. Note that the result is independent
of 0>0. If M is a closed subsed of an m-manifold contained in 4. then
there 1s a subset £, of M of dimension at most 2m—n—1 on which the
map fails to be an immersion.

2.4. How Many Delay Coordinates Do You Need?

When using a delay coordinate map (or filtered delay coordinate map.
described in the next sectic’ ) to examine the image F{.4) in R” ol a ~et
in R*. the chotcc of n depends on the objective of the invesugation.
Different choices of # sulfice for the different goais of prediction. calculation
of dimension and Lyapunov cxponents. and the determination of the
stability of periodic orbits.

To compute the dimension of 1. all that 15 required 15 that

dim F(4)=dim .{ (2.1

whether the dimension being used is box-counung. Hausdortf. intormution.
or correlation dimenston. The latter two depend on a probabihty densuy
on 4 and F(A). It 1s shown i ref. 24 that for the case of Hausdortf dunen-
son. the equality (2.1) holds for almost cvery measurable map F. n the
sense of prevalence. as long as # > dimi.1). The probe space of perturba-
tions for this result 1 the space of all lincar transformations from R* to R"
Mattila'"' proved that cquality (2.1) holds for almost cvery orthogonul
projection [

[tis rewhat surprising that there are exampizs for which (2.1} does
not hold tor unv map F when box-counting dimension 1s used. cven under
the hypothesis n > boxdimi.4). An example of this type is given n ref. 25
However. 1n most cases of compact sets which anse in dynamical systems.
we expect Hausdorff dimension to equal box-counting dimenston.

In pr .ical situations. if attempts to measure boxdimi.{) result in
answers dependent on n. where n>boxdim(.4). then the \anation would
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seem to be a numerical artifact. since there is no theoretical jusuification for
which of the values of n greater than boxdimt.4) zives the more accurate
result. The usuali technique is to incrzase »# until the observed dimension of
boxaim F(4) rcaches a plateau. and to use this resuit. The resuiting
number might be called the piateau dimension. While the plateau dimension
may indeed give the best numerical estimate of the dimension of A. there
does not seem 1 be theoretical or numerical justification of this bias. and
the question needs further invesugation. Notice that » > boxdimt.41 does
n1t guarantee that aimost every F is one-to-one. but that 1s not required
for dimension calcuiation.

If the objecuve 1s to use F{.4) to predict the future behavior of trajec-
tories. then it is sufficient to have the map F be one-to-one. tn which case
n>2 boxdimt 1) is needed. Knowing the current state in Fi 4115 sufficient
to predict the tuture of the trajectory tat least n the short run. In the
situation of Fig. [b, on the other hand. prediction on the perodic oroit |
would sult be possible. ¢xcept when the trajectory was at the midpoint of
the “figure eight”

If the objecuve .5 to compute the Lyapunov exponents of the system.
it is necessary to ask which exponents are to be cor-uted. For a simple
example. suppose the attractor 4 is a periodic orbit. Then the best passible
result of the exammation of F(4) s 0 observe that G 1s a Lvapunov
¢xponent. The other exponents. presumably all negatve. canno! bhe
observed without introducing perturbations. More generally. if an attracter
A lies on a manifold of dimension m (as u 2.2-dimensional attractor might
lie on a three-dimensional manifold). it will certainly be impossible to
measurc morc than /m true cxponents {rom an cmbedding, cven f the
reconstructed image F{.4) lies in R” with n >m. There are no critena for
determining the smallest manifold containing .|

Theorems 2.3 and 2.5 say that if n> 2 - boxdimt.1). then almost every
F is an embedding of all smooth manifolds that lie in .. The smooth
manifolds we have in mind are the surface corresponding to the unstable
directions on the attractor .{. that 1. the unstable mamfolds. Under an
embedding. the differenual information 1s preserved along sraooth direc-
tions. such us unstable manifolds. indicating that posiive ivapunov
exponents should be computable from the image F(.1).

The stable manifolds. on the other hand. will be likely 10 intersect .{
in a Cantor set. The image of a Cantor set in F{4) may be quite com-
pressed. For example. a set which is the product of five Cantor sets whose
dimensions sum to 0.5 might be mapped to a one-dimensional line 1n F(4).
[t seems difficult to recover any exponents in these directions f{rom
knowledge of the reconstructed dvnamics in F(.4).

The seif-intersection results in Section 2.3 are aimed at another kind of
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question. A reievant experiment invoiving a vibraung ribbon is described in
refs. 8 and 26. In this case. the Poincaré map has an attractor whose
dimension was experimentaily calculated to be 1.2. The investigators were
interested in determining the eigenvalues of tae lineanzation of a period-3
point on the attractor.

Using a delay-coordinate map of the attractor into R* did not result
in a one-to-one map, which is consistent with our resuits in Section 2.2.
Theorem 2.10 of Section 2.3. which deals with seif-intersection. suggests
that the subset T of 4 on which the map into R* fails to be one-to-one
should have dimension at most 2J—#n=2x1.2~-2=04. They found that
the self-intersection set looked like u finite set. If £ indeed has dimension
0.4 or less. us we we.r..-] expect. then the set £ would be uniikely to include
the periodic point 1n question. and the delay-coordinate map would be
expected to be one-to-one in a neighborhood of that orbit. Numerical
nvestigations of the dynamics neur the pertodic orbit revealed that the
dynamics did cppear to be two-dimensional. and the researchers were aole
to estimate numerically the cigenvalues of the orbit at these points.

3. THE DELAY COORDINATE i1AP ANJ FILTERS

3.1. Main Resulits

So far. we have defined the delay coordinate map v — Fl/. ¢)x from
the hidden phase space R* to the rcconstruction space R". Under suntable
conditions on the difftomorphism ¢, the delay coordinate map Flh. <) 1s
an embedding for almost all observation functions /4. In this formulation.
information from the previous # time steps is used to idenufy 4 state of the
onginal dvnamical svstem 1n R*.

For purposes of measuring guantitative nvariants of the dvnamical
systems. noiwse reduction. or prediction. 1t may be advantageous to create
an embedding that idenufies a state with nformation from a larger number
of previous time steps. However, working with embeddings 1n R" 15 difficult
for large n. A way around this problem 1s 1o incorporate large numbers of
previous data readings by "uaveraging” their contributions 1in some sense.
This problem has also been treated in ref. 7

Te this end. generalize the delav-coordinate map F(h. ) R* - R".

Flh, gy = th(x). Mgixida. g o’

where the superscript T denotes transpose. by defining the fi/tercd deluy-
coordinate map F(B. h.g): R* = R" to be

F(B.h,g)x=BF(h. g)x (3.1)
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where B8 i§ an n x w constant matnix. Thus. each coordinate of F(B. h. g)x
is a linear combination of the w coordinates of F(h. gjx. Here we are
considering the case where ¢ 1s a diffeomorphism. for notational
convenience. Evervthing we say appiies to a flow & by setung g equal to
the ume —T map of the flow. We wiil call w the window length of the
reconstruction. since therc are w evenly-spaced observations used. We call
n the reconstruction dimension. since R" is the range space of the map. We
may as well assume that » < w and that B8 has rank n: otherwise we could
throw away some rows of B without losing information. Assuming that B
1s a fixed matrix restricts the filter to be a linear muitidimensional moving
average tMA) filter. Autoregressive (AR) filters in generai can change the
dimension of the attractor.'* ™

If B is the idenuty matrix (denoted /). the map 1s the onginal Takens
delay coordinate map. \s stated in the previous section. 1n that cuse.
Al hegy= Fth. ¢y s almost alwavs an embedding as long u4s n 1y greater
than twice the box-counting dimension of the attractor and the perntodic
points of period p less than n have distinet cigenvalues and make up a set
of boxdim < p;2.

Under fit :ring, some complicautons are caused by the existence of
pertodic cycles. On the other hand. the next theorem states that in the
absence of cvcles of length smailer than the window length u. ¢very moving
average filter 8 gives u faithful representation of the attracior.

Theorem 3.1 (Filtered Delay Embedding Prevalence Theorem.
Lc.t U be an open subset of R*, 3 be a smooth diffeomorphism on L. and
lét .1 be a compact subset of L. boxdim(A)=d For a positive integer
n>2d. let B be an nx w matrix of rank #. Assume ¢ has no perodic points
of pertod less than or equal to w Then tor almost ¢very smooth function
n. the delay coordinate map FB. i g). L — R" 1s.

. One-to-one on .1.

2. An immersion on cach closed subset C of a smooth manifold

contained in 4.

The probe space for perturbing /1 can be taken to be any space of poly-
nomluls in & vanables which includes all polynomuals of total degree up to

. Furthermore. 1n case n < 2d. the results of Theorem 3.! hold outside
excepuonal subsets of .4 precisely as in Theorem 2.10.

For example. consider the 3 x9 matrix

0

o
[ws]

rjm
Cpsfoem

.,,,._
——
o o
o o
o o
[
!:I

[~}
Il
O O -

o O
o O
o
O -
o
ot
——
—
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Then
F(B. I g)x = (Yhix)+htglx)) + h g (x ),
HACE LN + gD + i gf e,
AL (YN + Alg (e + Alg (e

Although the map F(8. /1. ¢} uses information from 9 different lags. the
"moving average” reconstruction space is only 3-dimenstonal. According to
the theorem. if the dynamicai svstem ¢ has no periodic points of period less

than w=9. then F(B. /. ¢) 1s an embedding for almost all observation
functions /.

Remark 3.2. \Vhen the diffeomorphism ¢ has periodic points.
vertain spectal choiees of filters 8 will cause seif-intersection to oceur at the
pertodic points. However, under the genencity hypotheses on the aynuami-
cal system of Theorem 2.5, for example. almost all choices of an # < w
matrix B imply the conclusions of Theorem 3.1, This follows from Remarks
34 and 3. A more detalled view of the effect of pertodic points of the
dynamical system is given in Sections 3.3 und 2.4,

3.2. Examples of Filters

In this section we will list some cxamples of filters that may be usclul
in given situations. The casiest cxample is a simple averaging filter. For any
integers ., . let 8 be a nx mn matrix of form

Ame Am

B= Lim - | m. (3.3)

I'm---{ m

where there are m nonzero entries in each row. In the presence of nouse.
this filter should perform well compared to the more standard delay -coor-
dinate embedding which uses every mith reading and discards the rest.

A more sophisticated noise filter was suggested in ref. 5 for a slighils
different purpose. and eiaborated on in the very readable ref. 2. where 1t 1s
used for dimension measurements. It is based on the singular value decom-
position from matrix algebra. also known as principal component analysis.
Let vi,..., y, be the reconstructed vectors in R". where L is the length of the

——
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data senes. Following Broomhead and King.'*' define the L x w trajectory
matrix
| /.V'l
A== -
VL W
where the 1/ are treated as row vectors. The covarance matrix of this
multivanate distribution 1s 4’4, The oif-diagonal entries of 4/ 4 measure
the stausuical dependence of the variables.
The singular value decomposition''** of the L .<w matnx 1. where
L2w 1

=1’ (34

where v v an L+ L orthogonal matrix. L 1s 4w <n orthogonal matrix
(this means that 1"'1'=/, {'U=/), and $ is an L -« diagonal matnx
(meaning that the entries o, of S are zero 1f i = 7). By rearranging the rows
and columns of L' and ! we can arrange for the smgular values of .i to
satsfv @, 2 a2 - 2a,, 0. The bottom L - w rows of S are zero.

The singular value decomposition suggests the use of the filter 8=,
That 1n. instead of plotung the vectors v,.... v, in reconstruction space R".
plot the vectors L'yy.... L'y, . One immediate positive conseguence of this
change of variables 15 the statistical linear independence of the new
variables. The covanance matrix of the new trajectory matrix

AYASIA
L -
N L ( Ul v, ,.‘
is (ALY 4U = S'S. a diagonal matnix.

In practice. one can do better than 8= L"’ . This 1» because some of the
nonzero singular values ure dominated by noise. .\ rule of thumb is to
ignore by sciting to zero) all singular values below the nowse floor of the
expenimental data. Ignoring all but the largest A singular salues s
equivalent to letung the filter 8 in Eq.13.1) be the top A rows of U'". The
rows of " are orthogonal. so A is sull full rank. Theorem 3.1 implies that
F(B. I g) will typically be one-to-one and immersive.

This program was followed in ref. 2. in the context of measuring the
correlation dimension of chaotic attractors in a stable way. They used a
filter B that consisted of the rows of U7 that corresponded to singular
values above 107*.
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3.3. Conditions on Periodic Orbits Which Imply One-to-One

For special filters 8. conclusions | and 2 of Theorem 3.1 can fail. but
only for periodic points. That 1s. some periodic points of period less than
w may be mapped together under the map F(B. h. g).

For example. assume

Lo TR *Y R

i
B={0
0 0

L) (..)

LT Ea gl YL B S
Lo R S Lo Y fod

bep—

L
4/

ind assume that ¢ has a period-4 orbit. that is. ¢*(x)= v. Then for any i
F(B. h. g) maps all four points of the period-4 orbit to the same point 1n
R. 50 F(B. h. g) fails 10 be one-to-one. There 1s no way for uny observation
lunction to distinguish the four pomnts. since their outputs are beng
averaged over the enure eyele. Thus. the filtered delay coordinate map tails,
tor il observation functions /1. 10 be one-to-one.

A similar problem occurs with the filter

$ 0L 00
B={0 : 0 ! O (3.6)
00 ! 0 !}

Now
F(B. h. g)x =14hx) + (g 1xn),

gt +hig'ten.

Whtg v +heetom)
\ssume that the period-four orbit ol ¢ comsists of v, = ¢ty
V= 27tk and xo= ¢(x,). Now v, and . are mapped to the same point
in the reconstruction space R* by F(B. h. ¢). and the same goes for A, and
V1. Again, the map cannot be one-to-one tor any .

A second obvious problem can be illustrated when the dynamucal
system has more thau one fixed point. No matter how # is chosen. the filter

<
c <o

(3.7)

LT P L

>
i
O & tau~

0

o= pol—

maps all fixed points to the origin in R’. violating the one-to-one
condition.

In each of these situations, the underlying dvnamical system ¢ may
dictate that some periodic points will become iu...::fied under a particular




£mbedology : | 601

filter 8. no. matter how “géneric"thé observation: function 4. On-the-other
hand, -these identifications. occur -only at penodxc poiiits. ‘Further. even int

the ‘case of periddic points. it turns out that the- réstrictions on" B €xem:

plified by the- three cases:abové:are the-only restrictions, That is. iff t,hg,sve‘ are
avoided. then F(B.h. g) is one-to-one for a .prévalent set of observation

functions 4.
To be more precise aubout these restrictions. we need to make some.

definitions. For each positive integer - denote by A, the set of period-p:

points.of ¢ lying on A. That 15, Jd,= |ve 4 g7(x)=. \, Let /, denote the
nx<ridentity matrix and (-, -) denote gredtest common.divisor. We will use
the convention that (p. 0)=0. For integers p>q¢=0. define the
pPXx{p=1p. q)) matrix

(-.w _ ( | I- =il ) (38)

—{ili.ql. v —/!p.«u.

Define ¢, to be the « x(p=1p,¢))) matrix formed by rcpeulinﬁ the
block (7, vertically. and for a positive integer u. define ¢, to be the

matrix formed by the topw rews of C,,. -

Theorem 3.3, Let L' be an-open subset of. R:. let ¢ be a. smooth
diffeomorphism on (', and let .1 be a compact subscl ol L of box-counting
dimension «. Let w and # be integers satisfving w > > 2. Assume that B
is an # xw matrix of. rank - which- satisfies:

Al. rank BC > 2 boxdim(.1,) for all I'S p <

e

A2. rank BC! .

o - boxdimiad gdor all I <y < pgw

Then for almost every smooth funcuon.h. F(B. h ¢11s one-to-one on .

Remark 3.4. Note that rank Coy=p~1tp.g) and so rank-C;, =
min . p— (p, g)}. It follows that rank BC,,u,mm n. py and fank BC 2
minyn, p2) for B=1/,, and also for almost every n x w matrix 8.

To lllustratc the restrictions that Theorem: 3.3 puts on moving average
filters. ussume that 8 is the 3 <6 matrix (3.5). In particular. the filter B
must satisfy condition A2 for p=4. ¢ = |, which means

10 0
0O 1 0
0 0 I
rank.8 1 =1 —1 > boxdim A,
1 0 0
0 1 0
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The rank on the isft-hand side is zeto. however. and.if there exists any
period-4 orbit. the filter 13.5) fails this ‘condition. This is-consistent with
what we have aiready noticed: in the presence of a- périod-4 orbit. the map
F(B: lx.‘z) 1S nOt one-t0-one for any /. -

The filter 13.6) satisfies the above condition-us Iong 2s theré-zfe finiteiv
many. period-4 ormts However. it fails conidition A2 for p=31 g=12 which

Teq uires
1 0\ ‘
0 1

cank By —1 0 |> boxdim A,
0 —1
10

This 15 again consistent with our earlier observation.
Finaily. 41 there exist tixed pomts. the iiiter 1 3.71 Guis the condition |
tor p =1 if there exist fixed points. That 1s because condition Al reuires

> 2 -boxdim .14,

1
1
rank B l
1

Since the rank on the left side is zero. the condition fails unless the set of
fixed ‘points is cmpty.

3.4. Conditions on Periddic Orbits Which Imply an Immersion

Therc arc also rather obvious >1tuauons when. cértn flters cause
F(B. i, g1 6 Tail 6 afi an immersion. Assume-thargis a- dlm.b"’luxphnnm n

a circle that has a fixed point x. Assume that the dc.rnatxu of g at vis ~2.
Consider the filter

Lo

0

...
<o O

(39

[we]
i
Q [ e TN

it
e

[n this case; the map F(B. i g) cannot be an immersion at x for any obser-
vation function A. For a tangent vector r in T .M = R'. the.derivative map
is




T
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:
v
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Vh(x) v _
Vh(gixn” Dgtxic

e

DF(B.h. zaxic =8|
\Vhtg ~‘ixn? Dg" <iixis
./ Vhix)yter

3 ? Vhix (=200 |
={Q = z - ={0

) 0 Vo e :

0 0 =z 1\ _ 0)-

: Vhixy 1 =Nry ‘

. L R v ey
- v "y R g . v
- - u ¢ ‘ '
v n ; i '
s et
. -

30 the tangent map of FiB. h. g) at x is the zero map.

In the cise of an m-dimensioral manifold A with a iixed pomt x. it
can be checked that for a filter 8 of this. tvpe. AIB. I« wiil faii 1o 'he an
immersion O ail A as jong as the hneanzatuon of ¢ «t < us-an-ienvaiue
ot =2 \s 1n the one-to-one case. the rmmersion- wiil fa:i ey :or perioaic

-

l points.
z ] To be precise. given numbers «,..... ¢,. define the 7 <rp matrix
I |,
c . - o 1,
DX {(cyumca=] 1 L (3.10)
! ol - o,

where /. denotes the px p identity matrix. For - posiive nteger . et
Di(cy.....c,) be the matrix Tormed by the top w rows of D! (¢ .., ) If the
¢, are distinct. then rank D[y ... c.)=min w. rpl.

Theorem 3.5. Let L he an open subset of R, et v he a smouth
diffecomorphism on (. and fet .1 be 4 compact subset -4 a smooth
m-manifold in C. Let w and n'bé ifitegers satsiying w .z 2. Assume-that
the linearizations Dg” of periodic orbits of period p less than or equal to
w have distinct cigenvalues. Assume that B is an nw matrix of rank n
which sausfies:

- e

A3. rank BD)( sy e 2,)) > bOXdIMEA , + 7 = 1) for wll IT<p<w

L<r<m. and for all subsets /... .. ol cigenvalues of the
linearization at a point in .
Then for almost every smooth function /1. F(B. i g)1s an immersion on ..
Remark 3.6. See Theorem 4.14 for a proof. Note that since rank
DJ(4y .. 2,)=min{w. rp} for distinct cigenvalues ~,. it follows that rank
BD; =min{n, rp} for the original delay coordinate case of B=/,, and also
for almost every n x w matrix B.
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To illustrate. the condition A3 is not sz xdifor fii*>r i3.9) when g
‘has 4 fixed point with un-eigénvaiue of = - .at condifion requires: that.
‘rank. ,BD“( =21>0. but

4. PROOFS

This section contains the proots ol the results stated above. After
some fundamental femmas. we give the proofs of the Whitney forms of
the ¢mbedding theorems. These lollow ‘Lémma4.11. The proofs..oi the
.del.n-«.oormnatc forms nvolving fters. Theorems 33 and 3. oilow
immediately 1fom. Theorems .13 uand <14, respectiveiv. This sccuon
concludes wath the proof: of Theoretiis 2.7 and 3.1 which are speciai: casés
of Theorems 3.3 and X5.

Lemma 4.1. Let u ap’ L be positive witegers. 1. v, distinct
points in R*. and. it w...tt,, in R. ... 1, A0 RE.

I There cxists a polvnomal in A vanables of degree wt most i — |
such that for r=1....m v, y=u..

13

Therc exists a polynomial-/r in-k vanables of degree at most 2 such
thatfor i=l.on. Vil y)=r.

Proof. 1. We may assume. by linear change of coordinates. that the
lirst coordinates of v, ...+, are distinct. Theri. ardinary one-varnable nger-
polation. guarantees such poiynomial.

2. First assume A = 1. There cxists ¢ polynomual of degree at most

n—1in one vuariable that mterpolates the data. The Jnudcrnauve is the

désiréd” poivnomial 7.

In the general case: by a linear change of coordinates.  may assume
that Tor cach ;= I... k. the /th coordinates of y,.... v, are distinct. The
above paragraph shows that for ;= 1.... % .there 1s a polvnomal of degree
at most n in the yth coordinaté ., whose derivative /1 interpolates the jth
coordinate of , for i =1....n. The sum of all k of these polynomials is a
polynomial of degree at most »n which sausfies the conclusion.

Lemma 4.2, Let F(x)= Mx+h be a map from R’ to R". where .\
is an.n x t matrix and ~ R". For a positive integer r. let ~ - 0.be the rth
largest singular value oi .M. Denote by B, the ball centervu .t the origin
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of radius p in R". and, by B; the ball cemered at-the:origin of . radms o in
R" Then

Vol(B; ~ F'(Bs))  -obrer.. s
— e M (Diap )
Vol B,) P

Proof. Note that. -decteasing aiv singular value of M .does not
decrease the left-hand- side: Thus we 1@y asSume that the singular values

of Msatisfyo,= -+ =¢,=0. and 0 = Tpuy =Gy = oo Lt M=k 'SUT be:
the singular- value decomposition of M. Hére S.is .a ,dlagonal matrix with
entries §,,.= --- =y,,=a and all other entries zero. V is an nxn

orthogonal matrix. and’ L is.a rxt orthogonal matrix.

Since the columns of L' and 1" each. form an orthonormal set. we
. fecognize MB., =1'SU ’B .as-an-r:dimensional ball of radius ¢o lying in R".
[n-fact. the first r Lol,umns,ot I"-magnified by the factor ap aré radii which
span MB,,.

The set. F- '(Bs)mB, consists of the vectors in B, whose image by M
lands in.a ball- of radius o in R". ThlS is a-cylindrical subsct of B, with base
diménsion r and ‘be se radius J.0. The subset thus has (- dxmcnslonal voluae
less than (8/0)’'C,p' ~"C,_,. where C,=x"%/(rj2)! denotes the volume of
(he: r-dimensional. unit -ball. The volume-of .B,, is p‘C,. s0

Vol(B,~F~"(B)) (loVp'~'C,_,C, ;( 5 )
— - - < = — < -

Lemma 4.3, Lct § be a boundéd subsct of R*. boxdim($) =</, and
let Uy, Gy ... G, De ‘Lipschitz maps from S to R Assumc that for cach x
i S; the llh iargest singular vajue of the »rx rmatrix

M. =G () Gix))

is at least #>0. For cach ze R' definé G,=Gy+ i, 2.G. Then fof
almost every ¥ in R, the-set. G '(0) has lower box-counting dimension at
most  —r. If r>d, then G '(0) is empty for almost cvery 7,

Proof. For a positive number p. define the set B8, to be: the ball of
radius p centered at the origin in R'. For the purposes of proving the
theorem: we may replace R’ by B,. For the remainder of the proof. we will
say that G, has some property with probability p to mean that the
Lebesgue measure of the set of x€ B, for which G, has the property is p
times the measure of B,. For example. if x&S, then Lemma4.2 shows
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that 1G(x)i.=:Golxy+ M. (2y <& for xe.B, with probablhtv at most

1“(8/0‘0)’

radms &, Lentered at xeS. Sccond bv the prschnz condmon there e‘usts
a constant:C such thatthé i image under any: G;.. 2 €B..,-of-aly «ball-in-R®

intersecting S is contained in .a Ce-ball-inc R™. For the remainder of the
-proof.. we-assume ¢ <.

The ‘probability -that the set \G,(B(x. ¢1) ¢ontairs 0 is.dt most ‘the

probability that .G,(v)|-< €c. which is a constant times ¢’. since p and' ¢

are ﬁxed For-any posmve number .M. the probability that atleast Af of
the ¢~ images G,(B(x.¢)) contain 0 is at most Ce"~ P’ M. Therefore,
G;'(0).cin be covered by fewer than M=+ * of the s-balls. except with
probability at-most C,¢" "~ As long as h> D= r, this probability can.

be made-as small as desired by decrc.xsmx. .
Let p>0. Theress a scqui‘:nce ey s, approaching U sucirthat ")l

"“lx:l

can*bercovered by fewer than. " balls-exceptior prooablluv at most, ;

Thus. the lower box- -counting dunensxon of G, '(0).is at most A, ucept
for a probability p subset. of x Since />>0 was arbitrary, lower

bexdin{ G700 < for almost every z Finally. since ‘this ‘holds for all

h>d - r. lowerboxdlm(G"(O)) Sd-r. }

Remark 4.4. I[n case boxdimiS)-does not eXist the hypotheses of
the lemma can be slightly weakened by allowing « to: be the lower box-
counting' dimension: of S. A slight adaptation of the proof shows that
boxdim can be replaced throughout Lemma 4.3 by Hausdorif dimension,
[n.particular. if r > HD(S). then G 7'0).is-empty for almost every « in R',

If in Lemma 4.3 we assume that rank(M.) = d for cach x .8 instead:
of the assumpiion on the singular values. then ¢ HOV.as empty Tor almost
every . That 1s because one can apply Lemma 4.3 to theset 8. = ves:
rth largest singular value of M.o>a! o get G0y, =3 Then
S=Us»u S, implies G '(0) = . We state this fact in the next lemma.

Lemma 4.5, Lét S be a bounded subset of R*. boxdim(3) =, and
let Gy, Gy..... G, be Lipschitz maps from S to R". Assume that for cach x
in S. the rank of the n x t matrix

M. =G (x)... G (3}

is at least r. For.each xe R’ define G,=Go+ X', 2,G,. Then for almost
every x in- R'. the set G '(0) is the nested countable union of sets of lower
box-counting dimension at most d—r. If r>d. then G '(0) is empty for
almost every .
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Lemma 4.6. Let 4 be a compact subset of R¥. Let £y, £y, £, bé
prschxtz maps from. 4-to- R". For each. integer r20. let §;-be the-set-of
pairs \= v in. A {Or which the #x.t matrix

Mo = V()= Fy (o Ex)= F(3)S

has rank ». and let d,=vlower~ boxdim(S‘}). Define F.=Fy+3' ., 1F;:
A= R” Then for z=.x...%.) outside a measure zéro subset -of R'. the
1f<')llow1ng hold:

t. 1f.d. <r for ail-integers r 2 0. then-the map F, is one-to-one.

2. Ifd, = rfor some integer r 0. then lor every d > (). the lower bok-

counting.dimension of the d-distant self-intersection set S(F,. J).is
At most . =,

Proot. For =0 deline G vi=F(x1 =410 On the set S..
the rank of the # <t matrix

M =G (x ) Gy )

is r.

If r>d,. Lemma 4.5 shows that for almost every xs R the origin is
not 1n the image of S,. under the map G, =Gy + S 2.4, ot equivalently.
Fo(x)# F(ppforx & i S, Ifr>d, for all r. then F, iy one-to:one. since
each pair x # » lies-in some S,.

Irad, let (Ax A1, = ried x4 ix— rf =40} be-the subset of
d-distant pairs -of points in A x 4. Since (4 x ), is compact for any d >0,
the mimimum ol the nth singular value of M, in (4 <.11, & greater than
0. Lemmai 4.3 shows that tor almost every % the.angin s i Gl < 1))
tor a subset of (.4 x A4), with lower box-counting dimension at most. o, — r.
Therefore the d-distant self-intersection subset S(F,. d) of 1. which is the
image of this subset under the projection of (.4 x ), to . has dimension
at most o, —r. |

Theorem 4.7. Let | be a compact subset of R*. lower
boxdim(.4) =d. If n> 2. then almost every linear transiormation of R* to
R" is one-to-one on .

Proof. This follows immediately from Lemma-+6 and the remark
following it. Let {F,} be a basis for the nk-dimensional space of linear
transformations. For each pair x 5 v, the vector x ~ v can be moved to any
direction in R" by a linear transformation. !n the terminology of
Lemmad6., S,=dAxA—J and S, is emptv for r#n. Since [ower
boxdim(S,) = 2d < n. almost every F, =Y 1,F, is one-to-one on A. |
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Remark 4:8. [t us interesting: that no stz’itémén‘t sxmxlar to-
Theorem47 can be made if box- uounmg dimensiofi: is replacedv by -
Hausdorff. dimension: In an Appendix 6 ‘this work provxded by . Kan.
examples are-constructéd of compact subsets .{:6f any-Euclidean-space R"'
that have- Hausdorff dimerision /.= (); and.such-that no projection-to R* {6t
n <k, is.one-to-one on. 4; :

This striking difference  between, ‘box- counting. dimension: and

Hausdorff dimeénsion-is -related to the fact that Hausdorff dimension does:

not.work well with nproducts.. Extra hypotheses are needed on A. in ;par-
ticular on the. Hausdorff -dimension of thé product 4 x 4. to prove dn
analogue to Theorem-4.7. For examiple. Maiié has shown (see réf. 17 and its
correction in. ref, 9 p-627) that if > HD(A x A) + L. theii the conclusion,
of Theorem 4.7 again holds., Of course. using, Lemma +3 and Remark .4

it turns out that only n.> HD(A x 4) is ,requxred.

Theorem 4.9, Let A4 be u compact subset of R'. and It
n>HD(4 < A4) Then ulmost every linear transformation- of ‘R* o A" 15
one:to-one on .. .

It was shown in ref, 10 that uader the hypothese :oﬁ Theorem 4.7,
almost cvery nrthogonal-projection is one-to-one-fand in-fact has-u -Hdlder
continuous inverse).

Definition 4.10. For a compact differentiable mamifold 3/, ‘et
T = () veM ce T MY be the rangent bundle of M. and et
St = (v rye T(M) o] = 1) denédte the unit tangent hundle of M.

Lemma 4.11. Let . be u compact subset .of a smooih manifold:
embedded in R¥. Let £y, Fyo Fi RS — R" be a set of smooth. maps from
an open neighborhood .U of 4 to R™ Fe vach positive integer ». let y, be
the subset of the unit tangent bundle S(.4) such that the 2 < ¢ matrix

{DF (X)) DF (X))

has rank  and let d, =lower boxdlm(S) Define F,=F,+ !

- = 11 Fl:
U — R". Then the: followmg, hold:

. Ifd, <rforall integers r >0, then for almost.every x € R'. the map
F, is an immersion on ..

t9

If d,2r for some r=0. then for almost every zeR'. F, is an
immersion outside a subset of 4 of lower boxdim < d, - ».

Proof. For i=0,.., 1 define G,: S(4)— R" By G,(x.c)=DFx). I
r>d, for all r 20, then Lemma 4.5 applies to show that for almost every
2, G7Y0)N S, is the empty set. Since S(A) is the union of all S,. G '(0)
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is emptv Thus. no udit-tafgent vector:is: mapped ROR the onem. .md FE,is
animmersion.

In case oS+ for some . there -is a..positive lower bound -on the:
singular values of. the G, oft S{A); Lemma-4,3. implies: that; there-is a subset :
of unit.tangent véctors: of lower:boxdim < d, —r-that.¢an miap to-2¢ro. The -
projection of- thxs subse' into- A’ has: lower ‘boxdim-<d; ~r. }

.Proof of Theorems 2.2, 2.3, and'2;10. Theorem 1.2'is a special case
of Theorem 3.3. To-prove the latter. we need to show that a4 prévalent sét |
of ‘maps .are.orie-to-one and immersive.

. - Let F .«F, be u basis for the set of linear transformations from
R* = R", In the notation of Lemma 4.6, the set S, =Ax 4 =.land'S, =T
for r £ n. SinceboxdimiA x A)=2d.<n, F, is one-to-one on . for almost
every z& R’ [ any other maps F.. . F, are added. the rank of M.,
cannot -drop lor any pair x # 1, so almost cvery linear combinauon of
Fiiw F. 15 One-t0-one on ..

The -proof of the immersion half uses Lemma4.1l anstead of
Lemma 4.6. Since boxdim(.4)=d. C is a subsct of a smooth manifold ol
dimension at most «. and therefore boxdim S(C)Y< 2d - |. In the-notat'on
of Lemma .11, S, =S(C) and S,= for r=#n. Since n.>2d> Al— =
boxdim S, the prool follows from Lemmad.11.

The proo!f of Theorem 2.10 is similar. except that the second part of
the conclusions of Lemmas 4.6 and 4.11 are used. For example. in the use
of Lemmad6, S,=dAxd—d and S,= for r#n as before. but now
boxdim(.4 x o) =2d>n. Thus for cach ¢ >0, for almost cvery F,, the
J-distant self-intersection set £(F,, J) has lower box-counting dimension at
most 2d ~n. The immersion half is again analogous. |

Definition 4.12. Let { be an open subset of R*. let g {"— (" be
a map. and let /: "= R'be a function. Let w <w~ be integers and set
w=w"—w"+1. For I <igw, set g,=g" =«=! 5o that g;=¢" und
g.=x"". Let B be an n x w matrix. Define the filtered deluy-coordinate map

-Ml “ - ‘—A 8

(B hg)y LU-R"

FU(B. h. gl x)=Bh{g (X)) h{ga(x) s hgux’
= B(h(g" (X)) h(g" 1x))"

o~ O T clars

Theorems 2.7, 3.1, 3.3, and 3.5 are corollaries of the next two results.
for which we will use the following notation. Let g denote a smooth -
diffeomorphism on an open neighborhood U in R*. Let &,,...k, be a-basis

{ A

i
i
1
i
i
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for the- polvnoxmals n. & ‘ar,ables of deeree at most .2 2 ‘:'or a smooth
‘Rifction #,.of % and: for x& R, deﬁne I, -n(,-rE,,, 2, h;. For edch:
positive. mtezer p: denote by 4 .ne sét:of period-p pomts .ot ¢ lying.-6m: A.
That 8 A = dved: gfilx) = v, Lét-the miatrices- C“ ‘be-as:in Theorem 3.3.

Theorem 4.13. Lat g be a smoadth dxffeomorphlsm ‘0N an, open
"newhborhood U of R*: and:let 4 be-a: comp.xct subset of . boxdimt 4= d.
Let n and w- <w™ b antegers, n.<w=w" —w~ =1, Assume that the .
A matrix B salisﬁés:

A1, rank BCY, > 2. boxdimiA ) for all | <p<gw
A2. rank BC,“ >boxdim( ) for all 1 g < pgin

v e

Let /... h, be u basis for the polynomials in k variables-of degree.at most.
i, Then lor any smooth functicnii, on R¥, and for almost every s R,
the followiny old:

b 0> 2dothen FeB b, g U= R" 15 one-to-one.on i

3 If n< 24 then lor x.ve,ry ¢)>0. the d-distant self-intersection: set
Z(F(Boh,, §),0) has lower box-counting dimension at most
dd—n,

‘Proof. For=1...! defina

g x)
F(x)=8 :
h(g. (%))
By definition. F(B. h,. g)=T"'_, F,. To usc Lemma 4.6. we need to cheek’
for cach x = v the rank of the matrix
M =R = Py e Fdx) = Fan
which can be wrnitten as

Atg e =Ilg (el - hg e =g,
B : 3 = BJH
Mg =yl () - gt = Il g )
where
hizy) - htz)
H=| z
hi(zy) - hilzy))

q < 2w the z, are distinct. and J =/, is a w x ¢ matrix each of whose rows
consists of. zeros except for one | and one — 1. By part | of Lemma 4.1. the
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rank of H is.q. We divide-the study of 'the rank of M, '=_;~?BJHv into-thee:

-cdses.

Case 1. x-and'y are not.both periodic with-period <.
[n:this case. /., is upper or lower triangular..and. rank(/, w)=w. Since
B..J.and H are.onto linear transformations, the product 8/H is onto and.

has rank n. The set-of pairs x # v of case | has box-counting dimension at
‘most 24, and rank(M ) =n. If g has no periodic points.of period <w, we

are done. and conclusion | (respectively. 2) of Lemma 4:6 implies conclu-
sion | (resp.. 2) of the theorem.. ‘

The remaining two-cases are necessary to deal with periodic points of
period < w. We show that ¢onclusion | of Lemma 4.6 applies:in both cases.

Case 2: x and » lie in distinct periodic orbits ol period < w,

Assume » and -4 ure minimal such that-e®(xi = v. g*(xr1=": and that
IS¢ < psw In this case the matrix /,, contains a copy of €%, Since H
is onto, rank M, =tank B/, H =rank-8/,,. By hypothesis. rank BJ,,
rank: BC,, > 2 - boxdim .1, which is the box-counting dimension of the set
of pairs treated in case2. By Lemmad.6. for almost cvery xeR',
Tdx)# F,(v) for every such pair x # .

‘Case 3: Both v and r lie in the sume periodic orbit of period <w.,

Assume p-and.g are- minimal such that g = giv) = r, and that

<¢<p<w. Since v and » lie.in the same periodic orbit. the column
space of J,, contains the column space of C,,. Thus., rank B.I“H—
rank 8J,, > rank BC,, > boxdim 4, which is the d:mens(on of the pairs
X# Y of c.xsc 3. Now Lemma 4.6 applicso give the conclusion.

Theorem 4.14. Let ¢ be a smooth diffecomorphism on an apen
neighborhood (' in- R*, and let A be a compact subset ol a smooth
m-manifold in (. Assume that the linearizations of periodic orbits of period
less than v have distinct cigenvalues. Let # < w be positive integers as-in
Theorem 4.13, and assume that the # x w matrix B satisfies:

A3. cank BD}(4,.e ) >boxdimid, +r—1) for all 1<p<w,
L<r<m. and for all subsets 4, .4, of cigenvalues of the
linearization Dg? at a point in A,

Let /1, ... 1, be a basis for the polynomials in & variables of degree at most
2w. Then for any smooth function A, on R*. and for almost cvery xe R".
the: following hold:

l. Ifn>2m. then F(B, h,, g): U= R"is an immersion on A,

2. Ifn<2m, then F(B, h,, g) is an immersion outside an exceptional
subset of 4 of dimension at most 2m—n—1.
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Proof. To:apply. Lemma 4.11. we need to chéck the rank of thevix ¢

‘matrix

ADEAXNC s DE L)L), (1Y

for each (x.v) in the unit tangent bundle S(A4) For a given observaton

[function 4. the derivative of F(.B, A, g)is.

Vhig' (x))"Dg" (x)v
DF(B. h. ¢)xv = B :
Vhig" “(xn"Dg" " (x)e

if vis nota pcriodic point of perzod less than w. then g" (X ). ¢' (x)are
distinct points. The facts that ¢ is a diffeomorphism and ¢ ,~0 imo™ that
De'txie =0 for all i Therefore by Lemma 4.1, part 2. the set of vectors

"DF(B. Iy, gixies 2 R') spans R”. [n the notation of Lemma 4 11, the
subset S.,, contains all points ol S{ A7 that are not periodic with period. less
thanw. and d, = lower boxdimtS,) < 2m — 1. If g has no periodic points of
period less than w, the proof is finished. by Lemma 411,

If v is a periodic point of period. p <, thén

Hu’k‘\\

H:n‘,
'D,
DF(B. h. g)xt=8 H, :“I

H!D.w,

\H,’Dfufl/

where
Y=gt M) =y
H,=Vhtx,)
w;=Dg(x, ).+ Dglx,) Dg" (x)v
D;= Dglx, ,)---Dglx,) Dg(x,)--- Dg(x,)

pet

Each matrix D, has the same set of ecigenvalues 4,....4,. and by
hypothesis. they are distinct. If u, ..., u,, is a spanning set of eigenvectors for
D,, then it checks that u;=Dg(x,_,)---Dg(x,)u; for | i<p, 1<j<m
defines a spanning set {uw;,..u;,, of eigenvectors for D, Thus. if
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Wy =Z',".‘.. a;uy; is the éigenvector expansion of wy; -then the eigenvector
expansion of w; is Y™, -aju;, which has the same coefficients.

ey

Thus DF(B. h. g)(x)v can be written as B-times the w-vector

r ol
fU ) fo - 0

0 .. 0 0 . 0

0 0 0 0

0 .- 0 l l

i S auf) 0 0 g |
S [ EE FR I L
[o 0 0 v 0
l 0 ° 0 /..l LR !:.,"

A e A LO 0

| D ; : )

To find the rank of-the matrix (4.1)dor (x, v) where x is periodic. we
need to find the span of B times the vectors (4.2) for h=h, =3 2,4, 2€ R'.
Assume that the cigenvector cxpansion of v has cxactly r nonzero
coefficients «,,,..¢;. By Lemmad.l, part 2, the set of vectors Vi ()
2€ R’} spans R*. Then because the u,, | <j<m, are linearly independent,
the vectors of form (4.2) span a space of dimension min{w.rpj us x
spans R'.

Therelore. for this (v, ¢). the span of the vectors (+.1) has dimension
equal to the rank of BD%(4. ..., By hypothesis. the hoxdim of such
pairs (x.t) in S() is boxdim{.d,) +r— 1. By hypothesis. the rank of the
nxt matrix (+.1) is strictly larger. so that Lemma 4.11 applics to give the
conclusion.

Proof of Theorem 2.7. Apply Theorems 3.3 and 3.5 with B=/,.
According to Remarks 3.4 and 3.6, the conditions Al-A3 translate to
p>2-boxdim(.d,), p/2>boxdim(4,), and min{n. rp} >boxdim(d,)+r— L.
respectively. for | < p<n and 1 <r<m. Thus, the hypothesis boxdim(4,) <
p/2 guarantees that A1-A3 hold.

Proof of Theorem 3.1. Since A, is empty for | < p<w. the condi-
tions A1-A3 of Theorems 3.3 and 3.5 are satisfied vacuously.
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APPENDIX. HAUSDORFF DIMENSION-ZERQ SETS WITH
NO ONE-TO-ONE PROJECTIONS

ittai Kan®

The purpose of this Appendix is to construct a Cantor set C = R™
whose Hausdorff dimension is zero and ‘which has the property that every-
projection of rank less than m is not one-to-one when restricted to C.

Definition A.1. The Hausdorit s-dimensional oiuer measure-ol a set
Kis

r
# K)=lim inf S U0
VIO Wae wl
where the mimum s taken over all covers L7 of A with the diameters
o the ¢ umiformiy less than o. The Huusaort! dunension ol a4 nonempty sel
A is the unique valie of v such that

HUKY= 7 il 1<y and  #UK)=0 0l r

Example A.2. We construct the subset C.of R™ as the union of two
sets A =), 4, and B=11"_ B, cach of Hausdorff dimension zero. with
the property that for any projection P of rank less than m the.images under
P of 4 and B intersect. and thus P is not injective when restricted to C.

The set .1, lies on a face of the unit m-cube and « =luy. dyedds,) 18
in o, if it satisfies the following restrictions on the hinary expansion

a,=ala*a’ ... of its coordinates:

I. [fi=un then « =\.

2 Wisnund k20, then erther iy u. =0lorall et M, My ., Jior

(i) aj=1for all le (M, My .\ ).

Here the sequence 0= My< M, < M,... increases sufficently rapidly so
that lim(.\M, ., M,)= =. [[ i =n. then the orthogonal projection of .4, on
the ith coordinate axis is a Cantor set which can be covered by 27 intervals
of length 2="®-1 where ro=k+3,_, (M =M, _,). Thus. .1, can be
covered by 2" ="' cubes with edges of length 2 - -1, Since r_ =L My, we
see that lim ., (m— l)r;, M+ ., =0 and both the lower box-counung and
Hausdorff dimensions of 4, are zero. Since 4 is the union of m copies of
A,, we see that both the lower box-counting and Hausdorff dimenstons of
A are zero.

* Department of Mathematicai Sciences. George Mason University, Fairfax. Virginia 22030
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The-set B, lies on-a facé of the unit in-cubeé. opposite: 4, and:b is.in
o 0t sausﬁes the following ‘téstrictiois on the binary expansion of its.
‘coordmates

I Hi=n, t‘h‘cnfbf‘= L.

2. Ifi#nand&k >0, then either 1arh!=0forall le( My .\ Mara];
or (b) bi=.l forallleiMy . My.2].

Here | .M,! is as above. The lower box-counting and ‘Hausdorf{f dimensions
of B ure zero. The Hausdorlf dimension of C =.4-w-B.is zero.

Let P denote a.projection ofs rank less than m. Let.t = (¢, tauulty) in
the .null*spice of P be chosen so that !r,j-<1 for all ; and ¢, =} for some
Jparticular n. We naw show that £ restrictéd-to C is not injective by-finding
some 28, and u€d, such that r=h-=q Using ihe binary expansion
coordinate-notation, we define « and # as follows:

I Il4=wn, then ¢, =0and b'= 1.

210 i#n and k20, then f(a) /=0 and hi=¢! for all

le{ My, My, ]; and (b) o!= (! + 1) mod 2 and Al=1 for all
le{Mau oy My, 2]

Clearly we have. v == and by the definition.of A, and B, we also have
ued,und heB,. |
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Abstract. In dynamical systems examples are common it Which two or more attractors
coexist, and in such cases the basin boundary is non-empty. The Jasin boundary is either
$mooth or fractal (that is, it has a Cantor-like structure). When there are horseshoes in
the basin boundary, the basin boundary is fractal. A relatively small subset of a fractal
basin boundary is said to be ‘accessible’ from a basin.. However, thcse accessible points
play an important role in the dynamlcs and, especially, in showmg how the dynamlcs
change as parameters are vancd The purpose of this papcr is to present a numerical
procedure that enables us to producc tra)cctoncs Iymg in this aécassible set on the basin
boundary, and we prove that this procedure is valid in certain hyperbolic systéms.

AMS classification scheme numbers: 58F12, 58F13, 65Q05

1. Introduction

Dynamical systems often have quite different behaviour in different.open sets, each
open set having its own attractor. These open sets may-be the basins of attractors.
We are interested. in -the ‘boundary on the common boundary -between-such-open
sets. The common behaviour may be either smooth or fractal. A pomt p on the
boundary of an open set U is accessible from U if there is a curve lying in UU {p}
which ends on -p. Thebasin boundary is the set of all points on the Loundary of a
basin of attraction such that each open neighbourhood of p intersects at least two
different basins of attraction [GOY1]. If the basin boundary is smooth, then edch
-point on the basin boundary is accessible from two basins. In particular, if‘the basin
boundary is a curve, then all of its points are accessible. When the basin boundary is

“ Research in part supported by AFOSR, and by DARPA under the Applied & Computational
Mathematics Program.

§ Permanent address: Rijksuniversiteit Groningen, Fac. Economische Wetenschappen, WSN-gebouw,
Postbus 800, NL-9700 AV Groningen, The Netherlands.
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fractal, only:a relatlvely ssmall subset.of ‘the: basin boundary consists- of accessible
points. and- gencrally no-points ‘that are accessxble from-a.basin wrll be- accessnble‘
fre sthér basin. A collectlon of papers have ;assumed. that investigators can-
pro..  accessible:trajéctories on. basin boundaries. [AS] [AY], [GOYI] [HJ], ‘but
‘no rigorous procedures have been presented: For more details, see the discussion in
~ section. 6.

Studymg dynamical: systems; one oftén observés transient chaotic behaviour,
apparently due to the presence :of horseshoes. It i§ well known [MGOY] that
transient chaos is present whenever there is:a fractal basm boundary separating the
‘basms i two or more attractors. For example, for. sultably chosen-parametér values,
the: Henon map "has attracting . penodlc orbits with. périod 3 and- 5, and also a
non-attracting chaotic invariant set in the basin boundary, and one observes that the
duration of the transient chaouc behaviour.of, many trajectories is rather short before
théy. settle dowr “*0.one of thése two periodic .attractors; Other famous examples
with chaotic transicnts, due‘to a-bounded nor-attracting invariant chaotic set in-the
basin boundary; are.the forced damped pendulum and.the forced Duffing equation.
Transient chaos is also present if there is a chaotic inivariant set-in the interior of the
-closure of the basm In this case, the basin boundary -can be either fractal: or
smooth'[KG], [N¥1}, [N x2].

Let M be a smooth d-dimensional manifold without boundary with d =2, and let
Fbe a C*-diffeomorphism- from-M to itsélf.:For x; y in M-we denote by p(x, y) the
distance between x and y. A set S:c M is positively invariant if.F ($) =S, and is
invariant if F(S)=S. For xeM and a closed set S&M, we ‘write p(x, S)=
mm{p(x “): y €S}. An attractor A is an invariant. compact set in M such that-(1)
thére exists an open nenghbourhood U of A_such that-for éach x e U- the distance
p(F "(x) A)— 0 when n—0; and (2) there is a point x €A such that the closure of
the- trajectory {F"(x)}.=0 equals A: A generalized.attractor is.thé union of finitely
many attractors. We say a‘region'is an open-and bounded'set in M; a transient region
is a region that contains no attractor. For an attractor (or.a generalized attractor) A
we: say, -the domain of attraction of A is.the set of all points x in M.-for which

o(F"(x), A)—0 as n—w, The basin boundary is the:set .of all.points. x'e M -for
which each open neighbourhood- has.a non-empty -intersection with at least two
different domains of attraction, see [GOY1]. In the literature, for.an attractor A the’
notions ‘domain of attraction-of A’ and ‘basin of A’-are often equwalent On the
other hand, in other studies of dynamlcal systems, the notion ‘basin of A’ is defined
as.the region in M that is the interior.of the closure of the domain of attraction of A.
Therefore, for an attractor (or generalized attractor) A we define basin{A} to be the
‘interior of the closure of the-domain-of attraction of A. We would like to emphasize
that. basm{A} is associated with attractor A and may include Cantor sets of curves
that are not in.the domain of .attraction of A; that is, the trajectories of all the points
on these' curves will not converge to the attractor A. In the forced pendulum
example in section 3 we show numerically that basin{A} does include such an
invariant Cantor $et of curves.

We will. be studying transient. regions. in cases where the trajectory through
almost every initial point eventually leaves the region. We investigate special
trajectories, that remain' in such a transient region for all positive time. In
IBGOYY), [GNOY] a numerical method (involving the bisection procedure) for
finding trajectories on the basin:-boundary was presented. The papers [NY1], [NY2)
introduced the PIM triple (reﬁnement) procedure and the accessible PIM triple
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(réfinement) procedure. Both these refinement procedures enabié us to .Gbtain
numerical trajectones and’ accessxble numerical* ttajectones respectively, that stay

‘(for, -positive time) in a specified transient region in M. In [NY2] these two

refinement procedures were shown to be valid for uniformly saddle-hyperbolic
dynamical: systems, for which the dlmensxon of the unstable .manifold of any
nonwandering point in the transient region was-assumed to be one dimensional.

Let R be a transient region for F. The stable set S(R) of Fis {x € R:F"(x) &R for
n=0,1,2,...}; the unswable set U(R) of F is {xeR:F™"(x)eR for n=
012...} The set of points x for which F "(x) is in R for all integers # is called.the:
mvanam set Inv(R) of Fin R, that is, Inv(R) = S(R) N U(R). A component of S(R)
(resp. U(R)) which contains a point of Inv(R) is called a stable (resp. unstable)
segment. We call Inv(R) a chaotic saddle when' it includes a Cantor set, These
notions are illustrated in the following example.

Example 1. An S-shaped horseshoe map is an invertible map that squeezes,
stretches and folds a rectangle into an' S-shape area as illustrated in the figure.below.
We consider the S-shaped’ horseshoe map g, which is defined on a neighbourhood of
a-compact, connected set W, where W is the union of a rectangle E and the two half
disks D, and Dy as indicated in the figure, Assume (1) g maps W into its intcrior,
(2) the intersection g(E) N E consists of three horizontal strips, say H,, H, and H,,
and (3) the half disks D, and Dy mclude fixed point attractors A and B respectively.
Let Vi, V2 and V, be the vertical strips in £ (stretching the full width of E) such that
) =H;, 1<i=<3; see figure 1,
Tt is well known, see e.g. -Guckenheimer and ‘Holmes [GH], that under

'reasonable assumptions, almost every point will be attracted to either A or B, the

stable set' S(E) of g with respect to E is a Cantor set of vertical curves, and the
unstable set U(E) of g with respect to E is a Cantor set of horizontal curves. All
components of S(E) are stable segments, and all coraponents of U(E) are unstable
segments.. The intersection C of the stable set S(E) with the unstable set U(E) in E
is a chaotic saddle. Note that all the points on the chaotic saddle C stay in the box E
for-all time under all*forward and all backward iterates of the map g. The set of
points in E that are on the basin boundary is the stable set S(E), and the basin
boundary of g is fractal. One might choose the transient region R to be the interior
of W minus two small closed balls that are centred at the attractors A and B.

C \\' :\\\ l\\l
i N‘%\' iohi
Vv, YV, Vg

Figure 1. S-shape horseshoe map: vertical strips in the rectangle E are mapped into
horizontal strips in E, namely ~V}) = H,, F(V;) = H,, and F(V;) = H,. The half disks
D, and Dy each contains a fixed point attractor, and each is mapped into its interior.
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We assume throughout that (1) for the transient région R the sét Inv(R). is
non-empty, and:(2) there exist two generahzed attractors A and B; and-each pomt
in R that escapes:from R under iteration of the map F'is either in-basin{A) or-in
"basm(B} and the .basin boundary is the common boundary of basin{A) and:
basin{B}.

We will réferto R\S(R), the complement of the stable set S(R) in‘the transient
region R, :as the transienit.set. Recall that a point p:in S(R) is accesszble from an open
set V' if there is a continuous curve K ending at p such that K \{p} is-in V. We
‘investigate the cases where V is.either basm{A} (or basin{B}) or is-the transient set
R\S(R). In-this paper we emphasize points accessible from basm{A} rather than
from basin{B}, just to simplify notation. Obviously, if a point p in S(R) is accessible
from the transient set R\S(R) and p is on the basin boundary, then p is-accessible
from either basin{A} or basin{B}. On the other hand, S(R) can contain "points.
which are not'in the basin boundary, and such pomts might be-so numerous that
they block the access to the basin' boundary, that is, every curve in basin{A} that
goes to an accessible point would- necessary pass through points of S(R). Thus no
points of the basin boundary would be accessible from R\S(R). Naturally S(R)
would have its own accessible points, but these would lie in basin{A} (or basin{B}).
This situation occurs in-the previously-mentioned pendulum example. Hence, S(R)
might contain points on the basin boundary that are accessible from basin{A} (or
basin{B}) but not. accessible from the transient set R\S(R). In example 2 below,
S(R).contains such points in-the basin boundary. Therefore, the accessible PIM
triple procedure {NY2], for finding accessible points on S(R) is, generally speaking;
not a-procedure-for finding accessible points on the basin boundary. We would like
to point out that there are cases where S(R) equals the set (basin boundary N R),
(though this condition may be hard to verify). In such cases the ASST method
(involving the accessible PIM triple procedure) might be used for finding accessible
trajectories on the basin boundary.

Example 2. In this example, we illustrate the fact that S(R) can contain points that
are not in the basin boundary, and for simplicity we present one-dimensional maps.
Consider two one-dimensional maps with attractor A (which is —) and attractor B
(which is +). Let f and g be the piecewise linear maps of which the graph is given
in figure 2(a) and 2(b) respectively, such that g(y) =f(y) forall y <1.

“”f o)

Figure 2. One-dimensional maps f and g (the graphs of f andg are given in 2(a) and
2(b) respectively). When we choose the transient region R to be the interval (-2, 3), the
stable set S(R; f) equals the basin boundary, and the stable set S(R; g) is strictly larger
than the_basin boundary.
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Let p and 4 denote the two -fixed points of g in (1,%), and write m =
min{g(y):y=p}. Assume.1<m <2<p<gq<3I<g(m), see figure 2. The maps are
constructed‘in such a way that basin{A}-and basm{B} of g and f-¢oincide. Hence,
both-maps have the same basin boundary and it is contained in the interval [=1, 1),
Note that the basin boundary is the set of il points iri {—1, 1] that stay msnde[ 1,1}
under all positive-iterates of the map f (or g), and the basin boundary is fractal.

On-the other hand we have, all points in (1, %) go.to attractor B under forward
iteration of the-map f, whereas basin{B) for g includes a chaotic saddlé in the open
interval (2,3). When we. choose the transient region R to be .the open interval
(~2,3), the stable sets ‘S(R;f) and S(R;g) are the sets of points that stay in R
under all forward iterates of f and g respectively. We have the basin boundary
equals the stable set S(R;f), but the stable set S(R;g).is strictly larger than the
basin boundary. It can bé shown that points of S(R;g)— S(R;f) can be found
arbitrarily close to each point of the basin boundary.

*

We-would like to address the following problem.

Accessible basin boundary static restraint problem Given a segment J that has
one end point in basin{A} and one end pdint in basit, B}, describe a procedure for
finding a point on the basin boundary (in JNS(R)) which is accessible from
basin{A}.

We will state a procedure (the accessible basin boundary refinement procedure)
for finding accessible points in M on the basin boundary. We will show it is valid
(guaranteed to work) for the same class of hyperbolic dynamical systems as in
[NY2], namely hyperbolic systems in which the unstable manifolds are one
dimensional.

All the procedures are based on our presumed ability to specify an initial point p
and compute the time Tx(p) its trajectory takes to escape from R. For applications,
we need a ‘dynamic’ version of the ‘static’ problem above, since we want to produce
numerical trajectories that are accessible from basin{A}. The ‘dynamic’ problem
that is associated with the ‘static’ one is the following.

Accessible basin boundary dynamic restraint problem. Given a line segment J
that has one end point in basin{A} and the other end point in basin{B}, describe a
procedure for finding a numerical trajectory on the basin boundary that starts on J
and which is accessible from basin{A}.

The ideas of the ‘accessible basin boundary refinement procedure’, which solved
the ‘static’ problem, can be applied to solve the ‘dynamic’ problem, in such a way
that implementation is possible on a computer. For more details, see the discussion
in section 6.

The organization of the paper is as follows. In section 2 we present the
‘accessible basin boundary refinement procedure’. Then, n section 3, we discuss
some examples in which the straddle method involving this refinement procedure
has been used. The main result for the validity of the refinement orocedure for
hyperbolic systems is stated precisely in section 4, and this result is proved in section
5. Section 6 is devoted to the discussion of ths associated numerical method (the
accessible basin boundary straddle trajectory method or ABST method) and related
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numerical methods. ‘Finally in section’ 7; the case of d-dimensional hyperbolic’
systems, d =3, and smoothness of F are discussed:

2. The accessible basin boundary refinement procedure

Let the manifold M, the diffeomorphism F, the tr- ient-region R, and generalized
attractors A and B be as'before. Recall that we as: ... that each point that leaves R
under iteration.of F is either in basin{A} or in basm(B) The escape time Tx(x) of a
point x.in R is defined by Tr(x) = min{n =1:F"(x) ¢ R}, and Tp(x) == if F"(x) e R
for all n=1. We say, Ta(x) =0.if x ¢ R

Let J-be an unstable segment in R, The notation {x, y} for a pair. means that x
and y lie on J. Since J is homeomorphic to.an interval, we may assume it has the
ordering of an interval. For {x,y} we always assume for convenience that the
ordering on J is such that we may write x <y, and denote (¥, y], for the segment on
J-joining x and'y. Let L cJ be any connected subset of J. ‘Assume L intersects the
stable set S(R) transversally. and let {a, b} be a pair on L, For each £¢>0, an
e-refinement of {a, b} is a finite set of points.a = go<g,<- <gy=bin [a,b),
such that

(e/2) - p(la, b)) < p((gk g 1)) < €+ p([a, b))

forall k, 0sksN-1. )

We say the pair {a, b} is a straddle pazr if a ebasin{A} and b € basin{B}. We
call {a, b} a proper straddle pair if {a, b} is a straddle pair, and at least one of the
points a and b is in the interior of L. If {a, b} is.a (proper)-straddle pair, then we
call the interval [a, b}, a (proper) straddle segment. Our objective is to describe the
‘accessible basin boundary refinement procedure’ that selects in a unique way a
proper straddle pair from any e-refinement of a given straddle pair (on J*, When we
repeatedly apply the procedure to the. end points of the ever decreasing straddle
segments (with lengths converging to zero), the resulting nested sequence converges
to an accessible point p in the basin boundary; of course, this point p is in J N S(R).
The point p that we find is accessible using the curve [r, p], for some r in
JNbasin{A}, so we say p is ‘accessible from the left’ (‘accessible from basin{A}),
that 1s, from the side containing r (in basin{A}). We could alternatively have chosen
to approach from the right and we would expect to find a different point on the
basin boundary. Since almost-every point ont J has finite escape time (see section 4),
we can assume that all points of all refinements are chosen with finite escape time.

We now describe the accessible basin boundary refinement procedure which is
‘the refinement procedure that generates a uniquely defined proper straddle pair
from a given straddle pair. This procedure plays a dominant role in the method that
generates a numerical trajectory on the basin boundary that is accessible from
basin{A}. A slightly improved version is stated in section 4.

Let {a, b} be a straddle pair on a curve segment J such that a is contained in
basin{A}, and b is contained in basin{B}. Let P={x;:0<i<N(¢)} be any
¢/3-refinement of {a, b}, we of course have PcJ and a =xo<x,<...<Xy¢) =b.
We choose the proper straddle pair {a*, b*} from P in the following way:

(1) select b* to be the leftmost point of P that is in basin{B};

(2) define m to be the minimum of the escape time of the points in P to the left
of b*, and write a° to denote the rightmost point to the left of b* that has the
minimum escape time m.
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(2a) 1f-m <.Tg(a) then choose a* = a"; otherwise,

(2b) if m= TR(a) then the chonce of. a‘ depends on the grid P* consisting of b*
and.all'the points in P to the-léft of b* (that.i is,’P* = {x € P:x €[a, b*]}).

(i) If the grid P* is not an' &- -refinement of {a, b*}, then choose a*=a;
otherwise,

(u) if the grid-P*is an &- reﬁnement of {a; b*} then choose a* to be the-adjacent
point-in P* to the right.of a°, uniess b* is that: adjacent point, in which case choose

a*=d’

Remark Assume that £>0-is suxtably chosen. In case: of step (2b) the equality
a* = a" does:not occur and one has a* > a".

(1) As the accessible basin boundary refinement procedure is- -applied. re-
peatedly, step (2a) only occurs at fmost finitely-many times, and the ségment {a, a*}
in (2a) may include points.that are in ‘basin{B)}. However, once step (2b) occurs,
step: (2a) will. never-occur again. When step (2b) is applied, the entire segment
[a, a*] (not-isst the grid points) is in basin{A} but'{a, a*] may include points that
have escape,’xme infinity. We would like to emphasize. that all' the points between a.
and.a* in step-\2b) whose escape time.is finite, go to attractor A, This.is why the

v vmE e

ar

méthod. produces an accessxbie point as. the refinement is repeated. The problem of: ’

course is to-find £ small. enough s

) When a* and b* have been chosen, ifithe grid consisting of a*, b*-and all
the points in P between a* and b*is still an e- reﬁnement of the pair {a*,5*}, then
set a*=a and.b* =b and apply step:(2b). Repeat this until the grid {x €eP:xe

{a®, b‘]} fails to be an €-refinement of {a*, b*}. Notice that in cases when only step

(2b) is repeated, the point b does not move.

(3) Under hypotheses in section. 4, it is possible to repeatedly apply the
accessible basin boundary refinement procedure obtalmng a sequence of straddle
pairs that converges.to an accessnble point on.the basin boundary.

Example 3. The purpose of this example is to illustrate the accessible basin

boundary refinement. procedure in a graphical way. We choose € =0.1. Let {a, b}
be a straddle pair, and let P be an £/3-refinemenit of {a, b}. We assume that P is on

asa Y b ) o’ v b

Figure 3. The accessible basin boundary refinement procedure. In figure 3(a) the grid
on {a. b*] is not an e-refinement of {a,-b*} and so a does not move; in figure 3(b) the
grid on {a, b*] is an e-r2finement of {a, b*} and so a moves to the right.
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the str ght line segment that Joms a with b and that the grid points are- equally
spaced s6 P consists of 31 gnd points. In figure 3 the escape time of a grid point x in
P-is représented by.a star if x is'in; basin{A}, and it-s represented by-a dot if x is in
basm{B}

In. figure 3(a) we have b* =xs. The grid P*={xeP:x¢a, b*]} is not an
e-refinement of {a, *}, since the distance between two adjacent points equals
16* —uI|/8 which is greater. than &+ [[b* — a]|. Hence; we choose a* =a. In figure
3(b) we have b*=x,. The'grid: P*={xeP:xea, b*]} is an &-refinement of
{a, b*}, since the distance between two adjacent points equais l16* — all/20 which is
smaller than ¢ ||b* —a||. Since Txr(xo) = Tr(xs) = Tr(x10) = m, we.choose a* =x;,
as indicated in the figure.

3, Applications

The objective of.the- paper is to present the. accessible basin boundary refinement
‘procedure which enables us to obtain accessible-numerical trajéétories on the basin
boundary. We also prove that this numerical prc"‘dure works in-ideal cases. While
we believe that-the hypcrbollcny hypotheses (stated in section 4) are often satisfied,
they are nofietheléss. in practice difficult or impossible-to verify. While chaotic
attractors are usually not hyperbolic, the sets we look at are 7ot attractors. We do
observe that frequently we can successfully use the procedure to obtain pictures of
the accessible-points on the basin boundary. '

In all the examples below, the pictures were-obtained by using the Dynamics
Program [Y]. In these pictures, basin{X} is obtairied as follows: for a 960 x 544
grid, use.each grid point as initial value and -assign to each grid-point a colour
(respectively, no colour) if its trajectory converges to X (respectively, stays away
from X). The set of coloured grid points is in basin{X'}, and the non-coloured grid
- points are outsi" 1(X}. In all. the pictures for which one of the numerical
procedures has be  _plied in order to produce a single numerical trajectory, have
been obtained by selecting € = 1/30 as default value (see also section 6).

3.1, Hénon map

Let the diffeomorphism F acting on the plane be given by
F(X:Y)=(P‘x2+# ')’»x)-

The map F is equivalent under a change of variables to the Hénon map
1-p-X®+Y,u-X). For a first example, we choose the parameters p=
1.81257970-and u =0.022 864 30; these parameters are due .to Grassberger and
‘Cvitanovi¢ (personal communication). For these parameters attracting cycles with
period 3 and period 5 coexist. Let D, and D, be closed balls of radius 0.01 centred at
one of the points of the attracting period 3 cycle and 5 cycle respectively. We choose
the transient region R to be the open set {(x, y): —2<x <2, =4 <y <4} minus the
closed balls D, and D,.

Let A and B be the attractors with period 3 and period S respectively. The white
area in figure 4(a) is basin{A4}; the black area is basin{B}. By using the bisection
procedure (see-also section 6), we obtain a straddle trajectory (that is, a numerical
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l-‘lgure 4. (@) The white area is busin{A} and includes the penod 3 auractor, the black
area is basin{B) and includes the period 5 attractor in the region ~2<x <2, =~4<y <4
of the Hénon map with parameter values p= 181257970, u=0,02286430. (b)
Straddle trajectory using the bisection procedure for the Hénon map (p = 1.81257970,
1 =002286430) in the transient-region {{x,y): —2<x<2, —-4<y <4} minus two
closed balls of radius 0.01 centred at a point of each attractor. The three saddle periodic
points on the basin boundary that are accessible from basin{A} and the five siddle
periodic paints on the basin boundary that afe accessible from basin{B) are indicated by
straight and curved arrows fespectively.

trajectory) on the basin boundary consisting of more than. 100 000 points (actually’

tiny intervals); the result is presented in:figure 4(b).

By using the accessible basin boundary refinement_procedure we obtain a period
3 saddle when the left point a is chosen in'basin{A}, and a period 5 saddle when the
left point q.is chosen in basin{B}. The accessible period 3 and period'5 saddles on
the chaoti¢ saddle are indicated by arrows in.figure 4(b). Therefore, the set of all
points accessible from basin{A} are the stable manifolds of the points of the period
3 saddle, and all points accessible from- basm(B} are -the stable mamxoids of the
points of the period 5 saddle.

For a second example, we select-the values p =2.66, u =0.3. Thx, map F has twe
attractors'4 and' B, where A .and: B-denote the attractors infinity and a cycle with
period 3 respectxvely The: box {Ce ¥)1=3<x<3, =3<y <3} contains a chaotic
saddle, and we select the transient région R o b.* the open set {(x, y): =3 <x<3,
~3 <y <3} minvs the ball of radius 0.005 centret..at a point of attractor B. Using
-the bisection procedure tesults in one numierical tra;uctory, that has:been' prosented
in figure 5.

By using the.accessible basin boundary refinement procedure.we obtain a period
1 saddle when the left pomt a is chosen in basin{A4}, and a period 3 saddle when the
left point a:is.chosen in basin{B}.. The accessible period ! and period 3 saddles on
the chaotic saddle are indicated by arrows in figure 5. So, the set of all points
accessible from basm{A} is the stable manifold of the period 1 saddle; and the set-of

IAYR]
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Figure 5. Straddle trajectory using the bisection procedure
for the Hénon map (p =2.66, u=0.3) in the transient
region {(x, y): ~3<x <3, =3<y <3} minus a closed ball
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. . period 3 attractor). The fixed point on the basin boundary
- '_"_\—-»' . that.is accessible from basin{A} (where A =), and the

' three saddle periodic:points on-the basin boundary that
are accessible from basin{8) are indicated by curved and
: + straight arrows respectively.
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all points accessible from basin{B} are the stable manifolds of the points of the
period 3 saddle.

For a third example of this map, we select the parameter values p =-1.405,
p=-03. The map F has two coexisting attractors, namely, a period 2 cycle
(attractor A) and the attractor infinity (attractor B), The box {(x,y):-3<x<3,
-3 <y <11} contains a chaotic saddle. Basin{A} is the white area in figure 6(a).
(the two points of attractor A are marked by a dot in the figure), and basin{B) is
black in figure 6(a).

(b)

Figure 6. (@) The white area is basin{A} and includes the period 2 attractor, the black
area is basin{B} (where B =) in the region {(x, y):=3<x<3, -3<y<11} of the
Hénon map with parameter values p = 1.405, u = —0.3. Attractor A is marked by two
dots, and a saddle fixed point in basin{A} is marked by a cross. (b) Straddle trajectory
using the bisection procedure for the Hénon map (p = 1.405, u = —0.3) in the transient
region {(x, y):-3<x<3, ~3<y<11} minus a closed ball of radius 0.2 centred at a
point of attractor A. The three saddle periodic points on the basin boundary that are
accessible from basin{A} and the saddle fixed point on the basin boundary that is
accessible from basin{B} are indicated by straight ard curved arrows respectively.

.of radius 0,005 centred at-a point of attractor B (the.
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We select the transient region R to bé the open set {(x,y):—3<%<3,
-3 <y <11} niinus the ball of radius 0.2 ceritred at a point of attractor A. Using the
bisection procedure results in one numerical’ trajectory’ that has been presented in
figure 6(b). The PIM triple procedure may result in a saddle fixed point that-is in
basin{A}; this saddle point is marked. by a-cross infigure 6(a). If we select the
transient region to be the region R minus a ball of radius 0.2 centred at this saddle
fixed point, then applying the PIM triple procedure results a similar numerical
trajectory as in figure 6(b). Notice that the ball including thé-saddle fixed point is in
basnn{A)

By using the accessible basin boundary refinement-procedure we obtain a period
3 saddle, when the left point.4a is chosén in-basin{A}, and a period 1 saddle. when
the left point a'is chosen in basin{B}: }. The pomts of the accessible period 3 saddle
on.the chaotic saddle are indicated by arrows in figure 6(a). So. the set of all points
accessible from - ‘basin{A} are the stable manifolds of ‘the ‘points of the period 3
saddle, and the set of all points accessible from. basnn(B ). is-theé stable manifold of
the period:1 saddle.

Note that the invariant set of points in the transient region consists of at least
three basic sets, namely, (1)-the period 2.attractor, (2) the saddle fixed point in
basin{A} and (3) the chaotic saddle on the basin boundary.

3.2, Pendulum

We consider the differential equation
x"(8) + vx'(t) + sinx(t) = f cos(¢).

x -~

vy e

.y e
s mmeadees 7 ke K R X 8w

®)

Figure 7. (a) The white area is basin{A} and the black area is basin{B} (where
A=(-0.472615, 2.037084) and B =(-0.478014, —0.608233) are fixed point attrac-
tors) in the region {(x,y):~x<x<um, --3<y <4} of the time-2x map of the forced
pendulum x"(¢) +0.2x"(r) +sinx(¢) =2 ces(t). The three saddle periodic points on the
basin boundary that are accessible from basin{A} .are indicated by arrows. (b) Two
straddle trajectories using the PIM triple refinement procedure for the time-2x map of
X"(t) + 0.2x'(¢) + sin x(¢) = 2 cos(¢) in the transient region {(x, y):—=r<x<x; -3<y<
4} minus two closed-balls of radius 0.05 centred at the fixed point attractors 4 and B,
one trajectory:in both basin{A} and basin{B}. The two saddle periodic 2 orbits on the
stablé set that are accessible from the transient set R\S(R) are indicated by arrows.




1194 °  HE NusseandJ A Yorke

We choose the parameter values v =0. 2 and f=2. For these parameters, the
time-27% -map. has two stable fixed points A and B: In: figure 7(a), ‘basin{A} is
coloured- white and basin{B} is-coloured black. It was already observed [GOY2]
that there was-transient -béhaviour in- the basin{4) and basm{B} We choose the
transient region to be th¢ rectangle {(x,y):—w<i¥<nm, =3<y<4} minus two
balls (of radius 0.05) centred at the-attractors A and B. By using the PIM triple
_ -procedure for two different transient regions, we obtain two numerical trajectories,
The result for the choice of the interval with end points.(—3, —3) and (3,4) is.a
trajectory lying in basin{A}; and the segment from (=3,4) to (3, —3) results in a
numerical trajectory lying in basin{B}. Both trajectories are presented in figure
7(b).

By using the accessible PIM triple procedure we obtain period 2 saddles, see also
the discussion in section 6. The result for the segment from (-3, —-3) to (3,4) is'a
.period 2 saddle on the chaotic saddle in basin{A}, and the segment from {~3,4) to
(3, =3) results;in a period 2 saddle-on-the chaotic saddle-in basin{B}. The points of
these accessible period 2 saddles. on the chaotic saddle are indicated by arrows in
-figure 7(b). 'I‘he set.of all accessnble points on the two chaotic saddles are-the stable
manifolds of the points of these period 2 saddles.

By using the accessible basin boundary refinement procedure we obtain two
-period 3 saddies: one is accessible from-basin{A}, and the other one is accessible
from basin{B}. The points of the period 3 saddle that is accessible from basin{A}
and is on the basin boundary, are indicated by arrows in figure 7(a). The set of all
points on the basin boundary that are accessible from basin{A}, are the stable
manifolds of the points of this period saddle. A similar result as above holds for the
points on the basin boundary that are accessible from:basin{B).

3.3. Complex quadratic map

We consider the quadratic map in the complex plane given by
Znsr= 25+ 032 +0.043i.

For this system two attractors coexist, namely, a period 11 attractor (attractor A)
and the attractor infinity (attractor B). Let D be a closed ball of radius 0:05 centred
at a point of attractor . We choose the transient region R to be the open st
{(x, y): —1.35<x <1.35, —1.35<y <1.35} minus the ball D. The basin boundary
straddle trajectory resulting from the bisection procedure is presented in figure 8(a).
The accessible basin boundary straddle trajectory resulting from the accessible basin
boundary refinement procedure, a trajectory of which all the points are accessible
from basin{A} is presented in figure 8(b), and the accessible. basin boundary
straddle trajectory of which all the points are accessible from basin{B} is presented
in figure 8(c).

_ The choice_of this equation was motivated by the picture of the Julia set in [PR].
The reader should compare our figure 8(a) with figure 25 in [PR]. We would like to
point out that the basin boundary of this system (the Julia set) is two dimensionally
unstable; thus our results.are not valid for this example.
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51"" ) j’ oz, =22+0.32+0.043i in. the transient region
’ 66 ) 7 ‘\) ] {(x, y): =135 <x, y < 1.35} minus a closed ball of
o~ } ! radius 0.05 centred at one of the points of attractor
Ly . ) ) A (period 11 attractor). (b) Straddle trajectory
iz:_{ ‘- ) using the accessible basin boundary refineinent
At s procedure for the complex quadratic map that is
A \ . ‘) accessible from basin{A}. (c) Straddle trajectory
AW A using the accessible basin boundary refinement
rocedure for-the complex-quadratic map that is
p .
accessible from basin{B}.
4, Results

In section 2 we presented the accessible basin boundary refinement procedure for
finding a point on the basin boundary in the transient region, which is accessible
from basin{A}. First, we formulate a refinement procedure which is a slightly
improved vession of the accessible basin boundary refinement procedure.

We will describe inductively how to refine our proper straddle pairs. Given a
straddle pair {a,, b,}, we have a, is contained in basn{A4}, and b, is contained in
basin{B}. Given any ¢/3-refinement P, = {x;:0<i<N(g)} of {a,, b}, we of
course have a, =xo<x;<... <Xy = b,.. We choose the next proper straddle pair
{@n41> bns1} from P, in the following way.

(1) Select b, to be the leftmost point of P, N basin{B}.

hearvnem———— e 43w, 37 - pme p =
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(2). Define m, =min{Tz(x):x € P; and x <b,,,};
ah, =max{x €Q,:x<b,,, and Tg(x) =m}.

(2a)-1f'm,, < Tr(a;) then choose a,,; =a’,,; otherwise,
(2b) If m,; = T(a;;) then in order to choosé a,;,.; we write

‘Qp={x€P,:.. .ia,, by}

a},, =minimum of the set {xe Q,:a%,,<x<b,,},
unless this set is empty in-which case a;,; = a5..;

al .y =max{x & 0, x < b4 and Te(x) = Tn(az,)}-

“ase (i) If Q, is not an e-refinement of {a,, b,.}, then choose a,.,=a,;
-wise,
Case (ii) If'Q, is an z-refinement of {a;, b,..,} then choose a,,,, =dp.,.

Remark (1) For the conveniente of the reader, if £>0 is chosen suitably, then
8, <801 <aY SAhyy <b,yy and 'm, = Tp(ah) < To(d741) = Tr(ahs)- N : that
Q. might fail to be an &-refinement of {a,,.b,.,} in that the distance betweén some
r..r of consecutive points in Q, might be bigger than ¢ - p({a,, b; ..},

{2) Under the hypotheses below it is possible to repeatedly apply the improved
1...1.ement procedure above obtaining a sequence {{a,, b;}},-o that settles down to
an accessible point on the basin boundary.

In the descriction of the refinement procedure -above, we assumed that there
exists an £ >0 fv. which every e-refinement-of a straddle pair {a,, b,} includes a.
proper straddle pair {a;,,, b,+} such that.[a,, a,.,]; is'in basin{A}, and the length
of the. straddle segment. [a,.+y, b,. s at most (1 — £/2) times the length of the
previous straddle ségment [a,, b,];. We will justify these concepts.

Let the 1 :0ld M and the diffeomorphism F be as in the introduction. We
-assume that A and B are two generalized attractors -such that each attractor is
contained either in A-or in B. Recall that a subset A of M is hyperbolic if it is closed
and F-invaric~ nd the tangent bundle T, M splits into dF-invariant sub-bundles E*
-and E¥on w dFis -uniformly contracting and uniformly expanding respectively.
A hyperbolic set A is called saddle-hyperbolic if dim E*=1 and dimE“=1. In
[NY2] we defined a region R to be a‘saddle-hyperbolic transient region if R satisfies.
all the following conditions: .

(A1) Ris a transient region:

(A2). hyperbolicity property-_inv(R) is a non-empty saddle-hyperbolic set;

(A3) boundary property: U(R) N 3R is mapped outside the closure R of R;

(A4) intersection property: each non-trivial component y of U(R) is an unstable
segment, that is, y intersects Inv(R); note that such a segment y must intersect S(R)
transversally.

In this paper, we say a transient region R satisfies the basin boundary property if
(1) each_point in R\S(R) is contained in ei*her basin{A} or basin{B}, (2) the sets
RnNbasin{A} and R Nbasin{B} are nc -mpty, and (3) the R Nbasin boundary is
positively invariant (that is, F maps 1  vasin boundary into itself). We define a
region R to be a basin boundary transient region if R is a saddle-hyperbolic transient
region and R satisfies the basin boundary property.
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For -a-basin boundary transient region ‘R, and-£>0, the. 'propér‘fies (A1) and

"(A2) imply that the escape:time of almost evéry point-point on an unstable segment

is finite. (A result due to Bowen and Ruelle [BR] shows-that S(R) has-Lebesgue
measure zero.) Hence, one may-assume- that such a~reﬁnement does not intersect

-the stable sei- S(R). The basin boundary property impliés that ‘éach point that

escapes from R under iteration of the: map F is either in basin{A} or in basin{B}.
If R is a basin boundary transient region;, then the éscape time map T restricted
t6 an unstable segment J < U(R) has the followmg two properties (s€e [NYZ])
(@) All: the points in a chosén segment (g, ‘b],-on J will escape from R if and only
if no &-refinement of {a, b} includes-a PIM triple (that is, a triplé (p, r, q).onJ such

‘that Ta(r) > Tr(p), Tr(r)> Ta(q), and p({p, q1;) < p((a, b},))-

(ii) T is locally constant on an open subset of.full measure of J, and'if. Tr(x) <«
and x is a point of discontinuity of T, then lim inf,_., Tx(. y) Tr(x) and
limsup,._., Tr(y)=Tr(x) + 1.

We.assume throughout that dim £“ = [. For the.sake of simplicity, we -assume.
that d+=2; the more-difficult-case d =3-will-be-discussed in-section 7.

From now on, we-will assume that R is a basin boundary transient.region for F,
and that Jc U(R) -denotes an unstable segment. The proof of the proposition.
below, will follow lmmedxately fiom the proposmons 5:1 and 5:2.

Proposition; Theré exists a finite set-of periodic points P* in-Inv(R) $uch that (1)
each pointin P* is accessible from R\S(R), -and:(2) for x € S(R), the point x is
accessible from R\S(R) if and only if x € W*(p) for some p € P“.

Corollary. Each accessible point on the basin boundary is-in the stable-manifold:of
some periodic point.

Since J is an unstabie segment, recall that this implies that both ends of J are in
the. boundary of the transient.region:R. We know. by the intersection- assumpuon—
that J intersects the stable set S(R). Obviously, if {a, b} is a.straddle pair, .then
there exist proper straddle pairs in every e-refinement of {a, b}, for each g,
0<e=0.5.

The next result deals with the convergence of the sequence of nested proper
straddle segments’(a,.,, b,41); = [a,, bs]; on J. A sequence of straddle segments
{{an, ba]s}nse On J is called a straddle segment sequence if {@,.y, byvi} is in an
e-refinement of the straddle pair {a,, b,} for all n. We say {[a,, b,];}u=0 is the
accessible straddle segment sequence if {a,, b,} is selected using:the accessible basin
boundary refinement procedure for all.n. For every ¢, 0<¢e=0.5, each straddle
segment sequence {[a,, b,];}.=0 converges to a point on the basin boundary. In
section S we will show that there exists € >0 (depending on F and R) such that for
every accessible straddle segment sequence {[a,, b,];}.=¢ there is an integer N=0
such that for every integer n=N the straddle segment [a,, d,.,], is contained in
basin{A}. This number ¢ also appears in the result stated below. The main result
stated below implies that the accessible basin boundary refinement procedure is
valid.

Theorem. There exists £ >0 (depending on F and R) such that every accessible
straddle segment sequence converges to an accessible point on the basin boundary.
1
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5. Proofs
5:1. Preliminaries.

Let the manifold M; ‘the distance p onM, and’ dlffeomorphlsm F be. as before. We
assume. that R:is a. basm boundary transient region:for the diffeomorphism F, and
that there .are generalized ‘attractors. A -and B such that each -point that- eventually
leaves R is either-in basin{A} or in basm{B} Reécall that-the non-wandering set-Q
(that is, the set of-all points x in M such:that.for every open:neighbourhood V of x
‘thére exists .= ] for which F"(V)) N V.is non:empty) can uniquely be decomposed.
into a-finite’ collectxon of disjoint closed invariant subsets and on each of these
subsets -F has a dense orbit; these maximal invariant subsets of Q appearing in the
decom=osition are. called the- basic sets (see-e.g. [GH] for the definitions and several
prope' 25 of uniformly hyperbolic systems). From now.on,:let I' denote a. basic set
of. F ‘From the definition: of Inv(R) it follows lmmedlately that either I' < Inv(R) or
rey Inv(R) is empty. Thus, 'we can decompose Inv(R)-into finitely many basic sets.

Note that ‘Fﬂlnv(R) is empty’ does not imply ‘'R is empty’, and ‘TNR is
non-empty”does riot imply: ‘T’ N Inv(R).is non-empty’.

Recall that for z € Q. the stable manifold W‘(z) of z is the-set of pomts x for
which p(F"(2), Fx x))— 0 assn— <, and the unstable manifold W*(z) of Z.is the set
of points x for which p(F™"(z), F '"(x))—->0 as n—, The local stable manifold
Wi(z) of z (of ¢ ¢ B).is the set.of points x in W*(z) such that- p(F"(z) F"(x)) B
for:all integers-n = 0; and the local tinstable manifold Wi(z) of z.is the set of points
x in W¥(z) such that p(F'"(z), F‘"(x)) B for all n=0, where §>0. When the
stable or:unstablé manifold is a curve, we write Wi (z) and W (z). for the two
components of - W,oc(z)\ {z}, where o is either s or u.

‘We call T a trivial basic set if T' consists of one periodic orbit, and we call T a
non-trivial basic set if I' includes more than one-periodic orbit. Assume .that T is
non-trivial; wecall.-I" périodic if there exists m € N.such that F™ has no dense orbit
on I'. and we-call T non-periodic if it is not periodic.

We will:see below that the structure of Inv(R) is essentially controlled by-finite
sets of. penodlc points. Recall that x in Inv(R) is accessible from an open set V if
thefe is a curve y such that y\{x} lies in V. If we.choose V to be the transient set
R\S(R), and if x in Inv(R) is accessible from R\S(R) it is.always possible to choose
‘this curve y to be a piece of the unstable manifold W*(x), that is,-y can be chosen to
be enther Wit(x) or Wi(x). Notice if x is accessible from R\S(R) and
y = Wite(x), then x is not a limit pomt of Wi(x) N Q. Similarly, if we choose V to
be the open set R\U(R), and if x in Inv(R)-is-accessible from R\ U(R) it is always
possible to choose this curve y to be a piece of the stable manifold W*(x), that is, y
can be chosen to be either Wig(x) or Wix(x). Applying a result due to Newhouse
and Palis [NP], we obtain the followmg

Proposition 5.1. There exists a finite set P of periodic points in lnv(R) P=P'UP,
such that each point-in Inv(R) that is accessible from R\S(R) is in W‘(p) for some p
in P4, and each point in Inv(R) that is accessible from R\U(R) is in W*(p) for
some p in P’

Proof. For a proof, see Newhouse and Palis [NP]. O
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Pilis' and. Takens. [PT] ‘havé shown ‘that ‘there exist regions in ‘M, whose !
boundanes are'segments in the stable and unstable mamfolds of: these finite sets of -
penodxc pomts P* and P, such that.the-intersection of- the, union- of these regions
with the saddle basic set I is-a Markov partition for T, see Bowen [B] for the notion .
of Markov partition.

Proposition. 5.2, Assume [ is a non-trivial non-periodic basic set in Inv(R), and let:

z €T be fixed: Let P and P“.be as- -above. There exist finitely many disjoint regions -

‘R; being. diffeomorphic images of the square B =[-1, 1} X [-1, 1]; say R; =gi(B),

1<i=<N for some N €N, and a connected.subset /* of W*(z) such that:

(1) TN R; is non-empty for all i;

@) T<UL R;

() FOR)=UL 8R; and F'(8,R)=\UN,3,R, where J,R;=
sl{(x, y):lxl=1, lyl= 1}) and 3,R;=g({(x, y):Ix|s1, |y]=1)}) are cornected
subsets in the stable set W*(P* NT) and the unstable set W*(P* NT) respectively; and

(4) for every i, I*NR,; consists of cxactly one -component -and 3(/“NR))c -

UL, 8,R;, 1<i<N.

Prf)of. For a proof, see Palis and Takens (PT).

Recall that R is a basin boundary transient region, and [ a basic set in Inv(R).
From- now on, let- the point z eI, the regions R;, 1<i=<N, and the segment
I“ « W*(z) be as in proposition 5.2. There exist a C'*®, stable foliation #* on a
neighbourhood V{ of I' and a C'** unstable foliation #* on-a neighbourhood V¥ of
T, for some a>0. Since it is no restriction to assume that every region R; is
contained in VRN V§, 1<i<N, see [PT], we will do so.

Let 7:R— W¥(z) be-a C* parametrization, and define a projection 7:['—
WL RN I by taking in each region R; the projection along the local stable
manifolds into the intersection [“ with that region, 1 <i< N. This projection can be
extended from T to the union of the regions R; by projecting along the leaves of the
foliation #°. This extension will also be denoted by . The following result says that
for some iterate K, the map F can be viewed as expansive along unstable segments.

Proposition 5.3. There exist a positive mteger K and a C'** map ¢: Uyt “W#n
R;)— R defined by @(x) =t o o FX s 7(x) such that |@'(x)] > I, for-some a>0.

Proof. For a proof, see Palis and Takens [PT]. O

5.2. Proof of the theorem

Let J « U(R) denote an unstable segment. Recall that both end points of J are on
the boundary of the basin boundary transient region R, and that J intersects the.
stable set S(R). Recall also that if a point x in-R eventually leaves R, then x is either
in basin{A} or in basin{B}.

We define for every integer x = 1:

G ={xel: Tr(x) =k}

D) ={xeJ: Tr(x) =k}.
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In particular, Cy(J) =J.. Hence, for each. integer kK =1 we'have Cy.,(J):is the set
of pomts,m;Ck(J) whose escape time from Rvis.at least k + 1; hence, Ck+|(1) is the
set of points in J that stay.in:R under F*, The pomts in'J which stay-in R under all
iterates-will be denoted by C(J). ‘For & évery k =1, we write

De(J; A) = {x € Dy(J):x € basin{A) )
DUy B)= {x € Dy(J):x € basin{B}}.

The ‘basin.boundary-property’ .now-implies that for every k =l
Dy = Dy(J; A)U D(J; B).

Notice that basin{A} and-basin{B} are disjoint open sets, so, that if there are
points a € J Nbasin{A} and b €J Nbasin{B}, then thére is a point x in [a, b), with
Tr(x) = . Observe that Q is a component of ‘D, (J) if-and only if Q is a component
of either Di(J; A) or D,(J; B).

For:each k = 1 we:have:

Cell) = Cenil) UDKU) = Cnid) U Dild3 A)U D43 B)
1= o YUY D) = Con) ) D3 4 U D1:8)

that is, J is the union of the set of points Cy.,(J) whose escape time from R is at
least k -1 and, the set of points D (J) whose escape time from R is-j, and each.of
those ps is is either in basin{A} or in basin{B}, where 1 <j =<k, We write

D.(J)= kL_J‘ D))= kL-Jn D.(J; A) U‘kL_J‘ D(J; B).

Note th* C.(J) =(MNk=o Cx(J), and J = C.(J) U D.(J).

Let L < acomponent of C,(J) that includes a point of basin{A} (or basin{B}).
The following result then says that for some fixed positive integer § (depcndmg only
on Fand R), C contains a component of | }{=3 Di4,(J; A) (or LI Di+i(J; B)). In
particular, s does not depend on k. The following lemma (basin boundary
combinatorial lemma) is used to prove the ‘basin boundary geometric lemma’ which
follows.

Basin boundary combinatorial lemma. Let X denote either A or B. There exists an
integer s =1 such that for every unstable segment J and for each-integer k=1 and
every component C of C(J), the following holds.

If C includes a point of basin{X}, then there is an integer i, k Si<k-+sanda
component D of D,(J; X) such that D < C.

Proof. Let U be a neightcurhood of Inv(R) on which a C'** stable foliation %°
exists, for some o > 0. Sciect the minimal integer v = 1 such that for each basic set T
of F" the following holds, either I is a fixed point or I is a non-trivial non-periodic
basic set. For each non-periodic basic set I' of FY, let I{ and the regions R;(T),
1<i=<N(T, be as in proposition 5.2, and let Ur be an open neighbourhood of I’
such that (1) UND R(T) = Urc U, (2) the set 77 '(J£N Uy) consists of N(I') open
intervals and its closure consists of N(I') disjoint intervals, and (3) the map ¢r in
proposition 5.3 may be extended to 77'(I£ N Uy). For each trivial basic set T, let Up
be an open neighbourhood of T' in U such that Ur does not intersect U,, for each
basic set A in Inv(R)\T.
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Let. LI,.. LN(r) ‘be the components of rr'(IfN.Ur); these finitely ‘many
components are open intervals in R. Select the mmlmal integer K(F) = 1*such. that
the map @77 (IENU)—> R defined by @r(x) = 15! e o FFO "o T(x): satisfies
lor(x)|> 1. Define the map yp:vr'(I40 Up) >R by 1Pr(x) =15l o ;w0 F¥o7p(x).
‘Now we define the- N(I') X N(I') matrix Ay by

. r r
ap={)  feosh

otherwise
for all 1 i, j < N(T'). Since T is a non-trivial non-periodic basic set of.F*, the matrix
Ay is primitive. Choose the minimal.integer m(T') = 1 such that all the entries of the
matrix AT are positive.

We define the integer s(I') as follows. If T is a non-trivial non-periodic basic set,
then defines(I') = m(T) - v, and if ["is a fixed point-of F* define s(I') = v. Now, let s
be the smallest common multiple of {s(I'):T-is a basic set of F"}.

‘Let m(R) be the number of -basic sets of -F" in Inv(R), and write Inv(R) =
PR T, We associate with Inv(R) a directed graph G, as follows: G, consists of
the points I, 1<k =<m(R), and there exist a path-from T, to I} if there exists a
point zeTl; such that W“(z)NW*([;,) is non-empty. Notnce that for cach %,
I's k =m(R) there exists a path in G, from I to itself. -

LetJ be an arbltranly chosen unstable segment. Select an integer & = 1 such that
C:(J) is:contained in U. Let-N denote the number of components of Cz(J), that is,
C:()=UL, Cs, J). From the définition of the matrices associated with the
non-trivial basic'sets, the-directed graph G, associated with Inv(R), and the choice of
the integer s, and“using the techmques in {Nul] and [Nu2], we can associate a
(0, 1)-matrix M, with-C¢(J), which is defined by

MG, j) = {0 if 7y FY(Ceu)) = CulV)

otherwise
for all 1 <i, j, <N, where 7, is the projection on J along the stable leaves.
We will assume that the Cy,'s are-numbered in such.a.way that the matrix M, is
written in-the normal form, that is,

Mll (| DRI 0
’ M2| M"Z.-‘
MJ = . * -..‘.

where each M, is an N, X N, matrix which is either irreducible (that is, for each
pair (i, j) there exists ¢ € N such that the (i, j)th entry of the matrix (My,)' is positive,
1<i, jSNy) or a 1X1 null matrix, 1<k=<m and L., Ny=N for some m,
l<sm<~N. This assumption on the Cg/s is no restriction, since for every
non-negativé square matrix B there is a permutation matrix P such that PBPT has
the normal-form (see Berman and Plemmons [BP]). In-particular, each irreducible
My, is primitive, -and if N, =2 then M,, equals A for.some non-trivial nonperiodic
basic set I' in Inv(R), and from the choice of the integer s it follows that all. the
entries of (M,,)* are positive.

Let X denote either A or B. Let integer k =1 be given. Let C be any component
C:(/), and assume that C includes a point of basin{X}. We first assume.that k = &
The definition of M,, the choice of s, and the results in [Nul] and [Nu2] yields that
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theré -exists-an-integer i, k <i<k+s and a component D-of D(J;X) such that
D <C. This result together with the .cfinitions -of A,(J) and D(J; X) .imply
immediately that also for 1<k <§-—1 one ‘has-that C includes.a component of
D,(J; X)forsomet,k<z<k+s ,

Sincé: J -was arbitrarily given; we have shown the following. There exists an
integer s = 1'such that for-every unstable segment J-and, for. each integer k = 1. and
every component C of Ck(J ), -the following holds. If C includes a point of basin{X},
then there is an integer i, k <i <k +s-and a-component D of Di(J; X)-such that
D = C, where X denotes cither A or B. This completes thé proof of the basin
boundary combinatorial lemma. O

From now on, let's be_as in the ‘basin boundary combinatorial lemma’, and let
G = F’. We now consider the escape time of points under G. For every point x in R,
the escape time TH(x) of x -under G is defined by T§(x) = min{n =N: G"(x) ¢ R}
and TH(x) =% if G"(x) e R for all n = 1. We say that T§(x)=0if x ¢ R.
We detine for every integer k = 1;
Ci(J)={xed:T§(x) =k}
D{(J; A)= {x € J: T§(%) =k and x € basin{A}}
D{(J; B) = {xeJ:T§(x) =k and x € basin{B}).
Hence, for each integer k =1 we have C{, (/) is the set of pomts in CE(J)-
whose escape time under G {rom R is at least k + 1; hence, Ck+|(J) is -the set.of

points in J that stay in R under G*. The points in J which will stay in' R under all
iterates will be denoted by CS(J). For each k =1 we have:

CP(J)=Cln) U D{(U; A)U DJU; B)
s k .
J=C{(J)uU U DfJ; A)U U‘D,-("(J; B)
that is, J is the union of the set of pomts CH,(.I) whose escape time under G from R

is at least & + 1 and, the set of points DF(/; A)-in basin{A}-(fespectively, DF(J; B)
in basin{B}) whose escape time under G from R is j,. where 1 <j < k. We write

DY) = | DEU; AU, DEU: B)
Note that C('(J) M=o CE(J), and J =CS(/) U DEW).
Lemma 5.4. For every integer k =1, we have:
(1) DEU; A) =Ukiks—s1 D(J: A); DEU; B) = Ui i—sr1 D3 B);
(2) C8(J)=C.(J) and DE(J) = D.(J);
(3) each component of DE(J) belongs to either basin{A4} or basin{B}.

Proof. The proof is left to the reader. O

Note that the set DS(J) is the set of points x €J with finite escape time (that is,
TS(x) <®). The following result: says that, if the value of the escape time map T§
changes ther: it changes in steps of 1. Denote the length of a connected subset L =J
by p(L)
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T-jump. property. ‘For every:x.€ J with: T§x) <, there exists &> 0 such- that each
y-eJ with:p([x, y};) <& satisfies {718 (x) - TS(n)=1.

Proof. Apply lemsa:5:4 and the T-jump.lemima in [NY2].

The following: lemma for. G 1mphes ‘that if an unstable segment y has a
component C of CSZ(y) that intérsects basin{X}, ‘then there is a point p of
CG(y)ﬂbasm{X } with escape: time k, and- the length of the component D of
DZ(y; X) including p is at least & - p(C).

Basin boundary-geometric lemma. Let X-denote either. A or B, There exists & >0,
such- that for every unstable segment J, and for each integer k=1 and every
component C of C{(J), we have:

If:C includes a.point of basin{X},.then there is'a component D of DF(J; X).such
that D =C and p(D)/p(C) = 6.

Proof. From the geometric lemma Il in [NY2] applied to G, there exists 6 >0 such
that for-every J in U(R),-and for every integer k.>1, the followmg holds:

(1). each. component of CZ(J) contains components of CZ(J) ana CH,(J), and

(2) if C is any component of CS(J), then:every component D of DZ(J)NC
satisfies p(D)/p(C)=4, and every component U of CZ, (J)NC satisfies
p(U)/p(C)= 4.

Let X denote either A or B, and let J be any unstable segment. Let integer k =1
and component C of CZ(J)be givén. Assume that*C includes.a point of basin{X}.

Applying the basin boundary combinatorial lemma yields that there exists a
component D of DZ(J; X) such that D < C. From the geometric lemma II in [NY2],
since D is a component of DZ(J), and the definition of 8, we obtain p(D)/p(C) =
0. Since J, k and C are assumed to-be given arbitrarily, we conclude for each
unstable segment J, for each integer k=1 and every component C of Ccéw), if C
includes a point of basin{X}, then there is a component D of DZ(J; X) such that
DcC and p(D)/p(C)=6. This completes the proof of the basin boundary
geometric lemma. O

From now on, we fix 6 as in the basin boundary geometric lemma. Before we
prove the theorem, we present a non-intertwining.property for the escape time map
as well as an auxiliary observability result for accessible straddle pair sequences. We
call a'pair {p, q} a balanced pair if T§(p) = T3(q).

Non-intertwining lemma. Let {p, q} be a balanced pair, let P be a §°refinement of
{p, q}, and assume that T§(x;) = T§(p) for every x; in P. If each point of P is in
basin{A} then [p, q], is.contained in basin{A}.

Proof. Let {p, q} and P be as in the lemma. Assume that.each point of P is in
basin{4}. Write m =min{T(x):x € [p, q};}. The assumptions ‘TS(x;) = T5(p) for
all x; € P’, ‘P is a 8*refinement of {p, q)’, together with basin boundary geometric
lemma yields that m = T§(p). Hence, [p, q), is contained in a component of CS(J).

If there exists a component D of DG(J) including [p, q];, then D is a component of
D&(J; A), and we are done. Therefore, from now on, we assume that [p, g}, is not
contained in a component of DS(J). This implies that there are at least one
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component of CS,,(/) in the interior. of [p, 4},, and at- [éast-two components: of
‘D5(J) which have a- non-empty: mtersectron “with[p, q),.

"Let D'be.a component of: DG(J) such that DN {p, .q], is non:-empty. By the basin-

boundary geometric lemma, we have p(D)/p([p, ql;)>9. ‘Since P is an e-
refinemént of {p,-q}, it follows that PN D is non-empty This fact and the
assumption ‘that -each.point of P is-in basin{A} imply that D is a.component of
DE(J; A). This 1mplles that [p, q], 0 Dg(J)is contained in basin{A}.

Let C be any component of CS .\(/) in-the mterxor or [p, q];. Applying the basin
boundary.geometric lemma we get that. p(C)/p([ D q],) > 4. If C includes a point of
basin{B}, then: C includes a component D of D&, (J; B), and by the basin
boundary geometnc lemma, we have:

pD)p(lp 1= ((D)p(C)) - (p(C)p((p, qL1))> 6°

Hence, if Cincludes.a pouut of basxn(B} then every.§*-refinenient of {p, q}-inciudes
a point of basin{B}. Since P is-an.8>refinement of {p, g} and.P does not coniain:a
point of basin{B}, it follows that C includes no point of basm{B} Since C i
arbitrary; we get. that each component of C& ,,.(J) that.is in [p, q], contains no
‘point of basin{B). Therefore 1P, g1, 0 C51(J) is contained .in-basin{A}.

Because of ‘[p, g}, = {(p, ql, N DEW)} U {{p, q); N CE.\(/)} the con.asion is
that [p, g, is' contained in basin{A}. This completes the proof-of the ‘non-
intertwining' lemma, O

Basin boundary observabtlrly lemma. L . 6°/3-refinement of -a straddle pair
{ao, bo}, and assume TR(x,) = TR(a(,) for cvery x;in P. Let {aq, b} be-thé straddle
pair in P, in whrch b, is-selected as-in the accessible basin boundary refinement
procedure. Let a} be defined as in the improved version of the accessible basin
boundary reﬁnement procedure. If P-is a-6%refinement of {ay, by}, then [ay, al], is
in basin{A}, and T{(a}) = T8(ay) + 1.

Proof. Let P, {ay, b}, and a{ be as in the lema, and assume that P (\[a,,.b,); is

an g-refinement of {a,, b}, where £= 06" Let m =min{T(x):x & [aq, b)};}. Let a}
and a; be defined as in the improved version of the ‘accessible basin boundary
refinement procedure.

The assumptions ‘Tg(x;) = T (ao) for all x; € P*, ‘P N [ay, b)), is an &- -refinement
of {ag, b,)’, together with the basin boundary geometric lemma yields m = T.§(a).
Hence, [aq, b)), is contained in a component of CEW.

By definition, we have ag<a}. We show first that [a}, a}], is contained in
basin{A}. Applying the T-jump property and the basin boundary- geomemc lemma
we-obtain that there exists a component D of GS.(J: A) sueh that D is in the
interior. of a3, by}, and p(D)/p([ao, b)) > 6. Therefore, ay exists and TE(a) =
m + 1. The definition of af and lemma 5.4 1mply that [a}, a{}, is contained m
basm{A} Recall that {af, a}} is a balanced pair, that is, ’I‘G(a,) TS(@a?). If af
and a} are in the same component of DZ, (/) then [af, a,], is in basm{A} and we
get that [a}, al], is in basin{A}. Now assume that ai and aj are in different
components of D%,\(J). Then, [af, al], includes at least one component C of

CS+2(J) in its interior, and by the basin boundary geometnc lemma we have
p(C)/p([a}, al];) > 8. This implies that PN\ [af, al}, is a 6%refinement of {af, a}}.
Applymg the non-mtertwmmg iemma yields [al , al], is in basin{A}, and we obtain
also *~ fhrs case that [a}, a}]; is contained in basin{A}. We conclude: basin{4}

inclh  ia}, al],, and T§(a}) = TS(ae) + L.
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Mfap= a,, then-it-follows: mmednately from-the. conclusion: above: that {aos a,], is
contained in basm{A} From now:of, we assume a5 <af: Recall that {dg, al} is a
balanced pair: If aq and a, -are in'the same coriponent of ’DG(J), then [ao, aj), is in,
basin{A}. If @, and a{"are in différent:components of DE(J); then [dy; al], includes-
at least one .component -C -of C,‘,;H(J) Sifce p([ao, a,],)/p([ao, bils)>
p(C)/p([ao, ) > éand Pn[ao, al),sis:a 6%refinement of {aq, af}, applymg the
non-mtertwmmg lémima we obtain- [ao, a,], is in basm{A} Since [af; a}]; is in
basin{A), the- conclusnon is that [ao, al); is containéd in. basin{A}. This complétes
the proof of the: basin boundary. obsérvability. lemma; .

Proof .of the theorem. Let 8:be as in thé basin boundary geometric lémma, and

choose &= 8 Let {[a,, ba]i}nmo:be-an accessible straddle segment sequence, that

is, {a(,, 0} is a straddle pair and' {a,,, b,} is obtained by the improved version of the
accessible basin- boundary refinement procedure for-ali n =1, Forn =0, let £, be an
¢/3-refinement: of {a,, b,}, .and iet m, be as in- the improved version of the
accessible basin boundary refinement. pmcedure By the basin boundary geometric
lemma we obtain m,, = mm{T('(x) x.€{@n, bysrls)-

We will show-that there exists an: xnteger N =0 such that for every integern =N
the following . propertles hold, (Pl)’I‘ i(a,) =my, (P2) |T(a,41) - TR(a,,)I\l and
(P3) [a,,, dy1)s. is contained in basin{A). Notice that we do not claim that.
ITG(x) T§(a,)| < 1for all x:€ [@,, @y+];, Where n =N,

From the T-jump property and the basin boundary- geometric lemma, together
with- the -assumption that {[a,, b,];}a»_is obtained. usmg the accessible basin
boundary- procedure, we have that if T§(a,)>m, then TR(a,,H) m,, for each
n=0. This property implies that there exists a minimal integer N=0 such that
T&(x;) = my = T§(ay) for each x; € Py. Hence, (P1) holds for N, We now show that
(P2) and (P3) hold for this integer N.

Case 1. Py is not an s-reﬁnerpent of {ay, by+1}. Then ay, =ay, 50 [ay, ayei) is
contained in basin{A} and T§(x;) = my., = T§(ay+1) for each x; € Py..,. Therefore,
(P3) holds, while (P2) is obvious since ay = x4
Case 2. Py is an e-refinement of {ay, bys}. The basin boundary observability
lemma implies (P3) since [ay, ay.1], is contained in basin{A}. It also implies (P2)
since TE(x) = mya = TE(ans) = Th(ay) + 1 for each x; € Py,

By induction, one obtains the desired result. This completes the proof of the
theorem.

6. The numerical procedure and related numerical methods

6.1. The dynamic problem

Now we return to the ‘dynamic’ problem stated in the introduction, namely, to
describe a procedure for finding a numerical trajectory on the basin boundary which
is accessible from basin{A}. (Recall that the basin- boundary of basin{A} is the
boundary of the closure of basin{A}.) We assume we are given a straight line
segment that intersects- the basin boundary transversally and has one end point in
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basin{A} and the other end point in basin{B}. In the statement of the results, we
assume that a straddle pair and: its e-refinement lie in a connected subset of an
unstable segment, and that ail unstable segments intersect the basin ‘boundary
transversally, However, from our proof of the theorem it follows that a similar resuit
holds if we replace the unstable segment by a straight line segment so that ‘we
assume that. every e-refinement of a straddle pair {a, b} is in the straight line
segment -[a, b] from a t6 b, and that [a, b] intersects the basin boundary
transversaliy,

A straight line segment (4, b] straddles the stable manifold of a point P if (a, b)
intersects this manifold transversally. In the cases we study, that is, a € basin{A}
and b e basin{B}, the stable manifold of P will be replaced by a (fractal) basin
boundary and [a, b] will straddle a subset of the basin boundary. Furthermore, in
practice [a, b} will be very short and will be extremely close to the invariant set
Inv(R).

The numerical procedure goes as follows.

(1) Choose (with some experimenting) a straddle pair {a, b} and let / denote the

‘line segment from a to b,

(2) Apply the accessible basin boundary refine~ent procedure (that is, refine
and choose a new straddle pair {x, y} in I-and then replace / by the straight line
segment from x to.y. Repeat this process until the length of /'is less than some
distance o (for example, o =107"). If the initial 4 and b are less than o apart, then
the pair is not changed.

Given any initial straddle pair {a, b}, we will write {u,, by} = ABS,({a, b}), for
the straddle pair resulting from step 2. Note that |lag—bo|l<o. ‘ABS’ is an
abbreviation of ‘accessible basin boundary straddle refinement’,

(3) For each integer n =0, and straddle pair {a,, b,} such that |ja, = b,|| <o,
compute the refinement for the image pair {F(a,), F(b,)}, and write

{an-H: bn-ﬂ) = ABSO(F(an”): F(bn)}

Thus we obtain a sequence {{a,, b,}}.=0 of straddle pairs. Note that only F(a,) and
F(b;) and o are vrelevant to the computation of {@,.y, byyy) =
ABS,({F(a,), F(b,)}), since ABS,({F(a,), F(b,)}) is a straddic pair in the line
segment from F(a,) to F(b,).

Write [, for the line segment from a, to b,. Since the system is hyperbolic and
the matrix of the second partic® ‘crivatives DZF will be bounded on the closure of
the region R, there will be a b. .ad on the curvature of the curve F(I,), and F(I,)
will deviate from the straight line segment L, from F(A,) to F(b,) by an amount
proportional to |L,[?, where |L,| denotes the length of L,.

We thus obtain a trajectory of tiny straight line segments I, and to the prec:sxon
of the computer (about 10~"*)-we usually have /.., < F(l,), and selecting any point
x, from [,, perhans the midpoint, we have that |x,., — F(x,)| is small, typically of
the order of 0. Since computers can never be expected to produce true trajectories
(except in trivial cases such as fixed points), we may say {x,}.»o iS @ numerical
trajectory with precision 0. Despite the complexity of the construction, we will refer
to X, as the ‘iterate’ of x,. We call the sequence of intervals {I,},=0 an accessible
basin boundary straddle trajectory or ABST trajectory, and we call the numerical
procedure above that generates the sequence {I,},20, the accessible basin boundary
straddle method or ABST method. Notice that each interval straddles a piece of the
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‘basin boundary. Aftera few iterates, the sequence {x,},ao f€semblés a subset of the -

non-wandering points in-R which are accessible from basin{4}.

In"this paper we havé shown that our procedure. (the accessible basin boundary-
refinement procedure)‘is valid in ideal situations, We find that the accessible basin
boundary straddle. imethod works' well in practice even in less than idéal cases, in
particular ‘cases where hyperbolicity seems to fail, If ¢ is ¢chosen too large, then
{{@ns ba}}amo would still be a séquence of straddle pairs' with a, ebasin{A} and
b, € basin{B}, but the sequence would not be accessible and probably would not
seitle down to:a periodic orbit.

In practice we find that, in most cases we study, the method appears to work well
for £€=1/30. In computing the sequence of straddle pairs {a,, b,} defined by the
accessible basin boundary refinement procedure, once case (2c) holds, then it can be
shown that. every - -refinement of the proper straddle pair {a, b} includes a proper
straddle pair. For the examples in this paper we find that the accessiblé basin -
boundary straddlc method leads (in.all-cases-but one) to accessible fixed- points or
periodic points, in agreement with the fact that all the accessible points for
two-dimensional saddle‘hyperbolic systems are on the stable manifolds of finitely
man periodic points. The e .cepuonal case is the example of the complex quadratic
map of which the basin boundary is two- -dimensionally unstable, and the resuit due
to Newhouse and Palis does not apply in this particular case.

-

6.2 The accessible set on the basin boundary

We have seen above that in many interesting cases our numerical method (accessible
basin boundary straddle method) produces a periodic trajectory on the basin
boundary that is in Inv(R). If P is a periodic trajectory in Inv(R) that is accessible
from basin{A}, then all the pointsop the stable manifold of P are accessible from
basin{A}. Therefore, we need a numerical method that produces the stable
manifold of a periodic point. In [YKY] a procedure has been presented that can be
used for the calculation of stable manifolds of saddle periodic points of the -
diffeomorphism F. The calculation can be made with a guaranteed accuracy, in
particular, it can be used to calculate the pieces of the stable manifolds of the
periodic points that we find. As illustration, we present in figure Y the stable

Figure 9. The stable manifold of the fixed point of the
A Hénon map (with p = 1.405, g =-0.3) that is accessible
- from basin{B}.
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manifold. of the period- 1 saddle in the -example of the Hénon map for which the
attractor infinity (attractor A) and a period-2 attractor coexist. This stable mamfold‘
of the saddle fixed point.constitute the accessible set (accessible from basin{A}

the basin boundary.

6.3, Related straddle trajectories

In this subsection we review briefly ‘straddie trajectories’ that are -obtained by
methods which are based on refinement procedures such as the-bisection procedure
[BGOYY], [GNOY), the PIM triple refinement procedure [NY1}, {NY2] and the
accessible PIM. triple refinement pocedure [NY2]. The methods were used in the
applications presented in section 3-and the refinement procedures above are related
to the accessible basin boundary refinement procedure. Thesé.straddle methods are
numerical methods for obtaining: (ra;cctones on the basin boundary and on chaotic
saddles. For clarity of the exposition and in order that this paper-is self- contained,
we describe these methods; see the references above for details.

Straddle methods involve a refinement procedure in which 2 points on a curve
segment are repjaced by two new points. In some cases the points have different
-roles. Usually each of the refinement procedures takes a pair of points and returns a
pair of points; such a returned pair is on the line segment joining the two pomts of:
the original pair. The (hstance between the two points in the returned pair is smaller
than the distance between the points of the -original pair. Straddle methods consist
of applying the refinement procedure repeatedly until the points in the resulting pair
are less than some specified distance o apart, say o= 10"% If the points in the
original pair are already less than o apart, then no refinement is carried out. Next
apply thé dynamics; that is, .apply the map F to each of the two points of the
resulting pair, giving W pair.

The basic numericu. «nethod takes a pair {a,, b,} which is separated by at most a

.. distance o, and applies the map F to-each of the points of this pair. If the new pair

{F(a,), F(b,)} is separated by less than o, then it is denoted {a,,“, bn+1}, and
otherwise the refineme:  -ocedure is applied repeatedly until a P ir with separation
at most .o is obtained, una it is called {a,.,, b,+.}. However, it. der to produce
the first pair {ag, bo}, the method starts by applying the refinement procedure on
the given pair {a, b}, whose points are presumably more than o apart. Writing /, or
'[a, b,] for the line segment from a, to b,, and to the precision of the computer we
usually have I, < F(l,). We call the sequence of tiny straight line segments {/,} .0
a straddle trajectory.

BST method. The ‘vasin boundary dynamic problem’ is to d« e a numerical
methad for finding a trajectory on the basin boundary.

The refinement procedure for straddle pairs is particularly simple. Let {«, 8} be
a straddle pair such :at a ebasin{A} and B ebasin{B}. We define y to be the
midpoint of the straight line segmeént [a, B, that is, y = (a + B)/2. If y e basin{A}
then we choose a* =y, B* = fB; otherwise, if y € basin{B} then we choose a* = «,
‘B* = y. This refinement procedure is also called the biscction procedure.

The solution to the ‘basin boundary dynamic problem' is the straddle trajectory
using the bisection procedure. We call the sequence of tiny straight line segments
I }as0 @ basin boundary straddle trajectory or BST trajectory, and we call the
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straddle method above that generates the BST ‘trajéctory. {I,)uso, ‘the basin
boundary straddle trajectory- method or. .BST ‘method. ‘Notice that each tiny lirie
segment in a BST ‘trajectory straddles the basin boundary. A BST trajectory

‘typically resembles (after a few iteratés) a basic set.in the basin boundary.

SST method. The ‘saddle dynamxc restraint problem is to describe a nunierical
method for finding a trajectory that remains.in a specified transient region for an
arbitrarily long period of time.

First, we describe the refinement procedure that .is involved in the current
straddle methiiod: Let {a, b} be a pair such that [a, b] intersects S(R) transversauy
The notation (x, y, z) for a triple means that x, y, and z lié. on [a, b] and y is
between x and z, and we assume for convenience that the ordering on[a, b} is such’
that x <y <z. For each £ >0, an &-refinement of a triple (x, z, y) is an e-refinement
of {x, y}-such that it includes z.-Let (a, v, 8) be a triple on [a, b]. We call (a, v, )
an Inter 'or Maximum triple if both Tp(y) > TR(a) and"Tr(y) > Tr(B)}; and we call
(a, 7, B) a PIM mple if (, v, 8) is an Interior Maximum triple and ||§ — || <
b - all.

Let (@, v, B) be an Intericr Maximum triple, and let P be an, g-refinement of
(a, v, ﬂ) The procedure that selects in ‘the refinement P any PIM triplé
(a*, v*, B*) is called a PIM triple (refinement) procedure.

The solution to the ‘saddle dynamic restraint problem’ is the straddle trajectory
using the PIM:triple procedure. We call the sequence of tiny straight line segments
{I,}a>0 a saddle straddle trajectory or SST trajectory, and we call the straddle
method that generates the SST trajectory {I,},»0, the saddle straddle trajectory
method or SST method. Notice that each tiny line segment in an SST trajectory
straddles a piece of.a (chaotlc) saddle. An SST trajectory typically resembles (after a
few iterates) a basic set in the chaotic saddle.

ASST method. The ‘accessible saddle dynamic restraint problem’ is to describe o
numericai method for finding a trajectory-on the stable set S(R) that is accessible -
from the transient set R\S(R).

The refinement procedure that is involved in the current straddle method is a
PIM triple (refinement) procedure in which a PIM triple («*, y*, B*) is selected
from the e-refinement P of.the interior maximum triple (a, c, b) such that [a, a*] is
in the transient set R\S(R) (hence, [a, a*] does not intersect the stable set S(R)).
This refinement procedure is called the accessible PIM triple (refinement) procedure.

The solution to the. ‘accessible saddle dynamic restraint problem’ is the straddle
trajectory using the accessible PIM triple procedure. We call the straddle trajectory
{I,}a=0 an accessible saddle straddle trajectory or ASST trajectory, and we call the
straddle method that- generates the ASST trajectory {I,},.»0, the.accessible saddle
straddle trajectory method or ASST method. An ASST trajectory typically resembles
(after a few iterates) a subset of the non-wandering points in R which are accessible
from the transient set R\S(R).

In most cases that we have .investigated we find that every e-refinement of two
points {a, b}, when ¢ is chosen to be 1/30, includes several PIM triples. In [NY1],
[NY2] we find that the ASST method leads to accessible fixed points or periodic
points, which is in agreement with the fact that all the accessible points for two
dimensional hyperbolic systems are on the stable manifolds of finitely many periodic
points. In [NY2] we have shown that the two PIM triple procedures are valid in
ideal situations (hyperbolic systems). We find SST and ASST methods work well in
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practice-even in less than ideal cases. From the examples in [NY1]; we have seen
that the SST method works quite well for a variety of dynamical systems:

Most pictures in section 3 for which one of the numerical straddle procedures has
been applied in order to obtain a single numerical trajectory, have been obtained by
selecting £ = 1/30 as default value. and neglecting the first 10 iterates. We chose ¢ to
be-somewhat smaller (0.01) in the ABST method for the Hénon map (parameter
values p =2.66, u=0.3).

6.4. Shadowing

It is important to ask if such straddle trajectories obtained by one of the straddle
methods (BST method. SST method. ASST method. or ABST method) represent
true trajectories of the system. In other words. does-there exist a true trajectory of
the system that shadows (i.c. stays close to)-the numerical trajectory obtained by a
straddle method? When a map is sufficiently hyperbolic on the invariant set in
question, Bowen [B] obtained a result saying that each noisy trajectory in the

an-wandering set can be shadowed by a true trajectory if the perturbation is small:
see [B] for the precise statement. Recall that Inv(R)-satisfies the ‘no cycle condition’
if whenever basic sets Iy(y), - - ., Tiany is @ sequence of basic sets in Inv(R) for which
the stable set of I'y;y has a non-cmpty intersection with the unstable set of I';.,.q) for
all 1 <i<k(M), then the stable set of Iy does not intersect the unstable set of
[sq1)- Assuming Inv(R) satisfies the ‘no cycle condition® and § is sufficiently small,
we can show that every BST or SST trajectory of a two dimensional uniformly
hyperbolic system with a fractal basin boundary or a chaotic-saddle, obtained by the
BST method and SST method respectively, can be shadowed by a true trajectory
(for as long as the saddle straddle trajectory can be computed).

7. Concluding remarks
7.1. Higher-dimensional systems

One of the ingredients in the analysis of the validity of the accessible basin boundary
procedure in dimension two, is the existence of a C'*™ foliation § on a
neighbourhood of a basic set. The proofs of the basin boundary geometric lemma
and the basin boundary combinatorial lemma require the existence of such a stable
foliation (see also the proof of geometric lemma II in [NY2], on which the proof of
the basin boundary geometric lemma is heavily based). For d =2, the existence of
such a foliation is guaranteed by a result due to De Melo [M]. Unfortunately, the
existence of a foliation ¥ on a neighbourhood of a basic set in higher dimensions is
not known, see e.g. [PT].

Let from now on, the dimension d = 3. Let F be an Axiom A diffeomorphism, let
R be a basin boundary region such that dim E* = 1, and assume that for each basic
set T in Inv(R) there exists a C'** stavle foliation & on a neighbourhood of T, for
some & >0. Then the conclusion of the theorem is again valid. The proof is almost
the same; instead of proposition 5.2 one should use the properties of Markov
partitions of basic sets; see Bowen [B].

|
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7.2. Order of diF-+entiability of the diffeorndrphism

We-assumed that the diffeomorphism-F is C>. This assumiption implied the existénce
of a C'** expanding map, for some a >0, in proposition 5.3. If F is of class C?,

then it is known that such an expanding. map is C'. We would like to point out, that
the Holder exponent « is only used to obtain (2) in' the proof of the Geometric
lemma I in [NY2]; the proof of the basin boundary Geometric lemma depends
indiréctly on this result. Fortunately, -we can prove Geometric lemma I in [NY2] (in
particular the property (2) mentioned above) for the C ‘-map @ of proposition 5.3 by
combining the techniques of the proof of proposition 6 in [Ne] and lemma 5.5 in
[Nul]. Thus in fact, it is sufficient to assume F is C* to guarantee the main resuit of
the paper.

7.3. An ad hoc numerical technique

[GOY1] describes an ad hoc straddle technique for determmmg accessible periodic
saddle points on the basin boundary. In [GOY1] it is. rssumed that there are two
attractors A and B. The objective in {GOY]1] is tofind a saddle periodic point.on the
basin boundary that is accessible from. basin{B}. This-method worked -on several
test problems but had no rxgorous foundation. The objective of this paper is to
attack the problem raised in [GOY1] and we find a straddie method (ABST
method) which has a rigorous foundation.

7.4. Examples

By using the SST method. in the example of the Hénon map with parameter values
p=181257970, n=10.022864 30 the resulting SST trajectory gives virtually the
same picture as figure 4 (which was generated using the BST method). Also in this
case, the ASST trajectory is similar to the ABST trajectory.

In the second Hénon example (p =2.66, u=0.3) we choose in the ABST
method € = 0.01; the ASST method gives a similar resu!lt when ¢ = 1/30 is chosen.

7.5. Smooth or fractal basin boundaries

The accessible basin boundary procedure is valid for smooth as well as fractal basin
boundaries.

References

[AS] Alligood K T and Sauer T 1988 Rotation numbers of periodic orbits in the Hénon map Commun,
Math, Phys. 120 105-19

[AY] Alligood KT and Yorke J A 1989 Accessible saddles on fractat basin boundaries Preprint

(BGOYY] Battelino P M, Grebogi C, Ott E, Yorke J A and Yorke E D 1988 Multiple coexisting
attractors, basin boundaries and basic sets Physica 32D 296-305

{BP] Berman A and Plemmons R J 1979 Nonnegative Matrices 1n the Mathematical Sciences (New York:
Academic)




1212 H E-Nusse aind J- A Yorke

(B] Bowen R 1975 Equilibrium States and the Ergodic Theory of Anosov lefeomorn".sms Lecmre
Notes'in.Mathematics 470 (Berlm Spnnger)

{B] BowenR and Ruelle D 1975 The ergodic theory of Axiom A flows/nyent. -Math. 29 181-202

[GH] Guckenheimer J and Holmes P 1983 Nonlinear Oscnllatlons. Dsuarmical Systems, and Bifurcations
of Vettor Fields Applted Mathematical Sciences 42 (Berlln ipnnger)

[GNOY] -Grebogi C; Nusse H E; Ott E and Yorke J A 1988 Basic sets: sets determine the dimension of
basin  undaries Dynamical Systems: Proc University of Maryvland "1986-87 (Lecture Notes.in
Mathematics 1342) ed J C Alexander (Berlin: Springer) pp 220-50

[GOYI] Grebogl C, Ot Eand Yorke J A 1987 Basin boundary metamorphoses: changes in accessible
boundary orbits Physica 24D 242-62

[GOY2] Grebogi C, Ott E and Yorke J A 1987 Chaos, strange attractors, and fractal basin boundaries in
nonlinear dynamics Science 238 632-8

{HJ] Hammel $M and Jones C K-R T 1989 Jumping stable manifolds for. dissipative maps of the plane
Physica 35D 87-106

(KG] Kantz H and Grassberger P 1985 Repellers, semi-attractors. and long-lived chaotic transients
Physica 17D 75-86

“[M} de Melo W 1973 Structural stability of diffcomorphisms on two-manifolds /nvent. Math. 21 233-46

[MGOY] McDonald S W, Grebogi C. Ott E and Yorke J A 1985 Fractal basin boundarics Physica 17D
125-53

[NP} Néwhouse S and Palis J 1973 Hyperbolic nonwandering sets on two-dimensional manifolds
Dynamical Systems M M Peixoto (New. York: Academic) pp 293-301

(Ne] Newhouse $ E 1979 The abundance of wild hyperbolic sets and non-smooth stable sets for
diffeomorphisms Publ. Math. IHES 50 101-51 ¢

[Nul} Nusse H E 1987 Asymptotically periodic behaviour in the dynamics of chaotic mappings SIAM J,
Appl. Math. 47 498-515

[Nu2] Nusse H E 1988 Qualitative analysis of the dynamics and stability properties for Axiom A maps
J. Math. Anal. Appl. 136 74-106

{NY1] Nusse H E and Yorke J A 1989 A procedure for finding numerical trajectories on chaotic saddles
Physica 36D 137-56

(NY2] Nusse H E and Yorke § A 1991 Analysis of a procedure for finding numerical trajectories close to
chaotic saddle hyperbolic sets Ergod. Theor. Dynam. Syst. 11 189-208,

[PR] Peitgen H O and Richter P H 1986 The Beauty of Fracials (Berlin: Springer)

|PT] Palis J and Takens F 1987 Homoclinic bifurcations and hyperbalic dynamics, 16th Coldquio
Brasileiro Matemdtica, IMPA 1987

[Y] Yorke J A 1989 DYNAMICS. A Program for IBM PC Clones 1989

[YKY] You Z, Kostelich E J and Yorke J A 1991 Calculating stable and unstable manifolds Int. J.
Bifurcation and Chaos 1 in press,




Volume 156, number 1.2

PHYSICS LETTERS v 3Juné 1991

Calculating topological entropies of chaotic dvnamical svstems

Qi Chen. Edward Ott ' and Lyman P. Hurd

Laboratory for Plasma Research, Universiv of Marvland, Coflege Park, MD 20742 US4

Received 13 Februany 1991, revised manuseript received 26 March 1991, accepted tor publivation 3 Apnil 1991

Commumcated by AP, Fordy

We present an etficient algorthm tor calculaung topological «nUOPIes of Claubic dyidfiiead soleimss e asethod apphies to

chaoue wtractors as well as chaoue saadies,

The quantitative characterization ol chaotic pro-
cesses has proven to be an important issue in non-
lincar dynamics. Calculations of Lyapunoy expo-
nents and fractal dimensions have been very usetul
in this regard, Another fundamental quantity 1s the
topological entropy {1.2]. which characterizes the
complexity of the orbit structure of a4 ginven dynam-
ical system. The topological entropy is invanani un-
der topological conjugacy of the dynamical systems
(i.c. it is preseryed by continuous and not necessar-
ily differentiable changes of variables),

The general definition of topological entropy 15
computationally unwieldy, so calculations mvana-
bly depend on theorems which give simpler ot loss
general definitions.

For an axiom A diffeomorphism /” (sve ref, [3]
for a definition of the conditions sauisfied by an aa-
iom A system ) the topological entropy s the vsp.0-
nential growth rate of the number ot penodie potits
{3]. Let £, be the number of fixed pomts of the u
times iterated map /77, thus. £, couats the numbel
of points of period # plus the number of points whose
period divides #. The topological entropy. /(7).
satisties
h= lim l_(_)_g__lz. (1)

H 0 ’
Thus for .\ sufficienthy large. we have the ap-
proximation

' Also at. Department of Eledtrical Engineening and Depar:-

meat of Physics.

TN 3

hx e (2)
Chaot systems encountered in applications are often
not axiom \, Nevertheless, tor non-axiom A situa-
1ons, 1 s often assumed that ey, (23 continues to
hold. Tven so, chaotie systems tend to be numeri-
cally unstable. and this can make o dutticult to ob-
Lin g sutticently large number of periodic orbits to
use mn ey, (23, Caleulattons based on this method
reqguire mgenuity and have been carried out in a few
cases [43].

Anether approdch Jue to Newnouse and Yomdin
welates e topotogical enuopy to the masxtmum e-
ponential growih rate of a A-dimensional volume in
the phase space [ 1], For wwo-dimensional maps,
Newhouse uses these tesults to oblain numenical
bounds un the cntiopy by computing the exponential
geonth rate of the length of a typcal line segment.

Recently, a more suphisticated technique based on
generatng partitions of Chaolie attractors has been
propuscd, This micthod seems Lo vield precise esti-
mates un topological entiopies. However., generating
partitons are usually difficunt to construct {6].

In this note. we mtroduce & new algorithm for cal-
culating the iopological entropy which s particularly
simple and efficient. and may in some cases have
some advantages over previous methods. It applies
to chaoue attractors as well as chaotic saddles.

Conswder an invertible map of the plane (X, 1)
= F{(v. 1). Choosc a compact volume V., Normally
we choose V 10 contan the chaotic mvariant set of
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the-map. However,.since:the topolorical entropy. of
Fis bounded below by the entropy  “restricted to
any subregion; our-algorithm obta.... lower bounds
-even'when this is not the case. This fact is useful if
one does not khow a priori bounds on the dynamics.
‘We assume that under the action of the inverse map
F =", all points in V.except for a set of Lebesgue mea-
sure zero (the invariant set and. its unstable mani-
fold) eventually escape V. This is true, for example,
for arca-contracting maps such as the-dizsipative
Hénon map. Consider the intersection of V with its
preimages, Vaz=VaF-'(V)aF~}3(V)A..0
F="(V). For large n. V, generally consists of dis-
joint elongated strips 13 1ng 1n the direction of the sta-
bie manifold of F for the invanant set-contained in
V. In the limit n-+c0, V, is the intersection of the
stable manifold with'V, Let us denote the total num-
ber of disjoint components in-V, by ¥, (in the case
of the standard horseshoe map, this number is 27),

The theoretical pasis for our algorithm lies in the
following model situation (see ref. [7]). Let V bea
rectangle whose sides are roughly parallel to the sta-
ble and unstable dircctions of the invariant set, If
F(V)nV consists of m horizontal strips and
F-'(V)nV consists of m vertical strips, and F uni-
rormly contracts horizontal strips, and F-' uni-
formly contracts vertical strips, then F restricted to
the non-empty invariant set A=N%2_, FY(V) is
conjugate to the full shift on m symbols which has
entropy log m and therefore the map F has entropy
at least log m (sce rei. [ 7] for details).

Given the region V and the map F, often the above
hypotheses are not satisfied, but are satisfied by an
iterate, [ and a possibly smaller region V'V .,
Recalling that N, is the number of disjoint strips in
F="(V)nV the above argument implies that the en-
tropy of F” is at least log N,.. Since A(F")=nh(F),
we define

Sa=logN,,, ~logN,. (3)

If the above hypotheses are satisfied by the region V
and iterate n, the ahnve estimate forms a rigorous
lower bound. In cas -ere explicit checking of these
hypotheses is impr....ical, we examine convergence

*1 Recall that the topological entropy of Frestricted to V' gives
a lower bound for the topological entropy of F restricted to V.
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behavior of s, for large n. Alternatively, we'can plot
log N,, versus n and estimate #:(F) as the slope of the

fitted curve- (discarding a-suitable number of small

n values).

To obtain an estimate of the number of disjoint
strips in V,, let T(.x) denote the smallest value of n
such that F="(x) is not in V. We call T(x) the in-
verse escape time from V. Now consider a line cut-
ting transversely across the stabie manifold, Then this
line also cuts through all strips in V,, for large n. since
each strip of V, lies basically along the direction of
the stable maaifold. Hence, N, is given by the num-
ber of intervals where 7T(x)=n in a typical one-
dimensional line cut. In practice, we count the num-
ber of such intervals where T°(.v) = n for successively
larger values of n and calculate the quantity s, up to
a certain level, or until it converges within a given
tolerance. Although /1 obtained in this fashion only
gives a lower bound for the topological entropy, for
ail the systen.s where comparisons with previous cal-
culations are available, this algorithm appears to yield
very sharp lower bounds,

We remark that in studying chaotic scattering in
two-dirnensional Hamiltonian flows, Kovics and Tél
have obtained a similar quantity, K, for the Poin-
caré map on a surface of section. They call K, the
topological entropy of the scattering process [8].
Their method is similar to ours except that we use
F - while they use F (the topological entropy of a
map and its inverse are the same), Using # !, how-
ever, allows us 1o obtain the entropy of chaotic at-
tractors (this is not possible using the method of ref.
[8], which was designed for chaotic saddles).

We first illustrate our algorithm for the Hénon
map,

Xns1 =A=Xa+0Vy, Vas) =Xa. (4)

Set b=0.3, in the parameter range 1.4<a<4.0, the
invariant set of the Hénon map changes from a
strange attractor to a strange saddle, and finally to a
full 2-shift (horseshoe). For a sufficiently large, the
topological entropy saturates at log 2. It can be shown
that the invariant set of the Hénon map is included
in the square max(|x], [»]) <R, where [9]

R=3{1+16]+ [(1+1b])3+4a])V2} .

This is the region V which we use for calculating the

" inverse escape time function. For simplicity, we take
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a vertical one-dimenstonal hne' through. the- origin
A=0. y=0and calculate () at regularly spaced in-
tervals. This is shown in fig. | for a=3.0, where the
nvanant set is topologically a.full' 2-shift (horse-
shoe). There is a natural Cantor set level structure
1n the inverse escape time function. At level 1, there
ac two intervals from which it requires at least two
backward iterations 1o escape the square V; at.level
2. there are four intervals from which it requires at
least three backward iterations to escape V. etc. The
intersection of these intervals is the intersection of
the stable manifold of the invariant set with the ver-
tical axis.

U'sing a double-precision algorithm. we arc able to
caleulate the inverse escape time function up to level
20. The algorithm is implemented as follows. Start-
ing from the initial interval ¢, given by the intersec-
tion of the vertical axis with V, we interpolate 8, with
a uniform grid of N=>50 points and calculate the in-
verse escape time for cach point with cutoff time
n=2, We find all the intervals £,'s in the grid where
the inverse escape time function is greater than 1.
We then interpolate again cach interval 2, with 50
points, calculate the inverse escape time for cach
point with cutoff time n=3, and find all the subin-
tervals Q.'s where the inverse escape time function is
greater than 2, ete. Assuming cach iteration of' the
Hénon map costs about 10 machine instructions and
the topological entropy to be calculated is log 2. the
whole calculation up to level 135 then costs approx-

. e d—
ooy

-3

Fig. |. The inverse escape time function for the Henon map at
a=3.0.5=0.3 for a verucal cut through the onigin x=0, 3 =0.
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imately 32 million machine instructions. On a 10
MIPS workstation: the wholé computation takes ap-
proximately 3 s."We can achieve better precision by
going to higher levels or interpolating more points in
the grid. The calculation time typically increases with
the level at an.exponential rate given by the topo-
logical entropy. Usually. level 10 calculation (1 mil-
lton machine instructions, or 0.1's on a 10 MIPS
workstation) viclds good estimates on the entropy
for chaotic systems, (For instance, for the Hénon at-
tractor at'a= 1.4, b=0.3, level 10 calculation gives
3=0.660. while level 15 gives s=0,670. a relative er-
ror of less than 2%, Note this value is consistent with
the one obtamned in ref. {6].) In all our numerical
examples. the logarithms are taken 10 be base 2.

Fig. 2 shows the topological entropy for the Hénon
map at #=0.3 in the parameter range 1.4<a<3.0.
It is calculated with 100 interpolation points at level
15. This figure seem- to be identical (with better
precision) with the one obtained by Biham and
Wenzel [4). Note that there arc plateau regions where
the entropy is constant. This is because for any pa-
rameter value where the invariant set is hyperbolic,
the topological entropy must be locally constant due
1o the structural stability of hyperbolic sets, The
whole calculation with 260 parameter values takes
about 30 min on a 10 MIPS workstation.

We also apply our method to open Hamiltonian
systems. Generically, the phase space of Hamilto-
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Fig. 2. The topological entrepy for the Hénon map as a function
of aat 5=0.3. This graph 1s obtained using the method descnibed
1n the text at level 15 with 100 interpelauion points.
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nidn systems has muxed' components [10]: regular
rotational motions of KAM type, and irregular mo-
tions with positive Lyapunov exponents, If the ir-
regular component is noncompact, its only bounded
invariant subsets are strange saddles. The Jlopologi-
cal entropy is related to the escape dynamics from
the saddle [5]: We wish-to calculate the topological
entropies of such systems. One example-is givén by
the area-préserving sawtooth map on the plane (5],

M =t Kf("n) v Vet SXntVae (5)
Here f'(x) is a sawtooth function,
JX)=x-0.5-{x], . (6)

where [.x] denotes the greatest integer in .x. Note that
J(x) is discontinuous on the line x=0, therefore the
sawtooth map is piecewise linear with constant Ja-
cobian matrix cxcept on the line x=0. The nonlin-
carity of the map comes from this line of disconti-
nuity. For K>0, the map is uniformly hyperbolic
except on the discontinuity line, hence, there are no
KAM curves in the phase space. The Lyapunov
number 4 is related to the parameter K by

A=1+05[K+ (K2+4K)12) .

1 ..crthe action of the sawtooth map, almost all ini-
tial conditions inside the fundamental region V= (.x:
{x] £0.5} escape to infinity. It can be shown that
there is an unstable invariant set I in V [5], Fig. 3
shows this invariant set at A4=2.4. We will calculate
the topological entropy for this invariant set as a

0.6 v L) L) ¥ H H 1 i i

04 | . -

.0_6 3 L ! I ] b1 : i i i i

Fig. 3. The unstable invanant set for the sawtooth map at A=2.4.
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function of 4. (We.noté:that the topological-entropy
of the sawtooth map defined on the plane is different
from the topological entropy'of-the same map de-
fined on the torus. In-the latter case. the. space is
compact, the chaotic invariant setis the whole torus.
which -contains I" as a subset. The topological en-
tropy of the latter is g1+ en by the Lyapunov exponent
log A, the uniform expanston rate of a line segment.)
When 4> 3, we can show.that the invariant sct is a
full 2-shift [5], therefore. the topological entropy
saturates at log 2 when /> 3.

For convenience, we choose the cut at x= ~0.5,
The topological entropy is shown in fig. 4 for 2g
A<3. The solid curve is the entropy obtained by
counting the number of periodic points of the map
by using the coding scheme of ref. (5], the dots are
entropies calculated with our algorithm at level 18.
The agreement is excellent, When A <2, the conver-
gence for both methods becomes slow, and we find
it prohibitive to obtain the entropy value without
going to a higher precision algorithm. We note that
there is no apparent plateau structure in fig. 4. This
is because the invariant set is not everywhere hy-
perbolic in this parameter range.

We have also calculated the topological entropy for
the corresponding invariant set of the standard map
on the plane. The standard map is given by replacing
the impulse function in (5) with a sinusoidal func-
tion (10].

1.0

0.8 hr
0.6}
h

04k

02+

[P § _,__.\

0.01
20 22 24 26 28 30

A

Fig. 4. The topological entropy as a function of A for the saw-
tooth map. The solid curve is the entropy obtained by counting
the number of n-cycle fixed points. the dots are the level 18 cal-
culations with 100 interpolation points.
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f(x) = —sin(2n)/2x. (7

For moderately large values of K. (of ~rder 1), the
motion .in the phase space has both regular and ir-
regular components.. However, when the parameter
K'is large, the map is almost hyperbolic {10]. There-

-fore, the invariant set contained in the fundamental

region V= (. |x] £0.5}is a strange saddle for large
A. In fig. 5. we show the topological entropy in the
parameter range 3.0 < K<9.0 calculated using our al-
gorithm ailevel 10 (again logarithms are calculated
in base 2). We sce that at K~ 8.4, the topological en-
tropy- saturates at log 3, indicating th2 invariant set
15 topologically a 3-shift. Indeed. this is the typical
dynamics of the standard map tor large parameter A,
We again note that in the entropy function there are
obvious platcau regions where-the topological en-
tropy remains constant, similar to the case of the
Hénon map.

2,0
. —_
15 o
A‘/ *
h 10 '
0.5 .
0.0~
4 6 8 10
K

Fig. 5. The topological entropy for the standard map as a func-
ton of &. 100 interpolation points at level 10,
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‘In conclusion, we have presented.an efficient al-
gorithm for calculating:the mPOIogiCal‘entfopy of
chaotic dynamical systems.
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On the Tendency Toward Ergodicity with ‘Increasing
Number of Degrees of Freedom in Hamiltonian

Systems
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ABSTRACT

Numerical experiments on a symplectic coupled map system are performed to inves-
tigate the tendency for global ergodic behavior of typical Hamiltonian systems as the
number of degrees of freedom N is increased. As N increases, we find that the fraction
of phase space volume occupied by invariant tori decreases strongly. Nevertheless, due
to observed very long time correlated behavior, a conclusion of effective gross ergodicity

cannot be confirmed, even though extremely long numerical runs were employed.
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‘$pace hypersurface determined by-the glgbalrcc)ﬁstaqtsﬁéf the motion (&.g., total-energy,

total angular momentum, etc:). On et;h\e other hand, stﬁdiés; of ‘Hamiltonian systems

with few degrees of freedom (&.£., two) typically reveal.the presence-of invariant KAM

tori in addition to chaotic orbits; and ‘the existence of KAM tori yields ‘mo‘tigg -that

is grossly different from that assumed in statistical’ mechanics. A natural supl()ositionf
reconciling the above contradictory views might be that, asthe number of degrees of

freedom is increased, the tendency for global ergodicity increases. By “tendency for global

ergolcity” we meaii that, for systems with many degrees of freedom (the situation of

interest in statistical mechanics), the. overwhelming majority of initial ’conditions would

be ergodic over effectiyely all of the area of the phase space hypersurface determined by

the global constants of the motion.

The purpose of this paper is to present numerical experiments which attempt to test
this supposition in a specific case. In particular, we study a symplectic map system (the
symplectic condition insures that the dynamics is Hamiltonian). A closely related werk
is that of Falcioni et al.! For other previous relevant works on Hamiltonian dynamics in
higher number of degree of freedom systems see Kaneko and Bagley,? Gyorgyi et al.,?
and the discussion and references in the book by Lichtenberg and Lieberman.* The main
result of the present paper is that, for the system we study, the fraction of orbits on tori
decreases very strongly as the number of degrees of freedom:is increased, but there is still
no conclusive evidence for effectively complete global ergodicity even over the very long
times investigated in our numerical experiments. The latter is due to the extremely long
time-scales, insensitive to machine precision, observed in the numerical experiments.

The system we studied derives from the standard map,

2 = z+y,

(1)

!

¥y = y+ksinz
In these coordinates the map can be considered as a map of the two-torus 7%, 0 < ¢ < 2w
and 0 <y < 2.

Given a positive integer N, consider the space (T2)" thought of as 2n-tuples

(20, Y0, T11Y1y + -+ » EN-1,YN-1). We define a coupled standard map allowing symmetric

2
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bidirectional nearest neighbor interactions,

~

Ty = Ty + Yi . N (2)
= y; + Ksinz} + CKsin(z} = zj_,) + CK sin(z} - Thah

D

Y

where the indices are taken modulo N and z;,y; are taken modulo 27. Here C is the
coupling parameter to nearest neighbors, Letting I = k/(2C + 1), Egs. (2) reduce to
Egs. (1) for N =1, We call k the nonlinearity parameter. This map is symplectic since

it can be obtained from the generating function,

n

Y (zh = z;)? + K cos z{ + CK cos(z}| — ziy,). (3)

i=1

One checks readily that y; = 0F/0z;, yi = —0F/0z!.

F(z,2) =

Oy —

The original aim of our numerical experiments was the exploration of the relative
measure of KAM tori as a function of the number of coupled maps. To this end, we
first note that motion on KAM surfaces is quasiperiodic with all Lyapunov exponents
zero, while motion not on KAM surfaces typically is chaotic and has at least one positive
Lyapunov exponent. Thus we proceed as follows (see also Ref. 1). A cutoff value ¢ for
an orbit to be considered quasiperiodic was set and the number of initial conditions with
largest Lyapunov exponent (LE) less than € counted. The run consisted of taking m initial
conditions uniformly distributed in the 2.V-torus and iterating them approximately 10°
times along with their tangent vectors to compute their LE’s. A cutoff value € = 0.005 for
the largest LE was set below which an orbit was considered quasiperiodic, and the ratio
of the number of quasiperiodic initial conditions to the total number of initial conditions
was returned.

When the coupling coefficient is zero, the volume of the KAM tori decays exponentially
with N. In particular, if f denotes the fraction of phase space occupied by KAM tori for a
single standard map, Eq. (1), then the fraction of the phase space (T2)V for .V uncoupled
maps for which motion in the 2N variables (zo, Yo, -+ -, Zn-1,Yn-1) is quasiperiodic is fV,
When C' > 0, the rate of decay was observed to increase dramatically. Results for the
parameter values C' = 0.5, k& = 0.3 are displayed in Table 1. In this table the estimated

measure of quasiperiodic (QP) initial conditions (svzond column) is the fraction of 8192

3




randomly chosen initial conditions yielding LE!s-less than e.

Estimated Measure of QP
Maps _Initial Conditions =~ | Iterations
1 1.000 108
2 0.403 3.25 x 108
3 0.048 3.25 %109
4 0.002 3.25 x108
5 0.000 1.25 x 108
6 0.000 108
7 0.000 108

Table 1: Fraction of Initial Conditions Yielding Quasiperiodic (QP) Orbits

Figures 1 show histograms of the observed distribution of maximum LE’s for the 8192
randomly chosen initial conditions for N = .,3,...,7 coupledAmaps.

The case of three maps is presented twice with different numbers of iterations for the
same set of data. The observed peaks get sharper but the effect is very slow.

In most cases the following phenomena were noted:

1. The number of initial conditions following within the € bound for quasiperiodicity

decreases rapidly as the number of maps increases.

(o]

. The ob: peaks grew sharper with repeated iteration—but very slowly.

3. The histograms with more than one peak preserved those peaks and they individ-

ually got sharper.

These observati :ns might lead one to conjecture that each peak represents a distinct
ergodic component with its own maximum LE.

We now discuss the behavior of six individual orbits for the N = 3 case, where the
orbits are chosen so that their maximum LE’s cal:ulated after 3.25 x 108 lay in distinct
regions of interest of the histogram in Fig. 1(c). The calculated LE values for these six

orbits are indicated by the arrows labeled with the letters (a)-(f) along the axis of Fig,

4
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1(c). The pquectio'rrof these orbits onto. the first two coinponeénts (zo,o) are-plotted for

10* iterations in Figs:. 2(a)-(f).
Distinct orbits appeared to stay constrained in a-fixed region-of phase space, und this
was also true when time series of 10° iterations ‘were plotted: -

‘Lyapunov exponents were then computed. for each of these orbits-for a much grester

period of time (3x 108 iterations). The results are shown in Fig. 3 where the letters (b)~(f)

labeling the curves correspond to the orbits shown in Figs. 2(b)-(f) and the arrows shown

along the horizontal axis of Fig. 1(¢). The first initial condition, which was presumed
quasiperiodic, remained stuble during the whole process, and in fact its computed LE
reached zero to machine precision. Initial condition (f) also remained at a highly stable
value, The remaining four, however, appear to have started to converge slowly to a new
common value.

Figures 4 break down the curves in Fig. 3 [plus orbit (a)] giving the cumulative LE
and a “local” LE which is calculated in 500,000 iterate bursts. Observe the great stability
of initial conditions (a) and (f). '

Further studies were conducted for a variety of initial conditions and various behaviors

were observed.

1. Some initial conditions appeared to lead to orbits whose LE's showed a great deal

of stability (they remained essentially unchanged over the observed time scale).

2. Some initial conditions showed a high degree of stability at one value of the maxi-

mum LE but then “leaked” into a regime with a different LE.

3. Some initial conditions alternated between chaotic behavior and behavior very close

to quasiperiodic.

Id

One effect of these observations was to call into question the reliability of the LE
calculations in general. Many of these calculations seemed to be stable for greater than
10° iterates before changing value. Given the relative rarity of these “leaks,” it was

impractical to assign any numerical value to this diffusion.




The histogram qalculatiops~;»v¢r§ performed on-a‘Connection Machine using (of neces-
sity) single-precision. arithmetic. The orbit calculations were performed on a-DécStation
3100 using double precision. “To e.\'aminé the effect -of machine. precision several of the
long-term LE calculations were done-at both single and double precision. The observed
behavior was qualitatively the same; the observed leakage between regions of different
LE occurred in each case (at slightly different iterates).

This work was supported by the Office of Naval Research (Physics Branch), by the
Department of Energy (Scientific Computing Staff, Office of Energy Research), and by
the Defense Advanced Research Projects Agency.
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' FIGURE CAPTIONS
1. Histograms of maximum Lyapunow. exponents.for 8192 initial conditions and-N =
2,3,...,7. For (a) the value in the first histogram bin is about 2700, far off the

scale shown. In general; the value in thé first bin is an estimate of the number of

quasiperiodic orbits.

)

Projection of six individual orbits for NV = 3 onto the plane corresponding to the
first two ccm:ponents. 10 iterations are plotted. The calculated maximurn LE’s for
these orbits are (a) 8 x 10~* (quasiperiod‘c), (b) 0.0166, (c)-0.0676 [corrésponding
to th.e lower LE peak in Fig. 1(c)], (d) 0.1170 [corresponding to the higher LE peak
in Fig. 1(c)], (e) 0.1191, and (f) 0.1300. These LE values are indicated along the

horizontal axis of Fig. 1(c).

3. Maximum calculated LE as a function of the number of map iterations for the five

orbits corresponding to Figs. 2(b)-2(f).

4. Cumulative and “local” maximum LE for the orbits corresponcing to Fig: 3.
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METAMORPHOSES : SUDDEK JUMPS IN BASIN BOUNDARIES'

Dynamical systemein—the plane can have many :coexisting.attractors.
In order to-be able to precict long-term or asymptotic bahavior in such
systems, it is important to be able to recognize to~wﬁich,attracth
(final state) a given trajectory will tend. The set -of initial condi-

tions whose trajectories are asymptotic to a particular attractor is

\

called the basin gg;aptraction of that attractor. In some systems that
depend on a parameter, it has been observed that the boundaries of these
basins are extremely sensitive to émall changes in the parameter. Not
only can a boundary jump suddenly but it can also change ‘from being

smootn to being fractal., These changes, called boundary metamorphoses,

are studied at length in [GOY]. In tnis paper, we prove a theorem,
originally stated in [GOV], which characterized the jumps in basin
boundaries.

The Hénon map f(x,y) = (A—xz-Jy.x) provides an example of this
phenomenon. We fix J = 0.3 and vary A, res&lting in a one-parameter,
invertible map of the plane. The Jacobian of f is J; hence, £ |is
area contracting for all A. We will be looking specifically at the
boundary of the basin of attraction of infinity. (The basin of infinity
is the set of all points (x,y) such that [t(x,y)| + = as n + =.)
Figures 1a and 1b show tne basin of infinivy in black for A = 1,314
and A = 1.320, respectively. In Fig. 1b we see that the basin of
infinity contains points which were previously (at A = 1.314) well
within the white region. This new set of black points has not gradually
moved in from the boundary of the white region. Rather, beyond a
certain critical value A = A¥ = 1,.3145, black points suddenly begin

appearing deep in the interior of the white region. As A increases,
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Figure 1 Caption

Figure | shows the basin of attraction of infinity in black for

the Henon map
f(x.y) = (A-x*-Jy.x).
We fix J = 0.3. In Fig. la A is 1.314, and in Fig. 1b A is

increased to 1.32. The change in the basin of infinity illustrates a

basin boundary jump.




the thin bands thicken. This is.a discontinuous change in the basin of
infinity.

In order to understand this phénomena, we must -éxamine the dynam-
fcal behavior on ‘the basin boundary.; At A = 1.314 (Fig. ta) the
boundary is -observed numerically to consist cf a saddle fixed point

Py and its stable .manifold ws(pl)m (The stable manifold WS(p) of a

fixed point 'p is the set of points (x,y) such that £0(%,y) + p
as n + =, More generally; the stable manifold ws(pk) of a periodic
point p, of period Kk 1is the set of points (x,y) such that

fnk(x,y?.+ Py as n > » Analogously, the unstable manifold W(p,)

of p, 1is the set of points (x,y) such that f'“k(x.y) * py as

n » @, Such sets can be proved to be smooth curves.) One branch of the
unstable manifold of % at A = 1,314 extends into the white region,
as shown in Fig. 2a. At the critical value A* ~ 1,3145, after wiich
tne basin boundary jumps into the white ;egion, we find that ws(p1)

and WY(py) are tangent (Fig. 2b). S. Hammel and C. Jones [HJ] were

the first to prove a theorem relating the tangency of ws(p1) and

wu(p1) (called a homoclinic tangency) to basin metamprphoses. Their
methods are different from ours, however. We want to relate these
metamorphoses to the saddle periodic orbits which are found near the
points of tangency and which we describe below.

The complicated dynamical behavior which occurs at homoclinic tan-
gencies has been studied at length in recent years, especially in the
papers of Gavrilov and Silnikov [GS], Newhouse [N], and Robinson [R].
Under certain non-degeneracy assumptions, there are horseshoe maps
defined on subsets of the plane near a point q, of tangency of ws(p1)

and wu(p1). Figure 3 shows a rectangle By and some of its iterates
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under f. Notice that fu(Bu) is Lorseshoe shaped and .intersects By
in two components. In fact, for h sufficiently large, there is a

rectangle Bn near the point. of tangency such that " restricted

.lo

to B, is a horseshoe map. There is necessarily a saddle orbit of

period n in each of the two components of the intersection of B,
and f“(Bn) (see, for example, [R]). On¢ ~Ff these saddles will have a
"flipped" unstable manifold (i.e., Dxf“ at this saddle has an eigen-
value less than =-1), and the other will not. We label the unflipped
saddle p,. This orbit is called a "simple Newhouse periodic orbit" in
£TY].
The larger n Is, the closer B, will be to g, and W3 (py) .

This corresponds to the fact that the length of time (i.e., the number
of 1te£;tes of f) it takes for a point L. move around the fixed point
p‘ is determined by how close the point is to the stable manifold
ws(p1). What we see (Fig. U4) is an infinite family of horgeshoes, and a
sequence (pn} of simpié Newhouse saddles (where Pn has period n
and is in Bn) such that (pn)* Qg In the following theorem, as stated
in [GOY], the saddle fixed point S corrésponds to Py in the discus-
sion above, and the saddle orbit T corresponds to a simple Newhouse
orbit Pn» for some n. The term "first non-degenerate tangency"
refers to the following set (H) of hypotheses:

(i) WY(p,) does not intersect W%(py) for A < A%

(ii) There exist points p, in WY(p;) and gq, in W3(py)

such that Q = fk(po) for some k 2 1, at A = Ax.

(i1i) There is a parametrization hy, -1 gy g1, of WS(p,)

near q, such that hy = q, and w“(p1) near q, is given by

g{h,), where g'(h;) =0 and g"(h,) # 0.
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Figure 3 Caption

Figure 3 illustrates a horseshoe map.

horseshoe is in B, 0 £*(B,).

The, invariant set of the
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Figure 4 Caption

Figure 4 shows the relative positions of two simple Newhouse

saddles P, and Phel of periods n and n+l, respectively.
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Theorem. Consider an invertible mép £ of the plane dependjng on
a parameter A with a saddle fixed point or periodic orbit S. We.
assume that the absolute value of the determinant of thé Jacobian of
£ (or of f? in the case of a periodic orbit of period n) .i$ less
than one at every point of the plane. Assume that f hias a transition
value A* as A increases where the -stable and unstable manifolds of
S nave a non-dégenerate tangency and then cross for the first time.
Then there will be a periodic saddle T that is in the -closure of the
séable manifold of S for all ‘A slightly greatér than S* but is not

in it at A¥,
We prove the theorem with the aid‘of the following lemma.

Eggéé, Let p, be a simple Newhouse saddle of périod k (as
described above) near the point q, of ‘tangency of the stable and
unstable manifolds of py. Then, for n sufficiently large, the
unstable manifold of p, crosses (i.e., intersects transversally) the

stable manifola of p,4q-

We postpone the proof of this lemma due to its technical nature and
proceed to show how the theorem follows. If w“(pn) crosses ws(pn+r)

at a point x, then the forward iterates of any segment of w“(pn)

containing x will eventually contain all of w“(pn+]) (the closure

of w“(pn+f)) in its set of limit points1 (see Fig. 5a). Hence

w“(pn+1) c Wu(pn). Proceeding inductively, we have that

1This follows from the A-lemma. See, for example, the exposition in
{cH].
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Figure 5 Caption l

Figure 5a indicates that the closure of Wu(pn+1) is contained .

in the closure of Wu(pn). Figure 5b indicates that the point of

tangency a, is in the closure of the unstable manifolds of infinity l

many simple Newhouse saddles,
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) w“(pm) < W )» (see Fig. 5b), for every m 2 ns: In fact,

as the proof of the lemma will show, thé horseshoe f“(Bn) contains a
segment of ¥'(p,) around Pi- As n.+ &, the horseshoes become
thinner and dpproach WY(p;). For A slightly larger than A* .and
for m gufficiently large, the horseshoe F™(B,). and hence W'(B_ )

will cut dcross Ws(p1),,»thusj

I u,. u‘ l
(ii) wle1) cw (pm).

Putting together (i) and (ii), we have
#®

(iii) ﬁg(bI) c w“kEHS, for n sufficienly large. Notice that
although- both n and m- are taken “"sufficiently large" for this argu-
ment, the crossing. of w“(pn) and ws(ph+1) oceurs for values of n
much é&aller than the values of m for which WY(p,) -crosses W(p,)

after tangency. Expression (1ii) is equivalent to

W Y ¢ Wip,)

(see, for example, [GOY]). Hence p, is in the closure of WS(py),.

for A > A%,

Rgmarks.

(1) At A = A*, the portion of the plane bounded by W(p;) from
9, to p; and W!(py) from p, to dJ, is invariant under f. The
saddles pp, are in the interior of this region, and hence each one is a
positive distance from the boundary ws(p1) of the basin of infinity.

For every A slightly larger than A¥, the theorem says that there is

1Again by the A-lemma.




jumip. i thé boundary at A = A%’

an 7 such: that 'ﬁh-‘is in the closurg of _ﬂé(?{l: ‘Thus, there is.a

.- “a -
F

(2). The condition that . is sufficiently large here: refers to

-

the value of n for which the Séquence of crossings-of W'(p;) .and

W3(pn4q) begins. For the Hénon map with J°=0.3 and A* = 1.314,

7 appears to bé 4 (see [GOY]): This is supported by computer evi-

dence that for -A <slightly greater than 1.3145, thé saddle py is on
the. boundary of thé ‘basin of infinity,

(3) vNon$ﬁeggnérgcy has not been ‘proved for the tangéncy -of -the
Héhon map at A¥* 531;3{u, ‘However, theoretically, almost every Ssuch
tangency will be inon-dégenerate. (

(). The brqo% Qf*thévﬁheoneﬁ»characteriZeS‘tné boundary after

tangency<by showih@rthap‘chern are infinitely many saddles. and their

e

stable manifolds contained in Qs(éi); The faét that there is a jumpxtﬁ
the boundary is, of‘cou;ée,Aimplféd“5y~hhis characterizatién. The
existenceé of such a jump can be-demonstrated by a simpler, topologrcal
argument. Any path I connecting the left and right sides of Bh (cf.
Fig. 4) extends thrbugh~the norse shoe image ‘fnCBn). if fn(Bn)
crosses B, ,, (as shown in Fig. 4), a portion of ©%(1) connects. the
left and right side of B;,T. If, at tangency (A = Ay), fF(B.) o

crosses B.,y for all r, r 2n, then uf(1) contains gq,. For
ron
A > Ay, some forward iterate of I will then cross W%(p,).

Proof of Lemma. Following the construction of [R], [TY] (see also

(GH; Sec. 6.6]) we assume the following:
(1) DF(py) has eigenvalues v and ) which satisfy

0 < v<i, A>1, and vi < 1.

(1i) There exists a neighborhood U of Py in which the map




R L R T = M A A A L e e I S W ¥
® e - - Sa e N (A L LMkl Il A s Rrcel
= B o i

g GEm =

~ it & Saba
AR AR e Wit RS ARy

> |
B

f is linear up to smooth changes of coordinates; i.2., fix,y) =

(A, vy) for (x,y) in U. (Here we need an additional non-regonance
assumption--namely, that v and X are not integer multiples of each
other.)

(iii) There is a non-degenerate tangency of Ws(p1) and wu(p1).
Specifically, there exist points (p,,0) in w“(p1) and (0,q,) in
W3(py) such that fk(po.o) = (0,q,) and W3(py) ard w'(py) near
(O,qo) satisfy (H). Furthermore, there is a rectangular neighbor-

hood V = [po-e, po+e] x [0,8] for some € >0 and & >0, such that

k, _ . 22 - -
£70,y) = (¥y + alx=p )", Qq, B(x 90)):

for some positive constants Y, ¢, 8, all (x,y) € V. (See Fig. 6.)

Né; let W - QO,ueZ] x [q,-Be, qo*8el. (Notice that fk(pote,o)
(csz,qo + Be).) For n sufficiently large, £70*K(y)  stretches
across W. For such n, let B = £ 7"K(V) N W. Actually, since
f'n+k(v) may wind around a lot, we let Bn be the connected Component
of £77*K(V) N W which is nearest ws(p1). Under hyposthesis (H), we
know (see [GH]), that " restricted to B, is a l. seshoe map, in
the sense of Smale (S]. Specifically, we use the following facts about
such maps:

(i) B, and fn(Bn) intersect in twc components, Wy , and

n

w2 The saddle Pn is contained in w1 n and is tnhe only fixed
]

ne
?

. n . . : .
point of f in w1,n. Furthermore, P, 1is the only point in w1,n
wnich stays in w1’n under all forward and backward iterates of ..
(ii) The onliy points which stay in w1,n under all forward

(respectively, backward) iterates of f" are in ws(pn) (resp.,

Wip,)).
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Figure 6 Caption

Figure 6 illustrates definitions used in the proof of the Lemma.




We: argiie that ‘the stable manifold of p, exténds (vértically)
through : 1 {(4ee Fig. 7). Lét Ly be any horizontal 3egmefit in I
It 1S éasily seén that EqﬁLo), is.a parabola which extends ‘through
ﬁd(ﬂﬁﬁi)‘: Recursively; 1et Ly MLy _3) AWy o for 1 =71,2,3,....

Then Ly L1?1; and (L.}

iy

lengtn(L;) < %length(hia1). Hence L is one point, call it =z
‘ 20

for all m> 1, =z

i's a sequence of nested. intervals with

d.

Since  t™(zg) s in Wy,

b 1S(n
A must' be in W (p,).

o
This drgument shows that W(p,) iAtersects thé top and bottom of By
and first leaves B, through these sides. A similar argument (using
{terates of f;x) shows that w“(pn) extends through the horseshoe
ﬁh(Bn), first leaving the horseshoe through the "feet". (See Fig. 7).
In order to prove that W'(p,) intersects W3(p,,4), we need to
show that the horseshoe fn(Bn) containing w“(pn) crosses through

B (see Fig: 8). Let Q be the distance from (0,q,) to Bg,y,

n+i
and let P be the distance from (0,q,) to the vertex of the right
parabola boundary of Fn(Bh), as shown in Fig. 8. It is easily seen by

our assumptions on f that Q = k‘(“+1)*k(po-e) and P =

Q p —¢

q_*+B¢ -
Yv“'k(q°+88). We conclude that s = AY(:Q——»B(AQ)H K, 0 as n + o,
0o /

since Ap < 1. u]

ECLIA



Figure 7 Caption

Figure 7 shows parts of the stable and unstable manifolds of the
simple Newhouse saddle Py
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e Lemma.

Figure 8 illusctrates definitions used in the proof of th
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The Analysis of Experimental Data Jsing
Time-Delay Embedding Methods
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Institute for Physical Science and Technology
University of Marylaad
College Park, Maryland 20742

January 30, 1989

Abstract

The time delay embedding method provides a powerful tool for
the analysis of experimental data, including a novei method for noise
reduction. In addition, we describe how the method allows experimen-
talists to use many of the same techniques that have been essential
for the analysis of nonlinear systems of ordinary differential equations
and difference equations.

1 Introduction

Numerical computation and computer graphics have been essential tools for
investigating the behavior of nonlinear maps and differential equations. The
pioneering work of Lorenz [24] was made possible by numerical integration
on a computer, ailowing him to take nearby pairs of initial conditions and
compare the trajectories. Hénon [23] discovered the complex dynamics of
his celebrated quadratic map with the aid of a programmable calculator. A

*Mailing address: Center for Nonlinear Dynamics, Department of Physics, University
of Texas, Austin, Texas 78712




variety of classical and modern techniques has been exploited to find periodic
orbits; their stable and unstable manifolds [20]; basins of attraction [25];
fractal dimension {26}; 2and Lyapunov exponents {17, 29, 35]. In some cases,
numerical methods can establish rigorously the existence of initial conditions
whose trajectories have essentially the same intricate structure that one sees
on a computer screen {11]. '

Unfortunately, until now experimentalists have not been able to apply
most of these methods to the analysis of experimental data, since they do
not in general have explicit equations to model the behavior of their appa-
ratus. In cases where it is possible to find accurate models of the physical
system, quantitative predictions about the behavior of actual experiments
are possible [22]. However, all that is available in a typical experiment is
the time dependent output (e.g. voltage) from one or more probes, which
is a function of the dynamics. Until recently, power spectra have been the
principal method for analyzing such data. For instance, Fenstermacher et
al. [19] relied heavily on power spectra to detect transitions from periodic
to weakly turbulent flow between concentric rotating cylinders. However,
Fourier analysis alone is inadequate for describing the dynamics.

Other methods have been used to analyze time series output from dynam-
ical systems. For instance, Lorenz [24] used next amplitude maps to describe
some features of the dynamics; that is, he plotted z,4; against z, where
z, is the nth relative maximum of the third coordinate of the numerically
calculated solution. Such maps are often useful, not only for investigating
features of the Lorenz attractor [30], but also for instance in experiments on
intermittency in oscillating chemical reactions [28].

In the past several years, the so-called embedding method has come into
common use as a way of reconstructing an attractor from a time series of
experimental data. In this approach, one supposes that the dynamical be-
havior is governed by a solution traveling along an attractor! (which is not
observable directly). However, one assumes that there is a smooth function
which maps points on the attractor to real numbers (which are the exper-
imental measurements). In the embedding method, one generates a set of
m-dimensional points whose coordinates are values in the time series sepa-
rated by a constant delay [9]. For example, when m = 3, the reconstructed
attractor is the set of points {z; = (s;, Si4r, Si4+2-)} Where 7 is the time delay.

!Existing numerical methods require the attractor to be low dimensional.




Takens [32] has shown that under suitable hypotheses, this procedure yields
a set of points which is equivalent to points on the original attractor.

The earliest applications of the embedding method may be called static
in that the analysis focuses on the geometric properties of the set of points
on the reconstructed attractor. For example, phase portraits and Poincaré
sections are used in [4] to help determine the transition between quasiperiodic
and chaotic flow in a Couette-Taylor experiment. Another important static
method is the estimation of attractor dimension from experimental data.
for which there is a large literature {26]. In addition, various information
theoretic notions can be used to find good choices of embedding dimension
and time delay [21].

Certain recent applications of the embedding method are quite different
in nature and can be called dynamic in that information about the dynamics
is stored in the computer for analysis. With each data vector z;, one stores
the “next” vector, for example, z;.s for some 6§ > 0. This makes it possible
to compute a linear approximation of the dynamics in a neighborhood of z,,
assuming that there is a low dimensional dynamical system underlying the
data.? In particular, a linear approximation prevides an estimate of the
Jacobian of the map at z; [9]. Eckmann and Ruelle [17] use linear maps
computed in this way to integrate a set of variational equations and find the
positive Lyapunov exponents.’

In fact, the embedding method provides a powerful set of tools for an-
alyzing the dynamics, the breadth of which may not have been realized by
Eckmann and Ruelle. In this paper, we discuss two novel applications that
are possible, specifically:

¢ Noise reduction. Since one can approximate the dynamics at each
point, it becomes possible to identify and correct inaccuracies in trajec-
tories arising from errors in the original time series. Numerical evidence
suggests that the noise reduction procedure described below improves
the accuracy of other analyses, such as Lyapunov exponents and di-
mension calculations.

¢ Simplicial approximations. Linear approximations can be com-
puted at each point on a grid in a neighborhood of the attractor to

2This material was first presented by D. Ruelle at a Nobel symposium in June 19847
3Wolf et al. [35] have proposed a different method in which nearby pairs of points are
followed to estimate the largest Lyapunov exponent.




form a simplicial approximation of the dynamical system. This can be
used to locate unstable periodic orbits near the attractor.

We begin with a description of noise red iction in the next section.

2 Noise Reduction

The ability to extract information from time varying signals is limited by
the presence of noise. Recent experiments to study the transition to turbu-
lence in systems far from equilibrium, like those by Fenstermacher et al. {19,
Behringer and Ahlers [1], and Libchaber et al. [16], succeeded largely be-
cause of instrumentation that enabled them to quantify and reduce the noise.
However, it is often expensive and time consuming to redesign experimental
apparatus to improve the signal to noise ratio.

In cases where the time series can be viewed as a dynamical system with
a low dimensional attractor, the time delay embedding method can be ex-
ploited to correct errors in trajectories that result from noise. This is done
in two steps once an embedding dimension m and a time delay 7 have been
fixed. In the first step, we consider the motion of an ensemble of points in
a small neighborhood of each point on the attractor in order to compute a
linear approximation of the dynamics there. In the second step, we use these
approximations to consider how well an individual trajectory obeys them.
That is, we ask how the observed trajectory can be perturbed slightly to
yield a new trajectory that satisfies the linear maps better. The trajectory
adjustment is done in such a way that a new time series is output whose
dynamics are more consistent with those on the phase space attractor.

This approach is fundamentally different from traditional noise reduction
methods. Because we consider the motion of points on a phase space attrac-
tor, we are using information in the original signal that is not localized in a
time or frequency domain. Points which are close in phase space correspond
to data which in general are widely and irregularly spaced in time, due to the
sensitive dependence on initial conditions en chaotic attractors. In contrast,
Kalman (3] and similar filters examine data which are closely spaced in time;
Wiener [27] filters operate in the irequency domain.
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3 Eckmann-Ruelle linearization

The discrete sampling of the original sigrnal means that the points on the re-
constructed attractor can be treated as iterates of a nonlinear map f whose
exact form is unknown. We assume that f is nearly linear in a small neigh-
borhood of each attractor point x and write

f(x)= Ax + b = L(x)

for some m x m matrix A and m-vector b. (The matrix A is the Jacobian
of f at x.) .

This approximation, which we call the Eckmann-Ruelle linearization at
X, can be computed with least squares methods similar to those described
in [9, 17]. Given a reference point X, let {x;}i=, be a collection of the
n points which are closest to X.s. With each point x; we store the next
point (i.e., the image of x;), denoted y;.* The kth row ax of A and the kth
component b of L are given by the least squares solution of the equation

Yk = b + ax - x, (1)

where y; is the kth component of y and the dot denotes the dot product.
Figure 1 illustrates the idea.’

We mention three difficulties in computing the local linear approximations
in the subsections below.

3.1 Ill conditioned least squares

There is a particular problem when one tries to compute solutions to Eq. 1
with a finite data set of limited accuracy that has not been addressed in
previous papers {17, 29]. Suppose for example that all the points in a neigh-
borhood of x, lie nearly along a single line, i.e., the attractor appears one
dimensional within the available resolution. Although it is possible to mea-
sure the expansion along the unstable manifold at X, there are not enough

4The points x; are points on the attractor which are not consecutive in time. The
subscript { merely enumerates all the points on the attractor contained within a small
distance € of x¢. In this notation, x; and y; are consecutive in time.

Farmer and Sidorowich [18] observe that the Eckmann-Ruelle linearization can be used
for prediction. Given a reference point x;, find the Eckmann-Ruelle linearization 4;x+b;,
compute Xi41 = AiX, + b;, and repeat the process to get the predicted trajectory.




Schematic diagram for the first stage of the noise reduction method.

.
.

Figure 1

int X is used to

A collection of points in an e-ball about the reference po

find a linear approximation of the dynamics there.
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points in other directicns to measure the contraction. Hence it is not possi-
ble to compute a 2 x 2 Jacobian matrix accurately. Any attempt to do so
will result in an estimate of the Jacobian whose elements have large relative
errors. This kind of least squares problem is ill conditioned,

The ill conditioning can be avoided by changing coordinates so that the
first vector in the new basis points in the unstable direction.® A one dimen-
sional approximation of the dynamics is computed using the new coordinates;
that is, we approximate the dynamics only along the unstable manifold. We
recover the matrix A by changing coordinates back to the original basis.

For example, if we are working in the plane and the unstable direction
is the line y = z, then we rotate the coordinate axes by 45 degrees. The
dynamics are approximated by a one-dimensional linear map computed along
the line y = z. Then we rotate back to the original coordinates. {The
resulting matrix A has rank 1 in this example.) This approach substantially
enhances the robustness of the numerical procedure.

3.2 Finding nearest neighbors

A second problem is finding an efficient way to locate all of the points closest
to a given reference point. The dynamical embedding method imposes strin-
gent requirements on any nearest-neighbor algorithm. The storage overhead
for the corresponding data structures must be small, because there are tens
of thousands of attractor points. The algorithm must be fast, since there is
one nearest-neighbor problem for each linear map to be computed.

We solve this problem by partitioning the phase space into a grid of boxes
that is parallel to the coordinate axes. Each coordinate axis is divided into
B intervals. (Figure 2 illustrates the grid in two dimensions.) Each point
on the attractor is assigned a box number according to its coordinates. For
example, a point on the plane whose first coordinate falls in the jth interval
(counting from 0) along the z axis and whose second coordinate falls in the
kth interval along the y axis is assigned to box number kB + j. The list of
box numbers is sorted, carrying along a pointer to the original data point.
Given a reference point X, its box number is found using the above formula.
A binary search in the list of box numbers then locates the address of X;ef

$This is done by computing the right singular vectors (8] of the n x m matrix whose
jth row is x;.




BB B ~B+1| B ~B+2]|---| Bt -1
B B+1 B+2 |..-|28=1
0 1 2 wee | B=1

Figure 2: Box numbering scheme in 2 dimensions. The attractor is normal-
ized to fit in the unit square, The bottom row of boxes rests against the z
axis and the leftmost row of boxes against the y axis.

and all the other points in the same box number. The search is extended ii
necessary to adjacent boxes.

Only a crude partition is needed for this algorithm to work efficiantly
(typically we choose B = 40), and the grid is extended only to the first
three coordinate axes. When the embeddi. ¢ dimension is larger than three,”
a preliminary list of nearest neighbors is obtained using only the first three
coordinates of each attractor point. The final list is extracted by computing
the distances from X, to each point in the preliminary list.

Although there are circumstances where this algorithm can perform poorly
(e.g., when most of the attractor points are concentrated in a handful of
boxes), the distribution of points on typical attractors is sufficiently uniform
that the running time is very fast. Memory use is also efficient: a set of N
attractor points requires 3N storage locations. In contrast, the tree-search
algorithm advocated in [18] requires several times more storage (although
the lookup time is probably slightly less). Because N = 10° in typical appli-
cations, we believe that the box-grid approach (or some variant) is tne most
practical. A survey of other nearest-neighbor algorithms is given in [2].

3.3 Errors in variables

There is a potential difficulty in the use of ordinary least squares to compute
the linear maps. In the usual statistical problem of fitting a straight line,
one has observations (z;,y;) where z; is known exactly and y; is measured.
One assumes that y; = aq + a,z; + ¢;, where the ¢; are independent errors
drawn from the same normal distribution. (Analogous assumptions hold
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in the multivariate case.) In the present situation, however, both z; and
yi are measured with error. [t cau be shown that ordinary least squares
produces biased estimates of the parameters ag and a; in this case {15, 10]. In
practice this does not seem to be a serious problem, but statistical procedures
to handle this situation (the so-called “errors in variables” methods) may
provide an alternative approach to noise reduction. We consider this question
in the appendix.

4 Trajectory Adjustment by Minimizing Self
Inconsistency

The Eckmann-Ruelle linearization procedure described above is computed
and the resulting maps are stored for a sequence of reference points along a
given trajectory (for the results quoted here, the sequence usually contains
24 points). We now consider how to perturb this trajectory so that it is more
consistent with the dynamics., The objective is to choose a new sequence of
points X; to minimize the sum of squares

Yo wliki = Xil|® + 1% = Liwa (Rimt )| + i1 = Li(x)|? (2)

where L(x,) = Aix; + b;, w is a weighting factor, and the sum runs over
all the points along the trajectory.” Equation 2 can be solved using least
squares. Heuristically, Eq. 2 measures the self-inconsistency of the data,
assuming that the linear approximations of the dynamics are accurate. See
Fig. 3. We say the new sequence {X;} is more self cousistent.

The trajectory adjustment can be iterated. That is, once a new trajectory
X; has been found, one can replace each x; in Eq. 2 by %; and compute a new
sequence {X;}.

We place an upper limit on the distance a point can move. Points which
seem to require especially large adjustments can be flagged and output un-
changed. (This may be necessary if the input time scries contains large

7In the resvits described in this paper, the Eckmann-Ruelle linearization procedure
is done using a collection of points within a radius of 1-6% of the each reference point,
depending on the embedding dimension, the dimension of the attractor, and the number
of attractor points. This results in collections of 50-200 points per ball, which gives
reasonably accurate map approximations without making the computer program too slow.
The weighting factor w is set to 1.




Figure 3: Schematic diagram of the trajectory adjustment procedure. The
trajectory defined by the sequence {x;} is perturbed to a new trajectory
given by {X;} which is more consistent with the dynamics. In this example
the dashed line shows what the perturbed trajectory might look like if the
dynamics were approximately horizontal translation to the right.

“glitches” or if nonlinearities are significant over small distances in certain
regions of the attractor.)

When the input is a time series, we modify the above procedure slightly
since we raquire a time series as output. The trajectory adjustment is done so
that changes to the coordinates of x; (corresponding to particular time series
values) are made consistently for all subsequent points whose coordinates
are the same time series values. For example, suppose the time delay is !
and the embedding dimension is 2. Then trajectories are perturbed so that
the second coordinate of the ith point is the same as the first coordinate
of the (i 4 1)st point. That is, when X; = (s;, 9i+1) is moved to the point
X; = (8;,4,41), we require that the first coordinate of X;4; be 3;4;.
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5 Results using experimental data

We note that the attractor need not be chaotic for this noise reduction proce-
dure to be effective. Fig. 4(a) shows a phase portrait of noisy measurements
of wavy vortex flow in a Couette-Taylor experiment (12]. This flow is peri-
odic, so the attractor is a limit cycle (widened into a band because of the
noise) and the power spectrum consists of one fundamental frequency and its
harmonics above a noise floor. See Fig. 4(b). Figures 4(c)~(d) show the same
data after noise reduction. The noise reduction procedure makes the limit
cycle much narrower, and the noise floor in the power spectrum is reduced
by almost two orders of magnitude. However, no power is subtracted from
any of the fundamental frequencies, and in fact some harmonics are revealed
which previously were obscured by the noise.

These results are significantly different from those obtained by low pass
filtering. Figure 4(e)-(f) shows the phase portrait and power spectrum when
the original data are passed through a 12th-order Butterworth filter with a
cutoff frequency of 0.35. The. dynamical noise reduction procedure is more
effective than low pass filtering since the noise appears to have a broad spec-
trum.

However, the method appea $to subtract power from a mode whose fun-
damental frequency is approximately 0.3 times the Nyquist frequency. We
do not know exactly why this occurs. However, this peak corresponds to
the rotation frequency of the inner cylinder and may result from a defect in
the Couette-Taylor apparatus [31). We do not consider this to be a serious
problem, because the power associated with this mode is several orders of
magnitude smaller than that of the wavy vortex flow.

We emphasize that our objective is to find a simple dynamical system
that is consistent with the data. It is nossible for this method to eliminate
certain dynamical behavior from an attractor if those dynamics have small
amplitude. This situation is most likely to arise when there are not enough
data to distinguish such dynamics from random noise. In the present ex-
ample, the noise reduction procedure reveals the limit cycle behavior quite
well.8

The results obtained by applying the method to chaotic data from the

8We have not attempted to find the smallest amplitude at which the noise reduction
procedure can distinguish quasiperiodic from periodic flow.
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Figure 4: Phase portraits and power spectra for measurements of wavy vor-
tex flow in a Couette-Taylor experiment. (a)-(b) Phase portrait and power
spectrum before noise reduction is applied: (c)-(d) after noise reduction; (¢)-
(f) after a low pass filter is applied to :he original data. The vertical axis in
(6), (d) and (f) is the base-10 logarithm of the power spectral density; the
horizontal axis i3 in multiples of the Nyquist frequency.
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Couette-Taylor fluid flow experiment described in [4] are shown in Fig. 5.
Figure 5(a) shows a two dimensional phase portrait of the raw time series at a
Reynolds number R/R. = 12.9, which corresponds to weakly chaotic flow [4].
The corresponding phase portrait from the filtered time series is shown in
Fig. 5(b). Figs. 5(c)-(d) show the power spectra for the corresponding time
series.’

It is difficult to estimate how much noise is removed from the data in this
example on the basis of power spectra. One problem is that the transition
from quasiperiodic to weakly chaotic fluid flow is marked by a sudden rise in
the noise floor in the power spectrum (cf. Fig. 3 in (4]). Hence one cannot
determine how much of the noise floor is due to deterministic chaos and how
much results from broadband noise. The noise reduction procedure described
here has the effect of reducing the power in the high {requency components
of the signal. One question therefore is whether reducing the high-frequency
noise corresponds to discovering the true dynamics which have been masked
by noise. We believe that the answer is yes, based on those cases where there
is an underlying low-dimensional dynamical system. However, in chaotic pro-
cesses some high-frequency components remain, because they are appropriate
to the dynamics.

6 Numerical Experiments on Noise Reduc-
tion

One important question is how much noise this method removes from the
data. The power spectra above suggest that the method eliminates most of
the noise, but it is impossible to give a precise estimate for typical experi-
mental data.

However, the Hénon map (23] provides a convenient way to quantify the
noise reduction, because it can be written as a time delay map of the form

Tis1 = f(2iyTic1) = 1 = az? + Bz, (3)

We use Eq. 3 to generate a time series as follows (with the standard parameter
values o = 1.4, B = 0.3). We choose an initial condition and discard the

The time series consists of 32,768 values, from which an attractor is reconstructed in
four dimensions. Linear maps are computed using 50~100 points in each ball. Trajectories
are fitted using sequences of 24 points.
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Figure 5: Phase portraits and power spectra for measurements of \iveakly
chaotic flow in a Couette-Taylor experiment. (a)-(b) Phase portrait and
power spectrum before noise reduction is applied; (c)-(d) after noise reduc-
tion. The units for the power spectrum plots are the same as those in [4].
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first 100 iterates. The next 32,768 iterates are stored, and a time series is
generated by adding a uniformly distributed random number to each iterate.
This simulates a time series with measurement noise, i.e., a time series where
noise results from errors in measuring the signal, not from perturbations of
the dynamics. )

We measure the improvement in the signal after processing by considering
the pointwise error e; = {|z;41 — f(zi, zi-1)]], i.€., the distance between the ob-
served image and the predicted one. Let the mean errorbe E = (3" e?/N)'/2,
the rms value of the pointwise error over all N points on the attracior. We
define the noise reduction as R = 1 — Egyted/ Encisy, where the mean errors are
computed for the adjusted and original noisy time series, respectively. The
quantity R is a measure of the self-consistency of the time series. (In other
words, R measures how much better on the average the output attractor
obeys Eq. 3 as one hops from point to point.)

When 1% noise is added to the input as described above, the noise
reduction (measured with the actual map) is 79%.!° Nearly identical re-
sults are obtained when the input contains only 0.1% noise. In addition,
noise levels can be redvced almost as much in cases where the noise is
added to the dynamics, i.e., where the input is of the form {z:4;:zi4 =
f(zi + miy i1 + Mizt), 74,71 random}. When the program is run on noise-
less input, the mean error in the output is 0.025% of the attractor extent,
which suggests that errors arising from small nonlinearities are negligible
when the input contains enough points.

7 Simplicial Approximations of Dynamical
Systems

Recent work has shown that simplicial approximations of dynamical systems
can reproduce the behavior of the original system to high accuracy [34]. (See
also {33] for a bilinear approach.) In particular, the fractal structure of the
original attractors and basin boundaries is preserved over many scales. Such
approximations can yield significant computational savings, especially when
the original system consists of ordinary differential equations.

19The pointwise error is measured using Eq. 3. However, the attractor can be embedded
in more than two dimensions when performing the noise reduction.
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This approach can be extended in a natural way to generate simplicial
approximations of the dynamics on attractors reconstructed from experimen-
tal data. Qur objective here is to find an approximate dynamical system in
a neighborhood of the attractor as follows.

A simplex in an m dimensional space is a triangle with m 4 1 vertices.
Suppose the map is known at each point on a grid. Then there is a unique way
to extend the map linearly to the interior of the simplex S whose vertices
are grid points. Given a point P in the interior of S, let {b;}7, be its
corresponding barycentric coordinates (see [34] for an algorithm to compute
them). Let f(v;) be the map at the ith vertex. The dynamical system at P
is iterated by computing

B(P) = 3" bif(v). 0
=0

We apply this method to experimental data by finding a linear approx-
imation of i.ae dynamics at each vertex v; with the least squares method
described above, using a collection of points in a small ball around »;. The
maps are stored and retrieved using a hashing algorithm similar to that de-
scribed in [34). This yields a piecewise linear approximation of the iynamics
from a set of experimental data which can be analyzed with the methods
that previously were available only to theorists.!!

We illustrate the approach using a time series of 32,768 values from the
Hénon map with @ = 1.2, § = 0.3 using Eq. 3 and adding 0.1% noise as
described above. The original attractor is shown in Fig. 6(a). We take a grid
of points which are spaced at 1% intervals (this and subsequent distances are
expressed as a fraction of the original attractor extent). The time series is
embedded in two dimensions, and a linear approximation of the dynamics is
computed at each grid point for which 50 or more attractor points can be
collected with a ball of radius 0.03; the set of such grid points is shown in
Fig. 6(b). We take an initial condition near the original attractor and show
the first 3000 iterates using Eq. 4 in Fig. 6(c). Although some defects are
visible, the attractor produced by the approximate dynamical system looks
almost identical to the original one.

This approach is less ambitious than that of Crutchfield and McNamara (7}, who
attempt to find a single set of nonlinear difference equations that creates the observed
attractor.
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Figure 6: (a) Hénon attractor computed from Eq. 3 with « = 1.2, § = 0.3.
(b) 1% grid on which linear approximations of the dynamics are computed
from the available attractor points. (c) Attractor produced by the simplicial
approximations.

17




period {| D =2 | exact | D =3

1 1.793 | 1.695 | 1.757
2.178 1 2.199 ] 2.183
4.226 | 4.329 | 4.051
10.38 | 10.70 | 9.626
10.38 | 11.32 | 12.12
25.80 | 24.88 | 30.25
20.02 | 20.60 | 20.38
17.70 | 24.32 | 21.70
Table 1. The largest eigenvalues of the Jacobian of the periodic orbits located
using the simplicial approximation of the Hénon attractor.
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One application of simplicial approximations is the location of periodic
saddles and the estimation of the largest eigenvalue of the corresponding
Jacobian. That is, if z is a periodic point of period p, then we find the
eigenve’ e of D fP(z) of largest modulus, where D fP(z) refers to the matrix
of partia: derivatives of the pth iterate of the map f evaluated at z.

Given an initial guess for z, one can apply Newton's method using the
maps computed at the grid points and Eq. 4 to locate the'saddle using the
simplicial approximations. Likewise, Eq. 3 can be used to locate the corre-
sponding “exact” saddle. Saddle orbits up to period 8 have been computed
in this way. In all cases, the saddle point for the simplicial approximation
is within 2% of the corresponding saddle point for the Hénon map. Table
1 shows the largest eigenvalues of the saddle orbits. (The columns labeled
m = 2 and m = J refer to the embedding dimensior used to reconstruct the
attractor.) In most cases, the relative error is only a few percent, and in
no case exceeds 25%. (The largest relative error is for the period 8 saddles,
where one finds the eigenvalue of the product of 8 Jacobians computed from
the least squares.)

This method can be extended to experimental data sets. However, there
are relatively stringent requirements on the data that can be handled: the
time series must be long enough to trace out many trajectories near the prin-
cipal unstable saddle orbits, and the noise level must be low. (Presumably
noisy data can be preprocessed using the approach described in Section 3.)
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The current computer implementation uses a large amount of disk space to
store the linear map approximations at the grid points.

We have constructed a simplicial approximation for an attractor obtained
from a Belousov-Zhabotinskii chemical reaction [6, 28]. The attractor is re-
constructed in three dimensions from a set of 32,768 measurements of bro-
mide ion concentration. The phase portrait is shown in 7(a).

Linear approximations of the dynamics are computed at each point of a
grid consisting of 50 intervals along each coordinate axis for which 50 or more
attractor points can be located within an 8% radius of the grid point. This
produces a database of 59,550 maps. We observe from graphical evidence
that many trajectories approach what appears to be a period 3 saddle in the
middle of the attractor. Using initial guesses from some of the trajectories,
we apply Newton’s method to locate the saddle orbit shown in Fig. 7(b).
Moreover, we obtair. estimates of the Jacobian DF of the map evaluated ac
a point on saddle orbit. The eigenvalues of DF are estimated as A\, = 1.14,
A2 = 0.102, and A\; = —1.53. These quantitative results confirm that the
orbit is a saddle since A; > 0 > A3, (Note that une expects A; = 0 for a fow
generated from a set of differential equations.)

8 Conclusion

Methods for approximating the dynamics of attractors reconstructed from
experimental data provide powerful tools. Most of the same procedures that
have been so important for theoretical insight, such as Poincaré maps, un-
stable fixed points and their manifolds, basin boundaries, and the like, are
now available to experimenters, at least in cases where the dynamics are low
dimensional. There is little doubt that these tools will lead to breakthroughs
in the understanding of a wide variety of physical systems. However, con-
siderable effort is needed before we learn which kinds of systems will benefit
most from these types of analyses. Significant improvements in technique
will certainly extend the applicability of dynamical embedding methods, for
example to higher dimensional attractors.

19




(b)

UL 17 TN
¥; V4 ——

Figure 7: (a) The attractor reconstructed from a time series of bromide ion
concentrations in a Belousov-Zhabotinskii chemical reaction. (b) The period

3 saddle orbit.
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Appendix

In this appendix we outline a possible alternative noise reduction method
based on the theory of least squares when all the quantities in the regression
are measured with error. :

In ordinary least squares, the variables in the problem fall into two classes;
the independent variables, which are known exactly, and the dependent vari-
ables, which are observations assumed to be functions of the independent
variables. The dependent variables are subject to random errors that are
assumed independent anc identically distributed (i.i.d.).

On an attractor reconstructed from experimental data, we assume that
the mapping which takes points in a sufficiently small ball to their images
is approximately linear. However, the locations of all the points are subject
to small random errors because of the noise. Hence one cannot describe the
points as independent variables and their images as dependent variables. The
usual least squares method produces a biased estimate of the linear map, and
this bias does not decrease if more observations are added (15, 10].

The so-called “errors in variables” least squares methods can be used to
handle the latter problem. This approach can be used to obtain both an
estimate of the linear map as well as estimates of the “true” values of each
of the observations.

At first this appears to be an underdetermined problem: from n pairs
of observations one wants to compute the parameters of the functional re-
lation between them as well as estimates of the n actual pairs.!* However,
it is possible to solve this problem by making some assumptions about the
errors (15, 10).

In our case, we assume that the errors in the location of each point and
its image are i.i.d. In particular, we let the covariance matrix of the errors
in the variables be the identity matrix. This assumption is valid whenever
the noise is independent of the dynamics.!?

We illustrate the procedure for the case where we are given a collection
of n points (in R™) and their images. Following Jefferys [13], we form a set

121n the statistical literature, the problem is said to be unidentified.

13Dynamical noise (i.e., each point is perturbed slightly before iterating) yields a co-
variance matrix which depends on the point. However, as long as the dynamical noise is
small, our assumptions about the covariance matrix of the errors should not compromise
the accuracy of the method.
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of n equations of condition given by
fi(xi) = Xppi — AX; = by = Xpqi = L(X;) (5)

where x; is the ith point, X, is its observed image, A is an m X m matrix,
and b is an m-vector. The goal is to find estimates of L (i.e., A and b),
together with perturbations Vv, such that

Fi(%i + Vi) = (Xng1 + Vi) = L(xi + Vi) =0
and such that the quadratic form

So = =Vio™lv (6)

o] —

is minimized. The superscript ¢ denotes transpose and ¢ is the covariance
matrix of the observations (which we assume is the identity matrix here).

TL'y minimization problem can be solved using Lagrange multiplie.s
(see [13] and [14] for a numerical algorithm). The solution gives A and b to-
gether with estimates x; + v; of the “true” observations. It can be shown [10]
under fairly mild hypotheses that the estimates of L and the observations
are the best in the class of linear estimators.

One way to approach noise reduction is to extend Eq. 5 to include several
iterations of the observed points. Given a collection of points in a ball,
together with the next p iterates of each point, the method above is used to
find a collection of linear maps Ly, Lg, -+, L, approximating the dynamics.
The method also finds estimates of the actual observations. In this approach,
therefore, the calculation of the maps and the adjustment of the trajectories
is done in one step. Moreover, each point and its image exactly satisfy a
linear relationship.

Of course, p cannot be toc large, because nonlinear effects eventually will
become significant when the dynarmics are chaotic. On the other hand, Eq. 5
provides a natural way to include quadratic or other nonlinear terms.

We have written a computer program to implement this alternative noise
reduction algorithm. So far, the results of this approach have not been as
good as those from the method described in the main part of the paper, but
further refinement should improve them.
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ABSTRACT

For a homeomorphism of the plane, the basin of attraction of a
fixed point attractor is open, connected, and simply-connected, and
hence is homeomorphic to an open disk. The basin boundary, however,
need not be homeomorphic to a circle. When it is not, it can contain
periodic orbits of infinitely many different periods.

Certain points on the basin boundary are distinguished by being
accessible (by a path) from the interior of the basin. For an
orientation-preserving homeomorphism, the accessible boundzrv points
have a well-defined rotation number. We prove that this rotation number
is rational if and only if there are accessible periodic orbits. In
particular, if the rotation number is the reduced fraction p/q, then
every accessible periodic orbit has minimum period q. In addition, if
the periodic orbits are hyperbolic, then every accessible point is on

the stable manifold of an accessible periodic point.
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1. Introduction and Statement of Main Theorems

When a dynamical system has more than one attractor, the
boundaries between respective basins of attracticn can exhibit very
complicated patterns. For invertible maps of the plane, these
boundaries can be smooth or fractal, and they can contain infinitely
many saddle-type periodic orbits. (By fractal, we mean that the set
has non-integer Hausdorff dimension.) Two basins of attraction of the
time 2n map of the forced damped pendulum equation are shown in black
and white in Figure 1. This picture was constructed by choosing a
960 x 520 grid and, using each grid point as an initial condition,
testing where its traject. 'y goes. The system has two fixed point
attractors--one in the white region to which all grid points colored
white tend under iteration by the map, and one in the black region to
which all grid points colored black tend. The boundary between the
black and white basins is fractal, making final state predictability
very difficult. In addition, buried within the fractal ;ayers of the
boundary are saddle periodic orbits of arbitrarily high periods._

Even though the dynamics on the boundary appear to be very
complicated, it has been observed (see, for example, [GXY!) that some
points on the boundary exhibit regular behavior. We say that a point
p on the boundary of an open set W is accessible from W if there is a
path beginning in W such that p 1is the first boundary point which
the path hits. Surprisingly, when the boundary is fractal, most
points are not accessible. For the map in Fig. 1, ther: are two

points that are saddles of period two (i.e., one period two orbit)




which are accessitle from tiie white region, and all other points which
are accessible from the white region are on the stabie manifold of
this periodic orbit. In this paper, we investigate the dynamics of
the accessible points on kasin boundaries. The paper is strongly
motivated by numerical studies that repeatedly conclude there are
accessible periodic saddles in the boundary. 1n fact, we know of no
natural case of an area-contracting diffeomorrhism having a basin
boundary without accessible periodic orbits.

We wouid like to thank J. Mather and H. Nusse for helpful

discussions.

Throughout this paper, W is a connected, simply-connected open
set either in the plane R or in the sphere Sz, and F is a
homeomorphism (or diffeomorphism, if differentiability is required) of
the plane or the sphere. We assume that W 1is invariant under F,
(i.e., F(W) = W). Our main examples of such sets will be basins of
attraction. In particular, the basin of attraction of an attracting
fixed point must be such a set. (See Sec. 2.) We assuﬁe in addition
that ¥ 1is not the entire plane, in which case its boundary &W is
more than one point and-is—a—conreebed—swet. Since W 1is invariant
under F, OW 1is also an invariant set. All connected,
simply-connected open sets are homeomorphic to an open disk. On the
other hand, the boundary of such a region does not have to be
topologically a circle, and examples abound in which the boundary of a

basin of attraction is a fractal set. The characterization of a set W
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as a topological open disk occurs in the study of the Riemann Mapping
Theorem which says that for any such set W there is always a
one-to-one analytic map h of an open disk D onto W. The
knowledge that the basin is topologically an open disk tells us N
nothing about the boundary of a basin, and it is our objective to
describe the dynamics on the points in oW that are accessible from W.

In the following we say that p is accessible only if it is a

point of W that is accessible from W.

Caratheodory [C] investigated the behavior of the map h in the
Riemann mapping theorem to see when h couid be defined at boundary
points of the disk. If T 1is a (continuous) pa*h in W which limits
on the accessible point p, then h-l(F) is a (continuous) path in D
limiting on exactly one point r in Sl, the boundary of D. We call

such points as r trivial circle points; we call all other points on

the circle non-trivial circle points. Caratheodory’s approach was to

construct a compactification of W which is topologically identical to
5. the closed disk. (His is not the standard compactification;
points in this compactification which correspond to points in the
boundary s! of T are called "prime ends" and are defined precisely in
Sec. 5.)

We define a map hc on points in D and on those points in D that
are trivial circle points by hc(x) = h(x) for x in D, and hc(r) =p
where p is an accessible point and r is an associated trivial circle

point, as defined above. It is clear from the construction that each

accessible point is the image of at least one trivial circle point.




The map hc is not necessarily one-to-one on trivial circle points.
(See Sec. 7; in particular, see Fig. 7.) However, once a path ' in W
limiting on an accessible point p is specified, then there is exactly
one trivial circle point x which is the limit of i) .

We mention two properties of accessible points and the map hc:

PRoPERTY 1 (DeNsITY) The set of accessible points is dense in dW;

the set of trivial circle points is dense in Si. the boundary of D.

PROPERTY 2 (EXISTENCE OF AN INDUCED MAP) There is a map, denoted

f and called the induced map, from D to itself such that

hc(f(x)) = F(hc(x)) when x is in D or x is a trivial circle point.

If p is an accessible point and I' is a path in W ending at p,
then F(I') is a path in W ending at F(p). Hence, accessible points map
to accessible points. If follows that f maps trivial circle points to
trivial circle points. On the set of trivial circle points, f is
one-to-one, onto, and order-preserving. Such a map can be uniquely
extended to a homeomorphism defined on all of Sl.

These properties allow us to study the dynamical system on the
closed disk, maintaining the dynamics on the accessible points. Since
in general W will include much more than the accessible points, much
of 8W is lost in this representation. For us, however, the

simplification is advantagecus since we wish to describe the dynamics




on the accessible points.

We have important examples in which W is not a basin even though
a dense set of points in W have trajectories tending to an attractor.
The following definition allows the inclusion of such examples. We
the property that the set of points in Be whose orbits eventually
leave Be is dense in Be h W. (I.e., there is a dense set Q in
Be N W such that xeQ implies that F'(x) 1is in W\Be for some
n>0.) This definition is easily seen to be satisfied when W is a
basin of attraction. It is also satisfied in the very different case
where there is a dense orbit in W.

Certain types of periodic orbits in s' merit particular

attention. Let p e s be a periodic point of period k. We say p is

attracting on at least one side (of S’) if there exists x € s' such
nk ) .
that x # p and limnemf (x) = p.

The following key theorem is proved in Sec. S5:

THEOREM 1.1 (ATTRACTING LEMMA). Assume that oW unstable in W and

that for each k the fixed points of Fk are isolated. Then each
periodic circle point that is attracting on at least one side is a

trivial circle point.

An orientation preserving homeomorphism of the circle can be
classified according to its rotation number~-a number p, with

0 =p <1, which represents the average rotation of points under the




map. (A prec{se definition is given in Sec. 5.) The rotation number
is independent of the choice of point on Sl. The idea of associating
a single rotation number with each orientation preserving
homeomorphism of the cifﬁle originated with Poincaré. Such a
homeomorphism will have a periodic point if and only if its rotation
number is rational. It will have a fixed point if and only if i;s

rotation number is 0. We define the rotation number p(8W,F) of F on

the accessible points of W to be the rotation number of the induced
map f on s'. IfW isa connected, simply-connected open set in Rz, if
F is orientation preserving, and if the closure of W is invariant
under F, then W has a rotation number. In particular, if p 1s an
isolated, attracting fixed point in Ra. if its basin W is not all of

Rz, and if F is orientation preserving, then 6W has a rotation number.

(See Sec. 2.)

G.D. Birkhoff recognized that the set of accessible p&ints is
dense in the boundary of an invariant region and that their dynamics
can be characterized by their rotation number. He used this idea in
(B] té construct a map of the annulus into itself with an unusual
invariant set J. On one hand, J resembles a closed Jordan curve in
that each of its points is on the boundary of both an interior region
Sint (containing one boundary circle of the annulus) and an exterior
region Sext tcontaining the other boundary circle). On the other
hand, J is “"remarkable" in the sense that it contains a dense set of
points accessible from Sint with one rotation number and a dense set
accessible from Sext with a different rotation number. To compare

this situation with our hypotheses, notice that such a map has an
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inverse for which J is unstable (in S and in Sext) and J is the

int
boundary between the points which go outward and those which go inward
(under the inverse).

Cartwright and Littlewood further developed these ideas in
(C-L1), where they prove the existence of and determine the stability
of periodic orbits for a certain class of second order differential
equations in the plane. More recently, J. Mather has given purely
topological proofs of some of the topological results of Carathéodory
in [M1] and has used the theory tec study invariant sets for
area-preserving homeomorphisms of the annulus [M2], [M3]). We rely on
the proofs in the above references of Cartwright-Littlewood and Mather
for much of the material on prime ends given in Secs. 5, 6, and 7. A
general reference for Carathéodory’s theory 15 (C-Lo], Chapter 9.

The following argument explains the significance of the
Attracting Lemma. Assume that the rotation number of { on s is
rational (say the reduced fraction p/q). Then s' will have at least 1
fixed point under fq. (i.e., a periodic point of period q). If a
trivial circle point x is not fixed under fq, then its orbit converges
to a fixed point r under iterates of £9, By the Attracting Lemma, r
is necessarily a trivial circle point. Corresponding to r is an
accessible point p on 8W. By Property 2, p is fixed under FI.  Thus

we have the following result:




THEOREM 1.2. Assume that oW is unstable in W and that for each k
the fixed points of Fk are isolated. Assume further that the rotation
number p(8W,F) is p/q (resp., 0). Then there is an accessible fixed

point of 4 (resp., F) on aW.

In Sections 6 and 7 we describe the dynamics on the set of
accessible points under the hypotheses that p is rational, F 1is a
diffeomorphism, and periodic points in the boundary are hyperbolic.
(A periodic point p is hyperbolic if the Jacobian matrix DF(p) has
no eigenvalues with absolute value 1.) By the Inverse Function
Thecrem, a hyperbolic point is isolated from other periodic points of
the same period (or smaller period); In the following theorem, which
is a special case of Theorem 6.1 in Sec. 6, we assume that W is a

basin cf attraction: i.e,, there exists a compact set K in W such that

the "w-limit set" of the orbit of each point x in W is non-empty and
is contained in K. (Given a point x, the point z is in the w-limit
set of the orbit of x, if there exists a sequence (tn), with tn - ©,
such that ftn(x) — z.) If the orbit of each point in W is bounded,

then there exists a compact set K’ < K which is Liapunov stable (see

Sec. 2 for definition) [BS].




THEOREM B.1’. Assume that the periodic points of F in 8W are
hyperbolic and that W is a basin of attraction. If the rotation
number p is rational, then every accessible point either is a periodic

point or is in the stable manifold of an accessible periodic point.

Theorems 1.2 and 6.1’ do not mention the minimum period of an
accessible periodic orbit. Degeneracies can occur due to the fact
that the map hc i{s not necessarily one-to-one on trivial circle
points, so that the period of the accessible points can strictly
divide the period of the orbit on s'. In Sec. 7 we prove that such
degeneracies are ruled out for homeomorphisms of the plane, although
they can still occur for homeomorphisms of the sphere. We use the
following two results. The first, a converse of Theorem 1.2 for
planar maps, implies that thé period of an accessible periodic point
cannot be strictly smaller than the period of a trivial periodic

circle point., The second implies that it cannot be strictly larger.

PROPOSITION 7.3. Let F be a homeomorphism of the plane RS, If

there exists an accessible fixed point on W, then p(8W,F) is O .

ProPOSITION 7.4. If p = 0, then every accessible periodic point

in oW is a fixed point.




CdRQLLARY 7.5. Let F be a homeomorphism of the plane R®. If
p # 0 1s the reduced fraction p/q, then every accessible periodic

point in W has minimum period q.

The next corollary (a special case of Cor. 7.6) follows, although
not directly, from Prop. 7.3, Prop. 7.4, and Thm. 6.1. In
particular, it remains to be shown that if the orbit of an accessible
point converges to a fixed point in 3W, then the fixed point is
accessible. We point out that this corollary does not mention the

rotation number p.

COROLLARY 7,é'_ Assume the following conditions hold:
(1) F is a diffeomorphism of the plane Rz;
(2) the periodic points of F in oW are hyperbolic;
(3) W is a basin of attraction; and
(4) either (1) there exists an accessible period point of
miniaum period q, or
(ii) there exists an accessible point which
converges (under f) to a periodic point of
minimur period q.
Then every accessible point in W either is a periodic point of
minimum period q or is in the stable manifold of such a periodic

point.

10
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In Sec. 2 we define a general class of connected, compact
attractors and show that attractors in this class have connected,
simply~connected basins. In Sec. 3 we study the orientation-reversing
case, and in Sec. 4 we apply Theorem 1.2 to a class of chaotic
attractors, viewed as boundaries for the inverse of the map F.

Figures 1 through 4 were made using Dynamics [Y].

11




2. Attractors with Simply-Connected Basins

If A is a hyperbolic fixed point, then A has a connected,
simply-connected neighborhood which contracts to it under iteration by
F. In this case, the entire basin of A (see Sec. 1 for definition) is
connected and simply connected. Here we look at a more general class
of attractors and show that their basins are connected and simply
connected and thus satisfy the hypotheses of Theorems 1.1 and 1.2,
(The hypothesis that the boundary oW is unstable in U is trivially
satisfied if either the attractor A does not intersect oW or if A has
a dense orbit and is not a subset of aW.)

For a closed set S, let Se be the e-neighhnorhood of S; i.e., S

€

is the set of points y such that min Il x -y ## < €, where Il |l
XeS

denotes the Euclidean norm in-®%. We say a set A is a regular

attractor if A satisfies the following three properties:

(2.1) A is compact and connected;
(2.2) A is Liapunov stable; i.e., for each neighborhood Y of A
there existis €>0 such that Ac cY, and iIf X € Ae then F(x) € Y,

for all n=1;

(2.3) The basin of A contains an open neighborhood of A.

In the following proposition, "area-contracting" means
specifically that there exists a number &, where £ < 1, such that

|det DF(x)| < & , for all x in RS,

12




PrOPOSITION 2.4, Let F be an area-contracting map of the plane.
If A is a regular attractor, then the basin U of A is open, connected,

and simply connected.

Proof. Let Y c U be an open neighborhood of A, Let & > 0 be
given such that Fn(Ae) cY forall n=z0. Select s, 0< S <eg,
such that Fn(Aa) c Ac ¢cYclU, for all n=z= J. Such ¢ and & exist,
since A is Liapunov stable.

Let x € U be given. Choose k > 0 such that Fk(x) € Ae. Since
A8 is open, there is an open neighborhood Vx of x which maps into Ae
under Fk. Thus each point x in U has an open neighborhood Vx in U,
and U is open.

Let Xy and Xy in U be given. Choose integers P>0 and Q>0 such
Define m = max {P,Q}. Then

that FP(xl) € A, and FQ(xz) € A

8 8
Fm(xl) and Fm(xz) are in A, Slince A ls connected, A is connected for
each €>0. Hence, Ae is an open, connected set. Since open, connected
sets are path connected, there is a path I' in Y connecting Fm(xl) and
Fm(xz). Thus F "(F) lies in U and connects X, to Xy Therefore, U
is connected.

It remains to show that U is simply connected. Suppose that U is
not simply connected, and let C be a simple closed curve in U which
bounds a region D containing a set S (consisting of one or more
points) that is not in U. This implies that the distance between

Fn(S) and A is at least ¢, for all n =2 0. Select a, 0 < a« < 3§, such

that Fn(Aa) < As for all n =2 0. Since C is compact, there exists

13




an integer j(a) > 0 such that Fj(a)(C) <A Therefore,
Y"‘j(C) c Aa. for all J = j(a). We conclude that the distance between
F?(S) and FP(C) is at least e~5 for all n = J(a«). On the other hand,
since F is area contracting, the distance between F*(S) and F(C)

converges to zero as n 5 «, This contradicts the fact that e-d > 0.

Therefore, U is simply connected, N
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3. Continuation and Orientation-Reversing Maps

Let FA be a homeomorphism of R? depending on a scalar

parameter A. We assume that FA has a fixed point regular attractor

AA' which depends continuously on A, for each A. We define the

maximal basin W, to be the largest open set having a dense set of

A

points that are attracted to AA under FA’ Let Bk

X and let Py be the rotation number of F

be the boundary of

W on C., the accessible

A A’

points in B For a parametrized homeomorphism on a circle, the

X
rotation number varies continuously with the parameter (see, for
example, [D]). Unlike the circle case, however, Py is not necessarily

continuous in A. In fact, the boundary B, can jump discontinuously,

A
even when there is no change in the attractor. It was shown in [(HJ]

(see also [GOY] and [ATY]) that when the stable and unstable manifolds
of an accessible saddle on the boundary become tangent at A = A, and
then cross for A > A,, the stable manifold jumps a positive distance

¢ (not dependent on A) into W for each A > A,. Figure 2 shows in

Al
black the basin of attraction of infinity for three different values

of the parameter A in the Henon map
- - 2-
FA'b(x.y) = (A - x° -by, x) (3.1)
where b is fixed at 0.3. There is a period two attractor in the white
region to which the orbits of almost all white points tend. Numerical

experiments indicate that for A=1.39 (in Fig. 2a), a period-four

saddle orbit and its stable manifold are the cnly boundary peints

15




accessible from the white region. There is a tangency of the stable
and unstable manifolds of consecutive points in this orbit st A = A,
= 1.395. Specifically, if ve number the four points in the orbit
xl,...,x4 consecutively {in the counter-clockwise direction around

the basin boundary)}, and if we set xn = for n>4, then (xn}

*h(mod4)
is a periodic trajectory. At A=A, the unstable manifold of xs is
tangent to the stabie manifold of X141 For each A > A,, black
points appear in what was the interior of the white region. In
addition, it has been numerically observed that for each A > A, (near
A,), the set CA of accessible boundary points is composed of a
period-three saddle and its stable manifold. Fig. 2bc show in black
the basin of attract.~n of infinity at A = 1.4 and
A = 1.42,respectively, with the accessible period-three saddle. A
numerical investigation of rotation numbers for the
orientation-preserving, area-contracting Henon map appears in [AS].
When f is an orientation-reversing homeomorphism, the possible
dynamics on accessible orbits are limited. For a connected, simply
connected basin of attraction W, an orientation-reversing
homeomorphism on W restricts to an orientation reversing-homeomorphism
on 8W. Again, we study the dynamics on 8W through its association
with the circle. An orientation-reversing homeomorphism f of s' must
have fixed points. It may or may not have periodic points of period
two. Notice, however, that f can have no periodic points of minimunm
period greater than 2. The map f2 is orientation preserving and has

rotation number 0 since it has fixed points. But an

orientation-prescerving homeomorphism of the circle with rotation

16
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number 0 has no periodic orbits of minimum pericd greater than ;.
Suppose £ has a periodic orbit of minimum period k, ¥=3. Then fz has
a pericdic orbit of minimum period k/2, if k is even, or of minimum
period k, if k is odd. Thus f has only periodic points of period one
or two.

We have the following restatements of Theorems 1.1 and 1.2 for

orientation-reversing maps:

THEOREM 3.2 (ATTRACTING LEMMA). Let F be an

orientation-reversing homeomorphism of the plane. Assume that &W is
unstable in W. Assume further that the fixed points of F° i &W are
isolated. Then each circle point that is fixed under 2 and is

attracting on at least one side is a trivial circle point.

THEOREM 3.3. Under the hypothesis of Theorem 3.2, there is an

accessible fixed point of F? on au.

Let FA be a one-parameter family of orientation-reversing
homeomorphisms. From Theorem 3.3, we observe that if a metamorphosis

occurs for FA’ then BA must jump to different fixed points of F2.

17




Example. The Henon map (3.1) is orientation reversing for b<O0.

It is easily verified that F can have at most 2 fixed points and at

A, b
most one periodic orbit of minimum period two. In this situation the
possible metamorphoses are severely limited by Theorem 3.3. As long
as the period-two orbit and one of the fixed points is in the
attractor (and the hypotheses of Thm. 3.2 are satisfied), no
metamorphoses will occur. If, however, the basin becomes
disconnected, as shown in Fig. 3, then the theorem no longer applies
and the boundary can be fractal. Fig. 3 shows in white the basin of a
two-piece attractor (which is also plotted in the white region). A
metamorphosis has occurred, and there is no longer an accessible fixed
point on the boundary. Now the accessible 1iddle has period six.

The existence of periodic orbits in the maximal basin of the
attractor but not in the attractor itself is also restricted by Thm.
3.2. Suppose (3.1) has a regular attractor A (i.e., A satisfies
Properties (2.1)-(2.3)). If A contains a fixed point and an orbit of
period two or if (3.1) is in a parameter range where there is no
period-two orbit and A contains a fixed point, then the basin U of A
is necessarily bounded by the stable manifold of the (other) saddle
fixed point p. (For every choice of parameter values, the orbits of
some points in the plane go to infinity; thus the basin U has a
boundary.) In particular, under these hypotheses, there are no

periodic orbits in the region containing A and bounded by Ws(p) except

those in A.
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4. Rotation Numbers for Chaotlic Attractors.

Here we look at a class 4 of non-periodic attractors in the
plane: an attractor © is in 4 if © 1is compact, connected,
invariant under F, and contains more than one point. In order to
apply Theorem 1.2, we show how to assign a rotation number to an
attractor in the class 4, assuming that F is an area-contracting
nomeomorphism of the plane. This approach is reminiscent of Birkhoff
(B] and also of Cartwright and Littlewood [C-L2] and Levinson {L] who
studied attractors in forced van der Pol type equations.

In looking at the Poincaré map of such equations, Cartwright and
Littlewood showed that there are invariant annull which have unequal
rotation numbers on the boundary circles and which possess strange
attracting sets. Each such attractor is the boundary of the inside
contracting and outside contracting parts of the annulus. The
existence of different rotation numbers inherited from the boundary
circles was evidence to them of a continuum attractor which was not
homeomorphic to s'. Levinson gave a careful analysis of the
attracting invariant set of a piecewise-linear version of this map in
[(Ln]. His work set the stage for the discovery of the horseshoe map
by Smale. See also Levi’s analysis of forced van der Pol type
equations in (Li].

let Z =R u {o} be the one-point compactification of R°. Then

F extends to a homeomorphism of Z by setting F({wo}) = {w}.

19




LEMMA 4.1, Let F be an area-contracting homeomorphism of the

plane RZ. If ®is in 4, then Z - 8 is connected and simply-connec*ed

in Z.

Proof. Since 8 is connected, each component of Z - 8 1is simply
connected in Z. (This simple fact follows most clearly from Alexander
Duality with Cech cohemology. See, for example, [Do}.) Since @ is
compact, only one component D, of R’ - 8 has infinite area (in ®°)
and, given any bound 7m, there are only finitely many other components
with area larger than n. Let Du be a component of Rz - ® with
maximum finite area in R°. Since F' is area-expanding and components
of Rz - 8 map onto other components of R® - 8, F! maps Du ont-

D. But F™! also maps D, onto D_, contradicting the fact that F'ois

a homeomorphism. Thus Z - 8 1is connected and simply connected in

z. .

Now we can apply Theorem 1.2 to ©, which is the boundary of the
open, connected, simply-connected region Z - ©. By looking at [-“l
instead of F, it can be shown that ® is unstable in Z - @, as
follows. Let 98 be an e-neighborhood of @, and let D be an open set
in @e A (Z-8) . Since F! is area-expanding, the area enclosed by
the boundary of D becomes unbounded under iteration by F'. It can
easily be shown that almost all points in D Ge eventually will be
mapped out of ee under iteration of F-l; hence, @ is unstable in

Z - 8 under F .. Theorem 1.2 provides the following result:

20
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PROPOSITION 4.2. Let F be an area-contracting homeomorphism of
the plane, and let © be in the class &4 of attractors. Assume thét.
for each k, the fixed points of Fk are isolated. If the rotation
number p(6,F) 1is the reduced fraction p/q, then there is an

accessible fixed point of FY on 8.

Figure 4 shows an attractor for the Ikeda map with an accessible
period 6 orbit. For a typical area-contracting diffeomorphism
depending on a parameter A, we conjecture that the rotation number
p(A) will vary continuously, except possibly at a discrete set of
values of A, and that p(A) will ‘e irrational for a non-empty set of A

of measure 0.
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S. Froof of the Attracting Lemma.

Let F be an orientation-preserving homeomorphism of
Z=Ru {w}, the 1-point compactification of the plane. A simple arc
Q in W with end points q, and 9, 49 # q,, on dW and no other points
on W is called a crosscut of W. Each crosscut divides W into 2
subdomains, since W is simply conrected. Let (Qn) be a sequence of
pairwise disjoint crosscuts such that Qn separates Qn+1 from Qn-l'
Then there is a corresponding sequence (Vn) of subdomains of W such

‘that Vn contains Qn+1 except for its endpoints. See Figure 5. The

sequence V1 > V2 > V3 > +++ 1s called a chain. If V = (Vn) and
V' o= (V;) are two chains, we say V divides V' if for each i, there is

a j such that V3 S Vl. We say V and V' are equivalent if each divides
the other. Under this relation, an equivalence class of chains is
called an end. A chain V is called prime if any chain which divides
it is equivalent to it. A prime end is the equivalence class of a
prime chain. For the unit disk D in R® a chain (Vn) is prime if and
only if V; is a single point (necessarily on the boundary s'). In
general, if there exists a sequence (Qn} of cross-cuts defining an end
V such that {Qn} converges to a point in AW, then V is prime (see, for
example, [M1]).

Let (Vn} be a representative chain in a prime end V. Since

each Vn is connected and ﬁ is compact in Z, n V; is a connected,
neiN '

compact, non-empty subset of Z. Thus it is either a single point or a

continuum. We call I(V) = N V; the impression of the end V. The
neN
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impression of V is independent of the defining chain in V. (However,
two prime ends can have the same impression. In Fig. 1, it appears
that there are two prime ends corresponding to non-trivial circle
points and that beth have impressions that equal 8W.) In (C],
Carathéodory presents an example of a domain for which the impression
of each prime end is a continuum; i.e., none is a single point. A
point p in I(V) is called a principal point of V if there exists a
sequence (Qn} of crosscuts (defining a chain in V) such that (Qn}
converges to p, i.e., p is the only limit point of this sequence. The

set of all such points is called the principal set of V. Finally, we

say a point r in 8W is accessible from W if there is an embedding 7n of

(0,1) into W such that 1imc900n(t) = p. In Fig. 6, we illustrate
these definitions. The following'lemmas appear, for example, in [M1]

(as Theorem 17.1 and Corollary 15, resp.):

LEMMA 5.1. The principal set of V has only one point e if and

only if e is accessible from W.

LEMMA 5.2. The principal set of V is compact, connected, and

non-empty.

Now we describe a topology on the set of prime ends. Let U be an
open set in W. We say an end V is contained in U (i.e., V e U) if
there exists a chain (Vn} in V all of whose elements are subsets of U.
Let W* =W u &, where & is the set of prime ends of W. A set U" in

W* is open if and only if U* n W is open (in W) and

23




U* n & = {V: V contains a chain all of whose elements lie in W}. With
this topology, a sequence (En} of prime ends "converges" to a prime
end E, represented by (Vn}. if for every m, there exists N(m) € N
such that En = Vm for every n > N(m). We call W* together with this

topology the prime end compactification of W. Central to the theory

of boundary sets is the following theorem of Carathéodory (see, for

example, [C-Lo]):

THEOREM 5.3 (Carathéodory). Let W be a connected, simply
connected open set. Assume that oW has more than one point. Then W*
is homeomorphic to a closed disk, where points in W correspond to
points in the interior of the disk, ar” the prime ends correspond to
points in Si. the boundary of the disk. Furthermore, if F is a
continuous map on Z with W invariant under F, then there is map F* on

W* so that F* = F on W.

With this theorem, we are able to learn about the dynamics of F
on the boundary of W by studying the corresponding dynamics o Sa
the boundary of D. Prime ends "map" to prime ends under F; hence F
induces a map F* on W*. Let Tt be a homeomorphism from W* to 6, the
closure of D. Then the circle S' is invariant under the induced
homecomorphism f = 'rol-"'o't"1 of B. The study of homeomorphisms of the
circle is classical. Here we mention briefly some facts about these
maps which are needed in the arguments that follow. A reference for

this material is (D].
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Poincareé ghowed that associated with each orientation preserving
homeomorphism y of the circle is a "rotation" number, an asymptotic
measure of the rotation of poin£s on the circle under iteration by 7.
In order to define this number, it is convenient first to consider a
"1ift" of y. A map G of R is called a lift of y if mneG = yom, where

n is the covering map from R to Si; i.e., m(x) = exp(2mix). Let
p (x) = lim__G"(y)/n,
G N

for x in S' and y in R such that n(y) = x. (The value of pc(x) is

independent of the choice of y.) We define the rotation number r of 7%

to be the unique number in [0,1) such that pc(x) - r is an integer.

This value is well-defined:

FACT C1. The value r = r(y) is independent of both x and the

particular lift G of 7.

The dynamics of y are, to a large part, described by the rotation

number r{y):

FAacT C2. A map 7y of the circle has points of minimum period q if
and only if r(y) is an irreducible fraction of the form p/q, for some
positive integer p. The map y has fixed points if and only if

r(y) = 0.
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Thus, if 7y has periodic points, they must all have the same

period.

Fact C3. If 7 has a periodic point of period n, then every point
on the circle is either a fixed point of 7“ or is asymptotic to a

fixed point under iterates of 7“.

In the following set of definitions, we describe. various notions
of stability for periodic points and periodic prime ends. We often
mention only fixed points, but the definitions and lemmas which follow
carry over to periodic points by considering the appropria.e iterate
of f: a periodic point of period n is a fixed point of £0,

A fixed point p on st &s called:

(1) attracting on one side if all nearby points on one side of

p converge to it under iteration by f;

(2) repelling on one side if all nearby points on one side of

p converge to it under iteration by f '

The analogous definitions hold on the space of prime ends if the
word “point" is replaced by the term "prime end", and if "f" is
replaced by "F*".) By Fact C3, an isolated fixed point p on S1 is
elther attracting or repelling on each side. If p is attracting
(resp., repelling) on one side, then by Carathéodory’'s Theorem, the
assoclated prime end P is attracting (resp., repelling) on one side.

A prime end P fixed under F* is called weakly stable from W if P

contains a chain (Vn} such that F(VI) S P

for every i. The
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following lemma follows easily from the definition of oW being unstable

in W (see Sec. 1):

LEMMA 5.4. If oW is unstable in W, then no fixed prime end is

weakly stable from W.

The following three lemmas are important in relating fixed points
of F on W to fixed points of f on st Although there is a fixed prime
end corresponding to each fixed point on the circle, it is not the
case that a prime end which is fixed under F* necessarily contains a

point which is a fixed po.nt of F. Lemma 5.5 appears in [C-L1].

LEMMA 5.5 (Cartwright-Littlewcod). Let P be a fixed prime end of
F*, and let (Ql} be a chain of cross cuts converging to a point q
(necessarily a principal point) of P. If, for every i, F(Qi) has at

least one point in common with Qi’ then g is a fixed point of F.

LEMMA 5.6, If oW is unstable in W and if a fixed prime end P is
attracting on one side, then all principal points of P are fixed under

F.

Proof. Suppose P is attracting on one side. Let z be a

principal point of ?. By Lemma 5.2, there exists a sequence (Qq} of
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cross-cuts converging to z. Let (Vn} be the chain defined by these
crosscuts., By throwing out elements of the chain where necessary, we
can assume that either F(Qi) n Q1 # @, for all i, or that F(Qi) is
disjoint from Qi’ for all 1. In the former case, 2 ié fixed, by Lemma
5.5. Suppose that F(Ql) is disjoint from Qi' for all i. Then
(roF)(Qi) ie disjoint from T(Qi). for all i, and T(P) = p is
attracting on one side. Let ¢, on s' be the end point of T(Qi) which
is on that side of p. Then for i sufficiently large, fn(oi)—ep. as
n—w. Since T(Qi) and (toF)(Qi) are disjoint, we then have that
(zoF)(Q,) < T(V,). But then F(V,) ¢V, for all 1, contradicting

Lemma S5.4. Thus z is flixed under F. -

Proof of Theorem 1.1 (Attracting Lemma). Suppose that x is a
periodic circle point of period n and that x is attracting on one
side. Then the corresponding prime end P is fixed under (F.)n and
attracting on one side. By Lemma 5.6 all principal points of P are
fixed under FO. By Lemma 5.2 the set of principal points is
connected. Since fixed points of Fn are isolated, there can be only
one principal point, say p. By Lemma 5.1 the point p is accessible.
For a given curve I' in W limiting on p, the corresponding curve

h_l(F) (by definition) limits on a trivial point r in s'.
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6. Hyperbolicity

In this section we describe the dynamics on the set of accessible
points under the hypotheses that F 1is a diffeomorphism of either the
plane or the sphere and that periodic points in the boundary are
hyperbolic. In additién. we either assume t?at W is a basin of
attraction (see Sec. 1 for definition) or we add a condition on the
map F at o . We say that o is repelling in E if, for each ry > 0,
then |FT(x)| <r

there exists r., > 0 such that if Ix|.< r

2

for all % in ﬁ and n = O,

1 2’

THEOREM B.1. Assume that the periodic points of F in oW are
hyperbolic, and that either (i) W is a basin of attraction, or (il)
oW is unstable in W and @ s repelling in W . If the rotation number
p ls rational, then every accessible point either is a periodic point

or is in the stable manifold of an accessible periodic point.

The following lemmas are used in the proof of Theorem 6.1. For
each, the hypotheses of Theorem 6.1 are assumed. Let S be a (finite)
periodic saddle of F in dW, and let e (resp., w“) represent either

branch of the stable (resp., unstable) manifold of S, excluding S.

LEMMA 6.2. If W intersects W°, then W° and W are disjoint.
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Proof. 1f W is a basin of =zttraction, then clearly % and W are
disjoint. Suppose therefore that W is unstable in W, that o is
repelling in E, and that both W and W intersect W, Let Q1 be a

. S ; -
crosscut in W W, and let Q, = F(Ql)' Then W (Q1 U 02) has
three components. One component meets both 01 and QZ' Let D1 be the

component that meets only Ql’ and let D, be the component that meets

2

orly QZ’ Then D, = F(Dl).

2
Since w» is repelling in W and W is invariant under F, there
exists a compact set K such that F(K W) is contained in K N W

and an open neighborhood of S is in K. Iterating D, forward, there

1
exists a sequence {Dn} of open ets in W intersecting W® such that
{Dn) approaches w4 (locally), as nyw. Given £ > 0, choose j
sufficiently l3arge u. that Dn intersects K and there is no e€-disk in
Dn N K for all n > j. (This is possible since K includes an open
neighborhood of-S and there are only a finite number of e-disks inside

K.) Then for n > j, every point in Dn N K 1s within € of the

boundary, contradicting the hypothesis that dW is unstable in W. n

LEMMA B.3. If pe s' is a trivial fixed point, then it

corresponds to an accessible fixed point S in the boundary 8W. If S is

a repeller, then so is p.
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Proof. Corresponding to p is an accessible point S in 8d4. The
point S is necessarily a fixed point since accessible points map to
accessible points and S is the only accessible point corresponding to
the prime end p.

Suppese that S is a repeller. Since the boundary &é¥ is connected
and more than one point, each circle centered at € of sufficiently
small radjus must intersect GW. Let y be an "accessing" path in W
which limits on S (corresponding toc a path in the disk which limits on
p), and let {Qn) be a sequence of crosscuts converging to S such that
(1) Qn is an arc of a circle of radius 1/(n+N) for some fixed integer
N = 1, and (2) 7 intersects Qn an odd number of times, for each n. As
described in Sec. 5, since the sequence {Qn} converges to one point
(i.e., the point S ), it defines a prime end. Since this prime end
has accessible point S with accessing path y, it is represented by p

on S'. By the construction, p is a repeller on Sl..

We cay that two iccessing paths % and ¥, are equivalent if LA
can be homotoped to 7 via a continuous family of paths that remains
in W, all having the same endpoint S, (i.e., if there exists a
continuous family gt:I — W such that gO(I) =7y gl(I) =7 and
gt(O) =S, for all t e I). Notice that if S has two non-equivalent
accessing paths, then it corresponds to (at least) two different
circle pointe under hc.

In the next two lemmas, we assume the following additional
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hypotheses: (1) S is an accessible fixed point saddle; and (2) S has
an associated trivial circle p which is attracting on ai least one
side, (i.e., there exists a point z ¢ SI, z # p, such that
limn_mfn(z) = p).

For £ small, let Ms be the union of the segments of the stable
and unstable manifolds that connect S to the boundary of Be(S)’ the
e-ball around S. We can assume that € is small enough that the

segments of the stable and unstable manifolds in M8 intersect only

at S.

LEMMA B6.4. Let 7 be an accessing curve to S. Th-n 7 is

equivalent to an accessing curve that does not intersect Me'

Proof. Suppose that y is not equivalent to an accessing curve
that does not intersect Mc' Since W is open, it must be the case that
¥ intersects at least two components of Be(S) - Me and that both 7
and the boundary 6W intersect ws N MC or both intersect w“ n Me' The
case in which both intersect W° is ruled out by Lemma 6.2. Suppose
that both intersect Wu. Let {Qn) be a sequence of crosscuts
converging to S such that Qn is a closed interval on W and Qn
intersects ¥ an odd number of times, for each n. (Since the endpoints
of Qn are the only points of Qn on the boundary W, we can assume in
fact that Qn intersects y only once.) The prime end determined by

(Qn} is represented by p on the circle. In-this case, p must be a
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repeller, a contradiction.

In the following, let € > 0 and let y be an accessing path to S
such that there is a unique component of Be(S) - M_ that intersects
7. Call this component Qe' (The existence of Qe is guaranteed by
Lemma 6.4.) Since S is hyperbolic, we can further assume that Bs(S)
is a neighborhood in which F is smoothly conjugate to a linear map,

that S is the origin, and that Qe is an (open) quadrant in R°.

LEMMA B.5. The ~omponent Qe’ as defined above, contains no pnints

of the boundary 4W.

Proof. Suppose that Qc contains a point of 4W. Let e, aeR, be
a family of ("hyperbolic-like") invariant curves in Qe' Since the
boundary is connected, there is a connected component of d&W Qe
containing S and a point ba of e for e sufficiently close to S.
Assume e, is sufficiently close to S that y extends from S to a point
g, one,. Assume g, is below ba on e (the argument is similar if it
is above). Assume further that F(ga) is above ba' (Otherwise take a
higher iterate.) Then F(ga) is between ba and F(ba) on e_.

Since 7 and f(y) are both accessing curves to S (and they
correspond to curves in the disk limiting on the same circle point),

g, and F(ga) can be joined by a curve contained entirely in W so that
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the resulting loop B is null-homotopic in W. This is a contradiction

since either ba or F(ba) is contained in B. g

Proof of Theorem 6.1. We assume that the rotation number is 0.
(If the rotation number is p/q with p=0 , then replace F by F in
the proof.) Let x be an accessible point in W which is not a fixed
point. Corresponding to x is a trivial circle point z. By Lemma 6.3,
z is not a fixed point. Then the forward orbit of z converges to a
fixed point p on st By the Attracting Lemma, p is a trivial circle
point. Corresponding to p is an accessible point S in 6W. By Lemma
6.3, € is a fixed point. Since either W is a basin of attraction or
eW is unstable in W, S cannot be an attractor, and again by Lemma 6.3,
S is not a repeller. Thus S is a saddle, and the hypotheses of Lemmas
6.4 and 6.5 are satisfied by S, since p is attracting on one side.

By Lemmas 6.4 and 6.5, there is at least one component Qe of
BC(S) - M8 which is in W and contains no boundary points. If there
are boundary points in another component of Be(S) - Me’ then they are
in connected components of 8W which intersect both invariant manifolds
bounding that component. If exactly one component is free of boundary
points and is in W, then there are accessible points on one branch W
of the stable manifold and one branch w“ of the unstable manifold. By
Lemma 6.2, each point on this branch of W° is an accessible boundary
point. Thus points on one branch of the stable manifold of S are in
one-to-one correspondence with points of st on one side of p.

Let 81 and 82 refer to the segments on either side of p
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consisting of points on the circle between p and the closest fixed

points on either side. (If p is the only fixed point, then B, = B,.)
1

5
Let Bl be the segment which corresponds to WS, Necessarily, B1 is part
of the stable set of p. Let (Qn} be a sequence of crosscuts
converging to S such that one endpoint of Qn is on WY and one is on
ws, for each n. Since accessible boundary points on Wt converge under

F-—l

to S, given a point y in W Nl W (necessarily accessible) and
n>0, all but a finite number of points in the forward orbit of y under
F~! will be in V; , the closure of the domain deteriiined by Qn and S.
In this case p, which corresponds to the prime end determined by {Qn},
is repelling on BZ. Since the forward orbit of z converges to p, 2
must be on Bl’ and thus x is in the stable —wnifold of S.

The argument given in the previous paragraph holds in all cases
in which a sequence (Qn) of crosscuts in W converging to S (i.e., a
sequence which defines the prime end represented by p) has the
property that one endpoint of Qn is in WY and one is in ws, for all
n 2 0. The case in which there are exactly three components of
BC(S) - MC in W which are free of boundary points alsc reduces to
this case. If the crosscuts do not have this property, then there are
necessarily exactly two or exactly four components in W. In these
cases, both endpoints of a crosscut are in one or the other branch of
the stable manifold of S. (Since the fixed point p is attracting from
at least one side on Sl, the case in which only the unstable manifold
of S intersects the boundary is ruled out by an argument similar to
that in the proof of Lemma 6.3.) In this case, p is necessarily

attracting on the circle, and points on both Bl and BZ are in
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one~to-one correspondence with points in the stablé manifold of S.

Thus x is in the stable manifold of S. =

The following corollaries follow from the proof of Theorem 6.1.
The first extends Theorem 1.1 (the Attracting Lemma) to all points of
Sl, not just periodic points. The second shows that the map hc , the
accessible-point extension of the Riemann map h (described in Sec. 1),
is continuous on stable manifolds of periodic points of st (up to and
including the periodic point). For a trivial circle point r, we let r

denote the corresponding accessible point in dW. We assume the

hypotheses of Theorem 6.1.

COROLLARY 6.8, Assume that p is rational. If a point r in st is

not a periodic point, then r is a trivial circle point.

COROLLARY B.7. Let p in s' be a periodic point of f, and let
(rn) be a sequence of points in st converging to a point r. If L is
in the stable manifold of p, for each n, then the corresponding

sequence (Fn} of accessible points in 8W converges to r in aW.
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7. Minimum Periods of Accessible Periodic Orbits

Unfortunately, although a rational rotation number p/q implies
that £ has a periodic orbit of minimum period q on S1, we cannot claim
that F has a periodic point of minimum period q. See, for example,
the boundary depicted in Fig. 7, where p(dW,F) is 1/3, and F has én
accessible fixed point on the boundary but no period three orbit.

Recall that hc is the accessible-point extension of the Riemann
map'h. If the rotation number p of f is rational (say p/q), but not
0, then trivial circle points which are periodic (necessarily of
minimum period q) can map by hc to periodic points in the plane of
smaller minimum period. This situation is illustrated in Fig. 7,
where all points in one orbit on the circle coalesce to a fixed point
on the sphere. Surprisingly, Cartwright and Littlewood [C-L1] showed

that this type of example is the only possible one when accessible

points coalesce:

THEOREM 7.1 (Cartwright-Littlewood). If p # 0, then W contains

at most one accessible fixed point.

It is easily seen that this theorem rules out coalescing to an
orbit of minimum period strictly between 1 and q. Suppose that a
trivial periodic orbit of minimum period q on the circle maps (under

hc) to a periodic orbit of minimum period k on 8W, where k#1 and k=q.

37




Then k = q/r for some divisor r of q (r#1), and Fk has k accessible
fixed points on 8W. But the rotation number of the induced map fk on

the circle is non-zero, contradicting the theorem.

The situation illustrated in Fig. 7 can be largely overcome by

using Theorem 6.1 and assuming that the accessible periodic points are

saddles, ' )

PROPOSITION 7.2. Assume the hypotheses of Theorem 6.1. If the
rotation number p # 0 1is the reduced fraction p/q, where q # 2,

then every accessible periodic saddle in 8W has minimum period q.

Proof. Suppose there exists an acceésible orbit of period k on
W, where 1<k<q. Then Fk has at least k fixed points, but the
rotation number of the induced circle map fk is non-zero,
contradicting Theorem 7.1. Hence we assume there is an accessible
fixed point saddle 2z on dW. Given a path I' in W limiting on z, let y
be the trivial circle point which is the limit point of hc-l(rL
Either y is a periodic point of period q, or the forward orbit of y
under £J converges to a periodic point r. By Theorem 1.1, r is a
trivial circle point. By Corollary 6.4, the trivial circle peint r
corresponds to the accessible point z (i.e., hc(r) =z ), as do each

of the q points r = rl, rz,...,rq in the orbit of r.
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Let O be the center of the disk which S1 bounds and let

71""'7q be line segments joining O to rl....rq, respectively.
Then h(wl).....h(wq) are paths in W, all of which limit on z. Let
ry and rJ be adjacent points on the circle. Since rl....,rq

represent distinct prime ends on Si, the closed loop formed by h(71).
h(vj). and 2z necessarily contains boundary points in its interior.
These boundary points are connected to =z within the loop.

Therefore, by Lemma 6.5, q can be at most 4.

If q is 3 or 4, then at least one branch of the stable
manifold of z 1is in 8W, and r 1is necessarily attracting on at
least one side of the circle under f3 --as is each of the q points in
the orbit of =z. Each of these stable sets must correspond to a
branch of the stable manifold of 2. On the other hand, there exists
a path I in the disk connecting a point in the stable set of r, to

i
a point in the stable set of rJ which crosses one of the segments
71 or 7) exactly once and intersects none of the other segments.
Hence, in W, h(I') crosses h(zi) (or h(7j)) exactly once and

intersects none of the other "accessing" paths, a contradiction for

q> 2 n

For a map of the sphere, two types of degeﬂeracies are possible
when p = 1/2, even with the hypothesis that accessible orbits are
hyperbolic saddles. These possibilities are illustrated in Fig. 8.

In Fig. 8a, p = 1/2 and there is an accessible fixed point saddle p
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on 8W. In Fig. 8b, W is a line segment. The basin W (the
complement of B) is simply connected on the sphere. In this case,
p = 1/2 and there is an accessible fixed point saddle p and an

accessible saddle orbit (rl.rz} of period two.

The situation is greatly simplified when we look at

homeomorphisms of the piane. We use the following converse of

Theorem 1.2 for planar maps:

PropPOSITION 7.3. 'et F be a homeomorphism of the plane RE. If

there exists an acces.ible fixed point in aW, then p = 0.

Proof. Suppose # 0. Let x be an accessible fixed point,
and let p € s' be a corresponding trivial circle point. Since
p # 0, we can choose N > 1 such that the intervals [p, f(p)l],
(f(p), fz(p)]...., [fN'I(p). fN(p)] cover S By Property 2 of the
extension hc of the Riemann map, hc(fi(p)) =¥, for i =1,

Let ¥ and & be paths beginning at a point O in D and
ending at p and f{p), respectively. Let I be the closed loop
formed by h(y), h(8), h(9), and x. Choose a preferred direction,
clockwise or counterclockwise, so that the accessible boundary points
corresponding to trivial circle points between p and f{(p) are in

' Let G be T together with its interior. Since the accessible
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points are dense in dW, the entire boundary is contained in the

N
compact set K = U fi(G) . The complement of D 1is contained
i=1

entirely in W or entirely in RAW. The former case is ruled out
since W is simply connected. But then h(y) ¢ W 1is in the boundary

of K, a contradiction. =

Now assume that p 1is the reduced fraction p/q. Assume
further that there is an accessible periodic orbit of minimum period
r in oW (in the plane). The iterate F''  induces the map £° on s'.
Since F' has a fixed point, the rotation number of 7 is 0, by
Prop. 7.3. Thus all perlodic points ¢ f in s! are fixed points of
r

f°, which implies that q divides r. The next proposition shows

that q must equal r,

ProPosiTION 7.4. If p =0, then every acceszible periodic

point in oW is a fixed point of F.

Proof. Assume there is an accessible periodic point x of
period q, q > 1. Let p be a trivial circle point corresponding to
X. By Property 2 of the map hc, p is not a fixed point. Let O
be the center of D, let s be the line segment from O tfo p,

and let ¥y be the line segment from O to fl(p), for each i,
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1 i sq+l. Then hc(vo) and hc(7q) both contain p, and they
form a closed curve T which, except for p, s contained in W.
Since p =0, f(p) 1s between p and fq(p) on one side of

the circle and fq+1(p) is between them on the other side. Thus one
of n_(¥,) and hc(7q+1) is inside T and the other is outside.
By Property 2 of the map hc’

n (£(p)) = F(b_(p)) = F(x) = F¥* ) = F¥* 1 _(p)) = n (s%" (p)).
But only one of hc{f(p)) and hc(fq+1(p)) isia I, a

contradiction. s

COROLLARY 7.5. Let i be a homeomorphism of the plane RS, If
p * 0 1Is the reduced fraction p/q, then every accessible periodic

point in W has minimum period q.

Proof. Suppose there is an accessible periodic point with period

r. By the discussion following Prop. 7.3, q divides r. It follows
from Prop. 7.4 that since the rotation number of 4 (on SI) is 0,

q must equal r. n

The final corollary puts together the previous results with the
assumption of hyperbolocity to obtain a statement that does not

mention the rotation number p:
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COROLLARY 7.5. Assume the following set of hypotheses:

(1) F is a diffeomorphism of the plane R’;

(2) the periodic points of F in 8W are hyperbolic;

(3) either (i) W is a basin of attraction; or
(11) 8W is unstable in W, and o is repelling in W;

and (4) either (i) there exists an accessible periodic point of
minimum period q, or
(11) there exists an accessible point which
converges (under £ to a periodic point of minimum
period q.
Then every accescible point in 8W either is a periodic point of

minimum period q or is in the stabie manifold of such a periodic

point.

Proof. We need to prove that if an accessible point x converges
under 3 to a periodic point 2z, then 2z 1is accessible. First we
show that p 1is rational. Assume otherwise. (For ease of
exposition, we assume that q is 1 and that z 1is a fixed point.
Otherwise, replace F with Fd.) By hypothesis, x 1is on one branch Wwe
of the stable manifold of z. Let y be a point in W, and let =
and g, 'be paths from y to x and from y to F(x),
respectively.

By Lemma 6.2, W and We are disjoint. (This lemma does not depend

on any assumption about p.) Therefore, there must be accessible
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points in the region V bounded by 8, 8¢ and the portion of W
between x and F(x). In fact, since p 1is irrational. there must
be points in the orbit of the accessible point x in the region V.
But then W° must enter V. The only way W° can enter V is through g,
g OF Ws, all of which are impossible. (In par;icular. g, and
g4 are in W, which by Lemma 6.2 does not intersect Ws.) Therefore,
p ic rational, and by Theorem 6.1, x is in the stable manifold of
an accessible periodic point, namely =z.

Since z has minimum period q and p 1is rational, by Cor. 7.5,

eve~y accessible periodic point has minimum period q; the result

follows from Theorem 6. 1. n
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FIGURE 1. Two basins of attraction of the time 27 map of the forced damped
pendulum equation 0" + .10' + sin® = 2cost are shown in black and white.
The black and white regions are connected on the cylinder.




FIGURE 2. A portion of the basin of infinity of the Hénon map (3.1) is
shown in black for b fixed at 0.3 and each of three values of the para-
meter A. The x and y values shown are in the rectangle {~2,2] x [-2,11].
In (a) at A= 1.39, the set of accessible points consists of a period-four
saddle and its stable manifold. Crosses show a period-three saddle to
which the boundary jumps at a boundary metamorphosis at ) = 1.395. 1In
(b) and (c) at 1\ = 1.40 and ) = 1.42, respectively, the set of acces-
sible points consists of this period-three saddle and its stable manifold.
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FIGURE 3. A portion of the basin of infinity of the orientation-
reversing Hénon map (3.1) is shown in black. There is a two-

piece attractor whose basin is not connected, and the basin
boundary is fractal.
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FIGURE 4. A chaotic attractor of the Ikeda map
f(x,y) = (.97 + 0.9(xcosT - ysint), 0.9(xsint + ycosTt)),

where 1 = 0.4 - 6.0/(1.0 + x2+y2), is shown. There is an
accessible period 6 orbit on the attractor.
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FIGURE 5. Sequences of crosscuts and subdomains defining
a prime end are illustrates.
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(a)

A P B
(c)

FIGURE 6. CLCach figure represents an open, simply connected set

(the interior of the rectangle minus the line segments). In each
case, segment AB is the impression of a prime end. 1In (a), each
point of AB is a principal point, and there are no accessible points
in AB. In (b), segment CD is the principal set of AB, and there are
no accessible points in AB. In (c), P is the only principal point
and the only accessible point of AB.




FIGURE 7. 1In (a) the rotation number cn the boundary circle is
1/3. The circle maps to the boundary in (b), however the boundary
in (b) does not have an accessible periodic point of period 3, but
rather has an accessible fixed point. This example is realizable
on the sphere, not in the plane.




FIGURE 8., Two types of degeneracizs on the sphere, in which the minimum
periods of accessible saddles do net equal the periods of orbits of the
associated circle map, are shown. By Prop. 7.2, the rotation numbers in
each case is 1/2. 1In (a), the boundary oW has a fixed point saddle p.
In (b), W is the complement in the sphere of the line segr:nt 3V from rj

to ¢,; thus 3W is the boundary of a simply connected set » on the sphere.

Again, the rotation number is 1/2 aund there is an accessible fixed point
saddle p and an accessible saddle orbit {rl,rz} of period twc,

Fig. &




Figure 1

Two basins of attraction of the time 2r map of the forced damped
pendulum equation @" + ,1@' + sin® = 2cost are shown in black and
white. The black and white regions are connected on the cylinder.

Figure 2

A portion of the basin of infinity of the Hénon map (3.1) is
shown in black for b fixed at 0.3 and each of three values of the
parameter A. The x and y values shown are in the rectangle
(-2,2) x [-2,11]). In (a) at A = 1.39, the set of accessible points
consists of a period-four saddle and its.stable manifold. Crosses
show a period-three saddle to which the boundary jumps at a boundary
metamorphosis at A % 1.395. In (b) and (c) at A =1.40 and
A = 1,42 , respectively, the set of accessible points consists of this
period-three saddle and its stable manifold.

Figure 3
A portion of the basin of infinity of the orientation-reversing

Hénon map (3.1) is shown in black. There is a two-piece attractor
whose basin is not connected, and the basin boundary is fractal.

Figure 4
A chaotic attractor of the lkeda map
f(x,y) = (.97 + 0.9(xcost - ysint), 0.9(xsint + ycost)),
where T =0.4 - 6.0/(1.0 + X+ ya), is shown. There is an accessible

period 6 orbit on the attractor.
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Figure 5

Sequences of crosscuts and subdomains defining a prime end are
illustrated.

Figure 6

Each figure represents an open, simply connecteu set (the
interior of the rectangle minus the line segments). In each case,
segment AB is the impression of a prime end. In (a), each point of AB
is a principal point, and there are no accessible pcints in AB. 1In
(b), segment CD is the principal set of AB, and there are no
accessible points in AB. In (c), P is the only principal point and
the only accessible point of AB.

Figure 7

In (a) the rotation number on the boundary circle is 1/3.The
circle maps to the boundary in (b), however the boundary in (b) does
not have an accessible periodic point of period 3, but rather has an
accessible fixed point. This example is realizable on the sphere, not
in the plane.

Figure 8

Two types of degeneracies on the sphere, in which the minimum
periods of accessible saddles do not equal the periods of orbits of
the associated circle map, are shown. By Prop. .7.2, the rotation
number in each case is 1/2. In (a), the boundary 8W has a fixed point
saddle p. In (b), W is the complement in the sphere of the line
segment W from Ty to Ty thus 8W is the boundary of a simply

connected sct W on the sphere. Again, the rotation number is 1/2 and
there is an accessible fixed point saddle p and an accessible saddle
erbit {rl,rz} of period two.
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WHEN CANTOR SETS INTERSECT THICKLY

Prian R. Hunt!, Ittai Kan®, and James A. Yorke?

July 3, 1991

Abstract

The thickness of a Cantor set on the real line is a2 measurement of its “size”. Thick-
ness conditions have been used to guarantee that the intersection of two Cantor sets
is nonempty. \We present sharp conditions on the thickness of two Cantor sets which
imply that their intersection contains a Cantor set of positive thickness.

1 Introductica

Newhouse defined (3] a nonnegative quantity called the “thickness” of a Cantor set in order
to formulate conditions which will guarantee that two Cantor sets intersect. (All Cantor sets
considered in this paper lie in R'.) These conditions have been used (5,6, 7,8, 9] in the
study of two-dimensional dynamical systems to deduce the existence of tangencies between
stable and unstable manifolds whose one-dimensional cross sections are Cantor sets.
Thickness may be thought of as a measure of how large a Cantor set is relative to
the intervals in its complement. Henceforth, these intervals will be referred to as gaps;
the two unbounded intervals in the complement are each included in our use of the term
gap. Newhouse’s result [5, 7, 8] is that two Cantor sets must intersect if the product of
their thicknesses is at least one, and neither set lies in a gap of the other. When this
latter condition is satisfied, the sets are said to be interleaved. In [10], Williams observed
the surpiising fact that two interleaved Cantor sets can have thicknesses well above one
and still only intersect in a single point. One might hope that under sufficiently strong
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Figure 1: Constructing a Cantor set

thickness conditions, the intersection would be a Cantor set. However, the intersection
of two arbitrarily thick interleaved Cantor sets can contain isolated points, so Williams
posed the question of what conditions on the thicknesses of two interleaved Cantor sets
will guarantee that their intersection contains another Cantor set. Williams obtained such
a condition, though it is not sharp. In this paper we nbtain the sharp condition. More
precisely, we find a curve in (71, 72)-space such tnat if the ordered pair (7, 72) of thicknesses
of two interleaved Cantor sets lies above the curve, their intersection contains a Cantor
set, but if the pair of thicknesses lies below the curve here exist exampies for which the
intersection is a single point. Kraft [2] has independently arrived at this condition. We
further show that if the thickness pair lies above the curve, the intersection must contain a
Cantor set of positive thickness. This is the only result that addresses in terms of thickness
how large the intersection of two Cantor sets must be. There are well known probabilistic
results concerning the Hausdorff dimensions of intersections of Cantor sets (c.f. [1, 3, 4]).

One may think of a Cantor set as being constructed by starting with a closed interval
and successively removing open gaps in order of decreasing length. Williams’ formulation of
the thickness of a Cantor set may then be thought of as follows. Each gap G, is removed
from a closed interval I, leaving behind closed intervals L,, the left piece of I, — G, and
R, on the right (see Figure 1.) Let p, be the ratio of the length of the smaller of L, and R,
to the length of G,. The thickness of the set is the infimum of p, over all n.

We consider as an example the “middle-third” Cantor set, constructed as follows. Start
with the closed interval [0,1], and remove the open interval (1/3,2/3), the middle third of
the original interval. Then from each of the two remaining intervals, remove their middle
thirds; repeat this process infinitely often. Each gap G, is the same length as the adjacent
intervals L, and R,, so p, = 1 for all n. Thus the thickness of the middle-third Cantor set
1s one.

There is a connection between the thickness of a Cantor set and its fractal dimension,
which depends in part on how the ratios p, are distributed as n — co. However, two large
gaps close together make the thickness of a set very small, while its dimension can still be
large. It was shown in (7] that the Hausdorff dimension of a Cantor set with thickness r is
bounded below by log 2/log(2+1/7). This lower bound is sharp for the middle-third Cantor
set (whose dimension is log 2/ log 3.)

We offer here a new formulation of the definition of thickness which we state for all
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Figure 2: Non-intersecting interleaved sets

compact sets, not just Cantor sets. (The results in this and previous papers are found to
be valid for all compact sets.) We define non-degenerate intervals to have infinite thickness,
while singletons are defined to have thickness zero. In fact, any set containing an isolated
point will be seen to have thickness zero. To define the thickness of a compact set S which
is not an interval, we consider a type of subset of S obtained by intersecting S with a closed
interval. We call such an intersection P a chunk of § if P is a proper subset of S and has a
positive distance from S — P, the complement of P in S. (Notice that for P to be a chunk
both P and S — P must be closed and nonempty.) We then define the thickness of S to be
the infimum over all chunks P of the ratio between the diameter of P and the distance from
P to § — P. In the case of the middle-third Cantor set, the given ratio can be shown to be
smallest when the chunk P is obtained by intersecting S with an interval L, or R, in which
case the ratio is one. In Section 2 we will show that our new definition is eq~‘valent to the
old one for all Cantor sets.

The reason thickness is an appropriate quantity for determining when one can guarantee
that two compact sets intersect is illustrated by considering an example where each of the
two sets is a union of two disjoint intervals. For i = 1,2 let S, consist of closed intervals
of lengths a; and b, with a, < b,, separated by a distance c;. Then each S; has only two
chunks, and is found to have thickness a,/c,. If the product of the thicknesses ayas/c;cy is
at least one, then either ay > ¢; or a3 > ¢, (or both); assume a; > ¢;. Then since b; > ay,
neither interval of S; can lie in the gap of 5,; hence if the two sets are interleaved, they must
intersect. If on the other hand ajay/c c; < 1, then with an affine map we can scale the sets
so that a; < ¢; and a; < ¢1, and position them so that the component of S; with length a,
lies inside the gap of S, and vice versa. The two sets are then interleaved, but they do not
intersect (see Figure 2). This example could of course be made *o involve Cantor sets by
constructing very thick Cantor sets in each chunk of each S;.

An important point which is apparent in the above example is that the union of two
sets can have a smaller thickness than either of the original sets. In other words, adding
points to a set can decrease its thickness. By the same token, one may be able to increase
the thickness of a set by removing appropriate subsets. This observation is useful in the
following way. No matter how thick two interleaved compact sets are, their intersection may
have thickness zero because it may contain isolated points, or arbitrarily small chunks which
are relatively isolated from the rest of the intersection. Nonetheless we are able to show that




Figure 3: The intersection of two interleaved compact sets with
thicknesses 7, and 7, can be empty for (71, 72) in region A, must be
nonempty but can be a single point in region B, and must contain
a set of positive thickness in region C.

if the original sets are thick enough, then by throwing out the relatively isolated parts of
their intersection we can obtain a set of positive thickness in the intersection.

To define the set C' of thickness pairs (my,7;) for which a Cantor set of intersection can
be guaranteed, we make use of the functions

flr)=

g(r) = -——-——(QT:; 2

Let C be the set of pairs (1, ;) for which one of the following sets of conditions holds:

3437+ 1

72 '

27, 1>f(n), and mn>g(n) (1.1)

or
) 2 Ty, T2 2> f(Tl)) and T > 9(7'2) (1~2)

(see Figure 3.) Our main result is as follows.
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Theorem 1 There is a junction @(my,7;) which is positive in region C such that for all
interleaved compact sets 51,5, C R with 7(S,) 3 1, and 7(S;) > 7o, there is a set S C S1NS;
with thickness at least ¢(71,72).

Notice that a compact set with positive thickness can have no isolated points, and thus must
either be a Cantor set or contain an interval; either way it contains a Cantor set.

We remark that (1, 7;) is in C if both thicknesses are greater than v/2 + 1. This is the
critical value Williams found for the case of interleaved Cantor sets with the same thickness.
Also, no matter how small one thickness is, the other thickness can be chosen large enough
so that the pair lies in C. Our results and the results of Newhouse are summarized in Figure
3 -

In Section 2 we give a proof of Newhouse's result, which will illustrate some of the methods
to be used later. Then we present for all pairs (71, 7,) not in C an example of interleaved
compact sets with thicknesses 7, and 7, whose intersection is a single point (except when
(m,72) is on the boundary of C, in which case our example gives a countable intersection.)
This example shows that Theoram 1 is sharp in that its conclusion cannot hold for any larger
set of thickness pairs (71, 7). In Section 3 we prove Theorem 1, and in Section 4 we discuss
some further properties of S} N S,. The positive thickness set $ € 5, N S, constructed in
Section 3 need not be dense in 5; N Sy; however we find that there are subsets with thickness
at least (7, 7) arbitrarily near any accumulation point of S N S, In additica, we find
bounds on the diameter of S which allow us to obtain thickness conditions that imply thac

the intersection of three Cantor sets is nonempty.

2 Preliminaries

Let us define precisely the concepts and notation we will use.

Definition 1 We say two sets Sy, S; C R are interleaved if each set intersects the interior
of the convex hull of the other set (that is, neither set is contained in the closure of a gap of
the other set.)

We define the distance between two nonempty sets Sy, Sz to be
d($1,5) = inf{|z ~yl|z € §1, y € 53},

and write S, — 5y for the intersection of S, with the complement of §;. We say that a set Sy
is a chunk of a set S,, and write S; x Sy, if S; is the intersection of a closed interval with
Sy, is a proper subset of Sy, and d(S;, S, — S1) > 0. Notice that a closed set S has a chunk if
and only if it is not connected. We denote tl.e diameter of a set S (the length of its convex

hull) by |S].

(&3
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Figure 4: Chunks and gaps of a Cantor set (k < n)
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Definition 2 Given a compact set S C R, we define the thickness of S to be

7(5) = inf Ll

Px5 d(P,S — P) 21)

provided S has a chunk. Otherwise, we let 7(S) = 0 if § is empty or consists of a single

point, and 7(S) = oo if S is an interval with positive lengih.

The following simple proposition demonstrates that Definition 2 agrees with Williams'’
definition of thickness for Cantor sets [10].

Proposition 2 Let S be a Cantor set, and define the ratios p, as in the introduction. Then
the quantity 7(S) given by (2.1) is equal to the infimum of p, over all n.

Proof The intervals L, and R, defined in the introduction are the convex hulls of chunks
Apn=L,Nn S and B, = R, NS of S. Since the gap G, is not larger than any previously
removed gap Gy, k < n, it follows that

d(An,S = An) = d(Ba, S = B,) = |Gy

(see Figure 4.) Thus for all n,

(1l R 1A, EX )> 5
p"“‘“‘“(?@j’m =\ [Ans - A TBn 5 - By ) 2T

Next, if P 1s a chunk of S, it must be bordered on each side by a gap of S; let G, be the
smaller of these two gaps. Then |G| = d(P,§ ~ P) and |P| > min(|L,|,|R.|). Therefore

. 1P|
"8) = b T oA

2 i%f Pr,

which completes the proot N

We now prove Newhouse's result in a way that will motivate our later examples and
methods.

Proposition 3 If S, and S, are interleaved compact sets with 7(S5;)-7(S;) > 1, then 51N S,
15 not empty.
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Figure 5: The points z, and chunks P,

Proof Let S; and S; be as above, and let

To = max (inf z, inf m) ,
TES) z€S

the greater of the leftmost points of $; and S,. Assume without loss of generality that
zo € §;. We will show that S; N S, is nonempty by looking for the leftmost point of this
set. Let z; be the leftmost point of S; which is at least as great as zo. Since S; and S,
are interleaved, r, must exist (ctherwise S; would lie entirely to the lelt of Sy; see Figure
5.) Next, let z; be the leftmost point of S; greater than or equal to z;. Once again the
interleav.ng assumption implies that z, exists, for otherwise S; would lie inside a gap of .
We similarly define z3, z4, ... if each of these points can be shown to exist, we claim to be
done. Then {z,} will be a nondecreasing sequence which is bounded above (since S; and
Sy are bouwded), so it approaches a limit. This limit must belong to both S; and S, since
these sets are closed and the odd numbered terms of {z,} belong to S;, the even ones to S>.

If at any step z, exists and equals z,-;, then 2,41, Znys, ... will also equal z,..;, and we
will have found a point in §) N S,. Henceforth we assume z9 < z; < -+ as long as they are
defined. We know at least that zo, z;, and z, exist, so there is a chunk P, of S; which lies
in (20, z;), whose diameter is thus less than z; — zo, and whose distance from the rest of S;
Is greater than z, — z, (see again Figure 5.) Then

1= Zp |Pol

T2 — Iy d(Po,Sz -5

) 2 7(52). (2.2)

Let P; be the largest chunk of S, which lies in [z}, z;). If z3 did not exist, in other words if
all points in S| were less than z;, then Sy — P, would lie to the left of P, and the distance
beuween these sets would be greater than z; — 2. But then using (2.2) and 7(8;)-7(S;) 2 1

we woulu have
| Py Ty — 1) 1

< <
d(Pl,Sl - Pl) Iy — T T(Sg)
contradicting the definition of the thickness of 5. Thus z3 exists, and similarly to (2.2) we
obtain

S T(Sl))

Ty — Ty |2
. T3 — T2 d(Pl)Sl—Pl)
Likewise (2.3) car. be used to show the existence of z4, and so forth, The proof is completed
by induction. Nl

2 7(51). (23)




One could similarly find the rightmost point in S; N S, but as Williams observed it
may coincide with the leftmost point, even if both thicknesses are significantly greater than
1. We next present an example which will give a single point of intersection for thickness
pairs (71, 7;) not in the closure uf region C, and a countable intersection for (71,7;) on the
boundary of C. In our example both sets are countable unions of closed intervals, but they
could be replaced by Cantor sets with the same thicknesses by constructing a very thick
Cantor set in each of the closed intervals.

Let 7 be a positive constant, and define the intervals

Ap = [r2 437+ 1,027 + 1),

By = [t} +3r +1],

T n
An = ("2r+ 1) Ao,

r n
B"“("27+1) Bo, ;

where multiplication of a set by a scalar means the set obtained by multiplying each element
of the original set by the given scalar. Let

S = ([] An) u{o), S = ([] Bn) u {0},

n=0 n=0

Notice that B, is the closure of the interval between A, and An4z for all n, and 4, is the
closure of the interval between B,.; and B, for n > 2. Thus 5;NS; is countable, containing
only the point 0 and endpoints of the intervals A, and B,. Furthermore, the intersection
could be reduced to only the point 0 by shrinking the intervals which make up one of the
sets by a factor arbitrarily close to one.

Let us compute the thicknesses of the sets ) and S;. Observe that

|Anl = d(Buez, Bn) = ( ) r(3r +1),

r
2r+1
T n
[Bal = d{An, Ansa) = (5= ) (37 + 1)
The intervals A, are ordered from left to right A;, A3, 4s,.. ., A4, A2, Ao, so any chunk P of
Sy which does not contain 0 must be a finite union of consecutive even or odd numbered A4,.
Let A, be the interval in P with the largest index; then

PL o Al
d(P,51 = P) = d(An, Any2) ’




with equality holding when 7 = A,. On the other hand, if a chunk P of S; contains zero,
let n be the larger index of the leftmost and rightmost Ak in P. Then P must contain A,-1,
and since P is not all of 5y, n > 2, so
[Pl o JAnUdna] _ (r/@r+ 1) (37 +1)(27 +1)
d(P,S1 = P) = d(An, An-2) (r/(27 + 1))*2(37 + 1)
Therefore the thickness of S} is .
Similarly, if P is a chunk of S;, then for an appropriately chosen B,, either
P B, 27 +1)?
d(P, |52 I— P) 2 d(BL,.’3ln+z) - 7 ) =gtr)

—

or
‘P| > an U Bn-—ll
d(P,S; = P) ~ d(Bn,Bn-2)
(/(27 + 1)) ((37 4+ 1)/(2r +1))(r* + 37 + 1)
(/27 + 1))*27(37 + 1)
- 724+ 3r+1
= f(r).
Thus

7(S82) = min(f(r), (7).

As we pointed out before, by reducing the thickness of S; by an arbitrarily small amount
we can shrink the intersection of S; and S, to a single point. Let 7, denote the thickness
of the set Sy, and let 7, be the thickness of S;. Then up to a change of indices, the above
construction demonstrates that a single point of intersection can be obtained when either

. < min(f(r),g(n2)) (2.4)
or

7y < min(f(mn), 9(n)). (2.5)
Also, if either (2.1) or (2.3) is an equality instead, the intersection can be countable. (Kraft

[2] has analyzed this borderline case and determined when the intersection can be finite.)
Therefore we can only hope to guarantee an uncountable intersection if

n > min(f(72), 9(m2)) (2.6)
and
72 > min(f(n), 9(m1)). (2.7)

One may check that g(r) > f(r) > v2+1for r < vVZ+1 and g(7) < f(r) < V2 +1 for
T > V2 + 1. Therefore (2.6) and (2.7) are equivalent to (1.1) in the case 7, > 7, and to
(1.2) when , > 7.
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Figure 6: Cases in the construction of I. and J.

3 Proof of Main Result

We now prove Theorem 1 by constructing a set S with positive thickness in S; N S,.

Proof of Theorem 1 Let S; and S; be interleaved compact sets with 7(5;) > = and
7(52) 2 72 for some (7, 7;) in region C of Figure 3. Let the gaps of S) be Io, I, Iz, ..., with
Iy and I, unbounded, Iy to the left of Iy, anda !Js] > |Is] > :+-. For S; we define Jo, J1, Ja,
...similarly. We refer to the intervals I, and J, collectively as the “original gaps”. Our
goal is to construct the complement of S as a union of disjoint open intervals Ky, Ty, K3,
...with Ko and K, unbounded, and with every original gap contained in some K, (whence
S C $1NS,.) To get a lower bound on the thickness of S, observe that every chunk P of S is
bordered on each side by a gap of S, with at least one of the bordering gaps being bounded.
Pick a chunk P, and say P is bordered by K, and K, with m > n and m > 2. Then

Pl _ () dlEm,K)
dP,S=P) _ min(Knl K] = 1Kml

The theorem will therefore be proven when we show for some ¢(m,7;) > 0 that whenever

m>nandm > 2,
d(Km, Kn)

o] 2 (n,72). (3.1)

We begin by finding a pair of original gaps . and J. between which S will lie; that is,

I, and J. will be contained in K, and i'y. The properties we desire of I. and J. are that

they are a positive distance apart, that all gaps of S with an endpoint between the closures

of I, and J. are bounded and no larger than /., and likewise (in comparison to J.) for gaps

of S; between I, and J.. We will show later that once I. and J. have been determined,

the diameter of S can be bounded below by a constant depending on 7, and 7, times the
distance between I. and J..

’ Assume without loss of generality that Jo C Io. If I, C J, (Case 1 of Figure 6), then

I. = Iy and J. = J, have the above properties; they must be separated by a positive distance

10




Figure 7: The construction of K,

since 5y and S, are interleaved. If J; C I; (Case 2 of Figure 6), let J. be the largest gap
of S; with an endpoint between I and I, and let I. be whichever of I and I; is farthest
from J.. At least one of Iy and I; must be a positive distance from J. since Sy and S, are
interleaved.

Next, let ¢ be a positive constant whose precise value will be chosen later; for now we
assume that ¢t < (7, —1)/(m +72+2) < min(ry, 7). Assume without loss of generality that
L. lies to the left of J.. We begin constructing Ko by requiring that it contain I.. We then
require that K contain the rightmost bounded J, with d(I.,J,) < t]J,| (we will verify that
there is a rightmost gap satisfying this condition when we later examine our construction
in more detail.) If there does not exist such a J, that is not already contained in I., we
stop the construction and let "y = I.. Otherwise, we further require that K contain the
rightmost bounded I, that is within ¢ times its length of the previously added J,. Again,
if this requirement does not extend K any farther rightward, we stop the construction. If
not, we then add to Ko the rightmost J; which is within ¢ times its length of I, and is at
most as large as Jn (see Figure 7.) If a next step is necessary, we consider gaps of Sy which
are no larger than /p,, and so forth. We may have to continue this process infinitely often,
but if so we must converge to a right endpoint for Ko, sincz there is no w.y this construction
can extend past the rightmost point in S, U S;.

We define K, similarly, starting with the requirement that X contain J. and extending
K, to the loft if necessary in the same way we constructed Ky, Next, to construct J{; we first
require that it contain the largest original gap (choose any one in case of a tie) not contained
in Ko U K, (if no such gap exists, we leave K, undefined and let S be the complement of
Ko U K;.) Then we extend it it on both the left and right in the same manner as before,
but considering only gaps that are at most as large as the one we started with, to cbtain the
endpoints of K. We next start with the largest original gap not contained in Ko U K, U Ky,
proceeding similarly to define A7, and so forth. Any given original gap must eventually be
contained in some K, because there can be only finitely many original gaps that are as large
or larger than the given one. We do not yet know that the K, are disjoint from each other;
this will follow when we prove (3.1), though.

Let us now examine our construction more closely. Define /() and r(I) to be respectively
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the left and right endpoints of an interval I. For a given K,, let Gp be the gap we started
with in its construction, which for n > 2 must be the largest original gap it contains (or at
least tied for the largest.) For simplicity we assume here that G is a gap of S;. Consider
the collection E of all J, with |J,]| < |Gol, 7(J) > #(G:), and d(Go, J») < t|Jn|. We claim
that the members of £ (if any) are increasing in size from left to right. If Jm,Jn € £ with
Jm to the left of J,, then since r(Jn) < r{J,), it follows that d(Jm, J») < d(Go, Jn) < tJul-
Since t < 72 and d(Jm,J,) > T2 min(|Jnl, |Ja]), it must then be the case that |[Jn| > [Jm]-
Thus if E is not empty, it must have a rightmost member, which we call G; (notice that
G, is also the largest member of E.) If E is empty, we let G; be empty, but in order to
facilitate future formalism, we define |G;| = 0 and r(G;) = r(Go). One must keep in mind
this degenerate case in verifying the assertions and formulas that follow.

We likewise define G, to be the rightmost gap of Sy which is at most as large as Go and
lies within ¢ times its length of Gy; again if no such gap exists with r(G;) > r(G:) we say
that |G,| = 0 and r(G;) = r(G;). Next, to define G3 we consider only gaps which are at
most as large as Gy, for G4 we look only at gaps no larger than G, and so forth. Define
G-1,G-, ...similarly to be the leftmost (and largest) gaps added to K, at each stage of
the process of extending K, leftward. Then we may think of the open interval K, as being
defined by

(K = Jim_1(Gn),

H(Ka) = lim r(Gn).

Each limit exists becausc it is the limit of a bounded monotcnic sequrence.

In the above construction, the even-numbered G, are gaps of Sy and the odd-numbered
ones are gaps of Sy, but if Gy had been a gap of S, it would be the other way around.
In any case. Gp is the largest even-numbered G, and either G; or G- is the largest odd-
numbered one. Also. the even-numbered G,, decrease monotonically in size as one moves
either rightward or leftward from the largest, and the same statement holds for the odd-
numbered G,,. We cail a given G, either a “1-gap” or “2-gap” of K, according to whether
it is a gap of Si or S;. Notice that not all original gaps contained in K, are 1-gaps or
2-gaps, only those that have been given a label G, in the construction of K. When we refer
henceforth to left-to-right ordering or adjacency among the 1-gaps and 2-gaps of a given K,
it is with respect to the ordering ..., G.2,G-1,Go,G1, Gy, . ... (Thus, for instance, 1-gaps
can only be adjacent to 2-gaps and vice-versa.)

The following lemma will be used in bounding both the numerator and denominator of
the left side of (3.1). It establishes for all m > 0 a bound on how far I, can extend to the
right of G, in terms of how far G4 extends past G, and similarly for m < 0 on the left.
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Lemma 4 Assumet < (n72—1)/(n1 + 2 +2). Let

o = (Tl _ t)(Tz + 1)
Y —t) (- t) - (1 1)

and

(T2 - t)(Tl + 1)
(m=t)(m—t) = (1 +2)*
Let C be a 1-gap of K, which is at least as large as all 1-gaps of K, to its right. Let H be
the next 2-gap of K, to the right of G. Then

r(K.) — r(G) < ao(r(H) - r(G)).

g =

The same statement with “1” and “2” interchanged holds, as do the corresponding results

for left endpoints.
Proof Let I be the next 1-gap of K, to the right of G. Then since |I| < |G],

nll] < d(G.I) < d(H,I) + r(H) - r(G) < {I| + r(H) = r(G).

which, because ¢t < 7;, implies that |I| is bounded above by (r(H) — r(G))/(n —t). Hence
1+1¢
Ty ~1
Likewise the next rightward 2-gap of K, extends at most ((1 + t)/(2 — t))(r({) — r(H))
beyond I, and by induction

r(l) —r(H) < |Ij+ d(H, 1) S (1 +[] < (r(H) = r(G))- (3.2)

r(Kn)=7r(G) = r(H)=r(G)+r(I)—r(H)+--
< <1+ 1+1¢ + 1+t 1+t +~-->(r(H)—r(G))

n—t mn—trn-—t

= o(r(H) - r(G)).

The geometric series converges, and the denominator of o, is positive, because of our as-
sumnption that ¢t < (17 —1)/(ry + 72 +2). 1

The next lemma builds on Lemma 4 to obtain a positive lower bound on the distance
between a given K, and K,, provided we can find a l-gap of K,, and a 2-gap of K, which
are respectively larger than all 1-gaps and 2-gaps between them. The proof is difficult and
will be handled later.

Lemma 5 There exists a function 1,(y, ) that is positive whenever (11, 72) is in region o
and t is sufficiently small, and for which the following statement holds. For m # n, let G be
a 1-gap of K, and H be a 2-gap of K. If all 1-gaps of Ky or K, with at least one endpoint
between the closures of G and H are bounded and at most as large as G, and all similarly

situdated 2-gaps are bounded and at most as large as H, then

(K, Km) 2 $e(m1,72)d(G, H).
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Figure 8: Cecses in the proof of (3.1)

Recall that to construct Ko and K;, we chose I. and J. to satisfy the above hypotheses.
Thus we now know that K, and K; are disjoint and separated by a positive dista..ce (which
is at least (71, ~.) times the distance between I. and J..)

Now suppose 0 < n < m and m > 2; we will prove (3.1) by finding a G and H which
satisfy the hypotheses of Lemma 5. Assume without loss of generality that K, lies to the
left of K,,. Let I be the largest original gap in Kn; say [ is a 1-gap. If all 1-gaps of K, are
smaller than I (Case 1 of Figure 8), let H be the largest original gap in K,. Since m > n,
K, was constructed before K,, so H must be at least as large as I, and thus is a 2-gap.
Let G = I; then G and H satisfy the hypotheses of Lemma 3. Also, d(G, H) > t|G|, since
otherwise G would have been included in the construction of X _. If on the other hand there
are 1-gaps of I, which are at least as large as I (Cases 2 and 3 of Figure 8), let J be the
closest such gap to I. Consider all 2-gaps of K, or K, to the left of J; let { be the largest
such 2-gap (any one will do in case of a tie.) Notice that & must be adjacent to  or J. If K
is in I, (Case 2), let G = I and H = I{; then G and H satisfy the hypotheses of Lemma 3,
and d(G, H) > t|G| because G was not included in K,. Otherwise (Case 3), let G = K and
H = J, and reverse the indices “1” and “2". Once again, G and H satisfy the hypotheses
of Lemma § and d(G, H) > ¢|G|. Notice also that in all cases, G is the largest 1-gap of Ky,
and H is at least as large as all 2-gaps of .

We now estimate how large K, can be. Let I and J be the 2-gaps of K., adjacent to G
on its left and right, respectively. Since I is at most as large as H,

nlI| < d(I, H) < d(I,G) + |G| + d(G, H) < t|I} + |G| + d(G, H),
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or in other words

111 —=(G1 + (G, H). 33

The same bound holds also for J, so by Lemma 4,

[Konl = 1G] +1(G) = () +([) = r(C)
< 161+ 0a(I(G) = (1) + oalr(J) = r(G)
< G+ oo(1 +2)(|[+ 1)
< 161+ 27,161+ 4G, 1)
< (bt ()t

(=) (= t) + (L +t)*)(2m + 1)
t((Tl - t)(Tg - t) - (]. + t)2)
If on the other hand G is a 2-gap and H is a 1-gap, we obtain the same bound as (3.4),
but with the indices “1” and “2” interchanged. Then in either case,

d(G, H). (3.4)

| Km| <

(n=t)(n =)+ +12max(n ) +1) o gy

H(r —t)(ra—t) = L+ 1))
Finally, by Lemma 3,

(K, K»)
| K|

t((m =t = t) = (1 4+ t)*)¥e(71, 72)
(ry = t)(m2 ~ t) + (1 + t)2(2max(r,m2) + 1)

> (3.5)

The right side of (3.5) is positive as long as ¢ is between 0 and (7,72 — 1)/(n + 72 + 2), and
Vy(m, ) > 0, and goes to zero when ¢ approaches any of these borderline values. Therefore
the right side of (3.3) attains a maximum value, call it (71, 72), at some allowable value of
t, say t.. We thus carry out the construction of S with ¢ = t.; then (3.1) holds, and the
proof is complete. |

Let (1, 72) = ¥¢. (11, 72); then

tu((r = t)(12 = t.) = (1 4+ t)?)p(n1, 72)
7 = t)(m —t.) + (1 + t.)?(2max(n,7.) + 1)

@(r1,m) = (

Remark We will see in the proof of Lemma 5 that v(1, 1), and hence ¢(m1,72), must be
very small when (11,7;) is near the boundary of region C. However, if both  and 7, are
large and t is small compared with the two thicknesses, it is not hard to check that ¥y(ry, 72)
is close to one. Then if 11,7, > 1, one finds that t. is of order \/min(ry, 72), whence (11, 72)
is of'order vmin(ry,7;) also. Thus when the thicknesses of Sy and S are large, the lower
bound we obtain on the thickness of S is reasonably large.
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Figure 9: The gaps G; and H;

We now prove our main technical lemma.
Proof of Lemma 5 Let G be a 1-gap of K, and H be a 2-gap of Kn sa,tlsfymg the
hypothesss. We assume without loss of generality that 71 > 72; then by (1.1) the condition
(t1,72) € C implies
T22 +3m + 1

n > f(r2) = m (3.6)
and 0y
7> g(n) = _______(21’11.; ) . (3.7)

If d(G, H) = 0, the inequality to be proven is trivial. Otherwise, let us normalize d(G, H) to
be one, and assume G lies to the left of H. Let Go = G and Hy = H. Let Gi be the 1-gap of
K, adjacent to Ho on 1ts left, and let Hy be the 2-gap of K., adjacent t. G on its right. Let
G, be the adjacent 1-gap of K,, rightward from Hj, and likewise define H2,G3, f3, ... (see
Figure 9.) For i > 0 let

i = I(Hi) = U(Gin) 7 even
"7 M(Gin)-r(H)  iodd

and
_ ) r(Hip1) = r(G) I even
W= { (G) = (Hw)  iodd
Let R; = d(G;, H.,); then Ry = ! and R4y = max(R, — z; — ¥i,0) for ¢ > 0. Let Reo be the
limit as 7 goes to infinity of R;. Then d(Km, Ky) = Reo, so we wish to show that there is a
positive lower bound on Ry which depends only on 7,7, and ¢.
In the same way as we obtained (3.2) it follows that for all ¢,

and

Furthermore, by Lemma 4 we have that
Yi + Tigr +Yip2 + 0 S Oy
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and
Z; + Yip1 + Tigz + o S 0175,

Thus, for each 7,
Ry 2 Ri — 2y — yi = Tiy1 = Yip1 — +++ 2 Bi — o120 — 0ays. (3.10)

We will show that for some i, the right side of (3.10) is positive.
Next let us obtain upper bounds on zo and 3. We know that

zo = I(Ho) — I(G1) < |Gi| + d(Gy, Ho) < (1 +1)|Ghl, (3.11)
and by hypothesis |G| < |Gol, so
To = I(Ho) - T‘(Go) - (I(Gl) - T(Go)) =]- d(Go,Gl) S 1- T1|G1|- (3‘12)

Eliminating |G;| from these inequalities yields

1+t

_— 3.13

- T + 1 + ¢ ( )
Similarly, Lt

< — 3.14

Yo > M1+t ( )

We can obtain similar bounds on z; and y, for ¢ > 1, but the bounds are complicated by the
fact that we do not know in general that |Gi1| € |Gi| (or |Hi+1| < |Hil). The analogues of
(3.11) and (3.12) are thus

z; S {1+ t)|Gis]

and
z; < R; = my min(|Gil, |Gina]). (3.15)

If |Gix1] < |Gi, then as in (3.13) it follows that

1+t
; < ————R;. 3.16
%3 (a1 + 1 +t ( )
If |Gix1| > |G, then by (3.13),
5 < Ri= |G < R - i (3.17)

If (3.16) fails, then using (3.17) together with the negation of (3.16), one finds that z,; is
bounded above by the right side of (3.16). Thus regardless of the relative lengths of G, and
Gl'+1.)

141t

—R;. 3.18
7'1+1+tR (3.18)

min(z;, Ti-1) <

17




for i > 1. Likewise, regardless of the relative lengths of H; and Hi4q, we have for alli 21

that

. 1+
i ¥i-1) S —— 75
min(ys, gins) $

Let a; = z;/R; and b; = y;/ R; provided R; > 0; then

R;.H = max(l -y - b;,O)R;.

Thus a;4; and b4y are defined as long as 1 —a;—b; > 0. For j = 1,2 let
L+t
T+ 1+t

o 1+1¢
”J—Tj-—t‘

The conditions (3.13), {3.14), (3.18), and (3.19) can then be written

ap < Ay,

bO S )‘2)
i "_") S ’\1)

—a; = b;

min (am, ]
and

. b;
min (bi-ﬂ) m) S /\2.
Also, conditions (3.8) and (3.9) become

b;
N T
a'“"”ll—a;—b;
and
a-
bivy < U
'““Ml-a;—b;

Finally, our objective is to show that for some i,
1 - 0ya; — 09b; > 0,

which implies that the right side of (3.10) is positive.

We observe that a,;; and b,4, are defined at least as long as a, < A, and b, <

then

l—a,=b > 1=XA=X

T1T2—(1+t)2
(m+t+)(n+t+1)
(n—t)(r—t)= (1 +1)?
(n+t+1)(e+t+1)
> 0

8
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(3.21)

(3.22)

(3.23)

A2, because




(since t < (rym —1)/(11 + 72+ 2).) Also, as long as a; < Ay, by (3.22) we have

f2 M

R QP AL

birs < 1—-A = b
Let A
_ MM

h(b) = 1~ X =5

The equation h(b) = b has two solutions,

1= A /(1= A)? = dpay
= 5 ,
and if the roots are real, then h(b) < b for b_ < b < by (this can be verified by checking the
value b = (1 - Ay)/2.) We claim that for ¢ sufficiently small, by are real, with

by

by > Mo (3.24)

and
1 -0 — agab. > 0. (3»25)

Let us delay the verification of this claim until the end of the proof. Choose b. > b.. with
1 —o1h —03b. > 0. Now by < Xy < by, and as long as a; < - continues to hold,
bisr < h(b;) < b; for b; € (b-,by). Then eventually b; < b., and furthermore since b — h(%)
must have a positive minimum value on [b., Ag] (if b. > ); then by < b. already) there is a
maximum number V (depending only on 7, 1, and t) of iterations it can take before b; < b..

We therefore have shown that if a; < Ay for ¢ < N, then & < b. for some ¢ < N, and hence
l1- nae; — O'Qb; Z 1 - 01/\1 - Uzb. > 0. (326)

If on the other hand a,,; > A; for some ¢ <.V, then let ¢ be the smallest index for which
this occurs. We claim that then (3.23) holds for 7. By the results of the previous paragraph.
bi < bioy < -+ < by £ Ag. Also, by (3.21), a; € Mi(1 = a; = b;), or in other words

Ay
AP GERA T B N
a; < 1+/\1\l b;)
Then

0'1/\1 01/\1
— - - — - i
1 14, Uzb, z 1 1+ /\1 (0‘2 1+ /\l) b

Now when ¢t = 0,

nh o (ntln n(r +1)
1+  nm-1 (n+2)(nm-1)
TI(TITQ - 1) + 21’17’2 + 2T2
(n+2)(nm-1)
> 0,

g —
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and thus for ¢ sufficiently small it remains positive. Then since b; < A,

1—0'1(1,'-0'217,' > 1——'3'}3:1——<0'2- UIAI)/\g

(3.27)

When ¢ = 0, by (3.6)

(n+1)n
(Tg + 1)(’1’17‘2 - 1}
Tt =2 —1
(T'z + 1)(T1T2 - 1)
24 3n+1-2r -1

1—0'2/\2 = ]~

>
(r2 ;)M = 1)
- -1
while *
ah 7 n(n+l) 7 72

(1=A)

1+h n+l (n+2)(nm-1) 7w +2 "hm =1
so . .e right side of (3.27) is positive for t = 0. It therefore remains positive for ¢ sufficient.
small.

To summarize, we have shown that if ¢ is sufficiently small, then for some 7 < N, either
(3.26) or (3.27) holds. The right side of each of these equations is positive and depends
only on 71,7, and t. Furthermore, a; < Ay and b; < Ay for j £ 4, so by (3.20), Rjpy 2

(1 = Ay = \2)Rj, and hence R; > (1 — Ay — A;)'. Then by (3.10),
Reo 2 Ri(1 = oya; = 02by) 2 (1 = Ay = 2)N(1 = 0, = oaby),

where | — oya, — 02b, is in turn bounded below by the lesser of the right sides of (3.26) and
(3.27). We have therefore shown for ¢ sufficiently small how to obtain a positive lower bound
on Ry which depends only on 71,72, and t; we let 1,(7;,72) be this lower bound.

It remains for us to verify (3.24) and (3.25). e again show they are true for ¢ = 0,
whence they hold for t sufficiently small by continuity. When t =0,

n/(n+1) £ n/{n +1)2 ~4/((n + 1)m)

by = >
_ 1T :t \/T12T22 - 4(T1 -+ 1)1’2 (3 28)
- An +1n .
Now by (3.6),
1121'22 - 4(7’1 + l)T2 = 71(1’11'22 - 4T2) - 41'2
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> 7"1(7'22“-' T+ 1) — 47
(r? +3n+1)(n* —n +1) —dn®
ng

ki Tl (3.29)

‘7'22

Thus by are real end distinct (and the same must then hold for ¢ sufficiently small.) Next
by (3.28),

T + \/ng - 41‘2(1/1'1 + 1/1"12)

2n2(1 +1/m)
from which we see that b, is increasing as a function of 7. Thus b, is greater than the value
it would take on if (3.6) were an equality, which owing to (3.29) means

(12 +3m + 1) /1o + |12 =12 = 1|/,

b+=

by >

2212 +3m2 + 1)/7,
2 +3n+1-(n? =7 ~1)
- 2(n+1)(2nn +1)
1
T om+l
- Az. ‘

Hence (3.24) holds for ¢ = 0, and consequently for ¢ sufficiently small.
When ¢ = 0, (3.25) can be written

1- 01A1 - 1';21'2 - 21‘1 -1 (3.30)

b. < =
07 (1 +1)%m

The right side of (3.30) is an increasing function of 73, and since

T:-\/‘fl 4n+1)/n
- 2(n +1) ’

b. is a decreasing function of ;. Then by (3.7),

- \/ﬁ 41'13(1'1 + 1 (21’1 + 1)2
2An +1)
n((2n +1) - \/(2‘r1 +12 -4(n2+n)

2(n +1)(2n + 1)
2

b. <

T

(7'1 + 1)(21’1 + 1)’

whiie
1’127'2 - 2T1 -1 S (21’1 + 1)2/1'1 - (21'1 -+ l)
(Tl -+ 1)21'2 (1'1 + 1)2(21’1 + 1)2/1'13
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n@en+l-mn)
(T1 -+ 1)2(2‘& + 1)

le ren
(T1 -+ 1)(21‘1 + l)‘
Thus (3.25) holds for ¢ = 0, and for ¢ sufficiently small. The proof of Lemma 5 is now
complete, l

4 Intersecting Three or More Cantor Sets

In proving Theorem 1, we chose a subset § of $, NS, in order to guarantee positive thickness.
In this section we demonstrate that positive thickness sets are in some sense generic in S;NS;.
We also explain how Theorem 1 is useful in finding conditions under which three or more
Cantor sets must have a nonempty intersection. ]

The set S we constructed in Section 3 need not be dense in S; N S; nor even in the
non-isolated points of S; N S;. However, there are subsets of Sy N S; with thickness at least
©(m1, 72) near z.ay ~ccumulation point. To see this, let {g,} be a sequence of distinct points
in 81N §; which converge to a point g. It is not hard to s ow that within any neighborhood
N of ¢ there are compact subsets Ty C Sy and T3 C S3, each of which contains all but finitely
many ¢,, with 7(T1) 2 7{5)) and 7(T%) > 7(S;). Notice that any two compact sets which
intersect in three or more points must be interleaved. Thus T} and T3 are interleaved, and
by Theorem 1 their intersection contains a set with thickness at least (7, 72). We conclude
that arbitrarily near any non-isolated point of S} N S, there are subsets of S; N S; which
have thickness at least (m, 7).

In addition to showing that there are many subsets of 5; N S, with positive thickness,
it is possible to obtain a lower bound on the diameter of the positive thickness subset S of
S1 N S;. If the two sets Sy and S are interleaved in such a way that neither is contained
in the convex hull of the other, then by the discussion following the statement of Lemma 5,
the diameter of S is at least 1(n, 73) times the length of overlap between the convex hulls of
Sy and S;. Since the thickness of S is at least ¢(ry, 72), we immediately have the following
result.

Corollary 6 Let Sy and S, be two interleaved compact sets whose thicknesses (11, 72) lie in
region C and for which the intersection Q of their conver hulls contains neither Sy nor S;.

If S3 is a compact set with largest bounded gap G such that

(i) the hull of Sy contains Q,
(i) |G| < ¥(n,7)|Q
(iil) T(Sa)p(r,m2) 2 1,




then S; N S, N S3 is nonempty.

We note that if instead of condition (iii) we required the pair 7(S3) and ¢(7,72) to lie
in C, then S; N S; N S3 would contain a set of thickness at least ¢(7(S3), ¢(m1,72)). Thus
one can inductively find thickness conditions guaranteeing the nonempty intersection of any
finite (or even countably infinite) number of compact sets, although the analogue of the
interleaving condition gets more complicated.

If (1, 72) is sufficiently far from the boundary of region C, then as discussed in the remark
preceding the proof of Lemma 5 it is not hard to obtain explicit lower bounds on ¢(my,7;)
and ¥(m, 7). In particular, for 7, and 7; large we found that ¢(m,72) is at least of order

y/min(ry, 72), and ¥(ry, 1) is approximately one.

We thank the referee for a thorough reading of our paper and many helpful comments.
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ABSTRACT. We examine bifurcation phenomena for maps that are
piecewise smooth and depend continuously on a parameter y. In the
simplest case there is a surface T in phase space along which the
map has no derivative (or has two one-sided derivatives). I' is the
border of two regions in which the map is smooth. As the parameter
4 is varied, a fixed point EN may collide with the border ', and
we may assume that this collision occurs at y = 0. A variety of
bifurcations occur frequently in such situations, but never or
almost never occur in smooth systems. In particular Eu may cross
the border and so will exists for u 2 0 and for u > 0 but may be a
saddle in one case, say u < 0, and may be a repellor for p -» u.
For y < 0 there can be a stable period two orbit which shrinks to
the point E0 as 4 - 0, and for gy > 0 there may be a stable period
3 orbit which similarly shrinks to Eo as u -» 0. Hence one observes
the following stable periodic orbits: a stable period 2 orbit
collapses to a point and is reborn as a stable period 3 orbit. we
also see analogously "stable period 2 to stable period p orb:r
bifurcations"”, with p = 5, 11, 32, or period 2 to quasi-perioa:-
or even to a chaotic attractor. We believe this phenomenon wil: he

seen in many applications.

1. INTRODUCTION
Certain bifurcation phenomena have been reported repeatedly in
numerous studies of low dimensional dynamical systems, that depend
on one parameter. The rather familiar bifurcation phenomena
describing the evolution of attractors as a parameter is varied
include the saddle node bifurcation, the period doubling (orv

halving) bifurcation, and the Hopf bifurcation. In the literature
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dealing with bifurcation theory, it is frequently assumed that the
map corregponding to the dvnamical syvstem is differentiable; see
for example [GH], [K], [R], or [S]. To remind the reader so that
wé may draw contrasts, the well known bifurcation diagram of the
quadratic map QM(X) = pu - x2 is given in Figure 1 (1 < p < 1.3).
All the computer assisted pictures were made by using the DYNAMICS

program (Y].
FIGURE 1

We say a map is smooth if the map has a continuous derivative.
A region is a closed, connected subset in phase space. We examine
continuous maps which are piecewise smooth. We restrict attention
to those which are smooth on two regions of the plane with the
border between these regions being a smooth curve. From now on we
assume that there is a smooth curve ' which separates the plane
into two regions denoted by RA and RB. We say, a map F from the
phase space Rz to itself is piecewise-smooth if (1) F is
continuous, and (2) F is smooth on both the regions RA and RR'
Note that on the border I' between the regions, the mappings must
be equal since Fu is assumed to be continuous. A special case tnat
we shall refer to frequently is the following prototype example, 1
piecewise linear map into which other generic piecewise linear
maps in the plane can be transformed by changes in coordinates.

Let u and w be vectors in the plane. Let x and y be the phase
space coordinates and u is a scalar parameter. Let Pu be the map
defined by

Pu(x,y) = xu + |x]w + (y + p)(1,0)

and we investigate trajectories (x ) = Pu(xn’yn)‘ The

n+tl'Vn+l
regions RA and RB are the left and right half plane separated by




Figure 1.

X"+ The
parameter u (plotted horizontally) varies from 1 to 1.3, and x is

plotted vertically, -1 s x g 2.

Bifurcation diagram of the quadratic map Qu(x) = u
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I, the Y-axis.

To illustrate the "period two to period three" border-collision
bifurcation phenomenon, consider tie one-parameter family of maps
f“ (=0 < g < w) from the plane to itself, defined by

fu(x,y) =
(-3x + y, -4x) + u(l1,0) if x 2 0

Notice that the map is smooth in each of the half planes x £ 0 and
x 2 0, and the Y-axis is the border which is a smooth curve. Note
that to write f“ in the form of P“, let u = (-2.2,-2.05), and w =
(-0.8,-1.95), The bifurcation diagram exhibiting the "period two
to period three"” bifurcation, is presented in Figure 2 (-0.1 < pu <
0.2). All the bifurcation diagrams in this paper show a projection
of the attractor, projecting (x,y) onto the X-axis, which is

plotted vertically; the horizontal coordinate is u.
FIGURE 2

The purpose of this paper is to study the occurrence of such a
new bifurcation phenomenon for continuous, piecewlse smooth maps.
These systems 1include, for example, two-dimensional continuous,
piecewise-linear maps. In [HNS] the dynamics of a simple economic
model was studied, and a "period three to period two" bifurcation
was observed numerically, and was established rigorously in [HN]
for a degenerate piecewise-linear situation. The "border-collision
bifurcation” phenomena is a much richer class of bifurcation
phenomena than just a "period two to period three" bifurcation and
occur for generic piecewise smooth maps. We present phenomena that
occurs when the nature of an unstable fixed point of a piecewise

smooth map is changed while the fixed point collides with the




/

_ Figure 2,

Bifurcation diagram exhibiting the "period two to period three"
bifurcation of the map

fu(x,y)

(-1.4x + y + y, -0.1x) if x < 0, and

(-3x + y + u, -4x) if x > 0,

The parameter u (plotted horizontally) varies from -0.1 to 0.2,
and the coordinate x is plotted vertically, -1 s x g 1.

"
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border between two regions in which the map is smooth. Since the
fixed point is unstable before and after collision, it is not
shown in the bifurcation diagram in Figure 2. While we consider
maps in the plane, higher dimensional analogues exist. We know of
no phenomena that can occur only in higher dimensional cases.
There is also no difficulty in changing the notation to that there
are more than 2 regions on which the map is smooth. We could also
allow I to depend on u, but coordinates could be chosen so that it
remains fixed, so our case in practice includes moving boundaries.

With moving boundaries the map would be piecewise smooth in u.

We say, a fixed point EP is a border crossing fixed point if it
crosses the border I' between two regions in which the map is smooth.
We will assume that the crossing occurs at p = 0., The fixed point
Eu is called a flip saddle if the eigenvalues A and v of the
Jacobian matrix DF“(EH) if A ¢ -1 ¢ v < 1, Assume that there
exists a one-parameter family of piecewise smooth maps and assume
that there is a border crossing fixed point (or periodic point)
Eu, we emphasize the case when Eu crosses the border ' it changes
from being a flip saddle to a repellor with complex eigenvalues.
The above example has this behavior.

In Section 2, we discuss why the border-collision bifurcation
phenomenon occurs when the nature of an unstable equilibrium
changes when it crosses the border of two regions. To be somewhat
more specific, assume that a border crossing fixed point (or
periodic point) Eu of a one-parameter family of piecewise smooth
maps changes from being a flip saddle to a repellor with complex
eigenvalues when it crosses the border I'. Then at p = 0, a border-

collision-bifurcation occurs at tkis fixed point Eu on the border,




In Section 3, we mainly deal with two piecewise smooth systenms
of the plane, one piecewise linear and one piecewise nonlinear. The
first system is the map Pu (derived in Section 2) }hat correspon-is
with a generic piecewise smooth nonlinear map, and the other
system is based on the Henon map. For the piecewise linear map
Pu we present several examples including "period 2 to period p" (p
= 5, 11, and 52), "period 2 to quasi-periodic" and "period 2 to
chaotic" bifurcation. We also present an example of a border-
collision bifurcation for the map Pu in which no attractors but
chaotic saddles are involved. The system of the plane involving
the Henon map at the left side and a linear map at the right side
of the border, different border-collision bifurcations are
ohserved. We present a'variety of examples. Although we we do nrot
have an exhaustive list of types of border-collision bifurcation
of one-parameter families of maps under consideration, we point
out that several other types of bifurcation occur. We believe this
phenomenon will be seen in many applications.

In Section 4 we prove that for certain one-parameter famil.:-s
of piecewise smooth maps exhibit a "period 2 to period 3" border-
collision bifurcation. This phenomenon persists under small
perturbations of the involved maps.

In Section 5, we discuss the state of the art, and pose several
questions which remain unresolved. This paper does not give a
complete theory, but can be considered as initiating a bifurcation

theory of piecewise smooth maps.
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2 THE BORDER-COLLISION BIFURCATION PHENOMENON

In the bifurcation theory for maps, attention is focused on
differentiable maps when one or more eigenvalues of a fixed point
{or periodic point) cross the unit circle. When this occurs, the
nature of the fixed point changes. For example, a fixed point
attractor becomes a saddle (possibly a flip saddle) or a repellor.
For border crossing fixed points, the Jacobian matrix of the fixed
point generally changes discontinuously, and the fixed point can
for example change from being a repellor to a saddle as pu crosses
zero. .

Let F(-,u) = FM be a one-parameter family of piecewise smooth
maps from the phase space R2 to itself, depending smoothly on the
parameter yu, and where u varies in a certain interval on the real
line. Let F.‘.’J denote a fixed point of F” defined on -¢ < u < ¢, for
some ¢ > 0. For a general approach (which is given below) we need
the concept of the "orbit index" of a periodic orbit (MY]. The
orbit index is a number associated with a periodic orbit, ana rhis
number is useful in understanding the patterns of bifurcations the
orbit undergoes. We say an orbit of period p is typical if its
Jacobian matrix exists (that is, the Jacobian matrix of the p-th
iterate of the map at a point of the orbit) and neither +1 nor -i
is an eigenvalue (of the Jacobian matrix). For tyvical orbits, the
orbit index is -1, 0, or +1. The orbit index is a bifurcation
invariant in the sense that if one examines the periodic orbits
that collapse to the fixed point Eu as y - 0, and adds the orbit
indexes of the periodic orbits that exist just before a
bifurcation, then that sum equals the corresponding sum just after

that bifurcation. Suppose a typical periodic orbit PO of a map F




has {(minimum) period p. The orbit index of that orbit depends on
the eigenvalues of the Jacobian matrix Ap of the map FP at one of
the points in PO. Now we define the orbit index Ipo of PO, Let m
be the number of real eigenvalues of Ap smaller than -1, and let

n be the number of real eigenvalues of Ap greater than +1., The

orbit index Ipo of PO is defined by
IPo = 0 if m is odd;

IPO = -1 if m is even and n is odd;

IPO = +1 if both m and n are even.
If the orbit index = -1, then the orbit is called a regular
saddle. The typical orbats with orbit index +1 in the plane are
repellors and attractors and fixed points with non-real
eigenvalues. The def’‘nition of orbit index is technical when a
pi.int of the orbit lies on the boundary and so does not have a
Jacobian matrix, and the definition is unnecessary since we
consider orbits for p # 0.

For a moment, assume that E# is in the interior of the region
RA {or the region RB), and write A and v for the e}genvalues of
DFu(Eu). If neither of the two eigenvalues A and v is on the unit
circle, then the fixed point Eu is called a flip saddle (and has
index 0) if A < -1 < v < 1; Eu is a regular saddle (and has index
-1) if =1 < v < 1 < %3 Eu is a repellor {and has index +1) if both
|x] > 1 and |v]| > 1; and E“ is an attractor (and has index +1) if
both |A| < I and |v| < 1. Note that E) has orbit index +1 if the
eigenvalues are not real. Hence, a typical fixed point is a flip
saddle, a regular saddle, a repellor or an attractor. Similarly,
the nature of periodic points is defined.

Now we are able to provide a definition of the notion "border-




collision bifurcation", Let the regions R, and Rg» the map Fu and

A
the fixed point (periodic point) Eu be as above. Assume there
exists a number ¢ > 0 such that (1) EO is cn the border of the two
regions RA and RB’ (2) for ~¢ < u < 0 the fixed point Eu is in the
region RA, and its index is IA' and (3) for 0 < u < ¢ the fixed
point Eu is in the'region RB’ and its index is IB. If IA and IB
are different, then (as stated below) some bifurcation must occur
at Eg, since the orbit index of E“ is changing from IA to IB’

while the parameter u is increasing from =-¢ to +¢.

We say a periodic orbit PO is an isolated border crossing orbit

if (1) PO includes a point that is a border crossing fixed point
under some iterate of the map; and (2) the orbit PO is isolated in
phase space when u = 0, that is, in the plane ‘here exist »
neighborhood U of the orbit PO such that PO is the only periodic
orbit in U when p = 0, From the topological degree theory as
described in [MY] (see also [AYY] for the two dimensional casel,
the following "Border-Collision Bifurcation” result follows after

some minor modifications.

BORDER-COLLISION BIFURCATION THEOREM. For each two-dimensional
piecewise smooth map and depending smoothly on a parameter u, if
the index of an isolated border crossing orbit changes as pu
crosses 0, then at p = 0 a bifurcation occurs at this point, a

bifurcation involving at least one additional periodic orbit.

This result says that additional fixed points or periodic
points must bifurcate from EO at g = 0. These bifurcating orbits

need not to be stable. An example of the preservation of orbit




index occurs with a period doubling bifurcation. If for u < 0
there is an attracting fixed point (and nc other entering orbits),
the total index is +1. Then for p > 0 we can have a flip saddle
(orbit index 0) and a period 2 attractor (orbit index +1). Hence,
the sum of the orbit indices before and after py = 0 is + 1. Note
that the two points of the period 2 orbit are collectively
assigned +1, not individually, since that orbit has index +1.
Since this bifurcation occurs while the fixed point (or periodic
point) collides with the border of the region§ RA and RB' we call
it a border=-cocllision bifurcation. In other words, a border-
collision bifurcation is a bifurcation at a fixed point f(or
periodic point) on the border of two regions when the orbit index
of the fixed point (uor periodic point) “efore the collision with
the border is different from the orbit index of the fixed point

after the collision.

We derive the map Pu that was introduced in Section 1, tfrom
nonlinear piecewise smooth maps. We assume coordinates are chousen
so that the curve ' is a straight line. Let z denote any vector in
the plane, and write F“(z) = F(z;u), and write z2g = EO. From the
assumption Fu is piecewise smooth, we have that on each of the

regions RA and RB

F(zyu) = F(zo;O) + DzF(zo,O)(z-zo) + DuF(zo,O)p + H.O.T.
where H.O0.T. stands for Higher Order Terms. Hence, there exist

matrices M, and M, and vectors v, and v, such that 1f z is 1n the

A B A B

region RA then

F(ziu) = F(zO;O) + M (z-zo) + VM + H.O.T.

A

and if z is in the region R, then

B




Flz;u) = F(ZO;O) + MB(z—zo) + vgH + H.O.T.

Let e, be the unit vector tangent to I at Zg- The assumption Fu
is piecewise smooth and depends smoothly on p implies MAel = MBel
= e, and vy = Vg = Ve Choose coordinates so that z2g = 0, so
F(ZO,O) = 0., Assume that ey is independent of e,y SO We may use e,
and e, as basis vectors. We let e, and e, be the basis vectors of
the plane. We assume'that e, is independent of v and that v is not
parallel with e "€y We claim that by phange of variables and by
rescaling u we may assume that v = ey Write v = (vx,vy). We now
assume that Ve 2 0. We can make vy = 0 after a change of
variables, and Ve S l by rescaling of u. If vy is not 0 then we
can change variables, setting ysy-~ vyp (where x is unchanged],
and the new vector v for the (x,y) system will have its second
coordinate 0, By rescaling u, that is, by introducing ﬁ = KV we

can change the system so that the new vector v is (1,0), when D s

1
a 1 ¢ 1]

the parameter. Therefore, we may write MA = ) MB = 1
) b 0 Q Y]

and v = {(1,0). Since all these assumptions are generic, we say tné

prototype piecewigse linear form of F“ for y small is definea bov
fa 1]

Flziu) z + p(1,0) if z is in the region RA’

b 0

e o)
o -

Flziyu) z + pu(1,0) if z is in the region RB'

d 0

To write the prototype piecewise linear form of Fu in the form

+c b+ -c b-d
of the map Pu, let u = (3?3,_?2), and w = (352,—5—)-

We observe the following fact. Assume that the fixed point Eu Ls
a flip saddle (orbit index 0) in region RA and a repellor with

complex eigenvalues (orbit index +1) in region RB. If there exists

10




a stable periodic orbit with period 2 in R, that converges to EO

A
when u approaches 0, then the total degree in RA is +1., Hence, if

there exists a stable periodic orbit in FE, that converges tc EO

B
when y goes to 0, then there must exist a regular saddle periodic
orbit of the same period {orbit index ~1) in RB that converges to
EO when u goes to 0, since the total orbit index is a bifurcation
invariant. Consequently, for the family of maps fu in the Section
1 exhibiting a "period two to period three" bifurcation in figure

2, there must also exist a regular saddle periodic orbit with

period 3.

PERIOD TWO TO PERIOD THREE BORDER-COLLISION BIFURCATION THEOREM.
Let F“ be a one-parameter family of |iecewise smooth ma=3s which
has a prototype piecewise linear form at u = 0, and assume that

(1) a < =1, ¢ < -1, d < =13 (2) c*

+ 4d ¢ 0; and (3) 0 < afac + d) <
1. Then, there exists ¢ > 0 such that if |b| < ¢, then the family

F“ has a "period two to period three" border-collision pifurcarion

at (0'0)0

We point out that the border-collision bifurcations persist
under small perturbations. The proof follows of the Theorem from
the result obtained in Section 4. The geometrical proof given in
Section 4, might give insight why other bifurcations (for example,
period 5 to period 2 bifurcation) may occur in piecewise smooth
systems. Presumably, the method of proof only works if one of the
two maps involved has a small Jacobian. Hence, when the piecewise
smooth map consists of maps that all have Jacobian boundad (far)

away from zero, new techniques have to be developed to obtain

11
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rigorous border-collision bifurcation results.

3. A VARIETY OF BORDER-COLLISION BIFURCATIONS.

In this Section we present a variety of numerical examples
exhibiting a border-collision bifurcation. The first series of
examples is from the piecewise linear map Pu, and the second
series is based on the Hénon map. We will present examples showing
that in a border-collision bifurcation not only attracting
periodic orbits are involved, but also chaotic saddles may play a
role. Therefore, in order to describe the qualitatively different
border-collision bifurcations in a consistent manner, we refer to
the invariant sets that are involved in the border-collision
bifurcation. A chaotic saddle is a compact, invariant set that is
not an attractor which contains a chaotic trajectory. If an
attractor A of a map F is an attracting periodic orbit with period
p, then we call A a period p attractor, and we say instead of
"period two to period three" bifurcation a bifurcation from a
period 2 attractor to a period 3 attractor.

The bifurcation diagrams below show the long term behavior of
the coordinate x for u between -0.1 and 0.2. The diagrams have
been constructed as follows. For the minimum value -0.l1 of pu, and
initial value (0,0), calculate the first 200 points (transient
time 200) of the orbit and plot the next 1000 points of the orbit.
Increase p slightly, say by 0.001, take for the initial value the
last point which was plotted, calculate 200 points of this orbit
and plot the next 1000 points. Increase p again, and continue
increasing until g achieves the maximum value 0.2. Hence, once the

orbit is close to an attractor, as the parameter is increased,

12




this attractor is "followed" as long as it exists. In the
diagrams, the x-coordinate is plotted vertically, and the
parameter u is plotted horizontally.

Define the map GLM from the plane to itself to be the prototype

piecewise linear form of FM’ that is,

GLu(x,Y) = (ax + y, bx) + u(1,0) if x s 0
GLu(x,y) = (cx + y, dx) + u(1,0) it x 20
Rezall that the map GL“ is equivalent to the map P“, since to
write the map GLM in the form of the map Pu, let u = (E%E,E%ﬂ),

and w = (E%E,E%E). We present a few numerical examples for this

map GL“exhibiting a border-collision bifurcation. In all these
examples, the fixed point is a flip saddle for u < 0 and a

repellor with complex eigenvalues for u > 0.

EXAMPLE 1. The presumably simplest border-collision bifurcation
is from a period 2 attractor to a period 3 attractor presented in
Figure |, We present parameter values for which the map GLH shows
a bifurcation from a period 2 attractor to a period p attractor
for a variety of period p.

For a = -1.25, b = -,035, ¢ = -2, d = -1.75, the bifurcation
diagram in Figure 3a exhibits a bifurcation from a period 2
attrantor to a period 5 attractor.

Fer a = -1.25, b = ~0.0435, ¢ = =2, d = -2.175, the bifurcation
diagram in Figure 3b exaibits a bifurcation from a period 2
attractor to a period 11 attractor.

For a = -1.25, b = -0.03943, ¢ = ~2, d = -1.9715, the
bifurcation diagram in Figure 3c exhibits a bifurcation from a

period 2 attractor to a period 52 attractor.

13
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Figure 3a,
Bifurcaticen diagram of
GL
u(x)Y)

(-1.25x + y + H, -0.035x) if x s 0, and

(=2x + vy + u, -1.75x) if x 2 0

at Hg = 0 a border-collision bifurcation from a period 2
attractor to a period 5 attractor. The parameter u (plotted
horizontally) varies from -0.1 to 0.2,
plotted vertically, -0.3 < x < 0.3,

exhibits

and the coordinate x is




Figure 3b.
Bifurcation diagram of

GLU(X’Y) (-1.25x + y + u, -0.0435x) if x s 0, and

(-2x + y + pu, -2.175x) if x 2 0
exhibits at By =

0 a border-collision bifurcation from a period 2
attractor to a period 11 attractor. The parameter u (plotted

horizontally) varies from -0.1 to 0.2, and the coordinate x is




~—

Figure 3c.,
Bifurcation diagran of
GLu(x,y) = (-1.25x%x + Y + pu, ~0‘03943x) if x g 0, and
= (-2x + y 4 Hy -1.9715%) if x 2 ¢
exhibitg at Hy = 0 a border~collision bifurcation from a period
attractor to a Period 52 &ttractop, The Parameter K (plotteqd
horizontally) varies frop 0.1 to 0.2, and the Coordinate 1s

Plotted vertically, 0.3 5 % £ 0.3.

(2]
-




For other choices for a, b, ¢, and d we have found bifurcations
from a period 2 attractor to a period p attractor, where p = 6, T,

8, 9, io, 11, 13, 19, 21, 23, 29, 31, 37, 41, etc.

EXAMPLE 2. The simplest border-collision bifurcation in which
chaotic attractors are involved is presumably the bifurcation from
a period 2 attractor to a (l-piece) chaotic attractor. Frequently,
the border-collision bifurcation from a period 2 attractor to a
p-piece chaotic attractor is observed.

For a = -1.25, b = -0.042, ¢ = -2, and d = -2.1, the
bifurcation diagram in Figure 4a exhibits a bifurcation from a
period 2 attractor to a l-piece chaotic attractor.

For a = -1.36, b = -0.,12, ¢ = -2, and d = -2, the bhifurcation
diagram in Figure 4b seems to exhibit a bifurcation from a period
2 attractor to a 12-piece chaotic attractor, but using the phase
space it turns out that the bifurcation is from a period 2
attractor to a l8-piece chaotic attractor.

We have observed many other values of p, the mép GLN Shows a
bifurcation from period 2 attractor to p-piece chaotic attractor.

For the selection a = -1.25, b = -0.03865, ¢ = -2, and d =
-1.9325, we obtain a bifurcation diagram similar to figure d4a, but
in this case the border-collision bifurcation is from a period 2

attractor to a what appears to be quasi-periodic attractor.

EXAMPLE 3. A border-collision bifurcation in which chaotic
saddles (rather than attractors) are involved, will not be
exhibited by bifurcation diagrams. Therefore, some other numerical

method is needed to detect these sets. We use the Saddle Straddle




Figure 4a.

Bifurcation diagram of
GLu(x,y) (-1.25x + y + u, -0.042x) if x g 0, and
(=2x + y + py, =-2,1x) if x 2 0

exhibits at Hy = 0 a border-collision bifurcation from a period 2

attractor to a l-piece chaotic attractor. The parameter y (plotted

horizontally) varies from -0.1 to 0.2; the coordinate x is plotted
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Figure 4b.
Bifurcation diagram of

GLu(x,y) = {-1.36x + y + u, -0.12x) if x s 0, and

= (=2x +y + pu, ~2x) if x 20
exhibits at Hog = 0 a border-collision bifurcation from a period O
attractor to a 18-piece chaotic attractor. The parameter u
(plotted horizontally) varies from -0.1 to 0.2; the coordinate «
1s plotted vertically, -0.3 s x 5 0.3.




Trajectory (SST) method introduced in [NY] to detect such sets.

We select a = -1,25, b = 0.18, ¢ = 2, and d = -3. For p = -0.05
the invariant set (obtained by the SST method) is presented in
Figure 5a, and the invariant set for pu = 0.05 is in Figure 5b.
Presumably, it is correct to say that the border-collision
bifurcation is a bifurcation from a chaotic saddle to another

chaotic saddle.

Now we present a few examples based on the Henon map. In tact,
in these examples we have a moving border. Define the map H from
the plane to itself by

Hix,y) = (A - x2 + By, x)
and define the map Lu (=» < g < ») from the plane to itself by
Lu(x,y) = (A + Cx + By - (u+Cly, Dx + (1-Diy)

The regions RA and RB are the half planes to the left and the
right of the straight line x = uy. The map we are investigating ..
defined being the Henon map on RA and the "linear” map Lu on n .
Define the one-parameter family of maps Fu from the plane to
itself by

H(x,y) if x sy

F“(x,y) =
Lu(x,y) if x 2 p

Notice that the map is smooth in each of the half planes x < u and
X 2 y, and the line x = p is the border which is a smooth curve.
Since the map Fu is continuous, it is a piecewise smooth map. Mo'e
that for this family Fu border-collision bifurcations occur

presumably for values Ho different from zero.
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Figure 5a.
Chaotic saddle of
GLu(x,y) = (-1.25%x + v +# pu, 0.18x) if x £ 0, and
= (2x + y + g, -3x) if x 2 0 when p = -0.05.
The coordinate x (-0.2 s x s 0.1) is plotted horizontally, and the
coordinate y ( -0.25 s y s 0.02) is plotted vertically.




rho = 0.0500000000

Figure 5b.

Chaotic saddle of

GL (x,
U y)

The coordinat

coordinate Yy

(-1.25%x + y + y, 0.18x) if x s 0, and
(2x + y + u, -3x) if x 2 0 when y = 0.05.

e x (-1 £ x s 0.6) is plotted horizontally, and the
( -1.8 sy s 0.2) is plotted vertically.




EXAMPLE 4. Simple border-collision bifurcations are
bifurcations from a period p attractor to a period q attractor.

For A = 1.4, B = 0.3, C = 0.9, and D = -5, the Yifurcation
diagram in Figure 6a exhibits a bifurcation from a period 3
attractor to a period 4 attractor, where u (plotted horizontally)

varies from 0.89 to 0.87. In the region R, the fixed point is a

A

flip saddle and in the region RB the fixed point is a repellor.
The border-collision bifurcation occurs at u = Hy 0.884. For u >
Ho (the side of the period 3 attractor which has orbit index +1)
the fixed point is a flip saddle (orbit index 0) and we find no
other periodic orbits on this side of the bifurcation. For pu - Hy
(the side of the period 4 attractor which has orbit indéx +1) the
fixed point is a repellor (orbi%t index +1); there also exists a
period 4 regular saddle (orbit index -1). The regular saddle also
shrinks to a point (the fixed point) as u = Mg Hence, the orbit
index is +1 on both sides of o+

For A = 1,4, B=20,3, C =1, and D = -5, the bifurcation
diagram in Figure 6b exhibits a bifurcation from a period 6
attractor to a period 4 attractor, where pu (plotted horizontally)
varies from 1.05 to 0.8. In the figure one might first notice a
bifurcation from a 6-piece chaotic attractor to a period 4
attractor, but closer examination gives the above mentioned
bifurcation from a period 6 attractor to a period 4 attractor.
Similarly as above, the periodic orbits involved in the
border-collision bifurcation that occurs at p = Ho ® 0.884 are the
following. For pu > Ho there is period 6 attractor and the fixed
point is a flip saddle, and for u < My the fixed point is a

repellor and there is a period 4 attractor a period 4 regular
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Figure 6a.
Bifurcation diagram of
Fylxiy) = (1.4 = x? + 0.3y, x) if x s 4, and
= (1.4 + 0.9x + 0.3y - (p+0.9)u, -5x + 6p) if x 2 p,
exhibits at Hg 0.884 a border-collision bifurcation from a
period 3 attractor to a period 4 attractor. The parameter p
(plotted horizontally) varies from 0.89 to 0.87; the coordinate X

is plotted vertically, 0.6 s x s 1.2,




Figure 6b.

Bifurcation diagram of

Fu(x,y) = (1.4 - xz + 0.3y, x) if x s u, and

= (1.4 + x + 0.3y = (p+l)y, -5x + 6u) if x 2 W

exhibits at Hg ™ 0.884 a border-collision bifurcation from a

period 6 attractor to a period 4 attractor. The parameter U

(plotted horizontally) varies from 1.05 to 0.8;
is plotted vertically, -0.5 £ x s 2.

the coordinate

P




saddle. Hence, the orbit index is +! on both sides of Mg -

EXAMPLE 5. In this example we present two cases of a
border-collision bifurcation from a period p attractor to a g-piece
chaotic attractor.

For A = 1.4, B =10.3, C = 1,1, and D = -5, the bifurcation
diagram in Figure 7a exhibits a bifurcation from a l-piece chaotic
attractor to a period 4 attractor, where py (plotted horizontally)
varies from 1.05 to 0.8. The border-collision bifurcation occurs at
M= Hg~ 0,885, For p > By (the side with the chaotic attractor!
we do not know the (total) orbit index since the chaotic attractor
contains a lot of periodic orbits. For u > Mo the fixed point is a
flip saddle (orbit index 0). For u < Ho {the side of the period 4
attractor which has orbit index +1) the fixed point is a repellor
(orbit index +1) there also exists a period 4 regular saddle
(orbit index -1). The regular saddle also shrinks to the f:.ed
point as py - o Hence, presumably we have a border-collisicn
bifurcation from a period 4 attractor to a l-piece chaotic
attractor.

For A = 1.4, B =0,3, C = 1.5, and D = -4, the bifurcation
diagram in Figure 7b exhibits a bifurcation from a 8-piece chavtic
attractor to a period 5 attractor, where uy (plotted horizontally)
varies from 0.91 to 0.86. The border-collision bifurcation occurs
at g = By ® 0.884. For u > Ho (the side of the 8-piece chaotic
attractor) we do not know the (total) orbit index since the
chaotic attractor contains a lot of periodic orbits, and the fixed
point is a flip saddle (orbit index 0). For p < Ho (the side of

the period 5 attractor which has orbit index +1) the fixed point
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Figure T7a.
Bifurcation diagram of
Fu(x,y) = (1.4 - xz + 0.3y, x) if x $ 4, and
= (1.4 ¢+ 1.1x + 0.3y - (u+l.1l)u, =-3x + 6p) if x 2 4,
exhibits at Hg ® 0.885 a border-collision bifurcation from a
l-piece chaotic attractor to a period 4 attractor. The parameter u
(plotted horizontally) varies from 1.05 to 0.8; the coordinate x

is plotted vertically, -0.5 € x g 2.







Figure 8.
Bifurcation diagram of
Fu(x,y) (1.4 - xz + 0.3y, %) Lf x s M. and
(1.4 + 1.2x + 0.3y - (prl.2)p, -4x + Su) if x 2 H,
exhibits at Hg ® 0.884 a border-collision bifurcation from a

l-piece chaotic attractor to a l-piece chaotic attractor. The

1]

parameter U (plotted horizentally) varies from 0.95 to 0.85; the
coordinate x is plotted vertically, 0.4 s X s 1.6.




L0

is a repellor (orbit index +1); there also exists a period 5
regular saddle (orbit index -1). The regular saddle also shrinks
to the fixed point as u = Ho e In the figure one might first notice
a bifurcation from a 5-piece chaotic attractor to a period 5
attractor, but closer examination in the phase space gives the
above mentioned bifurcation from a 8-piece chaotic attractor to a

period 5 attractor. Hence, presumably we have a border-collision

FERIN D - h s AR A L By L X A A I faxts

bifurcation from a period 5 attractor to a 8-piece chaotic

attractor.

EXAMPLE 6. Border-collision bifurcation from a p-piece chaot:

attractor to a g-piece chaotic attractor. We present just one

fh
Q

n
—

example, namely p

For A = 1.4, B

n
o
w
(@]

= 1.2, and D = -4, the bifurcation

diagram in Figure 8 exhibits a bifurcation from a l-piece chaor:c

" — » o~ ” thoass " T ——

attractor to a l-piece chaotic attractor, wnere p (plottad

YAt

horizontally) varies from 0.95 to 0.85. The border-cecllision

T

bifurcation occurs at p = Hy o 0.884 and we only can say that n
both sides infinitely many periodic orbits are involved in the

border-collision bifurcation, since the attractors are chaotic.
Hence, presumably we have a border-collision bifurcation from a

l-piece chaotic attractor to a l-piece chaotic attractor.

EXAMPLE 7. In this example we show that coexisting attractors
of different nature can be involved on the same side of a

border-collision bifurcation.

Coass

For A = 1.4, B =0.3, C = 1.4, and D = -4, the bifurcation

diagram in Figure 9a exhibits a bifurcation from a S5-piece chaoti.

o
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Figure 9a,

Bifurcation diagram of
Fu(x,y) (1.4 - xz + 0.3y, x) if x s u, and
(1.4 + 1.4x + 0.3y - (utl.d)p, -4x + 5u) if x 2 y,
exhibits at Ho 0.884 a border-collision bifurcation from a
S5-piece chaotic attractor to a l-piece chaotic attractor. The
parameter pu (plotted horizontally) varies from 0.87 to 0.895; the

coordinate x is plotted vertically, 0.3 s x 5 1.6,

u




Figure 9b.
Bifurcation diagram of

Fu(x,Y) = (1.4 - xz + 0.3y, x) if x s u, and

= (1.4 + 1lidx + 0.3y - (u+l.4)u, -4x + 5u) if x 2 u,
exhibits at By = 0.884 a border-collision bifurcation from a
S5-piece chaotic attractor to a period 4 attractor. The parameter yu
{plotted horizontally) varies from 0.874 to 0.895; the coordinate
X is plotted vertically, 0.3 s x £ 1.6,




attractor to a l-piece chaotic attractor, where u (plotted
horizontally) varies from 0.87 to 0.895. On both sides of the
collision-bifurcation. which occurs at Hg ® 0.884, there are
infinitely many unstable periodic orbits involved, since the
attractors are chaotic. Due to the projection of the picture onto
one phase space coordinate the bifurcation diagram seems to show a
2-piece chaotic attractor, but again in phase space one has
clearly a 5-piece chaotic attractor.

For the same parameter values, the bifurcation diagram in
Figure 9b exhibits a bifurcation from a S5-piece chaotic attractor
to a period 4 attractor, where p (plotted horizontally) varies
from 0.874 to 0.895. Hence, we may have a border-collision
bifurcation from a 5-piece chaotic attractor to a coexisting

l-piece chaotic attractor and a period 4 attractor.

EXAMPLE 8. Now we consider an example in which the curve Fu is
the straight line y = -x + u. In this example we have a moving
border. Let the map H from the plane to itself be defined as
above, that is, H(x,y) = (A - xz + By, x), and define the map Gu
(- < gy < ®) from the plane to itself by

G (x,y) = (A - 4C - x% + Cx + (B#C)y, (B+D)x - Dy -D)

The regions RA and R, are the half planes to the left and the

B

right of the curve Fu. The map we are investigating is defined

being the Henon map on RA

the one-parameter family of maps FN from the plane to itself by

and the "linear” map Gu on RB. Define

H{x,y) if x s -y + u
F =
u(X’Y)

Gu(x,y) 1f x 2 =y + u
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Figure 10a.
Bifurcation diagram of
Fu(x,y) = (1.4 - xz + 0.35, x) if x € -y + u, ana
= (1.4 +# 0.5y -~ x° + 0.5x + 0.2y, -1.3x + y + y) if
X 2 -y + yd, exhibits at Hg ® 1.015 a border-collision bifurcation
from a period 4 attractor to a strange chaotic attractor. The
parameter u (plotted horizontally) varies from 1.2 to 1; the

coordinate x is plotted verticalliy, -2 £ x s 2,




Figure 10b,
The chaotic Strange attractor
Fu(x,y) = (1.4 - xz + 0.33, X) if x g -y + U, and
= (1.4 + 0,54 - x° & 0.5x + 0.2y, -1.3x « Y + u) if
X 2 -y + u, where H = 1. The coordinate x (-2 s x s 2)

horizontally, and the coordinate y |
vertically,

is plotted
~2 Sy s2)is plotted




Notice that the map Fu is a piecewise smooth map. We present an
example for which the map Fu has a the border-collision
bifurcation from a period 4 attractor to a chaotic strange
attractor. For A = 1.4, B = -0.3, C = 0.5, and D = -1, the
bifurcation diagram in Figure 10a exhibits a bifurcation from a
period 4 attractor to a chaotic strange attractor, where pu
(plotted horizontally) varies from 1.2 to 1. The border-collision
bifurcation occurs at uy = Ho ® 1.015. The chaotic strange
attractor for u = 1 is given in Figure 10b. Hence, we may have a
border-collision bifurcation from a period 4 attractor to a

chaotic strange attractor.

4, "PERIOD TWO TO PERIOD THREE" BORDER-COLLISION BIFURCATION

In this Section we explain why "périod two to period three”
border-collision bifurcations occur for two-dimensional piecewise
smooth maps. Let a, b, ¢, and d denote real numbers. Define the

one-parameter family GL“ from the plane to itself, by

GL (x,y) = (ax + y, bx) + p(1,0) if X 0

GLu(x.y) (cx + vy, dx) + u(1,0) if x 2 0
where y is in an open interval I including zero. Recall that this
family GLU is equivalent with the piecewise linear map Pu.
Let Fp be a one-parameter family of piecewise smooth maps which
has a prototype piecewise linear form at py = 0, and assume thét
(Al) =a > 1, =-c > 1, =d > 1;
(A2) c¢® + 4d < 0;
(A3) 0 < afac + d) < 1.

We want to show that there exists ¢ > 0 such that if |[b| < ¢, then

the family Fu has a "period two to period three"” border-collision
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bifurcation at (0,0). First, we show that for b = 0, the family
GLU has a border-collision bifurcation from a period 2 attractor
to a period 3 attractor. We write C for the set of all

one~parameter families of maps GL“ defined above such that b = 0.

PROPOSITION. At u = 0, every family GLH in C has a "period two

to period three" border-collision bifurcation at (0,0).

PROOF OF THE THEOREM. Assume that the Proposition has been proved.
Apply the Proposition and it follows immediately from perturbation

results.

The geometrical proof of the Proposi-.ion (given below) ~ight
give insight why other bifurcations (for example, period 5 to
period 2 bifurcation) may occur in piecewise smooth systems.
Presumably, the method of proof only works if one of the two maps
involved has a zero Jacobian. We tirst show that a
border-collision bifurcation occurs at u = 0, and‘we present an
example to give an idea of the proof.

Let GLu be in C. The fixed point Eu of Fu is given by E” =

L 1. d .
i=a i=c-d *' T=c=d'*

In the notation of Section 2, define the matrices MA and MB by

{ ) if pu > 0,

gy, 0) if uy £ 0 and Eu = |

a 1 c 1
M, = [ }, MB = [ }. The eigenvalues of MA are 0 and a, so
d 0

if y < 0 then the fixed point E“ is unstable since -a > 1. In
particular, Eu is a flip saddle if py < 0. The eigenvalues of MB
are 0.5¢c £ 0.5 ¢ c® + 4d and are complex, since c2 + 4d < 0. For

4 > 0 the fixed point Eu is unstable (repelling), since the
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product -d of the eigenvalues of MB exceeds 1. The nature of the
fixed point Ey is changing from being a flip saddle (in region RA
which is the left half plane) to a rnpellor with complex
eigenvalues (in region RB) when the parameter p is varied from say
-0.1 to 0.1. We conclude that a border-collision bifurcation
occurs at y = 0 when u is continuously varied from some negative
value to a positive value, since the orbit index of Eu changes
from 0 to +1. For simplicity of the explanation of this border-
collision bifurcation phenomenon, we offer the following example.
EXAMPLE. Consider the one-parameter family gu from the plane to

itself, defined by

Su(X.Y) = (-%-x +y, 0) + - (1,0) if x g0
g0x,¥) = (-2x + v, ) v pe1,0) if x 20

The bifurcation diagram exhibiting the "period two to period
three” bifurcation, is similar to the diagram in figure 1. The
family of maps gu is in the class ¢, so it is an example for wnich
the result above applies. The idea why a "period two tc period

three” border-collision bifurcation occurs for the family gu, LS
the following.

For u < 0, write Wu for the interval [-%~u,m) = [-%-u.w) on the
X-axis. We have (1) the image gu(p) of each point p on the X-axis
but not in wﬂ is in Wu, and (2) each point p in wu is mapped to a
point p* on the X-axis after two iterates, so guz(p) = p*. In
figure 11, the graph of the corresponding return map G on W“ whicn
is defined by G(x) = guz(x,O), is given. To be more specific,

25 1

4 1 1 .
G(x) = 16X - T°H for THS XS 0 and G(x) = “gX - g for x 2 0,
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Figure 11,
The maP g is defined by g (x,¥) * (~1. 285%x *
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FIGURE 11

"3—'“ > ()'

The map G has two fixed points P, = %-u < 0 and Pg
The fixed point P, is unstable since the slope of G in Py, is %%,
and the fixed point P is stable since the slope of G at P is -%.
The properties (1) %-p < P, ° %-p < 0, (2) G has slope %% at x for
4.4 < x <0, (3) G has slope -5 for x > 0, and (4) G(0) = -Fu >
0, imply that gp has a period 2 attractor consisting of the two
points P, = (-g-4, 0) and P, = g,(Py) = (25ms T%-p). Notice that
the norms of both these points converge to zero as u goes to zero,
that is, both HPIH - 0 and HPZH -+ 0 as g4 = 0, In other words, the
period 2 attractor shrinks to a point as p goes to zero; this
point to which the period 2 attractor converges is the fixed point
of gu at u = 0. For y > 0, each point p on the X-axis is mapped
to a point p* on the X-axis after three iterates, so gu3(p) = p*.
The graph of the corresponding return map H, defined by Hi(x) =
gus(x.O), is given in figure 12, In particular, H(x) = 5%-x - é,.

113 3 1 :
for x < 0, H(x) = 7% - gH for 0 £ x s T H and Hix) = 55-. ¢

21
16

[\

‘u for x 2 %-u.

FIGURE 12

The map H has an unstable fixed point P, ° %7-p > 0 and two stable

fixed points Qg = ~%-u < 0 and Py = l%-p > 0. Furthermore, tor atl

X with x < p, we have %3g Hn(x) = ag. and for all x with x » P, ="

have %ig Hn(x) = Py The properties (1) H has slope between U and
1 for x < 0, (2) H has slope bigger than 1 for 0 < x < %-u. ()
has slope between 0 and 1 for x > %-u, and (4) H(O0) = - %-u <0
1 _ 89 1 . ) .
and H(§-u) = gTH > Bl imply gu has a period 3 attractor
consisting of the points S1 = | -%-u, 0), S2 = (l%-p, 0), and 53 =
23
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(-l%~u, -%%-u)- Notice that the norms of all three points converge

to zero as u goes to zero, that is, all three S, - O, HSZH - 0,

1
and H83H - 0 as y - 0. In other words, the period 3 attractor
shrinks to a point as u goes to zero; this point to which the
period 3 attractor converges is the fixed point of gu at u = 0.
The point (%7-u, 0) is a point of a period 3 orbit which is a
regucar saddle of the map gu.

Conclusion: at p = 0, there is a "period two to period three”

border-coilision bifurcation. END OF THE EXAMPLE.

PROOF OF THE PROPOSITION. Let GL# be a one-parameter family 1in
the class C. where u is in some interval I. We write Py = (XO'yO)
for an initial condition and P, = (xn,yn) for its n-th iterate,

that 1is, P, = GLun(pC), 2. each pu. For the particular initial

value (0,0), we write A, = (0,0}, A, = GLu(AO)’ A, = GLU(AI). A

0 1 2 3
GLp(AZ)‘ and A4 = GLu(AB)'
For each initial value Py = (xo,yo) we observe the following

fact. If Xg S 0 then v, = 0, and if X0 > 0 then v, = dxo < 0.
Hence, 1t is sufficient to consider initial values in the lower

half plane. Hence, from now on, we assume that Yo < 0.

Assume first, u < 0. Recall that the fixed point Eu = (—-u,
0) is unstable, and is a flip saddle, since -a > 1. Assume that Py
(xo,yo) is any initial value with Yo < 0. Then, if Xy S 0 then

vy = 0, and 1f Xg 2 0, then x, = cxy t Vg t U < 0 and so Vo = 0.

1
Therefore, it is sufficient to consider points on the X-axis, and
we will do so.

Consider the initial value Py = (0,0) = AO. Computation of the
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first four iterates of AO vields A1 = {u,0), Az = ((a+l)u, 0},

A3 = ({cla+l) + 1)y, d(a+i)u), and A4 = {((atl){ac + d + 1liu, 0).
The assumptions 0 < a{ac + d) < 1 and -a > 1 imply -1 -~ ac + d < O

yielding 0 < Xy < Xge From -1 < ac + d < 0, and the assumptions,
-a > 1, and -¢ > 1 follows that c(a + 1) > 0 and d < c; therefore
|x5] > |ys|. Hence, A, is on the X-axis to the left of Ay, A5 is

under and to the left of Al’ and both A2 and A, are on the X-axis

4

0 and A4 is between AO and Az.

First we consider the image of the X-axis. Let Py = (xo,yo) be

to the right of A

any point on the X-axis. The image of the right half of the X-axis

with end point AO 1s the half line through A3 with end point Al =

GLu(AO)’ since p, = (cxO + u, dxo) for X0 > 0. The image of the

left half of the X-axis with end point A, is the half line on the

0
X~axis to the right of A1 with end point Al’ since P, = (axo + U,
0) for x, s 0,
0 2
. I _ - a . =
Define Q = { ;-u'O) = (xQ,O) and R = (T=a7lac + 7 u, 0)

(xR,O). The point Q@ is mapped to A, iterating GLU once, that s,

0

GLH(Q) = AO’ and Q@ is on the X-axis between Al
{(uy0), Eu = (Tég-u, 0) and ~a > 1. The point R is on the X-axis

to the right of AO’ and R is mapped to E“ iterating GLu twice,

and E since A, =
u 1

2
that is, GL “(R) = E .
u u

Let Py * (xO,O) be any point. Straightforward computation gives

the following. If Xq > 0 (that 1is, is on the X-axis to the

Po
right of A,) then p; = (exy + uy dxg) and p, = ([ac + d]xg +

(l+a)u, 0), so P, is on the X-axis. If Xg = 0 (that is, p, = Ay)

then p, = (4, 0) and P, = ((1+a)u, 0), so p, is on the X-axis to
the right of AO. If —é»u < X < 0 {(that is, Py is on the X-axis
between Q and AO) then Py *= (ax0 + u, 0) and Py = (a(axO +op) o+ ouy
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0), so P, is on the X-axis. If x,., < -é-u {that is, Py is to the

0
left of Q) then P, = (axy + py, 0) and p, = (c(a.xo + u) + u, d(axo

+ u)) and Py = ([azc + ad]x0 + 'ad + a +d+ 1)-uy 0), and so p,
is on the X-axis while P, is not. Summarizing, for each point Py
on the X-axis to the right of @ we have P, = GLuz(po) is on the
X-axis. Therefore, we have a return map on the interval consisting

of the points on the X-axis to the right of Q.

Let G denote the return map of GL# on [Q,®), so G(x) = GLuz(X,O)

for each x 2 x.. The above results imply G(x) = azx + (l+a)u for

Q
2.4 s x $0, and G(x) = (actd)x + (l+aly for x 2 0. The graph of

G is similar to figure 11. The map G has two fixed points, namely

.1 _ a+ 1 )
pu = _1__;.“, and ps = mu, and pu < 0 < ps. The fixed

point P, is unstabl: since the slope of G in P, is a2 > 1, and the

fixed point P is stable since the slope of G at 1 is ac + d for

which -1 < ac + d < 0. Furthermore, for all x with Py, < x < Xp we

. .n - . 1 . .
have éig G(x) = Py The properties (1) XQ < = < 0, (2) G has
slope a2 > 1 if xo < X < 0, {(3) G has slope -1 < ac +d ¢ 0 ftor «

Q
> 0, and (4) G(O) > 0, imply that GLU has a period 2 attractor

. . _ a + 1 - -
consisting of the points P1 = (T—:—ZE—:—E-u, 0) and Pz z GLu(Pl) =

c -d+ 1 (a + 1)d

(T—=25 =3 H T —ac —gH Notice that the norms of both these

points converge to zero as u goes to zero, that is, both HP1H - 0
and HPZH - 0 as g » 0. Hence, the period 2 attractor shrinks to a
point as p goes to zero; this point to which the period 2
attractor converges is the fixed point of GLU at u = 0.

Now assume [ ='0. Assume Py = (xo,yo) is any initial value with
Yo % 0, then X S 0 implies vy ® 0, and X0 > 0 implies X, = exg

yielding Yoy = 0. Hence, it is sufficient to consider points on the

X-axis. Let Py = (xO,O) be given. If xg < 0 then P, = (axO,O)
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which is on the positive X-axis. If Xy = 0 then p, = (ax,,0) and

so py is the fixed point of GL If X4 > 0, then P, = (CXO’ de)’

0.
and P, = ((ac+d)xo, 0). Consequently the point AO

(0,0) is a

globally stable fixed point of GL since -1 < ac + d < 0.,

09
Now assume p > 0. The fixed point E = ( 1 -y ——2——-u) is
) P u I-c-d "' T-c-d

unstable with complex eigenvalues since it was assumed -d > 1 and

c2 + 4d < 0. Assume Py

(xo,yo) is any initial value with Yo S 0.

. . _ . _1 _
Then Xg S 0 implies y, = 0, and if X5 2 —=p then Xy = X4 t Yy, +

g s 0 and so yz = 0., If 0 < xo < ~%-u then x1 = cx0 + Yo + 4 and

vy = dxO < 0; hence, if x, 5 0 then Yo = 0, else if Xy > 0 (and so

1
Os-y0<p+cxo).x2=cx1+y1+p=c2xo+cyo+cu+dx0+p

2 -
< e - c(p + cxo) + cu + dxo +u o= dxO +pu <0, and so y, = 0.
Therefore, it is sufficient to consider points on the X-axis.
Let py = (x4,¥y) = (x;,0) be any point on the X-axis. If x5 s 0
then P, = GLu(pO) = (ax0 + uy, 0) = (xl,yl), so x; > 0. Every point

4y = (wO,O) such that Yo < Xg S 0 satisfies Q, = GLu(qo) = (awq +

u, 0) = (w,,2,), so w, > x, > 0. The conclusion is that poiats
1’71 1 1

on the X-axis to the left of A, = (0,0) are mapped monotonically

0
into the X-axis tc the right of (u,0).

Let Py * (0,0). A simple computation shows P, = (uy 0, Py =
((l+c)u, du), Py = ((ac + a + d + 1)u, 0), and Py = (ax3 + u, 0).

Notice X < 0, hence Xy > H = X Recall that Py = Agr Py 7 Ayr Po

-

= AZ' Py = A3’ and Py = A The conclusion is that AO’ Al’ A3, and

4 L[]
A4 are on the X-axis, and A3 is to the left of AO’ and both Al and

A, are to the right of AO with A, between A

4 and A, .

1 0 4
Let Py = (xO,O) be any point on the X-axis for which Xg 0.

Then Py = (cxO U, dxo). Notice that if x, = —%-p then Xy = 0 and

_ _d . I | ~
y1 = E-u. Write B0 = | E‘“’ 0), B, = GLM(B

1 ), B, = GLu(Bl)’ and

2
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By = GL,(B,). Then B, = (0,-3.4), B, = ((1-S)p, 0), and B, =
([a(l-%) + 1]y, 0). Notice that Bl denotes the point on the Y-axis
at which the line segment [AI’A2] intersects the Y-axis, and that
B2 is a point on the X-axis to the left of Ao. The assumptions -a
> 1 and 0 < alac + d) < 1 imply ac + d < 0 and we obtain that the

point A3 = ({ac + a +d + 1)u, 0) is on the X-axis to the left of
Bz.

The image of the half line [Al,m) through A2 under the map GLU
is the kinked half line [Az,sz U [Bz,m) through A3. The image of
this kinked half line is on the X-axis. In particular, the image
of the half line [Bz,m) through A3 is [B3,w) on the X~ax1is to the
right of Al = (4,0), and the image of the line segment [Az,le is
[AB,BS]O

Let Py = (xO,O) be any point on the X-axis. Straightforward
computation shows the following. If Xp 2 -%»u (that is, Py is to
the right of BO) then P, = (cx0 + U, dxol, P, = ([ac + d]xo +
(a+l)u, 0, and Py = (a[ac+d]x0 + [ala+l) + 1)y, 0). Hence, both

P, and Py are on the X-axis for Xp 2 -é-u. If 0 5 x, s -%-u {that

0
is, Py is on the X-axis between AO and BO) then P, = (cxO +ou,

2 . 2
dxq), Py = ([c” + d]xO + (ctllp, cdxy + dp), and since (c +d)xy +

(c+l)y < =cuy - gp +cu + u= (1'§)H < 0, we have

Py = ([ac2 + ad + cd]x0 + {ac + a + d ¢+ 1}y, 0), so the point Ps
is on the X-axis., If X < 0 then P, = (axO + u, 0), Py = (acxO +
(c+l)p, adxO + du), and Py = (alac + d]xo + (ac + a + d + 1]y, 07,

so the point Py is on the X-~axis. The conclusion is that for each
peint Py = (xO,O) on the X-axis, the third iterate of Py is also
on the X-axis, that is, GLu3(p0) = (x3, 0). Hence, a return map

of GLU exists on the X-axis. We call this return map H, so H(x) =
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GLuB(x,O). The above results imply

H(x) = (azc +ad)x + (ac + a + d + 1)y for x < 0,
H(x) = (ac2 + ad + cd)x + (ac + a + d + L)y for 0 € x s -%-u, and
H(x) = (azc + ad)x + (a2 + a+ 1).u for Xq b3 -é-u. The graph of H

is similar to figure 12. The map H has three fixed points, namely

_ac +a+d+ 1 _=lac + a +d + 1)

s - "1 - alactd) H <0, Py * CTac+d) 7 ad = 1

q
a2 + a + 1 .
1 - afac+d)

ac2 + ad + cdof H in P, is bigger than 1, and the two fixed points

4y and p_ =

g > 0. The fixed point P, is unstable since the slope

g and P is stable since the slope azc + ad of H at both g and

P is between 0 and 1. Furthermore, for all x with x < p, e have

lim H%(x) = q_ , and for all x with x > p we have lim HY(x) = p
n=o s u =

s
The properties (1) H has slope between 0 and 1 for x < 0,

(2) H has slope bigger than 1 for 0 < x < -é'u, (3) H has slope

between 0 and 1 for x > -%‘u, and (4) H(0) < 0 and H(-%-u) > -é-u,

imply that GLU has a period 3 attractor consisting of the points
2

- ac + a+d + 1 _(a +a+ 1
Sp = U= alactd) H° 0), S, ; (1= alac+d) X ' 01, and
a” + a + 1 a” + a + 1 .
= ¢ * . . . . & t
S, ({c T =" a7ac+d] 1}p, d T = a(acsd] pu). Notice that the

norms of all three points converge to zero as u goes to zero, that
is, ail three IS, » 0, IS,Il » 0, and IS, » 0 as p - 0. Hence,
the peried 3 attractor shrinks to a point as u goes to zero; this
point to which the period 3 attractor converges is the fixed point
of GLM at u = 0.

The point (pu, 0) is a point of a period 3 orbit which 1s a
regular saddle of the map GLu. We conclude: at y = 0, there is a
"period two to period three" border-collision bifurcation. This

completes the proof of the Proposition.
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5. DISCUSSION AND CONCLUDING REMARKS.

We have presented bifurcation phenomena, which we call
"border-collision bifurcations". These bifurcations occur when the
nature of a fixed point (or periodic point) of a piecewise smooth
system changes when it collides with the border of two regions. An
interesting case occurs when the fixed point changes from being a
flip saddle to a repellor with complex eigenvalues.at the
parameter value where it collides with the border of two regions.
We have presented a variety of examples based on the piecewise
linear map P“ and the Henon map. In particular, we have shown the

occurrence of a "period two to period three" border-collision
bifurcation for maps in the class C.

We point out that the border-collision bifurcation can be
expected to occur in many piecewise smooth models. In particular,

the "period two to period three" bifurcation phenomenon can be

expected to occur in many linear models with constraints.

Assume for the piecewise linear map Pu that the fixed point Eu
is a flip saddle in the left half plane and a repellor with
complex eigenvalues in the right half plane.

QUESTION 1. Does there exist a classification of the border-
collision bifurcations for P in the case where a period 2
attractor converges to the fixed'point (0,0) when u goes to 0?

QUESTION 2. More generally, is is possible to give a
classification of the border-collision bifurcations for the
piecewise linear map Pu?

QUESTION 3. When the plane is subdivided in N regions, where N
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is at least 3, do there exist border-collision bifurcations that
do not occur when there are only 2 regions, and in particular

bifurcations that persist despite small perturbatirns?
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