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INTRODUCT-ON

The following report summarizes our activities under the Office of Naval Re-

search (DARPA) Contract No. N0014-88-K-0657. We have organized this report

under the following five categories:

I. Deliverables: computer tape and disk with instructions, and summary of ac-

complishments related to the proposed projects.

II. List of publications for the period of this report.

III. Appended respective reprints and preprints.
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I. Deliverables: Computer Tape and Disk with Instructions

arid 3ummary of Accomplishments Related to the Proposed Projects

PROJECT I

Deliverable: \XVQ are ddivering a tape with a software package for UNIX worksta-

tions with documentat'on for analyzing low dimensional dynamical behavior from

time series. In particur.z the Lyapunov exponent code will, together with the di-

niension code. permit the user to distinguish between periodic, chaotic, and random

processes, "Random processes" here means behavior whose dimension is too high

to compute. The code computes the information dimension of the time series. We

are also including in the same tape a noise-redaction code with documentation.

Summary of Project 1: Nonlinear Noise Filtering of Experimental Data from Chaotic

Processes

Many attempts have been made to apply ideas from dynamical sytems to the

analysis of experimental data including estimates of attractor dimension and mea-

surement of Lyapunov exponents. Ai, essential problem is that noise often compli-

cates the analysis. For example, noise obscures the fractal structure of the attrac-

tor, so that estimates of the attractor dimension cmn be difficult to obtain. Various

methods have been proposed to estimate the noise levels in the data, and these

are useful for determining the smallest scales at which dimension measurements are

feasible. However, up until now no systematic method has been developed for noise

reduction.

We have developed a method which we believe is a potential breakthrough in the

analysis of experimental data. Typically, attractors are reconstructed from a scalar

time series of experimental data using time delays. Conventional signal filtering

techniques are not useful in this case, because they exanine only portions of the

signal which are close in time. We examine points on an attractor which are close in
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phase space; the corresponding parts of the original signal in general are far apart

in time.

Our method is a linearization technique which uses the dynamics of the recon-

structed attractor to estinate and correct errors in the trajectories. The method

relies on the assumption that in a small neighborhood about a point on the tra-

jectory, the dynamics on the attractor is nearly linear. in other words, given a

point xi on the attractor, its image is xi+1 = f(xi) for some nonlinear, unlivown

function f. We assur- that it is possible to find a matrix A and a vector b such

that x,+, - Axi + b. The mehod has two steps: first, to compute the matriecs A

and vectors b for each point on the trajectory, and second, to find a new trajectory

near the original one which best satisfies the linear approximation. We believe that

a reliable procedure like the one outlined above will be invaluable for the analysis

of experimental data.
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PROJECT 2

Deliverable: We are delivering a disk containing a Dynamics code (for IBM com-

I patible PCs and for UNIX/X window workstations) with a Manual for computing

and evaluating dynamical processes. The source code contains 20,000 lines of code.

I In particular, the program will compute stable and unstable manifolds as described

below.

Summary of Project 2: A fast Reliable Method for the Numerical Computation of

Stable Manifolds of Chaotic P? ocesses

3 Saddle points often play a crucial role in the dynamics of a particular map f. A

schematic illustration of a saddle p,:int in two dimensions is given in the following

3 figure:

I 
__- --_

|I 

S

Because p is an unstable fixed point, any point p' eventually moves away from

I p as f is iterated, even though f(p) = p. For example, in Fig. 1, initial conditions

slightly to the right of the curve labeled S move toward p for a few iterates, then

are repelled to the right thereafter, eventually approaching the curve U. Initial

conditions slightly to the left of S wili move close to p, then off to the left. The

cirve S is the stable manifold of p: it is the set of initial conditions which are

attracted to p. The cure U is the unstable manifold. If f is invertible then U is the

stable manifold of p for the inverse map f-1. More generally, U is the set of points

whose preimages tend to p.
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I
In many cases, the stable and unstable manifolds wind around in complicated

ways. Because the manifolds arc intertwined so closely, initial conditions can ap-

proach and be repelled from the saddle point repeatedly, leading to complex behav-

ior. Stable manifolds of fixed points often form part of the boundary between two

basins of attraction. In this case, the structure of the stable manifold determines

how sensitive the system is to small errors in measuring an initial condition. In

addition, it is often important to know whether the stable and unstable manifolds

cross at a point other than the saddle point p. Such homoclinic intersections are

often of interest, especially in cases where the map depends on a parameter. Hence,

I a knowledge of the structure of the stable and unstable manifolds is essential to un-

derstanding the dynamics. We have developed efficient, reliable numerical methods

5 to calculbie them.
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I A novel method is desLnbed for noist. rcduttion II Laotii, experimental data %.hoe dnami.s arc low dimensional In
ad lition. we show how the approaLh allow,. cpenmentalists to use n n of tle same tethniqucs that hae been essential for
the analysis of nonlinear systems of ordinary differential equations and difference equations.

I. Introduction Until recently, experimentalists have not been
able to apply most of these methods to the analy-

Numerical computation and computer graphics sis of experimental data, since they do not in
have been essential tools for investigating the be- genetal have explicit equations to model the be-
havior of nonlinear maps and differential equa- havior of thei: apparatus. In ,ases where it is
tions. The pioneering work of Lorenz 1251 was possible to lind accurate models of the ph)sical
made possible by numencal integration on a com- system, quantitative predictions about the behav-
puter, allowing him to take nearby pairs of initial tor of actual experiments are possible 117]. How-
conditions ankd compare the trajectories. H16non ever, all that is available in a typicl experiment is
1191 discovered ,he complex dynamics of his cele- the time-dependent output (e.g. voltage) from one
brated quadratic map with the aid of a pro- or more probes, which is a function of the dynam-
grammable calculator. A variety of classical and ics.
modern techniques has been exploited to find pert- One fundamental problem in the analysis of
odic orbits, their stable and unstable manifolds experimental data concerns the correspondence
[141, basins of attraction [26], fractal dimension between the dynamics that goerns the behavior
[27], and Lyapunov exponents [10, 31. 37]. In of the apparatus and the discretely sampled time
some cases, numerical methods can establish rig- series that Limprises the data. Another question is
orou ly the existence of initial conditions whose how to unimize the effect of noise. In this paper,
trajectories have essentially the same intricate we show how the time dely embedding method,
structure that one sees on a computer screen [18]. row commonly used to reconstruct an attractor

from experimental data, yields a novel procedure
'Curient address Department of Mathematics, Anzona State for reducing noise in data whose dynamcs can be

University. Tmpe, AZ 85287, USA characterized as low dimensional. Moreover, we

0167-2789/90/$03 50 Elsevier Science Publishers B V
(North-Holland)
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show how the approach can be extended to allow measurementsL In the embedding method. one l
experimentalists access to many of the analytical generates a set of mdimensional points ow I
tools mentioned above, coordinates are vralucs in the time series separated

Section 2 reviews the time delay embedding by a conswant delay [I . For example. wlen m =3.I
method and some of its applications. Section 3 the reconstructed attractor is the set of points I
introduces some of the problems associated with I x,= ;.. s,.,s..j) where ir is the time delay.
traditional filters and outlines our noise reduction Takens [341 has shown that under suitable hv-
method. poheses. hs procedure yields a set whose prop- I

erties are equivalent to those of the original
attractor provided that the embedding dimension

2. The time delayv es merln i is large enough.

In principle, the embedding method allows one

As stated in section 1. one problem in analyzing to study the dvnamics i detail The earliest appli-

experimental data is how to relate the measure- cations may be called staic in that the analsis

ments with the dynamics. Before the early 1980s. focuses on the geome:ric properties of the set of

power spectra were the principal method for ana- points on the reconstructed attractor, For exam-

lyz:ng such data. For instance. Fenstermacher pie. phase portraits and Poincari sections are used

et al. 1131 relied heavily on power spectra to detect in ref. 151 to help determine the transition between

transitions from periodic to weakly turbulent flow quasiperiodic and chaotic flow in a Couette-

between concentric rotating cylinders. However. Taylor experiment. Another important application

Fourier analysis alone is inadequate for describing is the estimation of attractor dimension from

the dynamics. experimental data. for which tte:e i% a largx litera-

Other methods also have been used to analvze ture [271. In addition, various .nfornmtion theo-

time series output from dynamical systems. Lorenz retic notions can be used to find good choices of

1251 used next amplitude maps to describe some embedding dimension and time delay 1151.
features of the dynamics; that is. he plotted -,-,. More recent applications of the embedding

against :,, where z, is the nth relative maximum method are quite different in nature and can be

of the third coordinate of the numerically calcu- called crnamic in that information about the dy-
lated solution. Such maps are often useful. not namics is stored in the compu;er for analysis.

only for investigating features of the Lorenz at- With each data vector x,, one stores the "next'"

tractor 1321, but also for instance in experiments vector, for example. x, s for some 8 > 0. This

on intermittency in oscillating chemical reactions makes it possible to compute a linear approxima-

1301. tion of the dynamics in a neighborhood of x,. I
In the past decade, the time delay embedding assuming that there is a low-dimensional dynami-

method has come into common use as a way of cal system underlying that data '2 . In particular. a
reconstructing an attractor from a time series of linear approximation provides an estimate of the Iexperimental data. In this approach, one supposes Jacobian of the map at x, 1111. Eckmann et al. [101thaerientaldata.In they i bhaio goned b s a use linear maps computed in this way to integratethat the d ynam ica l behavio r is govern ed b y a a s t o a i t o a q ai n n i d t e p s t v
solution traveling along an attractor" t (which is a set of variational equations and find the positive
not observable directly). However, one assumes
there is a smooth function that maps points on w macrial was irst presentd by D Rucik at a Nobel

the attractor to real numbers (the experimental smosi in 19D

Wolf ct al. [371 have proposed a diffcrcnt me'hod in which='Existing numerical methods requirc the attractor to be low nearb' pairs of points arc followed to cstimatc the largest

dimensional Lyapunov cxponent
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In fact. the time delay embedding method pro- new time series with some of the high-frequency
%ides a powerful set of tools for anahag the components removed. This is the basic idea be-
dynamics the breadth of which may not have hind Wee and other bandpass filters 1291
been realized by Eckmann and Rudle. In the However. as noted previously, power spectral
remainder of this paper. we dicus two novel analyss insufficient to characte.re the dynam-
applications that are possiW specifically: ics when the data are chaotic. Since the power:3
(1) Noise edtm. Sim one can ap at spectrum of a low-dimensional chaotic signal re-

sembles that of a noisy one, the suppression of
the dynamics at each point it becomes ossible certain frequencies can alter the dynamics of the
identify and correct inaccuracies in trajectories
arising from random errors in the oinal e have shown
series. Numerical evidence rigna th ie that a simple low-pass filter effectively introduces

reduction procedure described below improves the an extra Lyapunov exponent that depends on the
yof other analyses such as Lyapnov cutoff frequency. If the cutoff frequency is sufli-

accuracpofone an lyse s. ucat s , ciently low. then the filter can increase the fractal
exponents and dimension calculaaons. dimension of the reconstructed attractor. This re-

(2) Simplicial approximaions. Linear approxi- sut also has been confirmed by Mitschke et al.
mations can be computed at each point on a grid suit als o an coni c cyrit .
in a neighborb~od of the attractor 'o form a 1281 with data from an electronic circuit.in aneihbor~odof te atracor o fom a We now consider a different approach and show
simplicial approximation of the dynamical system. Wow cosidera differ et can so
This can be used to locate unstable periodic orbits exploited to reduce the noise, at least in cases

where the time series can be viewed as a dynami-

We consider noise reduction in section 3. cal system with a low-dimensional attractor. Our

objective is to use the dynamics to detect and
correct errors in trajectories that result from noise.

3. Noise reduction This is done in two steps once an embedding

dimension m and a time delay T have been fixed.
The ability to extract information from time- In the first step. we consider the motion of an

varying signals is limited by the presence of noise, ensemble of points in a small neighborhood of
Recent experiments to study the transition to tur- each point on the attractor in order to compute a

bulence in systems far from equilibrium, like those linear approximation of the dynamics there. In the
by Fenstermacher et al. [131, Behringer and Ahlers second step, we use these approximations to con-

[21, and Libchaber et al. [241, succeeded largely sider how well an individual trajectory obeys them.
because of instrumentation that enabled them to That is, we ask how the observed trajectory can be
quantify and reduce the noise. However, it is often perturbed slightly to yield a new trajectory that
expensive and time consuming to redesign experi- satisfies the linear maps better. The trajectory
mental apparatus to improve the signal to noise adjustment is done in such a way that a new time
ratio. series is output whose dynamics are more consis-

An important question, therefore, is how the tent with those on the phase space attractor,
experimental data can be filtered or otherwise This approach is fundamentally different from
preprocessed before it is analyzed further. One traditional noise reduction methods. Because we
common approach is to use Fourier analysis: one consider the motion of points on a phase space

might model the noise as a collection of high- attractor, we are using information in the original
frequency components and subtract them from a signal that is not localized in a time or frequency
power spectrum (or Fourier transform) of the in- domain. Points that are close in phase space corre-
put data. The transform can be inverted to yield a spond to data that in general are widely and

I
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irregularly spaced in tme .due to de se ti ve-- ::dependeuc on initial conditions on chaotic at- I
tractors. In contrast. Kalman 14 and similar filters
examine data that are closely spaced in time:
bandpass filters operate in the frequency domain.I

Fig. 1. Schematic diagram for the first stage of the noise
reduction method. A collection of points in an c-ball about the
reference point xf is used to find a linear approximation of

4. Edmann-Ruele linearkiabo the dynamcs there. I
The discrete sampling of the original signal We mention three difficulties in computing the

means that the points on the reconstructed attrac- local linear approximations in the subsections be-

tor can be treated as iterates of a nonlinear map f low.

whose exact form is unknown. We assume that f 4.1. 111 conditioned least squares
is nearly linear in a small neighborhood of each
attractor point x and write There is a particular problem when one tries to

compute solutions to eq. (1) with a finite data set
f(x) = Ax + b =- L(.) of limited accuracy that has not been addressed in

previous papers [10, 311. Suppose for example that
for some m x m matrix A and m-vector b. (The all the points in a neighborhood of x,,f lie nearly
matrix A is the Jacobian of f at x.) along a single line. i.e., the attractor appears one

This approximation, which we call the Eck- dimensional within the available resolution. Al-
mann-Ruelle linearization at x. can be computed though it is possible to measure the expansion
with least-squares methods similar to those de- along the unstable manifold at xrf there are not
scribed in refs. [11, 101. Given a reference point enough points in other directions to measure the
Xrf, let (x, ),"- be a collection of the n points contraction. Hence it is not possible to compute a
which are closest to xre1. With each point x, we 2 x 2 Jacobian matrix accurately. Any attempt to
store the next point (i.e., the image of x,), denoted do so will result in an estimate of the Jacobian=4

y, , The kth row a k of A and the kth compo- whose elements have large relative errors. This
nent bk of b are given by the least-squares solu- kind of least-squares problem is il conditioned.
tion of the equation The ill conditioning can be avoided by changing

coordinates so that the first vector in the new basis

yA = bk + ak x, (1) points in the unstable direction 6 . A one-dimen-
sional approximation of the dynamics is com-

where Yk is the k th component of y and the dot puted using the new coordinates; that is, we

denotes the dot product. Fig. I illustrates the approximate the dynamics only along the unstable

idea'. manifold. We recover the matrix A by changing
coordinates back to the original basis.

"The points x, are points on the attractor which are not For example, if we are working in the plane and
consecutive in time. The subscnpt i merely enumerates all the the unstable direction is the line y = x, then we
points on the attractor contained witun a small distance (of rotate the coordinate axes by 45', The dynamics
Xrer. In this notation. x, and y, are consecutive in time.

*SFarmer and Sidorowich [12] observe that the Eckmann- are approximated by a one-dimensional linear map
Ruelle bineanzation can be used for prediction Given a refer-
ence point x,, find the Eckmann-Ruelle hneanzation A,x + b,, 6This is done by computing the right singular vectors (9) of
compute x,, I = A,x, + b,, and repeat the process to get the the n x m matrix whose jth row is x, The procedure is called
predicted trajectory principal component analysis in the statistical hterature.

I
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computed along the line Y = x. Then we rotate in the same box number. The search is extended if
back to the original coordinates. (The resulting necessary to adjacent boxes.
matrix A has rank 1 in this example.) This ap- Only a crude partition is needed for this algo-
proach substantially enhances the robustness of rithm to work efficiently (typically we choose B =
the numerical procedure. 40), and the grid4 is extended only to the first three

coordinate axes. *"hen the embedding dimension

4.2. Finding nearest neighbors is larger than three, a preliminary list of nearest
neighbors is obtained using only the first three

A second problem is finding an efficient way to coordinates of each attractor point. The final list is

locate all of the points closest to a given reference extracte by computi

point. The dynamical embedding method imposes each point in the preliunary list.
stringent requirements on any nearest-neighbor Although there are circumstances where this

strigen reuireent onanyalgorithm can perform poorly (e.g.. when most of
algorithm. The storage overhead for the corre- th can p o r e oo r te d in a ostndf

sponding data structures must be small, because the attractor points are concentrated i a handfulther ar ten ofthouand of ttrctorpoits, of boxes), the distribution of points on typicalth e re a re te n s o f th o u sa n d s o f a ttra c to r p o in ts. t r c o s i s u f i e ly n f r m h a t e r n i g
The algorithm must be fast, since there is one attractors is sufficiently uniform that the running
nearest-neighbor problem for each linear map to time is very fast. Memory use is also efficient: abe computed, set of N attracto. points requires 3N storage loca-We solve this problem by partitioning the phase tions. In contrast, the tree-search algorithm ad-space into a grid of boxes that is parallel to the vocated in ref. [12] requires several times morecoordinate axes. Each coordinate axis is divided storage (although the lookup time is probablyinto B intervals. (Fig. 2 illustrates the grid in two slightly less). Because N = 10 in typical applica-

dimensions.) Each point on the attractor is as- tions, we believe that the box-grid approach (ordimesios.) achpoit ontheattacto isas- some variant) is the most practical. A survey of
signed a box number according to its cotrdinates. ome varaniheos al . A svey of
For example, a point on the plane whose first other nearest-neighbor algorithms is given in ref.

coordinate falls in the jth interval (counting from [3].
0) along the x axis and whose second coordinate

falls in the k th interval along the y axis is as-I ~ signed to box number kB +j. The list of boxsignd t boxnumer B +j Th lis otbox There is a potential difficulty in the use ofnumbers is sorted, carrying along a pointer to the Tria etial dicuty the se of

original data point. Given a reference point xrf,  ordinary least squares to compute the linear maps.
its box number is found using the above formula. In the usual statitical problem of fitting a straight
A binary search in the list of box numbers then line, one has observations (x,, I where x, is

locates the address of xmf and all the other points known exactly and y', is measured. One assumes
that y, = ao + a~x, + c,, w'ere the (, are indepen-
dent errors drawn from the same normal distri-BI +21B

- _B B - 
_B+ _ B-_B+2 B1-_1 bution. (Analogous assumptions hold in the

multivariate case.) In the present situation, how-
SBIever, both x, and v, are measured with error. ItJ+ + 2B -1

B. -1 can be shown that the ordinary least-squares
0 1 __. B- method produces biased estimates of the parame-

ters a0 and a, in this case [16, 23]. In practice this
Fig. 2. Box numbenng scheme in two dimensions. The attrac- does not seem to be a serious problem, but statis-
tor is normalized to fit in the unit square. The bottom row of
boxes rests against the x axis and the leftmost row of boxes tical procedures to handle this situation (the so-
against the Y axis. called "errors in variables" methods) may provide
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-The trajectory adjustment can be iterated. That
is, once a new trajectory .1, has been found, one
can replace each x, in eq. (2) by ., and compute a

Fig. 3. Schematic diagram of the trajectory adjustment proce- new sequence { .}.
dure. The trajectory defined by the Fquence (x, ) is perturbed
to a new trajectory given by { i, ) which is more consistent with We place an upper limit on the distance a point
the dynamics. In this example we show what the perturbed can move. Points which seem to require especially
trajectory might look like J the dynanucs were approximately large adjustments can be flagged and output un-
honzontal translation to the nght. changed. (This may be necessary if the input time

series contains large "glitches" or if nonhnearities
an alternative approach to noise reduction. We are significant over small distances in certain re-
consider this question in the appendix. gions of the attractor.)

When the input is a time series, we modify the
above procedure slightly since we require a time

5. Trajectory adjustment by rnnimizing series as output. The trajectory adjustment is done

self-inconsistency so that changes to the coordinates of x, (corre-
sponding to particular time series values) are made

The Eckmann-Ruelle linearization procediire consistently for all subsequent points whose co-

described above is computed and the resulting ordinates are the same time series values. For

maps are stored for a sequence of reference points example, suppose the time delay is I and the

along a given trajectory (for the results quoted embedding dimension is 2. Then trajectories are

here, the sequence usually contains 24 points). We perturbed so that the second coordinate of the ith

now consider how to perturb this trajectory so point is the same as the first coordinate of the

that it is more consistent with the dynamics. The (i + l)st point. That is, when x, = (s, s,+1) is

objc:tive is to choose a new sequence of points 1, moved to the point 1, = ( ,, , + 1), we require that

to minimize the sum of squares the first coordinate of 1  be ,

EW1l-,- X'11" 6. Results using experimental data

11 L, 1  +Ii, +I L, (I)11, (2) We note that the attractor need not be chaotic

where L(x,) =A~x, + b, w is a weighting factor, for this noise reduction procedure to be effective.

and the sum runs over all the points along the Fig. 4a shows a phase portrait of noisy measure-

trajectory 17 . Eq. (2) can be slved using least ments of wavy vortex flow in a Couette-Taylor

squares, Heuristically, eq. (2) measures the self- experiment (20]. This flow is periodic, so the at-

inconsistency of the data, assuming that the linear tractor is a limit cycle (widened into a band be-

approximations of the dynamics are accurate. See cause of the noise) and the power spectrum
.3. We say the new sequence (x,) is more consists of one fundamental frequency and its

self-consistent harmonics above a noise floor. See fig. 4b. Figs.
4c, 4d show the same data after noise reduction.

*7 The noise reduction procedure makes the limit
#7 In the results descnbed in this paper, the Eckmann-Ruelle cycle much narrower, and the noise floor in the

l;:.earization procedure is done using a collection of points

within a radius of 1-6% of each :,erence point, depending on power spectrum is reduced by almost two orders
the embedding dimension, the dimension of the attractor, and of magnitude. However, no power is subtracted
the num ber of attractor points. This results in collections of from any of the fundamental frequencies, and in
50-200 pcnts per ball, which gives reasonably accurate map
approxima,tions without making the computer program too fact some harmonics are revealed which previously
slow. The weighting factor w is set to 1. were obscured by the noise.
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Fig 4 Phase portraits and power spectra for measurements of wavy vortex flow in a Couette-Taylor experiment. (a). (b Phase
portrait and power spectrum before noise reduction is apphed (c). (d) after noise reduction: (e), (f) after a low.pass hilter is applied
to the onginal data The vertical axis in (b), (d) and (f) is the base-lO logarithm of the power spectral density, the honzontal axis is in
multiples of the Nyqist frequency.I

These results are significantly different from effective than low-pass filtering since the noise
those obtained by low-pass filtering. Figs. 4e, 4f appears to have a broad spectrum.
show the phase portrait and power spectrum when However, the dynamical noise reduction method
the original data are passed through a 12th-order appears to subtract power from a mode whose
Butterworth filter with a cutoff frequency of 0.35. fundamental frequency is approximately 0.3 times
The dynamical noise reduction procedure is more the Nyquist frequency. We do not know exactly

!
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Fig 5 Phase portraits and power spectra for measurements of weakly chaotic flow in a Couette-Taylor experiment (a). (b) Phase

portrait and power ,pectrum before noise reduction is applied. (c), (d) after noise reduction The units for the power ,pectrum plot,

are the same as those in ref. (51

why this occurs. However, this peak corresponds example, the noise reduction procedure reveals the
to the iotation frequency of the inner cylinder and limit cycle behavior quite well".
may result from a defect in the Couette-Taylor The results obtained by applying the method to
apparatus [331. We do not consider this to be a chaotic data from the Couette-Taylor fluid flow
serious problem. because the power associated with experiment described in ref. [5] are shown in fig. 5.
this mode is several orders of magnitude smaller Fig. 5a shows a two-dimensional phase portrait of
than that of the wavy vortex flow. the raw time series at a Reynolds number R/Rc =

We emphasize that our objective is to find a 12.9, which corresponds to weakly chaotic flow [5].
simple dynamical system that is consistent with The corresponding phase portrait from the filtered
the data. It is possible for this method to elimnnate time series is shown in fig. 5b. Figs. 5c, 5d show

certain dynamical behavior from an attractor if
those dynamics have very small amplitude, as fig. 5sWe have not attempted to find the smallest amplitude at
4f shows. This situation is most likely to arise which the noise reduction procedure can disunguish quasipen-

when there are not enough data to distinguish odic from penodic flow In general this will depend on the
amount of data. the sampling rate. the embedding dimension,

such dynamics from random noise. In the present and other factors.
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the power spectra for the coresponding time stored, and a time series is generated by adding a
series" 9 . uniformly distributed random number to each it-

It is difficult to estimate how much aoise is erate. This simulates a time series with measure-
removed from the data in this example on the ment noise, i.e., a time series where noise results
basis of power spectra. One problem is that the from errors in measuring the signal, not from
transition from quasiperiodic to weakly chaotic perturbations of the dynamics.
fluid flow is marked by a sudden rise in the noise We measure the improvement in the signal after
floor in the power spectrum (cf. fig. 3 in ref. [5]). processing by considering the pointwise error
Hence one carnot determine how much of the
noise floor is c.ue to deterministic chaos and how e, = x,,+i -f(x,, x,)II,
much results from broad-band noise. The noise
reduction procedure described here has the effect i.e., the distance between the observed image and
of reducing the power in the high-frequency com- the predicted one. Let the mean error be

ponents of the signal. One question therefore is 1/2
whether reducing the high-frequency noise corre- E t'

sponds to discovering the true dynamics which k =- ,
have been masked by noise. We believe that the
answer is yes, based on those cises where there is the rmis value of the pointwise error over all A'
an underlying low-dimensional dynamical system. points on the attractor. We define the noise reduc-
However, in chaotic processes some high-frequency tion as
components remain, because they are appropriate
to the dynamics. R = I - Ef.,ied/Enomv,

where the mean errors are computed for the ad-

7. Numerical experiments on noise reduction justed and original noisy time series, respectively.
The quantity R is a measure of the self-con-

One important question is how much noise this sistency of the time series. (In other words. R
method removes from the data. The power spectra measures how much better on the average the
above suggest that the method eliminates most of output attractor obeys eq. (3) as one hops from
the noise, but it is impossible to give a precise point to point.)
estimate for typical chaotic experimental data. When 1% noise is added to the input as de-

However, the H~non map [191 provides a conve- scribed above, the noise reduction (measured with
nient way to quantify the noise reduction, because the actual map) is 79%Io. Nearly identical res,,ts
it can be written as a tinie delay map of the form are obtained when the input contains only 0.1%

noise. In addition, noise levels can be reduced

x,+ I =(x,, x, 1) = 1 - ax" + 1x,_ . (3) almost as much in cases where the noise is added
to the dynamics. i.e., where the input is of the

We use eq. (3) to generate a time series as follows form {x,.: x,. =f(x, + 71, ,X,_ + 7). ,
(with the standard parameter values a = 1.4, /f = q,-I random). When the program is run on noise-
0.3). We choose an initial condition and discard less input, the mean error in the output is 0.025%

the first 100 iterates. The next 32768 iterates are of the attractor extent, which suggests that errors

*9The time senes consists of 32 768 values, from which an
attractor is reconstructed in four dimensions Linear maps are Ut°The pointwise error is measured using eq (3) However.
computed using 50-100 points in each ball Trajectones are the attractor can be embedded in more than two dimensions
fitted using sequences of 24 points, when performing the noise reduction
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arising from small nonlinearities are negligible methods that previously were available only to
when the input contains enough points. theorists:-" .

We illustrate the approach using a time series of
32768 values from the Hnon map with a = 1.2,

8. Simplicial approximations of dyaamical systems /f = 0.3 uing eq. (3) and adding 0.1% noise as
described above. The original attractor is shown in

Recent work has shown that simplicial approxi- fig. 6a. We take a grid of points wbhch aie spaced
mations of dynamical systems can reproduce the at 1% intervals (,his and subsequent distances are
behavior of the original system to high accuracy expressed as a fraction of the original attractor
1361. (See also ref. [351 for a bilineat approach.) In extent). The trne series is embedded in two di-
particular. the fractal structure of the original mensions. and a linear approximation of the dy-
attractors and basin boundaries is preserved over mimics is computed at each grid point for which
many scales. Such approximations can yield sig- 50 or more attractor points can be collected with a
nificant computational savings, especially when ball of radius 0.03, the set of such grid points is
the original system consists of ordinary differential shown in fig. 6b. We take an initial condition near
equations. the original attractor and show the first 3000 iter-

This approach can be extended in a natural way ates using eq., (4) in fig. 6c. Although some defects
to generate simplicial app .)ximations of the dy- are visible, the attractor produced by the approxi-
namics on attractors reconstructed from experi- mate dynamical system looks almost identical to
mental data. Our objective here is to find an the original one.
approximate dynamical system in a neighborhood One application of simplicial approximations is
of the attractor as follows, the location of periodic saddles and the estimation

A simplex in an m-dimensional space is a trian- of the largest eigenvalue of the corresponding
gle with #n + I vertices. Suppose the map is known Jacobian. That is. if x is a periodic point of period
at each point on a grid. Then there is a unique p, then we find the eigenvalue of DJ P(x) of
way to extend the map linearly to the interior of largest modulus, where Df'( v) refers to the ma-
the simplex S whose vertices are grid points. irix of partial derivatives of the pth iterate of the
Given a point P ia the interior of S. let { b, )'. map f evaluated at x.
be its corresponding barvcentric coordinates (see Given an initial guess for x. one can apply
ref. [36] for an algorithm to compute them). Let Newton's method using the maps computed at the
1(vo) be the mar at the ith vertex. The dynamical grid points and eq. (4) to locate the saddle using
system at P i. rated by compi,in.g the simplicial approximations. Likewise. eq. (3)

can be used to locate the corresponding "exact"

,_. b,f(v. (4) saddle. Saddle orbits up to period 8 have been
-0 computed in this way. In all cases. the saddle

point for the simplicial approximation is within
We apply this method to experimenal data by 2% of the corresponding saddle point for the

fin ling a linear approximation of the dynarrac , at H~non map. Table I shows the largest eigenvalues
each vertex v, with the least-squares method de- of the saddle orbits. (The columns labeled mi = 2
sc" -d above, .sing a collection of points in a and m = 3 refer to the embedding dimension used
si At ball around v,. The maps are stored and to reconstruct the attractor.) In most cases, the
retrieved using a hashing algorithm similar to that
described in ref. 136]. This yields a piecewise linear =lus approach is less ambitious than that of Crutchfield
approximation of the dynamics from a set of 181, who attempts to find a single set of nonlinear difference

experimental data which can be analyzed with the equations that creates the observed attractor
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Fig. 6. .i) H~non attractor computed from eq. t3) with a ,, I 2.

-- ft -0 3 (b) 1% grid on which hinear approximations of the

dynamics are computed from the available attractor points. (c)
.... .. Attractor produced by the bimphcial approximations

relative error is only a few percent, and in no case described in section 4.) The current computer im-
exceeds 25%. (The largest relative error is for the plementation uses a large amount of disk space to
period 8 saddles, where one finds the eigenvalue of store the linear map approximations at the grid
the product of 8 Jacobians computed from the points.
lea5 squares.) We have constructed a simplicial approximation

"his meth,>d can be exten&d to experimental for an attractor obtained from a Belousov-
d it, sets. However, there are relatively stringent Zhabotinskii chemical reaction [7, 301. The attrac-

,m.. irernmts on the data that can be handled: the tor is reconstructed in three dimensions from a set
time se, es must be long erl,)ugh to trace out many of 32 768 measurements of bromide ion concentra-
trajeclories near the principal unstable saddle or- tion. The phase portrait is shown in fig. 7a.

bits, and the noise Ivel must be low. (Presumably, Linear approximations of the dynamics are
, .isy data can be preprocessed using the approach computed at each point of a grid consisting of 50

i.

Ur_
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Table I the attractor. Using initial guesses from some of
The largest eigenvalues of the Jacobian of the periodic orbits the trajectories, we apply Newton's method to
located using the simphcial approximalicri of the Hinon
attractor, locate the saddle orbit shown in fig. 7b. Moreover,

we obtain estimates of the Jacobian Df of the map
Period m-2 Exact m-3 evaluated at a point on the saddle orbit. The

1 1.793 1.695 1.757 eigenvalues of Df are estimated as X, - 1.14.
2 2.178 2.199 2.183 X 2 - 0.102, and X 3 = - 1.53. These quantitative
4 4.226 4.329 4051 results confirm that the orbit is a saddle since X, >

6 10.38 10.70 9.626 0 > X 3 (Note that one expects X 0 for a flow
6 10.38 11.32 1212
8 25.80 24.88 30.25 generated from a set of diffetential equations.)
9 20.02 20.60 20.38
8 17.70 24,32 21.70

9. Conclusion

intervals along each coordinate axis for which 50 Methods for approximating the dynamics of
or more attractor points can be located within an8% rdiu of he rid oin. Ths poducs a attractors reconstructed from experimental data
8% radius of the grid point. This produces a provide powerful tools. Most of the same proce.
database of 59 550 maps. We observe from graphi, dures that have been so important for theoretical
cal evidence that many traje. tories approach what insight. such as Poincari maps. unstable fixed
appears to be a period-3 saddle in the middle of points and their manifolds, basin boundarics, and

the like, are now available to experimenters. at
least in cases where the dynamics are low dimen-
sional. There is little doubt that these tools will
lead to breakthroughs in the understanding of a
wide variety of physical systems. However. consid-
erable effort is needed before we learn which kinds
of systems will benefit most from these types of
analyses. Significant improvements in technique
will certainly extend the applicability of dynami-
cal embedding methods, for example to higher-
dimensional attractors.

7- .i In this appendix we outline a possible alterna-

tive noise reduction method based on the theory

jI z //' of least squares when all the quantities in the
// , ',regression are measured with error.

In ordinary least squares, the variables in the

/ I problem fall into two classes: the independent
i variables, which are known exactly, and the de-

pendent variables, which are observations assumed
to be functions of the independent variables. The
dependent variables are subject to random errors

Fig 7. (a) The attractor reconstructed from a time series of th t areasu ed inependent and enil s

bromide ion concentrauoas in a Belousov-Zhabounskil chemi- that are assumed independent and identically dis-
cal reacuon. (b) The penod-3 saddle orbit tributed (i.i.d.).



I

EJ.' AKoteIch and J.A. Yorkel Noe, reduction 195

On an attractor reconstructed from experimen- b). together with perturbations 6. such that
tal data. we assaime that the mapping which takes f,(x, + ,) . (x,,, + 0Od,) - L(x, + 0) - 0
points in a sufficiently small '- 'I to their images is
approximately linear. Howevt,. the locations of all and such that the quadratic form
the points are subject to small random errors so- tv-10 (6)
because of the noise. Hence one cannot describe
the points as independent variables and their im- is minimized. The superscript t denotes transpose
ages as dependent variables. The usual least- and a is the covariance matrix of the observations
squares method produces a biased estimate of the (which we assume is the identity matrix here).
linear map, and this bias does not decrease if more This minimization problem can be solved using
observations are added [16. 231. Lagrange multipliers (see refs. (21, 221 for a nu-

The so-called "errors in variables" least-squares merical algorithm). The solution gives A and b
methods can be used to handle the latter problem, together with estimates x, -t- 0, of the "true" ob-
This approach can be used to obtain both an servations. It can be shown 1161 under fairly mild
estimate of the linear map as well as estimates of hypotheses that the estimates of L and the obser.
the "true" values of each of the observations. vations are the best in the class of linear estima-

At first this appears to be an underdetermined tors.
problem: from n pairs of observmptions one wants One way to approach noise reduction is to
to compute the parameters of the functional rela- extend eq. (5) to include several iterations of the
tion between them as well as estimates of the n observed points. Given a collection of points in a
actual pairs " -. However, it is possible to solve ball, together with the next p iterates of each
this problem by making some assumptions about point, the method above is used to find a collec-
the errors [16, 231, tion of linear maps Lt . L ...... L. approximating

In our case, we assume that the errors in the the dynamics. The method also finds estimates
location of each point and its image are i.i.d. In of the actual observations. In this approach.
particular, we let the covanance matrix of the therefore, the calculation of the maps and theerrors in the variables be the identity matrix. This adjustment of the trajectones is done in one step.

assumption is valid whenever the noise is indepen- Moreover, each point and its image exactly satisfy
dent of the dynamics, 13. a linear relationship.

We illustrate the procedure for the case where Of course, p cannot be too large, because
we are given a collection of n points (in R") and nonlinear effects eventually will become significant
their images. Following Jefferys (211. we form a set when the dynamics are chaotic. On the other
of n equations of condition given by hand. eq. (5) provides a natural way to include

quadratic or other nonlinear terms.
/,(x,) = x,,., - Ax, - b, m x,+, - L(x,), (5) We have written a computer program to imple-,

ment this alternative noise reduction algorithm. So"
where x, is the ith point, x,,, is its observed far, the results of this approach have not been as
image, A4 is an m X m matrix, and b is an m-vec- good as those from the method described in the
tor. The goal is to find estimates of L (i.e.. A and main part of the paper, but further refinement

should improve them.

" In the statistical hterature. the problem is said to be
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ANTIMIONOTONICITY: CONCURRENT CREATION
AND ANNIHILATION OF PERIODIC ORBITS

1. KLAN AND 3. A. YORKE

-kBSTRACT. One-parameter families , of diffeoimorphisms of
the Euclidean plane are known to have a complicated bifur-I cation pattern as ;. %'aries near certain values. namely w here
homochnic tangencies are created. We argue that the bifurca-
tion pattern is much more irregular than previously reported.I Our results contrast with the monotonicity result for the well-
understood one-dimensional family g (.r = ;x( I - t u where
it is known that periodic orbits are created and never annihi-
lated as A. increases. We show that this monotonicitv in the
creation ol periodic orbits never occurs tor any one-parameier
tamilv of' C; area coniracting ditfeiorphisms of the Euclid-
ean plane. excluding certain technical degenerate cases whereI our analysis breaks down. It has been shown that in each
neighborhood of a parameter value at which a homoclinic tan-
gency occurs. there are either infinitely many parameter valuesI at which periodic orbits are created or infinitely many at which
periodic orbits are annihilated. We %how that there are both
infnitelv many values at which periodic orbits are created and
tnfiniteiv many -it which periodic orbits are anniilated. We

call this'phenomenon antimonotoniwuv.

U 1. INTRODUCTION
The orbit of point v under a ditfeomorphism of the plane fis

the sequence {f(x)}. where for k > 0. J de.,iotes the k-fold
composition of f'. J- k denotes the k-fold composition of Cf1
and I' is the identity map. Let p be a periodic point with period
n.- The stable manifold IW(p) of the point p is the set {xr

lim~ -0 0c) = p} . Similarly, the unstable manifold 11""p) of'
PIs J.( lim~ , -0 p} We assume that p Is a hyperbolic

saddle. that is. the eigenvalues e, . e, otf Df"(p) are such that
le Ie1 < I < le, I. Since f is a diffeomrorphism of the plane, both
W'(p) and W"(p) are curves. There exists a homoclinic tangency

I Received by the editors November 2. 1988 and. in revised form. May 1,. 1989.
1980,tMathemancs S~ubject C'lassification t 1985 Revision;i. Primary 54035,581F713.
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of p at q if iV' pj and IW'p, intersect tangentially at q. The
homoclinic tangency of p at q for a one-parameter family j
at ,.= .. o is called nondegenerate if IV(p and IVO(pj have
quadratic contact at q and IV (p) has nonzero velocity transverse
to W" (p) at q as ,. varies [R]. Any value 4, at which this occurs
is called a nondegenerate tangency value.

A one-parameter family of maps g, is called monotone increas-
ing (decreasing) on an interval J of parameter values if there are
no bifurcations for . E J in which periodic orbits are annihilated
as ,. increases (decreases. respectively). We say f is antimono-
tone at ;0 if periodic orbits are both created and annihilated as ,.
increases in each neighborhood of the parameter value ,-,

The only smooth family for which monotonicity has been
proved is the quadratic family , x,- = ,vi I - i t Douadv. Hub-
bard. Milnor. Thurston. Sullivan. see jMT]. By contrast we have
the following theorem.

Antimonotonicity Thf rem. Each dissipatve ( 3 planar diffeomor-
phism .izmdv is antinonotone at each nondegenerate honocliw
tangency value.

Note that this result says nothing about what happens near de-
generate homoclinic tangency values, but we believe this situation
is essentially the same as for the nondegenerate case.

We sketch the proof for a model case. A paper detailing the
proof of the general result is in preparation. If two curves are
tangent at . = 4 and move apart. so that they do not intersect as
A increases (decreases) beyond .,. then we say contact is broken
at 4,) %contact is made at 4-. respectively). and we say ., is a
contact-breaking value lcontact-making value, respectively).

Bubble Lemma. If 4. is a nondegenerate tangencv value at which
contact is made, then there are nondegenerate tangenci' values ar-
bitrarilv close to ,, at which contact is broken (and vice versa).

The theorem follows immediately from the Bubble Lemma be-
cause in each neighborhood of a contact-making nondegenerate
tangency value, infinitely many periodic orbits are created (and
near contact-breaking ones, infinitely many are annihilated) [N.
GS]. Thus, in each neighborhood of a nondegenerate tangency, or-
bits are both created and annihilated, as is illustrated in Figure 1
for the example of the Henon family.
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I II. PRELIMINARIES
For each Cantor set C,: R Newhouse INJ defines a number in

[0. c, called the thickness -',C, associated with C. \ "rmiddle-
0" Cantor set C, = I \ G., is constructed inductively as follows:
I = [0. I1 and I,.0 and I, , are the left and right component
of 1, G, . respectively. where '', is an open interval of length

.111 in the middle of I . The thickness of C,, is i I - 01)120.
Newhouse proves the following lemma.

Thickness Lemma. Let F and H be (antor sets in R. with If
hull(F) and hull(H) r F toth nonemptv, and r H). r F) I
Then H n F is nonempty.

A Newhouse horseshoe famdy N;. is defined as follows. (See
Figure 2 on page 472 for symbols. coordinates, and the role of
the constants. and see Figure 3 on page 472 for the first iterateI
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FIGURE 2, COORDINATES FOR .

II

N(A) N(B)

N(C) -- -----

0 ( X

FIGURE 3. FIRST ITERATE OF N,..

V). Define .V,(.. r = d,,. /Jr) for (X., V) C .1' (...) =
I /(I i-)) for .v V)E B *N'. ", ) = (". -. + '

-(j I 1/2) for (X.Y) E C: and continue N, smoothly to

the rest of R2
We choose ,t# < I so \N;. is dissipative (i.e. I det D(N .)I < IJ

throughout .4 u B, and we choose uk, /, -s S, such that N. is
one-to-one on .4 u B u C,. This implies P > 2. Let A denote the
maximal invariant subset of .4 u B; A is a Cantor set and is the
product A, ' A of two Cantor sets. A, is the projection of A
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onto the x-axis and A, onto the v-axis. We assume that a and

,8 are selected so that r(A) , r(A) = .11 - )-Q(l - 2a)- i > I.
A primary stable (unstable) segment is a line segment of the

form [0, I] x {y} where v E A., ({x} x [0. 1] where x E A,.
respectively). A primary unstable parabola is a parabolic arc of the
form N.(x. [/2- e. I/2 + el) where X E A,.

Newhouse and Robinson show in [N. R], that in effect, there
exist parameter values ,. near homoclinic tangencies where for a
proper choice of coordinates the map is similar to Figure 3. We
are assuming that the map changes in a regular way as /". varies.
thereby avoiding technical complications.

III. PROOF OF BUBBLE LEMMA

ASSUMING NEWHOUSE HORSESHOE FAMILIES OCCUR

Let 4"0 be a nondegenerate tangency value, which we assume to
be a contact-making tangency., We assume that on a small interval.
arbitrarily near ;.,, there is a Newhouse horseshoe family. We
rescale that small interval to be [0. 1]. The primary tangencies
(the tangencies of primary parabolas with primary stable segments)
are all conta making. We will show that arbitrarily near /. = 0.
there is a nondegenerate tangency which is contact-breaking and
is not primary.

Theparabolicarcofthe form (t.= l/2+t,/ "- -- t)-I -i ,_ / 1- I
for 0<,<(1-2//3) .It" <fi- -,. t.lies in a gap in the Cantor set of primary stable leaves as shown in

Figure 4.

I
I 4 A

FIGURE 4. THE ARC ,OIt. 5).
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Let "(cf) denote the set of parameters such that v't. :) lies
or a primary parabola. For each , the vertices of the primary
parabolas have y-coordinates at (-;. ,A, , so we see that F(¢) =
-ToAu - - f-'" and the thickness of "(%) is equal to rtAU). The
nth image of L'tm,) under N;. is

t' (t,,; -)= --

1/ +- I a--. - .-;' -,l/2+ti2-"

There is a c = ,, t = " at which the Y-coordinate has a sta-
tionary inflection point as shown in Figure 5b. and 1 and " sat-
isfy 46ffn-V 11-I - l- 1/2) = -31;',o'?-/3 -I :3 ' and =

Z, 3 '461"-1 . Notice

= I/2)( I - Zl / i- - 3  .'/ I

so for large n we have 0 < 7 < I - 2/p ''

Clatm. For fixed , < . with - sufficiently small, there ex-
ists a .E F( ) such that the nth iterate of the primary parabola
containing (t. ,) has a tangency with a primary stable segment.
This tangency is contact-breaking and is nondegenerate for .. .

The first part of this claim follows from the fact that the local
maximum v( , ;.) (see Figure 5a) of the Y-coordinate of
",,t.,. U. depends linearly on ;.. That is.

E o) - A; t

and so {y(4, ,.)iA E r( )} has thickness rA). By the Thick-
ness Lemma, there exists some A.E (n) such that vIs. A
Note that A is 00") . Since . is in Frl) , there is a primary
unstable parabola which contains v (t . so v,,It. 4,. , is con-
tained in the unstable manifold of A and is tangent to a pri-
mary stable segment of A. As ;. varies near 0. the position of
this primary unstable parabola is vtt, + A). Nondegeneracy and
contact-breaking can be verified by considering the .i-coordinate of
d(v,(t, +A ))/dA and noting that for sufficiently small - > 0
and large n this derivative is negative for t sufficiently close to
7.1

We have shown that there is a primary stable leaf S and a pri-
mary unstable parabola U so that the nth iterate of U has a
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infletioon/
I
I

FIGURE 5. THE INFLECTION VALUE Z.I
I _

I FIGURE 6. CONTACT-BREAKING TANGENCY (I AT a = A.

contact-breaking tangency with S (see Figure 0i. Since the sta-
ble and unstable manifold of the fixed point p at (0. 0) contain
curves arbitrarily close to S and U. respectively, we see that p
will have contact-breaking tangencies at parameter values arbitrar-
ily near .. Finally, for n large, this , is near 0.
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3 CHAOTIC SCATTERING IN SEVERAL DIMENSIONS
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For chaotic scattering in two-degree-of.freedom (N, 2). time-independent. Hamiltonian systems. scattenng functions (i.e..
plots of the dependence of a phase space variable alter scattering versus a phase space variable before scattering) typically display
singularities on a fractal set. For N> 2. however. sc3ttenng functions typically do not have fractal properties (even when the
chaotic invanant set is fractal), unless the fractal dimension of the chaotic set is large enough. A numerical investigation of this
phenomenon is presented for a scatterer consisting of four reflecting spheres at the vertices of a regular tetrahedron.I

Recentty, there nas been much interest in the phe- systems that these functions are typically singular on
nomenon of chaotic scattering (see reviews I I I) due a Cantor set of values of the variable characterizing
to its appearance in a variety of applications, in- the state before scattering, Here we consider whether
cluding fluid mechanics, celestial mechanics, and, this situation persists in systems with more than two

especially, molecular dynamics. In addition, the im- degrees of freedom. We find that the scattering func-
plications of classical chaotic scattering for the cor- tion does not typically display fractal properties in
responding quantum scattering problem is a subject N.degree-of-freedom chaotic scattering systems with
of active research (2]. Another line of study con- N> 2, unless the Hausdorff dimension D, of the frac-
cerns the question of how chaotic scattering comes tal chaotic invariant set exceeds a critical value. In
about and evolves as a system parameter is varied particular, if the Hamiltonian is time reversible, then
[ 3 1. In all of these past works, when specific systems fractal behavior of scattering functions can typically
or examples are investigated, they have almost al- be expected only if
ways been effectively Hamiltonians with two degrees
of freedom. Since many situations that will arise in Dc > 2N- 3. (I)
practice can be expc,.ted to involve Hamiltonians Since Dc is greater than or equal to one, eq. ( I ) is
with more than two degrees of freedoms, it is im- satisfied for two-degree-of-freedom chaotic scatter-
portant to see whether new phenomena, not present ing systems (N= 2). For N> 2, fractal behavior of
in two-degree-of-fr'±edom systems, can be antici- the scattering function is typically always absent even
pated in these situations, though the chaotic invariant set itself is fractal, pro-

In particular, let is consider plotting variables vided that I < <D2N- 3. (Because the chaotic set
characterizing the st ite of the system after scattering lies in the DE-dimensional energy surface
as a function of a single variable characterizing the (DE= 2N- I ), we always have D, < 2N- I.) Since
state of the system before scattering (with the other Dc depends on system parameters, one expects that
"before-scattering variables" held fixed). We call a qualitative change in the scattering function can be
such plots "scattering functions". It is a striking hall- observed as a parameter of the system is varied
mark of chaotic scattering in two-degree-of-freedom through the critical value at which Dc= 2N- 3. Eq.II (I) is derived below.

Also at Department of Physics. We consider N-degree-of-freedom, time-indepen-
2 Also at Department of Electrical Engineenng and Physics. dent, open Hamiltonian systems, such that the dy-

0375-9601/90/S 03.50 © Elsevier Science Publishers B.V. (North-Holland) 93
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namics is time reversible. That is, ifx=X(t),p=P(t) ative (i.e., D(S) <I since D.-2 and D(S2) =I),
are solutions of Hamilton's equations (where x and then the probability that the randomly chosen line
p are the N-dimensional configuration and momen- intersects the fractal set S, is zero. If the right hand
tum vectors), then x=X(-t), p=- P(-t) are also side of (4) is positive (i.e., D(S,)> I ), then there
solutions. The dynamics will be reversible if the is a positive probability that S, n S2 is not empty; and,
Hamiltonian is an even function of p. For example, furthermore, if S, r S2 is not empty, then D(St S2 )
H-- jp:+ V(x) (2) is given by (4) with probability one.• )We now apply (4) to the chaotic scattering situ-

Let D, and D, denote the dimensions of the stable ation. Since the intersection of the stable and un-
and unstable manifolds of the chaotic invariant set. stable manifolds is the chaotic set, we see that (3)
Due to the assumed time reversibility of the dynam- and (4) with D. = D,= 2N- I yield
ics. these dimensions must be equal, D, = N+ d, (5)
D, = D .. 3) with

(Non-time.reversible dynamics occurs, for example, d, = (D, - 1). (6)
when magnetic fields are present and leads to Ham-
iltonians which are not even functions of p. In these We now observe that the fractal set of singular values
cases, (3) need not hold.) for the scattering function corresponds' ints on

We shall be interested in "ie dimension of inter. the stable manifold of the chaotic s" .-he orbits
sections of sets lying in the energy surface. As'back- originating from such points asymptote to the cha-
ground. we note the following. Let S, and S, denote otic set. Orbits originating near these points will
two subsets of a D.-dimensional manifold, and let spend a long time "bouncing arouod" in the scat.
their dimensions be denoted D(S,) and D(S 2). If S, terer before leaving the scattering region. that is, they
and S2 are smooth surfaces, then generically stay close to the chaotic set for a long time and hence

D(SnS)= D(S,) + D(S)- D., (4) are sensitive to small perturbations of their initial
conditions. Let d, denote the fractal dimension of

if the right hand side is nonnegative and SjnS2 is the set of singular values of the variable in the scat.
not empty. If it is negative, then S, and S, do not tering function which characterizes the orbit before
have a generic intersection. For example, two one- scattering. Sweeping this single, before-scattering
dimensional lines in a three-dimensional space may variable corresponds to moving along a curve in the
intersect at a point, but .. iight perturbation of the Drimensional energy surface. Thus d, is the di-
position of the lines typically removes the intersec- mension of the intersection of the stable manifold of
tion. Thus the original intersection is not "generic". the chaotic set with a one-dimensional set, and (4)
We wish to apply (4) also to the case where S, is yields, d, = D,+ I -DE, or
fractal and D(S,) is its Hausdorff dimension with d, =d,+2-N, (7a)
noninteger value Si, For this purpose, we refer to the
theorems in ref. [ 4 . As an example of these results, di = ID, + 2 -N, (7b)
consider the case of a fractal set S, lying in a rec- where in (7b) we have used (6). (Note that (7a)
tangular region of a plane (D. = 2 ). Now randomly applies whether or not the Haniltonian is time re-choose a straight line S2 in the plane by first choosing versible, while (6) and hence (7b) require time re-
a point with uniform probability distribution in the versible dynamics.) If the right hand side of (7) is
rectangle and then placing the line through this point negative, then there is zero "probability" of inter-
at an angle chosen randomly with uniform proba- section, and we will typically never observe fractal
bility in [0, 2n]. If the left hand side of (4) is neg- properties of the scattering function. Requiring d, > 0
,I Formula (4) applies ifS1 is a Souslin set and S2 is a smooth in (7b) yields the previously stated condition for

surface. A Souslin set is the union of countable intersection of fractal behavior in the scattering function, eq. ( I ).
closed sets. See ref. 4 1. We emphasize that the critical value, D, = 2N- 3,
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3 for observation of fractal behavior in the scattering (x 2, y2, :2) = ( - 1- I/2,/3, 0)
function results under the assumption that the scat-
tering function is obtained by varying a single be- (x3 ,y 3, :s)= (0, l//0).
fore-scattering variable holding all the others fixed. Thus the bottom of the tetrahedron sits on the plane
If instead, we choose to consider scattering functions :=0. The radius of the spheres R is the only ad-
which depend on n independent before-scattering justable parameter in the system. and the spheres do
variables with the others held fixed, then similar not intersect as long as R < 1.
considerations can be applied. In this case, fractal There are an infinite number of trapped orbits. pe-
behavior in the n-independent-variable scattering riodic or aperiodic, in our system. These orbits are
function is typically observable if D,> 2(N-n)- I all unstable since small displacem.nts from a trap-
(for time reversible systems), and the fractal di- ped orbit are magnified exponentially by the defo-
mension of the set on which the scattering function cusing effect of the spheres. All trapped orbits can be
is singular is d. =d,+n+ I -N. In such cases we say uniquely coded by a bi-infinite sequence (a,) of four
that the chaotic scattering is an "n-dimensional ob. symbols J0. I. 2. 31 in the following way. We intro-
servable". Since, as a practical matter, it is much eas- duce a discrete time as the time of collision of the
ier to examine a function of a single independent particle with one of the four spheres. The symbol a,
variable, we expect the one-dimensional observable is set to k if the panicle collides with sphere k at time
case to be of most interest. i. Obviously, the particle cannot hit the same sphere

We check the above qualitative features in a sim- it collided with at the immediately previjus time.
pie system exhibiting chaotic scattering. It consists Therefore, when R is small enough, the sole con-
of a point particle of unit speed bouncing between straints on the symbol sequence of trapptd orbits is
four identical hard spheres. The centers of the spheres a, ta,. 1. If the symbol sequence is periodic. the cor-
are located at the vertices of a regular tetrahedron responding orbit is also periodic. For instance, the
(fig. I ) of unit edge length. The spheres are labeled orbit bouncing between sphere one and sphere two
by (0, I, 2. 3). The coordinates of their centers I (.v,, is of period two, and its symbol sequence is 1.... 1, 2.
v, o), 1=O. 1, 2. 3) are: 1. 2. ... = [1, 21, where the square bracket denotes

the periodicity. There are a total of six period-two
(.ro,. -U)-- (0, 0. 01,). orbits: (0, , 0.21, 10, 31, [1. 21, (1, 31, [2.31.

(x,,, :1)=( 1, - l//3, O) There is no penod-one orbit due to the constraint
a,*a,_1 . The number of trapped periodic orbits
grows exponentially with the period. The exponent
is the topological entropy of the set of trapped orbits.

Z For our system, when R is small enough, the topo-
logical entropy is log(3).

0. To proceed, imagine the following situation. We
choose a plane below the scattering tetrahedron of
spheres,. = - K, K> R. We then consider trajectories
originating from initial conditions (.re, Yo) on this

r~ Y plane and with initial velocity straight upward (i.e..
/ parallel to the z-axis). We refer to (x, yo) as the im-

-pact parameters. For all initial conditions (x.r, yo'
we define a nonnegative integer valued function
T(xo, Yo) which we call the time delay function. Its

i X value is given by the total number of collisions with1 the hard spheres experienced by the particle with im-
pact parameters (xo, Yo). For almost all impact pa-

Fig. I. The geometry of the scatterer, four reflecting hard spheres rameters, this function is finite, corresponding to a
sitting at the vertices of a regular tetrahedron, finite trapping time of the particle in the system.
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Xo 
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Fig. 3. The intersection of the stable manifold with the hyper-
plane plane:= -K. p.puO. R=0.48.

0 -

-0.3

-0.4 Rc 112 R
-0.1 0 0.1 0.2 0.3 0.4

X0 Fil. 4. Schematic illustration of the dimension d. as a function of

Fig. 2. (a) Hierarchical construction of the Cantor set structure R.
of the stable manifold. R =0.4; (b) blowup of (a).

detail. For some impact parameters, the particle will
However, there are certain trajectories which remain not hit any of the four hard spheres and will go
in the system for an arbitrarily long time. Initial con- straight off to infinity. Those initial conditions from
ditions (xo. Yo) for these trajectories are distributed which the particle hits one of the four spheres at least
on a Cantor set. This Cantor set is the intersection once are the vertical projection of the four spheres
in the five-dimensional energy surface of the stable onto the plane of initial conditions. They are the four
manifold of the trapped unstable set with the two-di- big circular disks in fig. 2. We denote this set from
mensional plane z= -K, p=p=O. The time delay which orbits experience at least one bounce by C1.
function is singular on this Cantor set. Inside each big disk, there are three small deformed

To see the Cantor set structure of the stable man- disks, from which the particle hits the four spheres

ifold, we consider the particle trajectories in more at least twice. These are images of the other three
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spheres in the mirror of the first sphere. Thus we have is related to the dimension of the stable manifold D,
a set C2 of nine small disks from which orbits bounce by D,= 3+d . It is reasonable to presume that d, is
at least twice. Within each small disk, there are three a monotonically increasing function of the radius R.
smaller disks C3, from which the particle hits the hard When R is zero, there is no strange set on the plane
spheres three or more times. The resulting set of this of initial conditions, and hence d, is zero. For small
hierarchical disk organization, given by n-,, C,, is R, the dimension d, increases sharply with R,
the Cantor set illustrated in fig. 3. Starting from any d, -/ln(R-''
point in this set, the particle bounces between the four
hard spheres forever, never escaping to infinity, as can be shown by an argument similar to one given

The fractal dimension of this Cantor set is d, and in ref. 13 ). On the other hand, if R >, 1,5, the region

16 25

20 J

II
10

T T

10

---n _ _ -

0 , I 0.
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 0.64 0.56 0.58 0.6 0.62 0.64e e

25 ,,

20 h

15k

10F~!~
5

0.59 0.595 0.6 0.605 0.61 Fig. 5. (a) The time delay as a function of the distance I alontthe one-dimensional line cut in a case exhibiting chaotic scatter
ing, R=0.48; (b) blowup of (a); (c) blowup of ko).
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between the four spheres is closed to the outside (in at which d,= I, and the scattering will change qual-
this case, the spheres intersect since R > j ), and all itatively as R increases through R. Below R,, we will
the points in this closed region are trapped. Hence, not see chaotic scattering from a one-dimensional cut
all the points in the closed region are on the stable in the plane of initial conditions. A question of prime
manifold (i.e., the chaotic set and its stable manifold interest in this context is whether R, < J. If it is, then
are the same set). The dimension of the stable man- we will be able to see chaotic scattering for typical
ifold in this case is equal to the dimension of the en- one-dimensional cuts for R in a range of values
ergy surface, D,=5, and thus d,=2. Therefore, if we (t< R< j ) iuch that the spheres do not intersect.
vary R between 0 and I/,/3 the dimension d, in. We used a box counting algorithm to determine

creases from 0 to 2. Thus there will be a value R- R the fractal dimension d,. We cover the Cantor set

- Ilk I

.0.2 0 0.2 0.4 0.6 0.8 1 1.2 0.54 0.56 0.58 0.6 0.62 0.641

1 C I

VI

0 -
0 , I I

Fig. 6. (a) The cosine of the angle to the :-axis made by the ex-

0.59 0.595 0.6 0.605 0.61 iting direction of the particle as a function of the distance I for

the same one-dimensional cut as in fig. 5; (b) blowup of (a); (c)
e blowup of (b).
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generated above by squares of edge length e. then in a
the limit e-.0. the number of squares N(E) needed I

for the covering scales as 
1

The exponent d, can be determined by a least-squares 10
fit of N(W). When R=0.48. we found d, is approx- K

imately 1.4. J hus we verify the important result that
R,< 1. See the schematic illustration in fig. 4. We also 0 1
computed d, at a smaller R value. R=0.4. at which I =10
we obtain d, 1.07. Using a linear extrapolation from _/s=o
these two computed values of d,. we estimate '=11

& 03.0 001 i 12
R 0.38. oO, =13

We now describe some of our numerical results at L\ = 14
R=0.48. Since d,z 1.4> 1. we expect, with positive 0 02 , 1) 6 ,8 10

probability, to see chaotic scattering from a ran-
domly chosen one-dimensional cut in the plane of
initial conditions. The fractal dimension of the non- 1000 I T b
es~aping set on this one-dimensional line should ',e
equal to d, =d, - I = 0.4. We check this by generating
one-dimensional random cuts in the plane. We pick
a random point in the square centered at the point lo

x=v=O, of edge length 2R. Then we draw a line at
a random angle through this point. Restricting initial K
conditions to this line, we then plotted the "time de.
lay" (i .. , the total number of bounces from spheres
experienced by a particle) as a function of distance 0 1 i =10
I along this line. Out of thirty such lines, we found / =1

-/ =12
nineteen cases exhibiting a fractal set of singularities t/ =12

of the time delay function. A typical form of the time = 14

delay function restricted to the one-dimensional line 0001 = 15____ _--__=

in cases where we observe chaotic scattenng is shown 0 02 04 06 08 1.0

in fig. 5a. From the blowups plotted in figs. 5b and S

5c, we conclude that the singularities in the time de- Fig. 7 (a) The Hausdorff sum K'(s) as a function ofs for differ-

lay function are apparently distributed in a fracial ent level t; (b) the same plot for a diffe ni one-dimensonal cut

set. Another way to confirm this is to examine the
dependence of the scattering function giving the ex- yields an error comparable to the fractal dimen-
iting particlh direction. Fig, 6a shows plots of the co- sion). The time delay function assigns naturally a
sine of the aogle 0 to the :-axis made by the velocity level structure to the one-dimensional line. At level
of an exiting particle as a function of distanc. I along t, we measure the length of all the intervals where the
the same randomly chosen line as was used for fig. time delay function is greater than or equal to i and
5. In regions near singularities, this function oscil- denote them by I,. Then we form the Hausdorff sum
lates wildly. Successive blowups of this function (figs.
6b and 6c) show qualitative similarity, again indi- K'(s)= X (I ) , (8)
cating fractal singularities.

To determine the fractal dimension of the set of where the sum is taken over all intervals at level i.
singularities on a one-dimensional line, we use the When i tends to infinity, this sum should give the
following algorithm (the usual box counting method Hausdorff s-dimensional measure [ 5 ]. Therefore, it
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is ,-afinite when s is less than the Hausdorffdimen- fractal behavior in the scattering function.
siondofthefrac- v- and is zerowhen s is greater
than d,. Hence. , expect that for sufficiently- large We thank Itmi Kan for discussion. This 'ork was
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data are not shown here. since they do not reflect the quantum pis. eds. M.-J. Giamnom. A. VofosandJ. Zion-
fractal property of the singular set.) Within numer- Jmm t Eke,,e..Amst Im. 1990. to be Puished.
ical errors. the intersection points are all centered at [2 It- Blmd and U. Su .Phy& Rey. Lett. 60 (19U) -3777:

P. Gasprd and S. Rice. J. Chem. Phy.L 90 11999) 2242.2255:
d, =0.4 ± 0.05. This value is also consistent with re- p. C-itanovi and B. Eckhardt. Phvs Rev. Lett. 63 (1959)
suits obtained for other cuts exhibiting chaotic scat- 823.
tering and is also consistent with our box counting (31 S. Weher. E On and C. Grebr.;L Phy. . cv. Lett 63 (1999)
result d,- 1.4. 919.

When R=0.25, the fractal dimension d, is less than [41p- Mattda. Acta %JatIh 152 (194) 77. Ann. Acad.Sci.
FewwcA 1 (19751 2-7.

one. Consistent with this. from 100 random line cuts 5 1 KJ. Falconer. The Igomcty of factal sets (Cambridge Univ.
of the plane of initial conditions, we did not see any Prss. Cambridae. 1995).
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I Cross-sections of chaotic attractors
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We present an e'fictent algorithm for constructing cross-sections of chaotic attractors. The technique is particularly useful for
studying the structure and fractal dimension of higher dimencional attractors.

One of the central topics in nonlinear dynamical chaotic attractor is followed until it comes near the
systems theory is the study of the structure and or- desired cross-section plane. Through a subsidiary
ganization of invariant sets under the -lynamics. In calculation, a local approximation to the 'astable

particular, the geometry of strange attractors [I I is manifold through that point is found. Then the in-
of particular interest. For such studies, the visual- tersection of the approximate unstable manifold and
ization of the strange attractor is important for re- the desired cross-section plane is determined, thus
vealing structure as well as characterizing the at- projecting the orbit point onto the cross-section plane.
tractor, This presents problems when higher Assuming the attractor is smooth in the unstable di-
dimensional attractors are encountered. For exam- rection (or directions), this intersection approxi-
pie, the projection of an attractor whose fractal di- mates to a point in the cross-section of the attractor.
mension is greater than two to a plane yields a fuzzy Repeating this procedure many times as an orbit is
blob. Questions such as whether the local structure followed, a cross-section picture of the attractor is
of a typical higher dimensional strange attractor is built up.
the product of a continuum with a Cantor set 121 or In this note. we consider Lorenz's second proce-
is more complex than this cannot be answered by dure for taking numerical cross-section. Compared
simply taking a projection of the attractor. In ad- to the first procedure. this procedure can be easier to
dition. numerical determination of the dimension of implement and yield faster computer computation.
higher dimensional fractal sets by box-counting al- On the other hand. the method has certain limita-
gorithms can require enormous memory storage and tions which will be discussed. Consider an N-dimen-
CPU time. If feasible. taking cross-sections of the at- sional invertible map, x.+ I = F(x,). Choose a com-
tractor (i.e.. intersections of the attractor with a sur- pact volume V which contains the chaotic attractor.
face) might offer a way of both elucidating the ge- We shall find the cross-section of an m-dimensional
ometry of the attractor and of estimating its hyperplane with the unstable manifolds of the in-
dimension. variant sets contained in V. This will typically in-

In this regard, two procedures for taking a cross- clude the attractor. By inverting the map, the at-
section of a chaotic attractor were proposed by Lor- tractor becomes a repellor. Consider a point x in V
enz 12 1. and the first of them was extended and fur- and examine its preimages F - I(x), F -2 (x) ....
ther developed by Kostelich and Yorke [ 3 ]. This lat- F - "(x). Let T(x) denote the smallest value of n such
ter procedure is basically as follows. An orbit on the that F - "(x) is not in V. We call T(x) the inverse

escape time from V. Under the inverse map, all points
Also at Department of Electrical Engineenng and Depart- in the region V will finally escape except for those on3 ment of Physics the unstable manifolds of the invariant sets con-
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tained in V. This set, of course, includes the repellor sions agree with previous calculations which re-
of the inverse map originating from the chaotic at- solved only the attractor set.
tractor of the forward map. Points on the unstable The dimension of the intersection set in the cross-
manifolds of the invariant sets in V correspond to section plane is related to the dimension of the un-
singular points of the inverse escape time function stable manifold set by a result of Mattila [6 ]. If the
(T(x) =oo). (We assume that the inverse map has Hausdorff dimension D of a bounded fractal set lying
no attractors in V. For example, the inverse of a in an N-dimensional space is greater than N- m, then
strictly contractive map (e.g., the HWnon map) can a random cut by an m-dimensional hyperplane in-
have no attractors.) Thus, if we start initial condi- tersects the set with positive probability; if it does

tions from a hyperplane and collect all the singular intersect the fractal set, the dimension d of the in-

points of the inverse escape time function of the map, tersection set is related to D by
we find the intersection of the hyperplane with the D=d+ (N-rn) (m)
unstable manifolds of the invariant sets in V, and this
typically includes the cross-section of the attractor with probability one. Hence, by generating the cross-
with the hyperplane. In practice, we not not deter- section of the attractor and measuring the dimension

mine the singular points but rather we determine a of the cross-section set, we determine the dimension

succession of nested sets containing the singular of the strange attractor.

points. We do this by computing x values for which To illustrate out algorithm, we first calculate one-

T(.r) > N for successively la; ,er values of N. To ob- dimensional cross-sections of the Hdnon attractor.

tain the intersection with the attractor, one should The Henon attractor is generated by the following

reject points which satisfy T(x) > N but do not lie map,

approximately on the attractor. In principle, thiscan x,+1 =a-x2+by., y,+ =x,. (2)
be done by calculating the Lyapunov exponents (orother ergodic quantities) of F -'tfor each .r satisfy- At parameter values a= 1.4, b=0.3, H~non observed

otr qthat there exists a chaotic attractor. Numerical boxing T(x) > N along the orbit x, F -counting techniques for the calculation of the di-
F-(-i)(x). For large N, these exponents will a- mension of a strange attractor were first applied by
proximate the negatives of the Lyapunov exponents Russell et al. [4], who obtained a result for the di-
of the forward map on the attractor, provided thatre-
x lies approximately on the attractor. If x does not sI wa tain y rabre who fou at te

lie pprximtelyon he ttrator thn th Lypu- sult was obtained by Grassberger who found that the
lie approximately on the attractor, then the Lyapu- capacity dimension is approximately 1.28 ± 0.01 [51.
nov exponents for the inverse map starting from x However, from different least squares fits of the slope,

will approximate those for another invariant set in the dimension takes values between 1.22 and 1.30.
V and will differ substantially from the exponents of Fig. I shows the Hdnon attractor. It can be shown
the attractor. In this case the point x is rejected. It that the attractor is included in the square [ -2.0,
will not always be possible to apply this Lyapunov 2.01 x I -2.0, 2.0]. This is the region V which we
exponent test, because N must be sufficiently large use for calculating the inverse escape time function.
to obtain reliable estimates of the Lyapunov expo- We take a horizontal one-dimensional cross-section
nents of the inverse map. Alternatively, one can omit through the point x=O, y=0 and calculate T(x) at
the Lyapunov exponent test altogether. In this case, regularly spaced intervals along this line. This is
the set obtained may be larger than that for the at- shown in fig. 2a. We see there is a natural Cantor set
tractor. Thus a calculation of the fractal dimension level structure in the inverse escape time function.
of this set yields an upper bound for the fractal di- At level 0, there is one interval from which it re-
mension of the attractor. In our numerical examples, quires at least one backward iterate to escape the
we have not applied the Lyapunov exponent test. square; at level 1, there are two intervals from which

Nonetheless, as shown below, for these examples, the it requires at least two backward iterates to escape
method appears to yield very good approximations the square; etc. The intersection of all these intervals
to the actual attractor, and the calculated dimen- is the cross-section of the Hnon attractor. Fig. 2b
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1 3I [

- -2 -1 0 1 2 -2 0 2

X8

Fig. 1. The Hnon attractor.I 11

shows the same function for the vertical cross-sec-
tion through the same point x=O, y=O.

To get the fractal dimension of these cross-section

sets, we use the following procedure. We denote the
lengths of the intervals at level i by I,. Then we form
the Hausdorff sum

K'(s)= t),(3) T
J 5

where the sum is taken over all intervals at level i.
When i tends to infinity, this sum is the Hausdorff

s-dimensional measure [71. Therefore, it is infinite
when s is less than the Hausdorff dimension d of the
fractal set, and is zero when s is greater than d. Hence,
we expect that for large i, the sums K'(s) versus s for 1

different levels will intersect with each other at ap- -2 0 2

proximately the same point s=d given by the Haus- b I
dorf' dimension of the one-dimensional fractal set ". Fig. 2. Inverse escape time function for the Henon map. (a) Hor-
In fig. 3, we show results for the Hausdorff sums for izontal cut through x=.0, y=0. (b) Vertical cut through x=O,

different levels for a typical one-dimensional cut. The y=o.
lines for this case have intersec'ions in the range

d 0.24 to 0.30. Examining many different one-di-
The numerical application of the Hausdorff sum (3) to find mensional horizontal and vertical cuts, we estimateIthe fractal dimension has been previousy used to study cha- d to lie in the range 0.20 to 0 34. From formula (I1),

otic scattering [8 ]. Results of Nusse and Yorke 191 guarantee

that for hyperbolic horseshoes, an interval with succcis:ve the dimention of the Hdnon attractor is approxi-3 nested increasing T(x) contains a point where T(x) = o. mately D; 1.20-1.34. The whole calculation for a
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10.0 cross-section plane, we collect those points from
which after some chosen maximum number of it-
trates of the inverse map nmax, the point remains in
the hypercube region. Fig. 4 shows two two-dimen-
sional cross-sections of the attractor using our al-
gorithm (ym,,=0.5 and nm,,= 15). The pictures in
fig. 4 appear to be identical to those in ref. (31.

Ki 1.0 -i= -To find the fractal dimension of the chaotic at-

1.0

2

0.8[-

0.11 0.61.-
0.0 0.2 0.4 0.6 0.8 1.0 0 1;-

X 2

Fig. 3. The Hausdorff sum K' (s) as a function of, for different 0.4

levels ifor the one-dimensional vertical cut through x=z0.8.
Y=o,.

cut involved very little computer memory and took .
less than 5 seconds on the Cray XMP computer.:'

Our second example is the double rotor attractor 0.0 ' . .",.
generated by the following four-dimensional, vol. 0.0 0.2 0.4 0.6 0.8 1.0
ume-contracting map (101, a x,

X1+l :=M, + mod I", / i0.2v

(. I M Y'n ) + (( c, /2 7 ) s i n (2nx 'i + 4) [
2+lMt I 2~ l  (c2/2n)sin(2xx"2+ '  4

Here x, x2 take values from the unit interval [0, 1), 0 0 4 , -' .
and y, and v2 'ike values from the real line. At pa-
rameter valucs iven by

M,( 5.8 -6.602') Y
\-6.602 - 12.40,' 02,--

M =(0.7496 0.1203)
M- 0.1203 0.8699J'

c, =0.3536, c,=0.5,

Kostelich and Yorke [ 31 find that there is a chaotic -0.4 __ _

attractor. Since the two x-directions of the double 0.0 0.2 0.4 0.6 0.8 1.0

rotor map are compact, we choose for V the hyper- b X2
cube box given by max( lyil, 1Y21 ) <Y., Starting Fig. 4. Cross-sections of the double rotor attractor. (a) Cross-
from a uniform distribution of initial points in the sectionaty;=0., y2=0. (b) Cross-sectionaty,=O,x,2 2/2
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2 1s squares N(e) needed for the covering scales as
N(E) -E-d,. (5)

21 The exponent d is determined by a least squares fit
2 2 of a straight line to a log-log plot of N(e). In fig. 5,

we calculate the capacity dimension d for the cross-
N (2"r) section sets of figs. 4a and 4b. The two values of

2' D=d+2 determined from least squares fitting are
3.67 and 3.63. According to the estimates of ref. [3 ],
the information dimension lies in the range 3.61 to

3.68. Thus we find that the values of the capacity and
2' information dimensions (the latter must be smaller)

are apparently quite close to each other.
- In conclusion, we have presented an efficient

algorithm for calculating cross-sections of strange at-
201 4 5 6 7 8 tractors. This method may be useful for the esti-a4 5 6 8 9 10 mation of the fractal dimension of higher dimen-
2* sional chaotic attractors.
2 tl ;
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Abstract. We present a new techniq e for constructing a computer.assisted proof of
the reliability of a long computer.generated trajectory of a dynamical system. Auxiliary
calculations made along the noise-corrupted computer trajectory determine whether there
exists a true trajectory which follows the computed trajectory closely for long times. A
major application is to verify trajectories of chaotic differential equations and discrete
systems. We apply the main results to computer simulations of the Hinon map and the
forced damped pendulum.

AMS classification scheme numbers: 58F13, 58FI5, 65G05, 65L70

I. Introduction

Are numerical studies of chaotic systems reliable? More specifically, do computer
trajectories 'correspond' to actual trajectories of the system under study? The answer is
sometimes no. In other words, there is no guarantee that there exists a true trajectory
that stays near a given computer-generated numerical trajectory.

The question is especially pivotal for chaotic systems. Chaotic trajectories exhibit
sensitive dependence on initial conditions: two trajectories with initial conditions that
are extremely close tend to diverge exponentially from one another. At the same time, a
great deal of phenomenological research on chaotic systems relies heavily on computer
simulation.

Therefore, the use of an ODE solver on a finite-precision computer to approximate
a trajectory of a chaotic dynamical system leads to a fundamental paradox. Because
of sensitive dependence on initial conditions, a small truncation or rounding error
made at any step during the computation will tend to be greatly magnified by future
evolution of the system. Under what conditions will the computed trajectory be close
to a true trajectory of the model?

Consideration of simple examples of nonlinear maps illustrate that there are critical
points of trajectories where round-off error or other noise can introduce new behaviour.
We discuss typical examples in section 2. At such 'glitches' the true trajectories all

i 't Research supported by the Applied and Computational Mathematics Program of DARPA.

0951-7715/91/030961+19S03 50 © 1991 lOP Publishing Ltd and LMS Publishing Ltd 961
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diverge from the numerical trajectory. In this case, there will be no true trajectory that
stays near the numerical trajectory. In other cases, the numerical trajectory can be
shadowed: some true trajectory remains close to the numerical trajectory.

In the present work we state a result (theorem 3.3) which says that if certain
quantities evaluated at points of the computer-generated trajectory, called a pseudo-
trajectory. are not too large, then there exists a true trajectory near the .computer-
generated one. Rigorous upper bounds for these quantities can be generated by the
computer as it produces the pseudo-trajectory. If these quantities satisfy the hypotheses
of the theorem, which again can be rigorously checked by the computer, the result

is a computer-assisted proof of'the existence of a true trajectory near the computer-
generated pseudo-trajectory. For example, if the one-step errors in the pseudo-trajectory
occur in the tenth decimal place, then the true trajectory that results from the theorem
differs from the computer-generated trajectory in approximately the fifth decimal place.
In particular. the initial point of the true trajectory can differ from the initial condition
of the pseudo-trajectory at most in the fifth decimal place.

A typical application of the theorem is to the forced damped pendulum

y+a' +sin y- bcost.

Setting the parameters a = 0.2 and b = 2.4, we prove the existence of an apparently
chaotic trajectory with initial cor itions y(0) = 5(0) = 0 for time t ranging from t = 0
to t = 101n. This trajectory, for all 0 4 t i t0, lies within 10-' of an explicit
computer-generated (noisy) trajectory produced with a one-step error of 10-11. There
are similar results for other initial conditions and other choices of a and b.

To describe the theorem, we make a distinction between discrete and continuous
models. Computational methods for approximating trajectories of systems of ordinary
differential equations work by a series of small, discrete steps. We can therefore consider
computer simulation of discrete systems and autonomous differential equations at the
bame time if we define a dynamical system to be an invertible map f on R'. (We
actually define dynamical system a little more generally, as a sequence of maps (f.) on
R", tD also cover the non-autonomous differential equations case.) We will try to keep
this distinction clear by using the word trajectory for continuous systems and orbit for
discrete systems.

Consider then a 6-pseudo-orbit of a discrete system f, which we can imagine
having resulted from applying a one-step quadrature method with truncation error 6 I
to a system of differential equations on R1', m > 2. Assume that we have subspaces S.
and U. at each point x. of the pseudo-orbit, which are self-consistent with tolerance 6.
By this we mean that S. and U. are complementary subspaces of the tangent space R"
at xn (see figure 1), that unit vectors in U. are mapped by f to within 6 of U.+ ,, and
similarly for S. Define the positive number r,, to be an upper bound for the expansion
rate of the linearization Df along Sn, and t,, to be an upper bound for the expansion
rate of Df - I along U.. See section 3 for precise definitions.

The quantities which need to be measured to assure the existence of a nearby true
orbit are most easily expressed as recurrence relations. Set up a recurrence relation C,
by beginning with Cc = 0, and recursively defining C, = csc 0 +r,_IC ,, where 6. is
the angle between S. and U. Define Dn similarly: DN = 0, where N is the length of
the pseudo-orbit, and D,, = csc 0 + tD+ , for n < N. Then as long as the quantities
C. and D, are not too large for all n, there is a true orbit of f near the pseudo-orbit.
More precisely:

I
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U,

1l
Sn

Fiure 1. The splitting of the tangent space at the nth point of the pseudo-orbit.

Theorem 3.3. Assume 6 < 1/20m2 and let B be a bound on the first and second
partial derivatives of f and f -. If

max{C.,D ,J
mS/2 B2 ,/-

for all n = O.....N. then there exists an orbit {w.} of f such that Ix. - wjI < v57 for
n - 0,.... N.

Note that we do not need to assume uniform contraction and expansion along the
directions S. and U1. In other words, r. and t. do not need to be less than one for
all n.

The proof of the theorem is constructive, in the sense that it uses a procedure for
refining noisy orbits originally given in [6]. The essential point of the proof is to show
that under the conditions of the theorem, the iterated application of the refinement
procedure, beginning with the pseudo-orbit, results in a sequence of refined pseudo-
orbits with decreasing noise level, and whose limit is a true orbit. In addition, the true

orbit is not too far from the original pseudo-orbit.
The proof can also be considered a justification for using the refinement process

computationally on the actual noisy orbit to reduce noise to near machine-precision,
but that is a separate issue from the main question we are answering here. This
direction is taken up in [7].

A true orbit that stays near the pseudo-orbit is said to shadow the pseudo-orbit.
Several years ago, Anosov and Bowen proved shadowing results for hyperbolic maps
on a differential manifold. The conclusion of Anosov [1] for a hyperbolic map says
that, given any prescribed shadowing distance c (between the pseudo-orbit and true
orbit) there exists a 6 > 0 so that any 6-pseudo-orbit can be £-shadowed by a true
orbit. Bowen [2] showed that the same result holds if the map is required only to be
hyperbolic on a basic set containing the orbit. Other proofs have been given, and one
more is a consequence of the present work.

There are two factors that make the approach of Anosov and Bowen impractical for
use in computer experiments. First, the 6 that is produced can be orders of magnitude
smaller than the machine epsilon of existing digital computers. Second, most interesting
dynamical systems currently being studied are not hyperbolic.

Theorem 3.3 does not assume that the dynamical system is hyperbolic. Our
approach is to prove that as long as the system is sufficiently hyperbolic along the
(finite length) numerical trajectory, then that piece of the numerical trajectory can be
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shadowed by a true trajectory. On the other hand, when f is hyperbolic, C, and D',
stay uniformly bounded for all iterates n, in whichi case arbitrarily long shadowing
trajectories are constructed by the theorem for sufficiently small 6. Thus the shadowing
theorem of Anosov and Bowen is a consequence of theorem 3.3, as is noted in [9].

In (5,6] a method is developed which creates computer-assisted proofs of the
existence of finite length shadowing orbits on a case-by-case basis. In two dimensions,
a small parallelogram is constructed near each point of the numerical orbit in such a way
that there is a guarantee of a true orbit whose nth point lies in the nth parallelogram.
They apply the method to one-dimensional maps and the two-dimensional Hinon and
Ikeda maps, none of which are hyperbolic. These papers use auxiliary calculations in
96-bit precision to verify that there are true orbits near the pseudo-orbit, which was
produced in 48-bit precision.

The advantage of the present method over [6) is that the auxiliary calculations
can now be done in the same precision in which the orbit was calculated. For the
maps mentioned above, only 48-bit precision is needed to verify the existence of a
pseudo-orbit produced in 48-bit precision.

This fact is especially important when attempting to shadow differential equations.
We found that the methods of [6] were not practical, at least for the differential
equations we tried. For example, in orwer to produce long shadowable pseudo.
trajectories for the forced damped pendulum. we needed to use a one-step error of no
more than 10-19, which already requires 96-bit precision. In this case, there is no extra
precision available for the auxiliary calculations of [6).

Thus the new method, superior even for maps, is evidently essential for shadowing
differential equations. The improvement is largely gained by sublimating the refinement
process, done explicitly in a computer-aided proof in (6), into the proof of theorem
3.3. It is proved here that under the hypotheses of the theorem, the refinement process,
when iterated, theoretically converges to a true trajectory.

The main result of this paper was announced in (9), in a slightly less streamlined
form. Other work along these lines for the one-dimensional case is reported in [3).

In the next section, it is shown by example that shadowing can fail for some
pseudo-trajectories. The details of the main theorem (theorem 3.3) are presented in
section 3. Section 4 consists of a number of remarks relevant to the implementation
of the computer algorithm based on theorem 3.3. Examples are given in section 5, and
section 6 contains the proof of the main theorem.

2 Why shadowing works

What makes it possible to find a true orbit near a pseudo-orbit in the presence of
sensitive dependence on initial conditions? The short answer is hyperbolicity along the
pseudo-orbit. Even for a non-hyperbolic dynamical system, as long as the pseudo-orbit
avoids areas of phase space that lack hyperbolicity, it may be possible to find a nearby I
true orbit. Of course, on typical ergodic chaotic attractors, this avoidance is only done
as a matter of degree. Roughly speaking, the pseudo-orbit must stay far away from
non-hyperbolic areas compared with the size of the errors being made. Our method
essentially relies on measuring how successful the trajectory is in staying hyperbolic.

As a simple example, imagine a map which contracts distances. Assume that the
distance between any two points x and y is decreased by a factor of K by the map f,
where 0 < K < 1. Thus If'(x) - f"(y)l < K"Jx - yl. It follows that any pseudo-orbit
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can be shadowed by the true orbit beginning at its own initial condition. All distances
are contracted, including errors that are made along the pseudo-orbit.

To be more precise, let a 6-pseudo-orbit be denoted by {X,X 1 ,.... ,xN.. Then
If(xo) -. II < 6, and further

If2(xo) - x.1 I f2(Xo) -f( 1 )I +If(x1 ) -x 21
4 KIf(x0 ) - x1j +If(xl) - X21

< (K + 1)6.

Continuing in this way, If"(xo) - x.i < (K -I + K1-2 +... + 1)4, and we can see that
the true orbit {x0,f(x 0 ),..... N(x0 )) shadows the pseudo-orbit within 6/(l - K).

Although this hyperbolic map is not sensitive to initial conditions, it is an
instructive example. C-nsider next a diffieomorphism which expands distances, so
that If (x) - f"(y)l > K"Ix - yI for K > I. This map is sensitive to initial conditions,
yet any pseudo-orbit {xo,x1..,...xs) can easily be shadowed. The inverse of the map
contracts distances, so the true orbit (f-N(xN),f-N+i(xN).... xN) will shadow the
pseudo-orbit within 41(1 - I/K).

A general hyperbolic dynamical system is a combination of the above tivo examples.
At each point, some directions are expanding and the rest are contracting. To construct
a true orbit, one needs to use information from the beginning of :he pseudo-orbit in
the contracting directions and from the end of the pseudo-orbit in the expanding
directions. This idea is the basis of theorem 3.3.

On the other hand, not every pseudo-orbit can be shadowed. This is not a failure of
any particular shadowing procedure. The simplest examples of nonlinear maps provide
cases of pseudo-orbits for which there is no corresponding true orbit nearby. Consider
the one-dimensional logistic map f(x) = I - 2x2, shown in figures 2 and 3. The interval
I = [-I, 11 maps onto itself under f and so is an invariant set. True orbits which begin
in I remain in I for all time.

Figue 2. A pseudo-orbit of f(x) = 1-2x2 which cannot be shadowed. The initial condition
is the dot at the origin. An error of size 6 is made in computing f(0), which causes the
orbit to eventually approach -o.

Now consider the 6-pseudo-orbit which begins with x0 = 0, x, = l + 4, and which
from then on is computed without error. Then x, = f(xi) < -1, and the pseudo-orbit
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I I

Fitwre 3. For the map 1x) 1 - .2x. an initial condition in the open interval Li" lcngth
V86 around zero can be attracted to -x if an error of size 6 is made.

diverges to -x. See figure 2. Clearly, there .io true orbit of the system f which
shadows the pseudo-orbit by a distance of less than I. Any true orbit within I unit of

.- 0 must stay witain I for all time.
In this simple case, points escape from true behaviour near the critical point, or

fold, of the map. Informally, we call such a divergence from legal behaviour a glitch.
In general, the logistic map f(x) = a(l - x") - I will have pseudo-orbits that cannot
be shadowed not only for a = 2 as above, but when the parameter a is less than and Iwithin 6 of 2. where 6 is the noise level of the process. (This corresponds to the critical

value of the fold in figure 2 being between I - 6 and 1.) Thus the occurrence of a
glitch is a robust phenomenon. The same phenomenon occurs in higher-dimensional I
chaotic dynamical systems, because of the folds caused by homoclinic tangencies and
near-tangencies of stable and unstable manifolds.

How often should we expect glitches? The answer should depend on the noise level
6. In the logistic map example fix) = I -2x-, there is an interval of length v,8 around I

for which it is possible for an error of size 6 to cause a glitch. This is illustrated
,ure 3. Any initial condition in the designated interval around 0 is susceptible to

.1g mapped to a value greater than I, and therefore mapped out of 1, towards -)0.
, computer-generated orbit of that type does not correspond to any true orbit.

If we assume that this interval of length 03- is sampled by the dynamical systew.
approximately in proportion to its length, we expect a glitch to occur on the order of
every l/v'3 steps. Numerical studies in [6] on two-dimensional maps and thc studies I
of differential equations undertaken for this work roughly support this scaling. I
3. Shadowing theorem

The theorem can be used to shadow diffeomorphisms or differential equations. To I
include both cases, we will consider a dynamical system to be a sequence f0 ... fN of
C2-diffeomorphisms on R" for some positive integer N.

When attempting to shadow a discrete map f, we will use f, = f for all n. For a I
non-autonomous differential equation t = F(t, x), we would let f, be the map on phase
space which takes an initial point x at time t to the point on the trajectory time at time
t + hn, where h, is the current step size of the ODE solver. If we assume, for simplicity, I

I
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that the differential equation is being solved with a constant step size h, then h. = h for
all n. In this case, the ODE solver induces a map called the time-h map of the system.

In the case of an autonomous differential equation, the induced time-h map will be
the same for all t. On the other hand, if the differential equation is non-autonomous,
the time-h map will depend on t. The following definition of an orbit of a dynamicalsystem is made to include both the autonomous and non-autonomous cases.

Definition 3.1. Let N be a positive integer, and let f, : R" -. R" be a C2-
diffeomorphism for each 0 4 n < N. The finite sequence {y}, n = 0,..., N of points i'.
R" is called an orbit of the dynamical system {f.}, n 0,..., N - I if f,,(y.) - y.,+, !or
n = 0..... N - 1. An orbit is sometimes referred to as a true orbit to contrast with the
notion of pseudo.orbit. The finite sequence {x.J is called a 6-pseudo-orbit of {ff. if
If,(x,) - x,,Ill <6 for n = 0..... N - I. The 6-pseudo-orbit fx,g is r.-shadowed by the
orbit y of the dynamical system {fJ if Ix. -y, < c for n = 0,.....

Here, as below, we use the Euclidean norm:

1 
-

1/2I
for a vector v = (v, ... v).

We also need to define the concept of moving frame from the point of view
of computer simulation. The moving frames we will require will be numerical
approximations S. and U. to the stable tangent space and the unstable tangent
space at x., if they exist, and the next best thing, if they do not.

Let N and k be positive integers. For each n = 0...., N -- I, let J, be a non-singularIm x m matrix. For each n = 0., N let ,, v () be a set of k vectors in R", and
define 4,, to be the m Y k matrix with columns 7,,.

Definition 3.2. The set 1,, "..... g,}N .o is called a 6-pseudo-frame for the dynamical
system {J.I if for all 0 < n < N,
I., The entries of the k x k matrix ATA. - lk are no larger than 6 in absolute value;

2. J,,t....Jnv, are each within 6 of range(A,, ,).

Informally, we call property I of the definition almost-orthogonality, and property
2 consistency.

The usefulness of this definition for computer-assisted proofs lies in the fact that
a 6-pseudo-frame consisting of machine-representable numbers can be constructed
using standard computational procedures. Assume that we begin with a set of k
vectors {to 1 ,. vk} in R"' which form an orthonormal set. (That is, the vectors in
the set are mutually orthogonal unit vectors.) Assume further that the components
of the vectors vol,.... vok are machine-representable floating point numbers. Then we
use the Gram-Schmidt orthogonalization procedure on the set (J0(vo) .. J0 (vok)}, and
define (v, ..... v1k} to be the machine-stored vectors that result from this finite-precision
computation. (In some cases we found thai a more stable form of orthogonalization [4]
improved this step.) Continuing in this way for 0 < n < N we define a 6-pseudo-frame
for a small number 6, such that each vector v,, in the frame is machine representable.
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We can now describe the main theorem. For each 0 < n < N, let f,,' R' - R.
be a C2-diffeomorphism. Let {x,,}.o be a 6-pseudo-orbit of the dynamical system
{f.). Define J,, = Df(x) to be the matrix of first partial derivatives of f. Let B,
(respectively B,) be an upper bound for the absolute values of the first (respectively,
second) partial derivatives of the component functions of f, and f.-; on the union of
balls of radius 61/2 centred at x. for n = 0,...,. N Set B = max{2,B1,B 2}. For positive
integers k+l = m, let {sj,. } ,Skob (resectively,{u,,,.. . , be a0 -pseudo-frame
for {J; '} (respectively, {Jj}) such that {S. .. ,,. .. u~1 } spans R" for each n.

Define the subspaces S, = span{s., ... SM), U, = span{u,,,.. .,u.}, and define 0
to be the angle between S,, and U. Let r, and t, be numbers satisfying

IJ.yl < rjlyI for y 1E S

IJ,':l < t,,I:l for z e Un+i.

Define Co = 0.C = csc0,, + rnC.,- for n > 0. Similarly, define Dj = 0,Dn =
escOn, + tDnI for n < N.

Theorem 3.3. Let {x,}. o0 be a 6-pseudo-orbit for the dynamical system {f,} on
R m'n > 2, and assume that 6 < 1/20m . If

max{C.,D.} <

for all n = 0. N, then there exists an orbit {wv} of {f,,} such that Ix,, - w,, < V6 for
n= 0..... N.

Theorem 3.3 gives an alternative approach to Bowen's shadowing lemma (2]. Let
f R'" - R'" be a C2-dff'eomorphism. A compact invariant set A is called hyperbolic
if there is a continuous splitting of the tangent space TR = El Eu for x E A, and
positive constants A. < 1, C > 0 such that
1. Df (x)(E ,) = E'

2. Df(x)(Eu) =

3. IDf"(x)(v) < CA-IvI tbr v E E1
4. IDf-"(x)(v) < CA-vi for v E Eu

for allx EAandforall > 0.

Theorem 3.4. [2]. Assume A is a hyperbolic set for f. For every e > 0 there is a 6 > 0
so that every 6-pseudo-orbit in A can be c-shadowed.

Theorem 3.4 is a direct consequence of theorem 3.3 (see [9]).

4. Computer-assisted shadowing

In this section we describe a computer algorithm which uses the above theorem 3.3
to verify the existence of true orbits of a dynamical system near the pseudo-orbit
determined by a numerical computation. Along with the pseudo-orbit being computed,
there are some auxiliary calculations to be made to check that the hypotheses of the
theorem are satisfied. Namely, it is necessary to find upper bounds for the constants
B, cscO, r,,,t, and finally C,, and D,. We next describe these auxiliary calculations,
which if successful provide a computer-assisted proof of the existence of a true orbit.
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4.1. Conurucuon of sutable and ummable fraes

The algorithm wods best when the J-pseudo-frame 's . andI... . are chosen to approximately encompass the tb and unstable
directions, respectively, for the dynamical system If. at the particular map f,. One way
to accomplish this is as follows. Begin with an orthonormal set ,. uO_ of vectors
in R" chosen arbitraily. Inductively define the orthonormal set Iu, +,.. uj} to be
the computed results of applying the technique of Gram-Schmidt orthogonalization.
followed by normalization. to the set Df,(x,)u,..... Df .(,, ud!. Because of computer

round-off, these computations will be only approximate, which is not important
For which 6 is"=,"..",,,f" v a 6-pseudo-frae It is straightforward to fin a

,6 for which both parts of definition 3.2 are satisfied. Part I is easily checked with

the computed !.-- -- - and depends on the residual error of the Gram-Schmidt
orthogonalization. In most cases of following a trajectory of a system of ordinary
differential equations, the , will be determied by part 2 of definition 3.2. which
depends on the error bound of the ODE solver being used to follow the tangent vectors
along the pseudo-orbit.

The frame ,. € is defined analogously. Begin with an arbitrary
orthonormal set Svk, fl.m R". Give.. . for n N. apply

Gram-Schmidt to the set {Dxf;t(x _t,. . (x3 _.)s,,k. The stored values of
the resulting computation are I .s....._, by definition.

The calculation of csc O., where 0, is the angle between S. and U,. is simple if the

dimension m is small, but for higher dimensions the following scheme may be helpful.
Define A. to be the m x m matrix whose columns are {s,_ ... s,u,, ..... u}, and let
B. = A-'. Let B. be the m x m matrix whose top k rows are the same as those of B.
and whose bottom 1 rows are filled with zeros. Let B, be the m x m matrix whose top
k rows are the filled with zeros and whose bottom I rows are the same as those of B,.
Note that B,, = B, + B. .

Now define S,, = A,,B, and U,, = .4,Bu. It is clear that S, and L,, are projections
onto S,, and U,. respectively, and that

S + U,, = A,,(Bs +Bu) = 1
Further. S,, and U,, are the unique m x m matrices with these properties.

It is a standard fact that csc 0 = IS,[ = IU., where as usual we use the Euclidean
matrix norm. This scheme provides a computationally stable method for computing a
strict upper bound on csc O,,. which is necessary for bounding the C,, and D,.

4.2. Calculation of r,, and t,

We have dcfined r,, to be a positive number that bounds the growth of f,, in the
direction S,, at x,. That is. r,, satisfies IJ,,yJ < r,,Jyl for vectors Y in S,. Such a number
is impossible to find by measuring JJ,y on a general basis of S,. This is the reason
that almost-orthogonal frames are needed in the calculation. Lemma 4.1. using A = J,
and W = S, shows how to find an upper bound on r,, solely using information about
the action of J, on the almost-orthogonal basis of S,. Analogously, t, can be found
by using lemma 4.1 with A = J;-, on the subspace U,,+,.

Lemma 4.1. Let A be an m x m matrix and W a subspace of R' with basis ivw.
Let W be the m x k matrix with columns .... Wk}. Then

max AvI << AW
,Ew.1,,=i VI - WJVTJW - 1
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when the right-hand side exists.

Lemma 4.1 is proved in section 5.

43. Calcudaion of C. and D.

Computing C. and D, appears simple once cscQ0, r. and t. are known. There are
two more details, however, that greatly reduce the data requirements of this task. In
applications of this algorithm, it is typical for N. the number of points in the pseudo-
orbit- to be of the order of several million. On the other hand, we have previously
suggested that the computation of the stable frame s,,.sJ' (and therefore 0.)
be done by beginning with a random frame at n = N. and applying J.-' to create
frames N - I.....0. To avoid the problem of storing all frames simultaneously. we
iuggest buildine.... . in pieces of length N, < N. For example- we found
N, = 5000 to be reasonable.

The idea is to find each block of 5000 nearly-orthogonal bases by stopping after
each b -k of 5000 points in the pseudo-orbit, finding the next 1000 points, and then
applying J, ' 6000 times to a random starting orthogonal basis to produce stable
directions, and then go on to the next block of 5000. In all cases we ha.e tried, the
stable frame produced this way satisfied definition 3.2 within the prescribed 6.

The second problem is deciding whether the recurrence relation D, stays within the
bound of the theorem, given that it is defined beginning at the end of the trajectory.
The following simple lemma shows how to verify the bound on Dn in forward time. In
short, a new recurrence relation E, is defined which is computed in forward time. The
lemma shows how to tell by computing E, whether D. violates a given bound.

Lemma 4.2. Let D., = 0: Dn = a, + bD. , be a recurrence relation for n = 0,.... N
and let .4 be a real number. Define another recurrence relation E0 = A;
E.+1 = min{(E. - a,)/b,A for n = 0,...,N. If E, > 0 for n = O....,N, then
D.<< .4 forn=. .... N.

4.4. Calculation of B

The calculation of B, the upper bound on the magnitudes of the first and second
partial derivatives of the f., is normally trivial if we are given the explicit map. In
more interesting cases, we are following the (possibly time-dependent) flow of a system
of differential equations, and need bounds on the derivatives of the time-h map for
step size h. It is this map which is being approximated by the numerical ODE solver.

To this end. consider the first-order system

= F(t,y)

where v is a vector in R"' and t denotes the independent variable. Define g(t,s,Z) to
be the value of the solution with initial condition y(s) = : at time t. Then the time-h
map of the differential equation which maps the value at time to to the value at time
to + h is given by

fin.h(Y) = g(to + h, to, y).

The following lemma establishes upper bounds on the partial derivatives of the in
component functions of f = f,,.h = (f . f
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Lemma 4.3.

1. Define E, = m Then m O <e h E

I 0 F , I2 f , 'CmI2. Define E. = max L. Then max 1Y- -, IhE,eI'E I.
C.YJkI ey '-' IYY eIy

The proof is an exercise in using the Gronwall inequality (see for example lemma
4.1 of [8]) on the first and second variational equations of the system.

4.5. Quadrature method

To apply theorem 3.3 to a differential equation such as the forced damped pendulum.
we need a quadrature method which has high accuracy. and which has an explicit error
formula. The former is necessary to allow application of the theorem with a reasonably
small 6 (and therefore a long shadowing time). The latter is necessary to assure that
we have a rigorous bound on 6.

The simplest method that satisfies these two criteria is the Taylor method. The
formula for the one-step error is explicit, being essentially the Taylor remainder.
However, the major diffict.lty with implementation of the Taylor methoes in general
is that they require explicit differentiation of the right-hand side of the differential
equation. Thus, applying the seventh-order Taylor method to the differential equation

j + a, +siny = bcost (I)

evidently requires differentiating the differential equation five times. The formulae fill
a few pages.

Fortunately, there is a trick which allows application of the Taylor method as
an ODE solver without doing the symbolic calculation of higher derivatives of the
differential equation. We illustrate the trick in terms of equation (l). Set z sin y and
z, = cos y. Then

• = (cosvyp= :,

z,=(-sinyAy = -z ,.

Now given a point (y, :) in phase space at time t, we show how to calculate the higherderivatives of ; at time t. First of all, we can calculate z,z, from the definitions and V

from equation (1). Then, for i > 1, we recursively calculate

z,0 ) = 1 - I ) (If

I-- .

(11=0 - ) I
y j+2) =_-ay(+1 ,I+ b(cos )"1

using the differential equation and the product rule of Leibniz. The higher derivatives of
y at time t are therefore known, so we can apply the Taylor method of arbitrary order
with no symbolic calculation beforehand. A similar trick applies to the variational
equation of (1). We applied the seventh-order Taylor method to follow solutions of
both the differential equation and the variational equation. The latter is necessary for
calculating a rigorous 6-pseudo-frame for the computer-generated trajectory.
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5. Examples

As a first example, consider the Hinon map

f(x,y) = (a - x2 + by, x)

of the plane. For parameter values a = 1.4, b - 0.3, this map has an apparently chaotic
orbit. Using the method described above, a computer-generated 6-pseudo-orbit with
initial condition (0,0) and 6 = 10-' 4 was found to have a true orbit within 10- 7 for
over one million iterates. Similar statements apply for other initial conditions, and for
other parameter values.

The pseudo-orbits generated by our computer satisfied lxi < 2, IYl < 2 in every
case. In this range, the magnitudes of the first partial derivatives of f = (f1,f2) and
the easily-computed inverse f-I = (g, g2) are bounded above by 4. The magnitudes of
the second partial derivatives are bounded by 2. Therefore we used in = 2, B = 4 in
the hypotheses of theorem 3.3.

This map was originally shadowed in [6], and similar results were reported. In that
paper, a different approach was taken, which uses 96-b:t arithmetic (machine-epsilon =
10- 28) to verify shadowing of a 6-pseudo-orbit c Icuh' . in 48-bit arithmetic, i.e. with
6 = 10- 14. The method of the present paper does not require such higher precision for
this map.

This point becomes especially relevant when systems are studied that are inherently
more difficult to shadow. Consider the forced damped pendulum, which satisfies the
.,Jerentiai equation

; +av +siny = bcost.

To achieve good shadowing results for this differential equation we needed to generate
a 6-pseudo-trajectory with 6 = 10-18. We accomplish this by using a seventh-order
one-step quadrature method with an explicit truncation error formula, using a step
size of h = ir/1000. The implementation details of the quadrature method are given in
section 4.5. The fact that the quadrature error formula is explicit is critical. Without it
we could not get a rigorous bound on 6.

For the forced damped pendulum with parameters a = 0.2 and b = 2.4, there is an
apparfntly chaotic trajectory with initial conditions y(O) = y(0) = 0. Using theorem
3.3, we proved the existence of a true trajectory within 10- 9 of the computer-generated
trajectory for time t ranging from 0 to 104ir. This trajectory corresponds to 107 time
steps of the ODE solver. Again, there are similar results for other initial conditions, and
other values of a and b

The mapN f,, used ii rem 3.3 were the time-h maps of the non-autonomous
differential equation, where = t/1000. The derivation of B for the forced damped

'duluri uses lemma 4.3. Write the pendulum equation as a first-order system. Then
in lemma 4 3 is

F(t, y1,y2) = (' 2, -- sin v, - av, + b cos t).

It is easy to check that the first and second partial derivatives of F with respect to
Yi and Y2 are bounded in absolute value by 1, so that E, = E2 = 1. Lemma 4.3 says
that B = max{2,e 2h,4he6h}. Since h = 10- 8, we use B = 2,m = 2 in the hypotheses of
theorem 3.3. Note that the inverse of a time-h map is a time-'mirnus h' map, so that
the same B works for f '.
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6. Proof of theorem

The convention in this section, as in the entire paper, is that all vector and matrix
norms are 12 (Euclidean) norms. The norm of an m x m matrix A is defined in terms
of the vector norm, as follows:

AI = max IAvJ.VERI.lrl=l

It follows from the definitions that JAI = V1/ai(TA, where o(B) denotes the
maximum absolute value of the eigenvalues of the symmetric matrix B.3 Lemma 6 1. If A is an m x m matrix whose entries are at most 6 in absolute value,

then JAI < m6.

3 Proof. 141 < IAIF, where l.412 = -- ,=, a-. See [4].

Lemma 6.2. If W is an m x k matrix and x = WY, then

IYI < .,/ I - w -
V1l - I WTi -I I

'when the right-hand side exists.

3 Proof. Iyl = -V ,T WT Wy + IX12

= yT(! - wTW)y + Ix12

I ~< IyI(I - WTW)yI + Ixl2
< 1 - wT1WVyI 2 + 1X12.

3 Proof o1 lemma 4.1. Let x E W. Then x = Wy, and Ax = A WY. By lemma 6.2,

max AxI = max .4 Wv2
'%I=IXEW I I I V r 117 1 1 I ER'.!1 =13I and

max IAWYI 2 = max v.(AW)TAWy =a((AW)TAW).
yERk lyI= yERIIhl=1

Lemma 6.3. Let (v,,. Vk}__o be a 6-pseudo-frame for the matrix J, where
6 < 3/(4k). Let An be the matrix with columns {v,, . vk}. For each v E range
Ao there is a w E range A, such that dt, - wI < 2vA6lvl.

I Proof. Let v = = c, vo,; that is. v = Aoc. Define w = A c ==l cU,. Then
k'J iv- wI = Z ci(J °- Ch)

I C Ik

6< vk< 26 v 'klvl

V1 6vAOIv -

where the last line follows from lemma 6.2. 0

I
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The next two lemmas refer to a C2-map f which maps a convex subset S of R to i
R"'.. Define B, (respectively, B,) to be an upper bound on the magnitude of all first
(respectively, second) partial derivatives of all component functions of f on S. Assume
that x and x + It lie in S. IU
Lemma 6.4.

1. If(x + h) - f(x)l < m /B lhI.
2. 1 Df (x +t) - Df (x) I < i m/"mmB, Ih 1.

Prool. For a scalar function g,

Ig(x + It) - g(x)l < max 211 , I/hf vimax = I

OX 1111OX)

Applying this to each entry of the vector f, and the matrix Df, respectively, one gets i
the stated estimates.

Lemma 6.5. 1
m\/'mB2IhlI2

If(x + i) - J(x) - Df(x)hl <m 2

Proof. Each component g of f satisfies

Ig(x +/t) -g(v) - Df (v)hl < mh 'B 2

from which the result follows easily. 0 U
Now assume that ... Snk}n() and u,, U}n=O are 6-pseudo- frames for the

dynamical system on Rm,. where k + I = m. Let B be an upper bound for the I
magnitude of all entries of the J,,. Let S, and U, be the subspaces spanned by the
moving frames and let S,, and U,, be the projections onto the subspaces such that
S,, + U, = 1.

Lemma 6 6.

I. For u ( U,,

(a) IS,,J,,ul < 21ml"26 iSn+1i uI, and
(b) IS,,_lJnl1uI < 2m'i" B6IS,_JIluI.

2. For s E S,,

(a) IUn1Jn_1si 2mn'26JU,+IIsi, and

(b) iJL +,1J sl < 2m3'2B61U,-, 1 sIi.

I
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Proof. To prove 1, we use the fact that {u,,,..., N is a-pseudo-frame for {J.}N-'

If we are given u E U., there is w E U,+, such that lJu - wl < 2vJ61ul, by lemma 6.3.

IS,.+1Jul = IS.N+Jnu - S.+ w + Sn+w 1

= ISn+iJnu - Sn+IwI

<2V 6S,,+,llu!.

Secondly, we use the fact that {un,, . _ ut1}N is a mB-pseudo-frame for j-}N-

Given u E Un, there is w E U,,-.. such that JJ 1u - < 2v'imBIlul.

IS._-J', ul = ISn._IJ -,u - Sn._ I v +S,,-_Il

= ISnldJn_!u - S._tw[

I4 < Sn_1llJA-_,u - w1

. 2ma/2 B61Sn_,lluJ.

Part 2 is similar. .

Proof oj theorem 3.3. For each 0 < n < N, f. : R" --+ R" is a C2-diffeomorphism. Let
(x.)= 0 be a 6-pseudo-orbit of the dynamical system {f.}. Define J, = Df(x.). Let BI
(respectively, B,) be an upper bound for the absolute value of the first (respectively,
second) partial derivatives of the component functions of f. and fi on the union of
balls of radius 61/2 centred at x, for n = 0,..., N. Set B = max{2,BIB,). For positive
integers k+1 = m, let . {= (respectively, unI,. ... unt} 0) be a 6-pseudo-frame
for JJ;"' (respectively, {Jn}) such that {Sn| . SfkunI.u} spans RI for each n.

Define Sn = span s. Snk}, Un = span{un1. Unt}, and define 0n to be the angle

between S,, and Un. Let S. (respectively, Un) be the (unique) projection onto S.
(respectively, U.) such that Sn + U, = . Recall that ISI = IUni = csc On. Let r. and in
be numbers satisfying

IJhy rnlyl for y E Sn

IJn': < tn1': for: E Un+ .

Define x0 = x, y = :v= 0 for = 0, 1,2,..., and define

Y', = Sn(f(x,_-d - x,' +J.-l,,-) for n = 1... N. (2)

= U,,f (x,+1) - x, + J,T-,+n ) for n =0....N - 1. (3)

i1+1 . += V1. + z' for n = 0,..., N. (4)

The sequence {x'} =0 is the result of applying the refinement technique i times to the
original pseudo-orbit ( Define p by 6 = m/2 B2. Let CO = 0, Cn = ISnI+rnICn-I

for n > 0. Similarly, let D. =0,Dn = IUI +tDn+ I for n < N.
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Lemma 6.7. Assume that C,, < 6P- 112 and D,, < V-1/ 2 for n = 0,..., N. Then for
n=0,..., Nandi> O:

(a) IY'I < 2-'6C,, 4 2-'p + 1/2

(b) lz'l < 2-'6D, < 2-i6 p+ l/2

(c) lx'+1 - X"I < 21-,6p + 1/ 2

(d) Ix', ' - x°l < 46P+112 < 40B <

Proof. Statement (d) follows from (c). Statements (a), (b) and (c) are proved by double
induction on i and n. If i = 0:

(a) 1Yl =0. and for n > 0,

ly~~l 1Sl6+r._i bmll < IS,,16 +r,,_16C,,_1 < C.b.

(b) I- O< D.6, by reasoning similar to (a).
(c) Ix" - Vol '< ly.°I + tz.l < 5 (C, + DN) < 626P-I/z = 26 + 1/2.

Now we assume that (a) holds for i - 1, and prove it for case i. We induct on n.
The n = 0 case is trivial, since lyll = 0. Assume that (a) holds for the case i, n - I and
prove it for i, n:

=" = S. -_l f,.(x' 1) +f (x+.-I)-- xn YA -n +J-I Y. -i

= S.f.- 1(x .- 1) -f..-I(x 1-) - Df-(x'-,)(X' 1 - x

where we have used the facts that S,(:z'') = 0 andI

- 1- - ') Sn-l ,,-I n-I

n -+A , 1(4 1 =

by the definition of y' '--

We will bound the Euclidean norm of each of the four terms of the last sum
separately.

t S " Y ( _ -,, _ ) - A . x j - 1  D f , , - x ' - I  "( '  - x I -1 ) ) I <  I n ' " --3 / 2-B
l n-1 l n 1

, 
n-I -1 n- 1 2 n -1

m3/2 
-

4 ISI2- '- 2 32B,2'm 3/2 62p

4< ISJI2 -,
-2

since m > 2, B >S 2 implies that 6-2P > m5B4 = 32Bm312 (m/ 12B3)/32 > 32Bm3/2.



I

Rigorous verification of trajectories 977

* 2.
IS.(Dfn. 1(x'-1) -J)(Y i- +Z!:,)I IS"Im3/2B2zx-1t  X Ixi-jI i -:I

- J.-t)- nz-1~ -< - n-1- +Zn-,1

< ISnIm3 B246P+/ 22-'6" 2

IS.162' 326B62pm
3/ 2

3< ISI62
- '- 2

since 6-2P > 32B2m/ 2.

* 3.
IS.J._i-._t[, n-1Slv 1

3 < 26P-1/2 v, 62-'+16p+1/2

= 16624 v 2 263 < 2-'-6

since 6- 2P > 16v/4i.1 4.

ISA-14 J-11 1 -- 1 IUAJ-14-11

< r._tlyy,_- I + 2m3/ 2B6UI2-U'- i/2

4 -t IYn-II +86 2Pm3/2B 2-o-26

since 6-2P > 8m3 2B. < r, ,ly' _I + 2 26

Adding up the four bounds we have
Iy.I 4< 41S,162 - ,- 2 +r "1In'1

I < S.1b2-' +r,_12-'6C.,_1

=C,62-'.

This proves (a) for the case i. The proof of (b) is similar, except that we use descending
induction on n. The n = N initial case of (b) is trivial, since I.I I = 0. Finally, (c) is a
simple consequence of (a) and (b). 0

Lemma 6.7 shows that for each n, y, -- Ozn - 0, and that {x'},' is a Cauchy
sequence. Therefore xn converges to some wn in R'. The sequence Nw~}'0 is the limit
of the refinement process applied to (x}_.0. Moreover, lemma 6.7 (d) implies that
Iw - xI < 61/2

We will complete this section by showing that f.(w.) = wn+1 for n = 0,...,N - 1,
so that the {w.} represents a true shadowing orbit of {x.}. According to equations (2)
and (3), S+ 1(fn(wn) - wn d = 0 

(5)
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and

U" U. "'(w ,+ ) - w) = 0 (6)

for n = 0... N - 1. Furthermore, we have

If"(wO) - w,+1< lfn(w n) - fn(x,)l + If (xn) - x,+Il + Ix,.+ - W,+11

< mBlw - x,1l +6 +46 p " 2

< (mB, + )46P+'/ 2 +6

61/ (6'/ + 4(mB + ))<< 6/: 6i2 +m5/2B2

14(4+1,)
78=o=' '  + 25/z222---T

< 6 1/2,

A similar calculation shows that

if; - w I < 61/2.

Secondly, corollary to this calculation are the facts that

IfI,(w ,) - ',,+,I < 6"i/

I

and

R' -IOw,.+i0 - X,, I < 6 
1i 2

Thereibre J.,,(w,) and f,,'(wn+i) are within the balls around x,,,x,,, respectively, for
which the lemmas 6.4-6.5 concerning growth bounds on f. apply.

Lemma 6.8. The sequence {wv}' o is an orbit of the dynamical system {fj}. That is,
f,,w$) = w,+, for n = 0,..., N - !.

Proof Equation (6) says that U,(w. f;'(w +i)) =0. Since S.+U. = 1, w.-f;I(w,+1 )
belongs to the subspace S. We evaluate IS.+,(J,(w - f-'(w,+1 )))l in two ways. First,
using the fact that S,, + U,,+l = I,

>S, Iw,, - .fC-i(wn., i)1
> I,(w,, ';7i(w~l+i))I - IU~+1Jg1 (wn - f'(w~l+))lI

> w, - f,-i(w.i)I - 2m3i 2B6tU,,+Illw,, -f '(w,+I)I
(mB -- 2Bm321vn+u16) lw- f'I(w+ 1) 1

where the last inequality uses lemma 6.6.
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I On the other hand,

J.(w. -y-f'(w.t = f= (w.) - w.+, - (f.(wn) - w.+, - Df.(w.)(w -f '(w.+l))

+ (Jn - Df,(wn))(wn - f ! (w,+l)).

3 Since S,+t(f.nw) - wn.+') = 0 by equation (5), we have

I S"+ I( V . - f,-' (w,+ 0)))1

< 4m/ 2BlIS"+IIIw" - f'I(w.+1)I2 + m31 B2 IS,.+jIx - w"Iw, -f (w,+1)
=m'/2B,1S,,+,IlIlw,.- f- j (w,,+1) + 46P+1/2)w,-f-Iw+)

Putting the two inequalities together. we have that either w = f.-I(w,.,. ), in which
case we are done. or else

1 -~t  2Bm3/21U 1+15 < m3/2BiS.+1l(1lw,, _f,-(w,,+1)I +46P+1/2 )

I8 **< Bm3 /26 (26"/ ' + 6P
M1

I where we use the bound 6P-1/2 on IS,+, and IU,,+,I. This inequality implies that

6- ' < MS/2B2 -+1 43 + 7,OM+ ) ,
< m 512B2

since m > 2, B > 2. This contradicts the assumption 6-P = mS5,2B2 . Therefore

w, =f'(wn +) for n =0. , N - I. 0I
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1 Analysis of a procedure for finding
* numerical trajectories close to chaotic

saddle hyperbolic setst
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Abstract. In dynamical systems examples are common in waich there are regions
containing chaotic sets that are not attractors, e.g. systems with horseshoes have
such regions. In such dynamical systems one will observe chaotic transients. An
important problem is the 'Dynamical Restraint Problem': given a region that contains
a chaotic set but contains no attractor, find a chaotic trajectory numerically that
remains in the region for an arbitrarily long period of time.

We present two procedures ('PIM triple procedures') for finding trajectories which
stay extremely close to such chaotic sets for arbitrarily long periods of time.

1. Introduction
Studying dynamical systems, one often observes transient chaotic behaviour,
apparently due to the presence of horseshoes. For example, for suitably chosen
parameter values, the H6non map has an attracting period orbit with period 5 and
also a non-attracting chaotic set, and one observes that the duration of the transient
chaotic behaviour of many trajectories is rather short before they settle down on
the period 5 attractor. Other famous examples with chaotic transients are: the Hinon
map for large parameter values where almost all trajectories go to infinity and there
is a bounded non-attracting invariant set; the forced damped pendulum; and the
Lorenz equations for values of the Rayleigh number below the standard values that
have a chaotic attractor. Transient chaos is also present whenever there is a fractal
boundary separating the basins of two or more attractors.

Let M be a smooth n-dimensional manifold without boundary, and let F be a3 C3.diffeomorphism from M to itself. We denote by p the distance function on M.
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Program, and the Netherlands Organization for the Advancement of Pure Research (N.W.O.).

t Institute for Physical Science and Technology, University of Maryland.
* Rijksuniversiteat Groningen, Fac. Economische Wetenschappen, WSN.gebouw, Postbus 800, NL-9700
AV Groningen, The Netherlands.
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A region R is an open and bounded set in M. We say a region R is a transient region
if it contains no attractor. We will be studying these regions in cases where the
trajectory through almost every initial point eventually leaves the region. We investi-
gate special trajectories that remain in such a transient region for all positive time.
For example, the horseshoe is usually pictured mapping a rectangle to a horseshoe
shape; the rectangle is a transient region. The great majority of the trajectories of
the horseshoe map will leave the region after a few iterates. We are looking for
numerical procedures for finding chaotic trajectories that stay in the transient region
as long as we wish to compute them for t - 0. The main problem that we would
like to address is:

The dynamic restraint problem. Find a (nonperiodic) orbit numerically that remains
in a specified transient region for an arbitrarily long period of time.

The above problem explicitly concerns numerical (i.e. computer) procedures of
finite precision. It leads to the following problem where it is assumed all computa-
tion. can be made exactly.

The static restraint problem. Find an initial point whose orbit stays in a specified
transient region for an arbitrarily long period of time.

We will establish a procedure (the PIM triple procedure) for finding points whose
orbits will stay in specified regions in M for dynamical systems in ideal cases that
are uniformly saddle-hyperbolic systems. The unstable manifold of each nonwander-
ing point in the transient region is assumed to be one dimensional.

Let R be a transient region for F. The stable set S(R) of F is (xE R: F'(x)E
R for n =0, 1,2 .... }; the unstable set U(R) of F is tx rR: F-"(x)E R for n =
0, 1,2.... ). The set of points x for which F"(.) is in R for all integers n is called
the invariant set lnv (R) of F in R, that is, lnv (R)= S(R) n U(R). A component
of S(R) (resp., U(R)), which contains a point of lnv (R) is called a stable (resp.,
unstable) segment. We call Inv (R) a chaotic saddle when it includes a Cantor set.
We assume that for the transient region ' the set Inv (R) is nonempty.

We will refer to R\S(R), the complement of the stable set S(R) in the transient
region R, as the transient set. We will say that a point p in S(R) is accessible from
the transient set R\S(R) if there is a continuous curve K ending at p so that K\(p)
is the transient set R\S(R). For uses in dynamics, see [GOY] and (AY]. We
wouiu like to address the following problem:

Accessible static restraint problem. Given a segment J that intersects the stable set
S(R) transversally, describe a procedure for finding a point (in J n S(R)) which is
ac ible (from R\S(R)).

%c will establish a procedure (the Accessible PIM triple procedure) for finding
such accessible points in M for the same class of dynamical systems as above.

Both our procedures are based on our presumed ability to specify an initial point
p and compute the time TR(p) its trajectory takes to escape from R. In the PIM
(Proper Interior Maximum) triple procedure, we seek out triples of points a, c, and
b on a curve segment with c the 'interior' point, that is, c is between a and b. The
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triples are selected with an 'interior maximum' of the escape time, which means
TR(c) > TR(a) and TR(c) > TR(b). We then look for new triples that lie in the a, b
segment but are closer together and so are 'proper'. The most challenging cases are
those in which the average escape tin. is short so that the transient trajectories of
typical points in R do not come close to the unstable chaotic set.

The organisation of the paper is as follows. In § 2 we present the PIM triple
procedure and the Accessible PIM triple procedure; the main results for the validity
of these procedures for hyperbolic systems are stated precisely in § 3. § 4 is devoted

to the proofs of the results in § 3. In § 5, we will discuss the associated numerical
procedures (including the shadowing of the numerical orbits by real orbits of the

dynamical system). Finally in § 6, we will explain why the PIM triple methods also
can be used for basin boundaries, we will describe how the results carry over to
higher dimensional systems; and we also will argue that it is sufficient to assume
that F is of class C2.

1 2. The procedures
Let the manifold M, the diffeomorphism F, and the transient region R be as in the
introduction.

The escape rime TR(x) of a point x in M for R is defined by

Ts, W f=min (n =0: F"(x)z R}

3 T lo ifF"(x)ER for alln=0.

For the example of the horseshoe map, the escape time function T, has the following

properties: (I) TR(x) = co for x on a Cantor set of stable segments; (2) if a, c, and
b are three points on a segment L of an unstable segment J so that: (i) c is between

a and b and (ii) TR(c)> max {TR(a), TR(b)}, then the segment [a, b] c J from a
to b intersects the stable set S(R. These properties pla) a crucial role in the PIM

triple procedures, and lead to the following definitions. Let J be an unstable segment
in R. Then J is homeomorphic to an interval, and we may assume it has the ordering
of an interval. The notation (a, c, b) for a triple means that a, c, and b lie on J and
c is between a and b. Let L c J bt a 'segment', that is, a connected subset of J.
Assume L intersects the stable set S(R) transversally, and let (a, c, b) be a triple
on L. Since L is homeomorphic to an interval it has an ordering. We assume that
the ordering on J (and hence on L) is such that a < c < b; and for points x and *y

in J we write [x,y]s for the segment on J joining x and y. The triple (a, c, b) is
called an Interior Maximum triple if TR(c)> max {TR(a), TR(b)}; and (a, c, b) is
called a Proper Interior Maximum (PIM) triple on L, if (a, c, b) is an Interior
Maximum triple and at least one of the points a and b is in t,,e interior of L.

For each e > 0, an e-refinement of {a, b} (w.r.t. J) is a finite set of points a = go<

gl< ... < gN = b in [a, b]s such that

(E12). p(Ca, b]s) <-p([gk, gk,]S E p([a, b]s)
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for all k 0 <s k <- N- 1. and an E-refinemem of (a. c. b) is an e-refinement of fa, b}
as above so that c=g, for some k. I -k!-N-I

The outline of the PIM triple procedure is the following. Let R be an appropriately
chosen transient region for F and let L be a segment on an unstable segmeni J
(intersectinf the stable set transversally). Let E >0 be sufficiently small. Given a
PIM triple (a., c., b,) in L. starting with n =0. choose some -refinement P. of the
triple (a.. c., b,) in [a.. bIi, select any three not necessarily consecutive points
from P. which constitute a new PIM triple (a,.,, c,.,, b..,) on [a.. b.],. The new
triple must be "proper; proper here means [a.,. b,., ], is a proper subset of [a,., b. ],.
The condition guaranteeing the existence of such a PIM triple when E is sufficiently
smail. will be described in § 3. Note that. according the definition of PIM triple.

p([a..,. b...,b) is (I -0.5e)p([a.. b.], ) Thus the nested sequence of the intervals

{[a,, b.].)... converges to a point which we will call a PIM limit poain. The E above
can be chosen small enough that it is independent of n. We will show that under
reasonable conditions the orbit of the PIM limit point stays in the transient region

X. The choice of the PIM triple i3 typically not unique and different choices will

result in different PIM limit poin's. This 'static' problem's solution is not directly
implementable on a computer because computations are made with finite precision.
but it lead to a practical solution of the dyna.;,ic restraint problem as discussed in
§ 5.

The idea of the Accessible PIM triple procedure is like the PIM triple procedure
except that the PIM triples (a,, c,. b,) are selected more precisely so that [a., a,.,]s

does not intersect the stable set S(R) for all n =- N for some NE N. The difficulty

here is that we o-ily compute the escape times of the grid points and yet we must
be sure that [a,, a,,,], contains no points of S( R). We must guarantee the procedure
will succeed if E > 0 is small enough, where e is fixed, depending only on the

diffeomorphism and region.
Our objective is to describe the Accessible PIM triple procedure that selects in a

unique way a nested sequence of PIM triple intervals on J which leads to an
accessible point in S(R) on J. The accessible point p in J S(R) that we will find,
will be accessible using the curve [r, p]s for some r in J, so we say p will be 'accessed

from the left', that is from the side containing r. We could alternatively have chosen
to approach from the right and we would expect to find a different point.

Given an e/3-refinement P. = {x,: 0- i s N(e)} on J of a PIM triple (a,, c., b.)
in J with a. = xo< x, <-. <xN,) = b,. Assuming that P. includes a PIM triple.
then we choose the next PIM triple (a,, c,,, b, ) in P, in the following way:

() Select h,+, to be the leftmost point in P. such that it is the right point of a

PIM triple in P.:
(2) Select c,, to be the adjacent point to the left of b,, in P.;
(3) The systematic choice of a,+, in P. is the following: Let M. be the minimum

value of { TR(x,): x, E P,, x, < c,, ). We write:
a +, is the rightmost point of {x, E P.: x, < c,,, TR(x,) = Mn};

a,+, is the adjacent point to the right of ao ,. in P,;
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a' ., is the rightmost point of Ix,E P.: x-c.-,, TR(Y)= T(a;.,)}.3Case ii). If either M. < T,(a.) or M. > min { TR(x,): x, e P.), then choose a.., =
oa.., ; otherwise,
Case (ii). If M. = TR(a.) and P. is not an c-refinement of (a., c..,, b..,), then
choose a.., = a.; otherwise,

Case (iii). If M.= TR,.a.) and P. is an E-refinement of (a., c..,. b..,), and if
a., > a. or a.., = c,.,, then choose a,,.. = a,; otherwise,

Case liv). If M., TR(a.) and P. is an c-refinement of (a., c..,, be.,), and if
a..,=a. and a', < c..,, then choose a,,.. = a,.,

Repeatedly applying the Accessible PIM triple procedure leads to an accessible
point on S(R).

To understand rule 3. notice that rules I and 2 imply that the graph of TR is
rather simple on P. n [a., c.., Jnamely., TR is monotonic increasing on P. between
ao., and c.,,, and TR is non-increasing on P. between a. and a.., .These properties
follow from the fact that b.,, was chosen as far left as possible. We will show that3 after the first few iterates TR(a.) =min { T(x,): x,E P}.

3. Results
In § 2 we presented the idea of the procedure for finding a point whose orbit stays
in the transient region. In this description, we assumed that there exists an E > 0
for which every E-refinement of a PIM triple includes a new PIM triple. Furthermore,
the associated curve segment from a.., to b,,, has a length at most (I - L/2) times
the length of the previous one (from a. to b). We will justify these concepts.

Let the manifold M and diffeomorphism F be as in the introduction. A subset
A of M is hyperbolic if it is closed and F-invariant and the tangent bundle TM
splits into dF-invariant subbundles E' and E" on which dF is uniformly contracting
and uniformly expanding respectively. A hyperbolic set A, is called a saddle-hyperbolic
set if dim F' - 1 and dim E" - I. We will call a region R a saddle-hyperbolic transient
region if R satisfies all the following conditions:
(AI) R is a transient region;
(A2) Hyperbolicity property: nv (R) is a nonempty saddle-hyperbolic set;
(A3) Boundar, property: U(R)cn8R is mapped outside the closure of R;
(A4) Intersection property': each nontrivial component y of U(R) is an unstable

segment, that is, y intersects Inv (R); note that such a segment y must intersect
S(R) transversally.

We assume throughout that dim E" = I. For the sake of simplicity, we Issume
that n = 2; the more difficult case n a 3 will be discussed in § 6.

For a saddle-hyperbolic transient region R and E >0, the properties (A1) and
(A2) imply that the escape time of almos' every point on an unstable segment is
finite. (A result due to Bowen and Ruelle [BR] shows that S(R) has Lebesgue
measure zero.) Hence, one may assume that such a refinement does not intersect
the stable set S(R).

I
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If R is a saddle-hyperbolic transient region, then the escape time map T restricted
to an unstable segment J c U(R) has the following two properties, which follow

from Proposition 1 and the T-Jump Lemma below.

(i) All the points in a chosen segment [a, b]., on J will escape from R if and only
if no e-refinement of {a. b} includes a PIM triple;

(ii) TR is locally constant on an open subset of full measure of J. and if TR(x) < 00

and x is a point of discontinuity of Tl,, then

liminfTR(y)=TR(x) and limsup TR(y)= TR(x)+l.

Application. The objective of the paper is to present procedures which enable us to

obtain numerical trajectories lying on chaotic saddles, and to justify that these
procedures work in ideal cases. The examples of interest will rarely satisfy all our
hypotheses, and yet we observe that frequently we can successfully use the procedures

to obtain pictures of Inv (R) by plotting the numerical trajectory. Consider the

following example.
Let t..- difteomorphism F acting on the plane be given by

F(x, y) = (A-x 2 + M. Jx).

It is well known that the map F is equivalent under a linear change of variables
with the Hinon map. We choose the parameter values M = 0.3, and A = 3 in figure

I(a), A =4.2 in figure I(b) (and figure 2) and A =2.0 in figure 1(c). Then a result
due to Devaney and Nitecki [DN] implies that B = {(x, y): -3 < x < 3, -3 < y < 3}

includes the nonwandering set of F, so we select B for the transient region. When
A = 4.2, the nonwandering set is a uniformly hyperbolic chaotic saddle. We start
the numerical procedure with the horizontal line segment with y = I extending from

the left side of B to the right side. By using the PIM triple procedure' we obtain
a numerical trajectory consisting of tiny intervals. The result is presented in figure 1.

When A = 4.2, the region B is a saddle-hyperbolic transient region: the results

due to Devaney and Nitecki [DN] imply that B satisfies the conditions AI)-(A4).
When A = 3 we do not know if condition (A2) will hold, and for A = 2.0 we have

a non-fully developed horseshoe.
In figure 2 we present the sets U(B) and S( B) for A = 4.2 (the chaotic saddle is

the intersection S(B) n U(B)), and the accessible fixed point on the chaotic saddle
is indicated by an arrow.

The reader is referred to [NY] for other applications such as the Lorenz equations,
the pulsed rotor map, and the forced pendulum equation.

Rather than state one or two theorems the results seem best stated a progression

of ideas: (1) PIM triples exist, (2) refinement of PIM triples incluac PIM triples,

and (3) the resulting sequence of PIM triples conveige to a desirable point. The

special case of accessible PIM triple sequences must be discussed separately.
From now on, we will assume that R is a saddle-hyperbolic transient region for

F with dim E" = 1, and that J c U(R) denotes an unstable segment. That implies
that both ends of J are in the boundary of the transient region R. We know by the
Intersection assumption that J intersects the stable set S(R). Clearly, this property
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FIGURE 1. (a) Numencal trajectory obtained by the PIM tnple procedure for the Hinon map in the
transient region -3 < x, y < 3, and parameter values A = 3, M = 0.3 (b) Numencal trajectory obtained

by the PIM triple procedure for the Henon map in the transient region -3 < x, y < 3, and parameter

values A =4 2, M =0.3. (c) Numencal trajectory obtained by the PIM triple procedure for the HWnon

map in the transient region -3 < x, y < 3, and paiameter values A = 2 0, M = 0 3.
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[" I

FIGURE i-continued.

will not hold for each subsegment L of J. since J n~ S( R) is nowhere dense in J andI
one can choose the segment L lying entirely in the complement of J n S(R). Our
first restilt 'PIM Existence Proposition* characterizes the segments intersecting the
stable set S(R).I

PROPOSITION 1, (PIM existence.) Let L = [a, b]j be a segment in 1. The following
statements are eq~uivalent:

(i) there exists E > 0 such that everv r-refinement of (a, b} includes a PIMI triple;I
(fi) L contains a point of Inv (R) in its interior.

In the PIM Existence Proposition the segment L can be chosen so that it intersects
" R) only at points extremely close to one of the end points of L and so E must1

extremely small, so e depends on the choice of L. However, the PIM Refinement
Proposition, stated below, shows that a single e (depending on F and R) can be
used, once we have found our first P1 M triple. One might expect that our assumptionsI
of uniform hyperbolicity would imply that the uniformity of E would be an easy
corollary. In fact, the existence of an E for each PIM triple is much easier than E
can be chosen uniformly, and this uniformity is essential for the PIM triple pro-
cedures. In principle it can be difficult to find the first PIM triple if the initial interval
L is chosen badly.

PROPOSITION 2. (PIM refinement.) There exists E > 0 (depending on F and R) such1

f " I
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FIGURE 2. The stable and the unstable manifold for the fixed point at approx. (I 729, 1 729) for the
Hinon map in the transient region -3 < x, ' < 3, and parameter values A = 4.2, M = 0.3 The accessible

fixed point on the chaotic saddle is indicated by an arrow.

that there is a PIM triple in each e-refinement in J of each Interior Maximum triple
in J.for every unstable segment J c U( R).

The next result deals with the convergence of the sequence of nested PIM triple
segments [a,+,, b,+,]j c [an, b.]j on J, in other words, the PIM triple procedure is
valid. A sequence of PIM triples {(a., cn, b.)}.n 0 on J is called a PIM triple sequence
if (a, , c. , b.,,) is in an e-refinement of the Interior Maximum triple (a., C,,, bn)
for all n. We say {(an, cn, b.)}..-, is the accessible PIM triple sequence if (an, C., b.)
is selected using the Accessible PIM triple procedure for all n.

PROPOSITION 3. (PIM convergence.) Let E > 0 be as in Proposition 2. Every sequence
of nested segments {[an,, .]j},,, that is associated with the PIM triple sequence
{(a., c,, bn)}.n,, on J, converges to a point on S(R).

The next result is the key in proving that the 'Accessible PIM triple procedure'

is valid.

PROPOSITION 4 (Accessible PIM Refinement.) Let E > 0 be as in Proposition 2. Let
{(an, cn, bn)) .0 be an Accessible PIM triple sequence on J. Then there exists integer
N >-0 such that [an, an,,+]j does not intersect S(R) for every n : N.

Recall that a nested sequence of PIM triple intervals obtained from e-refinements

will converge to a PIM limit point on S(R). Note that the PIM limit point of the
PIM triple intervals associated with PIM triples in Proposition 4 is an accessible
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point on S(R). The next result implies that the Accessible PIM triple procedure is
valid.

PROPOSITION 5. (Accessible PIM convergence.) Let e > 0 be as in Proposition 2. If
the PIM triple sequence {(a., c., b,)} . 0 in Proposition 3 is an accessible PIM triple

sequence, then the sequence of nested segments {[a,. b.]j},o on J, converges to an

accessible point on S(R). I
4. Proofs

4.1. Preliminaries
We assume that R is a saddle-hyperbolic region for the diffeomorphism F By
Smale's 'Spectral Decomposition Theorem' [S] we know that we can decompose
the nonwandering set fi into a finite collection of disjoint closed invariant subsets
and on each of these subsets F has a dense orbit; these maximal invariant subsets I
of 0i appearing in the decomposition are called the basic sets (see e.g. [Ni] and
[GH] for the definitions and several properties of uniformly hyperbolic systems).
From now on, let r denote basic set of F From the definition of lnv (R) it follows I
immediately that either ra Inv (R) or r Inv (R) = 0. This implies that we can
decompose lnv (R) into finitely many basic sets. Note that r n lnv (R) = 0' does
not imply 'n R = 0', and r n R #0 ' does not imply 'rn lnv (R)* 0'.

Recall that for Z El the stable manifold WS(=) (resp. unstable manifold W"(z))
of z is the set of points x forwhich p(F"(z), F"(x)) - 0 (resp. p(F"(z), F-"(x)) - 0)
as n-oX; the local stable manifold Wlo,(z) (resp. the local unstable manifold
Wl'o,(=)) of z of size)3 is the set of points x in W(z) (resp. W(z)) so that p(F"(z),

F"(x)) -3 (resp. p(F".z), F-"(x)) - 1) for all integers n a 0, where 0 > 0. When
the stable or unstable manifold is a curve, we write Wl(z) and W;oc(z) for the
two components of W1o0(z)\{z), where a is either s or u.

We will call r a trivial basic set if r consists of one periodic orbit, and we call

r a nontrivial basic set if r includes more than one periodic orbit. Assume that r
is nontrivial, we call U periodic if there exists m E N such that F'" has no dense orbit
on r, and we call r nonperiodic if it is not periodic. The following results 4.1, 4.2,
and 4.4 are reformulated from [NP] and [PT].

PROPOSITION 4.1. There exists finite sets P, P', and P" of periodic points, P = P' U P",
such that for all x lnv (R):
(1) If x is not a limit point of both W" 3 (x) n!Q and W"c(x) n fl, then x is in Ws(p)

for some p E P".

(2) If x is not a limit point of both W o(x) n f1 and W j-(x) rn fl, then x E W"(p) for
some p E P'.

Proof For a proof, see Newhouse and Pali. [NP].

PROPOSITION 4.2. Let P' and P" be as in Proposition 4.1. Let U be a nontrivial
nonperiodic basic set in Inv (R). Then there exist finitely many disjoint regions R,
being diffeomorphic images of the square B = [-l, lx [-1, 1], say R,= g,(B), 1 - i:5

Nfor some NEN, such that: (1) rUnR, 0 0 for all i; (2) rc U , R.; (3) F(05R,)c

U, 1a,RandF-'(aR,)cU.R,. 1 aRwhere aR, = g,({(x, y): Ix= l,-l-y1})resp.
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8=R,=g,({(x, y): -1- x-5 1, yI = 1}) are segments in the stable set W5(P") resp.
the unstable set W"(P').

Proof For a proof, see Palis and Takens [PT].

Remark. The intersection of r with the union of the regions in Proposition 4.2 is a
Markov partition for F, see Bowen [B] for the notion of Markov partition.

PROPOSrTON 4.3. Let P" be as in Proposition 4.1. Then we have x E S(R) is accessible
if and only if x e W'(p) for some p E P'.

Proof Apply the Propositions 4.1 and 4.2.

From now on, let z e F anv (R) be fixed, and let I" c W"(z) be a segment such
that I" crosses each region Rk at least once, where Rk, 1 - k -s N, is as in Proposition
4.2. Palis and Takens [PT] have shown that there exist finitely many disjoint regions
denoted RM(IU) in UN., R, that have the same properties as the R,'s such that I'
crosses each R(I") exactly once, 1 t<-js- N(Iu), for some N(Iu) EN. Therefore, we
will assume that I' crosses each region R, from Proposition 4.2 precisely once.

There exist a CI' a stable foliation l' on a neighborhood U, of F for some a > 0,
and it is no restriction to assume that every region R, is contained in U1., 1 : i:5 N;
see [PT].

Let 7:R - Wu(z) be a C' parametrization, and define a projection 7r:F-*

U.NI R,r I' by taking in each region R,, 1 si-5 N, the projection along the local
stable manifolds into the intersection I" with that region. This projection can be
extended from r to the union of the regions R,, by projecting along the leaves of
the foliation ?'. This extension will also be denoted by 7r. We obtain (see [PT]) the
following result that says that for some iterate Al, the map F can be viewed as
expansive along unstable segments.

PROPOSITION 4.4. There exist a positive integer M and a C' ' map ,P : .U ' _(JI T

R,) -R defined by (x) = T-- o oFo- (x) such that Iq'(x)l > 1, for some a >0.

From now on, let I,,., N be N disjoint compact intervals on the real line,
and we write Y=.)JN- I, Let f: Y- R be a C ~' map, for some a>0, with the
following properties:
(1) f is C'*+ on an open neighborhood U of Y;
(2) Y" Interior(f(Y));
(3) there exists numbers A,> 1 such that If'(x)I -A, for every x E1, 1 -j- N;
(4) the transition matrix A ,. is primitive, that is, there is an integer Q>0 so that

all the entries of (A y.j)Q are positive; where A¢y. is defined by A,, I(j, m)---I
if f(lj) nI 0, and Ay.j(j, m) = 0 if f(Il) n , = 0, 1 75j, m - N.

Note that condition (2) implies that either 1, rf(Im) = 0 or 1,n Int (f(Im)) = 1,
for all l -j, m - N.

The escape time Ty(x) of x E Y underf is the minimum value n with the property
f (x) Is not in Y We define for every integer k -1:

Ak={XE Y: Ty(x)>-k}

Dk = xE Y: T,(x)=k}.
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In particular, A, = Y. Hence, for each integer k a 1 we have Ak+, is the set of points
in Ak whose escape time from Y is at least k; hence Ak.1 is the set of points in Y
that stay in Y under f k. The points in Y which will stay in Y under all iterates will
be denoted by

A = {x E Y: Ty(x) = o}

For every integer k a I we have:
(a) Ak = Ak+, u Dk ;
(b) Y=Ak+,Ul k., D, that is, Y is the union of the set of points Ak+, whose

escape time from Y is at least k + 1, and the set of points D, whose escape time
from Y is j, where I l--j - k.

Denote the length of an interval L by LI.

GEOMETRIC LEMMA 1. There exists 8 f > 0 such thatj r every integer k : 1, the following
holds:
(i) Every component of Ak contains components of Dk and of Ak+,;
(i For each component D of Dk n A, one has IDI/IAI - 3f, and each component U

of Ak+, - A, satisfies I UI/IAI 8, with A an arbitrarily chosen component of Ak.

Proof of the Geometric Lemma L For each integer i 1, we write R, for the sum of
the entries on the ith row of Ayj, 1:- i:5 N. Assumption (4) implies R, is at least
I for all i, and the sum of the R,'s is greater than N.

Proof of (i). Let k a I be a given integer. First, we assume k = 1. Let L be a given
component of At = Y, say L = I, for some j, I sj s N., The assumptions (1)-(4)
imply f(L) contains R, +1 components of D1. Since L = {x E L: Tv(x) a 2}u
{xE L: Ty(x) = 1), we have that L contains R, components of A,.

Now we assume k > 1. Let A be a given component of Ak. By the definition of
Ak and the assumptions on J, we havej'-'(A) is a component of A,, sayJ'-'(A) = 1,
for some j, I !-j - N. Therefore, A contains R, + I components of Dk and R,
components of Ak+.

Proof of (ii). We are looking for 8 > 0 such that for each integer k - 1 and for

each component A in Ak, we have A (D)/A(A) - 35, and A (U)/IA (A):>- 6f, for each
component D of Dk o A, and each component U of Ak,+ n A.

From (i) and the assumptions on f we obtain that for each k 2 1, the number of
components of Ak and that of Dk is finite. Let, for each integer k ! 1, N(Ak) be
the number of components of Ak, and let N(Dk) be the number of components of
Dk. We write, tor each k - 1, the sets Ak and Dk as the union of their components
in the following way:

N (A,) 
N(V~

Ak =U A,,, Dk = Dk,,

For each k - I and each component A in Ak, we define
Sk(A) = min I VI/IAI,V

where the minimum is taken over all components V of the sets Dk and Ak+,; and
we define = m i k(A),

A
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where the minimum is taken over all components A of the set Ak. We are done if

there exists 8 f > 0 so that Sk a 8f for all k
Let k > I be a given integer. Let A be a given component of Ak, and let D be an

arbitrary component of either Dk or A, such that A includes D. From the foregoing,
we can fix an integer n(k), I :s n(k)<- N(Ak), such that A = Ak.wk,, and an integer
re(k), 1 <- mik) 5 N(Dk) if D is a component of Elk, and 1!-5 r(k)!E- N(Ak ,) if D

is a component of Ak~,, such that D= Dk.,,,k.

Set for each integer i, 2si:- k:

Applying the mean value theorem, we tan find for every integer i, 2 ! i s k. real
numbers a, in A,.,, and d, in D,,,,, such that Ij'(a,)l .A, ,,, ' iA,-1,11-1 J,
If (d,)i IO ....... = ID_1,,,11I. This leads to:

ID,. ,A,I/IAA,.i,,,I= (iI If a,)/J'(ld,)I)' (ID,.m,,,/IA,.e.,,. (I)

From now on, we can mimick the proof of Lemma 5.5 in [Nul, and we obtain:

lim H If(a,)iJf(d,)I>0. (2)

The results (1) and (2) imply that there exists y .0 such that ID,.,,I/fAnIAklk V.
Therefore, , :- y for each k 2.

We conclude: IDI/IAI >- 8, for every component A in Ak, for every component D
with Dc A, where D is either a component of Dk or D is a component of Ak,,
for 6, = min {5, y}. This completes the proof of the Geometric Lemma I.

4.2. Prools of the PIM propositions
Let J c U(R) denote an unstable segment. Recall that both end points are on the
boundary of the transient region R, and that J intersects the stable set S(R).

We define for every integer k : 1:

Ak(J) ={xEJ: TR(x) -k} Dk(J) ={xEJ: TR(x) = k}.

In particular, .4,(J) = J. Hence, for each integer k 2t I we have Ak.,(J) is the set of
points in A(J) whose escape time from R is at least k+ 1; hence, Ak.,(J) is the
set of points in J that stay in R under F'. The points in J which will stay in R
under all iterates will be denoted by A,-(J). For every integer k a I we have:

A

(a) A(J)=AkA+(J)UDk(J) (b) J=AkA,(J)u U D,(J),

that is, J is the union of the set of points Ak,,(J) the escape time of which from
R is at least k + 1, and the set of points D,(J) the escape time of which from R is
j, where lj:5. We write D,(J)=U t, Dk(J). Note that A (J)=n'qk.oAk(J),
and J = A-,(J) u D(J). In the lemma below we will state that, if the value of the

escape time map TR changes then it changes in steps of 1.
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T-JUMP LEMMA. For every x = DA(J) there exists an e >0 such that for each y E J
with p([x, y]j)<e one has I TR(x)- Tr(y)1:5 1.

Proof of the T-Jump Lemma. Let xE D,(J) be given. We will write D '(J)= I
U'., Int(Dk(J)), where Int(Dk(J)) means the interior of Dk(J) for each k-2 1.
First, consider the case where x e D'(J). Then, by the definitions, TR is constant
on the component of D~'(J) including x. Consequently, there exists an E > 0 so I
that TR(y)= TR(x) for all Y in J with p([Xy]j)< F.

Now we consider the case where x E D,(J)\D,'(J). Let M a 0 be the integer for
which FM(x)E Bndy (Rl, where Bndy (R) means the boundary of R. From the fact I
that each point in Bndy ( R) is mapped outside R it follows that TR(x) = N + I. We
obtain that there exists E > 0 so that for each y E J with p([x, y].j) < - either TR(y) =

M or TI(y) = A + 1.
We conclude: there exists e > 0 so that for every y E J with p([x, yvs) < e either

TR(x) = TR(y) or ITR(x) - TR(y)j = I. This completes the proof of the T-Jump
Lemma.

Denote the length of a segment L c J by p(L).

GEOMETRIC LEMMA II. There exists 8 > 0 such that Jor ever, J in U(R), and .for

each integer k - I, the following holds:
(1) Each component of Ak(J) contains components of Dd(J) and A , (J);

(2) Let A be an arbitrarily chosen component of Ak(J). For each component D of
Dk(J) nA, one has p(D)/p(A) -8, and each component U of Ak,,J)nA,
satisfies p( U)/p(A) - S.

Prool oJ Geometric Lemma I!. Let J E U(R). Proof of 1). For k = i, the assumptions

(AI)-(A4) imply that AI(J) = J contains at least two components of DJ), and it
contains at least one component of A_(J). Now assume k > 1, and let A be a
component of Ak(J)., By the definition of Ak(J) and the assumptions on F, we have
F&-'(A) is a component of U(R). Hence, A contains at least two components of
Dk(J) and at least one component of Ak ,(J).

Proof of (2). Let U be a neighborhood of Inv (R) on which a C' ' stable foliation
R exists, for some a > 0. The case that a basic set is nontrivial periodic is similar
to that of a nonperiodic basic set but the notation is more complicated. Therefore,
we assume that every basic set in Inv (R) is either nontrivial nonperiodic or trivial.
For each nontrivial nonperiodic basic set F let I" and the regions R,(F), 1 :5 i S N(F),
be as in Proposition 4.2, and let U, be an open neighborhood of F such that (1)

U., R,(F)c U, c U, (2) the set r-'(I" r Ur) and its closure consist both of N(F)
components, and (3) the map p in Proposition 4.4 may be extended to T 1 

(J "n U, ).
For each trivial basic set F, let U, be an open neighborhood of F in U such that

Urn U% is empty, fo, each basic set A in Inv (R)\I'. Select an integer K -> I such
that the union of the Ur's include AK(J); the existence of K is guaranteed by the
fact that Ak(J)- W'(lnv (R))nJ as k-coo. From the assumptions on F we obtain

that the number of components of both Ak(J) and Dk(J) is finite for al k For



Chaotic saddle hyperbolic sets 203

every k > I and each basic set r in Inv (R), we define 6k(J) = minA minv p(V)/p(A)
and sk(J; F) = minA {minv p( V)/p(A):" A r is nonempty}, where the minimum is
taken over all components V of the sets Dk(J) and Ak.,(J), and all components
A of the set Ak(J) such that VC A. Obviously, 8 k(J) s (J; F), for all k

Let F be a basic set in Inv (R). Write Ur(R) = {J e U(R): J0F is nonempty.
We first show: there exists 31.>0 such that for each JE Ur(R), for all k- > 1, and
for every component A of Ak(J) that intersects F, one has every component D of
Dk(J) r) A satisfies p(D)/p(A) a 8,., and each component U of Ak ,(J) r A satisfies
p( U)/p(A) a: 8.. The case that I' is a periodic orbit is left to the reader. We assume
that I' is a nontrivial nonperiodic basic set.

Applying Proposition 4.4 and Geometric Lemma I we obtain that there exists
5,,(J;l')>0 such that 8,(J')-&,(J;F) for all k>K. We write 8,(J;F)=
minIk.K8k(J;F), then 6k(J; ')->8p(J;l ") for all I --k sK. Now we define
s(J; F) = min {q(J, F), s,(J; ')J >0 and get p(V)/p(A)a u5(J; F) for every com-
ponent A of Ak(J) and every component V with Vc A, where V is either in Dk(J)
or in Ak.,(J). Now, we define 61. = inf {6J; F): J e U.(R)}. Since U, (R) is compact
we obtain 61. = min {(J; r): J E Uj,(R)} > 0. Finally, since F was arbitrarily given,
we define 6 = min {8,: F basic set in Inv (R)), and conclude 6 k(J) -> 6 for all k a I.
This completes the proof of Geometric Lemma II.

Proof of Proposition 1. Let L be as in the proposition.
(i) (ii)': We assume that there exists e >0 such that every F-refinement of (a, b}
includes a PIM triple. If the interior of L does not include a point of Inv (R), then
A (J) 0 L is empty, and thus no e-refinement of {a, b} includes a PIM triple. Hence,
the interior of L contains a boundary point of Dk (J) for some integer k a 0. Therefore,
the interior of L intersects A,(J).

'(ii) = i)': Now we assume that the interior of L contains a point q of A,(J)o 1',
for some basic set I' in Inv (R). Select integer M- I, such that L contains a
component A of Am (J) that includes q. Let S > 0 be as in the Geometric Lemma
II. Now we select E = 82 . p(A). From the Geometric Lemma 11 we know that A
contains at least two components of D (J) whose length of each of them is at least
8. p(A), and A contains one or more components of A4 1,, whose length of each
of them is at least 8. p(A). We obtain that each E-refinement of a and b includes
a PIM triple in A. This completes the proof of Proposition 1.

From now on, we fix 6 as in Geometric Lemma 11 and e = 82.

Proof of Proposition 2. Let (a, c, b) be an Interior Maximum triple in J. First, we
assume that TR(a):- TR(b)< TR(c).

Case 1. Assume k=min .... b TR(x)< T(a). Let D be the component of D&(J)
containing at least one point of [a, b]j, for which TR(y) = k for all v in D. Then
Dc int ([a, b]j)c A, where A is the component of Ak(J) for which Dc A. Since
p([a, b] ) < p(A), applying the Geometric Lemma II gives p(D)/p([a, b]j) a 8.
Then, for every (3-refinement P of (a,c, b), with 0< P.s 3 we have PqrD#0.
We obtain: for each p E P, r- D either (p, c, b) or (a, c, p) is a PIM triple in Pq.
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Case 2. Assume mi.. TRW?_ TR (a) and TR (c) Z-TR(a)+ 2 =m +1.Then, by
the T-Jump Lemma, there exists a component D of Dm.(J) in the interval [a, c],.
Since (a, b]j lies in a component A of A,,-i(J), the Geometric Lemma 11 impliesI
p(D)/p((a, b]i) Z- 8. Hence, every (3-refinement of (a, c, tb) includes a point p of D,
so (p, c, b) is a PIM triple, where 0 < P3 .

Case 3. Assume TR(c) = TRt(a) + I = m and that Case I does not apply. This impliesI
TR (b) =TR (a). Set p3= 82; let Pp be a 13-refinement of (a, c, b), say PO =
fx,: 0si s N(P)) cJ with a = x0 <x < .. *< xhN~ =b and xk =c for some _~ ~
N(P3)- 1.I

From the Geometric Lemma 11 we get that (a, b]i contains a component D of
D.,.iV), and p(D)/p(fa, b~j) a-6*. We obtain that every 1-refinement of (a, c,b)
includes a PI M triple for each 0 <1 P S.

The case TR (b) t. TR (a) < TR (c) is similar. The conclusion is: For E = S we have:
every e-refinement of a PIM triple in J includes a PIM triple. This completes the
proof of Propositio'n 2.I
Proof of Proposition 3. Left to the reader.

Before we will prove Proposition 4, we will present a monotonicity property for
the escape time map as well as an auxiliary observability result for Accessible PIMI
triple sequences.

MONOTONICITY LEMMA. Let a and cbe two points on J, and let P c: a, c]j be aI
(3-refinement of a and c, saY P = (x,: 0!5 i~s N(P3)) and a = x0 < x, <, < xNp C.
where (3> 0. Assume that TR is monotonic on P (that is. TR(x&, I) a TR(xk), 0!5 V
NO) - 1), and TR(c) > Tt(a). Write mn = min fTR(x): X E(a, Cj} .I

Then, JOr ever), (, 0 < 13 < 8, Dm(J)n (~a, c~j consists oj one component, and it
includes a

Proof of the Monotonicit)' Lemma. Let (3, a, c, P, TN, and m be as in the Lemma.
By the definition of mn, we know that [ a, cI., is contained in a component A of
A,,MJ. Assume that 0 <1P < 8.

Suppose that TR(a) > mn. Then there is a component D of D,,AJ) such that

Dc [ a, clu. (Note that neither a nor c is contained in D.) From Geometric Lemma
11 we know that p(D)/p([a, ci) 2:p(D)/p(A) a 8 >1P; this implies Prn D 0. But
this contradicts the assumption TR is monotonic on P. Hence, m = TR(a).I

Suppose Dm(J)c r-, (a, c]j consists of two components, say D and D'. We will
assume D' includes a. The Geometric Lemma 11 implies there exists a component
U of Am,,(J) between D and D' such that p(U)/p([a, ciO) p(U)/p(A) 2 3> .
We obtain that P includes a PI M triple (a, c', b') with C'E P r) U and b'E P n DI
(since both p( D)/p([a, C].,) >1P and p( U)/p([a, C].,) >1P), which coniradicts the
monotonicity of TR on P. This completes the proof of the Monotonicity Lemma.I

OBSERVABILITY LEMMA. Let Pcai be an e/3 -refinement of an Interior Maximum
triple (ao, co, b) in , and assume TR(x) 2:TR(aO) for evenv, X EP. Let (ao,cj, bj)
be the PIM triple in P, in which b, and cl are selected as in the Accessible PIM triple

procedure, and let a,) and a: be defined as in the Accessible PIM triple procedure.
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I fP is an e-refinement of (an, cl, b,), then
(il If a'> ao then [ao, a']. does not intersect S(R); otherwise,

(ii) if a I= a0 then TR(b,)> TR(ao), a, < cl and [ao, afl] does not intersect S(R).

Proof of Observability Lemma. Let P, (an, cl, b,), a' and a be as in the Lemma,

and assume P n [ao, b], is an e-refinement of (an, cl, b,). Note that from this latter
assumption it follows that Pr)ao, c,].j is a -refinement of {ao, c'} for some
0 03<8.

Let m =min {TR(x): xe [ao, b,]s}. The assumptions 'TR(x,)a TR(ao) for all x,E
P', 'Pn[ ao, bl]j is an E-refinement of (an, c,, b,)', and the Geometric Lemma 11
imply that m = TR(ao).

Proof of (i). Assume that a'l'> an. By the Monotonicity Lemma we obtain that
TR(x) = TR (ao) for all x E [ an, a' ]s ; hence, [ an, a'l] does not intersect S(R).

Proof of (ii). Assume that a'= a0 . Suppose TR(b,) = TR(aO) = m. From the
Geometric Lemma II and the assumptions we get that the interval [aO, b]s contains
one component A of A,.,i(J), and p(A)/p([a,,, b,]j)> 8. Applying the Geometric
Lemma II again, we get that there are at least 2 components U, and U. of D..,(J)
and at least one component U3 of A..2(J) in A, and for each k, l<--k-3,

p(U)/p((a, b,]s) =(p(Uk)/p(A))(p(A)/p([a., b,]s)>8 2=r. Hence, each U",
I < k - 3, contains at least one point of P This implies b, is not the leftmost point
in P that is the right point in a PIM triple, which contradicts the assumption.
Conclusion: TR(bj)> TR(ao).

The facts "(ao, cl, bl) is a PIM triple' and 'TR (ao)< TR(bl)' imply TR(cl)
TR (a,,) + 2. We obtain from the Geometric Lemma II that there is a component D
of D ,,(J) in [a,,, cj]j such that p(D)/p([a), b,],)- :S. Using the T-Jump Lemma,
we obtain that there is a point qE Dn P with TR(q) TR(a,,)+ I and for all x in
P between a,, and q one has TR(ao)- TR(x)- TR(aj)+ 1. It follows that the point

a exists. Applying the Monotonicity Lemma we obtain m = TR(ao) <- 7R (x) -
TR(a ) = m + I for a!l xE [aO, a. ],; hence, [a,,, a] does not intersect S(R). This
completes the proof of the Observability Lemma.

Proof of Proposition 4. Let e be as in Proposition 2, and let {(a,, cn, bn)}n.;u be an
Accessible PIM triple sequence in J, that is, (an, co, b) is an Interior Maximum
triple and for n a 1, (a., c,, b,) is obtained by the Accessible PIM triple pro-
cedure. For n a0, let P. be an e/3-refinement of the Interior Maximum triple
(a., c., b.), and recall that M, = min tTR(x,): x, E P., x, < c.,}. Further, we write
m.=min{TR(x,): x, P.,). Note that the Geometric Lemma 11 implies
m= min { TR(x): XE [a., b.]s }.

We will show that there exists an integer N 0 such that for every integer
n -N: TR(a)=AM.;IT(a.,l)-TR(a.)l 1; and [an,a,,b] does not intersect
S(R).

From the T-Jump Lemma, the Geometric Lemma II, and the assumption that
{(a., c., b.)}.,, is obtained by the Accessible PIM triple procedure we obtain for
each n a0, the following properties:
(1) if TR (a.,)>M, then TR(a,,.:)=M,,;
(2) if TR(b,,)=m, then TR(b, , )- TR (b )+ 1;
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t3) if T(b.)=m. and M.> m, then m,a:_n.f+l
(4) if T(b.)> m. and M.> n, then Tt(b..,)>-m..
These properties imply that there exists a minimal integer N -:0 such that TR(x,) z
M, = m., - T(aN ) for each x. E P.

Case 1. P,. is 11o E- -finement of (a,. c..., fb.). Since a.., = a., we have t i)

T(v.) > It.., = m.v+, = T(a,,) for each x,E Pv,, and (2) (aN . .j], does not
intersect S(R). Obviously. TR(x) = TR(a.v) for all x in [aN.a..-,1.
Case 2. P.. is an E-refinement of (a rst. assume that %

By the Monotonicity Lemma. and the Observability Lemma we obtain for a., =

a'v.,: 11) TR(X)= TR(a,) for all x ta.,.a.,_,j,
(2) TR(,) 2:% , ., = m.ni, = TR(a_... for each x, E P..,. and

(3) [a... aN.,,], does not intersect St R). I
Now assurne that a%,., = a. Applying the Monotonicity Lemma. and the Observa-

bility Lemma yield. for a ., = a-.,; (I) TR(x) = TR(aN) for every x E [a,. a.,J,
(2) -,tx,) M. m. , = T. 'a..,)= T(a.,,)+I for each x,E P.-,, and (3)
[aN, aN ,], does not intersect S(R).

By induction, one obtains the desired result. This completes the proof of Proposi-
tion 4.

Proof of Proposition 5. Left to the reader.

5. Discussion of the numeri al procedures
Now we will return to the "dynamic' question addressed ir. the beginning, namely,

how can you numerically follow a trajectory on an invarian: set for an arbitrarily
long period of time?

A line segment [a, b] straddles the stable manifold of a point P i^ [a. b] intersects
this manifold transversally. In tl.e cases we zwudy, P will be replaced by chaotic
saddles (nontrivial basic sets) and [a, b] will straddle a subset of S(R). Furthermore,
in practice [a, b] will be very short and will be extremely cl-hse to the invariant set
lnv (R).

The numerical procedure goes as follows: (1) Choose 1-,ith some experimenting)
a straight line segment 1; (2) Apply PIM triple proced efine and choose PIM
triple int.rval) repeatedly until the length of the PIM triple interval is less than
some distance o (e.g. a = 10-8); call this interval 1= PIM,,(I); (3) For a straight
li'ne se.nent L with end points a and b, we write PIM,7 (L) to denote either [a, b]
if 1[a, bil < o- or the resulting interval when some PIM triple procedure is applied
. ,itil an interval of length less ihan a is reached. Note that this operator depends

oniy on the end points of L. The basic process then is itera-:1g PIM,(F(L)).
While F(L) is an interval, only Fla) and F(b) are relevant. Thus we obtain
I.., = PM,(F(I,)), a sequence of straight line segments.

We thus obtain a traJectory of tiny straight line segments I, and to the precision
of the computer (..bout 10") we typically have I,, c: F(/.), and selecting any
point x. from I,, perhaps the midpoint, we have that Ix 1 - F(x,)j is small, typically
of the order of oa. Since computers can never be expected to produce true trajectories
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(except in trivial cases such as fixed points), we may say {x,.}.o is a numerical
trajectory. We call the sequence of intervals {I.}o a saddle straddle trajector
because the interval straddles a piece of the stable set S(R) of a chaotic saddle set.
It typically approximates (after a few iterates) a basic set in the invariant set (which
is a chaotic saddle) in the interesting cases. Furthermore, a saddle trajectory approxi-
mates the trajectory of a point in the Static Restraint Problem. Despite the complexity
of the construction, we will refer to x., as the iterate' of x,,.

Remark In -ractice we find that every L-refinement of two points {a, b), with
r= 1/30, includes several PIM triples. In computing the sequence of PIM triples
(a,, c., b.) defined by the Accessible PIM triple procedure, once either case 3iii

or 3(iv) holds, and if c is more than r - lb - al from a and b. then it can be shown
that every E-refinement of the end points {a. b} of a PIM triple (a. c, b) includes a
PIM triple; in the computer program we do not use c at all. For the examples in
this paper and in [NY] we find that the Accessible PIM triple procedure leads to
accessible fixed points or periodic points, which is in agreement with the fact that
all the accessible points for two dimensional hyperbolic systems are on the stable
manifolds of finitely many periodic points.

In this paper we have shown that our procedures are valid in ideal situations.
We find it works well in practice even in less than ideal cases. From the examples
in fNY], we have seen that the PIM triple procedure works quite well for a variety
of dynamical systems.

It is important to ask if such straddle trajectories represent true trajectories of
the system. In other words, does there exist a true trajectory of the system that
shadows (i.e., stays close to) the numerical trajectory obtained by the PIM triple
procedure? When a map is sufficiently hyperbolic on the invariant set in question,
Bowen [B] obtained a result saying that each noisy trajectory in the nonwandering
set can be shadowed by a true trajectory if the perturbation is small; see [B] for
the precise statement. We will say that Inv (R) satisfies the 'no cycle condition' if
for every family of basic sets F , k...F,, in Inv (R) such that the stable set ofIr(, has a nonempty intersection with the unstable set of F,. ,, for all I <- i< M,
the stable manifold of rk,., does not intersect the unstable manifold of r,,,.
Assuming lnv(R) satisfies the 'no cycle condition* and 6 is sufficiently small, we
can show that every saddle straddle trajectory of a two dimensional uniformly
hyperbolic system with a chaotic sadole obtained by the PIM triple procedure, can
be shadowed by a true trajectory for as long as the saddle straddle trajectory can
be computed.

6. Concluding remarks
6.1. Higher dimensional systems. One of the ingredients in the analysis of the validity
of the PIM triple procedures in dimension two, is the existence of a C foliation
9;' on a neighborhood of a basic set. The existence of such a foliation for the two
dimensional case, is guaranteed by a result due to De Melo [M]. Unfortunately.
the existence of a foliation 7-' on a neighborhood of a basic set in higher dimensions
is not known, see e.g. [PT].I
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Let from now on, the dimension n =- 3. Let F be an Axiom A diffeomorphism,
let R be a saddle-hyperbolic transient region for which dim E" = 1, and assume
that for each basic set F in Inv (R) there exists a C ~ stable foliation AV' on a
neighborhood of 17, for some a > 0. Then the Propositions 1, 2. 3. 4. and 5 are still
valid. The proof is almost the same, except instead of Propositions 4.1 and 4.2 one
should use the properties of Markov partitions of basic sets. see Bowen [B].

6.2. Order of Tiferentiabilit of the Daffeomorphism. We assumed that the
difteomorphism F is C". This assumption implied the existence of a C' - expanding
map. for some a > 0, in Proposition 4.4. If F is of class C2. then it is known that
such an expanding map is C'. WVe would like to point out, that the Haider exponent
a is only used to obtain 12) in the proof of the Geometric Lemma 1. Fortunately,
we can prove the Geometric Lemma I tin particulk: property IN) for the C'-map

,p of Proposition 4.4 by combining the techniques of the proof of Proposition 6 in
[Ne] and Lemma 5.5 in [No). Thus in fact, it is sufficient to assume F is C2 to
guarantee the main results of the paper.
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Whitney showed that a enenic smooth map F from a d-dimensionai I
smooth compact manifold .11 to R- " 'is actually a diffeomorphism on .
That is. .11 and F(MI are diffeomorphic. We generaiize this in two ways:

first. :y replacing "generic' %th "probability-one" tin a prescribed sense I.
and second. by replacing the manifold If by a compact invariant set .

contained in R" that may have nonmnteger box-counting dimension 1
iboxdimi. In that case. we show that almost every smooth map from a
neighborhood of A to R" is one-to-one as lone as

n > 2 boxdimu.4 )

We also show that almost every smooth map is an embedding on compact I
subsets of smooth manifolds within .1. This ,u-gests that 'iding
techniques can be used to compute positive Lyapunov ex; ..s 'but

.ot necessarily negative L'apunov exponents u. The ?o)itixc .j.ouno%

-xponents are usually carried by smooth unstable manifoids on arctors.
We give precise definitions of one-to-one. embedding. -nd aimost e,erv in
the next section.

Takens di..it with a restricted class of maps called dela -coordinate

maps. A delay-coordinatt map is constructed from a time series of a single I
observed quantity from an experiment. Because of this. a typical delay-

coordinate map is much more likely to be accessible to an experimentalist

than a typ:ca! map T.kens:i" showed that if the dynamical system and the I
observed quantity are generic. then the dela. -coordinate map from a

d-dimensional smooth compact manifold .11 to R" *' is a diffeomorphism I
on Ml.

Our results generalize those of Takens"'" in the ,aime two Was as for
Whitnev, theorem. Namei'. -.%e replace ,!Qneric %ith probabdity-,ne .andIU
the manifold 11 by a possibly iractal ct. Thus. tor a compact u,,ariant

subset .1 of R", under mild conditions on the dynamical s~stem. almost
every delay-coordinate map F from RA to R" is one-to-one on . provided

that n> 2 boxdimi.-I). Also. any manifold structure within will be
preserved in F(A). These results hold for lower box-counting dimension
(see Section 4) if boxdim does not exist. The ambient space R can be
replaced by a k-dimensional smooth manifold in the general :ase. In

addition. ,.ve have made explicit the hypotheses on the dynamical ,%stem

(discrete or continuousi that are needed to ensure that the delay-coor- I
dinate map gives an embedding. In particular. oniv C' smoothness is

needed. For flows, the delay must be chosen so that there are no periodic

orbits whose period is exactly equal to the time delay used or twice the I
delay. (A finite number of periodic orbits of a flow whose periods are p

times the delay are allowed for p > 3.) Further. we explain what happens

I
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case that n < -• boxdiml A). In that case we put bounds on the
on of the self-intersection set. which is the set on which the one-
property fails. Finally. we give more general versions of the delay-
ate theorem which deals with filtered delay coordinates, which
tore versatile and useful applications of embedding methods.
ere are no analogues of these results where the box-counting
on is replaced by Hausdorff dimension (see Theorem 4.7 and the
on that follows 1. In an Appendix to this work written by I. Kan.

%s are descnbed of compact subsets of R*. for any positive integer
Ii have Hausdorff dimension d = 0. and which are difficult to project
e-to-one way. The requirement n > 2d discussed above translates in
e to u > 0. However. ecery projection of such a set to R'. i < k. fails

ne-to-one.
Section 2 we explain the new %ersion of the Whitney and Takens
ig theorems. In Section .3 we discuss filtered delav coordinates.
4 contains proofs of the results.

W TO EMBED MANIFOLDS AND FRACTAL SETS

U -actal Whitney Embedding Prevalence Theorem

|ume ,P is a flow on Euclidean space R*. generated. for example. by
,nomous system of k differential equations. Assume further that all
ries are asymptotic to an attractor .4. The study of long-time
,r of the system will involve the study of the set .1.

a typical scientific experiment, the phase ,pace R' cannot be
lv seen. The experimenter tries to infer properties of the system by
measurements. Since each state of the dynamical s stem is uniquely
I by a point in phase space. a measured quantity is a I.unction Irom
pace to the real number line. If it independent quantities Q . Q.
measured simultaneously, then with each point in phase space is

ted a point in Euclidean space R". We can then talk about the
3ltici 

F(state = (Q .  Q,,)

naps R k to R".
r example. suppose all trajectories in phase space R' are attracted
riodic cycle. Thus. .1 is topologically a circle lying in R". Imagine
o available measurement quantities Q, and Q2 are plotted in the
Then there is a measurement map F from A to R' given by
)= (Q1, Q2). To what extent are the properties of the hidden
)r A preserved in the observable "reconstruction space" R2?

I
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The answer depends on how the circle is mapped to R2 under F
Consider the case where R* = R3 and Q and ( ire simply the two coor-
dinate functions x, and x,. In Fie. ' a. the relative position of the points is
preserved upon projection. and we may view F(A) as a faithful reconstruc-
tion of the attractor A. If distinct points on the attractor .4 map under F
to distinct points on FA). we say that F is one-to-one on A. I

In the case of Fig. lb. on the other hand. two different states of the
dynamical system have been identified together in RA ). In the reconstruc-
tion space. which is all the experimenter actually sees, the two distinct
states cannot be distinguished. and information has been lost.

The one-to-one property is useful because the state of a deterministic
dynamical system. and thus its future evolution, is completely specified by
a point in phase space. Suppose that at a given state Y one observes the
%alue F(.' in the reconstruction space. and that this is followed I sec later
)y a particular event. If F is one-to-one. each appearance ' the

measurements represented by F(vi ,ill be followed I ec later by the .,ame
event. This is because there is a one-to-one correspondence betmeen the I
attractor points in phase ,pace and their images in reconstruction .,pace
There is predictive power ,n finding a one-to-one map.

Perhaps the measurements F(.W would not be repeated precisely. Yet I
if th, F is reasonable. similar measurements %ill predict similar events.
This approach to prediction and noise reduction of data is bcing pursued
by a number of research groups. I

Although most of the interest lies in the case that .1 is an attractor of
a dynamical system. the main question can be posed in more generalit.
Let A be a compact subset of Euclidean space R'. and let F map R' to

another Euclidean space R". Under \%hat conditions cara \e be assured that
4 is i'embedded" n R" by typical maps F' I

The precise definition of embeddiniz involves differential structure \

one-to-one map is a map that does not collapse points, that is. no '
points are mapped to the same image point. .\n embedding is a map that I
does not collapse points or tangent directions. Thus. to define embeddin,-g.
we need to be working on a compact set .1 that has well-defined tangent

spaces. I
Let I he a compact smooth differentiable manifold. (Here. as in the

remainder of the paper. the word .vnooth %%ill be used to mean continuouly
differentiable, or C'.) A smooth map F on .1 is an inrinersuon if the I
derivative map DF(.x) (represented by the Jacobian matrix of F at k) is

one-to-one at every point x of .-I. Since DF(Rx) is a linear map. this i!

equivalent to DF(x) having full rank on the tangent space. This can happen I
whether or not F is one-to-one. Under an immersion, no differential
structure is lost in going from A to F(A). 1

I
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An ernheddine of A is a smooth diffeomorphism from A onto its image

F(A . that is. a smooth one-to-one map which has a smooth inverse. For

a compact manifold .4. the map F is an embedding if and only if F is a one-
to-one immersion. Figure la shows an example of an embedding of a circle

into the plane. Figure lb shows an immersion that is not one-to-one. and
Fig. Ic shows a one-to-one map that fails to be an immersion.

Whether or not a typical map from .4 to R" is an embedding of A

depends on the set .-. and on what we mean by "typical.- \ celebrated
result o t this type is the embedding genericity theorem of Whitney.",

which says that if .4 is a smooth manifold of dimension c. then the set of
maps into R-'-' that are embeddings of .4 is an open and dense set in the

C'-topologv ,of maps.
The iact that the set of embeddings is open in the bet of smooth maps

means that uien each embeddina. aroitrari.% :mail perturbations wll still

he emoeuaings. Fle lact that the ,c[ ot emueddings h iOlt in the ,ct oi

maps means that every imooth map. whether it is an emoedding or not. is

arbitrarilv near an embedding. One would like to conclude from Whitney s

I 1,FF

A

a

F

//

'C " FA)

Fig. I ia) An embedding F of the smooth manifold .4 into R2 (b) An immersion that fails
to be one-to-one. (c) A one.to-one map that fails to be an immersion.

I
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theorem that n = 2d + I simultaneous measurements are typically sufficient
to reconstruct a d-dimensional state manifold .4 in the measurement
space R".

However. open dense subsets, even of Euclidean space. can be thin in
terms of probability. There are standard examples. many from recent
studies in dynamics. of open dense sets that have arbitrarily small Lebesgue
measure, and therefore arbitrarily small probability of being realized.

A well-known example is the phenomenon of Arnold tongues.
Consider the family of circle dilfeomorphisms

g,,,.(x)=x+w+ksinx mod 2-.

where 0 < wj - 2.: and 0 < k < I are parameters. For each k we can define
the setI

Stab k i = ) <,. < " : ., has a stable periodic orbit'

For )<k < 1. the ,et Stab~k) is a countable union of disjoint open
intervals of positive length. and is an open dense subset of [0. ].
However. the total lengt' i Lebcsguc measur-) of the open dense et
Stablk) approaches zero as k -0. For small k. the pr,-baulitv of landing
in this open dense set is %ery small. See ref. 3 for more details.

With such examples in mind. an experimentalist would like to make a
stronger statement than that the Net of embeddings is an open and dense
set of smooth maps. Instead. one would like to know that the particular
map that results from analyzing the experimental data is an embedding
with prohabilit v one.

The problem with such a statement is that the space of all smooth
maps is infinite-dimensional. The notion of probability one on infinite-
dimensional spaces do,- -ot have an obvious generalization Irom finite-
dimensional ,paces. I is no measure on a Banach ,pace that
corresponds to Lebesgue measure on finite-dimensional subspaces. None-
theless. we would lilke to make sense of "almost every" map having some
property, such as being an embedding. Following ref. 24. we propose the
following definition of prevalence. I

Definition 2.1. A Borel subset S of a normed linear ,pace I' is
prevalent if there is a finite-dimensional subspace E of 1",,uch that for each
r in V. v+ e belongs to S for iLebesgue) almost every L' in E.

We give the distinguished subspace E the nickname of prohe Npatc.
The fact that S is prevalent means that if we start at any point in the
ambient space V and explore along the finite-dimensional space of direc-
tions specified by E, then almost every point encountered will lie in S. I

I
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Notice that any space containing a probe space for S is itself a probe space
for S. In other words, if E' is any finite-dimensional space containing E.
then perturbations of any element of V by elements of E' will be in S with
probability one. This is a simple consequence of the Fubini theorem.'

From this fact it is easy to see that a prevalent subset of a finite-
dimensional vector space is simply a set whose complement has zero
measure. Also. the union or intersection of a finite number of prevalent sets
is again prevalent. We will often use the notion of prevalence to describe
subsets of functions. It follows from the definition that prevalent implies
dense in the Ck-topology for any k. More generally, prevalent implies dense
in any normed linear space.

When a condition holds for a prevalent set of functions, it is usually
illuminating to determine the smallest, or most efficient. probe subspace E.
This corresponds to the minimal amount of perturbation that must he
available to the ,ystem in order for the condition to hold ,.ith uirtual
certainty.

As stated above, for subsets of finite-dimensional ,paces the termprevalent is synonomous with "almost every," in the sense )f outside a set

of measure zeru. When there is no possibility of confusion. we %.il say that
"almost every"' map satisfies a property when the set of such maps is
prevalent, even in the infinite-dimensional case. For example. consider
convergent Fourier series in one variable, which form an infinite-dimcn-
sional vector space with basis ',e ' . In the ,ense of prevalence.
almost ever' Fourier series has nonzero integral on EO. 2.]. The probe
space E in this case is the one-dimensional space of constant functions. If
E' is a vector space of Fourier series which contains the constant functions.
then for every Fourier ,cries i. the integral of !' will le nonzcro tor
almost every e in E'

With this definition, we introduce a prevalence version of the Whitney
embedding theorem.

Theorem 2.2 (Whitney Embedding Prevalence Theorem). Let .A be
a compact smooth manifold of dimension d contained in R' \lmost every
smooth map R' - R2 " is an embedding of .1.

In particular, given any smooth map F. not only are there maps
arbitrarily near F that are embeddings. but in the .ense of prevalence.I almost all of the maps near F are embeddings. The probe space E of
Definition 2.1 is the k( 2d + I )-dimensional space of linear maps from R' to
R2 , '. This theorem, which is proved in Section 4. gives a stengthening of
the traditional statement of the Whitnev embedding theorem.

It is quite interesting that Whitney later proved the different result that
under the same circumstances. there exists an embedding into R2d. (This
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could be called the Whitney embedding existence theorem) However, an
existence theorem is of little help to an experimentalist. who needs informa-

tion about maps near the particular one that happens to be available.I
Knowledgze that an embeddir: exists sheds little information on the
particular F under study.

The example of Fig. l b shows that the dimension -'.+ I of
Theorem -1.2 is the best possible. The map F is not one-to-one on the
twisted circle .4. thus does not embed .4 into R-. Further. no nearby map

even in the ("-topology) embeds Ai. On the other liand. if a given map of
the circle .1 into R3 was not one-to-one. there would necessarily be a
prevalent set of nearby maps that arc embcddings.

The first main a021 of this section was .o express Whitney's embedding
theorem (and Takens' theorem: see belowi in this probabilistic sense. Thc
.second is to extend WVhitney's theorem to sets .1I that are not manifoldsI
Here \%e usc tile fractal dimcnsion known as hox-countinu dimension.

he hox-,.ounting i or capacit% i dimension oi a compact 'sct I :nl A"

defined as follo%%s. For a positi~e number .let i be the set of all point,,
within . of .1. i.e.. -1, = G- eR "' ~-i al. : for some it A:. Let % oil ,

denote the 'i-dimensional outer ' olume of .1, . Then 'ie ho.tounhim,.

dinL'/sWio of A is

boxdim.A ) =it - 1im log voll .l

-41 logz;

if the limit cxists. if' not. the upper (rcspccti%-ely. loweri l ox-Countiig
dimension ciin be defined by replacing the limit by the lim inif iresp.,
lim sup). WVhen the box-counting dimension exists, the appro\imate \caling
law ohl~

holds. w here d = hoxdjm(. I).
There arc ,everal equivalent definitions of box-counting dimension.

For example. R" cuin be divided into .-cubcs by a grid based, say. at point-
whose coordinates are L.-multiples o1 integers. Let .V(o be the number oI
boxes that intersect I Then

boxdim(.1 =lim l0! og V
-o -102gr

with similar provisions for upper and lower box-counting dimension. ThleI
scaling in this case is

NWI
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Even if we know the box-counting dimension of an attractor A.
Theorem 2.2 gives no estimate on the lowest dimension f6r which almost
every map is an embedding. Suppose we know that .4 is the invariact set
of a flow on R"° . and that the box-counting dimension of .4 is 1.4. In the
absence of any knowledge about the containment of .4 in a smooth
manifold of dimension less than 100, the use of Theorem 2.2 to get a one-
to-one reconstruction requires the use of maps into R oi In fact. the
smallest smooth manifold that contains the 1.4-dimensional attractor may
indeed have dimension 100. But as the next result shows. one can do much
better: almost every reconstruction map into RI will be one-to-one on A.

I Theorem 2.3 Fractal Whitney Embedding Prevalence Theoremi.
Let .I be a compact subset of R" ot box-counting dimension d. and let z
be an integer greater than Zd. For almost every smooth map /- R" - R".

I. 1is one-to-one on .1
2. F is an immersion on each compact subset C of a smooth manifold

ccntained in ..I.,

The proof of the one-to-one half o the fra, '.al Whitney embeddingprevalence theorem may be sketched as follows. Choose any bounded
finite-dimensional space E of smooth maps F so that varying F by elements
of E results in perturbing F(.') - F(v) throughout R" for each pair v; v inA. For example. the probe space E can be taken to be the space of linear
maps from R" to R". Then the probability (measured in E) that the
perturbed F(v) and F( v lie within ;: is on the order of i:". Similarly. if B
and B, are r-boxes on .1. the probability that F(B ) and F(B, intersect is
on the order of ;". Here we assume that there i, a hound on the magnifica-
tion oi F. ,is when F i,, a ,mooth map near the comtact ,ct I The ,,ct I
can be covered by essentially i. " boxes ot size :.. ano the number ol pairs
of boxes is proportional to o: -Y1 The probability that no distinct pair of
boxes collide in the image F(A is proportional to k : -'l c=;.* " Ifn > 2d. this probability of choosing a perturbation of F that fails to be one-
to-one is negligible for small i.. More precise details of the proof. as well asSthe immersion part. are !n Section 4

2.2. Fractal Delav Embedding Prevalence Theorem

Despite the beauty of Whitnevs embedding theorem. it is rare for a
scientist to be able to measure a large number of independent quantitiessimultaneously. In fact. it is a rather subtle problem to decide whether two
different simultaneous measurements are indeed independent. These
problems can be sidestepped to some degree by introducing the use of
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delav coordinates. In this approach. only one measurable quantity i I
needed.

In a typical experiment, the single measurable quantity is sam pied at
intervals 7' time units apart. The resulting list of samples :Q is called a
time series. Think of the measurable quantity as an observation function it
on the state space R" on which the dynamical system 0 is acting. EachI
reading Q, = iix)is the result of evaluatine the observation function it at
the current state .,

Definition 2.4. If (P is a flow onl a manifold Al. T is a positi'beI
number (called the dela vi and hi: At - R is a smooth function. define the
dlaY-coordinatc' iiap FRh. '1P. T): Al - R" byI

Rh/. 0P. T)(xY) = ti Mx). Itu 0 1 jn. /it 0 if MO vi

To start with a Nimple e,\ample. Ict I be a periodic orbit oi the fio\I
P We iound above that in the aosence ot dynamics. three mfuereenUnft
coordinates are rcquircd to embed I in reconstruction space. ,r more
precisely, that Almost cverv mooth map F = i f ,)rom
neighborhood of .4 to RI is an embeddin - on .1.

Now the situation is dif.ecnt. InstezA' of three functions 1. I, /, that
must be independent. t .here is a single function It. and the corresponding
map Fl/i. A. T) pictured in Fig. 2. We want to know that for almo-,t c~erV
function It from .Ito the real numbers R. the delay-coordinate map1
RhI. AP T) from .1 into R" is an embeddine. It should be stressed that this
does not follow from Theorems 2.2 and 2.3. The maps F/i. 'P. F) form a
restricted subset of all maps: whether they contain enough \ariation it)
perturb away self-crossinmzs of .4 needs to be determined. In fact. the Leneral

Fig. 2. The attractor on the left is mapped using delay coordinates into the reconstruction
space on the right.I
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answer is that they do not contain enough variation. Extra hypotheses on
the dynamical system ( are required to ensure that almost every h ieads to
an embedding of .-.

To see the need for extra hypotheses. consider the case the, . is a
periodic orbit of a continuous dynamical system whose period is equal to3 ", the sampling interval T. Topologically. .4 is a circle. In this case. F(h. . T)
cannot be one-to-one for an', observation function h. Let x be a point5 on the topological circle I. Since the period of .1 is T. hWx)=
IitP ':= . . ,- r( X)). so that F= F(h/. (P. T) maps x to the
diagonal line Ix, ..... : .'v, = . =.,, in R". A circle cannot be mapped
continuously to a line (in this case, the diagonal line in R") in a one-to-one
fashion. See Fig. 3.

The one-to-one property also fails when .4 is a periodic orbit of period3-T. Define the function oxxi = .- .)l on .1. The lunction ,a i
either identicailv zero or it is nonzero tor some x on .. in \%hich c'ahe it has
the opposite ,ign at the image point 'P. txi. and changes )ign on .1. In
any case. dx) has a root x,, on .A. Since the period of .I Is 2T. we have
h(Xu) = 11(0 1 ()) = Il0 ;rtCi)) -. Then F(h, '. T) maps \,, and
IP ,ix,) to the same point in A If x0 and 1P - I x,.) are distinct, this
says that F is not one-to-one. If \,, = -. 1.xn, then the orbit actually has
period T. ard F fails to be one-to-one as above. In the presence of periodic
orbits of period :T. Fh. 1P. T) cannot be one-to-one for an ohservation
function h.

On the other hand. when .I is a periodic orbit of period 3T. or an'
period not .'qual to T or 2T. there is no such problem. In this case thedela.-coordinate map of a periodic orbit 1 into R" i, an embedding for
.mot every observation [unction )! a Ione as the reconstruction dimen-
,ion i,, at least three. Uhe ,iatcment :or more ,-'-nerai attra.tor,, I i,,
follows.I

, F'

I?

R

Fig. 3. A two-to-one map from a topological circle to the real line.
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Theorem 2.5 4Fractal Delay Embedding Prevalence Theoremi i..:t
* be a flow on an open subset U of R". and let A be a compact subset of
U of box-countine dimension . Let n > 2d be an integer, and let T> 0.
Assume that A contains at most a finite number of equilibria, no periodic
orbits of 0 of period T or 2T. at most -;.teiy many periodic orbits oi
period 3T. 4T.- nT. and that the lineanzauons of those periodic orbits
have distinct eienvalues. Then for almost everv smooth function h on U.
the delay coordinate map F(h. 4. TI: U-* R" is:

1. One-to-one on .4.
2. An immerrion on each compact subset C of a smooth manifold

contained in A.

Where Takens -:l ;howed that the delay-coordinate maps generically
,m the C-topology ,gve embeddines of smooth manifolds ot dimension ,.
-e -substitute comoact -ets of box-countine dimersion ... .nd ::inacc
genenc with prevalent.

The assumption of Theorem 2.5 that there are no periodic orbits ,i
period T or 2T can be satisfied by choosing the nme delay r to h
suffiLiently small. In fact. ia we assume that the recto, field on . -atisfics
a Lipschitz condition. that is. .= 'xl. where 1'(xI - i 1y; < L.x- ,.
then it is known' 1 ' that each periodic orbit must have period at least - L.
Hence. if T< ,n:L. there will be no periodic orbits of period T or "7.

Theorem .5 assumes u>_,l to avoid clf-intersecton .f the
reconstructed imnage of A. To see that this requirement cannot be reiaxcd
in general. consider the case d= 1. it 2d= 2 shown 1i Fig. 4a. Let the
observation function h be the coordinate function v,. and consider the
delay coordinate map R' -- R2 defined by

F(x,.',P T" i v,ix. *,1 P viii

In the situation illus, ..... , in Fie. 4a. 1,4' ,jh))<.,((P ,ia))<
v,(a)= vIh). and \, 0 ,c)) < v,tP ;it)) < ic ) = \,(. Setting F=
F(x,. 't. T). this means that in the reconstruction , pace R2. F(a) lies
directly above Fh). and Ffd) lies directly , e F(I See Fig. 4b. The map
F is continuous on the tralectory. ,o there i, a continuous path.
parametrized by \-,. connecting Fa and Fl( i. There i, also ,uch a path
connecting F(h) and F(d). According to Fig. 4b. there must be a %alue of
v, in between where the curves meet. and two different points on the circle
map together under F Otherwise said. somewhere in between thete .,, an
,c coordinate such that the upper and lower parts of the trajectory advance
the same amount in the x, direction during the time imerval T. and thus
have identical delay coordinates. The map Ph. P. T) is not an embedding.



I If thee observation function or flow is verturbed'a smnall amount. the saMe

NTheorem 2.5 Is a special case of a sae ntabout diffeomorphisms.
Blefore statinga that version. we redefine delay coordinate maps for
diffeomorphisms.

Definition 2.6. if g is adiffeomorphism of an opensubset U of R'3and h: L' - R is a function, define t he dedaY twordinaze i"zap Ff h. -1 to: U' R
by

U (DtaJ

37 t d):

a _ _ _ _ _ _ _ _ _ __T_

F(d)

F(a)

F(b)

I b
Fig. 4 (a) A trajectory of a flow that cannot be mapped using two delay coordinates ina
one-to-one way. (b) The point at which the paths cross corresponds to a et of delay coor-3 dinates shared by two points on the trajectoi'
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We get the previous theorem by substituting g = r in the folLwing
statemenlt.

Theorem 2.7. Let g be a diffeomorphism on an open subset L of
R' . and let .4 be a compact subset of U. boxdimi A i = d. and let i > _'d be
an integer. Assume that for every positive integer p < In. the set .1. of
periodic points of period p satisfies boxdim.tAi< P-2. and that the
linearization Dg- for each of these orbits has distinct cigenvalues.

Then for almost every smooth function h on U. the delay coordinate
map F(h. g): U- R is:

1. One-to-one on .4.
2. An -immersion on each compact ,ubset C of a smooth manifold

contained in .4.

Remark 2.8. Fhe probe space ir this prevaient Ect can be taker it,
'e any set I... ot poiynomials in h .araoles %%nich includes .ill roi.no-
mials of total degrec up to 2n. Given any mooth function ,:. on I
for almost all choices of x = (c, .... 2f from R'. the function .',=
k),-,-ZA" x,Ih, satisfies properties I and 2.

Remark 2.9. The proof of Theorem 2.7 is easily extended to the
more general case where the reconstruction map F consists o a mixture of
lagged observations. The more general result ,ays that

F = hI(.v '(.\'l)'- I ,0 '

satisfies the conclusions of Theorem 2.7 as long as ,, + -,i., 2,1 and
the corre;ponding conditions on the periodic points are ,atisfied. Those
conditions arc that boxdimi . p 2 for ;, - max n.

The reconstruction of ch. :tractors using independent coordinates
from a time series was advocateu ill 980 by Packard ct ,d.'' The delay-
coordinate map is attributed in that work to a communication MIth
D. Ruelle. The metho .ctuailv illustrated in ref.. 21 is somewhat different:
namely, it is to use the value u, of the time series and its time deriva'es
i,. ,.as independent coordinates.

In 1981. Takens ' published the first mathematical result, on the
delay-coordinate map. \round the .,Ame time. Roux and Swinne\ "
exhibited plots of delay-coordinate reconstructions of experimental data
from the Belousov-Zhabotinski reaction.

In 1985. Eckmann and Ruelle'" took the idea one ,tep further and
suggested examining not only the delay coordinates of a point. but also the
relation between the delay coordinates of a point and the next point which
occurs T time units later. In principle, one can then approximate not only
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3 the attractor. but the attractor together with its dynamics. Since ref. 9 it has
become common practice to gath.;r points that are close in reconstruction

I space. and use their next images to construct a low-order parametric model
which approximates the dynamics in a small region. This idea has begun
to be used for prediction and noise reduction applications. See. for
example. refs. 1. 6. 12. 13. 15. 16. 18. and 28.

1 2.3. Self-Intersection

In the case that the reconstruction dimension it is not greater than
twice the box-counting dimension d of the set A. the map F in the fractal
Whitney embedding prevalence theorem (Theorem 2.3) will often not be
an embedding. However. if d < n. most of .4 will still be embedded. In the
case that .I is a smooth manifold of dimension d. almost every F will be
an embedding outside a ,ubset of A of dimension at most "' - ,1. If d < n.
then 2.1 - it d. and so this exceptional subset will ha~e positive codimen-
sion in A.

If A is simply a compact set of box-counting dimension ,. then the
situation is slightly different. We will call the pai: x. v of points 6-distant
if the distance between them is at least 6. Then we define the 6-distant self-
intersection set of F to be the subset of .4 consisting of all .a such that there
is a 6-distant point Y with F(x) = Fly); that is.

(F. j) = ' xe.4, F(x) = F(.) for some ive A.k -.I I> 6

Then the result is that for everv ,J > 0. the lower box-countine dimensionof the i-distant self-intersection ,et f (F. 6) is at most 2 - it for almost
every F. \ precise statement i,, given bv the next theorem.

3 Theorem 2.10 (Self-Intersection Theoremi. Let A be a compact
subset of R' of box-counting dimension d. let it < 2d be an integer, and let3 6> 0. For almost every smooth map F: R - R":

I. The 6-distant self-intersection set r(F. 6) of F has lower box-
counting dimension at most 21 -it.

2. F is an immersion on each compact subset C of an in-manifold
contained in A except on a subset of C of dimension at most
2m -it- I.

For example, consider mapping a circle to the real line. In this case
d= in = n = 1, and Theorem 2.10 says that a prevalent set of F are immer-
sions outside a zero-dimensional set. This is clear from Fig. 3. where the
zero-dimensional set consists of a pair of points. The map is at least 2 to
1 outside this set. and hence nowhere an embedding.
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On the other hand. settig d n: I and it2 in the theorem we see
that a prevalent set of maps F from the circle to the piane are immiersions.
and are embeddines outside a zero-dimensionai subset. Thus. the maps
shown in Figs. l a and lb are of the prevalent type. immersions w..hich are
one-to-one except for at most a discrete izero-dimensionail set of poitits.
Figure Ic. on the other hand. is nonprevalent. Almost any map near F will
perturb away the cusp.

There is also a ,ef-intersection version of the fractal delay embeddinea
prevaence theorem I Theorem 2.5) which one ets by making the obvious
changes. Thus, if it < :.d. then for each 6 > o there exists a subset 1 ( F. )I.
whose box-counting dimension is at most 2'- it. on which the delay-
coordinate map fails to be one-to-one. Note that the result is independent
of 6 >0. If .11 Is a closed subsed of an in-manifold contained in .4I. then
there is a subset E, of .11 of dimension at most 1n - it - I on %khich thle
map fails to be an immersion.

2.4. How Many Delay Coordinates Do You Need?

When usinie a delay coordinate map (or filtered delav coordinate mnap.

described in the next sectic' ) to examine the image R(AI in R" of I ,et .1
in R*. the choice of it depends on the objective of the investigation.
Different choices of 11 suffice for the different goals of prediction. Calculation
of dimension and Lyapunov exponents. and the dctermination A thle
stability of periodic orbits.

To compute the dimension of .1. all that is required is that

dimP.4) = dim .I 12.1

wvhether the dimension beiniz used is box-counting. [Iauhdortf. iniorrnatiofl.

or correlation dimension. The latter two depend on a probability Jcnsit%
on .4 and F(A). It is hhown in ref. 24 that for the case of Hausdortf diimen-
sion. the equality (2.1l holds for alrnozt every' measurable map F,. in the
sense of prevalence. as lone as it >, dim. I . The probe space of perturba-
tions for this result ib the space of all linear transformations from R' to R"1

\v4attila' ' proved that equality (:.I) holds for almost every orthogonal
projection F

It is rewhat surprising that there are exampi-s for which 1 2.1 Idoes

not hold lor anyv map F wvhen box-counting dimension is used. Q~en under
the hypothesis ni > boxdim A I. An example of this type is given in ref. _'.
However. in most cases of compact sets which arise in dynamical ,vstems.
we expect Hausdorff dimension to equal box-counting dimension.

In pr .ical situations. if attempts to measure boxdimt.) result in
answers dependent on it. where nt > boxdim A4). then the % ariation would
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seem to be a numerical artifact, since there is no theoretioa justification for
which of the values of n greater than boxdimIA) gives the more accurate
result. The usual technique is to increase n until the observed dimension of
boxaim F(.A) reaches a plateau. and to use this -esult. The resulting
number might be called the piateau dimension. While the plateau dimension
may indeed give the best numerical estimate of the dmension of A. there
does not seem to be theoretical or numerical justification of this bias. and
the question needs further investiation. Notice that n > boxdimi.4 does
o'it guarantee that almost every F is one-to-one. but that is not required
for dimension calculation.

If the objective is to use F(.) to predict the future behavior of trajec-tories, then it is sufficient to have the map F be one-to-one. In which casen > 2 boxdimt.4) is needed. Knowing the current state in Ft -11 is sufficient
to predict the iuture of the traiectorv tat least in the ,hort ,un i. In the
,ituation 0I Fig. lb. on the other hana. prediction on the periodic ornit
would ,tlt be possible. except when the trajectory was at the rmrdpoint otI the "figure eight.'

If the objective ,s to compute the Lyapunov exponents of the system.
it is necessary to ask which exponents are to be cor.. ;uted. For a simple

I example. .uppose the attractor .4 is a periodic orbit. Then the best p.issible
result of the examination o F(.A) is o observe that t is a Lvapunov
exponent. The other exponents. presumably all negative. cannot be
observed without introducing perturbations. IMore generally. if an attractcr
.4 lies on a manifold of dimension ti (as a 2.2-dimensional attractor might
lie on a three-dimensional manifold), it will certainly he impossible to
measure more than in true exponents from an embedding, cven tf thL
reconstructed image F.) lies in R" ith n > m. There are no criteria for
determining, the smallest manifold containina 1

Theorems 2.3 and 2.5 say that if t > 2. boxdimt.l ). then almost every
F is an embedding of all smooth manifolds that lie in .1. The ,mooth
manifolds we have in mnd are the surface corresponding to the unstable
directions on the attractor .1. that is. the unstable manifolds. Under an
embedding, the differential information is preserved along ,ilooth direc-tions. ,uch as unstable manifolds. indicating that positive Lyapunov
exponents should be computable from the image F(.I).

The stable manifolds, on the other hand. will be likely to intersect .1in a Cantor set. The image of a Cantor set in F(A) ma,, he quite com-
pressed. For example. a set which is the product of five Cantor sets whose
dimensions sum to 0.5 might be mapped to a one-dimensional line in F(A).I It seems difficult to recover any exponents in these directions from
knowledge of the reconstructed dynamics in FA).

I 3The self-intersection results in Section 2.3 are aimed at another kind of
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question. A relevant experiment involving a vibrating ribbon is described in
refs. 8 and 26. In this case. the Poincare map has an attractor whose
dimension was experimentally calculated to be 1.2. The investigators were
interested in determining the eigenvalues of the linearization of a period-3
point on the attractor.

Using a delay-coordinate map of the attractor into R2 did not result
in a one-to-one map, which is consistent with our results in Section 2.2.
Theorem 2.10 of Section 2.3. which deals with self-intersection. suggests
that the subset . of A on which the map into R2 fails to be one-to-one
should have dimension at most 2,- = 2 x 1.2- 2 =0.4. They found that
the self-intersection set looked like a finite set. If .1 indeed has dimension
0.4 or less. as we w..i expect. then the set . would be unlikely to include
the periodic point in question. and the delay-coordinate map would be
expected to be one-to-on- in a neighborhood of that orbit., Numerical
investigations of the dynamics near the periodic orbit revealed that the
dynamics did uppear to be two-dimensional, and the researchers \%ere ,1le
to estimate numerically the eizgenvalues of the orbit at these points.

3. THE DELAY COORDINATE MAP AN.) FILTERS

3.1. Main Results

So far. we have defined the delay coordinate map .- F(Ih. ,,.v from
the hidden phase space RA to the reconstruction space R". Under Ntiitable
conditions on the diffcomorphism ,, the delay coordinate map Fit. ,,i is
an embedding for almost all observation functions 11. In this formulation.
information from the previous a time steps is used to identify a .tatc of the
original dynamical system in RA.

For purposes of measuring quantitative invariants of the dxnamical
systems, noise reduction, or prediction. it may be advantageous to create
an embedding that identifies a state with information from a larger number
of previous time steps. However, working with embeddings in R" I, difficult
for large i. A way around this problem is to incorporate large numbers of
previous data readings by "averaging" their contributions in ,ome ense.
This problem has also been treated in ref. 7

To this end. generalize the delay-coordinate map F(h. ,r R' -- R".

F(h, g)x = th(x). h(g(xn..... hig"

where the superscript T denotes transpose. by defining the fi!tered deluv-
coordinate map F(B, h, g): R' - R" to be

F(B. h, g)x = BF(h. g)x (3.1)
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where B is an i x w constant matrix. Thus. each coordinate of F(B. h, g)x
is a linear combination of the w coordinates of F(h. gjx. Here we are
considerng the case where . is a diffeomorphism. for notational
convenience. Everything we say applies to a flow P by setting g equal to
the time - T map of the flow. We will call it- the iwindow length of the

, reconstruction, since there are w evenly-spaced observations used. We call
tn the reconstruction dimension. since R" is the range space of the map. We

may as well assume that n <, w and that B has rank n: otherwise we could
throw away some rows of B without losing information. Assuming that B
is a fixed matrix restricts the filter to be a linear multidimensional moving
average MA filter. Autoregressive tAR) filters in general can change the
dimension of the attractor.' ,o,

If B is the identity matrix (denoted 1). the map is the original Takensdelay coordinate map. \s stated in the previous ,ection. in that :ase.
t(1. ' t h,. 11) is almost always an embedding ab iong .:b n i, greater
than twice the box-counting dimension of the attractor Ind the periodic3 points of period p less than n have distinct cigenvalues and make up a set
of boxdim < p,'2.

Under Fl: ring, some complications are caused by the existence ofI1 periodic cycles. On the other hand. the next theorem states that in the
absence of cycles of length smaller than the window length it. every movine3average filter B gives a faithful representation of the attractor.

Theornm 3.1 (Filtered Delay Embedding Prevalence Theorem .
Let U be an open subset of R', g be a smooth diffeomorphism on C. and
lt .1 be a compact subset of U. boxdimA.)=d. For a positive integer
n > 11. let B be an it x it matrix of rank I1. Assume ,, has no periodic points
Of period less than or equal to t Then tor almost c%erv \mooth function
hi. the delay coordinate map Ft B. i. ' L - R"i.

I. One-to-one on .1.
2. An immersion on each closed ,ubset C of a .mooth manifold

contained in .4.
The probe space for perturbing I can be taken to be any ,pace of poly-

nomials in k variables which includes all polynomials of total degree up to
2w. Furthermore. in case it,< 2d. the results of Theorem 3. 1 hold outside
exceptional subsets of .4 precisely as in Theorem 2.10.

For example. consider the3 x 9 matrix

I i 0 00 0

B=I0 0 0 1 1 1 0 0 0 (3.2)

(0 0 0 0 0 0ii
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Then

F(B. h.g ., = x ( lx) + hi gt.x n + hgit.) x).

( vi I" Y" 1) + hI g4( .x" ) I + h4 .( + h i ,

O(h( .l ' 1) + h( t.v)) + hi g'(x))))

Although the map F(B. It. ,., uses information from 9 different lags. the
moving averaae*" reconstruction space is only 3-dimensional. According to

the theorem, if the dynamical system , has no periodic points of period less
than c = 9. then FiB. h. ,, is an embedding for almost all observation
functions I.

Remark 3.2. When the diffeomorphism , has periodic !,,oints.
,:ertain special choices of filters 3 will cause seif-intersection to occur i , ti
periodic points. However. under the genericity hiypotheses on the oA'narn!.
cal system of Theorem 2.5. for example. almost all choices of an Ii ,
matrix B imply the conclusions of Theorem 3.1, This follows from Remarks
3.4 and 3.,. A more detailed 'oew of the effect of periodic points otf the
dynamical system is given in Sections 3.3 and 3.4.

3.2. Examples of Filters
In this section we will list some examples of filters that may he useful

in given situations. The easiest example is a simple averaging filter. For any
integers in. n. let B be a n x in matrix of form

(111a. In )
I'm ... I in

where there are in nonzero entries in each row. In the presence of' noise.
this filter :,hould perform well compared to the more standard delay-coor-
dinate embedding which uses every rith reading and discards the rest.

A more sophisticated noise filter was suggested in ref. 5 for a slightlk
different purpose. and elaborated on in the %ery readable ref. 2. where it i*S
used for dimension measurements. It is based on the singular value decom-
position from matrix algebra. also known as principal component analysis.
Let Yt, .... Y.L be the reconstructed vectors in R". where L is the length of the
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data series. Following Broomhead and King. 51 define the L x tv trajectory
matrix

where the i are treated as row %ectors, The ot'artance m"ctrux of this
multivariate distribution is .41.4. The off-diagonal entries of .4'.4 measure
the statistical dependence of the variables.

The singular 'alue decomposition''"' of the L x it- matrix .1. where

3 = V'SLUr .4

where 1 .. an L L orthouonal matrix. C I,, a it x it orthogonal matrix
Ithis means that 1' 1=/, U '= i). and S is an L t diagonal matrix
t meaning that the entries a., of S are zero if i - ). By rearranging the rows
and columns of V and I. ,e can arrange for the . mnqdur ralu,. of. I to
s rt, a :,. .- . 0. The bottom L - rows of S are zero.

The ,ingular value decomposition suggests the uhe of the lilter 8= (.
That I.N. instead of plotting the %ectors V ..... i, in reconstruction space R".
plot the ectors U, ..... .'.. One immediate positive consequence of this
change of variables is the ,tatistical linear independence of the new
variables. The covariance matrix of the new trajectory matrixI ()
is .A,) r. IU = SrS. a diagonal matrix.

In practice. one can do better than 8 = U . This 14 because some of the
nonzero ,ingular Nalues are dominated by noise. .\ rule of thumb ih to
ignore (by ,citing to zero I all singular \alues below the noise floor of the
experimental data. Ignoring all hut the largest A ,ingular %alues Is
equivalent to letting the filter B in Eq. IS.1I be the top A rows of Lr. The
rows of L r are orthogonal. so B is still full rank. Theorem 3,1 implies that
F(B. h. g)j will typically be one-to-one and immersive.

This program was followed in ref. 2. in the context of measuring the
correlation dimension of chaotic attractors in a stable way. They used a
filter B that consisted of the rows of Lr that corresponded to singular
values above lo - '.
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3.3. Conditions on Periodic Orbits Which Imply One-to-One
For special filters B, conclusions I and 2 of Theorem 3.1 can fail. but

only for periodic points. That is. some periodic points of period less than
,'may be mapped together under the map F( B. It. .).

For example. assume

B=( i , ) I- -0
(0 1

4 4 4 4 1

and assume that g has a period.4 orbit, that is. g.(x) = v. Then for any h.
F(B. h. g) maps all four points of the period-4 orbit to the same point in
R' so F(B. h. g) fails to be one-to-one. There is no way for any observation
function to distinguish the four points. ,ince their outputs are being
,iveraaed omer the cntire cyclc. Thus. the filtered delay coordinate map luk.
tor ail observation functions i. to be one-to.one.

A similar problem occurs with the filter

0 0 0 t 3.61,0 0
Now

F(B, h, . " = t!h(.\') + h(g-(.\'))),

I((¢.") + ht( g:\I1v M.

\ssume that ihe period.four orbit , o , constts of \ v.. .=,t\,,
V1 = .t Vol. and x, = &.\,). Now \,, and , are mapped to the hame point
in thc reconstruction space R' by F(B. h. v i. and the same goes for .\ and
v'. Again. the map cannot be one-to-one tor any h.

A second obvious problem can be illustrated when the dynamical
system has more than one fixed point. No matter how It is chosen. the filter

-- I - 37
3 0 0B= 0 t- t) t 3.7)

maps all fixed points to the origin in R', violating the one-to-one
condition.

In each of these situations, the underlying dynamical system g may
dictate that some periodic points will become iu,...:fled under a particular
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' filter B. no, matter how- aeneric-' thd obser~aionri function I:.,On, the -other
hand.,these identificationis, occur. only at periodic ,points. Further., even, in,
i he, case of, periodic points., it turns out, that the restrictions onl B edxem-;
plified- by 'the, three cases aboveare the only restrictions. That-.is. ifthds&,are,
avoided. then' F(B. Iz. g), is one-to-one for a-prevalent set of observationft functions h~.

To be more precise about tihese restrictions'. we need to -make, some,
definitions. For each positive integer p. denote. by ..4. the set of period-p'
pointsof g lYind on 4. That is. A, P' .\ .4,: g (x) =,. . 'Let 1,, denote the
a x-i identity matrix and (.jdenote greatest common, divisor. WVe wvill use
!he convention that (p. 0)= 0. For integers p > q > . define the

P x Ip -(p. q)) matrix

Define C " to be the r. x (p- (p, q1))) matrix formed by repeating the
block (',., vertically, and for a positive integer it. define' C";: to be the
matrix formed by ?he.top, ' rcws of C"~I Theorem 3.3, Let C be an open subset of. R'. let q be' a-- smooth
diffeomorphism on C. and let .jI be a compact subset of' U of box-countinig
dimension d., Let it and it be integers satisfying ivw n > 1. Assume (hat B
is an it x it- matrix of. rank /1' wvhich saUtisFc-s:,

Al.. rank' BC;:: > 2, ho xdim(. I, for all, 1I p < vIA2. rank bC~ oxdimAjib'r a lit I p ~w

Then for almost, everv' smooth function/h. ,F(B. It. -' is one-io-one (inI Remark 3.4. Note that 'rank C,,, = p -T(p. qj). and so rank. C"IN
mill'wi. p- (-p, q) I It follows that rank BiC" min~n.- p: and rank BC". 3Iminn. p12 1 for B = /,,-and also -for almostuevery it x it matrix B.

To illustrate the restrictions that Theorem, 3.3 puts on moving average
Filters, assume that B) is the S, x 6 matrix 0.5). In particular. the filter B3 must satisfy condition \2 for'p =4. q = 1. which means

I 0 o)50 1 0

rank,.B > boxdim .43 - 0-I 0
010
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The rank on the ieft-hand side is Zero. however. and-if there exists any
period4 orbit. the filter t3.3) fails this condition. This is consistent with
.hat we have already noticed: in the- presence- of-a- period4 orbit, the-map
F(B. h..gJ is ndt one-to-one for any h.

The filter 13.6) satisfies the above conditio-dhas lone as there:ate finiteiv
many period4 orbits. However. it fails condition A2 for P = 4. q 2. which
.equires

I)

tankB -1 0 boxdim.4 1

1 0

This is aiain consistent with our earlier observation.
Finaily. if there exist fixed points, the tilter i. l'aiis the condmon X I

for ) I- if there exist fixed points. That is because condition A I requires

rank B I > 2-boxdim A1,

Since the rank on the left side is zero. the cohdiigdn fals unlegs the .et of
fixed points is empty.

34. Conditions on Periodic Orbits Which .lmo!V. an Immersion

Therc are also rather obvious situations When. cttaui -filters cause
F(Bh Iig) 16 fail' anan immersion. Asstiethav- -is 
a circle that has a fixed point x. Assume-that the derivative of if- qt v -is -2.
Consider the filter

B . 3.9)

In this case. the map F(B. h.g) cannot be an immersion at x forany obser-
vation function h. For a tangent vector c in T,:.= RI. the.derivative map
is
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Vh(xI "r

" D F ( . h ., x j V h ( " " _gtx i - ,

\ V h lg - X I Dx i D "  x" I 

I. =6 OlVh(xjic. =t)

I ) 7 ..Vh1( x1"1. - ., r I

so-the tangent map of F(B. h. -, at x is the zero map.
In the case of an ie-dimensional- manifold A! with a iixed potnt X. .t

can be checked that fo- a filter B of this. type. F(B. I. -,I wlii fail to he an
I immersion f r all.h as ionri- as -the iinearization " . . as- on _: .env'aiue
ot .. .is n the one-to-one case. the immer ion-u%%il fa.i oniv ,,r ncriouic
points.

To be precise. given numbers c,.c,. define the . <rp matrix

:1D'~... cjf.- "' (' 3.10)

(310
where I,, denotes the p x p identity matrix. For a- positive integer %i. let

.. . . . . . . .... c,) be the matrix formed by the top w rows of D ..... cj:If the
c, are distinct. then rank D,(c, ..... c% = min, w. rp,

Theorem 3.5. Let C he an open subset of R'. !ct , n'e .I ,mouthI.- d iffe9morphism on C. and let .1 be a compact ,ubset *,i a ,mooth-n- an _7 .. , • L. ,

-manif~fold in '.. Let w and n b iefiid-NftKsfvingiv w-. '. .ssume-0t,-
the linearizations Dg" of periodic orbits of period p less than or equal to
w have distinct eigenvalues. Assume that B is an n, x w matrix of rank ,,
which satisfies:

A3. rank BD;*(l.,. . > oxdim P r - for all I < p < iv

In<. and for all subsets 4.' ... of. eigenvalues of the5 linearization at a point in A.,

Then for almost every smooth function h. F(B. h. g is an immersion on .4.

Remark 3.6. See Theorem 4.14 for a- proof. Note that since rank
( = min w. rpl for distinct eigenvalues ,;,. it follows that rank

BD= min{n, rp,} for the original delay coordinate case of B = 1,, and also
for almost every n x ivmatrix B.
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TO illustrtethe- condition X) is z~ :~. o i~ 39 hn~
asafixed point with Un eiOgenfaiue of 2. .at -c6nditi~ii reciuiret' that.

-rank ~D(-2 >Q. but

OD 2r1j

4. PROOFS

This section contains the proofs of the esults stated above. After
some fundamental- -lemmas, w6 !ivye -thc -proofs of the WVhitney forms of
the qmbedding theoremts. These follow 'Umma-4-I1. The proofs.-of the
-delay-coo rdi nate- forms involvinia 11lters. Theorems 3_3 and 5. :oilow
immediateiy frm. Theorems -',L3 and --14 _rSpeCtIVeiy. FhIS ,:CEuon
concludes with the proof of -Theorems 2.- and .-. which ard sed:ai, casds
of Theorems 3.3 and 3'.5.

Lemmra 4.1. Let i ar's /. be positivc i.atesvers. j%...v, distinct
points in R'. and.it, .... it,, in R. c,.. L-in- R'.

1. there exists a Oolynomial Ii in A variables of degree -at most 1 - I
such that l'or = I... it. hIv, ,= it..

2.- There exists a polynomnial-/i in-k variables of dearce-at mnost n such
that- for i t . .V/~,~v)

Proof. L. We may assumc. by linear chanize of coordinates, that the
first- coordinates of ..... .. are distinct'. Then. ordinary onfe-\ .nable inter-
polation- guarantees such a- polynomial.

2. First assume A = 1. There exists I poi,nomial of dciiree at most
n - I in one variable that inter-polates, the data. The antidcrivative- Is the

In the general case. by a linear changc of coordinates. may assume
that -for. each j L..k. the ifh coordinates of I,, are distinct. The
above paragraph shows that for j =Ik -there is a polynomnial of degre
at most n in the jth coordinate . whose derivative h\%. interpolates the 1ath
coordinate of it, for i n ~i. The sum of all k of the -se polynomials is a
polynomial of degiree at most n which satisfies-the conclusion.

Lemma 4.2. Let Ft'x) = x + h be a map from R' to R". where Nt
is an~tn x t matrix and R". For a positive integer r. let - - 0. be the r th
largest singular value, 01 M. De'note by- Bp, the ball centen.- a.. the origin
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.of -radius, p in RK. and' by. B the bal c~rtrtd ar theiorigin of radius,6 in,

R.Then

Vol ;B% ) ,

Proof. Note that- -decreasing aiV 'v singular, value of A- does-not
dtcrease the Ieft-hiand,,side. Thus we ntay asgumne that the singular values
'O jlf..atis*ya. LetJM=_ VSUrbe,
the sinIgular--value tuicOmnposition of M. Here S is a diagonal: matrix with
'entries a . and all, other. entries zero. V is an inx n
orthogonal matrix. and" U is~a ux torthogonial matrix.

Sihke the columns of 'U and J each- form an orihonormal, set. we
recop-hizc AID., =j VSL'r ,_as an r-dirnehsional, ball of radius a olvinL!T in R1.
In fact. the first r columjns of V-mdhtniied- by th-e factbr r,,) d di which,
span _A1B,,.

The set, F n-~ -Bp, consists of the, vectors in B0 whose image~by A!
lan 'ds in a ball, of radius 6iin R". This is a- cyliridfrial subset of B',. with 'base
dimcnfsion r and -base radius,a. The subset thus has i-dimrensionial volume
less than W6aj'C~ ',, where , r~~,) eoe the volumeo
ihe r-dimc-nsional: unit ~ball. The volume-OTAB, is p'C,. so

Vol 11,F(B,s) (Iap q

Lemmiia 4.1. Let S be a.bounded subset of R'. boxdimi) =-d. and
let-~ ,~G be 'Lipschitz maps from- S to R". A\ssume that for each v
InS. the--rithiarg "s-sin ulaf-valtie of-he ,rx trnatrix-

M~ :G H G CJ.v

is at least T>O0, For each :ce R' define G,, Gj-i-+ x.G.. then for
almost every in R', ihe-set. G --'(0) has lower box-countina dimension at
most, d- 1% If tr>d.L then, G;(01 is empty for almost every X..

Proof. For a positiv'e number p. define the set B, to be. the ball of
radius p centered at- the origin in R'. For the purposes of proving the
theorem, we may replace R' by, B.. For the remainder of the proof. we will,
say that G, has some property with probability p to mean that the
Lebesgue- measure of the set 'of a e B0 for which G% has the property is p
times the measure of B.. For example. if xc-S, then Lemma 4.2 shows
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,that e.iG~ '+ 'J for c C-3 B., wh -Probabiltatios

Ldt_ D > d'. and'let,.., - 0 be- such that-for 01 < c~ , the foll'owing,two,
facts hold. First, S can: be covered -bV i: "~ k-diriihsionAi balls B(x. c)o
r adius-e. cenitered, a t xqS. Second.,by the zLipschitz- codition there -exists
a constanit .C such that-the irbagt under any G'.~'..o~.~~bl nR
intetse~cting S is contained' in a, -C-baliL i R*7. For ,thd-remaindif Of the
prdof., we assume c <-j)

The probabilit -y that the set Gj((.,: ij ii o is ,at most -the
Probability 'that ;G,(x )I < Cc. which is a constaint, times L'. s ince 1) and' r,
are fixed. For' any,positiv& number It. the probdbilitv that at least V! of
the c'n' images- -G (B(x. cy)- contain 0, is at most, -C V'"f' Therefore.

G,' 0.can be covered by fewe& than Mt'='i: " of, the i:-balls. except with
probability at -most re 1. As lone as h > D-- r 'this probability can-
be-made as small as desired' bv deceasing i:.

Let p > .0. There-is a sequence ;;a pprouching o such-that (J'0
can-,be-covered.-bv fewerthan zi: "halls~except--for~ probability at most, 1
Thus, -the lower'boX-Co untinpg' dimension of G. "(0), is at 'mo 'st h.except
for a probability p, subset, of :(. Sne/>0wa' arbitrar., lower
,boxdi'r1 fG;'01v<I for almost- e"ery :c. Finally. :since -this 461&d for all
h.> "d -r. lower bdxdimt G 7(0)) I-r 3

Remnark4. In case boxdimi Sydoes not, exist. the hypotheses Oif
the lemma can b'e slightly weakened by allowinii d to, be the lower hox -
counting, dirridnsion of' S. A slight- adaptation of -the' -proof sho s that
boxdim can, be replaced ' throughout Lemhma 4.3 by Ha4usdorff dim ension.
In, particular.i ir > HD-S'). -thenG ;7'M, isempty for altnost every c in R'.

If in 'Lemmba 4,3 we assume that rank(M,) ;4dfor each xye.S-instead:
of the assumption on the siniiular values, then 6,10V-Is empty for almost
every x. That is because one can apply Lemma 4J3 to t he' set S, c- ' S E
rth largest, singular value, of' Af,,>_aT to gev -I~l)~~.then

SU>S, implies G;"(0) =,. We state- this fact in the next lemma.

Lemmna 4.5. Ldt S be a bounded subset of R'. boxdimiS) = d1. and
let Go, G ... G, be Lipschitz maps from S to R". Assume that- for each x
in S. the rank of -the n x t matrix

GVb G,1 (x-.

is at least r. For each i c-R' define G, =G + 1 xG,. Then for almost
every 2 in R'. the set G,-'(0) is the nested countable union of sets of lower
box-couritihg- dimension at most d -r. If r >d.1 then G -'(0) is empty for
almost every 7.
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Lemma,,4'.6. Let A "be a compact subset ,oflRk. Let.F, ,,., F, "be
Lipschitz maps ftom A .to R-". For each, integer r ,., let S7. be the -set of"I pafrs "-Y in. A for .which the trx-r, matrix

'a j-(X' Flo") .... .F( -F

'has ,rank r. and, let d, =lower. boxdim( S, Define F.- F)- ._,,
.4,7: R?. Then for =. .. outside a measure zero subset of R'. the

II ,flowing hold':
I. fd .<r for Aintegers r >,O., then-the map F, is one-to-one.

2. If d , r for some integerr >. 0. then for every (i > 0. the lower box-

Pro o. V:or t= 0.... deline G, I ( -i i. On the Net, S..
the rank of the n x t matrix

;s r.
If r> d,, Lemma 4.5 show that for almost every x e R'. the origin is

not in the image of S, under the map G, = ,.- , ",, or equivalently.Ii o,(x) ; F,(y)1Tor v ,i' in S,. If r > I, for all r. then F, i., one-to-one. since
3 1each pair x H les- in' some S,.

If ,.. d,, let (A x A ,, = , (x, y I q.4 x A: ,x - Yl ti, bebthe subset of-'1. (-distant pairs ,of points in . x A. Since (A x A),, is compact for any J > 0.
the minimum of the nth singular value of V,, in A< .I , ,. greater than
0. Lemma 4.3 shows that for almost every i. the orin i i ..i I 1< 1)J)

for a subset of (..I x 4 ),, vith lower box-counting dimension at most a, - r.
Therefore the (-distant self-intersection subset (F,, )of .A. which is the
image of this subset under the projection of (A x .A), to A. has dimension
at most d,.-.r. 3

Theorem 4.7. Let I be a compact subset of R' , lower
boxdim(.-l) = d. If n > 2,d. then almost every linear transformation of R' to
R" is one-to-one on A.

Proof. This follows immediately from Lemma 4 6 and the remark
following it. Let 'F,l be a basis for the nk-dimensional space of linear
transformations. For each pair x - y, the vector x - v can be moved to any
direction in R" by a linear -transformation. In the terminology of
Lemma4.6. S,, =Ax- A- and S, is empty for r-#n. Since lower

I boxdim,) - 2d< it. almost every F, = P,F, is one-to-one on A.

Io
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Remhark 4;.. It :is initerdsting. tha t, -no statement similar to-
TheoremA47 can be made if 'box-coUnting, dirnesiii : epacedx' by,
Hausdorfft dimension. In. an- Appendix -to -this, work 0provided- by. Kanh.
examples are tofistructdd of' comfpact subses .4)6f. a&y .Efclid an, spacO R k
that'haveHausdorff, dimension, d,= 0. and, such that -no pojecion to -A" f~r
it < k, 'i .one-to-one onA.

This strikinfg, difference between, tboX-c6untintg, dimension, and'
Hausdorff dimension, is -related to the fact that Hausdorff dimensionv does
not work well With products.. Extra 'h vpo theses are needed on, C. in par-7
ticular on 'the. Hdusdorff -dimension- of the product, A x A. to prove- an'
analogue, to Theorem 4.7. For example., M46i has shown (see ref 17 and its
correction in. ref. 9. p.,611), that if ii,> HD(A 5< A) +J- . thenr the conclusion
(if theorem 4.7 ag-ain 'holds, Of' course. using. Lemma 4; 3 n Remark 4 -..
,it turns out that only it.> I-DA x< .4) is required:

Theorem 4.9. Let A be, a compact, subset oft i. nd ]Lt,-
it > H-D( .{. -.1 ). Then almost eyery linear transformation- of P% o R is
one-to-one on A.

It- was showvn in ref. 10 that under the hypothese of Theorem 4.7
almost every orthwgonul'projection is one-to-one -(and -in-flact ha~sa, H bider
continuous inverse).

Definition 4.10. For a compact, differentiable mnanifold 11. 'let
=(X.Tu): Xv e Al, v T% At I be the tatkgew bundle (if Al. and 'let
',A) =(x, .v) e T(MA); Irl = 1 'd enote the unidt tangent bundlile o' Nt

Lemma 4.11. Let A1 be a, compact subset of'a smooth mnanifold'
embedded in R'. Let F, P1 .  ,: R R" be a set of smooth. maps fromn
an open neighborhood 1U of A to R'11 rt- each positive' tnteer r-. let S, b-,,
the subset of the unit tangent bundle St.]) such that the it, t matrix

has rank and let i, =l1ower boxdimiS'). Define: F = F,,- .+, ,:
U-R". Then the' following 'hold:

I.- If df- < r for all integers r > 0. then for almost, ever;' : e R?'. (Ihe map
F, is an imtmersion on..

2. If dl, >, r for some r >, 0. then for almost every 7 e R'. F-, is an
immersion outside a subset of .4 of lower boxdim, <, (1 - r.

Proof. For i =0,..., 1. define G,: S(A) - R" by G, (x. vti= DF, (x) v. I f
r > di, for all r > 0, then Lemma 4.5 applies to show that for almost every

G.- G (0) r)S, is the empty set. Since S(A) is the union of all S, G'()
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is 'empty. Thus. no ufit. tangent vector issmapped to, the origin ,and F1 is
-anirhimersion.

' In case,.;l d -for some ,r. there -is a. ,ositiVe !lower bound -on the
singular vaes, o' the Q., on S(A); Lemma,4,.3 imp!ies thatl therel-s s .s.bset
of unittangent vectors-.. of lower- boxdim 4, -r, that, can map to zero., The
projection 0f this subset into .4 has lower boxdim,;!,- . 3

Proof of'TheoremS 2.2. 2.3, and2.; 10. Theorem 2.2 is a special case
-of Theorem ... To. prove the 'latter. we need to show that a prevalent set

i ofmaps areoie-to-one and immersive.
Let F,...,.., be a basis for the set of linear transformations fromI.", Rk - R", In the notation, of Lemma 4.6. the set S,, = .4 x.4 .1 and S, = ,0

for r z . Sincc'boxdim,4 x A ) t2d< n, F7 is one-to-one on A for almost
every ze R'. If any other maps F. ....F, are. added. the rank of .1,,
cannot drop I'or any pair .\v. so almost every linear combination of

SF, .... F. is one-to7one on ..
The -proof of the immersion half uses Lemma4.1 1 instead ofI. Lemma 4.6. Since boxdiml{) = d, C is a subset of a smooth manifold of

dimension at most d. 'and therefore boxdim S(C) < 2d- I. In the -notat .on
of Lemma4.11. S,,=S(C) and S,= 0 for r On. Since i>2d>2d- I
boxdim S,, the proof follows from Lemma 4.11.

The proof of Theorem 2.10 is similar, except that the second part of
the conclusions of Lemmas 4.6 and 4.11 are used. For example. in the use
of Lemma 4.6. S,, = A4 x .4 - J and S, = 0 for r ti as before, but now
boxdimt.4A x A) = 2d> it. Thus for each 5 > 0. for almost every F, the
6-distant self-intersection set 6(F, j) has lower box-countin dimension at
most 2d - i. The immersion half is again analogous. I

Definition 4.12. Let ' be an open subset of R'. let g: U'- L be
a map. and let h: U-, Rbe a function. Let w <i - be integers and set
w= Iv"-iv- +1. For I <i<i, set g,=g,, --. so that .,=g" and
g,, =g ". Let B be an i x w matrix. Define the filtered delay.-coordinate map

F,,:(B h. .0: U-. R"1

by

F,,I(B. h. g)(x) = B(h(gl x) ). hM g2(x) .... h(g,,x))) r

= B(h(g" (x)),.... h(g" Ix))) r

Theorems 2.7, 3.1, 3.3, and 3.5 are corollaries of the next two results.
for which we will use the following notation. Let g denote a smooth
diffeomorphism on an open neighborhood U in R'.Let h ,.... h, be a:-basis



for 4th6, polytnomials in, k.arables, of .degr6 at,. most l.' f. a srmooth
funicition iZ ) on i~adrR. deffine- Ii. -r7 - ',hFor, each

p9l4eitgrp enote, by':. ti as t, period-p -p6intsof lynonA
That x.1~ txA: g~x - . ~the~rniatries C b-e as in iheorem, _31.3 .

Theorem 4.1,.Lx be a, smnoth diffeohqrphism-on an, open.
,neiahborhood- U 6f,' R ' a~dltAb b~atsbe fU odm K d.
Let it and- w it r bhe-integers. iv< it It' w-- Assumne'that, the
it X w maffix-ff'satisfie's:

tl ank BC"' > 2 b6xd.imni.- )for a1lf I <p
A2. rank PC> boxdimfi A~ for all I <, q~ <:P <

Let It ., be a -basis for the polynomials in k variables of degree at most,
2W. Then for any smooth functionvi, on R', and for almost every x R'.
'the I'dilowinm: told:

I. If it > U. -then FitB, It,. g j: U' R" is one-to-one_ of I-[
2.If it -, 2. then for -every Ji > 0, the i-distant self-intersectiotv et

1;Fw h, ), 6) has lower box-counting dimension at most
2d- it

'Proof. For i I.. defin-.

/hI, ( g 1

By definition. F(B,., 2  )~ F, To use Lemma 4.6. we need to check
for each x vthe rankoof the matrix

Al"= I F,(.) - F,(y I.. .(xVI - .(yII
which can be written as

q <_ 2w. the :, are distinct, and J = iV is a iv x q matrix each of whose rows
consists of. zeros except for one I and one 1 . By part I of Lemma 4. 1. the
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I cases.
Case I: .vand.Y are notboth periodic with-period <-i,
Invthis case. J,, is upper or lower triangular_and, ank,,,,) w. Since

B.. I. and H are onto linear transformations, the product BJH is onto and
has rank nt. The set of pairs x v y of case I 'has box-counting dimension at
most 2d. and rank(M.,) = n. If g has no periodic points of period < w, we
are done. and conclusion I (respectively.,'2) of Lemma 4;6 implies conclu-
sion V: (resp., 2) of the theorem..

The remaining twocases are necessaryto deal with periodic points of
period < ii, We show that conclusion I of Lemma 4.6 appliesin both cases.

Case 2: v and y lie in distinct periodic orbits of period ,
Assume p and -q are minimal suchthat ,i ;(.1 = x.. -,(yv= ; and that

I < q < p , w. In, this case the matrix J,, contains a copy o ., Since H
is onto, rank .1,,.=-rank BJ,,H= rank-.BJ,,. By hypothesis. rank BJ, .
rank, BC ' > 2. boxdim ..,, which is the box-counting dimension of the set
of pairs treated in case2. By Lemma4.6. for almost ,very xeR',
'.(xJ-#F,(.-) for every such pair x # y.

-Case 3: Both v and v lie in the same periodic orbit of period < w.
Assume P andq areminimal such that g(-x) = x. g(x)= y. and thataI q < p , . Since v.' nd *v lie, in the same periodic orbit, the column

space of J,. contains the column space of C" . Thus. rank BJ,, I=
rank BJ, - rank BC > boxdim .4,p, which is the dimension of the pairs
x # iy of case 3. Now Lemma 4.6 applies-,to give the conclusion. |

Theorem 4.14. Let g, be a smooth diffeomorphism tn an open
neighborhood L' in R'. and let ..I be. a compact ,ubget of a smooth
"i-manifold in C. Assume that the linearizations of periodic orbits of period
less than w have -distinct eigenvalues. Let a < it- be positive integers as -in
Theorem 4.13. and assume that the it x it- matrix B satisfies:

A3. rank D (;,, ,>boxdimtA +r- 1) for all I p< i.
I<r<, and for all subsets ,..,, of eigenvalues of thelinearization DgP at a point in .-1 .

Let h ...... h, be a basis for the polynomials in k variables of degree at most2w. Then fr any smooth function h,) on R'.and for almost every ;c e R'.
the following hold:

. If n > 2m. then F(B, h., g): U-- R" is an immersion on .4,
2. If n < 2n, then F(B, h, g) is an immersion outside an exceptional

subset of A of dimension at most 21n -t- 1.



Proof, To, app, Lemma,4.l -we need,to check the rank of the,,ii=x v
'matrix

,D F ,.( \) .. D F .I x(.v )), (4 .1 )

for each vx. Lin the unit tangent bundle S(A )L For a given observatlon
ThAction h. the derivative of7F(B. h g)his

hFBl. U,. l'=&I'a,

Vh~g'-()) g (v)/

If x is not a periodic point of period less than w, then g" "- v) ..... (. x "l.vI are
distinct poinis. The facts that ,, is a diffeomorphism and r ?0 imn'l that
D9 "(.V)L'?=( for all i, Thercfore by Lemma 4.1. part 2. the set of %cctors
'DF(B. hi, :O.x,: ;c-=_ R'' ipans R". In the notation of, Lemma 4 II. the
subset S, contains allpoints of, S(.ij:that are not periodic with period, less
than ,w, and d,, = lower boxdimiT,,) < 2m - I. If g has no periodic points of
peribd less than w, the proof is finishcd. by Lemma 4.11.

If x is a periodic point of period, p <u. then

HP It'l

DF( B. It. g .)t= v B IfD

Hl D

where

• ,=g 9 i '{IX)= vp,

bi, = VIZ~x, )

wt' -"Dgt. , )..- Dg{."x1}Dg" (.xkt

Dj= Dg(x, I)"". Dgxt I) Dglx,,)... Dg(x,)

Each matrix D, has the same set of eigenvalues ,. ... and by
hypothesis, they are distinct. If u I t.... u,,, is a spanning set of eigenvectors for
DI, then it checks that uji= Dg(x,_- 1)...Dg(x)u, for I <i<p, 1 <j.n
defines a spanning set (uj, ....u;,, of eigenvectors for D,. Thus. if
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lot =7 , auis the eigenvector expansion of wi then the eigenvector
expansion of w is Z,". 'a~uq, which has the same coefficients.

Thus DF(B. h. q)(x)Iv can, be written as Bftimes the is-vector
i "! ..• l0 V. "

0 ... 0 . 0
Ii

0 ,. 0 0 0I' Io / .,o, l
4M H I .+ + 0H0 r  (4 2)

1011)0 (00 ... o 0 .. 0

0 ... 0 ;.i ;" ',
,,; .. t.;,0 ... 0

To find the rank of the matrix (4.1),for (x, v) where x is periodic, we
need to find the span of B times the vectors (4.2) for I = h, = T x,,. i e R'.
Assume that the eigenvector expansion of v has exactly r nonzero
coefficients I,,, .... a,. By Lemma4.1, part 2, the set of vectors 'Vht,(.,):
ot e R', spans RI. Then because the it,, I < i n. are linearly independent.
the vectors of form (4.2) span a space of dimension min[w. rp as x
spans R.

Therefore, for this iv. ri. the span of the vectors 14.1) has dimension
equal to the rank of 1_D.,. . By hypothesis. the hoxdim of such
pairs (x. v) in S(4 ) is boxdimt..I) + r- 1. By hypothesis. the rank of the
it x t matrix (4.1) is strictly larger. so that Lemma 4,11 applies to give the
conclusion.

Proof of Theorem 2.7. Apply Theorems 3.3 and 3.5 with B= 1,5.

According to Remarks 3.4 and 3.6, the conditions AI-A3 translate to

p>2.boxdim(A.), p/2>boxdimA,), and min{n. rp' >boxdim.4,)+r- I.
respectively, for I < p < n and I < r m. Thus, the hypothesis boxdim(A,.) <
pi2 guarantees that AI-A3 hold.

Proof of Theorem 3. 1. Since Ap is empty for I < p < w. the condi-
tions AI-A3 of Theorems 3.3 and 3.5 are satisfied vacuously.

I
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APPENDIX. HAUS,ORFF DIMENSON-'ZERO SETS WITH
NO ONE-TO-ONE PROJECTIONS

Intai Kan

The purpose of this Appendix is to construct a Cantor set C-R"
whose Hausdorff dimension is zero and which has the property that every-
projection of rank less than ti is not one-to-one when restricted to C.

Definition A.1. The iautisdvrt s-drnetnstota outer iieasurec'uI a set
K is

"'(K)=limn inf U L.!'

where the |.ntimum is taken over ail covers C ' .I' K vith the diameters
o the C. uniormity less than o. The -.auurlt ad.wension ol a nonempty ,et
K is the unique valu o1's such that

1K) = f. if t<s and ty"(K)=0 if '.

Example A.2. We construct tl-.e subset C of R' as the union of two
sets .4 = iJ',., , and B =, ', 8, each of Hausdorff dimension zero. with
the property that for any projection P of rank less than ti theimages under
P of A and B intersect. and thus P is not injective when restricted to C.

The set .1, lies on a face of the unit m-cube and a = (a1.,a,..,,) is
in .Af, if it satisfies the following restrictions on the binary expansion
a, = a! aa(I ... of its coordinates:

I. If i=,#. then a = 0.
2. If i: n and k i. o. then either Ia) a.=1) for allI =_ 0.k, .- ,t]: or

(1:) at'= I for all Ie (.Vt, f. .. I].
Here the sequence 0 =Mo 0 < .t ... increases sufficently rapidly ,o
that limtfM,. 11 ,) = -.. If i = n. then the orthogonal projection of .. , on
the ith coordinate axis is a Cantor set which can be covered by 2" intervals
of length - . where r, = k + 7". 1 (V,,- _ . Thus. 1., can be
covered by 21'- "' cubes with edges of length 2 , Since r, Af,. we
see that lim. - (i- I ),,. - I =0 and both the lower box-counting and
Hausdorff dimensions of A, are zero. Since .4 is the union of rn copies of
A,,, we see that both the lower box-counting and Hausdorff dimensions of
A are zero.

'Department of Mathematicai Sciences. George Mason University. Fairfax. Virginia 22030.
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'The-'set ' lies on ,a face of 'the .unit ,n-cube opposite A ,4, andb is -in
B, if it, satisfies the -following, restrictions on tuhe' biniary e.xpansion of 'its,

-coordinates:'

V.Ifi~.then b,'=: 1.
2. If i t n and ,k 0, then either ta) h'1-'0,foral1-' IG ( k -V 'k MA,21;

or (b) h'=,,l 'f6r~aI I,''k IM J1.k +].

Here H,,L is as above. The lower box-countine and *'Hausdorff dimensions
of B are zero. The Hausdorff dimension of C = AukyB, is zero.

Let P denote a projection ofi ranik less than in, Let~vc; i U1, v . ... ,)i
the null,".spaice of P be chosen so that for all i and r, 1, for some
particular n. We now show -that P-r estrictdd to C is not injective by 'finding
some 1) = B, and a e.., such that r = h --. Using t~he 'binarv* expansiofrIcoordinate- not ation. %v, def-ine it and 1) as f'ollows:

If Ii =u. t hen d (Y and h' = 1,.I 2~ If j'11 and k >0, then '1a). a~ 0 and b" r' for all
,C VU., MA.I ; and. b) a',> (v'i. I-) mod'2 arid h>, I for all

Clearlv we have, v = b a. and ,by the definition,,of A,, and' B., we also have
aeC 4 and 1, e B,.3
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Abstract. In dynamical systems examples are common in which two or more attractors
coexist, and in such cases the basin boundary is non.empty. Thc asiri borndary is either
smooth or fractal (that is. it has a Cantor-like structure). When ihere are horseshoes in
the basin boundary, the basin boundary is fractal. A relatively small subset of a fractal
basin boundary is said to be 'accessible' from a basin.However, these accessible points

play an important role in the dynamics and, especially, in showing how th~e dynamics
change as parameters are varied. The purpose of this paper is to present a numerical
procedure that enables us to produce irajectories lying in this accessible set on the basin
boundary, and we prove that this procedure is valid in certain hyperbolic systems.

AMS classification scheme numbers: 58F12, 58F13, 65005

1. Introduction

Dynamical systems often have:quite different behaviour in different open sets, each
open sethavingits own attractor. These open sets maybe the basins of attractors.
We are interested in the boundary on the common boundary between such- open
sets. The common behaviour may be either smooth or fractal. A point p on the
boundary of an open set U is accessiblefrom U if there is a cui-ve'lying in U U {p)
which ends on-p. The'basin boundaryis the set of all points on the boundary of a
basin of attraction such that each open neighbourhood of p intersects at least two
different basins of attraction [GOY1]. If the basin boundary is smooth, then each
point on the basin boundary is accessible'from two basins. In particular, if the basin
boundary is a curve, then all of its points are accessible. When the basin boundary is
* Research in part supported by AFOSR, and by DARPA under the Applied & Computational

Mathematics Program.
Permanent address: Rijksuniversiteit Groningen, Fac. Economische Wetenschappen, WSN-gebouw.

Postbus 800, NL-9700 AV Groningen, The Netherlands.

i 0951-7715/91/041183 + 30$02.50 © 1991 IOP Publishing Ltd and LMS Publishing Ltd 1183
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fractal, ontly ia rel tively msmall subset0f the: basin §6undary consists- of adcessible
points. -and generhlly no points that are accessible' from a ,basin will be accessible
frf Ather basin; A collection. of papers have assumed"- that investigators can
:pro ... accessibleitrajectories onbasin boundaries [AS ], [AY], [GOYl], [HJ], but

,no rigorous procedures have been presented; For more details, see the discussion in
section 6.

Studying dynamical: systems; one often observes transient chaotic behaviour ,
apparently due to the presence :of horseshoes. It is well kn6Wn [MGOY]' that
transient chaos is present Whenev -there isa fractal basin boundary separating the
basinsof. two or more attractors. Foi example, for-suitably chosen parameter values,
the-Hn6n map 'has attractiig periodic orbits with. period 3 and 5, and also a
non-attracting chaotic invariant set in the basin boundary, and one observes that the
duration of the transient chaotic-behaviour-of many trajectories is rather short before
they. settle dowr 'o. one of these two periodic attractors, Other famous examples
with chaotic traasicnts, due-to a-bounded non-aitracting invariant chaotic set in-the
basin boundary, are the-forced damped pendulum and-the forced Duffing equation.
Transient chaos is also present if. there is a chaotic invariant set- in the interior of the
,closure of' the basin. In this case, the basin boundary -can be either fractal , or
smooth 1[KG], [NY1], [N t21.

Let M be a smooth d-dimensional manifold without boundary with d ; 2, and let
F-be a C3-diffeomorphism from.M to itself. "For xi y in Mwe denote by p(x, y) the
distance betWeen x and y. A set S.c M is positively invaiantif .F(S) =S, 'aindis
invariant if-F(s)=s. ,For xEM- and a closed set ScM, we write P(x,S)=
min{p(x. ,,: y e S). An attractor A is an invariait, compact set in M such that0(1)
there exists an open -neighbpurhood"U of A such that, for each x E U-the distance
p(F-(x), A)-- when n- 4 c; and (2) there is a point x e A such that the closure of
the- trajectory (F"(x)},,.0 equals A. A generalized. attractor is the union of finitely
many attractors. We say a~region'is an openand boundedset in M; a transient region
is a region thatcontains no attractor. F6r an attractor (or. a generalized attractor) A
we-.say, -the domain of attraction of A is- the set of all points -x in M.-for which
p(F(x), A)- 0'as n--*'. The basin boundary is the: set of all. points, ie M :for
which each open neighbourhood has, a non-emptyintersection with at least two
different domains of attraction, see [GOY1]. In the-literature, for-an attractor A the
notions 'domain of attraction, of A' and- 'basin of A' -are often equivalent. On the
other hand, in other studies of dynamical systems, the notion 'basin of A' is defined
as-the region in M that is the interior ofthe closure of the domain of attraction-of A.
Thereforefor an attractor (or generalized attractor) A we define basin {A} to be the
interior of the closure of the-domain-of attraction of A. We would like to emphasize
thatba~in(A). is associated with attractor A and may include Cantor sets of curves
,that are not in-the domain ofattaction of A; that is, the trajectories of all the points
on these curves will not converge to the attractor A. In the forced pendulum
example in section 3- we show numerically that basin{A} does include such an
invariant Cantor set of-curves.

We -will. be studying transient, regions- in cases where the trajectory through
almost every initial point eventually leaves the region. We investigate special
trajectories that remain in such a transient region for all positive time. In
[BGOYY]i [GNOY] a numerical method (involving the bisection procedure) for

finding trajectories on the basin-boundary was presented. The papers [NY1], [NY2]
introduced the PIM triple (refinement) procedure and the accessible PIM triple
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(refinement) procedure. Both these refinement procedureg enabi6 us to obtainnumerical , trajectories, and' accessible numfeficAl-trajectbries respectively, that stay

(for positive, time) in a soecified transient region in M. 'In [NY2]. these two
iefinemenr procedures were shown to be valid for uniformly saddle-hyperbolic
dynamical: systems, for which the dimension of the, unstable ,manifold of any
nonwandering point in the transient region was assumedto be one dimensional.

Let R be a transient region 'for F. The stable setS(R)'of Fis (xe R :F"(x) 'eRfor
n,= 0,1,2,. .. ; the unstable set U(R) of F is x eR :F-"(x).e R for n =
0, 1, 2,... }. The set of points x for which F'(x) is in R for all integers n is calledthe,
iniariant set Inv(R) of F in R, that is, Inv(R) - S(R) n U(R). A component of S(R)
(resp. U(R)), which contains a point of Inv(R) is called a stable (resp. unstable)
segment. We call Inv(R) a chaotic Saddle when it includes a Cantor set. These
notions are illustrated in the following example.

Example 1. An S-shaped horseshoe map is an invertible map that squeezes,
stretches and folds a rectangle into an S-shape area as illustrated in the figurebelow.
We consider the S-shaped horseshoe map g, which is defined on a neighbourhood ofIa-c6mpact, connected set W, where W is the union of a rectangle E and the two half
disks DA and Da as indicated in the figure. Assume (1) g maps W into its intcrior,
(2) the intersection g(E) n E consists of three horizontal strips, say H1, H-2 and H3,
and (3) the half disks DA and Da include fixed point attractors A and B respectively.
Let V1, V2 and V3 be the vertical strips in E (stretching the full width of E) such thatI'j) =,Hi, I --- i -< 3; see figure 1.

"'It is well known, see e.g. Guckenheimer andHolmes [GH], that under
', reasonable assumptions, almost every point will be attracted to either A or B, the
stable set S(E) of g with respect to E is a Cantor set of vertical curves, and the
unstable set U(E) of g with respect to E is a Cantor set of horizontal curves. All
components of S(E) are stable segments, and all comiponents of U(E) are unstable

segments. The intersection C of the stable set S(E) with the unstable set U(E) in E
is a chaotic saddle. Note that all the points on the chaotic saddle C stay in the box E
for-all time under all forward and all backward iterates of the map g. The set of
points in E that are on the basin boundary is the stable set S(E), and the basin
boundary of g is fractal. One might choose the transient region R to be the interior
of W minus two small closed balls that are centred at the attractors A and B.

1  12  H13

U '9,,:

Figure 1. S-shape horseshoe map: vertical strips in the rectangle E are mapped into
horizontal strips in E, namely -:V) = H1, F(V2) = H2, and F(V3) = H3. The half disks
DA and DB each contains a fixed point attractor, and each is mapped into its interior.
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We assume throughout that (1) foir the transient region R the set Inv(R)_is
non-empty,, and(2), there exist two generalized attractors A and B; afid'each point
,in R'that escapesroffm R, under iteration-of the map Fis either in basin{A). or in
:basin{B}, and the basin boundary. is the common boundary of basin{A} and,
basin{B}.

We will refer to R\S(R), the complement ofthe stable set S(R) in'the transient
region-R, as the transieit-set. Recall that a point p, in S(R) is accessible from an open
set V if there is a continuous curve K ending at p such that K\(p} is-in V. We
investigate the cases where V iseither basin{A} (or basin(B}) or isthe transient set
R\S(R). In-this paper we emphasize points accessible from basin(A} rather than
from basin{B}, just to simplify notation. Obviously, if a point p in S(R) is accessible
from the transient set R\S(R) and p is on the bas boundary, then p is-accessible
from either basin(A} or basin{B}. On the other hand, S(R) can contain points
which are notin the basin boundary, and such points might beso numerous that
they block the access to the basin, boundary, that is, every curve in basin{A} that
goes to an accessible point wouldnecessary pass through points of S(R). Thus no
points of the basin boundary would be accessible from R\S(R). Naturally S(R)
would have its own accessible points, but these would lie in basin{A} (or basin{B}).
This situation occurs in- the previously-pmentioned pendulum example. Hence, S(R)
might contain points on the basin boundary that are accessible from basin{A} (or
basin(B}) but not.accessible from the transient set R\S(R). In example 2 below,
S(R) contains such points in the basin boundary, Therefore, the accessible PIM
triple procedure [NY2J for finding accessible points on S(R) is, generally speaking,
not a-procedurefor finding accessible points on the basin boundary. We would like
to point out that there are cases where S(R) equals the set (basin boundary l R),
(though this condition may be hard to verify). In such cases the ASST method
(involving the accessible PIM triple procedure) might be used for finding accessible
trajectories on the basin boundary.

Example 2. In this example, we illustrate the fact that S(R) can contain points that
are not in the basin boundary, and for simplicity we present one-dimensional maps.
Consider-two one-dimensional maps with attractor A (which is -,o) and attractor B
(which is +-). Let f and g be the piecewise linear maps of which the graph is given
in figure 2(a) and -2(b) respectively, such that g(y) =f(y) for all y < 1.

Figr(.On-iesonlmp) adg(h grah f" n-yregvnin2atn

3

.1 I 21 13 -y p pq y

Fgue 2. One-dimensional maps f and g (the graphs of f and -g are given in 2(a) and
2(b) respectively). When we choose the transient region R to be the interval (-2,3), the
stable set S(R;f) equals the basin boundary, and the stable set S(R;g) is strictly larger
than the-basin boundary.
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Let p' and q denote the two fixed points of g in (1, 0), and write m =
-min(g(y):y,>>p}. Assume, 1 <m <2 <p <q <3< g(m), see-figure 2. The maps are
constructed-in such a way that basin(A},and basin{B} of g andf-coincide. Hence,
both-maps have the sam6 basin boundary andit is contained in the interval [-1, 1].
.Note that the basin boundary is the set of all pointsih [-, 1].that stay inside [-1, 1]

under all positive iterates of the map f (or g), and the basin'boundary is fractal.
Onthe other hand we have, all points in (1, oo) go to attractor B under forward

iteration of the-mapf, whereas basin{B} for g includes a chaotic saddle in the open
interval' (2,3). When wechoose the transient region R to be ,the open interval
(-2,3), the stable sets S(R;f) and S(R;g) are the sets of points that stay in R
under all' forward iterates of f and g ,respectively. We have the basin boundary
equals the stable set S(R;f), but,the stable set S(R; g) -is, strictly la'rger than the

basin boundary. It can be shown thatpoints of S(R;g)-S(R;f) can be found
arbitrarily close to each point of the basin boundary.

We-would like-to address the following problem.

Accessible basin boundary static restraint problem. Given a segment J that has
one end point in basin(A} and one end p6int in basititB), describe a procedure for
finding a point on the basin boundary (in I n S(R)) which is accessible from
basin{A).

We will state a procedure (the accessible basin boundary refinement procedure)
for finding accessible -points in M on the basin boundary. We will show it is valid
(guaranteed to work) for the same class of hyperbolic dynamical systems as in
[NY2I, namely hyperbolic systems in which the unstable manifolds are one
dimensional.

All the procedures are based on our presum ed ability to specify an initial point p
and compute the time TR(p) its trajectory takes to escape from R. For applications,

we need a 'dynamic' version of the 'static' problem above, since we want to produce
numerical trajectories that are accessible from basin{A}. The 'dynamic' problem
that is associated with the 'static' one is the following.

Accessible basin boundary dynamic restraint problem. Given a line segment J
that has one end point in basin{A} and the other end point in basin{B}, describe a
procedure for finding a numerical trajectory on the basin boundary that starts on J

and which is accessible from basin(A}.

The ideas of the 'accessible basin boundary refinement procedure', which solved
the 'static' problem, can be applied to solve the 'dynamic' problem, in such a way
that implementation is possible on a computer. For more details, see the discussion
in section 6.

The organization of the paper is as follows. In section ,2 we present the
'accessible basin boundary refinement procedure'. Then, n section 3, we discuss
some examples in which the straddle method involving this refinement procedure
has been used. The main result for the validity of the refinement orocedure for
hyperbolic systems is stated precisely in section 4, and this-result is proved in section
5. Section 6 is devoted to the discussion of ths associated numerical method (the
accessible basin boundary straddle trajectory method or ABST method) and related
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ntimerical methods. Finally in section' 7i the case- of d-dimensionAl hyperbolic-
systems, d -_ 3, and smoothness of Fare discussed,

2. The accessible basin boundary refinement procedure

Let -the manifold M, the diffeomorphism F; the tr" ient region R, and generalized
attractors A andB be as'before. Recall that We as:. .- that each point that leaves R
under iteration of F is either in basin{A} or in basin(B}. The escape time TR(x) of a
point xin R is defined by TR(x) = min(n -_ 1 :F"(x) 0 R}, and TR(x) = if F(x) E R
for all n :, 1. We say, TR(x) = 0if x o R.

Let J be an unstable segment in R. The notation {x, y} for a pair, means that x
and y lie on J. Since J is homeomorphic to an interval, we may assume it has the
ordering of an interval. For {x, y} we always assume for convenience that the
ordering on J is such that we may write x <y, and denote [x, y]i for the segment on
J joining x andy. Let L cJbe any-connected subset of J. Assume L intersects the
stable sei S(R) transversaily, and let (a, b) be a pair on L. For each e >0, an
r-refinement of {a, b} is a finite set of points a =go<g 1 < ... <g = b in [a, b]j
such that

(E/2).- p([a, hi) < p([gk, gk,+]j e -. p([a, bi,)

for all k, 0 - k N- 1.
We say the pair (a, b} is a straddle pair if a E basin(A} and b e basin{B}. We

call (a, b) a proper straddle pair if (a, b) is a straddle pair, and at least one of the
points a andb is in the interior of L. If (a, b} is a (proper) straddle pair, then we
call the interval [a, b]j a (proper) straddle segment. Our objective is to describe the
'accessible basin boundary refinement procedure' that selects in a unique way a
proper straddle pair from any E-refinement of a givenstraddle pair (on J., When we
rcveatedly apply the procedure to the. end points of the ever decreasing straddle
segments (with lengths converging to zero), the resulting nested sequence converges
to an accessible point p in the basin boundary; of course, this point p is in i n S(R).
The point p that we find is accessible using the curve [r, p]j for some r in
I nbasin{A}, so we say p is 'accessible from the left' ('accessible from basin{A}'),
that is, from the side containing r (in basin{A}). We could alternatively have chosen
to approach from the right and we would expect to find a different point on the
basin boundary. Since almost-every point on J has finite escape time (see section 4),
we can assume that all points of all refinements are chosen with finite escape time.

We now describe the accessible basin boundary refinement procedure which is
the refinement procedure that generates a uniquely defined proper straddle pair
from a given straddle pair. This procedure plays a dominant role in the method that
generates a numerical trajectory on the basin boundary that is accessible from
basin{A}. A slightly improved version is stated in section 4.

Let (a, b} be a straddle pair on a curve segment J such that a is contained in
basinfA), and b is contained in basin{B}. Let P=Cxi:0--i<--N(e)} be any
E/3-refinement of (a, b), we of course have P c J and a = xo < xI <... < XN(e) = b.
We choose the proper straddle pair {a*, b*} from P in the following way:

(1) select b* to be the leftmost point of P that is in basin{B};
(2) define m to be the minimum of the escape time of the points in P to the left

of b*, and write a° to denote the rightmost point to the left of b* that has the
minimum escape time m.
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(2a) If'm <TR(a) then choose a* = an; otherwise,
(2b) if m =-TR(a) tihen the choice of a5 depends on the grid P*consisting of b*

andallthe points in P to the-left of b* (that.is,P* = (X : P:x E (a, b*])).
(i) If the grid P * is not an r-refinement of (a, b*}, then, choose a* =a;

otherwise,
(ii) if the grid-P* is an e-refineineht of (a; b*} then choose a* to be the-idjacent

point in P* to the rightof a', unless b* is thattadjacent point, in which case choose
,a* = do.

Remark. Assume that e >0is suitably chosen. In case, of step (2b) the equality
a* = a0 does not occur and'one has a* > a0.

(1) As the accessible basin boundary refinement procedure is, -applied, re-
peatedly ,step (2a) only Occursat most finitely,,inany times, andthe segment-[a, a*5 ]
in (2a) may include points that are in basin{B}, However, once step (2b)-occurs,
step (2a) will, never-occur again. When step (2b) is applied, the entire segmentI [a, a*] (n0,'1,st the grid points) is in basin(A) .but,[a, a*]may include points that
have escape, timeinfinity. We would, like to emphasize, that all'the points between a
and,a* in step (-'b) whose~escape time is finite, go to attractor A. This-is why the
method produces an accessible point as.the refinement is repeated. The problem of-
course isto find E small-enough.

(2) When aI and b* have been chosen, iftthe grid consisting of a*, b* and all
the points in P between a* and b* is still an e-refinement of the pair then
set a*= a and b*-b and apply step-(2b). Repeat this until the grid {x e P:xe
[a*, b*]} fails to be an i-refinement of (a*, b*}. Notice that in cases when only step
(2b), is repeated, the point b does not move.

(3) Under hypotheses in section, 4, it is possible to repeatedly apply the
accessible basin boundary refinement procedure obtaining a sequence of straddle
pairs that convergesto an accessible point on~the basin boundary.

Example 3. The purpose of this example is to illustrate 'the accessible basin
boundary refinementprocedure in a graphical way. We choose E = 0.1. Let (a, b)3 be a straddle pair, and let P be an E/3-refinemerit of (a, b}. We assume that P is on

TR TR  , *

ag,

--h*s ;* . , . .

| ab
3. The accessible basin boundary refinement procedure. In figure 3(a) the grid

on (a. b#] is not an e-refinement of {ab*) and so a does not move; in figure 3(b) the
igrid on (a, b*] is an,6-.finement of (a, b) and so a moves to the right.
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the.str ght line segmeni, that joins, a with b and that the grid points are equalIly
s-paced,.so P consists of 31 gridjpoints. In figure 3 the escape time of a grid point x ih
Pis represented by, a stir, if x is'in basin{A), and it-is represented by-a dot if-x is in
basin{B}.

In, figure 3(a) We have b* =xq. The grid P* = {x e P:x e [a, b*]}. is not an
6-refinement of (a, b*}, since-the'distance between two adjacent points equals
IIb'-:ai/8 "Which is greater. than t. Jib* - all. Hence, we choose a* = a. In figure
3(b) we ha'e b* =x2o. Thegrid P* = (xe P:x c (a, b*J} is an t-refinement of
{a, b), since the distance between two adjacent points equals 1ib* - a 11/20 which is
smaller than e lib* - a1. Since TR(xo) = TR(x8) = TR(x o) = m, we choose a*= xi
as indicated in the figure.

3. Applications

The objective of the paptr is to present the, accessible basin boundary refinement
-procedure which enables us to obtain accessible-numerical trajectories on the basin
boundary. We also prove that this numerical pre-idure works in-ideal cases. While
we believe that the hyperb'oiicity hypotheses (stated in section 4) are often satisfied,
they are nonetheless, in practice difficult or impossible-to verify. While chaotic
attractors are usually not hyperbolic, the sets we look at are f o0 attractors. We do
observe that frequently we can successfully use the procedure to'obtain pictures of
the accessible- points on the basin boundary.

In all the examples below, the pictures were-obtained by using the Dynamics
Program [Y]. In these pictures, basin(X) is obtained as follows: for a 960 x 544
grid, use-each grid point as initial value and assign to each grid point a colour
(respectively, no colour) if its trajectory converges to X (respectively, stays away
from X). The set of coloured grid points is in basin(X}, and the non-coloured grid
points are outsi,' 1{X}. In all. the pictures for which one of the numerical
procedures has be .plied in order to produce a single numerical trajectory, have
been obtained by selecting e = 1/30 as default value (see also section 6).

3.1. Hnon map

Let the diffeomorphism F acting on the plane be given by

F(x, y) = (p - x2 + M . y, x).

The map F is equivalent under a change of variables to the Hdnon map
-(1-p'X2 +Y, 14'X). For a first example, we choose the parameters p=
i.81257970 and g =0.02286430; these parameters are due'to Grassberger and

'Cvitanovid (personal communication). For these parameters attracting cycles-with
period 3 and period 5 coexist. Let D, and D2 be closed balls of radius 0.01 centred at
one of the points of the attracting period 3 cycle and 5 cycle respectively. We choose
the transient region R to be the open set {(x, y): -2 < x < 2, -4 < y < 4) minus the
closed balls D1 and D2.

Let A and B be the attractors with period 3 and period 5 respectively. The white
area in figure 4(a) is basin{A}; the black area is basin(B}. By using the bisection
procedure (see-also section 6), we obtain a straddle trajectory (that is, a numerical
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(a) ' (b)

Rpgme 4. (a) The white area is basin(A) and includes the period 3 attractor. the black
area is basin(B) and includcs the period 5 attractor in thc region -2 <x <2. - 4< y< 4
of the Hdn6on map with parameter values p =1,812 579 70, ju 0M022 864 30. (b)
Straddlc trajcctory using thc bisection procedure for the Hdnon map (p =1. 812579 70.
ju-0,0228643) in the transient region ((x~y): -2<x<2, -4<y<4) minus two
cloed balls of radius 0,01 centred at a point of each attractor. The three saddle periodic
points on the basin boundary that are accessible from basin(A) and the five saddle
periodic points on the basin boundary that are accessible from basin(B) are indicated by
st~raight and curved arrows respec'tively,

trajectory) on the basin boundary consisting of more than, 100 000 points (actually'
tiny intervals); the result is presented inmfigure 4(b).

By using the accessible basin boundary refinement, procedure we obtain a period
3 saddle when the left point a is chosen in'basin(A), and a period 5 saddle when the
left point a~is chosen in basin{B). The accessible period 3',ahd period'S saddles on
the chaotic~lsaddle are indicated by arrows in figure 4(b). Therefore, the set of all
points 4ccessible-from basin(A} are the stable manifolds ~of the points ofthe period
3 saddle, and all points accessible from'basifi(B}, are -the stable manifolds of the
points of the 'period s saddle.-

For a second example, we select.the values p = 2.66, u = 0.3. The map F has two
attractors A and B, Where A .and B denote the attractors infinity and a cycle with
period 3 respectively.- The' box ((, .y) :-3 <x <3I -3 <y < 3) contains a chaotic-
saddle, and We select 'the transient, region R 0o b, - the open set {(x, y): -3 <x < 3,p -3 <y,<3) minus tie-ball of -radius 0.005 centre.. at a point of attractor B. Usiiig
~the bisection procedure results in one numerical tra tcctory, that hasbieen'p'?-sentedI 'in figure 5.

By using the accessible- bisi boundary refinement procedure-we obtamin a period
1 saddle when the left pointa is chosen in basin{A), and a period 3 saddle when the
left point az is, chosen in basin{B}.. Thea,accessible period 1 and period 3 saddles-on
the chaotic-saddle are indicated by arrows in figure 5. So, the set of all- points

accessible from-basin({A} is the stable manifold of the-period 1 saddle, and the set- of
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Figtire 5. Straddle trajectory using the bisection procedure/," 'for the Hdnon map (p = 2.66. u -0.3) in 'he transient
i region ((x, y): -3 < x < 3. -3 < y < 3) minus a closed ball

* I of radius 0.005 centred at -a point of. attractor B (the,
,,.,< "'.,.period 3 attractor), The fixed point on the basin boundary

., ... ,,:..-."that -is accessible from basin{A} (where A = o), and the

three saddle priodic:points onthe basin boundary that
are accessible from basin{B) are indicated by curved and
straight arrows respectively.

all points accessible from basin(B) are the stable, manifolds of the points of the
period 3 saddle.

For a third example of this map, we select the parameter values p =1.405,
= -0.3. The map F has two coexisting attractors, namely, a period 2 cycle

(attractor A) and the attractor infinity (attractor B). The box ((x, y): -3 <x <3,
-3<y<11) contains a chaotic saddle. Basin(A) is the white area in figure 6(a).
(the two points of attractor A are marked by a dot in the figure), and basin{B) is 2

black in figure 6(a).

(a) (b)
Flgure 6. (4) The white area is basin{A) and includes the period 2 attractor, the black
area is basin{B} (where B oo) in the region ((x, y): -3 <x <3, - 3 <y <11) of the
Hinon map with parameter values p = 1.405, pu = -0.3. Attractor A is marked by two
dots, and a saddle fixed point in basin{A) is marked by a cross. (b) Straddle trajectory
using the bisection procedure for the Hdnon map (p = 1.405, pu = -0.3) in the transient
region &(, y): -3 <x <3, - 3 <y <11) minus a closed ball of radius 0.2 centred at a
point of attractor A. The three saddle periodic points on the basin boundary that are
accessible from basin{A} and the saddle fixed point on the basin boundary that is
accessible from basin(B} are indicated by straight and curved arrows respectively.



I

Accessible trajectories on basin boundaries 1193

We select the transient region R to be the open set {(x, y): -3 <x <3,
-3 <y < 11} minus the ball of radius 0.2 cenitred at A point of attracto" A. Using the3 bisection procedure results in one numerical trajectory, that has been presented in
figure 6(b). The PIMtrip!e proceduremay resiult in a saddle fixed point that-is in
basin{A); this saddle point is marked. by across in figure 6(a). If we select the
transient region to be the region R minus a ball of radius 0.2 centred at this saddle
fixed point, then applying the PIM triple procedure results a similar numerical
trajectory as in figure 6(b). Notice that the ball including the saddle fixed point is in

basin(A}.
By using the accessible basin boundary refinement- procedure we obtain a period

3 saddle, when the left point:a is chosen in basin(A}, and a period F saddle. when
the left point a is chosen in basin(B}, The points of the accessible period 3 saddle
on the chaotic saddle are indicated-by arrows in figure 6(a). So, the set of all points
accessible from -basin(A) are the st'able manifolds of the'points of the period 3
saddle, and the set of allpoints accessible from basin{B} is the stable manifold of

the period;1 saddle.
Note that the invariant set of points in the transient region consists of at least

three basic sets, namely, (1) the period 2-attractor, (2) the saddle fixed point !n
basin(A} and (3) the chaotic saddle on the basin boundary.

3.2. Pendulum
We consider the differential equation

x"(t) + vx'(t) + sin x(t) =f cos(t).

UJ

I (a) (b)
Figure 7. (a) The white area is basin{A} and the black area is basin(B} (where
A =-(-.472 615, 2.037084) and 8 = (-0.478014, -0.608233) are fixed point attrac-
tots) in the region {(x, y):-r <x <,r, -- <y < 4) of the time-2:r map of the forcedIpendulum x'(t) + 0.2x'(t) + sin x(t) = 2 ces(t). The three saddle periodic points on the
basin boundary that are accessible from basin{A) -are indicated by arrows. (b) Two
stfaddle trajectories using the PIM triple refinement procedure for the time-2;r map of
x'(t) + 0.2x'(t) + sin x(t) = 2 cos(t) in the transient region ((x, y): -ir < x <,, -3 <y <
4) minus two closed-balls of radius 0.05 centred 3t the fixed point attractors A and B,
one trajectory in both basin{A} and basin(B}. The two saddle periodic 2 orbits on the

i stable set that are accessible from the transient set R\S(R) are indicated by arrows.
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We choose the parameter values v = 0.2 and f =2. For these parameters, the
time-2 rmap has two stable fixed points A and B. In; figure 7(a), !basin(A} is
coloured white and basin{B} iscoloured black, It was already observed [GOY2]
thatthere was -transient behaviour in the basin(A} and basin{B}. We choose the
transient region to be the rectangle {(x,y):-jr<x <#, -3<y<4) minus two
balls (of radius 0.05) centred at the attractors A and B. By using the PIM triple
procedure for two different transient regions, we obtain twonumerical trajectories.
The result for the choice of the interval with end points (-3, -3) and (-3,4) isa
trajectory lying in basin(A); and the segment from (-3, 4) to (3, -3) results in a
numerical trajectory lying in basin{B}. Both trajectories are presented in figure
7(b).

By using the accessible PIM triple procedure we obtain period 2 saddles, see also
the discussion in section 6. The result for the segment from (-3, -3) to (3, 4) is-a
Lperiod 2 saddle on the chaotic saddle in basin(A), and the segment from (-3, 4) to
(3, -3) results~in a period 2 saddleon-the chaotic saddle in basin(B). The points of
these accessible period 2 saddles on the chaotic saddle are indicated by arrows in
-figure 7(b), The set.of all accessible points on the two chaotic saddles are the stable
manifolds of the points of these period 2 saddles.

By using the accessible basin boundary refinement procedure we obtain two
period 3 saddles: one is accessible from-basin{A}, and the other one is accessible
from basin{B). The points of the period 3 saddle that is accessible from basin{A}
and is on the basin boundary, are indicated by arrows in figure 7(a), The set of all
points on the basin boundary that are accessible from basin{A), are the stable
manifolds of the points of this period saddle. A similar result as above holds for the
points on the basin boundary that are accessible from basin{B}.

3.3. Complex quadratic map

We consider the quadratic map in the complex plane given by

z,+= z, + 0:32 + 0.043i.

For this system two attractors coexist, namely, a period 11 attractor (attractor A)
and the attractor infinity (attractor B). Let D be a clcsed ball of radius 0.05 centred
at a point of attractor A. We choose the transient region R to be the open set
{(x,y):-l.35<x< 1.35, -1.35<y < 1.35) minus the ball D. The basin boundary
straddle trajectory resulting from the bisection procedure is presented in figure 8(a).
The accessible basin boundary straddle trajectory resulting from the accessible basin
boundary refinement procedure, a trajectory of which all the points are accessible
from basin(A) is presented in figure 8(b), and the accessible. basin boundary
straddle trajectory of which all the points are accessible from basin{B} is presented
in figure 8(c).

The choice-of this equation was motivated by the picture of the Julia set in [PRI.
The reader should compare our figure 8(a) with figure 25 in [PRI. We would like to
point out that the basin boundary of thissystem (the Julia set) is two dimensionally
unstable; thus our results are not valid for this example.
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LI

C / Figure 8. (a) Straddlc trajectory using the bisec-
"fl tion procedure for the complex quadratic map

J + 0.32 + 0.043i in, the transient region

J ((x, y): -1.35 <x. y < 1.35)minus a closed ball of

SA (period 11 attractor). (b) Straddle trajectory
Cusing the accessible basin boundary refinement

procedure for the complex quadratic map that is
'accessible from basinA). (c) Straddle trajectory

. using the accessible basin boundary refinement
procedure fom-the" complex-quadratic map that is

, accessible from oasin(B).

4. Results

In section 2 we presented the accessible basin boundary refinement procedure for
finding a point on the basin boundary in the transient region, which is accessible
from basin{A). First, -we formulate a refinement procedure which is a slightly
improved veision of the accessible basin boundary refinement procedure.

We will describe inductively how to refine our proper straddle pairs. Given a
straddle pair {a,,, b,,}, we have a,, is contained in basn{A), and b,, is contained in
basin(B}. Given any e/3-refinement P ,={x:O< i N(a)} of {a,,,b,}, we of
coursehave a,, =Xo<x, <X ... <xN(,) = b,..-We choose the next proper straddle pair
{a.+t, b.+t} from P. in the following way.

(1) Select b,,+t to be the leftmost point of P,, n basin{B}.
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(2) Definei,, = min{TR(x):x E P, and x < b,,..};

a% =inax(xi Q.:x <b.+, and TR(x) = m}.

(2a)Ifmn < TR(aq) then choose an~1  ao+1 ;-otherwise,
(2b) If mn,, TR(ai) then in order to choose a, we write

-Q. = {x faP, .[a, b,,)-

,+I= minimum of the set (x Q, :a%,<x <

unless this set is empty in which case a,, =

a I = max{x e Q :x < bn+ and TR(x) = TR(a +t)}.

"ase (i) If Q,, is -not -an &-refinement of (an, bi,+,), then choose a,,+,=an;
-wise,

Case (ii) -fQnis an s-refinement of {a,, b,, ) then choose a,,.=-. =

Remark (1) For the convenience of the reader, if e > 0 is chosen suitably, then
,an <-an+ <a1' a'+|< b,+ andmrn- TR(a°+,) )TR(4,)=R(a+). N( that
Qn might-fail to be an s-refinement of (a,,,b,,+,} in that the distance between some
r..ir of consecutive points in Qn might be bigger than E -"p([a., b,+,].

(2) Under the hypotheses below it is possible to repeatedly apply the improved
!-.:iement procedure above-obtaining a sequence (-(a,, b} },,, that settles down to
an accessible point on the-basin boundary.

In the descrir-ion of-the refinement procedure above, we assumed that there
exists an E > 0 f,,. which every E-refinement -of a straddle pair (an, b,) includes a,
proper straddle pair {a,+,, b.+},) such that_[an, an+d j is-in basin{A}, and the letgth
of the. straddle segment, [a.+, bn + s at most (I - e/2) times the length of the
previous straddle segment [a,, bnk. We will justify the seconcepts.

Let the n !old M and the diffeomorphism F be as in -the -introduction. We
assume that A and B are two generalized attractors -such that each attractor is
contained either in A-or in B. Recall that a subset A of M is hyperbolic ifit is closed
and F-invarin' nd the tangent bundle TAM splits into dF-invariant sub-bundles E
-And E" on v, dFis uniformly contracting and uniformly expanding respectively.
A hyperbolic set A is called saddle-hyperbolic if dim E' - I and dim E" >- 1. In
[NY2] we defined a region R to be a-saddle-hyperbolic transient region if R satisfies
all the following conditions:
(Al) R is a transient region:
(A2). hyperbolicity properqynv(R) is a non-empty saddle-hyperbolic set;
(A3) boundary property: U(R) n aR is mapped outside the closure f of R;
(A4) intersection property: each non-trivial component y of U(R) is an unstable
segment, that iF, y intersects Inv(R); note that such a segment y must intersect S(R)
transversally.

In this paper, we say a transient region R satisfies the basin boundary property if
(1) each-point in R\S(R) is contained in eil'er basin{A) or basin{B}, (2) the sets
R nbasin{A} and R fl basin{B) are nc -npty, and (3) the R flbasin boundary is
positively invariant (that is, F maps oasin boundary into itself). We define a
region R to be a basin boundary transient region if R is a saddle-hyperbolic transient
region and R satisfies- the basin boundary property.
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: For a basin boundary transient region R, and- £ >0, the properties _(Al) and

-(A2) imply that the escape'.time of almost every pointpoint on an unstable segment
.3 is finite. (A result due to Bowen and Ruelle [BRI shows-that -S(R) has-Lebesgue

measure zero.) Hence, one may-assume that such azrefinementdoes not intersect-the stable se- S(R). The basin boundary property implies thateach point that

escapes from R under-iteration of~the hap F is either in basin{A) or in basin{B).
If R is a basin boundary transient region; then the escape time map T restricted

to an unstable segment JT U(R) has the following two properties (see [NY2).
(i)-All the points in a chosen segment [a, bkjon J will escape from R if and only

if no t-refinement of(a, b }:includes-a PIM triple (that is,:a triple (p, r, q):onJ such
that TR(r) > TR(P), TR(r)> Tk(q), and p([p, q]j) < p([a, bk)).

(ii) TR is locally constant on an open subset of full measure of J and'if-TR(x) <
and x is a point of discontinuity of' TR then lim inf,_, TR(y) = TR(x) andIlim sup,,., Tq (y = TR (x) + 1.

We- assume throughout that dim E" = h For, the,sake Of simplicity, we -assume

that-d- 2; the moredifficultcase d 3-will-be-discussedin-section 7.
From now on, We-will assume that R is a basin boundary transient.regionfor F,

and that J cU(R) .denotes an unstable segment. The proof of the proposition
below, Will follow immediatelyan the propositions 5.1 and 52.

I Proposition There exists a -finite set- of periodic points P" in-Inv(R) such that (1)
each pointin P" is accessible from R\S(R), an&(2) for x E S(R), the point x is
accessible from R \S(R) if and only if x E Ws(p) for some p E P".

Corollary. Each accessible point on the basin boundary is-in the stable-manifold ofI:1 some periodic point.

Since J is an unstable segment, recall that this implies that both ends of J are in
the-boundary of the transient -region-,R. We know by the intersection-assumption-
that J intersects the stable set S(R). Obviously, if (a, b} is a- straddle pair, -then
there exist proper straddle pairs in every E-refinement of- (a, b}, for each- e,
0<e <0.5.

The next result deals with the convergence of the sequence of nested proper
straddle segments*[a,+,, b+,I] c [a,, bn]j on J. A sequence of straddle segments
{fan, b.l}j}. 0 on J is called a straddle segment sequence if {a.,,, b,+I} is in -an
E-refinement of the straddle pair {an,-b.} for all n. We say {[an, b.]j}n ., is the
accessible straddle segment sequence if (an, b,,) is selected using- the accessible basin
boundary refinement procedure for all, n. For every E, 0 < e 0.5, each straddle
segment sequence {[an, b.n}jlh;,() converges to a point on- the basin boundary. In
section 5 we will, show that there exists e > 0 (depending on F and R) such that for
every accessible straddle segment sequence {[an, bn,] }, there is an integer N - 0
such that ,f6r every integer n > N the straddle segment [a,, a.+Il, is contained in
basin{A). This number e also appears in the result stated below. The main result
stated below implies that the accessible basin boundary refinement procedure is
valid.

Theorem. There exists E >0 (depending on F and R) such that every accessible
straddle segment sequence converges to an accessible point on the basin boundary.



1198 -F ENusse andl'A Yorke'

5. Proofs

5.1. Preliminaries,

Let the. manifold ,M; the distance p oh M, and'diffeomorphism F be, s before. We
assume, that R; is a, basinboundary transient region for the diffeomorphism -F; and
that there.are generalized ,attractorsA -and B such :that each ,point that',eventually
leaves R is eitherinbasin{A} or in bisin{B}, Recall thatthe non-wandering set-9
(that is,. the set of-all points x in M such thatfor every open neighbourh6od V of x
'there exists n- 1 for which F"(V) n Vis non;empty) can uniquely be decomposed,
into a 'finite-collection of disjoint closed invariant subsets and on each of these
subsets-F has a dense orbit; these maximaIinvariant subsets of 0? appearing in the
decom-osition are, called thebasic sets (see'e.g. [GH -for the definitionsand several
prop&, . s of uniformly hyperbolic systems). From now.on,,iet r denote a basic set
of'F From the definitin Of Inv(R) it. follows immediately that either r a Inv(R), or
r n'inv(R) is empty. Thus, we can decompose Inv(R):-'into finitely many basic.sets.
Note t hat, 'rl Inv(R) is empty' does not imply 'r R is empty', and 'r R is
non-empty"does not imply 'i n Inv(R).is non-empty'.

Recall that 'for z E 9, thestable manifold WS(z) of z is the-set of points'x for
which p(F(z), F (x))-- 0 asn--co';-and the unstable manifold Wu(z) of zis theset
of points x for which' p(F-(z), F-"(x))--0 as n The local, stable manifold
Wfo (z) of z (of ) ) is the setof points x in W(z)'such that -p(F'(z),'F"(x))<I3
for;all integers.n -0, and the local utnstable manif0ldW W"(Z) of, z is the set of points
x in W"(z)such that p(F'(z), F-"(x)) I3 for all n _ 0, where P > 0. When the
-stable or, unstable manifold is a curve, we write Wlvc(z) 'and W'-(z), for the .two
components of W'(oj)\{z}, where a is either s or u.

We call F a trivial basic set if r consists of one periodic orbit, and we call' r a
non-trivial basic set if r includes more than one-periodic orbit. Assume that r is
non-trivial; we callxF periodic if there exists m E N. such that F' has no dense orbit
on F. and'we~callF non-periodic if it is not periodic.

We will:,see below that the structure of Inv(R) is essentially controlled by-finite
sets of.pedidic points. Recall -that x in Inv(R) is accessible from an open set V if
there is a curve y such that y\{x} lies in V. If wechoose V to be the transient set
R\S(R),.and if x in Inv(R) is accessible from R\S(R),it isalways possible to choose
'this curve y to be a piece of the unstable manifold WU(x), that is, -, can be chosen to
be either Wr(x) or W-(x). Notice if x is accessible from R\S(R) and
y W (x), ,then x is not a limit point of W"o(x) nl 9. Similarly, if we choose V to
be the open set'R\U(R), and if x in Inv(R)'is-accessible from"R\U(R) it is always
possible to choose this curve y to be a piece of the stable manifold W'(x), that is, 7
can be chosen to be either WfZ(x) or'W (x). Applying a result due to Newhouse
and Palis [NP], we obtain the following.

Proposition 5.1. There exists a finite set P of periodic points in Inv(R), P = P" U P',
such that each point-in Inv(R) that is accessible from R\S(R) is in W'(p) for some p
in P", and each point in Inv(R) that is accessible from R \ U(R) is in W"(p) for
some p in P'.

Proof. For a proof, see Newhouse and Palis [NP]. 0



Accessible trajectories on-basin boundaries 1i99'

Palis, and, Takens. [PT] have shown that there exist regions in -M, whose
boundaries are segments in the stable and unstable manifolds 6f, these finite sets of
periodic points P' and P", suchthat the intersection of-the unionof these regions
with the saddle basic set r is a Markov partition forT, see Bowen [B] for the notion
of Markov partitibn,

Proposition,. 2. Assume f. is a non-trivial non-periodic basic set in Inv(R), and let,
z E r be fixed,.Let P' and, Pu.be asabove. There exist finitely many disjoint regions
Ribeing diffeomorphic images of the square B =[-1, ] x [-I, 1], say R =gI(B),
I < i -< N for some N E N, and a connectedsubset fu of W"(z) such that:

(I) rn R, is non-empty for all i;(2),raUO .1 R ,;
(3) F(aR)cU. 1 IRi and F-'(a,, Ri)c ..1 9,,R, where aRi=

g,(((x, y): xI l J, lYj < 1)) and cj,,R =j(((x, y):IxI --, y =,I)) are connected
subsets in the stable set WS(PU n F) and the unstable set Wu(P fl r) respectively; and

(4)for every i, :-fnRi -consists of exactly one -component -and a(U n Rt) a
ula I I 1 i <N.

Prbof. For a proof, see Palis and'Takens [PT]. 0

Recall that R is a basin boundary transient region, and F a basic set in Inv(R).
From now on, let, the point z e r, the regions Ri, 1 i <N, and the segment
Ju c Wu(z) be as in proposition 5.2. There exist a C', stable foliation 5P on a

neighbourhood V. of r and a C'" unstable foliation 9'u ownA neighbourhood Vu of
r, for some a > 0. Since it is no restriction to assume that every region Ri is
contained in V.frl Vur, 1 < i _ N, see [PT], we will do so.

Let r: R - WU(z) be- a C3 parametrization, and define a projection ;r:r-
Ui.I R, nlIu by taking in each region Ri the projection along the local stable
manifolds into the intersection 1u with that region, I -_ i < N. This projection can be
extended from r to the union of the-regions R by projecting along the leaves of the
foliation 5P. This extension will also be denoted byr. The following result says that
for some iterate K, the map F can be viewed as expansive along unstable segments.

Proposition 5.3. There exist a positive integer K and a C ' map q' :U., r-I(lr fn
Ri)-- R defined by IV(x) = T -

o ;r o FK 0 T(x) such that Ip'(x)l > 1, for some a>0.

Proof. For a proof, see Palis and Takens [PT]. 0

5.2. Proof of the theorem

Let J c U(R) denote an unstable segment. Recall that both end points of J are on
the boundary of the basin boundary transient region R, and that J intersects the,
stable set S(R). Recall also that if a point x in-R eventually leaves R, then x is either
in basin{A} or in basin{B).

We define for every integer k > 1:

Ck(J) = {x eJ:T(x)>k}

Dk(J) = {xe J: TR(x) =k}.
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In particular, Ci(V) =J., Hence, foi eachinteger k -I we have Ck+tI):is the set
of pointsin, Ck() Whose escape time from Ris, at~least k + I hence, :Ck+ 1(J)is the
set of points in I that stayjnR under P-k. The p6ints in-, which stayin R under all
iterates~willbe denoted by C(J). For ever' k _>'I, we write

Dk(J; A)= (x r: P(J):x-e basin{A}}

/Dk(3;'B)- (x e Dk(J):x E basin{B}}.

The 'basin boundary propetty':nowimplies that for every k > 1:

Dk(.) = Dk(; A) U Dk(J; B).

Notice that basin{A} and~basin{,B} are disjoint open sets, so, that if there are
points a Jfi nbasin(A) and b eJ n basin{B}, then there is apoint x in [a, b~J with
TR(x) = -. Observe that Q is a component of DA(J) if and only if Q is a component
of either Dk(J;A) or Dk(J; B).

Forleach k i 1 we-have:

Ck(J) = Ck+i() U'Dk() = Ck+,V) U D(J; A)-U O(J; B)

k k k

J=Ck.I1 ) U D(J) = CkI(J) JUD,(J; A) U U D(J; B)

that is, J is the union of the set of points CA+I) whose escape time from Ris at
least k -L 1 and, the set of points D(J) whose escape time from R isj, and each of
those p, ',s is either in basin(A) or in basin{B}, where 1 --j -- k. We write

D.J) = U DkJ) = U DkV;A) U U DkV; B).
k-I k-I "k-I

Note &- (() = fnl. 0 C(), and J = C.(J) U D ().
Let I- c a component of Ck(J) that includes a point of basin{A) (or basin{B}).

The following result then says that for some fixed positive integers (depending only
on F and R), C contains a component of UI, D+,(J; A) (or U,- D+,(J; B)). In
particular, s does not depend on k. The following lemma (basin boundary
combinatorial lemma) is used to prove the 'basin boundary geometric lemma' which
follows.

Basin boundary combinatorial lemma. Let X denote either A or B. There exists an
integer s -_ 1 such that for every unstable segment J and for each- integer k > 1 and
every component C of.Ck(J), the following holds.

If C includes a point of basin{X}, then there is an integeri, k:, i < k +s and a
component D of D,(; X) such that D a C.

Proof. Let U be a neighbcurhood of Inv(R) on which a C"+U stable foliation F
exists, for some er > 0. Select the minimal integer v _- 1 such that for each basic set F
of F" the following holds, either F is a fixed point or r is a non-trivial non-periodic
basic set. For each non-periodic basic set 1" of F", let 1"r and the regions Ri(J),
1 -< i - N(F, be as in proposition 5.2, and let Ur be an open neighbourhood of F
such that (1) Uffr) Ri(F) c Ura U, (2) the set xTj( .ln Ur) consists of N() open
intervals and its closure consists of N(F) disjoint intervals, and (3) the map Pr in
proposition 5.3 may be extended to rTj'(lj. l Ur). For each trivial basic set F, let Ur
be an open neighbourhood of F in U such that Ur does not intersect UA, for each
basic set A in Inv(R)\F.
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i: Let, Li, ... , L (r) be the components of rw(I -lUr); these finitely many
components are Open intervals in R. Select the minimal integer K(F) - I such that
the map q'r: tr((Iu fl Ur)'-* O defined by Tr(X) - o "r o FKr.o tr(X); satisfies
19(x)I> 1, Define the map lr: (I l Ur)- 4 -by rrr(X) -1 o r o F o
'Now we define the-N(F) x N(F) matrix Ar by

Ar(i, i) 
=  if Vpr(Lf) =L10 otherwise

for all 1 < i, j - N(F). Since F is a non-trivial non-periodic basic set of.F", the matrix
Ar is primitive. Choose the minimal -integer m(r) 1 such that all the entries of the
matrix A ' r) are positive.

We define the intbger s(F) as follows. If r is a non-trivial non-periodic basic set,
then define-s() = m(r). v, and if Fis a-fixed pointvof F" define s(r) = v. Now, let s
be the smallest common multiple of {s(F):Fis a basic set of F').

Let re(R) be the number of -basic sets of -F" in lnv(R), and write Inv(R)=
1 J1±) Gk We associate -with Inv(R) a directed-,graph G as follows: G, consists of
the points FA, 1 < k <m(R), and there exist a path-from Fr, to Fi if there exists a
point z e Fi such that W"(z) fl W(F) is non-empty. Notice that for each k,
1 k m (R),there exists a path in G, from Fk to itself. *

Let J be an arbitrarily chosen unstable segment. Select an integer > I such that
Cg(J) is-contained in U. Let,& denote the number of-components of Cg(J), that is,
Cg(J) = I U C(J). From the definition of the matrices associated with the
non-trivial basic-sets, the-directed graph G, associated-with lnv(R), and the choice ofI the integer s, and'using the techniques in [Null and [Nu2I, we can associate a
(0, 1)-matrix Mj with-C,(J), which is defined by

M I if ;,, o Fv(C,(J)) C,(J)
I to otherwise

for all 1 - i, j, </R, where ;rj is the projection on J along the stable leaves.
We will assume that the C :,'s are-numbered in suchaway that the matrix M. is

written in-the normal form, that is,
_'M 11 0 ............ 0

................ M.'1M.,

where each Mkk is an Nk x Nk matrix which is either irreducible (that is, for each
pair (i, j) there exists t E N such that the (i, j)th entry of-the matrix (Mkk)' is positive,
l-i, j<Nk) or a 1xI null matrix, l<k -rn and E'..INk=& for some m,
S<m <N. This assumption on the C4;i's is no restriction, since for every
non-negative square matrix B there is a permutation matrix P such that PBPT has
the normal-form (see Berman and Plemmons [BPI). In-particular, each irreducible
Mkk is primitive,-and if Nk -- 2 then Mkk equals Ar for-some non-trivial nonperiodic
basic set F in Inv(R), and from the choice of the integer s it follows that all the
entries of (Mkk) ' are positive.

Let X denote either A or. B. Let integer k -- 1 be given. Let C be any component
CQ(J), and assume that C includes a point of basin{X}. We first assume-that k .
The definition of Mj, the choice of s, and the results in [Nul] and [Nu2] yields that
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there 'exists aninAteger i, -k i < k + s' a nd a component D of D1(J;X) such that
D c:C. This ,result together With the .Lfinitions of Ak(J) and D,(J; X) imply
immediately that also for I k - I one has -that C includes, a component of

Df(J X),for. some i, k i k + s,
Since J -was arbitrarily given; we have shown the following. There exists an

integer s 1 1' such that. for every unstable segment Jand, for, each integer k _ I- and
eyery component C of Ck(J), the following holds. If C includes a point of basin(X},
then there is an integer i, -k - i <k +s ,ahd a -component D'of D(J; X)-such that
D c C, where X denotes- either A or B. This completes the proof of the -basin
boundary combinatorial lemma. 1

From now on, let's be-as in the 'basin boundary combinatorial lemma', and let
G = F. ,We now consider the escape time of points under G. For every-point x in R,
the escape time TR(x) of x under G is defined by T"(x) = min(n ->-N: G"(x) I R
and T,(x) = 6 if G"(x) E R for all n - 1. We say that T'(x) = 0 if x q R.

We define for every integer k > 1;
c (V) = (x c-J: T'(x) ->k)

Da(J; A) = {x e J: Ta(xt) =k and x c basin{A))

D(J; B) ={x EJ.: Ts?(x).= k and x E basin(B}}.

Hence, for each integer k --'I we, have C7+,(J)is the set of points in Ck?(J)-
whose escape time under-G from R is at least k + 1; hence, C+ 1(J) is~the set-of
points in j that stay in R under G' . The points in J which will stay in'4h under all
iterates will be denoted by CQ(i). For each k > I we have:

Ck(J) = Ck+ 1(J) U DkJ; A) U D (J; B)

k = c'+ 1(I) U I'D(J; A) U U'D (J9 B)

that is, J is the union of the set of points Ck'+1(I) whose escape time under G from R
is at least k + 1 and, the set of points D5(JA)-in basin{A}'(espectively, D(J; B)
in basin(B}) whose escape time under G from R is j,. where 1 k.'We write

DM(J) = U D/(J; A) U U D(J; B)

k-l k-1

Note that 'C$ (J)'= nk=o Ck (J), and J =-C(J) U D.(I).

Lemma 5.4. For every integer k > 1, we have:
(1) Dk(J;A) = -s D,(J: A); Dk(J; B) = % D,(J; B);
'(2) C(J) = C(J) and DG(J) = D ();
(3) each component of D(J) belongs to either basin{A} or basin{B}.

Proof. The proof is left to the reader. 0

Note that'the set DWkJ) is the set of points x rJ with finite escape time (that is,
T1(x) < w). The following result- says that, if the value of the escape time map TG
cha ,7es then it changes in steps of 1. Denote the length of a connected subset L CJ
by p(L).-
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T-JumPh properiy. ',F&,-evcf, 4 J With T x) <* G there exists s >0 uch-that each
y. J Mihp([x,,yJ) < s - TR(y)li.

Proof. Apply lemma,,5.4 andthe Tjtimp lemma in [NY2]: b0

The following, lemma for, G implies 'that if an unstable segment y has a
n C (.y), that intersects basin{X}, ,then there is a point p of

CG (r) h basin{X} with escape,time k, and- the- length of the component D of
DG(y; X)' including p is at' least 6. p(C).

Bain 'boundary 'geometric'lemma. Let X-denote either A or B. There exists 6 >0,
such, that for every unstable- segment J, and for each integer k ;> 1 and every
component C of Ck(J), we have:

If;C includes 'a point of basin(X},>then there isa component D of D((J; X),such
that D c' and p(D)Ip(C) : 6.

Proof. From the geometric lemma'II in [NY2] applied to G, there exists 6 > 0 such
that for every J in U(R),.andfor every integer k._1l,the following holds:

(1), each component of Ckr(J) contains components of Ck(J) anc, C' + (J);:and
(2) if C is any component of Cf(J), then' every component D of DG(J)flC

satisfies p(D)lp(C) > 6, and every component 'U of C+l(J) n C satisfies
P(U)IP(C):, 6.

Let X denote either A or B, and let J be any unstable segment. Let integer k > .1
and component C of C(J)'be given. Assume ihatvC includesa point of basin(X}.

Applying the basin boundary combinatorial lemma yields that there exists a
component D of Dk(J; X) such that D : C. From the geometric lemma II in [NY2],
since D is a component of Dk(J), and the definition of 6, we obtain p(D)Ip(C)
6. Since J, k and C are assumed to- be given arbitrarily, we conclude for each
unstable segment J, for each integer k - I and every component C of CG(J), if C
includes a point of basin{X), then there is a component D of D'(J; X) such that
D c C and p(D)Ip(C) : 6. This completes 'the proof of the basin boundary
geometric lemma. 0

From now on, we fix 6 as in the basin boundary geometric lemma. Before we
prove the theorem, we present a non-intertwining.property for the escape time map
as well as an auxiliary observability result for accessible straddle pair sequences. We
call a'pair {p, q} a balanced pair if T'(p) = T'(q).

Non-intertwining lemma. Let {p, q} be a balanced pair, let P be a 62-refinement of
(p, q}, and assume that TR(xi) _- TR(p) for every x in P. If each point of P is in
basin{A) then [p, q]j is-contained in basin{A}.

Proof. Let {p, q} and P be as in the lemma. Assume that~each point of P is in
basin(A}. Write in = min(TR(x) :x c [p, q.,}. The assumptions 'T(x ) >_ T"(p) for
all xi e P', 'P is a 6-refinement of {p, q)', together with basin boundary geometric
lemma yields that'm = T'(p). Hence, [p, q]j is contained in a component of Cg(J).
If there exists a component D of D (J) including [p, q],, then D is a component of
Dmr(J; A), and we are done. Therefore, from now on, we assume that [p, q], is not
contained in a component of Dr(J). This implies that there are at least one
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comnponent of CI~(J) in the interior of Jp, qj, and-atAkast'Wo comiponents o6f
'D(J) which havea nn-e.mpty ,irtersection'.,withi[p, qjj.

Let D' be a component of,.DgJ uh htD0 p J, snnemt.B the basin,
boundary geometric lemma,, We 'have p(D)/p((p,,qj,)> &. S ince P is, an 8-
refinemenit Iof {p', q, it follows that P flD is noni-empty. This fact and, the
assumption "that, eachlpqiht of P is. in basin{(A} imply thit D is 'a, component- of
D1(J; A). This implies that [ p, qh h D~J)is-contained in basi{}

Let C be any component of C-,G,,J) in'the interior or ['P, qhj. Applying the basin
boundary, geometric lemma we get thit'p(C)/p((p,,qj) >6. If C includes a point of
basin{B}, then- C includes a component D of- L),' B), and by 'the basin
boundary geomeic 6lemnma, we have

p(D)/p([p )=(P(D)/p(C)) -(p(C)/p([p, qkj))* 62.

Hence, if Cincludesa point of' bsin{B} then every.02-refin enent of (p, q}',inciudes
a point of basif{'B}. Sijnce Pis an "62-refiniement of (p, q}) andY does not coniainva
-point of basin(-B}, it follows that C includes no point of basinfB). Since C is
arbitrry- we get. that each component, of Cl-jJ that'is in [p, q~J contains no
,point of basin(B); Therdforejp, qj, 0 Cli/, 1 j) is contained .in-bAsin{A}.

&ecause of '[p, q] ",((p, q], n D'(J) U'((p, q], 0 ))-the coni..~ision is
that [p, qj, is, contained iin basin{A)-- This completes the proof -of the ,non-
intertwining lemma. 0
Basin boundary observability lemma. L 63/3-refinemdent of~a straddle pair
(ao, bo}, and assume T(x,) > Tr'R(aO) for (;ery xi in P. Let (a(,, b I) be, the straddle
pair in P, in which b 1 is, selected- as -in- the accessibl e -basin boundary refinement
procedure. Let, al be defined as in the improved version of the accessible basin
boundary refinement procedure. f'P'isa'-refi ,nement of (a(O, b 1}, then r a(), a I' ) is
in basin{A}, and T"(al) = T"(a)) + 1.

Proof. Let P, (aO, bi), and all be as in the lemifia, and assume that Pfnl[au,,bJ, is
an e-refinement of (a0, b,}, where E = 6'. Let rn =-ffin{T (x):x iE [a0, b'lj. Let a"
and at be defined as in the improved version of the 'accessible basin boundary
refinement procedure.

The assumptions 'TR(Xj): : TR(aO) for all x, e PF, 'P n [a1O, bljis an 6-refinement
of -(ao, 'b1}', together with the basin boundary geometric lemma yields mn = t(a)
Hence, [aO, bill is contained in a component of Cr(J).

By definition, we have a0 - ao. We 'show first that [at, a ~,iscnandn
basin{A). App lying the* T-jump property and the basin boundary-geometric -lemma
we~ obtain that there exists a component D of Gf,'+ 1(J; A) such that D is in the

ineror'o,( bil,, and p(D)/p([ao, bl,) > 6. Therefore, at exists and T'(at)
m + 1. The definition of a' and lemma 5.4 imply that [a(, a+], is contained in
basin (A). Recall that (a+,, a',) is a balanced pair, that is, R~a =T(a) If aI
and a, are in the same-component of D.G, 1(J) then [a+, al], is in basin(A}, and we
get that [a', af], is in basin{A}. Now assume that a+ and a, are in different
components of DMG+ 1 (J). Then, '[at, all], includes at least one component C of
C%.72(J) in its interior, and by the basin boundary geometric lemma we have

+()p(a, a11j)> 6. This implies that P n [a', a 'j is a 62-refinement of (a+, a").
Applying the non-intertwining lemma yields [a;, a,isnbaiA)adweotn
also this case that [a', all, is contained 'in basin{A}. We conclude: basin{A}
inch. fa': a'l, and TG(a',) = Tg'O +1
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'If a ao, , tewit,.follows, ifiiiediAtely, from,,the concisiioai, aboveihAat [o, a I'D is
contained in basin{A}. From now ,on, we asswiie a6ol Recall tha a, 9?}is a
balaniced pAir. f no and a? -are in ,the same comont ofDG)te~[, ?,i n
baisin{A}. f -a6 and a? -ared in different components ofD V~(), then [do a?), includes-
at least one co~mponent C -of, C.,,(J). Since p((ao,, aJ,)/p([ao, bill)---:
p(C)Ip([ao, a?1j,> 6,,and P fl [a0, AIvis: a 62*refinemnent of (aO, a,)', applying :theI non-intertwining, lemmia -we obtain-JaO,-,aj, is in basin(A},, Since, [a?1 al'kj is in
basin{A}, the~conclusion-is that [a0, aili is contaidd in basin{(A}. This completes,
the proof'of'the, basin boundary observability lemma. 0,

Proof -of the th'eorem. Let 6-ba as in the basin boundary geometric lemma, and
,choose t= 6 3. Let {[aij, b.], ,,.,:be, an -accessible straddle 'segment sequence, that
is, (ao, --b,) is a straddle pair an&, a,, bJ) is obtained by the improved version of theIaccessible -basin ~boiindary refinement procedure forall n :-::, . For-n >_ , let P', be an
sf3-refinementv of (a,, b,,}), -and let m, be as -in- the improved version of the
accessible basin bouindary refinedment, proicedure. By the basin boundary geometricI-lemma wve obtain m, =,,min{T"(x): xO(a,, b.+1,}.

We will -show, that there, exists4 an; integer N >- 0 such that for every integer n :-: N
tfolowingroerties hold. ()Ta)=m,(P)I(a+)-TG(ai)I < 1, and

(P3) [a,,, '4+1  is contained- in basin{A}. Notice that we do not claim that
ITRG(x) -- TG(a )I - 1 orall x-C- (an a---,whr f N.

From the T-jump property and the basin boundary-,geometrid lemma, together
with- the -assumption that ([a,, is obtained- using the accessible basinI:boundary procedure, we have ,that if T~r(a,,) > in,, then T'(q,+ f) = in,,, for each
a -: 0. This property implies that there exists a minimal integer N i - 0 such that
Tg(x,)_: m = T'(ajy) for each xi E 1%,. Hence, (P1) holds for N, We now show that
(P2) and (P3) hold for this integer N.

Case 1. Pv is not an E-refinement of (UN, bN+I1). Then av+ I = UN, -so [ay, aN+ I j is
contained in basin (A) and T'(xi) --mv+ I = TR'(aN+ 1) for each xi E PV+ 1. Therefore,

(P3) holds, while (P2) is obvious since aN = aN'+I.

Case 2 PNv is- an E-refinement of (UN, bN+,}. The basin boundary observabilityI lemma imolies (P3) since [aN, aN+ '), is contained in basin (A). It also implies (P2)
since T"(xi) -_ inf.+1 T"(av+I) = T (aN) + I for each xi E PNv+I.

By induction, one obtains the desired result. This completes the proof of the

1 6. The numerical procedure and related numerical methods

1~ 61. The dynamic problem

Now we return to the 'dynamic' problem stated in the introduction, namely, to
describe a procedure for finding a numerical trajectory on the basin boundary which
is accessible from basin{A}. (Recall that the basin- boundary of basin{A} is the
boundary of the closure of basin{A}.) We assume we are given a straight line
segment that intersects- the basin boundary transversally and has one end point in
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basin (A) and the other end point in basin (B). In the statement of the results, we
assume that a straddle pair and! its e-refinement lie in a connected subset of an
unstable segment, and that ail unstable segments intersect the basin boundary
transversally. However, from our proof of the theorem ii follows that a similar result
holds if we replace the unstable segment by a straight line segment so that we
assume that. every e-refinement of a straddle pair fa, b} is in the straight line
segment [a, b] from a to b, and that *[a, b] intersects the basin boundary
transversally.

A straight line segment [a, b] straddles the stable manifold of a point P if (a, b]
intersects this manifold transversally. In the caseswe study, that is, a e basin{A}
and b E basin{B), the stable manifold of P will be replaced by a (fractal) basin
boundary and (a, b] will straddle a subset of the basin boundary. 'Furthermore, in
practice [a, b] will be very short and will be extremely close to the invariant set
Inv(R).

The numerical procedure goes as follows.
(1) Choose (with some experimenting) a straddle pair (a, b} and let I denote the

line segment from a to b.
(2) Apply the accessible basin boundary refine-ent procedure (that is, refine

and choose a new straddle pair (x, y} in / and then replace I by the straight line
segment from x toy. Repeat this process until the length of Iris less than some
distance a (for example, a = 10-). If the initial a and b are less than a apart, then
the pair is not changed,

Given any initial straddle pair (a, b), we will write (ao, bo) = ABS0((a, b}), for
the straddle pair resulting from step 2. Note that Ilao - boll < a. 'ABS' is an
abbreviation of 'accessible basin boundary straddle refinement'.

(3) For each integer n ::0, and straddle pair {an, b,) such that Ila,,," b,11 <a,
compute the refinement for the image pair {F(a), F(b)), and write

{a, 4t, b.+1) = ABSo(F(a,,), F(b.)}.

Thus we obtain a sequence ((a,, b,},)).o of straddle pairs. Note that only F(a) and
F(b ) and a are relevant to the computation of {a,+,, b,+,) =
ABSo((F(an), F(bn)}), since ABS((F(a,,), F(b,))) is a straddie pair in the line
segment from F(a) to F(bn).

Write I. for the line segment from a, to b,. Since the system is hyperbolic and
the matrix of the second parti" 'erivatives D2F will be bounded on the closure of
the region R, there will be a bk -:id on the curvature of the curve F(In), and F()
will deviate from the straight line segment L, from F(A) to F(b) by an amount
proportional to IL I2, where ILI denotes the length of L,.

We thus obtain a trajectory of tiny straight line segments 1,, and to the precision
of the computer (about 10-14) we usually have 1,,+ c= F(I,,), and selecting any point
x, from I, perhaps the midpoint, we have that Ix,,+. - F(x,,)l is small, typically of
the order of a. Since computers can never be expected to produce true trajectories
(except in trivial cases such as fixed points), we may say {x,,.o is a numerical
trajectory with precision a. Despite the complexity of the construction, we will refer
to x,+, as the 'iterate' of x,,. We call the sequence of intervals (I},,),o an accessible
basin boundary straddle trajectory or ABST trajectory, and we call the numerical
procedure above that generates the sequence {,,no, the accessible basin boundary
straddle method or ABST method. Notice that each interval straddles a piece of the
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basin boundary. After-a few iterates, the sequence {x,},, 0 resembles a subset of the
non-wandering points in'R which are accessible from'basin(A).

1n this paper we have shown that our procedure, (the accessible basin boundaryI refinement procedure) is valid in ideal situations. We find that theaccessible basin
boundary straddle. method works well in practice even in less than ideal cases, in
particular, cases where hyperbolicity seems to fail. If e is chosen too large, then
(a., b.)},;.() would still be a sequence of straddle pairs with a, e basin(A}' and

b , ebasin{B), but the sequence would not be accessible and probably would not
settle down tea periodic orbit.

In practice we find that, in most cases we study, the method appears to work well
for E = 1/30. In computing the sequence of straddle pairs (a,, b,) defined by the
accessible basin boundary refinement procedure, once case (2c),holds, then it can be
shown that every e-refinement of the proper straddle pair (a, b) includes a proper
straddle pair. For the examples in this paper we find that the accessible basin
boundary straddlc method leads (in all-cases- but- one) to accessible fixed-points or
periodic points, in agreement with the fact that all the accessible points for
two-dimensional saddle-hyperbolic systems are on the stable manifolds of finitely
ma., periodic points. The e'.ceptional case is the example of the complex quadratic
map of which the basin boundary is two-dimensionally unstable, and the result due
to Newhouse and Palis does not apply in this particular case.

6.2. The accessible set on the basin boundary

We have seen above that in many interesting cases our numerical method (accessible
basin boundary straddle method) produces a periodic trajectory on the basin
boundary that is in Inv(R). If P is a periodic trajectory in Inv(R) that is accessible
from basin(A), then all the points op the stable manifold of P are accessible from
basin(A). Therefore, we need a numerical method that produces the stable
manifold of a periodic point. In [YKYJ a procedure has been presented that can be
used for the calculation of stable manifolds of saddle periodic points of the
diffeomorphism F. The calculation can be made with a guaranteed accuracy, in
particular, it can be used to calculate the pieces of the stable manifolds of the
periodic points that we find. As illustration, we present in figure 9 the stable

1Figure 9. The stable manifold of the fixed point of the
Hdnon map (with p = 1.405, is = -0.3) that is accessible
from basin{B}.
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rmanifoldkof the period- 1 saddle in the'example of the Hdnon map for which the
attractor infinity (attractoi A) and a period 2 attractor coexist. This stable manifold
of the saddle fixed point constitute the accessible set (accessible from basin{A)' on
the basin boundary.

6.3. Related straddle trajectories

In this subsection we review briefly 'straddle trajectories' that are obtained by
methods which are based on refinement procedures such as the'bisection procedure
[BGOYYJ, [GNOY], the PIM triple refinement ptocedure[NY1u, [NY21 and the
accessible PIM triple refinement piocedure [NY2]. The methods were used in the
applications presented in section 3 and the refinement procedures above are related
to the accessible basin boundary refinement procedure. Thesedstraddle methods are
numerical methods for obtaifiing&trajectories-on the basin boundary and on chaotic
saddles. For clarity of the exposition and in order that this paperis self-contained,
we describe these methods; see the references above for details.

Straddle methods involve ,s refinement procedure in which 2 points on a curve
segment are replaced by two new points. In some cases the points have different
roles. Usually each of the refinement procedures takes a pair of points and returns a
pair of points; such a returned pair is on the line segment joining the two points of-
the original pair. The dhstance between the two points in the returned pair is smaller
than the distance between the points of the original pair. Straddle methods consist
of applying the refinement procedure repeatedly until the points in the resulting pair
are less than some specified distance a apart, say o = 10- '. If the points in the
original pair are already less than a apart, then no refinement is carried out. Next
apply the dynamics; that is, apply the map F to each of the two points of the
resulting pair, giving w pair.

The basic numerica, ,nethod takes a pair (as, b,} which is separatedby at most a
distance a, and applies the map F to each of the points of this pair. If the new pair
(F(a ), F(b.)} is separated by less than a, then it is denoted (a..,, b,+), and
otherwise the refineme -ocedure is applied repeatedly until a pnir with separation
at most a is obtained, awu it is called {a,+,, b,,.t}. However, ii. ter to produce
the first pair {ao, bo), the method starts by applying the refinement procedure on
the given pair (a, b}, whose points are presumably more than a apart. Writing I,, or
'[a, b,,] for the line segment from a, to b, and to the precision of the computer we
usually have 1,+ a F(,). We call the sequence of tiny straight line segments {
a straddle trajectory.

BST method. the 'basin boundary dynamic problem' is to d- 'e a numerical
method for finding a trajectory on the basin boundary.

The refinement procedure for straddle pairs is particularly simple. Let {a, P} be
a straddle pair such at a e basin{A} and P3 e basin{B}. We define y to be the
midpoint of the straight line segment [ar, /3], that is, y = (a + P)/2. If y e basin{A}
then we choose cr* = y, * = P; otherwise, if Y E basin(B) then we choose cr' = (r,
/3* = y. This refinement procedure is also called the bivcction procedure.

The solution to the 'basin boundary dynamic problem' is the straddle trajectory
using the bisection procedure. We call the sequence of tiny straight line segments
j.I}, o a basin boundary straddle trajectory or BST trajectory, and we call the
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straddle method above that generates the BST trajectory {i),,, the basin
boundary straddle trajectory method or BST meihod. Notice thit each tiny, line
segment in a BST tjiiectory straddles the basin boundary. A BST trajectory
typically resembles (after a few iterates) a basicset.in the basin boundary.

SST method. the 'saddle 'dynamic restraint problem' is to describe a numerical
method for finding a trajectory that remains-in a specified transient region for an
arbitrarily long period of time.

First, we describe the refinement procedure that is involved in the current,
straddle methliod, Let fa, b} be a pair such that [a, b] intersects S(R) transversaiiy.
The notation (x, y, z) for a triple means that x, y, and z lid, on [a, b] auid y is
between x and z, and we assume for convenience that the ordering on [a, b] is such

that x <y < z. For each e > 0, an e-refinement ofa triple (x, z, y) is an E-refinement
of {x, y) such that it includes z. Let (a, y, P) be a triple on [a, b. We call (a, , f3)
an Intet 'or Maximum triple if both TR(y) > TR(a) and'TR(y) > TR(1)); and we call
(a', V, ) a PIM triple if (a, ,, fy) is an Interior Maximum triple and lit - all <
Ilb -all.

Let (a, V, fP) be an Interior Maximum triple, and let P be an, E-refinement of
(a', y, .). The procedure that selects in 'the refinement P any PIM tripld
(a, ,*, f) is called a PIM triple (refinement) procedure.

The solution to the 'saddle dynamic restraint problem" is the straddle trajectory
using the PIM:triple procedure. We call the sequence of tiny straight line segments
Y.),..() a saddle straddle trajectory or SST trajectory, and we call the straddle
method that generates the SST trajectory 1 the saddle straddle trajectory
method or SST method. Notice that each tiny line segment in an SST trajectory
straddles a piece ofa (chaotic) saddle. An SST trajectory typically resembles (after a
few iterates) a basic set in the chaotic saddle.
ASST method. The 'accessible saddle dynamic restraint problem' is to describe a-
numerical method for finding a trajectoryon the stable set S(R) that is accessible
from the transient set R\S(R).

The refinement procedure that is involved in the current straddle method is a
PIM triple (refinement) procedure in which a PIM triple (a*, y*, P*) is selected
from the E-refinement P of.the interior maximum triple (a, c, b) such that [a, a*] is
in-the transient set R\S(R) (hence, [a, a*] does not intersect the stable set S(R)).
This refinement procedure is called the accessible PIM triple (refinement) procedure.

The solution to the, 'accessible saddle dynamic restraint problem' is the straddle
trajectory using the accessible PIM triple procedure. We call the straddle trajectory
{(I}),,o an accessible saddle straddle trajectory or ASST trajectory, and we call the
straddle method that generates the ASST trajectory {If4,.o, the, accessible saddle
straddle trajectory method or ASST method. An ASST trajectory typically resembles
(after a few iterates) a-subset of the non-wandering points in R which are accessible
from the transient set R\S(R).

In most cases that we have investigated we find that every 6-refinement of two
points {a, b}, when e is chosen to be 1/30, includes several PIM triples. In [NY1],
[NY2] we find that the ASST method leads to accessible fixed points or periodic
points, Which is in agreement with the fact that all the accessible points for two
dimensional hyperbolic systems are on the stable manifolds of finitely many periodic
points. In [NY2] we have shown that the two PIM triple procedures are valid in
ideal situations (hyperbolic systems). We find SST and ASST methods work well in
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practice-even in less than ideal cases. From the examples in [NY1]; we have seen
that-the SST method-works quite well for, a-variety of dynamical systems.

Most pictures in section 3 for which one of the numerical straddle procedures has
been applied in order to obtain a single numerical trajectory, have been obtained by
selecting e = 1/30 as default value, and neglecting the first 10 iterates. We chose e to1
be-somewhat smaller (0.01) in the ABST method for the Hdnon map (parameter
values p = 2;66, -- 0.3). 1
6.4. Shadowing

It is important to- ask if such straddle trajectories obtained by one of the straddle
methods (BST method. SST method. ASST method. or ABST method) represent
true- trajectories of the system. In other words. does-there exist a true trajectory of
the system that shadows (i.e. stays close to)-the numerical trajectory obtained by a
straddle method? When a map is sufficiently hyperbolic on the invariant set in
question. Bowen [BI obtained a result saying that each noisy trajectory in the

an-wandering set can be shadowed by a true trajectory if the perturbation is small:
see [BI for the precise statement. Recall that Inv(R)-satisfies the 'no cycle condition'
if whenever basic sets 17k(1) .... rk(.%1) is a sequence of basic sets in Inv(R) for which
the stable set of rk(i) has a non-empty intersection with the unstable set of I', +lI for
all I <_ i < k(M), then the stable set of rk(1f) does not intersect the unstable set of
rk(i). Assuming Inv(R) satisfies the *no cycle condition' and 6 is sufficiently small.
we can show that every BST or SST trajectory of a two dimensional uniformly
hyperbolic system with a fractal basin boundary or a chaotic-saddle, obtained by the
BST method and SST method respectively, can be shadowed by a true trajectory
(for as long as the saddle straddle trajectory can be computed). I
7. Concluding remarks

7.1. Higher-dimensional systems

One of the ingredients in the analysis of the validity of the accessible basin boundary
procedure in dimension two, is the existence of a C +" foliation -1y on a
neighbourhood of a basic set. The proofs of the basin boundary geometric lemma
and the basin boundary combinatorial lemma require the existence of such a stable
foliation (see also the proof of geometric lemma II in [NY2], on which the proof of
the basin boundary geometric lemma is heavily based). For d = 2, the existence of
such a foliation is guaranteed by a result due to De Melo [MI. Unfortunately, the
existence of a foliation a' on a neighbourhood of a basic set in higher dimensions is I
not known, see e.g. [PT].

Let from now on, the dimension d >_ 3. Let Fbe an Axiom A diffeomorphism, let
R be a basin boundary region such tho. dim E" = 1, and assume that for each basic
set r in Inv(R) there exists a C' staule foliation T on a neighbourhood of 17, for
some a > 0. Then the conclusion of the theorem is again valid. The proof is almost
the same; instead of proposition 5.2 one should use the properties of Markov
partitions of basic sets; see Bowen [B].
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Z2 Order of diffrpntiability of the diffeothorphism

We-assumed that the diffemorphism-F is C3. This assumption implied the existence
of a C' expanding map, for some cr>0, in proposition 5.3; If F is of class C2 ,
then it is known that such an expandngmap is C'. We would like to point out, that
the H61der exponent cr is only used to obtain (2) in the proof of, the Geometric
lemma I in [NY2I; the proof of the basin boundary Geometric lemma depends
indirectly on this result. Fortunately, -we can prove Geometric lemma I in [NY2] (in
particular the property (2) mentioned above)for the C'-map .9 of proposition 5.3 by

+ combining the techniques of the proof of proposition 6 in [Ne] and lemma 5.5 in

[Nul]. Thus in fact, it is sufficient to assume F is C2 to guarantee the main result of

the paper.I
7.3. An ad hoc numerical technique

I [GOY1] describes an ad hoc straddle technique for determining accessible periodic
saddle points on the basin boundary. In [GOY1] it is.issumed that there are two
attractors A and B. The objective in [GOY1] is tofind a saddle periodic point-on the
basin boundary that is accessible from, basin(B}. This-method worked-on several
test problems but had no rigorous foundation. The objective of this paper is to
attack the problem raised in [GOY1] and we find a straddle method (ABST3 method) which has a rigorous foundation.

i 7.4. Examples

By using the SST method, in the example of the H6non map with parameter values
p = 1.812579 70, It = 0.022 864 30 the resulting SST trajectory gives virtually the
same picture as figure 4 (which was generated using the BST method). Also in this
case, the ASST trajectory is similar to the ABST trajectory.

In the second Hdnon example (p = 2.66, It = 0.3) we choose in the ABST3 method e = 0.01; the ASST method gives a similar result when E = 1/30 is chosen.

7. 5. Smooth or fractal basin boundaries

IThe accessible basin boundary procedure is valid for smooth as well as fractal basin
boundaries.I
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I Calculating topological entropies of chaotic dynamical systems
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We present an ciielent kofritihm Ior wik ulai ng iopologit.i~ miopi eN Ihd% W klOOiAli.a "'OUS11 fi.1 ow hd .ipic% it)I chaoiic altictors as \Nell a% ciiaoti saodkes,

The quantitative characteriz.ation of chaotic pro- lgP
cesses has proven to be an important issue in non- It (2)linear dynamics. Calculations of' Lyapuno\ expo-
nents and ('ractal dimensions hiase been \er\ useful ('haoit *L sstems encountered in apphLations are often
in this regard. \nother fundamental qujantity is thle not axiom \. Nes ertheless. for non-axiom A stiua-
topological entropy [ 1,2. 1,w\hich characteriz.es the tions. it is often assuimed that eq, (2 1continues to
comnplexit\ of'the orbit structure o1'.4 gis en ch nam- hold. ELen so. chait sstvims tend to he numeri-
ical Stcei. Thle topological entropy i% imsariant un- , all\ un'stable. and this c in make it dif'ficult to ob-Ider topological conjugac\ of'the dynamical systemIs tami I suiffi-ientl\ large number ol periodic orbits to
(iLe. it is preser' ed by Lontinuous and not necessar- uise in eq. ( 2). C alculations based onl this method
ily differentiable changes of' ariables), iequtire Ingenuit\ and Iiai'e been carried out in a few

The general definition of' topological entropy is cases 14.i1.
computationall\ unwield\, so .alculations inaria- AnAIM* 11proac2h ducto Ne%lmhe and Yonmdi

general definitions. ponentmal gross t rate ol'a A-dimiensional volumle inIFor an axiomi N dif'feomnorphism I' (see ref. 131 thle plhine space j 11. F-or tso-(imenslonal mnaps.
f'or a definition of the conditions satisfied b\ an ax- Nevwbouse uises these testilt to obtain numerical
ioin \ systemn thle topologikal cntrop\ is thle b ounds (in thle eiitiopy bk .oiptmin the exponentialInential gross th rate of the n umbei ul periodic. points5 !;.-o\\ III rat of thle length of a ty pical line segment.
13 1. Let P),, be thle number of fi\cd points of' ihle it Recenils. a more sophismiated technique based onl
times iterated map P'". thIus. P,~ LOUfS thle niumbei !;enviatintg paritliuns ol haooic attractors has been
of points of period it plus thle number of'points " hose proposd. Tis mnichud seems to yield precise esti-
period di'ides it. 'flhe topological entropy. W. 1 . atc'. on topological ci1uiopies. I luses er. genlerating
satisfies partitions are usually difficuit to construct 16].

IgII tills note. we introduce a new algoriihmn for cal-
Ii= lim - I) culating the topological entropy which is particularly

'~'~ simple :and efficient. and may in some cases have

Thus for N sufficiently large. %%e hiase thle ap- some aksaitages oser pre\sious methods. It applies
proximation to chaotic attractors as \\ell as chaotic saddles.

Consider anl insertible map of thle plane (. I-')

Also at. Department of Elcttriwai Engineering and Depai,- j,'( v. ' ) Choose a compact \olume V. Normally
meni of Physics. we choose V to contain thle chaotic Invariant set of

48 11.17-9601/9 'S 0)3.50t 149 1 - Ulse% ivr Science Publishers B. t North-HollandI
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,themap. Howe'r,.since:the topolosical entropy of behavior of s,, for largqen. Alteriatively, wecan plot
F is bounded below by the entrpy -restricted to log N, Versus n and estimate in(F) as the slope of the
any subregion. our'algorithm obta...j lower bounds fitted curve, (discarding a suitable number of small
evenwhen this is not the case. This fact is useful if n values);
one does not know a priori bounds on the dynamics. To obtainr ai estimate of the number of disjoint
We assume that under the action of the inverse map strips in V,,, let T(x) denote the smallest value of n
F-', all points in Vexcept for aset of Lebesgue mea- such that F-n(x) is not in V. We call T(x).the in-
sure zero (the invariant set and, its unstable rhani- verse escape time from V. Now consider a line cut-
fold) eventually escape V. This is true, for example, ting transversely across the stable manifold. Then this
for area -contracting maps such as the-djissipative line also cuts through all strips in V, for large n, since
H~non map. Consider the intersection of V with its each strip of V, lies basically along the direction of
preimages, V.=VnF-'(V)nF- 2(V)c ...n the stable manifold. Hence, N, is given by the num-
F-"(V). For large-n. V, generally consists of dis- ber of intervals where T(x)>n in a typical one-
joint elongated strips i. ing in the direction of the sta- dimensional line cut. In practice, we count the num-
ble manifold of F for the invariant setcontained in ber of such intervalswhere T(x) >, n for successively
V. In the limit n-,oo, V,, is the intersection of the larger values of it and calculate the quantity s,, up to
stable manifold with'V. Let us denote the total num- a certain level, or until it converges within a given
ber of disjoint components in-V, by N, (in the-case tolerance. Although h obtained in this fashion only
of the standard hnrseshoe map, this number is 2"). gives a lower bound for the topological entropy, for

The theoretical oasis for our algorithm lies in the all the systems where comparisons with previous cal-
following model situation (see ref. [ 7 ] ). Let V be a culations are available, this algorithm appears to yield
rectangle whose sides are roughly parallel to the sta- very sharp lower bounds,
ble and unstable directions of the invariant set. If We remark that in studying chaotic scattering in
F(V) o)V consists of in horizontal strips and two-dimensional Hamiltonian flows, Kovdcs and TO
F-I(V)cnV consists of in vertical strips, and Funi- have obtained a similar quantity, Ko, for the Poin-
ormly contracts horizontal strips, and F - 1 uni- car6 map on a surface ofsection, They call Ko the

formly contracts vertical strips, then F restricted to topological entropy of the scattering process [8].
the non-empty invariant set A=no.=.,,, F'(V) is Their method is similar to ours except that we use
conjugate to the full shift on in symbols which has F- I while they use F (the topological entropy of a
entropy log in and therefore the map F has entropy map and its inverse are the same). Using F -', how-
at least log m (see re,. 17] for details). ever, allows us to obtain the entropy of chaotic at-

Given the region V and the map F, often the above tractors (this is not possible using the method of ref.
hypotheses are not satisfied, but are satisfied by an [8], which was designed for chaotic saddles).
iterate, F" and a possibly smaller region V' :V ". We first illustrate our algorithm for the Hdnon
Recalling that Nn is the number of disjoint strips in map,
F-"(V) rnV the above argument implies that the en-
tropy ofF" is at least logNn. Since h(F")=nh(F), X+, =a-x +by., '+ =x. (4)

we define Set b=0.3, in the parameter range !.4,a<4.0, the
invariant set of the Hnon map changes from a
strange attractor to a strange saddle, and finally to a

If the above hypotheses are satisfied by the region V full 2-shift (horseshoe). For a sufficiently large, the
and iterate i, the above estimate forms a rigorous topological entropy saturates at log 2. It can be shown
lower bound. In cas ere explicit checking ofthese that the invariant set of the Hdnon map is included
hypotheses is impr..cal, we examine convergence in the square max( lxi, liy )<R, where [9]

R= J(l + Ibl + [( I + Ibl )2+4a ")2}.

" Recall that the topological entropy of F restricted to V gives This is the region V which we use for calculating the
a lower bound for the topological entropy ofF restincted to V. inverse escape time function. For simplicity, we take
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a vertical one-dimensional line through the- origin imately 32 million machine instructions. On a 10
.k =0. y=0 and calculate T(.x) at regularly spaced in- MIPS workstation. the whole computation takes ap-
tervals. This is shown in fig. I for a=3.0, where the proximately 3 s.We can achieve better precision by
invariant set is topologically a full 2-shift (horse- going to higher levels or interpolating more points inshoe). There is a natural Cantor set level structure the grid. The calculation time typically increases with
in the inverse escape time function. At level 1. there the level at an exponential rate given by the topo-21 ae two intervals from which it requires at least two logical entropy. Usually, level 10calculation ( I mil-
backward iterations to escape the square V; at-level lion machine instructions, or 0.1 s on a 10 MIPS
2. there are four intervals from which it requires at workstation) yields good estimates on the entropy
least three backward iterations to escape V. etc. The for chaotic systems. (For instance, for the Htnon at-
intersection of these intervals is the intersection of tractor ata= 1A b=0.3, level 10 calculation gives
the stable manifold of the invariant set with the ver- .s=0.660. while level 15 givess=0.670. a relative er-
tical axis. ror of less than 2%. Note this value is consistent with

I'sing a double-precision algorithm, weare able to the one obtained in ref. [6].) In all our numerical
calculate the inverse escape time function up to level examples, the logarithms are taken to be base 2.
20. The algorithm is implemented as follows. Start- Fig. 2 shows the topological entropy for the H6non
ing from the initial interval Q0 given by the intersec- map at b=0.3 in the parameter range l.4.<a<3.0.
tion of the vertical axis with V, we interpolate q, with It is calculated with 100 interpolation points at level
a uniform grid of N=50 points %rid calculate the in- 15. This figure seem,. to be identical (with better
verse escape time for each point with cutoff time precision) with the one obtained by Biham and
n = 2, We find all the intervals 21's in the grid where Wenzel [41. Note that there are plateau regions where
the inverse escape time function is greater than I. the entropy is constant. This is because for any pa-
We then interpolate again each interval Q, with 50 rameter value where the invariant set is hyperbolic,
points, calculate the inverse escape time for each the topological entropy must be locally constant due
point with cutoff time n =3, and find all the subin- to the structural stability of hyperbolic sets. Thetervals 22's where the inverse escape time function is whole calculation with 260 parameter values takes
greater than 2, etc. Assuming each iteration of the about 50 min on a 10 MIPS workstation.
Hnon map costs about 10 machine instructions and We also apply our method to open Hamiltonian
the topological entropy to be calculated is log 2. the systems. Generically, the phase space of Hamilto-
whole calculation up to level 15 then costs approx-

U6 -----I 1,K11

• ,i 0.91.
.r I

T~ !0.8?

I K0.7 i

03 0.61.0 1.5 2.0 2.5 3.0 3.5-3 -2 71 0 1 2 3 a

Fig. 2. The topological enirepy for the HWnon map as a function
Fig. 1. The inverse escape time function for the Henon map at ofaatb=0.3.Thisgraph isobtained usingthe methoddescnbed3 a= 3.0. b=0.3 for a verical cut through the ongm =0. j =0. in the text at level i5 with 100 interpolation points.
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nian systems has mixed, components (101:' regular function of.A. (We.iote that the t6pologicaientropy
rotational motions of KAM type, andirregular mo- of the sawtooth map defined on the-plane is different
tions with positive Lyapunov exponents. If the ir- from the topological entropyof.the same map de-
regular component is noncompact, its only bounded fined ofi the torus. In, the-latter case. the, space is,
invariant subsets are strange saddles. The topologi- compact, the chaotic invariant setis'the whole torus.
cal entropy is related to the escape dynamics from which -contains r as a subset. The- topological en-
the saddle [ 5 ]. We wish~to calculate the topological !ropy of the latter is g:. en by the Lyapunov exponent
entropies of such systems. One example-is given by log A, the uniform expansion rate of a line segment.)
the area-preserving sawtooth map on the plane [ 5], When A> 3, we can show that the invariant set is a

full 2-shift [5], therefore, the topological entropy
saturates at log 2 when / > 3.

Heref./(x) is a sawtooth function, For convenience, we choose the cut at x= -0.5.
x(6) The topological entropy is shown in fig. 4 for 2<

,10. The solid curve is the entropy obtained by
where (.vI denotes the greatest integer in x. Note that counting the number of periodic points of the map
f(x) is discontinuous on the line x=0, therefore the by using the coding scheme of ref. [ 5 ], the dots are
sawtooth map is piecewise linear with constant Ja- entropies calculated with our algorithm at level 18.
cobian matrix except on the line x=0. The nonlin- The agreement is excellent. When i <2. the conver-
earity of the map comes from this line of disconti. gence for both methods becomes slow, and we find
nuity. For K>0, the map is uniformly hyperbolic it prohibitive to obtain the entropy value wthout
except on the discontinuity line, hence, there are no going to a higher precision algorithm. We note that
KAM curves in the phase space. The Lyapunov there is no apparent plateau structure in fig, 4, This
number A is related to the parameter K by is because the invariant set is not everywhere hy-

perbolic in this parameter range.
J = I + 0.5 [K+ (K2+ 4K)1121]. We have also calculated the topological entropy for
L ..er the action of the sawtooth map, almost all ini- the corresponding invariant set of the standard map
tial conditions inside the fundamental region V = (x: on the plane. The standard map is given by replacing
xIx 0.5) escape to infinity. It can be shown that the impulse function in (5) with a sinusoidal func-

there is an unstable invariant set r in V [51. Fig, 3 tion [10].
shows this invariant set at A = 2.4. We will calculate
the topological entropy for this invariant set as a t.o

U, 0.8 L-
0.4t O .6

0.2[ - .4

0.4 1&

y 0.0 ..... 0 -- 1

)1 I

-0.2 -

0.02 .2
.0. 2.0 2.2 2.4 2.6 2.8 3.0

-0.41 1
-0.6 3 Fig. 4. The topological entropy as a function of A for the saw-

.0.5 0 0.5 tooth map. The solid curve is the entropy obtained by counting
the number of n-cycle fixed points, the dots are the level 18 cal-

Fig. 3. The unstable invanant set for the sawtooth map at A = 2.4. culations with 100 interpolation points.

51



I
Volume-]56. number 1 2 ,PHYSICS LETTERS A 3 June 1991

3 I.)- -sin(2nt.)/2r. (7) In conclusion, we have presented.aft efficient al-

gofithm for calculating:the topological' entropy of
For moderately large values of K, (of -rder I), the chaotic dynamical systems.
motion ,in the phase space has'both regu lar and ir-
regular components.. However, When the parameiet QC wants to thank the Aspen Center for Physics
K is large, the map is almost hyperbolic [ 10]. There- for its hospitality and Rex Skodje for discussions.
fore. the invariant set contaifned'in the fundamental This work was supported by the Office of Naval Re-
region V= Kx: Ixi <0.51 is a strange saddle for large search (Physics), by the Department of Energy (Sci-
K. In fig- 5, we show the topological entropy in the entific Computing Staff Office of Energy Research)
parameter range 5.0 < K< 9.0 calculated using our al- and by the Defense Advanced Research Projects
gorithm atlevel 10 (again logarithms are calculated Agency.I in base 2), We see that at Kz,8.4, the topological en-
tropy saturates at log 3, indicating the invariant set
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U ABSTRACT

INumerical experiments on a symplectic coupled map system are performed to inves-

tigate the tendency for global ergodic behavior of typical Hamiltonian systems as the

I number of degrees of freedom N is increased. As N increases, we find that the fraction

of phase space volume occupied by invariant tori decreases strongly. Nevertheless, due

to observed very long time correlated behavior, a conclusion of effective gross ergodicity

cannot be confirmed, even though extremely long numerical runs were employed.
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'The bAsic assumption in' statistical mechanics is thatf of ergodicity over the phase

-space hypersurface determined by- the global constants, of the motion (e.g., total-energy,.

total angular momentum, etc.). On the other hand, studie, of 'Hamilt0nian systems

with few degrees of freedom (e.g., two) typically reveal the presence ofinvriant KAM

tori in addition to chaotic orbits; and -the -existence of KAM tori yields motion that

is grossly different :from that assumed in statistical' mechanics. A natural supposition -

reconciling the above contradictory views might be that, As the number of- degrees of

freedomis increased, the tendency for global ergodicity increases. By "tendency for global

ergo lcity" we meaii that, for systems with many degrees of freedom (the situation of

interest in statistical mechanics), the, overwhelming majority of' initial conditions would

be ergodic over effectively all of the area of the phase space hypersurface determined by

the global constants of the motion.

The purpose of this paper is to present numerical experiments which attempt to test

this supposition in a specific case. In particular, wt study a symplectic map system (the

symplectic condition insures that the dynamics is Hamiltonian). A closely related wcrl

is that of Falcioni et al.1 For other previous relevant works on Hamiltonian dynamics in

higher number of degree of freedom systems see Kaneko and Bagley,2 Gyorgyi et al., 3

and the discussion and references in the book by Lichtenberg and Lieberman.4 The main

result of the present paper is that, for the system we study, the fraction of orbits on tori

decreases very strongly as the number of degrees of freedom is increased, but there is still

no conclusive evidence for effectively complete global ergodicity even over the very long

times investigated in our numerical experiments. The latter is due to the extremely long

time-scales, insensitive to machine precision, observed in the numerical experiments.

The system we studied -derives from the standard map,

x/ = x+Y, (1)

y = y+ksinx'.

In these coordinates the map can be considered as a map of the two-torus T2 , 0 < x < 27r

and 0 < y < 27r.

Given a positive integer N, consider the space (T2)N thought of as 2n-tuples

(xo,y0,xi,.y, ... ,Xv-1,yv-). We define a coupled standard map allowing symmetric

2



bidirectional nearest neighbor interacti6ns ,

t _. Xi + yi,
x, = (2)

SY yj + K sinx x + CK sin(x x.-.) + CKsin(x -

where the indices are taken modulo N and xi, yj are taken modulo 2-r. Here C is the

I coupling parameter to nearest neighbors. Letting K = k/(2C + 1), Eqs. (2) reduce to

Eqs. (1) for N = 1. We call k the nonlinearity parameter. This map is symplectic since

it can be obtained from the generating function,

n

F(xx') = (x -xi) 2 + K cos x + CK cos(x - x+). (3)
2 =1

3 One checks readily that yj = OF/Oxi, y = -DF/Oz,.

The original aim of our numerical experiments was the exploration of the relative

Smeasure of KAM tori as a function of the number of coupled maps. To this end, we

first note that motion on KAM surfaces is quasiperiodic with all Lyapunov exponents

3 zero, while motion not on KAM surfaces typically is chaotic and has at least one positive

Lyapunov exponent. Thus we proceed as follows (see also Ref. 1). A cutoff value C for

3 an orbit to be considered quasiperiodic was set and the number of initial conditions with

largest Lyapunov exponent (LE) less than e counted. The run consisted of taking m initial

I conditions uniformly distributed in the 2N-torus and iterating them approximately 106

times along with their tangent vectors to compute their LE's. A cutoff value e = 0.005 for

the largest LE was set below which an orbit was considered quasiperiodic, and the ratio

of the number of quasiperiodic initial conditions to the total number of initial conditions

was returned.

3 When the coupling coefficient is zero, the volume of the KIAM tori decays exponentially

with N. In particular, if f denotes the fraction of phase space occupied by KIAM tori for a

3 single standard map, Eq. (1), then the fraction of the phase space (T2 )N for N uncoupled

maps for which motion in the 2N variables (Xo, Yo,..., XN.-1, YN .1) is quasiperiodic is fN.

3 When C > 0, the rate of decay was observed to increase dramatically. Results for the

parameter values C = 0.5, k = 0.3 are displayed in Table 1. In this table the estimated

3 measure of quasiperiodic (QP) initial conditions (sLcond column) is the fraction of 8192

1 3



,randomly chosen initial conditions yielding LEs Aless than E.

Estimated Measure of QP
Maps J Initial Conditions J Iterations

1 1.000 106

2 0.403 3.25 x 106

3 0.048 3.25 x10 6

4 0.002 3.25 x10 6

5 0.000 1.25 x 106

6 0.000 106

7 0.000 106

Table 1: Fraction of Initial Conditions Yielding Quasiperiodic (QP) Orbits

Figures 1 show histograms of the observed distribution of maximum LE's for the 8192

randomly chosen initial conditions for N = ., 3,.... ,7 coupled maps.

The case of three maps is presented twice with different numbers of iterations for the

same set of data. The observed peaks get sharper but the effect is very slow.

In most cases the following phenomena were noted:

1. The number of initial conditions following within the e bound for quasiperiodicity

decreases rapidly as the number of maps increases.

2. The ohk peaks grew sharper with repeated iteration-but very slowly.

3. The histograms with more than one peak preservrd those peaks and they individ-

ually got sharper.

These observati :us might lead one to conjecture that each peak represents a distinct

ergodic component with its own maximum LE.

We now discuss the behavior of six individual orbits for the N = 3 case, where the

orbits are chosen so that their maximum LE's cal:ulated after 3.25 x 106 lay in distinct

regions of interest of the histogram in Fig. 1(c). The calculated LE values for these six

orbits are indicated by the arrows labeled with the letters (a)-(f) along the axis of Fig.

4



1(c). The pruojection of these orbits onto. the first two components (xo,'yo)'areplotted for

101 iterations in Figs. 2(a)-(f).

Distinct orbits appeared to stay constrained in afixed regionof phase space, azpd this

was also true when time series of 10' iterations -were plotted.

Lyapunov exponents were then computed for each of these orbits-for a much greater

period of time (3 x 108 iterations). The results are shown in Fig. 3 where the letters (b)l(f)

labeling the curves correspond to the orbits shown in Figs. 2(b)-(f) and the arrows shown

along the horizontad axis of Fig. 1(c). The first initial condition, which was presumed

quasiperiodic, remained stable during the whole process, and in fact its computed LE

reached zero to machine precision. Initial condition (f) also remained at a highly stable

value. The remaining four, however, appear to have started to converge. slowly to a new

common value.

Figures 4 break down the curves in Fig. 3 (plus orbit (a)] giving the cumulative LE

and a "local" LE which is calculated in 500,000 iterate bursts. Observe the gi'cat stability

of initial conditions (a) and (f).

Further studies were conducted for a variety of initial conditions and various behaviors

were observed.

1 1. Some initial conditions "tppeared to lead to orbits whose LE's showed a great deal

of stability (they remained essentially unchanged over the observed time scale).

2. Some initial conditions showed a high degree of stability at one value of the maxi-

mum LE but then "leaked" into a regime with a different LE.

3. Some initial conditions alternated between chaotic behavior and behavior very close

to quasiperiodic.

Il One effect of these observations was to call into question the reliability of the LE

calculations in general. Many of these calculations seemed to be stable for greater than

106 iterates before changing value. Given the relative rarity of these "leaks," it was

impractical to assign any numerical value to this diffusion.

* 5



The histogram calculationswere performed on a"Connection, Machine, using (0f neces-

sity) single-precision, arithietic,. The orbit calculations were performed, on a-DecStation I
3i00 usifig double precision. To examine ,the effect of machineprecision several ofthe

-long-term LE calculations were done at both single and double precision. The observed

behavior was qualitatively the same; the observed leakage between regions of different

LE occurred in each case (at slightly different iterates).

This work was supported by the Office of Naval Research (Physics Branch), by the

Department of Energy (Scientific Comp-4ting Staff, Office of Energy Research), and by 3
the Defense Advanced Research Projects Agency.
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FIGURE CAPTIONS

1. Histograms of maximum -LyapUnov. exponents for 8192 initial conditions and N -

2,3, ... , 7. For (a) the -alue in the first histogram bin is about 2700, far off the

scale shown. In general, the value in the first -bin is an estimate of the number of

quasiperiodic orbits.

2. Projection of six individual orbits for N - 3 onto the plane corresponding to the

first two components. 10 iterations are plotted. The calculated inaximum LE's for

these orbits are (a) 8 x 10-5 (quasiperiod"c), (b) 0.0166, (c)-0.0676 [corresponding

to the lower LE peak in Fig. 1(c)], (d) 0.1170 [corresponding to the higher LE peak

in Fig. 1(c)], (e) 0.1191, and (f) 01300. These LE values are indicated along the

horizontal axis of Fig. 1(c).

3. Maximum calculated LE as a function of the number of map iterations for the five

orbits corresponding to Figs. 2(b)-2(f).

4. Cumulative and "local" maximum LE for the orbits corresponding to Fig. 3.

8



ii

I -- I I I I I~ ~ I -' I-~~ I~~I I

I 6

I
I C

I
I
I
1

Q

I
bn

I Cl

I z

liii I ~I I I 00
06I

I
U



C1C

C) C C) ) C ) C0
C)~~ ~ lx )4

co -q - c1



z 00

CD00

4cq



A I I I I i I 4 -D

6o

0L



I
I
I . I I Ij I I I I I l~ I- I *1*'*~I

6
1. 0

.1
0
0

I
~1 _ -~

I
-~

~

0

yR
I
I Iz

.3
0 0 0 0 0 0 0 06S Cl 0 Cl

i-H

I
I
I



I I

6
S

0

______ 0

0
0c/2

bn

IIz
0

I I I I I I -0
0 0 0

0 06



biO~

z-

I I f i l 1 1 1 . 01 1 1 1 (

Cl~~ 0

Ic



0

t4

C -~l -t

0



it
1
3 - * N

I

5 N

I *~*~ Cr)

I
* t* ~*-*j. -~1~I 03 ~

a 7
I .*-~ -~

N

I
*

J

I I _____________

N N b3 N

0

13:
I
I



I I

* *.*~* ~ ~-

~.'
* . . .,t,%~ . .* V

. *

. *74~4....

l~*;...

.IW.., . . . **.

L~.~P'*.-. 7...-

7 .z'~..

~ ::1

........................................................7

**~ *. . . 0

*~4-?

"7 .'4 ~

,.*.~ ,*,

'7
- -~'*~*

*, I"' * .:

.d~.
4 

'....
7~74

.~J~*7 * ~

* "

.. , 7~".*..

. .j~..J 0I I

eKI 0
Cl

0



'I

~ I A A * ~ -

I
* 

~ ~

.. '

(NI1
P. ~~,.'*** 

\~

* ... * * 4" ~ I
~ ~ 

*~ ~ ':~i.I.. i

I'~ .~ *.9

*~,, ,**. ~. .*

v~.

4
I

~

.~.* .~. ~I 
~.

.a.~ ~ 
* b.

0,I 
~ 

~ ~~ .~:I
I I I. ~* (NICl -~ 

-~3 Cr)
0

I;
3
U



I m I I ~ ;~'.'P.

* .. ~;. ..
~ *.~

. . -. .*az. .'~ .

~ . ~ f.*.

"*~s. ..A.
.~- ,-~*.

* ~~

.~
...

r ...

~ . ... ,

~ .'4
* ~ .. ,

I *
* . . ,

.. *~.......

..:

* ... -. * .

. ,-.'

-I
.,.*.

................. I
. ...

~. .

* *\****.*****~ .-.
..................

'

* * .* .~

;.~*A...',.

p. ~
.4 '-.4...,

:7KF.. .

'Ir~ *!*~ I p p I I I I ; I ~

Cl (N~

Cl

0

I.



-. £ S I I ~ I ~

-. ~s.

I.-.. I

I. - - -

L *1I- -'-9
.-31

-- .

~ CI
I.-

I...* ~.;
.~ ..- .

- -c,..--

*1*~" I
1

~ ; ~-: * *1
.... 0

* ~~--- -. F~.
.;. 9

I, -*~-** - *1
-.5 5... ~ '.1

S. I.....
9.. .. ***'.S.;

- -:~~ -.sI
L. e.g.. ...

-' .~ .. S 9;

~ -- 5 Cl

K555....
V. - .*, . ..

I -

.~

- .5

9.... I i I V I

Cl Cl 0
Cl -~ -~

0



0

0o
a I [ I II 3 3

~x ;-

c-, (1)

squouodxa~~0 Aon-eSj uuax



00

I0
CI-

xx

3!a oxr- un-i-lAIn r



0

I- -4

C 0 C 0 0 0

sqU~UOdxaf AoundugrJ tuntuix-e-



~--00

0
1 4 1 -pI

x

C.c)

5 _ _C_ _ _ _ r)iC)

___uox~ AI!d~r rrax



00

£ i-t-~ 00

xd

I' Iq

_ _ _ _ _ _ _ _ _ _ _C 1 2

_ _ _ _ _ _ _ _ _C

s~ueauodxq, Aound-egrj tunuiuxr



i- Ai

r /d
* ____

_________ Ao n -1r 2-m xe



."~ -00

r~I
co

001

Cd~

LO Lo

squaodxaAoud-e~j uintux-I



I

MtETAMORPHOSES: SUDDEN- JUMPS IN 'BASIN BOUNDARIES

1* by

Kathleen T-. Alligood
Department of Mathematics

George Mason University
Fa'irfax, VA 22030

and

Laura Tedeschini-Lalli
Department of Mathematics and

Institute for Physical Science and Technology
University of Me-yland, Colleae Park, MD 20742

On leave from- Dipartimento di Matematica
Universita di Roma "La Sapienza"

Rome, Italy 1-00185

* and

James A. Yorke
Department of Mathematics and

Institute for Physical Science and Technology
I University of Maryland

College Park, MD 20742I
December 1985

I
1) This research was supported in part by grants and contracts
from the Defense Advanced Research Projects Agency, The Consiglio
Nazionale delle Ricerche (Comitato per le Matematiche), and the
Air Force Office of Scientific Research.1I



METAMORPHOSES: SUDDEN JUMPS' IN BASIN BO UNDARIES

Dynamical systems in-the plane can have -many, coexisting,,attractors.

In order to -be able to predict long-term or asyrhptotic bahavior in such

systems, it is important to be able to recognize to which attractor

(final state) a given trajectory will tend. The set'of initial condi-

tions whose trajectories are asymptotic to a particular attractor is

called the basin of attraction of that attractor. In some systems that

depend on a parameter, it has been observed that the boundaries of these

basins are extremely sensitive to small changes in the parameter. Not

only can a boundary jump suddenly but it can also change-from being

smooth to being fractal. These changes, called boundary metamorphoses,

are studied at length in [GOY). In this paper, we prove a theorem,

originally stated in IGOv, which characterized the jumps in basin

boundaries.

The H6non map f(x,y) = (A-x--Jy,x) provides an example of this

phenomenon. We fix J = 0.3 and vary A, resulting in a one-parameter,

invertible map of the plane. The Jacobian of f is J; hence, f is

area contracting for all A. We will be looking specifically at the

boundary of the basin of attraction of infinity. (The basin of infinity

is the set of all points (x,y) such that Ifn(x,y)l 0 0 as n + o.)

Figures la and lb show the basin of infinihy in black for A = 1.314

and A = 1.320, respectively. In Fig. lb we see that the basin of

infinity contains points which were previously (at A = 1.314) well

within the white region. This new set of black points has not gradually

moved in from the boundary of the white region. Rather, beyond a

certain critical value A = A* % 1.3145, black points suddenly begin

appearing deep in the interior of the white region. As A increases,

2
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the thin bands thicken. This is a discontinuous change in the basin of

infinity.

In order to understand this phenomena, we must e*amine the dynam-

ical behavior on'the basin boundary. At A - 1.314 (Fig. la)-the

boundary is observed numerically to consist cf a saddle fixed point

pl, and its stable manifold WS(pl)., (The stable manifold WS(p) of a

fixed point p is the set of points (x,y) such that fn(x,y) + p

as n * ®. More generallyi, the stable manifold WS(pk) of a periodic

point Pk of period k is the set of points (x,y) such that

fnk(xy)' + Pk as n *. Analogously, the unstable manifold WU(pk)

of p,, is the set of points (x,y) such that f-nk(xy) + Pk as

n % . Such sets can be proved to be smooth curves.) One branch of the

unstable manifold of p at A - 1.314 extends into the white region,

as shown irt Fig. 2a. At the critical value A* % 1.3145, after which

the basin boundary jumps Into the white region, we find that WS(pl)

and wu(pl) are tangent (Fig. 2b). S. Hammel and C. Jones [HJ] were

the first to prove a theorem relating the tangency of Ws(pl) and,

WU(pO) (called a homoclinic tangency) to basin metamorphoses. Their

methods are different from ours, however. We want to relate these

metamorphoses to the saddle periodic orbits which are found near the

points of tangency and which we describe below.

The complicated dynamical behavior which occurs at homoclinic tan-

gencies has been studied at length in recent years, especially in the

papers of Gavrilov and Silnikov CGS], Newhouse [N], and Robinson [R].

Under certain non-degeneracy assumptions, there are horseshoe maps

defined on subsets of the plane near a point qo of tangency of WS(pl )

and WU(pl). Figure 3 shows a rectangle B4 and some of its iterates

3
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4,!
under f. Notice that f4(B 4) isLorseshoe shaped and intersects B4  I
in two components. In fact,. for h sufficiently large, there is a 5
rectangle Bn  near the point of tangency .10 such that fn restricted

to Bn is a horseshoe map. There is necessarily a saddle orbit of

period n in each of the two components of the intersection of Bn

and fn(B ) (see, for example, CR)). On' -f these saddles will have a I
n

"flipped" unstable ranifold (i.e., Dxfn at this saddle has an eigen-

value less than -1), and the other will not. We label the unflipped

sadd),e Pn. This orbit is called a "simple Newhouse periodic orbit" in

[TY).

The larger n is, the closer Bn will be to qo and Ws(pl).

This corresponds to the fact that the length of time (i.e., the number 3
of iterates of f) it takes for a point .move around the fixe point

p1 is determined by how close the point is to the stable manifold3

WS(p,). What we see (Fig. 4) is an infinite family of horseshoes, and a

sequence (pn} of simple Newhouse saddles (where Pn has period n

and is in B-) such that (Pnl- qo. In the following theorem, as stated

in [GOY], the saddle fixed point S corresponds to p, in the discus-

sion above, and the saddle orbit T corresponds to a simple Newhouse

orbit Pn' for some n. The term "first non-degenerate tangency"

refers to the following set (H) of hypotheses,

(i) Wu(p]) does not intersect WS(p1 ) for A < A*.

(ii) There exist points p0  in WU(pl) and q. in WS(p1 )

such that qo = fk(po) for some k 1, at A = A*.

(iii) There is a parametrization ht, -1 t 1 1, of WS(pl)

near qo such that ho - qo and Wu(pl ) near qo is given by

ght), where g'(h o) = 0 and g"(h o) 1 0. 3
4 
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Figure 4 Caption3

Figure 4 shows the relative positions of two simple N{ewhouse
saddles p nand pnIof periods n and n+1. respectively.



i1l

Theorem. Consider an invertible map f of the plane depending on3.Ii a parameter A with a saddle fixed point or periodic orbit S.. We

assume that the absolute value of the determinant of the Jacobian of

f (or of fn ii the case of a periodic orbit of period n) -it less

than one at every-point of the plane. Assume that f hLs a transition

I value A* as A increases where the-stable and -unstable manifolds of:3S have a non-degenerate tahigency and then dross for the first time.

Then there will be a periodic saddle T that is in the-closure of the

3!I stable manifold of S for all 'A slightly greater than S* but is not

in it at A*.

We prove the theorem with the aid of the following lemma .

Lemma. Let Pk be a simple Newhouse saddle of period k (as

3i described above) near the point qo of 'tangency of the stable and

unstable manifolds of pl. Then, for n sufficiently large, the

unstable manifold of Pn crosses -(i.e., intersects transversally) the

:3 stable manifolu of Pn+1"

We postpone the proof of- this lemma due to its technical nature and'

proceed to show how the theorem follows. If WU(pn) crosses WS(Pn+1)

'5 at a point x, then the forward iterates of any segment of WU(pn)

containing x will eventually contain all of W P(p ) (the closure

of WU(pn+)) in its set of limit points' (see Fig. 5a). Hence

Su(Pn+) WU(p) Proceeding inductively, we have that

i i _ _ _ _ _ _ _

iThis follows from the A-lemma. See, for example, the exposition inI [ GH].
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Figure 5 Caption

Figure 5a indicates that-the closure of W u(Pnl is contained

u n+II

in the closure of W .O Figure 5b indicates that the point of'

tangency qo0 is in the-Closure of the unstable -manifolds of infinity

many simple Newhouse saddles.



IN e)wp W(p) (see Fig. 5b), for- every m- I P t f-act,mn5as thie proof of the lemma will show, thd horseshoe fn (Bn) contains a

segment of Wu(Pn) around p--. As ri.-l * ' the horseshoes become

I;thinner, And- Approach Wu(pl1). tor A slightly -larger than A .and

5 for in : 4tficiently large, the horseshoe Fm(Bm). and hence Wd(Bm),

will cut 'across W5l(pl).., thus-

IPutting together (1) And (ii),.we have
3 (iii) W~p)C W (p) for4 n sutficienly large. N~otice that

altouh bth riand m are taken "sufficiently large" for this argu-

ment, the crossing of WUp) and Ws(phn4i) occurs for values of n

much smaller than the values 'ot m for which W(m 'crosses W5(p1)

I after tangency-. Expression (iii) is eiquivAlent to

(see, for example, EGOY]). Hence Onis in the closure of 9p

1(1 )- At A - -A*, the portion of the plane bounded by Ws(pl) -from

50 to pi and Wu(pl) from p1  to ,is invariant under f. The

saddles pn are in the interior of this region, and hence each one is a

I3. positive distance from the boundary Ws(pl) of the basin of infinity.

For every A slightly larger than A*, the theorem says that there is

I 1Again by the A-lemma.

6



a n- such, that P -is in the closr e-of Ws(p). Thus: there is.a
Pn - ; -tee-s

-jump -in the -boiindary at A - A*.

.(2) The condition that n, is suffienetly;,arge here: rbfers to

the -alue of n .for which. the sequence of crossings -of WU(p) -and

WS(pn+i) begins. For the Henonmap with J =0.3 and A* 1.314,,

appears to be, 4. (see CGOY]). This is supported hy computer evi-

dence that for -A slightly greater than- 1.3145, the saddle ;p4  is on

the. boundary of th 'basin of infinity.

(3) Non-degen~racy has not been proved for the tangency of the

Henon map at 'At .-1.314. However, theoretically, almost every such

tangency will be6non-degenerat&.

(4), The proof of tthe theorem characterizes the boundary after

tangency by showing- that ther, are iWfinitely many saddles and their

stable manifolds contained in V (p.) The fact that there is a: jump in

the boundary is,, of course,, implied by this characterizat'ion. The

existence Of such a jump can be demonstrated by A simpler., t6pologi.cal

argument. Any path I connecting the left and right sides of B (cf,.

Fig. 4) extends through the horse shoe image fn(Bn). f fn(B)

crosses Bn+j (as shown in Fig. 4), a portion -of 'f(i) connects the

left and right side of BAJ., If, at tangency (A =A*), f r(B -so

crosses Br+1 for all r,. r 2 n, then U-I) contains qo. For
r~n

A > A*, some forward iterate of I will then cross W5 p).

Proof of Lemma. Following the construction of ER), [TY] (see also

[GH; Sec. 6.6]) we assume the following:

(i) DF(p1 ) has eigenvalues v and X which satisfy

0 < , < I, X > 1, and vX < 1.

(ii) There exists a neighborhood U of p1  in which the map

7



f is linear up to smooth changes of coordinates; i.e., f(x,y) =

(Ax, vy) for (x,y) in U. (Here we need an additional non-reconance

assumption--namely, that v and X are not integer multiples of each

other.)

(iii) There is a non-degenerate tangency of WS(pI) and WU(pl).

Specifically, there exist points (po,O) in WU(pl) and (Oq O ) in

WS(p1 ) such that fk(poO) = (O,qO ) and WS(pl) ard Wu(pl) near

(O,qo) satisfy (H). Furthermore, there is a rectangular neighbor-

hood V : [p -E, p +E3 x [0,6] for some c > 0 and 6 > 0, such that
0- 0

fk )2

f x,y) (Yy + (x-pc) q -

for some positive constants Y, o, , all (x,y) E V. (See Fig. 6.)

Now let W - :O,ae2] x [qo-BE, qo+8E]. (Notice that fk(po±c,O) =

(cc2 qo ± Be).) For n sufficiently large, fn+kv) stretches

across W. For such n, let Bn = fn*k(v) n W. Actually, since

f-n+k(V) may wind around a lot, we let B be the connected Zomponent
n

of f-n+k(V) n W which is nearest WS(pl). Under hyposthesis (H), we

know (see [GH]), that fn restricted to Bn is a I., seshoe map, in

the sense of Smale [S]. Specifically, we use the following facts about

such maps:

(i) Bn and fn(Bn) intersect in two components, Wl,n and

W2,n* The saddle Pn is contained in W1, n and is the only fixed

point of fn in Wl,n* Furthermore, Pn is the only point in Wl, n

which stays in W1 ,n under all forward and backward iterdtes of fn.

(ii) The only points which stay in WI,n under all forward

(respectively, backward) iterates of fn are in WS(Pn) (resp.,

WU(Pn)).

8



(O,q0)

Figure 6 Captionf

Figure 6 illustrates definitions used in the proof of the Lemma.



We arg~ue_ that 'the s table-,manifold of ph extends .(verttcaly,),

thriough Pn, (see' Fig,. !;Yt Let Lb O~e any horftontal segmaeftt in SB .

It, is edasily, seen-that-f( 0  is a parabol-a- which extenlds, through

f ~~) ecursively,j le t 1= fn(~l n- w in for i ,23,..

Then L 'C L1 1  -and Lis a: -seq'uence of nested,,intervals with

length(L1 Y( 14len~gth(L.) Hene n,~ I Is one- point, call, 'it z.

'Since f m(z0 ) is 16,nW f 6r all M > 1, t must* be, inW(P)

This irgUmenit s -hows that Ws(p ) intersects the top and-bottom of

and first leaves Bn thi'ough these sides. A similar argument (using

iterates of f-1) shows that Wu(pn) extends through the horseshoe

fn(Bn) first leaving the horseshoe through the "Ifeet"., (See Fig. 7).

In order to prove ~that Wu (p) intersects Ws(Pn+l)e we need to

I show that the horseshoe fn(Bn) containing WUp) crosses through

B Bn+1 (see Fig. 8). Let Q be the distance from (Ovq 0) to n1

and let P be the distance from (O,%,) to the vertex of the right

Spaaboa bundry f Fn(B ), as shown in Fig. 8. It is easily seen by

our assumptions dn f that Q - (n+l)+k(p0.c) and P -

YvVk(q,+Bc) We conclude that P Y 00 n 0 as n
QC

since Xp < 1. a

9.
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Figure 7 Caption

Figure 7 shows parts of the stable and unstable manifolds of the
simple Nfewhouse saddle p n.
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Figure 8 illustrates definitionls used 
in the proof of the Lemma.
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Time-Delay Embedding Methods
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Abstract

The time delay embedding method provides a powerful tool for
the analysis of experimental data, including a novei method for noise
reduction. In addition, we describe how the method allows experimen-
talists to use many of the same techniques that have been essential
for the analysis of nonlinear systems of ordinary differential equations
and difference equations.

1 Introduction

Numerical computation and computer graphics have been essential tools for
investigating the behavior of nonlinear maps and differential equations. The
pioneering work of Lorenz [24] was made possible by numerical integration
on a computer, allowing him to take nearby pairs of initial conditions and
compare the trajectories. H~non [23] discovered the complex dynamics of
his celebrated quadratic map with the aid of a programmable calculator. A

'Mailing address: Center for Nonlinear Dynamics, Department of Physics, University
of Texas, Austin, Texas 78712
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variety of classical and modem techniques has been exploited to find periodic
orbits; their stable and unstable manifolds [20]; basins of attraction [251;
fractal dimension [261; and Lyapunov exponents [17, 29, 351. In some cases,
numerical methods can establish rigorously the existence of initial conditions
whose trajectories have essentially the same intricate structure that one sees
on a computer screen [11].

Unfortunately, until now experimentalists have not been able to apply
most of these methods to the analysis of experimental data, since they do
not in general have explicit equations to model the behavior of their appa-
ratus. In cases where it is possible to find accurate models of the physical
system, quantitative predictions about the behavior of actual experiments
are possible [22]. However, all that is available in a typical experiment is
the time dependent output (e.g. voltage) from one or more probes, which
is a function of the dynamics. Until recently, power spectra have been the
principal method for analyzing such data. For instance, Fenstermacher et
a]. [19] relied heavily on power spectra to detect transitions from periodic
to weakly turbulent flow between concentric rotating cylinders. However,
Fourier analysis alone is inadequate for describing the dynamics.

Other methods have been used to analyze time series output from dynam-
ical systems. For instance, Lorenz [24] used next amplitude maps to describe
some features of the dynamics; that is, he plotted z,+, against z, where
z,, is the nth relative maximum of the third coordinate of the numerically
calculated solution. Such maps are often useful, not only for investigating
features of the Lorenz attractor [30], but also for instance in experiments on
intermittency in oscillating chemical reactions [28].

In the past several years, the so-called embedding method has come into
common use as a way of reconstructing an attractor from a time series of
experimental data. In this approach, one supposes that the dynamical be-
havior is governed by a solution traveling along an attractor' (which is not
observable directly). However, one assumes that there is a smooth function
which maps points on the attractor to real numbers (which are the exper-
imental measurements). In the embedding method, one generates a set of
m-dimensional points whose coordinates are values in the time series sepa-
rated by a constant delay [9]. For example, when m = 3, the reconstructed
attractor is the set of points {X = (Si, si+,, -+2r)} where -r is the time delay.

'Existing numerical methods require the attractor to be low dimensional.
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Takens [32] has shown that under suitable hypotheses, this procedure yields
a set of points which is equivalent to points on the original attractor.

The earliest applications of the embedding method may be called static
in that the analysis focuses on the geometric properties of the set of points
on the reconstructed attractor. For example, phase portraits and Poincar6
sections are used in [41 to help determine the transition between quasiperiodic
and chaotic flow in a Couette-Taylor experiment. Another important static
method is the estimation of attractor dimension from experimental data.
for which there is a large literature [26]. In addition, various information
theoretic notions can be used to find good choices of embedding dimension
and time delay [21].

Certain recent applications of the embedding method are quite different
in nature and can be called dyzamic in that information about the dynamics
is stored in the computer for analysis. With each data vector xi, one stores
the "next" vector, for example, xi+s for some S > 0. This makes it possible
to compute a linear approximation of the dynamics in a neighborhood of x,,
assuming that there is a low dimensional dynamical system underlying the
data.2  In particular, a linear approximation provides an estimate of the
Jacobian of the map at xi [9]. Eckmann and Ruelle [17] use linear maps
computed in this way to integrate a set of variational equations and find the
positive Lyapunov exponents. 3

In fact, the embedding method provides a powerful set of tools for an-
alyzing the dynamics, the breadth of which may not have been realized by
Eckmann and Ruelle. In this paper, we discuss two novel applications that
are possible, specifically:

* Noise reduction. Since one can approximate the dynamics at each
point, it becomes possible to identify and correct inaccuracies in trajec-
tories arising from errors in the original time series. Numerical evidence
suggests that the noise reduction procedure described below improves
the accuracy of other analyses, such as Lyapunov exponents and di-
mension calculations.

I Simplicial approximations. Linear approximations can be com-
puted at each point on a grid in a neighborhood of the attractor to

2This material was first presented by D. Ruelle at a Nobel symposium in June 1984?
3Wolf et a]. [35] have proposed a different method in which nearby pairs of points are

followed to estimate the largest Lyapunov exponent.
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form a simplicial approximation of the dynamical system. This can be
used to locate unstable periodic orbits near the attractor.

We begin with a description of noise red iction in the next section.

2 Noise Reduction

The ability to extract information from time varying signals is limited by
the presence of noise. Recent experiments to study the transition to turbu-
lence in systems far from equilibrium, like those by Fenstermacher et al. [19],
Behringer and Ahlers [1], and Libchaber et al. [161, succeeded largely be-
cause of instrumentation that enabled them to quantify and reduce the noise.
However, it is often expensive and time consuming to redesign experimental
apparatus to improve the signal to noise ratio.

In cases where the time series can be viewed as a dynamical system with
a low dimensional attractor, the time delay embedding method can be ex-
ploited to correct errors in trajectories that result from noise. This is done
in two steps once an embedding dimension m and a time delay r have been
fixed. In the first step, we consider the motion of an ensemble of points in
a small neighborhood of each point on the attractor in order to compute a
linear approximation of the dynamics there. In the second step, we use these
approximations to consider how well an individual trajectory obeys them.
That is, we ask how the observed trajectory can be perturbed slightly to
yield a new trajectory that satisfies the linear maps better. The trajectory
adjustment is done in such a way that a new time series is output whose
dynamics are more consistent with those on the phase space attractor.

This approach is fundamentally different from traditional noise reduction
methods. Because we consider the motion of points on a phase space attrac-
tor, we are using information in the original signal that is not localized in a
time or frequency domain. Points which are close in phase space correspond
to data which in general are widely and irregularly spaced in time, due to the
sensitive dependence on initial conditions on chaotic attractors. In contrast,
Kalman [3) and similar filters examine data which are closely spaced in time;
Wiener [27] filters operate in the irequency domain.

4



3 Eckmann-Ruelle linearization

The discrete sampling of the original signal means that the points on the re-
constructed attractor can be treated as iterates of a nonlinear map f whoseI. exact form is unknown. We assume that f is nearly linear in a small neigh-
borhood of each attractor point x and write

f(x) Ax + b L(x)

for some m x m matrix A and m-vector b. (The matrix A is the Jacobian
of f at x.)

This approximation, which we call the Eckmann-Ruelle linearization at
x, can be computed with least squares methods similar to those described
in [9, 17]. Given a reference point xrf, let {xi}!'1 be a collection of the
n points which are closest to Xref. With each point xi we store the next
point (i.e., the image of xi), denoted y,.4 The kth row ak of A and the kth
component bk of 6 dre given by the least squares solution of the equation

yk = bk + ak. x, (1)

where yk is the kth component of y and the dot denotes the dot product.
Figure 1 illustrates the idea.5

We mention three difficulties in computing the local linear approximations
in the subsections below.

3.1 Il conditioned least squares

There is a particular problem when one tries to compute solutions to Eq. 1
with a finite data set of limited accuracy that has not been addressed in
previous papers [17, 291. Suppose for example that all the points in a neigh-
borhood of x~f lie nearly along a single line, i.e., the attractor appears one
dimensional within the available resolution. Although it is possible to mea-
sure the expansion along the unstable manifold at Xref, there are not enough

4The points xi are points on the attractor which are not consecutive in time. The
subscript i merely enumerates all the points on the attractor contained within a small

distance e of xr. In this notation, xi and yi are consecutive in time.
5 Farmer and Sidorowich [18] observe that the Eckmann-Ruelle linearization can be used

for prediction. Given a reference point xi, find the Eckmann-Ruelle linearization Aix+ bi,

Icompute xi+= Aix, + bi, and repeat the process to get the predicted trajectory



f(x)=Ax+b

Figure 1: Schematic diagram for the first stage of the noise reduction method.
A collection of points in an e.ball about the reference point Xref is used to
find a linear approximation of the dynamics there.
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points in other directions to measure the contraction. Hence it is not possi-
ble to compute a 2 x 2 Jacobian matrix accurately. Any attempt to do so
will result in an estimate of the Jacobian whose elements have large relative
errors. This kind of least squares problem is ill conditioned.

The ill conditioning can be avoided by changing coordinatei so that the
first vector in the new basis points in the unstable direction.6 A one dimen-
sional approximation of the dynamics is computed using the new coordinates;
that is, we approximate the dynamics only along the unstable manifold. We
recover the matrix A by changing coordinates back to the original basis.

For example, if we are working in the plane and the unstable direction
is the line y = x, then we rotate the coordinate axes by 45 degrees. The
dynamics are approximated by a one-dimensional linear map computed along
the line y = x. Then we rotate back to the original coordinates. (The
resulting matrix A has rank 1 in this example.) This approach substantially
enhances the robustness of the numerical procedure.

3.2 Finding nearest neighbors

A second problem is finding an efficient way to locate all of the points closest
to a given reference point. The dynamical embedding method imposes strin-
gent requirements on any nearest-neighbor algorithm. The storage overhead
for the corresponding data structures must be small, because there are tens
of thousands of attractor points. The algorithm must be fast, since there is
one nearest-neighbor problem for each linear map to be computed.

We solve this problem by partitioning the phase space into a grid of boxes
that is parallel to the coordinate axes. Each coordinate axis is divided into
B intervals. (Figure 2 illustrates the grid in two dimensions.) Each point
on the attractor is assigned a box number according to its coordinates. For

3 example, a point on the plane whose first coordinate falls in the jth interval
(counting from 0) along the x axis and whose second coordinate falls in the
kth interval along the y axis is assigned to box number kB + j. The list of

Sbox numbers is sorted, carrying along a pointer to the original data point.
Given a reference point x, its box number is found using the above formula.
A binary search in the list of box numbers then locates the address Uf X ef

6This is done by computing the right singular vectors [81 of the n x m matrix whose
jth row is xi.
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Figure 2: Box numbering scheme in 2 dimensions. The attractor is normal-
ized to fit in the unit square. The bottom row of boxes rests against the x
axis and the leftmost row of boxes against the y axis.

and all the other points in the same box number. The search is extended if
necessary to adjacent boxes.

Only a crude partition is needed for this algorithm to work efficiently
(typically we choose B = 40), and the grid is extended only to the first
three coordinate axes. When the embeddi. g dimension is larger than three, 3
a preliminary list of nearest neighbors is obtained using only the first three
coordinates of each attractor point. The final list is extracted by computing
the distances from x,,f to each point in the preliminary list.

Although there are circumstances where this algorithm can perform poorly
(e.g., when most of the attractor points are concentrated in a handful of
boxes), the distribution of points on typical attractors is sufficiently uniform
that the running time is very fast. Memory use is also efficient: a set of N
attractor points requires 3N storage locations. In contrast, the tree-search
algorithm advocated in [181 requires several times more storage (although
the lookup time is probably slightly less). Because N 1 i05 in typical appli-
cations, we believe that the box-grid approach (or some variant) is itae most
practical. A survey of other nearest-neighbor algorithms is given in [2].

3.3 Errors in variables

There is a potential difficulty in the use of ordinary least squares to compute
the linear maps. In the usual statistical problem of fitting a straight line,
one has observations (xi, yi) where xi is known exactly and yi is measured.
One assumes that yi = ao + alix + ei, where the ei are independent errors
drawn from the same normal distribution. (Analogous assumptions hold
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in the multivariate case.) In the present situation, however, both xi and
yi are measured with error. It caii be shown that ordinary least squares
produces biased estimates of the parameters ao and a, in this case [15, 10]. In
practice this does not seem to be a serious problem, but statistical procedures
to handle this situation (the so-c.dlled "errors in variables" methods) may
provide an alternative approach to noise reduction. We consider this question
in the appendix.

4 Trajectory Adjustment by Minimizing Self
Inconsistency

The Eckmann-Ruelle linearization procedure described above is computed
and the resulting maps are stored for a sequence of reference points along a
given trajectory (for the results quoted here, the sequence usually contains
24 Points). We now consider how to perturb this trajectory so that it is more
consistent with the dynamics. The objective is to choose a new sequence of
points *i to minimize the sum of squares

wl - xill + 11*i - L-1(*i-1)l + ilI*+i - Li(*ki)I 2  (2)
where L(x,) = Aixi + bi, w is a weighting factor, and the sum runs over
all the points along the trajectory. Equation 2 can be solved using least
squares. Heuristically, Eq. 2 measures the self-inconsistency of the data,
assuming that the linear approximations of the dynamics are accurate. See
Fig. 3. We say the new sequence {A} is more self consistent.

The trajectory adjustment can be iterated. That is, once a new trajectory
ki has been found, one can replace each xi in Eq. 2 by ki and compute a new
sequerce {x*}.

We place an upper limit on the distance a point can move. Points which
seem to require especially large adjustments can be flagged and output un-
changed. (This may be necessary if the input time series contains large

7,n the results described in this paper, the Eckmann-Ruelle linearization procedure
is done using a collection of points within a radius of 1-6% of the each reference point,
depending on the embedding dimension, the dimension of the attractor, and the number
of attractor points. This results in collections of 50-200 points per ball, which gives
reasonably accurate map approximations without making the computer program too slow.
The weighting factor w is set to 1.
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Figure 3: Schematic diagram of the trajectory adjustment procedure. The
trajectory defined by the sequence {x,} is perturbed to a new trajectory
given by {*i} which is more consistent with the dynamics. In this example
the dashed line shows what the perturbed trajectory might look like if the
dynamics were approximately horizontal translation to the right.

"glitches" or if nonlinearities are significant over small distances in certain
regions of the attractor.)

When the input is a time series, we modify the above procedure slightly
since we require a time series as output. The trajectory adjustment is done so
that changes to the coordinates of xi (corresponding to particular time series
values) are made consistently for all subsequent points whose coordinates
are the same time series values. For example, suppose the time delay is 1
and the embedding dimension is 2. Then trajectories are perturbed so that
the second coordinate of the ith point is the same as the first coordinate
of the (i + 1)st point. That is, when xi = (.s,si+1) is moved to the point

= ( we require that the first coordinate of *i+l be ii+1.
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5 Results using experimental data
We note that the attractor need not be chaotic for this noise reduction proce-
dure to be effective. Fig. 4(a) shows a phase portrait of noisy measurements

! aof wavy vortex flow in a Couette-Taylor experiment [12]. This flow is peri-
odic, so the attractor is a limit cycle (widened into a band because of the

3 noise) and the power spectrum consists of one fundam"rental frequency and its
U harmonics above a noise floor. See Fig. 4(b). Figures 4(c)-(d) show the same

data after noise reduction. The noise reduction procedure makes the limit3 cycle much narrower, and the noise floor in the power spectrum is reduced
by almost two orders of magnitude. However, no power is subtracted from
any of the fundamental frequencies, and in fact some harmonics are revealed
which previously were obscured by the noise.

These results are significantly different from those obtained by low pass
filteriag. Figure 4(e)-(f) shows the phase portrait and power spectrum when
the original data are passed through a 12th-order Butterworth filter with a
cutoff frequency of 0.35. Th,. dynamical noise reduction procedure is more
effective than low pass filtering since the noise appears to hwave a broad spec-
trum.

However, the method appeaito subtract power from a mode whose fun-3 damental frequency is approximately 0.3 times the Nyquist frequency. We
do not know exactly why this occurs. However, this peak corresponds to
the rotation frequency of the inner cylinder and may result from a defect in
the Couette-Taylor apparatus [31]. We do not consider this to be a serious
problem, because the power associated with this mode is several orders of
magnitude smaller than that of the wavy vortex flow.

We emphasize that our objective is to find a simple dynamical system
that is consistent with the data. It is possible for this method to eliminate
certain dynamical behavior from an attractor if those dynamics have small
amplitude. This situation is most likely to arise when there are not enough
data to distinguish such dynamics from random noise. In the present ex-'3 ample, the noise reduction procedure reveals the limit cycle behavior quite
well.8

The results obtained by applying the method to chaotic data from the

"We have not attempted to find the smallest amplitude at which the noise reduction
procedure can distinguish quasiperiodic from periodic flow.

1
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Figure 4: Phase portraits and power spectra for measurements of wavy vor-
tex flow in a Couette-Taylor experiment. (a)-(b) Phase portrait and power

spectrum before noise reduction is applied: ()-(d) after noise reduction; (e)-
(f) after a low pass filter is applied to che original data. The vertical axis in
(b), (d) and (f) is the base-10 logarithm of the power spectral density; the
horizontal axis is in multiples of the Nyquist frequency.
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Couette-Taylor fluid flow experiment described in (4] are shown in Fig. 5.
Figure 5(a) shows a two dimensional phase portrait of the raw time series at a
Reynolds number R/& = 12.9, which corresponds to weakly chaotic flow [4].
The corresponding phase portrait from the filtered time series is shown in
Fig. 5(b). Figs. 5(c)-(d) show the power spectra for the corresponding time
series.9

It is difficult to estimate how much noise is removed from the data in this
example on the basis of power spectra. One problem is that the transition
from quasiperiodic to weakly chaotic fluid flow is marked by a sudden rise in
the noise floor in the power spectrum (cf. Fig. 3 in (4]). Hence one cannot
determine how much of the noise floor is due to deterministic chaos and how
much results from broadband noise. The noise reduction procedure described
here has the effect of reducing the power in the high frequency components
of the signal. One question therefore is whether reducing the high-frequency
noise corresponds to discovering the true dynamics which have been maskedU by noise. We believe that the answer is yes, based on those cases where there
is an underlying low-dimensional dynamical system. However, in chaotic pro-Scesses some high-frequency components remain, because they are appropriate
to the dynamics.

6 Numerical Experiments on Noise Reduc-
* tion

One important question is how much noise this method removes from the
data. The power spectra above suggest that the method eliminates most of
the noise, but it is impossible to give a precise estimate for typical experi-
mental data.

However, the H1non map [23] provides a convenient way to quantify the
noise reduction, because it can be written as a time delay map of the form

XI+1= f(z, xi- 1 ) = 1 -X + #i-I. (3)
We use Eq. 3 to generate a time series as follows (with the standard parameter
values a = 1.4, P = 0.3). We choose an initial condition and discard the

9The time series consists of 32,768 values, from which an attractor is reconstructed in
four dimensions. Linear maps are computed using 50-100 points in each ball. Trajectories
are fitted using sequences of 24 points.
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Figure 5: Phase portraits and power spectra for measurements of weakly

chaotic flow in a Couette-Taylor experiment. (a)-(b) Phase portrait and

power spectrum before noise reduction is applied; (c)-(d) after noise reduc-

tion. The units for the power spectrum plots are the same as those in [4].
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first 100 iterates. The next 32,768 iterates are stored, and a time series is
generated by adding a uniformly distributed random number to each iterate.
This simulates a time series with measurement noise, i.e., a time serics where
noise results from errors in measuring the signal, not from perturbations of:1 the dynamics.

We measure the improvement in the signal after processing by considering
3i the pointwise error ei = lxzi+ -f(xi, zi-t)I, i.e., the distance between the ob-
U served image and the predicted one. Let the mean error be E = (F e /V)I12 ,

the rms value of the pointwise error over all N points on the attractor. We
define the noise reduction as R = 1- Efitd/Eno1 , where the mean errors are
computed for the adjusted and original noisy time series, respectively. The
quantity R is a measure of the self-consistency of the time series. (In other
words, R measures how much better on the average the output attractor
obeys Eq. 3 as one hops from point to point.)

When 1% noise is added to the input as described above, the noise
reduction (measured with the actual map) is 79%.1o Nearly identical re-
sults are obtained wnen the input contains only 0.1% noise. In addition,

3 noise levels can be redtced almost as much in cases where the noise is
* I added to the dynamics, i.e., where the input is of the form {xi+,: xi+1 =

f(xi + i7i, xi-.i + i.i_i), mi, ?1i_ random}. When the program is run on noise-
less input, the mean error in the output is 0.025% of the attractor extent,
which suggests that errors arising from small nonlinearities are negligible
when the input contains enough points.

7 Simplicial Approximations of Dynamical
I Systems

Recent work has shown that simplicial approximations of dynamical systems
can reproduce the behavior of the original system to high accuracy [341. (See
also [33] for a bilinear approach.) In particular, the fractal structure of the3 original attractors and basin boundaries is preserved over many scales. Such
approximations can yield significant computational savings, especially when
the original system consists of ordinary differential equations.

1The pointwise error is measured using Eq. 3. However, the attractor can Le embedded
in more than two dimensions when performing the noise reduction.

1
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This approach can be extended in a natural way to generate simplicial
approximations of the dynamics on attractors reconstructed from experimen-
tal data. Our objective here is to find an approximate dynamical system in
a neighborhood of the attractor as follows.

A simplex in an m dimensional space is a triangle with m + 1 vertices.
Suppose the map is known at each point on a grid. Then there is a unique way
to extend the map linearly to the interior of the simplex S whose vertices
are grid points. Given a point P in the interior of S, let {bi}!= be its
corresponding barycentric coordinates (see [34] for an algorithm to compute
them). Let f(vi) be the map at the ith vertex. The dynamical system at P
is iterated by computing

m

D(P) = _bif(vi). (4)
i=o

We apply this method to experimental data by finding a linear approx-
imation of Lae dynamics at each vertex vi with the least squares method
described above, using a collection of points in a small ball around vi. The
maps are stored and retrieved using a hashing algorithm similar to that de-
scribed in [34]. This yields a piecewise linear approximation of the aynamics
from a set of experimental data which can be analyzed with the methods
that previously were available only to theorists. 11

We illustrate the approach using a time series of 32,768 values from the
H~non map with a = 1.2, 3 = 0.3 using Eq. 3 and adding 0.1% noise as
described above. The original attractor is shown in Fig. 6(a). We take a grid
of points which are spaced at 1% intervals (this and subsequent distances are
expressed as a fraction of the original attractor extent). The time series is
embedded in two dimensions, and a linear approximation of the dynamics is
computed at each grid point for which 50 or more attractor points can be
collected with a ball of radius 0.03; the set of such grid points is shown in
Fig. 6(b). We take an initial condition near the original attractor and show
the first 3000 iterates using Eq. 4 in Fig. 6(c). Although some defects are
visible, the attractor produced by the approximate dynamical system looks
almost identical to the original one.

"This approach is leps ambitious than that of Crutchfield and McNamara [7], who
attempt to find a single set of nonlinear difference equations that creates the observed
attractor.
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period D=2 exact I D=3
1 1.793 1.695 1.757
2 2.178 2.199 2.183
4 4.226 4.329 4.051
6 10.38 10.70 9.626
6 10.38 11.32 12.12
8 25.80 24.88 30.25
8 20.02 20.60 20.38
8 17.70 24.32 21.70

Table 1. The largest eigenvalues of the Jacobian of the periodic orbits located
using the simplicial approximation of the H6non attractor.

One application of simplicial approximations is the location of periodic
saddles and the estimation of the largest eigenvalue of the corresponding
Jacobian. That is, if x is a periodic point of period p, then we find the
eigenvw' e of DfP(x) of largest modulus, where DfP(x) refers to the matrix
of paftia, derivatives of the pth iterate of the map f evaluated at x.

Given an initial guess for x, one can apply Newton's method using the
maps computed at the grid points and Eq. 4 to locate the'saddle using the
simplicial approximations. Likewise, Eq. 3 can be used to locate the corre-
sponding "exact" saddle. Saddle orbits up to period: 8 have been computed
in this way. In all cases, the saddle point for the simplicial approximation
is within 2% of the corresponding saddle point for the H6non map. Table
1 shows the largest eigenvalues of the saddle orbits. (The columns labeled
m = 2 and m = 3 refer to the embedding dimension used to reconstruct the
attractor.) In most cases, the relative error is only a few percent, and in
no case exceeds 25%. (The largest relative error is for the period 8 saddles,
where one finds the eigenvailue of the product of 8 Jacobians computed from
the least squares.)

This method can be extended to experimental data sets. However, there
are relatively stringent requirements on the data that can be handled: the
time series must be long enough to trace out many trajectories near the prin-
cipal unstable saddle orbits, and the noise level must be low. (Presumably
noisy data can be preprocessed using the approach described in Section 3.)
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The current computer implementation uses a large amount of disk space to
store the linear map approximations at the grid points.

We have constructed a simplicial approximation for an attractor obtained
from a Belousov-Zhabotinskii chemical reaction [6, 28]. The attractor is re-
constructed in three dimensions from a set of 32,768 measurements of bro-
mide ion concentration. The phase portrait is shown in 7(a).

Linear approximations of the dynamics are computed at each point of a
grid consisting of 50 intervals along each coordinate axis for which 50 or more
attractor points can be located within an 8% radius of the grid point. This

13 produces a database of 59,550 maps. We observe from graphical evidence
that many trajectories approach what appears to be a period 3 saddle in the
middle of the attractor. Using initial guesses from some of the trajectories,3 we apply Newton's method to locate the saddle orbit shown in Fig. 7(b).
Moreover, we obtain estimates of the Jacobian DF of the map evaluated ac
a point on saddle orbit. The eigenvalues of DF are estimated as A1 = 1.14,
A2 = 0.102, and A3 = -1.53. These quantitative results confirm that the
orbit is a saddle since A1 > 0 > A3. (Note that wie expects A2 = 0 for a how

* generated from a set of differential equations.)

* 8 Conclusion

Methods for approximating the dynamics of attractors reconstructed from
experimental data provide powerful tools. Most of the same procedures that
have been so important for theoretical insight, such as Poincar6 maps, un-
stable fixed points and their manifolds, basin boundaries, and the like, are3 now available to experimenters, at least in cases where the dynamics are low
dimensional. There is little doubt that these tools will lead to breakthroughs
in the understanding of a wide variety of physical systems. However, con-
siderable effort is needed before we learn which kinds of systems will benefit
most from these types of analyses. Significant improvements in technique
will certainly extend the applicability of dynamical embedding methods, for
example to higher dimensional attractors.

1
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(a))

Figure 7: (a) The attractor reconstructed from a time series of bromide ion

concentrations in a Belousov-Zhabotinskii chemical reaction. (b) The period

3 saddle orbit.
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In this appendix we outline a possible alternative noise reduction method
3 based on the theory of least squares when all the quantities in the regression

are measured with error.
In ordinary least squares, the variables in the problem fall into two classes:3 the independent variables, which are known exactly, and the dependent vari-

ables, which are observations assumed to be functions of the independent
variables. The dependent variables are subject to random errors that are
assumed independent and identically distributed (i.i.d.).

On an attractor reconstructed from experimental data, we assume that
the mapping which takes points in a sufficiently small ball to their images
is approximately linear. However, the locations of all the points are subject
to small random errors because of the noise. Hence one cannot describe the
points as independent variables and their images as dependent variables. The
usual least squ-es method produces a biased estimate of the linear map, and
this bias does not decrease if more observations are added [15, 10].I The so-called "errors in variables" least squares methods can be used to
handle the latter problem. This approach can be used to obtain both an
estimate of the linear map as well as estimates of the "true" values of each
of the observations.

At first this appears to be an underdetermined problem: from n pairs
of observations one wants to compute the parameters of the functional re-
lation between them as well as estimates of the n actual pairs. 12 However,
it is possible to solve this problem by making some assumptions about the
errors [15, 10].

In our case, we assume that the errors in the location of each point and
its image are i.i.d. In particular, we let the covariance matrix of the errors
in the variables be the identity matrix. This assumption is valid whenever
the noise is independent of the dynamics. 13

We illustrate the procedure for the case where we are given a collection
of n points (in Rm) and their images. Following Jefferys [131, we form a set

12 1n the statistical literature, the problem is said to be unidencified.
13Dynamical noise (i.e., each point is perturbed slightly before iterating) yields a co-

variance matrix which depends on the point. However, as long as the dynamical noise is
small, our assumptions about the covariance matrix of the errors should not compromise
the accuracy of the method.
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of n equations of condition given by

fi(xi) = x,+i - Ax - bi = x,+/ - L(x) (5)

where xi is the ith point, x,,+i is its observed image, A is an m x m matrix,
and b is an m-vector. The goal is to find estimates of L (i.e., A and b),
together with perturbations ',, such that

fi(xi + i)= (X,+1 + i+O- L(xi + =0

and such that the quadratic form

1' -i 1
SO0 = v (6)

is minimized. The superscript t denotes transpose and a is the covariance
matrix of the observations (which we assume is the identity matrix here).

Th'i minimization problem can be solved using Lagrange multiplies
(see [13] and [14] for a numerical algorithm). The solution gives A and b to-
gether with estimates xi + ,i of the "true" observations. It can be shown [10]
under fairly mild hypotheses that the estimates of L and the observations
are the best in the class of linear estimators.

One way to approach noise reduction is to extend Eq. 5 to include several
iterations of the observed points. Given a collection of points in a ball,
together with the next p iterates of each point, the method above is used to
find a collection of linear maps L1 , L 2, ... , Lp approximating the dynamics.
The method also finds estimates of the actual observations. In this approach,
therefore, the calculation of the maps and the adjustmenc of the trajectories
is done in one step. Moreover, each point and its image exactly satisfy a
linear relationship.

Of course, p cannot be too large, because nonlinear effects eventually will
become significant when the dynamics are chaotic. On the other hand, Eq. 5
p-ovides a natural way to include quadratic or other nonlinear terms.

We have written a computer program to implement this alternative noise
reduction algorithni. So far, the results of this approach have not been as
good as those from the method described in the main part of the paper, but
further refinement should improve them.
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ABSTRACT

For a homeomorphism of the plane, the basin of attraction of a

fixed point attractor is open, connected, and simply-connected, and

hence is homeomorphic to an open disk. The basin boundary, however,

need not be homeomorphic to a circle. When it is not, it can contain

periodic orbits of infinitely many different periods.

Certain points on the basin boundary are distinguished by being

accessible (by a path) from the interior of the basin. For an

orientation-preserving homeomorphism, the accessible boundrv points

have a well-defined rotation number. We prove that this rotation number

is rational if and only if there are accessible periodic orbits. In

particular, if the rotation number is the reduced fraction p/q, then

every accessible periodic orbit has minimum period q. In addition, if

the periodic orbits are hyperbolic, then every accessible point is on

the stable manifold of an accessible periodic point.



1. Introduction and Statement of Main Theorems

When a dynamical system has more than one attractor, the

boundaries between respective basins of attraction can exhibit very

complicated patterns. For invertible maps of the plane, these

boundaries can be smooth or fractal, and they can contain infinitely

many saddle-type periodic orbits. (By fractal, we mean that the set

has non-integer Hausdorff dimension.) Two basins of attraction of the

time 2n map of the forced damped pendulum equation are shown in black

and white in Figure 1. This picture was constructed by choosing a

960 x 520 grid and, using each grid point as an initial condition,

testing where its traject, y goes. The system has two fixed point

attractors--one in the white region to which all grid points colored

white tend under iteration by the map, and one in the black region to

which all grid points colored black tend. The boundary between the

black and white basins is fractal, making final state predictability

very difficult. In addition, buried within the fractal layers of the

boundary are saddle periodic orbits of arbitrarily high periods.

Even though the dynamics on the boundary appear to be very

complicated, it has been observed (see, for example, [G[)Y I) that some

points on the boundary exhibit regular behavior. We say that a point

p )n the boundary of an open set W is accessible from W if there is a

path beginning in W such that p is the first boundary point which

the path hits. Surprisingly, when the boundary is fractal, most

points are not accessible. For the map in Fig. 1, ther: are two

points that are saddles of period two (i.e., one period two orbit)



which are accessible from the white region, and all other points which

are accessible from the white region are on the stable manifold of

this periodic orbit. In this paper, we investigate the dynamics of

the accessible points on basin boundaries. The paper is strongly

motivated by numerical studies that repeatedly conclude there are

accessible periodic saddles in the boundary. In fact, we know of no

natural case of an area-contracting diffeomorphism having a basin

boundary without accessible periodic orbits.

We would like to thank J. Mather and H. Nusse for helpful

discussions.

Throughout this paper, W is a connected, simply-connected open

2 2set either in the plane R2 or in the sphere S , and F is a

homeomorphism (or diffeomorphism, if differentiability is required) of

the plane or the sphere. We assume that W is invariant under F,

(i.e., F(W) = W). Our main examples of such sets will be basins of

attraction. In particular, the basin of attraction of an attracting

fixed point must be such a set. (See Sec. 2.) We assume in addition

that Wi is not the entire plane, in which case its boundary 8W is

more than one point. d - a nact: -.. Since W is invariant

under F, 8W is also an invariant set. All connected,

simply-connected open sets are homeomorphic to an open disk. On the

other hand, the boundary of such a region does not have to be

topologically a circle, and examples abound in which the boundary of a

basin of attraction is a fractal set. The characterization of a set W



I
as a topological open disk occurs in the study of the Riemann Mapping

3 Theorem which says that for any such set W there is always a

one-to-one analytic map h of an open disk D onto W. The

knowledge that the basin is topologically an open disk tells us

3, nothing about the boundary of a basin, and It Is our objective to

describe the dynamics on the points in aW that are accessible from W.

In the following we say that p is accessible only if it is a

3point of 8W that is accessible from W.

Caratheodory [C] investigated the behavior of the map h in the

Riemann mapping theorem to see when h could be defined at boundary

points of the disk. If r is a (continuous) pph in W which limits

on the accessible point p, then h-1 () is a (continuous) path in D

limiting on exactly one point r in Si, the boundary of D. We call

such points as r trivial circle points; we call all other points on

the circle non-trivial circle points. Caratheodory's approach was to

construct a compactification of W which is topologically identical to

D, the closed disk. (His is not the standard compactification;

points in this compactification which correspond to points in the

boundary S1 of D are called "prime ends" and are defined precisely in

Sec. 5.)

We define a map h on points in D and on those points in D that

are trivial circle points by h (x) = h(x) for x in D, and h (r) = pc c

where p is an accessible point and r is an associated trivial circle

point, as defined above. It is clear from the construction that each

accessible point is the image of at least one trivial circle point.

3



The map h is not necessarily one-to-one on trivial circle points.c

(See Sec. 7; in particular, see Fig. 7.) However, once a path r in W

limiting on an accessible point p is specified, then there is exactly

one trivial circle point x which is the limit of h-1 (r)

We mention two properties of accessible points and the map hc:

PROPERTY 1 (DENSITY) The set of accessible points is dense in aW;

the set of trivial circle points is dense in S , the boundary of D.

PROPERTY 2 (EXISTENCE OF AN INDUCED MAP) There is a map, denoted

f and called the induced map, from D to itself such that

h cf(x)) = F(h Cx)) when x is in D or x is a trivial circle point.
c C

If p is an accessible point and r is a path in W ending at p,

then F(F) is a path in W ending at F(p). Hence, accessible points map

to accessible points. If follows that f maps trivial circle points to

trivial circle points. On the set of trivial circle points, f is

one-to-one, onto, and order-preserving. Such a map can be uniquely

extended to a homeomorphism defined on all of SI.

These properties allow us to study the dynamical system on the

closed disk, maintaining the dynamics on the accessible points. Since

in general aW will include much more than the accessible points, much

of aW is lost in this representation. For us, however, the

simplification is advantageous since we wish to describe the dynamics

4



on the accessible points.

- We have important examples in which W is not a basin even though

a dense set of points in W have trajectories tending to an attractor.

'I The following definition allows the inclusion of such examples. We

3i say that aW is unstable In W if there is a neighborhood Bc of aW with

the property that the set of points in B whose orbits eventually

leave b is dense in B W. (I.e., there is a dense set Q in

B In W such that xeQ implies that Fn(x) is in W\B for some

n>O.) This definition is easily seen to be satisfied when W is a

basin of attraction. It is also satisfied in the very different case

where there is a dense orbit in W.

3 Certain types of periodic orbits in S1 merit particular

attention. Let p 6 S be a periodic point of period k. We say p is

attracting on at least one side (of SI) if there exists x e S1 such

that x * p and lim f nk(x) = p.

The following key theorem is proved in Sec. 5:I
THEOREM 1.1 (ATTRACTING LEMMA). Assume that aW unstable in W and

that for each k the fixed points of Fk are isolated. Then each

* periodic circle point that is attracting on at least one side is a

trivial circle point.I

An orientation preserving homeomorphism of the circle can be

classified according to its rotation number--a number p, with

0 5p <1, which represents the average rotation of points under theI



map. (A precise definition is given in Sec. 5.) The rotation number

is independent of the choice of point on SI. The idea of associating

a single rotation number with each orientation preserving

homeomorphism of the circle originated with Poincar6. Such a

homeomorphism will have a periodic point if and only if its rotation

number is rational. It will have a fixed point if and only if its

rotation number Is 0. We define the rotation number p(aW,F) of F on

the accessible points of aW to be the rotation number of the induced

map f on S1. If W is a connected, simply-connected open set in R , if

F Is orientation preserving, and if the closure of W is invariant

under F, then W has a rotation number. In particular, if p is an

2
Isolated, attracting fixed point in R , if its basin W is not all of

R , and If F is orientation preserving, then aW has a rotation number.

(See Sec. 2.)

G.D. Birkhoff recognized that the set of accessible points is

dense in the boundary of an invariant region and that their dynamics

can be characterized by their rotation number. He used this idea in

[B] to construct a map of the annulus into itself with an unusual

Invariant set J. On one hand, J resembles a closed Jordan curve in

that each of its points is on the boundary of both an interior region

Sint (conti.ning one boundary circle of the annulus) and an exterior

region Sex. tcontaining the other boundary circle). On the other

hand, J is "remarkable" in the sense that it contains a dense set of

points accessible from Sin t with one rotation number and a dense set

accessible from Sex t with a different rotation number. To compare

this situation with our hypotheses, notice that such a map has an



inverse for which J is unstable (in Sint and in S ext ) and J is the

boundary between the points which go outward and those which go inward

(under the inverse).

Cartwright and Littlewood further developed these ideas in

[C-L1], where they prove the existence of and determine the stability

of periodic orbits for a certain class of second order differential

equations in the plane. More recently, J. Mather" has given purely

topological proofs of some of the topological results of Carath~odory

in [M1] and has used the theory to study Invariant sets for

area-preserving homeomorphisms of the annulus (M2],(M3]. We rely on

the proofs in the above references of Cartwright-Littlewood and Mather

I for much of the material on prime ends given in Secs. 5, 6, and 7. A

general reference for Carath~odory's theory is (C-Lo], Chapter 9.

The following argument explains the significance of the

Attracting Lemma. Assume that the rotation number of f on S is

rational (say the reduced fraction p/q). Then SI will have at least 1

fixed point under fq, (i.e., a periodic point of period q). If a

trivial circle point x is not fixed under fq, then its orbit converges

to a fixed point r under iterates of fq. By the Attracting Lemma, r

is necessarily a trivial circle point. Corresponding to r is an

accessible point p on aW. By Property 2, p is fixed under F Thus

we have the following result:

7



THEOREM 1.2. Assume that aW is unstable in W and that for each k

the fixed points of Fk are isolated. Assume further that the rotation

number p(W,F) is p/q (resp., 0). Then there Is an accessible fixed

point of Fq (resp., F) on aW.

In Sections 6 and 7 we describe the dynamics on the set of

accessible points under the hypotheses that p is rational, F is a

diffeomorphism, and periodic points in the boundary are hyperbolic.

(A periodic point p is hyperbolic if the Jacobian matrix DF(p) has

no eigenvalues with absolute value 1.) By the Inverse Function

Theorem, a hyperbolic point is isolated from other periodic points of

the same period (or smaller period). In the following theorem, which

is a special case of Theorem 6.1 in Sec. 6, we assume that W is a

basin of attraction: i.e., there exists a compact set K in W such that

the "w-limit set" of the orbit of each point x in W is non-empty and

is contained in K. (Given a point x, the point z is in the w-limit

set of the orbit of x, if there exists a sequence {tn }, with tn --) co,
t

such that f n(x) -- z.) If the orbit of each point in W is bounded,

then there exists a compact set K' S K which is Liapunov stable (see -

Sec. 2 for definition) [BS]. 3

II

I
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THEOREM 6.1'. Assume that the periodic points of F in aW are

hyperbolic and that W is a basin of attraction. If the rotation

number p is rational, then every accessible point either is a periodic

point or is In the stable manifold of an accessible periodic point.

Theorems 1.2 and 6.1' do not mention the minimum period of an

accessible periodic orbit. Degeneracies can occur due to the fact

that the map hc is not necessarily one-to-one on trivial circle

points, so that the period of the accessible points can strictly

divide the period of the orbit on S1. In Sec. 7 we prove that such

degeneracies are ruled out for homeomorphisns of the plane, although

they can still occur for homeomorphisms of the sphere. We use the

following two results. The first, a converse of Theorem 1.2 for

planar maps, implies that the period of an accessible periodic point

cannot be strictly smaller than the period of a trivial periodic

circle point. The second implies that it cannot be strictly larger.

PROPOSITION 7.3. Let F be a homeomorphism of the plane R2. If

there exists an accessible fixed point on aW, then p(aW,F) is 0

PROPOSITION 7.4. If p = 0, then every accessible periodic point

in aW is a fixed point.

9



COROLLARY 7.5. Let F he a homeomorphism of the plane R2. If

p # 0 Is the reduced fraction p/q, then every accessible periodic

point in aW has minimum period q.

The next corollary (a special case of Cor. 7.6) follows, although

not directly, from Prop. 7.3, Prop. 7.4, and Thm. 6.1'. In

particular, it remains to be shown that if the orbit of an accessible

point converges to a fixed point in aW, then the fixed point is

accessible. We point out that this corollary does not mention the

rotation number p.

COROLLARY 7.6'. Assume the following conditions hold:

(1) F is a diffeomorphism of the plane 2;

(2) the periodic points of F in aW are hyperbolic;

(3) W is a basin of attraction; and

(4) either (I) there exists an accessible period point of

minin~um period q, or

(ii) there exists an accessible point which

converges (under fq) to a periodic point of

minimum period q.

Then every accessible point in aW either is a periodic point of

minimum period q or is in the stable manifold of such a periodic

point.

10



In Sec. 2 we define a general class of connected, compact

attractors and show that attractors in this class have connected,

simply-connected basins. In Sec. 3 we study the orientation-reversing

case, and in Sec. 4 we apply Theorem 1.2 to a class of chaotic

i attractors, viewed as boundaries for the inverse of the map F.

Figures 1 through 4 were made using Dynamics [Y].

i
i
I
i
i
I
I
i
I
U
I



2. Attractors with Simply-Connected Basins

If A is a hyperbolic fixed point, then A has a connected,

simply-connected neighborhood which contracts to it under iteration by

F. In this case, the entire basin of A (see Sec. 1 for definition) is

connected and simply connected. Here we look at a more general class

of attractors and show that their basins are connected and simply

connected and thus satisfy the hypotheses of Theorems 1.1 and 1.2.

(The hypothesis that the boundary aW is unstable in U is trivially

satisfied if either the attractor A does not intersect aW or if A has

a dense orbit and is not a subset of W.)

For a closed set S, let S be the c-neighborhood of S; i.e., S

is the set of points y such that min U x - y I < c , where 11 11
xcS

denotes the Euclidean norm in-R . We say a set A is a regular

attractor if A satisfies the following three properties:

(2.1) A is compact and connected;

(2.2) A is Liapunov stable; i.e., for each neighborhood Y of A

there exists c>O such that A c Y, and if x e A then Fn(x) Y,

for all nl;

(2.3) The basin of A contains an open neighborhood of A.

in the following proposition, "area-contracting" means

specifically that there exists a number g, where g < 1, such that

Idet DF(x)I < 9 , for all x in R2.

12

- -- • . . •m • a m. •m m • •iI



Il PROPOSITION 2.4. Let F be an area-contracting map of the plane.

If A is a regular attractor, then the basin U of A is open, connected,

and simply connected.

Proof. Let Y c U be an open neighborhood of A. Let c > 0 be

given such that Fn(A )C Y for all n t O. Select 6, 0 < 6 < c,

such that Fn(A)cA c Yc U, for all nt J. Such c and Sexist,

since A is Liapunov stable.

Let x e U be given. Choose k > 0 such that Fk(x) e A . Since

A is open, there is an open neighborhood V of x which maps into AC X C

I' under Fk. Thus each point x in U has an open neighborhood V in U,

and U is open.

Let xI and x2 in U be given. Choose integers P>O and Q>O such

that F (X ) E A8  and FQ(x ) e A Define m = max PQ. Then
1 2 a

Fm(X ) and Fm(x ) are in A C . Since A is connected, Ac is connected for

each c>O. Hence, A is an open, connected set. Since open, connected
Cm

sets are path connected, there is a path r in Y connecting Fm(xI) and
Fm (x) Thus F-m(F) lies in U and connects x to x Therefore, U

is connected.

It remains to show that U is simply connected. Suppose that U is

31 not simply connected, and let C be a simple closed curve in U which

bounds a region D containing a set S (consisting of one or more

points) that is not in U. This implies that the distance between

SFn (S) and A is at least c, for all n 0. Select a, 0 < a < 6, such

that Fn (A ) c AS, for all n : 0. Since C is compact, there exists

13



an integer J(c) > 0 such that FJ(c)(C) c A . Therefore,

rJ(C) c A., for all J a j((c). We conclude that the distance between

Fn (S) and Fn(C) is at least c-8 for all n ? J(c). On the other hand,

since F is area contracting, the distance between Fn(S) and F n(C)

converges to zero as n 4 w. This contradicts the fact that c-6 > 0.

Therefore, U is simply connected.



3. Continuation and Orientation-Reversing Maps

Let FA be a homeomorphism of R2 depending on a scalar

parameter A. We assume that FA has a fixed point regular attractor

3A., which depends continuously on A, for each A. We define the

maximal basin W to be the largest open set having a dense set of
-A

points that are attracted to A under FA. Let B be the boundary of

WA; and let p. be the rotation number of F on CA , the accessible

points in BA' For a parametrized homeomorphism on a circle, the

rotation number varies continuously with the parameter (see, for

example, (D]). Unlike the circle case, however, pA is not necessarily

continuous in A. In fact, the boundpry BA can jump discontinuously,

even when there is no change in the attractor. It was shown in [HJ]

(see also [GOY] and [ATY]) that when the stable and unstable manifolds

of an accessible saddle on the boundary become tangent at A = A., and

then cross for A > A,, the stable manifold jumps a positive distance

c (not dependent on A) into W.. for each A > A,. Figure 2 shows in

black the basin of attraction of infinity for three different values

of the parameter A in the Henon map

FA b(x,y) = (A - x2 -by, x) (3.1)

3 where b is fixed at 0.3. There is a period two attractor in the white

region to which the orbits of almost all white points tend. Numerical

3 experiments indicate that for X=1.39 (in Fig. 2a), a period-four

saddle orbit and its stable manifold are the only boundary points

I
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accessible from the white region. There is a tangency of the stable

and unstable manifolds of consecutive points in this orbit at X = X.

z 1.395. Specifically, if we number the four points in the orbit

x1 9 .... x4 consecutively (in the counter-clockwise direction around

the basin boundary), and if we set xn = Xn(mod4) for n>4, then {Xn I

is a periodic trajectory. At A=A, the unstable manifold of x. is

tangent to the stable manifold of x +1. For each A > A,, black

points appear in what was the interior of the white region. In

addition, it has been numerically observed that for each A > A. (near

X,), the set CX of accessible boundary points is composed of a

period-three saddle and its stable manifold. Fig. 2bc show in black

the basin of attract.-n of infinity at A = 1.4 and

A = 1.42,respectively, with the accessible period-three saddle. A

numerical investigation of rotation numbers for the

orientation-preserving, area-contracting Henon map appears in [AS].

When f is an orientation-reversing homeomorphism, the possible

dynamics on accessible orbits are limited. For a connected, simply

connected basin of attraction W, an orientation-reversing

homeomorphism on W restricts to an orientation reversing-homeomorphism

on aW. Again, we study the dynamics on aW through its association

with the circle. An orientation-reversing homeomorphism f of S1 must

have fixed points. It may or may not have periodic points of period

two. Notice, however, that f can have no periodic points of minimum

period greater than 2. The map f2 is orientation preserving and has

rotation number 0 since it has fixed points. But an

orientation-preserving homeomorphism of the circle with rotation

16



number 0 has no periodic orbits of minimum period greater than 1.

i Suppose f has a periodic orbit of minimum period k, kL3. Then f has

3 a periodic orbit of minimum period k/2, if k is even, or of minimum

period k, if k is odd. Thus f has only periodic points of period one

3 or two.

We have the following restatements of Theorems 1.1 and 1.2 for

* orientation-reversing maps:

i
3 THEOREM 3.2 (ATTRACTING LEMMA). Let F be an

orientation-reversing homeomorphism of the plane. Assume that aW is

i unstable in W. Assume further that the fixed points of F2 i aW are

isolated. Then each circle point that is fixed under f2 and is

attracting on at least one side is a trivial circle point.I

THEOREM 3.3. Under the hypothesis of Theorem 3.2. there is an

accessible fixed point of F2 on aW.

I
Let F be a one-parameter family of orientation-reversing

homeomorphisms. From Theorem 3.3, we observe that if a metamorphosis

occurs for FV then BA must jump to different fixed points of F2

I
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Example. The Henon map (3.1) is orientation reversing for b<O.

It is easily verified that F ,b can have at most 2 fixed points and at

most one periodic orbit of minimum period two. In this situation the

possible metamorphoses are severely limited by Theorem 3.3. As long

as the period-two orbit and one of the fixed points is in the

attractor (and the hypotheses of Thm. 3.2 are satisfied), no

metamorphoses will occur. If, however, the basin becomes

disconnected, as shown in Fig. 3, then the theorem no longer applies

and the boundary can be fractal. Fig. 3 shows in white the basin of a

two-piece attractor (which is also plotted in the white region). A

metamorphosis has occurred, and there is no longer an accessible fixed

point on the boundary. Now the accessible iddle has period six.

The existence of periodic orbits in the maximal basin of the

attractor but not in the attractor itself is also restricted by Thm.

3.2. Suppose (3.1) has a regular attractor A (i.e., A satisfies

Properties (2.1)-(2.3)). If A contains a fixed point and an orbit of

period two or if (3.1) is in a parameter range where there is no

period-two orbit and A contains a fixed point, then the basin U of A

is necessarily bounded by the stable manifold of the (other) saddle

fixed point p. (For every choice of parameter values, the orbits of

some points in the plane go to infinity; thus the basin U has a

boundary.) In particular, under these hypotheses, there are no

periodic orbits in the region containing A and bounded by W s(p) except

those in A.
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4. Rotation Numbers for Chaotic Attractors.

Here we look at a class A of non-periodic attractors in the

plane: an attractor B is in 4 if 8 is compact, connected,

invariant under F, and contains more than one point. In order to

apply Theorem 1.2, we show how to assign a rotation number to an

attractor in the class 4, assuming that F is an area-contracting

nomeomorphism of the plane. This approach is reminiscent of Birkhoff

[B] and also of Cartwright and Littlewood [C-L2] and Levinson [L] who

studied attractors in forced 'an der Pol type equations.

In looking at the Poincare map of such equations, Cartwright and

I Littlewood showed that there are invariant annuli which have unequal

3 rotation numbers on the boundary circles and which possess strange

attracting sets. Each such attractor is the boundary of the inside

3 contracting and outside contracting parts of the annulus. The

existence of different rotation numbers inherited from the boundary

I circles was evidence to them of a continuum attractor which was not

I homeomorphic to S . Levinson gave a careful analysis of the

attracting invariant set of a piecewise-linear version of this map in

I [Lni. His work set the stage for the discovery of the horseshoe map

by Smale. See also Levi's analysis of forced van der Pol type

I equations in (Lil].

2 2
I Let Z = F u {ic} be the one-point compactification of R Then

F extends to a homeomorphism of Z by setting F({o}) = {co}.I
I



LEMMA 4.1. Let F be an area-contracting homeomorphism of the

2
plane R2 . If 6 Is in 4, then Z - 6 is connected and simply-connec'ed

in Z.

Proof. Since 8 is connected, each component of Z - 8 is simply

connected in Z. (This simple fact follows most clearly from Alexander

Duality with Cech cohomology. See, for example, (Do].) Since e is

compact, only one component D of R2 - 8 has infinite area (in R2 )

and, given any bound 7), there are only finitely many other components

with area larger than n. Let D be a component of R2 8 withH

maximum finite area in R2. Since F" is area-expanding and components

of R2 -6 map onto other components of R-2 6 , F"1 maps DM ont

D . But F-I also maps D onto D , contradicting the fact that F" is

a homeomorphism. Thus Z - e is connected and simply connected in

Z. 1

Now we can apply Theorem 1.2 to 6, which is the boundary of the

open, connected, simply-connected region Z - 6. By looking at F-_

instead of F, it can be shown that G is unstable in Z - e, as

follows. Let 6 be an c-neighborhood of 0, and let D be an open set

in C n (Z-G) Since F-1 is area-expanding, the area enclosed by

the boundary of D becomes unbounded under iteration by F_ It can

easily be shown that almost all points in D n E eventually will be

-1
mapped out of G under iteration of F ; hence, G is unstable in

Z - 6 under F-  Theorem 1.2 provides the following result:
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I PROPOSITION 4.2. Let F be an area-contracting homeomorphism of

3 the plane, and let 8 be in the class A of attractors. Assume that,

for each k, the fixed points of Fk are isolated. If the rotation

3 number p(6,F) is the reduced fraction p/q, then there is an

accessible fixed point of F on 8.I

3 Figure 4 shows an attractor for the Ikeda map with an accessible

period 6 orbit. For a typical area-contracting diffeomorphism

3 depending on a parameter A, we conjecture that the rotation number

p(A) will vary continuously, except possibly at a discrete set of

values of A, and that p(A) will le irrational for a non-empty set of A

3 of measure 0.

I

I
I
I
I
I
I

I



5. Froof of the Attracting Lemma.

Let F be an orientation-preserving homeomorphism of

Z = R2 u {}, the 1-point compactification of the plane. A simple arc

Q in W with end points q1 and q2, q1 q q2 0 on aW and no other points

on aW is called a crosscut of W. Each crosscut divides W into 2

subdomains, since W is simply connected. Let {Q n} be a sequence of

pairwise disjoint crosscuts such that Qn separates Q n+ from Qn-l'

Then there is a corresponding sequence {V n } of subdomains of W such

that Vn contains Q n+ except for its endpoints. See Figure 5. The

sequence VI D V2 D V3 D ... is called a chain. If V = {V n} and

V, = {V')} are two chains, we say V divides V' if for each i, there isn

a j such that V' 9 V We say V and V' are equivalent if each divides

the other. Under this relation, an equivalence class of chains is

called an end. A chain V is called prime if any chain which divides

it is equivalent to it. A prime end is the equivalence class of a

prime chain. For the unit disk D in R2 a chain {Vn } is prime if and
n

only if nvn is a single point (necessarily on the boundary S') In

general, if there exists a sequence Q n} of cross-cuts defining an end

V such that {Q n} converges to a point in aW, then V is prime (see, for

example, [MIl).

Let (V n} be a representative chain in a prime end V. Since

each V is connected and W is compact in'Z, is a connected,n n vn

compact, non-empty subset of Z. Thus it is either a single point or a

continuum. We call I(V) = n V the impression of the end V. The
nEIn
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I

impression of V is independent of the defining chain in V. (However,

I two prime ends can have the same impression. In Fig. 1, it appears

* that there are two prime ends corresponding to non-trivial circle

points and that beth have impressions that equal aW.) In [C],

3 Carathdodory presents an example of a domain for which the impression

of each prime end is a continuum; i.e., none is a single point. A

I point p in I(V) is called a principal point of V if there exists a

sequence {Q n of crosscuts (defining a chain in V) such that {Q }

converges to p, i.e., p is the only limit point of this sequence. The

set of all such points is called the principal set of V. Finally, we

say a point r in aW is accessible from W if there is an embedding n of

I (0,1] into W such that limt_>o+q(t) = p. In Fig. 6, wp illustrate

3 these definitions. The following lemmas appear, for example, in [Mi]

(as Theorem 17.1 and Corollary 15, resp.):I
LEMMA 5.1. The principal set of V has only one point e if and

I only if e is accessible from W.

LEMMA 5.2. The principal set of V is compact, connected, and

3 non-empty.

I Now we describe a topology on the set of prime ends. Let U be an

3 open set in W. We say an end V is contained in U (i.e., Ve 'U) if

there exists a chain {V } in V all of whose elements are subsets of U.
n

Let W* = W u 0, where 0 is the set of prime ends of W. A set U* in

W is open if and only if U1 n W is open (in W) and
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"O = {V: V contains a chain all of whose elements lie in W}. With

this topology, a sequence {E n) of prime ends "converges" to a primen

end E, represented by {V n}, if for every m, there exists N(m) e N

such that E n V for every n > N(m). We call WO together with this

topology the Prime end compactification of W. Central to the theory

of boundary sets is the following theorem of Carath6odory (see, for

example, [C-Lo]):

THEOREM 5.3 (Caratheodory). Let W be a connected, simply

connected open set. Assume that aW has more than one point. Then W*

is homeomorphic to a closed disk, where points in W correspond to

points in the interior of the disk, azv- the prime ends correspond to

points in S1, the boundary of the disk. Furthermore, if F is a

continuous map on Z with W Invariant under F, then there is map FO on

W* so that F* = F on W.

With this theorem, we are able to learn about the dynamics of F

on the boundary of W by studying the corresponding dynamics o" Si,

the boundary of D. Prime ends "map" to prime ends under F; hence F

induces a map F' on W'. Let T be a homeomorphism from W* to D, the

closure of D. Then the circle SI is invariant under the induced

homeomorphism f = ToF'of of D. The study of homeomorphisms of the

circle is classical. Here we mention briefly some facts about these

maps which are needed in the arguments that follow. A reference for

this material is (D].

2
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Poincar6 showed that associated with each orientation preserving

homeomorphism I of the circle is a "rotation" number, an asymptotic

measure of the rotation of points on the circle under iteration by 1.

In order to define this number, it is convenient first to consider a

3 "lift" of T. A map G of R is called a lift of 7 if noG = yon, where

n is the covering map from R to S i.e., ir(x) = exp(27rix). LetI
I G(x) = limn) GCny)/n,

3 for x in SI and y in R such that n(y) = x. (The value of pG(x) is

independent of the choice of y.) We define the rotation number r of I

I to be the unique number In (0,1) such that pG (x) - r is an integer.

* This value is well-defined:

3 FACT C1. The value r = r(j) is independent of both x and the

particular lift G of 1.I

The dynamics of I are, to a large part, described by the rotation

number r(T):

I FACT C2. A map z of the circle has points of minimum period q if

3 and only If r(j) is an irreducible fraction of the form p/q, for some

positive integer p. The map 1 has fixed points if and only if

3 r(4) = 0.
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Thus, if z has periodic points, they must all have the same

period.

FACT C3. If x has a periodic point of period n, then every point

on the circle is either a fixed point of yn or is asymptotic to a

nfixed point under iterates of y

In the following set of definitions, we describe various notions

of stability for periodic points and periodic prime ends. We often

mention only fixed points, but the definitions and lemmas which follow

carry over to periodic points by considering the appropriate iterate

nof f: a periodic point of period n is a fixed point of f

A fixed point p on S1 is called:

(1) attracting on one side If all nearby points on one side of

p converge to it under Iteration by f;

(2) repelling on one side if all nearby points on one side of

p converge to it under iteration by f-1.

The analogous definitions hold on the space of prime ends if the

word "point" is replaced by the term "prime end", and if "f" is

replaced by "FO".) By Fact C3, an isolated fixed point p on SI is

either attracting or repelling on each side. If p is attracting

(resp., repelling) on one side, then by Carath~odory's Theorem, the

associated prime end P is attracting (resp., repelling) on one side.

A prime end P fixed under F* is called weakly table from W if 91

contains a chain {Vn} such that F() I ' for every i. The
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following lemma follows easily from the definition of aW being unstable

in W (see Sec. 1):

I
LEMMA 5.4. If aW is unstable In W, then no fixed prime end is

I weakly stable from W.

I
3 The following three lemmas are important In relating fixed points

of F on aW to fixed points of f on S1. Although there is a fixed prime

I end corresponding to each fixed point on the circle, It is not the

3 case that a prime end which is fixed under FO necessarily contains a

point which is a fixed point of F. Lemma 5.5 appears in [C-Li].I

l LEMMA 5.5 (Cartwright-Littlewood). Let ? be a fixed prime end of

SF', and let {Q I} be a chain of cross cuts converging to a point q

(necessarily a principal point) of P. If, for every I, F(Qi) has at

least one point In common with QV then q Is a fixed point of F.

LEMMA 5.6. If aW is unstable in W and if a fixed prime end P is

attracting on one side, then all principal points of P are fixed under

F.

Proof. Suppose P is attracting on one side. Let z be a

principal point of P. By Lemma 5.2, there exists a sequence Q} of

In
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cross-cuts converging to z. Let {V n } be the chain defined by these

crosscuts. By throwing out elements of the chain where necessary, we

can assume that either F(Q) A QI * o, for all i, or that F(QI) is

disjoint from QV for all i. In the former case, z is fixed, by Lemma

5.5. Suppose that F(QI) is disjoint from QV for all i. Then

(OF)(Q I ) is disjoint from r(QI), for all i, and T(M) = p is

attracting on one side. Let a- on SI be the end point of T(QI ) which

is on that side of p. Then for I sufficiently large, fn ( I)--+p, as

n--w. Since r(QI) and (CoF)(QI ) are disjoint, we then have that

(roF)(QI) C r(V). But then F(VI) C Vi. for all i, contradicting

Lemma 5.4. Thus z is fixed under F. a

Proof of Theorem 1.1 (Attracting Lemma). Suppose that x is a

periodic circle point of period n and that x is attracting on one

side. Then the corresponding prime end P is fixed under (F*)n and

attracting on one side. By Lemma 5.6 all principal points of P are

fixed under Fn. By Lemma 5.2 the set of principal points is

connected. Since fixed points of Fn are isolated, there can be only

one principal point, say p. By Lemma 5.1 the point p is accessible.

For a given curve r in W limiting on p, the corresponding curve

h-(r) (by definition) limits on a trivial point r in Si.
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6. Hyperbolicity

In this section we describe the dynamics on the set of accessible

points under the hypotheses that F is a diffeomorphism of either the

plane or the sphere and that periodic points in the boundary are

hyperbolic. In addition, we either assume that W is a basin of

attraction (see Sec. I for definition) or we add a condition on the

map F at w . We say that c is repelling in W if, for each r1 > 0,

there exists r2 > 0 such that if Ixi< rI, then IFn(x)l < r2

for all x in 1 and n a 0.

THEOREM 6.1. Assume that the periodic points of F in aW are

hyperbolic, and that either (i) W is a basin of attraction, or (ii)

aW is unstable in W and w is repelling in W . If the rotation number

p is rational, then every.accessible point either is a periodic point

or is in the stable manifold of an accessible periodic point.

The following lemmas are used in the proof of Theorem 6.1. For

each, the hypotheses of Theorem 6.1 are assumed. Let S be a (finite)

periodic saddle of F in aW, and let Ws (resp., Wu ) represent either

branch of the stable (resp., unstable) manifold of S, excluding S.

LEMMA 6.2. If 8W Intersects Ws, then Ws and W are disjoint.
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Proof. If W is a basin of attraction, then clearly W s and W are I
disjoint. Suppose therefore that aW is unstable in W, that w is

Srepelling in W, and that both 8W and W intersect W . Let Q be a

crosscut in w n ws, and let Q2= F(Q1 ). Then W- {Q1 U Q2 ) has j
three components. One component meets both Q1 and %2. Let D1 be the

component that meets only Q1, and let D2 be the component that meets I
only Q2 . Then D2 = F(DI).

Since v is repelling in W and W is invariant under F, there

exists a compact set K such that F(K n W) is contained in K 0 w
and an open neighborhood of S is in K. Iterating D1 forward, there

exists a sequence {D n } of open ets in W intersecting W s such that

{D n } approaches W u (locally), as n-w. Given c > 0, choose j

sufficiently large u. that D intersects K and there is no c-disk inn

Dn n K for all n > j. (This is possible since K includes an open

neighborhood of S and there are only a finite number of c-disks inside

K.) Then for n > J, every point in D n K is within c of then

boundary, contradicting the hypothesis that aw is unstable in W. *

LEMMA 6.3. If p c S' is a trivial fixed point, then it

corresponds to an accessible fixed point S in the boundary aW. If S is

a repeller, then so is p.
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I
Proof. Corresponding to p Is an accessible point S in 8W. The

3 point S is necessarily a fixed point since accessible points map to

accessible points and S is the only accessible point corresponding to

the prime end p.

Suppose that S is a repeller. Since the boundary 8W is connected

and more than one point, each circle centered at S of sufficiently

3 small radius must intersect aW. Let 7 be an "accessing" path in 11

g which limits on S (corresponding to a path in the disk which limits on

p), and let {Q nI be a sequence of crosscuts converging to S such that

3 (1) Qn is an arc of a circle of radius 1/(n+N) for some fixed integer

N t 1, and (2) 1 intersects Qn an odd number of times, for each n. As

I described in Sec. 5, since the sequence {Q n} converges to one point

3 (i.e., the point S ), it defines a prime end. Since this prime end

has accessible point S with accessing path 7, it is represented by p

on S1  By the construction, p is a repeller on S

I

We say that two iccessing paths 0 and 1 are equivalent if 0

3 can be homotoped to z via a continuous family of paths that remains

in W, all having the same endpoint S, (i.e., if there exists a

I continuous family gt:I --> W such that g0(I) = lot g1 ) = T, and

3 g(0) = S, for all t c I). Notice that if S has two non-equivalent

accessing paths, then it corresponds to (at least) two different

3 circle points under hc .

In the next two lemmas, we assume the following additional
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hypotheses: (1) S is an accessible fixed point saddle; and (2) S has

an associated trivial circle p which is attracting on at least one

side, (i.e., there exists a point z c S1 , z ; p, such that

lim fn Cz) = p).

For c small, let M be the union of the segments of the stableC

and unstable manifolds that connect S to the boundary of B (S), theC

c-ball around S. We can assume that c is small enough that the

segments of the stable and unstable manifolds in M intersect onlyC

at S.

LEMMA 6.4. Let 1 be an accessing curve to S. T)-n 7 is

equivalent to an accessing curve that does not intersect M .C

Proof. Suppose that I is not equivalent to an accessing curve

that does not intersect M . Since W is open, it must be the case thatC

I intersects at least two components of B (S) - M and that both zC c

and the boundary aW intersect Ws n M. or both intersect Wu n M . The

case in which both intersect Ws is ruled out by Lemma 6.2. Suppose

uWthat both intersect W . Let {Q n} be a sequence of crosscuts

converging to S such that Qn is a closed interval on Wu and Qn

intersects 7 an odd number of times, for each n. (Since the endpoints

of Qn are the only points of Qn on the boundary aW, we can assume in

fact that Qn intersects 7 only once.) The prime end determined by

Q} is represented by p on the circle. In- this case, p must be a
n
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repeller, a contradiction.

In the following, let c > 0 and let 7 be an accessing path to S

such that there is a unique component of B C(S) - MC  that intersects

i. Call this component Q C (The existence of Q is guaranteed by

Lemma 6.4.) Since S is hyperbolic, we can further assume that B (S)

is a neighborhood in which F is smoothly conjugate to a linear map,

that S is the origin, and that QC is an (open) quadrant in R2.

LEMMA 6.5. The romponent Q , as defined above, contains no points

of the boundary aW.

Proof. Suppose that Q contains a point of aW. Let ea, aeR, be

a family of ("hyperbolic-like") invariant curves in Q Since the

boundary is connected, there is a connected component of 8W n Q.

containing S and a point b of e , for e sufficiently close to S.
a a a

Assume ea is sufficiently close to S that I extends from S to a point

g a on e a. Assume ga is below ba on ea (the argument is similar if it

is above). Assume further that F(g a ) is above b . (Otherwise take a

higher iterate.) Then F(g a ) is between ba and F(b a) on e

Since 7 and f(T) are both accessing curves to S (and they

I- correspond to curves in the disk limiting on the same circle point),

ga and F(g) can be joined by a curve contained entirely in W so that
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the resulting loop g is null-homotopic in W. This is a contradiction

since either b or F(b ) is contained in (. *
a a

Proof of Theorem 6.1. We assume that the rotation number is 0.

(If the rotation number is p/q with p*O , then replace F by Fq in

the proof.) Let x be an accessible point in aW which is not a fixed

point. Corresponding to x is a trivial circle point z. By Lemma 6.3,

z is not a fixed point. Then the forward orbit of z converges to a

fixed point p on S1. By the Attracting Lemma, p is a trivial circle

point. Corresponding to p is an accessible point S in aW. By Lemma

6.3, q is a fixed point. Since either W is a basin of attraction or

aW is unstable in W, S cannot be an attractor, and again by Lemma 6.3,

S is not a repeller. Thus S is a saddle, and the hypotheses of Lemmas

6.4 and 6.5 are satisfied by S, since p is attracting on one side.

By Lemmas 6.4 and 6.5, there is at least one component Q of

B (S) - M which is in W and contains no boundary points. If thereC C

are boundary points in another component of B (S) - MC, then they are

in connected components of aW which intersect both invariant manifolds

bounding that component. If exactly one component is free of boundary

points and is in W, then there are accessible points on one branch 
Ws

of the stable manifold and one branch Wu of the unstable manifold. By

Lemma 6.2, each point on this branch of Ws is an accessible boundary

point. Thus points on one branch of the stable manifold of S are in

one-to-one correspondence with points of S1 on one side of p.

Let g and g2 refer to the segments on either side of p
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consisting of points on the circle between p and the closest fixed

points on either side. (If p is the only fixed point, then 9, = 92'

Let be the segment which corresponds to Ws. Necessarily, 9l is part

of the stable set of p. Let {Q n} be a sequence of crosscuts

converging to S such that one endpoint of Qn is on Wu and one is on

W for each n. Since accessible boundary points on W converge under

F- to S, given a point y in WU fn aW (necessarily accessible) and

n>O, all but a finite number of points in the forward orbit of y under

F will be in V n, the closure of the domain determined by Qn and S.n'

In this case p, which corresponds to the prime end determined by Q n ,

is repelling on 02" Since the forward orbit of z converges to p, z

must be on gi, and thus x is in the stable -inifold of S.

* The argument given in the previous paragraph holds in all cases

in which a sequence {Q n} of crosscuts in W converging to S (i.e., a

sequence which defines the prime end represented by p) has the

u s
property that one endpoint of Qn is in W and one is in W , for allI
n 0. The case in which there are exactly three components of

B (S) - M in W which are free of boundary points also reduces to

this case. If the crosscuts do not have this property, then there are

3 necessarily exactly two or exactly four components in W. In these

cases, both endpoints of a crosscut are in one or the other branch of

the stable manifold of S. (Since the fixed point p is attracting from

3 at least one side on SI, the case in which only the unstable manifold

of S intersects the boundary is ruled out by an argument similar to

I that in the proof of Lemma 6.3.) In this case, p is necessarily

attracting on the circle, and points on both g and 02 are in
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one-to-one correspondence with points in the stable manifold of S.

Thus x is in the stable manifold of S. x

The following corollaries follow from the proof of Theorem 6.1.

The first extends Theorem 1.1 (the Attracting Lemma) to all points of

S1 not just periodic points. The second shows that the map hc , the

accessible-point extension of the Riemann map h (described in Sec. 1),

is continuous on stable manifolds of periodic points of SI (up to and

including the periodic point). For a trivial circle point r, we let r

denote the corresponding accessible point in aW. We assume the

hypotheses of Theorem 6.1.

COROLLARY 6.6. Assume that p is rational. If a point r in S' is

not a periodic point, then r is a trivial circle point.

COROLLARY 6.7. Let p in S' be a periodic point of f, and let

{r } be a sequence of points in SI converging to a point r. If r isn n

in the stable manifold of p, for each n, then the corresponding

sequence {r } of accessible points in aW converges to r in 8W.
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I
7. Minimum Periods of Accessible Periodic Orbits;I

Unfortunately, although a rational rotation number p/q implies

Il that f has a periodic orbit of minimum period q on SI, we cannot claim

that F has a periodic point of minimum period q. See, for example,

the boundary depicted in Fig. 7, where p(CW,F) is 1/3, and F has an

*I accessible fixed point on the boundary but no period three orbit.

Recall that hc is the accessible-point extension of the Riemann

map h. If the rotation number p of f is rational (say p/q), but not

0, then trivial circle points which are periodic (necessarily of

minimum period q) can map by h to periodic points in the plane ofc

smaller minimum period. This situation is illustrated in Fig. 7,

where all points in one orbit on the circle coalesce to a fixed point

on the sphere. Surprisingly, Cartwright and Littlewood [C-Li] showed

that this type of example is the only possible one when accessible

points coalesce:

THEOREM 7.1 (Cartwright-Littlewood). If p # 0, then 8W contains

at most one accessible fixed point.

It is easily seen that this theorem rules out coalescing to an

orbit of minimum period strictly between 1 and q. Suppose that a

trivial periodic orbit of minimum period q on the circle maps (under

hc) to a periodic orbit of minimum period k on W, where k#1 and kaq.
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Then k = q/r for some divisor r of q (r*1), and Fk has k accessible

fixed points on aW. But the rotation number of the induced map f k on

the circle is non-zero, contradicting the theorem. I

The situation illustrated in Fig. 7 can be largely overcome by

using Theorem 6.1 and assuming that the accessible periodic points are

saddles.

PROPOSITION 7.2. Assume the hypotheses of Theorem 6. 1. If the

rotation number p * 0 is the reduced fraction p/q, where q 0 2,

then every accessible periodic saddle in aW has minimum period q.

I
Proof. Suppose there exists an accessible orbit of period k onk I

aW, where 1<k<q. Then Fk has at least k fixed points, but the

rotation number of the induced circle map fk Is non-zero, I
contradicting Theorem 7.1. Hence we assume there is an accessible

fixed point saddle z on aW. Given a path r in W limiting on z, let y
-1

be the trivial circle point which is the limit point of h (r).

Either y is a periodic point of period q, or the forward orbit of y

under fq converges to a periodic point r. By Theorem 1.1, r is a

trivial circle point. By Corollary 6.4, the trivial circle point r

corresponds to the accessible point z (i.e., hc (r) = z ), as do each

of the q points r = rI, r2 ..... rq in the orbit of r.
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Let 0 be the center of the disk which S bounds and let

711-...7q be line segments joining 0 to rl,.. .rq, respectively.

Then h(I1J.... 1 h(q) are paths in W, all of which limit on z. Let

r and r be adjacent points on the circle. Since r1 ,..., rq

3 represent distinct prime ends on S1, the closed loop formed by h )

h(v ), and z necessarily contains boundary points in its interior.

3 These boundary points are connected to z within the loop.

Therefore, by Lemma 6.5, q can be at most 4.

If q is 3 or 4, then at least one branch of the stable

manifold of z is in W, and r is necessarily attracting on at

least one side of the circle under fq --as is each of the q points in

i the orbit of z. Each of these stable sets must correspond to a

branch of the stable manifold of z. On the other hand, there exists

a path r in the disk connecting a point in the stable set of ri to

3 a point in the stable set of r which crosses one of the segments

TI or xj exactly once and intersects none of the other segments.

I Hence, in W, h(f) crosses h(iI) (or h( )) exactly once and

3 intersects none of the other "accessing" paths, a contradiction for

q >2.

i For a map of the sphere, two types of degeneracies are possible

when p = 1/2, even with the hypothesis that accessible orbits are

hyperbolic saddles. These possibilities are illustrated in Fig. 8.

In Fig. 8a, p = 1/2 and there is an accessible fixed point saddle p

I
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on aW. In Fig. 8b, aW Is a line segment. The basin W (the

complement of B) is simply connected on the sphere. In this case, I
p = 1/2 and there is an accessible fixed point saddle p and an

accessible saddle orbit {r,r 2 } of period two. I

The situation is greatly simplified when we look at I
homeomorphisms of the plane. We use the following converse of

Theorem 1.2 for planar maps: I

PROPOSITION 7.3. '.et F be a homeomorphism of the plane R2. If 1
there exists an acce!aile fixed point in aW, then p = 0. 1

I
Proof. Suppose 0 0. Let x be an accessible fixed point,

and let p c S1 be a corresponding trivial circle point. Since

p e 0, we can choose N > I such that the intervals [p, f(p)],

2 M -I N I
(f(p), f (p)]...., [f' (p), f (p)] cover S . By Property 2 of the

extension h of the Riemann map, h c(fi(p)) = x, for i z 1.

Let I and 6 be paths beginning at a point 0 in D and 1
ending at p and f(p), respectively. Let r be the closed loop

formed by h(z), h(6), h(O), and x. Choose a preferred direction,

clockwise or counterclockwise, so that the accessible boundary points

corresponding to trivial circle points between p and f(p) are in

r. Let G be r together with its interior. Since the accessible
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I
points are dense in aW, the entire boundary is contained in theIN
compact set K = U f (G) .. The complemeint of D is contained

i=1

entirely in W or entirely in R2\W. The former case is ruled out

since W is simply connected. But then h(7) c W is in the boundary

of K, a contradiction.

3 Now assume that p is the reduced fraction p/q. Assume

further that there is an accessible periodic orbit of minimum period

in aW (in the plane). The iterate F induces the map f on S

3 Since Fr has a fixed point, the rotation number of f r is 0, by

Prop. 7,3. Thus all periodic points c.-* f in S1 are fixed points of

I r, which Implies that q divides r. The next proposition shows

that q must equal r.

I
PROPOSITION 7.4. If p = 0, then every accessible periodic

I point in aW is a fixed point of F.

I Proof. Assume there is an accessible periodic point x of

period q, q > 1. Let p be a trivial circle point corresponding to

I x. By Property 2 of the map hc, p is not a fixed point. Let 0

be the center of D, let 7 be the line segment from 0 to p,

and let be the line segment from 0 to f i(p), for each i,

I
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1 S i S q+1. Then h(z and h (Xq) both contain p, and they

form a closed curve r which, except for p, ii contained in W.

Since p = 0, f(p) is between p and fq(p) on one side of n

the circle and fq+ 1(p) is between them on the other side. Thus one

of Ac(?1 ) and h c(q+1 is inside r and the other is outside. I
By Prope rty 2 of the map c o q

h c(f(p)) F(h C(p)) = Fx) =Fq+1() F (hc(p)) = hc (fq ()).

But only one of he Cf(p)) and hc (fq+l(p)) is i,% r, a I
contradiction. M

COROLLARY 7.5. Let 1 be a homeomorphism of the plane R2 If 

p # 0 is the reduced fraction p/q, then every accessible periodic

point in 8W has minimum period q.

Proof. Suppose there is an accessible periodic point with period

r. By the discussion following Prop. 7.3, q divides r. It follows

from Prop. 7.4 that since the rotation number of fq (on S1) is 0,

q must equal r. I

The final corollary puts together the previous results with the

assumption of hyperbolocity to obtain a statement that does not

mention the rotation number p:

I
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I COROLLARY 7.6. Assume the following set of hypotheses:

(1) F is a diffeomorphism of the plane R2;

(2) the periodic points of F in aW are hyperbolic;

3 i(3) either (I) W is a basin of attraction; or

(ii) aW is unstable in W, and w is repelling in W;

3 and (4) either (i) there exists an accessible periodic point of

minimum period q, or

(ii) there exists an accessible point which

converges (under fq) to a periodic point of minimum

period q.

I Then every accessible point in W either is a periodic point of

3 minimum period q or is in the stable manifold of such a periodic

point.

I

I Proof. We need to prove that if an accessible point x converges

3 under fq to a periodic point z, then z is accessible. First we

show that p is rational. Assume otherwise. (For ease of

exposition, we assume that q is 1 and that z is a fixed point.

Otherwise, replace F with F .) By hypothesis, x is on one branch Ws

I of the stable manifold of z. Let y be a point in W, and let go

3 and gI 'be paths from y to x and from y to F(x),

respectively.

3 By Lemma 6.2, W and Ws are disjoint. (This lemma does not depend

on any assumption about p.) Therefore, there must be accessible

I
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points in the region V bounded by g0, g, and the portion of Ws

between x and F(x). In fact, since p is irrational, there must

be points in the orbit of the accessible point x in the region V.

But then Ws must enter V. The only way W s can enter V is through g0,

91, or W5 , all of which are impossible. (In particular, g and

91 are in W, which by Lemma 6.2 does not intersect Ws.) Therefore,

p ir rational, and by Theorem 6.1, x is in the stable manifold of

an accessible periodic point, namely z.

Since z has minimum period q and p is rational, by Cor. 7.5,

eve-y accessible periodic point has minimum period q; the result

follows from Theorem 6.1.

I

I
I
I
1
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FIGURE 1. Two basins of attraction of the time 2Tr map of the forced damped

pendulum equation 0" + .10' + sine = 2cost are shown in black and white.

The black and white regions are connected on the cylinder.
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FIGURE 2. A portion of the basin of infinity of the Hnon map (3.1) is
shown in black for b fixed at 0.3 and each of three values of the para-meter X. The x and y values shown are in the rectangle L-2,21 x [-2,11]
In (a) at X = 1.39, the set of accessible points consists of a period-foursaddle and its stable manifold. Crosses show a period-three saddle to
which the boundary jumps at a boundary metamorphosis at X z 1.395. In(b) and (c) at = 1.40 and X = 1.42, respectively, the set of acces-sible points consists of this period-three saddle and its stable manifold.
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FIGURE 3. A portion of the basin of infinity of the orientation-
reversing H6non map (3.1) is shown in black. There is a two-
piece attractor whose basin is not connected, and the basinU boundary is fractal.
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FIGURE 5. Sequences of crosscuts and subdomains defining
a prime end are illustrates.



Ii

/Qn I

_ _ _ _ _ _ _ _ _ _ _

A B

(b)

I

__ _ __ _ __ _I

A P I'BI

(c)

FIGURE 6. Each figure represents an open, simply connected setI
(the interior of the rectangle minus the line segments). In each
case, segment AB is the impression of a prime end. In (a), each
point of AB is a principal point, and there are no accessible points I
in AB. In (b), segment CD is the principal set of AB, and there are
no accessible points in AB. In (c), P is the only principal point
and the only accessible point of AB.
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FIGURE 7. In (a) the rotation number on the boundary circle is1/3. The circle maps to the boundary in (b), however the boundary
in (b) does not have an accessible periodic point of period 3, but
rather has an accessible fixed point. This example is realizable
on the sphere, not in the plane.
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periods of accessible saddles do not equal the periods of orbits of then

associated circle map, are shown. By Prop. 7.2, the rotation numbers in
each case is 1/2. in (a), the boundary DW has a fixced point saddle p.
in (b), W is the complement in the sphere of the line seIi-nt 31 from rI

to rg; thus 3W is the boundary of a simply connected set v on the sphere.
Agai, the rotation number is 1/2 ad there is an accessible mixed point
saddle p and an accessible saddle orbit r,r 2l of period two.s of h
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Figure 1

Two basins of attraction of the time 21r map of the forced damped
pendulum equation )" + .16' + sinO = 2cost are shown in black and
white. The black and white regions are connected on the cylinder.

1 Figure 2

A portion of the basin of infinity of the H~non map (3.1) Is
shown in black for b fixed at 0.3 and each of three values of the
parameter A. The x and y values shown are in the rectangle
[-2,21 x (-2,11]. In (a) at A = 1.39, the set of accessible points
consists of a period-four saddle and its, stable manifold. Crosses
show a period-three saddle to which the boundary jumps at a boundary

metamorphosis at A = 1.395. In (b) and (c) at X = 1.40 and
A = 1.42 , respectively, the set of accessible points consists of this
perpod-three saddle and its stable manifold.

U
I
I Figure 3

A portion of the basin of infinity of the orientation-reversing
H6non map (3.1) is shown in black. There is a two-piece attractor
whose basin is not connected, and the basin boundary is fractal.

Figure 4

A chaotic attractor of the Ikeda map

f(x,y) = (.97 + 0.9(xcosT - ysinT), 0.9(xsin'r + ycosr)),

2 2
where r = 0.4 - 6.0/(1.0 + x + y2), is shown. There is an accessible

period 6 orbit on the attractor.
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Figure 5

Sequences of crosscuts and subdomains defining a prime end are
illustrated.

Figure 6

Each figure represeits an open, simply connecteu set (the
interior of the rectangle minus the line segments). In each case,
segment AB is the impression of a prime end. In (a), each point of AB
is a principal point, and there are no accessible points in AB. In
(b), segment CD is the principal set of AB, and there are no
accessible points In AS. In (c), P is the only principal point and
the only accessible point of AB.

Figure 7

In (a) the rotation number on the boundary circle is 1/3. The
circle maps to the boundary in (b), however the boundary in (b) does
not have an accessible periodic point of period 3, but rather has an
accessible fixed point. This example is realizable on the sphere, not
in the plane.

Figure 8

Two types of degeneracies on the sphere, in which the minimum
periods of accessible saddles do not equal the periods of orbits of
the associated circle map, are shown. By Prop. .7.2, the rotation
number in each case is 1/2. In (a), the boundn-y aW has a fixed point
saddle p. In (b), W is the complement in the sphere of the line
segment aW from r1 to r2 ; thus aW is the boundary of a simply

connected set W on the sphere. Again, the rotation nnber is 1/2 and
there is an accessible fixed point saddle p and an accessible saddle
orbit {r,r 2 } of period two.



I| WHEN CANTOR SETS INTERSECT THICKLY

Brian R. Hunt'. Ittai Kan2. and James A. Yorke3

July 3, 1991

Abstract

The thickness of a Cantor set on the real line is a measurement of its "size". Thick-
ness conditions have been used to guarantee that the intersection of two Cantor sets
is nonempty. We present sharp conditions on the thickness of two Cantor sets which

imisly that their intersection contains a Cantor set of positive thickness.

1 Introducticn

- Newhouse defined [5] a nonnegative quantity called the "thickness" of a Cantor set in order
to formulate conditions which will guarantee that two Cantor sets intersect. (All Cantor sets

considered in this paper lie in R1.) These conditions have been used [5, 6, 7, 8, 9] in the

study of two-dimensional dynamical systems to deduce the existence of tangencies between

I stable and unstable manifolds whose one-dimensional cross sections are Cantor sets.

Thickness may be thought of as a measure of how large a Cantor set is relative to

the intervals in its complement. Henceforth, these intervals will be referred to as gaps;

the two unbounded intervals in the complement are each included in our use of the term
gap. Newhouse's result [5, 7, 8] is that two Cantor sets must intersect if the product of3 their thicknesses is at least one, and neither set lies in a gap of the other. When this

latter condition is satisfied, the sets are said to be interleaved. In [10], Williams observed3 the surpising fact that two interleaved Cantor sets can have thicknesses well above one

and still only intersect in a single point. One might hope that under sufficiently strong
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Figure 1: Constructing a Cantor set

thickness conditions, the intersection would be a Cantor set. However, the intersection
of two arbitrarily thick interleaved Cantor sets can contain isolated points, so Williams
posed the question of what conditions on the thicknesses of two interleaved Cantor sets
will guarantee that their intersection contains another Cantor set. Williams obtained such
a condition, though" it is not sharp. In this paper we obtain the sharp condition. More
precisely, we find a curve in (T, 'r2)-space such that if the ordered pair (T1 , "2) of thicknesses
of two interleaved Cantor sets lies above the curve, their intersection contains a Cantor
set, but if the pair of thicknesses lies below the curv,_ here exist examples for which the
intersection is a single point. Kraft [2] has independently arrived at this condition. We
further show that if the thickness pair lies above the curve, the intersection must contain a
Cantor set of positive thickness. This is the only result that addresses in terms of thickness
how large the intersection of two Cantor sets must be. There are well known probabilistic
results concerning the Hausdorff dimensions of intersections of Cantor sets (c.f. [1, 3, 4]).

One may think of a Cantor set as being constructed by starting with a closed interval
and successively removing open gaps in order of decreasing length. Williams' formulation of
the thickness of a Cantor set may then be thought of as follows. Each gap G, is removed
from a closed interval I,, leaving behind closed intervals L, the left piece of I, - G,, and
R, oil the right (see Figure 1.) Let p, be the ratio of the length of the smaller of L, and R"
to the length of G,. The thickness of the set is the infimum of p, over all n.

We consider as an example the "middle-third" Cantor set, constructed as follows. Start
with "he'closed in terval [0,1], and remove the open interval (1/3, 2/3), the middle third of
the original interval. Then from each of the two remaining intervals, remove their middle
thirds; repeat this process infinitely often. Each gap G,, is the same length as the adjacent
intervals L,, and R,, so p,, = 1 for all n. Thus the thickness of the middle-third Cantor set

is one.
There is a connection between the thickness of a Cantor set and its fractal dimension,

which depends in part on how the ratios p,, are distributed as n -* o. However, two largc
gaps close together make the thickness of a set very small, while its dimension can still be
large. It was shown in [7] that the Hausdorff dimension of a Cantor set with thickness r is
bounded below by log 2/ log(2 + 1/r). This lower bound is sharp for the middle-third Cantor

set (whose dimension is log 2/log 3.)
We offer here a new formulation of the definition of thickness which we state for all
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Figure 2: Non-intersecting interleaved sets

compact sets, not just Cantor sets. (The results in this and previous papers are found to
be valid for all compact sets.) We define non-degenerate intervals to have infinite thickness,
while singletons are defined to have thickness zero. In fact, any set containing an isolated
point will be seen to have thickness zero. To define the thickness of a compact set S which
is not an interval, we consider a type of subset of S obtained by intersecting S with a closed
interval. We call such an intersection P a chunk of S if P is a proper subset of S and has a
positive distance from S - P, the complement of P in S. (Notice that for P to be a chunk
both P and S - P must be closed and nonempty.) We then define the thickness of S to be
the infimum over all chunks P of the ratio between the diameter of P and the distance from
P to S - P. In the case of the middle-third Cantor set, the given ratio can be shown to be
smallest when the chunk P is obtained by intersecting S with an interval L" or R, in which
case the ratio is one. in Section 2 we will show that our new definition is eq"'valent to the
old one for all Cantor sets.

The reason thickness is an appropriate quantity for determining when one can guarantee
that two compact sets intersect is illustrated by considering an example where each of the
two sets is a union of two disjoint intervals. For i = 1, 2 let 5, consist of closed intervals
of lengths ai and b, with a, < b,, separated by a distance ci. Then each Si has only two
chunks, and is found to have thickness a,/c,. If the product of the thicknesses ala 2 /cIc 2 is
at least one, then either a, > c2 or a2 >_ c1 (or both); assume a, >_ c2. Then since bi >_ a1,
neither interval of S, can lie in the gap of S2; hence if the two sets are interleaved, they must
intersect. If on the other hand ala 2 /clc 2 < 1, then with an affine map we can scale the sets
so that a, < c2 and a 2 <c, and position them so that the component of S, with length a,
lies inside the gap of S2, and vice versa. The two sets are then interleaved, but they do not
intersect (see Figure 2). This example could of course be made to involve Cantor sets by
constructing very thick Cantor sets in each chunk of each S,.

An important point which is apparent in the above example is that the union of two
sets can have a smaller thickness than either of the original sets. In other words, adding
points to a set can decrease its thickness. By the same token, one may be able to increase
the thickness of a set by removing appropriate subsets. This observation is useful in the
following way. No matter how thick two interleaved compact sets are, their intersection may
have thickness zero because it may contain isolated points, or arbitrarily small chunks which
are relatively isolated from the rest of the intersection. Nonetheless we are able to show that
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Figure 3: The intersection of two interleaved compact sets with
thicknesses T1 and 72 can be empty for (7"1, r2) in region A, must be
nonempty but can be a single point in region B, and must contain
a set of positive thickness in region C.

if the original sets are thick enough, then by throwing out the relatively isolated parts of
their intersection we can obtain a set of positive thickness in the intersection.

To define the set C of thickness pairs (r1 , 72) for which a Cantor set of intersection can
be guaranteed, we make use of the functions

T2 + 3r + 1
fjr) r2

(27 + 1)2

g(T)= T3

Let C be the set of pairs (71, 72) for which one of the following sets of conditions holds:

r- - 2 , 71 > f(r2), and r2 > g(rl) (1.1)

or

r 2 >_ r,- r2 > f(r 1 ), and 'r > g(r2) (1.2)

(see Figure 3.) Our main result is as follows.
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Theorem 1 There is a function (r, -r2) which is positive in region C such that for all
interleaved compact sets S1,$ 2 C R with T(S1) >! ri and r(S2) >_ r2, there is a set S C SfnS2

with thickness at least p(r, r 2 ).

Notice that a compact set with positive thickness can have no isolated points, and thus must
either be a Cantor set or contain an interval; either way it contains a Cantor set.

We remark that (ri, r2) is in C if both thicknesses are greater than V2 + 1. This is the
critical value Williams found for the case of interleaved Cantor sets with the same thickness.
Also, no matter how small one thickness is, the other thickness can be chosen large enough
so that the pair lies in C. Our results and the results of Newhouse are summarized in Figure

3.
In Section 2 we give a proof of Newhouse's result, which will illustrate some of the methods

to be used later. Then we present for all pairs (r,,r2) not in C an example of interleaved
compact sets with thicknesses 71 and 72 whose intersection is a single point (except when
(r-, r2) is on the boundary of C, in which case our example gives a countable intersection.)
This example shows that Theorgm 1 is sharp in that its conclusion cannot hold for any larger
set of thickness pairs (r1 , r2). In Section 3 we prove Theorem 1, and in Section 4 we discuss

some further properties of S1 n S2. The positive thickness set S E S n S2 constructed in
Section 3 need not be dense in S, n 52 ; however we find that there are subsets with thickness
at least p(rl, r72 ) arbitrarily near any accumulation point of S, n S2. In additioa, we find
bounds on the diameter of S which allow us to obtain thickness conditions that imply thac
the intersection of three Cantor sets is nonempty.

2 Preliminaries

Let us define precisely the concepts and notation we will use.

Definition 1 We say two sets S1, S2 C R are interleaved if each set intersects the interior
of the convex hull of the other set (that is, neither set is contained in the closure of a gap of

the other set.)

We define the distance between two nonempty sets S1, 32 to be

d(Si,S 2) = inf{Ix - yjx E Si, y E S 2},

and write S2 - S1 for the intersection of 52 with the complement of S1. We say that a set S
is a chunk of a set S,, and write S1 0( S2 , if S1 is the intersection of a closed interval with

S2, is a proper subset of S 2, and d(S 1 , S 2 - S1) > 0. Notice that a closed set S has a chunk if
and only if it is not connected. We denote the diameter of a ret S (the length of its convex

hull) by IS1.



Lk Gk Rk

L, G. R.

Figure 4: Chunks and gaps of a Cantor set (k < n)

Definition 2 Given a compact set S C IR, we define the thickness of S to be

'r(S) = inf IPI (2.1)
P=S d(P, S - P)

prozided S has a chunk. Otherwise, we let r(S) = 0 if S is empty or consists of a single
point, and r(S) = oo if S is an interval with positive length.

The following simple proposition demonstrates that Definition 2 agrees with Williams'
definition of thickness for Cantor sets [10].

Proposition 2 Let S be a Cantor set, and define the ratios p,, as in the introduction. Then
the quantity r(S) given by (2.1) is equal to the infimum of p,n over all n.

Proof The intervals L,, and R, defined in the introduction are the convex hulls of chunks
A, = L, nl S and B,, = Pn n S of S. Since the gap Gn is not larger than any previously
removed gap Gk, k < n, it follows that

d(A,,,S - A) = d(B,,,S - B,) = IG,,

(see Figure 4.) Thus for all n,

m i'L I IR,,I ( IAI IBnI (S).

= i-,['IG,,I, =mI \d(A,-S--A)' d(B,,S-Bn) )
Next, if P is a chunk of S, it must be bordered on each side by a gap of S; let Gn be the
smaller of these two gaps. Then IG,,I = d(P, S - P) and IPI > min(IL,,, IR,I). Therefore

r(S) inf IPI n?osd(, S - P) - n

which completes the proof I
We now prove Newhouse's result in a way that will motivate our later examples and

methods.

Proposition 3 If S1 and S2 are interleaved compact sets with r(S1).r(S2) _ 1, then S, n S2

ts not empty.
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P1  P3

PO 1 P2 3 P

S2-H I-H
XO X2 X4

Figure 5: The points x,, and chunks P,,

Proof Let S1 and S2 be as above, and let

xo=max infx, infx)\XESI xES2

the greater of the leftmost points of S and S2. Assume without loss of generality that
xo E S2. We will show that S1 n S2 is nonempty by looking for the leftmost point of this
set. Let x, be the leftmost point of S which is at least as great as x0 . Since S and S2

are interleaved, x, must exist (otherwise S would lie entirely to the left of S2; see Figure
5.) Next, let X2 be the leftmost point of S 2 greater than or equal to xj. Once again the
interleav:ng assumption implies that X2 exists, for otherwise S2 would lie inside a gap of S.
We similarly define X3, X4, ... ; if each of these points can be shown to exist, we claim to be
done. Then {x,} will be a nondecreasing sequence which is bounded above (since 51 and
S2 are bouided), so it approaches a limit. This limit must belong to both S and S2 since
these sets are closed and the odd numbered terms of {,} belong to S1, the even ones to S.

If at any step x,, exists and equals X,-1, then Xn+l,Xn+2, .. .will also equal X,,_, and we
will have found a point in S1 nl S2. Henceforth we assume £o < x, < ... as long as they are
defined. We know at least that x0, £1, and X2 exist, so there is a chunk PO of S2 which lies
in [xo, xj), whose diameter is thus less than x, - xo, and whose distance from the rest of S2

is greater than £2 - X1 (see again Figure 5.) Then

X1X > > (S2). (2.2)
X2 - x1 d(Po, S2 - Po)

Let P be the largest chunk of S, which lies in [X1, X2). If X3 did not exist, in other words if
all points in S1 were less than X2, then S - P1 would lie to the left of P1, and the distance
between these sets would be greater than x, - xo. But then using (2.2) and r(S).T(S2) > 1
we woul t. have

d(P,S, - P) x, - o (S2 )
contradicting the definition of the thickness of S1. Thus X3 exists, and similarly to (2.2) we
obtain

X2-X> > (S). (2.3)
X3 - X2 d(P 1, S1 - P )

Likewise (2.3) car be used to show the existence of £4, and so forth. The proof is completed
by induction. I
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One could similarly find the rightmost point in $n S2 , but as Williams observed it
may coincide with the leftmost point, even if both thicknesses are significantly greater than
1. We next present an example which will give a single point of intersection for thickness
pairs ('r-, r2) not in the closure .f region C, and a countable intersection for (ri, r2) on the
boundary of C. In our example both sets are countable unions of closed intervals, but they
could be replaced by Cantor sets with the same thicknesses by constructing a very thick
Cantor set in each of the closed intervals.

Let r be a positive constant, and define the intervals

A0 = [r2 +3r+ 1,(2T + 1)21,

Bo = [r,r 2 + 3r + 1],

An = 2 r +Y Ao,

Bn = 2r +1 Bo,

where multiplication of a set by a scalar means the set obtained by multiplying each element
of the original set by the given scalar. Let

S,= (0A) U {, S2 = B(C U{O .

Notice that Bn is the closure of the interval between An and An+2 for all n, and An is the
closure of the interval between B.-2 and Bn for n > 2. Thus S, n 82 is countable, containing
only the point 0 and endpoints of the intervals An and Bn. Furthermore, the intersection
could be reduced to only the point 0 by shrinking the intervals which make up one of the
sets by a factor arbitrarily close to one.

Let us compute the thicknesses of the sets S and 82. Observe that

IA, I d(B-._.2,B,) = (2Ti- ) i r(3r + 1),

IBnI d(Am,An+2) = (2r ) (37+ 1).

The intervals An are ordered from left to right A1, A 3, As,.. , A4, A2 , Ao, so any chunk P of
S which does not contain 0 must be a finite union of consecutive even or odd numbered A,.
Let An be the interval in P with the largest index; then

1PI IA,,I
d(P,S, - P) - d(A,,,An,+2)

8



with equality holding when P = A,. On the other hand, if a chunk P of S 1 contains zero,

let n be the larger index of the leftmost and rightmost Ak in P. Then P must contain A,,- 1,

and since P is not all of S, n > 2, so
IPI > IA, U A.-I.I (r/(2r + 1))n-l(3r + 1)(2r + 1)

d(P, S1 - P) - d(An,A n-2) (r/(2r + 1))n- 2 (3r + 1)

Therefore the thickness of S is T.

Similarly, if P is a chunk of S2, then for an appropriately chosen B,, either

IPI IBI _ (2r+ 1)2

d(P, S2 - P) - d(B,, Bn+2) 73 g(r).

or
PI > Bn U B,- II

d(P, S 2 - P) - d(B.,Bn_2 )

(r/(2-r + 1))n-1((3-r + 1)/(27 + 1))(72- + 3-r + 1)
(7r/(27r + 1))n 2 ,(37 + 1)

72 + 3-r + 1
7
2

f f(r).

Thus
r(S 2 ) = min(f(,r),g(-r)).

As we pointed out before, by reducing the thickness of S2 by an arbitrarily small amount

we can shrink the intersection of S, and S2 to a single point. Let 7r1 denote the thickness

of the set S1 , and let r2 be the thickness of S2 . Then up to a change of indices, the above

construction demonstrates that a single point of intersection can be obtained when either

71 < min(f(T2 ),g(r2 )) (2.4)

or

r2 < min(f(71),g(7.1)). (2.5)

Also, if either (2.4) or (2.5) is an equality instead, the intersection can be countable. (Kraft

[2] has analyzed this borderline case and determined when the intersection can be finite.)

Therefore we can only hope to guarantee an uncountable intersection if

7ri > min(f(T2),g(-r2)) (2.6)

and

-r2 > min(f(7r1 ),g(Tij)). (2.7)

One may check that g(7) > f(7) > v' + 1 for r < v + 1 and g(7r) < f(r) < v2 + 1 for

r > vf2 + 1. Therefore (2.6) and (2.7) are equivalent to (1.1) in the case r"1 >__ r2, and to

(1.2) when r2 > r..
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s .<------------------..Case 1 1. = Io

S2: J< 77-

SI: <-- -- .. .... ... . .......... -- --- ->Case 2 : 11
S:< ----1 J*J

Figure 6: Cases in the construction of I. and J.

3 Proof of Main Result

We now prove Theorem 1 by constructing a set S with positive thickness in S1 n S2.

Proof of Theorem 1 Let S, and S2 be interleaved compact sets with r(SI) >_ -r and
r(S2) >_ r2 for some (rl, -r2) in region C of Figure 3. Let the gaps of S be lo, I1, 12, ... , with
Io and I unbounded, lo to the left of I,, and !1f2 ? 1131 >_ " '. For S2 we define JoJ 1, J/ 2,
... similarly. We refer to the intervals I, and J,, collectively as the "original gaps". Our
goal is to construct the complement of S as a union of disjoint open intervals Ko, Yi, K 2,
... with Ko and K, unbounded, and with every original gap contained in some K, (whence
S C Sn fS 2.) To get a lower bound on the thickness of S, observe that every chunk P of S is
bordered on each side by a gap of S, with at least one of the bordering gaps being bounded.
Pick a chunk P, and say P is bordered by Km and K, with m > n and m > 2. Then

IPI d(K, I) d(K, ,')
d(P,S- P) = min(lI,,I 1'.I) - IIimI

The theorem will therefore be proven when we show for some t(rl, r2) > 0 that whenever
m>n andm >2,

d(KmKn)> ( 2) (3.1)

We begin by finding a pair of original gaps I. and J. between which S will lie; that is,
I. and J. will be contained in Ko and K 1.The properties we desire of I. and J. are that
they are a positive distance apart, that all gaps of S with an endpoint between the closures
of I. and J. are bounded and no larger than I., and likewise (in comparison to J.) for gaps
of S2 between I. and J.. We will show later that once I. and J. have been determined,
the diameter of S can be bounded below by a constant depending on r, and r2 times the
distance between I. and J..

Assume without loss of generality that Jo C lo. If I C J,1 (Case 1 of Figure 6), then
1. = Io and J. = J1 have the above properties; they must be separated by a positive distance

10
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S : < .......................................

gfo

Figure 7: The construction of Ko

since S and $2 are interleaved. If J, C 1 (Case 2 of Figure 6), let J. be the largest gap
of S2 with an endpoint between Io and 1, and let I. be whichever of Io and 1 is farthest
from J.. At least one of Io and 1 must be a positive distance from J. since S and $2 are
interleaved.

Next, let t be a positive constant whose precise value will be chosen later; for now we
assume that t < (rir2 - 1)/(r, +r2 +2) < min(rl, r2). Assume without loss of generality thatI I. lies to the left of J.. We begin constructing K0 by requiring that it contain I.. We then
require that K0 contain the rightmost bounded J, with d(I., J,) < tIJ, I (we will verify thatII there is a rightmost gap satisfying this condition when we later examine our construction
in more detail.) If there does not exist such a J, that is not already contained il I., we

stop the construction and let "0 = I.. Otherwise, we further require that No contain the
rightmost bounded I, that is within t times its length of the previously added J,,. Again,
if this requirement does not extend Ko any farther rightward, we stop the construction. If'
not, we then add to Ko the rightmost J which is within t times its length of Im and is at
most as large as J, (see Figure 7.) If a next step is necessary, we consider gaps of S1 which
are no larger than 1,, and so forth. We may have to continue this process infinitely often,
but if so we must converge to a right endpoint for K0, sinc3 there is no w,.y this construction
can extend past the rightmost point in Sl U 52.

We define K, similarly, starting with the requirement that K contain J. and extending
K1 to the 1cft if necessary in the same way we constructed Ko. Next, to construct K2 we first
require that it contain the largest original gap (choose any one in case of a tie) not contained
in K0 U K1 (if no such gap exists, we leave K2 undefined and let S be the complement of
Ko U K.) Then we extend it it on both the left and right in the same manner as before,
but considering only gaps that are at most as large as the one we started with, to obtain the
endpoints of K2. \Ve next start with the largest original gap not contained in Ko U K1 U K 2,
proceeding similarly to define K3, and so forth. Any given original gap must eventually be
contained in some K, because there can be only finitely many original gaps that are as large
or larger than the given one. We do not yet know that the KN are disjoint from each other;
this .will follow when we prove (3.1), though.

Let us now examine our construction more closely. Define 1(1) and r(I) to be respectively
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the left and right endpoints of an interval I. For a given K,, let Go be the gap we started

with in its construction, which for n > 2 must be the largest original gap it contains (or at

least tied for the largest.) For simplicity we assume here that Go is a gap of S1. Consider

the collection E of all Jn with IJI - IGol, r(Jn) > r(G,), and d(Go, J) < tlJ,,I. We claim
that the members of E (if any) are increasing in size from left to right. If J, J" E E with

Jm to the left of J,, then since r(J.) < r(J,,), it follows that d(J, Jn) < d(Go, .J) < tlJi..

Since t < r2 and d(J,,,, J) > r2 min(IJm[, IJI), it must then be the case that IJI > IJ l
Thus if E is not empty, it must have a rightmost member, which we call G, (notice that

G, is also the largest member of E.) If E is empty, we let G1 be empty, but in order to

facilitate future formalism, we define IG, I = 0 and r(GI) = r(Go). One must keep in mind

this degenerate case in verifying the assertions and formulas that follow.

We likewise define G2 to be tht rightmost gap of $ which is at most as large as Go and

lies within t times its length of G1 ; again if no such gap exists with r(G2) > r(GI) we say

that IG21 = 0 and r(G2) = r(GI). Next, to define G3 we consider only gaps which are at

most as large as G 1, for G 4 we look only at gaps no larger than G2, and so forth. Define

G-1, G- 2, ... similarly to be the leftmost (and largest) gaps added to K, at each stage of

the process of extending If,, leftward. Then we may think of the open interval K, as being

defined by

l(I,,) = lim l(Gm),

r(K,,) = lim r(Gm).

Each limit exists becausc; it is the limit of a bounded monotonic seq.aence.

In the above construction, the even-numbered G. are gaps of S, and the odd-numbered

ones are gaps of S2, but if Go had been a gap of S2 it would be the other way around.

In any case. Go is the largest even-numbered G and either G1 or G-1 is the largest odd-

numbered one. Also, the even-numbered G,, decrease monotonically in size as one moves
either rightward or leftward from the largest, and the same statement holds for the odd-

numbered Gm. We call a given Gm either a "1-gap" or "2-gap" of K,, according to whether

it is a gap of S1 or S2. Notice that not all original gaps contained in K,, are 1-gaps or
2-gaps, only those that have been given a label G in the construction of K,,. When we refer

henceforth to left-to-right ordering or adjacency among the 1-gaps and 2-gaps of a given K,,,

it is with respect to the ordering ... , G-2,G-1,Go, G1, G2, . (Thus, for instance, 1-gaps

can only be adjacent to 2-gaps and vice-versa.)

The following lemma will be used in bounding both the numerator and denominator of

the left side of (3.1). It establishes for all m > 0 a bound on how far K,, can extend to the

right of Gm in terms of how far Gm+, extends past G, and similarly for m < 0 on the left.
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I Lemma 4 Assume t < (-r, 2 - 1)/(TI + T-2 + 2). Let

0 1 (T T - t)(r 2 +1)I = (Ti -t)(T 2 - t) - (1 + t)2

and ( - t)( + 1)

= t)( _ t) _ (I + t)2
Let C be a 1-gap of K, which is at least as large as all 1-gaps of K" to its right. Let H be

the next 2-gap of K,. to the right of G. Then

* l r(K,.) - r(G) _ u2(r(H) - r(G)).

The same statement with "1" and "2" interchanged holds, as do the corresponding results

for left endpoints.

Proof Let I be the next 1-gap of K,. to the right of G. Then since III <- IGI,

I lIII < d(G. I) <_ d(H, I) + r(H) - r(G) _ till + r(H) - r(G).

which, because t < T1 , implies that III is bounded above by (r(H) -r(G))/(Ti - t). Hence

1 r(I) - r(H) 11 + d(H,I) _< (1 + t) 111 (t1 + t (r(H) - r(G)). (3.2)

Likewise the next rightward 2-gap of g, extends at most ((1 + t)/(r 2 - t))(r(I) - r(H))

beyond I, and by induction

I r(K,.) - r(G) = r(H) - r(G) + r(I) - r(H) + ...

< 1+ -- +_±t_ +-. ..) (r(H) - r(G))

I= u 2(r(H) - r(G)).

The geometric series converges, and the denominator of 02 is positive, because of our as-

sumption that t < (7rr 2 - 1)/(r1 + r2 + 2). I
The next lemma builds on Lemma 4 to obtain a positive lower bound on the distance

I between a given Km and K,,, provided we can find a 1-gap of Km and a 2-gap of K which

are respectively larger than all 1-gaps and 2-gaps between them. The proof is difficult and
will be handled later.

Lemma 5 There exists a function 0,(r 1 , 72) that is positive whenever (r1 , 72) is in region C

and t is sufficiently small, and for which the following statement holds. For m 0 n, let G be

a 1-gap of K, and H be a 2-gap of K,,. If all 1-gaps of K,, or K, with at least one endpoint

between the closures of G and H are bounded and at most as large as G, and all similarly

situated 2-gaps are bounded and at most as large as H, then

d(K,,Km) v/ t,(r, 72)d(G,H).
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Figure 8: Cses in the proof of (3.1)

Recall that to construct Ko and K1 , we chose I. and J. to satisfy the above hypotheses.
Thus we now know that K0 and I1 are disjoint and separated by a positive dista,,ce (which
is at least Ot(ri, -. ) times the distance between I. and J..)

Now suppose 0 < n < m and m > 2; we will prove (3.1) by finding a G and H which
satisfy the hypotheses of Lemma 5. Assume without loss of generality that K, lies to the
left of K,,. Let I be the largest original gap in KIn; say I is a 1-gap. If all 1-gaps of K are
smaller than I (Case 1 of Figure 8), let H be the largest original gap in K,,. Since m > n,
K,, was constructed before K,, so H must be at least as large as I, and thus is a 2-gap.
Let G = I; then G and H satisfy the hypotheses of Lemma 5. Also, d(G, H) > tIG1, since
otherwise G would have been included in the construction of K,.. If on the other hand there
are 1-gaps of K,, which are at least as large as I (Cases 2 and 3 of Figure 8), let J be the
closest such gap to I. Consider all 2-gaps of Km or K,, to the left of J; let K be the largest
such 2-gap (any one will do in case of a tie.) Notice that K must be adjacent to I or J. If K
is in K,, (Case 2), let G = I and H = K; then G and H satisfy the hypotheses of Lemma 5,
and d(G, H) > tIGJ because G was not included in K.. Otherwise (Case 3), let G = K and
H = J, and reverse the indices "1" and "2". Once again, G and H satisfy the hypotheses
of Lemma 5 and d(G, H) > tIGI. Notice also that in all cases, G is the largest 1-gap of K",
and H is at least as large as all 2-gaps of Kn.

We now estimate how large K, can be. Let I and J be the 2-gaps of K, adjacent to G
on its left and right, respectively. Since I is at most as large as H,

T211 <_ d(I, H) :_ d(I, G) + IGI + d(G, H) _ tIlI + IGI + d(G, H),

14



or in other words 1
III < - (IGI + d(G, H)). (3.3)

-- t

The same bound holds also for J, so by Lemma 4,

SIK.I = IGI + l(G) - (1g.) + r(Km) - r(G)

< IGI + o2(l(G) - l(I)) + a2(r(J) - r(G))

IGI + a2(1 + t)(1I1 + IJI)
1+t

<_IGI+ 2U(-r t)(IGI + d(G, 1I))

(+ 2 0 2 1+t (1 +1+d(G,H)
t (,r2 - t ) t

(r,_t)(r2 - t) + (1 + t) 2(2r1 + 1)d(GH)3
t((rl - t)(r 2 - t) - (1 + t) 2 )

If on the other hand G is a 2-gap and H is a 1-gap, we 'btain the same bound as (3.4),

but with the indices "l" and "2" interchanged. Then in either case,

I Km I_< (rI - t)(r 2 - t) + (1 + t) 2(2 max(ri, r2) + 1) d(G, H).

t((T1 - t)( 2 - t) -: + t)2 )

Finally, by Lemma 5,

d(Km,K) t((r - t)(r 2 - t) (1 + t) 2)t(r,r) 2)
IKI ( - t)(r 2 - t) + (1 + t) 2(2max(rl,r2) + 1) (3.5)

The right side of (3.5) is positive as long as t is between 0 and (7r12 - 1)/(r + r2 + 2), and

3)t(r, 72) > 0, and goes to zero when t approaches any of these borderline values. Therefore

the right side of (3.5) attains a maximum value, call it ;(71, 72), at some allowable value of

t, say t.. We thus carry out the construction of S with t = t.; then (3.1) holds, and the

proof is complete. I
Let (71,r2) = t. (r1,r 2 ); then

t.((r1 - t.)( 2 - t.) - (I + t.)2)0(rl, r2)(r - t.)('r2 - t.) + (1 + t.) 2(2 max(ri, r) + 1)

Remark We will see in the proof of Lemma 5 that 0'(r1 ,r 2), and hence ;(-r,72), must be

very small when (7l,r2) is near the boundary of region C. flowever, if both T1 and r2 are

large and t is small compared with the two thicknesse5, it is not hard to check that O. t(rl,r2)

is close to one. Then if 71,72 > 1, one finds that t. is of order N/min(Tl, r), whence o(ri, r 2)

is of order V/min(ri, 72) also. Thus when the thicknesses of S, and S2 are large, the lower

bound we obtain on the thickness of S is reasonably large.
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Figure 9: The gaps G'i and Hi

We now prove our main technical lemma.

Proof of Lemma 5 Let G be a 1-gap of Km and H be a 2-gap of I, satisfying the

hypothesis. We assume without loss of generality that rl _ r2; then by (1.1) the condition

(r1,r 2 ) E C implies

1 2 2 + 2 + 1 (3.6)

and

72 > g(r 1 ) = (2ri + 1)2 (3.7)

If d(G, H) = 0, the inequality to be proven is trivial. Otherwise, let us normalize d(G, H) to

be one, and assume G lies to the left of H. Let Go = G and H0 = H. Let G1 be the 1-gap of

K, adjacent to Ho on its left, and let H1 be the 2-gap of Km adjacent t, Go on its right. Let

G2 be the adjacent 1-gap of Km rightward from H1, and likewise define H2, G 3, 1I3 , .. (see

Figure 9.) For i > 0 let

{ I(Hi) - l(Gi+1) i even
Xi r(Gi+) - r(Hi) i odd

and
={ r(H '+) - r(G,) i even

il(Gi) - l(Hi+1 ) i odd.

Let Ri = d(Gi, H,); then R0 = 1 and R,+1 = max(R, - xi - yi, 0) for i > 0. Let R, be the

limit as i goes to infinity of Ri. Then d(K,,,K,) = R,, so we wish to show that there is a

positive lower bound on R, which depends only on r1, r72, and t.

In the same way as we obtained (3.2) it follows that for all i,

Xi+i < 1 + t (3.8)- l -t
yi

and a dy i+ 1 < 1 + It i (3 .9 )

T2- t

Furthermore, by Lemma 4 we have that

Yi + Xi+1 + i+2+" O2Yi
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and
Xi + Yi+i + Xi+2 +... crlX.

Thus, for each i,

3R. xi R -,yi - x+ 1 -Yi+i - > - Ri - oixi- 2yi. (3.10)

We will show that for some i, the right side of (3.10) is positive.3 Next let us obtain upper bounds on xo and Yo. We know that

Xo = l(Ho) - l(Gi) < jGII + d(G 1, Ho) :_ (1 + t)1G11, (3.11)

and by hypothesis 1G11 _ IGoI, so

xo = I(Ho) - r(Go) - (l(Ga) - r(Go))= 1 - d(Go, G) <_ 1 - ril GI. (3.12)

Eliminating 1G1I from these inequalities yields

Xo < 1 + t (3.13)

Similarly,

Yo : 1 + t (3.14)

We can obtain similar bounds on x; and y, for i > 1, but the bounds are complicated by the

fact that we do not know in general that 1G1+j1 _< GI (or 114+ 1  _ IH I). The analogues of

(3.11) and (3.12) are thus
x,. < (1 + t)lG,+l I

and
xi _ Ri - ri min(IGil, IGj+j1). (3.15)

If IjG+ 1I < eGvi, then as in (3.13) it follows that

3i < 1 + t Ri. (3.16)
'r, + 1 + t

If IG,+jI > lGjj, then by (3.15),

x ?-TIGl R l y 7 i.(3.17)xi < Ri - -rjlGd ij - (3.17)

If (3.16) fails, then using (3.17) together with the negation of (3.16), one finds that x,- 1 is

bounded above by the right side of (3.16). Thus regardless of the relative lengths of G, and
Gi+i",

min(xi, xi-1) _< 1 + t Ri. (3.18)
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for i > 1. Likewise, regardless of the relative lengths of Hi and Hi+,, we have for all i > 1

that

min(yi, yi-1.) < 1 + t R.(3.19)
72 + 1+t

Let ai = xi/Ri and bi = yi/Ri provided Ri > 0; then

Ri1= inax(1 - ai - bi, 0)Ri.

Thus ai+l and bi+l are defined as long as 1 - ai- bi > 0. For j = 1, 2 let

Ai 1+= (3.20)

1~ + 1t'

Yj-7j- t

The conditions (3.13), (3.14), (3.18), and (3.19) can then be written

a0 < A,,

bo :5 A2,

Alsomi codtin (3.8 and(39)beom

1~+ -1 - ab -

and

1 1 - oa2b - 0,(323

Weso observeon that8) and 3. aedfie9tlas)sln a ,<A adb 2 because

thn

T1T - (1 t)

1 r -aa + 1)(2 + 0, +3.1)

1 a(-biA -A 2 -)(+)

r+ t +1)( 2 + t+1)

> 0



(since t < (rlr 2 - 1)/(r1 + -r2 + 2).) Also, as long as a, < A1, by (3.22) we have

Yz2AI
1-A, - bi*

Let
L2 A1Sh(b) = 1- - b

The equation h(b) = b has two solutions,

1 - A, (1- _A -4P2A1

2

and if the roots are real, then h(b) < b for b- < b < b+ (this can be verified by checking the
value b = (1 - A1)/2.) We claim that for t sufficiently small, b. are real, with

b+ > A2  (3.24)

and
1- auAl - a2b- > 0. (3,25)

Let us delay the verification of this claim until the end of the proof. Choose b. > b... with
1 - a1 ,1 - o2b. > 0. Now b0 _< A2 < b+, and as long as ai _< . continues to hold,

bi+, :_ h(bi) < bi for bi E (b., b+). Then eventually bi _< b., and furthermore since b - h(b)
must have a positive minimum value on [b., A2] (if b. > A2 then bo < b. already) there is a
maximum number N (depending only on rl, r2, and t) of iterations it can take before bi :5 b..

We therefore have shown that if ai < A1 for i < N, then bi < b. for some i < N, and hence

1 - alai - a 2bi > !-iA - a2b. > 0. (3.26)

If on the other hand a,+, > A1 for some i < V, then let i be the smallest index for which

this occurs. We claim that then (3.23) holds for i. By the results of the previous paragraph.

bi < bi-, < ... < bo _< A2. Also, by (3.21), ai _< Al(1 - ai - bi), or in other words

ai :_ i-1T1 1-bi).

Then

1 - 1a - a 2bi >_1 - l 0.2 bi.

Now when t = 0,

C71 Al (71 + 1 )r2 T r(7 2 +10
I1+A, r-7 2 -1I (T + 2)('r1T2-l1)

rl(rlr 2 - 1) + 2r-r2 + 2r2
(,r1 + 2)(7-1r 2 - 1)

> 0,
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and thus for t sufficiently small it remains positive. Then since bi A A2,

-,la, - Tb I_ A Ix ( r A A
012 ba I 'bT T 1# i (.-, 1 + A,) A

a22 2)L7 l (3.27)

When t 0, by (3.6)

i- o 2A 2 = + ( 1+1)7 2
(r2 + 1)(ri 7 - 1)

71 122 - 2r 2 - 1
(r2 + )(r1 2 - 1)
> 2

2 + 3r 2 + 1 - 2r2 - 1

(r 2 .)(rT 2 -1)
T2

7yrT - 1

while alAl r2 r1(r2 + 1)_rr2

(A2)i- = + TA, - (r1 + 2)(rT, -r2 ) - 71 + 2 rr - 1

so .'.e right side of (3.27) is positive for t = 0. It therefore remains positive for t sufficient:

small.

To summarize, we have shown that if t is sufficiently small, then for some i < N, either

(3.26) or (3.27) holds. The right side of each of these equations is positive and depends

only on rl,'r2 , and t. Furthermore, ai < AI and by _< A2 for j _< i, so by (3.20), Rj+1 >

(1 - Al - A2)tj, and hence Ri _ (1 - \ 1 - A2) . Then by (3.10),

Roo > Ri(1 - olai - a bi) >_ (1 - A1 - A2)(1 - a2bi),

where 1 -ala, - a2b, is in turn bounded below by the lesser of the right sides of (3.26) and

(3.27). We have therefore shown for t sufficiently small how to obtain a positive lower bound

on RO, which depends only on rl, r2 , and t; we let 4t(r., r2) be this lower bound.

It remains for us to verify (3.24) and (3.25). We again show they are true for t = 0,

whence they hold for t sufficiently small by continuity. When t = 0,

, 1 /(T, 1 + 1) ± Iri/(r + 1)2 - 4/((T + 1)-r2 )
b± 2

'-,2 ± r1  
2  

2 
2 - 4(r, + )7-2 (3.28)

2(rl + 1)r2

Now by (3.6),

712722 - 4(rl + 1)r2 = 71(7722 - 4r2 ) - 4r2
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> l(22- r2 -+I) - 472
(r22 +37-2 + 1)(r22 - 2 + 1) - 4r23

= (722 - 72 - 1)2 (3.29)

3 722

Thus bd. are real md distinct (and the same must then hold for t sufficiently small.) Next
by (3.28),

2 + 722 - 4T25(1/'r + 1/7i2)
22(I + 1/ri)

from which we see that b+ is increasing as a function of ri. Thus b+ is greater than the value
it would take on if (3.6) were an equality, which owing to (3.29) means

(7.22 + 372 + 1)/72 + 22 2 - r2 11/r2

2+ 22(2732 + 3 2 + 1)/r2U> 722+32+1-(721 - )

2(,2 + 1)(272 + 1)
1

,r2 + I
- A2.0

Hence (3.24) holds for t = 0, and consequently for t sufficiently small.
When t = 0, (3.25) can be written

b- < 01 2,r2 - 2r - 1 (3.30)Or (71 + 1)2,r2

The right side of (3.30) is an increasing function of 72, and since

b. V1 - 4714( + 1)/r2
2(71 + 1)

b- is a decreasing function of 2. Then by (3.7),

b7-1 ~ - Vri2 - 47i,3 (Til + 1)/(2r, + 1)2
b 2(r, + 1)

Ti((2ri + 1) - V(27ri + 1)2 - 4(r,2 + 7r)

2(71 + 1)(2r, + 1)

(1r + 1)(2( + i) +

m whiteI w2h72 - 2r - 1 (2 " + 1)2//1 -(2r1 + 1)

(-r, + 1)27- (T-1 + 1)2(2--1 + 1)2/713
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+ 1 -

(ri + 1)2(2,r + 1)

7T 
2

(+ )(2r, + 1)

Thus (3.25) holds for t = 0, and for t sufficiently small. The proof of Lemma 5 is now
complete. I

4 Intersecting Three or More Cantor Sets

In proving Theorem 1, we chose a subset S of S1 nS 2 in order to guarantee positive thickness.
In this section we demonstrate that positive thickness sets are in some sense generic in S, nS 2.
We also explain how Theorem 1 is useful in finding conditions under which three or more
Cantor sets must have a nonempty intersection.

The set S we constructed in Section 3 need not be dense in S fn S2 nor even in the
non-isolated points of S n S2. However, there are subsets of S, n S 2 with thickness at least
v('i, r2) near i.ay .ccumulation point. To see this, let {q,} be a sequence of distinct points
in S, n S2 which converge to a point q. It is not hard to s: aw that within any neighborhood
N of q there are compact subsets T, C S, and T2 C 52, each of which contains all but finitely
many q,, with r(T) 2! r(SI) and r(T 2) ? -r(S2). Notice that any two compact sets which
intersect in three or moe points must be interleaved. Thus T, and T2 are interleaved, and
by Theorem 1 their intersection contains a set with thickness at least w(ri, -r2). We conclude
that arbitrarily near any non-isolated point of S, n S2 there are subsets of Si n S2 which

have thickness at least p(r1 , 72).

In addition to showing that there are many subsets of S, n S2 with positive thickness,
it is possible to obtain a lower bound on the diameter of the positive thickness subset S of

Si n S2. If the two sets Si and S2 are interlea.,d in such a way that neither is contained
in the convex hull of the other, then by the discussion following the statement of Lemma 5,
the diameter of S is at least O(ri, 7r2) times the length of overlap between the convex hulls of
S and S2. Since the thickness of S is at least V(,rl, r2), we immediately have the following
result.

Corollary 6 Let S, and S2 be two interleaved compact sets whose thicknesses (r1,r2) lie in
region C and for which the intersection Q of their convex hulls contains neither S, nor S2.
If S3 is a compact set with largest bounded gap G such that

(i) the hull of S3 contains Q,

(ii) IGI < O(ri, 72)IQI
(iii) T(S3)p(7 1,72) > 1
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I
then s1f n 2 fn s3 is nonempty.

We note that if instead of condition (iii) we required the pair r(S3) and V(, rj2) to lie

in C, then S, n '2 n Ss would contain a set of thickness at least v(r(S3),w(rl, r2)). Thus

one can inductively find thickness conditions guaranteeing the nonempty intersection of any

finite (or even countably infinite) number of compact sets, although the analogue of the

interleaving condition gets more complicated.3 If ('ri, r2) is sufficiently far from the boundary of region C, then as discussed in the remark
preceding the proof of Lemma 5 it is not hard to obtain explicit lower bounds on w(ri, 1 r 2)3 and V)(r(, r2). In particular, for rT and r2 large we found that V(r ,r2) is at least of order

/min(rw, r), and 01(ri, r2) is approximately one.
We thank the referee for a thorough reading of our paper and many helpful comments.
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ABSTRACT. We examine bifurcation phenomena for maps that are

piecewise smooth and depend continuously on a parameter p. In the

simplest case there is a surface F in phase space along which the

map has no derivative (or has two one-sided derivatives). r is the

border of two regions in which the map is smooth. As the parameter

p is varied, a fixed point E may collide with the border F, and

we may assume that this collision occurs at p = 0. A variety of

bifurcations occur frequently in such situations, but never or

almost never occur in smooth systems. In particular E may cross

the border and so will exists for p < 0 and for p > 0 but may be a

saddle in one case, say p < 0, and may be a repellor for p , Q,

For p < 0 there can be a stable period two orbit which shrinks to

the point E0 as p - 0, and for p > 0 there may be a stable period

3 orbit which similarly shrinks to E0 as M -+ 0. Hence one observes

the following stable periodic orbits: a stable period 2 orbit

collapses to a point and is reborn as a stable period 3 orbit. '.e

also see analogously "stable period 2 to stable period p orhtr

bifurcations", with p = 5, 11, 52, or period 2 to quasi-perlo,:u

or even to a chaotic attractor. We believe this phenomenon ili: bp

seen in many applications.

1. INTRODUCTION

Certain bifurcation phenomena have been reported repeatedly in

numerous studies of low dimensional dynamical systems, that depend

on one parameter. The rather familiar bifurcation phenomena

describing the evolution of attractors as a parameter is varied

include the saddle node bifurcation, the period doubling (or

halving) bifurcation, and the Hopf bifurcation. In the literature

1



dealing with bifurcation theory, it is frequently assumed that the

map corresponding to the dynamical System is differentiable; see

I for example [GH], [K], [RI, or (S]. To remind the reader so that

we may draw contrasts, the well known bifurcation diagram of the

quadratic map Q (x)= p- x is given in Figure 1 (1 < p < 1.5).

All the computer assisted pictures were made by using the DYNAMICS

program [Y].

FIGURE 1

We say a map is smooth if the map has a continuous derivative.

A region is a closed, connected subset in phase space. We examine

I continuous maps which are piecewise smooth. We restrict attention

to those which are smooth on two regions of the plane with the

border between these regions being a smooth curve. From now on we

assume that there is a smooth curve r which separates the plane

into two regions denoted by RA and R . We say, a map F from th-

phase space R to itself is piecewise-smooth if (1) F is

continuous, and (2) F is smooth on both the regions R\ and R..

Note that on the border F between the regions, the mappings musr

be equal since F is assumed to be continuous. A special case tnat

we shall refer to frequently is the following prototype example, t

piecewise linear map into which other generic piecewise linear

maps in the plane can be transformed by changes in coordinates.

Let u and w be vectors in the plane. Let x and y be the ph~tse

space coordinates and p is a scalar parameter. Let P be the map

defined by

P (x,y) xu + JxJw + (y + p)(l,O)

3 and we investigate trajectories (Xn+lYn+I : P (x nYn) ' The

regions R and R are the left and right half plane separated by

A B
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Figure 1.

Bifurcation diagram of the quadratic map Q (x) - x. The

parameter p (plotted horizontally) varies from 1 to 1.5, and x is

plotted vertically, -1 x . 2.



F, the Y-axis.

To illustrate the "period two to period three" border-collision

bifurcation phenomenon, consider tle one-parameter family of maps

f P (-m < P < ) from the plane to itself, defined byI (-l.4x + y, -O.1x) + M(1,0) if x & 0
f (x,y) =

(-3x + y, -4x) + p(1,0) if x z 0

Notice that the map is smooth in each of the half planes x - 0 and

x ; 0, and the Y-axis is the border which is a smooth curve. Note

that to write f in the form of P, let u = (-2.2,-2.05), and w

(-0.8,-1.951. The bifurcation diagram exhibiting the 'period two

to period three" bifurcation, is presented in Figure 2 (-0.1 < P <

0.2). All the bifurcation diagrams in this paper show a projection

of the attractor, projecting (x,y) onto the X-axis, which is

II plotted vertically; the horizontal coordinate is p.

FIGURE 2

The purpose of this paper is to study the occirrence of suc.h a

I new bifurcation phenomenon for continuous, piecewise smooth maps.

3 These systems include, for example, two-dimensional continuous,

piecewise-linear maps. In (HNS] the dynamics of a simple economic

model was studied, and a "period three to period two" bifurcation

was observed numerically, and was established rigorously in (HNJ

for a degenerate piecewise-linear situation. The "border-collision

bifurcation" phenomena is a much richer class of bifurcation

phenomena than just a "period two to period three" bifurcation and

occur for generic piecewise smooth maps. We present phenomena that

occurs when the nature of an unstable fixed point of a piecewise

smooth map is changed while the fixed point collides with the

1 3



Figure 2.
Bifurcation diagram exhibiting the "period two to period three"

bifurcation of the map

f P(x,y) = (-1.4x + y + p, -O.Ix) if x :5 0, and

= (-3x + y + p, -4x) if x > 0.
The parameter p (plotted horizontally) varies from -0.1 to 0.2,
and the coordinate x is plotted vertically, -1 4 x -, 1.



3 border between two regions in which the map is smooth. Since the

fixed point is unstable before and after collision, it is not

shown in the bifurcation diagram in Figure 2. While we consider

5 maps in the plane, higher dimensional analogues exist. We know of

no phenomena that can occur only in higher dimensional cases.

5 There is also no difficulty in changing the notation to that there

are more than 2 regions on which the map is smooth. We could also

allow f to depend on p, but coordinates could be chosen so that it

3 remains fixed, so our case in practice includes moving boundaries.

With moving boundaries the map would be piecewise smooth in p.

We say, a fixed point E is a border crossing fixed)Point if it

crosses the border r between two regions in which the map is smooth.

I We will assume that the crossing occurs at p = 0. The fixed point

I E is called a flip saddle if tne eigenvalues X and P of the

Jacobian matrix DF (E) if X < -1 < u < 1. Assume that there

3 exists a one-parameter family of piecewise smooth maps and assume

that there is a border crossing fixed point (or periodic point)

I , we emphasize the case when E crosses the border r it changesEp

3 from being a flip saddle to a repellor with complex eigenvalues.

The above example has this behavior.

3 In Section 2, we discuss why the border-collision bifurcation

phenomenon occurs when the nature of an unstable equilibrium

I changes when it crosses the border of two regions. To be somewhat

I more specific, assume that a border crossing fixed point (or

periodic point) E of a one-parameter family of piecewise smooth

3 maps changes from being a flip saddle to a repellor with complex

eigenvalues when it crosses the border r. Then at p = 0, a border-

3 collision-bifurcation occurs at t 'is fixed point E on the border.
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In Section 3, we mainly deal with two piecewise smooth systems

of the plane, one piecewise linear and one piecewise nonlinear. The

first system is the map P (derived in Section 2) that correspon-ls

with a generic piecewise smooth nonlinear map, and the other

system is based on the Henon map. For the piecewise linear map

P we present several examples including "period 2 to period p" (p

= 5, 11, and 52), "period 2 to quasi-periodic" and "period 2 to

chaotic" bifurcation. We also present an example of a border-

collision bifurcation for the map P in which no attractors but

chaotic saddles are involved. The system of the plane involving

the Henon map at the left side and a linear map at the right side

of the border, different border-collision bifurcations are

observed. We present a variety of examples. Although we we do not

have an exhaustive list of types of border-collision bifurcation

of one-parameter families of maps under consideration, we point

out that several other types of bifurcation occur. We believe this

phenomenon will be seen in many applications.

In Section 4 we prove that for certain one-parameter fami.l.-s

of piecewise smooth maps exhibit a "period 2 to period 3" borter-

collision bifurcation. This phenomenon persists under small

perturbations of the involved maps.

In Section 5, we discuss the state of the art, and pose several

questions which remain unresolved. This paper does not give a

complete theory, but can be considered as initiating a bifurcation

theory of piecewise smooth maps.
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2 THE BORDER-COLLISION BIFURCATION PHENOMENON

In the bifurcation theory for maps, attention is focused on

differentiable maps when one or more eigenvalues of a fixed point

(or periodic point) cross the unit circle. When this occurs, the

nature of the fixed point changes. For example, a fixed point

3I attractor becomes a saddle (possibly a flip saddle) or a repellor.

For border crossing fixed points, the Jacobian matrix of the fixed

point generally changes discontinuously, and the fixed point can

for example change from being a repellor to a saddle as p crosses

zero.

Let F(.,P) F be a one-parameter family of piecewise smooth

maps from the phase space R2 to itself, depending smoothly on the

I parameter p, and where p varies in a certain interval on the real

line. Let E denote a fixed point of F defined on -c < p < c, for

some e > 0. For a general approach (which is given below) we need

3 the concept of the "orbit index" of a periodic orbit [MYI. The

orbit index is a number associated with a periodic orbit, arvi 'his

number is useful in understanding the patterns of bifurcations the

orbit undergoes. We say an orbit of period p is typical if its

Jacobian matrix exists (that is, the Jacobian matrix of the p-th

3 iterate of the map at a point of the orbit) and neither +1 nor -l

is an eigenvalue (of the Jacobian matrix). For typical orbits, the

I orbit index is -1, 0, or +1. The orbit index is a bifurcation

invariant in the sense that if one examines the periodic orbits

that collapse to the fixed point E as p -. 0, and adds the orbit

3 indexes of the periodic orbits that exist just before a

bifurcation, then that sum equals the corresponding sum just after

I that bifurcation. Suppose a typical periodic orbit PO of a map F

1 6



has (minimum) period p. The orbit index of that orbit depends on

the eigenvalues of the Jacobian matrix A of the map Fp at one of

the points in PO. Now we Oefine the orbit index I of PO. Let m

be the number of real eigenvalues of Ap smaller than -1, and let

n be the number of real eigenvalues of A greater than +1. Thep

orbit index IPO of PO is defined by

IPO = 0 if m is odd;

IPO = -1 if m is even and n is odd;

IPO = +1 if both m and n are even.

If the orbit index = -1, then the orbit is called a regular

saddle. The typical orbits with orbit index +1 in the plane are

repellors and attractors and fixed points with non-real

eigenvalues. The def'nition of orbit index is technical when a

p;.int of the orbit lies on the boundary and so does not have a

Jacobian matrix, and the definition is unnecessary since we

consider orbits for p # 0.

For a moment, assume that E is in the interior of the region

R (or the region RB), and write X and u for the eigenvalues of

DF (E). If neither of the two eigenvalues X and v is on the unit

circle, then the fixed point E is called a flip saddle (and has

index 0) if X < -1 < v < 1; E is a regular saddle (and has index

-1) if -1 < L < I < X; E is a repellor (and has index +1) if both J
lXi > I and juj > 1; and E is an attractor (and has index +1) if

IAI
both HXJ < 1 and Hol < 1. Note that E has orbit index +1 if the

eigenvalues are not real. Hence, a typical fixed point is a flip

saddle, a regular saddle, a repellor or an attractor. Similarly,

the nature of periodic points is defined.

Now we are able to provide a definition of the notion "border-
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collision bifurcation". Let the regions RA and RB, the map F and

the fixed point (periodic point) E be as above. Assume there

exists a number c > 0 such that (1) E0 iz cn the border of the two

regions RA and RB, (2) for -E < p < 0 the fixed point E is in the

region RA, and its index is IA , and (3) for 0 < p < e the fixed

point E is in the region RB, and its index is B- If A and IB

are different, then (as stated below) some bifurcation must occur
at E0, since the orbit index of E is changing from IA to IB 1

while the parameter p is increasing from -e to +c.

We say a periodic orbit PO is an isolated border crossing orbit

if (1) PO includes a point that is a border crossing fixed point

under some iterate of the map, and (2) the orbit PO is isolated in

phase space when p = 0, that is, in the plane there exist

neighborhood U of the orbit PO such that PO is the only periodic

orbit in U when p = 0. From the topological degree theory as

described in (MY] (see also [AYYI for the two dimensional case),

the following "Border-Collision Bifurcation" result follows after

some minor modifications.

BORDER-COLLISION BIFURCATION THEOREM. For each two-dimensional

piecewise smooth map and depending smoothly on a parameter p, if

the index of an isolated border crossing orbit changes as M

crosses 0, then at p = 0 a bifurcation occurs at this point, a

bifurcation involving at least one additional 'periodic orbit.

This result says that additional fixed points or periodic

points must bifurcate from E0 at g = 0. These bifurcating orbit6

need not to be stable. An example of the preservation of orbit

8



index occurs with a period doubling bifurcation. If for p < 0

there is an attracting fixed point (and no other entering orbits),

the total index is +1. Then for p > 0 we can have a flip saddle

(orbit index 0) and a period 2 attractor (orbit index +1). Hence,

the sum of the orbit indices before and after P = 0 is + 1. Note

that the two points of the period 2 orbit are collectively

assigned +1, not individually, since that orbit has index +I.

Since this bifurcation occurs while the fixed point (or periodic

point) collides with the border of the regions RA and RB1 we call

it a border-collision bifurcation. In other words, a border-

collision bifurcation is a bifurcation at a fixed point (or

periodic point) on the border of two regions when the orbit index

of the fixed point (or periodic point) Lefore the collision with

the border is different from the orbit index of the fixed point

after the collision.

We derive the map P that was introduced in Section 1, froin

nonlinear piecewise smooth maps. We assume coordinates are chosen

so that the curve r is a straight line. Let z denote any vector in

the plane, and write F (z) = F(z;u), and write z0 = E04 From the

assumption F is piecewise smooth, we have that on each of the

regions RA and RB

F(z;p) = F(zo;0) + DZF(z0 ,O)(z-z0 ) + D F(z0,O)p + H.O.T.

where H.O.T. stands for Higher Order Terms. Hence, there exist

matrices MA and MB and vectors vA and v B such that if z is in the

region RA then

F(z;p) = F(z0 ;0) + MA(z-z 0 ) + vA M + H.O.T.

and if z is in the region RB then



F(z;i) = F(z0 ;0) + MB(Z-z 0 ) + VBP + H.O.T.

Let eI be the unit vector tangent to F at z0. The assumption F

is piecewise smooth and depends smoothly on M implies MAeI = MBe 1

= e2 and vA = VB = v. Choose coordinates so that z0 = 0, so

F(z0 ,0) = 0. Assume that e2 is independent of el, so we may use el

and e2 as basis vectors. We let e1 and e2 be the basis vectors of

the plane. We assume that e2 is independent of v and that v is not

parallel with e I-e2 . We claim that by change of variables and by

rescaling M we may assume that v = e . Write v = (V xVy). We now

assume that v * 0. We can make vy = 0 after a change of

variables, andv 1 =Iby rescaling of p. If v is not 0 then *evaIls an x y.

can change variables, setting y = y - VyM (where x is unchanged),

and the new vector v for the (x,y) system will have its second

coordinate 0. By rescaling p, that is, by introducing p pv x  we

can change the system so that the new vector v is (1,0), when o is

the parameter. Therefore, 
we may write MA .

, [c

and v = (1,0). Since all these assumptions are generic, we sa" tnh

prototype piecewise linear form of F for p small is defined ov

F(z;p) [ b 0 + p(1,0) if z is in the region R As

F(z;p) =+ p(1,0) if z is in the region RB

U To write the prototype piecewise linear form of F in the form
II.

of the map P , let u 2 b+d and w a c b-d

We observe the following fact. Assume that the fixed point E s

a flip saddle (orbit index 0) in region RA and a repellor with

complex eigenvalues (orbit index +1) in region RB. If there ex.ists

10



a stable periodic orbit with period 2 in RA that converges to E0

when u approaches 0, then the total degree in RA is +1. Hence, if

there exists a stable periodic orbit in R B that converges tco E0

when P goes to 0, then there must exist a regular saddle periodic

orbit of the same period (orbit index -1) in RB that converges to

E0 when p goes to 0, since the total orbit index is a bifurcation

invariant. Consequently, for the family of maps f in the Section

1 exhibiting a "period two to period three" bifurcation in figure

2, there must also exist a regular saddle periodic orbit with

period 3.

PERIOD TWO TO PERIOD THREE BORDER-COLLISION BIFURCATION THEOREM.

Let F be a one-parameter family of liecewise smooth ma-i which

has a prototype piecewise linear form at M = 0, and assume that

(1) a < -1, c < -1, d < -1; (2) c2  + 4d < 0; and (3) 0 < a(ac + d) <

1. Then, there exists c > 0 such that if IbI < e, then the family

F has a "period two to period three" border-collision bifurca~ton

at (0,0).

We point out that the border-collision bifurcations persist

under small perturbations. The proof follows of the Theorem from

the result obtained in Section 4. The geometrical proof given in

Section 4, might give insight why other bifurcations (for example,

period 5 to period 2 bifurcation) may occur in piecewise smooth

systems. Presumably, the method of proof only works if one of the

two maps involved has a small Jacobian. Hence, when the piecewise

smooth map consists of maps that all have Jacobian bounded (far)

away from zero, new techniques have to be developed to obtain

11



I rigorous border-collision bifurcation results.

I 3. A VARIETY OF BORDER-COLLISION BIFURCATIONS.

In this Section we present a variety of numerical examples

exhibiting a border-collision bifurcation. The first series of

examples is from the piecewise linear map and the second

series is based on the H~non map. We will present examples showing

I that in a border-collision bifurcation not only attracting

periodic orbits are involved, but also chaotic saddles may play a

role. Therefore, in order to describe the qualitatively different

border-collision bifurcations in a consistent manner, we refer to

the invariant sets that are involved in the border-collision

I bifurcation. A chaotic saddle is a compact, invariant set that is

not an attractor which contains a chaotic trajectory. If an

attractor A of a map F is an attracting periodic orbit with period

p, then we call A a period D attractor, and we say instead of

"period two to period three" bifurcation a bifurcation from a

I period 2 attractor to a period 3 attractor.

* The bifurcation diagrams below show the long term behavior of

the coordinate x for p between -0.1 and 0.2. The diagrams have

been constructed as follows. For the minimum value -0.1 of p, and

initial value (0,0), calculate the first 200 points (transient

I time 200) of the orbit and plot the next 1000 points of the orbit.

I Increase M slightly, say by 0.001, take for the initial value the

last point which was plotted, calculate 200 points of this orbit

and plot the next 1000 points. Increase p again, and continue

increasing until p achieves the maximum value 0.2. Hence, once the

I orbit is close to an attractor, as the parameter is increased,

I12



this attractor is "followed" as long as it exists. In the

diagrams, the x-coordinate is plotted vertically, and the

parameter p is plotted horizontally.

Define the map GL from the plane to itself to be the prototype

piecewise linear form of F , that is,

GL (x,y) = (ax + y, bx) + p(1,0) if x S 0

GL (x,y) = (cx + y, dx) + p(1,0) if x 2 0

Rezall that the map GLP is equivalent to the map P , since to
a+c b+d

write the map GL in the form of the map P , let u = I- , --
P 

T-d2

and w a-c Ib-d-- . We present a few numerical examples for this

map GL exhibiting a border-collision bifurcation. In all these

examples, the fixed point is a flip saddle for p < 0 and a

repellor with complex eigenvalues for p > 0.

EXAMPLE 1. The presumably simplest border-collision bifurcation

is from a period 2 attractor to a period 3 attractor presented in

Figure 1. We present parameter values for which the map GL shows

a bifurcation from a period 2 attractor to a period p attractor

for a variety of period p.

For a = -1.25, b = -.035, c = -2, d = -1.75, the bifurcation

diagram in Figure 3a exhibits a bifurcation from a period 2

attra:tor to a period 5 attractor.

For a = -1.25, b = -0.0435, c = -2, d = -2.175, the bifurcation

diagram in Figure 3b exhibits a bifurcation from a period 2

attractor to a period 11 attractor.

For a = -1.25, b = -0.03943, c =-2, d = -1.9715, the

bifurcation diagram in Figure 3c exhibits a bifurcation from a

period 2 attractor to a period 52 attractor.

13
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Figur"e 3a.

II Bifurcation diagram of
GL Ij(x,y) =(-1.25x + y + Mj, -0.035x) if x 0, and

Ii I  = (-2x + y + Ml, -1.75x) if x a 0

exhibits at p. = 0 a border-collision bifurcation from a period 2
attractor to a period 5 attractor. The parameter M (plotted

Ill horizontally) varies from -0.1 to 0.2, and the coordinate x isploted vertcly -0. O5x_03

'I• • • • • • • • •w• • m••m
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Figure 3b.

Bifurcation diagram of
GL 11(x,y) =(-1.25x + y + p1, -0.0435x) if x .5 0, and

=(-2x + y + 11, -2.175x) if x a 0
exhibits at p0  0 a border-collision bifurcat'ion from a period 2
attractor to a period 11 attractor. The parameter p (plotted
horizontally) varies from -0.1 to 0.2, and the coordinate x is
plotted vertically, -0.3 _ x ; 0.3.



Figure 3c.

GLBifurcation diagram of
,y) (~.2~+ y + It -0,03943x) if x ,and

(-x+ y + M, -1-9715x) if a 0
eXhibits at p 0 =0 a border..lli.attactr t aPerod 2 atrcor n1 bifurcation from a Period
a tr a to t o y a pr i s fo 5 2 a t c o T h e P a r a m e t e r g ( P l o t t e dhPl o td verti a ries fr _ 0.1 to 0. 2) and the coordinate - sP l t e d v r i c l y -0 .3 'S x 

Is.30.3



For other choices for a, b, c, and d we have found bifurcations

from a period 2 attractor to a period p attractor, where p = 6, 7,

8, 9, 10, 11, 13, 19, 21, 23, 29, 31, 37, 41, etc.

EXAMPLE 2. The simplest border-collision bifurcation in which

chaotic attractors are involved is presumably the bifurcation from

a period 2 attractor to a (1-piece) chaotic attractor. Frequently,

the border-collision bifurcation from a period 2 attractor to a

p-piece chaotic attractor is observed.

For a = -1.25, b = -0.042, c = -2, and d = -2.1, the

bifurcation diagram in Figure 4a exhibits a bifurcation from a

period 2 attractor to a 1-piece chaotic attractor.

For a = -1.36, b = -0.12, c = -2, and d = -2, the kifurcation

diagram in Figure 4b seems to exhibit a bifurcation from a period

2 attractor to a 12-piece chaotic attractor, but using the phase

space it turns out that the bifurcation is from a period 2

attractor to a 18-piece chaotic attractor.

We have observed many other values of p, the map GL shows a

bifurcation from period 2 attractor to p-piece chaotic attractor.

For the selection a = -1.25, b = -0.03865, c = -2, and d =

-1.9325, we obtain a bifurcation diagram similar to figure 4a, but

in this case the border-collision bifurcation is from a period 2

attractor to a what appears to be quasi-periodic attractor.

EXAMPLE 3. A border-collision bifurcation in which chaotic

saddles (rather than attractors) are involved, will not be

exhibited by bifurcation diagrams. Therefore, some other numerical

method is needed to detect these sets. We use the Saddle Straddle
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I 4a.

a t r c o t o° a - i.°c h o i a t a c o . T h a r m t r p l t e

I
I

I Figure 4a.

I Bifurcation diagram ofI GL (x~y) =(,-l.25x + y + p, -0.042x) if x 0 , and
m (-2x + y + p, -2.1x) if x a 0I exhibits at 0:0 a border-collision bifurcation from a period 2

attractor to a 1-piece chaotic attractor. The parameter Ns (plotted
horizontally) varies from -0.1 to 0.2; the coordinate x is plotted
vertically, -0.3 < x < 0.3.
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Figure 4b.

Bifurcation diagram of

GL 11(x,y) (-1.36x + y + g, -0.12x) if' x s, 0, and

-(-2x + y + M, -2x) if x a 0

exhibits at go=0 a border-collision b-ifurcation from a period2

attractor to a 18-piece chaotic attractor. The parameter u

(plotted horizontally) varies from -0.1 to 0.2; the coordinate

is plotted vertically, -0.3 -e X :5 0.3.



Trajectory (SST) method introduced in [NY] to detect such sets.

We select a = -1.25, b = 0.18, c = 2, and d = -3. For p = -0.05

the invariant set (obtained by the SST method) is presented in

Figure 5a, and the invariant set for p = 0.05 is in Figure 5b.

Presumably, it is correct to say that the border-collision

bifurcation is a bifurcation from a chaotic saddle to another

chaotic saddle.

Now we present a few examples based on the Henon map. In fact,

in these examples we have a moving border. Define the map H from

the plane to itself by

H(x,y) (A - x + By, x)

and define the map L (-vs < p< m) from the plane to itself by

L (x,y) = (A + Cx + By - (p+C)p, Dx + (1-D)p)

The regions RA and RB are the half planes to the left and the

right of the straight line x = p. The map we are investigatin- ,

defined being the Henon map on RA and the "linear" map L on

Define the one-parameter family of maps F from the plane to

itself by

FH(x,y) if x (<yP

I L P(x,y) if x a P

Notice that the map is smooth in each of the half planes x a p and

x a p, and the line x = p is the border which is a smooth curve.

Since the map F is continuous, it is a piecewise smooth map. Nol,

that for this family F border-collision bifurcations occur

presumably for values p0 different from zero.
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Figure 5a.

Chaotic saddle of

GL (x,y) (-1.25x + y + p, O.18x) if x s 0, and

(2x + y + p, -3x) if x a 0 when p -0.05.

The coordinate x (-0.2 . x < 0.1) is plotted horizontally, and the

coordinate y ( -0.25 < y - 0.02) is plotted vertically.
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Figure 5b.

3 Chaotic saddle of

GL (x,y) (-1.25x + y + 11, 0.18x) if x 0, and

I (2x + y + M, -3x) if x a 0 when P = 0.05.

The coordinate x (-1 5 x - 0.6) is plotted horizontally, and the

3 coordinate y ( -1.8 . y : 0.2) is plotted vertically.



EXAMPLE 4. Simple border-collision bifurcations are

bifurcations from a period p attractor to a period q attractor.

For A = 1.4, B = 0.3, C = 0.9, and D = -5, the 5ifurcation

diagram in Figure 6a exhibits a bifurcation from a period 3

attractor to a period 4 attractor, where p (plotted horizontally)

varies from 0.89 to 0.87. In the region RA the fixed point is a

flip saddle and in the region RB the fixed point is a repellor.

The border-collision bifurcation occurs at g = go s 0.884. For p >

go (the side of the period 3 attractor which has orbit index +1)

the fixed point is a flip saddle (orbit index 0) and we find no

other periodic orbits on this side of the bifurcation. For g ' 0

(the side of the period 4 attractor which has orbit index +1) the

fixed point is a repellor (orbit index +1); there also exists a

period 4 regular saddle (orbit index -1). The regular saddle also

shrinks to a point (the fixed point) as g -+ o0 . Hence, the orbit

index is +1 on both sides of g0.

For A = 1.4, B = 0.3, C = 1, and D = -5, the bifurcation

diagram in Figure 6b exhibits a bifurcation from a period 6

attractor to a period 4 attractor, where g (plotted horizontally)

varies from 1.05 to 0.8. In the figure one might first notice a

bifurcation from a 6-piece chaotic attractor to a period 4

attractor, but closer examination gives the above mentioned

bifurcation from a period 6 attractor to a period 4 attractor.

Similarly as above, the periodic orbits involved in the

border-collision bifurcation that occurs at g = g0  0.884 are the

following. For M > g0 there is period 6 attractor and the fixed

point is a flip saddle, and for p < g0 the fixed point is a

repellor and there is a period 4 attractor a period 4 regular

16
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Figure 6a.

Bifurcation diagram of

F (x,y) = (1.4 - x2  + 0.3y, x) if x & , and

= (1.4 + 0.9x + 0.3y - (g+0.9)p, -5x + 6p) if x a p,

exhibits at 0 0.884 a border-collision bifurcation from a

period 3 attractor to a period 4 attractor. The parameter m

(plotted horizontally) varies from 0.89 to 0.87; the coordinate x

is plotted vertically, 0.6 x : 1.2.
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Figure 6b.

Bifurcation diagram of

F (x,y) (1.4 - x 2  + 0.3y, x) if x s P, and

(1.4 + x + 0.3y - (p+l)p, -5x + 6g) if x a g,

exhibits at g0 A 0.884 a border-collision bifurcation 
from a

period 6 attractor to a period 4 attractor. 
The parameter g

(plotted horizontally) varies from 1.05 
to 0.8; the coordinate "z

is plotted vertically, -0.5 S x s 2.



saddle. Hence, the orbit index is +1 on both sides of M0.

EXAMPLE 5. In this example we present two cases of a

border-collision bifurcation from a period p attractor to a q-piece

chaotic attractor.

For A = 1.4, B = 0.3, C = 1.1, and D = -5, the bifurcation

diagram in Figure 7a exhibits a bifurcation from a 1-piece chaotic

attractor to a period 4 attractor, where p (plotted horizontally)

varies from 1.05 to 0.8. The border-collision bifurcation occurs at

g= go A 0.885. For g > g0 (the side with the chaotic attractor)

we do not know the (total) orbit index since the chaotic attractor

contains a lot of periodic orbits. For g > M0 the fixed point is a

flip saddle (orbit index 0). For p < g0 (the side of the period 4

attractor which has orbit index +1) the fixed point is a repellor

(orbit index +1) there also exists a period 4 regular saddle

(orbit index -1). The regular saddle also shrinks to the fi.ei

point as p -+ p. Hence, presumably we have a border-collisiou

bifurcation from a period 4 attractor to a 1-piece chaotic

attractor.

For A = 1.4, B = 0.3, C = 1.5, and D = -4, the bifurcation

diagram in Figure 7b exhibits a bifurcation from a 8-piece chatLc

attractor to a period 5 attractor, where g (plotted horizontally)

varies from 0.91 to 0.86. The border-collision bifurcation occurs

at p = g ss 0.884. For g > go (the side of the 8-piece chaotic

attractor) we do not know the (total) orbit index since the

chaotic attractor contains a lot of periodic orbits, and the fixed

point is a flip saddle (orbit index 0). For g < g0 (the side of

the period 5 attractor which has orbit index +1) the fixed point

17



Figure 7a.

Bifurcation diagram of

F (x,y) = (1.4 - x2 + 0.3y, x) if x j, and

= (1.4 + 1.Ix + 0. 3y - (M+I.1)M, -5x + 6p) if ; p,

exhibits at g0 s 0.885 a border-collision bifurcation from a

1-piece chaotic attractor to a period 4 attractor. The parameter g

(plotted horizontally) varies from 1.05 to 0.8; the coordinate x

is plotted vertically, -0.5 x . 2.
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Figure 8.1

Bifurcation diagram of

IF (x,y) = (1.4 - x + 0.3y, x) if x H: and

(1.4 + 1.2x + 0.3y - (p+1.2)p, -4x + 5p) if x ,

exhibits at go % 0.884 a border-collision bifurcation 
from a

1-piece chaotic attractor to a 1-piece 
chaotic attractor. The

parameter g (plotted horizontally) 
varies from 0.95 to 0.85; the

coordinate x is plotted vertically, 
0.4 s x 1.6.

i~mnmmnnunum uwm unw ' mmnm ~ mnmumnnn~ umu mumwl~ I



is a repellor (orbit index +1); there also exists a period 5

regular saddle (orbit index -1). The regular saddle also shrinks

Ito the fixed point as u -+go In the figure one might first notice

3 a bifurcation from a 5-piece chaotic attractor to a period 5

attractor, but closer examination in the phase space gives the

above mentioned bifurcation from a 8-piece chaotic attractor to a

period 5 attractor. Hence, presumably we have a border-collision

bifurcation from a period 5 attractor to a 8-piece chaotic

3 attractor.

IEXAMPLE 6. Border-collision bifurcation from a p-plece chaoti
attractor to a q-piece chaotic attractor. We present just one

example, namely p = a = 1.

3 For A = 1.4, B = 0.3, C = 1.2, and D = -4, the bifurcation

diagram in Figure 8 exhibits a bifurcation from a 1-piece chaotic

attractor to a 1-piece chaotic attractor, where pa (plotted

horizontally) varies from 0.95 to 0.85. The border-collision

bifurcation occurs at y = go s 0.884 and we only can say that rk

both sides infinitely many periodic orbits are involved in the

border-collision bifurcation, since the attractors are chaotic.

Hence, presumably we have a border-collision bifurcation from 1

1-piece chaotic attractor to a 1-piece chaotic attractor.

EXAMPLE 7. In this example we show that coexisting attractors

of different nature can be involved on the same side of a

border-collision bifurcation.

For A = 1.4, B = 0.3, C = 1.4, and D = -4, the bifurcation

diagram in Figure 9a exhibits a bifurcation from a 5-piece chaot v
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Figure a

Bifurcation diagram of
F 11(x,y) =(1.4 - x2+ 0.3y, x) if x I~ u, and

=(1.4 + 1.4x + 0.3y - (p'+l. 4 )p, -4x + 5pj) if x a
exhibits at ju0 s~ 0.884 a border-coll~ision bifurcation from a
5-piece chaotic attractor to a 1-piece chaotic attractor. The
parameter p~ (plotted horizontally) varies from 0.87 to 0.895; the
coordinate x is plotted vertically, 0.3 :5 x :5 1.6.
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Bifurcatio diagra of

I

I
I

F 9(x,y) : 11.4 - ,.2  + 0.3y, x) if x - , and
( 11. 4 + I.4x + 0. 3y - (1 +. -1 )M, -4x + 51j) i f x a

exhibits at go ; 0.884 a border-collision bifurcation from a

5-piece chaotic attT.,actor to a period 4 attractor. The parameter P
I (plotted horizontally) varies from 0.874 to 0.895; the coordinate

x is plotted vertically, 0.3 -s x e, 1.6.
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attr-actor to a 1-piece chaotic attractor, where p (plotted

horizontally) varies from 0.87 to 0.895. On both sides of the

collision-bifurcation. which occurs at p0 s 0.884, there are

infinitely many unstable periodic orbits involved, since the

attractors are chaotic. Due to the projection of the picture onto

one phase space coordinate the bifurcation diagram seems to show a

2-piece chaotic attractor, but again in phase space one has

clearly a 5-piece chaotic attractor.

For the same parameter values, the bifurcation diagram in

Figure 9b exhibits a bifurcation from a 5-piece chaotic attractor

to a period 4 attractor, where p (plotted horizontally) varies

from 0.874 to 0.895. Hence, we may have a border-collision

bifurcation from a 5-piece chaotic attractor to a coexisting

1-piece chaotic attractor and a period 4 attractor.

EXAMPLE 8. Now we consider an example in which the rurve fr is

the straight line y = -x + p. In this example we have a moving

border. Let the map H from the plane to itself be defined as

above, that is, H(x,y) = (A - x2 + By, x), and define the map G

(- < p< ) from the plane to itself by

G (x,y) = (A - PC - x2 + Cx + (B+C)y, (B+D)x - Dy -pD)

The regions RA and RB are the half planes to the left and the

right of the curve F . The map we are investigating is defined

being the Henon map on R and the "linear" map G on R Define

the one-parameter family of maps F from the plane to itself by

( = H(x,y if x S -y + P

G (xy) if x a -y +
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Figure 10a.

Bifurcation diagram of

F l(x,y) ( 114 - x 2 + 0.3y, x) if x -y + p, ana

= (1.4 + 0.5p - x 2  + 0.5.x + 0.2y, -1.3x + Y + .)if

x a -y + p, exhibits at p0 s 1.015 a border-collision bifurcation

from a period 4 attractor to a strange chaotic attractor. The

parameter p (plotted horizontally) varies from 1.2 to 1; the

coordinate x is plotted vertically, -2 s x s 2.

INl I~mN lI N I l l m l



Figure 10b.
The chaotic strange attractor

_ 2F Ixy (. 4 -x+ 0.3y, x) if x S -y + 1p, and
(1.4 + 0.5 11 - x - + 0.5x + 0. 2 y, -1.3x t. y + p) ifx ;-I -Y + m, where p =1. The coordinate x (-2 s x s 2) is plottedhorizontally, and the coordinate y ( -2 zs y :5 2) is plottedvertically.



3 Notice that the map F is a piecewise smooth map. We present an

example for which the map F has a the border-collision

bifurcation from a period 4 attractor to a chaotic strange

5 attractor. For A = 1.4, B = -0.3, C = 0.5, and D = -1, the

bifurcation diagram in Figure 10a exhibits a bifurcation from a

5 period 4 attractor to a chaotic strange attractor, where p

(plotted horizontally) varies from 1.2 to 1. The border-collision

I bifurcation occurs at p = po0  1.015. The chaotic strange

3 attractor for p = 1 is given in Figure lOb. Hence, we may have a

border-collision bifurcation from a period 4 attractor to a

3 chaotic strange attractor.

1 4. "PERIOD TWO TO PERIOD THREE" BORDER-COLLISION BIFURCATION

In this Section we explain why "period two to period three"

border-collision bifurcations occur for two-dimensional piecewise

3 smooth maps. Let a, b, c, and d denote real numbers. Define the

one-parameter family GL from the plane to itself, byI '4
GL (x,y) = (ax + y, bx) + p(1,0) if x ! 0

GL (x,y) = (cx + y, dx) + P(1,0) if x a 0

where p is in an open interval I including zero. Recall that this

family GL is equivalent with the piecewise linear map P .

Let F be a one-parameter family of piecewise smooth maps which

3 has a prototype piecewise linear form at p = 0, and assume that

(Al) -a > 1, -c > 1, -d > 1;

(A2) c 2 + 4d < 0;

3 (A3) 0 < a(ac + d) < 1.

We want to show that there exists e > 0 such that if IbI < c, then

3 the family F has a "period two to period three" border-collision
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bifurcation at (0,0). First, we show that for b = 0, the family

GL has a border-collision bifurcation from a period 2 attractor

to a period 3 attractor. We write C for the set of all

one-parameter families of maps GL defined above such that b = 0.

PROPOSITION. At M = 0, every family GL in C has a "period two

to period three" border-collision bifurcation at (0,0).

PROOF OF THE THEOREM. Assume that the Proposition has been proved.

Apply the Proposition and it follows immediately from perturbation

results.

The geometrical proof of the Proposi.ion (given below) -ight

give insight why other bifurcations (for example, period 5 to

period 2 bifurcation) may occur in piecewise smooth systems.

Presumably, the method of proof only works if one of the two maps

involved has a zero Jacobian. We first show that a

border-collision bifurcation occurs at p = 0, and we present an

example to give an idea of the proof.

Let GL be in C. The fixed point E of F is given by E

1 = ( 1 d
0) if 0 and -'lc--ii l-c-d. if .i 0.

In the notation of Section 2, define the matrices MA and MB by

MA [ 1]' MB = [c 11. The eigenvalues of MA are 0 and a, so

if p < 0 then the fixed point E is unstable since -a > 1. In

particular, E is a flip saddle if M < 0. The eigenvalues of MB

2are 0.5c ± 0.5 /c + 4d and are complex, since c + 4d < 0. For

p > 0 the fixed point E is unstable (repelling), since the
M
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3 product -d of the eigenvalues of MB exceeds 1. The nature of the

fixed point E is changing from being a flip saddle (in region RA

which is the left half plane) to a ripellor with complex

eigenvalues (in region RB) when the parameter p is varied from say

-0.1 to 0.1. We conclude that a border-collision bifurcation

occurs at j 0 when M is continuously varied from some negative

value to a positive value, since the orbit index of E changes

from 0 to +1. For simplicity of the explanation of this border-

collision bifurcation phenomenon, we offer the following example.

3 EXAMPLE. Consider the one-parameter family g from the plane to

itself, defined by

l,,y) = (-4.x + y, 0) + je.(1,0) if x 0

g(x,y) = (-2x + y, ---x) + 1.(1,0) if x z 0

The bifurcation diagram exhibiting the "period two to period

Sthree" bifurcation, is similar to the diagram in figure 1. The

family of maps g is in the class C, so it is an example for %,hich

I the result above applies. The idea why a "period two tc period

3 three" border-collision bifurcation occurs for the family i, s

the following.

For P < 0, write W for the interval [-.,-.P,) on the
p a f-3 p o h

X-axis. We have (1) the image g (p) of each point p on the X-axis

but not in W is in W , and (2) each point p in W is mapped to a

point p* on the X-axis after two iterates, so g/ (p) = p*. In

figure 11, the graph of the corresponding return map G on W whicn

is defined by G(x) = g 2(x,O), is given. To be more specific,

G(x) 25 1 fa 1 1
16 T p for x - 0 and G(x) for x a 0.
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3 FIGURE 11 4 2

The map G has two fixed points Pu ±.M < 0 and P -p > .

The fixed point pu is unstable since the slope of G in Pu is -5,

and the fixed point p5 is stable since the slope of G at p is .

4 4 25The properties (1) " < Pu M < 0, (2) G has slope - at x for

I4 1 1
4.I < x < 0, (3) G has slope -for x > 0, and (4) G(0) = -1.p >

0, imply that g has a period 2 attractor consisting of the two

points P1  (-*. , 0) and P2  gg(P 1 ) = (-7-P, N

I the norms of both these points converge to zero as p goes to zero,

that is, both lHP111 -o 0 and 11P211 -* 0 as p -+ 0. In other words, the

3 period 2 attractor shrinks to a point as p goes to zero; this

point to which the period 2 attractor converges is the fixed point

I of g at p = 0. For p > 0, each point p on the X-axis is mapped3

to a point p* on the X-axis after three iterates, so g1 3 (p) p*.

The graph of the corresponding return map H, defined by H(x)

3 3
3 (x,0), is given in figure 12. In particular, H(x) -

113 3 1
for x < 0, H(x) =--.x - .p for 0 e x L -'p, and H(x)

'21 1I-.p for x a
* FIGURE 12

The map H has an unstable fixed point Pu 4.p > 0 and two stable
4 14

fixed points qs -7 p < 0 and ps = -- 'p > 0. Furthermore, for ail

I x with x < pu we have lim H n(x) = qs, and for all x with x > p, ..

have lim Hn(x) p . The properties (1) H has slope between 1) .%nd
5465 S

1 for x < 0, (2) H has slope bigger than I for 0 < x .iP () f

has slope between 0 and 1 for x > 1. p, and (4) H(0) 
-

and 1 89 1 imply g has a period 3 attractor
I4 14
consisting of the points S= ( -. P., 0), S2  14(--., 0), and S

1 23



Pig~~~12.

the ret.. d f)z(2 
(-12-Xthe X- .

' +
x rap 'R dei e d by I ( -2 6 5x if aps P 0

and23 The map q has 
3fl (xoo~n4two stable t'jxe 

un fsta l e (x L) [apfixed points blethe 4I five 
0,n P -- sit

S 4t0 an p 4' r7*9>



S19 49.
--19, -4-) Notice that the norms of all three points converge

to zero as p goes to zero, that is, all three 11S11 -+ 0, 11S211 - 0,

and U1S 3111 - 0 as p -* 0. In other words, the period 3 attractor

* shrinks to a point as p goes to zero; this point to which the

period 3 attractor converges is the fixed point of g at p = 0.

4
The point (-7.p, 0) is a point of a period 3 orbit which is a

reguLar saddle of the map g

Conclusion: at p = 0, there is a "period two to period three"

border-coilision bifurcation. END OF THE EXAMPLE.

!
PROOF OF THE PROPOSITION. Let GL be a one-parameter family in

the class C, where p is in some interval I. We write pO = (xOyo)

3 for an initial condition and p = (X ny) for its n-th iterate,

that is, pn = GL n('), . each p. For the particular initial

3 value (0,0), we write A0 (0,0), A = GL(A 0 ), A2 = GL(A A3

GL (A ), and A4 = GL (A3 ).

For each initial value p0 = (X0 ,y0 ) we observe the following

I fact. If x0  0 then yl = 0, and if x0 > 0 then yl = dx 0 
< 0.

Hence, it is sufficient to consider initial values in the lower

half plane. Hence, from now on, we assume that yo - 0.

Assume first, p < 0. Recall that the fixed point E ( L.P,

0) is unstable, and is a flip saddle, since -a > I. Assume that p0

I = (x0 ,y0 ) is any initial value with y 0 . 0. Then, if x0 , 0 then

Yl = 0, and if x0 > 0, then x 1 = cx 0 + y 0 
+ p < 0 and so Y2 = 0.

Therefore, it is sufficient to consider points on the X-axis, and

3 we will do so.

Consider the initial value p0 = (0,0) = A0 . Computation of the
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first four iterates of A0 yields A 1 = (M,O), A2 = ((a+l)p, 0),

A3  = ((c(a+l) + i)p, d(a+i)p), and A4  = ((a+l)(ac + d + 1)p, 0).

The assumptions 0 < a(ac + d) < 1 and -a > I imply -1 % ac + d < 0

yielding 0 < x4 < x2. From -1 < ac + d < 0, and the assumptions,

-a > 1, and -c > 1 follows that c(a + 1) > 0 and d < c; therefore

Ix3 1 > 1y3 1. Hence, A1 is on the X-axis to the left of A0 , A3 is

under and to the left of A1 , and both A2 and A4 are on the X-axis

to the right of A0 and A4 is between A0 and A2 .

First we consider the image of the X-axis. Let p0 = (x0 9Y0 ) be

any point on the X-axis. The image of the right half of the X-axis

with end point A0 is the half line through A3 with end point A[ =

GL (A0), since p1 = (cx0 + p, dx0 ) for x0 > 0. The image of the

left half of the X-axis with end point A0 is the half line on the

X-axis to the right of A with end point A I, since p1 
= (ax0 + p,

0) for x 0 - 0.
2

Define Q = (--P,O) = (xQ)0) and R ( d)' 0) -

a (I-a)(ac + d

(XR'O). The point Q is mapped to A0 iterating GL once, that is,
GL (Q) A, and Q is on the X-axis between A and E since A

P = 0 1

(p,O), E 1.a , 0) and -a > 1. The point R is on the X-axis

to the right of A0, and R is mapped to E iterating GL twice,

that is, GL 2(R) = E .

Let P0 
= (x0 0) be any point. Straightforward computation gives

the following. If x0 > 0 (that is, P0 is on the X-axis to the

right of A0 ) then p1 = (cx0 + p, dx0 ) and P2 
= ([ac + d]x 0 +

(1+a)p, 0), so p2 is on the X-axis. If x0 = 0 (that is, p0 
= A0 )

then p1 = (p, 0) and P2 = ((l+a)p, 0), so p. is on the X-axis to
1

the right of A0. If ---. 5 x0 < 0 (that is, p0 is on the X-axis

between Q and A0 ) then p1 = (ax0 + p, 0) and P2 = (a(ax0 + p) + p,
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I 1
0), so P2 is on the X-axis. If x0 < -!-A (that is, P0 is to the

left of Q) then p1 = (ax0 + p, 0) and p2 = (c(ax0 + g) + p, d(ax0

+ W) and P3 
= ([a c + adlx0 + 'ad + a + d + 1).P, 0), and so P3

is on the X-axis while p2 is not. Summarizing, for each point P0
2

on the X-axis to the right of Q we have P2 = GL (p0) is on the

X-axis. Therefore, we have a return map on the interval consisting

of the points on the X-axis to the right of Q.

Let G denote the return map of GL on [Q,cD), so G(x) = GL 2(x,0)

for each x z xQ* The above results imply G(x) = a x + (1+a)g for

I. " x < 0, and G(x) = (ac+d)x + (1+a)p for x a 0. The graph of

I Q. is similar to figure 11. The map G has two fixed points, namely
1 a + 1

- and Ps 1 - ac - d ' and Pu 1 0 < ps. The fixed

point pu is unstable since the slope of G in Pu is a > 1, and the

fixed point ps is stable since the slope of G at ps is ac + d for

which -1 < ac + d < 0. Furthermore, for all x with Pu < x < xR we

have iim G n(x) = Ps. The properties (1) xQ < -L- < 0, (2) G has

slope a2 > i f XQ < x < 0, (3) G has slope -1 < ac + d 0 for:

> 0, and (4) G(0) > 0, imply that GL has a period 2 attractor

consisting of the points P1  1 ( aac 1 d ' 0) and P2  GL(P

c - d + I (a + I)d

- ac - d " ' 1 - ac -
) Notice that the norms of both these

points converge to zero as p goes to zero, that is, both 1 II11 -+ 0

and 11P2 11 - 0 as p -* 0. Hence, the period 2 attractor shrinks to a

point as p goes to zero; this point to which the period 2

attractor converges is the fixed point of GL at p = 0.

Now assume p = 0. Assume p0 = (x0,y0 ) is any initial value with

YO < 0, then x0 & 0 implies y1 = 0, and x0 > 0 implies x I cx 0

yielding y2 = 0. Hence, it is sufficient to consider points on the

X-axis. Let P0 = (x0 '0) be given. If x0 < 0 then p, = (ax0 ,0)
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which is on the positive X-axis. If x0 = 0 then P, = (ax0 '0) and

so p0 is the fixed point of GL If x0 > 0, then P1 = (cx0 ' dx 0),

and P2 
= ((ac+d)x 0 , 0). Consequently the point A0 = (0,0) is a

globally stable fixed point of GL0 , since -1 < ac + d < 0.

Now assume M > 0. The fixed point E 1 d
P 1--~ -c-d~ J i

unstable with complex eigenvalues since it was assumed -d > I and

c2 + 4d < 0. Assume p0 
= (x0 ,y0 ) is any initial value with y0 

< 0.
1

Then x0 - 0 implies y = 0, and if x0 a -. then x = cx 0 + Y0 +

p 0 and so y 2  0. If 0 < x < -p then x =cx0 + y 0 
+ p and

Y1 = dx 0 < 0; hence, if x1 s 0 then Y2 = 0, else if x, > 0 (and so

2
0 < -y 0 < P + cx 0 ), X2 

= cX 1 + + P = c x 0 + cy 0 + cp + dx 0 +p

2
< (c - c(M + cx0 ) + cp + dx0 + P = dx 0 + M < 0, and so y 3 

= 0.

Therefore, it is sufficient to consider points on the X-axis.

Let pO = (x0 ,y0 ) = (x0 ,O) be any point on the X-axis. If x0 e 0

then p1 
= GL (P0 = (axO + P, 0) = (xlYl), so x1 > 0. Every point

q0 = (w0O0) such that w0 < X0 s 0 satisfies q1 = GLP(qo) = (aw) +

P, 0) = (w1 ,zI), so wI > X1 > 0. The conclusion is that poLflLs

on the X-axis to the left of A0 = (0,0) are mapped monotonically,

into the X-axis to the right of (p,O).

Let P0 
= (0,0). A simple computation shows p1 = (p, 0), P., =

((1+c)p, do), P3 
= ((ac + a + d + i)p, 0), and p 4 = (ax3 + P, 0).

Notice x3 < 0, hence x4 > P = x1 . Recall that P0  A0, p, = A,, p2

= A2, P3 = A3, and P4 
= A The conclusion is that A0 , A1 , A3 , and

A4 are on the X-axis, and A3 is to the left of A0 , and both A, and

A4 are to the right of A0 with A 1 between A0 and A4.

Let p0 
= (x0 '0) be any point on the X-axis for which x0 > 0.

Then p1 = (cxo + P, dxo). Notice that if x0 = then x 0 and
d1B) B h(B), and
d WYl ---. p. Write B 0 = - . , 0), B 1 GL (B0) B2 GL (BI) and



d d
B3 =GL (B2 ). Then B1  (0,-i.m), B2  ((I-I)M, 0), and B=

([a(1--) + 1I], 0). Notice that B denotes the point on the Y-axis

at which the line segment [AI,A 2 1 intersects the Y-axis, and that

B2 is a point on the X-axis to the left of A0 . The assumptions -a

> 1 and 0 < a(ac + d) < 1 imply ac + d < 0 and we obtain that the

point A3 = ((ac + a + d + l)M, 0) is on the X-axis to the left ofa B2.

The image of the half line (A1,a) through A2 under the map GL

is the kinked half line (A2 ,B2 ] U [B2 ,cD) through A The image of

this kinked half line is on the X-axis. In particular, the image

of the half line (B2 , ) through A3 is [B3 D) on the X-axis to the

right of A (P,0), and the image of the line segment (A2,B2 is
1A 31

2
BB31I [A3,B3 ].

Let p0  (x0,0) be any point on the X-axis. Straightforward

computation shows the following. If x0 ; - .p (that is, p0 is to
0 c0

the right of B0 ) then p1 = (cx0 + p, dx , p2 = ([ac + d]x 0 +

(a+l)p, 0,, and p 3  
=  (a[ac+dlx 0  + [a(a+l) + 1I.P, 0). Hence, both

P2 and are on the X-axis for x z -. P. If 0 : x --.p (that

P 2 n d 3 0 c * 0
is, p0 is on the X-axis between A0 and B 0 ) then p1 

= (cx0 + u

dx 0 ), P2 = (Cc2 + d~x0 + (c+1)4, cdx 0 + dp), and since (c 2+d)x 0 +d d
(c+1)P < -cp - il + c1 + P = (l--)p < 0, we have

c c2

P 3 
= ((ac + ad + cd]x 0 + [ac + a + d + 1}p, 0), so the point p 3

is on the X-axis. If x0 < 0 then p1 
= (ax0 + P, 0), P2 = (acx 0 +

(c+l)p, adx 0 + dp), and p3 = (atac + dx 0 + (ac + a + d + i]p, 0),

so the point P3 is on the X-axis. The conclusion is that for each

point p0 
= (x0,0) on the X-axis, the third iterate of p0 is also

on the X-axis, that is, GL 3(p0 ) = (x3, 0). Hence, a return map

of GL exists on the X-axis. We call this return map H, so H(x)
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GL 3(x,O). The above results imply

H(x) = (a 2c + ad)x + (ac + a + d + 1)'p for x < O,
2 1

H(x) = (ac + ad + cd)x + (ac + a + d + 1)'p for 0 < x -.. p, and
1c

H(x) = (a 2 c + ad)x + (a2 + a + 1).p for x 0 z _l.p. The graph of H

is similar to figure 12. The map H has three fixed points, namely

ac + a + d + I < 0 -(ac + a + d + 1) p, and p5- ~c~)* c-ac+d) + ad - I1

S+ a(ac+d) > 0. The fixed point p is unstable since the slope
2 >

ac + ad + cdof H in Pu is bigger than 1, and the two fixed points

qs and ps is stable since the slope a 2 c + ad of H at both qs and

PS is between 0 and 1. Furthermore, for all x with x < Pu we have

im Hn (x) = qs, and for all x with x > Pu we have lir Hn (x) = P
-0 n- s

The properties (1) H has slope between 0 and 1 for x < 0,

(2) H has slope bigger than I for 0 < x < -. p, (3) H has slope

between 0 and 1 for x > -L'p, and (4) H(O) < 0 and H(-!.P) > -P,

imply that GL has a period 3 attractor consisting of the pointsp 2
S = ( ac + a + d + a $ + a+ 1 and

1 - a(ac+d) "' a , 0), aand

Sa = ([c +a+ 1 a+ +a+ Notice that the
3  1 - a(ac+d) + I , d -a(ac+d)

norms of all three points converge to zero as p goes to zero, that

is, all three IISlIl 1 0, IS2I -+ 0, and IIS3i1 -+ 0 as p -+ 0. Hence,

the period 3 attractor shrinks to a point as p goes to zero; this

point to which the period 3 attractor converges is the fixed point

of GL at M = 0.

The point (p u, 0) is a point of a period 3 orbit which is a

regular saddle of the map GL . We conclude: at M = 0, there is a

"period two to period three" border-collision bifurcation. This

completes the proof of the Proposition.
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I
5. DISCUSSION AND CONCLUDING REMARKS.

We have presented bifurcation phenomena, which we call

"border-collision bifurcations". These bifurcations occur when the

nature of a fixed point (or periodic point) of a piecewise smooth

system changes when it collides with the border of two regions. An

interesting case occurs when the fixed point changes from being a

flip saddle to a repellor with complex eigenvalues~at the

5 parameter value where it collides with the border of two regions.

We have presented a variety of examples based on the piecewise

3 linear map P and the Henon map. In particular, we have shown the

occurrence of a "period two to period three" border-collision

I bifurcation for maps in the class C.

We point out that the border-collision bifurcation can be

expected to occur in many piecewise smooth models. In particular,

3 the "period two to period three" bifurcation phenomenon can be

expected to occur in many linear models with constraints.

Assume for the piecewise linear map P that the fixed point E

is a flip saddle in the left half plane and a repellor with

5 complex eigenvalues in the right half plane.

QUESTION 1. Does there exist a classification of the border-

I collision bifurcations for P in the case where a period 2

3 attractor converges to the fixed point (0,0) when p goes to 0?

QUESTION 2. More generally, is is possible to give a

5 classification of the border- ollision bifurcations for the

piecewise linear map P ?

QUESTION 3. When the plane is subdivided in N regions, where N
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is at least 3, do there exist border-collision bifurcations that

do not occur when there are only 2 regions, and in particular

bifurcations that persist despite small perturbations?
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