 AD-A248 168
| G

SPARTAN: An Instructional
High Resolution
Land Cowmbat Model

THESIS

David Keith Cox
Captain, USA

AFIT/GOR/ENS/92M~17

. v -

I This document has pecn csp
for pubhe release and saie u
. distitbution is vnliontel

DEPARTMENT OF THE AIR “ORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

52-0822s
it

| : - . 2
Wright-Patterson Air Fcrce Base, Ohi s
Wright-Patecson A IO

AFIT/GOR/ENS/92M-17 //

—-od
SPARTAN: An Instructional Accesion For
High Resolution P S
Land Combat Model NTIS CRAZI \
OTiIC TAB 3
THESIS U. announced i
J“.Sklticaz|0l] TEESer eey 44 vcacuv Buen -
David Keith Cox -
Captain, USA BY e s e
Dist ibutio::
AFIT/GOR/ENS/92M~17 P n et e
Availability Codes
Avdrﬁnd[b}
Cist Speciai
-
g (A7

A\

Approval for public release; distribution unlimited

W T, s o e R LR

e K ,Asmcv ‘USE ONLY" (Leave-blank) -
R 4 o . March 1992

~

B _.SPARTAN: AN INSTRUCTIONAL ‘HIGH RESOLUTION

REP@RT DOCUMEN'FATiON PAGF

0. 0704-0188

‘8 Pubhi repurung burden (i this \.Olfeﬁl\')n ot nformanw 15 esumated 1o average.i fivul et | 25pUnse, inuuding, the ume for reviewing instructions, searching existing data sources,
-{'gatherning and maintanuny the data needed, ana wmpleung and revicwing the wiiecuun of yfuimaton. send wwmments cegarding this burder, estimate or any other aspéct of this
'} collection ut am\rrmatwn ncuding sugyestiuns tur redudng Wi butden o “rashington Hpadquarlers services; Duectorate for information Opefations and Reports, 1215 Jeﬂerson
. ,Davasﬂxghway suite’1204, mhngmn, vA42202:4302, and tu the Offie uf Mavagement snd Budgev Peperwark Reduc!(on Project (0704 0188), Washmgton, 0C 20503,

2. REPORT- DATE

Maste

3. REPORT TYRE AND DATES COVERED . " 7~ o

“

it JENEIEE

e e

4 TIYL:’AND SUBTITLE

-

f >5. FUNDING NUMBERS B

: n‘LAND COMBAT" MODEL : I |

’GAUTHOR(S)‘ — ‘ T

Dav1d K: Cox, Captaln, USA

YR vy
N Toe .

Penees pa s

7. ‘PERFORMiNG ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING .ORGANIZATION -
REPORT NUMBER

AFIT/GOR/ENS/92M-17

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

t,

10. SPONSQRING /MONITORING
AGENCY REPORT NUMBER

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b, DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 word's}

land combat simulation model. The purpose of this model
combat models.
discrete event time algorithm.
man infantry squads in direct fire combat.
search for targets, engage targets, and react to hostile

analytic use. A preprocessor is provided with the model
provides a user’s manual.

This project developed an instructional high resolution

is to demonstrate

common techniques of modeling used in the present generation of UL Army land
This model is stochastic and uses an event scheduling type of
The model répresents a maximum of two six-
The individual soldiers move,

encounters. The

data values provided with the model are all generic and hypothetical. The
model is only intended as a dewonstration tool and has no validity for

and Appendix D

14. SUBJECT TERMS
Combat Model, High Resolution, Stochastic Model
Educational, Simulation, Land Warfare

15. NUMBER OF PAGES

201
16. PRICE CODE

17, SECURITY CLASSIFICATION §18. SECURITY CLASSIFICATION

TR ried

19. SECURITY CLASSIFICATION
F. ABSTRACT.
GRS F i ed 0 nclassified UL

20. LUMITATION ('~ ABSTRAC"

NSN 7540-01-280-550)

Standard Form 298 (Rev 2-89)
Prescribed by ANSH Sta 239-18

- e . [SMad e e T A ey N s el

e T ol SN SR R
SR TR TN
RS Vg

S - ‘ ‘ T Fom domred
! E REPORT DOCUMENTATION PAGE o i 07040168

Pubtic repurting buiden (vt this collectivn it ifuimativie s estimaled tv average | houl Pt 2spunse, inuuding the ume 101 reviewing INstructions, searching existing data sources,
gathering and mairlaiuny the data needed, anc wmpieung dnd * evicwinyg e witieciun of 1 furmstiun Send comments regarding this burdei, estimate i any uther aspect of thes
N collection ot mturmatiun, indiuding sugyestivns tur ceduuinyg s butden v “vashungtun Headquariers services, Unectorate fon information Operations and Reports, 1415 Jefferson
§ Davis Highway, >uite 1U4, smiblingion, vA «2202-4302, and tu the Uttie u1 Management and Budger, Paperwork Reduction Project (0704-0188), washington, DC 20503,

. 1. AGENCY USE ONLY (Leave biank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
: March 1992 Master’s Thesis
4 TITLE AND SUBTITLE 5. FUNDING NUMBERS

SPARTAN: AN INSTRUCTIONAL HIGH RESOLUTION
- LAND COMBAT MODEL

6. AUTHOR(S)

David K. Cox, Captain, USA

7. PERFORMING ORGANIZATION NAMc(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GOR/ENS/92M-7

9. SPONSORING. MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSQRING / MONITORING
AGENCY REPORT NUMBER

41, SUPPLEMENTARY MOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words}

This project developed an instructional high resolution
land combat simulation model. The purpose of this model is to demonstrate
common techniques of modeling used in the present generation of UL Army land
combat models. This model is stochastic and uses an event scheduling type of
discrete event time algorithm. The model réepresents a maximum of two six-
man infantry squads in direct fire combat. The individual soldiers move,
search for targets, engage targets, and react to hostile encounters. The
data values provided with the model are all generic and hypothetical. The
model is only intended as a demonstration tool and has no validity for
analytic use. A preprocessor is provided with the model and Appendix D
provides a user's manual.

{ 18, SUBJECT TERMS 15. NUMBER OF PAGES
{ Combat Model, High Resolution, Stochastic Model 201
¢ Educational, Simulation, Land Warfare 16. PRICE CODE

17, SECLRITY CLASSIFICATION |18 SECURITY CLASSIHCATION {19 SECURITY CLASSIFICATION |20, LMITATION €7 ABSTRACT

v

EEReE i ried GAdiI8s¥ i ed P eI Mified UL

NN TSLD GRS >7d Gard mor 38 Rey 6P

coIN Y

LI

GENERAL INSTRUCTIONS FOR COMPLETING SF_298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. Toinclude contract
and grant numbers; may include program
element number(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

€ - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit

Element Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumzric report

number(s) assigned by the orgamzatnon
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans. of...; Tobe
published in.... When a reportisrevised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents.”

DOE - See authorities,

NASA - See Handbook NHB 2200.2.

NTIS - Leaveblank.

Block 12b. Distribution Code.

DOD - Leaveblank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leaveblank.

NTIS - Leaveblank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
asreport). Anentry in this block is necessary if
the abstractis to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev, 2-89)

AFIT/GOR/ENS/92M-T7

SPARTAN: An Instructional
High Resolution

Land Combat Model

THESIS

Presented to the Faculty of the
Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Operations Research

David K. Cox, B.S.

Captain, USA

March 1992

Approved for public release; distribution unlimited

THESIS APPROVAL

STUDENT: Captain David K. Cox CLASS: GOR 92-M

THESIS TITLE: SPARTAN: An Instructional High Resolution Land Combat
Model

DEFENSE DATE: 4 MAR 92

COMMITTEE: NAME/DEPARTMENT SIGNATURE

/ Z
Advisor Major Michael W. Garrambone/ENS // 1/',’

Co-Advisor Major Bruce W. Morlan/ENC \7/3“"“(&, 7%“?/6%

Preface

The goal of this thesis was to develop a high resolu-
tion land combat model for use as an instructional aid in
land combat modeling courses. The model development began
at the conceptual level and progressed through code develop-
ment to initial implementation. This model displays mndel-
ing concepts that are representative of the present genera-
tion of US Army high re~olution analytic combat models and
provides facilities for students to observe the model compo-
nents and understand their operation.

This thesis provides essential background material, the
development methodology, details of the model’s design and
implementation, and classroom materials to support its
operational use. SPARTAN is a simple representation of an
analytic modei that will serve as a useful tool in the
presentation of high resolution land combat modeling tech-
niques.

I wish to thank MAJ Michael Garrambone and MAJ Bruce
Morlan for their guidance and invaluable assistance in the
development of this thesis. I also wish to thank the other
officers in the land combat modeling course who provided
timely feedback on necessary model improvements. Lastly, I
must thank my wife Phyllis and my kids Joshua and Courtney
for their constant support and understanding of my efforts.,

David Keith Cox

ii

Preface
List of Figures
List of Tables
Abstrect . ., .

I. Introduct

b ek b b el e
DO OTEH WHN

IT. Literatur
2.1
2.2

2.3

2.4
2.5

III. Model Dev

Table of Contents

. * L] . . . L} .

L] L] L] L L] . L] L] L]
ion L] . . . L] L] . . A L] L

Background+ . .
Problem Statement . .
Model Requirements . .
Modeling Definitions .
Approach and Methodolog
Equipment+
Thesis Organization .

- o = o - - e

gy

e ReView L] - . L] . . L] .

Introduction . e e .
High Resolution Models 1n

Target Selection . .

e @ * o e *

US Army
Battlefield Environment
Movement Representation
Target Detection Algorithm

Engagement Assessment ,

Conceptuals Frameworks .
Model Development 8

Model Validation and Verifi
Scheduling Future Events

Random Number Generation
Programming Languages . .

elopment Process . e e e

Introduction .o AN
Development Methodology .
Problem Definition e
Modeling Environment A

Modeling Effort .

Modeling Assumptions
Model Definition e 0 e

Objects and Attributes

Model Activities . .

iii

- - - - e o

- e @ o e - o

.

.

o e - o » - - - -

e o e - . - e

.

o

(<)

« o o flee o o

- . e . o o e

.

.
.
.
'
.
.
.

ca
.
.
.

o o - e e . . . -

- * o o o - o

ti

e o o e o e o o o o e

- - e o e - - - o

- e« @ e e s =

e o o o e o o @ =

on

- e -

o . - s e - - o o

- - - . e e e e e = - = e @ e o o e e

- o - - - - - Y -

Page

ii

vi

vii

-

H OWO &

-

12
12
13
14
15
18
19
20
20
25
28
33
35

38

38
39
41
44
44
44
45
45
48

Page

3.6 Model Development . + ¢« ¢ « « o o o+ o o 50

Creating a Database v e e e e e 50

Event Set Management 51

Model Enrichment + . . . 54

Probability Distributions v e 56

Instructional Components 57

Human Factors Considerations . . . 60

3.7 Model Assessment e e e e e e ey 61

3.8 Conclusion e s v e e e e e e e e e e 68

IV, Combat Processes .+ +« « « v ¢ o o o o s v o v o 69
4. 1 Introduction . L] L) . L] * 1] * . , . 1] L] 69

4,2 Movement Processes Voe e h e e e e 69

4.3 Engagement Processes . . « + « o« o« o o T4

Search Process . « + + « « v + v 75

Target Selection « + « + 83

Target Engagement S e e e e e s 85

4,4 Modeling Decision Logic . . . + « + . . 90

Reacting to Fire + + « « . 90

Command and Control Vo e e e e 91

4,5 Conclusion Vol h e e e e e e e e e 93

Vo Conclusion + v v v v v v v v v e s v e e e e e 94

5 01 Summary 1] . L) 1] 1] 1] 1] L] * L] [L) v L] L] 1] 94

5.2 Recommendations . .+ .« . ¢ 4 v v v 4w v 97

5.3 Conclusion + + « v v v v v v v e v e e 99

Appendix A: Probability Table Templates 101
Appendix B: STARTUP Preprocessor Program Listing . . . 108
Appendix C: SPARTAN Simulation Program Listing 130
Appendix D: User's Guide + « + + 4 v + o 4 s s + + « 4 175
Bibl iograPhy L] L] . [] . L] . [) . [. L] L] 1] + * [] L] » L] . 190

vita * L] , L] ’ . L] . . . L] L] L] L] L] L] L] . L] L] 194

List of Figures

Figure Page
1. Event Scheduling Process . . + « + « o + s o o 24
2. Example of Doubly Linked List Structure 32
3., Model Development Process . « + + « v « v + v 38
4, Conical Methodology .+ « + « v « ¢ ¢ v « o o & 40
5, Movement Process .+ « + « + v ¢ v v ¢ ¢ 0 4 o0 e s 73
6. Line of Sight Check . « + + « + + + v « « o« « & 77
7. LOS ProCess « + « o s o o o 0 0 s s v 4 o o 4 78
8, Search Process + « + « v + v v o o s o v o o« 4 80
9, Search Process (cont) .+ « « v « v ¢« o o o o« 81

10, Target Selection « « « v ¢ v ¢« v ¢ o o v v & + 84

11, Direct Fire Process .+ ¢« ¢ « « « ¢ o o o s o o o 86

12, Bullet Impact Process . « « « « « 5 o o o+ 4« o 88
13, Bullet Impact Process (cont) . + « ¢« « « « « « & 89
14, React to Fire Process .« . . + « « « v v o v « 84
15, SPARTAN Simulation Process . « « + + « ¢« + 4+ « 97

Table

2.
3.

4.

6.
7.

List of Tables

Terrain Attributes . . . « « +
Event Attributes « « .« .
Soldier Attributes . . . « . + .
Elevation Color Coding
Soldier Attribute Descriptions .
Soldier Attribute Variables . .

Initia.. Event Attributes ., . ., .

vi

Page
46
46
47

186

1817

187

188

AFIT/GOR/ENS/92M-7

Abstract

This project developed a high resolution land combat model for the
purpose of demonstrating current modeling techniques. The complex and
dynamic nature of combat simulation models makes it very difficult to
teach the concepts of combat modeling without some type of hands-on
experience for the student. A literature search of current military
models showed no model existed that was well suited for this educational
purpose.

This model [SPARTAN] was developed to represent current modeling
techniques in use with the present generation of US Army models. The
model is primarily a small scale direct fire attrition model under the
definitions of the Army Model Improvement Program [AMIP] (12). The
model represents the soldiers performing the actions of movement,
searching for targets, selecting targets, engrging targets, and reacting
to enemy encounters. The model development process focused on using a
sound methodology for the code development, and using modeling tech-
niques similar to those in the Army’s two premier high resolution models
[JANUS and the Combined Arms and Support Task Force Evaluation Model
[CASTFOREM]]. SPARTAN contains numerous features that allow the student
to observe in great detail how the model represents the various activi-
ties of the soldiers. An educational assessment of the model was
performed by students and faculty at the Air Force Institute of

Technology.

vii

P e,

SPARTAN: AN INSTRUCTIONAL HIGH RESOLUTION
LAND COMBAT MODEL

I. Introduction

1.1 c ound

Within the defense community, computer-aided wargames
and combat simulation models have become important training
and analysis tools. One of the primary users of computer
modeling techniques, the US Army Training and Doctrine
Command, defines a model as "a representation of the real
world by a series of mathematical and judgemental relation-
ships (16:85)," and a simulation model as "a model of combat
in which play is automated and governed by daiLizion rules
input into the simulation before play begins. An automated
wargame (16:86)." In most cases, combat models are descrip-
tive in that they provide a history of a battle with the
initial conditions of the conflict provided by the analyst.
A distinguishing characteristic of a simulation model from
other types of analytic models is that it solves the problem
by portraying the process as a chronological sequence of
events acted out in a step by step manner till some form of

termination condition is encountered (7:3).

A General Accounting Office [GAO] report on models in
use by the federal government lists modeling analysis as a
key factor influencing policy makers (11:116). Leaders use
analytic results from combat simulation models to make
decisions in virtually all areas of procurement, force
structure, and national defense policy. During the concept
phase of system development, simulation models are often
used to study alternative designs, and define system re-~
quirements. In the operational testing phase, simulations
may be used to investigate system performance, determine
support requirements or develop tactics for a particular
system (22:712).

Combat simulations are used extensively also as train-
ing tools at all echelons in the military. 1In the US Army,
all battalion and brigade commander designees receive two
weeks of tactics training using the JANUS combat simulation
model as a tool to improve their command and control skills.

While there are many model advocates, there are also
muny people within Congress and the defense community who
feel that using models for analysis is not always accurate.
A GAO report cites numerous misuses of model analyses and
poor analytic techniques to support these contentions (11:i-
-iv). This same GAO report to Congress emphasized the need
for a greater understanding of the inherent processes of

combat and the methods used in models to simulate these

processes (11:104). A key point is that the output from a
simulation can only be as good as the input that the analyst
provides for the model.

Since modern wecfare is such a complex and dynamic
activity, the simulations built to model these conflicts are
normally very complex tools. For example, the Army's high
resolution combat model JANUS(T) uses more than 85,000 lines
of computer code. A typical JANUS battle simulates the
activities of over 6060 combatants in an air and land warfare
scenario where any or all of these combatants can be per-
forming numerous different tasks (14:5). Adding to the
complexity of the combat systems is the need to represent
terrain and the battlefield environment in which the combat
occurs. According to an experienced JANUS operator, this
model requires a minimum of three months for an analyst to
learn the very basics of the operating processes (40).

Simulation modeling is not an exact science and can
never be expected to completely represent reality. In any
given situation, the analyst can only replicate a limited
number of the combat processes and the most important envi-
ronmental factors. To analyze model output and to make
intelligent decisions from the analysis, it is imperative
that the combat modeler fully understand the various methods
used to model combat and the numerous simplifying assump-

tions inherent in any simulation model.

1.2 Problem Statement Sorely lacking in the modeling

community has been a small model which serves as an instruc-
tional tool to demonstrate clearly the processes of combat
simulation. With such a tool, the student could observe the
often opaque processes operating inside the model and under-
stand the relationships of the combat processes. Of the
present analytical models in use, such as JANUS(T), none are
suitable instructional aids applicable towards supporting a
university course of instruction in combat modeling. In-
deed, a review of the Joint Services military model cata-
logues indicates there are no models that specifically meet
this educational need (26:App M).

The purpose of this thesis has been to develop and
implement a high resolution combat model that would be a
useful instructional tool in a land combat modeling course.
This model demonstrates current Army methods of modeling
direct fire combat processes in a simple structured environ-
ment. The model can support and enhance the curriculum by
improving the conceptual understanding of the modeling

processes.

1.3 Model Requirements

Wargaming literature discusses many approaches to
modeling combat, yet most experts seem tn agree that modern
analysts still do not fully understand the very dynamic

combat processes (11:100--102). For any given activity

4

there are usually a number of methods of modeling the pro-
cess, The algorithms and techniques used in the SPARTAN
model in most cases are those found in common use with the
present generation of Army models. A goal of the Army Model
Improvement Program [AMIP] is to standardize algorithms
among models for consistency throughout the Army (12:12).
SPARTAN uses the simplest techniques available that provide
a sufficient level of detail. With these goals in mind, it
was possible to build a nearly transparent model that dis-
plays the characteristics of a typical land combat model as
presently used within the defense community.

The model developed is a high resolution, stochastic
simulation model which represents a two-sided combat scenar-
io between two homogeneous forces with several entities.
Each of these entities has numerous attributes that describe
its characteristics and capabilities. The processes that
the model simulates are the following:

-terrain representation;

~time representation;

-entity movement;

-searching;

-target acquisition/line of sight;

~-target selection;

-target engagement/destruction;

~ammunition expenditure;

~reaction to fire;

-command and control.

A key element of SPARTAN is the ability to interrupt

the simulation at any point within the execution. This

model interrupt feature allcws the student to check the

status of the entities and observe the processes occurring

throughout model execution.

1.4 Modeling Definitions

This section defines a number of terms that will pro-
vide a more accurate description of the modeling task.

1,4.1 High Resolution. Combat models fall into two
major categories, high resolution and low or aggregated
resolution, A high resolution model is one that describes
the activities and interactions of individual entities.
These may be individual soldiers or a weapon system such as
an individual tank, or aircraft. Each entity has its own
particular characteristic attributes and the model uses
these attributes to simulate performance of the eﬁtity. The
model maintains historical performance output on individual
entities. In contrest, low resolution models aggregate
forces at various levels into subordinate units. These
units then have parameters that describe the overall capa-
bilities of these units., As an example, a high resolution
model monitors the position of each soldier while a low
resolution model typically keeps a center of mass location
for a unit or group of soldiers.

1.4.2 Stochastic Processes. As with most real world
activities, in any given combat situation there are usually
numerous possible outcomes, and seldom is there any great

certainty about which outcome will occur. A stochastic

model describes the uncertainty of events on a real battle-
field by using probability theory. The possibility that an
event will prcduce a certain outcome is given a percentile
chance of occurrence and a random number draw decides wheth-
er the event did occur. This accomodation of chance tends
to make the model more believable, and provides a closer
representation of reality (5:88),

1.4,3 Scenario. The combat scenario is the motivating
force that drives the model. It includes the terrain, the
environment, the forces of both sides, and the specific
circumstances in which the events are to occur. 1In this
model, the scenario provided is a generic situation based on
a commercially developed board game. Unlike most combat
models, this model design does not have the specific purpose
of providing analytic results., Instead, the purpose of this
model is to demonstrate model operations; therefore, the
data used is only representative of typical data, and makes
no claim of being statistically or historically derived.

1.4.4 Terrain Representation. The process of repre-
senting terrain involves partitioning the maneuver space
into small regularly shapecd polygons that represent sections
of terrain. Each of these boxes have attributes associated
with it, such as an elevation, a vegetation index, and a

trafficability index.

1.4.5 Entity Movement. A model simulates movement of
entities across the terrain based on the entities mission
and encounters with the enemy. The movement rate is a
function of an entity’'s inherent movement charuacteristics,
combat posture, and terrain characteristics., Operators must
specify movement routes as input data for each particular
scenario or the entity may react to a situation and modify
its movement routes according to some programmed decision
logic.,

1.4.6 Target Engagement. Target engagement involves
the stochastic processes of detecting, selecting and firinyg
at an enemy. Each entity searchs for targets within the
limits of its perception, and selects a particular target
from those in view. It then fires a weapon at that target.
For each shot fired, the model determines a probability of
hit and kill. The model uses these probabilities and a
random number draw to determine the damage inflicted on the
target. Some models only determine deaths, while others
include many categories of wounds and damage.

1.4.7 Model Documentation. Documentation is the sup-
porting material provided with the simulation software.
This material should provide sufficient information to the
potential user to understand the uses and limitations of the

model, the functional processes of the mcdel, and the re-

quired input to the model. <Th2 documentation that accompa-
nies this model includes the fecllowing:

-purpose;

-model overview;

-scenario;

-method of development;

~discussion of modeling techniques ani algorithms;

~schemstics of model proc+-szses;
-user'’'s manual.

1.5 Approach and Methodology

This seciion briefly describes the process of develop-
ing the model.

1,5.1 A major requirement at the beginning was to
review literature and interview knowledgeable individuals on
the most appropriate techniques to use for development of
this model.

1,56.2 The next requirement was to develop a specific
scenario that includes the terrain map, force characteris-
tics and the circumstances of the battle. This scenario
provides all the necessary input data required for the
model.

1.5.3 The lecture notes on high resolution modeling by
James K. Hartman were used as a basis to develup a general
structure for the model (23). These notes helped define the
activities of the various subroutines and illustrated some
of the subroutine and database relaticnships.

1.5.4 Various programming languages were evaluated

before selecting the Microsoft QuickBASIC programming lan-

guage. This language was chosen for its relative simplici-
ty, graphics capabilities, and modular programming features.
1.5.5 The model building process started with a simu-
lation of entities moving on the terrain. When this proto-
type operated satisfactorily, additional capabilities were
added and tested. This iterative procedure progressively
upgraded the model until the model included all the process-
es of being able to move, shoot, and react to hostile fire.
1.5,.6 Verification ensured that the computer code was
operating as intended. This was followed up with & number
of individuals perlorming various laboratory tests with the
model. The tests provided feedback from novice operators
and experienced modelers on various improvements (19:237).
This required several cycles of testing and updating to
certify the model for its intended purpose as an instruc-

tional demonstration tool.

1.6 Equipment
The equipment needed in this thesis effort was that re-
quired to perform the computer programming tasks:
IBM AT Compatible microcomputer with minimum EGA color
graphics;
Microsoft DOS 3.,3;
Microsoft QuickBASIC 4.5 programming language;
Microsoft QuickBASIC 4.5 User's Manual;
MATHCAD 2.# Mathematics Software.
The only equipment required to run the model is the standard

I4M personal computer with an EGA or better monitor.

10

1.7 Thesis Organization

Chapter II is a literature review that summarizes
pertinent information about the combat modeling processes,
discusses methodologies for simulation development, and a
rationale for the choice of programming languages. Chapter
III discusses the methodology of formulating, building, and
coding the simulation model. The process of going from
1roblem definition to a functioning simulation is discussed
in detail. Chapter IV provides detailed discussion of the
algorithms used to model the combat processes. Lastly,
Chapter V concludes the thesis and presents recommendations

for further study.

11

II. Literature Review

2.1 Introduction

The purpose of this chapter is to review the literature
pertaining to high resolution combat modeling. The focus of
Section 2 is a look at current high resolution models in the
US Army. This section discusses some of the more common
methods used to simulate combat processes in US Army models.
Sections 3 and 4 discuss several approaches to discrete
event modeling and several methodologies for model develop-
ment., Section 5 discusses the rationale behind the choice

of a computer programming language.

2.2 High Resolution Combat Models Used by the US Army

Since the early 1960's, the United States Army has
developed and used several generations of high resolution
combat mcdels. The Army Model Improvement Program [AMIP])
has selected two analytic high resolution models for stan-
dardization within the US Army (9). These two models are
JANUS [A] 2.0, and the Combined Arms and Support Task Force
Evaluation Model [CASTFOREM]. Both of these models simulate
battalion task force size elements on the battlefield [9].
To give some perspective of this simulation, a typical
mechanized battalion task force might include over 600

soldiers with over 100 armored vehicles., AMIP establishes

12

six functional areas that land combat models can be expected
to simulate (12:12--13):

1) maneuver;

2) fire support;

3) air defense;

4) combat service support;

5) intelligence and electronic warfare;

6) force control/command and control.

Both JANUS and CASTFOREM represent most of these sys-
tems to some degree. A model can represent any number of
these areas or a single one. AMIP would categorize SPARTAN
as a "functional area model" for maneuver forces. This
category represents "activities directly related to the
application of direct combat power" (12:35). The basic
elements necessary to model direct fire combat according to
Hartman (23:1--10) are
battlefield environment;
movement representation;
target detection algorithms;
target selection criteria;

target engagement;
time advance mechanism.

O OV b OB =+
Nt N Nan? S st i

The next few sections review these necessary elements as
modeled in JANUS [A] 2.0 and CASTFOREM.

2.2.1 Battlefield Environment. JANUS and CASTFOREM
both use similar methods of representing terrain and the
environment.

JANUS uses a terrain file to represent a three dimen-
sional battlefield. The battlefield is divided into square

grid cells by evenly spaced vertical and horizontal lines.

13

These grid cells can be of variable width [from 25 to 200
meters] (14:33). The terrain file maintains an average
elevation, trafficability factor, and a ground clutter
factor for each cell (14:34), CASTFOREM uses the same tech-
niques for terrain representation although the grid size is
smaller, at 25 to 100 meters (13:3-1). Both models also
consider a number of atmospheric conditions that are not a
factor in the model developed in this research.

2,2.2 Movement Representation. JANUS and CASTFOREM
use similar methods for movement. Each entity in a model
has certain movement capabilities specified in its table of
attributes. Prior to model execution, the operator desig-
nates movement control points. The entity then moves along
its designated route at speeds dictated by its attributes
and the mobility conditions of the route. JANUS attempts to
move each entity 50 meters during each movement phase, but
may modify this distance for adverse terrain conditions.
After a movement, the time to make this move is computed and
used to determine when the next movement will occur (14:-
411). One major difference between the two models is that a
CASTFOREM entity has a shortest path algorithm that allows
the entity to deviate from the movement route if the terrain
warrants while the JANUS entity can only leave the original
movement route because of operator input after the model

queries the operator. One specific instance of this is when

14

the model stops at a minefield and waits until the operator
provides a course of action for the entity (14:277;13:3-
169)., An example of the differences between the models is
that a JANUS entity would drive into a mountain and stop
while a CASTFOREM entity would find a path around it.

2.2.3 Target Detection Algorithms., Target detection
is generally modeled as three factors. The first is the
visual signature of the target being observed. The next
factor is the transmission of the signature through the
intevening atmosphere, and the last factor is the ability of
the observer's sensor to see the target signature. The
target detection algorithms used in JANUS and CASTFOREM come
from the Night Vision Electro-Optical Laboratory [NVEOL])
detection model (25:28;13:3~59). A Rand study included the
comment that "the best experimental data on the probability
of target acquisition by a human observer, through direct
vision . . . are probably those obtained by the Army’s Night
Vision Laboratory (NVL)" (1:3). These algorithms account
for detailed modeling of target definition, range, obscur-
ance, and visual capabilities of the observer (14:354). 1In
the NVEOL algorithms, detection probability is the product
of two terms. These are "PP the probability of detection
with unlimited observation time, . . . and PZ’ a time-depen-
dent term that takes account of search sectors, field of

view, and coverage during a scan time" (1:3).

15

Plis often referred to as the probability of acquisi-
tion. This value represents the target'’s signature for the
specific conditions at the time of the search and the capa-
bilities of the observer’'s sighting system to sense the
signature, A P; value greater than the observing sensor's
minimum threshold indicates that the target can potentially
be detected. When a target has a Pl'value that exceeds an
observer's threshold value then it goes on a target detec-
tion list.

(C/M)37+0.7 (/0
1= 1+ (C/M) 273 (/0 (1)

C is the number of resolution cells present
in the area of the target dimensions. This
value is a function of sensor quali:.y, target
contrast, and propagation effects. In JANUS,
C is always at 3.5 as a simplification of the
model (1:8). M is a scale factor for back-
ground clutter of the target (1:4).

P, = 1-EXP[-(C/M) (t/6.8)] (2)

t'Z(FV/SS) (3)

The value of 2/6.8 sec is an empirically deriv-

el value for a glimpse time., Search sector

«SS) is the total search area observed while

field of view (FV) is the portion of the search

sector that the observer can view at any instant

(1:7).

The target detection routine computes a Pz value for
each potential acquisition. The Ek equation computes a
probability based on the amount of time that the observer
was looking in the area of the target. The probability of

16

detection is compared to a uniform [0,1] random variate. A
drawn number less than the Py value determines actual obser-
vation. This discussion is a brief summary of an extensive
discussion of the target detection theory in Rand Note N-
3087-DR&E/A/AF (1:3~--10), Additional discussion is avail-
able in (13;14;23;25).

An important element of terrain representation and
target detection is the determination of line of sight [LOS]
between the observer and the target. The requirement here
is for an algorithm that takes three dimensional terrain
coordinates and determines whether there are any intervening
terrain features or clutter that would block or reduce the
chance of observation between two points (38:823). Both
models use similar methods to check the LOS. JANUS samples
the elevation of each grid while CASTFOREM checks the eleva-
tion of all the grid boundaries along the path between the
two points(14:348;13:3-2).

The method of computation is similar in both cases.
The height of the observer is computed as its elevation plus
the height of the observation system which might be human
eye level or a weapon system sight elevation. The height of
the target is the elevation at the target’s location plus
the height of the target (14:348). 1In the JANUS algorithm,
the intervening terrain is sampled at regular intervals. At

each point, LOS height is computed and compared against the

17

terrain height to determine whether LOS is blocked. If LOS
still exists then ground clutter and obscuration are checked
and a LOS degradation factor is computed that represents
partial attenuation (14:348--349). Ground clutter in JANUS
can be both vegetation and manmade structures.

2.2.4 Target Selection. Both Army models use ranking
schemes for target selection. JANUS determines single shot
kill probability [SSPK] for each observed target, and sums
the SSPK for all observed targets. Each target has a proba-
bility of being selected for engagement proportional to its
SSPK. The model then draws a random number that specifies
which target to select (14:370--372).

CASTFOREM has a much more elaborate method of determin-
ing target selection. 1Initial input to the model determines
which targets have the highest priorities for each type of
entity or even whether the target would be engaged at all by
this entity. As an example, the modeler might designate
infantry fighting vehicles as the highest priority target
for M2 infantry fighting vehicles. Among competing targets,
CASTFOREM also uses a ranking algorithm:

(tgt dimension)(tgt contrast)

*(flash) (4)
(observer/tgt effect)

rank =

The flash factor is a variable that gives the target a
higher priority if it is firing a weapon. This represents

the idea that an observer can most easily see a firing

18

target and will consider it a more dangerous opponent.
The observer/target effect includes factors of range, target
motion, and intervisibility (13:3-59).

2.2.5 Engagement Assessment. JANUS and CASTFOREM have
different methods of determining kill probabilities. JANUS
uses a look-up table to determine a SSPK against a target.
This table accounts for the type of weapon, type and expo-
sure aspect of the target, motion of target and observer, as
well as the range to the target (14:372). A random draw
then determines whether the shot hit the target entity. In
JANUS, an entity is either dead or alive, that is, there are
no levels of damage (14:374),

For hit probability, CASTFOREM uses "a normal bivariate
distribution with a bias off the aimpoint and dispersion"
(13:3-178). It computes a probability of kill, and level of
damage based on the location of the impact. CASTFOREM
accounts for accumulation of damage and multiple levels of
"kills" (13:3-179).

There are many different definitions of probability of
kill and just as many methods of computing them. Many times
probabilities of kill are conditional on the occurrence of
other events. Some of these might be hitting the target,
location of hit, range to the target, or angle of impact.
With JANUS, the data is empirically derived from testing by

the Ballistics Research Laboratories [BRL], so many of these

19

factors are accounted for, but for the analyst it is always
important to know the test conditions. The JANUS Single
Shot/Burst Kill Probabilities [SSPK] account for the follow-
ing factors:

- range to target unit;

- motion category of firing unit;

- motion category of target unit;

- protection category (exposed or defilade);

~ aspect angle of target (head-on or flank).
The CASTFOREM algorithm was alsc empirically derived with

BRL data (13:2-77).

2.3 Conceptual Framewor

In the previous sections, the discussion focused on the
fundamental concepts of simulating direct fire combat with
emphasis on modeling the combat processes. In the remainder
of the chapter, the aim is a review of different concepts of
structuring simulations, methods of discrete event simula-
tion, and programming languages.

William T. Morris describes model development as an
"enrichment" process. Any model should start with a well
developed logical structure. From this simple beginning the
model goes through an iterative process of modification and
testing until the model meets the original objective re-
quirements. He stresses to simplify until it works, then
elaborate and enrich (31:B-709).

2.3.1 Model Development. Just as an outline is essen-

tial to writing any lengthy document, a methodology must be

20

established for capturing the complexity of a combat model.

Richard Nance has observed during his modeling career that
the development of a small program or a small model
requires little discipline and almost no supportive
techniques. Both can be developed fairly rapidly and
with little control on the conceptual representation
and the eventual implementation. In part, this
explains the criticism often leveled at new graduates
in computer science or engineering: they do not know

how to solve real world problems. (32:220)

Nance defines two roles for a methodology. These are
"1) conceptual guidance in the modeling task, and 2) defini-
tion of needs for environment designers (32:220)." A Winter
Simulation Conference article by Joseph Derrick and Osman
Balci considers three types of guidance to be important in
the development of discrete event models. These are static
design, dynamic design, and implementation methods (17:716).
This article reviewed a number of different discrete event
methodologies, several of which are applicable to combat
modeling.

The first consideration is the choice of an implementa-
tion methodology of which Derrick reviews five types. A key
discriminator between methods of implementation is the
technique used by each for time advance. There are general-
ly two methods of looking at time advance (28:9). These
being:

Next Event Time Advance - this method initializes the

time clock at zero and updates the clock to the time of

the next most imminent event and continues until no
other events exist.

21

Fixed Increment Time Advance - a specific increment of
time is added to the clock and all processes of the
system are checked to see if any status changes or
events should have occurred in that increment, if so
the system is updated to reflect that the event oc-
curred at the end of the increment. A subset of this
apprcach is to use variable length time steps.
In this case, there is little choice in an implementation
methodology since the intent of this model is to emulate
JANUS and CASTFOREM, both of which use an event scheduling
framework. The article’s discussion of the methodologies
supports event scheduling as an appropriate choice. Derrick
describes the event scheduling routine as an efficient
method of execution when the simulation involves numerous
independent and less interactive entities (17:714), This
statement is an apt description of a combat model with its
many combatants having a wide range of activities in most
cases, Derrick'’s other implementation methodologies for
discrete event simulation were activity scanning, process
interaction, and transaction flow which have characteristics
that make them unattractive for combat modeling. Activity
scanning requires the model to check each activity at each
time advance, thus making it relatively inefficient in a
discrete event model (17:714). Process interaction and
transaction flow are both process oriented, and are most
efficient in models representing series of queues and serv-

ers (17:712})., John Evans states in his discussion on alter-

native strategies,

22

the event-scheduling approach . . . is probably the

mosc natural way to proceed and is frequently used when

starting from scratch using a general-purpose

programming language., (21:79)

In his Introduction to Simulation, William Biles' dis-
cussion states thzt the event scheduling approach concen-
trates on the events and the resulting changes in the system
state. Future events go chronologically into an event
calendar. Time advances as each event is pulled off the
event calendar. The simulation must have a method to pull
the next cvent off the list, advance time, transfer control
of the program to the next event, generate new events and
sort the event calendar as each new event arrives to it
(6:8), The mechanisms to perform taese tasks are discussed
in greater detail in Section 2.3.3.

In terms of static and dynamic development frameworks,
Evans does not see any distinct advantages among conceptual
frameworks except that some are better in particular appli-
cations (21:78). The two methodologies suited to event
scheduling are structured modeling [SM] and conical meth-
odology [CM] (16:716). Of these, SM orients on building
modules around queueing events, (8:253) a situation not
encountered in combat models.

Conical methodology as described by Nance "prescribes a
top-down model definition followed by a bottom-up model
specification” (32:221)., CM stresses a lifecycle approach

to simulation development. The process begins with a decom

23

INITIALIZATIONS

1IME FLOW MECHANISM
SELECT NEXT EVENT

|

EVENT EVENT EVENT EVENT
ROUTINE ROVIINE | | RovTime
] A A ROUTINE

||

OuTPUT

END

Figure 1 Event Scheduling Process

position of the model elements and their relationships as
entities, attributes, and activities. From here, the model
builder develops the dynamic relationships of the elements.
A hierarchical and functional decomposition allow the devel-

opment of a structured program plan. The next phase of the

24

process is an iterative process of building and refining.
This usually results in some redefinitions of the problem
and further iterations. The final phase is verification and
validation of the model. An ongoing task throughout the
process is documentation of the model and the development
process (32:221-223).

While the conical methodology gives general guidance on
the process of creating and maintaining a viable model,
Osman Balci provides some specific guidance on the steps
necessary to implement an event scheduling program. These
are (2:290):

1) Identify the objects and attributes.

2) Identify the attributes of the system.

3) Define what causes a change in the value of an

attribute as an event.

4) Write a subroutine to execute each event.

5) Follow the logic of an event scheduling routine
with an event list to develop the simulation

program.
2.3.2 Model Validation and Verificatjon.

The conical methodology emphasizes that validation and
verification should be performed throughout the development
of a simulation model. 1In simple terms, "model verification
examines whether the computerized model runs as intended,"
and "validation examines the correspondence of the model and
its outputs to perceived reality (4:14)". Validation and
verification is a very controversial subject with numerous
different approaches to the problem. A 1979 GAO report on

model assessment reviewed many of the more popular methods

25

and attempted to find the common thoughts within the various
methods (10). The result is "a minimal set of criteria
deemed necessary for model evaluation (4:15)." The follow-
ing paragraphs list the areas deemed important in model
assessment.

Documentation - should provide the level of detail
necessary to allow model users to understand the processes,
the underlying assumptions, the limitations and the results
of any model validation effort. "At a minimum, the model
documentation should describe the data structure, the key
elements of the model, the general flow logic, and all the
variables...(36:78)."

Validity

Theoretical validity - ensuring that the model’s mathe-
matical modeling techniques are appropriate for the level of
detail required by the user.

Data validity - involves establishing the accuracy,
completeness, and appropriateness of the original data and
verifying the methods in which the data is transformed
within the model (3:21).

Operational validity -~ is the issue of divergence of
model results from "real world" values. It also involves
testing the underlying assumptions and theories to determine
how well they represent the phenomenon. A key part of

operational validity is some basic agreement between the

26

model's sponsors and developers as to the types of valida-

tion required and the amount of "realism" expected (4:16).
Computer model verification - "is ensuring that the

coding of the conceptual model is correct (4:16)." The

mathematical and logical relationships should be correctly

formulated. Throughout the development process, each compo-

nent of the model should be checked separately and as a

functioning part of the whole model for proper operation.

The following list provides six methods for verifying code

(4:16):

structured programming methods;

program testing;

tracing the simulation;

logical relationship checks;

comparison to analytic models;
graphics.

Db W
N s S s it Sovagst?

Maintainability ~ this is the issue of determining
whether the model will be able to correctly represent the
system under analysis throughout the life cycle of the sys-
tem. Maintainability requires that a model be designed so
that it can be modified as required. Two important aspects
of maintainability are review and update. Review require-
ments are that the model proponent schedules periodic looks
at the model to ensure that the model still uses the best
data readily available and to determine whether modifica-
tions are necessary on the model. The update requirement is
to ensure that the model proponent has developed some proce-

dure or guideline to indicate when the model requires im-

27

provements in order to continue to meet its design goals
(10:22),

Usability - this category includes a number of factors
involved with the ease of use of the model., An important
factor is to determine availability of the required data.
Another key point is whether the model output is understand-
able, and whether the output can be modified to suit partic-
ular studies. A short list of additional topics under
usability would include portability, run time, and set up
time (10:23),

The GAO authors have left the terms in the list, de-
fined in general terms, so they can be applied to a wide
variety of models. Some subjects are emphasized in specific
models more than others depending on the degree of detail
required from the model and user defined requirements (4:-
15). Performing an evaluation of a simulation using these
categories should provide a comprehensive assessment of the
model's worth and applicability.

2.3.3 Scheduling Future Events. The heart of any
discrete event scheduling simulation is the event file
synchronization structure. This mechanism provides order to
the operation of the model. Luis Rodriguez states in his
comparison of these structures that "the most important
factor involved in the total execution time of a simulation

is the time required to file an event" (35:189). He looks

28

at linked list structures whi~h most general simulation
languages use and compares them to several newer techniques.
This 1982 report states that there are faster scheduling
techniques, but linked lists are still the predominant
method in use (35:189). More complicated methods with
multiple lists are much faster, but have a requirement for
dynamic parameters which make them more difficult to use
(35:189).,

Both JANUS and CASTFOREM use similar discrete event
scheduling approaches to model continuous time (2).

The master time flow mechanism in JANUS is an event schedul-
ing routine that uses multiple linked lists (27). CASTFOREM
is written in SIMSCRIPT II.5 (13:v) which uses a discrete
event time advance mechanism of multiple linked linear lists
similar to the JANUS model (30:73).

As previously discussed, these routines simulate con-
tinuous time by advancing time to the occurrence time of the
next event. Richard Nance provided a simple description of
an avent as any state change in the model (17:711). The
linked linear list is a sorted data record that keeps the
future events in a sequential order of occurrence (28:71).
As the model pulls the next event from the list, time is
updated, the event is processed, new events are added to the
future event list, and the list is relinked. This process

continues until a specified termination point is reached.

29

This point might be a designated time limit, a specified
attrition level or any number of switches specified by the
user that would be triggered by some event occurrence (2:-
290).

In whatever form it takes, event set management basi-
cally involves database manipulation where the data consists
of event records with fields containing event types, and
occurrence times as the minimum information required to
maintain the event calendar (41:153), There are two general
forms of data storage, these being sequential, commonly
called computed address method, and random access or link
addressing method (42:54). The sequential form is a simpler
method of storage since the only requirement is to keep the
data [events] stored in chronological order. The only tools
required are routines to add events, sort events and pull
events off the list, The drawback to this method is that it
is inefficient because it must re-sort and manipulate all
the events on the event calendar for each iteration. An
iteration being the cycle of selecting and executing the
next event. It is considered a brute force method (28:138).

If a sequential data storage technique is to be used
then an efficient sorting routine is a critical element. A
1991 comparison of sorting routines shows that:

For nearly sorted or midsized files (a few thousand

elements), Shellsort [named for the developer Shell]

performs as well as or better than any other known
algorithm, including quicksort. Furthermore it is an

30

in-place sorting algorithm requiring little extra space
and is easy to code., (43:88)

A 1985 comparison by Dudewicz also showed that Shellsort is
faster than other methods when inserting into a sorted list
(18:293). The heapsort and quicksort were 2-4 times faster
at sorting a random list (18:293); however, this is not a
big concern since the key property of an event list is that
new events are inserted into already sorted lists.,

The more common method of random access requires much
more programming overhead to reduce the processing time
required to manipulate the lists. If a random access ap-
proach is taken for event management then there are a pleth-
ora of possible techniques. Since the basic structure used
by the JANUS and CASTFOREM models is the doubly linked
linear list, it is discussed here for completeness. The
doubly linked linear list structure consists of two lists,
pointers and event records. A pointer is a variable that
references a location in a data structure (42:54). 1In a
double linked list, each list may have several pointers that
identify the head, tail, and also intermediate locations in
the list, Event records each have predecessor links and
successor links that identify the storage locations of the
event that precedes and the event that follows an event.
In this manner all events have a reference to the other
events in the list and can be accessed without being physi-

cally sequenced in order. One list stores the active event

31

2| 4 |34] 2|3 4|1 0 | O] 4]56

8] 2]88)] 2|1

19| 2 |67] 1]18

181 6 |7.9] 19]20 .

KEY

2 = POINTER

wooarion |event vvee | evany viug | PRECICUSEOR | SUCCRSIOR | - RECORD

Figure 2 Example of Doubly Linked List Structure

32

records while the second is a list of available record
spaces (28:135~136). Figure 2 shows how the records are
indexed and linked in each of the two lists.

A complicating requirement in the development of simu-
lation languages is the need to preempt events already in
the list. One method is to pull all the active events from
the event calendar for any entity that is eliminated from
the simulation., In a Winter Simulation Conference article,
Henriksen provides a description of a simple alternative.
If a soldier kills another soldier who is already on the
schedule to perform an event, the dead soldier’'s activity
cannot be allowed to occur. Rather than pulling the event
out of the list, as a simulation language would do, the kill
triggers an attribute switch on the soldier that the event
modules check before execution (24:352). In general, swit-
ches are a useful method of modifying the model's program
logic as the simulation proceeds and are used throughout

JANUS and CASTFOREM.

2.4 Random Number Generation

Any simulation model of a system with inherent random
processes must have a means of obtaining random variates.
Two mmethods to accomplish are to draw random variates from a
table or to use an arithmetic method to generate a numerical
value in accordance with the appropriate distribution (28:-

421). Both methods are widely used in simulation. Random

33

numbers derived in this manner are referred to as pseudo-
random numbers. This is because both methods are reproduc-
ible deterministic methods of generating a stream of random
variates. Drawing numbers from a table is computationally
time consuming, but can be faster than arithmetically com-
puting random variates of complex distributions (28:421).
Tables are also useful when empirically derived distribution
values are available. There are a wide variety of arithme-
tic methods available to provide random variates. An arti-
cle, by Arne Thesen, compares numerous methods to compute
uniform, exponential, normal, and gamma distributions. His
comparisons are based on the qualities of computational
efficiency, ease of programming, non-degeneracy, randomness
of sequence, and independence from seeds and other variates
(41:157)., The uniform distribution with an interval of
[0,1) is a key element in the numerical computation of
random variates. Most other distributions can be obtained
by transformations of uniform variates (28:420).

JANUS uses the U[0,1] generator and tables to obtain
random variates. To model weapons effects, empirically
derived probabilities of kill are sampled from a data table,
and compared against a U[0,1] value to determine the results
(14:42)., The target selection algorithm uses a U[0,1] value
to pick targets. The NVEOL target detection model uses the

U[0,1] distribution for comparison to a table of exponen-

tially distributed values in the continuous search algor-
ithm(1:8). CASTFOREM also uses the uniform distribution for
comparison to exponential distributions as well as a bivar-
iate normal distribution to compute probabilities of kill
(13:2-77). Designers of both models have chosen to use look
up tables rather than using computationally demanding trans-
form algorithms (14;13:2-83), Thesen's article discusses
why the transform operations that are simple to program
become very computationally demanding. Primarily, it is the

A\l

result o° 1sing the logarithmic function which uses Taylor

series expansions with a large number of terms (41:159)."

2.5 Programming Language

There are a wide variety of programming languages that are
used for simulation programming. Most of these fall into
two categories. The first is general purpose simulation
languages, the best known of which are SLAM II, SIMSCRIPT,
and GPSS. The advantages of these are that they provide a
"core of facilities" such as random variate generation,
entity management, and event list management (28:263). The
disadvantage is that any potential user must have access to
these languages (39:93). The second category includes the
higher level programming languages such as FORTRAN, C,
PASCAL, and BASIC. One advantage of these languages is
portability, which means the program can be easy adapted to

run on different computer systems. With high level languag-

35

es, even the compiler may not be necessary if the simulation
can be used in an executable format. Another advantage is
that higher level programming languages permit the applica-
tion of good programming techniques and a person learning
simulation can see the hierachical structure of event sub-
routines and data files (39:94). Andrew Seila, a professor
at the University of Georgia, has found "persons learning
discrete event simulation benefit by seeing the data struc-
tures used and operations that are performed on them in the
simulation program (39:94)."

Since the model under development is instructional in
nature, the features of portability, ease of use, and graph-
ics capability are of prime importance. FORTRAN is in wide
use in military simulations (28:253) and would be the auth-
or's choice except that it does not facilitate use of graph-
ics except with add-on software packages. An article in the
Journal of Pascal, Ada, and Modula-2 comparing the program-
ming languages Pascal and C provided a good analysis of each
language (44). This article was then used as a base of
comparison with a similar article on QuickBASIC version 4.5.
This analysis provided some measure of the strengths and
features of the different languages. C is a very capable
language, but is not user friendly. It would require an
extensive training period before a student could work on the

model code. Pascal has all the necessary capabilities for

36

simulation programs, but is not as well suited to modular
programming as QuickBASIC version 4.5 (44:10). QUICKBASIC
version 4.5 also meets all the requirements above while also
being in a format similar to FORTRAN. It is well suited as
an educational language. It allows modular construction, it
automatically checks syntax and it has debugging tools that
were invaluable to an inexperienced programmer (37:295).

The article describing QuickBASIC states, "The new ANSI
BASIC standard includes many new features, some of which
have outdone Pascal, Modula-2, and even C" (37:295). Quick-
BASIC 4.5 has all the features of a modern structured pro-

gramming language.

37

1II. Model Development Process

3.1 Introduction

. This chapter describes the general model building
process using to create the SPARTAN combat model. The
flowchart in Figure 3 shows the overall process required to

develop the model.

MODESL
GONOEPT
OREATE DEVELOP ITERATURE
8CENARIO MODEL REVIEW
STRUGTURE
| -
DETERMINE DEVELOP DEVELOP LEARN
DATA SOHEDULING MODEL PROGRAMMING
REQUIRED ROUTINE ROUTINES | LANGUAGE
DEVELOP INTEQRATE PREPARE
DATABASES ROUTINE DOCUMENTATION
UPDATE VERIFY PREPARE UBER
DATABASES CODE INSTRUOTIONS
FIELD
TESTS
|

Figure 3 Model Development Process

38

The process appears much cleaner on the chart than it was in
actual development. At each stage of the development, new
information was included and often algorithms were revised.
In each case, there was a cascade effect that required
changing elements such as the documentation, the help files
or the preprocessor,

As the flowchart depicts, time management was required
to concurrently create the model code, construct the model
support tools, and prepare the documentation. The chart
portrays three parallel processes, but to a certain extent
each of the processes was dependent on the others, and were

done in a somewhat synchronous fashion.,

3.2 Development Methodology

The general principles of the conical methodology were
applied as a framework for simulation development. An
article by Richard Nance is the primary source for this
approach. Figure 4 is an extracted outline of this method-
ology (31:38--43). Further information can be found in
(2,3,4,17,33).

The following sections progress from problem formula-
tion through implementation of the functioning simulation
model. An important procedure in the systematic development
approach to this complex problem was to interject several
steps in the process between the conceptual problem state-
ment and the coding process that define the specifications
of the static and dynamic aspects of the model. The goal

39

[. Statement of the study objectives

A, Definitions
B, Assuaptions regarding objectives

I1. MNodeling environment

A. Nodeling effort available
B. Nodeling assuaptions

1. Boundaries
2. Interactions with environaent

a) Ioput description
b} Assuaptions on model/environment
feedback or cross effects
¢ Output and fornat decisions
[II, MNodel Definition

A. ldentifying the objects and their attributes
B. Submodels with possible sublevels

a) Value attributes
b) Relational attributes

IV. Nodel Validation and Verification Procedures

A, Validation tests
B. Verification criteria and tests

V. MNodel experimentation

Figure 4 Conical Methodology Outline

was to determine what objects and activities were being
modeled and the relationships that were to exist between
them. This provided sufficient groundwork to start creating
functions and subprograms that would interact in a logical
progression. Knowing the data requirements before the
programming began meant that it was much simpler to deter-
mine when to pass data and when to call values from an
array. t also facilitated a modular structure that limited

40

‘ |

data access by subprograms to their required portions. The
following sections provide a more detailed discussion of the

process used to develop SPARTAN.

3.3 Problem Definition

The first requirement of the conical methodology is to
determine the real nature of the problem and what techniques
should be used to solve this problem. At this stage in the
development, it is important that the analyst and user look
at the various techniques available to solve the problem.
Simulation is only one tool that should only be applied when
it is the best tool available. In this instance the problem
to be solved as discussed in chapter I is:

build a high resolution land combat model for wargaming

analysis of small scale direct fire conflict between

two homogeneous forces. This model should include

common solution techniques to the basic processes of a

maneuver warfare model as outlined in AMIP (12:12).

The model should be simple to operate with a minimum

amount of instruction, so that it is a useful compli-

ment to a course of instruction in high resolution
combat modeling.
In this particular case, the problem identifies the simula-
tion model solution as the best tool to use.

The problem statement provides a starting point for
looking at the project in terms of requirements. Some of
which are:

- The SPARTAN program must be capable of running on all

IBM XT compatible computers [512K] with color graph-
ics capability.
~- This will enable the widest possible range of

users to be able to operate the model.

41

~=- This requirement goes back to the idea of
building the model with the user in mind.
In this case, the users are students.

The user will be able to operate the model and
understand its internal processes with little effort
beyond reading the documentation.

-~ Students operating this model may have little
or no previous eaperience with computers or
modeling.

The model will illustrate some of the common tech-
niques used by the present generation of Army models
to represent combat,

-- This is in keeping with the combat modeling
course objectives.,

The model will provide animated color graphics de-
picting the bhattle in progress.

-- A graphical representation of a complex simula-
tion is the best means of ensuring that the
analyst can comprehend and interpret all the
interactions in even a simple combat simulation
(37:822).

The model will require no human participation once it
is started, but will provide in-progress status to
the user.

-~ This is a normal feature of analytic models
which ensures the model will have the same
result for each run with the same initial
conditions.,

The simulation should run faster than real time if it
is to be useful.

~- The intent of the model is for the student to
work with it. If the student has to wait for
extended periods on each run, he will be less
inclined to make good use of the model.

-- Even a model such as CASTFOREM that may run 24
hours for a 2 hour battle incorporates many
time saving features at the expense of some
realism,

42

- Preprocessors should be part of the model to simplify
the operation of the model, so the user can focus on
the processes in the model.

-~ The intent of this model is to illustrate a
typical combat model and not to teach program-
ming techniques, so the coding in the model
should be as transparent as possible to the
user.

~ An online help facility and instructional material
should be part of the model.

-~ This will simplify the operation of the model
and enable the student to quickly refer to a
discussion of the various processes modeled in
SPARTAN.

-~ This ensures that some form of documentation is
available even if a paper copy is not avail-
able.

3.3.1 Definitions.

1) "An object - is anything that can be charac-
terized by one or more attributes to which values are as-
signed (33:193)." Usually an entity or event.

2) "Attributes -~ record information about the
object that is useful for modeling task; they assume
values as needed to record changes in the object’s
state (33:193)."

3) "System state - a collection of variables the
values of which define the state of the system at a
given point in time (6:8)."

4) "Set - a collection of associated entities
(6:8)."

3.3.2 Assumptions Regarding Objectives,

1) This model demonstrates modeling concepts and
will never be used for analytic work.
2) The scope and level of detail of the model

were limited by the requirement to complete the project in

43

five months for the start of the next combat modeling course
sequence.

3) The slow operating speed of personal computers
required some further simplifications to keep the speed at a
reasonable rate.

4) The event step approach provides a reasonable

representation of the real process.

3.4 Modeling Environment
3.4.1 Modeling Effort. A major consideration in the

development of any model must be an appraisal of the time
and effort that can be allocated to the project. In this
case, the project required approximately one half of a man-
year of effort,

3.4.2 Modeling Assumptions. The following list is by
no means comprehensive, but does discuss some of the major
assumptions used in developing the model and the initial
scenario. Chapter IV contains many additional assumptions
within the discussions of the individual combat processes.

1) Boundaries. This model has a strict boundary
that limits any external influence of the outcome. The
interactions of the soldier entities are modeled in a some-
what sterile environment where only the terrain and the
enemy have an impact on the soldiers. There is no logistics
support or higher level command and control aside from what
the soldier files have available upon initiation of the

simulation.

44

2) Missions. At the beginning of the simulation,
each soldier has a mission as defined by his direction of
movement, speed, and posture. He will orient on that mis-
sion until such time as his squad leader causes him to
adjust or the scldier reacts to contact with the eremy.

3) A soldier’s performance attributes will not
change over time or as a result of changes in the battle-
field situation., As an example, a soldier entity will never

become tired.

3.5 Model Definition

3.5,.1 Obhjects and Attributes. Identifying the objects
and their attributes may also be referred to as the static
specification of the model. An initial requirement in laying
out the model is to determine what objects can either change
the state of the model or cause some action to occur. The

objects used in this model are:

Grids - The data records for terrain representation

Events - The records controlling actions of the
model

Soldiers - The operational entities

Each of the objects in the model have a certain number
of attributes that provide a more descriptive representation
of the object. It was important to determine early what
attributes of each object should be represented in the
model. The determination of attribute requirements goes
back to the initial model objectives. At this point, it is

important to remember that a model is just a representation

45

of reality and the level of detail should only be that
necessary to address the problem at hand. In this instance,
the model is expected to demonstrate the modeling processes,
rather than act as an analytic tool; therefore, the attrib-
utes required will only be those necessary for the combat
processes noted in chapter I.

Table 1 Terrain Attributes

Variable Type Description
horz int the horizontal grid index

from left to right (20
meters apart; 1 - 50
vert int the vertical grid index
from bottom to top (20
meters apart) 1-50

elev real the average grid height
range of 0.0 - 69.0 meters
mobfac real a trafficability index that

affects speed of entity
movement range 0.0 - 1.0

Table 2 Event Attributes

Variable Type Description
time real scheduled occurrence time

of the event range is
0000.0 - 9999.,0

type int identifies type of event
range from 1 - 7

actor int identifies the soldier
performing the event
range from 1 - 12

predecessor int pointer to event that

link preceeds this event
range 1 - 99

successor int pointer to event that

link follows this event

range 1 - 99

46

Table 3 Soldier Attributes

Variable Type Description

X real soldier’s current horizontal
coordinate range of 0,0 -
1000.0m

y real soldier’s current vertical
coordinate range of 0.0 -
1000.0m

z real soldier’s current elevation
range of 0.0 - 69.0m

xlast real soldier’s last horizontal
coordinate range of 0.0 -
1000.0m

vlast real soldier’s last vertical
coordinate range of 0.0 -
1000.0m

size real soldier’'s height range of 1.6 -
2.0m

speed real movement factor range of 0.0 -
40.0 units per move

dir real direction of travel/orientation
range of 0.0 - 2 * pi radians

moving int a flag that gives movement
intent (0) stopped: (1) moving

wpnrng real effective range of soldier’s
weapon range of 300 - 600m

ammo int ammunition available to soldier
range 0 - 200 rounds

status int flag indicates whether soldier
is (0) dead: (1) alive:

(2) wounded

posture real value indicates whether figure
is (.25) prone: (.5) crouch:
(1.0) upright

incmd int indicate squad leader
(1) leader (0) subordinate

atkdir real original movement direction
range of 0.0 - 2 * pi radians

tgteng int which target soldier has select-
ed to engage range of 1 - 12

side int flag indicates allegiance of
soldier (-1) red: (1) blue

The only system attributes in this model are the index
attribute time represented by the real variable [time], the

47

atmospheric attenuation coefficient, and the counter on the
number of events processed. The system always starts at a

clock time of 000.0 seconds.

3.5.2 Model Activities.

The activities performed by the simulation fall into
three basic categories. The first category includes those
activities that are considered to occur instantaneously with
no significant duration. In most cases, this is a simplify-
ing assumption since most of them would require some time
duration. Within this category, some are represented as
events and some are performed as "bookkeeping", to update
the attributes as required. The second category activities
have some duration and are represented by a start event and
a stop event. And the last category are those tasks re-

quired to perform the system maintenance activities.

Instantaneous Activities
line of sight [LOS]: This activity checks for inter-
vening terrain between the observer and target. Pro-
vides a result of 1 [LOS exists] or 0 [LCS is blocked].
direct fire engagement: This activity is the action of
firing a weapon and determining the bullet’s time of
flight. It then schedules the bullet's impact.
determine target size
determine observer to target ranges
develop target lists

decrement ammunition when expended

determine probability of hit

48

Time

determine probability of kill

plot graphic representation of entities
plot graphic representation of engagements
change posture of soldiers

change direction of travel on orders from the squad
leader

impact of the projectile

Duration Events

start move: This event determines a new location that
the soldier will move to and the time it takes to get
there. Soldier's attributes reflect new position.

stop move: This event updates the soldier’s graphic
location and schedules his next startmove.

search for targets: This is a constant process, but
rather than start and stop, a new search cycle is
scheduled by the time computed for the previous cycle.

reaction to fire: This event is called by a firing
sequence and the target decides what action to take
after being fired upon.

target selection: pi.king a target off the target list
using a random number draw and some simple decision
logic This requires some decision time.

System Maintenance Activities

initialize data sets and event list

maintain event list [future event calendar]
select next event

update time clock

add new events to list [schedule events]

delete events from list when they become obsolete

generate pseudorandom variates

49

transfer program control among event subprograms as
required

terminating the program based on user specifications

store historical data for battle updates and final
output

compute summarized data for the final output

3.6 Model Development

This stage of the process consisted of creating the data-
files, developing an event scheduling routine, and adding
routines that performed the various combat processes.

3.6.1 Creating a Database. Creation of the database
had to be the first step in the model formulation because
all other portions of the model rely on calling values from
data files. The four primary data files are the soldier
attributes, the terrain file, the probability tables and the
initial events for each entity that start the simulation.
The data files took several forms before they reached their
present state. Preprocessors were developed for each file
that allow the student to create a generic file, view the
contents of the file, and edit the file attributes to create
unique scenarios., Initially, this was accomplished using
record arrays. Records can store many attributes that can
be called with a single variable name. This makes passing
variables between routines mvch less complicated. The draw-
back to this method was that the files were not in a read-
able ASCII format. It was felt that the student users of
the model should be able to view the contents of the file

50

without a special viewing program. As a result, flat files
in ASCII format were used instead. The use of flat files
required greater storage space for the data arrays and more
lines of code to access each individual data element, but in
hindsight the model is much easier to understand especially
for students not famili. with record data structures.

The data elements in each file are the same attributes
listed in section 3.5.

3.6.2 Event Set Management. The most difficult task
was creating a simple event scheduling routine. This rou-
tine took several forms before the present doubly linked
list approach was adopted.

Since simplicity was a goal, a sequential event list
sorted between events was initially created. This program
used the Shellsort as discussed in chapter II and was rela-
tively easy to implement. The event records contained four
fields for event type, time, and two entity identifiers.
Computational efficiency was an immediate problem that
killed this approach. The time required to manipulate the
event list slowed even a simple movement routine to the
point where it was impractical to continue.

The next approach was to use a doubly linked list
implementation designed by MAJ Morlan. This scheduling
routine is a simple version of the doubly linked list that
runs efficiently and meets all the requirements of the

model, This routine uses two linked lists. These are the

51

active list which maintains the location of the future
events and the inactive list which maintains the locations
of the unused storage locations. One pointer is used for
each list to point to the head of the list. Each event
record consists of five elements. These are the event type,
event time, event actor, predecessor link, and successor
link. The original goal was to have enough data in each
event record to describe who would do it, what would be
done, when it would happen and to whom. A grammatical
analogy would have been a complete sentence structure with
subject, verb and direct object. In the final approach, the
second entity identifier was dropped because it is simpler
to access the name from the soldier's attribute array when
needed rather than manipulate that field with each event
list update. In its simplest fashion, this scheduling
routine was checked in all conceivable requirements to
ensure it functions properly. These cases include

Adding an event to the top of the list;

Adding an event to the middle of the list;

Adding an event to the bottom of the list;
Removing an event from the top of the list;

Removing an event from the middle of the list;
Removing an event from the bottom of the list.

DOV WO
N e Sttt e i e

Some other cases were eliminated by requiring that the
initial events are loaded in chronological order and the
program automatically goes to output if no active events are
on the list,

The subprograms required to perform event set manage-
ment are the following:

52

1) addevent - adds events to active event list
[calendar];

2) move ~ moves the event from one list to the
other;

3) remove ~ calls move to pull an event from
top middle or bottom of list;

4) clock - pulls the next event off active
event calendar;

5) event - updates system clock and calls next
event;

6) linkempties - initializes the file by giving all

records initial link values;

7) initialize - loads all the data files required to

start the model.

Several brief examples will illustrate the process
performed by the scheduling routine of adding and removing
activities to the end or in the middle of a list [refer to
the illustration in Figure 2]. 1In the first case, an event
is added to the head of a list. This requires both list
pointer values to change, the predecessor and successor
links of the new event to be set, and the predecessor link
of the next event to be altered. The next example is when
an event is added to the middle of a list. In this case,
the links of the new event have to be set as well as the
successor link of the event occurring just before the new
event and the predecessor link of the event immediately
after. The pointers at the head of the list are unaffected.
In this next example, an event is removed from the top of
the list. This task sets the predecessor value of the next
event on the list to the pointer value then moves the event
over to the inactive list. The last example illustrates
removing an event from the middle of a list. Here the

successor link of the event ahead is set to the value of the

53

event following the removed event and the predecessor link
of the following event is set to the value of the event
ahead of the removed event. Once again the removed event is
then placed in the inactive list.

3.6.3 Model Enrichment. The process of model building
was cyclic and involved making gradual improvements to the
basic model and testing the proper functioning of the code
before adding to the model again. The goal of this approach
was to minimize the debugging required as the model grew in
complexity.

The first step in this process was to develop an ini-
tialization subprogram that accessed all necessary data-
files, and created the storage arrays for each file. These
arrays store the terrain attributes, soldier attributes,
initial events, and probability tables. In each case, a
debug routine was used to ensure that the data was being
correctly stored in the arrays and in the correct format.

Integrity of the data was an important issue. This
involved ensuring the correctness and accuracy of the numer-
ical values. The model required a mixture of real, and
integer values, but to simplify storage and access all the
data arrays were stored as single precision real values.
This minimized the number of arrays, but meant that certain
fields had to be converted to integer values prior to use.

The use of incorrect data types and incorrect variable

54

ranges p.roved to be common problems when debugging the
subprograms.

The combat processes were added to the model in the
order required to test their performance. The movement
subprograms were the first to be implemented. The3se were
followed by the search routine, engagement routine and
finally the decision logic processes. In each case, the
model was run under various conditions at each stage to
ensure it was functioning as required. The worst debug
problems were those that appeared long after the component
was initially integrated into the model. On these occasions
it was much more difficult to isolate the problen.

A typical improvement cycle involved creating a simple
subprogram and having it print out all the data values it
required. This would ensure that the correct data was being
provided to the routine. Next the subprogram would be
expanded to include tl= necessary logic and some simple
algorithms. This would also be printed to the screen and
worked with until correct. It usually took several upgrades
to get each subprogram to function properly. An important
element was always to fix any problem before adding to the
model again. On the few occasions when this method was not
strictly adhered to, many hours were spent searching through
the code for errors.

An additional task with each subprogram was to document

the code as it was written., This internal documentation

55

made the code much more understandable in the later stages
of development and ensured that others could understand and
work with the code. A second set of eyes was often invalu-
able to solving code errors.

3.6.4 Probability Distributions.

A variety of probability distributions were used within
the model for various processes. An effort was made to
maintain simplicity rather than accuracy by limiting the
distributions used in SPARTAN. The QUICKBasic 4.5 uniform
[0,1]) pseudorandom number generator is the basis for all
stochastic processes. A triangular distribution function
was included that uses the QB4.5 U[0,1] random variates in a
transform operation. This distribution was chosen because
the transform operation is efficient and the output can be
used to represent both symmetric and skewed distributions.
The function is given a low, high and mode values and re-
turns a value within this range. The algorithm for the
transform was adapted from Pritsker (34:713). This trans-
form provides a rough approximation to a normal distribution
when the mode is centered and the extreme values are assumed
to be within two standard deviations from the mean.
Probability tables were created using the equations in
chapter II, for those distributions that use exponential or
normal distributions. This is similar to the method used by
both JANUS and CASTFOREM for weapons data. In the case of

these two models, the data is the product of extensive

56

weapon testing. The values in the SPARTAN tables were
created by using some known values from the modeling litera-
ture and approximating the unknown parameters so that the
values in the table were reasconable. Even though the tables
do not have accurate values, they still have distributions
that are representative of the empirical data [e.g. proba-
bilities of hit still vary exponentially with range even if
the range of values is not accurate]. These tables were
created using MATHCAD templates which generated datafiles
containing the required values [See Appendix A for tem-
plates].

3.6,5 Instructional Components.

Since SPART&N had an instructional purpose, a number of
fectures had to be addec to the model that might not be
standard for a purely analytic model. The first and fore-
most was that it had to be simple to operate. The intended
user might have very limited knowledge of computer opera-
tions, and a short amount of time to work with the model.
Next, a help function was added to the model that provides
basic information on operating the model and a brief over-
view of the various processes portrayed by the simulation
nmodel. The help function was set up as a hierachical menu
that enables easy access to brief general topic discussions
and subsequent access to more detailed subtopics.

A vreprocessor [STARTUP] was developed that enables the

user to create, modify and review the terrain, soldier

57

_.'_____

attribute, and initial event datafiles. STARTUP is a single
menu driven program that provides sufficient information to
modify the example scenario or create files to support new
scenarios. This program also includes a help function that
explains the requirements for each datafile and includes
instructions on how to set up and operate the SPARTAN model.
The program code for the STARTUP preprocessor is included in
APPENDIX B.

Within each phase of the model'’s operation, instruc-
tional help screens are available to give the student a
better understanding of the overall process., When the model
begins operation, it queries the user whether he desires to
observe the datafiles being loaded into memory. The intent
is to show the format and composition of the required data
files. The set up screen follows and gives the user a
variety of possible termination conditions to choose among.
The student has the option of terminating after a certain
number of events, after a specified time, or at some level
of attrition for either side.

During the operation of SPARTAN, several windows can be
created that suspend execution and allow the student to
evaluate the status of the run. The soldier attribute
window provides a view of a limited number of the attributes
on each soldier, so the current status of each soldier can
be assessed. Another window displays an overall battle

status to include values such as the number of soldiers on

58

each side that are dead, alive or wounded as well as the
number of ammunition rounds remaining. A target list window
displays the detected targets on each soldier's target list
and the associated probabilities of detection. This gives
the student a better basis for understanding the target
selection and engagement process. The last window provides
a list of the next twelve events on the future event calen-
dar. This window is set up to display the linked list logic
of the scheduling routine along with a short description of
each listed event. The last feature of note is the graphic
display of the detection process. When a soldier has suc~
cessfully detected an enemy soldier then a blue line is
momentarily drawn between the positions to indicate detec-
tion. This was initially just a debug feature, but was left
in to give the student a better feel for what the soldiers
can see,

The output option at the end of the simulation run
provides the student with a variety of output types and
different formats., It displays some of the basic functions
of a postprocessor by providing summarized values, final
attribute values, and a history file. Several formats for
providing output are represented by screen displays, output
files or even sending the output to a printer [by using
printscreen]. One screen display shows several summary data
elements that are used as typical measures of effectiveness

in analytic models. Another screen provides the final

59

attribute values for all the soldiers. Additionally, the
model records in a file all the events as they occur in
chronological order,

3.6.6 Human Factors Considerations.

Several elements of the simulation model were evaluated
and modified to make it easier to use and more functional as
an educational tool. These were primarily improving the
screen displays, minimizing key strokes and eliminating
potential mishaps or student errors.

In a text on human factors, McCormick specifies two
objectives to be met when creating visual displays: "the
display must be able to be seen clearly and the design
should help the viewer to correctly perceive the meaning of
the display (30:85). In SPARTAN, the screen displays were
designed to provide a sharp contrast between the text and
the background, so the text is very legible and readible.
Additionally, all the data displays were structured to
provide a simple, understandable format, and kept as unclut-
tered as possible.

The graphical display of the battle was also modified.
Colors were chosen that are representative of the object or
can quickly be associated with the object. Simple examples
include blue for blue soldiers, and a red icon for red
soldiers. To enhance the student's perception of the
events, certain events have special effects that prompt the

user to notice them. A rifle shot has a distinct noise and

60

a red flash. The wounding of a soldier is indicated by a
momentary red burst and a distinct noise while the death of
a soldier has a more pronounced yellow burst and the icon
changes to a dull gray color.

To simplify the operation of the model, key strokes
were eliminated wherever possible and specific choices were
provided to the user. Where the user is required to provide
input to the model, specific instructions are provided, so
the user knows exactly what keys to hit or values to input.
Specific choices are delineated and examples or default
values are provided. The menus are set up to only accept
the correct values and to continue to prompt the user when
incorrect values are given. The simulation has default
value provided, so it will run correctly, even if nothing is

provided by the user.

3.7 Model Assessment

Assessment of the SPARTAN combat model began with a
critical look at the original project objectives and contin-
ued throughout model development., The evaluation criteria
established by the 1979 GAO report were used as guidelines
for assessing the modeling effort (10). SPARTAN presented
some unique assessment issues since it was a demonstrator
rather than a true "analytic" simulation model. As a re-
sult, some of the GAO criteria received more emphasis than

others depending on their degree of applicability.

61

3.7.1 Assessment Process.

Model assessment occurred at three distinct levels.
Initially, each aspect of the model was evaluated by the
author, following this faculty advisors evaluated the model
and provided feedback on necessary improvements and further
guidance on meeting the project objectives. The final
assessment was a series of laboratory tests performed by
personnel with backgrounds similar to those of the projected
student audience. This last phase used "blind testing" as
discussed in James Dunnigan's book, The Complete Wargames
Handbook for the primary model assessment technique (19:2-
37). Blind testing involved issuing prototype software and
user’s manuals to a test audience with no additional in-
structions. The test audience was told to read the user's
manual and attempt to operate SPARTAN. They were asked to
identify any features of the model that were difficult to
understand or distracted from the learning objectives.
Additionally, they were asked to provide a subjective evalu-
ation of whether SPARTAN could provide a significant improv-
ement of a student’s understanding of the modeling process
over that presently received in the course without any
available modeling demonstrators. The blind tests were
performed in two phases with two students in the first group
and three students in the second group. Improvement recom-

mendations were incorporated into the model after each

62

phase. The following sections discuss the GAO criteria as
it applied to SPARTAN,

3.7.2 Documentation.

The documentation provided with the model had two
particular audiences. The first was the student who is
expected to operate the model and hopefully become familiar
with the fundamentals of land combat modeling. The second
audience was the person who intends to learn the details of
the model's operation and who may desire to modify the model
program code.

The user’s manual and the online help screens were
provided for the student. These two sources of information
were intended to provide the user with sufficient informa-
tion to operate the SPARTAN system and to understand the
general modeling concepts used in the simulation. The
comments from the test audience generally focused on ways to
improve descriptions of the model, and discrepancies between
the model and the user's manual., Most felt that the user's
manual was about the right length, but some wanted greater
detail in the users manual. The trade off here was between
keeping the user’s manual concise and providing sufficient
detail. In response, greater detail was provided in the
online help screen, This made the information available to
the interested student, but kept the user’s manual as con-

cise as possible,

63

The thesis document was intended to provide a compre-
hensive discussion of the modeling process, underlying
assumptions, limitations, and the specific techniques used
to model the combat processes. Chapters III and IV provide
detailed discussions of the logic and techniques used in
SPARTAN. The appendices provide internally documented
copies of all the programming code used in SPARTAN. The
internal documentation was written as the code was devel-
oped. Comments were included in the code to explain the
structuring of the code, how variables are used and specific
implementation issues of the QuickBASIC code. This thesis
should provide sufficient information to enable someone to
modify the programming code after a couple weeks of learning
the programming language and the details of the simulation
model .

3.7.3 Validation.

The GAO report discussed assessing three areas of model
validity. These were data validity, theoretical validity,
and operational validity (10:5). From the project's begin-
nings, there was never any intention of creating a "valid"
representation of a realistic battlefield, rather the objec-
tive was to demonstrate present day techniques used in
analytic models for modeling the combat processes. The data
for SPARTAN was fabricated, so there would be no misconcep-
tions about the level of realism represented by SPARTAN,

There is a measure of theoretical validity in SPARTAN be-

64

cause most of the algorithms are adapted from those that
have been previously tested and validated for use in US Army
models. However even with proven algorithms, there is no
real validity when the data and parameters are not empiri-
cally produced. Operational validity also does not apply to
SPARTAN because it is contingent on theoretical and data
validity. SPARTAN does not model or attempt to model a
"real world" situation. The real question of validity is
whether SPARTAN meets its original objectives of providing a
useful tool for demonstrating land combat modeling tech-
niques. The results of the blind testing were that SPARTAN
would be a beneficial addition to the reading and lecture
material presently used to teach high resolution land combat
modeling. The personnel tested felt, in particular, that it
provided good insight into the search process and the vari-
ous component parts of a combat model.

3.7.4 Verification.

Verification of the code required ensuring that each of
the algorithms performed as intended, and that each algo-
rithm functioned properly in concert with the rest of the
model under all possible conditions. Numerous simulation
runs were performed with a wide range of parameter values
and variations to the scenario data. The goal was to find
any problems and correct them before adding further complex-
ity to the model. This was the pecint in the process where

many of the limits on parameter values were established.

65

Most of the code problems were identified and corrected as
each subprogram was added to the base model. There were a
few occasions when model inconsistencies were revealed in
the blind testing that required extensive searching. Sever-
al of these were due to inadequate definition of variable
types, but were subsequently corrected. The QuickBASIC
interpreter made the task of correcting programming errors
much less onerous than it would have been with FORTRAN or
many other languages, The interpreter runs the code in
uncompiled form, so after each correction it was a simple
matter to rerun the program., Even after an extensive number
of runs, errors probably still exist in the program code,
but all errors identified by the testing program have been
corrected.

3.7.5 Maintainability.

One of the original goals of SPARTAN was to provide a
structured program code that would be easy to understand and
enhance as desired. The modular design of the program and
the extensive internal documentation should allow a program-
mer to understand the operation of each routine, and how it
relates to the other processes occurring within SPARTAN,

The variable names were chosen to be descriptive of their
use, so they would aid in understanding the code.

The issues of reviewing and updating the model are left

to the eventual user, but it is hoped that a policy is

66

established that ensures problems encountered by students
are addressed and corrected when possible.

3.7.6 Portability.

SPARTAN was designed to run or. most IBM compatible
personal computers. It runs on any IBM compatible personal
computers at the Air Force Institute of Technology and
should operate on most student's personal computers. The
minimum requirement of 512k random access memory (RAM) is a
requirement of compiled QuickBASIC version 4.5. The EGA
color monitor requirement was necessary to achieve suffi-
cient clarity in the graphics. The code has been tested
successfully at various speeds between 12MHZ to 25MHZ. It
operates much more rapidly from a hard disk drive, but will
operate from any disk drive with 360k or more capacity.

3.7.7 Useability.

After refinements from the first cycle of blind test-
ing, the new users encountered no great difficulty in under-
standing the instructions and were able to operate the model
successfully. In its simplest form, the model with the
example scenario can be operated by a novice modeler in less
than an hour of time. No significant computer skills are
required other than to access the correct directory, and
type in SPARTAN at the prompt. This satisfies one of the
major objectives of the project. SPARTAN is a simple in-

structional aid that can be a benefit to all students.

67

3.8 Conclusion
The intent of Chapter III has been to provide an over-
view of the development process used to create the SPARTAN
model. Using the conical methodology, the following compo-
nents of the model were developed using specifications
derived from the original problem statement guidance of the
sponsor.
1) input data files
2) STARTUP preprocessor program
3) SPARTAN combat model with subprograms for:
- initialization
- terrain representation
- individual soldier movement
- line of sight determination
- target acquisition and detection
- target selection
- target engagement
- damage assessment
- reaction to fire
- limited command and control
- online help facilities
4) model documentation
5) user's manual
6) student study guides

Chapter IV will provide a more detailed discussion of

the various combat processes modeled in SPARTAN.,

68

IV. Combat Processes

4.1 Introduction

This chapter discusses the techniques used in SPARTAN to simulate
the different combat processes. In most cases, these ten techniques are
representative of the common methods used by Army models. In each case,
the origins of the modeling process, the author’'s rationale, and the
implementation methods will be discussed. All the processes addressed
can logically be grouped into categories of movement activities,
engagement activities, and the thought processes of decision logic.

This chapter organizes the discussion of the processes into these three

categories to facilitate a coherent discussion of the process flow.

4.2 Movement Processes

The movement process in SPARTAN uses soldier attributes and
terrain attributes to position soldier entities on the represented
battlefield and move soldier’s to new locations according to the
scenario guidelines and the soldier’s status.

4.2.1 Modeling Movement in Army Models.

Army models commonly use a movement routine that represents the
continuous movement of entities with a series of fixed size movement
steps. The models actually represent the entities presence only at
these discrete step locations. The variability in movement rates is
reflected in the time required to travel the fixed distance. This type
of movement representation minimizes the processing time required for

movement while providing a sufficient level of detail. A fixed time

69

step method might require several iterations to move an entity over the
same distance. The movement algorithms in SPARTAN are similar to, but
greatly simplified versions of those found in JANUS(14:411). The actual
movement algorithms were extracted from DARCOM-P 706-101 (20:40-15).

X = X+20#COS (DIR) (5)

Y = Y+20*SIN(DIR) (6)

These two equations use the trigonometric functions to add an
incremental value to each coordinate based on a fixed movement distance
and a direction of movement for each soldier. These simple equations
are applicable in all possible directions [0.0 -~ 6.28 radians].

SPARTAN moves an entity 20 meters for each move, regardless of
the terrain. This is a departure from the JANUS model, which tries to
move entities in 50 meter increments, and can modify the distance when
obstacles are encountered. SPARTAN operates on a much smaller scale and
currently, does not model obhstacle circumvention. Unlike JANUS, each
soldier in SPARTAN has an original direction of movement rather than a
route of movement with varying directions. Changes in direction occur
only as a result of a soldier's tactical decisions. In this aspect,
SPARTAN is employing a method similar to CASTFOREM which uses movement
routes, but allows tactical decisions to affect the choice of these
routes.

As stated earlier, movement time is the factor that varies with
conditions [See Equation 7). Each soldier has attributes for movement
speed and posture while his location has an associated trafficability
index. All of these factors are included in the movement time algo-

rithm. As an example, a soldier with a high movement speed will have

70

more moves of shorter time duration than another soldier with a lower
movement speed. As a result, the quicker soldier will move a further
distance in the same allotted time.
4,2.2 The SPARTAN Movement Process.

Movement is performed by two subprograms named startmove and
endmove. These routires move each entity along a single direction of
movenent at a rate of 20 meters per move whenever the soldier's movement
att~ibute switch is on and his speed is greater than zero.

When startmove is called, it begins by performing several status
checks to determine whether the soldier should move. The routine checks
uis postrre, his present movement rate, the terrain trafficability, and
his proxiwity to enemy forces. Several artificial rules are imposed on
the movement process. These are that a soldier stop moving when within
100m of a living enemy soldier and when he crosses the terrain maneuver
boundaries [edges of the view screen]. These rules eliminate the issue
of close quarters combat and aliow the terrain datafile to be limited in
size to the viewing screen area. When a soldier does move, equations
[5) and [6] arc used to compute the soldier’s new coordinates. His
present location is stored as ti.e previous locat.on and both sets are
updated in the soldier’s attribute array.

Startmove calls the procedure for updating graphics. This
subprogram crases the soldier’s symuui at the old location and redraws
his symbol at the new location. The rapid speed of the drawing provides
an animated effect of the entity moving across the screen.

The time duration of the move is a uniform random factor modified

for the soldier’s speed, present grid trafficability factor, and

71

posture. This movement time is added to the present event time and an
endmove event is scheduled at that later time. The random variable
represents subtle variations in the soldier’s movement rate and terrain
conditions or perhaps to model minor direction changes of the soldier
moving along a tactical route that improves his level of cover and

concealment,

RND+ SCALEFACTOR (7)

MOVETIME = TIME o rrDx MOBILITYFACTOR » POSTURE

The primary function of the endmove event is to schedule the next
startmove event. The time duration between moves is a random value from
a triangular distribution with a mode of ten seconds.

The tactical situation affects a soldier’s movement by altering
his attribute array. A soldier reacting to being fired upon may alter
his speed, change posture, change direction or just stop. Similarly, if
a designated squad leader engages an enemy soldier then he may cause the
other squad members to change their direction and move towards the enemy
he selected to fire upon. In the event that the squad leader or his
target are killed, the squad leader’s soldiers return to their original
direction of moveuent.

The low level of detail in this movement simulation results in the
foilowing list of limitations and or assumptions inherent in the
process,

1) The entities in effect are in an iterative process of moving
and stopping rather than continuous movement.

2) There might be situations where the soldier might not want to

move the entire twenty meters in one bound, but the algorithms
have no options.

72

CALL

CAaLL
8TARTMOVE

ENDMOVE

RETRIEVE
SOLDIER &
TERRAIN
ATTRIBUTE

CALL TRIAG FUNCTION
DETERMINE NEXT MOVE TIME

WLUES

18
SOLDIER
MOVING ?

NO

ADDEVENT
S§OHEDULE
STARTMOVE

8ET LAST LOCATION
ATTRIBUTES TO PREBENT
LOOATION VALUES

T

ICOMPUTE NEW LOGCATION
ENSURE NEW LOGATION |8
ALWAYB IN BEOTOR{BOREEN)

{

Ioowurs TIME TO THE
|END OF MOVEMENT

OALL
ADDEVENT
SCHEDULE
ENDMOVE

CALL
ADDEVENT

S8CHEOQULE
STARTMOVE

CALL ICON TO MOVE
GRAPHICS TO NEW LOCATION

Figure 5 Movement Process

73

3) The slope of the terrain does not affect the rate of movement.

4) SPARTAN assumes the trafficability of the grid where the
soldier starts is not significantly different anywhere along
his 20m path.

5) After an endmove and before the next startmove, the soldier’'s
moving status does not change t» indicate a halt.

6) Fatigue is not a factor in this movement.

7) Movement computations are scaled for the screen graphics
rather than being a good model of reality.

8) Posture changes are instantaneous and do not affect a move in
progress.

4,3 Engagement Processes Modeled in SPARTAN

The target engagement process includes a sequential list of
activities from target acquisition through target destruction. This
section will discuss the various processes of searching for targets,
selecting targets, and engaging the targets.

Before getting into the details of each process, it is useful to
see how the processes relate in the activities of a typical SPARTAN
soldier. For all soldiers, the first step is to search for targets.
Every 10-20 seconds, the computer scans the entire area around each
soldier. To perform this search, the computer must determine if line of
sight exists between the scanning soldier and all enemy soldiers. If
line of sight exists then the routine computes whether each enemy with
line of sight is providing enough of a signature for the observer to
acquire., The computer then checks for a possible detection for each of
those enemy targets that could be acquired. Any target that can be
detected is placed in the observer'’s target list. If the observer has

successfully detected one or more targets, then a selection algorithm

74

models the process of deciding whether to shoot at any of the enemy and
then which particular one to engage. If a target was selected, the
soldier then takes the time to aim and fire at the enemy. If the enemy
soldier is struck and killed, the firer returns to his searching
activities, otherwise, he reengages the enemy as long as he can see the
enemy. Throughout this process, any failure to advance to the next
stage of the process returns the soldier to his initial search activi-
ties. With this in mind, it will be easier to understand each of the
subordinate processes and the soldier's decision process.

4.3.1 SPARTAN Search Process.

SPARTAN uses a simplified version of the continuous search
algorithm discussed in Hartman (23:4--32). This is the same basic
gsearch process used by CASTFOREM and JANUS. This type of search model
requires that three factors must be addressed before a target is
successfully detected. These are: the target gives off a signature that
can be acquired by the observer's detection device, it is physically
possible to see from the observer to the target, and the observer must
look in the direction of the target long enough to pick up the target's
signature.

At this point, it is necessary to point out a significant differ-
ence between the JANUS, CASTFOREM and SPARTAN models. CASTFOREM
determines a search sector for each sensor as a function of time (13: 3-
79), JANUS and SPARTAN do not. JANUS has a set of rules governing its
search sector. On the move, each entity searches 360 degrees, but when
stationary JANUS uses a fixed 180 degree arc centered on the direction

of travel or it uses the sensor field of view when the observer is in

75

defilade (14:365). SPARTAN does not determine a specific sector of
observation for each soldier. It is assumed that in each search cycle,
the soldier performs a scan in all directions. The primary reason for
eliminating sectors was to avoid the associated computational cverhead.
In effect, the model assumes that the soldiers are prudent and perform-
ing a comprehensive search each search cycle. What this eliminates is
the possibility of focusing on likely enemy locations, defining sectors
of responsibility among groups of soldiers or modeling the tendency of
many soldiers to look only in their direction of travel.
4.3.1.1 Line of Sight [LOS].

The first task performed by the search module is to check for line
of sight between the observer soldier and all the enemy. Performing
this check first eliminates some unnecessary calculations that would be
performed if the target's acquisition potential were checked initially.

LOS is a separate function within the combat module. The observ-
er’'s identity is passed to the functiorn and for each living enemy
soldier, it returns either a 1 to indicate that LOS exists or a 0 to
indicate that terrain obstructs the view between the observer and one of
the enemy,

The method used to check LOS is depicted in Figure 6. The height
of the observer's visual sensor [his eyes] are computed as his elevation
plus his height attribute. The enemy's height is the enemy’s elevation
plus his height. The function then computes the distance between the
two soldiers and determines the number of checks required to sample the
intervening elevations at 10m increments, 10m was chosen to ensure each

20m grid cell is sampled. The function then uses a simple difference

76

LINE OF BIGHT

f 4
TARQET
ELEWTION
HIGHEST POINT OF INTERVENING TERMAIN
1 18 LOWER THAN LINE OF 8IQHT
OBSERVER
ELEVATION
KEY
l X = CHECKPOINTS 1

Figure 6 Line of Sight Check

equation to determine the LOS elevation at each check point. If the LOS
elevation is less than or equal to the grid elevation then the LOS
function returns an indication that LOS does not exist. This function
does not account for any partial obscuration that might occur due to
vegetation or buildings.

Atmospheric attenuation is accounted for by using a simple linear
modifier. This modifier assumes a uniform background weather effect
within the model (23:3-20). The modifier increases the minimum thresh-
old level required for target acquisition [See Section 4.3.1.2]. This
attenuation effect might be the result of fog, rain, dust or darkness

that hinders the transmission of the target signature.

77

CALL LOS
INPUT
oB8 & TaT

INPUT
LOCATIONS

COMPUTE DISTANCE
DETERMINE NUMBER OF CHECKS

'

COMPUTE DX, DY AND DZ FOR
EACH 10 METER CHECKPOINT

{

COMPARE LO8 HEIGHT AND TERRAIN
ELEWTION AT EACH CHECKPOINT Gy

Figure 7 LOS Process

4.3,1.2 Target Acquisition.

The process of target acquisition determines whether a target
gives off a sufficient signature for the observer to detect. The

78

equation used to model acquisition is a simplified version of equation
[1]. This equation is discussed in Bailey’s analysis of the JANUS
detection algorithms (1:5). See Appendix A for the MATHCAD template

used to create the acquisition tables.

pl = 1-exp(—.84*(-i-c';)3") (8)

M is a constant value of 3.5. This scaling factor

accounts for the probability required to yield a

target identification,

C is the number of resolvable cycles for the target

which is a factor of target height divided by distance

of the target.

.84 is a scaling factor added to Bailey’s algorithm to

get appropriate values since no empirical data was used

on the sensory capabilities of human eyesight,
Using equation [8), a table of acquisition values was created. This
table is indexed by target posture and target range. After computing
target range and looking up the target posture, the search subprogram
selects an acquisition probability and compares it to a threshold value,
A value exceeding the threshold indicates that the target can be
acquired and possibly detected. The minimum acquisition threshold for
SPARTAN was set arbitrarily using the author’s best judgement at .3 for
conditions of no attenuation. This is the point where the atmospheric
attenuation coefficient affects the search process. If the user sets

the attenuation coefficient lower than 1.0, it raises the threshold

value for acquisition by a proportional amount.

79

!
(e

AT TENUATION
e | COMPUTE ACQUIBITION
%;OE"IOI!NT/ THRESHOLD LEVEL

COMPUTE
START TIME

FOR NEXT
BEARCH
OYCLE

CALL
ADDEVENT

COMPUTE TARQET
RANGE

|

QET PKACQ)
FROM TABLE

Figure 8 Search Process

80

NG
ThkedNoLo
?

YR®

OETERMINE
SRARCH TIME

\d

/ e’/

coMruTR U(C,1)

RANOOM NUMBER + PR(DET)

PUT TARGUT
ON TarLiaY

MORE
TARQETS
?

DETEAMINE TARGET
SELECTION TIME

GALL ADDEVENT
SCHEDULE
// TGTBELECY

!

Figure 9 Search Process (cont)

81

4,.3.1.3 Target Detection.

If a target can be acquired then the possibility of detection is
checked by the search subprogram. For each acquireable target, a random
gsearch time is computed using a triangular distribution with a mode of
2.0 and a range of [.4 - 4.0]. This value is assumed to be the time [in
seconds] that the observer scans the area containing the potential
target. With this time and the target range, the search routine draws a
U{0,1] random variate and compares it to a Pz value drawn from the
detection probability tables. If the random variate is less than or
equal to the Pz value then a detection occurs, the targets identifica-
tion and Pz values are stored in the observer's target list and the
observer is scheduled to perform a target selection.

The detection probability tables were created using the NVEOL
equation for Pz as discussed in Chapter II. These tables are indexed by

target range and search time.

P, - 1-exp(-(§) *(?%)) (9)

C and M are the same variables discussed with equation
[8]. This table does not differentiate between any
target postures.

t is the random search time in seconds with a range of
[0.4 - 4.0].

6.8 is an empirical value from the original NVEOL
equation,

The JANUS and CASTFOREM versions of this algorithm are much more
comprehensive. In addition to range and search time, they include:

atmospheric attenuation, contrast between the target and its background,

82

sky brightness, movement «f the observer, target movement and whether
the target is producing a firing signature.

4,3.2 Target Selection.

The target selection subprogram is scheduled at the completion of
a soldier’s cycle if one or more targets was detected during the search.
The two purposes of the target selection routine are to determine
whether the conditions are suitable for the soldier to fire at a
detected enemy soldier and to determine which of multiple targets should
be engaged. The process used by SPARTAN is similar to the decision
logic modeled in JANUS.

The selection routine begins by comparing the target distance to
the effective range of the observer's weapon. At this point, the model
also accounts for any observer’s range estimation error by allowing up
to 100m of variation in the computed range estimate. This estimate is
compared to the observer’s weapon range. If the target is in range,
then the probabilities for all targets on the observer’s target list are
summed and compared to a threshold of .20, If the summed value is less
than .20, the soldier is assumed to have decided that the target cannot
be effectively engaged and the observer goes back to searching. If the
soldier’s decision is to engage, the detection probability values in the
target list are normalized so they sum to 1. A U[0,1]) random variate is
drawn and compared to this range of detection probabilities. The
targets with the larger probabilities are most likely to be picked. The
result of this method is that target with a high probability of being
hit will usually be chosen. JANUS uses a similar method, except it

determines single shot probabilities of kill [SSPK] for each target on

83

CALL
TATSELECT

INPUT
OBSERVER
TARGET LIsT

SUM P2(DET) VALUES

8§ 8UM»
MINI?MUM

YES

Y

NORMALIZE P2 VALUES
DRAW U(0,1) RND#

COMPUTE TIME
FOR NEXT 8ZARCH

l

USE RANDOM NUMBER
TO SELECT TARQET

|

COMPUTE AIM TIME

CALL
ADDEVENT
SCHEDULE
SEARCH

!

CALL
ADDEVENT

SCHEDULE
DIRECTFIRE

RETURN

Figure 10

Target Selection

the list and uses this paraxeter to select a target. A comparison of
SSPKs and detection probabilities shows a strong correlation since both
are highly correlated with target range. With this in mind, the author
decided to use detection probabilities as a surrogate for the SfPK, so
that additional computations would not be required.

If a target is selected, its identifier is placed in the obser-
ver’s attribute as the target to be engaged, and a direct fire event is
scheduled. The target selection occurs as an instantaneous ¢sent, but a
five second delay between target detection and selection is intended to
account for the decision time.

4.3.3 Target Engagement.

Soldier’s in SPARTAN are limited to semi-automatic direct fire
weapons. The model incorporates probability of hit tables for single
shot weapons with effective ranges of 300, 400, 500, and 600 meters.

The weapon range is one of the soldier’s attributes. The time of flight
for each weapon is the same, but the probabilities of hit vary signifi-
cantly.

Before the target selection routine calls a direct fire engage-
ment, it computes a delay time that accounts for loading and aiming the
weapon. The direct fire subprogram starts by checking LOS to ensure the
target has not moved out of view during the time required to select and
aim at the target. The process then ensures that ammunition is avail-
able, and if so decrements one round from the soldier’s supply. The
subprogram, subsequently, computes a time of flight for the buvllet and
calls the impact subprogram at that time in the future. The subprogram

also creates an auditory and visual effect to represent the bullet’s

85

CALL
DIRECTFIRE

14

111207 FIRER
& TARGET ID'a

|

18 NO
AMMO > O —
?
YES

DOES LOS

r—— COMPUTE NEXT
EXIeT

SEARCH TIME

COMPUTE RANGE & TIME TO IMPACT

:

DRA¥ OUT PROJECTILE PATH

v

DECREMENT AMMO COUNT BY 1

' '

CALL CALL
ADDEVENT ADDEVENT
SCHEDULE SCHEDULE
IMPACT S8EARGH
__

Figure 11 Direct Fire Process

86

flight. Initially, the impact subprogram determines whether the bullet
hits the target soldier. The probability of hit is taken from a table
stored in main memory and indexed by weapon range, engagement range and
target posture. The probabilities were originally computed using a
bivariate normal approximation equation provided by Hartman (23:7-17).
This equation assumes no bias and a circular error distribution.

The basic equation is:

R?
Puyp = 1-€Xp (- ——— (10)
hic exp(2*02)

Rz ’X2+Y2 (11)

The numerical values required to apply these equations were arbitrarily
selected to create hit tables with the desired range of values.
Additionally, this algorithm assumes a circular target, so a fraction of
the probability was taken to represent the portion of the circle
occupied by the target.

The impact algorithm draws the appropriate probability from the
datafiles and compares it with a U[0,1] random variate. A random value
greater than the probability indicates a missed shot with the result
that the firer will attempt to reengage while a "react to fire" sub-
program is called for the target soldier. If the round strikes the
target then there is a 30 percent chance of killing the soldier, and a
70 percent chance of only wounding him. When a soldier is killed,
several things occur. An extended noise and color burst indicate his
death and his symbol changes to a red color. His status attribute goes
to zero, his movement goes to zero, and his posture goes to prone.
Lastly, the "killsoldier" subprogram is called which removes all active

87

l

INPUT
FIRER & 10T
ATTRIBJTES

l

_/

COMPUTE RANGE TO TARGET

1

GET P{HIT)

DRAY Ul0,¥)
RANDOM #

P(HIT) <« RND

/"" /

Figure 12 Bullet Impact Process

88

® ® ®
| |

COMPLTE AIM SET STN'US SET STAIUS
& RELOAD TIME TO WOUNDED TO DEAD
'CALL ADDEVENT COMPUTE AIM LL KILLSOLDIER
SCHEDULE & RELOAD TIME EMOVE EVENTS
DIRECTFIRE { FAOM CALENDAR
} //cALL ADDEVENT “

COMPUTE SCHEDULE COMPUTE TIME
REACTION TIME DIRECTFIRE FOR NEXT 8EARCH

/ COMPUTE
CALL ADDEVENT e TIME :ca:;ls. :utﬂsvsj/
SCHEDULE EACT
REACTTOFIRE }
CALL ADDEVENT 1
SCHEDULE
REACTOFIRE @

|

&,

Figure 13 Bullet Impact Process (cont)

events of the dead soldier from the future event calendar. This
prevents the possibility of a soldier performing an event or affecting
the battle after his death.

A wounded soldier is indicated by a short color and sound burst.
When a wounding occurs, the firer is scheduled to reengage, and the
target entity is scheduled for a reaction to fire event. The only
effect a wound has on a soldier is to reduce his movement speed. There

89

is no cumulative effect from multiple wounds and suppression is not

modeled by SPARTAN.

4.4 Modeling Decision Logic

The point of modeling decision logic is to determine which of the
available courses of action would be taken by an individual in a givex
situation. This requires making a judgement based on parameters that
significantly effect the situation. Some decisions may be specified in
certain circumstances and some may be probabilistic to reflect uncer-
tainty. The principal tool for performing decision logic in SPARTAN is
the IF - THEN -~ ELSE block which mimics the decision process by monitor-
ing a specified set of conditions. These blocks are used extensively
throughout the program. Virtually, every step of each process has
alternatives that require some choice. The previous sections have made
numerous references to these decisions. In the following paragraphs,
the discussion will focus on a two processes that emphasize decision
logic.,

4.4.1 Reacting to Fire.

This subprogram requires a soldier to take some action when fired
upon by the enemy. The method chosen to model this decision was a
conditional block with three possible branches. Branches are chosen
stochastically with a U[0,1] random variate. The first choice has a 40
percent chance of occurrence. This branch causes the soldier to assume
a prone posture and slow down to a crawl speed. This is intended to
replicate a soldier seeking cover. The next choice has a 20 percent
probability and causes the soldier to reverse directions as if to back
away. The last option has the soldier remain in an standing posture and

90

advancing toward the enemy. These alternatives were chosen, 30 dis-
tinct choices would occur that were discernable to the student observing
the simulation run. They were selected with no concern for réalism and
could be changed to reflect other courses of action.

4.4.2 Command and Control.

One portion of the model was intended to represent limited command
and control processes. On each side, one soldier can be designated as a
squad leader. The student has the option of having squad members follow
certain instructions from the squad leader.

When the squad leader is in control, all other squad members will
reorient towards any target engaged by the squad leader. No one else in
the squad has the ability to communicate or cause others to react. The
squad leader is in effect the only "voice" in the unit. The inspiration
for this logic was a squad communications system used by the US Army in
the early 1980’s. This system gave all the subordinates a helmet
mounted receiver while the squad leader had the only transmitter. The
result was very limited one way communications. In this model, messages
are instantaneous and always received. The simulation logic requires
that all the subordinates will resume their original orientation if the
squad leader or his current target is killed. Note the simplifying
assumption here that a soldier knows the status of any enemy that he is
observing.

There are numerous other instances where command and control logic
is inherent in the process. The initial attribute values of the
svldiers have tlie effect of specifying a simplistic mission order for

each soldier. A soldier’s direction, rate of advance, and initial

91

%
/! ':::; o /

DRAW U(o.ﬂ RANDOM # |

8OLDIER ASBUMES
PRONE POSTURE
RANDOM # ¢ .4 rewee MOVEMENT 8LOWS TO &

SOLDIER
REVERSES DIRECTION
MAINTAINS ORIGINAL SPEED

!

SOLDIER /
CONTINUES TO ADWNCE RETURN
AT 8PEED OF 30

RETURN

Figure 14 React to Fire Process

92

location can represent crude forms of tactics. The decision logic that
determines when a soldier will fire at a potential target might repre-

sent a unit’s standard operating procedures for fire control. Lastly,

the absence of communications in the model can be representative of

situations where poor communications actually exist.

4.5 Conclusion

Chapter IV has provided a discussion of the major combat processes
modeled in SPARTAN. The intent was to provide a sufficient level of
detail for the reader to understand how the processes operate, how they
interact within the simulation, and why specific methods were chosen for
use in the model.

Chapter V provides an assessment of whether the model development
effort met the original study objects, and provides some recommendations

for future enhancements of SPARTAN.

9y

V. <Conclusion

5.1 Summary

This thesis developed a new high resolution land combat model as
an educational tool to supplement courses of instruction for future
combat modelers. The goal was to develop a simulation model that
illustrates some of the more important topics of combat modeling as
discussed by James Hartman and other authors (1,5,7,18). Some of the
important topics demonstrated are:

1) Time keeping and an implementation technique for event set
management and synchronization.

2) Algorithms used to model movement, terrain, target detection,
target selection, weapon accuracy, and attrition.

3) Techniques to model decision logic of the soldier as well as
simple command and control issues.

4) Stochastic techniques for representing the occurrence of
randomness on the battlefield.

5) Data requirements and storage techniques for various model
components.

6) The overall process of developing a combat simulation model
from concept to implementation.

7) An example of the components for a typical combat model such
as the scenario input, a preprocessor, the simulation model,
various types of output, and accompanying documentation.

Unlike many other thesis efforts that have focused on one aspect

of a combat model and have gone into great detail with that particular
aspect; this thesis effort used the six months of available time to

perform the entire process of developing a model, with a very limited

time scope.

94

At this point, it is important to remember that the objective was
tc create a model that displays modeling techniques rather than a model
to perform combat analysis. The modeling techniques in SPARTAN are
similar, in most cases, to those found in the current family of high
resolution combat models used by the US Army. Since this model did not
have an analytic objective, the issue of data validity was totally
avoided. Any attempt to implement accurate data would have required an
effort equal to the task of developing just the computer model.

Throughout the process, it was important to stay focused on the
original objectives, At each stage, the ever present temptation was to
add some extra level of detail or refinement to the model. One drawback
of not having accurate data was the time required to scale model
parameters, so the model output would appear reasonable. This is
particularly evident in the representation of time. Time goes by much
more quickly in the simulation than it could in reality. This is not to
say that the specific event times are unrealistic. The apparent
shortcoming is that the model only represents a limited number of the
many activities that a soldier would be constantly performing as he
traversed a battlefield. Thus the model does not account adequately for
the time taken by these other activities.

One aspect of this modeling project that differs from most was the
level of transparency required. Normally, a modeler strives to minimize
the mechanical nature of the model. SPARTAN, on the other hand, was
intended to demonstrate these mechanisms, so there was always a decision
on which was more important. One example of this was leaving in the

debug feature that displays a target detection. This should help the

95

student understand the sequential search process that preceeds a target
engagement.,

The single biggest hurdle to overcome in developing SPARTAN was to
implement a viable event set management algorithm. After several
attempts with methods that proved slow and laborious such as sorting
sequential lists, MAJ Morlan’s design for a doubly linked list became
the control logic for SPARTAN. Another significant task was mairtaining
the documentation that goes with the model. The documentation for
SPARTAN includes detailed comment lines in the code, the users manual,
the online instruction screens, and the thesis document. Every modifi-
cation required updating all of these documents.

Some of the other design objectives that guided development were
ease of use, simplicity, and portability. The model meets these
requirements. Any student can read the users manual and operate SPARTAN
with the example scenario in less than an hour. The set up prompts
provide the student with simple options that require little knowledge of
modeling and leave little room for student error. Simple help screens
should enable the student to learn as much about the mode¢l as one
desires. The software and data files for SPARTAN can be maintained on a
single 360K floppy disk that fits on most IBM compatible personal
computers. This means that SPARTAN is readily accessible to virtually
any student.

The QuickBASIC version 4.5 programming language proved to be a
good choice as a development tool., It facilitates the use of structured
programming and the interpreter greatly simplified the tasks of coding

and debugging the program. The language syntax is quite understandable

86

and was easy to learn. Other features that proved useful were the color
graphics functions and the ability to simultaneously maintain several

screens of graphi_. images that can be called up on demand.

STARTUP
PREPROCESSOR

Figure 15 SPARTAN Simulation Process

5.2 Recommendations

The simplicity of SPARTAN lends itself to a myriad of possible
enhancements. The possibilities include multiple types of entities,
multiple weapon types, greater detail in the various processes, more
refined graphics displays and a better array of available output. As

William T. Morris stated in his article "On the Art of Modeling",

97

one begins with very simple models, quite distinct from reality

and attempts to move in an evolutionary fashion toward more

elaborate models which more nearly reflect the complexity of the

actual management situation. (31:B-709)

SPARTAN was intended to represent a finished product, but as just
stated, a simple model can always be enriched. The structured program-
ming approach used to develop the code facilitates a future process of
"elaboration and enrichment”. This section will discuss a logical
progression of possible improvements that have already been identified.

1) While SPARTAN was developed with the goal of making it easy to
improve, no great effort was made to determine the storage and memory
limitations of QuickBASIC 4.5. It would be prudent to establish these
size limitations prior to any major improvements to the program.

2) Improve the movement process to allow input of detailed
movement paths for each soldier. Additionally, increase the level of
detail in the attributes, so that at any point in time it can be
determined whether the soldier is moving or stationary. This would
allow greater detail in the acquisition and engagement processes.

3) Incorporate obstacles, and greater terrain detail such as
vegetation, background clutter, and speed adjustments due to slope.

4) Establish a better time line for the occurrence of events, so
time representation is more realistic.

5) Obtain realistic sensor and weapons data to increase the level
of realism.

6) Enhance target definition modeling by incorporating target to

background contrast and a more realistic representation of atmospheric

attenuation.

98

7) Incorporate multiple weapon types to include indirect fire
systems such as grenade launchers or mortars, and consider ways to
pertray minefields and booby traps.

8) The graphics can be greatiy enhanced. The terrain representa-
tion needs to be much clearer, and perhaps a pattern can be incorporated
to display the trafficability index of each grid. Additionally, the
icons would be much more informative if they displayed the soldier’s
status and posture.

9) The decision processes are very rudimentary and could be
vastly improved. Communications also could be improved to incorporate
transmission time delays and misinterpretation.

10) Improve the user interface with the model by making instruc-
tions clearer and simplifying the overall process by steps such as

minimizing the number of query prompts and user key strokes.

This list could be much more extensive, but the ideas provided seem to
be reasonable steps that stay within the original context of the
modeling project.

A final note, giving this model to students as an instructional
tool requires that some means should be established to get feedback from
the students after each use of the model. Their suggestions then could
be incorporated into a new model. This would ensure that SPARTAN

remains a viable tool for a long time to come.

5.3 Conclusion
This thesis effort provides the military modeling community with a

viable instructional tool for illustration of high resolution land

99

combat modeling. The scope of the project encompassed all the primary
aspects of simulation modeling from the initial problem statement
through coding and implementation of a functional model. The end result
of this project is an "analytic type" combat simulation that includes a
preprocessor, and online instructional displays. These features provide
the student with sufficient information to use the model and to learn
how the model simulates the various combat processes.

The end result of this thesis effort is a high resolution land
combat model with many of the key features of actual analytic models of

much greater size and complexity.

100

Appendix A: Computation Templates for Probability Tables

This sppendix discusses the computational methods used to create
the various probability tables used in SPARTAN. The equations are
adapted from those discussed by Hartman (23) for probability of hit and
the Night Vision Electro-Optical Laboratory algorithms for acquisition
and detection as discussed by Bailey (1). Since the intent of SPARTAN
was to model only the most basic aspects of the combat processes, the
algorithms were simplified by replacing some variables with constants
[these are noted in the templates]. The data for these tables was
created arbitrarily. The goal was to provide the model with "reason-
able" values that would produce reasonable results. There was no intent
to validate any of the data or the results of the model.

MATHCAD [version 2.5 mathematics software was used to create the
various probability tables. The software was quite useful since it
allows the user to create a reuseable template that displays all the
computations along with text comments for internal documentation.
Probability of Acquisition

The template on the following page was used to create the Pl
acquisition tables. The equations were adapted from those discussed by
Bailey in a Rand report on the NVEOL algorithms used in JANUS(14:3--10).
Each value in the PI table represents the probability of detecting a

target given unlimited time.

101

The following MATHCAD 2.5 template computes probabilities of acquisition
using simplified versions of the Night Vision Electro-Optical

Laboratories (NVEOL) optical sensor algorithms as used in JANUS and

CASTFOREM.

All linear measurements are in meters and all angular measurements

are in radians or milliradians.

ORIGIN=1 i :=1..10 ji=1..3

This is the average target height in each posture. L :

This is the range between sensor and target. R := 100-i
i

r is the resolution of the sensor expressed

in resolvable cycles per milliradian. This is
arbitrarily set to 1.0. The NVEOL model r:=1.
provides an equation to determine r in the

visual range, but it would require determining
several factors such as sky brightness and

target to background contrast.

C is an array of values for resolvable cycles
of the target in each posture.

L 5
J 2.5
C 1= —:1000'r 1.667
i,j R 1.25
i 1
M is the fixed scale value to account C=1{0.833
for the percent probability required 0.714
to yield an identification decision. 0.625
0.556
M:= 3.5 for all uses in SPARTAN 6.5
This section computes the probability of
detection Pl given unlimited time
(Bailey:5).
2.4 0.862
c 0.312
R i,j 0.132
-.84 |/ 0.069
M 0.041
pl =1l-e pl = [0.026
i,3 0.018
0.013
0.01
0.008

102

[\ R) |
| DUNGTSVE——)

10

3.333
2.5

1.667
1.429

1.25
1.111

.862
.526
312
.197
132
.093
.069
.052
.041

DO OO OO OO OO

(#%)

OO0 OO O

20
10

.667

333
.857

2.5

.222

.981
.862
. 686
.526
.403
312
. 246
.197

Probability of Detection

The algorithm for probability of detection [EE] also was adapted
from Bailey’s report (1:7). For SPARTAN, the template on the following
page computes E@ as a value that varies according to range and the time
spent looking in the sector containing the potential target.

Target posture is not considered in the computation of I&. As a
means of saving main memory only one Iﬁ table is used instead of the
three that would be required if each posture was considered. Target
posture is accounted for in the Pl algorithm. The target size for
crouched posture is used as an average value throughout the SPARTAN P,

algorithm.

103

Search time has a range of .4 - 4.0 seconds with a mean of 2.0 seconds.
This implies that the observer scanned the sector containing the target
for 2.) seconds on the average. There are ten possible search times.

je=1..10 t := .43
3
As a simplification, the P2 table was computed to vary only with
respect to range and time. All resclution values use the crouch
posture as inaverage value. This was done to minimize the number

of look up tables in storage since there is a limit to the amount
of available memorv in many personal computers.

Values for C and M are those created in the probability of
acquisition template.

This is the NVL equation for probability of detection.

c |t
i,-2 j

M 6.8

Probability of detection table with time represented by columns and
range by rows.

0.155 0.285 0.396 0.489 0.568 0.635 0.692 0.739 0.78 0.814
0.081 0.155 0.223 0.285 0.343 0.396 0.445 0.489 0.531 0.568
0.054 0.106 0.155 0,201 0.244 0.285 0.324 0.361 0.396 0.429
0.041 0,081 0.118 0.155 0.189 0.223 0.255 0.285 0.315 0.343
0.033 0.065 0.096 0.126 0.155 0.183 0.21 0.236 0.261 0.285
P2 =10.028 0.054 0.081 0.106 0.131 0.155 0.178 0.201 0.223 0.244
0.024 0.047 0.069 0.092 0.113 0.134 0.155 0.175 0.194 0.213
0.021 0,04} 0.061 0.081 0.1 0.118 0,137 0.155 0.172 0.189
0.019 0,037 0.054 0.072 0.089 0.106 0.123 0.139 0.155 0.17
0.017 0.033 0.049 0.065 0.081 0.096 0.111 0.126 0.14 0.155

104

Probabilities of Hit

‘The purpose of the MATHCAD template on the following page was to
create tables of hit probabilities using an algorithm discussed by
Hartman (23:7-17). This algorithm computes a bivariate normal distribu-
tion of hits. This algorithm assumes Cov {x,y) = 0, and the center of
the impact point distributicn is the original ~impoint., Additionally,
the variance is the same in both directions. The equation is intended
to model hits on a circular target rather than & human silhouette, so as
8 gross approximation, a pcrcentage of the circular area is used to
represent a soldier's target surface.

The purpose for using this equation was to provide the model with
data that varied over a range of possible values much the same way
empirical data might, if it were available. The parameters are tntally
arbitrary. The table shown at the end of the template is for a 600m
effective weapon. Tables were created for four weapons with different
effective ranges. The only difference between weapons is the standard
error of each weapon.

The values in the table were judzed to be reasonable by the author
based on his limited experience with military small arms. For an actual
study, the probabilities would be determined from weapons testing or

possibly obtained from the US Army Ballistic Research Laboratory.

105

This template computes the values for the phit600 table.

This block defines the indices for the range and posture variables
in the bivariate normal equation.

ORIGIN=1 i:=1..10 Jj:=1..3
As stated in the assumptions, bias =0

These are the three target posture modifiers.

prone crouched standing
posture := ,25 posture := .5 posture := 1.0
1 2 3

A simple formula was used to create standard error values for
four types of direct fire weapons. Each weapon has a standard
error value for each 100m increment out to 1000m. These ¢ are
totally hypothetical since there was never any intent to get
accurate data for particular weapon types.

weapon type
phit300 uses
phit400 uses
phit500 uses
phit600 uses

— NOTE: Starting ¢ for each
0 := .6+ J;T.l
i

aqaaaQ
wowouou
[
S\ WO

This formula computes a relative value for target surface area
based on a 2 meter x .5 meter figure modified for the posture.

R 1= JZ'posture .5
i,] i

Beluw is the Hartman equation used to approximate a
bivariate normal hit distribution,

2 Target Posture
FR] prone crouch standing Range
i,j 0.138 0.258 0.449 100m
- 0.108 0.204 0,366 200m
2 0.091 0,173 0,316 300m
20 0.079 0.152 0.28 400m
L i 0.071 0.136 0,254 500m
pLit 3= 1 - @ phit = | 0.064 0.124 0.233 600m
i.j 0.059 0,114 0,215 700m
0.054 0,106 0.201 800m
0.051 0.099 0,188 900m
0.048 0.093 0.177 1000m

106

Appendix B: STARTUP Preprocessor Program Listing

This appendix provides a listing of the Quic:rBASIC version 4.5
program code for the STARTUP preprocessor. STARTUP is a menu-driven
program that enables the user to create, edit, and review the three
scenario dependent files used in SPARTAN. These three files are the
initial event datafile, the terrain attribute file, and the soldier
attribute file. Specific information on the composition of these files
is available in Section 3 of the User's Manual in Appendix D.

The code is organized into five modules with subprograms within
each module. The startup.bas module creates the user menus and calls
the specific functions requested by the user. The initevnt.bas module
contains the subprograms that support the initial event datafile. The
terrain.bas module contains subprograms that support the terrain data
file functions. The soldier.bas module supports the soldier attribute
file, and lastly the util.bas module subprograms support functions in
all the other modules.

There are two special notes about this code. QuickBASIC does not
use a line continuation feature, so ampersands [&] have been used in
this text version of the code to indicate a line extension. In the help
subprogram, all the screen text was deleted. Only an example of the

help menu structure remains.

107

S22 222222322322 2322232322233 3222222222322 2322322322222 222222222322

1% *
% STARTUP. BAS *
9* *

Vikkkkkrkkkkkkkkkkkkkkkkkkkbkkkkkkkkkkkbkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkk

PURPOSE This program is a preprocessor for the SPARTAN combat
model. It allows the user to modify three key input files for the
combat model (terrain, initial events, and soldier attributes).

This program contains five modules. This main module has a function

to link the others together and query the user as to what task is to be
performed. There is one module for each file to be modified. Each
module allows the user to create, edit and display the specific file.
The last module contains utility subprograms that can be used
throughout the progranm,

- W e W W W W W W W -

' All subprograms and functions that could be called or defined in this
' module are explicitly declared at the beginning of each module.

user interface to terrain editor

user interface to soldier file editor
creates generic soldier attribute file
displays soldier attribute file
editor for soldier attribute file
creates a generic terrain data file
displays the terrain data file

editor for the terrain map

displays a relief map of terrain file
user interface to event editor
displays the initial event file
creates a generic event file

DECLARE SUB Editevents () editor for the initial event file
DECLARE SUB opening () creates an opening presentation screen
DECLARE SUB help () ' online help facility for users
DECLARE SUB frame (leftX%, right%, topX, bottomX, foreX, back¥)

DECLARE SUB ground ()
DECLARE SUB soldaten ()
DECLARE SUB Createarray ()
DECLARE SUB Displayarray ()
DECLARE SUB Editarray ()
DECLARE SUB Create ()
DECLARE SUB DisplayFile ()
DECLARE SUB EditFile ()
DECLARE SUB TerrainMap ()
DECLARE SUB initialevents ()
DECLARE SUB Displayevents ()
DECLARE SUB Createevents ()

L S R " I I R

DIM SHARED movers(12, 20) AS SINGLE ’'dimensions soldier’s attribute

'array
CLS 'clears the screen at the start of the program
COLOR 1, 7 'sets a white foreground and blue background
CALL opening 'puts an opening presentation screen up
DO 'queries the user for the next task until he is done

CLS
left% = 10: right¥ = 70: topX = 5: bottom% = 15: fore¥ = 1: back¥ = 7
CALL frame(left%, right¥%, topX%, bottom%, fore¥X, back¥%)

108

LOCATE 7, 25

PRINT "MASTER MENU": PRINT

LOCATE 8, 25

PRINT "1) Work on event file"

LOCATE 9, 25

PRINT "2) Work on terrain file"
LOCATE 10, 25

PRINT "3) Work on soldier attribute file"
LOCATE 11, 25

PRINT "4) Read Help file"

LOCATE 12, 25

PRINT "5) Exit the program"

LOCATE 14, 25

PRINT "Type your selection (1 to 5)"
'Wait for the user to select a key.
ch$ = INPUT$(1)

' use SELECT to process a response

SELECT CASE ch$
CASE "1"
CALL initialevents
CASE "2"
CALL ground
CASE "3"
CALL soldaten
CASE "4"
CALL help
CASE "5"
EXIT DO ’'terminates the program
CASE ELSE
BEEP ‘error trap
ch$ = INPUT$(1)
END SELECT
LOOP
CLS
END

SUB ground
RRRRRRERRRRRRRRERRERERERRRRRRR KRRk kRRRkkkkkkkkkkkkkRRR kKRR KRRk kR KRRk
'PURPOSE this routine presents the terrain editor menu and calls the

'appropriate subprograms from the terrain module
VRREREFRREREREREERRERREERRRERRRERRRRRRRRRERRRERRRERRRRRRRRR KRR kKR RRKK

COLOR 1, 7
DO

CLS

left¥ = 10: right% = 70: top¥ = 4: bottom¥% = 16: foreX = 1: back% = 7
CALL frame(left¥%, right%, top¥%, bottom%, foreX, back¥%)

109

LOCATE 6, 20
PRINT "EDITOR MENU FOR TERRAIN DATA FILE"

LOCATE 8, 20

PRINT "1) Create a new file."

LOCATE 9, 20

PRINT "2) Edit an existing file."
LOCATE 10, 20

PRINT "3). View the terrain map."
LOCATE 11, 20

PRINT "4) Review the file (after editing only)."
LOCATE 12, 20

PRINT "5) Exit the program.”

LOCATE 14, 20

PRINT "Type your selection (1 to 5)"
'Wait for the user to select a key.
ch$ = INPUT$(1)

' use select to process a response

SELECT CASE ch$ 'calls the requested subprogram
CASE "1"
Create
CASE "2"
EditFile
CASE "3"
TerrainMap
CASE "4"
DisplayFile
CASE "5"
EXIT DO
CASE ELSE
BEEP
ch$ = INPUT$(1)
END SELECT
LOOP

END SUB

SUB initialevents
VERRRRRRRKRRRERRRRRKRERERKRRRRRERRRKKRRRRRRRRRERRRRRRRRR KRR KRR RRRK R KK
'PURPOSE this routine presents the event editor menu and calls the

'requested subprograms from the initevnt module
VRkkkRkkkkkkkkkkkkkkRkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkekkkhkkkkkkkk

DO

COIOR 1, 7

CLS

left% = 10: right% = 70: top% = 4: bottom% = 15: fore¥% = 1: back¥ = 7
CALL frame(left%, right%, top%, bottom%, fore¥%, back¥%)

110

LOCATE 6, 20
PRINT "EDITOR MENU FOR INITIAL EVENT FILE"

LOCATE 8, 20

PRINT "1) Create a new event file.”
LOCATE 9, 20

PRINT "2) Edit event file."

LOCATE 10, 20

PRINT "3) Review the file."

LOCATE 11, 20

PRINT "4) Exit the program.”

LOCATE 13, 20

PRINT "Type your selection (1 to 4)"
'Wait for the user to select a key.
ch$ = INPUT$(1)

' use SELECT to process a response

SELECT CASE ch$
CASE "1"
Createevents
CASE "2"
Editevents
CASE "3"
Displayevents
CASE "4"
EXIT DO
CASE ELSE
BEEP
ch$ = INPUT$(1)
END SELECT
LOOP

END SUB

SUB soldaten
Vkkxkkkkkrk
'PURPOSE this routine presents the soldier attribute editor menu and

'calls the requested subprograms from the soldier module
RT3 2231322 2231122222223 2222222222322 2 2232222222232 23 2222222220

COLOR 1, 7
PO

CLS

left% = 10: right% = 70: top% = 4: bottom% = 15: fore% = 1: back¥ = 7
CALL frame(left%, right%, top%, bottom%, fore¥%, back%)

LOCATE 6, 20
PRINT "EDITOR MENU FOR SOLDIER ATTRIBUTE FILE"

111

LOCATE 8, 20

PRINT "1) Create a new soldier file."
LOCATE 9, 20

PRINT "2) Modify soldier file."
LOCATE 10, 20

PRINT "3) Review the file.”

LOCATE 11, 20

PRINT "4) Exit the program.”

LOCATE 13, 20

PRINT "Type your selection (1 to 4)"
'Hait for the user to select a key.
ch$ = INPUT$(1)

’ use SELECT to process a response

SELECT CASE ch$
CASE "1"
PRINT "BUILD A FILE"
Createarray
CASE "2"
Editarray
CASE "3"
Displayarray
CASE "4"
EXIT DO
CASE ELSE
BEEP
ch$ = INPUT$(1)
END SELECT
LOOP

END SUB

112

INITEVNT.BAS
Yxkkkkkkkkkkkikkkkkkkkkkkkkikkkikkkkkkkhkkkkkkkkkkkkkkkkkkkkkikkkkkkk
' The purpose of this module is to create and edit initial events

> for each soldier in the SPARTAN Combat Model.
Txkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkrkkkrkkkkkkkkhkkkkkkkkk

DECLARE SUB Createevents ()

DECLARE SUB Displayevents ()

DECLARE SUB Editevents ()

OPTION BASE 1 ’sets initial array index to 1

DIM SHARED events(24, 3) AS SINGLE ’this establishes dimensions
'for the event array

END

SUB Createevents
P kkdkokkkkkkkkkkk

'PURPOSE this routine creates a generic initial event list for SPARTAN
Y kkkkkkkkokkkdkokkkkokkkdokkkkkkkkkkkkkkokkkkkkkkkkkkkdkokkkkkkkkkkkkokkkkkkkkk

CLS

OPEN "event.exp" FOR OUTPUT AS #1 ’this block loads the file

FOR N =1 TO 12 ’this loop creates a search event for
time = 1! + .15 * N ‘each soldier
WRITE #1, 2, time, N

NEXT N

FORL =11T0 12 'this loop creates a startmove event for
time = 2! + .17 ¥ L 'each soldier
WRITE #1, 1, time, L

NEXT L

CLOSE #1

CLS

' This block provides a formatted display of the file in ASCII text
OPEN "event.exp" FOR INPUT AS #1
LOCATE 1, 1
PRINT " Event type time actor Event type time actor"
I1=0
DO UNTIL EOF(1)
I=1+1
INPUT #1, etype%, time!, actor%®
IF (I < 15) THEN
LOCATEI + 1, 6
ELSE
LOCATE I ~ 13, 40
END IF
PRINT USING " ##) ### ##¥.8# ### "; I; etype¥%; time!; actor¥
LOOP
CLOSE #1
LOCATE 23, 2

113

PRINT "For your review ... Hit any key to continue ...": k$ = INPUT$(1)
END SUB

SUB Displayevents
Vkkkkkkkkkokkkkkkkokkokkkkokk

"PURPOSE to allow the student to review the initial event list

RT3 222 2T T eI LTI TR RS TIITIIIT I LTI LTI LT LTI TIT LS Z 2T T3 IL L 22 23
CLS

' This routine provides a formatted file display in ASCII text

OPEN "event.exp" FOR INPUT AS #1

LOCATE 1, 1

PRINT " Event type time actor Event type time actor"

I=0
DO UNTIL EOF(1)
I=1+1
INPUT #1, etype%, time!, actor¥
IF (I < 15) THEN
LOCATEI + 1, 6
ELSE
LOCATE I ~ 13, 40
END IF
PRINT USING " ##) ### ###.## ##4 "; 1; etype¥%; time!; actor¥
LOOP
CLOSE #1
LOCATE 23, 1
PRINT " Hit any key to return to main menu": k$ = INPUT$(1)
END SUB

SUB Editevents STATIC
VhkokkrkkkkkkRkkkkkknkkkk

'PURPOSE this routine allows the user to edit the file event.exp
VxkokkokkkkkRRkkkkkkkkkkkkkRkkkkkkk

OPEN "event.exp" FOR INPUT AS #1 ’'this block loads events into an array
I=0
DO UNTIL EOF(1)

I=1+1

INPUT #1, etype%, etime!, eactor®

events(I, 1) = etype%: events(I, 2) = etime!: events(I, 3) = eactor¥
LOOP
CLOSE #1

Do 'this loop modifies the events in the array
CLS
LOCATE 1, 1
INPUT "Which event is to be modified ?", N
PRINT events(N, 1), events(N, 2), events(N, 3)
INPUT "New event type is ? ", events(N, 1)
INPUT "New event time is ? ", events(N, 2)
INPUT "New event actor is? ", events(N, 3)

114

INPUT "Edit another event ? Yes - <enter> No - <n> to quit.", answer$
LOOP UNTIL answer$ = "n" OR answer$ = "N"

OPEN "event.exp" FOR OUTPUT AS #1 ’this puts event array back in file
FORJ =1T01

WRITE #1, events(J, 1), events(J, 2), events(J, 3)

NEXT J

CLOSE #1

END SUB

115

TERRAIN. BAS
Vkkkkkkkskkkk Rk kkkkkk iRk kkkkkkik Rk kk ko kkkkkkkkkkkkkkkkkkkkkkkkkk
'"PURPOSE this module is to create or edit a terrain file for the
'SPARTAN Combat Model. It writes the data to filename board.dat. If
'you want multiple terrain files you need to copy them over with DOS
'commands prior to rerunning the create option of this program.

"The resulting data files are in ASCII format and are readable with a

'text editor or this program
LkkkkkkkRkRkkkkRRkkck kR Rk Rk kkkkkkkkkRkkkkkkk Rk kkk kb kR Rk kkkkkkkkkkk

OPTION BASE 1

DECLARE SUB TerrainMap ()
DECLARE SUB Create ()
DECLARE SUB DisplayFile ()
DECLARE SUB EditFile ()

DIM SHARED terrain(2500, 4) AS SINGLE

SCREEN 9
COLOR 1, 7
WINDOW (0, 0)-(1010, 1010)

DIM SHARED clr(10) AS INTEGER
'defining colors for the map
FORI=1T07+9

clr(l) = 1
NEXT 1

END

SUB Create
VhkkkkkkkkkkkkkkRkRkkkkkkkkkkkkkkkkhkrkRkkk Rk kkkkkkrkkkrkkkrkkkrkekrkek

'PURPOSE this routine creates a generic terrain data file that can be

'modified to meet specific scenario requirements
33T IITIITI T TR I TR TI TR TRFT TR T IR IITITITI IR IRTI T2 222 T2

CLS
SCREEN 9, , 1, 1
COLOR 1, 7

LOCATE 12, 25
PRINT " TERRAIN FILE IS BEING LOADED "
OPEN "board.exp" FOR OUTPUT AS #1

N=0
FOR a = 1 TO 50
FOR B =1 TO 50
N=N+1
vert = a 'indexes the north-south grids
horz = B 'indexes the east-west grids
elev = 20! 'inputs a 20meter elevation for all grids
mobfac = 1! 'inputs a real value of 1.0 for mobfac
116

WRITE #1, vert, horz, elev, mobfac
NEXT B
NEXT a
CLOSE #1
LOCATE 24, 2
PRINT "Do you wish to view the file yes <y> no <enter> ?":ans$ = INPUT$(1)
IF (ans$ = "Y" OR ans$ = "y") THEN
CLS
LOCATE 1, 2: PRINT " USE THE <PAUSE> KEY TO STOP SCROLLING THEN <ENTER>
& TO CONTINUE"
LOCATE 2, 7
PRINT " X COORD Y COORD ELEVATION MOBILITY FACTOR "
PRINT "kkkkkdkkkkkkkkkkrhkkkkkkkkkkihikkkkkkrkkkkkhkhkkikhkkrkhkkiihkkkrkkk
& Fkkkkkkkkxk"

VIEW PRINT 4 TO 25

OPEN "board.exp" FOR INPUT AS #1
FORI =1 TO 50
FOR J =1 T0O 50
INPUT #1, horz, vert, elev, mobfac
PRINT USING " $iR4 b3 1L 43484 #.##"; horz; vert;
& elev; mobfac
NEXT J
NEXT 1
CLOSE #1
ELSE
END IF
CLS
SCREEN 9 'eliminates view print option
END SUB

SUB DisplayFile
VkkkkkkkkkkkkrkkkkkokkkkkkkkkkkkhikhkkkkkrkkkkkkirkkRkkkrkkkkkkkkrkkks
'PURPOSE prints out a listing of the block of grid cells chosen from
'the terrain file
YRkkkkkkkkkkkRkkkkkRkkkkkkkkkkkRkkrkkkkkkkkRkkkRRRRRRRKRRKRR kKRR kR R k%
CLS
PRINT "Which section of terrain do you wish to view. The file is in a"
PRINT "linear list format, so give a start and endnumber"

PRINT "To compute record number (x - 1) * 50 + y"

INPUT " Starting number... ", start

INPUT " Ending number ... ", ending
CLS

FOR I = start TO ending

PRINT terrain(I, 1), terrain(I, 2), terrain(Il, 3), terrain(I, 4)
NEXT 1
PRINT " Hit any key to return to main menu": k$ = INPUT$(1)
END SUB

117

SUB EditFile
Vxkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkk kR RkkRRRR Rk kKRR KRR LR KRR kKRR KKK
' PURPOSE This routine queries the user for a specific grid location.
' Those coordinates are converted into a record number and the user is

' prompted to update the elements of that record.
Vikkkokhokkkkokkkkkkkkkkokkkkkk kK

CLS
LOCATE 12, 12
PRINT " Wait just a moment while file is loaded into a buffer."

OPEN "board.exp" FOR INPUT AS #1
I1=0
DO UNTIL EOF(1)
I=1+1
INPUT #1, X, Y, elev, mobfac
terrain(I, 1) = X: terrain(I, 2) = Y: terrain(I, 3) = elev:
& terrain(Il, 4) = mobfuc
LOOP
CLOSE #1

DO

CLS

INPUT "What are the coordinates of the grid to be modified ?", X, Y

xy =0

FOR I =

FOR J

Xy =

NEXT J

NEXT 1

1TOX
=1T0Y
xy +1

terrain(xy, 1) = X
terrain(xy, 2) = Y
INPUT "elev (0 - 69meters)...", terrain(xy, 3)

INPUT "mobfac (0 - 1.0)...", terrain(xy, 4)

INPUT "Edit another grid ? Yes - <enter> No - <n> to quit.", answer$
LOOP UNTIL answer$ = "n" O% answer$ = "N"

LOCATE 12, 16
PRINT "One moment while the terrain record is updated."
OPEN "board.exp" FOR OUTPUT AS #1
FORI =1 TO 2500
WRITE #1, terrain(l, '), terrain(l, 2), terrain(I, 3), terrain(l, 4)
NEXT I
CLOSE #1
END SUB

118

SUB TerrainMap
Vkkkkkkkkkkkkkkkkkiokkbkkkkkok kR Rk kkkkk Rk kkkkknkkkkkkkkhkkkkkkkkkkkkkkkk

'PURPOSE this routine draws a relief map that represents relief features
Vikkkkkkkkkkkkkkkkkokkhkk

CLS
SCREEN 9
COLOR 7, O
WINDOW (0, 0)-(1010, 1010)
'defining colors for the map
FORI=1T07
clr(l) =1 +9
NEXT 1

OPEN "board.exp" FOR INPUT AS #1
N=20
FOR I =1 TO 50

FOR J =1 TO 50

INPUT #1, horz, vert, elev, mobfac

PSET (20 * horz - 10, 20 * vert - 10), clr(INT(elev / 10!) + 1)

NEXT J
NEXT 1
CLOSE #1
LOCATE 24, 1
PRINT "Hit any key to continue >": a$ = INPUT$(1)
COLOR 1, 7
END SUB

119

SOLDIER.BAS

Pkkkkkdkkkkkkkkkkkkkkkkkkkkkkkkkokkkikkkkkkkkkkkkkkkkkhrkkkkkkrkkkk Rtk
' The purpose of this program is to create or edit attribute files

' for each of the soldier (entities) with in the SPARTAN Combat Model.
' It will write the data to filename force.dat. If you want multiple

' entity files you will need to copy them over with DOS commands

' prior to rerunning the create option of this program,
VRkRRAKR KRR R RKRERERKKERKKKER R KRR RRRRKRRRRREERRE KRRk KRk Rk RRkkkkeRkkkk

DEFINT A-Z

OPTION BASE 1

DECLARE SUB Createarray ()
DECLARE SUB Displayarray ()
DECLARE SUB Editarray ()

' This block describes the fields in the soldier records.

DIM SHARED x AS SINGLE ' X,¥,2 are soldier’s present coordinates
DIM SHARED y AS SINGLE

I:1M SHARED z AS SINGLE

DIM SHARED xlast AS SINGLE ' these are the soldier's last coordinates
DIM SHARED ylast AS SINGLE ' mostly important for graphics

DIM SHARED size AS SINGLE ' size should be between 1,6 - 2.0 meters
DIM SHARED speed AS SINGLE range of speed is 0 - 40 units

DIM SHARED dir AS SINGLE
DIM SHARED moving AS INTEGER
DIM SHARED wpnrng AS SINGLE

DIM SHARED
DIM SHARED
DIM SHARED
DIM SHARED
DIM SHARED
DIM SHARED
DIM SHARED

DIM SHARED
END

direction of travel in radians

flag shows soldier’s intent to move

nax eff range of soldier's weapon

count of soldier's ammo remaining

flag shows if alive,dead or wounded
indicates standing, crouched or prone
a0orl (1 indicates a sqd ldr)
stores original movement direction
target which is selected for engagement
identifies side the soldier is on

ammno AS INTEGER
status AS INTEGER
posture AS INTEGER
incmd AS INTEGER
atkdir AS SINGLE
tgteng AS INTEGER
side AS INTEGER

- W W W e W e w® e w e

movers(12, 20) AS SINGLE ‘'dimensions soldier’s attribute
‘array

SUB Createarray
VRkpRkkkkxRpkbkkkkkkkRkkkkkRkokkkirkkkkkRrkkkkkRkkkkkkkkhkkRkkkkkkkkk
'PURPOSE to create a generic soldier attribute array that can be

'easily modified for specific scenario requirements in SPARTAN
I TTTTIIITITITII AT I TR TRTIITTITIRIFLIL3T LI I23 2322323 TI 23T 2 23 23

CLS

OPEN "force.exp" FOR OUTPUT AS #1

'this block creates array values for the blue soldiers

N=0

FOR N =1 TO 6

x = 100 -

10 ¥ N
120

y = 400

z = 10.5

xlast = 0

ylast = 0

size = 1.8 ' meters in height

speed = 20

dir = 1.6 ' this is a direction of travel in radians
moving = 1 'This is an integer value of 0 or 1 {1 is moving)
wpnrng = 500 ’'Range in meters

ammo = 20 'rounds of ammunition on individual

status = 1 'This is an integer value of 0 or 1 (1 is alive)
posture = 1! ' 1 is erect .5 is crouch .25 is prone
incmd = 0 ' a 0 or 1 which designates a squad leader
atkdir = dir ' maintains original movement direction

tgteng = 0 ' identifies selected target

side = 1 ' identifies the soldier's affiliation as blue
WRITE #1, x, ¥y, 2, xlast, ylast, size, speed, dir, moving, wpnrng,
& ammo, status, posture, obsl, obs2, tgteng, side
NEXT N

'this block creates the array values for the red soldiers

FOR N =7 TO 12

X = 610

y=10+N*10

z = 10,5

xlast = 0

ylast = 0

size = 1.8 ' meters of height

speed = 20 ' meters per move

dir = 4.7 ' this is a real value for directioa in radians
moving = 1 'This is an integer value of 0 or 1 (1 is moving)
wpnrng = 600 'Range in meters

ammo = 20 'rounds of ammunition on individual

status = 1 'This is an integer value of 0 or 1 (1 is alive)
posture = 1! ' 1 is standing .5 is crouch .25 is prone
incmd = 0 'a 0 or 1 which designates the squad leader
atkdir = dir 'maintains original attack direction

tgteng = 0 'identifies selected target

side = -1 ' 1 is blue and -1 is red for force discrimination

WRITE #1, x, y, 2, xlast, ylast, size, speed, dir, moving, wpnrng,
& ammo, status, posture, obsl, obs2, tgteng, side

NEXT N
CLOSE #1

' Display the new soldier files for review in unformatted form
' cannot use format and keep all records on screen.

121

OPEN "force.exp" FOR INPUT AS #1
FORI =1 TO 12

INPUT #1, x, v, z, xlast, ylast, size, speed, dir, moving, wpnrng,
& ammo, status, posture, obsl, obs2, tgteng, side

WRITE x, y, 2z, xlast, ylast, size, speed, dir, moving, wpnrng, ammo,
& status, posture, obsl, obs2, tgteng, side
NEXT 1

PRINT "For your review ... Hit any key to continue ...": k$§ = INPUT$(1)
CLOSE #1
END SUB

SUB Displayarray
PRRERERRRRERRRRERRKERREREKERRRKRRRRRRRKRRREREKERRRRRRRRRRRRREKEE KR RRRK R Kk
' This routine provides an unformatted display of the text in ASCII text

' unformatted is the only way it will fit neatly on the screen.
1113313323212 3383322232333 3333333333333 PTT2TIIITIRZFIIIZL T IRZILRE 2

OPEN "force.exp" FOR INPUT AS #1
FOR ! =1T0 12

INPUT #1, x, ¥, 2, xlast, ylast, size, speed, dir, moving, wpnrng, ammo,
& status, posture, incmd, obs2, tgteng, side

WRITE x, y, 2z, xlast, ylast, size, speed, dir, moving, wpnrng, ammo,
& status, posture, incmd, obs2, tgteng, side

NEXT 1

CLOSE #1

INPUT " Hit any key to return to main menu", k$
END SUB

SUB Editarray
YREREERERRRERERERRKEERREEELRERRRRRRERRERRERREERELRRRRRRRRRTRERREEREERE

'PURPOSE this subprogram is an editor for the soldier attribute file
VEREERERERRRKERREEERKEKERRERREKEXRERREREREERRRRERRRBRRERRERERRRRRRRRKE

OPEN "force.exp" FOR INPUT AS #1
CLS

I1=0
DO UNTIL EOF(1) 'this block loads the file elements into a buffer
I1=1+1
INPUT #1, x, y, 2z, xlast, ylast, size, speed, dir, moving, wpnrng,
& ammo, status, posture, incmd, obs2, tgteng, side
movers(I, 1) = x: movers(I, 2) = y: movers(l, 3) = z
movers(I, 4) = xlast: movers(I, 5) = ylast: movers(I, 6) = size
movers(I, 7) = speed: movers{l, 8) = dir: movers(I, 9) = moving

122

movers(I, 10) = wpnrng: movers(I, 11) = ammo: movers(I, 12) =
movers(I, 13) = posture: movers(I, 14) = incmd
movers(I, 15) = obs2: movers(I, 16) = tgteng: movers(I, 17) =
LOOP
CLOSE #1

'this block queries the user about modifying the attribute file
po

PRINT "Do you wish to (a) modify all attributes of one individual "
PRINT "or (b) modify a single attribute on a group of soldiers ?"
PRINT "or (c) Exit the edit menu"

PRINT " Type (a ,bor c) ": which$ = INPUT$(1)

SELECT CASE which$

CASE "a"
INPUT "What is the number of the soldier to be modified ?", N

PRINT "These are the soldier's present attributes"

PRINT

WRITE movers(N, 1), movers(N, 2), movers(N, 2;, movers(N, 4),
& movers(N, 5), movers(N, 6), movers(N, 7), movers(N, 8),

& movers(N, 9), movers(N, 10), movers(N, 11), movers(N, 12),
& movers(N, 13), movers(N, 14), movers(N, 15), movers(N, 16),
& movers(N, 17)

INPUT "Initial x ", movers(N, 1)
INPUT "Initial y ", movers(N, 2)
INPUT "Initial z ", movers(N, 3)
rovers(N, 4) = 1

movers(N, 5) = 1

INPUT "Soldier size in meters
INPUT "Speed ", movers(N, 7)
INPUT "direction in radians ", movers(N, 8)

INPUT "Moving 1 is moving O is stationary.. ", movers(N, 9)
INPUT "Weapon Range in meters ", movers(N, 10)

INPUT "Number of rounds of ammunition.. ", movers(N, 11)
INPUT "Status '1' is alive '0’ is dead ", movers(N, 12)

", movers(N, 6)

status

side

INPUT "Posture '.25’ prone,’.5' crouched,’1.0’ standing", movers(N, 13)
INPUT "Command designator follower (0) leader (1) ", movers(N, 14)

movers(N, 8)
0

movers(N, 15)
novers(N, 16)

CASE "b"

INPIT "Type <first,last> ID #'s for group to be modified."; first, last

INPUT "Which attribute is to be modified (1 - 17) "; k
INPUT "What should this new value be "; newvalue!
FOR I = first TO last
movers(I, k) = newvalue!
NEXT 1
CASE "c"
EXIT DO

123

CASE ELSE

BEEP

PRINT " either <a>, , or <c> ": which$ = INPUT$(1)
END SELECT
LOOP

OPEN "force.exp" FOR OUTPUT AS #1 ’'writes changes into force.exp file
FORI =1 TO 12
WRITE #1, movers(l, 1), movers(I, 2), movers(I, 3), movers(Il, 4),
& movers(I, 5), movers(I, 6), movers(I, 7), movers(I, 8), movers(l, 9),
& movers(I, 10), movers(I, 11), movers(l, 12), movers(I, 13),
& movers(I, 14), movers(I, 15), movers(l, 16), movers(I, 17)
NEXT I
CLOSE #1
END SUB

124

P REREEAAEREER RS TR RS L ERERE LA SR ET TR R LR EL L EEEEERREERRE RS KT ET LSS

' *
'3 UTIL.BAS *
)* *

R o222 22222222 22 2]

' This utility module has subprograms apd functions that can be called
' from any of the other modules. These routines do not require access
' to variables used in the other modules.

DECLARE SUB opening () ' draws out the presentation screen
DECLARE SUB frame (left¥%, right%, top%, bottomX%, fore%, back¥)

'Below is the syntax for using the Frame subprogram
' left% = 3: right% = 80: top% = 3: bottomX = 22: fore¥% = 5: back% = 0
' CALL Frame(left%, right%, top%, bottom%, fore%, backX)

END

SUB frame (left¥%, right%, top%, bottom%, fore”, backX) STATIC
Y R AARR KRR AR RERXKREERERARERERE SRRk EERREERER SRR SRR XA Rk kL Kk
' This routine creates a framing box of any size It takes six basic

' input parameters that control the dimensions and colors.
T RERRERKERTRRKKRERRERRRKKERKEERRRRRERERERRRERRERRERRRRRKEERRERKERK KR

COLOR fore%, backX
————— Draw the four corners

LOCATE top%, leftX: PRINT CHR$(201)
LOCATE top%, right%: PRINT CHR$(187)
LOCATE bottom¥%, leftX: PRINT CHR$(200)
LOCATE bottom%, right%: PRINT CHR$(188)

----- Draw the vertical lines

FOR vert¥% = top% + 1 TO bottom% - 1
LOCATE vert%, left%: PRINT CHR$(186)
LOCATE vert%, right%: PRINT CHR$(186)
NEXT vert%

————— Draw the horizontal lines

horiz% = right% - left¥% - 1

hline$ = STRINGS$ (horiz¥%, 205)

LOCATE top%, left% + 1: PRINT hline$
LOCATE bottom%, left% + 1: PRINT hline$

END SUB

125

ROTE: This help subprogram is only an extract of the original subprograa.
The original subprogram contains many screens of print text. This extract
only contains an example of the coding used to create the user help menus.

SUB hel
’******g;**t*:*************t**#**********t*****************************#
’ PURPOSE this routine is intended to provide the basic information

' necessary to use the STARTUP program. Info provided is on how to

' create, modify and view the files needed to run the SPARTAN Combat

’ Model. This routine allows the user to go directly to the

’

information desired.
P Xk kkR kR LRk ARk XAk kR kAR R kR R R KRRk kKRR R Rk Rk kkkkkkkkxkk

COLOR 1, 7

CLS

DO

LOCATE 4, 33

PRINT " HELP MENU "

LOCATE 6, 23

PRINT " SELECT ONE OF THE FOLLOWING TOPICS"
LOCATE 8, 27

PRINT " 1) Operating SPARTAN"

LOCATE 9, 27

PRINT " 2) Initial Event Datafile"
LOCATE 10, 27

PRINT " 3) Terrain Datafile"”

LOCATE 11, 27

PRINT " 4) Soldier Attribute Datafile"
LOCATE 12, 27

PRINT " 5) Exiting Help"

LOCATE 14, 1

PRINT " The STARTUP preprocessor program allows the user to modify three
PRINT "key datafiles used by the SPARTAN Combat Model. The 3 files are"
PRINT "an initial event list, a terrain file, and a soldier attribute file.'
PRINT "The program allows the user to create a generic file for each, edit"
PRINT "each file and view the data in the files. The help function is "
PRINT "intended to provide guidance on each function in the program and "
PRINT "should be read prior to working with the files."

t

CALL frame(1, 79, 2, 23, 1, 7)

LOCATE 22, 6: PRINT "Select Option Number ": k$ = INPUT$(1)
SELECT CASE k$ 'this select sends the user to the major category
CASE "1"
GOSUB h500
CASE "2"
GOSUB h200
CASE "3"
GOSUB h300
CASE "4"
GOSUB h400

126

CASE ll5"
EXIT DO
CASE ELSE
BEEP
k$ = INPUT$(1)
END SELECT
LooP

GOTO 1000 ’'when the program finishes executing the help select loop, it
"must jump over the subroutines and go to the end of the help
'subprogram. Otherwise, it will try to execute the subs and
'cause an error.

'these subroutines contain groups of topics and allow the user to
'get specific details from within each major topic area.

h200:

CLS

COLOR 7, 1

LOCATE 2, 1

PRINT "SELECT A SUBTOPIC <1>CREATE<2>EDIT<3>REVIEW<4>PARAMETERS<5> EXIT "
COLOR 1, 7

LOCATE 4, 1

PRINT " The events module allows the user to create, edit and review the "
RETURN
*
*
kkkkkkokkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkokkkkk
The bulk of the help screen are formatted
screens of information. These were deleted
from this text. What remains of the help
subprogram is just the structure of how the
menu system was set up.
kk

¥
%
1000 LOCATE 24, 2
PRINT "Returning to main menu"
END SUB
127

SUB opening
Vkkhkkkhkkkkkkkkkkkkk
'PURPOSE This routine calls the frame routine and draws a presentation
' screen for the model introduction.

' VARIABLES

' left%, right%, top%, bottom% are integer variables passed to frame
' that define the size of the box using rows and columns in text

' mode.

H

fore¥ and back% are variables that define line and background colors
Vhkkkkkkkk Rk kbR kR kR Rk kR Rk kR Rk Rk kkkkkkkkkkkkkkkk Rk Rk kkkokkkkkkkokkk

CLS

left% = 1: right% = 80: top% = 3: bottom¥% = 22: fore% = 1: back% = 7
CALL frame(left¥%, right¥%, top%, bottom¥%, fore%, back¥)

left¥ = 9: right¥ = 72: top% = 10: bottom% = 16: fore% = 1: back¥%¥ = 7
CALL frame(left%, right%, top%, bottom%, fore%, back¥%)

LOCATE 13, 25: PRINT " SPARTAN COMBAT MODEL "
LOCATE 14, 25: PRINT " PREPROCESSOR "
LOCATE 19, 22: INPUT "Press <Enter> when ready to continue", start
COIOR 1, 7
END SUB
128

Appendix C: SPARTAN Simulation Program Listing

This appendix contains the programming code for the SPARTAN
simulation model. The code is written in QuickBASIC version 4.5.

The code is contained in three separate modules. The spartan.bas
module contains the outer replication loop and the event scheduling
algorithms that control the execution of the simulation. The combat.bas
module contains all the subprograms and functions that model the combat
processes. The utility.bas module contains subprograms and functions
that support the processes within the other modules.

There are two special notes about this code. QuickBASIC does not
use a line continuation feature, so ampersands [&] have been used in
this text version of the code to indicate a line extension. In the help
subprogram, all the screen text was deleted. Only an example of the

help menu structure remains.

129

PkkkkkkkkkkRkkkk kRl kbR kR Rk kR Rk kk Rk kkk ok Rk kk Rk kR ko ok K

1% *
' *¥xkkkkkk SPARTAN COMBAT MODEL *kkkkkkkk ¥
1% *
' *%%¥ MAIN MODULE %k#%k% *
1% %
(3233332332222 2 223 T 2R FITRFITEITTIIIITIELITTIL LS ITITI TS $2 25337

The modular organization of this program is set up to have all key
elements of the program in subprograms or functions. This structuring
means that the main program serves only to define which variables are
accessible to which routines, aad which routines will be called. The
program contains three modules. In this main module, the purpose of
the subprograms are to initialize the databases, operate the event
scheduling routine and pass execution control to the various
subprograms as necessary. The combat module contains the subprograms
that perform the combat processes. While the utility module contains

subprograms and functions that can be called from any of the modules.
RRKKERKKEREEKKRERKKEEEERRKEERRKEEERRKKKEERRKKEERKKRERRRRKEERRRKRE R R KKK K*

. W W W W W W e e W e

' This section declares all subprograms and functions in this module or
' used by this module. To view the subprograms and functions hit F2
' and a menu will be presented.

DECLARE SUB search ()
DECLARE SUB startmove ()
DECLARE SUB endmove ()
DECLARE SUB initialize ()
DECLARE SUB linkempties ()
DECLARE SUB event (e!)

uses continuous search algorithm

computes and updates next location

schedules next startmove events

Opens and loads all data files

Initializes links of events list

transfers program control to next event

DECLARE SUB clock () calls next event off future event list

DECLARE SUB pause () used to irsert pauses during debugging

DECLARE SUB remove (e!) ' remove event e from event calendar

DECLARE SUB move (e!, fromlist, tolist!) 'move e from fromlist! to tolist!

DECLARE SUB showevents () ' prints top of event list and description

DECLARE SUB addevent (itype!, tlme', entity) ’add event to event calendar

DECLARE SUB opening {) ' draws an opening title screen

DECLARE SUB reacttofire () ' decides tgt reaction to being fired on

DECLARE SUB impact () ' determines outcome of engagement

DECLARE SUB tgtselect () ' decides if and at who firer will engage

DECLARE SUB directfire () ' computes time of flight and calls impact

DECLARE SUB plotterrain () ' plots relief map to represent elevation

DECLARE SUB killsoldier (tgt) : pulls events from FEL as soldier dies
]
]
]

- ® e W e W e -

DECLARE SUB oput () collects and prints battle results
DECLARE SUB help () online help utility for the user

DECLARE SUB soldierstats () displays current soldier attributes
DECLARE SUB battlestats () displays a sample of current battle stats

DECLARE SUB setup () ' allows the user to modify run parameters
DECLARE SUB frame (left%, right%, top%, bottom%, fore¥, back%)
DECLARE SUB pottgtlist () ' shows a table of the target list values

130

' The 'events’ COMMON variables are only shared in the SPARTAN module.

COMMON SHARED /events/ Maxevents, Firstevent, Firstempty, eventtype(),
& timeofevent(), backlink(), nextlink()

' The variables defined in this COMMON statement are
' accessible in the main and combat modules.

COMMON SHARED time, movers(), te, eventactor(), elevation(), mobility(),
& p1(), p2(), ph300(), ph400(), ph500(), ph600(), attenuation, activeblue,
& activered

COMMON SHARED bluecommand, redcommand, direct()

COMMON SHARED bluecount, redcount, bluerounds, redrounds

Mexevents = 99 ' This variable determines the size of the arrays used
' in the event lists

soldier index

type

0 if empty

t ... if pending then time
of this event

DIM eventactor(Maxevents) 'eventactor(i)
DIM eventtype(Maxevents) 'eventtype(i)
]

DIM timeofevent({Maxevents) 'timeofevent(i)

DIM backlink(Maxevents): 'backlink(i)
DIM nextlink(Maxevents): "nextlink(i)

i vvs if empty then position
in list of empties

immediate predecessor
immediate successor

' These arrays provide data files on the soldiers and terrain.
' They are loaded by subprogram 'initialize’

DIM SHARED movers(12, 20), elevation(50, 50), mobility(50, 50),
& direct(12, 9)

These arrays contain probabilities for the search and direct fire
routines

pl is probability of detection with infinite time (acquisition)
p2 is probability of detection for a given time (detection)

ph is probability of hit

sspk is probability of kill

- @ W e v -

DIM SHARED p1(10, 3), p2(10, 10), ph300(10, 3), ph400(10, 3), ph500(10, 3),
& ph600(10, 3)

'this section dimensions run parameters and defines their default
]
values

DIM SHARED terminate, timestop, bluestop, redstop

LET terminate = 5000: LET timestop = 300!: LET attenuation = 1!
LET bluestop = 3: LET redstop = 4

131

'this section defines default values for switches that turn on command
'functions on each side.
LET bluecommand = 1: LET redcommand = 1

CLS
COLOR 7, 1
CALL opening
CLS

’ Draws an opening title screen

CALL linkempties ' Initializes links in event list

CALL initialize ’ Opens and loads data files
' Loads initial events into event list
' (must be in time sequence order from data file)
' Sets system clock to 0.0

' Now the events(*,*) array looks like this:

' Record # actor event type refers back to points forward to
! 1 1 1 1 (it’s first) 3

! 2 0 0 (no event) 2 (it’s first) 4

! 3 5 2 1 5

! 4 6 0 2 7

! 5 7 3 3 6

! 6 4 4 5 6 (it's last)

! 7 3 0 4 8

! 8 9 0 7 9

! e 12 0 e-1 e+l

' This section turns on function keys (F1 - F5) for special information
' screens. The subroutines referenced are at the end of this module.

ON KEY(1) GOSUB hlp

KEY(1) ON

ON KEY(2) GOSUB soldierscreen
KEY(2) ON

ON KEY(3) GOSUB battlescreen
KEY(3) ON

ON KEY(4) GOSUB ground

KEY(4) ON

ON KEY(5) GOSUB targetlist
KEY(5) ON

SCREEN 9 'provides the highest possible resolution
WINDOW (0, 0)-(1000, 1050) ’for EGA/VGA and sets the origin at the lower
'left hand corner of the screen.

active = 0: visual = 0 ' defines initial page values for the process of
' of writing and viewing alternate screens

COLOR 7, 1 ' set foreground white and background blue

PRINT "Do you wish to modify the default settings <y> or <n> ":
& k$ = INPUT$(1)

IF (k$ <> "y" OR k$ <> "Y") THEN CLS

132

IF (k$ = "y" OR k$ = "Y") THEN PRINT "Do you want to see help first ?

& <h> help <enter> continue ": helpkey$ = INPUT$(1): CLS

IF (helpkey$ = "h" OR helpkey$ = "H") THEN GOSUB hlp

IF (k$ = "y" OR k$ = "Y") THEN CALL setup

COLOR 7, 0 ’'sets foreground white and background black

SCREEN 9, , active, visual 'returns the screen to original page before
'beginning to plot terrain

CALL plotterrain ' plots the initial relief grid on the screen (page 0)

' This is the master loop that keeps the simulation running. It
' continues to pull the next event off the calendar until some
' termination conditions are met such as

' event number (te) = 0 or a specified # of events

DIM SHARED timetostop AS INTEGER

OPEN "history.dat" FOR OUTPUT AS #1
PRINT #1, " TIME TYPE ACTOR"

'this line sets the system counters to 0
quit = 0: timetostop = 0: activeblue = bluecount: activered = redcount
PO WHILE timetostop = 0

CALL clock

quit = quit + 1 ' This counter terminates the program after
' a specified number of events are called

LOCATE 1, 1

PRINT USING " <F1> HELP <F2> SOLDIER STATUS <F3> SUM STATS
& <F4> TERRAIN <F5> TGTS #¥##.##"; time

SCREEN 9, , active, visual ’returns to the battle screen after
'a function key has been used
IF (quit >= terminate OR time >= timestop OR activeblue <= bluestop OR
& activered <= redstop) THEN timetostop = 1
LOOP
CLOSE #1

CALL oput ‘'sends selected final output to the screen

END

hlp: 'gwitches to page 1 and provides the user
LET visual = 1 'with a layered help menu on how to work
SCREEN 9, active, visual 'with the simulation
CALL help
COLOR 1, O
LET visual = 0
RETURN
soldierscreen: 'switches to page 1 and displays soldier attributes
LET visual = 1
SCREEN 9, active, visual

133

CALL soldierstats

COLOR 1, 0: CLS 1

LET visual = 0

RETURN
battlescreen: 'switches to page 1 and displays battle statistics
LET visual = 1

SCREEN 9, active, visual
CALL battlestats

COLOR 1, 0: CLS 1

LET visual = 0

RETURN

ground: !

plots the terrain relief on the screen when called
' primarily to refresh the screen after a significant
CALL plotterrain ' number of the color points have been drawn over.

RETURN

targetlist: 'gwitches to page 1 and displays a list of potential targets
LET visual = 1

SCREEN 9, active, visual

CALL pottgtlist

COLOR 7, 1: LOCATE 24, 1: CALL pause

COLOR 1, 0: CLS 1

LET visual = 0

RETURN

SUB addevent (itype, time, entity)
VRERRKKEKKERRRKERKKKKERRKERRKEKRRRKRRKERRKRRRRRRREKFRRRRKRKRRERRREKRRRKKR
'PURPOSE This routine adds an event to the active event list. It
'receives the type and time of event and takes the first empty location
'from the empty list. The routine then calls subprogram move to add the
'to the (pending) future event list.

VARIABLES

itype an integer passed to the routine that specifies event type
time a real value passed to the routine that specifies event time
Firstempty the event number of the first event in the inactive list
Grab an integer buffer that stores the value for the event number
eventtype() the type attribute used in the future event list
eventactor() the index of the soldier that performs event
timeofevent() the time attribute used in the future event list

' This routine calls move to take the event(Grab) from the inactive

' list and place it on the future event list
VpkkkkRkkRkkkkRkkkkrkkk Rk kRkkkk Rk ik Rk Rk Rk kkkkkk kR kkk Rk Rk kkkkkk

' First, grab the lowest available record from the inactive list

Girab = Firstempty

134

' £ill the new record with event information

eventtype(Grab) = itype
timeofevent(Grab) = time
eventactor(Grab) = entity

' now move the event from the inactive to the pending list (FEL)
CALL move(Grab, Firstempty, Firstevent)

END SUB

SUB clock
VRRRRRRERERREERKKEEKRAERRRRREERERERERRK KR RRRREFRRKRk Rk RRKRkR xRk kk kKR

' PURPOSE This routine calls the next event off the active future

' events list. The routine calls event which passes control of the
' gsimulation to the appropriate event module, and then removes the

' event from the active FEL and places it in the inactive file list.

' VARIABLES

' te is an integer buffer variable that is set equal to Firstevent
' Firstevent this integer variable is a pointer to the first position
]

in the FEL.

' event is called to transfer control to the event routine identified
! by eventtype(te)

' remove is called to pull the first event from the FEL and move the
]

record to the inactive list
Y 233223238 2332233323123 321332323 73333323222 TT T IR 3ZTRT IR TSI EE 3

'this line determines which event is the next to occur
te = Firstevent

'this line calls the routine event which transfers program control
CALL event(te)

' this line moves the event record off the FEL and over to the inactive
' list

CALL remove(te)

END SUB

135

SUB event (te)
Vkkkkkkkkokkokkkkkkkkkkkkkkkkkkkkkkkkkdkkokkkkkkkkkkrkkkkkkkkkkkkkkkkkkkk

' PURPOSE This routine keeps the system clock (time) updated and

' transfers execution control to the event identified by eventtype(te)

' with the SELECT CASE function (similar to a computed GOTO in FORTRAN)

timeofevent() is the time that event te is scheduled to occur

eventtype() is the type of event represented by te
PRERKREKRRERERRELRRRERERRRRKRRERERRKRERRRR R kKRR kR Rk kkk Rk Rk Rk Rk Rk Rk *

' VARIABLES

' time state variable that maintains the system attribute of time
' te integer buffer that identifies next scheduled event

’

]

'this line sends a copy of each event to a history file as it occurs
PRINT #1, timeofevent(te), eventtype(te), eventactor(te)

time = timeofevent(te) ’'this updates the system clock with the new
'event time

SELECT CASE eventtype(te) 'transfers program control to the correct
CASE 1 'event subprogram

CALL search
CASE 2

CALL startmove
CASE 3

CALL endmove

CASE 4

CALL tgtselect

CASE §

CALL directfire
CASE 6

CALL impact
CASE 7

CALL reacttofire

CASE ELSE

BEEP

PRINT " unknown event was sent to select in sub event"

END SELECT

END SUB

136

SUB initialize
VhRkkRRRRRRRREXRKRKKRFRKERRRIRREERERKE KRR R KRR EKERKRERRERRRRRKREERRRKK KR KK
' PURPOSE This routine has 3 primary functions which are to set the

' initial system time to zero; open and read in all data files to include
' initial events, soldier files, terrain files, and all probability

' tables; set any system constants.

' The user has the option of viewing all files,

]
1

This subprogram does not call any other subprograms or functions
E 23 P332 2223232333222 2333222223322 2323 3332233323323 3322222333242 22 21T

LET time = 0! ' This sets the initial system time at 0.0
' This block loads the initial events into the future event list (FEL)

OPEN "event.dat" FOR INPUT AS #1
PRINT "Do you want to see the data files being loaded?"
INPUT "If you do type (y). If not just hit return. ", show$
CLS
LOCATE 2, 1
PRINT " *¥*¥%x¥%x JUST A MOMENT, INITIALIZING DATABASES *k**x "
I1=0
IF (show$ = "y") THEN CLS : PRINT " Event type Event time Event actor'
LOCATE 3, 1
DO UNTIL EOF(1)
I=1+1
INPUT #1, mytype, mytime, entity, entity2
IF (show$ = "y") THEN PRINT , mytype, mytime, entity
IF (I = 12 AND show$ = "y") THEN PRINT "hit any key to continue";
& k$ = INPUT$(1): LOCATE 3, 1
CALL addevent(mytype, mytime, entity) ’'this enters initial events
'from the file

LOOP
CLOSE #1

IF (show$ = "y") THEN CALL pause: CLS

' This block loads the terrain information into arrays mobility(),
' and elevation().

OPEN "board.dat" FOR INPUT AS #1
IF (show$ = "y") THEN PRINT "To view the next file, use scroll lock"
IF (show$ = "y") THEN PRINT " x y elevation mobility",
& k$ = INPUT$(1)
LOCATE 4, 2
k=0
DO UNTIL EOF(1)
k=k+1
INPUT #1, horz, vert, elev!, mobfac!
elevation(horz, vert) = elev!
mobility(horz, vert) = mobfac!
IF (show$ = "y") THEN PRINT , horz, vert, elev!, mobfac!
LOOP

137

CLOSE #1
IF (show$ = "y") THEN CALL pause: CLS

' This block loads the soldier data into the array movers()

OPEN "force.dat" FOR INPUT AS #1
IF (show$ = "y") THEN PRINT "Refer to appendices for list of soldier
& attribute names"
LOCATE 3, 1
J=0
DO UNTIL EOF(1)
J=J+1
INPUT #1, x, y, 2z, xlast, ylast, size, speed, dir, moving, wpnrng, ammo,
& status, posture, incmd, atkdir, tgteng, side
movers(J, 1) = x: movers(J, 2) = y:
'soldier’s elevation is set to his location
movers(J, 3) = elevation(FIX(x / 20) + 1, FIX(y / 20) + 1)
movers(J, 4) = xlast: movers(J, §) = ylast: movers(J, 6) = size
movers(J, 7) = speed: movers(J, 8) = dir: movers(J, 9) = moving
movers(J, 10) = wpnrng: movers(J, 11) = ammo: movers(J, 12) = status
movers(J, 13) = posture: movers(J, 14) = incmd: movers(J, 15) = dir
movers(J, 16) = tgteng: movers(J, 17) = side
IF (show$ = "y") THEN PRINT USING "####.# #8488 R84 S8 B888. 8 8.8
&OERE BRLER OB BEE BE B B.BE BE RB.0 8% B8 "y x5 vy 23 xlast; ylast; size;
& speed; dir; moving; wpnrng; ammo; status; posture; incmd; dir; tgteng;
& side
LOOP
CLOSE #1
IF (show$ = "y") THEN CALL pause: CLS

'this block records the original number of soldiers alive when the
' battle starts and the ammo available on each side
bluecount = 0: redcount = 0: bluebullets = 0: redbullets = 0
FORI =1T0 6

bluecount = bluecount + movers(I, 12)

bluerounds = bluerounds + movers(Il, 11)
NEXT I
FOR I =7 70 12

redcount = redcount + movers(l, 12)

redrounds = redrounds + movers(Il, 11)
NEXT I

'This section loads probabilities of acquisition for the search module.

OPEN "pl.dat" FOR INPUT AS #1 ' this is a 10 x 3 array
IF (show$ = "y") THEN PRINT " Probabilities of Acquisition(pl) based
& on range & posture."
IF (show$ = "y") THEN PRINT " range prone crouched standing"
LOCATE 4, 1
I1=0

DO UNTIL EOF(1)

I =1+1

138

INPUT £1, PI(I’ 1), pi(1, 2), pi(I, 3)
IF (show$ = "y") THEN PRINT I * 100, pi(I, 1), pi(I, 2), p1(I, 3)
LOOP
CLOSE #1
IF (show$ = "y") THEN CALL pause: CLS

'This section loads probabilities of detection for the search module.

OPEN "p2.dat™ FOR INPUT AS #1 ’ this is a 10 x 10 array
IF (show$ = "y") THEN PRINT " This is a table of detection probabilities

& given "
IF (show$ = "y") THEN PRINT " that the targets can be acquired.”
IF (show$ = "y") THEN PRINT " search time (in sec)”
IF (show$ = "y") THEN PRINT "range .4 .8 1.2 1.6 2.0 2.4
& 2.8 3.2 3.6 4.0"
LOCATE 5, 1
I1=0
DO UNTIL EOF(1)
I=1+1

INPUT #1, p2(I1, 1), p2(1, 2), p2(1, 3), p2(1, 4), p2(1I, 5), p2(1, 6),
& p2(1, 7), p2(1, 8), p2(1, 9), p2(1I, 10)
IF (show$ = "y") THEN PRINT USING "##&# - .#8# .§#& .#8# 885 854
& H#E BEE JRER JE¥E EE8 U; T * 100; p2(1I, 1); p2(I, 2); p2(I, 3);
& p2(1, 4); p2(1, 5); p2(1, 6); p2(1, 7); p2(I, 8); p2(I, 9); p2(I, 10)
LOOP
CLOSE #1
IF (show$ = "y") THEN CALL pause: CLS

'This section loads probabilities of hit for the direct fire module.

OPEN "phit300.dat" FOR INPUT AS #1 ’ this is a 10 x 3 array
IF (show$ = "y") THEN PRINT " Probabilities of hit(ph300) based on range
& & target posture.”
IF (show$ = "y") THEN PRINT " range prone crouched standing"
LOCATE 4, 1
I1=0
DO UNTIL EOF(1)
I=1+1
INPUT #1, ph300(1, 1), ph300(I, 2), ph300(I, 3)
IF (show$ = "y") THEN PRINT I * 100, ph300(I, 1), ph300(I1, 2),
& ph300(1, 3)
LOOP
CLOSE #1
IF (show$ = "y") THEN CALL pause: CLS

OPEN "phit400.dat" FOR INPUT AS #1 ’ this is a 10 x 3 array

IF (show$ = "y") THEN PRINT " Probabilities of hit(ph400) based on range
& & target posture.”

IF (show$ = "y") THEN PRINT " range prone crouched standing"
LOCATE 4, 1

I1=0

DO UNTIL EOF(1)

139

I=1+1
INPUT £1, ph400(1, 1), ph400(I, 2), ph400(1, 3)
IF (show$ = "y") THEN PRINT I * 100, ph400(I, 1), ph400(I, 2),
& ph400(1I, 3)
LOOP
CLOSE #1
IF (show$ = "y") THEN CALL pause: CLS

OPEN "phit500.dat"” FOR INPUT AS #1 ’ this is a 10 x 3 array
IF (show$ = "y") THEN PRINT " Probabilities of hit(ph500) based of range
& & target posture.”
IF (show$ = "y") THEN PRINT " range prone crouched standing"
LOCATE 4, 1
I=0
DO UNTIL EOF(1)
I=1I+1
INPUT #1, ph500(I, 1), ph500(I, 2), ph500(1, 3)
IF (show$ = "y") THEN PRINT I * 100, ph500(I, 1), ph500(I, 2),
& ph500(1, 3)
LOOP
CLOSE #1
IF (show$ = "y") THEN CALL pause: CLS

OPEN 'phit600.dat" FOR INPUT AS #1 ' this is a 10 x 3 array
IF (show$ = "y") THEN PRINT " Probabilities of hit{ph600) based of range
& & target posture.”
IF (show$ = "y") THEN PRINT " range prone crouched standing"
LOCATE 4, 1
I1=0
DO UNTIL EOF(1)
I=1+1
INPUT #1, ph600(I, 1), ph600(I, 2), ph600(I, 3)
IF (show$ = "y") THEN PRINT I * 100, ph600(I, 1), ph600(I, 2),
& ph600(1, 3)
LOOP
CLOSE #1
IF (show$ = "y") THEN CALL pause: CLS

END SUB

140

SUB killsoldier (tgt)
Tikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkbkkkkkkkkkkkkkkkkkkkikkkkkkkkkkk
'PURPOSE Eliminates active events for soldiers when each soldier dies.
' This routine searches the event list for events of the dead soldier

' and then calls the remove subprogram to transfer those records from

' the active to the inactive event list.

'VARIABLES

' Maxevents the size of thke event list

' I is merely a rounter

' tgt the number of the dead soldier

' eventactor() a vector stores the identity of the soldier scheduled

! to perform each event.
Y kkkkkkkkkkkkkkkkokkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkbkdkkkkkkkkkkkkkkk

' this block looks at each event on the active list and determines if
' it belongs to the deceased soldier. If it does then it is removed
' from the active event list

FOR I = 1 TO Maxevents
IF (eventactor(I) > tgt - .1 AND eventactor(I) < tgt + .1) THEN
CALL remove(I) ’'places the event record (I) in the inactive file
ELSE
END IF
NEXT I
END SUB

SUB linkempties
VikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkRkkkkkkkkkkhkkkkk Rk Rk Rk RRRkKkkkkkkk
' PURPOSE This routine establishes links for the records in the active

' and inactive event lists. It gives the first event a large value so it
’ will never be called before all other events have been exhausted. This
' feature keeps the model from having an empty list an any tinme.

' VARIABLES
Firstevent = 1 'Firstevent is the active list top pointer
eventtype(l) = 8 ’designates the type of event
timeofevent(1l) = 999 ’designates the time the event is scheduled for
eventactor(1l) = 'designates which entity will perform the event
backlink(1l) = 1 ' predecessor link that points ahead
nextlink(1l) = 1 ' successor link that points behind

Vikkkkkkkkkkkkkkkkkkkkkobkkkkokkkkkkkk kbR kkokkokkkkkkkkkk kR kkokk ko kkkokkkkkokkk

Firstempty = 2
FOR I = 2 TO Maxevents

backlink(I) =1 ~ 1
nextlink(I) =1 + 1
NEXT I
backlink(2) = 2
nextlink(Maxevents) = Maxevents
END SUB

141

SUB move (e, fromlist, tolist)
Ykk
'PURPOSE Move an event e from its current list (starts with fromlist)
'to its new list (starts with tolist).

'The event e time, actor and type data should be modified in place
'prior to the call to MOVE. The variable e should not be one of the
'two pointers (fromlist, tolist). FROMLIST and TOLIST will be
'Firstempty and Firstevent - which is which will depend on whether

"MOVE is called to get an event onto or off of the calendar.
VikkkdkkkkkkkkkkkkkkkkkkRkk

'First, delete event e from the list it is currently in

' IF e is the first event in the list THEN
change the id of the start of the list
make the backpath stop at the new top

ELSEIF e is the last event THEN
make the nextpath stop at the new end

ELSE

just cut e out of the middle of the list

IF backlink(e) = e THEN

fromlist = nextlink(e)

backlink(fromlist) = fromlist '"seal" the backpath at the new top
ELSEIF nextlink(e) = e THEN

nextlink(backlink(e))
ELSE

nextlink(backlink(e))

backlink(nextlink(e))
END IF

1]

backlink(e) ’stop the nextpath at the new end

nextlink(e) ' path forward now leaps e
backlink(e) ' path backward now leaps e

Now, insert e into the new path by looking for its proper position
starting at the top as identified by tolist.

slip down the list until the 1st event that follows e is found
putbefore = tolist
WHILE timeofevent(e) > timeofevent(putbefore) AND nextlink(putbefore)
& <> putbefore

putbefore = nextlink(putbefore)
WEND

IF e is before at least one event THEN
IF e is before the old top of the list
put e first
ELSE
slip e in the middle of the list
ELSE
add e to the end of the list

- - e e W e -

IF timeofevent(e) < timeofevent(putbefore) THEN
IF putbefore = tolist THEN
backlink(e) = e ' event e comes from itself

142

nextlink(e) = tolist 'event e leads to the old top of the list
backlink(tolist) = e 'old top of list now points to new top (e)
tolist = e .’ the new top of the list is event e
ELSE
backlink(e) = backlink(putbefore) ’link e and its predecessor
nextlink(backlink(e)) = e
nextlink(e) = putbefore 'link e and its successor
backlink{putbefore) = e
END IF
ELSE
nextlink(putbefore) = e ‘add e to end of the list
backlink{(e) = putbefore
nextlink(e) = e
END IF

END SUB

SUB remove (e)
Vkkkkkkkkkkkkkkkkkkkkk kR Rk Rkk kR k kR Rk Rk Rk kR Rk Kk kkkkkRokkk Kok
' PURPOSE This routine pulls an event from the top, middle or bottom
' of a linked list. When passed the value e which indicates the event
' to be pulled, the routine zeroes out the event type and calls move

' to pass the event to the inactive file,

' VARIABLES
' e is an integer value that is the identifier of the event of interest
eventtype(e) = 0 ' dummy out the event type
eventactor(e) = 0 ' dummy out the event actor
timeofevent(e) = e ’ set sequence number to the position in the array
YRRk kKRR KKE KRR EKKKRKKR KRR ERRRERRRRRKERRRRRRRKR R R KRR kKRR Rk RkkRkRRk kR Kk

CALL move(e, Firstevent, Firstempty) 'move event e from the pending
'to the empty list
END SUB

SUB setup
Vkkkkkkkkkpkkkkkkkkkkkkkkkkkk Rk Rk RkkkkkkRkk Rk kR Rkkokk kR Rk kkkkkkkk kKK

' PURPOSE this routine queries the user about whether he desires to use
' default settings or not in the simulation and allows the user to modify

' certain run parameters if desired.
VkkkkkkkkkkkkokkkkkkokkkkkkkkkkkkkkkkRkRkkpkkkkkR kR Rk kkkkkkkkkkkk kR Rk k¥

'these constants determine whether the squad leaders can alter directions
CONST redincmd = 1, rednotincmd = 0

CONST blueincmd = 1, bluenotincmd = 0

again$ = "r"
DO WHILE again$ = "r"

CALL frame(l, 79, 2, 23, 7, 1)

143

LOCATE 4, 32

PRINT " SIMULATION SETUP "

LOCATE 6, 3: PRINT " Default settings are indicated in < >,

& To modify hit <y> else <return>."

LOCATE 7, 3: PRINT "s=====z=z===z==z=z=z=z=zz==z= SEsEssErsSSoasNsommssEnzsE

LOCATE 8, 3: PRINT " Maximum number of events <5000> Modify? (y/n)":

& a$ = INPUT$(1)

IF (a$ = "y" OR a$ = "Y") THEN LOCATE 8, 60: INPUT "Value "; terminate
LOCATE 10, 3: PRINT " Maximum number of seconds for run <300> Modify?
& (y/n)": b$ = INPUT$(1)

IF (b$ = "y" OR b$ = "Y") THEN LOCATE 10, 60: INPUT "Value "; timestop
LOCATE 12, 3: PRINT " Terminate # level of Blue remaining <3> Modify?
& (y/n)": c$ = INPUT$(1)

IF (c$ = "y" OR c$ = "Y") THEN LOCATE 12, 60: INPUT "Value "; bluestop
LOCATE 14, 3: PRINT " Terminate at # of Red Remaining <4> Modify?

& (y/n)": d$ = INPUT$(1)

IF (d$ = "y" OR d$ = "Y") THEN LOCATE 14, 60: INPUT "Value "; redstop
LOCATE 16, 3: PRINT " Atmospheric attenuation coef. <1.0> Modify? (y/n)":
& e$ = INPUT$(1)

IF (e$ = "y" OR e$ = "Y") THEN LOCATE 16, 60: INPUT "Value "; attenuation
LOCATE 18, 3: PRINT " Should blue side respond to sqd ldr <yes> Modify?
& (y/n)": £$ = INPUT$(1)

IF (£$ = "y" OR f$ = "Y") THEN LOCATE 18, 60: INPUT " <y> or <n> "; g$:
& IF (g% = "n" OR g$ = "N") THEN bluecommand = bluenotincmd

LOCATE 20, 3: PRINT " Should red side respond to sqd ldr <yes> Modify?
& (y/n)": h$ = INPUTS$(1)

IF (h$ = "y" OR h$ = "Y") THEN LOCATE 20, 60: INPUT " <y> or <n> "; I$:
& IF (I$ = "n" OR I$ <> "N") THEN redcommand = rednotincmd

LOCATE 22, 4: RANDOMIZE ’queries the user to input an initial seed value.

LOCATE 24, 2: PRINT "If done hit <return> else hit <r> to make changes ":
& again$ = INPUTS$(1)

CLS
LOOP
END SUB

SUB showevents
VikkkkkkkkkkkkkRkkkkk kR kRkkkk Rk Rk Rk kR Rk kkkkkRkkkkR Rk Rkk kR kR kkkkkkk
' PURPOSE This routine prints a list of the first twelve events on the

' future event calendar and a brief description of each event.
VikkkkkkkkkkkkkrkkkkRkkkRkkkkkkkkkkkkkkkkk Rk kRRkkkkkk R Rk R Rk R Rk kR kKRR Kk

CLs 1

COLOR 7, 1

PRINT "SEQ TYP LST WHO TIME <BK-NXT>"
e = Firstevent

ne =0

I =0

144

WHILE nextlink(e) <> e AND I <= 10
I=1+1
ne = ne + 1
LOCATE ne + 1, 1
PRINT USING "##) "; ne;
PRINT USING "## (##) ## at ###.## <H¥-#8>"; eventtype(e); e;
& eventactor(e); timeofevent(e); backlink(e); nextlink(e)
LOCATE ne + 1, 35
IF (eventtype(e) = 1) THEN PRINT USING "Soldier ## will start searching at
& #4#4.4#"; eventactor(e); timeofevent(e)
IF (eventtype(e) = 2) THEN PRINT USING "Soldier ## will start moving at
& ####.44"; eventactor(e); timeofevent(e)
IF (eventtype(e) = 3) THEN PRINT USING "Soldier ## will stop moving at
& ###4.44"; eventactor(e); timeofevent(e)
IF (eventtype(e) = 4) THEN PRINT USING "Soldier ## will select a target at
& ###4.4#"; eventactor(e); timeofevent(e)
IF (eventtype(e) = 5) THEN PRINT USING "Soldier ## will fire at soldier ##
& at ####.44"; eventactor(e); movers(eventactor(e), 16); timeofevent(e)

IF (eventtype(e) = 6) THEN PRINT USING "Soldier's ## shot impacts on ## at
& #4##.44", eventactor(e); movers(eventactor(e), 16); timeofevent(e)

IF (eventtype(e) = 7) THEN PRINT USING "Soldier ## reacts to being fired
& on at####.#4"; eventactor(e); timeofevent(e)

e = nextlink(e)
WEND

ne = ne +1

LOCATE ne + 1, 1

PRINT USING "##) "; ne;

PRINT USING "## (##) ## at ###.44 <h#-48>"; eventtype(e); e;

& eventactor(e); timeofevent(e); backlink(e); nextlink(e)

LOCATE ne + 1, 35
IF (eventtype(e) = 1) THEN PRINT USING "Soldier ## will start searching at
& ####.4%"; eventactor(e); timeofevent(e)
IF (eventtype(e) = 2) THEN PRINT USING "Soldier ## will start moving at
& #4#4.48"; eventactor(e); timeofevent(e)
IF (eventtype(e) = 3) THEN PRINT USING "Soldier ## will stop moving at
& ####.44"; eventactor(e); timeofevent(e)
IF (eventtype(e) = 4) THEN PRINT USING "Soldier ## will select a target at
& #4#4.4%"; eventactor(e); timeofevent(e)
IF (eventtype(e) = 5) THEN PRINT USING "Soldier ## will fire at soldier ##
& at ##4#.44"; eventactor(e); movers{eventactor(e), 16); timeofevent(e)
IF (eventtype(e) = 6) THEN PRINT USING "Soldier's ## shot impacts on ## at
& #4#4.4%"; eventactor(e); movers(eventactor(e), 16); timeofevent(e)
IF (eventtype(e) = 7) THEN PRINT USING "Soldier ## reacts to being fired
& on at####.#4"; eventactor(e); timeofevent(e)

LOCATE 14, 1
PRINT "skkkkkkkkkkkkiiikikbkikribiekikikikikikikhkikkkikidkkikiikkorkkikkk

& Fkkkkkkkkx"
LOCATE 16, 26: PRINT " EVENT CALENDAR DISPLAY"

145

LOCATE 18, 1

PRINT " This display shows the next twelve events scheduled to occur in
& chronological"

PRINT " order. The left side shows the type of event, its position in

& the event list"

PRINT " the event actor, the time of the event, along with the successor
& and "

PRINT " predecessor link pointers. The right side is a short description
& of the event."

LOCATE 24, 2

CALL pause

END SUB

146

Vikkkrkkkkkkkkk

’

*
! *¥%kkk COMBAT MODULE #*¥kkk¥ *
! *

Pikkkkkkkkkkckkkkkk ik kkkkkokkkokk bk kkkk kR kR kR Rk Rk kkkkkkkkkkkkkkkk

' This block contains the declare statements for the subprograms and
! functions that are in or called by this module. Hit F2 for menu.

DECLARE SUB icon (who) ' draws out the graphics of the soldiers
DECLARE SUB pause () ' used to allow the user to read screen
DECLARE SUB addevent (itype!, time!, entity) ' add events to calendar
DECLARE SUB endmove () ' plots soldier’s new location

DECLARE SUB startmove () ' provides next location and time to move
DECLARE SUB search () 'decides which enemy can be seen by observer
DECLARE SUB tgtselect () ’selects a detected target to engage, if any
DECLARE SUB reacttofire () 'models soldier's action after being engaged
DECLARE SUB directfire () ‘'performs firing and computes time of flight
DECLARE SUB impact () 'determines hits and the results of a hit
DECLARE SUB killsoldier (tgt) 'removes future events of dead soldiers
DECLARE SUB plotterrain () 'plots the elevation on the graphics

DECLARE SUB oput () 'provides final output at end of simulation
DECLARE SUB soldierstats () 'prints out a list of soldier attributes
DECLARE SUB frame (left%, right¥%, top%, bottom¥%, fore%, back¥%) ' frames
DECLARE SUB battlestats () ’provides a summary of ongoing battle stats
DECLARE SUB pottgtlist () ’'displays each soldier's target list
DECLARE SUB reorient (who) ’'reorients soldier direction on SL's command
DECLARE SUB cmddecision (who) 'changes soldier's directions when called
DECLARE SUB showevents () 'a window showing next 12 events scheduled
DECLARE SUB hitcount (tgt) ‘'tracks total hits on each side for oput
DECLARE FUNCTION LOS! (entityl!, entity2!) ‘checks LOS from obs to tgt
DECLARE FUNCTION triag (A!, R!, B!) ' provides RV of a triangular dist

' The variables in these COMMON’s are globally defined

COMMON SHARED time, movers(), te, eventactor(), elevation(), mobility(),

& pi(), p2(), ph300(), ph400(), ph500(), ph600(), attenuation, activeblue,
& activered

COMMON SHARED bluecommand, redcommand, direct()

COMMON SHARED bluecount, redcount, bluerounds, redrounds

CONST pi = 3.14159

DIM SHARED tgtlist(12, 12) AS SINGLE

DIM SHARED pottgts(6, 2) AS SINGLE

DIM SHARED redhits AS INTEGER, bluehits AS INTEGER
END

SUB battlestats
Vkkkkkkkkkkkkkkkkkokkekkk
'PURPOSE this routine computes and displays some simple data values

' during the course of the simulation
VRkRRRRRERRRIRKRERERERKRERKEKRIRRERERERE LK RIRRR TR TR KRRk kR Kk Rk kk

Cls 1 'all of this block is formatting of a display screen
COLOR 1, 15

CALL frame(2, 78, 2, 23, 1, 15)

LOCATE 3, 30: PRINT "*% BATTLE STATUS *x"

LOCATE 7, 4: PRINT "Soldiers remaining"

LOCATE 9, 4: PRINT "Soldiers wounded"

LOCATE 11, 4: PRINT "Ammo remaining"

LOCATE 5, 25: PRINT "* BLUE FORCES *"

LOCATE 7, 28: PRINT USING " ## "; activeblue

LOCATE 9, 28

bluewounded = 0

FOR1 =1T0 6

IF (movers(l, 12) = 2) THEN bluewounded = bluewounded + 1
NEXT 1

PRINT USING " ##"; bluewounded

FORTI =1TO 6
BLUEAMMO = BLUEAMMO + movers(I, 11)
NEXT I

LOCATE 11, 28
PRINT USING " ###"; BLUEAMMO

COLOR 4, 15
LOCATE 5, 50: PRINT "* RED FORCES %"
LOCATE 7, 53: PRINT USING " ## "; activered
LOCATE 9, 53
redwounded = 0
FOR1 =17 TO 12
IF (movers(l, 12) = 2) THEN redwounded = redwounded + 1
NEXT 1
PRINT USING " ##"; redwounded

FORI =7 TO 12
REDAMMO = REDAMMO + movers(l, 11)
NEXT I
LOCATE 11, 53
PRINT USING " ###"; REDAMMO

COLOR 1, 15

LOCATE 22, 3

PRINT "Do you wish to see event list ? ": k$ = INPUT$(1)
IF (k$ = "y" OR k$ = "Y") THEN CALL showevents

IF (k$ <& "y" AND k$ <> "Y") THEN LOCATE 24, 2: CALL pause

END SUB

148

SUB cmddecision (who)
VekkkkkkkkkkkkkkkkkkkkkkRkkkkkkkkkk ki kkkk kbR kkkkkkkkkkkkkkkkkkkkkk
'PURPOSE this routine causes the soldiers to orient on the sqd

'leader’s target or return to their original movement direction.
TR TSI IS TII SIS T AT ILTITIITII LTI LI TIILITI LIS IIIRT T3 2T T2 222 23 2

'if the soldier is a sqd ldr and has identified a target then the
'soldiers in his squad will reorient on the enemy otherwise they
'will assume their original directions of mcvement

IF (movers(who, 14) > 0 AND movers(who, 16) > 0) THEN
CALL reorient(who)
ELSE

1)) THEN firstone = 1: lastone = 6
-1)) THEN firstone = 7: lastone = 12

IF (movers(who, 17
IF (movers(who, 17

FOR I = firstone TO lastone
movers(I, 8) = movers(I, 15)
NEXT 1
END IF

END SUB

SUB directfire STATIC
VhkkkkkbRRkERRkRRRk bRk Rk Rk Rk Rk Rk kR Rk kkk Rk Rk kR kR kR kKRR Kk kKK
' PURPOSE This routine models a soldier that has identified a

' potential target to fire at. It fires at the target and then calls

' the impact subprogram to determine whether the engagement was

' successful, This routine checks to ensure both actors are still alive

' at the engagement time, and line of sight still exists between the two.

' VARIABLES

who = eventactor(te) 'this is the observer

x = movers(who, 1) 'these are the coordinates and orientation
y = movers(who, 2) 'of the observer

dir = movers(who, 8)

tgt = movers(who, 16) 'enemy to be engaged

tgtx = movers(tgt, 1) 'enemy’s coordinates

tgty = movers(tgt, 2)
obsstatus = movers{who, 12) ’'whether observer is dead or alive

tgtstatus = movers{tgt, 12) ’whether the target is dead or alive
VERERRERERRFRRERRERRERRROKRRRE ORI RERRR KRR R KRR RRR KRR kKRR kR kR kR

'this check ensures that the target is alive
IF (tgtstatus > 0) THEN

IF (LOS(who, tgt) = 1 AND movers(who, 11) > 0) THEN

'Compute absolute distance between observer and target
dist = SQR((obsx - tgtx) "~ 2 + (obsy - tgty) " 2)

149

'Compute time of flight and impact time

'this formula assumes a constant bullet velocity of 500 meters/sec

impacttime = time + dist / 500!

'this function draws out firing occuirences.

LINE (x, y)-(tgtx, tgty), 4

PLAY "MFOOL64T64N45L32N12" 'this function creates the firing sound
'and delays the draw function long
'enough to observe it.

LINE (x, y)-(tgtx, tgty), O

CALL addevent(6, impacttime, who) 'schedules impact of the bullet
movers(who, 11) = movers{who, 11) - 1 ’decrement ammo supply by one
ELSE
CALL addevent(1l, time + triag(2!, 5!, 7!), who)
'shooter looks for new target
END IF
ELSE
CALL addevent(1, time + triag(2!, 5!, 7!), who)
'shooter looks for new target
END IF

END SUB

SUB endmove
VRREREERRERERERAKE KRR EKEKKKRERKEKREKKEKKRKERRRRRRERRRRKKRRER R KKK R KRR

' PURPOSE The purpose of this routine is to determine the time for the

' beginning of the next movement.
VRRRRRRRRRRERRRRRRRERERRERRERRRRRRRRRRERERRRRERRRRERRRRRER R KRR KRRk KRk

' VARIABLES

who = eventactor(te) i

who is a buffer for soldier’'s identity

'this block computes a time for the next move to begin
'and schedules a startmove to occur at that time.

movetime = time + triag(8!, 10!, 12!)
CALL addevent(2, movetime, who)

'the duration of the time between moves was selected arbitrurily

END SUB

150

SUB hitcount (tgt)
VikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkRkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
'PURPOSE this routine counts the number of hits scored on each side
'for final output in the subprogram oput

'VARIABLES
' bluehit is a counter for the number of hits on blue

' redhit is a counter for the number of hits on red
VRRREREREKERRRERKRERERERERERERKERREREREREKRRERERKRERERERR R TR EREK KK

IF (movers(tgt, 17)
IF (movers(tgt, 17)
END SUB

1) THEN bluehits = bluehits + 1
-1) THEN redhits = redhits + 1

SUB icon (who)
ThRRkRRRkERRRERRRRKRRRRKRKKRRERKR KRRk kkkkkkRRRkRk Rk kRkRkkbkkkkkkkbkkkkk
' PURPOSE This routine checks to see if the soldier is moving. If so,
' then it draws the soldier's symbol at the new location and overdraws
' the old location with the background color.

' VARIABLES

' who

x = movers(who, 1)

y = movers(who, 2)
xlast = movers(who, 4)
ylast = movers(who, 5)
dir = movers(who, 8)

the soldier being drawn
the new x,y coordinates for the soldier

the soldier's old x,y coordinates
' the orientation/movement direction
' of the soldier

gside = movers(who, 17) ' the soldier’s allegiance (1) blue (-1) red
PRRRRRRERRRERRERRRRRRRRRRRERRRRRRRRRERRRRRRRRRERRR R KRR KRR R KRRk Rk Rk

'this block determines the correct color for the icon
CONST blueicon = 9, redicon = 4
IF (side > 0) THEN
iconcolor = blueicon
ELSE
iconcolor = redicon
END IF

'this block determines which location to be drawing in
IF (movers(who, 12) = 1) THEN

'overdraw the soldier’s old symbol with the background color
CIRCLE (xlast - 3.6, ylast), 2, 0

PSET (xlast, ylast), O

LINE -STEP(-10, -10), O

LINE -STEP(-10, 10}, O

LINE -STEP(10, 10), O

LINE -STEP(10, -10), O

151

'draw the soldier’s new symbol at the new location
CIRCLE (x - 3.6, y), 2, iconcolor

PSET (x, y), iconcolor

LINE -STEP(-10, -10), iconcolor

LINE -STEP(-10, 10), iconcolor

LINE -STEP(10, 10), iconcolor

LINE -STEP(10, -10), iconcolor

ELSE
' this block redraws the soldier’s icon if he has not moved

CIRCLE (xlast - 3.6, ylast), 2, iconcolor

PSET (xlast, ylast), iconcolor

LINE -STEP(-8, -8), iconcolor

LINE -STEP(-8, 8), iconcolor

LINE -STEP(8, 8), iconcolor

LINE -STEP(8, -8), iconcolor

. - W e e e

END IF

END SUB

SUB impact
VekkkRkRkkk kbR kkRkkRikkkkkkkkkE
' PURPOSE this routine determines if the bullet hits the target and

' whether it is wounded or killed. The routine then modifies the

' targets attributes and calls the proper future events for

' both the firer and target based on the results

' VARIABLES

who = eventactor(te) "this is the observer

x = movers(who, 1) 'these are the coordinates and orientation
y = movers(who, 2) 'of the observer

dir = movers(who, 8)

tgt = movers(who, 16) 'enemy soldier being shot at

xtgt = wovers{tgt, 1) 'enemy’'s present coordinates

ytgt = movers(tgt, 2)

xlasttgt = movers(tgt, 4) ’'enemy's lasi coordinates
ylasttgt = movers{tgt, 5)

side = movers(tgt, 17) 'designates the allegiance of the target
‘activeblue indicates number of remaining blue soldiers
'activered indicates number of remaining red soldiers

REIE222ET 2222233332222 2222332232222 23232322322 22393 3333232232323 3

'this section computes absolute distance between observer and target
dist = SQR((obsx - tgtx) ~ 2 + (obsy - tgty) "~ 2)

'this section determines posture column to look under in pl table

IF (movers(tgt, 13) > .9) THEN tgtposture = 3

IF (movers(tgt, 13) < .9 AND movers(tgt, 13) > .4) THEN tgtposture = 2
IF (movers(tgt, 13) < .4) THEN tgtposture = 1

152

'this section determine p(hit) based on range and target posture

IF (dist > 999) THEN dist = 899 ’'limits possible ranges to 1000m
’since the tables are limited

’determines the correct p(hit) table depending on the soldier’s
'weapon range.

IF (movers(who, 10) < 399) THEN

phit = ph300(INT(dist / 100) + 1, tgtposture)
ELSEIF (movers(who, 10) < 499) THEN

phit = ph400(INT(dist / 100) + 1, tgtposture)
ELSEIF (movers(who, 1G) < 499) TIIEN

phit = ph500(INT(dist / 100) + 1, tgtposture)
ELSE

phit = ph600(INT(dist / 100) + 1, tgtposture)
END IF

IF (RND < phit) THEN
CALL hitcount(tgt)

'Determine probability of Kill
IF (RND < .3) THEN 'arbitrary 30% chance of death

'this section graphically portrays the bullet’s impact

'both ex; losion graphics and noise are created momentarily then erased
'the basic idea tor this came fr- Microsoft DOS 5.0 demonstration
’program entitled "GORILLA.BAS"

FORI =1T0 4
PSET (xtgt - 3.6, ytgt), 14
CIRCLE (xtgt - 3.6, ytgt), 1 + I, 14
LINE (xtgt - 3.6, ytgt)-(xtgt - 3.6 + I * COS(4 * I / 3.14),
& ytgt + 1 ¥ SIN(4 *x1 / 3.14)), 4
PLAY "MFL3200EFGDFG"
NEXT I
FORI =1T0 4
PSET (xtgt - 3.6, ytgt), O
CIRCLE (xtgt - 3.6, ytgt), 1 + I, 0
LINE (xtgt - 3.6, ytgt)-(xtgt - 3.6 + I * COS(4 * I / 3.14),
& ytgt + 1 *¥ SIN(4 *1 / 3.14)), 0O
NEXT I

' set gtatus to dead posture to prone movement to stopped
movers(tgt, 12) = 0: movers(tgt, 13) = .25: movers(tgt, 9) = 0

' schedule the firer to resume searching
CALL addevent(1l, time + triag(2!, 5!, 7!), who)

153

'overdraw the soldier’s old symbol with the background color
CIRCLE (xlasttgt - 3.6, ylasttgt), 2, 0

PSET (xlasttgt, ylasttgt), 0

LINE -STEP(-10, -10), O

LINE -STEP(-10, 10), 0

LINE -STEP(10, 10), O

LINE ~-STEP(10, -10), 0

CONST deadicon = 7 ’ this set the color for a dead icon to 1t gray

'draw the dead soldier’s symbol at the present location
CIRCLE (xtgt - 3.6, ytgt), 2, deadicon

PSET (xtgt, ytgt), deadicon

LINE -STEP(-106, -10), deadicon

LINE -STEP(-10, 10), deadicon

LINE -STEP(10, 10), deadicon

LINE -STEP(10, -10), deadicon

CALL killsoldier(tgt) ’removes dead soldiers active events

'this section updates the number of active soldiers on each side
'this is used in battlestats and as termination conditions in the
'main module

IF (side > 0) THEN
activeblue = 0
FORI =1TO 6
alive = 0
IF (movers(I, 12) > 0) THEN alive
activeblue = activeblue + alive
NEXT 1
ELSE
activered = 0
FOR I =7 TO 12
alive = 0
iF (movers(I, 12) > 0) THEN alive
activered = activered + alive
NEXT 1
END IT®

1}
[ury

fl
—

"this section determines whether the dead soldier is a sqd leader. If so
"then all directions of movement are returned to original orientation.
IF (tgt < 7 AND movers(tgt, 14) > 0) THEN
FORI =1TO 6
movers(I, 8) = movers(I, 15)
NEXT I
ELSEIF (movers(tgt, 14) > 0) THEN
FORI =7 TO 12
movers(I, 8) = movers(I, 15)
NEXT 1
ELSE
END IF

154

ELSE ’the target is only wounded and not killed

'this section graphically portrays the bullet’s impact

FORI =1T0 3
PSET (xtgt - 2.83, ytgt), 14
CIRCLE (xtgt - 2.83, ytgt), 1 + 1, 4
LINE (xtgt - 2.83, ytgt)-(xtgt - 2.83 + I * COS(4 * I / 3.14),
& ytgt + I * SIN(4 *¥1 / 3.14)), O
PLAY "MFL6400EFGDFG"

NEXT 1

FORI =1TO 3
PSET (xtgt - 2.83, ytgt), 0
CIRCLE (xtgt - 2.83, ytgt), 1 + 1, O
LINE (xtgt - 2.83, ytgt)-(xtgt - 2.83 + I * COS(4 * I / 3.14),
& ytgt + I *¥ SIN(4 *1 / 3.14)), O

NEXT I
' set status to wounded set movement to 0
movers{tgt, 12) = 2: movers(tgt, 9) = 0

’schedule firer to reengage present target
CALL addevent(5, time + triag(4!', 5', 8!), who)

'schedule target to react after being fired at
CALL addevent(7, time + 2!, tgt)
END IF
ELSE ’'shot misses the target
PLAY "MFL64T24000b"
'firer is scheduled to reengage the target afier a short time required
'to reload and reaim the weapon
CALL addevent(5, time + triag(4!, 5!, 8!), who)

’ target is scheduled to react after being shot at
CALL addevent(7, time + 2!, tgt)

END IF

END SUB

FUNCTION LOS (entityl, entity2) STATIC
Vikkkkkkkkkkkokkkkkkkkkkkkkkkckkkkkkkokkkkkkkkkkkkkkkkokkkkkkkkkkkkkkkkkkk

' PURPOSE This function when given an observer and target combination

' (entityl,entity2), returns a value of 1 (LOS exists) or 0 (LOS does

' not exist). It checks at 10 meter intervals whether the height at that
' point intersects LOS. Observer and target height are elevation + 2 m.

VARIABLES
obs and tgt identify the entities for the LOS check
elevation() a 50x50 array that contains elevations of each grid

NumberofChecks an integer variable that is the possible # of checks
LOSdist a real variable that is the distance between obs and tgt
L0Sdir a real variable that is the direction from obs to tgt (rdn)
CheckX, CheckY, CheckZ real variable values that represent the
coordinates of the points being checked along the LOS path

LOScheck a buffer that holds the true value of LOS until the end of
the function otherwise any references to LOS are assumed to be

recursive calls by the compiler.
kkkkkkkkkkkkkkokkkkkkkckk

W W WM M W W W W W e e e

obs = entityl: tgt = entity2

'Read in location coordinates of observer and target entities

obsx! = movers(obs, 1): obsy! = movers(obs, 2)
obsz! = movers(obs, 3) + movers(obs, 6)
tgtx! = movers(tgt, 1): tgty! = movers(tgt, 2)
tgtz! = movers(tgt, 3) + movers(tgt, 6)

'Compute absolute distance between observer and target
LOSdist! = SQR((obsx! - tgtx!) = 2 + (obsy! - tgty!) " 2)

IF (movers(obs, 17) <> movers(tgt, 17) AND LOSdist! <= 100 AND
& movers(tgt, 12) > 0) THEN movers(obs, 7) = 0: movers(obs, 13) = .5

dx! = 10 * (tgtx! - obsx!) / LOSdist!
dy! = 10 * (tgty! - obsy!) / LOSdist!
dz! = 10 * (tgtz! - obsz!) / LOSdist!

L0OS =1 ’Initially set LOS to 1 until check determines otherwise
LOScheck = 1 ’'this buffer stores LOS value until end of function

'Determine number of checks need to be made along LOS path.
NumberofChecks = INT(LOSdist! / 10)
check = 0 ’'Initially set counter to 0
CheckX! = obsx!: CheckY! = obsy!: ' designating observer location

' as the start point for LOS checks
CheckZ! = obsz!

' This loop wiil compare the intervening terrain elevation at 20 meter
' intervals with the LOS height (CheckZ)

156

DO ' this loop will continue as long as LOS exists or until all
' intermediate points at 20m intervals are checked

check = check + 1 ’keeps track of # of checks
CheckX! = CheckX! + dx! ’CheckX is X coord for next check
CheckY! = CheckY! + dy! 'CheckY is Y coord for next check

'CheckZ is the elevation of the LOS at the check location
CheckZ! = CheckZ! + dz!

' This check compares the height of CheckZ with the terrain height
' at the check location. The checks continue until the terrain is
' at some check is high enough to break line of sight
IF (CheckX! > 1000) THEN CheckX!

IF (CheckY! > 1000) THEN CheckY!

IF (CheckX! < 0) THEN CheckX! = 0
IF (CheckY! < 0) THEN CheckY! = 0

999 ' this block prevents array
999 ’ subscripts from exceeding
' their limits

IF (elevation(FIX(CheckX! / 20!') + 1, FIX{(CheckY'! / 20!) + 1) > CheckZ!)
& THEN LOScheck = 0

LOS = LOScheck 'If LOS does not exist then set LOS = 0
LOOP WHILE LOScheck = 1 AND check < NumberofChecks - 1

END FUNCTION

SUB oput
VikkkkkkkokkkkkkkkkkkkkkkkkkkRkRkkkkkkk kR Rk kkkk Rk kk kR Rk k kR ok kK
' PURPOSE This routine provides several screens of "end of battle"

' values. The first screen provides some aggregated values for each
side. The next screen displays selected from the soldier attribute

arrays, and the last screen shows the target list at end of battle.
Vikkkkkkkkckkkkkkkkkkkokkkdkokkokkkkok ok kkokkokk kR ko kkkkkkok ok kokkkdokkokk kkok kokskokk

’
)

LOCATE 1, 1
PRINT USING " END OF SIMULATION RUN THE TIME IS ##&#.8%.....
"s time
)
PLAY "MFOOL16DEFGPOCCAA"
LOCATE 25, 2: INPUT " Do you wish to see final output <y> or <n> ", k$
IF (k$ = "y" OR k$ = "Y") THEN

CLS

COLOR 1, 15

CALL frame(2, 78, 2, 23, 1, 15)

LOCATE 3, 30: PRINT "#*% BATTLE STATUS *%*"
LOCATE 7, 4: PRINT "Initial # of soldiers"
LOCATE 9, 4: PRINT "Soldiers remaining"
LOCATE 11, 4: PRINT "Soldiers wounded"
LOCATE 13, 4: PRINT "Initial ammo"

157

LOCATE 15, 4: PRINT "Ammo remaining"
LOCATE 17, 4: PRINT "# of rounds fired"
LOCATE 19, 4: PRINT "# of hits on side"

LOCATE 5, 25: PRINT "* BLUE FORCES *"

LOCATE 7, 28: PRINT USING "
LOCATE 9, 28: PRINT USING "
LOCATE 11, 28

bluewounded = 0
FOR1=1TO 6

IF (movers(1l, 12) = 2) THEN bluewounded = bluewounded + 1

NEXT 1

"; bluecount
"; activeblue

PRINT USING " ##"; bluewounded

FORI =1TO0 6

BLUEAMMO = BLUEAMMO + movers(I, 11)

NEXT I

LOCATE 13, 28: PRINT USING "
LOCATE 15, 28: PRINT USING "
LOCATE 17, 28: PRINT USING "
LOCATE 19, 28: PRINT USING "

COLOR 4, 15

##4": bluerounds

###"; BLUEAMMO

###"; bluerounds - BLUEAMMO
##4"; bluehits

LOCATE 5, 50: PRINT "# RED FORCES *"

LOCATE 7, 53: PRINT USING "
LOCATE 9, 53: PRINT USING "
LOCATE 11, 53

redwounded = 0
FOR 1 =17 T0 12

IF (movers(1l, 12) = 2) THEN
NEXT 1

", redcount
"; activered

redwounded = redwounded + 1

PRINT USING " ##"; redwounded

FORI = 7 TO 12

REDAMMO = REDAMMO + movers(I, 11)

NEXT I

LOCATE 13, 53: PRINT USING "
LOCATE 15, 53: PRINT USING "
LOCATE 17, 53: PRINT USING "
LOCATE 19, 53: PRINT USING "
LOCATE 24, 2

CALL pause

COLOR 1, 15: CLS

LOCATE 2, 2: PRINT "Selected
& files."

LOCATE 4, 2: PRINT " X /
& posture / tgteng"

FOR1 =1 TO 12

##4"; redrounds

##4": REDAMMO

##4"; redrounds - REDAMMO
###"; redhits

values from the present soldier attribute

y / speed / moving / ammo / status /

PRINT USING " ####.4 4##4. 4 #ho# ## ##

& ## "; movers(I, 1); movers(I, 2); movers(I, 7); movers(I, 9);
& movers(I, 11); movers(I, 12); movers(I, 13); movers(I, 16)

NEXT I

158

#obd

LOCATE 24, 2

CALL pause

CLS

PRINT " Potential Targets Array": PRINT
PRINT " Targets "

PRINT " Observer 1 2 3 4 5 6 7 8 9 10 11 12"
FOR I =1 TO 12
PRINT USING " ## -~ J#§ Hb 48 48 3 B8 B8 88 88 88 8 88
& I; tgtlist(I, 1); tgtlist(I, 2); tgtlist(I, 3); tgtlist(Il, 4);
& tgtlist(T, 5); tgtlist(I, 6); tgtlist(I, 7); tgtlist(I, 8);
& tgtlist(I, 9); tgtlist(I, 10); tgtlist(I, 11); tgtlist(I, 12)
NEXT 1
LOCATE 24, 2
CALL pause
CLS
ELSE
END IF
END SUB

SUB plotterrain
VikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkRkkkkkkkkokkkkkkokkkkkkkkkkkokkkkkkkkkk
' PURPOSE This routine places a color patch in each grid that
’ identifies the elevation for that particular grid.
Vkkokkokkkkkrkkkkdkokkkkkkkiokkk kR kkkkkkkokkkok Rk kkkkkokkkdkokkokkkkk Rk kkkkkkkk
FORI =1 TO 50

FOR J =1 TO 50

xspot = I * 20! - 10!

yspot = J ¥ 20! - 10!

elev = elevation(I, J)

IF (elev < 10 OR elev = 10) THEN 'color is light green
spot = 10

ELSEIF (elev < 20 OR elev = 20) THEN ’color is light cyan
spot = 11

ELSEIF (elev < 30 OR elev = 30) THEN ‘'color is light red
spot = 12

ELSEIF (elev < 40 OR elev = 40) THEN ‘’color is light magenta
spot = 13

ELSEIF (elev < 50 OR elev = 50) THEN ’color is light yellow
spot = 14

ELSEIF (elev < 60 OR elev = 60) THEN ’color is bright grey
spot = 15

ELSE spot = 6 ‘color is brown

END IF

PSET (xspot, yspot), spot

NEXT J
NEXT 1
END SUB

159

SUB pottgtlist
Vkkkdokkokkkkkkkkkkokokkkkkkkkkkkkkkkkokkkkkkkkokkkokkokkkkkkkkkkokkkk bk kkkkkkkk

'"PURPOSE prints out a listing of the soldiers' target listings

CLS 1

COILOR 7, 1

CALL frame(2, 78, 2, 23, 7, 1)

LOCATE 5, 18: PRINT " Potential Targets Array"
LOCATE 7, 18: PRINT " Targets "

LOCATE 8, 11: PRINT " Observer1 2 3 4 5 6 7 8 9 10 11
& 12"
FORI =1 TO 12
LOCATE 8 + I, 11
PRINT USING " ## - 88 J## 83 84 88 88 88 8% 88 88 88 83 "
& I; tgtlist(I, 1); tgtlist(I, 2); tgtlist(I,3); tgtlist(I, 4);
& tgtlist(I, 5); tgtlist(I, 6); tgtlist(I, 7); tgtlist(I, 8);
& tgtlist(I, 9); tgtlist(I, 10); tgtlist(I,11); tgtlist(I, 12)
NEXT 1

END SUB

SUB reacttofire

Ykkckkdokdokkok Rk kR kkkkkkkk kR kkkckokk ok ko kokkkskk ok kokkkkkkkkkkskokkkk ok kokkkk
' PURPOSE This routine integrates a small portion of decision logic

' into the model. After being shot at a soldier can take several

' courses of action which are basically random in this case.
Vikkkkkkkkkkkkkkk Rk kRkkkokkkiokk Kk kkkk Rk kkkk Rk kkk Rk kkkdkkkokk Kok kKoK

reaction = RND ' value is used to determine the soldier’s reaction

who = eventactor(te) 'the scldier’s reaction maybe to fall to the
IF (reaction < .4) THEN ’'ground and continue searching or to run away
'or even possibly to madly rush forward

movers{who, 7) = 5: movers{who, 13) = .25
ELSEIF (reaction < .6) THEN

movers(who, 8) = movers(who, 8) + 3.14
ELSE

novers(who, 7) = 30: movers{who, 13) =1
END IF

END SUB

160

SUB reorient (who) STATIC
Vidkkkkkkkkkkkkkkkdkkkkkkkkkkkkkkkkkkkk Rk kkkkkkkkkkkkkkkkkkkkkkkkkkdkk
' PURPOSE this routine will change the direction of a subordinate

' soldier’s movement when it is called. The soldiers will orient

' on the enemy soldier targeted by the squad leader.

' VARIABLES

tgt = movers(who, 16)

tgtx = movers(tgt, 1)

tgty = movers(tgt, 2)
Vkkkkkkokkkkkkokiokkkokkkkkokkokdk ok Rk kkkokkkkkkkkkkkkkkokkkkkkkkkkkkkkkkkkkk ok

IF (who < 7) THEN
TORI =1T0 6
IF (movers(I, 12) > 0) THEN 'if the soldier is alive

IF (movers(I, 1) < tgtx AND movers(I, 2) < tgty) THEN
movers{I, 8) = .8

ELSEIF (movers(I, 1) < tgtx AND movers(I, 2) > tgty) THEN
movers(I, 8) = 2.1

ELSEIF (movers(I, 1) > tgtx AND movers(I, 2) > tgty) THEN
movers(I, 8) = 3.9

ELSE
movers(I, 8) = 5,2

END IF

ELSE
END IF
NEXT I

ELSE
FORI =7 TO 12
IF (movers(I, 12) > 0) THEN 'if the soldier is alive

IF (movers({I, 1) < tgtx AND movers(I, 2) < tgty) THEN
movers(I, 8) = .6: movers(I, 7) = 40

ELSEIF (movers(I, 1) < tgtx AND movers(I, 2) > tgty) THEN
movers(I, 8) = 2.4: movers(I, 7) = 40

ELSEIF (movers(I, 1) > tgtx AND movers(I, 2) > tgty) THEN
movers(I, 8) = 3.8: movers(l, 7) = 40

ELSE
movers(l, 8) = 5.3: movers(I, 7) = 40

END IF

ELSE
END IF

NEXT 1
END IF

END SUB

161

SUB search
Pxkkkokkkkkkkkkkkkkkkkkkkkkkk kR kR Rkk kR RRRERRER KRR LR RKRERRRR KRRk kKKK

' PURPOSE This routine will check all live enemy soldiers to see which

' are within range, and which have LOS with observer. The routine then

' checks to see which targets can be acquired by the observer(pl) and of
' these that are acquired which are detected using probability (p2).

' The routine then places the candidates prob of det on the potential

' tgt list, and calls the target selection routine to decide which target
' may be engaged.

'VARIABLES

who = eventactor(te) 'this is the observer

x = movers{who, 1) 'these are the coordinates and orientation
vy = movers(who, 2) 'of the observer

dir = movers(who, 8)

speed = movers(who, 7) 'observer’s rate of travel

xlast = movers(who, 4) 'observer's last coordinates

ylast = movers(who, 5)

status = movers(who, 12) 'whether observer is dead or alive

side = movers(who, 17) 'whether the observer is a blue or red soldier
YRk kKRR RKRRKKKERRRKRRRKKR KR RKRRKEKKERRKRRRRERERKERRRKEKKRRERK IR R KK

Pthreshold = .3 / attenuation ' the minimum threshold level required
'to acquire a target. It has been set
'arbitrarily, Attenuation is a parameter
'that can be set by the user to represent
'reduced visibility. Its range of values
*should be (0.31 - 1,0). Less than .3 makes
'it impossible to acquire a target at any
'range.
nodetect = 1!
'This loop determines the side of the soldier and then performs a
'search routine on each of the possible enemy soldiers.
FORI =1 T0 12
tgtlist(who, I) = 0 ' ensures the list only contains current entries.
IF (movers{who, 17) <> movers(Il, 17)) THEN 'so we only check enemy.
lineofsight = LOS(who, I) 'calls for LOF check on each enemy

IF (lineofsight = 1) THEN *the search process continues only if
'line of sight exists

'distance between observer and target is computed.

dist = SQR((movers(I, 1) - x) © 2 + (movers(I, 2) - y) * 2)

'this section determines posture column to look under in pl table
IF (movers(I, 13) > .9) THEN tgtposture = 3

IF (movers(I, 13) < .9 AND movers(I, 13) > .4) THEN tgtposture = 2
IF (movers(I, 13) < .4) THEN tgtposture = 1

IF (dist > 999) THEN dist = 899 'limits possible ranges to 1000m
'since the tables are limited

162

Pinf = p1(INT(dist / 100) + 1, tgtposture) ’pulls prob of acquistion

IF (Pinf > Pthreshold) THEN 'from table
lo = .4: mode = 2: hi = 4! 's search time is computed
srchtime = triag(lo, mode, hi) 'using triangular distribution

'a U(0,1) random # is compared to probability of detection(p2)
IF (RND < p2(INT(dist / 100) + 1, INT(srchtime * 2.5) + 1)) THEN

'this is a line draw function that displays detection occurences.

LINE (movers(who, 1), movers(who, 2))-(movers(I, 1), movers(I, 2)), 1

PLAY "p24" 'these functions produce the popping sound
PLAY "p8" ‘and delay the draw function long enough to observe it.

LINE (movers(who, 1), movers(who, 2))-(movers(I, 1), movers(I, 2)), O

'this line puts the P2 value of each target in the observer’s
'target list for use by the target selection subprogram
tgtlist(who, I) = p2(INT(dist / 100) + 1, INT(srchtime * 2.5) + 1)
nodetect = 0!
ELSE
END IF
ELSE
END IF
ELSE
END IF
ELSE
END IF
NEXT I
IF (nodetect < 1!) THEN
decisiontime = time + §! ' the decision time is a fixed 5 secs.
' This was an arbitrary decision that was
' intended to simplify the program.

CALL addevent(4, decisiontime, who) ’schedules the tgtselect routine.

ELSE

searchtime = time + triag(5!, 10!, 15!)
CALL addevent(1, searchtime, who)

END IF

END SUB

163

SUB soldierstats
Vkkkdkokkkkkkkokkkkkokkokk Rk kkkokkkkk ok bk ok ko kokkkokkkokdokkkkkkkkkkkkokkkokkkkkkkk
' PURPOSE this routine displays current soldier attributes when called

' by the user throughout the simulation run. It displays the blue force
' statistics in blue and red force in red. The screen is presently full,
' s0 if different attributes are desired, it will be necessary to remove

' some that are on the screen.
Vkkkkkkkkkkkkkkkkkkkkkkkk kR kkkkokkkkkkokk kb kkkkkkkkkkkokk ke kkkkokdkokkkkkkokkkk

CLS 1

COLOR 1, 15

CALL frame(2, 78, 2, 23, 1, 15)

LOCATE 3, 30: PRINT " COMBATANT STATUS"

LOCATE 4, 4

PRINT "Soldier #"
LOCATE 5, 4

PRINT "X Coord "
LOCATE 6, 4

PRINT "Y Coord "
LOCATE 7, 4

PRINT "Status "
LOCATE 8, 4

PRINT "Posture "
LOCATE 9, 4

PRINT "Moving "
LOCATE 10, 4

PRINT "Ammo (rnds) "
LOCATE 11, 4

PRINT "Direction”
LOCATE 12, 4

PRINT "Sqd Leader"

FORI =1T06 'blue force are soldiers 1 - 6
LOCATE 4, I * 10 + 11
PRINT USING " & "; 1
LOCATE 5, 1 ¥ 10 + 9
PRINT USING "####.4 "; movers(I, 1)
LOCATE 6, I ¥ 10 + 9
PRINT USING "##i##.4# "; movers(I, 2)
LOCATE 7, I * 10 + 9
IF (movers(I, 12) = 0) THEN
PRINT "Dead"
ELSEIF (movers(I, 12) = 1) THEN
PRINT "Alive"
ELSE
PRINT "Wounded"
END IF

LOCATE 8, I * 10 + 9
IF (movers(I, 13) > .9) THEN
PRINT "Standing"

164

ELSEIF (movers(I, 13) < ,9 AND movers(I, 13) > .5) THEN
PRINT "Crouch"

ELSE
PRINT "Prone"

END IF

LOCATE 9, I * 10 + 9

IF (movers(I, 9) = 1) THEN
PRINT "Moving"

ELSE
PRINT "Stopped"

END IF

LOCATE 10, I * 10 + 9

PRINT USING " ## "; movers(I, 11)

LOCATE 11, 1 * 10 + 9

PRINT USING "##.# "; movers(I, 8)

LOCATE 12, I ¥ 10 + 9

IF (movers(I, 14) = 1) THEN PRINT " SL"
NEXT I

COLOR 4, 15 'red force consists of soldiers 7 - 12

LOCATE 14, 4

PRINT "Soldier #"
LOCATE 15, 4
PRINT "X Coord "
LOCATE 16, 4

PRINT "Y Coord "
LOCATE 17, 4

PRINT "Status "
LOCATE 18, 4

PRINT "Posture "
LOCATE 185, 4

PRINT "Moving "
LOCATE 20, 4

PRINT "Ammo (rnds) "
LOCATE 21, 4

PRINT "Direction"
LOCATE 22, 4

PRINT "Sqd Leader"

FORJ =1TO 6
LOCATE 14, J * 10 + 11
PRINT USING "##"; J + 6
LOCATE 15, J * 10 + 9
PRINT USING "####.# "; movers(J + 6, 1)
LOCATE 16, J % 10 + 9
PRINT USING "####.¢4 "; movers(J + 6, 2)
LOCATE 17, J *¥ 10 + 9
IF (movers(J + 6, 12) = 0) THEN
PRINT "Dead"

165

ELSEIF (movers(J + 6, 12) = 1) THEN
PRINT "Alive"

ELSE

PRINT "Wounded"

END IF

LOCATE 18, J % 10 + 9

IF (movers(J + 6, 13) > .9) THEN

PRINT "Standing"
ELSEIF (movers(J + 6, 13) < .9 AND movers(I, 13) > .5) THEN
PRINT "Crouch"
ELSE

PRINT "Prone"

END IF

LOCATE 19, J * 10 + 9

IF (movers(J + 6, 9) = 1) THEN
PRINT "Moving"

ELSE

PRINT "Stopped"

END IF

LOCATE 20, J * 10 + 9

PRINT USING " ## "; movers(J + 6, 11)

LOCATE 21, J * 10 + 9

PRINT USING "##.4 "; movers(J + 6, 8)

LOCATE 22, J * 10 + 9

IF (movers(J + 6, 14) = 1) THEN PRINT " SL"
NEXT J

COLOR 1, 15
LOCATE 24, 2: CALL pause

END SUB

166

SUB startmove
TERREEEERRELEERRRSREERREERRRERRERSARRLR SRR SR TR REETRR SR ST R L kEE bRk EL LKL
' PURPOSE This routine accesses data on the soldier and the terrain at
his location. It checks the status of the soldier and determines the
soldier’s next location and how long it takes to move to that location.
The routine stores the present location in (xlast,ylast) and calls the
endmove routine to occur at time + delta T. The last step is a call to
icon subprogram which redraws a soldier’s symbol at his new locaticn.

' VARIABLES

vwho = eventactor(te)

x = movers(who, 1)

¥ = movers(who, 2)

dir = movers{who, ~)

spe2d = move.s(who, 7)

T xkkkkkkkkkkkkkkkkikkikkkkkkkkkiikkkkkkkkkkkkkkkkirkkekkkkkkkkkikikkkixk

IF (x > 1000) <HEN x = 999 'This conditional block keeps the array
IF (x < 0) THEN x = 0 'superscripts called within the 0-1000
IF (y > 1000) THE! y = 999 'range (should be temporary)

IF(y<0) THENy = 0

mobfac = mob1lity(FIX(x / 20) + 1, FIX(y / 20) + 1)

IF (x > 999!) THEN movers(who, 9) = 0
iF (x < 1!') THEN movers(who, 9) = 0
IF (y > 999') THEN movers{who, 9) = 0
IF (y < 1!') THEN movers(who, 9) = 0

' This section adds an endmove event with new location to the event
' list.

' Store present locaiion in the previous location positions
movers(who, 4) = x: movers{who, 5) = y

IF (movers(who, 9) = 1 AND movers(who, 7) > 0) THEN ’ensure soldier is
X = x + 20 * SIN(dir) ’compute new X,y coordinates ’moving (1 is yes)
y =y + 20 * COS(dir)

' computes the travel time and considers the scldier’s speed, posture, and
' the mobility factor in the grid he started in.

stopmove = time + (100 * RND) / (movers(who, 7) * mobfac * moversiwho, 13);
CALL addevent(3, stopmove, who) ’calls the move event for this move.
ELSE

'calls an endmove for the soldier even if he is not presently moving, so
’if he is allowed t» move again, he will still be in the movement process
stopmuve = time + (100 * RND) / {1 + (movers(who, 7) * mobfac *

& movers(who, 13)))

CALL uddevent(3, stopmove, who) ’calls the endmcve event for this move.

END IF

167

' here we update the location records to the nex values
movers(who, 1) = x: movers(who, 2) = ¥

IF (x > 1000) THEN x = 999 ’ this conditional block is designed to keep
IF (x <O) THENx =0 ? the subscripts of the array calls within the
IF (y > 1000) THEN y = 999 ’ limits of the array (should be temporary)
IF (y <O) THEN y = 0

'updates the present elevation of the soldier
movers(who, 3) = elevation(FIX(x / 20) + 1, FIX(y / 20) + 1)

' This subprogram draws the soldier’s symbol at the
' new location and overdraws the symbol at the old
' Jocation with the background color so that it is
' erased and the soldier appears to be moving.

CALL icon(who)

END SUB

SUB tgtselect
Vxkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkbkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

' PURPOSE This routine calls up the list of targets observered by the
' observer and determines which one the observer will engage if any. The
' detected targets are in the tgtlist array input by the search routine.

'VARIABLES

who = eventactor(te) 'this is the observer

'T 'an index that indicates the target IDs
"tgtlist(who,I) ’this vector from the tgtlist array contains

*the P(det) for each target
’that has been detected by this observer.
' N is the number of potvential targets detected

' pottgts() is an array containing the P(det)s and an index number
Pxkkkkbkkkkkkkkkkkkkkkkkkkkkkkbkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkrkhkkx

' we sum the values in the vector to get a total and to check whether
' there are current values inr the array.

'resets values for each soldier when the selection cycle starts
'and ensures only current values are used
total = 0: N = 0: movers{who, 16) = 0

FORI =1 TO 12
total = total + tgtlist(who, I)
IF (tgtlist(who, I) > 0) THEN
N=N+1
pottgts(N, 1) = I: pottgts{N, 2) = tgtlist{who, 1)
ELSE
END IF
NEXT I

168

'this section simulates the observers decision of whether to engage
’any of ihe targets
IF (total < .2) THEN
CALL addevent{1l, time + triag(2!, 3!, 4!), who) ’schedules next search

’if the total is too small assume the soldier will
‘elect to not fire at this time. Also protects

ELSE ’against dividing by zero
FORI =1TON ’this loop standardizes the
pottgts(I, 2) = pottgts(I, 2) / total 'values in the array, so
NEXT 1 ’they sum to one.
R = RND: runningsum = 0: N =0
DO WHILE (R > runningsum) 'using a U(0,1) random
N=N+1 *variate we choose the

runningsum = runningsum + pottgts(N, 2) ’target to be shot at
IF (R < runningsum) THEN
movers(who, 16) = pottgts(N, 1)
tgt = pottgts(N, 1)
’determines distance between the observer and target
dist = SQR((movers(who, 1) - movers(tgt, 1)) = 2 + (movers(who, 2)
& - movers(tgt, 2)) " 2)
IF (dist < movers(who, 10)) THEN
aimtime = time + triag(2!, 5!, 7!) ’determines aim time til shot

CALL addevent(5, aimtime, who) ’is fired and calls a direct
ELSE 'fire engagement
CALL addevent(1, time + triag(2!, 5!, 7!), who) ’decides target is
END IF 'out of range
ELSE
END IF
LOOP
END IF

IF (who < 7 AND bluecommand > 0 AND movers{who, 14) > 0 AND
& movers(who, 16) > 0) THEN CALL cmddecision(who)
IF (who > 6 AND redcommand > 0 AND movers(who, 14) > 0 AND
& movers(who, 16) > 0) THEN CALL cmddecision(who)

END SUB

169

pR 222 2222222223 222222232322 2222222222222 22 2222232222222 22222222 2 2 2

)* *
' UTILITY.BAS *
1% %

R 2222222222 232323 2222222322232 22222222223 222222 232233222 222222222222 20

'This module contains subprograms and functions that do not require
'access to any data stored elsewhere in the model. The routines in
. 'utility can be called by all other routines in SPARTAN.

DECLARE FUNCTION triag! (A!, D!, b!) ’provides a triangular random value
DECLARE SUB cpening () ’provides a presentation screen

DECLARE SUB frame (left%, right¥%, top%, bottom¥, fore%, back%)

DECLARE SUB pause () ’provides a utility to pause the scrolling

’Below is the syntax for using the Frame subprogram

' left% = 3: right% = 80: top% = 3: bottom¥ = 22: fore% = 5: back¥% = 0

' CALL Frame(left%, right%, top%, bottom%, fore¥, back¥%)

END

SUB frame (left¥%, right%, top¥%, bottom%, fore%, back%) STATIC
ekkiokkokkkkkkkkkkkkkkkkkkkkkkkkkkkkbkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkk
' This module creates a framing box of any size It takes six basic

' input parameters that control the dimensions and colors.
Vikkrkkkkk

COLOR foreX, back¥%
————— Draw the four corners

LOCATE top%, left%: PRINT CHR$(201)
LOCATE top%, right%: PRINT CHR$(187)
LOCATE bottom%, left¥%: PRINT CHR$(200)
LOCATE bottom%, right%: PRINT CHR$(188)

----- Draw the vertical lines

FOR vert% = top% + 1 TO bottom¥% - 1
LOCATE vert%, left%: PRINT CHR$(186)
LOCATE vert%, right%: PRINT CHR$(186)
NEXT vert%

————— Draw the horizontal lines

horiz% = right¥ - left¥ - 1

hline$ = STRINGS$ (horiz%, 205)

LOCATE top%, left% + 1: PRINT hline$
LOCATE bottom%, left¥ + 1: PRINT hline$

END SUB

170

NOTE: The full help subprogram has not been included. Most of that
subprogram consists of text screens which all have a similar format. The
code listed here only shows an example of the coding structure of the
menus without any of the help text.

SUE hel
'******5**
’ PURPOSE this routine is intended to provide the basic information

' necessary to use the SPARTAN program. Information is provided on the
' setup of a run with some discussion of the methods used for modeling.
' This subroutine is intended to allow the user to go directly to the

> information desired.

CLS 1

DO

CALL frame(1l, 79, 2, 23, 7, 1)
LOCATE 4, 35

PRINT " HELP MENU "

LOCATE 6, 25

PRINT " SELECT ONE OF THE FOLLOWING TOPICS"
LOCATE 8, 30

PRINT " 1) Exit Help"

LOCATE 9, 30

PRINT " 2) Setup Screen"
LOCATE 10, 30

PRINT " 3) Terrain"

LOCATE 11, 30

PRINT " 4) Movement"

LOCATE 12, 30

PRINT " 5) Search"

LOCATE 13, 30

PRINT " 6) Target Selection"
LOCATE 14, 30

PRINT " 7) Engagement"
LOCATE 15, 30

PRINT " 8) Reaction to Fire"
LOCATE 16, 30

PRINT " 9) Output”

LOCATE 21, 3: PRINT "Select Option Number ": k$ = INPUT$(1)

SELECT CASE k$ "this select sends the user to the major category
CASE "1"
EXIT DO
CASE "2"
GOSUB h200
CASE "3"
GOSUB h300
CASE "4"
GOSUB h400
CASE "5"
GOSUB h500

171

CASE "6"
GOSUB h600
CASE "7"
GOSUB h700
CASE "8"
GOSUB h800
CASE "9"
GOSUB hS00
CASE ELSE
BEEP
k$ = INPUT$(1)
END SELECT
LOOP

GOTO 1000 ’'when the program finishes executing the help select loop, it
'must jump over the subroutines and go to the end of the help
'subprogram. Otherwise, it will try to execute the subs and
'cause an error.

'these subroutines contain groups of topics and allow the user to
'get specific details from within each major topic area.

h200;

Cls 1

COLOR 7, O

LOCATE 2, 1

PRINT "SELECT A SUBTOPIC <1>EXAMPLE <2>DEFAULTS <3>ATTENUATICN <4>EXIT"
COLOR 7, 1

LOCATE 4, 23

PRINT " SCREEN HEADING"

PRINT

PRINT *¥% this print section would contain the main topic
PRINT discussion

PRINT

LOCATE 23, 2
PRINT " Select a Topic ": k$ = INPUT$(1)

DO
SELECT CASE k$ ’this select sends the user to the major category
CASE "1"
CLS 1
COLOR 7, O
LOCATE 2, 1
PRINT "SELECT A SUBTOPIC <1>EXAMPLE <2>DEFAULTS <3>ATTENUATION <4>EXIT "

COLOR 7, 1

I0CATE 4, 23

PRINT " SUBTOPIC HEADING "

PRINT ¥%% gsubtopic discussion would be listed here *¥%
PRINT

PRINT

172

LOCATE 23, 2
PRINT " Select a Topic ": k$ = INPUT$(1)

CASE "2"

CASE "3"

CASE "4"

EXIT DO
CASE ELSE

BEEP

k$ = INPUT$(1)
END SELECT

LOOP
CLS 1
RETURN

1000 LOCATE 23, 2
PRINT " Returning to main menu"

CLS 1
END SUB

SUB opening
Pkdkokkokd ok kokkkkkokkkockkokkokkkok kR kkokkkck ok kkokkokkkkkkokkkkkk bk kkkkokokkokkokkok

'PURPOSE This routine calls frame and draws a presentation
' screen for the model.

' VARIABLES

' left¥%, right%, top%, bottom% are integer variables passed to the Frame
' subprogram that define the box size using rows and columns in text

' mode.

]

]

fore% and back¥ are variables for the line and background colors
kdokkckk koo kkkk koo ko kkkock kiR bk Rk kb dokkok sk kR kokokok ok kokk k%

CLS

left% = 1: right% = 80: top¥%¥ = 1: bottom% = 21: fore¥% = 7: back% = 1
CALL frame(left%, right%, top%, bottom%, fore%, back¥%)

left% = 9: right% = 72: top% = 7: bottom¥ = 13: fore¥ = 7: back% =1

CALL frame{left%, right%, top%, bottom¥%, fore%, back¥%)
LOCATE 10, 25: PRINT "#%*¥* SPARTAN COMBAT MODEL ¥*¥x"
LOCATE 16, 22

PRINT "Press <Enter> when ready to continue", k$ = INPUT$(1)
COLOR 7, 1
END SUB

173

SUB pause
Vikkkkkkkkkkkkkkkkkkkkkkkrkkkkkokk

'PURPOSE a utility that queries the user to continue when ready
PRINT "Press <RETURN> to continue ..."; k$ = INPUT$(1)

END SUB

FUNCTION triag (A!, D!, b!) STATIC
Vkkkkkkkkkkkkokkkkkkkkkkkkkokkokkkkkkkkk Rkl kkkkkkokkkkkkkkokkkkkkkkkdokkkkkkokk
' PURPOSE This routine uses a U(0,1) random variate to produce a random
' variate with a triangular distribution TRIAG(A,D,B) using the

' inverse transform method as discussed by Pritsker(Pritsker:713).

' VARIABLES

’ A is the left end of the triangle

' B is the right end of the triangle

' D is the mode of the triangle which may be any point between (A,B)

1
H

R is a uniform random variate between [0,1]
kkkkkkkkkkkkkkkskkkokkokkokkkkkkkkkkkkokkokkkkkkkkkkokkkkkkkkkkokkkkokkkkkkkkokkkk

R = RND ' should have a variable seed eventually so that the
' random variate generator seeds can be controlled.

IF (R < ((D - A) / (b - A))) THEN

triag = A + SQR((D - A) * (b - A) ¥ R)
ELSE

triag = b - SQR((b - D) * (b - A) * (1! - R))
END IF

END FUNCTION

174

Appendix D: SPARTAN Operating Instructions

General Information

The purpose of this appendix is to provide a stand alone user’s
manual for the SPARTAN combat simulation model. These instructions are
intended to enable someone with limited knowledge of IBM PC operating
systems to use the model.

The SPARTAN combat model is a two-sided high resolution combat
simulation between opposing infantry squads. The program uses an event
step scheduling approach to representing time advance. The model is
intended to illustrate the operation of an analytic type combat simula-
tion as currently used by the US Army. All algorithms and data are
intended to be representative of models presently in use by the mili-
tary, but there is no intention of portraying this model as a fine tuned
representation of reality. Most of the data is fabricated so it "looks
about right" and no effort has been made to perform any validation of
the simulation as an analytic tool. This is purely an instructional
model.

The instructions that follow are organized into four main topic
areas. Section I is a brief discussion of the various modeling process-
es. Section II describes an example scenario and the accompanying data
files that have been provided with the model software. Section III
provides a checklist for the set up and operation of the model. Section
1V contains instructions on using the preprocessor to modify the
scenario dependent data files. In addition, more information on the

processes can be found in the SPARTAN thesis.

175

I. Model Description.

SPARTAN simulates soldier on soldier combat at the squad level.
The maximum number of soldiers is six per side [Red or Blue]. Each sol-
dier is armed with a semi-automatic rifle. The battlefield represented
is a 1000m x 1000m area. Factors outside this region have no influence
on the outcome of the battle.

The SPARTAN model represents primarily an attrition type simula-
tion process with limited aspects of command and control, logistics,
force structure, and environment.

The model uses an event scheduling technique to synchronize
activities and maintain time representation within the model. Future
events are maintained in a chronological list according to the time that
the event is scheduled to occur. When one event is finished, it may
generate additional events to occur in the future. These events are
placed in time sequence order and executed when the time clock advances
to the scheduled time. The simulation continues this process until the
event list is empty or some other user defined termination condition
occurs.

A. Battlefield Representation.

Terrain in the model is represented by a 50 x 50 system of square
grid cells. Each grid has associated east-west coordinates (horz) and
north-south coordinates (vert) along with the attributes of elevation
(elev) and a trafficability factor (mobfac). These attributes enable
the model to represent terrain relief features and to vary soldier move-
ment speeds over different portions of the terrain. Relief is repre-

sented on screen by colored patches in each grid cell on the screen

176

where the colors vary with elevation. Table 1 in Section IV and the
models online help screens provide a listing of the color codes. The
terrain database can be easily mclified to represent various types of
geography. Section IV discusses using the preprocessor STARTUP to modi-
fy the terrain database. The only environmental effect modeled on the
battlefield is atmospheric attenuation which can degrade the target
acquisition possibilities.,

B. Soldiers.

The basic entity of the sinulation is an infantry soldier repre-
sented by a 1ist of seventeen attributes. These attributes maintain
location, status, and capalility information on each soldier., Each
soldier has the ability to move, search for and select targets, engage
targets, and react to being ec1.gaged. Tables 2 and 3 in Section IV
provide brief descriptions of the attributes.

1. Movement. When a soldier’'s attributes are set for
movement, he will move from his initial location along his direction of
movement at a speed commensurate with his speed attribute, his posture,
and the trafficability factor of the grid within which he starts his
move. The soldiers always move 20 meters per movement cycle although
the time it takes to perform that move varies according to field condi-
tions. The soldier’s initial direction of movement changes only as a
result of enemy contact. Since SPARTAN is a discrete event simulation,
the continuous action of movement is modeled by a series of discrete
jumps from one location to the next., Using this modeling technique

there is a trade off between accuracy which would mean shorter jumps and

177

the increased workload of computing the extra jumps. In this case,
after trial and error, 20 meters was chosen as a suitable distance.

2. Searching. The search process is a sequential series of
checks that are performed to determine the possibility of successfully
detecting an enemy soldier. SPARTAN uses a continuous search algorithm
based, loosely, on equations developed by the US Army Night Vision
Electro-Optical Laboratory [NVEOL]. Specific search sectors are not
defined, so it is assumed that the soldier performs a 360 degree search
during each search cycle. There is no distinction between searching on
the move or at a halt. The only currently sensor available is unaided
human vision. A successful detection involves meeting a number of
conditions., The first condition is that line of sight must exist
between the observer and the target. Next the probability of acquisi-
tion based on range and the posture of the target must exceed an optical
sensor threshold which is unique for each sensor type and the level of
atmospheric attenuation. If a target can be acquired then a random
number is drawn to determine the time spent searching the target’s
sector. This time and range to target are used to determine a probabil-
ity of detection. Now another random number is drawn and compared to
this value to determine detection., Targets that are detected are placed
on the observer’s target list, and a blue line is momentarily plotted on
the screen to indicate a successful visual detection.

3. Target Selection. If a target is successfully detected,
it is added to a target list and each target is then rated based on the
firer's targeting priorities. The detection probabilities for each

potential target are normalized and a random number is drawn to select

178

the target to be engaged from the list. A direct fire event will be
scheduled next unless the target is perceived to be outside the firer's
weapon range or the target’s detection probability is below an engage-
ment threshold.

4. Direct Fire. The engagement process begins by ensuring
the soldier still has ammunition available and line of sight still
exists. When the trigger is pulled, the ammunition is decremented, a
bivariate normal probability of hit for the conditions is drawn from a
table and a time of impact is computed. The flight of the bullet is
represented by a momentary flash of a red line drawn between the firer
and the target along with a brief sharp sounding noise. If a bullet
impacts, as a hit, then a wound or kill determination is made and the
soldier reacts accordingly.

Each of the possihle impact results has its own signature on the
display. A miss only results in a dull popping sound. If the round
missed, then the firer will attempt to reengage and the target soldier
will react to being fired upon. If the soidier is wounded then the
firer will continue to engage and the wounded soldier will react to
fire. The only effect on a wounded soldier is to slow his movement.
Wounds are not cumulative. A wounded soldier displays a shori red [lash
with a louder popping sound. If a soldier is killed, an extended yellow
flash occurs with an accompanying sound, and the soldier’'s icon is
changed to gray.

5. Reaction to Fire. This process demonstrates some very

simple decision logic. Either the soldier will charge his opponent,

179

drop to the ground, or move away from the opposition. In any case, he
may continue to engage the enenmy.

6. Attrition. When a soldier is killed, all future events
on the scheduling calendar for that soldier are removed. This has the
effect of canceling a soldier in place even as he was preparing v, pull
the trigger.

7. Output. SPARTAN provides a graphic representation of
the battle along with a help menu and screen displays of soldier
attributes, target lists, and summary statistics. Final output includes
gselected soldier attributes, target listings, summary values from the

battle, and a history file of all events as they occurred.

180

I11. Example Scenario.
A. General Situvation.

The SPARTAN land combat model contains two homogeneous land forces
fighting as combatants an unoccupied sector of terrain that is forward
of the current line of troops for each side. Both forces consist of a
six man dismounted infantry squad armed with semi-automatic .30 caliber
rifles.

B. Mission.

The Blue squad is conducting a reconnaissance patrol into Red
territory, and is considered successful if half the squad can reach the
Red rear boundary in 500 time units {[Their primary mission is to locate
forces in the enemy rear and avoid combat unless engaged by the enemy.].
The Red squad is arrayed in a counter reconnaissance screen to stop the
Blue squad, and is considered victorious if it can kill more than 50% of
the Blue squad or if the Blue squad fails to reach the Red rear boundary
in 500 time units. The Red soldiers mcove forward te occupy their posi-
tions after dark each night, so they have no prepared fighting posi-
tions. The Red soldiers are initially stationary.

C. Battlefield in the Example.

The environment is barren rolling hills. There is little or no
tree growth; scrub and grasslands predominate (20:9-24)., There is no
cover or concealment other than the terrain features. Blue forces are
arrayed in the west and Red forces to the east. There srec no other
forces in the area that can affect the outcome of the battle. Atmo-
spheric attenuation is set te .6 to represent a moonlit night this is a

constant factor that will not vary during tle battle,

-
o
Jod

D. Soldier Equipment in the Example.

The only equipment consists of .30 Caliber semi-automatic rifles
for each soldier and 20 rounds of ammunition. The maximum effective
range of the weapons on each side is 400m. In this case, both sides
have comparable vcapons and ammunition stockages. The maximum rate of
fire is 1€-24 rounds per minute with a sustained rate of fire of 16
rounds per minute (20:16-7). These rates are approximated with the
reload and aim times used in the model.

E. Datafiles Required for this Scenario.

There are three scenario specific datafiles. These are the
terrain file [board.dat], the soldier attribute file [force.dat], and
the initial event list [event.dat]. The files required for the example
scenario are board.exl, force.exl, and event.exl, Section III will

provide instructions on using these files.

182

III.

Set Up and Use of SPARTAN.

D

This section provides a detailed list of the steps necessary to

operate the SPARTAN combat simulation, and a few suggestions on tech-

niques for working with the model.

A. Equipment.

The only equipment required is an IBM compatible personal computer

with a minimum of 512k of memory, and an EGA or better color monitor.

All programs are in executable form, so no special software or run time

libraries are required unless you desire to modify the text format code

which is available.

QUICKBasic version 4.5.

forms of BASIC.

B. Files.

The language used to create this software was

This program code will not compile with earlier

The following files must be located within the same directory to

operate the model.

drive,

1)
2)
3)
4)
5)
6)
7)
8)
9)

This directory can be on a floppy disk or a hard

but will run more rapidly if loaded on a hard disk.

filename

description

startup.exe
spartan.exe
event.dat
board.dat
force.dat
pl.dat
p2.dat
phit300.dat
phit400.dat

10) phit500.dat
11) phit600.dat

SPARTAN will only open datafiles with these exact names.

preprocessor program
simulation program
initial event data file
terrain data file
soldier attribute file
of acquisition table

probability
probability
probability
probability
probability
probability

of detection
of hit table
of hit table
of hit table
of hit table

table

for 300m eff weapon
for 400m eff weapon
for 500m eff weapon
for 600m eff weapon

Files for

several scenarios may be available, but must be copied to the above

listed names prior to execution.

183

It is suggested that all datafiles are

stored with names different from those abovco. Thi: ensures that files
are'not inadvertently overwritten. All datafiles created or worked on
by the STARTUP preprocessor program have an exp eanding on the file name
extension [ie. board.exp, force.exp, event.exp]. STARTUP will be dis-
cussed in detail later, but is rot required to operate the sample
scenario.

B. Operating the Simulation.

The following instructions will guide the user through the steps
necessary to run the example scenario on SPARTAN.

Step 1. Ensure the datafiles listed above are loaded in the
same directory as spartan.exe.

Step 2. Set the default directory to that containing the
files and at the prompt type: spartan

Step 3. A presentation screen will appear, then hit enter
when ready to continue.

Step 4. You will be asked whether or not the datafiles
should be displayed as they are loaded into the program. You will
probably only need to view the files once since it does require a longer
time to display and load as opposed to just loading the files. The
program will require a short moment to load up datafiles.

Step 5. The next screen asks whether you desire to modify
the default settings for the simulation. Changes may not always be
necessary, but you will want to select the setup screen to modify some
of the run parameters that are required for the example scenario., The
run parameters include termination conditions for the run, an attenua-

tion coefficient, and a designated seed for the pseudorandom number

184

generator. The example scenario requires three parameters to be
modified. The run time should be set to 500 time units, the level of
t2d rewaining should be set to 0, attenuatién to .6, and the blue
command switch should be turned off. These changes will ensure the
simulation runs until one of the victory conditions is achieved for
either side. Turning off the blue command switch ensures that the blue
soldiers will orient on their original direction of movement and not
nmove to seek out and engage red forces. Remember, the blue mission is
reconnaissance and self-defense. The last step in the set up screen is
to enter an initial seed value. From this pcint forward, online help is
available throughout the simulation run.

Step 6. Hit <enter> when finished with the setup screen and
the simulation will begin its run. At this point, the user can no
longer influence the outcome of the simulation. There are five function
keys [F1 - F5] that provide help and information throughout the simula-
tion. [Note: These keys do not function after the simulation terminates
and can only be called from the graphics screen.]

Step 7. When the simulation terminates, you will have the
option of viewing the final output. To print any of the tables, use the
{print screen> key. Additional, output is available in a history.dat
file which is produced with each run. The history file provides a
chronological listing of all events as they occurred. It includes the
event time, type and the event actor. To maintain copies of the history
file, modify the file name or it will be overwritten during the next

program run. This completes a run of the SPARTAN simulation model.

185

V. Modifying the Datafiles.

The STARTUP program is a preprocessor that can be used to create
datafiles for specific scenarios. The program is menu driven and
enables the user to create, edit and review the terrain, soldier attrib-
ute, and initial event datafiles. Several representative hit probabili-
ty tables [such as phit300.dat] have been provided for weapons with
different ranges as well as the probability of acquisition [pl.dat] and
probability of detection [p2.dat] tables. There is no provision in
STARTUP to create or modify these files although all the files can be
modified with a standard ASCII text editor.

A. Terrain Datafiles.

There are four attributes agsociated with each grid. These are
the east-west coordinate (horz), the north-south coordinate (vert),
elevation (elev), and the trafficability factor (mobfac). The coordi-
nates are limited in values from 1 to 50. The elevation is in meters
snd has a range of 0 to 69 meters. The trafficability factor has a
range of 0.1 to 1.0 with 1.0 being unimpeded movement. The color coding
for the elevations is shown in Table 4.

Table 4 Elevation Color Coding

Elevation Color
0 - 10m light green
11 - 20m cyan [turquoise]
21 - 30m light red
31 - 40m magenta [pink]
41 - 50m vellow
51 - 60m light grey
61 - 69m brown

The terrain datafile module has an additional feature that plots out the

terrain relief overlay for a visual representation of the data,

186

B. Soldier Attribute Files. Tables 5 & 6 provide a brief
description of the seventeen attributes.

Table 5 Soldier Attribute Descriptions

Attribute Description
1) x present horizontal coordinate
2) vy present vertical coordinate
3) z present elevation coordinate
4) xlast last horizontal coordinate
5) vylast last vertical coordinate
6) size soldier’s height in meters
7) speed movement speed ¥
8) dir soldier's movement direction/orientation
9) moving indicates soldier’s intent to move
10) wpnrng identifies soldier’s weapon type and range
11) ammo maintains count of available ammunition
12) status indicates whether alive, dead, or wounded
13) posture whether standing, crouched, or prone
14) inemd identifies a squad leader
15) atkdir maintains original movement direction
16) tgteng identifies a selected target
17) side indicates affiliation of soldier

* movement units are relative on a scale of 0 - 40 units

Table 6 provides specific information on the acceptable
values that should be used for each attribute.

Table 6 Scldier Attribute Variables

Attribute Name Type Range of Values

X real [0.1 - 1000.00]

y real [0.1 - 1000.00]

Z real [0.0 - 69.0]

xlast. real {0.1 - 1000.00]

yvlast real [0.1 - 1000.00]

size real [1.5 - 2.0]

speed real [0.0 - 40.0]

dir real [0.0 - 6.28] (radians)

moving integer [O stopped / 1 moving]

wpnrng real [300.0 - 600.0]

ammo integer [0 -~ 999]

status integer [0 dead / 1 alive / 2 wounded]
posture real [.25 prone/.5 crouch/1.0 stand]
incmd integer [0 subordinate / 1 squad leader]
atkdir real [0.0 - 6.28] (radians)

tgteng integer [0 -12]

side integer [1 blue / -1 red]

187

The editor for the scldier attribute module of STARTUP allows the
user to modify all the attributes of one soldier or a single attribute
for a group of soldiers. At the present time, it does not allow for the
modification of jusi a single value.

C. 1Initial Event File. The initial event file contains an
initial search event [event type 1] and an initial movement event [event
type 2] for each soldier. This file will usually not need to be modi-
fied to accommodate most scenarios. Two occasions when the user might
choose to modify the file would be to delay the entry of soldiers into
the battle or to remove selected soldiers from the battle. All soldiers
in the battle nust have both cited events. Even if a soldier is not
expected to move, he needs the movement cycle to produce graphics. The
event datafile for the example scenario has 24 events to start the
simulation. Each event record has the fields in Table 7.

Table 7 Initial Event Attributes

Name Range of values
event type [1 - 8]
event time [0.1 - 9999.0]
event actor [1 - 12]

D. Performing Analysis with SPARTAN.

While SPARTAN is not an empirically valid model, it is still
possible to experiment with the model to determine how the model will
react to changes in weapon ranges, the attenuation factor, movement
rates, tactical formations, or different types of terrain, etc.. An
important consideration in modeling is to determine the sensitivity of

the model to certain factors. This can be accomplished by varying just

188

one parameter of the model over a range of values while holding every-

thing else constant.

The model design allows the random number stream to be set with
new seeds for each run, so independent statistical results can be
obtained using this model. This model has the potential to be used in
other course project areas such as response surface analysis, variance
reduction techniques, and multivariate statistics.,

E. User Comments.

Since this is intended to be an educational tool, comments from
personnel using the model will be greatly appreciated. Please approach
this model with a critical view and provide feedback as necessary.
Anything that presents problems to learning will be reexamined and modi-

fied if possible.

189

1,

10,

Bibliography

Bailey, H. H., L. G, Mundie, and H. A, Ory. Suggested
Modifications to Optical Sensor Algorithms in JANUS,
Contracts MDA903-90-C-0004 and MDA903-86-C-0059. Santa
Monica CA: Rand Corporation, November 1990 (RAND/N-3087-
DR&E/A/AF).

Balci, Osman. "The Implementation of Four Conceptual
Frameworks for Simulation Modeling in High-level

Languages," Proceedings of the 1988 Winter Simulation
Conference. 287-295, New York: IEEE Press, 1988.

Balci, Osman. "Credibility Assessment of Simulation
Results: The State of the Art," Proceedings of the

Methodology and Validation Conference. 19-25. San Diego:
Society for Computer Simulation, 1988.

Banks, Jerry. and others. "Modeling Processes,
Validation, and Verification of Complex Simulations: A
Survey," Proceedings of the Methodology and Validation
Conference. 13-18, San Diego: Society for Computer
Simulation, 1988.

Battilega, John A, and Judith K Grange. The Military
Applications of Modeling. Washington: Government
Printing Office, 1284,

Biles, William E. "Introduction to Simulation,"
Proceedings of the 1987 Winter Simulation Conference. 7~
15. New York: IEEE Press, 1987.

Bonder, Seth. "Mathematical Modeling of Military

Conflict Situations,"” Proceedings of Symposia in Applied
Mathematics. 25: 1-51. New York: American Mathematical

Society, (1981).

Cohen, Jay W. and others. "Structured Modeling,"

Proceedings of the 1982 Winter Simulation Conference.
253-258. New York: IEEE Press, 1982,

Combat Modeling Briefing Slides, TRADOC Analysis
Command, Monterrey, CA. July 1991,

Comptroller General of the United States. Guidelines for

Model Evaluation (Exposure Draft). PAD-79-17, Washing-

ton: Government Printing Office, January 1979.

190

11, Comptroller General of the United States. Models, Data,
and War: A Critique of the Foundation For Defense
Analyses. PAD-80-21, Washington: Government Printing
Office, 12 March 1980,

12, Department of the Army. Army Model Improvement Program.
AR 5-11 (Draft). Washington: HQ USA, 11 April 1990.

13. Department of the Army. US Army TRADOC Analysis Center.

CASTFOREM Methodology Manual. TRAC-WSMR~-TD-4-88.
Washington: Government Printing Office, March 1990.

14, Department of the Army. US Army TRADOC Analysis Center.

JANUS (T) Documentation. Washington: Government Printing
Office, June 1986,

15, Department of the Army. US Army TRADOC Analysis Center.
JANUS(A) Supplement to JALUS Documentation. Washington:
March 1991,

16. Department of the Army. US Army TRADOC Analysis Center.
TRADOC Studies and Analysis. TRADOC Pamphlet 11-8
(Draft). Washington: Government Printing Office, 1991,

17. Derrick, E. Joseph. and others. "A Comparison of
Selected Conceptual Frameworks for Simulation Modeling,"

Proceedings of the 1989 Winter Simulation Conference.
711-718, New York: IEEE Press, 1989,

18. Dudewicz, Edward J. and Zaven A. Karian., Tutorial:
Modern Design and Analysis of Discrete Event Computer
Simulations. Washington: IEEE Computer Society Press,
1885,

19. Dunnigan, James F. The Complete Wargames Handbook. New
York: William Morrow and Company, 1980,

20. Engineering Design Handbook, Army Weapon Systems
Analysis, Part One, DARCOM-P 706-101. US Army Material

Development and Readiness Command, Washington:
Government Printing Office, November 1877.

21, Evans, John B, Structures of Discrete Event Simulation.
New York: John Wiley and Sons, 1988.

22. Gass, Saul I. and others. "An Assessment Procedure for

Simulation Models: A Case Study," Operations Research.
239: 710-723 (September-October 1991),

191

23,

24.

25.

26,

27.

28.

29.

30.

31,

32.

33.

Hartman, James K. Lecture Notes in High Resclution
Combat Modeling. Unpublished Notes, 1985. Class handout
distributed in OPER 775, Land Combat Modeling I. School
of Engineering, Air Force Institute of Technology(AU),
Wright-Patterson AFB OH, July, 1991.

Henriksen, James O. "One System, Several Perspectives,

Many Models," Proceedings of the 1988 Winter Simulation
Conference. 352-356., New York: IEEE Press, 1988,

Hughes, Bernard C. Jr. Target Selection Schemes. MS
Thesis, Naval Postgraduate School, Monterey CA, March

1988 (AD-A194 657).

Joint Analysis Directorate, Organization of the Joint
Chiefs of Staff. Catalogue of Wargaming and Military
Simulations Modeling. JADAM 207-89., Washington:
Government Printing Office, September 1989,

Kirby, Charles L., JANUS Proponency Director. Telephone
Interview., JANUS Proponency Office, White Sands Missile
Range NM, 5 September 1991,

Law, Averill M. and W, David Kelton. Simulation Modeling
& Analysis. New York: McGraw-Hill Bool Company, 1991.

McCormick, Ernest J, and Mark S. Sanders. Human Factors

in Engineering and Design. (Sixth Edition}. New York:
McGraw-Hill Publishing Ccmpany, 1987.

McCormick, William M. and Robert G. Sargent. "Comparison
of Future Event Set Algorithms for Simulation of Closed
Queueing Systems," Current Issues in Simulation. edited
by Nabil R. Adam and Ali Dogramaci. New Yorlk: Acedenic
Press, 1979.

Morris, William T. "On the Art of Modeling," Management
Science. 11: B-707 -- B-717 (August 1967).

Nance, Richard E. and James D. Arthur. "The Methodology
Roles in the Realization of a Model Development

Environment," Proceedings of the 1988 Winter Simulation
Conference. 220-225. New York: IEEE Press, 1988,

Overstreet, C. Michael and Richard E. Nance. "A
Specification Language to Assist in Analysis of Discrete
Event Simulation Models," Communications of the ACM, 28:
190 - 201 (February 1985).

192

e e e . p=

34. Pritsker, A. Alan B.. Introduction to Simulation and
SLAM II. (Third Edition). New York: John Wiley and Sons,
1986.

35. Rodriguez, Luis C. and others. "An Empirical Comparison
of Advanced Event File Synchronization Structures,”

Proceedings of the 1982 Winter Simulation Conference.
189-194. New York: IEEE Press, 1982.

36. Sadowski, Randall P. "The Simulation Process: Avoiding
the Problems and the Pitfalls," Procecsdings of the 1989
Winter Simulation Conference. 72-79. New York: IEEE
Press, 1989.

37. Shammas, Namir Clement. "The BASIC Revival," BYTE. 13:
295-300 (September 1988).

38. Sheridan, Robert E. "The Script Processing Technique in
Modeling/Simulation and its Role in the Generation of
Animated Computer Graphics," Proceedings of the 1986
Winter Simulation Conference. 819 - 824. New York: IEEE
Press, 1986.

39, Seila, Andrew F. "SIMTOOLS: A Software Tool Kit for
Discrete Event Simulation in Pascal," Simulation. 50:

93-99 (March 1988).

40. Tavares, MAJ Michael, Personal Interview. US Army
Training Analysis Command, Scenario Development Center,
17 July 1991.

41, Thesen, Arne. "Writing Simulations from Scratch: PASCAL
Implementations,” Proceedings of the 1987 Winter
Simulation Conference. 152-164. New York: IEEE Press,
1987.

42. Tremblay, J.P. and P.G. Sorenson. An Introduction to
Data Structures with Applications. New York: McGraw-Hill
Book Company, 1976.

43, Weiss, M. A. "Empirical Study of the Expected Running
Time of Shellsort," Computer Journal. 34: 88-91
(February 1991).

44, Wiggins, Mike. "A Comparison of Computer Languages
Pascal, C, Lisp and Ada," Journal of Pascal, Ada, and
Modula-2. 7: 5-10 (January 1988).

193

Vita

Captain David Keith Cox was born on 2 December 1956 in
Saint Louis, Missouri. He graduated from Webster Groves
High School in Webster Groves, Missouri. He enlisted in the
US Army in 1976 and, subsequently, attended the United
States Military Academy Preparatory School and the United
States Military Academy at West Point, New York. He
graduated in May 1982 with a Bachelor of Science degree. He
has been assigned as a platoon leader, scuadron maintenance
officer and troop executive officer in the 2d Squadron, 11th
Armored Cavalry Regiment at Bad Kissingen, West Germany. He
was subsequently assigned as the Company Commander of B
Company, lst Battalion, 64th Armor Regiment, 24th Infantry
Division (Mechanized) and as Company Commander of
Headquarters Company, 24 Brigade, 24th Infantry Division
(Mechanized), Fort Stewart, Georgia. He is a graduate of
the Armor Officer Basic and Advanced Courses. In August
1990, he was assigned to the Air Force Institute of

Technology.

Permanent address: 458 Ivanhoe Place
Webster Groves, Missouri 63119

194

