
AD-A248 1681111 11 111 111111 111 11I'Ii' I! !

DTICELECTIED
m APR,0 11992.S Oct-D

SPARTAN: An Instructional
High Rezolution

Land Combat Model

THESIS

David Keith Cox
Captain, USA

AFIT/GOR/ENS/92M-7

IThis do'cumet hi ~c ;
..,z pibhc releen arin .tuit ; u
(flstubutiofl is ni te

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohi 92-08228Clll
;/i~l~ ,tl/~i'l

AFIT/GOR/ENS/92M- 7 /

C ?

APR 0199

L1%

SPARTAN: An Instructional Accesion For -

High Resolution
Land Combat Model NTIS CRA&IDTIC TAB

.,
THESIS U. a,1:!ot%,ced U

1stilcatonl

David Keith Cox
Captain, USA By

Dj3t ibutio;:
AFIT/GOR/ENS/92M-7 Availaibility Cod)ces

AaArait edd or
Dist Specizi

Approval for public release; distribution unlimited

REP-ORTDOCUMEN-TA-TION ,PAGE F~~ 0 0 8

_PubliLrepurting burden tvi tis .oiectionf v nfoirmalwi s esttmateo ty a~erage i nVUo pet I Tpuroe. inouding the time for reviewin instructions; 5earti~nng existing data'sources.
gathering'andp.airtaining the data needed ano tomrpieun4 ano reviv i the ,ulietuun .4 ifotmatunlf 1,end 4,urments reojtrding this burdei. estimate or any)ther aspect of this
collection vt ,itomatvri snuudirry sugyestivn5 fur tedw,.ny this boulden kr. 'irastnyton Headquarters ervo.;Directorate ftor informration Operations 'and Reports.,1.15 Jefferson
paiSHighYway;, Ute'l204.Alt inrj on, vNA a204302 ard tv theOf fit.e ofMadtagement and Budget P perwtkr Reduction froject (07O4 0I188). fVashtngton DC 20503.

1' "'AGENCY"USE, ONLY' (Leave bln~2 EORT DATE 13. -REPORT TYPE 'AND DATES COVERED
March,, 1992', Mti"T~''____

4 T!TLE -ANDWSU8TITLE 1'5,FUNDINGI NUMBERS'"'
,SPARTAN:t AN -INSTRUCTIONAL HIGHRESOLUTION t
L1ANDZCOMBAT.MDU' '

6.AUTHOR(S)

AVi'd K. Cox, ,Captain, USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION'
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GO9/ENS/92M-7

9. SPONSORING;' MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSO RINGt MON ITORING
AGENCY REPORT NUMBER

~11. SUPPLEMENTARY NOTES

12a. IJISTRIBUTIONI/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 word)
This project developed an instructional high resolution

land combat simulation model. The purpose of this model is to demonstrate
common techniques of modeling used in the present generation ofU.Army land
combat models. This model is stochastic and uses An event scheduling type of
discrete event time algorithm. The model represents a maximum of two six-
man infantry squads in direct fire combat. The individual soldiers move,
search for targets, engage targets, and react to hostile encounters. The
data values provided with the model are all generic and hypothetical. The
model is only intended as a demaonstration tool and has no validity for
analytic use. A preprocessor is provided with the model and Appendix D
provides a user's manual.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Combat Model, High Resolution, Stochastic Model 201
Educational, Simulation, Land Warfare 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSiNCATION 19. SECURITY CLASSIFICATION 20. LIMITATION C' ABSTRAC:

6WSN'f ied ed 'i ie d nic fassified UL

INSN 7540-01-280-550) StnadForm 298 (Rev 2-89)
Pre',robed by AN$I Std Z39-18

Form Ap'roved-REPORT DOCUMENTATION PAGE 0Mb No. 0704-0188

Pbmpumn ou eni i si~wilettninrv i nfutmauuii s t eao vt eage invi i i spunse. inouding the time Tor reviewing instructions, searching existing data soures,
gaterig ad iairainngthe data ienedd ano cuimpietini dfld eviv,',y the .uiieiiun .A.., tuiriatiun ,erid ccumments readn this burdei, estimate i any other aspect of this

colectinV invmalv nuiir sugynsi uris tui iedujny khis ouiocri (sasimyxcn i-eaoquarters aerviites. Uiectorate toti information Operations and Reports, 2 15 Jefferson
*ai Hihwy >uit 1,4 Aington, vA d4e2A4302, antuthei flfi~e vi IVstaidgement and Budget, perwoi Reduction Project (0704-0188), vVashington, UC 20503.

* I~1 AGENCY USE ONLY (Leave bldk 12EPORT DATE REPRT TYPE AND DATES COVERED

-~ March 1992 tJtr's Thesis ____

4 TITLE AND SUBTITLE 5. FUNDING NUMBERS
SPARTAN: AN INSTRUCTIONAL HIGH RESOLUTION
LAND COMBAT MODEL

6. AUTHOR(S)

David K. Cox, Captain, USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GOR/ENS/92M-7

9g. SPONSORING, MONITORING AGENCY NAME(S) AND ADDP.ESS(ES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11, SUPPLEMENTARY NOTES

1aDISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Apprvedfor public release; distribution unlimited

1.ASTR ACT (Maximum 200 words)
This project developed an instructional high resolution

land combat simulation model. The purpose of this model is to demonstrate
common techniques of modeling used in the present generation of U rmylnmodels. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~L ThsmdliAtchsirnmssa eetshdln yp ofn
dcrebte moeent Tieagrtsh model rsstcprecan sens avn saximuiof twoe six
manret infant sqain direcitfrma. The i ersndivial sdiers mftoveix
sarc ifonry targes enge rgets ndreat Thsie encdulounters. Thve,
daah value paroved withg trets ade areal geneoice andhyoteica. The
mdet ls onlyieded ast ah dmonst ranll ndi hasd notality for
analticse Anl prtepress is rovdedwithathenodel and adix Do

provides a user's manual.

14, SUBJECT TERMAS 15. NUMBER OF PAGES

Combat Model, High Resolution, Stochastic Model 201
Educational, Simulation, Land Warfare 16. PRICE CODE

17. SECURITf (LA.SS&I(ATION 18 SECURITY (LASSiICATION 19 SECURITY CLASSIFIC~ATION 20. LiMITATION C' ABSTRACT
6NAc-t~if ied A AJYf~if ie d OFABIcl ified UL

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Aaencv Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. I limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered. DOD - See DoDD 5230.24, Distribution
State whether report is interim, fihal, etc. If Statements on Technical
applicable, enter inclusive report dates (e.g. 10 Documents.'
Jun 87- 30 Jun 88). DOE - See authorities.

Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On DOD - Leave blank.
classified documents enter the title classification DOE - Enter DOE distribution categories
in parentheses. from the Standard Distribution for

Block 5. Funding Numbers. To include contract Unclassified Scientific and Technical

and grant numbers; may include program Reports.

element number(s), project number(s), task NASA - Leave blank.

number(s), and work unit number(s). Use the NTIS - Leave blank.
following labels:

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No.

Block 6. Author(s). Name(s) of person(s) Block 14. Subiect Terms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

number of pages.
Block7. Performing Organization Name(s) and
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organizationperforming the report. Blocks 17.- 19. Security Classifications. Self-

explanatory. Enter U.S. Security Classification in

Block 9. Sponsoring/Monitoring Aaencv Name(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and
Block 10. Sponsoring/Monitoring Agency bottom of the page.
Report Number. (if known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of...; To be abstract. Enter either UL (unlimited) or SAR (same
published in.... When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

Standard Form 298 Back (Rev, 2.89)

AFIT/GOR/ENS/92M-7

SPARTAN: An Instructional

High Resolution

Land Combat Model

THESIS

Presented to the Faculty of the

Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

David K. Cox, B.S.

Captain, USA

March 1992

Approved for public release; distribution unlimited

THESIS APPROVAL

STUDENT: Captain David K. Cox CLASS: GOR 92-M

THESIS TITLE: SPARTAN: An Instructional High Resolution Land Combat
Model

DEFENSE DATE: 4 MAR 92

COMMITTEE: NAME/DEPARTMENT SIC-NATURE

Advisor Major Michael W. Garrambone/ENS _ __74414

Co-Advisor Major Bruce W. Morlan/ENC 7 1(.c-

Preface

The goal of this thesis was to develop a high resolu-

tion land combat model for use as an instructional aid in

land combat modeling courses. The model development began

at the conceptual level and progressed through code develop-

ment to initial implementation. This model displays m'del-

ing concepts that are representative of the present genera-

tion of US Army high re-olution analytic combat models and

provides facilities for students to observe the model compo-

nents and understand their operation.

This thesis provides essential background material, the

development methodology, details of the model's design and

implementation, and classroom materials to support its

operational use. SPARTAN is a simple representation of an

analytic model that will serve as a useful tool in the

presentation of high resolution land combat modeling tech-

niques.

I wish to thank MAJ Michael Garrambone and MAJ Bruce

Morlan for their guidance and invaluable assistance in the

development of this thesis. I also wish to thank the other

officers in the land combat modeling course who provided

timely feedback on necessary model improvements. Lastly, I

must thank my wife Phyllis and my kids Joshua and Courtney

for their constant support and understanding of my efforts.

David Keith Cox

Table of Contents

Page

Preface . ii

List of Figures v 4 .* 1 0 .0 0 9 . 1 6 9 0 v

List of Tables0 0 # vi

Abstract .9 . . .0 0 0 0 4 0 vii

I. Introduction , 0 1

1.1 Background 1
1.2 Problem Statement 4
1.3 Model Requirements 4
1.4 Modeling Definitions. 9 6
1.5 Approach and Methodology ., , 9
1.6 Equipment 9. . . 10
1.7 Thesis Organization 11

II. Literature Review 12

2.1 Introduction , . 12
2.2 High Resolution Models in US Army Use9 12

Battlefield Environment . . . 13
Movement Representation 14
Target Detection Algorithms 9 . . . 15
Target Selection 18
Engagement Assessment 19

2.3 Conceptuals Frameworks 20
Model Development 20
Model Validation and Verification . 25
Scheduling Future Events 28

2.4 Random Number Generation 33
2.5 Programming Languages 35

III. Model Development Process 38

3.1 Introduction 38
3.2 Development Methodology 39
3.3 Problem Definition 0 6 . . 41
3.4 Modeling Environment 44

Modeling Effort 44
Modeling Assumptions 44

3.5 Model Definition I...,. 45
Objects and Attributes 45
Model Activities 48

iii

Page

3.6 Model Development 50
Creating a Database 9 . 0 * * . . 50
Event Set Management 51
Model Enrichment ,.. 54
Probability Distributions 1 9 0 . 56
Instructional Components 57
Human Factors Considerations . . . 60

3.7 Model Assessment 61

3.8 Conclusion 68

IV. Combat Processes 69

4.1 Introduction 69
4.2 Movement Processes 69
4.3 Engagement Processes 74

Search Process . . . 75
Target Selection 83
Target Engagement . . . 85

4.4 Modeling Decision Logic 90
Reacting to Fire 90
Command and Control 91

4.5 Conclusion , 93

V. Conclusion 94

5.1 Summary 94
5.2 Recommendations 97
5.3 Conclusion 99

Appendix A: Probability Table Templates 101

Appendix B: STARTUP Preprocessor Program Listing . . . 108

Appendix C: SPARTAN Simulation Program Listing 130

Appendix D: User's Guide 175

Bibliography 190

Vita . 194

iv

List of Figures

Figure Page

1. Event Scheduling Process 24

2. Example of Doubly Linked List Structure . 32

3. Model Development Process .. * . . .* . 38

4. Conical Methodology 40

5. Movement Process #. 9 . . . # # . , s . . * . * 73

6. Line of Sight Check 77

7. LOS Process 78

8. Search Process 80

9. Search Process (cont) 81

10. Target Selection 84

11. Direct Fire Process 86

12. Bullet Impact Process 88

13. Bullet Impact Process (cont) 89

14. React to Fire Process . , 84

15. SPARTAN Simulation Process 97

v

List of Tables

Table Page

1. Terrain Attributes 46

2. Event Attributes 46

3. Soldier Attributes 47

4. Elevation Color Coding 186

5. Soldier Attribute Descriptions 187

6. Soldier Attribute Variables 187

7. Initia, Event Attributes. .. . a ,. . . * . .. 188

vi

AFIT/GOR/ENS/92M-7

Abstract

This project developed a high resolution land combat model for the

purpose of demonstrating current modeling techniques. The complex and

dynamic nature of combat simulation models makes it very difficult to

teach the concepts of combat modeling without some type of hands-on

experience for the student. A literature search of current military

models showed no model existed that was well suited for this educational

purpose.

This model [SPARTAN] was developed to represent current modeling

techniques in use with the present generation of US Army models. The

model is primarily a small scale direct fire attrition model under the

definitions of the Army Model Improvement Program [AMIP] (12). The

model represents the soldiers performing the actions of movement,

searching for targets, selecting targets, engpging targets, and reacting

to enemy encounters. The model development process focused on using a

sound methodology for the code development, and using modeling tech-

niques similar to those in the Army's two premier high resolution models

[JANUS and the Combined Arms and Support Task Force Evaluation Model

[CASTFOREM]11. SPARTAN contains numerous features that allow the student

to observe in great detail how the model represents the various activi-

ties of the soldiers. An educational assessment of the model was

performed by students and faculty at the Air Force Institute of

Technology.

vii

SPARTAN: AN INSTRUCTIONAL HIGH RESOLUTION
LAND COMBAT MODEL

I. Introduction

1.1 Background

Within the defense community, computer-aided wargames

and combat simulation models have become important training

and analysis tools. One of the primary users of computer

modeling techniques, the US Army Training and Doctrine

Command, defines a model as "a representation of the real

world by a series of mathematical and judgemental relation-

ships (16:85)," and a simulation model as "a model of combat

in which play is automated and governed by ditision rules

input into the simulation before play begins. An automated

wargame (16:86)." In most cases, combat models are descrip-

tive in that they provide a history of a battle with the

initial conditions of the conflict provided by the analyst.

A distinguishing characteristic of a simulation model from

other types of analytic models is that it solves the problem

by portraying the process as a chronological sequence of

events acted out in a step by step manner till some form of

termination condition is encountered (7:3).

1

A General Accounting Office [GAO] report on models in

use by the federal government lists modeling analysis as a

key factor influencing policy makers (11:116). Leaders use

analytic results from combat simulation models to make

decisions in virtually all areas of procurement, force

structure, and national defense policy. During the concept

phase of system development, simulation models are often

used to study alternative designs, and define system re-

quirements. In the operational testing phase, simulations

may be used to investigate system performance, determine

support requirements or develop tactics for a particular

system (22:712).

Combat simulations are used extensively also as train-

ing tools at all echelons in the military. In the US Army,

all battalion and brigade commander designees receive two

weeks of tactics training using the JANUS combat simulation

model as a tool to improve their command and control skills.

While there are many model advocates, there are also

many people within Congress and the defense community who

feel that using models for analysis is not always accurate.

A GAO report cites numerous misuses of model analyses and

poor analytic techniques to support these contentions (11:i-

-iv). This same GAO report to Congress emphasized the need

for a greater understanding of the inherent processes of

combat and the methods used in models to simulate these

2

processes (11:104). A key point is that the output from a

simulation can only be as good as the input that the analyst

provides for the modcil.

Since modern warfare is such a complex and dynamic

activity, the simulations built to model these conflicts are

normally very complex tools. For example, the Army's high

resolution combat model JANUS(T) uses more than 85,000 lines

of computer code. A typical JANUS battle simulates the

activities of over 600 combatants in an air and land warfare

scenario where any or all of these combatants can be per-

forming numerous different tasks (14:5). Adding to the

complexity of the combat systems is the need to represent

terrain and the battlefield environment in which the combat

occurs. According to an experienced JANUS operator, this

model requires a minimum of three months for an analyst to

learn the very basics of the operating processes (40).

Simulation modeling is not an exact science and can

never be expected to completely represent reality. In any

given situation, the analyst can only replicate a limited

number of the combat processes and the most important envi-

ronmental factors. To analyze model output and to make

intelligent decisions from the analysis, it is imperative

that the combat modeler fully understand the various methods

used to model combat and the numerous simplifying assump-

tions inherent in any simulation model.

3

1.2 Problem Statement Sorely lacking in the modeling

community has been a small model which serves as an instruc-

tional tool to demonstrate clearly the processes of combat

simulation. With such a tool, the student could observe the

often opaque processes operating inside the model and under-

stand the relationships of the combat processes. Of the

present analytical models in use, such as JANUS(T), none are

suitable instructional aids applicable towards supporting a

university course of instruction in combat modeling. In-

deed, a review of the Joint Services military model cata-

logues indicates there are no models that specifically meet

this educational need (26:App M).

The purpose of this thesis has been to develop and

implement a high resolution combat model that would be a

useful instructional tool in a land combat modeling course.

This model demonstrates current Army methods of modeling

direct fire combat processes in a simple structured environ-

ment. The model can support and enhance the curriculum by

improving the conceptual understanding of the modeling

processes.

1.3 Model Requirements

Wargaming literature discusses many approaches to

modeling combat, yet most experts seem to agree that modern

analysts still do not fully understand the very dynamic

combat processes (11:100--102). For any given activity

4

there are usually a number of methods of modeling the pro-

cess. The algorithms and techniques used in the SPARTAN

model in most cases are those found in common use with the

present generation of Army models. A goal of the Army Model

Improvement Program [AMIP] is to standardize algorithms

among models for consistency throughout the Army (12:12).

SPARTAN uses the simplest techniques available that provide

a sufficient level of detail. With these goals in mind, it

was possible to build a nearly transparent model that dis-

plays the characteristics of a typical land combat model as

presently used within the defense community.

The model developed is a high resolution, stochastic

simulation model which represents a two-sided combat scenar-

io between two homogeneous forces with several entities.

Each of these entities has numerous attributes that describe

its characteristics and capabilities. The processes that

the model simulates are the following:

-terrain representation;
-time representation;
-entity movement;
-searching;
-target acquisition/line of sight;
-target selection;
-target engagement/destruction;
-ammunition expenditure;
-reaction to fire;
-command and control.

A key element of SPARTAN is the ability to interrupt

the simulation at any point within the execution. This

model interrupt feature allows the student to check the

5

status of the entities and observe the processes occurring

throughout model execution.

1.4 Modeling Definitions

This section defines a number of terms that will pro-

vide a more accurate description of the modeling task.

1.4.1 High Resolution. Combat models fall into two

major categories, high resolution and low or aggregated

resolution, A high resolution model is one that describes

the activities and interactions of individual entities.

These may be individual soldiers or a weapon system such as

an individual tank, or aircraft. Each entity has its own

particular characteristic attributes and the model uses

these attributes to simulate performance of the entity. The

model maintains historical performance output on individual

entities. In contrast, low resolution models aggregate

forces at various levels into subordinate units. These

units then have parameters that describe zhe overall capa-

bilities of these units. As an example, a high resolution

model monitors the position of each soldier while a low

resolution model typically keeps a center of mass location

for a unit or group of soldiers.

1.4.2 Stochastic Processes. As with most real world

activities, in any given combat situation there are usually

numerous possible outcomes, and seldom is there any great

certainty about which outcome will occur. A stochastic

6

model describes the uncertainty of events on a real battle-

field by using probability theory. The possibility that an

event will prcduce a certain outcome is given a percentile

chance of occurrence and a random number draw decides wheth-

er the event did occur. This accomodation of chance tends

to make the model more believable, and provides a closer

representation of reality (5:88).

1.4.3 Scenario. The combat scenario is the motivating

force that drives the model. It includes the terrain, the

environment, the forces of both sides, and the specific

circumstances in whioh the events are to occur. In this

model, the scenario provided is a generic situation based on

a commercially developed board game. Unlike most combat

models, this model design does not have the specific purpose

of providing analytic results. Instead, the purpose of this

model is to demonstrate model operations; therefore, the

data used is only representative of typical data, and makes

no claim of being statistically or historically derived.

1.4.4 Terrain Representation. The process of repre-

senting terrain involves partitioning the maneuver space

into small regularly shaped polygons that represent sections

of terrain. Each of these boxes have attributes associated

with it, such as an elevation, a vegetation index, and a

trafficability index.

7

1.4.5 Entity Movement. A model simulates movement of

entities across the terrain based on the entities mission

and encounters with the enemy. The movement rate is a

function of an entity's inherent movement characteristics,

combat posture, and terrain characteristics. Operators must

specify movement routes as input data for each particular

scenario or the entity may react to a situation and modify

its movement routes according to some programmed decision

logic.

1.4.6 Taraet Engagement. Target engagement involves

the stochastic processes of detecting, selecting and firing

at an enemy. Each entity searchs for targets within the

limits of its perception, and selects a particular target

from those in view. It then fires a weapon at that target.

For each shot fired, the model determines a probability of

hit and kill. The model uses these probabilities and a

random number draw to determine the damage inflicted on the

target. Some models only determine deaths, while others

include many categories of wounds and damage.

1.4.7 Model Documentation. Documentation is the sup-

porting material provided with the simulation software.

This material should provide sufficient information to the

potential user to understand the uses and limitations of the

model, the functional processes of the model, and the re-

8

quired input to the model. The documentation that accompa-

nies this model includes the following:

-purpose;
-model overview;
-scenario;
-method of development;
-discussion of modeling techniques ani algorithms;
-schematics of model proc:-sses;
-user's manual.

1.5 Approach and Methodology

This section briefly describes the process of develop-

ing the model.

1.5.1 A major requirement at the beginning was to

review literature and interview knowledgeable individuals on

the most appropriate techniques to use for development of

this model.

1.5.2 The next requirement was to develop a specific

scenario that includes the terrain map, force characteris-

tics and the circumstances of the battle. This scenario

provides all the necessary input data required for the

model.

1.5.3 The lecture notes on high resolution modeling by

James K. Hartm~n were used as a basis to develop a general

structure for the model (23). These notes helped define the

activities of the various subroutines and illustrated some

of the subroutine and database relationships.

1.5.4 Various programming languages were evaluated

before selecting the Microsoft QuickBASIC programming lan-

9

guage. This language was chosen for its relative simplici-

ty, graphics capabilities, and modular programming features.

1.5.5 The model building process started with a simu-

lation of entities moving on the terrain. When this proto-

type operated satisfactorily, additional capabilities were

added and tested. This iterative procedure progressively

upgraded the model until the model included all the process-

es of being able to move, shoot, and react to hostile fire.

1.5.6 Verification ensured that the computer code was

operating as intended. This was followed up with a number

of individuals per.orming various laboratory tests with the

model. The tests provided feedback from novice operators

and experienced modelers on various improvements (19:237).

This required several cycles of testing and updating to

certify the model for its intended purpose as an instruc-

tional demonstration tool.

1.6 Equipment

The equipment needed in this thesis effort was that re-

quired to perform the computer programming tasks:

IBM AT Compatible microcomputer with minimum EGA color
graphics;
Microsoft DOS 3.3;
Microsoft QuickBASIC 4.5 programming language;
Microsoft QuickBASIC 4.5 User's Manual;
MATHCAD 2,y Mathematics Software.

The only equipment required to run the model is the standard

ItM personal computer with an EGA or better monitor.

10

1.7 Thesis Organization

Chapter II is a literature review that summarizes

pertinent information about the combat modeling processes,

discusses methodologies for simulation development, and a

rationale for the choice of programming languages. Chapter

III discusses the methodology of formulating, building, and

coding the simulation model. The process of going from

Iroblem definition to a functioning simulation is discussed

in detail. Chapter IV provides detailed discussion of the

algorithms used to model the combat processes. Lastly,

Chapter V concludes the thesis and presents recommendations

for further study.

11

II. Literature Review

2.1 Introduction

The purpose of this chapter is to review the literature

pertaining to high resolution combat modeling. The focus of

Section 2 is a look at current high resolution models in the

US Army. This section discusses some of the more common

methods used to simulate combat processes in US Army models.

Sections 3 and 4 discuss several approaches to discrete

event modeling and several methodologies for model develop-

ment. Section 5 discusses the rationale behind the choice

of a computer programming language.

2.2 High Resolution Combat Models Used by the US Army

Since the early 1960's, the United States Army has

developed and used several generations of high resolution

combat models. The Army Model Improvement Program [AMIP]

has selected two analytic high resolution models for stan-

dardization within the US Army (9). These two models are

JANUS [A] 2.0, and the Combined Arms and Support Task Force

Evaluation Model [CASTFOREM]. Both of these models simulate

battalion task force size elements on the battlefield [9].

To give some perspective of this simulation, a typical

mechanized battalion task force might include over 600

soldiers with over 100 armored vehicles. AMIP establishes

12

six functional areas that land combat models can be expected

to simulate (12:12--13):

1) maneuver;
2) fire support;
3) air defense;
4) combat service support;
5) intelligence and electronic warfare;
6) force control/command and control.

Both JANUS and CASTFOREM represent most of these sys-

tems to some degree. A model can represent any number of

these areas or a single one. AMIP would categorize SPARTAN

as a "functional area model" for maneuver forces. This

category represents "activities directly related to the

application of direct combat power" (12:35). The basic

elements necessary to model direct fire combat according to

Hartman (23:1--10) are

1) battlefield environment;
2) movement representation;
3) target detection algorithms;
4) target selection criteria;
5) target engagement;
6) time advance mechanism.

The next few sections review these necessary elements as

modeled in JANUS [A] 2.0 and CASTFOREM.

2.2.1 Battlefield Environment. JANUS and CASTFOREM

both use similar methods of representing terrain and the

environment.

JANUS uses a terrain file to represent a three dimen-

sional battlefield. The battlefield is divided into square

grid cells by evenly spaced vertical and horizontal lines.

13

These grid cells can be of variable width [from 25 to 200

meters] (14:33). The terrain file maintains an average

elevation, trafficability factor, and a ground clutter

factor for each cell (14:34). CASTFOREM uses the same tech-

niques for terrain representation although the grid size is

smaller, at 25 to 100 meters (13:3-1). Both models also

consider a number of atmospheric conditions that are not a

factor in the model developed in this research.

2.2.2 Movement Representation. JANUS and CASTFOREM

use similar methods for movement. Each entity in a model

has certain movement capabilities specified in its table of

attributes. Prior to model execution, the operator desig-

nates movement control points. The entity then moves along

its designated route at speeds dictated by its attributes

and the mobility conditions of the route. JANUS attempts to

move each entity 50 meters during each movement phase, but

may modify this distance for adverse terrain conditions.

After a movement, the time to make this move is computed and

used to determine when the next movement will occur (14:-

411). One major difference between the two models is that a

CASTFOREM entity has a shortest path algorithm that allows

the entity to deviate from the movement route if the terrain

warrants while the JANUS entity can only leave the original

movement route because of operator input after the model

queries the operator. One specific instance of this is when

14

the model stops at a m4nefield and waits until the operator

provides a course of action for the entity (14:277;13:3-

169). An example of the differences between the models is

that a JANUS entity would drive into a mountain and stop

while a CASTFOREM entity would find a path around it.

2.2.3 Target Detection Algorithms. Target detection

is generally modeled as three factors. The first is the

visual signature of the target being observed. The next

factor is the transmission of the signature through the

intevening atmosphere, and the last factor is the ability of

the observer's sensor to see the target signature. The

target detection algorithms used in JANUS and CASTFOREM come

from the Night Vision Electro-Optical Laboratory [NVEOL]

detection model (25:28;13:3-59). A Rand study included the

comment that "the best experimental data on the probability

of target acquisition by a human observer, through direct

rision . . . are probably those obtained by the Army's Night

Vision Laboratory (NVL)" (1:3). These algorithms account

for detailed modeling of target definition, range, obscur-

ance, and visual capabilities of the observer (14:354). In

the NVEOL algorithms, detection probability is the product

of two terms. These are "PI, the probability of detection

with unlimited observation time, . . . and P2, a time-depen-

dent term that takes account of search sectors, field of

view, and coverage during a scan time" (1:3).

15

P1 is often referred to as the probability of acquisi-

tion. This value represents the target's signature for the

specific conditions at the time of the search and the capa-

bilities of the observer's sighting system to sense the

signature. A P, value greater than the observing sensor's

minimum threshold indicates that the target can potentially

be detected. When a target has a P value that exceeds an

observer's threshold value then it goes on a target detec-

tion list.

-(C/M 2.740.7 (C/M)

C is the number of resolution cells present
in the area of the target dimensions. This
value is a function of sensor quali-.y, target
contrast, and propagation effects. In JANUS,
C is always at 3.5 as a simplification of the
model (1:8). M is a scale factor for back-
ground clutter of the target (1:4).

P2 - l-EXP[-(C/H) (t/6.8)] (2)

t - 2 (FIss) (3)

The value of 2/6.8 sec is an empirically deriv-
el value for a glimpse time. Search sector
ASS) is the total search area observed while
field of view (FV) is the portion of the search
sector that the observer can view at any instant
(1:7).

The target detection routine computes a P, value for

each potential acquisition. The P2 equation computes a

probability based on the amount of time that the observer

was looking in the area of the target. The probability of

16

detection is compared to a uniform [0,1] random variate. A

drawn number less than the P: value determines actual obser-

vation. This discussion is a brief summary of an extensive

discussion of the target detection theory in Rand Note N-

3087-DR&E/A/AF (1:3--10). Additional discussion is avail-

able in (13;14;23;25).

An important element of terrain representation and

target detection is the determination of line of sight (LOS]

between the observer and the target. The requirement here

is for an algorithm that takes three dimensional terrain

coordinates and determines whether there are any intervening

terrain features or clutter that would block or reduce the

chance of observation between two points (38:823). Both

models use similar methods to check the LOS. JANUS samples

the elevation of each grid while CASTFOREM checks the eleva-

tion of all the grid boundaries along the path between the

two points(14:348;13:3-2).

The method of computation is similar in both cases.

The height of the observer is computed as its elevation plus

the height of the observation system which might be human

eye level or a weapon system sight elevation. The height of

the target is the elevation at the target's location plus

the height of the target (14:348). In the JANUS algorithm,

the intervening terrain is sampled at regular intervals. At

each point, LOS height is computed and compared against the

17

terrain height to determine whether LOS is blocked. If LOS

still exists then ground clutter and obscuration are checked

and a LOS degradation factor is computed that represents

partial attenuation (14:348--349). Ground clutter in JANUS

can be both vegetation and manmade structures.

2.2.4 Target Selection. Both Army models use ranking

schemes for target selection. JANUS determines single shot

kill probability [SSPK] for each observed target, and sums

the SSPK for all observed targets. Each target has a proba-

bility of being selected for engagement proportional to its

SSPK. The model then draws a random number that specifies

which target to select (14:370--372).

CASTFOREM has a much more elaborate method of determin-

ing target se)sction. Initial input to the model determines

which targets have the highest priorities for each type of

entity or even whether the target would be engaged at all by

this entity. As an example, the modeler might designate

infantry fighting vehicles as the highest priority target

for M2 infantry fighting vehicles. Among competing targets,

CASTFOREM also uses a ranking algorithm:

rank - (tgt dimension)(tgt contrast) *(flash) (4)
(observer/tgt effect)

The flash factor is a variable that gives the target a

higher priority if it is firing a weapon. This represents

the idea that an observer can most easily see a firing

18

target and will consider it a more dangerous opponent,

The observer/target effect includes factors of range, target

motion, and intervisibility (13:3-59).

2.2.5 Engagement Assessment. JANUS and CASTFOREM have

different methods of determining kill probabilities. JANUS

uses a look-up table to determine a SSPK against a target.

This table accounts for the type of weapon, type and expo-

sure aspect of the target, motion of target and observer, as

well as the range to the target (14:372). A random draw

then determines whether the shot hit the target entity. In

JANUS, an entity is either dead or alive, that is, there are

no levels of damage (14:374).

For hit probability, CASTFOREM uses "a normal bivariate

distribution with a bias off the aimpoint and dispersion"

(13:3-178). It computes a probability of kill, and level of

damage based on the location of the impact. CASTFOREM

accounts for accumulation of damage and multiple levels of

"kills" (13:3-179).

There are many different definitions of probability of

kill and just as many methods of computing them. Many times

probabilities of kill are conditional on the occurrence of

other events. Some of these might be hitting the target,

location of hit, range to the target, or angle of impact.

With JANUS, the data is empirically derived from testing by

the Ballistics Research Laboratories [BRL], so many of these

19

factors are accounted for, but for the analyst it is always

important to know the test conditions. The JANUS Single

Shot/Burst Kill Probabilities [SSPK] account for the follow-

ing factors:

- range to target unit;
- motion category of firing unit;
- motion category of target unit;
- protection category (exposed or defilade);
- aspect angle of target (head-on or flank).

The CASTFOREM algorithm was also empirically derived with

BRL data (13:2-77).

2.3 Conceptual Framework

In the previous sections, the discussion focused on the

fundamental concepts of simulating direct fire combat with

emphasis on modeling the combat processes. In the remainder

of the chapter, the aim is a review of different concepts of

structuring simulations, methods of discrete event simula-

tion, and programming languages.

William T. Morris describes model development as an

"enrichment" process. Any model should start with a well

developed logical structure. From this simple beginning the

model goes through an iterative process of modification and

testing until the model meets the original objective re-

quirements. He stresses to simplify until it works, then

elaborate and enrich (31:B-709).

2.3.1 Model Development. Just as an outline is essen-

tial to writing any lengthy document, a methodology must be

20

established for capturing the complexity of a combat model.

Richard Nance has observed during his modeling career that

the development of a small program or a small model
requires little discipline and almost no supportive
techniques. Both can be developed fairly rapidly and
with little control on the conceptual representation
and the eventual implementation. In part, this
explains the criticism often leveled at new graduates
in computer science or engineering: they do not know
how to solve real world problems. (32:220)

Nance defines two roles for a methodology. These are

"1) conceptual guidance in the modeling task, and 2) defini-

tion of needs for environment designers (32:220)." A Winter

Simulation Conference article by Joseph Derrick and Osman

Balci considers three types of guidance to be important in

the development of discrete event models. These are static

design, dynamic design, and implementation methods (17:716).

This article reviewed a number of different discrete event

methodologies, several of which are applicable to combat

modeling.

The first consideration is the choice of an implementa-

tion methodology of which Derrick reviews five types. A key

discriminator between methods of implementation is the

technique used by each for time advance. There are general-

ly two methods of looking at time advance (28:9). These

being:

Next Event Time Advance - this method initializes the
time clock at zero and updates the clock to the time of
the next most imminent event and continues until no
other events exist.

21

Fixed Increment Time Advance - a specific increment of
time is added to the clock and all processes of the
system are checked to see if any status changes or
events should have occurred in that increment, if so
the system is updated to reflect that the event oc-
curred at the end of the increment. A subset of this

approach is to use variable length time steps.

In this case, there is little choice in an implementation

methodology since the intent of this model is to emulate

JANUS and CASTFOREM, both of which use an event scheduling

framework. The article's discussion of the methodologies

supports event scheduling as an appropriate choice. Derrick

describes the event scheduling routine as an efficient

method of execution when the simulation involves numerous

independent and less interactive entities (17:714). This

statement is an apt description of a combat model with its

many combatants having a wide range of activities in most

cases. Derrick's other implementation methodologies for

discrete event simulation were activity scanning, process

interaction, and transaction flow which have characteristics

that make them unattractive for combat modeling. Activity

scanning requires the model to check each activity at each

time advance, thus making it relatively inefficient in a

discrete e"ent model (17:714). Process interaction and

transaction flow are both process oriented, and are most

efficient in models representing series of queues and serv-

ers (17:712). John Evans states in his discussion on alter-

native strategies,

22

the event-scheduling approach . . . is probably the
mo6. natural way to proceed and is frequently used when
starting from scratch using a general-purpose
programming language, (21:79)

In his Introduction to Simulation, William Biles' dis-

cussion states that the event scheduling approach concen-

trates on the events and the resulting changes in the system

state. Future events go chronologically into an event

calendar. Time advances as each event is pulled off the

event calendar. The simulation must have a method to pull

the next event off the list, advance time, transfer control

of the program to the next event, generate new events and

sort the event calendar as each new event arrives to it

(6:8). The mechanisms to perform these tasks are discussed

in greater detail in Section 2.3.3.

In terms of static and dynamic development frameworks,

Evans does not see any distinct advantages among conceptual

frameworks except that some are better in particular appli-

cations (21:78). The two methodologies suited to event

scheduling are structured modeling [SM] and conical meth-

odology [CM] (16:716). Of these, SM orients on building

modules around queueing events, (8:253) a situation not

encountered in combat models.

Conical methodology as described by Nance "prescribes a

top-down model definition followed by a bottom-up model

specification" (32:221). CM stresses a lifecycle approach

to simulation development. The process begins with a decom

23

FIN 7 ,ILIz ATos IOS:
I

... TIMF FLOW MI:CHANISM I

Figure-1 SELECT NEXT EVENTgrcs

. IROUTINE NOlN

I "'

OUTPUT

Figure 1 Event Scheduling Process

position of the model elements and their relationships as

entities, attributes, and activities. From here, the model

builder develops the dynamic relationships of the elements.

A hierarchical and functional decomposition allow the devel-

opment of a structured program plan. The next phase of the

24

process is an iterative process of building and refining.

This usually results in some redefinitions of the problem

and further iterations. The final phase is verification and

validation of the model. An ongoing task throughout the

process is documentation of the model and the development

process (32:221-223).

While the conical methodology gives general guidance on

the process of creating and maintaining a viable model,

Osman Balci provides some specific guidance on the steps

necessary to implement an event scheduling program. These

are (2:290):

1) Identify the objects and attributes.
2) Identify the attributes of the system.
3) Define what causes a change in the value of an

attribute as an event.
4) Write a subroutine to execute each event.
5) Follow the logic of an event scheduling routine

with an event list to develop the simulation
program.

2.3.2 Model Validation and Verification.

The conical methodology emphasizes that validation and

verification should be performed throughout the development

of a simulation model. In simple terms, "model verification

examines whether the computerized model runs as intended,"

and "validation examines the correspondence of the model and

its outputs to perceived reality (4:14)". Validation and

verification is a very controversial subject with numerous

different approaches to the problem. A 1979 GAO report on

model assessment reviewed many of the more popular methods

25

and attempted to find the common thoughts within the various

methods (10). The result is "a minimal set of criteria

deemed necessary for model evaluation (4:15)." The follow-

ing paragraphs list the areas deemed important in model

assessment.

Documentation - should provide the level of detail

necessary to allow model users to understand the processes,

the underlying assumptions, the limitations and the results

of any model validation effort. "At a minimum, the model

documentation should describe the data structure, the key

elements of the model, the general flow logic, and all the

variables...(36:78)."

Validity

Theoretical validity - ensuring that the model's mathe-

matical modeling techniques are appropriate for the level of

detail required by the user.

Data validity - involves establishing the accuracy,

completeness, and appropriateness of the original data and

verifying the methods in which the data is transformed

within the model (3:21).

Operational validity - is the issue of divergence of

model results from "real world" values. It also involves

testing the underlying assumptions and theories to determine

how well they represent the phenomenon. A key part of

operational validity is some basic agreement between the

26

model's sponsors and developers as to the types of valida-

tion required and the amount of "realism" expected (4:16).

Computer model verification - "is ensuring that the

coding of the conceptual model is correct (4:16)." The

mathematical and logical relationships should be correctly

formulated. Throughout the development process, each compo-

nent of the model should be checked separately and as a

functioning part of the whole model for proper operation.

The following list provides six methods for verifying code

(4:16):

1) structured programming methods;
2) program testing;
3) tracing the simulation;
4) logical relationship checks;
5) comparison to analytic models;
6) graphics.

Maintainability - this is the issue of determining

whether the model will be able to correctly represent the

system under analysis throughout the life cycle of the sys-

tem. Maintainability requires that a model be designed so

that it can be modified as required. Two important aspects

of maintainability are review and update. Review require-

ments are that the model proponent schedules periodic looks

at the model to ensure that the model still uses the best

data readily available and to determine whether modifica-

tions are necessary on the model. The update requirement is

to ensure that the model proponent has developed some proce-

dure or guideline to indicate when the model requires im-

27

provements in order to continue to meet its design goals

(10:22).

Usability - this category includes a number of factors

involved with the ease of use of the model. An important

factor is to determine availability of the required data.

Another key point is whether the model output is understand-

able, and whether the output can be modified to suit partic-

ular studies. A short list of additional topics under

usability would include portability, run time, and set up

time (10:23).

The GAO authors have left the terms in the list, de-

fined in general terms, so they can be applied to a wide

variety of models. Some subjects are emphasized in specific

models more than others depending on the degree of detail

required from the model and user defined requirements (4:-

15). Performing an evaluation of a simulation using these

categories should provide a comprehensive assessment of the

model's worth and applicability.

2.3.3 Scheduling Future Events. The heart of any

discrete event scheduling simulation is the event file

synchronization structure. This mechanism provides order to

the operation of the model. Luis Rodriguez states in his

comparison of these structures that "the most important

factor involved in the total execution time of a simulation

is the time required to file an event" (35:189). He looks

28

at linked list structures whji'h most general simulation

languages use and compares them to several newer techniques.

This 1982 report states that there are faster scheduling

techniques, but linked lists are still the predominant

method in use (35:189). More complicated methods with

multiple lists are much faster, but have a requirement for

dynamic parameters which make them more difficult to use

(35:189).

Both JANUS and CASTFOREM use similar discrete event

scheduling approaches to model continuous time (2).

The master time flow mechanism in JANUS is an event schedul-

ing routine that uses multiple linked lists (27). CASTFOREM

is written in SIMSCRIPT 11.5 (13:v) which uses a discrete

event time advance mechanism of multiple linked linear lists

similar to the JANUS model (30:73).

As previously discussed, these routines simulate con-

tinuous time by advancing time to the occurrence time of the

next event. Richard Nance provided a simple description of

an event as any state change in the model (17:711). The

linked linear list is a sorted data record that keeps the

future events in a sequential order of occurrence (28:71).

As the model pulls the next event from the list, time is

updated, the event is processed, new events are added to the

future event list, and the list is relinked. This process

continues until a specified termination point is reached.

29

This point might be a designated time limit, a specified

attrition level or any number of switches specified by the

user that would be triggered by some event occurrence (2:-

290).

In whatever form it takes, event set management basi-

cally involves database manipulation where the data consists

of event records with fields containing event types, and

occurrence times as the minimum information required to

maintain the event calendar (41:153), There are two general

forms of data storage, these being sequential, commonly

called computed address method, and random access or link

addressing method (42:54). The sequential form is a simpler

method of storage since the only requirement is to keep the

data [events] stored in chronological order. The only tools

required are routines to add events, sort events and pull

events off the list. The drawback to this method is that it

is inefficient because it must re-sort and manipulate all

the events on the event calendar for each iteration. An

iteration being the cycle of selecting and executing the

next event. It is considered a brute force method (28:138).

If a sequential data storage technique is to be used

then an efficient sorting routine is a critical element. A

1991 comparison of sorting routines shows that:

For nearly sorted or midsized files (a few thousand
elements), Shellsort [named for the developer Shell]
performs as well as or better than any other known
algorithm, including quicksort. Furthermore it is an

30

in-place sorting algorithm requiring little extra space

and is easy to code. (43:88)

A 1985 comparison by Dudewicz also showed that Shellsort is

faster than other methods when inserting into a sorted list

(18:293). The heapsort and quicksort were 2-4 times faster

at sorting a random list (18:293); however, this is not a

big concern since the key property of an event list is that

new events are inserted into already sorted lists.

The more common method of random access requires much

more programming overhead to reduce the processing time

required to manipulate the lists. If a random access ap-

proach is taken for event management then there are a pleth-

ora of possible techniques. Since the basic structure used

by the JANUS and CASTFOREM models is the doubly linked

linear list, it is discussed here for completeness. The

doubly linked linear list structure consists of two lists,

pointers and event records. A pointer is a variable that

references a location in a data structure (42:54). In a

double linked list, each list may have several pointers that

identify the head, tail, and also intermediate locations in

the list. Event records each have predecessor links and

successor links that identify the storage locations of the

event that precedes and the event that follows an event.

In this manner all events have a reference to the other

events in the list and can be accessed without being physi-

cally sequenced in order. One list stores the active event

31

ACTIVE UI INACTIVE LIS

F] -F41Tm

1Figur 2 4 1oubl 2d14 010t1u4161

Ila1 17.9 19]2

[N 1 0 10 1 821 N

W - POINTER

LOW ION EVENT TYPE EVENT TIMEV MOUO - RECORDI

IILINK LINK

Figure 2 Example of Doubly Linked List Structure

32

records while the second is a list of available record

spaces (28:135-136). Figure 2 shows how the records are

indexed and linked in each of the two lists.

A complicating requirement in the development of simu-

lation languages is the need to preempt events already in

the list. One method is to pull all the active events from

the event calendar for any entity that is eliminated from

the simulation. In a Winter Simulation Conference article,

Henriksen provides a description of a simple alternative.

If a soldier kills another soldier who is already on the

schedule to perform an event, the dead soldier's activity

cannot be allowed to occur. Rather than pulling the event

out of the list, as a simulation language would do, the kill

triggers an attribute switch on the soldier that the event

modules check before execution (24:352). In general, swit-

ches are a useful method of modifying the model's program

logic as the simulation proceeds and are used throughout

JANUS and CASTFOREM.

2.4 Random Number Generation

Any simulation model of a system with inherent random

processes must have a means of obtaining random variates.

Two methods to accomplish are to draw random variates from a

table or to use an arithmetic method to generate a numerical

value in accordance with the appropriate distribution (28:-

421). Both methods are widely used in simulation. Random

33

numbers derived in this manner are referred to as pseudo-

random numbers. This is because both methods are reproduc-

ible deterministic methods of generating a stream of random

variates. Drawing numbers from a table is computationally

time consuming, but can be faster than arithmetically com-

puting random variates of complex distributions (28:421).

Tables are also useful when empirically derived distribution

values are available. There are a wide variety of arithme-

tic methods available to provide random variates. An arti-

cle, by Arne Thesen, compares numerous methods to compute

uniform, exponential, normal, and gamma distributions. His

comparisons are based on the qualities of computational

efficiency, ease of programming, non-degeneracy, randomness

of sequence, and independence from seeds and other variates

(41:157). The uniform distribution with an interval of

[0,1] is a key element in the numerical computation of

random variates. Most other distributions can be obtained

by transformations of uniform variates (28:420).

JANUS uses the U[O,1] generator and tables to obtain

random variates. To model weapons effects, empirically

derived probabilities of kill are sampled from a data table,

and compared against a U[0,1] value to determine the results

(14:A2). The target selection algorithm uses a U[0,1] value

to pick targets. The NVEOL target detection model uses the

U[0,1] distribution for comparison to a table of exponen-

34

tially distributed values in the continuous search algor-

ithm(1:8). CASTFOREM also uses the uniform distribution for

comparison to exponential distributions as well as a bivar-

iate normal distribution to compute probabilities of kill

(13:2-77). Designers of both models have chosen to use look

up tables rather than using computationally demanding trans-

form algorithms (14;13:2-83). Thesen's article discusses

why the transform operations that are simple to program

become very computationally demanding. Primarily, it is the

result o' -ising the logarithmic function " which uses Taylor

series expansions with a large number of terms (41:159)."

2.5 Programming Language

There are a wide variety of programming languages that are

used for simulation programming. Most of these fall into

two categories. The first is general purpose simulation

languages, the best known of which are SLAM II, SIMSCRIPT,

and GPSS. The advantages of these are that they provide a

"core of facilities" such as random variate generation,

entity management, and event list management (28:263). The

disadvantage is that any potential user must have access to

these languages (39:93). The second category includes the

higher level programming languages such as FORTRAN, C,

PASCAL, and BASIC. One advantage of these languages is

portability, which means the program can be easy adapted to

run on different computer systems. With high level languag-

35

es, even the compiler may not be necessary if the simulation

can be used in an executable format. Another advantage is

that higher level programming languages permit the applica-

tion of good programming techniques and a person learning

simulation can see the hierachical structure of event sub-

routines and data files (39:94). Andrew Seila, a professor

at the University of Georgia, has found "persons learning

discrete event simulation benefit by seeing the data struc-

tures used and operations that are performed on them in the

simulation program (39:94)."

Since the model under development is instructional in

nature, the features of portability, ease of use, and graph-

ics capability are of prime importance. FORTRAN is in wide

use in military simulations (28:253) and would be the auth-

or's choice except that it does not facilitate use of graph-

ics except with add-on software packages. An article in the

Journal of Pascal, Ada, and Modula-2 comparing the program-

ming languages Pascal and C provided a good analysis of each

language (44). This article was then used as a base of

comparison with a similar article on QuickBASIC version 4.5.

This analysis provided some measure of the strengths and

features of the different languages. C is a very capable

language, but is not user friendly. It would require an

extensive training period before a student could work on the

model code. Pascal has all the necessary capabilities for

36

simulation programs, but is not as well suited to modular

programming as QuickBASIC version 4.5 (44:10). QUICKBASIC

version 4.5 also meets all the requirements above while also

being in a format similar to FORTRAN. It is well suited as

an educational language. It allows modular construction, it

automatically checks syntax and it has debugging tools that

were invaluable to an inexperienced programmer (37:295).

The article describing QuickBASIC states, "The new ANSI

BASIC standard includes many new features, some of which

have outdone Pascal, Modula-2, and even C" (37:295). Quick-

BASIC 4.5 has all the features of a modern structured pro-

gramming language.

37

1HI. Model Development Process

3.1 Introduction

This chapter describes the general model building

process using to create the SPARTAN combat model. The

flowchart in Figure 3 shows the overall process required to

develop the model.

E MODEL

OONOEPT

DEEO I , , ,E

DTRIN EEOPUG DEVELOPLER

Fiur 3odl MODEL PROGRAMMING
REOUIRED ROUTINE, ROUTINE LANGUAGE

DATAE 8 ROUTINE DOOUJMENTATION1

FIL

TESTS

Figure 3 Model Development Process

38

The process appears much cleaner on the chart than it was in

actual development. At each stage of the development, new

information was included and often algorithms were revised.

In each case, there was a cascade effect that required

changing elements such as the documentation, the help files

or the preprocessor.

As the flowchart depicts, time management was required

to concurrently create the model code, construct the model

support tools, and prepare the documentation. The chart

portrays three parallel processes, but to a certain extent

each of the processes was dependent on the others, and were

done in a somewhat synchronous fashion.

3.2 Development Methodology

The general principles of the conical methodology were

applied as a framework for simulation development. An

article by Richard Nance is the primary source for this

approach. Figure 4 is an extracted outline of this method-

ology (31:38--43). Further information can be found in

(2,3,4,17,33).

The following sections progress from problem formula-

tion through implementation of the functioning simulation

model. An important procedure in the systematic development

approach to this complex problem was to interject several

steps in the process between the conceptual problem state-

ment and the coding process that define the specifications

of the static and dynamic aspects of the model. The goal

39

I, Statement of the study objectives

A, Definitions
B. Assumptions regarding objectives

I. Kodeling environment

A. Modeling effort available
B. Modeling assumptions

1. Boundaries
2, Interactions with environment

a) Input description
b) Assumptions on model/environment
feedback or cross effects
c) Output and format decisions

111, Model Definition

A. Identifying the objects and their attributes
B. Subuodels with possible sublevels

a) Value attributes
b) Relational attributes

iV. Model Validation and Verification Procedures

A, Validation tests
B. Verification criteria and tests

V. Model eyperimentation

Figure 4 Conical Methodology Outline

was to determine what objects and activities were being

modeled and the relationships that were to exist between

them. This provided sufficient groundwork to start creating

functions and subprograms that would interact in a logical

progression. Knowing the data requirements before the

programming began meant that it was much simpler to deter-

mine when to pass data and when to call values from an

array. It also facilitated a modular structure that limited

40

data access by subprograms to their required portions. The

following sections provide a more detailed discussion of the

process used to develop SPARTAN.

3.3 Problem Definition

The first requirement of the conical methodology is to

determine the real nature of the problem and what techniques

should be used to solve this problem. At this stage in the

development, it is important that the analyst and user look

at the various techniques available to solve the problem.

Simulation is only one tool that should only be applied when

it is the best tool available. In this instanoe the problem

to be solved as discussed in chapter I is:

build a high resolution land combat model for wargaming
analysis of small scale direct fire conflict between
two homogeneous forces. This model should include
common solution techniques to the basic processes of a
maneuver warfare model as outlined in AMIP (12:12).
The model should be simple to operate with a minimum
amount of instruction, so that it is a useful compli-
ment to a course of instruction in high resolution
combat modeling.

In this particular case, the problem identifies the simula-

tion model solution as the best tool to use.

The problem statement provides a starting point for

looking at the project in terms of requirements. Some of

which are:

- The SPARTAN program must be capable of running on all
IBM XT compatible computers [512K] with color graph-
ics capability.

-- This will enable the widest possible range of
users to be able to operate the model.

41

-- This requirement goes back to the idea of
building the model with the user in mind.
In this case, the users are students.

- The user will be able to operate the model and
understand its internal processes with little effort
beyond reading the documentation.

-- Students operating this model may have little
or no previous experience with computers or
modeling.

- The model will illustrate some of the common tech-
niques used by the present generation of Army models
to represent combat.

-- This is in keeping with the combat modeling
course objectives.

- The model will provide animated color graphics de-
picting the battle in progress.

-- A graphical representation of a complex simula-
tion is the best means of ensuring that the
analyst can comprehend and interpret all the
interactions in even a simple combat simulation
(37:822).

- The model will require no human participation once it
is started, but will provide in-progress status to
the user.

-- This is a normal feature of analytic models
which ensures the model will have the same
result for each run with the same initial
conditions.

- The simulation should run faster than real time if it
is to be useful.

-- The intent of the model is for the student to
work with it. If the student has to wait for
extended periods on each run, he will be less
inclined to make good use of the model.

-- Even a model such as CASTFOREM that may run 24
hours for a 2 hour battle incorporates many
time saving features at the expense of some
realism.

42

- Preprocessors should be part of the model to simplify

the operation of the model, so the user can focus on
the processes in the model.

-- The intent of this model is to illustrate a
typical combat model and not to teach program-
ming techniques, so the coding in the model
should be as transparent as possible to the
user.

- An online help facility and instructional material
should be part of the model.

-- This will simplify the operation of the model
and enable the student to quickly refer to a
discussion of the various processes modeled in
SPARTAN.

-- This ensures that some form of documentation is
available even if a paper copy is not avail-
able.

3.3.1 Definitions.

1) "An obJect - is anything that can be charac-
terized by one or more attributes to which values are as-
signed (33:193)." Usually an entity or event.

2) "Attributes - record information about the
object that is useful for modeling task; they assume
values as needed to record changes in the object's
state (33:193)."

3) "System state - a collection of variables the
values of which define the state of the system at a
given point in time (6:8)."

4) "Set - a collection of associated entities
(6:8)."

3.3.2 Assumptions Regarding Objectives.

1) This model demonstrates modeling concepts and

will never be used for analytic work.

2) The scope and level of detail of the model

were limited by the requirement to complete the project in

43

five months for the start of the next combat modeling course

sequence.

3) The slow operating speed of personal computers

required some further simplifications to keep the speed at a

reasonable rate,

4) The event step approach provides a reasonable

representation of the real process.

3.4 Modeling Environment

3.4.1 Modeling Effort. A major consideration in the

development of any model must be an appraisal of the time

and effort that can be allocated to the project. In this

case, the project required approximately one half of a man-

year of effort.

3.4.2 Modeling Assumptions. The following list is by

no means comprehensive, but does discuss some of the major

assumptions used in developing the model and the initial

scenario. Chapter IV contains many additional assumptions

within the discussions of the individual combat processes.

1) Boundaries. This model has a strict boundary

that limits any external influence of the outcome. The

interactions of the soldier entities are modeled in a some-

what sterile environment where only the terrain and the

enemy have an impact on the soldiers. There is no logistics

support or higher level command and control aside from what

the soldier files have available upon initiation of the

simulation.

44

2) Missions. At the beginning of the simulation,

each soldier has a mission as defined by his direction of

movement, speed, and posture. He will orient on that mis-

sion until such time as his squad leader causes him to

adjust or the soldier reacts to contact with the enemy.

3) A soldier's performance attributes will not

change over time or as a result of changes in the battle-

field situation. As an example, a soldier entity will never

become tired.

3.5 Model Definition

3.5.1 ObJects and Attributes. Identifying the objects

and their attributes may also be referred to as the static

specification of the model. An initial requirement in laying

out the model is to determine what objects can either change

the state of the model or cause some action to occur. The

objects used in this model are:

Grids - The data records for terrain representation
Events - The records controlling actions of the

model
Soldiers - The operational entities

Each of the objects in the model have a certain number

of attributes that provide a more descriptive representation

of the object. It was important to determine early what

attributes of each object should be represented in the

model. The determination of attribute requirements goes

back to the initial model objectives. At this point, it is

important to remember that a model is just a representation

45

of reality and the level of detail should only be that

necessary to address the problem at hand. In this instance,

the model is expected to demonstrate the modeling processes,

rather than act as an analytic tool; therefore, the attrib-

utes required will only be those necessary for the combat

processes noted in chapter I.

Table 1 Terrain Attributes

Variable Type Description

horz int the horizontal grid index
from left to right (20
meters apart) 1 - 50

vert int the vertical grid index
from bottom to top (20
meters apart) 1-50

elev real the average grid height
range of 0.0 - 69.0 meters

mobfac real a trafficability index that
affects speed of entity
movement range 0.0 - 1.0

Table 2 Event Attributes

Variable Type Description

time real scheduled occurrence time
of the event range is
0000.0 - 9999.0

type int identifies type of event
range from 1 - 7

actor int identifies the soldier
performing the event
range from 1 - 12

predecessor int pointer to event that
link preceeds this event

range 1 - 99
successor int pointer to event that
link follows this event

range 1 - 99

46

Table 3 Soldier Attributes

Variable Tve Description

x real soldier's current horizontal
coordinate range of 0.0 -
1000.Om

y real soldier's current vertical
coordinate range of 0.0 -
1000.Om

z real soldier's current elevation
range of 0.0 - 69.Om

xlast real soldier's last horizontal
coordinate range of 0.0 -
1000.Om

ylast real soldier's last vertical
coordinate range of 0.0 -
1000.Om

size real soldier's height range of 1.6 -

2.Om
speed real movement factor range of 0.0 -

40.0 units per move
dir real direction of travel/orientation

range of 0.0 - 2 * pi radians
moving int a flag that gives movement

intent (0) stopped: (1) moving
wpnrng real effective range of soldier's

weapon range of 300 - 600m
ammo int ammunition available to soldier

range 0 - 200 rounds
status int flag indicates whether soldier

is (0) dead: (1) alive:
(2) wounded

posture real value indicates whether figure
is (.25) prone: (.5) crouch:
(1.0) upright

incmd int indicate squad leader
(1) leader (0) subordinate

atkdir real original movement direction
range of 0.0 - 2 * pi radians

tgteng int which target soldier has select-
ed to engage range of 1 - 12

side int flag indicates allegiance of
soldier (-1) red: (1) blue

The only system attributes in this model are the index

attribute time represented by the real variable [time], the

47

atmospheric attenuation coefficient, and the counter on the

number of events processed. The system always starts at a

clock time of 000.0 seconds.

3.5.2 Model Activities.

The activities performed by the simulation fall into

three basic categories. The first category includes those

activities that are considered to occur instantaneously with

no significant duration. In most cases, this is a aimplify-

ing assumption since most of them would require some time

duration. Within this category, some are represented as

events and some are performed as "bookkeeping", to update

the attributes as required. The second category activities

have some duration and are represented by a start event and

a stop event. And the last category are those tasks re-

quired to perform the system maintenance activities.

Instantaneous Activities

line of sight [LOS]: This activity checks for inter-
vening terrain between the observer and target. Pro-
vides a result of 1 [LOS exists] or 0 [LOS is blocked].

direct fire engagement: This activity is the action of
firing a weapon and determining the bullet's time of
flight. It then schedules the bullet's impact.

determine target size

determine observer to target ranges

develop target lists

decrement ammunition when expended

determine probability of hit

48

determine probability of kill

plot graphic representation of entities

plot graphic representation of engagements

change posture of soldiers

change direction of travel on orders from the squad
leader

impact of the projectile

Time Duration Events

start move; This event determines a new location that
the soldier will move to and the time it takes to get
there. Soldier's attributes reflect new position.

stop move: This event updates the soldier's graphic
location and schedules his next startmove.

search for targets: This is a constant process, but
rather than start and stop, a new search cycle is
scheduled by the time computed for the previous cycle.

reaction to fire: This event is called by a firing
sequence and the target decides what action to take
after being fired upon.

target selection: pijking a target off the target list
using a random number draw and some simple decision
logic This requires some decision time.

System Maintenance Activities

initialize data sets and event list

maintain event list [future event calendar]

select next event

update time clock

add new events to list [schedule events]

delete events from list when they become obsolete

generate pseudorandom variates

49

transfer program control among event subprograms as

required

terminating the program based on user specifications

store historical data for battle updates and final
output

compute summarized data for the final output

3.6 Model Development

This stage of the process consisted of creating the data-

files, developing an event scheduling routine, and adding

routines that performed the various combat processes.

3.6.1 Creating a Database. Creation of the database

had to be the first step in the model formulation because

all other portions of the model rely on calling values from

data files. The four primary data files are the soldier

attributes, the terrain file, the probability tables and the

initial events for each entity that start the simulation.

The data files took several forms before they reached their

present state. Preprocessors were developed for each file

that allow the student to create a generic file, view the

contents of the file, and edit the file attributes to create

unique scenarios. Initially, this was accomplished using

record arrays. Records can store many attributes that can

be called with a single variable name. This makes passing

variables between routines much less complicated. The draw-

back to this method was that the files were not in a read-

able ASCII format. It was felt that the student users of

the model should be able to view the contents of the file

50

without a special viewing program. As a result, flat files

in ASCII format were used instead. The use of flat files

required greater storage space for the data arrays and more

lines of code to access each individual data element, but in

hindsight the model is much easier to understand especially

for students not famili. with record data structures.

The data elements in each file are the same attributes

listed in section 3.5.

3.6.2 Event Set Management. The most difficult task

was creating a simple event scheduling routine. This rou-

tine took several forms before the present doubly linked

list approach was adopted.

Since simplicity was a goal, a sequential event list

sorted between events was initially created. This program

used the Shellsort as discussed in chapter II and was rela-

tively easy to implement. The event records contained four

fields for event type, time, and two entity identifiers.

Computational efficiency was an immediate problem that

killed this approach. The time required to manipulate the

event list slowed even a simple movement routine to the

point where it was impractical to continue.

The next approach was to use a doubly linked list

implementation designed by MAJ Morlan. This scheduling

routine is a simple version of the doubly linked list that

runs efficiently and meets all the requirements of the

model. This routine uses two linked lists. These are the

51

active list which maintains the location of the future

events and the inactive list which maintains the locations

of the unused storage locations. One pointer is used for

each list to point to the head of the list. Each event

record consists of five elements. These are the event type,

event time, event actor, predecessor link, and successor

link. The original goal was to have enough data in each

event record to describe who would do it, what would be

done, when it would happen and to whom. A grammatical

analogy would have been a complete sentence structure with

subject, verb and direct object. In the final approach, the

second entity identifier was dropped becauae it is simpler

to access the name from the soldier's attribute array when

needed rather than manipulate that field with each event

list update. In its simplest fashion, this scheduling

routine was checked in all conceivable requirements to

ensure it functions properly. These cases include

1) Adding an event to the top of the list;
2) Adding an event to the middle of the list;
3) Adding an event to the bottom of the list;
4) Removing an event from the top of the list;
5) Removing an event from the middle of the list;
6) Removing an event from the bottom of the list.

Some other cases were eliminated by requiring that the

initial events are loaded in chronological order and the

program automatically goes to output if no active events are

on the list.

The subprograms required to perform event set manage-

ment are the following:

52

1) addevent - adds events to active event list
[calendar];

2) move - moves the event from one list to the
other;

3) remove - calls move to pull an event from
top middle or bottom of list;

4) clock - pulls the next event off active
event calendar;

5) event - updates system clock and calls next
event;

6) linkempties - initializes the file by giving all
records initial link values;

7) initialize - loads all the data files required to
start the model.

Several brief examples will illustrate the process

performed by the scheduling routine of adding and removing

activities to the end or in the middle of a list [refer to

the illustration in Figure 2]. In the first case, an event

is added to the head of a list. This requires both list

pointer values to change, the predecessor and successor

links of the new event to be set, and the predecessor link

of the next event to be altered. The next example is when

an event is added to the middle of a list. In this case,

the links of the new event have to be set as well as the

successor link of the event occurring just before the new

event and the predecessor link of the event immediately

after. The pointers at the head of the list are unaffected.

In this next example, an event is removed from the top of

the list. This task sets the predecessor value of the next

event on the list to the pointer value then moves the event

over to the inactive list. The last example illustrates

removing an event from the middle of a list. Here the

successor link of the event ahead is set to the value of the

53

event following the removed event and the predecessor link

of the following event is set to the value of the event

ahead of the removed event. Once again the removed event is

then placed in the inactive list.

3.6.3 Model Enrichment. The process of model building

was cyclic and involved making gradual improvements to the

basic model and testing the proper functioning of the code

before adding to the model again. The goal of this approach

was to minimize the debugging required as the model grew in

complexity.

The first step in this process was to develop an ini-

tialization subprogram that accessed all necessary data-

files, and created the storage arrays for each file. These

arrays store the terrain attributes, soldier attributes,

initial events, and probability tables. In each case, a

debug routine was used to ensure that the data was being

correctly stored in the arrays and in the correct format.

Integrity of the data was an important issue. This

involved ensuring the correctness and accuracy of the numer-

ical values. The model required a mixture of real, and

integer values, but to simplify storage and access all the

data arrays were stored as single precision real values.

This minimized the number of arrays, but meant that certain

fields had to be converted to integer values prior to use.

The use of incorrect data types and incorrect variable

54

ranges p.oved to be common problems when debugging the

subprograms.

The combat processes were added to the model in the

order required to test their performance. The movement

subprograms were the first to be implemented. The3e were

followed by the search routine, engagement routine and

finally the decision logic processes. In each case, the

model was run under various conditions at each stage to

ensure it was functioning as required. The worst debug

problems were those that appeared long after the component

was initially integrated into the model. On these occasions

it was much more difficult to isolate the problem.

A typical improvement cycle involved creating a simple

subprogram and having it print out all the data values it

required. This would ensure that the correct data was being

provided to the routine. Next the subprogram would be

expanded to include tJe necessary logic and some simple

algorithms. This would also be printed to the screen and

worked with until correct. It usually took several upgrades

to get each subprogram to function properly. An important

element was always to fix any problem before adding to the

model again. On the few occasions when this method was not

strictly adhered to, many hours were spent searching through

the code for errors.

An additional task with each subprogram was to document

the code as it was written. This internal documentation

55

made the code much more understandable in the later stages

of development and ensured that others could understand and

work with the code. A second set of eyes was often invalu-

able to solving code errors.

3.6.4 Probability Distributions.

A variety of probability distributions were used within

the model for various processes. An effort was made to

maintain simplicity rather than accuracy by limiting the

distributions used in SPARTAN. The QUICKBasic 4.5 uniform

[0,1] pseudorandom number generator is the basis for all

stochastic processes. A triangular distribution function

was included that uses the QB4.5 U[0,1] random variates in a

transform operation. This distribution was chosen because

the transform operation is efficient and the output can be

used to represent both symmetric and skewed distributions.

The function is given a low, high and mode values and re-

turns a value within this range. The algorithm for the

transform was adapted from Pritsker (34:713). This trans-

form provides a rough approximation to a normal distribution

when the mode is centered and the extreme values are assumed

to be within two standard deviations from the mean.

Probability tables were created using the equations in

chapter II, for those distributions that use exponential or

normal distributions. This is similar to the method used by

both JANUS and CASTFOREM for weapons data. In the case of

these two models, the data is the product of extensive

56

weapon testing. The values in the SPARTAN tables were

created by using some known values from the modeling litera-

ture and approximating the unknown parameters so that the

values in the table were reasonable. Even though the tables

do not have accurate values, they still have distributions

that are representative of the empirical data [e.g. proba-

bilities of hit still vary exponentially with range even if

the range of values is not accurate]. These tables were

created using MATHCAD templates which generated datafiles

containing the required values [See Appendix A for tem-

plates].

3.6.5 Instructional Components.

Since SPARTA.N had an instructional purpose, a number of

feitures had to be adde6 +o the model that might not be

standard for a purely analytic model. The first and fore-

most was that it had to be simple to operate. The intended

user might have very limited knowledge of computer opera-

tions, and a short amount of time to work with the model.

Next, a help function was added to the model that provides

basic information on operating the model and a brief over-

view of the various processes portrayed by the simulation

model. The help function was set up as a hierachical menu

that enables easy access to brief general topic discussions

and subsequent access to more detailed subtopics.

A nreprocessor [STARTUP] was developed that enables the

user to create, modify and review the terrain, soldier

57

attribute, and initial event datafiles. STARTUP is a single

menu driven program that provides sufficient information to

modify the example scenario or create files to support new

scenarios. Thi.s program also includes a help function that

explains the requirements for each datafile and includes

instructions on how to set up and operate the SPARTAN model.

The program code for the STARTUP preprocessor is included in

APPENDIX B.

Within each phase of the model's operation, instruc-

tional help screens are available to give the student a

better understanding of the overall process. When the model

begins operation, it queries the user whether he desires to

observe the datafiles being loaded into memory. The intent

is to show the format and composition of the required data

files. The set up screen follows and gives the user a

variety of possible termination conditions to choose among.

The student has the option of terminating after a certain

number of events, after a specified time, or at some level

of attrition for either side.

During the operation of SPARTAN, several windows can be

created that suspend execution and allow the student to

evaluate the status of the run. The soldier attribute

window provides a view of a limited number of the attributes

on each soldier, so the current status of each soldier can

be assessed. Another window displays an overall battle

status to include values such as the number of soldiers on

58

each side that are dead, alive or wounded as well as the

number of ammunition rounds remaining. A target list window

displays the detected targets on each soldier's target list

and the associated probabilities of detection. This gives

the student a better basis for understanding the target

selection and engagement process. The last window provides

a list of the next twelve events on the future event calen-

dar. This window is set up to display the linked list logic

of the scheduling routine along with a short description of

each listed event. The last feature of note is the graphic

display of the detection process. When a soldier has suc-

cessfully detected an enemy soldier then a blue line is

momentarily drawn between the positions to indicate detec-

tion. This was initially just a debug feature, but was left

in to give the student a better feel for what the soldiers

can see.

The output option at the end of the simulation run

provides the student with a variety of output types and

different formats. It displays some of the basic functions

of a postprocessor by providing summarized values, final

attribute values, and a history file. Several formats for

providing output are represented by screen displays, output

files or even sending the output to a printer [by using

printscreen]. One screen display shows several summary data

elements that are used as typical measures of effectiveness

in analytic models. Another screen provides the final

59

attribute values for all the soldiers. Additionally, the

model records in a file all the events as they occur in

chronological order.

3.6.6 Human Factors Considerations.

Several elements of the simulation model were evaluated

and modified to make it easier to use and more functional as

an educational tool. These were primarily improving the

screen displays, minimizing key strokes and eliminating

potential mishaps or student errors.

In a text on human factors, McCormick specifies two

objectives to be met when creating visual displays: "the

display must be able to be seen clearly and the design

should help the viewer to correctly perceive the meaning of

the display (30:85). In SPARTAN, the screen displays were

designed to provide a sharp contrast between the text and

the background, so the text is very legible and readible.

Additionally, all the data displays were structured to

provide a simple, understandable format, and kept as unclut-

tered as possible.

The graphical display of the battle was also modified.

Colors were chosen that are representative of the object or

can quickly be associated with the object. Simple examples

include blue for blue soldiers, and a red icon for red

soldiers. To enhance the student's perception of the

events, certain events have special effects that prompt the

user to notice them. A rifle shot has a distinct noise and

60

a red flash. The wounding of a soldier is indicated by a

momentary red burst and a distinct noise while the death of

a soldier has a more pronounced yellow burst and the icon

changes to a dull gray color.

To simplify the operation of the model, key strokes

were eliminated wherever possible and specific choices were

provided to the user. Where the user is required to provide

input to the model, specific instructions are provided, so

the user knows exactly what keys to hit or values to input.

Specific choices are delineated and examples or default

values are provided. The menus are set up to only accept

the correct values and to continue to prompt the user when

incorrect values are given. The simulation has default

value provided, so it will run correctly, even if nothing is

provided by the user.

3.7 Model Assessment

Assessment of the SPARTAN combat model began with a

critical look at the original project objectives and contin-

ued throughout model development, The evaluation criteria

established by the 1979 GAO report were used as guidelines

for assessing the modeling effort (10). SPARTAN presented

some unique assessment issues since it was a demonstrator

rather than a true "analytic" simulation model. As a re-

sult, some of the GAO criteria received more emphasis than

others depending on their degree of applicability.

61

3.7.1 Assessment Process.

Model assessment occurred at three distinct levels.

Initially, each aspect of the model was evaluated by the

author, following this faculty advisors evaluated the model

and provided feedback on necessary improvements and further

guidance on meeting the project objectives. The final

assessment was a series of laboratory tests performed by

personnel with backgrounds similar to those of the projected

student audience. This last phase used "blind testing" as

discussed in James Dunnigan's book, The Complete Wargames

Handbook for the primary model assessment technique (19:2-

37). Blind testing involved issuing prototype software and

user's manuals to a test audience with no additional in-

structions. The test audience was told to read the user's

manual and attempt to operate SPARTAN. They were asked to

identify any features of the model that were difficult to

understand or distracted from the learning objectives.

Additionally, they were asked to provide a subjective evalu-

ation of whether SPARTAN could provide a significant improv-

ement of a student's understanding of the modeling process

over that presently received in the course without any

available modeling demonstrators. The blind tests were

performed in two phases with two students in the first group

and three students in the second group. Improvement recom-

mendations were incorporated into the model after each

62

phase. The following sections discuss the GAO criteria as

it applied to SPARTAN.

3.7.2 Documentation.

The documentation provided with the model had two

particular audiences. The first was the student who is

expected to operate the model and hopefully become familiar

with the fundamentals of land combat modeling. The second

audience was the person who intends to learn the details of

the model's operation and who may desire to modify the model

program code.

The user's manual and the online help screens were

provided for the student, These two sources of information

were intended to provide the user with sufficient informa-

tion to operate the SPARTAN system and to understand the

general modeling concepts used in the simulation. The

comments from the test audience generally focused on ways to

improve descriptions of the model, and discrepancies between

the model and the user's manual. Most felt that the user's

manual was about the right length, but some wanted greater

detail in the users manual. The trade off here was between

keeping the user's manual concise and providing sufficient

detail. In response, greater detail was provided in the

online help screen. This made the information available to

the interested student, but kept the user's manual as con-

cise as possible.

63

The thesis document was intended to provide a compre-

hensive discussion of the modeling process, underlying

assumptions, limitations, and the specific techniques used

to model the combat processes. Chapters III and IV provide

detailed discussions of the logic and techniques used in

SPARTAN. The appendices provide internally documented

copies of all the programming code used in SPARTAN. The

internal documentation was written as the code was devel-

oped. Comments were included in the code to explain the

structuring of the code, how variables are used and specific

implementation issues of the QuickBASIC code. This thesis

should provide sufficient information to enable someone to

modify the programming code after a couple weeks of learning

the programming language and the details of the simulation

model.

3.7.3 Validation.

The GAO report discussed assessing three areas of model

validity. These were data validity, theoretical validity,

and operational validity (10:5). From the project's begin-

nings, there was never any intention of creating a "valid"

representation of a realistic battlefield, rather the objec-

tive was to demonstrate present day techniques used in

analytic models for modeling the combat processes. The data

for SPARTAN was fabricated, so there would be no misconcep-

tions about the level of realism represented by SPARTAN.

There is a measure of theoretical validity in SPARTAN be-

64

cause most of the algorithms are adapted from those that

have been previously tested and validated for use in US Army

models. However even with proven algorithms, there is no

real validity when the data and parameters are not empiri-

cally produced. Operational validity also does not apply to

SPARTAN because it is contingent on theoretical and data

validity. SPARTAN does not model or attempt to model a

"real world" situation. The real question of validity is

whether SPARTAN meets its original objectives of providing a

useful tool for demonstrating land combat modeling tech-

niques. The results of the blind testing were that SPARTAN

would be a beneficial addition to the reading and lecture

material presently used to teach high resolution land combat

modeling. The personnel tested felt, in particular, that it

provided good insight into the search process and the vari-

ous component parts of a combat model.

3.7.4 Verification.

Verification of the code required ensuring that each of

the algorithms performed as intended, and that each algo-

rithm functioned properly in concert with the rest of the

model under all possible conditions. Numerous simulation

runs were performed with a wide range of parameter values

and variations to the scenario data. The goal was to find

any problems and correct them before adding further complex-

ity to the model. This was the point in the process where

many of the limits on parameter values were established.

65

Most of the code problems were identified and corrected as

each subprogram was added to the base model. There were a

few occasions when model inconsistencies were revealed in

the blind testing that required extensive searching. Sever-

al of these were due to inadequate definition of variable

types, but were subsequently corrected. The QuickBASIC

interpreter made the task of correcting programming errors

much less onerous than it would have been with FORTRAN or

many other languages. The interpreter runs the code in

uncompiled form, so after each correction it was a simple

matter to rerun the program. Even after an extensive number

of runs, errors probably still exist in the program code,

but all errors identified by the testing program have been

corrected.

3.7.5 Maintainability.

One of the original goals of SPARTAN was to provide a

structured program code that would be easy to understand and

enhance as desired. The modular design of the program and

the extensive internal documentation should allow a program-

mer to understand the operation of each routine, and how it

relates to the other processes occurring within SPARTAN.

The variable names were chosen to be descriptive of their

use, so they would aid in understanding the code.

The issues of reviewing and updating the model are left

to the eventual user, but it is hoped that a policy is

66

established that ensures problems encountered by students

are addressed and corrected when possible.

3.7.6 Portability.

SPARTAN was designed to run or, most IBM compatible

personal computers. It runs on any IBM compatible personal

computers at the Air Force Institute of Technology and

should operate on most student's personal computers. The

minimum requirement of 512k random access memory (RAM) is a

requirement of compiled QuickBASIC version 4.5. The EGA

color monitor requirement was necessary to achieve suffi-

cient clarity in the graphics. The code has been tested

successfully at various speeds between 12MHZ to 25MHZ. It

operates much more rapidly from a hard disk drive, but will

operate from any disk drive with 360k or more capacity.

3.7.7 Useability.

After refinements from the first cycle of blind test-

ing, the new users encountered no great difficulty in under-

standing the instructions and were able to operate the model

successfully. In its simplest form, the model with the

example scenario can be operated by a novice modeler in less

than an hour of time. No significant computer skills are

required other than to access the correct directory, and

type in SPARTAN at the prompt. This satisfies one of the

major objectives of the project. SPARTAN is a simple in-

structional aid that can be a benefit to all students.

67

3.8 Conclusion

The intent of Chapter III has been to provide an over-

view of the development process used to create the SPARTAN

model. Using the conical methodology, the following compo-

nents of the model were developed using specifications

derived from the original problem statement guidance of the

sponsor.

1) input data files

2) STARTUP preprocessor program

3) SPARTAN combat model with subprograms for:

- initialization
- terrain representation
- individual soldier movement
- line of sight determination
- target acquisition and detection
- target selection
- target engagement
- damage assessment
- reaction to fire
- limited command and control
- online help facilities

4) model documentation

5) user's manual

6) student study guides

Chapter IV will provide a more detailed discussion of

the various combat processes modeled in SPARTAN.

68

IV. Combat Processes

4.1 Introduction

This chapter discusses the techniques used in SPARTAN to simulate

the different combat processes. In most cases, these ten techniques are

representative of the common methods used by Army models. In each case,

the origins of the modeling process, the author's rationale, and the

implementation methods will be discussed. All the processes addressed

can logically be grouped into categories of movement activities,

engagement activities, and the thought processes of decision logic.

This chapter organizes the discussion of the processes into these three

categories to facilitate a coherent discussion of the process flow.

4.2 Movement Processes

The movement process in SPARTAN uses soldier attributes and

terrain attributes to position soldier entities on the represented

battlefield and move soldier's to new locations according to the

scenario guidelines and the soldier's status.

4.2.1 Modeling Movement in Army Models.

Army models commonly use a movement routine that represents the

continuous movement of entities with a series of fixed size movement

steps. The models actually represent the entities presence only at

these discrete step locations. The variability in movement rates is

reflected in the time required to travel the fixed distance. This type

of movement representation minimizes the processing time required for

movement while providing a sufficient level of detail. A fixed time

69

step method might require several iterations to move an entity over the

same distance. The moisment algorithms in SPARTAN are similar to, but

greatly simplified versions of those found in JANUS(14:411). The actual

movement algorithms were extracted from DARCOM-P 706-101 (20:40-15).

X - X+20 *COS (DIR) (5)

Y - Y 20 *SIN(DIR) (6)

These two equations use the trigonometric functions to add an

incremental value to each coordinate based on a fixed movement distance

and a direction of movement for each soldier. These simple equations

are applicable in all possible directions [0.0 - 6.28 radians].

SPARTAN moves an entity 20 meters for each move, regardless of

the terrain. This is a departure from the JANUS model, which tries to

move entities in 50 meter increments, and can modify the distance when

obstacles are encountered. SPARTAN operates on a much smaller scale and

currently, does not model obstacle circumvention. Unlike JANUS, each

soldier in SPARTAN has an original direction of movement rather than a

route of movement with varying directions. Changes in direction occur

only as a result of a soldier's tactical decisions. In this aspect,

SPARTAN is employing a method similar to CASTFOREM which uses movement

routes, but allows tactical decisions to affect the choice of these

routes.

As stated earlier, movement time is the factor that varies with

conditions [See Equation 7]. Each soldier has attributes for movement

speed and posture while his location has an associated trafficability

index. All of these factors are included in the movement time algo-

rithm. As an example, a soldier with a high movement speed will have

70

more moves of shorter time duration than another soldier with a lower

movement speed. As a result, the quicker soldier will move a further

distance in the same allotted time.

4.2.2 The SPARTAN Movement Process.

Movement is performed by two subprograms named startmove and

endmove. These routir.es move each entity along a single direction of

movement at a rate of 20 meters per move whenever the soldier's movement

attribute switch is on and his speed is greater than zero.

When startmove is called, it begins by performing several status

checks to determine whether the soldier should move. The routine checks

his posti~re, his present movement rate, the terrain trafficability, and

his proxiwity to enemy forces. Several artificial rules are imposed on

the movement process. These are that a soldier stop moving when within

100m of a living enemy soldier and when he crosses the terrain maneuver

boundaries [edges of the view screen]. These rules eliminate the issue

of close quarters combat and allow the terrain datafile to be limited in

size to the viewing screen area. When a soldier does move, equations

[5] and [6] are used to compute the soldier's new coordinates. His

present location it stored as t,,e previous location and both sets are

updated in the soldier's attribute array.

Startmove calls the procedure for updating graphics. This

subprogram erases the soldier's sym. ,± at the old location and redraws

his symbol at the new location. The rapid speed of the drawing ppovides

an animated effect of the entity moving across the screen.

The time duration of the move is a uniform random factor modified

for the soldier's speed, present grid trafficability factor, and

71

posture. This movement time is added to the present event time and an

endmove event is scheduled at that later time. The random variable

represents subtle variations in the soldier's movement rate and terrain

conditions or perhaps to model minor direction changes of the soldier

moving along a tactical route that improves his level of cover and

concealment.

MOVETIME= TIME+ RND* SCALEFACTOR (7)SPEED * MOBILITYFACTOR *(POST(

The primary function of the endmove event is to schedule the next

startmove event. The time duration between moves is a random value from

a triangular distribution with a mode of ten seconds.

The tactical situation affects a soldier's movement by altering

his attribute array. A soldier reacting to being fired upon may alter

his speed, change posture, change direction or just stop. Similarly, if

a designated squad leader engages an enemy soldier then he may cause the

other squad members to change their direction and move towards the enemy

he selected to fire upon. In the event that the squad leader or his

target are killed, the squad leader's soldiers return to their original

direction of movement.

The low level of detail in this movement simulation results in the

following list of limitations and or assumptions inherent in the

process.

1) The entities in effect are in an iterative process of moving
and stopping rather than continuous movement.

2) There might be situations where the soldier might not want to
move the entire twenty meters in one bound, but the algorithms
have no options.

72

CALL CALL
STARTMOVE ENDMOVE

RETRIEVE
SOLDIER & CALL TRIAG FUNCTION
TERRAIN DETERMINE NEX(T MOVE TIME]

ArTTRI BUT E
\A LU ES

18 NO CALL
SOLDIER ADDEVENT
MOVING I SCHEDULE

YESfSET LAST LOCATION
ATTRIBUTES TO PRESENT

LO A I N VA LU ES
R T R

'COMPUTE NEW' LOCATION

[CMUETIME TO THE

END CF MOVEMENT

CALL CALL

ADDVNT
ADDVENT

GRAPHICSG TO NEW LOCATION RTR

Figure 5 Movement Process

73

3) The slope of the terrain does not affect the rate of movement.

4) SPARTAN assumes the trafficability of the grid where the
soldier starts is not significantly different anywhere along
his 20m path.

5) After an endmove and before the next startmove, the soldier's
moving status does not change t indicate a halt.

6) Fatigue is not a factor in this movement.

7) Movement computations are scaled for the screen graphics
rather than being a good model of reality.

8) Posture changes are instantaneous and do not affect a move in
progress.

4.3 Engagement Processes Modeled in SPARTAN

The target engagement process includes a sequential list of

activities from target acquisition through target destruction. This

section will discuss the various processes of searching for targets,

selecting targets, and engaging the targets.

Before getting into the details of each process, it is useful to

see how the processes relate in the activities of a typical SPARTAN

soldier. For all soldiers, the first step is to search for targets.

Every 10-20 seconds, the computer scans the entire area around each

soldier. To perform this search, the computer must determine if line of

sight exists between the scanning soldier and all enemy soldiers. If

line of sight exists then the routine computes whether each enemy with

line of sight is providing enough of a signature for the observer to

acquire. The computer then checks for a possible detection for each of

those enemy targets that could be acquired. Any target that can be

detected is placed in the observer's target list. If the observer has

successfully detected one or more targets, then a selection algorithm

74

models the process of deciding whether to shoot at any of the enemy and

then which particular one to engage. If a target was selected, the

soldier then takes the time to aim and fire at the enemy. If the enemy

soldier is struck and killed, the firer returns to his searching

activities, otherwise, he reengages the enemy as long as he can see the

enemy. Throughout this process, any failure to advance to the next

stage of the process returns the soldier to his initial search activi-

ties. With this in mind, it will be easier to understand each of the

subordinate processes and the soldier's decision process.

4.3.1 SPARTAN Search Process.

SPARTAN uses a simplified version of the continuous search

algorithm discussed in Hartman (23:4--32). This is the same basic

search process used by CASTFOREM and JANUS. This type of search model

requires that three factors must be addressed before a target is

successfully detected. These are: the target gives off a signature that

can be acquired by the observer's detection device, it is physically

possible to see from the observer to the target, and the observer must

look in the direction of the target long enough to pick up the target's

signature.

At this point, it is necessary to point out a significant differ-

ence between the JANUS, CASTFOREM and SPARTAN models. CASTFOREM

determines a search sector for each sensor as a function of time (13: 3-

79), JANUS and SPARTAN do not. JANUS has a set of rules governing its

search sector. On the move, each entity searches 360 degrees, but when

stationary JANUS uses a fixed 180 degree arc centered on the direction

of travel or it uses the sensor field of view when the observer is in

75

defilade (14:365). SPARTAN does not determine a specific sector of

observation for each soldier. It is assumed that in each search cycle,

the soldier performs a scan in all directions. The primary reason for

eliminating sectors was to avoid the associated computational overhead.

In effect, the model assumes that the soldiers are prudent and perform-

ing a comprehensive search each search cycle. What this eliminates is

the possibility of focusing on likely enemy locations, defining sectors

of responsibility among groups of soldiers or modeling the tendency of

many soldiers to look only in their direction of travel.

4.3.1.1 Line of Sight [LOSI.

The first task performed by the search module is to check for line

of sight between the observer soldier and all the enemy. Performing

this check first eliminates some unnecessary calculations that would be

performed if the target's acquisition potential were checked initially.

LOS is a separate function within the combat module. The observ-

er's identity is passed to the function and for each living enemy

soldier, it returns either a 1 to indicate that LOS exists or a 0 to

indicate that terrain obstructs the view between the observer and one of

the enemy.

The method used to check LOS is depicted in Figure 6. The height

of the observer's visual sensor [his eyes] are computed as his elevation

plus his height attribute. The enemy's height is the enemy's elevation

plus his height. The function then computes the distance between the

two soldiers and determines the number of checks required to sample the

intervening elevations at 10m Increments. 10m was chosen to ensure each

20m grid cell is sampled. The function then uses a simple difference

76

ELEATION
HIGHEST POINT OF INTERVENING TERRAIN

t I LOWER THAN LINE OF SIGHT

OBSERVER
ELE%TIONI KEY

X - CHECKPOIN Te

Figure 6 Line of Sight Check

equation to determine the LOS elevation at each check point. If the LOS

elevation is less than or equal to the grid elevation then the LOS

function returns an indication that LOS does not exist. This function

does not account for any partial obscuration that might occur due to

vegetation or buildings.

Atmospheric attenuation is accounted for by using a simple linear

modifier. This modifier assumes a uniform background weather effect

within the model (23:3-20). The modifier increases the minimum thresh-

old level required for target acquisition [See Section 4.3.1.2]. This

attenuation effect might be the result of fog, rain, dust or darkness

that hinders the transmission of the target signature.

77

INPUT
098, & TT

NPUT

I-LOCATI 0N8,

COMPUTE DISTANCE

DETERMINE NUMBER OF CHECKS

I[COMPUTE DX, Dy AND DZ FOR
EACH 10 METER CHECKPOINT

[COMPARE .LS HEIGHT AND TERRAIN1
ELEXAION AT EACH CHECKPOINT

RETRN NO Los

EXISTS

YES

YES LAST NO

RETURNCHECKPOINT?

Figure 7 LOS Process

4.3.1.2 Target Acquisition.

The process of target acquisition determines whether a target

gives off a sufficient signature for the observer to detect. The

78

equation used to model acquisition is a simplified version of equation

[1]. This equation is discussed in Bailey's analysis of the JANUS

detection algorithms (1:5). See Appendix A for the MATHCAD template

used to create the acquisition tables.

p2 - 1-exp (-.84* (C)2.4 (8)
M

M is a constant value of 3.5. This scaling factor
accounts for the probability required to yield a
target identification.

C is the number of resolvable cycles for the target
which is a factor of target height divided by distance
of the target.

.84 is a scaling factor added to Bailey's algorithm to
get appropriate values since no empirical data was used
on the sensory capabilities of human eyesight.

Using equation (8], a table of acquisition values was created. This

table is indexed by target posture and target range. After computing

target range and looking up the target posture, the search subprogram

selects an acquisition probability and compares it to a threshold value.

A value exceeding the threshold indicates that the target can be

acquired and possibly detected. The minimum acquisition threshold for

SPARTAN was set arbitrarily using the author's best judgement at .3 for

conditions of no attenuation. This is the point where the atmospheric

attenuation coefficient affects the search process. If the user sets

the attenuation coefficient lower than 1.0, it raises the threshold

value for acquisition by a proportional amount.

79

CALL
SEARCH

OBSN9EJRV ER ID

AT TENUATION COMPUTE ACQUISITION
COzIIN THRESHOLD LEVEL

COMPUTE N
START TIME 00 TARGETS 4
FOR NEXTEXS

SEARCH 0-
CYCLEYE

CALL XIREDAA

/ADDUVINT

DOES LOS

RETURN EXIST

YES

COMPUTE TARGET
RANGE

GET PI(ACQ)
,FROCM TABLE

Figure 8 Search Process

80

DETRN

Figure~ ~ 99ea c Po e s(ont)

81OM1AL

4.3.1.3 Target Detection.

If a target can be acquired then the possibility of detection is

checked by the search subprogram. For each acquireable target, a random

search time is computed using a triangular distribution with a mode of

2.0 and a range of [.4 - 4.0]. This value is assumed to be the time [in

seconds] that the observer scans the area containing the potential

target. With this time and the target range, the search routine draws a

U[0,1] random variate and compares it to a P: value drawn from the

detection probability tables. If the random variate is less than or

equal to the Pi value then a detection occurs, the targets identifica-

tion and P, values are stored in the observer's target list and the

observer is scheduled to perform a target selection.

The detection probability tables were created using the NVEOL

equation for P, as discussed in Chapter II. These tables are indexed by

target range and search time.

P2 - (-exp (S t (9)
M 6.8

C and M are the same variables discussed with equation
[8]. This table does not differentiate between any
target postures.

t is the random search time in seconds with a range of
[0.4 - 4.0].

6.8 is an empirical value from the original NVEOL
equation.

The JANUS and CASTFOREM versions of this algorithm are much more

comprehensive. In addition to range and search time, they include:

atmospheric attenuation, contrast between the target and its background,

82

sky brightness, movement cf the observer, target movement and whether

the target is producing a firing signature.

4.3.2 Target Selection.

The target selection subprogram is scheduled at the completion of

a soldier's cycle if one or more targets was detected during the search.

The two purposes of the target selection routine are to determine

whether the conditions are suitable for the soldier to fire at a

detected enemy soldier and to determine which of multiple targets should

be engaged. The process used by SPARTAN is similar to the decision

logic modeled in JANUS.

The selection routine begins by comparing the target distance to

the effective range of the observer's weapon. At this point, the model

also accounts for any observer's range estimation error by allowing up

to 100m of variation in the computed range estimate. This estimate is

compared to the observer's weapon range. If the target is in range,

then the probabilities for all targets on the observer's target list are

summed and compared to a threshold of .20. If the summed value is less

than .20, the soldier is assumed to have decided that the target cannot

be effectively engaged and the observer goes back to searching. If the

soldier's decision is to engage, the detection probability values in the

target list are normalized so they sum to 1. A U[0,1] random variate is

drawn and compared to this range of detection probabilities. The

targets with the larger probabilities are most likely to be picked. The

result of this method is that target with a high probability of being

hit will usually be chosen. JANUS uses a similar method, except it

determines single shot probabilities of kill [SSPK] for each target on

83

CALL
TOTBE LECT

I NP UT
OBSERVER

TARGET LIST

NORMALIZDET P2ALUESCMUETM

a SCHEDUL

DRTA M3 B(,)R O EX ARC H

FigurE10 T argetT SeCtion

84E

the list and uses this parameter to select a target. A comparison of

SSPKs and detection probabilities shows a strong correlation since both

are highly correlated with target range. With this in mind, the author

decided to use detection probabilities as a surrogate for the S PK, so

that additional computations would not be required.

If a target is selected, its identifier is placed in the obser-

ver's attribute as the target to be engaged, and a direct fire event is

scheduled. The target selection occurs as an instantaneous ejent, but a

five second delay between target detection and selection is intended to

account for the decision time.

4.3.3 Target Engagement.

Soldier's in SPARTAN are limited to semi-automatic direct fire

weapons. The model incorporates probability of hit tables for single

shot weapons with effective ranges of 300, 400, 500, and 600 meters.

The weapon range is one of the soldier's attributes. The time of flight

for each weapon is the same, but the probabilities of hit vary signifi-

cantly.

Before the target selection routine calls a direct fire engage-

ment, it computes a delay time that accounts for loading and aiming the

weapon. The direct fire subprogram starts by checking LOS to ensure the

target has not moved out of view during the time required to select and

aim at the target. The process then ensures that ammunition is avail-

able, and if so decrements one round from the soldier's supply. The

subprogram, subsequently, computes a time of flight for the bil'llet and

calls the impact 3ubprogram at that time in the future. The subprogram

also creates an auditory and visual effect to represer;t the bullet's

85

GCALL
0DI1REOTFIRE

a~U IRER

A IARGET ID'a

* I
NO

YES

No
DOES LOS -COMPUTE NEXT

EXIST SEARCH TIME

< YES

COMPUTE RANGE aTIME TO IMPACT

DRAN OUT PROJECTILE PATH

DECREMENT AMMO COUNT BY I

CALL CALL
ADEVENT ADDEVENT

SCHEDULE SCHEDULE
IMPACT:_ SEARCHE

RETURN I

Figure 11 Direct Fire Process

86

flight. Initially, the impact subprogram determines whether the bullet

hits the target soldier. The probability of hit is taken from a table

stored in main memory and indexed by weapon range, engagement range and

target posture. The probabilities were originally computed using a

bivariate normal approximation equation provided by Hartman (23:7-17).

This equation assumes no bias and a circular error distribution.

The basic equation is:
R 2

- X 1-x(--2 (10)
Phir2* @2

R2 _ (11)

The numerical values required to apply these equations were arbitrarily

selected to create hit tables with the desired range of values.

Additionally, this algorithm assumes a circular target, so a fraction of

the probability was taken to represent the portion of the circle

occupied by the target.

The impact algorithm draws the appropriate probability from the

datafiles and compares it with a U[O,1] random variate. A random value

greater than the probability indicates a missed shot with the result

that the firer will attempt to reengage while a "react to fire" sub-

program is called for the target soldier. If the round strikes the

target then there is a 30 percent chance of killing the soldier, and a

70 percent chance of only wounding him. When a soldier is killed,

several things occur. An extended noise and color burst indicate his

death and his symbol changes to a red color. His status attribute goes

to zero, his movement goes to zero, and his posture goes to prone.

Lastly, the "killsoldier" subprogram is called which removes all active

87

CALD

/ INPUT

FIRER A TUT
ArTRISTES

IF--
COMPUTE RANGE TO iIRET

'I
GET P(HIT)

DRMY U(0,1)

IRANDOM 0

Is NO

P(HIT) 4 RND -o
YEO

RAND f .

Figure 12 Bullet Impact Process

88

COMPUTE AIm SET S,/US Se 'WUS
A RELOAD TIME / OWO E To DEAD

I I
/CALL ADDEVENT COMPUTE AIM LL IILLSOLDIER

DUE RELOAD TIM EMOVE EVENTS

L/DL 1 1 7jE

DIRETFIRE rFROM CALENDAR

I /CALL ADDEVENT

rCOMPUTE SCHEDULE COMPUTE TIME
REACTION TIME DIRECTFIRE FOR NEXT SEARCH

CALL ADDEVENTCOMPUTECLLADVT

SCHEDULE EATOTIESCHEDULE
EATOFIRE

CAL ADDVENT

FlUICHEDUE

Figure 13 Bullet Impact Process (cont)

events of the dead soldier from the future event calendar. This

prevents the possibility of a soldier performing an event or affecting

the battle after his death.

A wounded soldier is indicated by a short color and sound burst.

When a wounding occurs, the firer is scheduled to reengage, and the

target entity is scheduled for a reaction to fire event. The only

effect a wound has on a soldier is to reduce his movement speed. There

89

is no cumulative effect from pultiple wounds and suppression is not

modeled by SPARTAN.

4.4 Modeling Decision Logic

The point of modeling decision logic is to determine which of the

available courses of action would be taken by an individual in a giveu

situation. This requires making a judgement based on parameters that

significantly effect the situation. Some decisions may be specified in

certain circumstances and some may be probabilistic to reflect uncer-

tainty. The principal tool for performing decision logic in SPARTAN is

the IF - THEN - ELSE block which mimics the decision process by monitor-

ing a specified set of conditions. These blocks are used extensively

throughout the program. Virtually, every step of each process has

alternatives that require some choice. The previous sections have made

numerous references to these decisions. In the following paragraphs,

the discussion will focus on a two processes that emphasLze decision

logic.

4.4.1 Reacting to Fire.

This subprogram requires a soldier to take some action when fired

upon by the enemy. The method chosen to model this decision was a

conditional block with three possible branches. Branches are chosen

stochastically with a U[0,1] random variate. The first choice has a 40

percent chance of occurrence. This branch causes the soldier to assume

a prone posture and slow down to a crawl speed. This is intended to

replicate a soldier seeking cover. The next choice has a 20 percent

probability and causes the soldier to reverse directions as if to back

away. The last option has the soldier remain in an standing posture and

90

advancing toward the enemy. These alternatives were chosen, 3o dis-

tinct choices would occur that were discernable to the student observing

the simulation run. They were selected with no concern for realism and

could be changed to reflect other courses of action.

4.4.2 Command and Control.

One portion of the model was intended to represent limited command

and control processes. On each side, one soldier can be designated as a

squad leader. The student has the option of having squad members follow

certain instructions from the squad leader.

When the squad leader is in control, all other squad members will

reorient towards any target engaged by the squad leader. No one else in

the squad has the ability to communicate or cause others to react. The

squad leader is in effect the only "voice" in the unit. The inspiration

for this logic was a squad communications system used by the US Army in

the early 1980's. This system gave all the subordinates a helmet

mounted receiver while the squad leader had the only transmitter. The

result was very limited one way communications. In this model, messages

are instantaneous and always received. The simulation logic requires

that all the subordinates will resume their original orientation if the

squad leader or his current target is killed. Note the simplifying

assumption here that a soldier knows the status of any enemy that he is

observing.

There are numerous other instances where command and control logic

.s inherent in the process. The initial attribute values of the

suldiers have the effect of specifying a simplistic mission order for

each soldier. A soldier's direction, rate of advance, and initial

91

INPUT
TAR GET ID,

DRAI U(0,1) RANDOM

Is SOLDIER
RANDOM 0' .8 REVERSES DIRECTION

'I MAINTAINS ORIGINAL SPEED

CONTINUES TO ADVANCE RETURN
AT SPEED OF S0

Figure 14 React to Fire Process

92

location can represent crude forms of tactics. The decision logic that

determines when a soldier will fire at a potential target might repre-

sent a unit's standard operating procedures for fire control. Lastly,

the absence of communications in the model can be representative of

situations where poor communications actually exist.

4.5 Conclusion

Chapter IV has provided a discussion of the major combat processes

modeled in SPARTAN. The intent was to provide a sufficient level of

detail for the reader to understand how the processes operate, how they

interact within the simulation, and why specific methods were chosen for

use in the model.

Chapter V provides an assessment of whether the model development

effort met the original study objects, and provides some recommendations

for future enhancements of SPARTAN.

93

V. Conclusion

5.1 Summary

This thesis developed a new high resolution land combat model as

an educational tool to supplement courses of instruction for future

combat modelers. The goal was to develop a simulation model that

illustrates some of the more important topics of combat modeling as

discussed by James Hartman and other authors (1,5,7,18). Some of the

important topics demonstrated are:

1) Time keeping and an implementation technique for event set
management and synchronization.

2) Algorithms used to model movement, terrain, target detection,
target selection, weapon accuracy, and attrition.

3) Techniques to model decision logic of the soldier as well as
simple command and control issues.

4) Stochastic techniques for representing the occurrence of
randomness on the battlefield.

5) Data requirements and storage techniques for various model
components.

6) The overall process of developing a combat simulation model
from concept to implementation.

7) An example of the components for a typical combat model such
as the scenario input, a preprocessor, the simulation model,
various types of output, and accompanying documentation.

Unlike many other thesis efforts that have focused on one aspect

of a combat model and have gone into great detail with that particular

aspect; this thesis effort used the six months of available time to

perform the entire process of developing a model, with a very limited

time scope.

94

At this point, it is important to remember that the objective was

to create a model that displays modeling techniques rather than a model

to perform combat analysis. The modeling techniques in SPARTAN are

similar, in most cases, to those found in the current family of high

resolution combat models used by the US Army. Since this model did not

have an analytic objective, the issue of data validity was totally

avoided. Any attempt to implement accurate data would have required an

effort equal to the task of developing just the computer model.

Throughout the process, it was important to stay focused on the

original objectives. At each stagc, the ever present temptation was to

add some extra level of detail or refinement to the model. One drawback

of not having accurate data was the time required to scale model

parameters, so the model output would appear reasonable. This is

particularly evident in the representation of time. Time goes by much

more quickly in the simulation than it could in reality. This is not to

say that the specific event times are unrealistic. The apparent

shortcoming is that the model only represents a limited number of the

many activities that a soldier would be constantly performing as he

traversed a battlefield. Thus the model does not account adequately for

the time taken by these other activities.

One aspect of this modeling project that differs from most was the

level of transparency required. Normally, a modeler strives to minimize

the mechanical nature of the model. SPARTAN, on the other hand, was

intended to demonstrate these mechanisms, so there was always a decision

on which was more important. One example of this was leaving in the

debug feature that displays a target detection. This should help the

95

student understand the sequential search process that preceeds a target

engagement.

The single biggest hurdle to overcome in developing SPARTAN was to

implement a viable event set management algorithm. After several

attempts with methods that proved slow and laborious such as sorting

sequential lists, MAJ Morlan's design for a doubly linked list became

the control logic for SPARTAN. Another significant task was maintaining

the documentation that goes with the model. The documentation for

SPARTAN includes detailed comment lines in the code, the users manual,

the online instruction screens, and the thesis document. Every modifi-

cation required updating all of these documents.

Some of the other design objectives that guided development were

ease of use, simplicity, and portability. The model meets these

requirements. Any student Can read the users manual and operate SPARTAN

with the example scenario in less than an hour. The set up prompts

provide the student with simple options that require little knowledge of

modeling and leave little room for student error. Simple help screens

should enable the student to learn as much about the model as one

desires. The software and data files for SPARTAN can be maintained on a

single 360K floppy disk that fits on most IBM compatible personal

computers. This means that SPARTAN is readily accessible to virtually

any student.

The QuickBASIC version 4.5 programming language proved to be a

good choice as a development tool. It facilitates the use of structured

programming and the interpreter greatly simplified the tasks of coding

and debugging the program. The language syntax is quite understandable

96

and was easy to learn. Other features that proved useful were the color

graphics functions and the ability to simultaneously maintain several

screens of graphi - images that can be called up on demand.

STARTUP
PREPROCESSOR

aq~~m ~ am It"

INITIAL EVEN IM il

SPARTAN COMBAT MODEL

Figure 15 SPARTAN Simulation Process

5.2 Recommendations

The simplicity of SPARTAN lends itself to a myriad of possible

enhancements. The possibilities include multiple types of entities,

multiple weapon types, greater detail in the various processes, more

refined graphics displays and a better array of available output. As

William T. Morris stated in his article "On the Art of Modeling",

97

one begins with very simple models, quite distinct from reality
and attempts to move in an evolutionary fashion toward more
elaborate models which more nearly reflect the complexity of the
actual management situation. (31:B-709)

SPARTAN was intended to represent a finished product, but as just

stated, a simple model can always be enriched. The structured program-

ming approach used to develop the code facilitates a future process of

"elaboration and enrichment". This section will discuss a logical

progression of possible improvements that have already been identified.

1) While SPARTAN was developed with the goal of making it easy to

improve, no great effort was made to determine the storage and memory

limitations of QuickBASIC 4.5. It would be prudent to establish these

size limitations prior to any major improvements to the program.

2) Improve the movement process to allow input of detailed

movement paths for each soldier. Additionally, increase the level of

detail in the attributes, so that at any point in time it can be

determined whether the soldier is moving or stationary. This would

allow greater detail in the acquisition and engagement processes.

3) Incorporate obstacles, and greater terrain detail such as

vegetation, background clutter, and speed adjustments due to slope.

4) Establish a better time line for the occurrence of events, so

time representation is more realistic.

5) Obtain realistic sensor and weapons data to increase the level

of realism.

6) Enhance target definition modeling by incorporating target to

background contrast and a more realistic representation of atmospheric

attenuation.

98

7) Incorporate multiple weapon types to include indirect fire

systems such as grenade launchers or mortars, and consider ways to

portray minefields and booby traps.

8) The graphics can be greatly enhanced. The terrain representa-

tion needs to be much clearer, and perhaps a pattern can be incorporated

to display the trafficability index of each grid. Additionally, the

icons would be much more informative if they displayed the soldier's

status and posture.

9) The decision processes are very rudimentary and could be

vastly improved. Communications also could be improved to incorporate

transmission time delays and misinterpretation.

10) Improve the user interface with the model by making instruc-

tions clearer and simplifying the overall process by steps such as

minimizing the number of query prompts and user key strokes.

This list could be much more extensive, but the ideas provided seem to

be reasonable steps that stay within the original context of the

modeling project.

A final note, giving this model to students as an instructional

tool requires that some means should be established to get feedback from

the students after each use of the model. Their suggestions then could

be incorporated into a new model. This would ensure that SPARTAN

remains a viable tool for a long time to come.

5.3 Conclusion

This thesis effort provides the military modeling community with a

viable instructional tool for illustration of high resolution land

99

combat modeling. The scope of the project encompassed all the primary

aspects of simulation modeling from the initial problem statement

through coding and implementation of a functional model. The end result

of this project is an "analytic type" combat simulation that includes a

preprocessor, and online instructional displays. These features provide

the student with sufficient information to use the model and to learn

how the model simulates the various combat processes.

The end result of this thesis effort is a high resolution land

combat model with many of the key features of actual analytic models of

much greater size and complexity.

100

Appendix A: Computation Templates for Probability Tables

This azpe,,dix discusses the computational methods used to create

the various probability tables used in SPARTAN. The equations are

adapted from those discussed by Hartman (23) for probability of hit and

the Night Vision Electro-Optical Laboratory algorithms for acquisition

and detection as discussed by Bailey (1). Since the intent of SPARTAN

was to model only the most basic aspects of the combat processes, the

algorithms were simplified by replacing some variables with constants

[these are noted in the templates]. The data for these tables was

created arbitrarily. The goal was to provide the model with "reason-

able" values that would produce reasonable results. There was no intent

to validate any of the data or the results of the model.

MATHCAD [version 2.15 mathematics software was used to create the

various probability tables. The software was quite useful since it

allows the user to create a reuseable template that displays all the

computations along with text comments for internal documentation.

Probability of Acquisition

The template on the following page was used to create the P1

acquisition tables. The equations were adapted from those discussed by

Bailey in a Rand report on the NVEOL algorithms used in JANUS(14:3--10).

Each value in the P1 table represents the probability of detecting a

target given unlimited time.

101

The following MATHCAD 2.5 template computes probabilities of acquisition
using simplified versions of the Night Vision Electro-Optical
Laboratories (NVEOL) optical sensor algorithms as used in JANUS and
CASTFOREM.

All linear measurements are in meters and all angular measurements
are in radians or milliradians.

ORIGIN= 1 i := 1 ..10 j := 1 ..3

This is the average target height in each posture. L 1'
L 2J

This is the range between sensor and target. R =100i
i

r is the resolution of the sensor expressed
in resolvable cycles per milliradian. This is
arbitrarily set to 1.0. The NVEOL model r 1.
provides an equation to determine r in the
visual range, but it would require determining
several factors such as sky brightness and
target to background contrast.

C is an array of values for resolvable cycles
of the target in each posture.

L 5 10 20
j 2.5 5 10

C := -1000-r 1.667 3.333 6.667
ij R 1.25 2.5 5

i 1 2 4
M is the fixed scale value to account C = 0.833 1.667 3.333

for the percent probability required 0.714 1.429 2.857
to yield an identification decision. 0.625 1.25 2.5

0.556 1.111 2.222
M := 3.5 for all uses in SPARTAN 0.5 1 2

This section computes the probability of
detection P1 given unlimited time
(Bailey:5).

2.4 0.862 1 1
C 0.312 0.862 1
i'j 0.132 0.526 0.981

-.84 - 0.069 0.312 0.862
M 0.041 0.197 0.686

pl :=1 -e pl = 0.026 0.132 0.526
i'j 0.018 0.093 0.403

0.013 0.069 0.312
0.01 0.052 0.246

0.008 0.041 0.197

102

Probability of Detection

The algorithm for probability of detection [P] also was adapted

from Bailey's report (1:7). For SPARTAN, the template on the following

page computes P2 as a value that varies according to range and the time

spent looking in the sector containing the potential target.

Target posture is not considered in the computation of P2. As a

means of saving main memory only one Pi table is used instead of the

three that would be required if each posture was considered. Target

posture is accounted for in the P algorithm. The target size for

crouched posture is used as an average value throughout the SPARTAN P2

algorithm.

103

Search time has a range of .4 - 4.0 seconds with a mean of 2.0 seconds.
This implies that the observer scanned the sector containing the target
for 2.) seconds on the average. There are ten possible search times.

j := 1 ..10 t .4-j

As a simplification, the P2 table was computed to vary only with
respect to range and time. All resclution values use the crouch
posture as inaverage value. This was done to minimize the number
of look up tables in storage since there is a limit to the amount
of available memory in many personal computers.

Values for C and M are those created in the probability of
acquisition template.

This is the NVL equation for probability of detection.

i,2 Ii

P2 :1-e
i,j

Probability of detection table with time represented by columns and
range by rows.

0.155 0.285 0.396 0.489 0.568 0.635 0.692 0.739 0.78 0.814
0.081 0.155 0.223 0.285 0.343 0.396 0.445 0.489 0.531 0.568
0.054 0.106 0.155 0.201 0.244 0.285 0.324 0.361 0.396 0.429
0.041 0.081 0.118 0.155 0.189 0.223 0.255 0.285 0.315 0.343
0.033 0.065 0.096 0.126 0.155 0.183 0.21 0.236 0.261 0.285

P2 = 0.028 0.054 0.081 0.106 0.131 0.155 0.178 0.201 0.223 0.244
0.024 0.047 0.069 0.092 0.113 0.134 0.155 0.175 0.194 0.213
0.021 0.041 0.061 0.081 0.1 0.118 0.137 0.155 0.172 0.189
0.019 0.037 0.054 0.072 0.089 0.106 0.123 0.139 0.155 0.17
0.017 0.033 0.049 0.065 0.081 0.096 0.111 0.126 0.14 0.155

104

Probabilities of Hit

The purpose of the MATHCAD template on the following page was to

create tables of hit probabilities using an algorithm discussed by

Hartman (23:7-17). This algorithm computes a bivariate normal distribu-

tion of hits. This algorithm assumes Coy (x,y) = 0, and the center of

the impact point distribution is the original JmDoint. Additionally,

the variance is the same in both directions. The equation is intended

to model hits on a circular target rather than a human silhouette, so as

a gross approximation, a pcrcentage of the circular area is used to

represent a soldier's target surface.

The purpose for using this equation was to provide the model with

data that varied over a range of possible values much the same way

empirical data might, if it were available. The parameters are totally

arbitrary. The table shown at the end of the template is for a 600m

effective weapon. Tables were created for four weapons with different

effective ranges. The only difference between weapons is the standard

error of each weapon.

The values in the table were judged to be reasonable by the author

based on his limited experience with military small arms. For an actual

study, the probabilities would be determined from weapons testing or

possibly obtained from the US Army Ballistic Research Laboratory.

105

This template computes the values for the phit600 table.

This block defines the indices for the range and posture variables
in the bivariate normal equation.

ORIGIN= 1 i := 1 ..10 j := 1 ..3

As stated in the assuntions, bias = 0

These are the three target posture modifiers.

prone crouched standing
posture := .25 posture := .5 posture := 1.0

1 2 3

A simple formula was used to create standard error values for
four types of direct fire weapons. Each weapon has a standard
error value for each loom increment out to 1000m. These a are
totally hypothetical since there was never any intent to get
accurate data for particular weapon types.

NOTE: Starting a for each
o := .6 + Wi. weapon type
i phit300 uses a = 1.0

phit400 uses a = 0.9
phit500 uses a = 0.8
phit600 uses a = 0.6

This formula computes a relative value for target surface area
based on a 2 meter x .5 meter figure modified for the posture.

R := 2'posture .5

Below is the Hartman equation used to approximate a
bivariate normal hit distribution.

2 Target Posture
rone crouch standing Range

i,j] 0.138 0.258 0.449 loom
0.108 0.204 0.366 200m

2 0.091 0.173 0.316 300m
2'a 0.079 0.152 0.28 400m

i 0.071 0.136 0.254 500m
puit = 1 - e phit = 0.064 0.124 0.233 600m

i.j 0.059 0.114 0.215 700m
0.054 0.106 0.201 800m
0.051 0.099 0.188 900m
0.048 0.093 0.177 1000m

106

Appendix B: STARTUP Preprocessor Program Listing

This appendix provides a listing of the Quic BASIC version 4.5

program code for the STARTUP preprocessor. STARTUP is a menu-driven

program that enables the user to create, edit, and review the three

scenario dependent files used in SPARTAN. These three files are the

initial event datafile, the terrain attribute file, and the soldier

attribute file. Specific information on the composition of these files

is available in Section 3 of the User's Manual in Appendix D.

The code is organized into five modules with subprograms within

each module. The startup.bas module creates the user menus and calls

the specific functions requested by the user. The initevnt.bas module

contains the subprograms that support the initial event dat!file. The

terrain.bas module contains subprograms that support the terrain data

file functions. The soldier.bas module supports the soldier attribute

file, and lastly the util.bas module subprograms support functions in

all the other modules.

There are two special notes about this code. QuickBASIC does not

use a line continuation feature, so ampersands [&] have been used in

this text version of the code to indicate a line extension. In the help

subprogram, all the screen text was deleted. Only an example of the

help menu structure remains.

107

STARTUP.BAS

PURPOSE This program is a preprocessor for the SPARTAN combat
model. It allows the user to modify three key input files for the
combat model (terrain, initial events, and soldier attributes).

This program contains five modules. This main module has a function
to link the others together and query the user as to what task is to be
performed. There is one module for each file to be modified. Each
module allows the user to create, edit and display the specific file.
The last module contains utility subprograms that can be used
throughout the program.

All subprograms and functions that could be called or defined in this
module are explicitly declared at the beginning of each module.

DECLARE SUB ground () ' user interface to terrain editor
DECLARE SUB soldaten () user interface to soldier file editor
DECLARE SUB Createarray () creates generic soldier attribute file
DECLARE SUB Displayarray () displays soldier attribute file
DECLARE SUB Editarray () editor for soldier attribute file
DECLARE SUB Create () creates a generic terrain data file
DECLARE SUB DisplayFile () displays the terrain data file
DECLARE SUB EditFile () editor for the terrain map
DECLARE SUB TerrainMap () displays a relief map of terrain file
DECLARE SUB initialevents () user interface to event editor
DECLARE SUB Displayevents () displays the initial event file
DECLARE SUB Createevents) creates a generic event file
DECLARE SUB Editevents () editor for the initial event file
DECLARE SUB opening () creates an opening presentation screen
DECLARE SUB help () online help facility for users
DECLARE SUB frame (left%, right%, top%, bottom%, fore%, back%)

DIM SHARED movers(12, 20) AS SINGLE 'dimensions soldier's attribute
'array

CLS 'clears the screen at the start of the program
COLOR 1) 7 'sets a white foreground and blue background
CALL opening 'puts an opening presentation screen up

DO 'queries the user for the next task until he is done
CLS
left% = 10: right% = 70: top% = 5: bottom% = 15: fore% = 1: back% = 7
CALL frame(left%, right%, top%, bottom%, fore%, back%)

108

LOCATE 7, 25
PRINT "MASTER MENU": PRINT
LOCATE 8, 25
PRINT "I) Work on event file"
LOCATE 9, 25
PRINT "2) Work on terrain file"
LOCATE 10, 25
PRINT "3) Work on soldier attribute file"
LOCATE I1, 25
PRINT "4) Read Help file"
LOCATE 12, 25
PRINT "5) Exit the program"
LOCATE 14, 25
PRINT "Type your selection (1 to 5)"
'Wait for the user to select a key.
ch$ = INPUT$(1)

use SELECT to process a response

SELECT CASE ch$
CASE "1"
CALL initialevents

CASE "2"
CALL ground

CASE "'
CALL soldaten

CASE "4"
CALL help

CASE "5"
EXIT DO 'terminates the program

CASE ELSE
BEEP 'error trap
ch$ = INPUT$(1)

END SELECT
LOOP
CLS
END

SUB ground

'PURPOSE this routine presents the terrain editor menu and calls the
'appropriate subprograms from the terrain module

COLOR 1, 7
DO
CLS
left% = 10: right% = 70: top% = 4: bottom% = 16: fore% = 1: back% = 7
CALL frame(left%, right%, top%, bottom%, fore%, back%)

109

LOCATE 6, 20
PRINT "EDITOR MENU FOR TERRAIN DATA FILE"

LOCATE 8, 20
PRINT "1) Create a new file."
LOCATE 9, 20
PRINT "2) Edit an existing file."
LOCATE 10, 20
PRINT "3) View the terrain map."
LOCATE 11, 20
PRINT "4) Review the file (after editing only)."
LOCATE 12, 20
PRINT "5) Exit the program."
LOCATE 14, 20
PRINT "Type your selection (1 to 5)"
'Wait for the user to select a key.
ch$ = INPUT$(1)

0 use select to process a response

SELECT CASE ch$ 'calls the requested subprogram
CASE "1"
Create

CASE "2"
EditFile

CASE "3"
TerrainMap

CASE "4"
DisplayFile

CASE "5"
EXIT DO

CASE ELSE
BEEP
ch$ = INPUT$(1)

END SELECT
LOOP

END SUB

SUB initialevents

'PURPOSE this routine presents the event editor menu and calls the
'requested subprograms from the initevnt module

DO
COLOR 1, 7
CLS
left% = 10: right% = 70: top% = 4: bottom% = 15: fore% = 1: back% = 7
CALL frame(left%, right%, top%, bottom%, fore%, back%)

110

LOCATE 61 20
PRINT "EDITOR MENU FOR INITIAL EVENT FILE"

LOCATE 8, 20
PRINT "1) Create a new event file."
LOCATE 9, 20
PRINT "2) Edit event file."
LOCATE 10, 20
PRINT "3) Review the file."
LOCATE 11, 20
PRINT "4) Exit the program."
LOCATE 13, 20
PRINT "Type your selection (1 to 4)"
'Wait for the user to select a key.
ch$ = INPUT$(I)

I use SELECT to process a response

SELECT CASE ch$
CASE 1"i

Createevents
CASE "2"
Editevents

CASE "3"
Displayevents
CASE "4"
EXIT DO

CASE ELSE
BEEP
ch$ = INPUT$(1)

END SELECT
LOOP

END SUB

SUB soldaten

'PURPOSE this routine presents the soldier attribute editor menu and
'calls the requested subprograms from the soldier module

COLOR 1, 7
DO
CLS
left% = 10: right% = 70: top% = 4: bottomZ = 15: fore% 1 1: back% = 7
CALL frame(left%, right%, top%, bottom%, fore%, back%)

LOCATE 6, 20
PRINT "EDITOR MENU FOR SOLDIER ATTRIBUTE FILE"

111

LOCATE 8, 20
PRINT "1) Create a new soldier file."
LOCATE 9, 20
PRINT "2) Modify soldier file."
LOCATE 10, 20
PRINT "3) Review the file."
LOCATE 11, 20
PRINT "4) Exit the program."
LOCATE 13, 20
PRINT "Type your selection (1 to 4)"
'Wait for the user to select a key.
ch$ = INPUT$(1)

9 use SELECT to process a response

SELECT CASE ch$
CASE "1"

PRINT "BUILD A FILE"
Createarray

CASE "2"
Editarray

CASE "3'
Displayarray
CASE "4"
EXIT DO

CASE ELSE
BEEP
ch$ = INPUT$(1)

END SELECT
LOOP

END SUB

112

INITEVNT.BAS

The purpose of this module is to create and edit initial events
' for each soldier in the SPARTAN Combat Model.

DECLARE SUB Createevents ()
DECLARE SUB Displayevents ()
DECLARE SUB Editevents ()
OPTION BASE 1 'sets initial array index to 1

DIM SHARED events(24, 3) AS SINGLE 'this establishes dimensions
'for the event array

END

SUB Createevents

'PURPOSE this routine creates a generic initial event list for SPARTAN

CLS
OPEN "event.exp" FOR OUTPUT AS #1 'this block loads the file
FOR N = 1 TO 12 'this loop creates a search event for

time = 1! + .15 * N 'each soldier
WRITE #1, 2, time, N

NEXT N

FOR L = 1 TO 12 'this loop creates a startmove event for
time = 2! + .17 * L 'each soldier
WRITE #1, 1, time, L

NEXT L
CLOSE #1
CLS

' This block provides a formatted display of the file in ASCII text
OPEN "event.exp" FOR INPUT AS #1
LOCATE 1, 1
PRINT " Event type time actor Event type time actor"

I=0
DO UNTIL EOF(1)

I=I+1
INPUT #1, etype%, time!, actor%
IF (I < 15) THEN
LOCATE I + 1, 6

ELSE
LOCATE I - 13, 40

END IF
PRINT USING " ##) ### ###.## ### "; I; etype%; time!; actor%

LOOP
CLOSE #1
LOCATE 23, 2

113

PRINT "For your review ... Hit any key to continue ...": k$ INPUT$(1)

END SUB

SUB Displayevents

'PURPOSE to allow the student to review the initial event list

CLS
' This routine provides a formatted file display in ASCII text
OPEN "event.exp" FOR INPUT AS #1
LOCATE 1, 1
PRINT " Event type time actor Event type time actor"

I =0
DO UNTIL EOF(1)
I =I+l
INPUT #1, etype%, time!, actor%
IF (I < 15) THEN

LOCATE I + 1, 6
ELSE

LOCATE I - 13, 40
END IF
PRINT USING " ##) ### ###.## ### "; I; etype%; time!; actor%

LOOP
CLOSE #1
LOCATE 23, 1
PRINT " Hit any key to return to main menu": k$ = INPUT$(1)

END SUB

SUB Editevents STATIC

'PURPOSE this routine allows the user to edit the file event.exp

OPEN "event.exp" FOR INPUT AS #1 'this block loads events into an array
1=0
DO UNTIL EOF(1)
1=I+1
INPUT #1, etype%, etime!, eactor%
events(I, 1) = etype%: events(I, 2) = etime!: events(I, 3) eactor%

LOOP
CLOSE #1

DO 'this loop modifies the events in the array
CLS
LOCATE 1, 1
INPUT "Which event is to be modified ?", N
PRINT events(N, 1), events(N, 2), events(N, 3)
INPUT "New event type is ? "events(N, 1)
INPUT "New event time is ? , events(N, 2)
INPUT "New event actor is? , events(N, 3)

114

INPUT "Edit another event ? Yes - <enter> No - <n> to quit.", answer$
LOOP UNTIL answer$ = "n" OR answer$ = "N"

OPEN "event.exp" FOR OUTPUT AS #1 'this puts event array back in file
FOR J =1 TO I
WRITE #1, events(J, 1), events(J, 2), events(J, 3)
NEXT J

CLOSE #1

END SUB

115

TERRAIN.BAS

'PURPOSE this module is to create or edit a terrain file for the
'SPARTAN Combat Model. It writes the data to filename board.dat. If
'you want multiple terrain files you need to copy them over with DOS
'commands prior to rerunning the create option of this program.

'The resulting data files are in ASCII format and are readable with a
'text editor or this program

OPTION BASE 1

DECLARE SUB TerrainMap ()
DECLARE SUB Create ()
DECLARE SUB DisplayFile ()
DECLARE SUB EditFile ()

DIM SHARED terrain(2500, 4) AS SINGLE

SCREEN 9
COLOR 1, 7
WINDOW (0, 0)-(1010, 1010)

DIM SHARED clr(10) AS INTEGER
'defining colors for the map
FOR I = 1 TO 7 + 9

clr(I) = I
NEXT I

END

SUB Create

'PURPOSE this routine creates a generic terrain data file that can be
'modified to meet specific scenario requirements

CLS
SCREEN 9, , 1, 1
COLOR 1, 7
LOCATE 12, 25
PRINT " TERRAIN FILE IS BEING LOADED "
OPEN "board.exp" FOR OUTPUT AS #1
N=O
FOR a = 1 TO 50
FOR B = 1 TO 50
N:N+ 1
vert = a 'indexes the north-south grids
horz = B 'indexes the east-west grids
elev = 20! 'inputs a 20meter elevation for all grids
mobfac = 1! 'inputs a real value of 1.0 for mobfac

116

WRITE #1, vert, horz, elev, mobfac
NEXT B

NEXT a
CLOSE #1
LOCATE 24, 2
PRINT "Do you wish to view the file yes (y> no <enter> ?":ans$ INPUT$(l)
IF (ans$ = "Y" OR ans$ = "y") THEN
CLS
LOCATE 1, 2: PRINT " USE THE <PAUSE> KEY TO STOP SCROLLING THEN <ENTER>
& TO CONTINUE"
LOCATE 2, 7
PRINT " X COORD Y COORD ELEVATION MOBILITY FACTOR "
PRINT "** **************
& ****** "

VIEW PRINT 4 TO 25

OPEN "board.exp" FOR INPUT AS #1
FOR I = 1 TO 50

FOR J =1 TO 50
INPUT #1, horz, vert, elev, mobfac
PRINT USING " ######.### #.##"; horz; vert;

& elev; mobfac
NEXT J

NEXT I
CLOSE #1
ELSE
END IF
CLS
SCREEN 9 'eliminates view print option
END SUB

SUB DisplayFile

'PURPOSE prints out a listing of the block of grid cells chosen from
'the terrain file

CLS
PRINT "Which section of terrain do you wish to view. The file is in a"
PRINT "linear list format, so give a start and endnumber"
PRINT "To compute record number (x - 1) * 50 + y"
INPUT " Starting number... ", start
INPUT " Ending number ... ", ending
CLS
FOR I start TO ending
PRINT terrain(I, 1), terrain(I, 2), terrain(I, 3), terrain(I, 4)

NEXT I
PRINT " Hit any key to return to main menu": k$ = INPUT$(I)
END SUB

117

SUB EditFile

PURPOSE This routine queries the user for a specific grid location.
Those coordinates are converted into a record number and the user is
prompted to update the elements of that record.

CLS
LOCATE 12, 12
PRINT " Wait just a moment while file is loaded into a buffer."

OPEN "board.exp" FOR INPUT AS #1
1=0
DO UNTIL EOF(1)

= I+1
INPUT #1, X, Y, elev, mobfac
terrain(I, 1) = X: terrain(I, 2) = Y: terrain(I, 3) elev:

& terrain(I, 4) = mobfec
LOOP

CLOSE #1

DO
CLS
INPUT "What are the coordinates of the grid to be modified ?", X, Y
xy= 0
FOR I = 1 TO X

FOR J = 1 TO Y
xy = xy + 1

NEXT J
NEXT I

terrain(xy, 1) = X
terrain(xy, 2) = Y
INPUT "elev (0 - 69meters)...", terrain(xy, 3)
INPUT "mobfac (0 - 1.0)...", terrain(xy, 4)

INPUT "Edit another grid ? Yes - <enter> No - <n> to quit.", answer$
LOOP UNTIL answer$ = n" OS answer$ = "N"

LOCATE 12, 16
PRINT "One moment while the terrain record is updated."
OPEN "board.exp" FOR OUTPUT AS #1
FOR I = 1 TO 2500
WRITE #1, terrain(I, 1), terrain(I, 2), terrain(I, 3), terrain(l, 4)

NEXT I
CLOSE #1
END SUB

118

SUB TerrainMap

'PURPOSE this routine draws a relief map that represents relief features

CLS
SCREEN 9
COLOR 7, 0
WINDOW (0, 0)-(10101 1010)
'defining colors for the map
FOR I = 1 TO 7

clr(I) = I + 9
NEXT I

OPEN "board.exp" FOR INPUT AS #1
N= 0
FOR I = 1 TO 50

FOR J = 1 TO 50
INPUT #1, horz, vert, elev, mobfac
PSET (20 * horz - 10, 20 * vert - 10), clr(INT(elev / 10!) + 1)

NEXT J
NEXT I
CLOSE #1
LOCATE 24, 1
PRINT "Hit any key to continue)": a$ = INPUT$(1)
COLOR 1, 7
END SUB

119

SOLDIER.BAS

The purpose of this program is to create or edit attribute files
for each of the soldier (entities) with in the SPARTAN Combat Model.
It will write the data to filename force.dat. If you want multiple
entity files you will need to copy them over with DOS commands
prior to rerunning the create option of this program.

DEFINT A-Z
OPTION BASE 1
DECLARE SUB Createarray ()
DECLARE SUB Displayarray ()
DECLARE SUB Editarray ()

This block describes the fields in the soldier records.

DIM SHARED x AS SINGLE x,y,z are soldier's present coordinates
DIM SHARED y AS SINGLE
DiM SHARED z AS SINGLE
DIM SHARED xlast AS SINGLE ' these are the soldier's last coordinates
DIM SHARED ylast AS SINGLE ' mostly important for graphics
DIM SHARED size AS SINGLE ' size should be between 1.6 - 2.0 meters
DIM SHARED speed AS SINGLE range of speed is 0 - 40 units
DIM SHARED dir AS SINGLE direction of travel in radians
DIM SHARED moving AS INTEGER flag shows soldier's intent to move
DIM SHARED wpnrng AS SINGLE max eff range of soldier's weapon
DIM SHARED ammo AS INTEGER count of soldier's ammo remaining
DIM SHARED status AS INTEGER flag shows if alive,dead or wounded
DIM SHARED posture AS INTEGER indicates standing, crouched or prone
DIM SHARED incmd AS INTEGER a 0 or I (I indicates a sqd ldr)
DIM SHARED atkdir AS SINGLE stores original movement direction
DIM SHARED tgteng AS INTEGER target which is selected for engagement
DIM SHARED side AS INTEGER identifies side the soldier is on

DIM SHARED movers(12, 20) AS SINGLE 'dimensions soldier's attribute
'array

END

SUB Createarray

'PURPOSE to create a generic soldier attribute array that can be
$easily modified for specific scenario requirements in SPARTAN

CLS
OPEN "force.exp" FOR OUTPUT AS #1

'this block creates array values for the blue soldiers
N=O
FOR N = 1 TO 6
x = 100 - 10 * N

120

y = 400
z = 10.5
xlast = 0
ylast = 0
size = 1.8 meters in height
speed = 20
dir = 1.6 ' this is a direction of travel in radians
moving = 1 'This is an integer value of 0 or 1 (1 is moving)
wpnrng = 500 'Range in meters
ammo = 20 'rounds of ammunition on individual
status =1 'This is an integer value of 0 or 1 (1 is alive)
posture = 1! ' 1 is erect .5 is crouch .25 is prone
incmd = 0 ' a 0 or 1 which designates a squad leader
atkdir = dir ' maintains original movement direction
tgteng = 0 ' identifies selected target
side = 1 ' identifies the soldier's affiliation as blue
WRITE #1, x, y, z, xlast, ylast, size, speed, dir, moving, wpnrng,
& ammo, status, posture, obsi, obs2, tgteng, side

NEXT N

'this block creates the array values for the red soldiers

FOR N = 7 TO 12
x 610
y 10 + N * 10
Z 10.5
xlast = 0
ylast = 0
size = 1.8 meters of height
speed = 20 meters per move
dir = 4.7 this is a real value for direction in radians
moving = 1 'This is an integer value of 0 or 1 (1 is moving)
wpnrng = 600 'Range in meters
amno = 20 'rounds of ammunition on individual
status = 1 'This is an integer value of 0 or 1 (1 is alive)
posture = 1! ' 1 is standing .5 is crouch .25 is prone
incmd = 0 'a 0 or 1 which designates the squad leader
atkdir = dir 'maintains original attack direction
tgteng = 0 'identifies selected target
side = -1 ' 1 is blue and -1 is red for force discrimination

WRITE #1, x, y, z, xlast, ylast, size, speed, dir, moving, wpnrng,
& ammo, status, posture, obsi, obs2, tgteng, side

NEXT N
CLOSE #1

Display the new soldier files for review in unformatted form
cannot use format and keep all records on screen.

121

OPEN "force.exp" FOR INPUT AS #1
FOR I = 1 TO 12

INPUT #1, x, y, z, xlast, ylast, size, speed, dir, moving, wpnrng,
& ammo, status, posture, obsi, obs2, tgteng, side

WRITE x, y, z, xlast, ylast, size, speed, dir, moving, wpnrng, ammo,
& status, posture, obsi, obs2, tgteng, side
NEXT I

PRINT "For your review ... Hit any key to continue ... ": k$ = INPUT$(1)

CLOSE #1

END SUB

SUB Displayarray

This routine provides an unformatted display of the text in ASCII text
unformatted is the only way it will fit neatly on the screen.

OPEN "force.exp" FOR INPUT AS #1
FOR I = 1 TO 12
INPUT #1, x, y, z, xlast, ylast, size, speed, dir, moving, wpnrng, ammo,
& status, posture, incmd, obs2, tgteng, side

WRITE x, y, z, xlast, ylast, size, speed, dir, moving, wpnrng, ammo,
& status, posture, incmd, obs2, tgteng, side

NEXT I
CLOSE #1
INPUT " Hit any key to return to main menu", k$
END SUB

SUB Editarray

'PURPOSE this subprogram is an editor for the soldier attribute file

OPEN "force.exp" FOR INPUT AS #1
CLS

I =0
DO UNTIL EOF(J) 'this block loads the file elements into a buffer
I = I + 1
INPUT #1, x, y, z, xlast, ylast, size, speed, dir, moving, wpnrng,
& ammo, status, posture, incmd, obs2, tgteng, side
movers(I, 1) = x: movers(I, 2) = y: movers(I, 3) = z
movers(I, 4) = xlast: movers(I, 5) = ylast: movers(I, 6) = size
movers(I, 7) = speed: movers(I, 8) = dir: movers(I, 9) = moving

122

movers(I, 10) = wpnrng: movers(I, 11) = ammo: movers(I, 12) = status
movers(I, 13) = posture: movers(I, 14) = incmd
movers(I, 15) = obs2: movers(I, 16) = tgteng: movers(I, 17) = side

LOOP
CLOSE #1

'this block queries the user about modifying the attribute file
DO
PRINT "Do you wish to (a) modify all attributes of one individual "
PRINT "or (b) modify a single attribute on a group of soldiers ?"
PRINT "or (c) Exit the edit menu"
PRINT " Type (a ,b,or c) ": which$= INPUT$(1)

SELECT CASE which$

CASE "a"
INPUT "What is the number of the soldier to be modified ?", N

PRINT "These are the soldier's present attributes"
PRINT
WRITE movers(N, 1), movers(N, 2), movers(N, 3), movers(N, 4),
& movers(N, 5), movers(N, 6), movers(N, 7), movers(N, 8),
& movers(N, 9), movers(N, 10), movers(N, 11), movers(N, 12),
& movers(N, 13), movers(N, 14), movers(N, 15), movers(N, 16),
& movers(N, 17)

INPUT "Initial x ", movers(N, 1)
INPUT "Initial y ", movers(N, 2)
INPUT "Initial z ", movers(N, 3)
movers(N, 4) = I
movers(N, 5) = 1
INPUT "Soldier size in meters ", movers(N, 6)
INPUT "Speed ", movers(N, 7)
INPUT "direction in radians ", movers(N, 8)
INPUT "Moving 1 is moving 0 is stationary.. ", movers(N, 9)
INPUT "Weapon Range in meters ", movers(N, 10)
INPUT "Number of rounds of ammunition.. ", movers(N, 11)
INPUT "Status '1' is alive '0' is dead ", movers(N, 12)
INPUT "Posture '.25' prone,'.5' crouched,'1.0' standing", movers(N, 13)
INPUT "Command designator follower (0) leader (1) ", movers(N, 14)
movers(N, 15) = movers(N, 8)
movers(N, 16) = 0

CASE "b"
INP'T "Type <first,last> ID #'s for group to be modified."; first, last
INPUT "Which attribute is to be modified (1 - 17) "; k
INPUT "What should this new value be "; newvalue!
FOR I = first TO last
movers(I, k) = newvalue!

NEXT I
CASE "c"

EXIT DO

123

CASE ELSE
BEEP
PRINT " either <a>, , or <0 " which$ =INPUT$(1)

END SELECT
LOOP

OPEN "force.exp" FOR OUTPUT AS #1 'writes changes into force.exp file
FOR I 1 TO 12
WRITE #1, movers(I, 1), movers(I, 2), movers(I, 3), movers(I, 4),

& movers(I, 5), movers(I, 6), movers(I, 7), movers(I, 8), movers(I, 9),
& movers(I, 10), movers(I, 11), movers(I, 12), movers(I, 13),
& movers(I, 14), movers(I, 15), movers(I, 16), movers(I, 17)

NEXT I
CLOSE #1
END SUB

124

UTIL.BAS

' This utility module has subprograms and functions that can be called
' from any of the other modules. These routines do not require access
' to variables used in the other modules.

DECLARE SUB opening () ' draws out the presentation screen
DECLARE SUB frame (left%, right%, top%, bottom%, foreZ, back%)

'Below is the syntax for using the Frame subprogram
left% = 3: right% = 80: top% = 3: bottom% = 22: foreZ = 5: back'; = 0

' CALL Frame(leftl, right%, top%, bottom%, foreZ, backZ)

E ND

SUB frame (left%, right%, top%, bottom%, fore7., back%) STATIC

This routine creates a fro.2,ing box of any size It takes six basic
input parameters that control the dimensions and colors.

COLOR fore%, backZ

------ Draw the four corners

LOCATE top%, left%: PRINT CHR$(201)
LOCATE top%, right%: PRINT CHR$(187)
LOCATE bottom%, left%: PRINT CHR$(200)
LOCATE bottom%, right%: PRINT CHR$(188)

-Draw the vertical lines

FOR vert% = top% + 1 TO bottom% - 1
LOCATE vertZ, left%: PRINT CHR$(186)
LOCATE vert%, right%: PRINT CHR$(186)

NEXT vert%

-Draw the horizontal lines

horiz% = right% - left% - 1
hline$ = STRING$(horiz%, 205)
LOCATE top%, left% + 1: PRINT hline$
LOCATE bottom%, left% + 1: PRINT hline$

END SUB

125

NOTE: This help subprogram is only an extract of the original subprogram.
The original subprogram contains many screens of print text. This extract
only contains an example of the coding used to create the user help menus.

SUB help

' PURPOSE this routine is intended to provide the basic information
necessary to use the STARTUP program. Info provided is on how to
create, modify and view the files needed to run the SPARTAN Combat
M Model. This routine allows the user to go directly to the
information desired.

COLOR 1, 7
CLS
DO
LOCATE 4, 33
PRINT " HELP MENU
LOCATE 6, 23
PRINT " SELECT ONE OF THE FOLLOWING TOPICS"
LOCATE 8, 27
PRINT " 1) Operating SPARTAN"
LOCATE 9, 27
PRINT " 2) Initial Event Datafile"
LOCATE 10, 27
PRINT " 3) Terrain Datafile"
LOCATE 11, 27
PRINT " 4) Soldier Attribute Datafile"
LOCATE 12, 27
PRINT 5) Exiting Help"

LOCATE 14, 1
PRINT " The STARTUP preprocessor program allows the user to modify three "

PRINT "key datafiles used by the SPARTAN Combat Model. The 3 files are"
PRINT "an initial event list, a terrain file, and a soldier attribute file."
PRINT "The program allows the user to create a generic file for each, edit"
PRINT "each file and view the data in the files. The help function is
PRINT "intended to provide guidance on each function in the program and "

PRINT "should be read prior to working with the files."

CALL frame(l, 79, 2, 23, 1, 7)

LOCATE 22, 6: PRINT "Select Option Number ": k$ = INPUT$(1)
SELECT CASE k$ 'this select sends the user to the major category
CASE "1"

GOSUB h500
CASE "2"

GOSUB h200
CASE "3"

GOSUB h300
CASE "4"

GOSUB h400

126

CASE "5"
EXIT DO

CASE ELSE
BEEP
k$ = INPUT$(1)

END SELECT
LOOP

GOTO 1000 'when the program finishes executing the help select loop, it
'must jump over the subroutines and go to the end of the help
'subprogram. Otherwise, it will try to execute the subs and
'cause an error.

'these subroutines contain groups of topics and allow the user to
'get specific details from within each major topic area.

h200:
CLS
COLOR 7, 1
LOCATE 2, 1
PRINT "SELECT A SUBTOPIC <1>CREATE<2>EDIT<3>REVIEW<4>PARAMETERS<5> EXIT "
COLOR 1, 7
LOCATE 4, 1
PRINT " The events module allows the user to create, edit and review the "

RETURN

The bulk of the help screen are formatted
screens of information. These were deleted
from this text. What remains of the help
subprogram is just the structure of how the
menu system was set up.

1000 LOCATE 24, 2
PRINT "Returning to main menu"
END SUB

127

SUB opening

'PURPOSE This routine calls the frame routine and draws a presentation
screen for the model introduction.

VARIABLES
left%, right%, top%, bottom% are integer variables passed to frame
that define the size of the box using rows and columns in text
mode.
fore% and back% are variables that define line and background colors

CLS
left% = 1: right% = 80: top% = 3: bottom% = 22: fore% = 1: back% = 7
CALL frame(left%, right%, top%, bottom%, fore%, back%)
left% = 9: right% = 72: top% = 10: bottom% = 16: fore% 1: back% 7
CALL frame(left%, right%, top%, bottom%, fore%, back%)
LOCATE 13, 25: PRINT " SPARTAN COMBAT MODEL "

LOCATE 14, 25: PRINT " PREPROCESSOR "
LOCATE 19, 22: INPUT "Press <Enter> when ready to continue", start
COLOR 1, 7
END SUB

128

Appendix C: SPARTAN Simulation Program Listing

This appendix contains the programming code for the SPARTAN

simulation model. The code is written in QuickBASIC version 4.5.

The code is contained in three separate modules. The spartan.bas

module contains the outer replication loop and the event scheduling

algorithms that control the execution of the simulation. The combat.bas

module contains all the subprograms and functions that model the combat

processes. The utility.bas module contains subprograms and functions

that support the processes within the other modules.

There are two special notes about this code. QuickBASIC does not

use a line continuation feature, so ampersands [&] have been used in

this text version of the code to indicate a line extension. In the help

subprogram, all the screen text was deleted. Only an example of the

help menu structure remains.

129

******** SPARTAN COMBAT MODEL * **

**** MAIN MODULE **

The modular organization of this program is set up to have all key
elements of the program in subprograms or functions. This structuring
means that the main program serves only to define which variables are
accessible to which routines, anld which routines will be called. The
program contains three modules. In this main module, the purpose of
the subprograms are to initialize the databases, operate the event
scheduling routine and pass execution control to the various
subprograms as necessary. The combat module contains the subprograms
that perform the combat processes. While the utility module contains
subprograms and functions that can be called from any of the modules.

This section declares all subprograms and functions in this module or
used by this module. To view the subprograms and functions hit F2
and a menu will be presented.

DECLARE SUB search () ' uses continuous search algorithm
DECLARE SUB startmove () ' computes and updates next location
DECLARE SUB endmove () ' schedules next startmove events
DECLARE SUB initialize () ' Opens and loads all data files
DECLARE SUB linkempties () ' Initializes links of events list
DECLARE SUB event (e!) ' transfers program control to next event
DECLARE SUB clock () ' calls next event off future event list
DECLARE SUB pause () ' used to irsert pauses during debugging
DECLARE SUB remove (e!) ' remove event e from event calendar
DECLARE SUB move (e!, fromlist, tolist!) 'move e from fromlist! to tolist!
DECLARE SUB showevents () ' prints top of event list and description
DECLARE SUB addevent (itype!, time!, entity) 'add event to event calendar
DECLARE SUB opening () ' draws an opening title screen
DECLARE SUB reacttofire () decides tgt reaction to being fired on
DECLARE SUB impact () determines outcome of engagement
DECLARE SUB tgtselect () decides if and at who firer will engage
DECLARE SUB directfire () computes time of flight and calls impact
DECLARE SUB plotterrain () plots relief map to represent elevation
DECLARE SUB killsoldier (tgt) pulls events from FEL as soldier dies
DECLARE SUB oput () collects and prints battle results
DECLARE SUB help () online help utility for the user
DECLARE SUB soldierstats () displays current soldier attributes
DECLARE SUB battlestats () displays a sample of current battle stats
DECLARE SUB setup () allows the user to modify run parameters
DECLARE SUB frame (left%, right%, top%, bottom%, fore%, back%)
DECLARE SUB pottgtlist () ' shows a table of the target list values

130

' The 'events' COMMON variables are only shared in the SPARTAN module.

COMMON SHARED /events/ Maxevents, Firstevent, Firstempty, eventtype(),
& timeofevento, backlinko, nextlink()

The variables defined in this COMMON statement are
accessible in the main and combat modules.

COMMON SHARED time, moverso, te, eventactoro, elevationo, mobility(,
& pl0, p2(), ph300(), ph400(), ph500(), ph600(), attenuation, activeblue,
& activered
COMMON SHARED bluecommand, redcommand, direct()
COMMON SHARED bluecount, redcount, bluerounds, redrounds

Maxevents = 99 ' This variable determines the size of the arrays used
in the event lists

DIM eventactor(Maxevents) 'eventactor(i) = soldier index
DIM eventtype(Maxevents) 'eventtype(i) = type

I = 0 if empty
DIM timeofevent(Maxevents) 'timeofevent(i) = t ... if pending then time

of this event

= i ... if empty then position
in list of empties

DIM backlink(Maxevents): 'backlink(i) = immediate predecessor
DIM nextlink(Maxevents): 'nextlink(i) = immediate successor

These arrays provide data files on the soldiers and terrain.
They are loaded by subprogram 'initialize'

DIM SHARED movers(12, 20), elevation(50, 50), mobility(50, 50),
& direct(12, 9)

These arrays contain probabilities for the search and direct fire
routines
pl is probability of detection with infinite time (acquisition)
p2 is probability of detection for a given time (detection)
ph is probability of hit
sspk is probability of kill

DIM SHARED p1(10, 3), p2(10, 10), ph300(10, 3), ph400(1O, 3), ph500(10, 3),
& ph600(10, 3)

'this section dimensions run parameters and defines their default
values

DIM SHARED terminate, timestop, bluestop, redstop
LET terminate = 5000: LET timestop = 300!: LET attenuation = 1!
LET bluestop = 3: LET redstop = 4

131

'this section defines default values for switches that turn on command
'functions on each side.
LET bluecommand = 1: LET redcommand = 1

CLS
COLOR 7, 1
CALL opening ' Draws an opening title screen

CLS
CALL linkempties ' Initializes links in event list
CALL initialize ' Opens and loads data files

Loads initial events into event list
(must be in time sequence order from data file)
Sets system clock to 0.0

Now the events(*,*) array looks like this:

Record # actor event type refers back to points forward to
1 1 1 1 (it's first) 3
2 0 0 (no event) 2 (it's first) 4
3 5 2 1 5
4 6 0 2 7
5 7 3 3 6
6 4 4 5 6 (it's last)
7 3 0 4 8
8 9 0 7 9
e 12 0 e-1 e+1

This section turns on function keys (F1 - F5) for special information
screens. The subroutines referenced are at the end of this module.

ON KEY(1) GOSUB hlp
KEY(1) ON
ON KEY(2) GOSUB soldierscreen
KEY(2) ON
ON KEY(3) GOSUB battlescreen
KEY(3) ON
ON KEY(4) GOSUB ground
KEY(4) ON
ON KEY(5) GOSUB targetlist
KEY(5) ON

SCREEN 9 'provides the highest possible resolution
WINDOW (0, 0)-(1000, 1050) 'for EGA/VGA and sets the origin at the lower

'left hand corner of the screen.

active = 0: visual = 0 ' defines initial page values for the process of
of writing and viewing alternate screens

COLOR 7, 1 ' set foreground white and background blue
PRINT "Do you wish to modify the default settings <y> or <n> ":
& k$ = INPUT$(1)
IF (kS <> "y" OR k$ > "Y") THEN CLS

132

IF (k$ "y" OR k$ = "Y") THEN PRINT "Do you want to see help first ?
& <h> help <enter> continue ": helpkey$ = INPUT$(1): CLS
IF (helpkey$ = "h" OR helpkey$ = "H") THEN GOSUB hlp
IF (k$ = "y" OR k$ = "Y") THEN CALL setup
COLOR 7, 0 'sets foreground white and background black
SCREEN 9, , active, visual 'returns the screen to original page before

'beginning to plot terrain

CALL plotterrain ' plots the initial relief grid on the screen (page 0)

This is the master loop that keeps the simulation running. It
continues to pull the next event off the calendar until some
termination conditions are met such as

'event number (te) = 0 or a specified # of events

DIM SHARED timetostop AS INTEGER

OPEN "history.dat" FOR OUTPUT AS #1
PRINT #1, " TIME TYPE ACTOR"

'this line sets the system counters to 0
quit = 0: timetostop 0: activeblue = bluecount: activered = redcount
DO WHILE timetostop = 0

CALL clock
quit = quit + 1 ' This counter terminates the program after

a specified number of events are called

LOCATE 1, 1
PRINT USING " <F> HELP <F2> SOLDIER STATUS <F3> SUM STATS
& <F4> TERRAIN <F5> TGTS ####.##"; time

SCREEN 9, , active, visual 'returns to the battle screen after
'a function key has been used

IF (quit >= terminate OR time >= timestop OR activeblue <= bluestop OR
& activered <= redstop) THEN timetostop = 1

LOOP
CLOSE #1

CALL oput 'sends selected final output to the screen

END

hlp: 'switches to page 1 and provides the user
LET visual = 1 'with a layered help menu on how to work
SCREEN 9, active, visual 'with the simulation
CALL help
COLOR 1, 0
LET visual = 0
RETURN

soldierscreen: 'switches to page 1 and displays soldier attributes
LET visual = 1
SCREEN 9, active, visual

133

CALL soldierstats
COLOR 1, 0: CLS 1
LET visual = 0
RETURN

battlescreen: 'switches to page 1 and displays battle statistics
LET visual = 1
SCREEN 9, active, visual
CALL battlestats
COLOR 1, 0: CLS 1
LET visual = 0
RETURN

ground: ' plots the terrain relief on the screen when called
primarily to refresh the screen after a significant

CALL plotterrain ' number of the color points have been drawn over.

RETURN
targetlist: 'switches to page 1 and displays a list of potential targets
LET visual = 1
SCREEN 9, active, visual
CALL pottgtlist
COLOR 7, 1: LOCATE 24, 1: CALL pause
COLOR 1, 0: CLS 1
LET visual = 0
RETURN

SUB addevent (itype, time, entity)

'PURPOSE This routine adds an event to the active event list. It
'receives the type and time of event and takes the first empty location
'from the empty list. The routine then calls subprogram move to add the
'to the (pending) future event list.

VARIABLES
itype an integer passed to the routine that specifies event type
time a real value passed to the routine that specifies event time
Firstempty the event number of the first event in the inactive list
Grab an integer buffer that stores the value for the event number
eventtype() the type attribute used in the future event list
eventactor() the index of the soldier that performs event
timeofevent() the time attribute used in the future event list

This routine calls move to take the event(Grab) from the inactive
list and place it on the future event list

First, grab the lowest available record from the inactive list

Grab = Firstempty

134

fill the new record with event information

eventtype(Grab) = itype
timeofevent(Grab) = time
eventactor(Grab) = entity

now move the event from the inactive to the pending list (FEL)

CALL move(Grab, Firstempty, Firstevent)

END SUB

SUB clock

PURPOSE This routine calls the next event off the active future
events list. The routine calls event which passes control of the
simulation to the appropriate event module, and then removes the
event from the active FEL and places it in the inactive file list.

VARIABLES
te is an integer buffer variable that is set equal to Firstevent

* Firstevent this integer variable is a pointer to the first position
in the FEL.

event is called to transfer control to the event routine identified
by eventtype(te)

remove is called to pull the first event from the FEL and move the
record to the inactive list

'this line determines which event is the next to occur
te = Firstevent

'this line calls the routine event which transfers program control
CALL event(te)

this line moves the event record off the FEL and over to the inactive
list

CALL remove(te)
END SUB

135

SUB event (te)

' PURPOSE This routine keeps the system clock (time) updated and
' transfers execution control to the event identified by eventtype(te)
$ with the SELECT CASE function (similar to a computed GOTO in FORTRAN)

VARIABLES
time state variable that maintains the system attribute of time
te integer buffer that identifies next scheduled event
timeofevent() is the time that event te is scheduled to occur
eventtype() is the type of event represented by te

'this line sends a copy of each event to a history file as it occurs
PRINT #1, timeofevent(te), eventtype(te), eventactor(te)

time = timeofevent(te) 'this updates the system clock with the new
'event time

SELECT CASE eventtype(te) 'transfers program control to the correct
CASE 1 'event subprogram
CALL search

CASE 2
CALL startmove

CASE 3
CALL endmove

CASE 4
CALL tgtselect
CASE 5
CALL directfire

CASE 6
CALL impact

CASE 7
CALL reacttofire
CASE ELSE
BEEP
PRINT " unknown event was sent to select in sub event"

END SELECT

END SUB

136

SUB initialize

PURPOSE This routine has 3 primary functions which are to set the
initial system time to zero; open and read in all data files to include
initial events, soldier files, terrain files, and all probability
tables; set any system constants.
The user has the option of viewing all files,
This subprogram does not call any other subprograms or functions

LET time = 0! ' This sets the initial system time at 0.0

' This block loads the initial events into the future event list (FEL)

OPEN "event.dat" FOR INPUT AS #1
PRINT "Do you want to see the data files being loaded?"
INPUT "If you do type (y). If not just hit return. ", show$
CLS
LOCATE 2, 1
PRINT " ***** JUST A MOMENT, INITIALIZING DATABASES *****
I:0
IF (show$: "y") THEN CLS : PRINT " Event type Event time Event actor"
LOCATE 3, 1
DO UNTIL EOF(1)

I:I+1
INPUT #1, mytype, mytime, entity, entity2
IF (show$: "y") THEN PRINT , mytype, mytime, entity
IF (1 12 AND show$: "y") THEN PRINT "hit any key to continue";
& k$: INPUT$(1): LOCATE 3, 1
CALL addevent(mytype, mytime, entity) 'this enters initial events

'from the file
LOOP
CLOSE #1

IF (show$ = "y") THEN CALL pause: CLS

This block loads the terrain information into arrays mobilityo,
and elevationo.

OPEN "board.dat" FOR INPUT AS #1
IF (show$ = "y") THEN PRINT "To view the next file, use scroll lock"
IF (show$ = "y") THEN PRINT " x y elevation mobility",
& k$ = INPUT$(1)
LOCATE 4, 2
k=O
DO UNTIL EOF(1)
k=k+ I
INPUT #1, horz, vert, elev!, mobfac!
elevation(horz, vert) elev!
mobility(horz, vert) mobfac!
IF (show$ "y") THEN PRINT , horz, vert, elev!, mobfac!

LOOP

137

CLOSE #1

IF (show$ = "y") THEN CALL pause: CLS

'This block loads the soldier data into the array movers()

OPEN "force.dat" FOR INPUT AS #1
IF (show$ = "y") THEN PRINT "Refer to appendices for list of soldier
& attribute names"
LOCATE 3, 1
j =0
DO UNTIL EOF(1)

j =j + 1
INPUT #1, x, y, z, xlast, ylast, size, speed, dir, moving, wpnrng, ammo,
& status, posture, incmd, atkdir, tgteng, side
movers(J, 1) =x: movers(J, 2) =y:
'soldier's elevation is set to his location
inovers(J, 3) =elevation(FIX(x / 20) + 1, FIX(y / 20) + 1)
movers(J, 4) = xlast: movers(J, 5) =ylast: movers(J, 6) = size
movers(J, 7) =speed: movers(J, 8) =dir: movers(J, 9) =moving
movers(J, 10) =wpnrng: movers(J, 11) = ammo: movers(J, 12) =status
movers(J, 13) =posture: movers(JI 14) =incmd: movers(J, 15) =dir
movers(J, 16) =tgteng: movers(J, 17) =side

IF (show$= "y") THEN PRINT USING "####.# ####.# ###.# ####.# #, .
& ##.# ##.## # ### ## # #.## ## ##-# ## ## it; x; y; z; xlast; ylast; size;
& speed; dir; moving; wpnrng; ammo; status; posture; incmd; dir; tgteng;
& side
LOOP
CLOSE #1
IF (show$ = "y") THEN CALL pause: CLS

'this block records the original number of soldiers alive when the
'battle starts and the ammo available on each side

bluecount =0: redcount =0: bluebullets =0: redbullets =0
FOR I = 1 TO 6
bluecount =bluecount + movers(I, 12)
bluerounds =bluerounds + movers(l, 11)

NEXT I
FOR I =7 TO 12
redcount redcount + movers(l, 12)
redrounds redrounds + movers(I, 11)

NEXT I

'This section loads probabilities of acquisition for the search module.

OPEN "pl.dat" FOR INPUT AS #1 ' this is a 10 x 3 array
IF (show$ ="y") THEN PRINT "Probabilities of Acquisition(pl) based
& on range & posture."
IF (show$ = "ty") THEN PRINT "range prone crouched standing"
LOCATE 4, 1
I =0

DO UNTIL EOF(1)
~+ 1

138

INPUT #1, p1(0, 1), pl(1, 2), pl(l, 3)
IF (shows = "y") THEN PRINT I * 100, pl(I, 1), pl(1, 2), pl(I, 3)

LOOP
CLOSE #1
IF (shows = "y") THEN CALL pause: CLS

'This section loads probabilities of detection for the search module.

OPEN "p2.dat" FOR INPUT AS #1 ' this is a 10 x 10 array
IF (show$ = "y") THEN PRINT " This is a table of detection probabilities
& given "

IF (show$ = "y") THEN PRINT " that the targets can be acquired."
IF (showS = "y") THEN PRINT " search time (in sec)"
IF (showS = "y") THEN PRINT "range .4 .8 1.2 1.6 2.0 2.4
& 2.8 3.2 3.6 4.0"

LOCATE 5, 1
1=0
DO UNTIL EOF(1)
I=I+1
INPUT #1, p2 (I, 1), p2(I, 2), p2(I, 3), p2(I, 4), p2(I, 5), p2(1, 6),
& p2(1, 7), p2(1, 8), p2(I, 9), p2(1, 10)
IF (show$ = "y") THEN PRINT USING "#### - .### .### .#t# .### .###
& .### .### .### .### .### "; I * 100; p2(I, 1); p2(I, 2); p2(1, 3);
& p2(I, 4); p2(I, 5); p2(I, 6); p2(I, 7); p2(I, 8); p2(I, 9); p2(I, 10)

LOOP
CLOSE #1
IF (show$ = "y") THEN CALL pause: CLS

'This section loads probabilities of hit for the direct fire module.

OPEN "phit300.dat" FOR INPUT AS #1 ' this is a 10 x 3 array
IF (show$ = "y") THEN PRINT " Probabilities of hit(ph300) based on range
& & target posture."
IF (show$ = "y") THEN PRINT " range prone crouched standing"
LOCATE 4, 1
I=0
DO UNTIL EOF(1)
I=I+1
INPUT #1, ph300(I, 1), ph300(I, 2), ph300(I, 3)
IF (shows = "y") THEN PRINT I * 100, ph300(I, 1), ph300(I, 2),
& ph300(I, 3)

LOOP
CLOSE #1
IF (show$ = "y") THEN CALL pause: CLS

OPEN "phit400.dat" FOR INPUT AS #1 this is a 10 x 3 array
IF (show$ "y") THEN PRINT " Probabilities of hit(ph400) based on range
& & target posture."
IF (show$ = "y") THEN PRINT " range prone crouched standing"
LOCATE 4, 1
I=0
DO UNTIL EOF(1)

139

I =I+
INPUT #1, ph400(I, 1), ph400(I, 2), ph400(I, 3)
IF (shows = "y") THEN PRINT I * 100, ph400(I, 1), ph400(I, 2),
& ph400(I, 3)

LOOP
CLOSE #1
IF (shows = "y") THEN CALL pause: CLS

OPEN "phit500.dat" FOR INPUT AS #1 ' this is a 10 x 3 array
IF (shows = "y") THEN PRINT " Probabilities of hit(ph500) based of range
& & target posture."
IF (shows = "y") THEN PRINT " range prone crouched standing"
LOCATE 4, 1
I=0
DO UNTIL EOF(1)
1=1+1
INPUT #1, ph500(I, 1), ph500(I, 2), ph500(I, 3)
IF (show$ = "y") THEN PRINT I * 100, ph500(I, 1), ph500(I, 2),
& ph500(I, 3)

LOOP
CLOSE #1
IF (show$ = "y") THEN CALL pause: CLS

OPEN "phit600.dat" FOR INPUT AS #1 ' this is a 10 x 3 array
IF (show$ = "y") THEN PRINT " Probabilities of hit(ph600) based of range
& & target posture."
IF (show$ = "y") THEN PRINT " range prone crouched standing"
LOCATE 4, 1
I=0
DO UNTIL EOF(1)
I=I+1
INPUT #1, ph600(I, 1), ph600(I, 2), ph600(I, 3)
IF (show$ = "y") THEN PRINT I * 100, ph600(I, 1), ph600(I, 2),
& ph600(I, 3)

LOOP
CLOSE #1
IF (show$ = "y") THEN CALL pause: CLS

END SUB

140

SUB killsoldier (tgt)

'PURPOSE Eliminates active events for soldiers when each soldier dies.
' This routine searches the event list for events of the dead soldier
and then calls the remove subprogram to transfer those records from

' the active to the inactive event list.

'VARIABLES
Maxevents the size of the event list
I is merely a counter
tgt the number of the dead soldier
eventactor() a vector stores the identity of the soldier scheduled

to perform each event.

this block looks at each event on the active list and determines if
it belongs to the deceased soldier. If it does then it is removed
from the active event list

FOR I = 1 TO Maxevents
IF (eventactor(I) > tgt - .1 AND eventactor(I) < tgt + .1) THEN
CALL remove(l) 'places the event record (I) in the inactive file
ELSE
END IF

NEXT I
END SUB

SUB linkempties

PURPOSE This routine establishes links for the records in the active
and inactive event lists. It gives the first event a large value so it
will never be called before all other events have been exhausted. This
feature keeps the model from having an empty list an any time.

VARIABLES
Firstevent = 1 'Firstevent is the active list top pointer
eventtype(1) = 8 'designates the type of event
timeofevent(1) = 9999 'designates the time the event is scheduled for
eventactor(1) = 99 'designates which entity will perform the event
backlink(1) = 1 ' predecessor link that points ahead
nextlink(1) = 1 ' successor link that points behind

Firstempty = 2
FOR I = 2 TO Maxevents

backlink(I) = I - 1
nextlink(I) = I + 1

NEXT I
backlink(2) = 2
nextlink(Maxevents) = Maxevents

END SUB

141

SUB move (e, fromlist, tolist)

'PURPOSE Move an event e from its current list (starts with fromlist)
'to its new list (starts with tolist).
'The event e time, actor and type data should be modified in place
'prior to the call to MOVE. The variable e should not be one of the
'two pointers (fromlist, tolist). FROMLIST and TOLIST will be
'Firstempty and Firstevent - which is which will depend on whether
'MOVE is called to get an event onto or off of the calendar.

'First, delete event e from the list it is currently in

IF e is the first event in the list THEN
change the id of the start of the list
make the backpath stop at the new top

9 ELSEIF e is the last event THEN
f make the nextpath stop at the new end
9 ELSE

just cut e out of the middle of the list

IF backlink(e) = e THEN
fromlist = nextlink(e)
backlink(fromlist) = fromlist "'seal" the backpath at the new top

ELSEIF nextlink(e) = e THEN
nextlink(backlink(e)) = backlink(e) 'stop the nextpath at the new end

ELSE
nextlink(backlink(e)) = nextlink(e) ' path forward now leaps e
backlink(nextlink(e)) = backlink(e) ' path backward now leaps e

END IF

Now, insert e into the new path by looking for its proper position
starting at the top as identified by tolist.

9 slip down the list until the Ist event that follows e is found
putbefore = tolist
WHILE timeofevent(e) > timeofevent(putbefore) AND nextlink(putbefore)
& <> putbefore

putbefore = nextlink(putbefore)
WEND

IF e is before at least one event THEN
IF e is before the old top of the list

put e first
ELSE

slip e in the middle of the list
ELSE

add e to the end of the list

IF timeofevent(e) < timeofevent(putbefore) THEN
IF putbefore tolist THEN

backlink(e) e ' event e comes from itself

142

nextlink(e) = tolist 'event e leads to the old top of the list
backlink(tolist) = e 'old top of list now points to new top (e)
tolist = e ' the new top of the list is event e

ELSE
backlink(e) = backlink(putbefore) 'link e and its predecessor
nextlink(backlink(e)) = e
nextlink(e) z putbefore 'link e and its successor
backlink(putbefore) = e

END IF
ELSE

nextlink(putbefore) = e 'add e to end of the list
backlink(e) = putbefore
nextlink(e) = e

END IF

END SUB

SUB remove (e)

PURPOSE This routine pulls an event from the top, middle or bottom
of a linked list. When passed the value e which indicates the event
to be pulled, the routine zeroes out the event type and calls move
to pass the event to the inactive file.

VARIABLES
e is an integer value that is the identifier of the event of interest
eventtype(e) 0 ' dummy out the event type
eventactor(e) 0 ' dummy out the event actor
timeofevent(e) e ' set sequence number to the position in the array

CALL move(e, Firstevent, Firstempty) 'move event e from the pending
'to the empty list

END SUB

SUB setup

PURPOSE this routine queries the user about whether he desires to use
default settings or not in the simulation and allows the user to modify
certain run parameters if desired.

'these constants determine whether the squad leaders can alter directions
CONST redincmd 1, rednotincmd = 0
CONST blueincmd 1, bluenotincmd = 0

again$ = 'Y'
DO WHILE again$ "r"

CALL frame(l, 79, 2, 23, 7, 1)

143

LOCATE 4, 32
PRINT " SIMULATION SETUP "
LOCATE 6, 3: PRINT " Default settings are indicated in < >.
& To modify hit <y> else <return>."
LOCATE 7, 3: PRINT "
&----------------------
LOCATE 8, 3: PRINT " Maximum number of events <5000> Modify? (y/n)":
& a$ = INPUT$(1)
IF (a$ "y" OR a$ "Y") THEN LOCATE 8, 60: INPUT "Value "; terminate
LOCATE 10, 3: PRINT " Maximum number of seconds for run <300> Modify?
& (y/n)": b$ = INPUT$(1)
IF (b$ = "y" OR b$ "Y") THEN LOCATE 10, 60: INPUT "Value "; timestop
LOCATE 12, 3: PRINT " Terminate # level of Blue remaining <3> Modify?
& (y/n)": c$ = INPUT$(1)
IF (c$ = "y" OR c$ "Y") THEN LOCATE 12, 60: INPUT "Value "; bluestop
LOCATE 14, 3: PRINT " Terminate at # of Red Remaining <4> Modify?
& (y/n)": d$ = INPUT$(1)
IF (d$ = "y" OR d$ = "Y") THEN LOCATE 14, 60: INPUT "Value "; redstop
LOCATE 16, 3: PRINT " Atmospheric attenuation coef. <1.0> Modify? (y/n)":
& e$ = INPUT$(1)
IF (e$ = "y" OR e$ = "Y") THEN LOCATE 16, 60: INPUT "Value "; attenuation
LOCATE 18, 3: PRINT " Should blue side respond to sqd ldr <yes> Modify?
& (y/n)": f$ = INPUT$(1)
IF (f$ = "y" OR f$ = "Y") THEN LOCATE 18, 60: INPUT " <y> or <n> "; g$:
& IF (g$ = "n" OR g$ = "N") THEN bluecommand = bluenotincmd
LOCATE 20, 3: PRINT " Should red side respond to sqd ldr <yes> Modify?
& (y/n)": h$ = INPUT$(1)
IF (h$ = "y" OR h$ = "Y") THEN LOCATE 20, 60: INPUT " <y> or <n> "; I$:
& IF (1$ "n" OR 1$ <> "N") THEN redcommand rednotincmd

LOCATE 22, 4: RANDOMIZE 'queries the user to input an initial seed value.

LOCATE 24, 2: PRINT "If done hit <return> else hit <r> to make changes ":
& again$ = INPUT$(1)

CLS
LOOP
END SUB

SUB showevents

PURPOSE This routine prints a list of the first twelve events on the
future event calendar and a brief description of each event.

CLS 1
COLOR 7, 1
PRINT "SEQ TYP LST WHO TIME <BK-NXT>"
e Firstevent
ne= 0
1=0

144

WHILE nextlink(e) 0> e AND I <= 10
I 1+1I
ne ne + 1
LOCATE ne + 1, 1
PRINT USING "#";ne;
PRINT USING "#(##) ## at ###.## 0#40##"; eventtype(e); e;
& eventactor(e); timeofevent(e); backlink(e); nextlink(e)
LOCATE ne + 1, 35

IF (eventtype(e) = 1) THEN PRINT USING "Soldier ## will start searching at
& ####.##"; eventactor(e); timeofevent(e)
IF (eventtype(e) = 2) THEN PRINT USING "Soldier ## will start moving at
& ####.##"; eventactor(e); timeofevent(e)
IF (eventtype(e) = 3) THEN PRINT USING "Soldier ## will stop moving at
& ####.##"; eventactor(e); timeofevent(e)
IF (eventtype(e) = 4) THEN PRINT USING "Soldier ## will select a target at
& ####.##"; eventactor(e); timeofevent(e)
IF (eventtype(e) = 5) THEN PRINT USING "Soldier ## will fire at soldier ##
& at ####.##"; eventactor(e); movers(eventactor(e), 16); timeofevent(e)

IF (eventtype(e) =6) THEN PRINT USING "Soldier's ## shot impacts on ## at
& ####.##"; eventactor(e); movers(eventactor(e), 16); timeofevent(e)

IF (eventtype(e) = 7) THEN PRINT USING "Soldier ## reacts to being fired
& on at####.##"; eventactor(e); timeofevent(e)

e =nextlink(e)
WEND

ne =ne +1
LOCATE ne + 1, 1
PRINT USING "##) ";ne;
PRINT USING "## (#)## at ###.## <##-##>"; eventtype(e); e;
& eventactor(e); timeofevent(e); backlink(e); nextlink(e)
LOCATE ne + 1, 35

IF (eventtype(e) =1) THEN PRINT USING "Soldier ## will start searching at
& ####.##"i; eventactor(e); timeofevent(e)
IF (eventtype(e) =2) THEN PRINT USING "Soldier ## will start moving at
& ####.##"i; eventactor(e); timeofevent(e)
IF (eventtype(e) = 3) THEN PRINT USING "Soldier ## will stop moving at
& ####.##"i; eventactor(e); timeofevent(e)
IF (eventtype(e) = 4) THEN PRINT USING "Soldier ## will select a target at
& ####.##"i; eventactor(e); timeofevent(e)
IF (eventtype(e) =5) THEN PRINT USING "Soldier ## will fire at soldier ##
& at ####.##"; eventactor(e); movers(eventactor(e), 16); timeofevent(e)
IF (eventtype(e) = 6) THEN PRINT USING "Soldier's ## shot impacts on ## at
& ####.##"; eventactor(e); movers(eventactor(e), 16); timeofevent(e)
IF (eventtype(e) =7) THEN PRINT USING "Soldier ## reacts to being fired
& on at####.##"; eventactor(e); timeofevent(e)

LOCATE 14, 1
PRINT "*********************************
& *****t

LOCATE 16, 26: PRINT " EVENT CALENDAR DISPLAY"

145

LOCATE 18, 1
PRINT " This display shows the next twelve events scheduled to occur in
& chronological"
PRINT " order. The left side shows the type of event, its position in
& the event list"
PRINT " the event actor, the time of the event, along with the successor
& and
PRINT " predecessor link pointers. The right side is a short description
& of the event."
LOCATE 24, 2
CALL pause
END SUB

146

****** COMBAT MODULE *

This block contains the declare statements for the subprograms and
functions that are in or called by this module. Hit F2 for menu.

DECLARE SUB icon (who) ' draws out the graphics of the soldiers
DECLARE SUB pause () ' used to allow the user to read screen
DECLARE SUB addevent (itype!, time!, entity) ' add events to calendar
DECLARE SUB endmove () ' plots soldier's new location
DECLARE SUB startmove () ' provides next location and time to move
DECLARE SUB search () 'decides which enemy can be seen by observer
DECLARE SUB tgtselect () 'selects a detected target to engage, if any
DECLARE SUB reacttofire () 'models soldier's action after being engaged
DECLARE SUB directfire () 'performs firing and computes time of flight
DECLARE SUB impact () 'determines hits and the results of a hit
DECLARE SUB killsoldier (tgt) 'removes future events of dead soldiers
DECLARE SUB plotterrain () 'plots the elevation on the graphics
DECLARE SUB oput () 'provides final output at end of simulation
DECLARE SUB soldierstats () 'prints out a list of soldier attributes
DECLARE SUB frame (left%, right%, top%, bittom%, fore%, back%) ' frames
DECLARE SUB battlestats () 'provides a summary of ongoing battle stats
DECLARE SUB pottgtlist () 'displays each soldier's target list
DECLARE SUB reorient (who) 'reorients soldier direction on SL's command
DECLARE SUB cmddecision (who) 'changes soldier's directions when called
DECLARE SUB showevents () 'a window showing next 12 events scheduled
DECLARE SUB hitcount (tgt) 'tracks total hits on each side for oput
DECLARE FUNCTION LOS! (entityl!, entity2!) 'checks LOS from obs to tgt
DECLARE FUNCTION triag (A!, R!, B!) ' provides RV of a triangular dist

' The variables in these COMMON's are globally defined
COMMON SHARED time, movers(, te, eventactor(, elevationo, mobility(,
& pl(), p2(), ph300(), ph400(), ph500(), ph600(), attenuation, activeblue,
& activered
COMMON SHARED bluecommand, redcommand, direct()
COMMON SHARED bluecount, redcount, bluerounds, redrounds

CONST pi = 3.14159
DIM SHARED tgtlist(12, 12) AS SINGLE
DIM SHARED pottgts(6, 2) AS SINGLE
DIM SHARED redhits AS INTEGER, bluehits AS INTEGER
END

147

SUB battlestats

'PURPOSE this routine computes and displays some simple data values
during the course of the simulation

CLS 1 'all of this block is formatting of a display screen
COLOR 1, 15
CALL frame(2, 78, 2, 23, 1, 15)
LOCATE 3, 30: PRINT "** BATTLE STATUS **"
LOCATE 7, 4: PRINT "Soldiers remaining"
LOCATE 9, 4: PRINT "Soldiers wounded"
LOCATE 11, 4: PRINT "Ammo remaining"

LOCATE 5, 25: PRINT "* BLUE FORCES *"
LOCATE 7, 28: PRINT USING " ## "; activeblue
LOCATE 9, 28
bluewounded = 0
FOR 1 = 1 TO 6
IF (movers(l, 12) = 2) THEN bluewounded bluewounded + 1
NEXT 1
PRINT USING " ##"; bluewounded
FOR I = 1 TO 6
BLUEAMMO = BLUEAMMO + movers(I, 11)

NEXT I
LOCATE Il, 28
PRINT USING " ###"; BLUEAMMO

COLOR 4, 15
LOCATE 5, 50: PRINT "* RED FORCES *"

LOCATE 7, 53: PRINT USING " ## "; activered
LOCATE 9, 53
redwounded = 0
FOR 1 = 7 TO 12

IF (movers(l, 12) = 2) THEN redwounded redwounded + 1
NEXT 1
PRINT USING " ##"; redwounded

FOR I = 7 TO 12
REDAMMO = REDAMMO + movers(I, 11)

NEXT I
LOCATE 11, 53
PRINT USING " ###"; REDAMMO

COLOR 1, 15
LOCATE 22, 3
PRINT "Do you wish to see event list ? ": k$ = INPUT$(1)
IF (k$ "y" OR k$ = "Y") THEN CALL showevents
IF (k$ <> "y" AND k$ <> "Y") THEN LOCATE 24, 2: CALL pause

END SUB

148

SUB cmddecision (who)

'PURPOSE this routine causes the soldiers to orient on the sqd
'leader's target or return to their original movement direction.

'if the soldier is a sqd ldr and has identified a target then the
'soldiers in his squad will reorient on the enemy otherwise they
'will assume their original directions of movement

IF (movers(who, 14) > 0 AND movers(who, 16) > 0) THEN
CALL reorient(who)

ELSE

IF (movers(who, 17 = 1)) THEN firstone 1: lastone 6
IF (movers(who, 17 = -1)) THEN firstone 7: lastone 12

FOR I = firstone TO lastone
movers(I, 8) = movers(I, 15)

NEXT I
END IF

END SUB

SUB directfire STATIC

PURPOSE This routine models a soldier that has identified a
potential target to fire at. It fires at the target and then calls
the impact subprogram to determine whether the engagement was
successful. This routine checks to ensure both actors are still alive
at the engagement time, and line of sight still exists between the two.

VARIABLES
who = eventactor(te) 'this is the observer
x = movers(who, 1) 'these are the coordinates and orientation
y = movers(who, 2) 'of the observer
dir = movers(who, 8)
tgt = movers(who, 16) 'enemy to be engaged
tgtx = movers(tgt, 1) 'enemy's coordinates
tgty = movers(tgt, 2)
obsstatus = movers(who, 12) 'whether observer is dead or alive
tgtstatus = movers(tgt, 12) 'whether the target is dead or alive

'this check ensures that the target is alive
IF (tgtstatus > 0) THEN

IF (LOS(who, tgt) = 1 AND movers(who, 11) > 0) THEN
'Compute absolute distance between observer and target
dist = SQR((obsx - tgtx) ^ 2 + (obsy - tgty) ^ 2)

149

'Compute time of flight and impact time
'this formula assumes a constant bullet velocity of 500 meters/sec
impacttime = time + dist / 500!
'this function draws out firing occurrences.
LINE (x, y)-(tgtx, tgty), 4
PLAY "MFOOL64T64N45L32N1M" 'this function creates the firing sound

'and delays the draw function long
'enough to observe ito

LINE (x, y)-(tgtx, tgty), 0

CALL addevent(6, impacttime, who) 'schedules impact of the bullet
movers(who, 11) = movers(who, 11) - 1 'decrement ammo supply by one

ELSE
CALL addevent(l, time + triag(2!, 5!, 7!), who)
'shooter looks for new target

END IF
ELSE

CALL addevent(l, time + triag(2!, 5!, 7!), who)
'shooter looks for new target

END IF

END SUB

SUB endmove

$ PURPOSE The purpose of this routine is to determine the time for the
beginning of the next movement.

VARIABLES
who = eventactor(te) ' who is a buffer for soldier's identity

'this block computes a time for the next move to begin
'and schedules a startmove to occur at that time.
movetime = time + triag(8!, 10!, 12!)

CALL addevent(2, movetime, who)

'the duration of the time between moves was selected arbitri-rily

END SUB

150

SUB hitcount (tgt)

'PURPOSE this routine counts the number of hits scored on each side
'for final output in the subprogram oput

'VARIABLES
bluehit is a counter for the number of hits on blue
redhit is a counter for the number of hits on red

IF (movers(tgt, 17) = 1) THEN bluehits = bluehits + 1
IF (movers(tgt, 17) = -1) THEN redhits = redhits + 1

END SUB

SUB icon (who)

PURPOSE This routine checks to see if the soldier is moving. If so,
then it draws the soldier's symbol at the new location and overdraws
the old location with the background color.

VARIABLES
who ' the soldier being drawn

x = movers(who, 1) ' the new xy coordinates for the soldier
y = movers(who, 2)
xlast = movers(who, 4) ' the soldier's old x,y coordinates
ylast = movers(who, 5)
dir movers(who, 8) ' the orientation/movement direction

of the soldier
side movers(who, 17) ' the soldier's allegiance (1) blue (-1) red

'this block determines the correct color for the icon
CONST blueicon = 9, redicon = 4

IF (side > 0) THEN
iconcolor = blueicon

ELSE
iconcolor = redicon

END IF

'this block determines which location to be drawing in
IF (movers(who, 12) = 1) THEN

'overdraw the soldier's old symbol with the background color
CIRCLE (xlast - 3.6, ylast), 2, 0
PSET (xlast, ylast), 0
LINE -STEP(-10, -10), 0
LINE -STEP(-1O, 10), 0
LINE -STEP(10, 10), 0
LINE -STEP(10, -10), 0

151

'draw the soldier's new symbol at the new location
CIRCLE (x - 3.6, y), 2, iconcolor
PSET (x, y), iconcolor
LINE -STEP(-10, -10), iconcolor
LINE -STEP(-10, 10), iconcolor
LINE -STEP(10, 10), iconcolor
LINE -STEP(10, -10), iconcolor

ELSE
' this block redraws the soldier's icon if he has not moved
' CIRCLE (xlast - 3.6, ylast), 2, iconcolor
' PSET (xlast, ylast), iconcolor
LINE -STEP(-8, -8), iconcolor
LINE -STEP(-8, 8), iconcolor
LINE -STEP(8, 8), iconcolor
LINE -STEP(8, -8), iconcolor

END IF

END SUB

SUB impact

PURPOSE this routine determines if the bullet hits the target and
whether it is wounded or killed. The routine then modifies the
targets attributes and calls the proper future events for
both the firer and target based on the results

VARIABLES
who = eventactor(te) 'this is the observer
x = movers(who, 1) 'these are the coordinates and orientation
y = movers(who, 2) 'of the observer
dir = movers(who, 8)
tgt = movers(who, 16) 'enemy soldier being shot at
xtgt = wovers(tgt, 1) 'enemy's present coordinates
ytgt = movers(tgt, 2)
xlasttgt = movers(tgt, 4) 'enemyts last coordinates
ylasttgt = movers(tgt, 5)
side = movers(tgt, 17) 'designates the allegiance of the target
'activeblue indicates number of remaining blue soldiers
'activered indicates number of remaining red soldiers

'this section computes absolute distance between observer and target
dist= SQR((obsx - tgtx) ^ 2 + (obsy - tgty) ^ 2)

'this section determines posture column to look under in pl table
IF (movers(tgt, 13) > .9) THEN tgtposture = 3
IF (movers(tgt, 13) < .9 AND movers(tgt, 13) > .4) THEN tgtposture = 2
IF (movers(tgt, 13) < .4) THEN tgtposture = 1

152

'this section determine p(hit) based on range and target posture

IF (dist > 999) THEN dist = 899 'limits possible ranges to 1000m
Psince the tables are limited

'determines the correct p(hit) table depending on the soldier's
'weapon range.

IF (movers(who, 10) < 399) THEN
phit = ph300(INT(dist / 100) + 1, tgtposture)

ELSEIF (movers(who, 10) < 499) THEN
phit = ph400(INT(dist / 100) + 1, tgtposture)

ELSEIF (movers(who, 10) < 499) THEN
phit = ph500(INT(dist / 100) + 1, tgtposture)

ELSE
phit = ph600(INT(dist / 100) + 1, tgtposture)

END IF

IF (RND < phit) THEN

CALL hitcount(tgt)

'Determine probability of Kill
IF (RND < .3) THEN 'arbitrary 30% chance of death

'this section graphically portrays the bullet's impact
'both ex~losion graphics and noise are created momentarily then erased
'the basic idea for this cam- fr- 4icrosoft DOS 5.0 demonstration
'program entitled "GORILLA.BAS"

FOR I = 1 TO 4
PSET (xtgt - 3.6, ytgt), 14
CIRCLE (xtgt - 3.6, ytgt), 1 + I, 14
LINE (xtgt - 3.6, ytgt)-(xtgt - 3.6 + I * COS(4 * I 3.14),
& ytgt + I * SIN(4 * I / 3.14)), 4
PLAY "MFL3200EFGDFG"

NEXT I
FOR I = 1 TO 4

PSET (xtgt - 3.6, ytgt), 0
CIRCLE (xtgt - 3.6, ytgt), 1 + I, 0
LINE (xtgt - 3.6, ytgt)-(xtgt - 3.6 + I * COS(4 * I 3.14),
& ytgt + I * SIN(4 * I / 3.14)), 0

NEXT I

set status to dead posture to prone movement to stopped
movers(tgt, 12) = 0: movers(tgt, 13) = .25: movers(tgt, 9) = 0

' schedule the firer to resume searching
CALL addevent(1, time + triag(2!, 5!, 7!), who)

153

'overdraw the soldier's old symbol with the background color
CIRCLE (xlasttgt - 3.6, ylasttgt), 2, 0
PSET (xlasttgt, ylasttgt), 0
LINE -STEP(-10, -10), 0
LINE -STEP(-10, 10), 0
LINE -STEP(IO, 10), 0
LINE -STEP(1O, -10), 0

CONST deadicon = 7 ' this set the color for a dead icon to It gray

'draw the dead soldier's symbol at the present location
CIRCLE (xtgt - 3.6, ytgt), 2, deadicon
PSET (xtgt, ytgt), deadicon
LINE -STEP(-1O, -10), deadicon
LINE -STEP(-1O, 10), deadicon
LINE -STEP(10, 10), deadicon
LINE -STEP(10, -10), deadicon

CALL killsoldier(tgt) 'removes dead soldiers active events

'this section updates the number of active soldiers on each side
'this is used in battlestats and as termination conditions in the
'main module

IF (side > 0) THEN
activeblue = 0
FOR I = 1 TO 6

alive = 0
IF (movers(I, 12) > 0) THEN alive = 1
activeblue = activeblue + alive

NEXT I
ELSE
activered = 0
FOR I = 7 TO 12
alive = 0
iF (movers(I, 12) > 0) THEN alive = 1
activered = activered + alive

NEXT I
END IF

'this section determines whether the dead soldier is a sqd leader. If so
'then all directions of movement are returned to original orientation.

IF (tgt < 7 AND movers(tgt, 14) > 0) THEN
FOR I = 1 TO 6
movers(I, 8) = movers(I, 15)

NEXT I
ELSEIF (movers(tgt, 14) > 0) THEN

FOR I = 7 TO 12
movers(I, 8) = movers(I, 15)

NEXT I
ELSE
END IF

154

ELSE 'the target is only wounded and not killed

'this section graphically portrays the bullet's impact
FOR I = 1 TO 3

PSET (xtgt - 2.83, ytgt), 14
CIRCLE (xtgt - 2.83, ytgt), 1 + I, 4
LINE (xtgt - 2.83, ytgt)-(xtgt - 2.83 + I * COS(4 * 1 3.14),
& ytgt + I * SIN(4 * I / 3.14)), 0
PLAY "MFL6400EFGDFG"

NEXT I
FOR I = 1 TO 3

PSET (xtgt - 2.83, ytgt), 0
CIRCLE (xtgt - 2.83, ytgt), 1 + I, 0
LINE (xtgt - 2.83, ytgt)-(xtgt - 2.83 + I * COS(4 * 1 3.14),
& ytgt + I * SIN(4 * I / 3.14)), 0

NEXT I

set status to wounded set movement to 0
movers(tgt, 12) = 2: movers(tgt, 9) = 0

'schedule firer to reengage present target
CALL addevent(5, time + triag(4!, 5!, 8!), who)

'schedule target to react after being fired at
CALL addevent(7, time + 2!, tgt)

END IF
ELSE 'shot misses the target
PLAY "MFL64T240o0b"
'firer is scheduled to reengage the target after a short time required
'to reload and reaim the weapon
CALL addevent(5, time + triag(4!, 5!, 8!), who)

' target is scheduled to react after being shot at
CALL addevent(7, time + 2!, tgt)

END IF
END SUB

155

FUNCTION LOS (entityl, entity2) STATIC

PURPOSE This function when given an observer and target combination
(entityl,entity2), returns a value of 1 (LOS exists) or 0 (LOS does
not exist). It checks at 10 meter intervals whether the height at that

'point intersects LOS. Observer and target height are elevation + 2 m.

VARIABLES
obs and tgt identify the entities for the LOS check
elevation() a 50x50 array that contains elevations of each grid
NumberofChecks an integer variable that is the possible # of checks
LOSdist a real variable that is the distance between obs and tgt
LOSdir a real variable that is the direction from obs to tgt (rdn)
CheckX, CheckY, CheckZ real variable values that represent the
coordinates of the points being checked along the LOS path
LOScheck a buffer that holds the true value of LOS until the end of
the function otherwise any references to LOS are assumed to be
recursive calls by the compiler.

obs = entityl: tgt = entity2

'Read in location coordinates of observer and target entities
obsx! = movers(obs, 1): obsy! = movers(obs, 2)
obsz! = movers(obs, 3) + movers(obs, 6)
tgtx! = movers(tgt, 1): tgty! = movers(tgt, 2)
tgtz! = movers(tgt, 3) + movers(tgt, 6)

'Compute absolute distance between observer and target
LOSdist! = SQR((obsx! - tgtx!) ^ 2 + (obsy! - tgty!) ^ 2)

TF (movers(obs, 17) <> movers(tgt, 17) AND LOSdist! <= 100 AND
& movers(tgt, 12) > 0) THEN movers(obs, 7) = 0: movers(obs, 13) = .5

dx = 10 * (tgtx! - obsx!) / LOSdist!
dy! = 10 * (tgty! - obsy!) / LOSdist!
dz! = 10 * (tgtz! - obsz!) / LOSdist!

LOS = 1 'Initially set LOS to 1 until check determines otherwise
LOScheck = 1 'this buffer stores LOS value until end of function

'Determine number of checks need to be made along LOS path.
NumberofChecks = INT(LOSdist / 10)
check = 0 'Initially set counter to 0
CheckX! = obsx: CheckY! = obsy!: ' designating observer location

as the start point for LOS checks
CheckZ! = obsz!

This loop wiil compare the intervening terrain elevation at 20 meter
intervals with the LOS height (CheckZ)

156

DO ' this loop will continue as long as LOS exists or until all
intermediate points at 20m intervals are checked

check = check + 1 'keeps track of # of checks
CheckX! = CheckX! + dx! 'CheckX is X coord for next check
CheckY! = CheckY! + dy! 'CheckY is Y coord for next check

'CheckZ is the elevation of the LOS at the check location

CheckZ! = CheckZ! + dz!

This check compares the height of CheckZ with the terrain height
at the check location. The checks continue until the terrain is
at some check is high enough to break line of sight

IF (CheckX! > 1000) THEN CheckX! = 999 ' this block prevents array
IF (CheckY! > 1000) THEN CheckY! = 999 ' subscripts from exceeding
IF (CheckX! < 0) THEN CheckX! = 0 ' their limits
IF (CheckY! < 0) THEN CheckY! = 0

IF (elevation(FIX(CheckX! / 20!) + 1, FIX(CheckY! / 20!) + 1) > CheckZ!)

& THEN LOScheck = 0

LOS = LOScheck 'If LOS does not exist then set LOS = 0

LOOP WHILE LOScheck = 1 AND check < NumberofChecks - 1

END FUNCTION

SUB oput

PURPOSE This routine provides several screens of "end of battle"
values. The first screen provides some aggregated values for each
side. The next screen displays selected from the soldier attribute
arrays, and the last screen shows the target list at end of battle,

LOCATE 1, 1
PRINT USING " END OF SIMULATION RUN THE TIME IS ####.##.....

"; time

PLAY "MFOOL16DEFGPOCCAA"
LOCATE 25, 2: INPUT " Do you wish to see final output <y> or <n> ", k$
IF (k$ = "y" OR k$ = "Y") THEN

CLS
COLOR 1, 15
CALL frame(2, 78, 2, 23, 1, 15)
LOCATE 3, 30: PRINT "** BATTLE STATUS **"
LOCATE 7, 4: PRINT "Initial # of soldiers"
LOCATE 9, 4: PRINT "Soldiers remaining"
LOCATE 11, 4: PRINT "Soldiers wounded"
LOCATE 13, 4: PRINT "Initial ammo"

157

LOCATE 15, 4: PRINT "Ammo remaining"
LOCATE 17, 4: PRINT "# of rounds fired"
LOCATE 19, 4: PRINT "# of hits on side"

LOCATE 5, 25: PRINT "* BLUE FORCES *"
LOCATE 7, 28: PRINT USING " ## "; bluecount
LOCATE 9, 28: PRINT USING " ## "; activeblue
LOCATE 11, 28
bluewounded = 0
FOR 1 = 1 TO 6
IF (movers(l, 12) = 2) THEN bluewounded = bluewounded + 1

NEXT 1
PRINT USING " ##"; bluewounded
FOR I 1 1 TO 6

BLUEAMMO = BLUEAMMO + movers(I, 11)
NEXT I
LOCATE 13, 28: PRINT USING " ###"; bluerounds
LOCATE 15, 28: PRINT USING " ###"; BLUEAMMO
LOCATE 17, 28: PRINT USING " ###"; bluerounds - BLUEAMMO
LOCATE 19, 28: PRINT USING " ###"; bluehits

COLOR 4, 15
LOCATE 5, 50: PRINT "* RED FORCES *"
LOCATE 7, 53: PRINT USING " ## "; redcount
LOCATE 9, 53: PRINT USING " ## "; activered
LOCATE 11, 53
redwounded = 0
FOR 1 = 7 TO 12
IF (movers(l, 12) = 2) THEN redwounded = redwounded + 1

NEXT 1
PRINT USING " ##"; redwounded

FOR I = 7 TO 12
REDAMMO = REDAMMO + movers(I, 11)
NEXT I
LOCATE 13, 53: PRINT USING " ###"; redrounds
LOCATE 15, 53: PRINT USING " ###"; REDAMMO
LOCATE 17, 53: PRINT USING " ###"; redrounds - REDAMMO
LOCATE 19, 53: PRINT USING " ###"; redhits
LOCATE 24, 2
CALL pause

COLOR 1, 15: CLS
LOCATE 2, 2: PRINT "Selected values from the present soldier attribute
& files."
LOCATE 4, 2: PRINT " x / y / speed / moving / ammo / status /
& posture / tgteng"
FOR I = 1 TO 12

PRINT USING " ####.# ####.# ##.# ## ## ##
& ## "; movers(I, 1); movers(I, 2); movers(I, 7); movers(I, 9);
& movers(I, 11); movers(I, 12); movers(I, 13); movers(I, 16)

NEXT I

158

LOCATE 24, 2
CALL pause
CLS
PRINT " Potential Targets Array": PRINT
PRINT " Targets "
PRINT "Observer 1 2 3 4 5 6 7 8 9 10 11 12"
FOR I 1 TO 12

PRINT USING " ## - .## .## .## .## .## .## .## .## .## .## .## .## ";
& I; tgtlist(l, 5); tgtlist(, 2); tgtlist(, 3); tgtlist(, 4);
& tgtlist(J, 5); tgtlist(I, 6); tgtlist(I, 7); tgtlist(I, 8);
& tgtlist(l, 9); tgtlist(I, 10); tgtlist(I, 11); tgtlist(I, 12)

NEXT I
LOCATE 24, 2
CALL pause
CLS
ELSE
END IF

END SUB

SUB plotterrain

PURPOSE This routine places a color patch in each grid that
identifies the elevation for that particular grid.

FOR I = 1 TO 50
FOR J = 1 TO 50

xspot = I * 20! - 10!
yspot = J * 20! - 10!
elev = elevation(I, J)
IF (elev < 10 OR elev = 10) THEN 'color is light green

spot = 10
ELSEIF (elev < 20 OR elev = 20) THEN 'color is light cyan

spot = 11
ELSEIF (elev < 30 OR elev = 30) THEN 'color is light red

spot = 12
ELSEIF (elev < 40 OR elev = 40) THEN 'color is light magenta

spot = 13
ELSEIF (elev < 50 OR elev = 50) THEN 'color is light yellow

spot = 14
ELSEIF (elev < 60 OR elev = 60) THEN 'color is bright grey

spot = 15
ELSE spot = 6 'color is brown
END IF

PSET (xspot, yspot), spot
NEXT J

NEXT I

END SUB

159

SUB pottgtlist

'PURPOSE prints out a listing of the soldiers' target listings

CLS 1
COLOR 7, 1
CALL frame(2, 78, 2, 23, 7, 1)
LOCATE 5, 18: PRINT " Potential Targets Array"
LOCATE 7, 18: PRINT " Targets "

LOCATE 8, 11: PRINT" Observer 1 2 3 4 5 6 7 8 9 10 11
& 12"

FOR I = 1 TO 12
LOCATE 8 + I, 11
PRINT USING " ## - .## .## .## .## .## .## .## .## .## .## .## .## ";
& I; tgtlist(l, 1); tgtlist(I, 2); tgtlist(l,3); tgtlist(I, 4);
& tgtlist(I, 5); tgtlist(I, 6); tgtlist(I, 7); tgtlist(I, 8);
& tgtlist(I, 9); tgtlist(I, 10); tgtlist(I,11); tgtlist(I, 12)

NEXT I

END SUB

SUB reacttofire

PURPOSE This routine integrates a small portion of decision logic
into the model. After being shot at a soldier can take several
courses of action which are basically random in this case.

reaction = RND ' value is used to determine the soldier's reaction

who = eventactor(te) 'the soldier's reaction maybe to fall to the
IF (reaction < .4) THEN 'ground and continue searching or to run away

$or even possibly to madly rush forward

movers(who, 7) = 5: movers(who, 13) = .25
ELSEIF (reaction < .6) THEN
movers(who, 8) = movers(who, 8) + 3.14

ELSE
movers(who, 7) = 30: movers(who, 13) =1

END IF

END SUB

160

SUB reorient (who) STATIC

PURPOSE this routine will change the direction of a subordinate
soldier's movement when it is called. The soldiers will orient
on the enemy soldier targeted by the squad leader.

VARIABLES
tgt movers(who, 16)
tgtx movers(tgt, 1)
tgty movers(tgt, 2)

IF (who < 7) THEN
FOR I = 1 TO 6

IF (movers(I, 12) > 0) THEN 'if the soldier is alive
IF (movers(I, 1) < tgtx AND movers(I, 2) < tgty) THEN

movers(I, 8) = .8
ELSEIF (movers(I, 1) < tgtx AND movers(I, 2) > tgty) THEN

movers(I, 8) = 2.1
ELSEIF (movers(I, 1) > tgtx AND movers(I, 2) > tgty) THEN

movers(I, 8) = 3.9
ELSE

movers(I, 8) = 5.2
END IF

ELSE
END IF

NEXT I

ELSE
FOR I = 7 TO 12

IF (movers(I, 12) > 0) THEN 'if the soldier is alive
IF (movers(I, 1) < tgtx AND movers(I, 2) < tgty) THEN

movers(I, 8) = .6: movers(I, 7) = 40
ELSEIF (movers(I, 1) < tgtx AND movers(I, 2) > tgty) THEN
movers(I, 8) = 2.4: movers(I, 7) = 40

ELSEIF (movers(I, 1) > tgtx AND movers(I, 2) > tgty) THEN
movers(I, 8) = 3.8: movers(I, 7) = 40

ELSE
movers(I, 8) = 5.3: movers(I, 7) = 40

END IF

ELSE
END IF

NEXT I
END IF

END SUB

161

SUB search

PURPOSE This routine will check all live enemy soldiers to see which
are within range, and which have LOS with observer. The routine then
checks to see which targets can be acquired by the observer(pl) and of
these that are acquired which are detected using probability (p2).
The routine then places the candidates prob of det on the potential
tgt list, and calls the target selection routine to decide which target
may be engaged.

'VARIABLES
who = eventactor(te) 'this is the observer
x = movers(who, 1) 'these are the coordinates and orientation
y = movers(who, 2) 'of the observer
dir = movers(who, 8)
speed = movers(who, 7) 'observer's rate of travel
xlast = movers(who, 4) 'observer's last coordinates
ylast = movers(who, 5)
status = movers(who, 12) 'whether observer is dead or alive
side = movers(who, 17) 'whether the observer is a blue or red soldier

Pthreshold = .3 / attenuation ' the minimum threshold level required
'to acquire a target. It has been set
'arbitrarily. Attenuation is a parameter
'that can be set by the user to represent
'reduced visibility. Its range of values
'should be (0.31 - 1.0). Less than .3 makes
'it impossible to acquire a target at any
'range.

nodetect = 1!
'This loop determines the side of the soldier and then performs a
'search routine on each of the possible enemy soldiers.
FOR I = 1 TO 12

tgtlist(who, I) = 0 ' ensures the list only contains current entries.
IF (movers(who, 17) <> movers(I, 17)) THEN 'so we only check enemy.
lineofsight = LOS(who, I) 'calls for LOF check on each enemy

IF (lineofsight = 1) THEN 'the search process continues only if
'line of sight exists

'distance between observer and target is computed.

dist = SQR((movers(I, 1) - x) ̂ 2 + (movers(I, 2) - y) ̂ 2)

'this section determines posture column to look under in p1l table
IF (movers(I, 13) > .9) THEN tgtposture = 3
IF (movers(I, 13) < .9 AND movers(I, 13) > .4) THEN tgtposture = 2
IF (movers(I, 13) < .4) THEN tgtposture = 1

IF (dist > 999) THEN dist = 899 'limits possible ranges to lO00m
'since the tables are limited

162

Pinf = pl(INT(dist / 100) + 1, tgtposture) 'pulls prob of acquistion
IF (Pinf > Pthreshold) THEN 'from table

lo = .4: mode = 2: hi = 4! 'a search time is computed
srchtime = triag(lo, mode, hi) 'using triangular distribution

'a U(0,1) random # is compared to probability of detection(p2)
IF (RND < p2(INT(dist / 100) + 1, INT(srchtime * 2.5) + 1)) THEN

'this is a line draw function that displays detection occurences.
LINE (movers(who, 1), movers(who, 2))-(movers(i, 1), movers(I, 2)), 1
PLAY "p24" 'these functions produce the popping sound
PLAY "p8" 'and delay the draw function long enough to observe it.
LINE (movers(who, 1), movers(who, 2))-(movers(I; 1), movers(I, 2)), 0
'this line puts the P2 value of each target in the observer's
'target list for use by the target selection subprogram
tgtlist(who, I) = p2(INT(dist / 100) + 1, INT(srchtime * 2.5) + 1)
nodetect = 0!

ELSE
END IF

ELSE
END IF

ELSE
END IF

ELSE
END IF

NEXT I
IF (nodetect < 1!) THEN
decisiontime = time + 5! ' the decision time is a fixed 5 secs.

This was an arbitrary decision that was
intended to simplify the program.

CALL addevent(4, decisiontime, who) 'schedules the tgtselect routine.
ELSE
searchtime = time + triag(5!, 10!, 15!)
CALL addevent(l, searchtime, who)

END IF

END SUB

163

SUB soldierstats

PURPOSE this routine displays current soldier attributes when called
by the user throughout the simulation run. It displays the blue force
statistics in blue and red force in red. The screen is presently full,
so if different attributes are desired, it will be necessary to remove
some that are on the screen.

CLS 1
COLOR 1, 15
CALL frame(2, 78, 2, 23, 1, 15)
LOCATE 3, 30: PRINT " COMBATANT STATUS"

LOCATE 4, 4
PRINT "Soldier
LOCATE 5, 4
PRINT "X Coord "

LOCATE 6, 4
PRINT "Y Coord
LOCATE 7, 4
PRINT "Status "
LOCATE 8, 4
PRINT "Posture
LOCATE 9, 4
PRINT "Moving
LOCATE 10, 4
PRINT "Ammo (rnds) '

LOCATE 11, 4
PRINT "Direction"
LOCATE 12, 4
PRINT "Sqd Leader"

FOR I = 1 TO 6 'blue force are soldiers I - 6
LOCATE 4, 1 * 10 + 11
PRINT USING " # "; I
LOCATE 5, I * 10 + 9
PRINT USING "####.# "; movers(I, 1)
LOCATE 6, I * 10 + 9
PRINT USING "####.# "; movers(I, 2)
LOCATE 7, I * 10 + 9
IF (movers(I, 12) = 0) THEN

PRINT "Dead"
ELSEIF (movers(I, 12) 1) THEN

PRINT "Alive"
ELSE

PRINT "Wounded"
END IF

LOCATE 8, I * 10 + 9
IF (movers(I, 13) > .9) THEN

PRINT "Standing"

164

ELSEIF (movers(I, 13) < .9 AND movers(I, 13) > .5) THEN
PRINT "Crouch"

ELSE
PRINT "Prone"

END IF

LOCATE 9, I * 10 + 9
IF (movers(I, 9) = 1) THEN
PRINT "Moving"

ELSE
PRINT "Stopped"

END IF

LOCATE 10, I * 10 + 9
PRINT USING " ## "; movers(I, 11)
LOCATE 11, I * 10 + 9
PRINT USING "##.# "; movers(I, 8)
LOCATE 12, I * 10 + 9
IF (movers(I, 14) 1) THEN PRINT " SL"

NEXT I

COLOR 4, 15 'red force consists of soldiers 7 - 12

LOCATE 14, 4
PRINT "Soldier #"
LOCATE 15, 4
PRINT "X Coord "
LOCATE 16, 4
PRINT "Y Coord "
LOCATE 17, 4
PRINT "Status "
LOCATE 18, 4
PRINT "Posture "
LOCATE 19, 4
PRINT "Moving
LOCATE 20, 4
PRINT "Ammo (rnds) "
LOCATE 21, 4
PRINT "Direction"
LOCATE 22, 4
PRINT "Sqd Leader"

FOR J = 1 TO 6
LOCATE 14, J * 10 + 11
PRINT USING "##"; J + 6
LOCATE 15, J * 10 + 9
PRINT USING "####.# "; movers(J + 6, 1)
LOCATE 16, J * 10 + 9
PRINT USING "####.# "; movers(J + 6, 2)
LOCATE 17, J * 10 + 9
IF (movers(J + 6, 12) = 0) THEN
PRINT "Dead"

165

ELSEIF (movers(J + 6, 12) = 1) THEN
PRINT "Alive"

ELSE
PRINT "Wounded"

END IF

LOCATE 18, J * 10 + 9
IF (movers(J + 6, 13) > .9) THEN
PRINT "Standing"

ELSEIF (movers(J + 6, 13) < .9 AND movers(I, 13) > .5) THEN
PRINT "Crouch"

ELSE
PRINT "Prone"

END IF

LOCATE 19, J * 10 + 9
IF (movers(J + 6, 9) = 1) THEN
PRINT "Moving"

ELSE
PRINT "Stopped"

END IF

LOCATE 20, J * 10 + 9
PRINT USING " ## "; movers(J + 6, 11)
LOCATE 21, J * 10 + 9
PRINT USING "##.# "; movers(J + 6, 8)
LOCATE 22, J * 10 + 9
IF (movers(J + 6, 14) = 1) THEN PRINT " SL"

NEXT J

COLOR 1, 15
LOCATE 24, 2: CALL pause

END SUB

166

SUB startove

' PURPOSE This routine accesses data on the soldier and the terrain at
' his location. It checks the status of the soldier and determines the
' soldier's next location and how long it takes to move to that location.
' The routine stores the present location in (xlast,ylast) and calls the
endmove routine to occur at time + delta T. The last step is a call to
icon subprogram which redraws a soldier's symbol at his new location.

VARIABLES
who = eventactor(te)
x = movers(who, 1)
y = movers(who, 2)
dir = movers(who,)
speed = move.s(who, 7)

IF (x > 1000) HEN x = 999 'This conditional block keeps the array
IF (x < 0) THEN x = 0 'superscripts called within the 0-1000
IF (y 1000) THE:1 y = 999 'range (should be temporary)
IF (y < 0) THEN y = 0

mobfac = mobility(FIX(x / 20) + 1, FIX(y / 20) + 1)

IF (x > 999!) THEN movers(who, 9) = 0
IF (x < 1!) THEN movers(who, 9) = 0
IF (y > 999') THEN movers(who, 9) = 0
IF (y < 1!) THEN movers(who, 9) = 0

This section adds an endmave event with new location to the event
li3t.
Store present !ocaiioi, in the previous location positions

movers(who, 4) = x: movers(who, 5) = y

IF (movers(who, 9) = 1 AND movers(who, 7) > 0) THEN 'ensure soldier is
x = x + 20 * SIN(dir) 'compute new x,y coordinates 'moving (1 is yes)
y = y + 20 * COS(dir)

computes the travel time and considers the scidier's speed, posture, and
the mobility factor in the grid he started in.

stopmove = time + (100 * RND) / (movers(who, 7) * mobfac * movers(who, 13))
CALL addevent(3, stopmove, who) 'calls the move event for this move.
ELSE
'calls an endmove for the soldier even if he is not presently moving, so
'if he is allowed to mo-e again, he will still be in the movement process
stopmuve = time + (100 * RND) / (I + (movers(who, 7) * mobfac *
& movers(who, 13)))
CALL addevent(3, stopmove, who) 'calls the endmov(event for this move.

END IF

167

' here we update the location records to the new values
movers(who, 1) = x: movers(who, 2) = y

IF (x > 1000) THEN x = 999 ' this conditional block is designed to keep
IF (x < 0) THEN x = 0 ' the subscripts of the array calls within the
IF (y > 1000) THEN y = 999 ' limits of the array (should be temporary)
IF (y < 0) THEN y = 0

'updates the present elevation of the soldier
movers(who, 3) = elevation(FIX(x / 20) + 1, FIX(y I 20) + 1)

CALL icon(who) ' This subprogram draws the soldier's symbol at the
new location and overdraws the symbol at the old
location with the background color so that it is
erased and the soldier appears to be moving.

END SUB

SUB tgtselect

PURPOSE This routine calls up the list of targets observered by the
observer and determines which one the observer will engage if any. The
detected targets are in the tgtlist array input by the search routine.

'VARIABLES
who = eventactor(te) 'this is the observer
'I 'an index that indicates the target IDs
'tgtlist(who,I) 'this vector from the tgtlist array contains

'the P(det) for each target
'that has been detected by this observer.

N is the number of potential targets detected
pottgts() is an array containing the P(det)s and an index number

we sum the values in the vector to get a total and to check whether
there are current values in the array.

'resets values for each soldier when the selection cycle starts
'and ensures only current values are used
total = 0: N = 0: Tovers(who, 16) = 0

FOR I = 1 TO 12
total = total + tgtlist(who, I)
IF (tgtlist(who, I) > 0) THEN
N N + 1
pottgts(N, 1) = I: pottgts(N, 2) = tgtlist(who, 1)

ELSE
END IF

NEXT I

168

'this section simulates the observers decision of whether to engage
'any of Lhe targets
IF (total < .2) THEN
CALL addevent(1, time + triag(2!, 3!, 4!), who) 'schedules next search

'if the total is too small assume the soldier will
'elect to not fire at this time. Also protects

ELSE 'against dividing by zero
FOR I = 1 TO N 'this loop standardizes the

pottgts(I, 2) = pottgts(I, 2) / total 'values in the array, so
NEXT I 'they sum to one.
R = RND: runningsum = 0: N = 0
DO WHILE (R > runningsum) 'using a U(O,1) random
N = N + 1 'variate we choose the
runningsum = runningsum + pottgts(N, 2) 'target to be shot at
IF (R < runningsum) THEN
movers(who, 16) = pottgts(N, 1)
tgt = pottgts(N, 1)
'determines distance between the observer and target
dist = SQR((movers(who, 1) - movers(tgt, 1)) ^ 2 + (movers(who, 2)
& - movers(tgt, 2)) ^ 2)
IF (dist < movers(who, 10)) THEN
aimtime = time + triag(2!, 5!, 7!) 'determines aim time til shot
CALL addevent(5, aimtime, who) 'is fired and calls a direct

ELSE 'fire engagement
CALL addevent(l, time + triag(2!, 5!, 7!), who) 'decides target is

END IF 'out of range
ELSE
END IF

LOOP
END IF

IF (who < 7 AND bluecommand > 0 AND movers(who, 14) > 0 AND
& movers(who, 16) > 0) THEN CALL cmddecision(who)
IF (who > 6 AND redcommand > 0 AND movers(who, 14) > 0 AND
& movers(who, 16) > 0) THEN CALL cmddecision(who)

END SUB

169

UTILITY.BAS *

'This module contains subprograms and functions that do not require
'access to any data stored elsewhere in the model. The routines in
'utility can be called by all other routines in SPARTAN.

DECLARE FUNCTION triag! (A!, D!, b!) 'provides a triangular random value
DECLARE SUB opening () 'provides a presentation screen
DECLARE SUB frame (left%, right%, top%, bottom%, fore%, back%)
DECLARE SUB pause () 'provides a utility to pause the scrolling
'Below is the syntax for using the Frame subprogram
left% = 3: right% = 80: top% = 3: bottom% = 22: fore% = 5: back% = 0
CALL Frame(left%, right%, top%, bottom%, fore%, back%)

END

SUB frame (left%, right%, top%, bottom%, fore%, back%) STATIC

This module creates a framing box of any size It takes six basic
input parameters that control the dimensions and colors.

COLOR fore%, back%

-Draw the four corners

LOCATE top%, left%: PRINT CHR$(201)
LOCATE top%, right%: PRINT CHR$(187)
LOCATE bottom%, left%: PRINT CHR$(200)
LOCATE bottom%, right%: PRINT CHR$(188)

-Draw the vertical lines

FOR vert% = top% + 1 TO bottom% - 1
LOCATE vert%, left%: PRINT CHR$(186)
LOCATE vert%, right%: PRINT CHR$(186)

NEXT vert%

Draw the horizontal lines

horiz% = right% - left% - 1
hline$ = STRING$(horiz%, 205)
LOCATE top%, left% + 1: PRINT hline$
LOCATE bottom%, left% + 1: PRINT hline$

END SUB

170

NOTE: The full help subprogram has not been included. Most of that
subprogram consists of text screens which all have a similar format. The
code listed here only shows an example of the coding structure of the
menus without any of the help text.

SUB help

PURPOSE this routine is intended to provide the basic information
necessary to use the SPARTAN program. Information is provided on the
setup of a run with some discussion of the methods used for modeling.
This subroutine is intended to allow the user to go directly to the
information desired.

CLS 1
DO
CALL frame(l, 79, 2, 23, 7, 1)
LOCATE 4, 35
PRINT " HELP MENU "
LOCATE 6, 25
PRINT " SELECT ONE OF THE FOLLOWING TOPICS"
LOCATE 8, 30
PRINT " 1) Exit Help"
LOCATE 9, 30
PRINT " 2) Setdp Screen"
LOCATE 10, 30
PRINT " 3) Terrain"
LOCATE 11, 30
PRINT " 4) Movement"
LOCATE 12, 30
PRINT " 5) Search"
LOCATE 13, 30
PRINT " 6) Target Selection"
LOCATE 14, 30
PRINT " 7) Engagement"
LOCATE 15, 30
PRINT " 8) Reaction to Fire"
LOCATE 16, 30
PRINT " 9) Output"

LOCATE 21, 3: PRINT "Select Option Number ": k$ = INPUT$(1)

SELECT CASE k$ 'this select sends the user to the major category
CASE "i"

EXIT DO
CASE "2"
GOSUB h200

CASE "3"
GOSUB h300

CASE "4"
GOSUB h400

CASE "5"
GOSUB h500

171

CASE "6"

GOSUB h600
CASE "7"
GOSUB h700
CASE "8"
GOSUB h800
CASE "9"
GOSUB h900
CASE ELSE
BEEP
k$ = INPUT$(1)

END SELECT
LOOP

GOTO 1000 'when the program finishes executing the help select loop, it
'must jump over the subroutines and go to the end of the help
'subprogram. Otherwise, it will try to execute the subs and
'cause an error.

'these subroutines contain groups of topics and allow the user to
'get specific details from within each major topic area.

h200:
CLS I
COLOR 7, 0
LOCATE 2, 1
PRINT "SELECT A SUBTOPIC <I>EXAMPLE <2>DEFAULTS <3>ATTENUATION <4>EXIT"
COLOR 7, 1
LOCATE 4, 23
PRINT " SCREEN HEADING"
PRINT
PRINT *** this print section would contain the main topic
PRINT discussion
PRINT

LOCATE 23, 2
PRINT " Select a Topic ": k$ = INPUT$(1)

DO
SELECT CASE k$ 'this select sends the user to the major category
CASE "1"
CLS 1
COLOR 7, 0
LOCATE 2, 1
PRINT "SELECT A SUBTOPIC <!>EXAMPLE <2>DEFAULTS <3>ATTENUATION <4>EXIT

COLOR 7, 1
lOCATE 4, 23
PRINT " SUBTOPIC HEADING "
PRINT *** subtopic discussion would be listed here **
PRINT
PRINT

172

LOCATE 23, 2
PRINT " Select a Topic ": k$ = INPUT$(1)

CASE "2"

CASE "3"

CASE "4"
EXIT DO

CASE ELSE
BEEP
k$ = INPUT$(1)

END SELECT

LOOP
CLS 1
RETURN

1000 LOCATE 23, 2
PRINT " Returning to main menu"

CLS 1
END SUB

SUB opening

'PURPOSE This routine calls frame and draws a presentation
screen for the model.

VARIABLES
left%, right%, top%, bottom% are integer variables passed to the Frame
subprogram that define the box size using rows and columns in text
mode.
fore% and back% are variables for the line and background colors

CLS
left% = I: right% = 80: top% = 1: bottom% = 21: fore% = 7: back% = 1
CALL frame(left%, right%, top%, bottom%, fore%, back%)
left% = 9: right% = 72: top% = 7: bottom% = 13: fore% = 7: back% = 1
CALL frame(left%, right%, top%, bottom%, fore%, back%)
LOCATE 10, 25: PRINT "**** SPARTAN COMBAT MODEL ****"
LOCATE 16, 22
PRINT "Press <Enter> when ready to continue", k$ = INPUT$(l)

COLOR 7, 1

END SUB

173

SUB pause

'PURPOSE a utility that queries the user to continue when ready

PRINT "Press <RETURN> to continue ..."; k$ = INPUT$(1)

END SUB

FUNCTION triag (A!, D!, b!) STATIC

PURPOSE This routine uses a U(0,1) random variate to produce a random
variate with a triangular distribution TRIAG(A,D,B) using the
inverse transform method as discussed by Pritsker(Pritsker:713).
VARIABLES
A is the left end of the triangle
B is the right end of the triangle
D is the mode of the triangle which may be any point between (A,B)
R is a uniform random variate between [0,11

R = RND ' should have a variable seed eventually so that the
random variate generator seeds can be controlled.

IF (R < ((D - A) / (b - A))) THEN
triag = A + SQR((D -A) * (b - A) * R)

ELSE
triag = b - SQR((b - D) * (b - A) * (1! - R))

END IF

END FUNCTION

174

Appendix D: SPARTAN Operating Instructions

General Information

The purpose of this appendix is to provide a stand alone user's

manual for the SPARTAN combat simulation model. These instructions are

intended to enable someone with limited knowledge of IBM PC operating

systems to use the model.

The SPARTAN combat model is a two-sided high resolution combat

simulation between opposing infantry squads. The program uses an event

step scheduling approach to representing time advance. The model is

intended to illustrate the operation of an analytic type combat simula-

tion as currently used by the US Army. All algorithms and data are

intended to be representative of models presently in use by the mili-

tary, but there is no intention of portraying this model as a fine tuned

representation of reality. Most of the data is fabricated so it "looks

about right" and no effort has been made to perform any validation of

the simulation as an analytic tool. This is purely an instructional

model.

The instructions that follow are organized into four main topic

areas. Section I is a brief discussion of the various modeling process-

es. Section II describes an example scenario and the accompanying data

files that have been provided with the model software. Section III

provides a checklist for the set up and operation of the model. Section

IV contains instructions on using the preprocessor to modify the

scenario dependent data files. In addition, more information on the

processes can be found in the SPARTAN thesis.

175

I. Model Description.

SPARTAN simulates soldier on soldier combat at the squad level.

The maximum number of soldiers is six per side [Red or Blue]. Each sol-

dier is armed with a semi-automatic rifle. The battlefield represented

is a 1000m x 1000m area. Factors outside this region have no influence

on the outcome of the battle.

The SPARTAN model represents primarily an attrition type simula-

tion process with limited aspects of command and control, logistics,

force structure, and environment.

The model uses an event scheduling technique to synchronize

activities and maintain time representation within the model. Future

events are maintained in a chronological list according to the time that

the event is scheduled to occur. When one event is finished, it may

generate additional events to occur in the future. These events are

placed in time sequence order and executed when the time clock advances

to the scheduled time. The simulation continues this process until the

event list is empty or some other user defined termination condition

occurs.

A. Battlefield Representation.

Terrain in the model is represented by a 50 x 50 system of square

grid cells. Each grid has associated east-west coordinates (horz) and

north-south coordinates (vert) along with the attributes of elevation

(elev) and a trafficability factor (mobfac). These attributes enable

the model to represent terrain relief features and to vary soldier move-

ment speeds over different portions of the terrain. Relief is repre-

sented on screen by colored patches in each grid cell on the screen

176

where the colors vary with elevation. Table 1 in Section IV and the

models online help screens provide a listing of the color codes. The

terrain database can be easily mc-11fied to represent various types of

geography. Section IV discusses using the preprocessor STARTUP to modi-

fy the terrain database. The only environmental effect modeled on the

battlefield is atmospheric attenuation which can degrade the target

acquisition possibilities.

B. Soldiers.

The basic entity of the simulation is an infantry soldier repre-

sented by a list of seventeen attributes. These attributes maintain

location, status, and capability information on each soldier. Each

soldier has the ability to move, search for and select targets, engage

targets, and react to being ei gaged. Tables 2 and 3 in Section IV

provide brief descriptions of the attributes.

1. Movement. When a soldier's attributes are set for

movement, he will move from his initial location along his direction of

movement at a speed commensurate with his speed attribute, his posture,

and the trafficability factor of the grid within which he starts his

move. The soldiers always move 20 meters per movement cycle although

the time it takes to perform that move varies according to field condi-

tions. The soldier's initial direction of movement changes only as a

result of enemy contact. Since SPARTAN is a discrete event simulation,

the continuous action of movement is modeled by a series of discrete

jumps from one location to the next. Using this modeling technique

there is a trade off between accuracy which would mean shorter jumps and

177

the increased workload of computing the extra jumps. In this case,

after trial and error, 20 meters was chosen as a suitable distance.

2. Searching. The search process is a sequential series of

checks that are performed to determine the possibility of successfully

detecting an enemy soldier. SPARTAN uses a continuous search algorithm

based, loosely, on equations developed by the US Army Night Vision

Electro-Optical Laboratory [NVEOL]. Specific search sectors are not

defined, so it is assumed that the soldier performs a 360 degree search

during each search cycle. There is no distinction between searching on

the move or at a halt. The only currently sensor available is unaided

human vision. A successful detection involves meeting a number of

conditions. The first condition is that line of sight must exist

between the observer and the target. Next the probability of acquisi-

tion based on range and the posture of the target must exceed an optical

sensor threshold which is unique for each sensor type and the level of

atmospheric attenuation. If a target can be acquired then a random

number is drawn to determine the time spent searching the target's

sector. This time and range to target are used to determine a probabil-

ity of detection. Now another random number is drawn and compared to

this value to determine detection. Targets that are detected are placed

on the observer's target list, and a blue line is momentarily plotted on

the screen to indicate a successful visual detection.

3. Target Selection. If a target is successfully detected,

it is added to a target list and each target is then rated based on the

firer's targeting priorities. The detection probabilities for each

potential target are normalized and a random number is drawn to select

178

the target to be engaged from the list. A direct fire event will be

scheduled next unless the target is perceived to be outside the firer's

weapon range or the target's detection probability is below an engage-

ment threshold.

4. Direct Fire. The engagement process begins by ensuring

the soldier still has ammunition available and line of sight still

exists. When the trigger is pulled, the ammunition is decremented, a

bivariate normal probability of hit for the conditions is drawn from a

table and a time of impact is computed. The flight of the bullet is

represented by a momentary flash of a red line drawn between the firer

and the target along with a brief sharp sounding noise. If a bullet

impacts, as a hit, then a wound or kill determination is made and the

soldier reacts accordingly.

Each of the possible impact results has its own signature on the

display. A miss only results in a dull popping sound. If the round

missed, then the firer will attempt to reengage and the target soldier

will react to being fired upon. If the soidier is wounded then the

firer will continue to engage and the wounded soldier will react to

fire. The only effect on a wounded soldier is to slow his movement.

Wounds are not cumulative. A wounded soldier displays a short red flash

with a louder popping sound. If a soldier is killed, an extended yellow

flash occurs with an accompanying sound, and the soldier's icon is

changed to gray.

5. Reaction to Fire. This process demonstrates some very

simple decision logic. Either the soldier will charge his opponent,

179

drop to the ground, or move away from the opposition. In any case, he

may continue to engage the enemy.

6. Attrition. When a soldier is killed, all future events

on the scheduling calendar for that soldier are removed. This has the

effect of canceling a soldier in place even as he was preparing L. pull

the trigger.

7. Output. SPARTAN provides a graphic representation of

the battle along with a help menu and screen displays of soldier

attributes, target lists, and summary statistics. Final output includes

selected soldier attributes, target listings, summary values from the

battle, and a history file of all events as they occurred.

180

II. Example Scenario.

A. General Situation.

The SPARTAN land combat model contains two homogeneous land forces

fighting as combatants an unoccupied sector of terrain that is forward

of the current line of troops for each side. Both forces consist of a

six man dismounted infantry squad armed with semi-automatic .30 caliber

rifles.

B. Mission.

The Blue squad is conducting a reconnaissance patrol into Red

territory, and is considered successful if half the squad can reach the

Red rear boundary in 500 time units [Their primary mission is to locate

forces in the enemy rear and avoid combat unless engaged by the enemy.].

The Red squad is arrayed in a counter reconnaissance screen to stop the

Blue squad, and is considered victorious if it can kill more than 50% of

the Blue squad or if the Blue squad fails to reach the Red rear boundary

in 500 time units. The Red soldiers move forwird to occupy their posi-

tions after dark each night, so they have no prepared fighting posi-

tions. The Red soldiers are initially stationary.

C. Battlefield in the Example.

The environment is barren rolling hills. There is little or no

tree growth; scrub and grasslands predominate (20:9-24). There is no

cover or concealment other than the terrain features. Blue forces are

arrayed in the west and Red forces to the east. There are no other

forces in the area that can affect the outcome of the battle. Atmo-

spheric attenuation is set to .6 to represent a moonlit night this is a

constant factor that will not vary during the battle.

181

D. Soldier Equipment in the Example.

The only equipment consists of .30 Caliber semi-automatic rifles

for each soldier and 20 rounds of ammunition. The maximum effective

range of the weapons on each side is 400m. In this case, both sides

have comparable veapons and ammunition stockages. The maximum rate of

fire is I.-24 rounds per minute with a sustained rate of fire of 16

rounds per minute (20:16-7). These rates are approximated with the

reload and aim times used in the model.

E. Datafiles Required for this Scenario.

There are three scenario specific datafiles. These are the

terrain file [board.dat], the soldier attribute file [force.dat], and

the initial event list [event.dat]. The files required for the example

scenario are board.exl, force.exl, and event.exl. Section III will

provide instructions on using these files.

182

III. Set Up and Use of SPARTAN.

This section provides a detailed list of the steps necessary to

operate the SPARTAN combat simulation, and a few suggestions on tech-

niques for working with the model.

A. Equipment.

The only equipment required is an IBM compatible personal computer

with a minimum of 512k of memory, and an EGA or better color monitor.

All programs are in executable form, so no special software or run time

libraries are required unless you desire to modify the text format code

which is available. The language used to create this software was

QUICKBasic version 4.5. This program code will not compile with earlier

forms of BASIC.

B. Files.

The following files must be located within the same directory to

operate the model. This directory can be on a floppy disk or a hard

drive, but will run more rapidly if loaded on a hard disk.

filename description

1) startup.exe preprocessor program
2) spartan.exe simulation program
3) event.dat initial event data file
4) board.dat terrain data file
5) force.dat soldier attribute file
6) pl.dat probability of acquisition table
7) p2.dat probability of detection table
8) phit300.dat probability of hit table for 300m eff weapon
9) phit400.dat probability of hit table for 400m eff weapon
10) phit500.dat probability of hit table for 500m eff weapon
11) phit600.dat probability of hit table for 600m eff weapon

SPARTAN will only open datafiles with these exact names. Files for

several scenarios may be available, but must be copied to the above

listed names prior to execution. It is suggested that all datafiles are

183

stored with names different from those abo-'. Thi-.ensures that files

are not inadvertently overwritten. All datafiles created or worked on

by the STARTUP preprocessor program have an exp ending on the file name

extension [ie. board.exp, force.exp, event.exp]. STARTUP will be dis-

cussed in detail later, but is Pot required to operate the sample

scenario.

B. Operating the Simulation.

The following instructions will guide the user through the steps

necessary to run the example scenario on SPARTAN.

Step 1. Ensure the datafiles listed above are loaded in the

same directory as spartan.exe.

Step 2. Set the default directory to that containing the

files and at the prompt type: spartan

Step 3. A presentation screen will appear, then hit enter

when ready to continue.

Step 4. You will be asked whether or not the datafiles

should be displayed as they are loaded into the program. You will

probably only need to view the files once since it does require a longer

time to display and load as opposed to just loading the files. The

program will require a short moment to load up datafiles.

Step 5. The next screen asks whether you desire to modify

the default settings for the simulation. Changes may not always be

necessary, but you will want to select the setup screen to modify some

of the run parameters that are required for the example scenario. The

run parameters include termination conditions for the run, an attenua-

tion coefficient, and a designated seed for the pseudorandom number

184

generator. The example scenario requires three parameters to be

modified. The run time should be set to 500 time units, the level of

ted remaining should be set to 0, attenuation to .6, and the blue

command stitch should be turned off. These changes will ensure the

simulation runs until one of the victory conditions is achieved for

either side. Turning off the blue command switch ensures that the blue

soldiers will orient on their original direction of movement and not

move to seek out and engage red forces. Remember, the blue mission is

reconnaissance and self-defense. The last step in the set up screen is

to enter al initial seed value. From this point forward, online help is

available throughout the simulation run.

Step 6. Hit <enter> when finished with the setup screen and

the simulation will begin its run. At this point, the user can no

longer influence the outcome of the simulation. There are five function

keys [Fl - F5] that provide help and information throughout the simula-

tion. [Note: These keys do not function after the simulation terminates

and can only be called from the graphics screen.]

Step 7. When the simulation terminates, you will have the

option of viewing the final output. To print any of the tables, use the

<print screen> key. Additional, output is available in a history.dat

file which is produced with each run. The history file provides a

chronological listing of all events as they occurred. It includes the

event time, type and the event actor. To maintain copies of the history

file, modify the file name or it will be overwritten during the next

program run. This completes a run of the SPARTAN simulation model.

185

V. Modifying the Datafiles.

The STARTUP program is a preprocessor that can be used to create

datafiles for specific scenarios. The program is menu driven and

enables the user to create, edit and review the terrain, soldier attrib-

ute, and initial event datafiles. Several representative hit probabili-

ty tables [such as phit300.dat] have been provided for weapons with

different ranges as well as the probability of acquisition [pl.dat] and

probability of detection [p2.dat] tables. There is no provision in

STARTUP to create or modify these files although all the files can be

modified with a standard ASCII text editor.

A. Terrain Datafiles.

There are four attributes associated with each grid. These are

the east-west coordinate (horz), the north-south coordinate (vert),

elevation (elev), and the trafficability factor (mobfac). The coordi-

nates are limited in values from 1 to 50. The elevation is in meters

and has a range of 0 to 69 meters. The trafficability factor his a

range of 0.1 to 1.0 with 1.0 being unimpeded movement. The color coding

for the elevations is shown in Table 4.

Table 4 Elevation Color Coding

Elevation Color

0 - lOm light green
11 - 20m cyan [turquoise]
21 - 30m light red
31 - 40m magenta [pink]
41 - 50m yellow
51 - 60m light grey
61 - 69m brown

The terrain datafile module has an additional feature that plots out the

terrain relief overlay for a visual representation of the data.

186

B. Soldier Attribute Files. Tables 5 & 6 provide a brief

description of the seventeen attributes.

Table 5 Soldier Attribute Descriptions

Attribute Description

1) x present horizontal coordinate
2) y present vertical coordinate
3) z present elevation coordinate
4) xlast last horizontal coordinate
5) ylast last vertical coordinate
6) size soldier's height in meters
7) speed movement speed *
8) dir soldier's movement direction/orientation
9) moving indicates soldier's intent to move
10) wpnrng identifies soldier's weapon type and range
11) ammo maintains count of available ammunition
12) status indicates whether alive, dead, or wounded
13) posture whether standing, crouched, or prone
14) incmd identifies a squad leader
15) atkdir maintains original movement direction
16) tgteng identifies a selected target
17) side indicates affiliation of soldier

* movement units are relative on a scale of 0 - 40 units

Table 6 provides specific information on the acceptable

values that should be used for each attribute.

Table 6 Soldier Attribute Variables

Attribute Name Type Range of Values
x real [0.1 - 1000.001
y real [0.1 - 1000.001
z real [0.0 - 69.0]
xlast real [0.1 - 1000.00]
ylast real [0.1 - 1000.001
size real [1.5 - 2.0]
speed real [0.0 - 40.0]
dir real [0.0 - 6.28] (radians)
moving integer [0 stopped / 1 moving]
wpnrng real [300.0 - 600.01
ammo integer [0 - 999]
status inLeger [0 dead / 1 alive / 2 wounded]
posture real [.25 prone/.5 crouch/1.0 stand]
incmd integer [0 subordinate / 1 squad leader]
atkdir ral [0.0 - 6.28] (radians)
tgteng integer [0 - 12]
zide integer [I blue / -1 red]

187

The editor for the soldier attribute module of STARTUP allows the

user to modify all the attributes of one soldier or a single attribute

for a group of soldiers. At the present time, it does not allow for the

modification of just a single value.

C. Initial Event File. The initial event file contains an

initial search event [event type I] and an initial movement event [event

type 2] for each soldier. This file will usually not need to be modi-

fied to accommodate most scenarios. Two occasions when the user might

choose to modify the file would be to delay the entry of soldiers into

the battle or to remove selected soldiers from the battle. All soldiers

in the battle f)st have both cited events. Even if a soldier is not

expected to move, he needs the movement cycle to produce graphics. The

event datafile for the example scenario has 24 events to start the

simulation. Each event record has the fields in Table 7.

Table 7 Initial Event Attributes

Name Range of values

event type [1 - 8]
event time [0.1 - 9999.0]
event actor [1 - 12]

D. Performing Analysis with SPARTAN.

While SPARTAN is not an empirically valid model, it is still

possible to experiment with the model to determine how the model will

react to changes in weapon ranges, the attenuation factor, movement

rates, tactical formations, or different types of terrain, etc.. An

important consideration in modeling is to determine the sensitivity of

the model to certain factors. This can be accomplished by varying just

188

one parameter of the model over a range of values while holding every-

thing else constant.

The model design allows the random number stream to be set with

new seeds for each run, so independent statistical results can be

obtained using this model. This model has the potential to be used in

other course project areas such as response surface analysis, variance

reduction techniques, and multivariate statistics.

E. User Comments.

Since this is intended to be an educational tool, comments from

personnel using the model will be greatly appreciated. Please approach

this model with a critical view and provide feedback as necessary.

Anything that presents problems to learning will be reexamined and modi-

fied if possible.

189

Bibliography

1. Bailey,'H. H., L. G. Mundie, and H. A. Ory. Suggested
Modifications to Optical Sensor Algorithms in JANUS.
Contracts MDA903-90-C-0004 and MDA903-86-C-0059. Santa
Monica CA: Rand Corporation, November 1990(RAND/N-3087-
DR&E/A/AF).

2. Baici, Osman. "The Implementation of Four Conceptual
Frameworks for Simulation Modeling in High-level
Languages," Proceedings of the 1988 Winter Simulation
Conference. 287-295. New York: IEEE Press, 1988.

3. Balci, Osman. "Credibility Assessment of Simulation
Results: The State of the Art," Proceedings of the
Methodology aDd Validation Conference. 19-25. San Diego:
Society for Computer Simulation, 1988.

4. Banks, Jerry. and others. "Modeling Processes,
Validation, and Verification of Complex Simulations: A
Survey," Proceedings of the Methodology and Validation
Conference. 13-18. San Diego: Society for Computer
Simulation, 1988.

5. Battilega, John A. and Judith K Grange. The Military
Applications of Modeling. Washington: Government
Printing Office, 1984.

6. Biles, William E. "Introduction to Simulation,"
Proceedings of the 1987 Winter Simulation Conference. 7-
15. New York: IEEE Press, 1987.

7. Bonder, Seth. "Mathematical Modeling of Military
Conflict Situations," Proceedings of Symposia in Applied
Mathematics. 25: 1-51. New York: American Mathematical
Society, (1981).

8. Cohen, Jay W. and others. "Structured Modeling,"
Proceedings of the 1982 Winter Simulation Conference.
253-258. New York: IEEE Press, 1982.

9. Combat Modeling Briefing Slides, TRADOC Analysis
Command, Monterrey, CA. July 1991.

10. Comptroller General of the United States. Guidelines for
Model Evaluation (Exposure Draft). PAD-79-17, Washing-
ton: Government Printing Office, January 1979.

190

11. Comptroller General of the United States. Models, Data,
and War: A Critique of the Foundation For Defense
Analyses. PAD-80-21, Washington: Government Printing
Office, 12 March 1980.

12. Department of the Army. Army Model Improvement Program.
AR 5-11 (Draft). Washington: HQ USA, 11 April 1990.

13. Department of the Army. US Army TRADOC Analysis Center.
CASTFOREM Methodology Manual. TRAC-WSMR-TD-4-88.
Washington: Government Printing Office, March 1990.

14. Department of the Army. US Army TRADOC Analysis Center.
JANUS (T) Documentation. Washington: Government Printing
Office, June 1986.

15. Department of the Army. US Army TRADOC Analysis Center.
JANUS(A) Supplement to JA:XS Documentation. Washington:
March 1991.

16. Department of the Army. US Army TRADOC Analysis Center.
TRADOC Studies and Analysis. TRADOC Pamphlet 11-8
(Draft). Washington: Government Printing Office, 1991.

17. Derrick, E. Joseph. and others. "A Comparison of
Selected Conceptual Frameworks for Simulation Modeling,"
Proceedings of the 1989 Winter Simulation Conference.
711-718. New York: IEEE Press, 1989,

18. Dudewicz, Edward J. and Zaven A. Karian. Tutorial:
Modern Design and Analysis of Discrete Event Computer
Simulations. Washington: IEEE Computer Society Press,
1985.

19. Dunnigan, James F. The Complete Wargames Handbook. New
York: William Morrow and Company, 1980.

20. Engineering Design Handbook, Army Weapon Systems
Analysis, Part One, DARCOM-P 706-101. US Army Material
Development and Readiness Command, Washington:
Government Printing Office, November 1977.

21. Evans, John B. Structures of Discrete Event Simulation.
New York: John Wiley and Sons, 1988.

22. Gass, Saul I. and others. "An Assessment Procedure for
Simulation Models: A Case Study," Operations Research.
39: 710-723 (September-October 1991).

191

23. Hartman, James K. Lecture Notes in High Resolution
Combat Modeling. Unpublished Notes, 1985. Class handout
distributed in OPER 775, Land Combat Modeling I. School
of Engineering, Air Force Institute of Technology(AU),
Wright-Patterson AFB OH, July, 1991.

24. Henriksen, James 0. "One System, Several Perspectives,
Many Models," Proceedings of the 1988 Winter Simulation
Conference. 352-356. New York: IEEE Press, 1988.

25. Hughes, Bernard C. Jr. Target Selection Schemes. MS
Thesis, Naval Postgraduate School, Monterey CA, Mar-h
1988 (AD-A194 657).

26. Joint Analysis Directorate, Organization of the Joint
Chiefs of Staff. Catalogue of Wargaming and Military
Simulations Modeling. JADAM 207-89. Washington:
Government Printing Office, September 1989.

27. Kirby, Charles L., JANUS Proponency Director. Telephone
Interview. JANUS Proponency Office, White Sands Missile
Range NM, 5 September 1991.

28. Law, Averill M. and W. David Kelton. Simulation Modeling
& Analysis. New York: McGraw-Hill Bool Company, 1991.

29. McCormick, Ernest J. and Mark S. Sanders. Human Factors
in Engineering and Design. (Sixth Edition). New York:
McGraw-Hill Publishing Company, 1987.

30. McCormick, William M. and Robert G. Sargent. "Comparison
of Future Event Set Algorithms for Simulation of Closed
Queueing Systems," Current Issues in Simulation. edited
by Nabil R. Adam and Ali Dogramaci. New York: AcF.demic
Press, 1979.

31. Morris, William T. "On the Art of Modeling," Management
Science. 11: B-707 -- B-717 (August 1967).

32. Nance, Richard E. and James D. Arthur. "The Methodology
Roles in the Realization of a Model Development
Environment," Proceedings of the 1988 Winter Simulation
Conference. 220-225. New York: IEEE Press, 1988.

33. Overstreet, C. Michael and Richard E. Nance. "A
Specification Language to Assist in Analysis of Discrete
Event Simulation Models," Communications of the ACM, 28:
190 - 201 (February 1985).

192

34. Pritsker, A. Alan B.. Introduction to Simulation and
SLAM II. (Third Edition). New York: John Wiley and Sons,
1986.

35. Rodriguez, Luis C. and others. "An Empirical Comparison
of Advanced Event File Synchronization Structures,"
Proceedings of the 1982 Winter Simulation Conference.
189-194. New York: IEEE Press, 1982.

36. Sadowski, Randall P. "The Simulation Process: Avoiding
the Problems and the Pitfalls," Proceedings of the 1989
Winter Simulation Conference. 72-79. New York: IEEE
Press, 1989.

37. Shammas, Namir Clement. "The BASIC Revival," BYTE. 13:
295-300 (September 1988).

38. Sheridan, Robert E. "The Script Processing Technique in
Modeling/Simulation and its Role in the Generation of
Animated Computer Graphics," Proceedings of the 1986
Winter Simulation Conference. 819 - 824. New York: IEEE
Press, 1986.

39. Seila, Andrew F. "SIMTOOLS: A Software Tool Kit for
Discrete Event Simulation in Pascal," Simulation. 50:
93-99 (March 1988).

40. Tavares, MAJ Michael, Personal Interview. US Army
Training Analysis Command, Scenario Development Ccnter,
17 July 1991.

41. Thesen, Arne. "Writing Simulations from Scratch: PASCAL
Implementations," Proceedings of the 1987 Winter
Simulation Conference. 152-164. New York: IEEE Press,
1987.

42. Tremblay, J.P. and P.G. Sorenson. An Introduction to
Data Structures with Applications. New York: McGraw-Hill
Book Company, 1976.

43. Weiss, M. A. "Empirical Study of the Expected Running
Time of Shellsort," Computer Journal. 34: 88-91
(February 1991).

44. Wiggins, Mike. "A Comparison of Computer Languages
Pascal, C, Lisp and Ada," Journal of Pascal, Ada, and
Modula-2. 7: 5-10 (January 1988).

193

Vita

Captain David Keith Cox was born on 2 December 1956 in

Saint Louis, Missouri. He graduated from Webster Groves

High School in Webster Groves, Missouri. He enlisted in the

US Army in 1976 and, subsequently, attended the United

States Military Academy Preparatory School and the United

States Military Academy at West Point, New York. He

graduated in May 1982 with a Bachelor of Science degree. He

has been assigned as a platoon leader, squadron maintenance

officer and troop executive officer in the 2d Squadron, 11th

Armored Cavalry Regiment at Bad Kissingen, West Germany. He

was subsequently assigned as the Company Commander of B

Company, 1st Battalion, 64th Armor Regiment, 24th Infantry

Division (Mechanized) and as Company Commander of

Headquarters Company, 2d Brigade, 24th Infantry Division

(Mechanized), Fort Stewart, Georgia. He is a graduate of

the Armor Officer Basic and Advanced Courses. In August

1990, he was assigned to the Air Force Institute of

Technology.

Permanent address: 458 Ivanhoe Place
Webster Groves, Missouri 63119

194

