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Abstract
The volume rendering technique known as ray casting or ray tracing is notoriously slow for large volume

sizes, yet provides superior images. A technique is needed to accelerate ray tracing volumes without

depending on special purpose or parallel computers. The realization and improvements in distributed

computing over the past two decades has motivated its use in this work.

This thesis explores a technique to speedup ray casting by distributed programming. The work investigates

the possibility of dividing the volume among general purpose workstations and casting rays (using Levoy's

front-to-back algorithm) (Levoy, 1990) through each subvolume independently. The final step being the

composition of all subvolume rendered images.

Results indicate a 75 percent savings in rendering time by distributed processing over eight processors

versus a single processor.
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I. Introduction

1.1 Background

Volume rendering is a method of projecting a three-dimensional (3D), volumetric scene onto

a 2D image plane. The distinction of volume rendering is its processing on the acquired volume

data directly; no object boundary or surface extraction is used in generating the image (Udupa,

1991:3) (Talton, _ 987:121). One advantage to volume rendering is that no binary classification

is necessary, thus poorly defined features can be seen (Fuchs, 1989:47). Another advantage of

volume rendered medical images is the ability to view the body at any angle or distance with

selected tissues or substances appearing semitransparent in color and others opaque.

Volume data is colected through a variety of means. Medicine has extensively used

Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) scanners for data

acquisition. Other medical imaging devices include Ultrasound Tomography, Positron Emis-

sion Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT)

scanners (Stytz, 1989:11). Scientists use scientific measurements and computer simulations

using finite element models of stress and fluid flow to acquire volume data (Drebin, 1988:65).

The methods of interest in this research are CT and MRI.

The data model used to represent the raw data in medical imaging is the voxel model (Stytz,

1989:62). A voxel is a parallel-piped-shaped element of a 3D volume. It represents the sampled

region where data is acquired through CT and MRI scanning. The values associated with the

voxels of a volume are the density values output tIy the medical imaging device.

The volume rendering technique of interest in this research is the one that casts rays through

a volume of acquired data and samples the data at uniform increments along the ray to determine

the color and opacity of a pixel-stopping when accumulated opacity is maximum, that is, an

opaque sample encountered. This technique is known as ray casting, ray tracing, or sometimes

referred to as a backward mapping algorithm. The sampling of data involves interpolation of

color and opacity from the voxeL surrounding each sample point. Levoy points out the main

disadvantage in this technique," Si:ice all voxels participate in the generation of each image,

rendering time grows linearly with the size of the data set" (Levoy, 1990:246) (Fuchs, 1989:47).

1-1



Consequently, faster rendering methods are needed to stimulate their practical use and

acceptance in the medical field. The goal in volume rendering speedup is to achieve interactive

visualization of a volume.

Various volume rendering speedup techniques have been investigated in *he literature over

the past ten years. One focus of attention rests upon ray tracing (or ray casting) because "the

calculation speed of the ray tracing method is undoubtedly one of the basic problems that must

be dealt with" (Fujimoto, 1986:16). Arvo and Kirk point out that acceleration of iay tracing is

achievable by execution on a collection of general-purpose computers (Glassner, 1990:249).

Most implementations of fast ray tracers, however, exist on special purpose machines or strictly

parallel architectures. Because it is not cost effective to limit implemcntation to special-purpose

architectures, alternate speedup methods with a software approach are ncded. This is especially

true today with the interoperability of systems across net, orks. Interoperability allows pro-

grammers flexibility without placing unnecessary restrictions on them. All that awaits is the

appropriate application to benefit from this technology.

Distributed programming is based on process interoperability. Andrews defines a distributed

program as "a concurrent (or parallel) program in which processes communicate by message

passing" (Andrews, 1981:50). Typically, a distriouted program is executed on autonomous

computers connected by a communications network (Singhal, 1991:12) (Andrews, 1981:50).

Examples of distributed programming in our daily use of computers are network file servers,

remote login, and electronic mail. Applications using distributed programming can benefit from

high-speed computation across general-purpose computers.

1.2 Problem

Considering today's computing technology, what technique can accelerate the ray tracing

step in volume rendering? I propose distributing the ray tracing of a volume across general -

purpose workstations, like the Sun Microsystems SPARC stations to provide a solution to the

speed problem of volume rendering.

This research effort investigates the possibility of dividing a volume data set among

workstations and casting rays (using a front-to-back algorithm) (Levoy, 1990) through each

subvolume independently. Research will show a 75 percent speedup while maintaining image

quality. The goal is to speed up this particular volume rendering technique and demonstrate that

ray casting can be made parallel at the subvolume level. As this parallelism can be demonstrated,
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so too can intermediate viewing of the volume at the subvolume level be demonstrated. The

intermediate viewing is a benefit not realized with rendering the entire volume as a whole.

1.3 Assumptions/Materials and Equipment

The first assumption of this thesis is the availability and operability of a distributed network

environment for programming distributed applications. This is available on the Air Force

Institute of Technology Network (AFITNET) using the standard networking protocol, TCP/IP.

AFITNET connects a wide variety of computers together, such as Silicon Graphics Inc. (SGI)

and a multitude of Sun Microsystems platforms.

The Sun systems available are based on Sun's proprietary Symmetric Processor ARChitec-

ture (SPARC). These consist of Sun SPARC-2, and Sun-4/260, all running SunOS 4.1.1. Sun

provides an Open Network Computing (ONC) environment on its systems that supports

distributed computing through the provision of distributed services. A few of these services are

Network File System (NFS) and Remote Execution (REX). NFS provides transparent access

to remote files over a network, making it appear that they are local. REX service allows you

to transparently execute a program remotely among several processors (distributed program-

ming). The way to use REX is through the on command. Investigation into the REX service

on the SPARC workstations available to me found this service unreliable. However, the UNIX

alternative, rsh command, proved worthy despite its inherent slower execution time (SUN,

1991).

Another assumption is the availability of quality graphics hardware and software for viewing

the medical images this research will produce. The hardware available consists of the SGI IRIS

3100 and 4D monitors, Sun 4/260 with TAAC- 1 monitor, and Sun 4 monitors. The software

selected for viewing images is the Utah RLE library toolkit.

Lastly, medical data (MRI, CT, PET, or Ultrasound) is assumed to be available for testing.

CI data of a rib section and a dog's heart, as well as MRI data of a head was obtained for this

and other research.

1.4 Scope and Limitations

This thesis effort implements a distributed volume renderer. However, no user interface

design falls within the scope of this thesis. The distributed computing is restricted to eight
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workstations, one per octant. To ensure flexibility, variable input data file sizes is an attribute

built into the code.

1.5 Approach/Methodology

Instead of duplicating efforts, the intent is to borrow and/or model other design and

implementations for the volume rendering pipeline steps based on availability. The four major

steps in the rendering pipeline are loading the volume data into machine representation, scene

processing (Udupa, 1991:45), casting the rays, and displaying the scene.

Developing a volume renderer without subdivision on a single processor is approached first.

Once verification of the rendering pipeline is assessed, distributing the volume renderer can

take place.

The first step into distributed programming is to become familiar with the Sun ONC

environment. Investigation into ways of implementing distributed computing is accomplished.

This will include analysis of remote process access to data; whether to send the subvolume data

to nodes as opposed to NFS access of the entire volume.

After I selected a distributed computing paradigm, I incrementally developed the distributed

volume renderer. My approach was to scope the distributed programming down for the first

iteration, gaining confidence in the approach, then advancing to the desired complexity of eight

remote machines.

Experimentation is done on various sizes and complexities of volume data files. Comparison

of times and images between the distributed rendering and the single processor rendering can

validate the thesis.

1.6 Thesis Overview

The remainder of this thesis is divided into four chapters. Chapter II will provide the review

of literature in this research area. The subjects to review include volume rendering and methods

to speed it up, as well as distributed computing. Chapter III presents my development of a

distributed volume renderer including design and implementation. The results of my imple-

mentation are then discussed in Chapter IV. Chapter V presents the conclusions drawn and

recommendations for future work in this area.
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II. Literature Review

2.1 Overview

This chapter's purpose is to give background information on increasing the speed of ray

tracing in volume rendering. There has been much research done into speedup of ray tracing

geometric scenes, but this is not to be confused with the ray tracing of interest here-ray tracing

volume data. Before examining how ray tracing speed has been improved, Levoy's volume

rendering pipeline (Levoy, 1990:247) is presented in detail. Understanding the steps involved

in the volume renderer will aid in seeing how its performance can be improved. To motivate

its application to this research, distributed computing is discussed in detail.

2.2 Volume Rendering

The 3D imaging of a volume using ray tracing entails three top-level steps: loading the

volume slice data into machine representation, ray tracing, and displaying the scene. The ray

tracing discussed throughout this section is based on Levoy's front-to-back image-order method

(Levoy, 1990:247). The ray tracing step breaks down into the following pseudo code:

for each voxel
shade and classify

for each pixel
transform from image space to object space
cast a ray
if it intersects the volume

then for each step along ray until it exits volume
sample by interpolating surrounding voxels
composite colors and opacities

composite background

assign color to pixel

The shading and classification step (Levoy, 1988:31-33) can be considered a preprocessing

step. It is detailed in Figure 2.1 (see page 2-2) as a pipeline. An appropriate shading model,

such as Phong shading, can be selected for the shading step. The classification method can use

the magnitude of the gradient vector for opacity fall-off effect or surface boundary enhance-

ment.
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Opacity Region Lookup Table

Density Region Assigned
Depth Tissue

Volumne Classify - Opacity
Donsities Surface -(i) fl rl a1

fn rn I n

AP~oxmte

Vector VV(xe)

Calculate

Color Nc .x

Opacity = ct(xi)

Figure 2.1 Shading and Classification Pipeline

The rest of the ray tracing steps are shown in Figure 2.2 (see page 2-3) as a pipeline. If a ray

doesn't intersect a volume, then it bypasses the sampling steps, rendering the pixel with a

background color and no transparency.

2.3 Speedup Techniques

2.3.1 Ray Tracing Speedup. Ray tracing is handicapped in speed by the size of

the volume. This is true for the preprocessing step, but more significantly so in the case of

tracing the rays. Speedup techniques for volumetric ray tracing come in various forms, either

hardware (Kaufman, 1986) (Baum, 1990), algorithmic (Levoy, 1990), data structures (Levoy,

1990), reduction in rays cast (Levoy Dissertation, 1989) or some combination thereof.

Hardware speedups generally involve the use of parallel architectures or custom graphics

hardware to take advantage of the inherent independent nature of ray tracing or to speedup the

pipeline of imaging. Kaufman reviews a newer architecture, one that is voxel-based, that is,

uses a 3D cubic frame buffer. GODPA, PARCUM, 3DPPPP, and CUBE are four voxel-based
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Figure 2.2 Ray Casting

architectures he surveys. GODPA and CUBE are the only two applicable for medical imaging,

with CUBE coming the closest to ray traced images because it can render semitransparent

images (Kaufman, 1986).

Marc Levoy presents an algorithmic approach to optimizing the ray tracing. His method is

based on the observation that once a ray strikes an opaque object or has progressed far enough,

the color of the ray stabilizes, so ray tracing can be terminated (Levoy, 1990.250). I evoy's data

structure approach to speedup is to represent spatial coherence of the volume data in a pyramidal
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data structure (complete octree) and employs an algorithm to trace rays through the octree

(Levoy, 1990:249). Levoy then combines both these optimizations to produce results showing

a savings of more than an order of magnitude.

By reducing the number of rays traced, Levoy can produce intermediate images, progres-

sively refining until the final image is rendered. He uses an adaptive rendering algorithm based

on estimated image complexity at sample regions of the image plane-the higher the complex-

ity, the more rays cast. His results showed that performance time was proportional to number

of rays cast and precise selection of paramaters were crucial (Levoy 1989:36-40).

2.3.2 Related Speedup. An important area of work, as it relates to this thesis, is

the parallelization of geometric ray tracing achieved by Mark Dippe' and John Swensen (Dippe,

1984). The relevance of their work is that they parallelized at 3D space (world space) instead

of 2D space (image plane), as most parallel ray tracers do, and showed a speedup. In other

words, they subdivided 3D space into subregions and distributed the objects defined within the

subregions across a would-be 3D array of independent computers. This method is in contrast

with the more popular method of dividing the screen into subscreens and distributing them

among processors (Deguchi, 1986). In Dippe and Swensen's method, rays are initially cast

from the computer with the subregion containing the eye. Rays are processed (intersected with

objects) in the subregions along their paths. Rays exiting one subregion are passed onto the

neighboring subregion until they terminate. An equal workload among the computers is

achieved through adaptive subdivision. Neighboring computers communicate via messages to

determine if their work loads differ by some threshold.

Dippe' and Swensen's concept of dividing world space among processors instead of screen

space for geometric ray tracing optimization can be applied to volume ray tracing. The parallel

concept is dividing object space (volume) among processors for volume ray tracing optimiza-

tion. Although no geometrically defined objects are contained within each subvolume, the ray

does intersect with each voxel along its path when it is traced. Another difference in concepts

is that object space does not contain the eyepoint. To fit in this scenario, the rays could just

originate from a host computer.

Upson (Upson, 1988:61) and Westover (Westover, 1990 & 1988:9) agree that the alternative

method of volume rendering, mapping the data onto the image plane (forward mapping), is well

suited for parallel processing. Westover, in fact, applies the parallelization at the subvolume
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level concept to a forward mapping algorithm of volume rendering. But, parallelizing a

backward mapping algorithm is of interest in this research. On the other hand, Upson claims

the ray casting (backward mapping) method is difficult to parallelize since it "parallelizes at

the pixel level" (Upson, 1988:61). Upson believes ray casting is "more efficient for conven-

tional machine architectures" because it requires a "global shared memory" to contain the entire

volume at all times throughout the algorithm (Upson, 1988:61).

2.4 Distributed Computing

The type of distributed computing of concern in this review is the transparent execution of

an application program across a network of independent, general-purpose and special-purpose

computers (Andrews, 1991:50). Peter Wayner provides an exciting scenario in the future as an

example of distributed system:

Imagine you've just walked into a hospital of the future. Everything from
the heart monitors in the Intensive Care Unit to the sterile robots operating the
vacuum cleaners in the hallways is computerizcd...a doctor approaches a
computer terminal and opens a file on a patient who is resting comfortably on
the fourth floor. The physician receives data from the patient's medical history,
as well as current readings from bedside monitoring systems upstairs.

Determining that the patient's medication needs to be changed, the doctor
hits a few keys, and new prescriptions appear on the attending nurse's terminal
and in the patient's file. Meanwhile, the accounting system silently tracks this
activity... (Wayner, 1990:58).

The motivations for distributed computing are that it shares expensive resources, maximizes

utilization of heterogeneous computers, increases computing power, and provides a fault

tolerance capability (SUN, 1991).

Distributed computing allows the ever changing hardware environments to interact via

standards. Currently, Sun Microsystems is an example of one company that provides a platform

for distributed computing with its Open Network Computing (ONC) environment. ONC uses

established industry standards to provide an open architecture for portability (SUN, 1991).

Tools are provided by ONC allowing the programmer to control and implement distributed

computing.

Gregory Andrews (Andrews, 1981) presents a detailed description of distributed program-

ming. He defines distributed computations as concurrent programs in which processes com-

municate by message passing across shared channels. There are several ways these processors

can interact in a distributed system he presents the paradigms for these interactions with
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examples of each. Filters, clients, servers, and peers are what he describes as the four basic

kinds of processes in a distributed program. The important ones for this thesis are clients and

servers. Andrews defines them as "A client is a triggering process; a server is a reactive process"

(Andrews, 1981:51).

One of Andrews' process-interaction paradigms of interest involves server replication by

dividing the task at hand into independent subtasks that are solved concurrently (Andrews,

1981:82). Andrews classifies the interaction paradigm in mind here as "replicated workers

sharing a bag of tasks" (Andrews, 1981:5 1). One of his solutions to the divide-and-conquer

problem is to use one administrator process that generates the first problem and gathers results

from several worker processes. The workers solve the subproblems that they receive from a

shared channel, bag. He makes an important point, that often in practice a channel can have

only one receiver, but this can be remedied by having the administrator simulate a shared

channel by also acting as a server process with which the workers communicate.

2.5 Conclusions

The ideas presented for speedup of volume rendering are a small portion of the pool of

thought in this area. It is well acknowledged that faster medical imaging methods are needed

and research continues in this area. Those methods, as discovered, can be incorporated into

existing heterogeneous networks through distributed computing. The time is here to reap the

benefits of distributed computing with medical imaging, if not for cost savings alone.

2.6 Summary
This section provided the background necessary to understand my development contained

in the next chapter. With an understanding of the ray tracer process, dividing object space, and

the divide and conquer distributed paradigm, my solution to speedup of the ray tracer can be

realized.
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III. Design and Implementation

3.1 Overview
The sequence of events in developing the Distributed Volume Renderer (DVR) software was

an iterative process through analysis, design, implementation, and testing. This process was

applied first to developing the Volume Renderer (VR) on a single processor, then to developing

a distributed version. The incremental approach allowed me to focus on the VR requirements

separately from the distributed ones.

This chapter presents the final design and implementation in the order they were accom-

plished. The VR development is discussed in the first section, while the distributed development

follows. Before these two abstractions are presented, some generalities about my design

approach and implementation specifics must be understood.

3.1.1 Design. My decision to program in an object-oriented language drove my

design toward an object-oriented approach. Although an object-oriented design was not

necessary, it was advantageous to do so. Because the classes and methods were developed with

the data abstraction and inheritance capabilities of C++ in mind, the coding step became simpler.

3.1.2 Implementation. The system was programmed in C++ using the GNU C++

compiler, version 1.37. All compilations of code were done on a Sun 4/260 workstation running

Sun OS 4.1.1. Some of the system libraries used were the RLE library, version 3.0, and the

AFITCOM library. RLE images were viewed using the appropriate RLE viewing utility for

either a Sun monitor, TAAC-1 monitor, or Silicon Graphics monitor. The VR code was

developed and tested on Sun 4 and SPARC workstations. The DVR code was developed on

Sun 4 workstations and tested on a network of Sun SPARC workstations with a MicroVax III

file server.

3.2 Volume Renderer
The goal of the VR development was to design and implement a front-to-back image-order

volume rendering algorithm using an object oriented paradigm. Levoy (Levoy, 1990 & 1988)

provides the details for this type of VR from which development was based.

3.2.1 Design. The preliminary design of the VR is encapsulated in Figure 3.1 (see

page 3-2); it shows the top level data-flow diagram. The VR reads control parameter files which
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Figure 3.1 Volume Renderer Top Level DFD

effect the instantiation of objects within the program. The VR also reads the data values from

the data files into a volume object. The volume is rendered using Levoy's (Levoy, 1990 &

1988) method and a pixel image is produced in RLE format.

The decision for external control input to the system was borrowed from the General Purpose

Renderer (GPR) developed at AFIT. As in the GPR, a control file allows the user to set

parameters, such as the eyepoint and light source, at program runtime. This idea was extended

to include parameters identifying characteristics about the volume data, such as data type and

data size. The formats for these two control files are in Appendix A.

The other external data depicted in Figure 3.1 is the volume data. Based on available data at

design time, several constraints were placed on the volume data input. The constraint on data

type limits the data to be within the range of 0 to 255, corresponding to one byte in length. All

test data was found to have this characteristic for the data values. Additionally, all CT and MRI

data is assumed to consist of a set of files, each file representing a separate slice in the sequence

as acquired. The sequence of data files must reflect data continuity from slice to slice, as welb

as across a slice of data. This does not mean that there must be zero interslice distance; rather,

the slices must be consecutive or the interpolation done between slices will not be accurate.

The size constraint on data is an implementation issue requiring no constraint at design time.

To pick out the objects and methods from the problem space that would become classes and

class relationships in my class diagram, a closer look at the rendering algorithm was necessary.

Levoy's volume rendering pipeline (Levoy, 1988 & 1990), reproduced in Figure 3.2 (see page

3-3) provided me with the objects and some methods required specific to a volume renderer.

The objects are a volume, voxels, a ray, and pixels. Some methods are found in the action steps
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Figure 3.2 Overview of Volume Rendering Algorithm

shown in the pipeline, and are associated with the objects doing the action. For example, a

volume is shaded and a ray is traced. Of course, this is just an overview; other methods came

from Levoy's front-to-back algorithm (Levoy, 1990:248). Additional objects and methods

required for 3D graphics were borrowed from the GPR design.

Figure 3.3 (see page 3-4) shows the final design of the VR's classes, class relationships, and

class utilities. The notation in this diagram is based on Booch's notation (Booch, 1991:158-161)

and defined in Figure 3.3's legend. The ALPHASHADE-BUFFER class inherits the BUFFER class,

and the BUFFER class instantiates one or more of the PIXEL class. Simply put, an AlphaShade-

Buffer is a "kind of' (Booch, 1991:56) Buffer, while a Buffer "contains" (Booch, 1991:116)

many Pixels. In this context an AlphaShadeBuffer differs from just a Buffer in that both color

and opacity play a part in coloring a Pixel. A preliminary design decision allowed for more than
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Figure 3.3 Volume Renderer Class Diagram

one buffer type, that is, a different buffer for each shading algorithm. Thus, the justification for

Buffer as a super-class.

As was mentioned, some classes and methods were borrowed from the GPR and incorporated

into the VR. These classes are the ENVIRONMENT, ATTRIBUTES, MATRIX, NIATRIXSTACK,

BUFFER, and PIXEL classes. The reason these classes were selected for reusk was due to the

common computer graphics methods (primitives) they contained. For example, I required a

method to perform Phong shading, and the ENVIRONMENT class supplied this method already.

Some methods supplied by GPR, however, were not suitable. For example, I needed to

modify the viewing methods within the ENVIRONMENT class since the VR depends on a parallel

orthographic projection, as opposed to a perspective projection. The viewing method used is

shown in Figure 3.4 (see page 3-5) (Levoy, 1990:247). The distinction of this viewing method
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comes about when Phong shading is performed. Here the direction of the eyepoint and light is

constant for all points in object space (Levoy, 1988:31). During ray casting, all rays originate

from a pixel in image space and have a parallel direction through image space, perpendicular

to the view plane. The parallel orthographic viewi:ig methods transform ray points from image

space to object space for sampling of the volume.

3.2.2 Implementation. My implemenia. on of die VR pipeline, as shown in Figure

3.5 (see page 3-6), varies slightly from Levoy's pipeline, other than showing more detail. The

figure gives an overview of the VR algorithm by describing the three major class methods in

the sequence they occur. These three steps are shade and classify a volume, shade the pixels of

a buffer, and store the buffer as an RLE image file. One difference in this implementation design

from Levoy's lies within the choice of data structures. I incorporate colors, opacities, and

density values into a single object, Voxel, which is the element of the three-dimensional array

object, Volume, instead of his suggested use of three separate arrays. Because Levoy promotes

the use of several arrays, his shading and classification steps are done independent of and

separately from each other. This is unnecessary with my design, since shading and classification

can be done jointly while stepping through the single array of voxels. In fact, it is more efficient

to do them together since both require the calculation of a gradient vector at each voxel.

An implementation of Levoy's front-to-back rendering algorithm was found in Ohio State

University's graphics software package for visualization, apE, version 2.0. apE contains a tool
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called "opac," which is a volume renderer that uses Levoy's method (apE, 1990:88). My

implementation uses "opac" tool source code wherever possible.

There is a difference, however, between Levoy's and apE's equations for color and opacity

composition along the ray. Levoy relates the color and opacity sampled at a location along the

ray (Cs and Cts) to the color and opacity of the ray before the sample (Cin and tin) with

the following transparency formulas:

Cout = Cin +(1 - Gin) ( Gs)(Cs) (1)

CC = Cin + (1 - Cin) Us (2)

where the initial values for Cin and Olin start at zero. After all samples along the ray have been

processed, a fully opaque (Ct = 1 ) background color is composited with the last color and

opacity computed for the ray. This last step forces the final Uout equal to 1, making the

normalization step

C CoutG = Got(3)
Uout

unnecessary. apE's implementation, and mine, differs from Levoy's by initializing the opacity

to one and uses the following transparency formulas:

Cout = Cin + (Gin)(Cs)(Gs) (4)

Gout = (in - Uin(CEs) (5)

Despite the differences in these equations, the result is the same; only the initial values of

opacity changes the equations. Levoy must subtract the Cin value from 1 in Equation I to get

the remaining opacity level of the ray thus far. This value is then used to scale the sampled color

contribution, apE's implementation uses Uin to hold the remaining opacity level all along.

Thus, apE's implementation is more efficient because it involves two less subtractions in each

step. This is a significant savings considering how many samples are taken along a ray, and that

there are as many rays as pixels.
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3.3 Distributed

3.3.1 Analysis. The goal of the DVR was to produce a faster VR by dividing the

task among eight processors. This translates into having eight remote processes (servers)

rendering subvolurnes concurrently with a local process (client) in control that combines the

results. All this coordination would require interprocess communication via message passing.

As discussed in Chapter II, Andrews classifies the process interaction paradigm in mind here

as "replicated workers sharing a bag of tasks" (Andrews, 1981:51). Using Andrews' terminol-

ogy applied to this problem, the DVR must have an administrator process subdvide the volume

rendering among eight independent worker processes, each independently solving subproblems

(Andrews, 1981:86). The workers must then send their results back to the administrator,

whereupon the eight results are combined into a final result. In this design there is no recursion

within each of the workers, in which case there would be an adaptive subdivision of the volume.

3.3.2 Approach. I developed the DVR using an incremental approach that produced

prototypes with increased functionality. The first iteration began with a single client and single

server just communicating across a network. The next step was to have the server execute the

VR developed previously, that is, a single server rendering the entire volume. The next iteration

was a significant step, in that it divided the volume and communicated to more than one server.

This iteration divided the volume in half, rendering an image for each half, but no compositing

of the halves was accomplished. Another iteration advanced to eight servers where the volume

was divided into octants as shown in Figure 3.6 (see page 3-9). The final iteration had the client

composite the eight octant images.

3.3.3 Design. A top level data-flow diagram of the final DVR is shown in Figure 3.7

(see page 3-9). The change between Figure 3.7 and Figure 3.1 (see page 3-2) is reflected in the

multiple RLE files created. This is because each server generates one. I made the design decision

to have the servers generate an RLE file and pass the file name in a message, versus passing

the entire Buffer as a message to the client, for several reasons. The major drive was to avoid

tying up channel communication between client and server until such a large amount of data

could be received. Instead, the client could gather the data from a file when ready. Furthermore,

the message size required for a Buffer would necessitate attention to synchronization and

channel capacity issues, which could further complicate the message passing. Lastly, the

process of dumping the Buffer as an RLE file was already cncoded into the VR; no change to
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Figure 3.6 Octant Subdivision

the VR was necessary. However, an additional method to read an RLE file into memory was

necessary. The important benefit of this design decision is the ability to view the volume in

stages. Each RLE image gives a cut-away view of the big volume by generating an image of

just the octant.

A better understanding of the interaction between client and servers is shown by a level I

data-flow diagram in Figure 3.8 (see page 3-10). The client is the local process and the servers

are the remote (identical) processes. This figure also shows dedicated communication channels

between the client and each server. The channels are used for sending and receiving messages.

The control parameter input designed at the client side reflects the user specification of which

servers to distribute the rendering on.

Volume Data Control Parameters

Render /

Images
Figure 3.7 Distributed Top Level DFD
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My design decision, depicted in Figure 3.8 where volume data and control parameters from

the client are input into the servers, stems from my design goals. These goals were to minimize

the changes to the VR already implemented and minimize the amount of channel traffic. Of

course, this decision was influenced by the distributed architecture-a central file server for

networked workstations.

The client's classes are depicted in Figure 3.9 (see page 3-11) while the server's classes

remain the same as those shown in Figure 3.3 (see page 3-4). Since the design parallelized at

the data (volume) level instead of somewhere within the rendering algorithm, the client shares

only a few classes with the server. These classes are the ones from which the server results are

instantiated, namely the BUFFER and PIXEL classes. I decided to create a subclass of the BUFFER

different class from the ALPHASHADEBUFFER class. The reason is the function of a Buffer at

the client side is to shade its Pixels by compositing the Buffer results from the servers, not by

casting Rays into a Volume. This fundamental difference in purposes led me to cr-eate the

ALPHABUFFER class for the client.

The NETWORK class, seen in the figure, was needed for the client process because the

simultaneous communication with eight servers can become rather complex. Thus, a separate

class to handle the state of the servers is justified. From the server perspective, the simplicity

of communicating with a single client did not ',arant a separate class description. Instead, the

design dictates the server handle this within its main routine.
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3.3.4 Implementation. The DVR implementation was greatly influenced by the

decision to use an established ART message based communications library, AFITCOM. Since

the AFITCOM library is socket based, communication was constrained between any two

processes via a two-way channel using read and write calls. The AFITCOM library was

designed for applications characterized by a single local host communicating with several

remote hosts. This fits in nicely with the DVR design goal, one client (local host) communi-

cating with several servers (remote hosts). As a side note, since the AFITCOM library was

implemented in C, interface to these routines was accomplished via tie C++ "extern C' utility

and some minor modifications to the library.

Because the AFITCOM library is socket based, it is necessary to have a remote process

already running and established with its socket. The implementation of starting a remote process

was accomplished in UNIX by using a pipe to a remote shell, rsh, command. The rest of the

network setup was modeled after another application using AFITCOM and written by the

developer of AFITCOM (Clay, 1991). The pipeline for network communication between client

and server is shown in Figure 3.10 (see page 3-13).

As was discussed in the approach section, once the network communication was imple-

mented, the next step was to implement subdivision of the volume. I will skip discussion of the

volume division into halves and jump to discussion of the division of the volume into octants.

This is because division into halves was just an intermediate step to experiment with distributed
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programming. The subdivision of the volume required substantial changes to the VOLUME and

RAY classes and their methods. Not all the changes can be addressed here, even though a

majority of the effort was spent modifying these classes.

I discovered the division of the volume into octants was not a simple splitting along each

axis. The shading and classification step of the VR uses an approximation to a gradient vector

for the calculation of the normal vector at each voxel. It approximates the gradient vector by

using a central difference of surrounding voxel values. To correctly render the image, I included

a pad, one voxel wide, with each octant from its three bordering octants. Figure 3.11 (see page

3-14) shows how this produces a duplication of voxels within each octant along the volume

divisions, but precautions are taken against resampling the pad space of an octant. I will refer

to the octant with pad as the "padded octant" while "octant" refers to the volume subdivision

without a pad. The padded octant I is shown shaded in the figure.

The pad space is used again for accuracy during the trilinear interpolation step done at sample

points along a ray. If the sample point lies within the octant's bordering voxels, then the pad is

used to make up the eight surrounding voxels for the trilinear interpolation of their colors and

opacities. Otherwise, the pad is ignored during the volume rendering. For example, ray

intersection tests only consider the boundaries of the octant, not the padded octant.

In compositing the color and opacity of a ray, special consideration had to be made for the

case where a ray exited an octant on a face that bordered another octant behind it. In this

situation, no background color can be composited into the ray, because the resulting opacity

will always be zero. A zero opacity from a forward octant would allow no color contribution

from the octant behind it during composition of the buffers.

Once the particulars of volume subdivision and rendering of the octants was accomplished,

focus switched to the client to accomplish the compositing of the eight buffers. Each RLE file

stored by a server contains a color and opacity value per pixel reflecting the final color and

opacity (Cout and Ctout) of the ray cast from that pixel through that server's assigned octant.

The composition of the buffers, then, needs to use the same concept as the transparency formulas

given in Equations 4 and 5 (see page 3-7) with a slight change to the sample opacity terms. This

change is that the opacity term of every buffer, except the first buffer, must be subtracted from

1 to get the true opacity value of the octant, instead of the remaining opacity left behind the

octant. The distributed transparency formulas then become as follows:
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=ou Gin + (Cuin)(1 - Ct)C)(6)

atout CEMn-- nEl as) (7)

where Gin and Ctjn are initialized to the pixel values of the closest octant's buffer and

Cs and as are the pixel values of the next closest octant's buffer. Thus, the order of the buffers
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Figure 3.11 Padded Octant

must also be in front-to-back image-order for compositing. This ordering was achieved by

implementing a bubble sort algorithm on the buffers based on the depth in Image space of each

servers's octant.

My implementation loops through the buffers in depth order, and within this loop, loops

through each pixel of a buffer compositing two pixels at a time. I realized a way to speedup the

inside pixel loop for compositing by making several observations about the rendered octants.

One point is that a majority of pixels from rendering an octant would contain the background

color. So, if a front pixel and a back pixel are background or if either one is background, no

composition needs to take place; one or the other color is used. Another point is that since a ray

begins with no color, it is possible to terminate with no color, if it exists on a shared face. In

this instance, no composition needs to take place either.

3.4 Summary

This chapter presented the detail of the software development for this research. It opened

with background about design and implementation common to the both parts of the effort Next,

the specifics about the VR development were summarized. Concentration was more on the last

section which dealt with the distributed development, because it was primarily original work.

With this knowledge about the implementation of the system understood, the next chapter will

discuss the results.
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IV. Results

4.1 Overview
The goal of the VR development was to obtain an RLE image from CT, MRI, or test data

that is correct. It was not an objective to fine tune the selection of isovalues, their opacities or

transition regions in an effort to get the best appearing image. Instead, the effort was to produce

a believable 2-D projection of a semitransparent volume. Since the accuracy is hard to determine

from a source which I am not able to examine personally for comparison, the judgement of

accuracy is left for the experts. A believable image is one which portrays no obvious anomalies

and realistically appears like the object scanned with the desired transparency shown.

The primary goal of the DVR development was to obtain an RLE image (from the same data

as the VR used) that appeared the same as the image generated from a single processor. The

other goal was to show a savings in computation time over the time it takes the single processor

VR to generate an image from an identical view.

This chapter presents the results obtained from executing the VR and the DVR with CT data

and artificial data. The resiTIt demonstrate that the differences in images generated from the

CT chest are indistingui, rable. However, visible differences in the artificial data images exist.

These differences u-e investigated in this chapter as well. The renderings of CT dog heart

demonstrate cut-away viewing of an entire volume. Finally, barcharts and tables are presented

to dem-nstrate the considerable savings in processing time achieved by distributed computing.

But first, some background is given on the test data used.

4.2 Test Volume Data and Output

The types of data used for testing were CT data of a chest region, CT data of a dog heart,

and artificial data of 3 concentric boxes. The CT chest data set consists of a 240 x 164 x 175

(X x Y x Z) volume using an interslice distance of 5 mm for 30 slices of data. The CT dog heart

data set consists of a 202 x 132 x 144 (X x Y x Z) volume using a 0 mm interslice distance. The

box data originated from 20 slices with an interslice distance of 10 mm yielding a 200 x 200 x

210 (X x Y x Z) volume.

The test runs consisted of isometric views from various rotated angles and top, right, left and

bottom side views. The light source was always coincident with the eyepoint. All runs of the

CT chest data were rendered onto a 244 x 180 (X x Y) pixel plane. The CT dog heart data was
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rendered onto a 200 x 200 (X x Y) pixel plane. The boxes were rendered onto a 240 x 240 (X

x Y) pixel plane.

The naming convention used to label these images and timings correspond to the viewpoint

of the image taken. The numbers represent the Z-height of the eyepoint in object space or X/Y

position along top or bottom of volume. Letters are abbreviations for view, such as, RS for

Right Side, 3F for 3D Front, and LO for Left Side at height 0. Those with just numbers and no

letters were taken from the right front comer at the height reflected by number. The abbreviation

SP means Single Processor and Distr means Distributed. Results were saved within appropriate

directories as a file called res.rle or spres.rle, where sp designated the single processor image.

4.3 Images

4.3.1 CT Volumes. The results of the single processor VR and the DVR execution

with the CT chest volume can be seen in Figures 4.1 and 4.2 (see page 4-3). The images were

rendered with skin and fat semitransparent. Each picture displays a pair of images with the

single processor image to the left matched with its distributed image to the right. The pictures

clearly show no visible inconsistencies between the two rendering methods. All the images

seen in Figure 4.3 (see page 4-4) were generated using the DVR and demonstrate the

consistency of the DVR in producing correct images of twenty degree increment rotations for

the chest.

The images seen in Figure 4.4 are of a CT dog heart. The eyepoint was defined inside the

volume and the volume was rendered by DVR. These images demonstrate the capability of

DVR to render cut-away views of the entire volume.

The final images of the chest, shown in Figure 4.5 (see page 4-5), illustrate one of the benefits

gained by distributed processing-the ability to intermediately view the volume. These images

are the subvolume images rendered by each of the eight processors. The black areas in some

of the images represent the octant borders where further compositing with the octant behind it

must be done at the administrator as part of the final buffer composition step. An added benefit

realized by these octant images is the cut-away viewing capability.

4.3.2 Artificial Box Volume. The results of the single processor VR and the DVR

execution with the artificial box volume can be seen in Figures4.6 and 4.7 (see page 4-6). All

images in Figure 4.6 were rendered with the outer two boxes semitransparent and the center

box opaque. The single processor images in Figure 4.7 were rendered with the inner two boxes
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Figure 4. 1 CT Chest Volume Rendered by Single Processor (left) and Distributed
Processors (right).
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Figure 4.2 CT Chest Volume Rendered by Single Processor (left) and Distributed
Processors (night).
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Figure 4.3 Rotated Views of CT Chest Volume Rendered by Distributed Processors.
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Figure 4.4 Cut-A way Views of CT Dog Heart Volume Rendered by Distributed
Processors.
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Figure 4.6 Artificial Box Volume Rendered by Single Processor (left) and Distributed
Processors (right). Top and Side View.
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Figure 4.7 Artificial Box Volume Rendered by Single Processor (left) and Distributed
Processors (right). Isometric Views.
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Figure 4.8 Artificial Box Distributed Volume Rendering of Octants.
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the ray. In the dlistrit-uted inmplenitntation thec last samipledl point of thc ra\ in one oc:tant is not

ualjanteedC( to be an equal stepsize froin the entry point (which is the first sample point) offthe

bordecrinv octant.

I also dlismissedI the idea that thec anomalies in the box vo!,utne were causedl by the Ccntral

dlitferencin(, being, usedI to approximate thre normal vector at each voxel. 1I1iis is dIone dluring,
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the shade and classification step. I thought that at voxels at the volume boundary (specifically

the shared voxels between octants) either forward or backward differencing is done, instead of

central differencing, and this would cause inconsistent shading of the shared voxels between

octants. However, this was disproved for the box volume because it is uniform and the shared

voxels had equal colors assigned at this step.

I am confident that the final composition of all eight server buffers is correct. I believe it

considers every case correctly with background and non-background colored pixels and

composites as it should theoretically.

4.4 Timing

The timing is broken into three categories, preprocessing, ray casting, and a combination of

the two (reflecting the total time to render). To equally compare ray casting times between

single processor and distributed runs, the distributed ray casting times must include the

compositing of the buffers done by the client. The time to write the screen buffers to files is

considered part of the overhead for the distributed version, therefore is not considered when

comparing times to preprocess, ray cast or render. Although, this overhead and other commu-

nication overhead is considered in the total execution times. Incidentally, the preprocessing,

ray casting, and total times were taken from cpu clock times in microseconds, whereas the total

execution times were computer wall clock times. The percent savings formula used in the

following tables was [ l-(Distr time / SP time)].

All test runs were executed on the same eight servers. Timings may vary depending on

system load at the time of execution. Each set of executions (single and distributed) were

accomplished by batch file runs of all views for CT chest and artificial box volumes.

4.4.1 CT Chest Volume. The timing differences between a single processor and

distributed processor execution of the CT chest volume rendering is encapsulated in Table 4.1

(see page 4- 10). The fourteen samples reflect fourteen runs from different views of the same

CT chest data. The table shows a significant savings in every category between 70 and 85

percent.

To gain a better appreciation for the time saved by distributing the computation, Figures

4.9-4.12 (see pages 4-11 through 4-12) compare the timings in barchart style. All figures were

generated from the columns and rows in Table4.1. Figures 4.9 (see page 4-11) shows the greatest

savings of all categories. This is expected because preprocessing entails stepping through the
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entire volume. Since each server now handles one eighth of the volume, the time to preprocess

is decreased. Figure 4.10 (see page 4-11) demonstrates the dependence of ray casting on the

view taken. The 3D front view takes the longest amount of time while the right side view is the

quickest. These deferences are reflected in the single processor times in Figure 4.11 (see page

4-12). Figure 4.12 (see page 4-12) demonstrates the average times of all views for all categories.

This encapsulates overall comparisons into one figure.

Total program execution times averaged 10:05 (min:sec) for SP and 4:14 for distributed.

This yields a 58 percent savings.

4.4.2 Artificial Box Volume. The timing comparisons and savings for the box

volume are encapsulated in Table 4.2 (see page 4-13). Savings of the same order as the CT

volume are shown here as well. Although, no comparisons can really be made between the CT

data runs and the artificial data runs since neither their construction nor sizes are close to each

other. Again, more understanding can be gained pictorially, see the barcharts for the box volume

in Figures 4.13-4.16 (see pages 4-14 through 4-15). Figure 4.13 again shows the greatest

difference in times comes from the preprocessing step, as expected. Figure 4.14 (see page 4-14)

also demonstrates how ray casting time depends on the view. In this volume the top side view

takes the longest to ray cast. This is expected because the height of the volume is the greatest

dimension. Notice, however, how the top side view takes the least amount of total time out of

the distributed runs, see Figure 4.15 (see page 4-15). Figure 4.16 (see page 4-15) provides an

overall average time for all categories.

Total program execution times averaged 6:32 for SP and 2:45 for distributed. This yields a

58 percent savings by distributed processing.

4.5 Summary

In this chapter I presented the results of the single processor VR and DVR. The results at the

subvolume level was proven by the lack of inconsistencies between the images rendered on a

single processor and those rendered on multiple processors (excluding 'he artificial data). The

capability of intermediate volume viewing was shown here with the rendered images of the

octants. Cut-away viewing was also shown here. Lastly, significant savings in rendering time,

75 percent, and total execution time, 58 percent, was realized by distributing the volume

renderer.

The results of the box volume shown here indicates my program still has some error(s), but

4-9



Table 4.1 Table of CPU Clock Times (in Microseconds) for Single Processor and

Distributed Implementations of Volume Renderer Shown by Steps and Total as Executed

by View of CT Chest Data.
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Figure 4.9 Comparison of CPU Clock Times (in Microseconds) for the Preprocessing
Step of Volume Renderer Between Single Processor (Black) and Distributed (Hashed)
Implementations on CT Chest Data.
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Figure 4.10 Comparison of CPU Clock Times (in Microseconds) for the Ray Casting Step

of Volume Renderer Between Single Processor (Black) and Distributed (Hashed)
Implementations on CT Chest Data.
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Figure 4.11 Comparison of CPU Clock Times (in Microseconds) for the Total of
Preprocessing and Ray Casting Steps of Volume Renderer Between Single Processor
(Black) and Distributed (Hashed) Implementations on CT Chest Data.
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Table 4.2 Table of CPU Clock Times (in Microseconds) for Single Processor and
Distributed implementations of Volume Renderer Shown by Steps and Total as Executed
by View of Artificial Box Data.
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Figure 4.13 Comparison of CPU Clock Times (in Microseconds) for the Preprocessing

Step of Volume Renderer Between Single Processor (Black) and Distributed (Hashed)
Implementations on Artificial Box Data.
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Figure 4.14 Comparison of CPU Clock Times (in Microseconds) for the Ray Casting Step

of Volume Renderer Between Single Processor (Black) and Distributed (Hashed)
Implementations on Artificial Box Data.

4-14



5C0,000,000

450,000,000 o Osto~buted

400,000,000

350.000,000

300,000,000

250,000,000

200,000.000

150,000,000

100,000,000

50,000.000 .2

0 _. ,-_ . ? ;x
040C C3 0 0 ~ C) CD C)T0

0 CL

Figure 4.15 Comparison of CPU Clock Times (in Microseconds) for the Total of
Preprocessing and Ray Casting Steps of Volume Renderer Between Single Processor
(Black) and distributed (Hashed) Implementations on Artificial Box Data.

400000000 [ SP

350000000

300300000

250000000

200000000

150000000

100000000

50000000

0 M

Preprocess RayCasting Pre, RC

Figure 4.16 Comparison of Average CPU Clock Times (in Microseconds) for the Steps
and Total on Artificial Box Data.

4-15



it does not disprove that the subvolumes can be rendered independently. I discussed where I

thought the problem might be and what I concluded about the problem thus far. The next chapter

will discuss overall conclusions and what I recommend for future work in this area.
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V. Conclusions and Recommendations

The preceding chapters presented the development of a volume renderer using distributed

processing. Results showed a 75 percent savings in rendering times. This chapter presents

concluding remarks about my work and discusses future work in this area.

5.1 Conclusions

The distributed volume renderer implemented in this research effort meets the objectives

set out at the start. The first objective met was successfully parallelizing the volume renderer

at the subvolume level. Volumes were rendered by subdividing the volume, casting rays through

each subvolume concurrently, using a front-to-back algorithm, and compositing the results into

a final image. The medical images rendered in this way were of high quality and did not visually

differ from single processor rendered images. However, as was discussed in Chapter IV,

uniform artificial volumes were rendered with errors depending on the view. This indicates a

problem remaining in the code. I surmised that the error probably exists within the sampling

of the ray; particularly at octant borders.

A second objective met was intermediate viewing of the volume. This was accomplished

by generating subvolume images and storing them as RLE files. These images provide the

additional benefit of cut-away views of the volume. The limitation on these cut-away views is

that they can only show cut planes along the octant divisions, which are midway along all axes

in object space. Even still, these intermediate views can provide useful information to the

clinician. If a specific cut-away view is desired, it can be setup with the appropriate location of

the eyepoint and then rendered with DVR.

The other objective met was speedup of the volume rendering processing time. Substantial

reductions in processing time were realized through distributed processing. A 75 percent

speedup in total rendering time and a 58 percent speedup in total program execution times were

the average savings. Although the distributed volume renderer did not achieve interactive

timing, it still made great improvement over the single processor implementation. So, in that

regard, it becomes more acceptable which means more usable to clinicians.

The success of this distributed volume renderer is significant for several reasons. First it

proves that the ray casting method of volume rendering also can benefit from concurrent

programming. Since ray casting's major disadvantage was its linear growth in rendering time
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with respect to the size of the data set, the other benefits of ray casting can now outweigh this

cost. Second, the speedup achieved by this implementation of a distributed volume renderer

approaches interactive timing-the end goal of volume visualization. Also, the distributed

programming offers a parallel algorithmic solution that is not tied to spec1" a,W .ae or

architectures. In this way, a cost savings is realized because existing general-purpose worksta-

tions can be taken advantage of for their often idle computing power. In additiop, tl;.,

transparency of the distributed programming, except for the use of co,rl files, makes the

application more acceptable to the user. This combined with the speedup factor can stimulate

the practical use of volume rendering in medical analysis of patients.

5.1.1 Recommendations. i make several recommendations for future work to

improve the current state of the distributed volume renderer. Some of these recommendations

stem from planned further iterations of my development, had t-ne been available. Others stem

from observations of the implen;2ntation by myself and others. I separate this future work into

suggested improvements to the volume renderer itself and those to the distributed computing

aspects.

5.1.2 Volume Renderer. First and foremost as a recommendation to improve the

volume renderer side of my work, is to identify the error within my implementation in rendering

uniform artificial data. I feel that the answer is within reach, but requires further concentration

into the logic of the distributed implementation of the ray casting algorithm.

Furthermore, since the volume renderer implemented did not take advantage of existing

speedup techniques within its design, these could be incorporated into the object oriented design

of my work. Examples of these techniques are the use of octree data structures and dynamic

adjustment of number of rays traced into subvolumes based on complexity of the subvolume

(Levoy, 1988, 1989, 1990).

Additionally, adaptive subdivision and recursive subdivision of the volume can further

enhance the speed of the process. Since my implementation always divides the volume into

eight subvolumes, an ability to adaptively decide the initial division factor based on size of the

input would be ideal. This would entail further algorithm changes to the Ray and Volume object,

specifically when tracing a volume into octant boundaries. The implementation currently is tied

to eight octants, the location of the pads associated with those eight octants, and other specifics

to octant subdivision. Recursive and adaptive subdivision would go hand-in-hand with future
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work in the distributed aspect. Since recursive subdivision means the servers themselves would

become clients, this could imply sophisticated distributed programming. Adaptive subdivision

would require adaptive selection of servers.

Another modification to the volume renderer could allow for other shading techniques in the

preprocessing step, such as Z-depth shading and gray level gradient shading.

5.1.3 Distributed. Although my distributed programming of the DVR is useful, it

has room for improvement. Several features could improve its usefulness, such as increased

fault tolerance, recoverability, improved transparency, and optimization. Of course, many of

these features are dependent on the operating systems and network computing environment

available. But with the advent of transparent Distributed Computing Environments (DCE),

many of these features will be incorporated within them and/or tools provided to allow the

programmer to achieve such goals. Fault tolerance can prevent the DVR from failing due to a

server that does not respond to a connection request. Recoverability can allow the DVR to

continue in spite of a server's failure to render an image of its octant. An ideal recoverable

design would provide the capability of the client to detect a problem and re-assign that worker's

task to another server. Improved transparency would incorporate dynamic selection of servers

into the DVR based on current load status.

Another desirable distributed feature is dynamic load balancing across the nodes. This is

the ultimate goal to achieve peak performance. Dynamic load balancing would keep the

program running at peak efficiency based on the local network computers available. The idea

is to offload a server's process to another server with low usage when the initial server's load

reaches some threshold. This requires that the client become more active during the server

renderings of their volumes. During that time the client must monitor the active servers, as well

as potential servers, frequently to asses load balancing information.

Looking toward long term goals for improvement, the advent of distributed application

environments that allow transparency for both local area as well as wide area networks promises

distribution across longer distances. This design could take advantage of general purpose

computers with the highest MIP rates which are generally limited in quantity and possibly

located remotely. Of course, the dependence on network speed becomes more of an issue in

order to assess benefits gained by such wide area distribution, that is, unless network speed

technology keeps pace with the software capabilities.
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Further research should explore designing current DCE into compute-intensive applications,

such as 3D medical imaging. I feel this offers the optimal solution toward interactive volume

visualization.
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Appendix DVR Operations Manual
DVR depends on several files for operation. One of these files provides the names of the

servers on which processing is to be distributed. The format for this file is shown in Table A. 1.

Table A. 1 DVR Server Control File Format

............... eywords:: Comments
1 servers <# of servers> currently must use 8

2 <server 1 name> machine names

<servr n name>

Another file is used to specify parameters, like those in GPR's control file. In fact, the format

for this file was copied from GPR and modified slightly to reflect parallel orthographic viewing

parameters and additional Phong shading variables. The complete format of this control file is

shown in Table A.2 (see page A-2) with the changes from the GPR syntax shown in italics.

The last control file required provides specific information about the volume size, location, etc.,

see Table A.3 (see page A-3). The syntax for all these tables is such that all words not delineated

by special characters, must be duplicated in the file. Angle brackets represent variables and

curly brackets mean a choice of options. Square brackets mean the term is optional.

The way to use these files on the command line when executing DVR is

dvr [-d] -s <server control file>
-c <(gpr) control file>
-v <volume control file>
-o <rle output file>

The optional "d" is for debugging. The rle output file is the desired file name for the rendered

image.

Before DVR can be run, several environment variables must be set. These environment

variables set up directory paths so the user need not precede control file or output file names

with directory paths on the command line. The environment variables should be named

CNTRLDIR and OUTPUTDIR, and set to user specification.

Another environment variable is required until DVR is set up as a system-wide application.

This environment variable, DISTRDIR, should reflect the current path to the DVR client and
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Table A.2 DVR Modified GPR Control File Format

Line Keywords ......... Comments
I Buffer Spec

buffer ALPHASHADEB UFFER only I buffer type supported

size <xsize><ysize> integers

background <r><g><b> 0 < r,g,b < 1

2 Global Environment Parameters

viewport<xmin><xmax><ymin><ymax> floats

Ka <a> 0 5 r,g,b < I ambient coefficient

color <r><g><b> 0:< rg,b 5 1 ambient color

3 Global Attribute Parameters

<(PHONG, FLAT, NONE)>

reflectance <{PHONG, FLAT. NONE)>

Kd <d> 0 < d 5 1 diffuse coefficient
Ks <s> 0 5 s 5 1 specular coefficient

n <e> float exponent

dcl <d> 0:< d! <1 depth cue I

dc2 <d> 0!5 d! <1 depth cue 2

4 Counts

num cameras <n> integer camera count

num lights <n> integer light count

5+ Camera Lines

position <x><y><z> floats eyepoint

coi <x><y><z> floats center of interest
twist <t> float angle of twist

near <> float near clipping plane
far <f> float far clipping plane

left <1> float left clipping plane

right <r> float right clipping plane

top <t> float top clipping plane

bottom <b> float bottom clipping plane

fovx <x> float field of view x

fovy <y> float field of view y

6+ Light Lines

position <x><y><z> floats

direction <i><j><k> floats generally-(eyepoint-coi)

color <r><g><b> 0 < r,g,b < I

status <{ON, OFF)>

type <{wFwrrE. PowNT SPOT)>

exponent <n> float

intensity <n> float

solidangle <n> float
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Table A.3 DVR Volume Control File Format

Line Keywords Comments
1 <(VOXELLAB, SUNRAST, TEST}> volume data type

2 <directory path to volume slice files> no terminating "/"

3 <first slice number> integer
4 <last slice number> integer

5 <x size of volume> integer

6 <y size of volume> integer

7 <interslice distance> float

8 <opacity region count> integer

9+ region les
<d> 0:< d5 <255 density

<0> 0 0 0 <o 1 opacity
<W> integer

server executables, namely dvr and dvrsrvr. This environment variable is critical for the client

to start server processes correctly, since the client does so with an rsh call.

All servers generate a RLE file. By default, these RLE files will be located in the same

directory as specified by the OUTPUTDIR environment variable. If the debug flag is on, each

server generates a debug file which is also located in OUTPUTDIR.
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England. In October 1981 she returned stateside to the 9th SRW at Beale AFB, Calif. As SSgt

Brightbill, she was selected for the Airmen's Education and Commissioning Program (AECP).

Under AECP she attended the University of California at Los Angeles (UCLA) to obtain her

BS in Math/Computer Science. Following graduation from UCLA in 1986, Capt Brightbill was

commissioned into the Air Force at Officer Training School. She then proceeded to gain

technical training in communications and computers at Keesler AFB, Miss. Her first tour as an

officer was to the 7th Communications Group at the Pentagon. She began as a programmer and

communications officer in support of bringing the HQ USAF Local Area Network (LAN)

on-line. Throughout her tour she assisted in the operations and management of the HQ USAF

LAN, bringing about its expansion to service most of SAF, Air Staff, 7th Comm Group and

other Air Force offices in the Pentagon and D.C. 3rea. Within three years she became branch

chief of the Network Operations Branch. In May 1990 she entered AFIT.

Permanent Address:
RD 6 Box 297
Sinking Spring, PA 19608

VITA-I


