
AD-A248 160 =. ...
MENTATION PAGE /oni Appro-d

Ir; i P tir{rr, n i .1 i rrii.. i l r , ,*I ~lr~,,illl n it. , ri' I rin'' bl,lu'I inj in frlr,u'v ili i f(lp i rr,2 mm d Jug, .l, 17 '* i
, i . . . . . . .... , 

, , 
.,

° ' '  
, i nll{id llt !i gu .,iJ' i..rnl .. liit .. i't't l p.ll',' in~ Ili'{ujlurirm lrr Pr' r'rt (UIlg (I Il'Hi /i'tllhii'li,.t 

l
r Il /#Jl,i) I

1. AGENCY USE ONLY (Leavv bhtnk 2. REPORT DATE 3. 14EPORT TYPE~ ANID OA TES COVER~ED

I May 1992 IM. S. Thes Is
4. TITLL AND SUIIITLE 5. FUNDING NUMKf.,

A Generalized Polynomial Form of the Objective Function
in Flash Calculations

6. AUTHOR(S)

Brett.D. Weigle, Captain, U.S. Army

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Petroleum and Natural Gas Engineering "
207 Mineral Science Building Tl C
Pennsylvania State University
University Park, PA 16802 ELECTT

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) i 
0 ' II 7MUNI 0 IG

Advanced Civil Schooling Program " ENCY REPORT NUM

Quartermaster Branch
U.S. Army

11. SUPPLEMENTARY NOTES

Prepared in partial fulfillment of the requirements for the degree of
Master of Science in Petroleum and Natural Gas Engineering

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

unl imited This document Ia been appzovd
for pubic release and sale; ito
distribution is unlimitod.

13. ABSTRACT (Maxmum 200 words)

This work centers on the recasting of the Rachford-Rice objective function Into a
polynomial function of the vapor fraction. The degree of this polynomial is one less
than the number of components in the system and its coefficients can be calculated
from the feed composition and the equilibrium ratios. A recursive expression is
developed that involves symmetric functions and can be easily programmed on a computer]
or scientific calculator. The principal advantage of this new form of the objective
function Is that the theory of polynomials Is well-developed. The location of their
zeroes can be predicted with confidence by techniques based on sound mathematical
principles, such as the Fourler-Budan theorem. The polynomial in the vapor fraction
is well-behaved over the two-phase region and Its root can be quickl-y located by a
hybrid method of Interval-halving technique and Newton-Raphson procedure. The
validity of the new objective function and its automatic coefficent-generating
algorithm are tested using several multicomponent systems for which experimental data

are available. The new objective function Is not prone to the erratic behavior of
the Rachford-Rice function and is not sensitive to init/lal guess of the root.

14. SUBJECT TERMS 15. NUMBER OF PAGES

polynomial; objective function; flash calculations; 117
vapor-liquid equilibrium; phase behavior; equilibrium' ratio; 16. PRICE CODE

equation of state; symmetric functions
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF TillS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

'J', () ('tf ) 1 , (jf) till if~rj~ri. fl *'f . If ''2ir, 'Illf



GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave Blank) Block 12a. Distribution/Availablily Statement.
Denote public availability or limitation. Cite

Block 2. Report Date. Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR)

Block 3. Tye of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10 DOD - See DoDD 5230.24, "Distribution
Jun 87 - 30 Jun 88). Statements on TechnicalDocuments."
Block 4. Title and Subtitle. A title is taken from DOE - See authorities
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical
element number(s), project number(s), task Reports
number(s), and work unit number(s). Use the NASA - NASA - Leave blank
following labels: NTIS - NTIS - Leave blank.
C - Contract PR - Project
G Grant TA -Task
PE - Program WU - Work Unit Block 13. Abstract, Include a brief (Maximum

Element Accession No. 200 words) factual summary of the most
significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subiect Terms, Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Paes. Enter the total

Block 7. Performing Organization Name(s) and number of pages.
Addresses. Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performina Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. Security Classifications.
performing the report. Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security
Block 9. Sonsorina/Monitoring Agencv Regulations (i.e., UNCLASSIFIED). If form
Names(s) and Address(es. Self-explanatory. contains classified information, stamp

Block 10. Sponsorino/Mon itoring Agency. classification on the top and bottom of the page.
Report Number. (If known)
Block 11. SUpplementarv Notes, Enter Block 20. Limitation of Abstract. This block
informaSona otincludedeseer ucmust be completed to assign a limitation to the
information not included elsewhee such as:abstract. Enter either UL (unlimited) or SAR
Prepared in cooperation with...; Trans. of ... , To asr E ntr L (niie)or s
be published in .... When a report is revised, (same as report). An entry in this block is
include a statement whether the new report necessary if the abstract is to be limited. If
supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)



The Pennsylvania State University

The Graduate School

Department of Mineral Engineering

A GENERALIZED POLYNOMIAL FORM OF THE

OBJECTIVE FUNCTION IN FLASH CALCULATIONS

A Thesis in

Petroleum and Natural Gas Engineering

Accesion For
by NTIS CRA&I

TIC..

Brett D. Weigle Justif.ca~ioi
B re tt ............ .... ...... .. ....... .. ......

Gy
D:. t b:t~oi, /

Submitted in Partial Fulfillment Dist , t
of the Requirements

for the Degree of A"l I

Master of Science

May 1992

92-08284
92 4 0 1 066'



I grant The Pennsylvania State University the nonexclusive right to
use this work for the University's own purposes and to make single
copies of the work available to the public on a not-for-profit basis if
copies are not otherwise available.

Brett D. Weigle



We approve the thesis of Brett D. Weigle.

Date of Signature

Associate Professor of Petroleum
and Natural Gas Engineering

Thesis Advisor

Turgay Ertekin
Professor of Petroleum and

Natural Gas Engineering
Section Chair of Petroleum and

Natural Gas Engineering

Paul J. I-ic)A, Jr- ,7 "
Assistant of fkeroleum

and Natural Gas Engineering

Professor of Mathematics



ABSTRACT

The Rachford-Rice objective function for flash calculations exhibits a nearly

flat slope across the two-phase region and sharp discontinuities near the dewpoint.

These features make iterative solution procedures sensitive to the initial estimate of

the root and prone to spurious values if a correction step throws the algorithm out-

side the two-phase region or near the phase boundary.

This work centers on the recasting of the Rachford-Rice objective function into

a polynomial function of the vapor fraction, a. The degree of this polynomial is

one less than the number of components in the system and its coefficients can be

calculated from the feed composition and the equilibrium ratios. A recursive

expression is developed that involves symmetric functions and can be easily pro-

grammed on a computer or scientific calculator.

The principal advantage of this new form of the objective function is that the

theory of polynomials is well-developed. The location of their zeros can be

predicted with confidence by techniques based on sound mathematical principles,

such as the Fourier-Budan theorem. The a-polynomial is well-behaved over the

two-phase region and its root can be quickly located by a hybrid method of

interval-halving technique and Newton-Raphson procedure. The validity of the new

objective function and its automatic coefficient-generating algorithm are tested using

several multicomponent systems for which experimental data are available.

Results of these tests prove conclusively the validity of the generalized polyno-

mial objective function. The versatility of this form of the flash objective function,

compared with the original Rachford-Rice version, is demonstrated. Another
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potential advantage of the polynomial form is its ability to handle dilute systems in

which some components are present but in very low concentrations. It also prom-

ises possible usage as a means of developing appropriate lumping schemes.
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NOMENCLATURE

Roman

A = pressure-dependent constant [Equation (2.6)]

A = parameter for the PREOS [Equation (2.18)]

A = number of sign changes in derivative series (Section 5.2.4'

a = intercept of log Kp vs F plot [Equation (2.3)]

a = unitary or elementary symmetric function [Equation (3.41)]

a (T) = attractive constant for PREOS [Equation (2.11)]

a (Tc ) = attractive constant at critical point for PREOS [Equation (2.10)]

B = parameter for the PREOS [Equation (2.19)]

B = number of sign changes in derivative series (Section 5.2.4)

b = translation constant for Cox chart [Equation (2.1)]

b = molar co-volume for PREOS [Equation (2.9)]

Ci = constant used in the objective function [Equation (3.16)J

Ci = excluded term [Equation (3.42)]

c = slope of log Kp vs F plot [Equation (2.3)]

c = volume translation parameter [Equation (2.21)]

F = number of moles in feed stream (Section 3.1.1)

F = component characterization factor [Equation (2.1)]

Ki  = equilibrium ratio (Section 1.2)

L = number of moles in the liquid phase (Section 3.1.1)

M = interexpressibility matrix [Equation (4.12)]

m = element of matrix M [Equation (4.31)]

N = number of components in the fluid system (Section 1.3)
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n = number of terms in the set [Equation (3.41)1

P = a partition of r into at most X parts [Equation (4.8)]

p = pressure

Pi = part of a partition [Equation (4.1)]

p (t) = polynomial as a function of t (Section 5.2.4)

p (u) = polynomial as a function of u (Section 5.2.4)

p (v) = polynomial as a function of v (Section 5.2.4)

R = real gas constant [Equation (2.8)]

R = field of real numbers (Section 5.2.4)

s = power sum symmetric function [Equation (4.6)]

sp = slope of plot [Equation (2.2)]

T = temperature

t = exponential term in generating function [Equation (3.41)]

u = augmented unitary symmetric function [Equation (4.7)]

u = real number (Section 5.2.4)

V = number of moles in the vapor phase (Section 3.1.1)

v = molar volume

V = pseudo volume [Equation (2.21)]

v = length of a partition [Equation (4.2)]

v = real number (Section 5.2.4)

w = weight of a partition [Equation (4.1)]

X = fluid "map" coordinate from Varotsis (Section 2.2)

Xi = component "map" coordinate from Varotsis (Section 2.2)

x = mole fraction in the liquid phase (Section 3.1.1)

x = argument of symmetric function [Equation (3.41)]

Y = fluid "map" coordinate from Varotsis (Section 2.2)
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Yi = component "map" coordinate from Varotsis (Section 2.2)

y = mole fraction in the vapor phase (Section 3.1.1)

Z = compressibility factor [Equations (2.20), (2.22)]

z = mole fraction in the feed stream (Section 3.1.1)

Greek

a = vapor fraction [Equation (1.1)]

= isothermal compressibility (Section 2.3.2)

= binary interaction coefficient [Equation (2.16)]

= bulk modulus [Equation (2.23)]

71 = function to describe a (T) away from critical point [Equation (2.11)]

ic = function of acentric factor in PREOS [Equation (2.13)]

Kco  = function of acenrric factor in PRSV EOS [Equation (2.26)]

K1  = parameter in PRSV EOS [Equation (2.27)]

g = coefficient of polynomial [Equation (5.2)]

Rti  = multiplicity of a part in a partition [Equation (4.1)]

V = EOS variable [Equations (2.24), (2.25)]]

coi  = Pitzer acentric factor for the i-th component [Equation (2.5)]

Subscripts

B = boiling point tEquation (2.1)]

c = critical property

i ,j,k ,l ,m = individual components of the fluid system

ij = interaction between component i and component j of the fluid system

k = convergence pressure (Section 2.2)
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P = constant pressure [Equation (4.29)]

R = reduced property

RA = Rackett compressibility factor [Equation (2.22)]

r = order of symmetric function [Equation (3.41)A

T = constant temperature [Section 2.3.2, Equation (4.29)]

Superscripts

I = fluid state [Equations (2.24), (2.25)]

i = component of fluid system [Equations (2.24), (2.25)]

(n) = order of derivative

' = first derivative

= second derivative

= third derivative

Abbreviations

CPU = computer central processing unit

EOS = equation of state

IF = degree Fahrenheit

LHS = left-hand side (of an equation)

PREOS = Peng-Robinson equation of state

PRSV EOS = Peng-Robinson-Stryjek-Vera equation of state

psia = pounds per square inch, absolute

Q.E.D. = quod erat demonstrandum, which was to be proved (Appendix A)

RHS = right-hand side (of an equation)

SRKEOS = Soave-Redlich-Kwong equation of state

SSM = successive substitution method
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Chapter 1

DISCUSSION OF THE PROBLEM

1.1 Introduction

Determination of the equilibrium state of coexisting liquid and vapor phases,

particularly for multicomponent fluid mixtures, is of vital interest to the petroleum

and chemical industries. Many processes in petroleum production and refining

involve repetitive flash calculations for design and operational purposes. The pri-

mary goal of performing flash calculations is to determine the relative amounts and

compositions of the coexisting phases for a given feed composition at a specified

condition of temperature and pressure.

This work is confined solely to two-phase vapor-liquid equilibrium computa-

tions, although its results will no doubt find application in multiphase flash prob-

lems in the future.

1.2 The Generic Flash Algorithm

To begin the calculation, the following variables must be specified: the system

pressure and temperature, the molar composition of the feed stream, zi , and an ini-

yi
tial estimate of the equilibrium ratios, Ki = -. The process is assumed to occur

xi

under isothermal and isobaric conditions. The stages of the calculation are:

1. Compute initial estimates of the equilibrium ratios by one of the established

techniques or by an empirical correlation.
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2. Calculate the phase distribution and compositions corresponding to the given

K-values. This involves the iterative solution of the following objective func-

tion, developed by Rachford and Rice (1952):

N z i (g i - I )N. =0K~ ) - (1.1)
I= + at ( Ki -1I

where a is the vapor molar fraction.

3. Use an equation of state (EOS) to calculate the component fugacities in each

phase and check for equality.

4. If equality is not achieved (i.e., the phases are not in equilibrium), correct the

K-values on the basis of the fugacities and repeat steps 2-4.

This correction is commonly performed using a successive substitution-type

method or a second-order Newton-type scheme. These algorithms are well-known

and are described in several papers [e.g., Risnes et al. (1981); Michelsen (1982);

Boston and Britt (1978)].

Successful implementation of the generic flash algorithm described above

requires three principal elements. These are (1) a general estimate of the set of

equilibrium ratios to start the procedure; (2) a good equation of state to improve Ki;

and (3) a robust objective function that guarantees convergence to a single value of

a. A poor first guess of K-values may produce a phase split that is physically

impossible under the prevailing pressure and temperature. Satisfactory methods are

available for generating these values. Furthermore, existing equations of state do a

fairly good job of predicting phase properties, and other efforts continue along this

line.
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One area that has not enjoyed equal amounts of attention for a long time is the

form of the objective function. Invariably, the Rachford-Rice objective function

[Equation (1.1)] is most often used. Recent investigations (Warren, 1991) have

shown that this objective function does exhibit some strange behavior which may

affect its ability to generate good results for some conditions.

1.3 Objectives of the Investigation

This study is aimed at evolving a generalization of the new polynomial form

of the Rachford-Rice objective function developed by Warren (1991). The resulting

generalized polynomial function of the vapor fraction, c., should be capable of han-

dling an N-component mixture. The coefficients of the generalized polynomial

should depend on only two variables, the molar composition of the feed stream and

the equilibrium ratios, and should be easy to obtain, either analytically or numeri-

cally. Appropriate algorithms are to be developed for this purpose.

The principal advantage of a polynomial form of the flash-calculation objective

function is that the theory of polynomials is well-developed and semi-analytical

solution techniques exist for equations up to fifth-order (Zaguskin, 1961). For

higher-order polynomials, the Newton-Raphson iterative method usually provides a

fast and accurate determination of the roots.

Determination of all the zeros of this polynomial is unnecessary since the phy-

sics of the problem demands that only the zeros on the bounded interval [0,1] are of

practical interest. Furthermore, the physics also suggests that only one zero (or

value of ax) exists on this interval, which represents the two-phase vapor-liquid

region. It can be shown mathematically that this is indeed the case for well-defined

systems, as will be demonstrated in S.2.



Chapter 2

LITERATURE REVIEW

A survey of the pertinent literature reveals that apparently only one other

worker, Warren (1991), has studied the particular aspect of flash calculations tar-

geted in this research. A comprehensive review of the literature pertaining to the

use of cubic equations of state in flash calculations was conducted in order to pro-

vide a reference point for the testing of the polynomial objective function.

This review is sub-divided into three sections: flash calculation algorithms;

equilibrium ratios; and cubic equations of state. Particular emphasis is laid on the

Peng-Robinson equation of state.

2.1 Vapor-Liquid Equilibrium Flash Calculations

This discussion will be confined to two-phase vapor-liquid equilibria. The

work to date concentrates on developing robust algorithms with rapid convergence

rates. Robustness implies the ability to continue the calculations after recovering

from a spurious value of the vapor fraction computed in the neighborhood of the

critical point or at the phase boundaries. Abhvani and Beaumont (1987) present an

excellent review of EOS-based flash algorithms. They divide the papers into two

categories according to solution method, those using some variant of the successive

substitution method (SSM) or those employing a second-order Newton-type method.

The SSM technique is the traditional solution algorithm, but it exhibits a poor

rate of convergence and has stability problems close to saturation points and in the
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critical region. Risnes et al. (1981), Michelsen (1982), and Mehra et al. (1983)

made attempts at acceleration and stabilization of this method.

Similarly, many workers have proposed various forms of second-order Newton

procedures to avoid the slow rate of convergence of the SSM, such as Boston and

Britt (1978), Fussell and Yanosik (1978), Asselineau et al. (1979), Fussell (1979),

Baker and Luks (1980), and Varotsis et al. (1981). Others advocate a combination

of successive-substitution and Newton methods; the former is used to provide good

initial values to the rapidly converging latter. Informative studies include Mott

(1980, 1983), Mehra et al. (1982), Michelsen (1982), Nghiem et al. (1983), and

Abhvani and Beaumont (1987).

Benmekki (1984) developed a general algorithm for flash calculations that can

utilize any cubic equation of state and features a specified calculational path for

computing the phase boundaries. This is an attempt to ensure that bubblepoint and

dewpoint computations originate from within the two-phase region, thus guarantee-

ing meaningful values of the equiliurium ratios.

Warren (1991) made a radical departure from previous efforts at enhancing

flash calculation algorithms when he formulated an explicit linear equation for the

vapor fraction of a binary system. He successfully extended this to a quadratic

equation for a ternary system and a cubic equation for a quaternary mixture. The

success achieved by Warren and the possibility of the existence of a generalized

polynomial expression for the vapor fraction in a two-phase, N-component fluid sys-

tem motivated the current work.
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2.2 Vapor-Liquid Equilibrium Ratios

The use of initial equilibrium ratios close to the final values for a multicom-

ponent fluid is crucial to the rapid convergence of any flash calculation. Experi-

mental values are preferred because the prediction of Ki for a particular fluid at

various combinations of temperature, pressure and composition requires lengthy cal-

culations. Therefore, predictive methods for K-values are a limiting factor in the

speed and robustness of any flash calculation algorithm.

The expression "equilibrium constant" was coined by Souders et al. (1932)

and was defined as the ratio of the vapor mole fraction to that of the liquid. The

basis for most predictive methods had its genesis when Cox (1923) observed that

the lines on a semilogarithmic plot of vapor pressure against temperature appeared

to converge to a single pressure. Katz aitd Hachmuth (1937) demonstrated an

analogous behavior for equilibrium constants; they converged to unity at a fluid

mixture's critical pressure.

White and Brown (1942) attempted to develop a correlation for K-values based

on this "convergence" pressure. Hanson and Brown (1945) used experimental data

to correlate the convergence pressure (pk) at one temperature as a function of the

molal average boiling point of the equilibrium vapor and liquid. They also showed

that the convergence pressure concept could be extended from binary to multicom-

ponent systems.

Hadden (1948, 1953) produced nomographs for equilibrium constants of pure

components as functions of temperature and pressure, and incorporated convergence

and vapor pressures inte nomographs for mixtures. He demonstrated that mixture

convergence pressure is a function of the operating temperature and of the liquid-
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phase composition exclusive of the lightest component concentration. This compo-

sition dependence led Muskat (1949) to propose the use of the term "equilibrium

ratio" in place of "equilibrium constant." Edmister (1949) presented a graph involv-

ing the ratio of differences between the convergence and critical pressures and the

ratio of differences between the system and critical temperatures.

Winn (1952) developed nomographs based on Hadden's (1948) results that

allow the determination of K-values at a convergence pressure of 5000 psia. For

systems with Pk * 5000, he provides a translation to find the value of Ki at other

"apparent" convergence pressures. The methods proposed by these three authors

require charts and do not lend themselves to computer calculations.

Hoffmann et al. (1953) attempted to extend Cox's (1923) vapor pressure graph

for the purpose of determining equilibrium ratios by plotting log Kp against the

component characterization factor F, where

Kp = product of equilibrium ratio and pressure

F =b T 11 (2.1)
TB TJ

b - constant required to translate the vapor pressure curve

for a hydrocarbon onto the straight line of the Cox chart

TB = hydrocarbon boiling point

T = system temperature

Brinkman and Sicking (1960) presented an iterative method for finding the conver-

gence pressure based on the slope, sp, of the plot mentioned in Hoffmann et al.

(1953). Then, the equilibrium ratio could be determined as

K = Pk CSPF (2.2)P
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Standing (1979) observed that the composition dependence of the equilibrium

ratio is negligible at pressures below 1000 psia. He proceeded to combine the work

of Hoffmann et al. (195?) and Brinkman and Sicking (1960) to develop a correla-

tion for K-values for the crude oils studied by Katz and Hachmuth (1937):

K = _L-10(a + cF) (2.3)
P

where a and c are the intercept and slope (respectively) of log Kp vs. F plots of the

abovementioned oils. Both a and c are expressed as functions of pressure. He also

presented equations for the heavy fraction and the common reservoir gases N2, CO2

and H2S (referred to as permanent gases).

Wilson (1969) published a K-value equation that currently enjoys widespread

use in flash calculations:

Ki = e (2.4)
PRi

where

1
B = 5.37(1 + coi)(1 - -) (2.5)

TRi

PRi = reduced pressure of the i-th component

TRi = reduced temperature of the i-th component

coi = Pitzer acentric factor of the i-th component

Wilson's equation fails to predict accurate equilibrium ratios for most fluids above

pressures of 500 psia, as illustrated by Warren (1991). Whitson and Torp (1981)

attempted to correct this problem by re-introducing the system convergence pressure

to the Wilson equation:

Ki [Pci ]A - I eA  (2.6)[Pk PRi
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where

[ - 14.7 10.6(27Pk -14.7 (2.7)

Pci = critical pressure of the i-th component

Risnes and Dalen (1984) took an approach based on the equation of state used

in the flash calculations. Their basic idea was to assume the mixture or feed to be

liquid and then evaporate up to one-half of the system to form a gas phase by use

of the fugacities. The initial K-values then could be calculated from the resulting

phases. This method is reported to perform well near the critical point and along

the bubblepoint line but often fails along the dewpoint curve.

Reportedly, the most accurate K-value predictor is that proposed by Varotsis

(1989). He used over 1000 experimental equilibrium ratios to construct an X-Y plot

such that each reservoir fluid's position on the "map" is determined by its coordi-

nates X and Y. These coordinates are described by a polynomial fitted to the

apparent pressure mentioned in Winn (1952). He proposes an equation for the con-

vergence pressure based on the mole fraction of methane and nitrogen in the fluid.

Each pure hydrocarbon component is represented on the map by its own set of

coordinates (Xi, Yi ), which are calculated as functions of the component acentric

factor. Specific values are given for the permanent gases and correlations based on

molecular weight are specified for the heptane-plus fraction.

Finally, the straight line that joins the pressure and temperature coordinates

(X, Y) of the fluid with the position of each component on the map (Xi, Yi ) inter-

sects the K-value axis at a point that corresponds to the equilibrium value of the

selected constituent. Varotsis (1989) presents tables for three different crude oils
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and gas condensates at varying temperatures and pressures that display K-values

remarkably close to experimental values. They are an order-of-magnitude improve-

ment over those predicted by the equations of Wilson (1969) or Whitson and Torp

(1981).

The method of Varotsis (1989) was attempted in the current work. His K-

value predictor was formulated using data for crude oils and gas condensates con-

taining the C1 - C6 alkane series, the heptane-plus pseudocomponent and the per-

manent gases. It will not properly describe systems (such as the methane-ethane-

propane ternary) containing fewer components than these "typical" reservoir fluids.

For lack of a suitable replacement expression for Pk, Wilson's equation is used in

the current work.

2.3 Cubic Equations of State (EOS)

The equation of state (EOS) is the heart of a modem flash calculation algo-

rithm. Ideally, it should be able to accurately represent the thermodynamic proper-

ties of the fluid of interest over the complete range of operating pressures and tem-

peratures. Since engineering applications rarely focus on an isolated chemical

species, the EOS should incorporate mixing rules that allow it to extend its predic-

tive capabilities to the behavior of multicomponent fluids. Its component-specific

descriptive parameters should be readily calculable from well-known properties,

such as critical temperature and pressure, molecular weight and acentric factor.

Finally, the associated computations should not consume excessive computer time,

especially if the equation of state is to be used for repetitive calculations.

The engineer is faced with the choice of using a complex EOS exhibiting a

high degree of non-linearity and many adjustable parameters, or a cubic EOS which
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possesses an analytical solution and requires the estimation of two or three parame-

ters. Mathias and Benson (1986) presented a comparison of average central-

processing-unit (CPU) times required by three cubic EOS and by three complicated

EOS to compute fugacity coefficients and enthalpy departures. They asserted that

the time required for any of the candidate equations to calculate the density root (or

compressibility factor root) is negligible compared to that involved in executing the

various mixing rules. In fact, for systems containing more than about six com-

ponents, the cubic EOS become more computationally burdensome than the compli-

cated EOS simply because of the cross terms inherent to the cubic EOS mixing

rules.

Engineers frequently use cubic EOS because they work well over the range of

most industrial operating conditions and are easily programmed for solution on a

computer. The two cubic EOS which have gained the widest acceptance are

Soave's modifications of the Redlich-Kwong (1949) equation of state (SRKEOS)

(Soave, 1972) and that presented by Peng and Robinson (1976b) (PREOS). The

PREOS and suggested improvements are examined in this work for possible use in

flash calculations because of the author's familiarity with this EOS.

2.3.1 Development of the Peng-Robinson EOS

Upon the success of the SRKEOS, Peng et al. (1975) undertook a further study

to formulate a cubic equation of state with an improved capability to predict liquid

densities and other fluid properties, particularly in the vicinity of the critical region.

This study resulted in a further modification of the attractive pressure term of

the classical equation of state proposed by van der Waals (1873). The result was

the EOS presented by Peng and Robinson (1976b):
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RT a (T) (2.8)
v =v-b v(v+b) + b(v-b)

The values of the parameters are obtained from

RTc
b = 0.07780 R (2.9)

PC

R2TC2

a (Tc ) = 0.45724 R (2.10)
PC

a (T) = a (Tc ) • T"(TR , (o) (2.11)

= 1+ K (1 - TRA) (2.12)

K = 0.3746 + 1.4850) - 0.164402 + 0.016670 (2.13)

Equation (2.12) has the same form as that used by Soave (1972) but K was obtained

by fitting a larger range of vapor pressure data as a function of the reduced tem-

perature and the acentric factor (Pitzer et al., 1955) of each component.

In order to use the equation for systems containing more than one component,

the following mixing rules are presented:

a = x, xxj aij (2.14)
ii

b = xibi (2.15)

where

a= ( - Si)ai hajl1 (2.16)

Equations (2.14) and (2.15) are consequences of the mixing rule proposed by Kay

(1936), while Equation (2.16) was developed by Zudkevitch and Joffe (1970). The
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experimentally determined binary interaction coefficient, 86j, characterizes the

binary formed by component i and component j. The importance of 80 in accu-

rately reproducing P-V-T data was discussed by Peng and Robinson (1976b) and by

Robinson et al. (1985).

The PREOS can be written in the form of a cubic equation in the compressibility

factor:

Z 3  (I - B)Z 2 + (A - 3B 2 - 2B)Z - (AB - B 2 - B 3) = 0 (2.17)

where

A ap 2(2.18)
R 2T2

B =bp (2.19)
RT

Z RE_ (2.20)
RT

2.3.2 Selection of the Proper Root in Cubic EOS

Equation (2.17) yields one or three roots depending upon the number of phases

in the system. The authors stated that, in the two-phase region, the largest root is

for the compressibility factor of the vapor while the smallest positive root

corresponds to that of the liquid.

Lawal (1987), however, asserted that this criterion was insufficient to select the

proper root. He proved that, in the event of multiple real roots, the smallest of the

positive roots larger than or equal to B must be chosen for the compressibility of

the liquid.
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Asselineau et al. (1979) compared the calculated volume to the pseudo-critical

volume to assign the root to the proper phase, under specific conditions. Poling et

al. (1981) examined the order of magnitude of the isothermal compressibility,

= -(ov /p )T/v, to ascertain the presence of the liquid or vapor phase. Gosset et

al. (1986) offered two discriminants, one based on the Cardan criterion for the

number of real roots for a cubic equation and a heuristic approach similar to that of

Asselineau et al. (1979).

2.3.3 Modifications to the Peng-Robinson EOS

Numerous attempts have been made to correct for the deficiencies inherent in a

cubic equation of state by introducing additional parameters into the PREOS.

These changes improve some aspect of the EOS's performance (usually liquid den-

sity predictions) but at the cost of increased complexity and the requirement for

tables or correlations to determine the additional parameter(s) for each fluid com-

ponent. This review will touch on a limited number of these studies.

2.3.3.1 Volume Corrections

The modification of the SRKEOS proposed by P~neloux et al. (1982) also

formed the basis for two other studies concerned with the PREOS. These authors

suggested that the use of a "pseudo volume" defined by

= V + iCigi (2.21)

could be used to effect a translation along the volume axis, leaving unchanged the

predicted equilibrium conditions. They chose c so that correct saturated liquid
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densities were exactly reproduced at the reduced temperature TR = 0.7. They

rejected the acentric factor as a correlating parameter in favor of the Rackett

compressibility factor, ZR, developed by Spencer and Danner (1972):

RT(

c = 0.40768-(0.29441 - Z) (2.22)
PC

Their third parameter did improve predictions of saturated liquid densities.

Almost simultaneously, Jhaveri and Youngren (1988) and Mathias et al.

(1989) presented three-parameter modifications of the PREOS based on the work of

Pneloux et al. (1982). The first authors correlated the third parameter, c, with

molecular weight. The second study retained the Ptneloux-Rauzy-Fr6ze volume

correction scheme but added a further term involving the bulk modulus to handle

the critical region. The bulk modulus is dimensionless and is defined as:

= R (2.23)
RT Lav IT

From an examination of the graphs accompanying both publications, the work of

Mathias et al. (1989) seems to produce results closer to the experimental values for

saturated volumes and densities.

2.3.3.2 Temperature Dependence

Xu and Sandier (1987a,b) postulated that the molar co-volume term, b, is not

independent of temperature and they disputed the fitting of vapor pressures used by

Peng and Robinson (1976b) to characterize the attractive constant, a. They corre-

lated vapor pressure and volume data for 16 components at both subcritical and
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supercritical conditions and proposed to replace the numeric coefficients of a and b

found in Equation (2.9) and Equation (2.10) with:

1 2
Wa = _ai T (2.24)

i=O

and

'Vb =FbiT (2.25)
i--O

where i refers to the species and I denotes either subcritical or supercritical condi-

tions.

Wu and Sandier (1989) generalized the temperature-dependent parameters of

Xu and Sandier (1987a,b) by performing least-squares fits of VWa and Wb as func-

tions of acentric factor and reduced temperature. They were able to accomplish this

task only for the n-alkane series because of insufficient data. For their intended

application of the work (petroleum reservoir simulation), they envisioned the use of

the fluid-specific parameters for the permanent gases, water and light ends and the

generalized parameters for the heavy pseudocomponents.

Stryjek and Vera (1986a,b,c,d) re-worked Equation (2.13) to obtain a better

reproduction of vapor pressure data at low reduced temperatures:

,0  0.378893 + 1.4897153co - 0.17131848 2 + 0.0196554w3  (2.26)

and modified Equation (2.12) by the introduction of one compound-characteristic

adjustable parameter, K1 :

IC = o + I (1 + TR ")(0.7 - TR) (2.27)

Stryjek and Vera (1986b) and Proust and Vera (1989) listed values of KI for over

160 compounds of industrial interest. Stryjek and Vera (1986d) and Wilczek-Vera
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and Vera (1987) examined mixing rules of varying complexity for use with the

Peng-Robinson-Stryjek-Vera (PRSV) EOS. For the current work, the PRSV EOS

with the cmiginal PREOS mixing rules (as formulated by Stryjek and Vera, 1986b)

is used and produces noticeably better results than did the PREOS.

2.3.4 References on Cubic EOS

Abbott (1979) and Martin (1979) presented comprehensive reviews of cubic

equations of state available at that time, and Vidal (1983) and Vera et al. (1984)

updated the topic. Huron and Vidal (1979) proposed composition-dependent mixing

rules while Mathias and Copeman (1983) discussed mixing rules dependent on

volume. Finally, Peng and Robinson (1976b), Peng and Robinson (1977), Robinson

and Peng (1978), Robinson (1979) and Peng (1986) developed specific applications

of their EOS.



Chapter 3

DEVELOPMENT OF THE POLYNOMIAL FUNCTION

FOR SIMPLE SYSTEMS

This chapter discusses the work published by Rachford and Rice (1952) and

Warren (1991) on performing flash calculations. It shows the development of the

Rachford-Rice objective function [Equation (1.1)] and extends Warren's work as a

precursor to developing a generalized, multicomponent equation for the vapor frac-

tion.

3.1 The Rachford-Rice Flash Objective Function

We will briefly examine the derivation of the Rachford-Rice objective function

that is universally used today in flash calculations. After plotting its behavior, it

will become plain why it is so difficult to solve by iterative techniques such as the

Newton-Raphson method.

3.1.1 The Material Balance Development

Flash calculations are used to determine the compositions and quantities of the

vapor and liquid phases at equilibrium which result when an N-component fluid of a

particular composition is subjected to a particular pressure and temperature. The

composition of the feed stream, F, is denoted by Z zi and it flashes into L moles of

liquid with composition £ xi , and V moles of vapor with composition Z yi. The

resulting material balance equations are:
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F =L +V (3.1)

Fz = Lxj + Vyi (3.2)

As defined in Chapter 1, the equilibrium ratio is:

Ki = (3.3)

and, rearranging, one is left with the equation:

yi = xiKi (3.4)

Substituting Equation (3.4) into Equation (3.2) yields:

Fz, = VxK, +Lx (3.5)

Simplify by isolating the xi term and dividing through by F:

zi = xi I F i (3.6)

Dividing Equation (3.1) through by F and solving for -- yields:

L. -
(3.7)

F F
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Substituting Equation (3.7) in Equation (3.6) and simplifying the equation results in:

xi  zi (3.8)v
1 + (Ki - I)

N
Imposing the constraint of xi  I on Equation (3.8) leaves:

i=1

N ZI = N Z (3.9)-V
I + .Ki I

Rearranging:

Szi 1 = 0 (3.10)
v

i=1 + ( Ki - 1)
F

Recalling Equation (3.4), we can write:

ziKiYi =  z (3.11)

1+ (Ki - I)
F

N
Imposing the constraint of Y = I on Equation (3.11) yields:

i=1

N ziK ]- =0 (3.12)
VI +-_( Ki_ -I)
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Combining Equation (3.10) and Equation (3.12) leaves:

N z (K -= 0 (3.13)
VI + - (K -1)
F

Defining the vapor fraction, a, as:

- (3.14)
F

and substituting Equation (3.14) into Equation (3.13) yield the Rachford-Rice objec-

tive function:

N zi ( K i -1)N =0 (3.15)

i=J 1 +a(Ki -1)

3.1.2 A Graphic Representation of the Rachford-Rice Objective Function

As the authors noted, their formulation of the objective function was prone to

instability near the values of a that represented the phase boundaries, namely, 0 and

1. They showed that the slope of the function near these points may be quite steep.

It is this feature that tends to throw derivative-based root-finding techniques out of

the two-phase region, yielding spurious roots.

Figure 3.1 depicts the behavior of the objective function over a wide range of

(x for a binary system of 70% methane and 30% ethane (Bloomer et al., 1953).

Figure 3.2 does the same for a ternary system consisting of 85% methane, 10%

ethane and 5% propane (Parikh et al., 1984). Although values of the vapor fraction
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Figure 3.1: The Behavior of the Rachford-Rice Objective Function for a Methane-
Ethane Binary System
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Figure 3.2: The Behavior of the Rachford-Rice Objective Function for a Methane-
Ethane-Propane Ternary System
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have no physical meaning outside the interval [0,1], these graphs serve to illustrate

how ill-behaved the objective function is. Its slope is almost flat as it traverses the

two-phase region and it is plagued by spiky singularities.

This work will attempt to develop a new expression for a, one that possesses

reasonable slope over the desired interval and has no discontinuities near the phase

boundaries.

3.2 Warren's Explicit Equations for the Vapor Fraction

Warren (1991) expanded the Rachford-Rice objective function into a polyno-

mial in ax for a binary, ternary and quaternary fluid system. He did this by setting

N equal to 2, 3 or 4, respectively, and reducing the resulting equations to their sim-

plest polynomial form by algebraic manipulations. To demonstrate the validity of

his work, Warren also showed that the higher-order polynomials would reduce to

those for smaller systems when the appropriate mole fractions and equilibrium con-

stants were removed.

We will assume (as did Warren) that, under isobalic and isothermal conditions,

the equilibrium constant does not change such that the quantity (Ki - 1 ), which

appears in the objective function, can be represented by a constant, Ci .

We will reproduce the entire process here for a binary system but will show

only the final result for a ternary and quaternary system, since the algebra can be

quite tedious and repetitive.
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3.2.1 Binary System

Starting with the objective function as defined in Equation (3.15):

N zi (K i -1 )
I +1 (K 1 _I) -0 (3.15)

and defining Ci = Ki - 1, Equation (3.15) can be rewritten as:

N zC 0 (3.16)

.= 1+ a Ci

For a two-component system, setting N = 2 in Equation (3.16) and expanding

term-wise yields:

Z1 CI + Z2 C 2  0 (3.17)

1+aC1  1+aC2

Moving the terms with the subscript "2" to the right-hand side of the equation:

Zl Cl Z2 C2=C (3.18)

1 +iaC, 1 +iaC 2

By multiplying each side by (1 +ia C 1) (1 +ix C2), one obtains:

(Z 1 C) (1 + a C2)=- ( 2 C 2) (1 + x C) (3.19)

Expanding each side yields:

Z1 C I +-zzlC 1 C 2 = 2 C 2 -ctz 2 C 1 C 2 (3.20)
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Move a terms to the left-hand side of the equation and all remaining terms to the

right-hand side, then recall that, for a binary system, z1 + Z= 1

a (C1 C2) = - (z 1 C+ z 2 C 2) (3.21)

Dividing both sides through by C 1 C 2 and substituting (Ki - 1) yields the explicit

form of the objective function for a binary system:

ax = + (3.22)K 2 - 1 K

3.2.2 Ternary System

I=1 . Zi

a 2 + a 3 + 3 = 0 (3.23)

HC J i 1lHCj
j*i j~i

3.2.3 Quaternary System

a2 (1 -- ) ___i_ It- 4 Zi

4+ a + 4 = 0 (3.24)

j~i j*i

3.3 Extension of Warren's Work to Larger Systems

Warren's method can be used to develop polynomial expressions for systems

having five, six and seven components. It will be observed that the terms of the
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equation expand in a regular fashion, thereby suggesting the possibility of develop-

ing a recursive relationship dependent only on N, the number of components. Only

the algebra for the five-component system will be presented, as those for six- and

seven-component systems follow the same procedure.

3.3.1 Quinary System

We begin with the objective function:

5 zi C
0 (3.16)•i" 1 + ax Ci

which, when expanded for five components, becomes:

z___ 1  z 2 C2  z 3 C 3  z 4 C 4  z 5 C 5
z11 + + + + = 0 (3.25)

1+aC l+aC 2  l+ aC 3  l+ aC 4  l+ aC 5

5
Multiplying through by fI (1 + a Ci ) yields:

i=1

z1 CI( l + aC 2)(1l+ a C3) (1+ a C4) (1+ C5) +

z2 C2 (1 + a CI) (1 + a C3) (1 + a C4) (1 + a C5) +

z3 C3 (1 + a CI) (1 + a C 2) (1 + a C4) (1 + a C5) +

z4 C4 (1 + a Cl) (1 + a C2) (1 + a C3) (1 + a C5) +

z5 5 (1+aC)(l+aC C 2)( l +aC 3)(l+aC 4 ) = 0 (3.26)

Expanding each term:

Ct4 zI CI C2 C3 C 4 C 5 +
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a3 ZI CI (C2 C3 C4 +C 2 C3 C5 +C 2 C4 C5 +C 3 C4 C5 )+
a 2 ZC 1 (C2 C3 +C 2 C4 +C 2 C5 +C 3 C4 + C3 C5 +C 4 C5 ) +
a z1 C1 (C2 +C 3 +C 4 +C 5 ) + 21C 1 +

a4 Z2 CI C2 C3 C4 C5 +
a 3 Z2 C2 (C1 C3 C4 + CI C3 C5 + CI C4 C5 +C 3 C4 C5 ) +
a2 z2 C2 (C1 C3 + C1 C4 +C1 C5 +C 3 C4 + C3 C5 +C 4 C5 ) +
aZ 2 C2 (C + C3 +C 4 +C 5 ) +Z 2 C2 +

a4 Z3 C1 C2 C3 C4 C5+
a3 23 C3 (C C2 C4 +C1 C2 C5 +C1 C4 C5 +C 2 C4 C5 ) +
a2 23 C3 (C C2 +C1 C4 +C1 C5 +C 2 C4 + C2 C5 +C 4 C5 ) +
aZ 3 C3 (C + C2 +C 4 +C 5 ) +Z 3 C3 +

a 4 Z4 CI C2 C3 C4 C5 +
a 3 Z4 C4 (CI C2 C3 + CI C2 C5 +C 2 C3 C5 + CI C3 C5 ) +
a 2 Z4 C4 (C1 C2 +C1 C3 +C1 C5 +C 2 C3 + C2 C5 +C 3 C5 ) +
aZ 4 C4 (C + C2 +C 3 +C 5 ) + 4 C4 +

a4 z5 C1 C2 C3 C4 C5+

CO Z5 C5 (CI C2 C3 +CI C2 C4 + CI C3 C4 +C 2 C3 C4 ) +
a 2 25 C5 (C1 C2 +C1 C3 +C1 C4 +C 2 C3 + C2 C4 +C 3 C4 ) +
aZ5 C5 (C1 I-C 2 +C 3 +C 4 )+Z 5 C5 = 0 (3.27)

5
Dividing through by the term I IC 5 and adding like terms yields:

j=1

t4 + a3{zi I 2- I

C1 C2 C4 4 C C2 C3 +C 5
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c + --- + + ++[ ~cc cCc Ic2 3c4 5

a2 [ + ++ ._+1 + +
2 C3 C C + C C5 C3 C4 + C3 C5 4 C

Z3 C I C2 + C C4 + CI C5 + C 2 C 4 C 2 C 5 C 4 C 5 +

Z4 C1 C2+C 3 IC + C2 C3 + C2 C5 + C3 Cj+

1 + + 1 + 1 + 1l+

zf CI C2 +C C3 CI C4 C2 C- 2 C C3 C 4

az l [ C2 +C 3 +C 4 +C ZI CI+C 3 
+ C 4 + C5 +f z C2 C3 C4 C5 I I2 C1 C3 C4 C5

Z3 C C2+ C4 + CS + -4 [ C 2 +C3 + C5 1 +
I CI C2 C4 C5 CI C2 C3 C5

[ C +C 2 +C 3 + C4 i 1 +2

25 C 2 C3 C4 C2 C3 C4 C5 +C C 3 C4 C 5

23 24 z 5Z- + = 0 (3.28)
C, C2C4 C5 CE C2 C 3 C5 CI C2C3 C4

To maintain similarity with the forms of the quaternary and ternary equations, we

can separate the general term in the coefficient for a in Equation (3.28) into four

fractions:

ziCj Ck +CC ]=jc CCC
ci c, C M c + C, c M T c . c ck CM , cj C, Ck

(3.29)
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After multiplying each of the five fractions by zi and collecting terms with common

denominators, the following form appears:

zi + zj (3.30)
Ck C, Cm

5
We can invoke zi = 1 to construct fractions with similar subscripted terms in

both numerator and denominator:

- Zk -ZIZm (3.31)

Ck C, Cm

This yields a final polynomial expression of the same general form as those of War-

ren (1991):

L4_+3 __- 1-Z 2  1-Z 3  1-Z 4  1-Z 5  +

2 1-z 1 -z 2  1-Z 1 -z 3  1-Z 1 -z 4  1-Z 1 -z 5  1-Z 2 -z 3+++ + +

SC1 C2  + C 1 C 3  + C1 C4  C1 C 5  C2 C3

1-z 1-z 2 -z 5  1-z 3 -z 4  1-z 3 -z5  1-z 4 - z1 - Z2 -Z 4  1 Z2 + Z5 Z+41Z3-Z 4-Z

C2 C 4  C 2 C 5  C 3 C 4  C 3 C 5  C 4 C 5 I +

1 - z I - z 2 - z 3  1 -z -z 2 -z 4  1- z 1 - z 2 -z 5  1 - z l - z 3 -z 4

CiC2 C 3  CLC 2 C 4  CIC2 C 5  CLC 3C 4

- z 1 -z 3 - z 5  1 - z -z 4 -z 5  1- z 2 - z 3 - z 4  1 - z 2 - z 3 - z 5+ + + +
C 1 C 3 C5 C1 C 4 C 5  C 2C 3C 4  C 2C 3C 5

1 -z 2 -z 4 -z 5  1 -z 3 -z 4 -z 5  ______ ___2_

+ +4C c1+ + cccc+
C2C4C5  C3C4Cs I C2 C3 C4 C5 CI C3 C4 C5

Z3  z 4  zs
Z3 4-+ + = 0 (3.32)C, C2 C4 C5 CI C2 C3 C5 CI C2 C3 C4
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This yields the polynomial expression for a quinary system:

a4 +a3[ ~ +, l ac2[ ji - Zj)] +

5 6 (~~1 - -+1 Z 5 Z

a I Yc c 5+ Z = 0 (3.33)
=t +l k--i+2 Ci Ci CA: n ci

j)i

3.3.2 Reduction to Quaternary System

Before proceeding to develop the equations for six- and geven-component sys-

tems, we must ensure that the quinary equation will reduce to that of a quaternary

system under the proper conditions. This is accomplished by setting z5 equal to

zero and K 5 equal to one (Warren, 1991).

When z5 becomes zero, so must x 5 and Y5. This would seem to leave K 5

undefined:

0
lim K 5 = -- = undefined (3.34)X S--- 0

We can remove this difficulty by the application of l'Hospital's Rule. The expres-

sion becomes:

dy 5
dy5  1

lir K 5 = - = -=1 (3.35)
Y-4o dX5  I

de5

Therefore, C5 -- Ks - 1 = I - 1 -=0.
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5
To avoid division by zero, multiply Equation (3.32) by I' C1 :

i=1

( 4 C l C 2 C 3 C 4 C 5 +

a3  (1 - Zl) C 2 C 3 C 4 C 5 + (1 - z 2) C1 C 3 C 4 C 5 + (1 - z 3) C1 C 2 C 4 C 5 +

(1- Z4) CI C2 C3 C5 + (1 - z5 ) C1 C2 C3 C 4 ] +

2 [(1 - zI - z 2) C3 C 4 C5 + (1 - zI - z 3) C 2 C 4 C 5 + (1 - ZI - Z4) C 2 C 3 C5

+ (1 - zI - z 5) C2 C3 C4 + (1 - Z2 - z3) C1 C4 C5 + (1 - Z2 - Z4) C1 C3 C5 +

(1 -Z 2 - z 5) CI C3 C4 + (1 - Z3 - z 4) C1 C 2 C5 + (1 - Z3 - Z5) C 1 C2 C 4 +

(1 - Z4 - z 5) C) C2 C3 ] +

a [zI C1 (C2 + C3 + C4 + C5) + z2 C2 (C1 + C3 + C4 + C5) +

Z3 C 3 (Cl + C 2 + C 4 + C 5) + z 4 C 4 (C 1 + C 2 + C 3 + C 5) +

z5 C5 (C1 + C2 + C3 + C4)] + zI C1 + Z2 C2 + z 3 C3 + z 4 C4 + z5 C5 = 0

(3.36)

Let z5 and C5 equal zero:

a3 C, C2 C3 C4 +

a2 (1 - z1) C2 C3 C4 + (1 - z2) C1 C3 C4 + (1 - z3) C1 C2 C4 +

(1 - z 4) C 1 C 2 C 3 ] +

aI Zl C1 (C 2 + C 3 + C4 ) + Z2 C 2 (C 1 + C 3 + C4) + Z 3 C 3 (C 1 + C 2 + C) +

z 4 C 4 (C1 + C2 + C3) + zI CI + z 2 C2 + z 3 C3 + z 4 C 4 = 0 (3.37)
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This is identical to Equation (3.21) in Warren's work, which is the expanded form

of the quaternary equation. We can now safely derive the expressions for six- and

seven-component systems.

3.3.3 Senary System

00 + 0 + , 6( -z +
=1 =1i) j=i+l C

a2 5 6 (6-(zi-zj-z).+Ic II +A

[~j=i+l k=i+2 CS CJi

[ 4 5 6 ( - zi - -Z zk -zi)] 6 Z

j=i+l k=+2 l=i+3 Ci C, Ck C1 + : 6 =0 (3.38)
j*i

3.3.4 Septenary System

6 + a5[ + a 4  ja , Cizi=1I =i+l C

a3 6 7 Zi -Z - Z) +

j=;il ki+2 Ci C, Ck

C2 5 6 7 (1-Z 5 - Zj - Zkt - ZI)+
ji k=i+2 1=i+3 C ,C , 1

4 5 6 7 1-z j tz .

L~ij=i+1 k=i+2 l=i+3 mi+4 Ci~ 1 -C

7 7 = 0 (3.39)

j*i
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3.4 Formulation of a Generalized Equation for the Vapor Fraction

The objective function can be recast in the following form:

N N
, zi Ci n- (1 + a Cj) = 0, where Ci, Ci = constant (3.40)

i=1 jsi

Equation (3.40) is in the form of the generating function for the elementary sym-

metric functions, ar :

n RI

'I (1+ t xi) = t r ar(Xi) (3.41)
i=l r=O

According to Macdonald (1979), ao(xi) = 1 and a,(xi) = 0 for all r > n.

We can now express the objective function in terms of the r-th elementary sym-

metric function in Ci :

N N N N-I
Yzi Ci ]I(1+a )= , zi C i 1 a r a,(C. Ci,.... = 0 (3.42)
i=1 j*i i1 r=O

where Ci indicates the exclusion of the i-th term from the operation.

Since ar does not involve i, we can invert the order of the summations:

N-I r N
I a' 1 zi Ci a,(C1,..., Ci ,...,€N 0 (3.43)
r=O- i=l

A working definition of the elementary symmetric function ar could be "tak-

ing permutations of the elements of a set r terms at a time." For example,

al(CI, C 2,..., CN) = (C 1 +C 2 + ... + CN) (3.44)
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S + +...+ (3.45)

a2(C -1  . CN-  CC 1C3  CN _ 1 CN I

The condition Ci is equivalent to the j i condition imposed on the summa-

tion terms in the earlier versions of the a-polynomial and herein lies the computa-

tional awkwardness. We want to find an expression that allows the summation to

proceed over all N components, which is an operation readily represented by a

DO-loop in computer programming.

To eliminate C5 , we must expand the symmetric function. In Chapter 4, we

will tackle this problem after a discussion of symmetric functions.



Chapter 4

DEVELOPMENT OF THE GENERALIZED EQUATION

In this chapter, we shall present a brief introduction to the theory of symmetric

functions to show why they provide such a powerful tool to express permutations.

Then we will show the reasoning used in the search for a recursive expression for a

in terms of N, Ci and zi . Finally, we will present a generalized multicomponent

equation for the vapor fraction, a, that is compact and readily programmed on a

computer.

4.1 Introduction to Symmetric Functions

4.1.1 Notation and Definitions of Partitions

Any collection of v non-negative integers (excluding zero) whose sum is w is

called a v-partition of w. The individual integers are referred to as parts of the par-

tition and are conventionally written in descending order of magnitude.

David et al. (1966) state that if there are X distinct parts, say P1,P2.....PX

with P1>P2>P3> • * >p. > 1 and if pi is repeated ;i times, with i = 1, 2,..., X,

then the partition is written (p 'p2 ... px). The weight, w, of the partition is

written as

w = pici (4.1)
i=1
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and the number of parts, or length, is

V = X I (4.2)
i=1

Macdonald (1979) refers to ;i as the multiplicity of i in the partition. For example,

the partition (42213) has weight 13, 6 parts and 3 distinct parts. In our notation,

p1=4 and t =1 2; P 2 =2 and R2= 1; p 3 = and Rt3 =3

4.1.2 Symmetric Functions

A symmetric function is one in which the individual parts can be interchanged

without altering the value of the function, such as

n

Xi = XI+X2+X3+ + (4.3)
i=1

The number, n, of the quantities x does not affect the relationships between the

various forms of the symmetric functions, but does appear in the final expressions.

David et al. (1966) write

x =(1), x/=(r) and , xxj=(rs), forr *s (4.4)
5=I i=1 i~tj

This leads directly to the definitions of two special forms of symmetric functions.

MacMahon (1920) defines the unitary or a-functions as

n

ar= (lr) - xi,..x 4, r = 1, 2, (4.5)
i5<...<i,

and the power sums, or s-functions, as

s= (r) = x[, r 1,2, (4.6)
i=1
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A special case of the a-function is the augmented unitary symmetric function, ur

(David et al., 1966):

Ur = [1'] r!(1r) = r!ar = xi.x 4, (4.7)

summed over all ordered sets i1, . ,..

4.1.3 Recursive Expressions for Symmetric Functions

4.1.3.1 Interexpressibility Tables

Roe (1918) compiled comprehensive interexpressibility tables relating the vari-

ous classes of symmetric functions to one another. These consist of a matrix of

coefficients to be used in a polynomial which might yield, for example, Ur = f (Sr).

Of interest to this work is her relationship between the a-functions (often called ele-

mentary functions) and the s-functions; it is presented here in a form more clearly

expressed by David et al. (1966):

r (1)(r+m) ,  (4.8)
r m= pI ..... p! n

David et al. (1966) also used this equation to construct interexpressibility

tables describing polynomials in power-sum series (s) for a-functions up to and

including weights of 12. For instance, a unitary symmetric function of weight 3

would be represented by the following polynomial from their Table 1.5.3:

a 3 = (1)3 - 3(2)(1) + 2(3) (4.9)
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which, in terms of s-functions, is:

a3 =.~ l-[ -3s 2 s+2s 3  (4.10)

and, when written as power sums, becomes:

"a 3 1 ". xi 3 3 nXi2 n xi + 2 xi3 (4.11)

However, neither Equation (4.8) nor Equation (4.11) is conducive to solution by

computer without a tremendous table look-up effort.

4.1.3.2 Determinant Form

Fortunately, David et al. (1966) present another relationship between a, and

sr in determinant form:

s, 1 0 0 .. 0

S2 sI 2 0 ... 0

1 1 S3 S2  SI 3 .. 0 det M1a1 det -dc= (4.12)

r! r r! S4 S3 S2 S • 0 r

Sr Sr-I -,-2 Sr-3 S 1

This provides a practical method of calculating a, that is also readily programm-

able on a computer.
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4.2 Search for a Recursive Expression for the Vapor Fraction

Armed with a working knowledge of symmetric functions, we can manipulate

the a equation developed in Chapter 3:

, a zi C1 ar(Ci,.... Ci,..., CN 0 (3.43)
r --O

to eliminate the exclusion term 6i and expand the symmetric functions into a more

recognizable form. We will examine the results for several values of r and use

them to write a general expression for a as a function of N.

4.2.1 Case I: r = N-2

Equation (3.43) yields the following coefficient for at:

aIN2 . Zi Ci aN-2(C1 .. Ci ..... CN (4.13)

We can expand the symmetric function aN_2 as shown in Equation (4.14). Since

the exclusion of Ci from the product on the RHS gives (N-1) terms, we must sub-

tract -L from the sum to yield (N-2):
Ci

)[_. + I + +I 4.4
aN_2(C l,..., -.i-.. CN ) = (C."' .."CN I C , 2 (4.)CN

To eliminate Ci, we can write the product on the RHS of Equation (4.14) as

(C1-6Ci.'CN) = (CI'"CN) (4.15)
Ci

This maneuver will allow the summation to proceed over all N components.



41

After substituting Equation (4.15) into Equation (4.14), we have:

aN- 2(CI,..., C i ... (CN)- (I CN)[ + +. + I 1 (4.16)ci C-C2 CN TI (.6

Substituting Equation (4.16) into Equation (4.13), cancelling Ci, multiplying by zi,

and then summing over i gives:

(-21) z l + - + + - - N (4.17)

N N
We recall that zi = 1 and recognize that (C ...CN) n 1- Ck. Noting the pres-

i =1 k=1

ence of an elementary' syrmmetric function in L-+ + we can write

Equation (4.17) as:

a(N-2){( Ck][a 1 1 N i1C] (4.18)

4.2.2 Case II: r = N-3

Equation (3.43) now becomes:

V Zi Ci aN-3 (C1 .... , CN) (4.19)

We can expand the symmetric function aN_3 as shown in Equation (4.20). We

eliminate C, in the same manner as in Equation (4.15) and remove I in a similar
c i

fashion. But this also deletes the term 12which is necessary to cancel the
Ci2
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corresponding term in the product. Therefore, we must compensate by adding I
ci2

(CI""CN) _ 1_1 +
aN- 3 (C ... , Ci,..., CN) = Ci C 2 + C1C

CN_1CN + + "(4.20)

Substituting Equation (4.20) into Equation (4.19) and making consolidations similar

to the previous development yields:C,, aN .... C 1 C1C,
(4.21)

4.2.3 Case HI: r = 0

We have saved consideration of this case for last because the properties of a0

are not readily apparent. It would seem reasonable to interpret a 0(C1 ,..., C,, ... CN)

as meaning "taking permutations of the elements of a set zero terms at a time."

However, when r = 0, a' -*1 and we know from previous developments that our

a-polynomial does have a constant term. Therefore, ao(C 1. C.... CN) must

equal one, after Macdonald (1979). So, for r = 0, Equation (3.44) becomes:

, Ci (4.24)
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We show Equation (4.18) and Equation (4.21) again to look for patterns that may

assist us in writing the expression for the (N-p)-th term:

k][ a, 1 1" Nzi ](4.18)

cc - 3 )  Ck a l a ..... - - Ti +(4.18)

, C .. I1 E N = =

(4.21)

4.2.4 The General Case: r = (N-p), p = 1, 2, ..., N

After substituting for r, Equation (3.43) becomes:

N (Np) N
('p) zi Ci aN, (C i...,. , CN = 0 (4.23)

p=1 NI

By continuing the expansion of this equation in the same fashion as in the first two

cases, we note a descending order of the symmetric function and an ascending

exponent of Ci with each additional term. This leads to a general expression:

aN P {) zi (CI... ) [apl(Ci1 ... , C7 1) -

p=l i=1

Ci- a_2(C -1 ..... C,. 1)+C- 2ap_3(C I , ..., C, 1 ) - C- 3ap_..4(C I ..., 71)

+ .'±C-(p-2) a,(CI',..., CW1) ±Ci-P-)] } = 0 (4.24)
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N
Multiply by zi, sum i from I to N and recall that (C i...CN) = I ck :

k=1

N (N N -p1[ ] N zi N z
YaP) Ci-r1 - ap-2 Y, . + ap_3 2 +
p~l = 1 i=l =1

(_1)(J 1 CI) = 0 (4.25)

N
Since I' Ck does not involve p, we can move this term outside the summa-

k=1

tion sign and then divide it out as a factor common to all powers of a. By examin-

ing the relationship between p, the subscripts of a and the superscripts of Ci, we

can collapse Equation (4.25) into a more compact form:

N N z{ i (ap}j), = 0 (4.26)

where ap_j = ap,_j( CiT 11 CW1 ) (4.27)

a0 = 1 (4.28)

Ci = (Ki)r. P- 1 (4.29)
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4.3 A Generalized Multicomponent Equation for the Vapor Fraction

Using the determinant expression for the elementary symmetric functions that was

presented in 4.1.3.2, Equation (4.27) becomes:

a. J = a. j ( C I .. CN71 )= detM (4.30)' pij)!

The matrix M has dimensions (p-j) x (p-j) and elements given by:

's-+1 if I < k
[MOt] = k if 1 = k+1 (4.31)

0 if 1 > k+(

The s elements are given by s). = , = 1, 2, ..., (p-) (4.32)



Chapter 5

VALIDATION OF THE GENERALIZED EQUATION

The first test of validity for Equation (4.26) requires that it be equivalent to the

form of the objective function presented in Equation (3.40). Second, it must gen-

erate the same coefficients for the a polynomial that were produced through the

expansion of the objective function in Equation (3.25) through Equation (3.32).

Third, the equation must predict the proper vapor fraction for a fluid undergoing an

isothermal, isobaric flash process.

The first test is supplied by a mathematical proof in Appendix A. The second

test can be accomplished by comparing the coefficients produced by Equation (4.26)

with those of Equation (3.33). Since this equation has already been shown to

reduce to that for a quaternary system under the proper constraints on z5 and K 5 ,

then, by induction, we can state that the polynomial produced by Equation (4.26)

will do the same and therefore should be valid for any number of components.

The third test will be satisfied by comparing the equilibrium ratios generated

by Equation (4.26) with experimental values determined for several multicomponent

hydrocarbon fluids.

5.1 The Generalized a Equation for a Quinary System

For a five-component system, Equation (4.26) becomes:

{5l -+'a. _j 0 (5.1)

P=1 j=1
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which will yield a quartic polynomial in a:

94CE 4 + t3 { 3 + 9 2 a 2 + gla + go = 0 (5.2)

5.1.1 Coefficient 1!4 (p = 1)

g 4 = ao(Ci- ') Iz I 4-z 2 + z 3 + z 4 + z 5 ] (5.3)

We have already said that ao(Ci-1 ) is defined as one and the sum of the mole frac-

tions also equals one, so Equation (5.3) yields:

9 4 = 1 (5.4)

5.1.2 Coefficient g.; (p = 2)

5 5 z..t3  aI(Ci- 1) 5zi - ao(Ci- )  - (5.5)

i--1 i=1 C

1= 1 j

[3=C1 C 2  C3 C4  C

Z 2  3  z4  5(_)" + " 3 +L+ _ + (5.6)

-Cz 1  1-z 2  C-z3  -z 4  1-5

=3 =+ +++ Z (5.7)
Cl C 2 C3 C4 C 5
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5.1.3 Coefficient g7, (p - 3)

5 5 z5 5 zi
2 = a 2(Ci - ) zi - a I(Ci- ') - + ao(Ci- 1) - (5.8)

i=1 i=1 i=1 Ci 2

[ 1 1 1 1 1 1 1 1

+2+ + + + +  c +
2 CC 2 CC 3 CC 4 CiC5 C2C3 C2C4 C2C5 C3C4

1l2 3 1 5 c 4 1 z 2  Z3+~~ ~ +_ + c-j'[~~~Y A -

C3C5 C]5 C[ 2 I C2 C C+ ClC

dCl 3 CC4  C1C5  C2C3  C2 C4  C2C5  C3 C4 C
Z4  5  Z Z 2  Z3  Z4  Z5  Z+ + -- + _L_ + +- + -- (5.10)

c , c c c2 c c 2

z 1 z z 1 +z2  -z 1 Z3  1 2 -z4  3 z 5  1 z 2 z 3
CIC + +IC + +2C +3

It ClC2 Z 3 Z C4 tiC C2+C2 I 3

+ --2 z - - -5  -- -- - - z 5 1-z -

Gi 4  G 1 GC C 2C C 2 C4  C2 Cs C 4 C 5

z35 C 5 1  2  3  4  5  I2

I Z4 ZI+ Z5 2+Z 2+Z + Z5 (5.10) 3 Z

C C4 cI5  CC C? C c2C C3C c3C

1Z4-z + 1Z-+Z1+Z2_ 3 +-Z1 - 4 + - 1 z Z5- (5.10c ~ I C2 C2++

dI2 CC Id4  CIC 5  C2C3

- Z2 - Z4 + Z2 - Z5 +-Z 3 - Z4 + Z3 - Z5  1 -Z 4 - Z5  (5.11)
c2C4 C2C5 C3C4 C3C5 Cc5.
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5.1.4 Coefficient g, (p = 4)

5i 1 5 Zi  5 Zi

gt a a3(Ci-1l) , zi - a 2(Ci- 1)  + a l(i-), -a(Ci- 1) a. I5.2

-= Y'C1 X -z (5.12)i=1 i=1 i=I C - c 3

1 1 1 1 1CC2C3 C1 C 2C 4  CIC 2C5  CIC 3C 4  CIC 3C5

1 + 1 1 1 1 1
+ + + + 1 ()

CLC 4 C 5  C 2C 3C 4  C 2 C 3C5 C 2C 4C5 C 3C 4C 5 J

1 1 1 1 + 1 + 1 1

cIc 2 -c c3  , CC 5  C2C3  C2 C4  C2C5  C 3C4

1 1 Ll Z~ z z2 +_ 3_ +z_4 +Z'+
j 3C 5  T I I C1 2 C C4Ts

1 1 + + -I -+-I + _2 3 4 5c

C, 3 C4 C]C2C~2 C2C2 C2

Z1  Z 2  z 3  z 4  Z5 1

It is evident that the C terms in the second part of Equation (5.13) will cancelC.2C.

those in the third part, while the -- terms in the third part will negate the entireCi 3

fourth part of the equation. The first and second parts yield:

1 -Z 1 - z 2 -Z 3  1 -z 1 -z 2 -z 4  -Z 1 -z 2 -z 5  1 -Z 1 -z 3 - Z4
P1- CLC 2C 3 + CC2C4 CC 2C 5 C C 3 C 4
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1-z I -z 3 -z 5  1-z I -z 4 -z 5  1-z 2 -z 3 -z 4  1-z 2 -z 3 -z 5
+ + + + +

C 1 C 3C 5  CLC 4 C 5  C 2 C 3 C 4  C 2C 3 C5

1-z 2 -z 4 -z 5  Z3 - Z4 - Z5
+_ (5.14)C2C4C5 C3C4C5

5.1.5 Coefficient ILO (p = 5)

5 5 z , 5 z ,
0 = a4(Ci- 1) zi - a 3(Ci 1) I + a2(Ci 1) - -

i=1 i=1 a i=1 Ci 2

5 Zi5 zi

zii

sum of five terms having the form

a 1-z - +za O- 1 z 1 (5.15

1 I- Z - Zj Zk  ZI (5.16)

C Cj Ck CI

Since the mole fractions must sum to one, we can replace the numerator of Equa-

tion (5.16) with the mole fraction of the remaining component, zm , to yield:

z 1  z 2  z 3
ZI + +2Z +

C 2C 3C4C5  C1 C3C4C5  CIC 2C4C5

z 4  z5
Z4 cc + Z5 (5.17)

C1C2C3C5 CIC2C3C4

A term-by-term comparison with Equation (3.32) shows that the generalized a poly-

nomial [r- -ation (4.26)] produces identical results.
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5.2 Reproduction of Experimental Vapor-Liquid Equilibrium Data

5.2.1 Flash Calculation Package

The flash calculation package used in this work incorporates the K-value equa-

tion of Wilson (1969) and the modified PREOS proposed by Stryjek and Vera

(1986a). An attempt was made to use the K-value prediction of Varotsis (1989)

but, as noted in Chapter 2, it was developed to characterize a broad-spectrum

petroleum reservoir condensate or crude oil. It experiences difficulty handling an

arbitrary hydrocarbon mixture, such as the artificial systems for which equilibrium

data is available to validate this work.

The volume correction of Mathias et al. (1989) and the complementary calcu-

lation of Schick and Prausnitz (1968) for mixture pseudo-critical volume are incor-

porated into the PRSV EOS but since it is only required to generate compressibility

factors and fugacities, the modifications have no noticeable effect on the computa-

tions. The PRSV EOS shows marked improvement' over the PREOS when used to

duplicate bubblepoint and dewpoint studies performed by Warren (1991).

The binary interaction coefficients used in the PRSV EOS are taken from

Knapp et al. (1982) and Walas (1985). Physical property data and equation param-

eters for the chemical components are extracted from Stryjek and Vera (1986b,c),

Kumar (1987) and Proust and Vera (1989).

The computation of the determinant used to generate the elementary symmetric

functions is accomplished with a modified Gaussian elimination routine. The first

elementary symmetric function, al, is defined by a [lxl] matrix, whose deter-

minant constitutes the element itself. By definition, a0 is set equal to one.
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The polynomial is evaluated at the bubblepoint line (a = 0) and an interval-

halving technique is used to march across the two-phase region until the value of

the polynomial changes sign, indicating the vicinity of the root. Then a Newton-

Raphson iterative search is conducted to converge to the exact value of a.

5.2.2 Binary System

The fugacity-based flash algorithm is used to replicate the equilibrium ratios

determined by Bloomer et al. (1953) for a methane-ethane system at a temperature

of -60 F over a pressure range of 100-900 psia. Comparisons of calculated and

empirical values of KcI, and KCH, appear in Figure 5.1 and 5.2, respectively. The

results lie within the margin of error attributable to the PRSV EOS.

5.2.3 Septenary System

Standing (1977) provides a sample flash calculation for a seven-component

hydrocarbon system reported by Dodson and Standing (1941), complete with values

for experimental K i and the vapor fraction. This sort of data alows the calculation

of a solely on the basis of computing the coefficients of the a-polynomial and

determining the applicable root, with no recourse to the equation of state. Once the

interval-halving search .provides an initial estimate of the root, the Newton-Raphson

technique converges in three iterations to a value of a identical to that calculated by

Standing.
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5.2.4 Predicting Roots with the Fourier-Budan Theorem

A useful theorem for predicting the number of roots of a polynomial that can

occur on a particular interval is that of Fourier and Budan (Barbeau, 1989). Sup-

pose p(t) is a polynomial over the field of real numbers, R, and that u and v are real

numbers with u < v and p (u).p (v) * 0. The number of zeros between u and v

cannot be greater than A - B, where A is the number of changes of sign in the

sequence ( p (u), p'(u), p "'(u), ... , p(')(u) ) and B is the number of changes of

sign in the sequence { p (v), p'(v), p "(v), ... , p(')(v) ). If this number differs

from A - B, it must do so by an even amount.

An interesting aspect of the polynomial expression for the vapor fraction is its

capability to mathematically confirm the existence of a unique value within the

two-phase region for a particular set of feed conditions. This is equivalent to stat-

ing that the polynomial has only one zero on the interval 0 < a < 1. From the phy-

sics of the problem, we know this to be true but, by the use of the Fourier-Budan

theorem, we can also prove it rigorously.

Let us test this theorem on the septenary system of Standing (1977) utilized in

5.2.3; this is represented by a sixth-order polynomial:

116CE 6 + 95a 5 
+ 94a 4 + 93a 3 

+  2a 2 + ala + Jo = 0 (5.18)

where

I.o - -9.58519 9JL3 = 87.24949

9= 65.90501 94 = -21.71701

g2 - -120.72959 g±5 = -1.76522

96 = 1.00000
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We can differentiate Equation (5.18) six times and form the derivative sequences

for u = 0 and v = 1. The sign changes are summarized in Table 5.1.

Table 5.1 - Derivative Series of Fourier-Budan Theorem:

7-Component Hydrocarbon System (Standing, 1977)

u=0 v=I

f (a) +

f '(az) +

f "(a) +

f "(a) + +

f (4)(a)

f (5)(a)

f (6)(a) + +

A=5 B=4
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Since A - B = 1, there exists only a single root of the polynomial on the

interval [0,1]; an examination of the graph of the function (Figure 5.3) confirms this

fact. Therefore, we can use the interval-halving and Newton-Raphson solution pro-

cedures outlined at the beginning of this chapter with confidence that they will

obtain a unique, realistic value of the vapor fraction.

5.2.5 Decenary System

Gregory et al. (1971) performed equilibrium measurements on a lean natural

gas at cryogenic conditions. It is reported as a ten-component system with the feed

composition shown in Table 5.2. This is a very "sparse" ten-component gas, with

six components present in extremely dilute concentrations. The K-values for the

last four constituents were zero for eleven of the sixteen operating conditions tested

in this work, denoted in Table 5.3 by the run number assigned by the investigators.

The remaining twelve sets of published data duplicate conditions in one of the

tested runs or are incomplete due to apparatus failure. The use of the Fourier-

Budan theorem provides warning that perhaps this gas would be better represented

by an equivalent "lumped" system.

Recall that the number of roots predicted by the Fourier-Budan theorem is the

maximum possible and may differ from the true value by only an even integer.

This is demonstrated in Table 5.4, where both the predicted and actual number of

roots for each run are tabulated. The Newton-Raphson technique converges to the

experimental value for ten of the sixteen runs. Three other data points follow the

proper trend, while no root is found on the interval [0,1] for three other conditions

(Figure 5.4).
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Table 5.2 - Feed Composition:
10-Component Natural Gas

(Gregory et al., 1971)

Component Zi Component zi

Nitrogen 0.00600 n-Butane 0.00070

Methane 0.95970 i-Pentane 0.00030

Ethane 0.03000 n-Pentane 0.00010

Propane 0.00390 3-Methylpentane 0.00025

i-Butane 0.00070 2-Methylhexane 0.00015
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Table 5.3 - Experimental Flash Conditions:
10-Component Natural Gas

(Gregory et al., 1971)

Run Pressure Temperature Run Pressure Temperature

(psia) (OF) (psia) (OF)

1 300.0 -156.3 14 100.0 -200.0

3 100.0 -206.0 15 500.6 -127.0

4 700.0 -103.0 18 23.0 -252.0

7 500.0 -125.0 20 497.0 -129.0

8 498.5 -120.0 21 23.5 -251.5

9 695.0 -105.0 25 700.0 -107.0

10 100.0 -203.3 26 298.0 -157.5

12 100.0 -195.0 28 500.0 -130.0
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Table 5.4 - Results of the a-Polynomial and Fourier-Budan Theorem:
10-Component Natural Gas

(Gregory et al., 1971)

Run Root Limit Newton-

(Actual) RaphsonIterations Initial Guess ICalculated Experimental

1 3 0.605 0.603 0.6033 0.825 0.822 0.603

3 2 (0) *******0.155

4 2 (0) * *****0.911

7 3 (1) 4 0.775 0.772 0.761

8 1 3 0.905 0.904 0.908

9 2 (0) *******0.795

10 4 (2) 4 0.695 0.692 0.687

4 0.915 0.912 0.687

12 2 4 0.895 0.891 0.890
5 0.965 0.966 0.890

14 3 (1) 4 0.835 0.830 0.830

15 2 3 0.735 0.737 0.747
3 0.845 0.843 0.747

18 4 (2) 3 0.045 0.044 0.109
3 0.415 0.415 0.109

20 4 (2) 3 0.585 0.587 0.591
3 0.775 0.773 0.591

21 2 4 0.015 0.011 0.078

3 0.645 0.642 0.078

25 1 3 0.385 0.380 0.548

26 5 (1) 3 0.435 0.434 0.430

28 3 (1) 4 0.485 0.480 0.486
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An examination of graphs of the polynomial's behavior over a range of a for

Runs 3 and 4 (Figures 5.5 and 5.6) confirms the algorithm's prediction that no roots

exist within the phase envelope. The case of Run 9 is not so obvious. Its graph

(Figure 5.7) shows that the function exists entirely above the abscissa; hence no

root is possible. However, if the resolution of the graph is increased to examine the

region very near the axis, two local minima are revealed (Figure 5.8). One of these

corresponds to the experimental value of a determined for this run. The polyno-

mial is attempting to represent the system's behavior but is not completely success-

ful because the low concentration of certain components effectively prevents the gas

from acting like a decenary system.

It is instructive to compare the form of the a-polynomial with that of the

Rachford-Rice objective function which is superimposzd on Figure 5.7. The same

high-resolution scan of the graph of the latter equation depicts no equivalent max-

ima which might identify the vapor fraction in the manner of the polynomial.

5.2.6 Lumping a Decenary System into a Quaternary System

The a-polynomial successfully converges to the proper answer for a majority

of the runs; however, it also yields multiple roots where the physics of the problem

allows only one. This suggests that the system is not being properly modeled. The

categorization of the fluid as a ten-component natural gas is overly generous in light

of the fact that six of its chemical constituents are present in mole fractions meas-

ured in the ten-thousandths. It was decided to represent this sparse gas as a four-

component lumped system, consisting of methane, ethane, nitrogen and propane.

The mole fractions of this new fluid are normalized and the resulting cubic

polynomial in a is solved. The Fourier-Budan theorem predicts a maximum of one
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root in the two-phase region, to which all sixteen runs converge. The numbers

tabulated in Table 5.5 and displayed graphically in Figure 5.9 attest to the validity

of this lumping scheme. An attempt was made to eliminate the next leanest

component--propane--from the mixture and model the system as a ternary, but this

resulted in spurious roots for all data runs and was hence rejected as unrealistic.
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Table 5.5 - Results of the a-Polynomial and Fourier-Budan Theorem:
"Lumped" 4-Component Natural Gas

(Gregory et al., 1971)

Run Root Limit Newton- Roots on [0,1]

(Actual) Raphson
Iterations Initial Guess Calculated Experimental

1 1 3 0.635 0.631 0.603

3 1 3 0.035 0.038 0.155

4 1 3 0.995 0.998 t 911

7 1 3 0.815 0.819 0.761

8 1 3 0.935 0.932 0.908

9 1 3 0.925 0.920 0.795

10 1 3 0.715 0.711 0.687

12 1 3 0.895 0.899 0.890

14 1 3 0.845 0.842 0.830

15 1 3 0.765 0.770 0.747

18 1 3 0.035 0.037 0.109

20 1 3 0.635 0.631 0.591

21 1 3 0.015 0.012 0.078

25 1 3 0.775 0.779 0.548

26 1 3 0.475 0.473 0.430

28 1 3 0.535 0.536 0.486
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

1. The Rachford-Rice objective function can be represented as a polynomial in a,

the system vapor fraction. Its coefficients involve elementary symmetric func-

tions, which can be expressed in terms of a determinant whose elements are

functions of equilibrium ratios and feed composition.

2. The polynomial has been shown to be well-behaved within the two-phase

vapor-liquid region if the system is properly defined in terms of the number of

its components. The vapor fraction root on the interval [0,1] can be quickly

determined using an ordinary interval-halving technique to provide an initial

estimate to the Newton-Raphson iterative method.

3. The regular behavior of the polynomial lends itself to use as a descriptive tool

for the conditions of the system within the phase envelope. The Rachford-

Rice objective function is not capable of this task as evidenced by Figure 5.7;

its unpredictable. singu!-r nature offers no clue to the reason a root was not

found on the interval [0,1] for this case. As discussed earlier, a close exami-

nation of the curve of the polynomial revealed a local minimum at the experi-

mental value of a. This became a realistic root (a < 1) once the system was

lumped into four components.
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4. The theory of polynomials is well-developed and their behavior and zeros can

be predicted with good confidence. By the use of the Fourier-Budan theorem,

it can be shown mathematically that only one real root for the a-polynomial

can exist on the interval [0,1] for a well-defined system. This eliminates the

need to solve for all the roots of an N-th order polynomial.

5. The Fourier-Budan theorem can be used as a tool for investigating various

lumping schemes whereby multicomponent fluids are condensed to equivalent

systems composed of fewer components. The phase behavior of sparse fluids

having dilute concentrations of several constituents does not seem to be well-

described by the polynomial of degree appropriate to the number of com-

ponents. In this case, the polynomial yields no roots or at least two roots

inside the phase envelope for certain temperature and pressure conditions. It

appears that a lumping scheme can be tuned by generating pseudoconiponents

to give successive polynomials of lower degree until only one root is deter-

mined on the interval 0 < a < 1.

6.2 Recommendations

1. Further study should focus on coupling the polynomial algorithm to an equa-

tion of state and extending this work to flash calculations involving more than

two phases.

2. Timing studies could be conducted to determine the exact savings in CPU time

realized by the use of the polynomial instead of the Rachford-Rice objective

function.
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3. Peng et al. (1975) estimate that 75% of the total computing time in composi-

tional reservoir simulation may be related to the phase-behavior part of the

program. The savings in computational workload realized by the use of the

generalized equation developed in this work might be applied to the employ-

ment of an EOS better able to predict fluid thermodynamic properties. The

highly nonlinear nature of the equations proposed by Benedict, Webb and

Rubin (1940, 1942, 1951) or Lee and Kessler (1975) require iterative solutions

but they yield much more accurate representations of fluid behavior, espe-

cially of nonhydrocarbon systems.

4. Since the coefficients of the generalized polynomial depend only on the feed

composition and equilibrium ratios, research should continue to develop highly

accurate K-value prediction methods (e.g., on the basis of convergence pres-

sure). If this can be done with sufficient accuracy, the fugacity-convergence

approach and its inherent dependence on an equation of state can be sup-

planted for flash calculations where nothing more than the phase split and

compositions are required. The polynomial algorithm can be solved on a pro-

grammable scientific calculator and would provide the engineer with a valuable

predictive tool in situations where he or she has no access to a computer capa-

ble of running an EOS-based flash routine.
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MATHEMATICAL PROOF OF THE GENERALIZED EQUATION
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KNOWN:

N N N Nzi Ci I + at cj )  , a(N--P,) , zi Cj aN, (C1, ... , I,.. CN (A-1)

=1 j¢-i p=l i=1

POSTULATE:

NNp N Z, A-2)
N N (N F. ,Y, Zi Ci I-I (I + a Cj) = Y, a P l'Ick ap _j ,A2

i=1 j~i p=l k=l jli=1 Ti T I

~a(NP)X N K Ck I(Y' iT- (A-3)
p=l i=1 k=1 j=1 Ci j J

Prove that the coefficients of cc in Equation (A-i) and Equation (A-3) are

equivalent:

)aNP(C 1,*,~ CN)J Ck (-1W+1 P- (A-4)

PROOF:

We can express. the a-function as:

N

lCk
aNv-p(C,...£i.., CN) = 1 ap-l(Cl i -, ... . Cw7) (A-5)

Ci""

N

riCk

where k=l represents (N-1) terms: N-p = (N-i) - (p-i)Ci

Eliminate the C - 1 term in the RHS of Equation (A-5) by rewriting the a-function

as:

, .... = ap..(Cj1 ,..., CWI) - C[, a 2 (Cj 1 ,.... CI)(A-6)
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ap_ 2(C',.... C'- ... CI 1 ) = ap 2 (Ci -1 .... C') - Ci- 1 ap 3(C i" ,..., C7!, )(A-7)
ap_3(CI-1 ..... Ci-1 ..... C-7') = ap_3(CI ... , C,71) - Ci-1 ap_4(CI ,., CWII)(A-8)

ap.C~l(C l ... i I .. ,Cf 1) = ........ ~.....Cf 1

ap- pi-((C) ao(C N. p-1' C-W

= aPp..l)F,'.-....C ) (A-9)

Recall that a0 = I and then substitute Equations (A-7), (A-8),..., (A-9) into Equation

(A-6):

ap-I(CI 1 ... C. - .. Cjf 1) = ap-I(C[ 1 ... CW1) - Cj-] ap_2(C[ 1 ... CWf)

+ Ci- 2 ap_3(Cl' ,..., C/ 1) - Ci - 3 ap.4(C 1 ,..., C W) +

""+ci- (p - 2 ) ap_@_-l)(Ci " , .. Cff1) ± Ci- (P- 1 (A-10)

*iter writing the recursive form for the RHS of Equation (A-10), the equation

becomes:

ap_1(C[ 1,.,C..., C 7I) = (I + Ci- U- I) ap-j (A-11)

j=1

Substitute Equation (A-11) into Equation (A-5):

N

1-i i-aht_, C,,.,5,..., CNq) = '=. F0_l(l~ a-Jc Cii (12

Combine Ci terms:

N a 1
a-,( C,,... N) = n Ck (-1) i  (A-13)

k=1 Ci I

Equation (A-13) = Equation (A-4) Q.E.D.
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ALGORITHM FLOWCHART
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C START

INPUT:

Number of components

Feed composition

Equilibrium ratios

Subroutine ALPHACOEFF Subroutine SYMFUNCTION

Calculate coefficients of alpha Calculate elementary symmetic

polynomial functions

Subroutine BUDAN Subroutine DETERM

Predict number of roots of Calculate the determinant of the

polynomial on interval [0,1] s function matx

by Fourier-Budan theorem

Subroutine ALPHAROOT Function FACTORIAL

Find the root of the polynomial Calculate n!

Output table with results

Subroutine ALPHAPLOT

Generate various plots

STOP

C-SIT
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COMPUTER CODE
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*s*s ss a*ss*******.******,********,,,****************************

S7 Dec 91
* BRElT D. WEIGLE
* Petroleum and Natural Gas Engineering Section
* Mineral Engineering Department
* College of Earth and Mineral Sciences
* The Pennsylvania State University
* University Park, Pennsylvania

M.S. thesis
* Advisor. Dr. Michael A. Adewumi

Program ALPHATEST (FORTRAN 77)

* This program calculates values of the vapor fraction,
* given equilibrium ratios, Ki, and feed mole fractions,
* zi.. It can be used to reproduce experimental results of
* equilibrium flashes.

* ALPHATEST calls ALPHACOEFF, BUDAN, ALPHAPLOT, and
* ALPHAROOT
* ALPHACOEFF calls subroutine SYMFUNCTION
* SYMFUJNCION calls subroutine DETERM and function FACTOR

* VARIABLES: alpha = calculated system vapor fraction
* beta = experimental system liquid fraction
* coefficient = coefficient of alpha polynomial

Ki = equilibrium ratio for component i* molefrac =feed mole fraction of component i
* Ncomp = number of components in feed
* Npress = number of data sets to be evaluated
* Pi = system pressure, psia
* Ti = system temperature, F
* xalpha = experimental system vapor fraction

* It is formatted to input zi, temperature, pressure, liquid
* mole fraction, and Ki

IMPLICIT REAL*8(a-h,o-z)
REAL*8 Ki(500,100),molefrac(0:100)
PARAMETER(Npress= 16.Ncomp= l0)
DIMENSION alpha(500), beta(500), coefficien(0:100),

@ Pi(500), Ti(500), tarray(2), xalpha(500)

* Data Input

* The number of components (Ncomp) and the number of data sets
* to be run (Npress) are specified as PARAMETERs"
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* Open and Rewind Input and Output Files

OPEN(unit= 1 ,file='indata'status= old 3
OPEN(unit=-7,file='table',status='unknown3)
OPEN(unit=8,file= 'plot',status='unknownI

REWIND~unit= I)
REWIND~unit=-7)
REWIND~unit=-8)

read(1,*) (molefrac(i), i = 1, Ncomp)
do 1000 j = 1, Npress

read(1,*) NiO), Tioj), betaoj)
read(l,*) (Kij,i), i = 1, Ncomp)
xalphaoj) = 1.dO - betaoj)

1000 continue

* Choose between single or multiple runs

wzt(,)Taut n aast ne

write(6,*) 'Evaluate one data set? enter 1'

read(5,*') numsets

if(numsets .EQ. 1) then
write(6,*) 'Enter number of data set for this run'
read(5,*) j
go to 2 100

end if

do 2000 j = 1, Npress

2100 wnite(7,*) -

write(7,*') -

w;,ite(7,*) -RUN

write(6,*) 'J ='

write(7,2500) Piaj),Tioj),betaoj)
2500 format('PIrssure = ',f6.1,' psia Temperature = ,f6.1,' F

@Liquid Mole Fraction = ',f6.4)

* Call subroutines

* Calculate coefficients of polynomial

call APHACOEFF(NcompNpcssjjnolefrac,Kicoefficient)

* Predict the number of roots on [0,1] by Founier-Budan theorem
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call BUDAN(jNcomp,coefficientnumroot)

* Solve for the roots by Newton-Raphson method

call ALPHAROOT(j,Ncomp,coefficient,xalphanumroot,alpha)

* Generate various plots (EDIT the file to remove comments for specific
* options)

call ALPHAPLOT(Ncompjznolefracalpha,coefficient, Ki)

* ALPHAROOT has internal output section to compile a table
* listing statistics on the determination of alpha

2000 continue

* Produce this format to plot data points as dots:
* (PLOTFAT=20)

* 2
* x(O) y(1)
* x(1) y(l)
* 2
* x(2) y(2)
* x(2) y(2)
* etc.

do 3000 j = 1, Npress

write(8,3500) alpha(j),xalphaj),alpha(j),xalpha(j)
3500 format("2 'j,el 6.9,10x,e 16.9j,e 16.9,10x,e 16.9)

3000 continue

CLOSE(unit=l)
CLOSE(unit=7)
CLOSE(unit=8)

stop
end

* 4 Dec 91

* BRETT D. WEIGLE
* Petroleum and Natural Gas Engineering Section
* Mineral Engineering Department
* College of Earth and Mineral Sciences
* The Pennsylvania State University
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* University Park, Pennsylvania

* M.S. thesis

* SUBROUTINE ALPHACOEFF

* This subroutine calculates the coefficient for each te in in
* the general polynomial for the vapor fraction, alpha:

* P(alpha) = cO + cl*alpha + c2*alpha**2 + ... +
,

* c(Ncomp- 1) *alpha** (Ncomp- 1 )
* Equation 4.29 in the thesis.

SUBROUTINE ALPHACOEFF(NcompNpress jrnolefrac,Ki,coefficient)

IMPLICIT REAL*8(a-h,o-z)
REAL*8 Ki(500,100), molefrac(0:100)

INTEGER p

DIMENSION coefficient(0:100), c(100)

OPEN(unit= 14,fde='coeff',status='unknown )
OPEN(unit=15,file='coeff.plot',status='unknown)

if(Ncomp .LT. 2) then
write(6,*)'You cannot flash this system'
stop

end if

* Calculate Ci = Ki - I

do 0500 k = 1, Ncomp
c(k) = Ki(jjk) - 1.d00

0500 continue

* p-loop increments the power of alpha

C write(15,*)Ncomp

do 1000 p = 1, Ncomp
temporary = 0.d00

do 2000 j = 1, p

* Zero-order elementary symmetric function, a0[l/Ci], defined as 1

if(p-j .EQ. 0) then
apj = l.d00
go to 2500
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end if

* Call subroutine to calculate the elementary symmetric
function, apj

call SYMFUNCTION(Ncompj,p,c,apj)

2500 ratio = 0.dOO

do 3000 i = 1, Ncomp
ratio = ratio + molefrac(i)/(c(i)**(j-1))

3000 continue

temporary = temporary + ((-1.d0)**U+l))*apj*ratio

2000 continue

coefficient(Ncomp-p) = temporary

C write(14,*)'Coefficient(',Ncomp-p,') = ",coefficient(Ncomp-p)
C write(15,*)Ncomp-p,coefficient(Ncomp--p)

1000 continue

return
end

* 4 Dec 91
,
* BRETT D. WEIGLE
* Petroleum and Natural Gas Engineering Section
* Mineral Engineering Department
* College of Earth and Mineral Sciences
* The! Pennsylvania State University
* University Park, Pennsylvania

* M.S. thesis

* SUBROUTINE SYMFUNCTION

* This subroutine calculates the elementary symmetric function

* a(p-j)( /Ci)

SUBROUTINE SYMFUNCTION(Ncompj,p,c,apj)

IMPLICIT REAL*8(a-h,o-z)
REAL*8 mmatrix(100,100)
INTEGER factorp

DIMENSION c(100), s(100)
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* Compute the power-sum series: s = sigma[ (1/Ci)**lambda ]
,*

iI n=p-j
do 1000 lambda = 1, n

sum = O.dOO

do 2000 i = 1, Ncomp
sum = sum + (l.dO/c(i))**lambda

2000 continue
s(lambda) - sum

1000 continue

Build the matrix MMATRIX

do 3000 k = 1, n

do 4000 1 = 1, n
if( .LE. k) mmatrix(kl) = s(k-1+1)
if( .EQ. k+l) mmatrix(k,l) = DFLOAT(k)
if( .GT. k+l) mmatrix(k,l) = 0.d00

4000 continue

3000 continue

* Since al{l/Ci) forms a [lxl] matrix, its determinant is the

* element itself

if(p-j .EQ. 1) then
det = mmatrix(l,1)
go to 5000

end if

* Compute the determinant of MMATRIX

call DETERM(mmatrix,n,det)

* Compute the elementary symmetric function

5000 apj = det/factor(n)

return
end

* Function to compute the factorial
****************************** l*****
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FUNCTION factor(n)
INTEGER factor,i,n

factor = 1
if(n .GT. 0) then

do 6000 i = 2,n
factor = factor*i

6000 continue
end if
end

* 4 Dec 91
,

* BRETT D. WEIGLE
* Petroleum and Natural Gas Engineering Section

Mineral Engineering Department
* College of Earth and Mineral Sciences
* The Pennsylvania State University
* University Park, Pennsylvania

* M.S. thesis

* SUBROUTINE DETERM

* This program calculates the determinant of an NxN matrix.
* First, partial pivoting is performed on a nonsingular matrix by
* Gaussian elimination. This produces a triangular matrix whose
" determinant can be calculated by computing the product of all
* the diagonal entries.
* The augmented matrix does not contain the normal last column
* which represents the right-hand side of a system 'of linear
* equations; AUG is the same as the original matrix.

* VARIABLES:
* N = dimension of matrix
* AUG = augmented matrix

IJ,K = indices
MULT = multiplier used to eliminate an unknown
PIVOT = used to find nonzero diagonal entry

SUBROUTINE DETERM(aug,n,det)

IMPLICIT REAL*8(a-h,o-z)
REAL*8 mult
INTEGER pivot
DIMENSION aug(100,100)

Gaussian elimination
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do 7000 i = 1, n

* Locate nonzero entry

if(aug(i,i) .EQ. 0) then
pivot = 0
j=i+ 1

3000 if((pivot .EQ. 0) .AND. (j .LE. n)) then
if(aug(j,i) .NE. 0) pivot = j
j=j+ I
go to 3000

end if

if(pivot .EQ. 0) then
print *,'Matrix is singular'
stop

else

* Interchange rows I and PIVOT

do 4000 j = i, n
temp = aug(ij)
aug(i,j) = aug(pivotj)
aug(pivotj) = temp

4000 continue

end if

end if

* Eliminate l-th unknown from equations I+1, .... N

do 6000 j = i+l, n
mult = -aug(j,i) / aug(i,i)

do 5000 k = i, n
aug(j,k) = aug(j,k) + mult * aug(ik)

5000 continue

6000 continue

7000 continue

* Calculate the determinant of matrix AUG by computing the
product of the diagonal elements

prod = id0
do 8000 i = 1, n
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do 9000 j = 1, n
if(i .EQ. j) prod = prod * aug(ij)

9000 continue

8000 continue

det = prod

return
end

d****i************************i*ii*************id*******d****di*****

S4 Dec 91

• BRETT D. WEIGLE
• Petroleum and Natural Gas Engineering Section
• Mineral Engineering Department
• College of Earth and Mineral Sciences
• The Pennsylvania State University
• University Park, Pennsylvania

• M.S. thesis

•i SUBROUTINE ALPHAROOT

•i Subroutine uses an interval-halving technique to find
• the best root value to initialize the Newton-Raphson (N-R)
•i iterative calculations which determine the real root of
•i the alpha polynomial on the interval [0,1].

•i PARAMETERS: delta = alpha increment
•i epsilon = alpha convergence criterion
• VARIABLES: alower = lower bound of alpha increment
•i aupper = upper bound of alpha increment
•i falpha = the alpha polynomial
•i fprime = first derivative of alpha polynomial
•i guess = iterative variable for alpha
•i guessO = initial estimate for N-R
• intcount = # of intervals until sign change
•i iter = # of iterations until N-R converged
•i isign,isign2 = flags for function sign change
•i isign,isign2 = flags for function sign change
•i numroot = flag for # of zeros (from BUDAN)
**d*******************ddd*dddddd*ddidii**i******************iiii****************

SUBROUTINE ALPHAROOT(jN comp,coefficientxalpha,numroot,
@ alpha)

IMPLICIT REAL*8(a-ho-z)

INTEGER p

DIMENSION alpha(500), coefficient(0:100), xalpha(500)
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PARAMETER(delta = 0.01dO, epsilon = l.d--06)

* Write table heading

write(7,*)'The Fourier-Budan Theorem yields ",numroot," roots on
@this interval'

write(7,3500)
3500 format('Intervals',4x,Initia Guess',4x,'Iterations',4x,'Calc.

@Alpha',4x,TExp. Alpha')

* Check flag NUMROOT provided by subroutine BUDAN to determine
* root-search scheme

if(numroot .EQ. 0) then
write(6,*) 'No root on the interval [0,1] for data set j
intcount = 0
write(7,3900) intcount,xalpha(j)

3900 format(i4,61 x,f5.3)
write(7,*)No root on the interval [0,1]'
return

end if

if(numroot .EQ. 1) then
ilower = 0
iupper = 0

end if

if(numroot GE. 2) then
ilower = 0
iupper = I

end if

* Use incremental search to determine initial guess
* Interval Endpoint DO-Loop

do 0400 jroot = ilower, iupper

intcount = 0

* Test the polynomial at endpoint for initial sign value

if(jroot. EQ. ilower) then
guess = DFLOAT(ilower)
alower = guess
aupper = alower + delta

end if

iffroot. EQ. iupper) then
guess = DFLOAT(iupper)



97
aupper = guess
alower = aupper - delta

end if
ichange = 0

0600 faipha = O-dO
do 1500 p = 1, Ncomp

term = coefficient(Ncomp-p)*guess**(Ncomp-p)
if( (Ncomp-p) .EQ. 0 ) term = coefficient(0)
faipha = faipha + teri

1500 continue

* Initialize ISIGN2 on first pass with endpoint

iffichange .EQ. 0) then
iffalpha, GE. 0.) then

isign2 = I
else

isign2 = 0
end if

end if

* Note the sign of the function

iffalpha .GE. 0.) then
isign =I

else
isign = 0

end if

* Test function for sign change and increment or decrement the
* search variable as appropriate

if(isign2 .EQ. isign) then
if~jlot .EQ. Hower) then

alower = aupper
aupper = aupper + delta
guess = aupper

else ifojroot .EQ. iupper) then
aupper = alower
alower = aupper - delta
guess = alower

end if
end if

* Exit subroutine if no sign change is detected on interval [0,11
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if( (guess .GT. 1.) .OR. (guess .LT. 0.) ) then

write(6,*) 'No root on the interval [0,1]'
write(7,3800) intcount~xalphaoj)

3800 forrnat(i4,6 I x,f5.3)
wrie(7,*)No root on the interval [0,11'
return

end if

* If NO sign change but stil within interval, repeat the sequence

if(isign .EQ. isign2) then
isign2 = isign
intcount =intcount + 1
ichange =I

go to 0600

else

* If there IS a sign change:
Halve the interval where the function crosses the x axis

guessO = (alower + aupper) / 2.dO
end if

* Provide this guess to Newton-Raphson to begin calculations

guess = guessO

* N-R is limited to 1000 iterations for convergence

iter = 0

do 1000 iterlimit = 1, 1000

iter = iter + 1
falpha = .dOO
fpnime 0.dOO

do 2000 p =1, Ncomp
falpha =falpha + coefficient(Ncomp-p)

@ *gucs**(Nemp..p)
fprime =fprime + (Ncomp-p)*coefficient(Ncomp-p)

@*gljess**(Nwrnp-..p..1)
2000 continue

calc guess - falpha/1prirne
error =DABS((calc - guess)/calc)
guess =caic

if(enror .LE. epsilon) go to 3000
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1000 continue

print *,'N-R method failed to converge after 1000 iterations'

* Output results to file "TABLE"

3000 write(7,3600) intcount,guess0,iterguess,xalpha(j)
3600 format(i4,13x,f5.3,10x,i4,13xf9.6,7x,f5. 3)

alpha(j) = guess

* Begin search for root from opposite end of interval

0400 continue

return
end

* 6 Dec 91
,

* BREIT D. WEIGLE
* Petroleum and Natural Gas Engineering Section
* Mineral Engineering Department
* College of Earth and Mineral Sciences
* The Pennsylvania State University
* University Park, Pennsylvania

* M.S. thesis

* SUBROUTINE ALPHAPLOT

* This subroutine is used for several purposes:
* 1. Plotting F(alpha) vs alpha [Rachford-Rice obj function]
* 2. Plotting F(alpha) vs alpha [polynomial]
* 3. Plotting Fprime vs alpha (polynomial]

SUBROUTINE ALPHAPLOT(NcompJ,molefrac,alphacoefficientKi)

IMPLICIT REAL*8 (a-ho-z)
REAL*8 Ki(500,100),molefrac(100)
DIMENSION alpha(500),coefficient(0:100)

INTEGER p

PARAMETER(start = 0.OdO, end = 2.OdO, stepsize = 0.0005d0)

OPEN(unit=- I ,f'le='faplot'.status='unknown')
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OPEN(unit= 12.rile= fprime.plot',status='unknown')

* Number of data points for plotting

number = IDINT((end - start + stepsize)/stepsize)

* F(alpha) vs alpha [polynomial]l
* F(alpha) vs alpha [polynomial]

* Adjust NcompNpress in PARAMETR

write(I 1,*) number
do 1000 phase = start,end,stepsize

falpha = O.dOO
fprime = 0.dOO
do 2000 p = l,Ncornp

falpha = faipha + coefficient(Ncomp-p)*
@ ~phase* *(Ncomp-p)

C fprime = fprime + (Ncomp-p)*coeffIcient(Ncomp-p)*
C phase**(Ncomp-p-J)

2000 continue
write(1 1,3600) phase,falpha

C write(11.3600) phase/primne
3600 fbrmat(f7.3.2x,f25.l2)
1000 continue

C* Rachford-Rice objective function
C
C do 4500 k = IP/press
C k =6
C write(1 1,*) number
C do 3000 phase = start,endstepsize
C faipha = OJdOO
C do 4000 i = 1,Ncomp
C falpha = faipha + (molefrac(i)*(Ki(k~i) - 140))/
C @(I.d" + phase*(Ki(k,i) - 140))

C* ~End of i loop
C 4000 continue
C
C write(]11,3500) phase/alpha
C 3500 format (f7.3,2x/2.12)

C* End of phase loop
C 3000) continue

C* End of k loop
C 4500 continue

CLOSE(unit= 11)
CLOSE(unit= 12)

return
end
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,

* BRETT D. WEIGLE
* Petroleum and Natural Gas Engineering Section
* Mineral Engineering Department
* College of Earth and Mineral Sciences
* The Pennsylvania State University
* University Park, Pennsylvania

* M.S. thesis

* SUBROUTINE BUDAN

* Subroutine uses the Fourier-Budan Theorem to determine
* the number of roots that the alpha polynomial has on the
* interval [u,v].

* PARAMETERS: iu = lower bound of alpha interval
* iv = uppper bound of alpha interval
* VARIABLES: coefficient = coefficient of alpha polynomial
* dcoeff = coefficient of polynomial derivatives
* deriv - derivatives of alpha polynomial
* fvapor = the alpha polynomial
* ia,ib = # of sign changes for derivative series
* ivapor = alpha = vapor fraction
* jsign,ksign = flags for derivative sign change
* numroot = number of zeros on the interval

*** ** ******** ** ******* *** ************ ************ ** *** **********

SUBROUTINE B UDAN(JNcomp,coefficientnumroot)

IMPLICIT REAL*8(a-h,o-z)
INTEGER p

DIMENSION dcoeff(0:100,0:100), coefficient(0:100), deriv(0:100)

PARAMETER(iu = 0, iv = 1)

C DATA (coefficient(l), I = ONcomp-)) I-1.,1.,-2.,3..-4.,5. /
OPEN(unit=2,if'le='test',status;='unknown)
REWIND(unit=2)

ia = 0
ib = 0
do 0500 ivapor = iu, iv, I

* Evaluate the polynomial function at the endpoints iu and iv

fvapor = OdO
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do 0600 p =1, Ncomp

fvapor = fapor + coefficientNcmpp)*ivapor**(Ncomp-p)
0600 continue

write(2,*) Tvapor = ',fvapor
write(2,*)

* Calculate coefficients of first derivative

do 1000 n = Ncomp-1, 0, -1
dcoeff(0,n) = coefficient(n)
write (2,*) 'dcoeff(0, ,n,') = ',dcoeff(0.n)

1000 continue
write(2,*) -

* Calculate coefficients of 2nd- and higher-order derivatives
* as multiples of those of the first derivative

do 1500 m = 1, Ncomp -1

do 2000 n = Ncoinp-m, 1, -1
dcoeff~m,n-1) = n*dcoeff(m-l,n)

write (2,*) 'dcoeff(',m,V,,n-l.2) =

@dcoeff(rnjn-1)
2000 continue

write(2,*) -

1500 continue

* Evaluate the derivative series at the endpoints iu and iv

do 3000 m =1, Ncomp-1
deriv(m) = 04

do 4000 n = Ncomp-m, 1, -1
term = dcoeff(mjin-1)*ivapor**(n-1)
if( (n-I) .EQ. 0 ) term = dcoeff(mn-1l)
deniv(m) = deriv(m) + term
write(2,*) 'inter deriv(',m,) = ',deniv(m)

4000 continue

write(2,*) 'total deriv(',m,) = ',deriv(m)

write(2,*) -

3000 continue

* Count the sign changes between the terms of the series

if(fvapor. LT. 0.) then
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ksign = 0

else
ksign = I

end if
write(2,*) lcsign = ',ksign,' for fvapor'

do 5000 i = 1, Ncomp-1
if(deriv(i) .LT. 0.) then

jsign = 0
else

jsign = 1
end if

write(2,*) 'jsign = ',jsign,' for deriv(C,i,2.'

* Increment A or B, depending upon the endpoint under evaluation

if(ivapor .EQ. iu) then
if(ksign .NE. jsign) then

-a = a + 1
write(2,*) 'ia = ',ia,' for deriv(C,i,T'

end if
end if

if(ivapor .EQ. iv) then
if(ksign .NE. jsign) then

ib = ib + I
write(2,*) 'ib = -,ib,' for deriv(C,i,')'

end if
end if

ksign = jsign
write(2,*) lcsign = ',ksign,' after deriv(,i,T'
write(2,*) -

5000 continue

0500 continue

* Pass a flag to calling program to indicate root conditions

write(2,,*) 'ia = ,ia,' and ib = ,ib
numroot = a -ib

write(2,*) 'numroot = ',numroot

write(2,6000) Ncornp-l. mnroot, iu, iv, J
6000 format(lbis polynomial of order 'i3,' has 'i3.' zeros on the in

@terval ['.i2,,ij2,1) for J =',i3)

CLOSE(unit=2)
retum
end
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ABSTRACT

The Rachford-Rice objective function for flash calculations exhibits a nearly

flat slope across the two-phase region and sharp discontinuities near the dewpoint.

These features make iterative solution procedures sensitive to the initial estimate of

the root and prone to spurious values if a correction step throws the algorithm out-

side the two-phase region or near the phase boundary.

This work centers on the recasting of the Rachford-Rice objective function into

a polynomial function of the vapor fraction, a. The degree of this polynomial is

one less than the number of components in the system and its coefficients can be

calculated from the feed composition and " -quilibrium ratios. A recursive

expression is developed that iP-oI%,hs symmetric functions and can be easily pro-

grammed on a computer o, scientific calculator.

The principal advantage of this new form of the objective function is that the

theory of polynomials is well-developed. The location of their zeros can be

predicted with confidence by techniques based on sound mathematical principles,

such as the Fourier-Budan theorem. The a-polynomial is well-behaved over the

two-phase region and its root can be quickly located by a hybrid method of

interval-halving technique and Newton-Raphson procedure. The validity of the new

objective function and its automatic coefficient-generating algorithm are tested using

several multicomponent systems for which experimental data are available.

Results of these tests prove conclusively the validity of the generalized polyno-

mial objective function. The versatility of this form of the flash objective function,

compared with the original Rachford-Rice version, is demonstrated. Another
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potential advantage of the polynomial form is its ability to handle dilute systems in

which some components are present but in very low concentrations. It also prom-

ises possible usage as a means of developing appropriate lumping schemes.
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NOMENCLATURE

Roman

A = pressure-dependent constant [Equation (2.6)]

A = parameter for the PREOS [Equation (2.18)]

A = number of sign changes in derivative series (Section 5.2.4)

a = intercept of log Kp vs F plot [Equation (2.3)]

a = unitary or elementary symmetric function [Equation (3.41)]

a (T) = attractive constant for PREOS [Equation (2.11)]

a (T,) = attractive constant at critical point for PREOS [Equation (2.10)]

B = parameter for the PREOS [Equation (2.19)

B = number of sign changes in derivative series (Section 5.2.4)

b = translation constant for Cox chart [Equation (2.1)]

b = molar co-volume for PREOS [Equation (2.9)]

Ci = constant used in the objective function [Equation (3.16)]

Ci = excluded term [Equation (3.42)]

c = slope of log Kp vs F plot [Equation (2.3)]

c = volume translation parameter [Equation (2.21)]

F = number of moles in feed stream (Section 3.1.1)

F = component characterization factor [Equation (2.1)]

Ki  = equilibrium ratio (Section 1.2)

L = number of moles in the liquid phase (Section 3.1.1)

M = interexpressibility matrix [Equation (4.12)]

m = element of matrix M [Equation (4.31)]

N = number of components in the fluid system (Section 1.3)
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n = number of terms in the set [Equation (3.41)]

P = a partition of r into at most X parts [Equation (4.8)]

p = pressure

pi = part of a partition [Equation (4.1)]

p (t) = polynomial as a function of t (Section 5.2.4)

p (u) = polynomial as a function of u (Section 5.2.4)

p (v) = polynomial as a function of v (Section 5.2.4)

R = real gas constant [Equation (2.8)]

R = field of real numbers (Section 5.2.4)

s = power sum symmetric function [Equation (4.6)]

sp = slope of plot [Equation (2.2)]

T = temperature

t = exponential term in generating function [Equation (3.41)]

u = augmented unitary symmetric function [Equation (4.7)]

u = real number (Section 5.2.4)

V = number of moles in the vapor phase (Section 3.1.1)

v = molar volume

V = pseudo volume [Equation (2.21)]

v = length of a partition [Equation (4.2)]

v = real number (Section 5.2.4)

w = weight of a partition [Equation (4.1)]

X = fluid "map" coordinate from Varotsis (Section 2.2)

Xi = component "map" coordinate from Varotsis (Section 2.2)

x = mole fraction in the liquid phase (Section 3.1.1)

x = argument of symmetric function [Equation (3.41)]

Y = fluid "map" coordinate from Varotsis (Section 2.2)
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Yi = component "map" coordinate from Varotsis (Section 2.2)

y = mole fraction in the vapor phase (Section 3.1.1)

Z = compressibility factor [Equations (2.20), (2.22)]

z = mole fraction in the feed stream (Section 3.1.1)

Greek

a = vapor fraction [Equation (1.1)]

1 = isothermal compressibility (Section 2.3.2)

8 = binary interaction coefficient [Equation (2.16)]

8 = bulk modulus [Equation (2.23)]

i"1 = function to describe a (T) away from critical point [Equation (2.11)]

K = function of acentric factor in PREOS [Equation (2.13)]

K0  = function of acentric factor in PRSV EOS [Equation (2.26)]

KI = parameter in PRSV EOS [Equation (2.27)]

g. = coefficient of polynomial [Equation (5.2)]

Rti  = multiplicity of a part in a partition [Equation (4.1)]

N = EOS variable [Equations (2.24), (2.25)]]

Cmi = Pitzer acentric factor for the i-th component [Equation (2.5)]

Subscripts

B = boiling point [Equation (2.1)1

c = critical property

i,j,k ,l,m = individual components of the fluid system

ij = interaction between component i and component j of the fluid system

k = convergence pressure (Section 2.2)
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P = constant pressure [Equation (4.29)]

R = reduced property

RA = Rackett compressibility factor [Equation (2.22)]

r = order of symmetric function [Equation (3.41)]

T = constant temperature [Section 2.3.2, Equation (4.29)]

Superscripts

I = fluid state [Equations (2.24), (2.25)]

i = component of fluid system [Equations (2.24), (2.25)]

(n) = order of derivative

= first derivative

= second derivative

= third derivative

Abbreviations

CPU = computer central processing unit

EOS = equation of state

OF = degree Fahrenheit

LHS = left-hand side (of an equation)

PREOS = Peng-Robinson equation of state

PRSV EOS = Peng-Robinson-Stryjek-Vera equation of state

psia = pounds per square inch, absolute

Q.E.D. = quod erat demonstrandum, which was to be proved (Appendix A)

RHS = right-hand side (of an equation)

SRKEOS = Soave-Redlich-Kwong equation of state

SSM = successive substitution method
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Chapter 1

DISCUSSION OF THE PROBLEM

1.1 Introduction

Determination of the equilibrium state of coexisting liquid and vapor phases,

particularly for multicomponent fluid mixtures, is of vital interest to the petroleum

and chemical industries. Many processes in petroleum production and refining

involve repetitive flash calculations for design and operational purposes. The pri-

mary goal of performing flash calculations is to determine the relative amounts and

compositions of the coexisting phases for a given feed composition at a specified

condition of temperature and pressure.

This work is confined solely to two-phase vapor-liquid equilibrium computa-

tions, although its results will no doubt find application in multiphase flash prob-

lems in the future.

1.2 The Generic Flash Algorithm

To begin the calculation, the following variables must be specified: the system

pressure and temperature, the molar composition of the feed stream, zi , and an ini-

yitial estimate of the equilibrium ratios, Ki = L. The process is assumed to occur
Xi

under isothermal and isobaric conditions. The stages of the calculation are:

1. Compute iritial estimates of the equilibrium ratios by one of the established

techniques or by an empirical correlation.
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2. Calculate the phase distribution and compositions corresponding to the given

K-values. This involves the iterative solution of the following objective func-

tion, developed by Rachford and Rice (1952):

N zi (g i - I )I +(Ki-l) =0 (1.1)

where a is the vapor molar fraction.

3. Use an equation of state (EOS) to calculate the component fugacities in each

phase and check for equality.

4. If equality is not achieved (i.e., the phases are not in equilibrium), correct the

K-values on the basis of the fugacities and repeat steps 2-4.

This correction is commonly performed using a successive substitution-type

method or a second-order Newton-type scheme. These algorithms are well-known

and are described in several papers [e.g., Risnes et al. (1981); Michelsen (1982);

Boston and Britt (1978)].

Successful implementation of the generic flash algorithm described above

requires three principal elements. These are (1) a general estimate of the set of

equilibrium ratios to start the procedure; (2) a good equation of state to improve Ki;

and (3) a robust objective function that guarantees convergence to a single value of

a. A poor first guess of K-values may produce a phase split that is physically

impossible under the prevailing pressure and temperature. Satisfactory methods are

available for generating these values. Furthermore, existing equations of state do a

fairly good job of predicting phase properties, and other efforts continue along this

line.
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One area that has not enjoyed equal amounts of attention for a long time is the

form of the objective function. Invariably, the Rachford-Rice objective function

[Equation (1.1)] is most often used. Recent investigations (Warren, 1991) have

shown that this objective function does exhibit some strange behavior which may

affect its ability to generate good results for some conditions.

1.3 Objectives of the Investigation

This study is aimed at evolving a generalization of the new polynomial form

of the Rachford-Rice objective function developed by Warren (1991). The resulting

generalized polynomial function of the vapor fraction, a, should be capable of han-

dling an N-component mixture. The coefficients of the generalized polynomial

should depend on only two variables, the molar composition of the feed stream and

the equilibrium ratios, and should be easy to obtain, either analytically or numeri-

cally. Appropriate algorithms are to be developed for this purpose.

The principal advantage of a polynomial form of the flash-calculation objective

function is that the theory of polynomials is well-developed and semi-analytical

solution techniques exist for equations up to fifth-order (Zaguskin, 1961). For

higher-order polynomials, the Newton-Raphson iterative method usually provides a

fast and accurate determination of the roots.

Determination of all the zeros of this polynomial is unnecessary since the phy-

sics of the problem demands that only the zeros on the bounded interval [0,11 are of

practical interest. Furthermore, the physics also suggests that only one zero (or

value of a) exists on this interval, which represents the two-phase vapor-liquid

region. It can be shown mathematically that this is indeed the case for well-defined

systems, as will be demonstrated in 5.2.



Chapter 2

LITERATURE REVIEW

A survey of the pertinent literature reveals that apparently only one other

worker, Warren (1991), has studied the particular aspect of flash calculations tar-

geted in this research. A comprehensive review of the literature pertaining to the

use of cubic equations of state in flash calculations was conducted in order to pro-

vide a reference point for the testing of the polynomial objective function.

This review is sub-divided into three sections: flash calculation algorithms;

equilibrium ratios; and cubic equations of state. Particular emphasis is laid on the

Peng-Robinson equation of state.

2.1 Vapor-Liquid Equilibrium Flash Calculations

This discussion will be confined to two-phase vapor-liquid equilibria. The

work to date concentrates on developing robust algorithms with rapid convergence

rates. Robustness implies the ability to continue the calculations after recovering

from a spurious value of the vapor fraction computed in the neighborhood of the

critical point or at the phase boundaries. Abhvani and Beaumont (1987) present an

excellent review of EOS-based flash algorithms. They divide the papers into two

categories according to solution method, those using some variant of the successive

substitution method (SSM) or those employing a second-order Newton-type method.

The SSM technique is the traditional solution algorithm, but it exhibits a poor

rate of convergence and I stability problems close to saturation points and in the
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critical region. Risnes et al. (1981), Michelsen (1982), and Mehra et al. (1983)

made attempts at acceleration and stabilization of this method.

Similarly, many workers have proposed various forms of second-order Newton

procedures to avoid the slow rate of convergence of the SSM, such as Boston and

Britt (1978), Fussell and Yanosik (1978), Asselineau et al. (1979), Fussell (1979),

Baker and Luks (1980), and Varotsis et al. (1981). Others advocate a combination

of successive-substitution and Newton methods; the former is used to provide good

initial values to the rapidly converging latter. Informative studies include Mott

(1980, 1983), Mehra et al. (1982), Michelsen (1982), Nghiem et al. (1983), and

Abhvani and Beaumont (1987).

Benmekki (1984) developed a general algorithm for flash calculations that can

utilize any cubic equation of state and features a specified calculational path for

computing tile phase boundaries. This is an attempt to ensure that bubblepoint and

dewpoint computations originate from within the two-phase region, thus guarantee-

ing meaningful values of the equilibrium ratios.

Warren (1991) made a radical departure from previous efforts at enhancing

flash calculation algorithms when he formulated an explicit linear equation for the

vapor fraction of a binary system. He successfully extended this to a quadratic

equation for a ternary system and a cubic equation for a quaternary mixture. The

success achieved by Warren and the possibility of the existence of a generalized

polynomial expression for the vapor fraction in a two-phase, N-component fluid sys-

tem motivated the current work.
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2.2 Vapor-Liquid Equilibrium Ratios

The use of initial equilibrium ratios close to the final values for a multicom-

ponent fluid is crucial to the rapid convergence of any flash calculation. Experi-

mental values are preferred because the prediction of Ki for a particular fluid at

various combinations of temperature, pressure and composition requires lengthy cal-

culations. Therefore, predictive methods for K-values are a limiting factor in the

speed and robustness of any flash calculation algorithm.

The expression "equilibrium constant" was coined by Souders et al. (1932)

and was defined as the ratio of the vapor mole fraction to that of the liquid. The

basis for most predictive methods had its genesis when Cox (1923) observed that

the lines on a semilogarithmic plot of vapor pressure against temperature appeared

to converge to a single pressure. Katz and Hachmuth (1937) demonstrated an

analogous behavior for equilibrium constants; they converged to unity at a fluid

mixture's critical pressure.

White and Brown (1942) attempted to develop a correlation for K-values based

on this "convergence" pressure. Hanson and Brown (1945) used experimental data

to correlate the convergence pressure (pk) at one temperature as a function of the

molal average boiling point of the equilibrium vapor and liquid. They also showed

that the convergence pressure concept could be extended from binary to multicom-

ponent systems.

Hadden (1948, 1953) produced nomographs for equilibrium constants of pure

components as functions of temperature and pressure, and incorporated convergence

and vapor pressures into nomographs for mixtures. He demonstrated that mixture

convergence pressure is a function of the operating temperature and of the liquid-
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phase composition exclusive of the lightest component concentration. This compo-

sition dependence led Muskat (1949) to propose the use of the term "equilibrium

ratio" in place of "equilibrium constant." Edmister (1949) presented a graph involv-

ing the ratio of differences between the convergence and critical pressures and the

ratio of differences between the system and critical temperatures.

Winn (1952) developed nomographs based on Hadden's (1948) results that

allow the determination of K-values at a convergence pressure of 5000 psia. For

systems with Pk * 5000, he provides a translation to find the value of Ki at other

"apparent" convergence pressures. The methods proposed by these three authors

require charts and do not lend themselves to computer calculations.

Hoffmann et al. (1953) attempted to extend Cox's (1923) vapor pressure graph

for the purpose of determining equilibrium ratios by plotting log Kp against the

component characterization factor F, where

Kp = product of equilibrium ratio and pressure

F =b I T (2.1)

b = constant required to translate the vapor pressure curve

for a hydrocarbon onto the straight line of the Cox chart

TB = hydrocarbon boiling point

T = system temperature

Brinkman and Sicking (1960) presented an iterative method for finding the conver-

gence pressure based on the slope, sp, of the plot mentioned in Hoffmann et al.

(1953). Then, the equilibrium ratio could be determined as

K = p esF (2.2)
p
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Standing (1979) observed that the composition dependence of the equilibrium

ratio is negligible at pressures below 1000 psia. He proceeded to combine the work

of Hoffmann et al. (1953) and Brinkman and Sicking (1960) to develop a correla-

tion for K-values for the crude oils studied by Katz and Hachmuth (1937):

K = l lO(a + cF) (2.3)
P

where a and c are the intercept and slope (respectively) of log Kp vs. F plots of the

abovementioned oils. Both a and c are expressed as functions of pressure. He also

presented equations for the heavy fraction and the common reservoir gases N2, CO2

and H2S (referred to as permanent gases).

Wilson (1969) published a K-value equation that currently enjoys widespread

use in flash calculations:

Ki =B (2.4)
PRi

where

1
B = 5.37(1 + oi)(1 - -) (2.5)

1 Ri

PRi = reduced pressure of the i -th component

TRi = reduced temperature of the i -th component

mi = Pitzer acentric factor of the i-th component

Wilson's equation fails to predict accurate equilibrium ratios for most fluids above

pressures of 500 psia, as illustrated by Warren (1991). Whitson and Torp (1981)

attempted to correct this problem by re-introducing the system convergence pressure

to the Wilson equation:

I Pc ] A - CAB (2.6)
Pk PRi
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where

A =1- p -14.7 (2.7)

pt- 14.7

Pci = critical pressure of the i-th component

Risnes and Dalen (1984) took an approach based on the equation of state used

in the flash calculations. Their basic idea was to assume the mixture or feed to be

liquid and then evaporate up to one-half of the system to form a gas phase by use

of the fugacities. The initial K-values then could be calculated from the resulting

phases. This method is reported to perform well near the critical point and along

the bubblepoint line but often fails along the dewpoint curve.

Reportedly, the most accurate K-value predictor is that proposed by Varotsis

(1989). He used over 1000 experimental equilibrium ratios to construct an X-Y plot

such that each reservoir fluid's position on the "map" is determined by its coordi-

nates X and Y. These coordinates are described by a polynomial fitted to the

apparent pressure mentioned in Winn (1952). He proposes an equation for the con-

vergence pressure based on the mole fraction of methane and nitrogen in the fluid.

Each pure hydrocarbon component is represented on the map by its own set of

coordinates (Xi , Yi ), which are calculated as functions of the component acentric

factor. Specific values are given for the permanent gases and correlations based on

molecular weight are specified for the heptane-plus fraction.

Finally, the straight line that joins the pressure and temperature coordinates

(X, Y) of the fluid with the position of each component on the map (Xi , Yi ) inter-

sects the K-value axis at a point that corresponds to the equilibrium value of the

selected constituent. Varotsis (1989) presents tables for three different crude oils
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and gas condensates at varying temperatures and pressures that display K-values

remarkably close to experimental values. They are an order-of-magnitude improve-

ment over those predicted by the equations of Wilson (1969) or Whitson and Torp

(1981).

The method of Varotsis (1989) was attempted in the current work. His K-

value predictor was formulated using data for crude oils and gas condensates con-

taining the C1 - C6 alkane series, the heptane-plus pseudocomponent and the per-

manent gases. It will not properly describe systems (such as the methane-ethane-

propane ternary) containing fewer components than these "typical" reservoir fluids.

For lack of a suitable replacement expression for Pk, Wilson's equation is used in

the current work.

2.3 Cubic Equations of State (EOS)

The equation of state (EOS) is the heart of a modem flash calculation algo-

rithm. Ideally, it should be able to accurately represent the thermodynamic proper-

ties of the fluid of interest over the complete range of operating pressures and tem-

peratures. Since engineering applications rarely focus on an isolated chemical

species, the EOS should incorporate mixing rules that allow it to extend its predic-

tive capabilities to the behavior of multicomponent fluids. Its component-specific

descriptive parameters should be readily calculable from well-known properties,

such as critical temperature and pressure, molecular weight and acentric factor.

Finally, the associated computations should not consume excessive computer time,

especially if the equation of state is to be used for repetitive calculations.

The engineer is faced with the choice of using a complex EOS exhibiting a

high degree of non-linearity and many adjustable parameters, or a cubic EOS which
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possesses an analytical solution and requires the estimation of two or three parame-

ters. Mathias and Benson (1986) presented a comparison of average central-

processing-unit (CPU) times required by three cubic EOS and by three complicated

EOS to compute fugacity coefficients and enthalpy departures. They asserted that

the time required for any of the candidate equations to calculate the density root (or

compressibility factor root) is negligible compared to that involved in executing the

various mixing rules. In fact, for systems containing more than about six com-

ponents, the cubic EOS become more computationally burdensome than the compli-

cated EOS simply because of the cross terms inherent to the cubic EOS mixing

rules.

Engineers frequently use cubic EOS because they work well over the range of

most industrial operating conditions and are easily programmed for solution on a

computer. The two cubic EOS which have gained the widest acceptance are

Soave's modifications of the Redlich-Kwong (1949) equation of state (SRKEOS)

(Soave, 1972) and that presented by Peng and Robinson (1976b) (PREOS). The

PREOS and suggested improvements are examined in this work for possible use in

flash calculations because of the author's familiarity with this EOS.

2.3.1 Development of the Peng-Robinson EOS

Upon the success of the SRKEOS, Peng et al. (1975) undertook a further study

to formulate a cubic equation of state with an improved capability to predict liquid

densities and other fluid properties, particularly in the vicinity of the critical region.

This study resulted in a further modification of the attractive pressure term of

the classical equation of state proposed by van der Waals (1873). The result was

the EOS presented by Peng and Robinson (1976b):
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RT a (T)
v-b v(v+b) + b(v-b)

The values of the parameters are obtained from

RT
b = 0.07780 c (2.9)

PC

a(Tc ) = 0.45724 R2TC2  (2.10)
PC

a(T) = a(Tc ) • 71(T R , co) (2.11)

"1v 'A =1 + ic (1 - TR I 1) (2.12)

Kc = 0.3746 + 1.4850o. - 0.1644co2 + 0.01667o0 (2.13)

Equation (2.12) has the same form as that used by Soave (1972) but iK was obtained

by fitting a larger range of vapor pressure data as a function of the reduced tem-

perature and the acentric factor (Pitzer et al., 1955) of each component.

In order to use the equation for systems containing more than one component,

the following mixing rules are presented:

a = 11xx aij (2.14)
ij

b = xibi (2.15)

where

aij = (1 - 8ij)aiAaj (2.16)

Equations (2.14) and (2.15) are consequences of the mixing rule proposed by Kay

(1936), while Equation (2.16) was developed by Zudkevitch and Joffe (1970). The
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experimentally determined binary interaction coefficient, 5q, characterizes the

binary formed by component i and component j. The importance of 84 in accu-

rately reproducing P-V-T data was discussed by Peng and Robinson (1976b) and by

Robinson et al. (1985).

The PREOS can be written in the form of a cubic equation in the compressibility

factor:.

Z' - (1 - B )Z 2 + (A - 3B 2 - 2B)Z - (AB - B2 - B 3) = 0 (2.17)

where

A = ap (2.18)
R 2T 2

B = bp (2.19)
RT

Z = RE (2.20)
RT

2.3.2 Selection of the Proper Root in Cubic EOS

Equation (2.17) yields one or three roots depending upon the number of phases

in the system. The authors stated that, in the two-phase region, the largest root is

for the compressibility factor of the vapor while the smallest positive root

corresponds to that of the liquid.

Lawal (1987), however, asserted that this criterion was insufficient to select the

proper root. He proved that, in the event of multiple real roots, the smallest of the

positive roots larger than or equal to B must be chosen for the compressibility of

the liquid.
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Asselineau et al. (1979) compared the calculated volume to the pseudo-critical

volume to assign the root to the proper phase, under specific conditions. Poling et

al. (1981) examined the order of magnitude of the isothermal compressibility,

13 = -( /~p)/v, to ascertain the presence of the liquid or vapor phase. Gosset et

al. (1986) offered two discriminants, one based on the Cardan criterion for the

number of real roots for a cubic equation and a heuristic approach similar to that of

Asselineau et al. (1979).

2.3.3 Modifications to the Peng-Robinson EOS

Numerous attempts have been made to correct for the deficiencies inherent in a

cubic equation of state by introducing additional parameters into the PREOS.

These changes improve some aspect of the EOS's performance (usually liquid den-

sity predictions) but at the cost of increased complexity and the requirement for

tables or correlations to determine the additional parameter(s) for each fluid com-

ponent. This review will touch on a limited number of these studies.

2.3.3.1 Volume Corrections

The modification of the SRKEOS proposed by P6neloux et al. (1982) also

formed the basis for two other studies concerned with the PREOS. These authors

suggested that the use of a "pseudo volume" defined by

V + E CiXi (2.21)

could be used to effect a translation along the volume axis, leaving unchanged the

predicted equilibrium conditions. They chose c so that correct saturated liquid
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densities were exactly reproduced at the reduced temperature TR = 0.7. They

rejected the acentric factor as a correlating parameter in favor of the Rackett

compressibility factor, Z", developed by Spencer and Danner (1972):

RT
c = 0.40768-(0.29441 - ZM) (2.22)

Pc

Their third parameter did improve predictions of saturated liquid densities.

Almost simultaneously, Jhaveri and Youngren (1988) and Mathias et al.

(1989) presented three-parameter modifications of the PREOS based on the work of

Peneloux et al. (1982). The first authors correlated the third parameter, c, with

molecular weight. The second study retained the P6neloux-Rauzy-Fr&ze volume

correction scheme but added a further term involving the bulk modulus to handle

the critical region. The bulk modulus is dimensionless and is defined as:

v -[ (2.23)
Rav'J T

From an examination of the graphs accompanying both publications, the work of

Mathias et al. (1989) seems to produce results closer to the experimental values for

saturated volumes and densities.

2.3.3.2 Temperature Dependence

Xu and Sandier (1987a,b) postulated that the molar co-volume term, b, is not

independent of temperature and they disputed the fitting of vapor pressures used by

Peng and Robinson (1976b) to characterize the attractive constant, a. They corre-

lated vapor pressure and volume data for 16 components at both subcritical and
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supercritical conditions and proposed to replace the numeric coefficients of a and b

found in Equation (2.9) and Equation (2.10) with:

'Ya = Y a aTk' (2.24)
i=0

and

Wb = biT ' (2.25)
i--0

where i refers to the species and I denotes either subcritical or supercritical condi-

tions.

Wu and Sandier (1989) generalized the temperature-dependent parameters of

Xu and Sandier (1987a,b) by performing least-squares fits of Va and 4fb as func-

tions of acentric factor and reduced temperature. They were able to accomplish this

task only for the n-alkane series because of insufficient data. For their intended

application of the work (petroleum reservoir simulation), they envisioned the use of

the fluid-specific parameters for the permanent gases, water and light ends and the

generalized parameters for the heavy pseudocomponents.

Stryjek and Vera (1986a,b,c,d) re-worked Equation (2.13) to obtain a better

reproduction of vapor pressure data at low reduced temperatures:

Ko = 0.378893 + 1.4897153wo - 0.17131848co2 + 0.0196554wo3  (2.26)

and modified Equation (2.12) by the introduction of one compound-characteristic

adjustable parameter, Kl:

C = r'0 + KC (1 + TRA)(0.7 - TR) (2.27)

Stryjek and Vera (1986b) and Proust and Vera (1989) listed values of K1 for over

160 compounds of industrial interest. Stryjek and Vera (1986d) and Wilczek-Vera
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and Vera (1987) examined mixing rules of varying complexity fui nee .;ith the

Peng-Robinson-Stryjek-Vera (PRSV) EOS. For the current work, the PRSV EOS

with the original PREOS mixing rules (as formulated by Stryjek and Vera, 1986b)

is used and produces noticeably better results than did the PREOS.

2.3.4 References on Cubic EOS

Abbott (1979) and Martin (1979) presented comprehensive reviews of cubic

equations of state available at that time, and Vidal (1983) and Vera et al. (1984)

updated the topic. Huron and Vidal (1979) proposed composition-dependent mixing

rules while Mathias and Copeman (1983) discussed mixing rules dependent on

volume. Finally, Peng and Robinson (1976b), Peng and Robinson (1977), Robinson

and Peng (1978), Robinson (1979) and Peng (1986) developed specific applications

of their EOS.



Chapter 3

DEVELOPMENT OF THE POLYNOMIAL FUNCTION

FOR SIMPLE SYSTEMS

This chapter discusses the work published by Rachford and Rice (1952) and

Warren (1991) on performing flash calculations. It shows the development of the

Rachford-Rice objective function [Equation (1.1)] and extends Warren's work as a

precursor to developing a generalized, multicomponent equation for the vapor frac-

tion.

3.1 The Rachford-Rice Flash Objective Function

We will briefly examine the derivation of the Rachford-Rice objective function

that is universally used today in flash calculations. After plotting its behavior, it

will become plain why it is so difficult to solve by iterative techniques such as the

Newton-Raphson method.

3.1.1 The Material Balance Development

Flash calculations are used to determine the compositions and quantities of the

vapor and liquid phases at equilibrium which result when an N-component fluid of a

particular composition is subjected to a particular pressure and temperature. The

composition of the feed stream, F, is denoted by I zi and it flashes into L moles of

liquid with composition Y, xi , and V moles of vapor with composition I yi . The

resulting material balance equations are:
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F =L + V (3.1)

Fzj = Lxj + Vyj (3.2)

As defined in Chapter 1, the equilibrium ratio is:

Ki = Y (3.3)
xi

and, rearranging, one is left with the equation:

y1 = xiKi (3.4)

Substituting Equation (3.4) into Equation (3.2) yields:

Fzj = Vx1Kj + Lxj (3.5)

Simplify by isolating the xi term and dividing through by F:

zi = x i  Vj + .-L (3.6)

Dividing Equation (3.1) through by F and solving for -L yields:

L =1-V (3.7)
F F
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Substituting Equation (3.7) in Equation (3.6) and simplifying the equation results in:

zi
x= = (3.8)V

1+-(Ki-1)
F

N
Imposing the constraint of Y = 1 on Equation (3.8) leaves:

i=1

1 = N _ _ _ (3.9)
V

I +-- Ki )

Rearranging:

N [ iN F 1 -0 (3.10)V
I1 1 + - (Ki-1)

Recalling Equation (3.4), we can write:

zjKi
Yi = (3.11)

N
Imposing the constraint of Yi = 1 on Equation (3.11) yields:

i=1

N zi Ki

aV K 1 = 0 (3.12)I 1 + .-. ( Ki - I
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Combining Equation (3.10) and Equation (3.12) leaves:

N zi(Ki-1) (
VE 0 (3.13)V

I 1+ - (Ki - 1)
F

Defining the vapor fraction, a, as:

a V V (3.14)
F

and substituting Equation (3.14) into Equation (3.13) yield the Rachford-Rice objec-

tive function:

N zi(Ki-1)

I +a(K - = 0 (3.15)

3.1.2 A Graphic Representation of the Rachford-Rice Objective Function

As the authors noted, their formulation of the objective function was prone to

instability near the values of ax that represented the phase boundaries, namely, 0 and

1. They showed that the slope of the function near these points may be quite steep.

It is this feature that tends to throw derivative-based root-finding techniques out of

the two-phase region, yielding spurious roots.

Figure 3.1 depicts the behavior of the objective function over a wide range of

ot for a binary system of 70% methane and 30% ethane (Bloomer et al., 1953).

Figure 3.2 does the same for a ternary system consisting of 85% methane, 10%

ethane and 5% propane (Parikh et al., 1984). Although values of the vapor fraction
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Figure 3.1: The Behavior of the Rachford-Rice Objective Function for a Methane-
Ethane Binary System
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Figure 3.2: The Behavior of the Rachford-Rice Objective Function for a Methane-
Ethane-Propane Ternary System
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have no physical meaning outside the interval [0,1], these graphs serve to illustrate

how ill-behaved the objective function is. Its slope is almost flat as it traverses the

two-phase region and it is plagued by spiky singularities.

This work will attempt to develop a new expression for a, one that possesses

reasonable slope over the desired interval and has no discontinuities near the phase

boundaries.

3.2 Warren's Explicit Equations for the Vapor Fraction

Warren (1991) expanded the Rachford-Rice objective function into a polyno-

mial in a for a binary, ternary and quaternary fluid system. He did this by settin-

N equal to 2, 3 or 4, respectively, and reducing the resulting equations to their sim-

plest polynomial form by algebraic manipulations. To demonstrate the validity of

his work, Warren also showed that the higher-order polynomials would reduce to

those for smaller systems when the appropriate mole fractions and equilibrium con-

stants were removed.

We will assume (as did Warren) that, under isobaric and isothermal conditions,

the equilibrium constant does not change such that the quantity (Ki - I ), which

appears in the objective function, can be represented by a constant, Ci .

We will reproduce the entire process here for a binary system but will show

only the final result for a ternary and quaternary system, since the algebra can be

quite tedious and repetitive.
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3.2.1 Binary System

Starting with the objective function as defined in Equation (3.15):

N z=(K 1 0 (3.15)

i=1 l+a(K -) -

and defining Ci = Ki - 1, Equation (3.15) can be rewritten as:

N z Ci =0 (3.16)

I1+ aL C1

For a two-component system, setting N = 2 in Equation (3.16) and expanding

term-wise yields:

zI C1 Z2 C2C + =C 0 (3.17)

1 +aC, l+aC 2

Moving the terms with the subscript "2" to the right-hand side of the equation:

Zi CI Z2 C2= (3.18)

1 +aC, 1+aC 2

By multiplying each side by (I +a C1) (1 +a C2), one obtains:

(z 1 C 1 ) (I + a C 2 ) =-(z 2 C 2 ) ( + X C) (3.19)

Expanding each side yields:

Z1 CI + CE ZI C1 C 2 = - Z2 C 2 - a z 2 C 1 C 2 (3.20)
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Move a terms to the left-hand side of the equation and all remaining terms to the

right-hand side, then recall that, for a binary system, z 1 + Z= 1:

a (C1 C2) =- (Zl C1 + z 2 C2) (3.21)

Dividing both sides through by C I C2 and substituting (Ki - 1) yields the explicit

form of the objective function for a binary system:

a= K 1 + K -1 (3.22)

3.2.2 Ternary System

3
1 [±c 3 zi

a2 + aI 3 + 3 3 = 0 (3.23)

1-Ic 1-Cj
j- i j*i

3.2.3 Quaternary System

_[ c ) [cj + - n (

j*i j*i

3.3 Extension of Warren's Work to Larger Systems

Warren's method can be used to develop polynomial expressions for systems

having five, six and seven components. It will be observed that the terms of the
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equation expand in a regular fashion, thereby suggesting the possibility of develop-

ing a recursive relationship dependent only on N, the number of components. Only

the algebra for the five-component system will be presented, as those for six- and

seven-component systems follow the same procedure.

3.3.1 Quinary System

We begin with the objective function:

5 zi  =05=0 
(3.16)i 1 + a Ci

which, when expanded for five components, becomes:

zC z2 C2  z3 C3  z4 C4  z5 C5
+ I + + = 0 (3.25)1+azC1  I+aC2  l-icaC3  I+aC4  I+ctC 5

5
Multiplying through by I'I (1 + a Ci) yields:

i=1

z, C1( 1 + a C2) (1 + a C3) (1 + a C 4) (1 + a C5) +

z2 C 2 (1 + a C1) (1 + a C3) (1 + a C 4) (1 + a C5) +

z3 C3 (1 + a C1) (1 + a C2) (1 + a C4) (1 + a C5) +

Z4 C 4 (1 + a C 1 ) (1 + a C 2 ) (1 + a C 3 ) (1 + a C 5) +

z5 C 5 (1+aC,)(I+aC2)(+aC 3)( l +aC4) = 0 (3.26)

Expanding each term:

a 4 zI C1 C2 C3 C4 C5 +
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a 3Zi CI(C 2 C3 C4 +C 2 C3 C5 +C 2 C4 C5 +C 3 C4 C5 )+

(X2 Z1 C1 (C2 C3 +C 2 C4 +C 2 C5 +C 3 C4 + C3 C5 +C 4 C5 ) +
a z1 C1 (C2 +C 3 +C 4 +C 5 ) + Z1 C1 +

a 4Z2 CIC 2 C3 C4C5 +
a 3 Z2 C2 (C C3 C4 +C1 C3 C5 +C C4 C5 +C 3 C4 C5 ) +
cc2 Z2 C2 (ClC 3 +C 1 C4 +C1 C5 +C 3 C4 + C3 C5 +C 4 CS) +

a z2 C2 (C + C3 +C 4 +C 5 ) +z 2 C2 +

a 4 Z3 C1 C2 C3 C4 C5 +
a 3 z3 C3 (C C2 C4 +C1 C2 C5 +C1 C4 C5 +C 2 C4 C5 )+
a 2 Z3 C3 (C1 C2 +C 1 C4 +C1 C5 +C 2 C4 + C2 C5 +C 4 C5 ) +
az 3 C3 (C + C2 +C 4 +C 5 )+ Z3 C3 +

a 4 4CIC 2 C3 C4 C5 +
a 3 Z4 C4 (CI C2 C3 + CI C2 C5 +C 2 C3 C5 + C C3 C5 ) +
a 2 Z4 C4 (C1 C2 +C C3 + C1 C + C2 C3 + C2 C5 +C 3 C5 ) +
az 4 C4 (C + C2 +C 3 +C 5 )+ Z4 C4 +

at4 Z5 C1 C2 C3 C4 C5 +
a 3 Z5 C5 (CI C2 C3 + C C2 C4+ CI C3 C4 +C 2 C3 C4 ) +
a 2 Z5 C5 (C1 C2 +C1 C3 +C 1 C4 +C 2 C3 + C2 C4 +C 3 C4 ) +

aXZ 5 C5 (C1 +C 2 +C 3 +C 4 )+Z 5 C5 = 0 (3.27)

5
Dividing through by the term flCj and adding like terms yields:

a4+ a3{zI-L.+ I + CS]-L+ Z2[C1 +CI 3 +CI+C]
ZC 2  C3 C4CI CIC C4 5

I3[ CC C 4 +C IzI[C+C 2 C 3 C5]I



29

Z5~~ ~ +L+ +I C 2 C3 C C4 I2C +I3 4 C "-" 4 5

a I + I + + + 1 +
2 C 3 C C 4 C CS"" + 3 C 4 C 3 C 5 C C 5 +

Z2 [ I C3 + I + I + I + 1 + C C +

Z3 CI C2 +CI C4 +C1 C5 +C 2 C4 +C2 C 5 + C4 C5+

1Z51 + + + 1 +

z5CI C2 .CI C3 r El C4 +C2 C3 CC4 + C3 C4+

a [ C 2 +C 3 +C 4 +C 5 I [1C + C 3 + C 4 + c 5 +
a Z] C 2 C 3 C 4 C5 Z CI C 3 C 4 C5

Z3[CI +C 2 + C4 +C 5 +4[ CI +c2+c3+C5 +z3 CI C2 C4 C5 z CI C2 C3 C5 I

5 CI+C 2 +C 3 +C 4  + _ Z___ + z 2

C1 C2 C3 C4 +C2 C3 C4 C5 +C C 3 C4 5

Z3  Z4  Z5+ + = 0 (3.28)
CI C2 C4 C5 +' C2 C 3 C5 CI C 2 C 3 C 4

To maintain similarity with the forms of the quaternary and ternary equations, we

can separate the general term in the coefficient for a in Equation (3.28) into four

fractions:

ri c,+ Ck+cJCm] 1n 1 1 1
C Cckc,. J Co [ Ck . + (2c, c + C Cck C + Cn Ck C,

(3.29)
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After multiplying each of the five fractions by zi and collecting terms with common

denominators, the following form appears:

zi + zj

C C1 CM(3.30)

5
We can invoke zi = 1 to construct fractions with similar subscripted terms in

i=1

both numerator and denominator:

1- zt - Zl - Zm ( .1l~k~l~m(3.31)

Ck C Cm

This yields a final polynomial expression of the same general form as those of War-

ren (1991):

4__- 1-_Z 2  1-Z 3  1-Z 4  1Z 5__

°a4 +a{ 1 z + - + + + +
C, C2  C3  C 4  CT

o2f 1 -Z- 2  1- zl - Z3  1 -Z- 4  1- z1 - Z5  1- Z2 - Z3

+ + + + +
CI C 2  C 3  CI C 4  C1 C 5  C 2 C 3

1 -z 2 -z 4  1-Z 2 - Z5  1-Z 3 -z 4  1 -z3 - Z5  1 - z 4 -

C2 C4  C2 C5  C3 C4  C3 C5 C4 C5  I++++

CIC 2C3  C1C2C4  C IC2C5 CIC3C4

1 -z 1 -z5- z+ 1 -z 1 -z 2-z 4  1 -z 2 - z3 -z 4  1 -z-z 3 -z 5+ + + +
C 1 C 3C 5  C 1 C 4 C 5  C 2C 3C 4  C 2C 3C 5

1 - 2 -z4 -z 5  1-z 3 - z 4 - z 5  + Zl Z2++ ,.+ + +

C 2C 4C5  C 3C 4C5  J C2 c3 C4 C 5  CI C3 C4 CS

z 3  Z4  z 5
+ + = 0 (3.32)

C1 C 2 C 4 C5 CI C 2 C3 C5 C1 C 2 C 3 C 4
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This yields the polynomial expression for a quinary system:

ac4 + a3  (1 + a2[ j (l -cZ ] +

5 ~~~__ 6=1 z j k i -0 (3.33)

=I =1 Yi5

=j=i+, A:=i+2 '? Cj Ck I I 0 (.33

jgi

3.3.2 Reduction to Quaternary System

Before proceeding to develop the equations for six- and seven-component sys-

tems, we must ensure that the quinary equation will reduce to that of a quaternary

system under the proper conditions. This is accomplished by setting z5 equal to

zero and K 5 equal to one (Warren, 1991).

When z 5 becomes zero, so must x 5 and ys. This would seem to leave K 5

undefined:

0

lim K5 = - = undefined (3.34)
ys5--40OY 3-00

We can remove this difficulty by the application of l'Hospital's Rule. The expres-

sion becomes:

dy5

@ 5 .1
lim K 5  = -- =1 (3.35)

zs-.o dr5  1

d 5

Therefore, C5 = K5 - I = 1 - 1 =0.
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5

To avoid division by zero, multiply Equation (3.32) by I- Ci:
i=1

a 4 CI C 2 C 3 C 4 C 5 +

a3  (1 - z) C2 C3 C4 C5 + (i - Z2) C1 C3 C 4 C5 + (1 - Z3) C 1 C 2 C 4 C 5 +

(1- Z4) C I C 2 C 3 C 5 + (1 - Z5) C 1 C 2 C 3 C 4 ] +

a 2  (1 - zI - z2) C 3 C4 C 5 + (1 - z I - Z3) C2 C4 C5 + (1 - z I - Z4) C 2 C3 C5

+ (1 - z1 - Z5 ) C 2 C 3 C 4 + (1 - Z2 - Z3) C 1 C 4 C 5 + (1 - Z2 - Z4) C1 C 3 C 5 +

(1-Z2- z 5) C I C 3 C 4 + (1 - z 3- Z4) C1 C 2 C 5 + (1 - Z3 - Z5) CI C 2 C 4 +

(1 Z4- Z5) C1 C2 C3 +

a Z C 1 (C 2 + C3 + C 4 + C5) + Z2 C2 (C1 + C 3 + C4 + C 5) +

Z3 C 3 (C 1 + C 2 + C 4 + C 5) + z 4 C 4 (C 1 + C 2 + C 3 + C 5 ) +

Z5C 5 (CI + C 2 + C 3 + C 4)] + z C1 + Z 2 C 2 + Z 3 C 3 + Z 4 C 4 + Z 5 C 5 =

(3.36)

Let z5 and C5 equal zero:

a 3 CI C2 C3 C4 +

o 2 [(1 - z) C 2 C 3 C4 + (1 - Z2) C1 C2 C 4 + (1 - Z 3) C1 C 2 C 4 +

(1 - Z4) CI C 2 C 3] +

ot [z1 CI (C2 + C3 + C 4) + Z2 C2 (CI + C 3 + C4) + Z3 C 3 (CI + C2 + C4) +

Z4 C4 (Cl + C 2 + C3) + z C1 + z 2 C2 + Z3 C3 + z 4 C4 = 0 (3.37)
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This is identical to Equation (3.21) in Warren's work, which is the expanded form

of the quatemary equation. We can now safely derive the expressions for six- and

seven-component systems.

3.3.3 Senary System

5 + 4[ 31z) 5i 6 1 - ZL)]+
ac c j + c. +

= j=i+l £ J

a2 5 6 (1- Zi- - Zk).+

Ic I ICz=1 j=i+l k=i+2 i j

34 5 6 0l- zi - Z- Zk zI) 6 Z
cc I' Ik I + z 6 =0 (3.38)

=j=i+l k=i+2 r '.3 C i Ck "C, Ii I C (.

f-rig
j~i

3.3.4 Septenary System

a6+ [7a___ + 64 7 (1-;- zj)]+

, .~(z "c a[ j=i+1 C+iC J
a3 6 7 (1z-- Zk)1 +

j=;i+I k=i+2 Ci C1 Ck I

a2 5 6 7 1 -(l-zi -zj-zk-z,+]

j=i+1 k=i+2 1=i+3 Ci Cj Ck C1  I

,[.4 -6 7 z -, -zk z1=, ~2 1=+ ,,.,,, . Ci Ck - , :C2
[=i+l k=i+2 1=i+3 m=i+4 C ~C 1 -C

7 Z

i 0(3.39)

+ 7
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3.4 Formulation of a Generalized Equation for the Vapor Fraction

The objective function can be recast in the following form:

N N
, zi Ci fl (1 + a Cj) = 0, where Ci, C = constant (3.40)

i=1 j~i

Equation (3.40) is in the form of the generating function for the elementary sym-

metric functions, a,.:

n n

H (1 + r x,) = , tr a,(xi) (3.41)
i1 r--0

According to Macdonald (1979), ao(xi) = 1 and ar(xi) = 0 for all r > n.

We can now express the objective function in terms of the r-th elementary sym-

metric function in Ci :

N N N N-I
, zi Ci rI (l +aCj)= , zi Ci Y Z r ar,(C .... Ci,..., CN) = 0 (3.42)

i=1 j-i i=l r:0

where C indicates the exclusion of the i-th term from the operation.

Since a' does not involve i, we can invert the order of the summations:

N-I rN
Ya, r Y zi Ci ar(C ... Ci.... CN)} = 0 (3.43)
r=O- i=l

A working definition of the elementary symmetric function a,. could be "tak-

ing permutations of the elements of a set r terms at a time." For example,

al(CI, C2 ... ,CN) = (C 1 +C 2 + CN) (3.44)
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a2(C1 C2_-1 CN_ [ + + + (3.45)

1C- C 1C"-3  CNI- CN ]

The condition Ci is equivalent to the j i condition imposed on the summa-

tion terms in the earlier versions of the a-polynomial and herein lies the computa-

tional awkwardness. We want to find an expression that allows the summation to

proceed over all N components, which is an operation readily represented by a

DO-loop in computer programming.

To eliminate 6iC, we must expand the symmetric function. In Chapter 4, we

will tackle this problem after a discussion of symmetric functions.



Chapter 4

DEVELOPMENT OF THE GENERALIZED EQUATION

In this chapter, we shall present a brief introduction to the theory of symmetric

functions to show why they provide such a powerful tool to express permutations.

Then we will show the reasoning used in the search for a recursive expression for a

in terms of N, Ci and zi . Finally, we will present a generalized multicomponent

equation for the vapor fraction, a, that is compact and readily programmed on a

computer.

4.1 Introduction to Symmetric Functions

4.1.1 Notation and Definitions of Partitions

Any collection of v non-negative integers (excluding zero) whose sum is w is

called a v-partition of w. The individual integers are referred to as parts of the par-

tition and are conventionally written in descending order of magnitude.

David et al. (1966) state that if there are X distinct parts, say P1, P2-.. P X

with pi>p2>p3> >P.> 1 and if pi is repeated 7;i times, with i = 1, 2,..., X,

then the partition is written (p R'p t ... P;L ) . The weight, w, of the partition is

written as

W = .pi7i (4.1)
£ =I
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and the number of parts, or length, is

V , i  (4.2)
i=1

Macdonald (1979) refers to i as the multiplicity of i in the partition. For example,

the partition (42213) has weight 13, 6 parts and 3 distinct parts. In our notation,

pI = 4 and nj = 2; P2 = 2 and 92 = 1; p3 = 1 and ,R3 = 3

4.1.2 Symmetric Functions

A symmetric function is one in which the individual parts can be interchanged

without altering the value of the function, such as

n

Sxi = xI+x 2 +x 3 + + (4.3)
i=1

The number, n, of the quantities x does not affect the relationships between the

various forms of the symmetric functions, but does appear in the final expressions.

David et al. (1966) write

n1 R n

xi =(1), x=(r) and Y, x.x'=(rs), forr*s (4.4)
i1 i=1 ij

This leads directly to the definitions of two special forms of symmetric functions.

MacMahon (1920) defines the unitary or a-functions as

ar - (1") = , x,...x 4 r, =1,2, (4.5)
i l<...<i,

and the power sums, or s-functions, as

s, = (r) = Irx, r=1,2, (4.6)
i=l
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A special case of the a-function is the augmented unitary symmetric function, Ur

(David et al., 1966):

U= [] = r!(1r) = r!a, = xi.x (4.7)

summed over all ordered sets i 1 ... i,

4.1.3 Recursive Expressions for Symmetric Functions

4.1.3.1 Interexpressibility Tables

Roe (1918) compiled comprehensive interexpressibility tables relating the vari-

ous classes of symmetric functions to one another. These consist of a matrix of

coefficients to be used in a polynomial which might yield, for example, u, = f (Sr).

Of interest to this work is her relationship between the a-functions (often called ele-

menrtary functions) and the s-functions; it is presented here in a form more clearly

expressed by David et al. (1966):

1 -" (-1)(r+m) ." (4.8)ar U " .Ur =,I I .

David et al. (1966) also used this equation to construct interexpressibility

tabl.s describing polynomials in power-sum series (s) for a-functions up to and

including weights of 12. Foi instance, a unitary symmetric function of weight 3

would be represented by the following polynomial from their Table 1.5.3:

a3 = 3 (1)3 - 3(2)(1) + 2(3) (4.9)
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which, in terms of s-functions, is:

a3 = _L S3 -3s 2s 1 +2S 3  (4.10)

and, when written as power sums, becomes:I i] 3x
3=- - 3Y, xi2  X, + 2" x,3 (4.11)

=1 = i=1 "=1

However, neither Equation (4.8) nor Equation (4.11) is conducive to solution by

computer without a tremendous table look-up effort.

4.1.3.2 Determinant Form

Fortunately, David et al. (1966) present another relationship between a, and

s, in determinant form:

Si 1 0 0 ... 0

S2 s I  2 0 ... 0
1 = 2  ets 3 s 2  sl 3 -. 0/

Ur -de t S3 S2.SI 3 .... 0 =det M (4.12)a,=r. u  r! S4 S3 S2 Sl ' 0 r!

Sr Sr-I Sr.- 2 Sr- 3 "• 1]

This provides a practical method of calculating a, that is also readily programm-

able on a computer.
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4.2 Search for a Recursive Expression for the Vapor Fraction

Armed with a working knowledge of symmetric functions, we can manipulate

the a equation developed in Chapter 3:

N-I N
1: a" zi Ci a,(C I..... i...., CN = 0 (3.43)

r=O il

to eliminate the exclusion term Ci and expand the symmetric functions into a more

recognizable form. We will examine the results for several values of r and use

them to write a general expression for a as a function of N.

4.2.1 Case I: r = N-2

Equation (3.43) yields the following coefficient for a:

a(N -2  Zi Ci aNv-2(C I--.. Ci ..... CN (4.13)

We can expand the symmetric function aN_2 as shown in Equation (4.14). Since

the exclusion of Ci from the product on the RHS gives (N-I) terms, we must sub-

tract - from the sum to yield (N-2):

" [1 1 + . 1 1 .1 )

aN- 2(C1, ... C-..., CN) = (C 1...Ci ...CN) (4.14)

To eliminate Ci , we can write the product on the RHS of Equation (4.14) as

(C I"..N "'CN) = (CI...CN) (4.15)
Ci

This maneuver will allow the summation to proceed over all N components.
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After substituting Equation (4.15) into Equation (4.14), we have:
(C1"CN - 1 N1 C] (.6

aN-2(C,...., Ci,..., CN) = + + + (4.16)

Substituting Equation (4.16) into Equation (4.13), cancelling Ci, multiplying by zi,

and then summing over i gives:

N-2), (C ...CN) , z+ -"" + " "+  -(4.17)C, C N 1 =

N N
We recall that zi = 1 and recognize that (C fCN) = I' Ck. Noting the pres-

i=1 k=1

ence of an elementary symmetric function in + + *5-,we can write

Equation (4.17) as:

2  li  (4.18)

4.2.2 Case 11: r = N-3

Equation (3.43) now becomes:

(N- 3){ Zi Ci aN..3 (C,..., Ci,, CN  (4.19)

We can expand the symmetric function aN-3 as shown in Equation (4.20). We

eliminate Ci in the same manner as in Equation (4.15) and remove I in a similar
C

fashion. But this also deletes the term which is necessary to cancel the
C8

2
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corresponding term in the product. Therefore, we must compensate by adding 12ci2

(CI ) [I1 1 +
aN- 3(C,..., Ci,..., CN) = C+

+ -i + +.. ++ + ' + 72 (4.20)
CN..1CN C C1 C2  d

Substituting Equation (4.20) into Equation (4.19) and making consolidations similar

to the previous development yields:

a(N -3) N'l2 ' , ' 1- .. + N, iiaC ' '=, "

1k 1 1
C,' CN C Ni1i1C

(4.21)

4.2.3 Case HI: r = 0

We have saved consideration of this case for last because the properties of a0

are not readily apparent. It would seem reasonable to interpret a o(C1 ,..., Ci,... CN)

as meaning "taking permutations of the elements of a set zero terms at a time."

However, when r = 0, a -1 and we iKnow from previous developments that our

a-polynomial does have a constant term. Therefore, ao(C 1.... Ci ...,. CN) must

equal one, after Macdonald (1979). So, for r = 0, Equation (3.44) becomes:

Szi Ci  (4.24){ i~
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We show Equation (4.18) and Equation (4.21) again to look for patterns that may

assist us in writing the expression for the (N-p)-th term:

(X C] a Cl ( z'(4.18)

(4.21)

4.2.4 The General Case: r = (N-p), p = 1, 2, ... , N

After substituting for r, Equation (3.43) becomes:

(N-p) Zi Ci aN.p=(C ..., C.... CN  0 (4.23)
p=1  i=)

By continuing the expansion of this equation in the same fashion as in the first two

cases, we note a descending order of the symmetric function and an ascending

exponent of C with each additional term. This leads to a general expression:

N rN5 a ( v '  7;' zi (C I .C N )[a _- (C i - I ... C W71)
P=1 f

ci-p 1 . C ) + C[-2aP_3(Cj1,..., CW 1) - Ci-3 I1

,...,C C' + aP4C --- ,CWN'-I)**

+ '" Ci-p-2)aI(C ,.... C1 ) ± Ci"(P1-]} = 0 (4.24)
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N
Multiply by zi , sum i from 1 to N and recall that (C I...CN) = f" Ck:

k=1

N {Np Ct [a N 1 +a N zi +Ia ( - )  C -1- at,-2 ., I aP-3 2 '- "
P=l =1i1i

(-P1 ) ,} = 0 (4.25)

N
Since I- Ck does not involve p, we can move this term outside the summa-

k=1

tion sign and then divide it out as a factor common to all powers of a. By examin-

ing the relationship between p, the subscripts of a and the superscripts of Ci , we

can collapse Equation (4.25) into a more compact form:

7_a(N1) [ +1I = 0 (4.26)

where ap _j = ( Cj' ,..., CW1 ) (4.27)

a0 = 1 (4.28)

Ci = (Ki)Tp- 1 (4.29)
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4.3 A Generalized Multicomponent Equation for the Vapor Fraction

Using the determinant expression for the elementary symmetric functions that was

presented in 4.1.3.2, Equation (4.27) becomes:

apj = ap-j( C{ 1 , ..., C 1 ) detM (4.30)(p-j)! (.0

The matrix M has dimensions (p -j) x (p -j) and elements given by:

sk1+1 if 1 k

[mA] = 'k if 1 = k+1 (4.31)
0 if I > k+l

The s elements are given by s. = Y , , X = 1, 2, ..., (p-j) (4.32)



Chapter 5

VALIDATION OF THE GENERALIZED EQUATION

The first test of validity for Equation (4.26) requires that it be equivalent to the

form of the objective function presented in Equation (3.40). Second, it must gen-

erate the same coefficients for the ax polynomial that were produced through the

expansion of the objective function in Equation (3.25) through Equation (3.32).

Third, the equation must predict the proper vapor fraction for a fluid undergoing an

isothermal, isobaric flash process.

The first test is supplied by a mathematical proof in Appendix A. The second

test can be accomplished by comparing the coefficients produced by Equation (4.26)

with those of Equation (3.33). Since this equation has already been shown to

reduce to that for a quaternary system under the proper constraints on z5 and K5 ,

then, by induction, we can state that the polynomial produced by Equation (4.26)

will do the same and therefore should be valid for any number of components.

The third test will be satisfied by comparing the equilibrium ratios generated

by Equation (4.26) with experimental values determined for several multicomponent

hydrocarbon fluids.

5.1 The Generalized a Equation for a Quinary System

For a five-component system, Equation (4.26) becomes:

a(p{-] = 0 (5.1)p=l "=1 i=l Hi i- 1
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which will yield a quartic polynomial in cx:

9 4 a 4 + i30t3 + 9(X 2' + + g= 0 (5.2)

5.1.1 Coefficient g4 (p - 1)

9 4 = ao(Ci- 1) [ z1 + z2 + Z3 + Z4 + Z5 ] (5.3)

We have already said that ao(Ci - 1) is defined as one and the sum of the mole frac-

tions also ecup-L, one, so Equation (5.3) yields:

94 = 1 (5.4)

5.1.2 Coefficient ltA (p = 2)

5 5 zi
9.t3 = al(Ci-) _ zi - ao(Ci- 1) 1 (5.5)

i=1 i=1

(I) = - + +- + "_L' + ' + 1)--(56
C, C3 4  C5 ]

4+ 5 ] 4 _ (5.6)

1-z 1  1-z 2  1-z 3  1-z 4  1-z 5

93 - + 3 + (5.7)
C, C2 C3 C4 C5
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5.1.3 Coefficient It, (p = 3)

5 5 z5 5 zi
92 = a 2 (Ci 1 ) zi - a-(Ci + ao(Ci (5.8)i=1 i1 l i=1 /

[1 + + 1 + + 1+ + 1.. +

2 CC CC C C4 CIC5  C2C5 +C3C

+ C3C5 + c4cs (1) [+C2 +C3C4 C5 C C C

+ Z4 Z5 + (1) ZC 2 + Z3 Z4 (5.9)

1 1 1 1 1 1 1 + 1 
+ ~+ +

CC 2 +CC 3  CiC4  CiC 5  C 2 C 3  c 2C 4  c 2C 5  C 3 C 4

1 1 Z z2  z 3  z 4  z5  Zl +z 2  Zl +z 3-+
C 3 C 5  C 4 C 5  C 1  C 2  C3 C4 CC1 2  CIC3

z 1 +Z 4  ZI +z 5  Z2 +z 3  z 2 +z 4  z 2 +z 5  z 3 +Z 4  Z3 +Z 5

CC 4  ClC5  C 2C 3  C 2 C 4  C 2 C 5  C 3 C 4  C 3C 5

Z4 + Z 5  Z + Z 2  Z 3  Z 4  Z 5
C4C5 C2 C 2 + 1 +  + c1 + c (5.10)

1 - Z1 -z 2  1- zI -z 3  1- ZI -z 4  1- Z1 -z 5  1-z 2 -z 3
CiC2 CIC 3  + CC 4  + CC 5  + C 2 C 3  +

1-z 2 - z 4  1-z 2 - z 5  1- z 3 -z 4  1- z 3 -z 5  1- z 4 -z 5
+ + + + (5.11)C2C4 C2Cs C3C4 C3c 5 C4Cs
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5.1.4 Coefficient gi, (p = 4)

-1) 51 5 zi  5 Z.= -) z -a2(Ci- )  - i (Ci- ) . - ao(Ci-)X (52

gCj) a3Ci z1 -1 (5.12)i=1 i=1 i=1 Ci2  i 3

£j i=1 c

1 1 1 1 1
C= [CC 2C 3 + CC2C4 + CIC 2C 5 + CIC 3C 4  CC 3 C 5 +

1 1 1 + + 1 1(1)-
C 1C 4C 5  C 2C 3C 4  C 2C 3C 5  C 2C 4C 5  C 3C 4C 5 ()

1+ 1_...+ + +
C C ClC3 C C4 CC 5 C2C3 C2C4 C2C5 C3C4

[x I Z + Z2+ Z3 Z4 + +

1 C C2  C3  C4 z5
C C2S C 3C--S C51 1-2+3+ 4

[ Z2  Z3 + z 1
)_ +  JL (5.13)

c3 c3 c3 c3 c3

It is evident that the Z terms in the second part of Equation (5.13) will cancelC.2C-

zi
those in the third part, while the 3 terms in the third part will negate the entire

fourth part of the equation. The first and second parts yield:

1Z I - z 2 -z 3  1Z I - z 2 -z 4  1z I -z 2 -z 5  1 -z 1 -z 3 -z 4
l I 1C2C3 CC 2C 4 C 1 C 2C 5 CLC 3C 4
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1 -z 1 -z 3 -z 5  1 -z 1 -z 4 -z 5  1 -z 2 -z 3 -z 4  1-z 2 -z 3 -z 5+ + + + +

ClC3 C 5  CIC4 C 5  C 2 C 3 C 4  C 2 C 3 C 5

1 -z 2 - Z4 - Z5  1 -- Z 4 -Z 5  (5.14)

C 2C 4C 5  C 3C 4 C 5

5.1.5 Coefficient gn (p = 5)

5 5 z5 5 Z-
10= a 4(C - 1) zi - a 3(Ci- 1) I + a 2(C 1)

i=1 i=1 i=1 Ci2

5 z (5.15)
a 1 (Ci1 ) 3+aOC-) 4(.5i=1 i=1Ci4

1
The analogous cancellations of the higher-order - terms will occur, leaving aci
sum of five terms having the form

-z. - z - Z k -ZI (5.16)
C, Cj Ck CI

Since the mole fractions must sum to one, we can replace the numerator of Equa-

tion (5.16) with the mole fraction of the remaining component, z,. , to yield:

zI  z 2  z 3
SC2C3C4C5 + C1C3C4C5 + CIC2C4C5+

Z4  Z5+~~cc c~~~(5.17)
C1C2C3C5 C1C2C3C4

A term-by-term comparison with Equation (3.32) shows that the generalized a poly-

nomial [Equation (4.26)] produces identical results.
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5.2 Reproduction of Experimental Vapor-Liquid Equilibrium Data

5.2.1 Flash Calculation Package

The flash calculation package used in this work incorporates the K-value equa-

tion of Wilson (1969) and the modified PREOS proposed by Stryjek and Vera

(1986a). An attempt was made to use the K-value prediction of Varotsis (1989)

but, as noted in Chapter 2, it was developed to characterize a broad-spectrum

petroleum reservoir condensate or crude oil. It experiences difficulty handling an

arbitrary hydrocarbon mixture, such as the artificial systems for which equilibrium

data is available to validate this work.

The volume correction of Mathias et al. (1989) and the complementary calcu-

lation of Schick and Prausnitz (1968) for mixture pseudo-critical volume are incor-

porated into the PRSV EOS but since it is only required to generate compressibility

factors and fugacities, the modifications have no noticeable effect on the computa-

tions. The PRSV EOS shows marked improvement over the PREOS when used to

duplicate bubblepoint and dewpoint studies performed by Warren (1991).

The binary interaction coefficients used in the PRSV EOS are taken from

Knapp et al. (1982) and Walas (1985). Physical property data and equation param-

eters for the chemical components are extracted from Stryjek and Vera (1986b,c),

Kumar (1987) and Proust and Vera (1989).

The computation of the determinant used to generate the elementary symmetric

functions is accomplished with a modified Gaussian elimination routine. The first

elementary symmetric function, a 1 , is defined by a [lxl] matrix, whose deter-

minant constitutes the element itself. By definition, a0 is set equal to one.
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The polynomial is evaluated at the bubblepoint line (a = 0) and an interval-

halving technique is used to march across the two-phase region until the value of

the polynomial changes sign, indicating the vicinity of the root. Then a Newton-

Raphson iterative search is conducted to converge to the exact value of a.

5.2.2 Binary System

The fugacity-based flash algorithm is used to replicate the equilibrium ratios

determined by Bloomer et al. (1953) for a methane-ethane system at a temperature

of -60 F over a pressure range of 100-900 psia. Comparisons of calculated and

empirical values of KCH, and KcZ.1 appear in Figure 5.1 and 5.2, respectively. The

results lie within the margin of error attributable to the PRSV EOS.

5.2.3 Septenary System

Standing (1977) provides a sample flash calculation for a seven-component

hydrocarbon system reported by Dodson and Standing (1941), complete with values

for experimental Ki and the vapor fraction. This sort of data allows the calculation

of a solely on the basis of computing the coefficients of the a-polynomial and

determining the applicable root, with no recourse to the equation of state. Once the

interval-halving search provides an initial estimate of the root, the Newton-Raphson

technique converges in three iterations to a value of a identical to that calculated by

Standing.



53

10

9

'U

A 73

2

2 Equilibrium Ratio, alpha polynomial 9 1

Figure 5. 1: A Comparison of Predicted and Experimental Equilibrium Ratios for
Methane
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Figure 5.2: A Comparison of Predicted and Experimental Equilibrium Ratios for
Ethane
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5.2.4 Predicting Roots with the Fourier-Budan Theorem

A useful theorem for predicting the number of roots of a polynomial that can

occur on a particular interval is that of Fourier and Budan (Barbeau, 1989). Sup-

pose p(t) is a polynomial over the field of real numbers, R, and that u and v are real

numbers with u < v and p (u).p (v) o0. The number of zeros between u and v

cannot be greater than A - B, where A is the number of changes of sign in the

sequence { p (u), p'(u), p"(u), ..... p )(u ) and B is the number of changes of

sign in the sequence ( p (v), p'(v), p "(v), .... p ("') (v) ). If this number differs

from A " B, it must do so by an even amount.

An interesting aspect of the polynomial expression for the vapor fraction is its

capability to mathematically confirm the existence of a unique value within the

two-phase region for a particular set of feed conditions. This is equivalent to stat-

ing that the polynomial has only one zero on the interval 0 < a s: 1. From the phy-

sics of the problem, we know this to be true but, by the use of the Fourier-Budan

theorem, we can also prove it rigorously.

Let us test this theorem on the septenary system of Standing (1977) utilized in

5.2.3; this is represented by a sixth-order polynomial:

116( 6 + 125a 5 + 124e + 93a 3 + 2a2 + 21(X + 10 = 0 (5.18)

where

1o = -9.58519 13 = 87.24949

41 = 65.90501 ;L4 = -21.71701

12 = -120.72959 j95 = -1.76522

96 = 1.00000
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We can differentiate Equation (5.18) six times and form the derivative sequences

for u = 0 and v = 1. The sign changes are summarized in Table 5.1.

Table 5.1 - Derivative Series of Fourier-Budan Theorem:

7-Component Hydrocarbon System (Standing, 1977)

u=O v=l

f (a) +

f '(a) +

f "(a) +

f "'(a) + +

f (4)(a)

f (5)(a)

f(6)(a) + +

A =5 B =4
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Since A - B = 1, there exists only a single root of the polynomial on the

interval [0,11; an examination of the graph of the function (Figure 5.3) confirms this

fact. Therefore, we can use the interval-halving and Newton-Raphson solution pro-

cedures outlined at the beginning of this chapter with confidence that they will

obtain a unique, realistic value of the vapor fraction.

5.2.5 Decenary System

Gregory et al. (1971) performed equilibrium measurements on a lean natural

gas at cryogenic conditions. It is reported as a ten-component system with the feed

composition shown in Table 5.2. This is a very "sparse" ten-component gas, with

six components present in extremely dilute concentrations. The K-values for the

last four constituents were zero for eleven of the sixteen operating conditions tested

in this work, denoted in Table 5.3 by the run number assigned by the investigators.

The remaining twelve sets of published data duplicate conditions in one of the

tested runs or are incomplete due to apparatus failure. The use of the Fourier-

Budan theorem provides warning that perhaps this gas would be better represented

by an equivalent "lumped" system.

Recall that the number of roots predicted by the Fourier-Budan theorem is the

maximum possible and may differ from the true value by only an even integer.

This is demonstrated in Table 5.4, where both the predicted and actual number of

roots for each run are tabulated. The Newton-Raphson technique converges to the

experimental value for ten of the sixteen runs. Three other data points follow the

proper trend, while no root is found on the interval [0,1] for three other conditions

(Figure 5.4).
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Table 5.2 - Feed Composition:
10-Component Natural Gas

(Gregory et al., 1971)

Component ZiComponent Z

Nitrogen 0.00600 n-Butane 0.00070

Methane 0.95970 i-Pentane 0.00030

Ethane 0.03000 n-Pentane 0.00010

Propane 0.00390 3-Methylpentane 0.00025

i-Butane 0.00070 2-Methyihexane 0.00015
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Table 5.3 - Experimental Flash Conditions:
10-Component Natural Gas

(Gregory et al., 1971)

Run Pressure Temperature Run Pressure Temperature

(psia) (OF) (psia) (OF)

1 300.0 -156.3 14 100.0 -200.0

3 100.0 -206.0 15 500.6 -127.0

4 700.0 -103.0 18 23.0 -252.0

7 500.0 -125.0 20 497.0 -129.0

8 498.5 -120.0 21 23.5 -251.5

9 695.0 -105.0 25 700.0 -107.0

10 100.0 -203.3 26 298.0 -157.5

12 100.0 -195.0 28 500.0 -130.0
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Table 5.4 - Results of the a-Polynomial and Fourier-Budan Theorem:
10-Component Natural Gas

(Gregory et al., 1971)

Run Root Limit Newton- Roots on [0,]

(Actual) Raphson
Iterations Initial Guess Calculated Experimental

1 2 3 0.605 0.603 0.603
13 0.825 0.822 0.603

3 2(0) * ***** ***** 0.155

4 2 (0) * 0.911

7 3 (1) 4 0.775 0.772 0.761

8 1 3 0.905 0.904 0.908

9 2 (0) * ***** 0.795

10 4 (2) 4 0.695 0.692 0.687
4 0.915 0.912 0.687

2 4 0.895 0.891 0.89012 5 0.965 0.966 0.890

14 3 (1) 4 0.835 0.830 0.830

15 2 3 0.735 0.737 0.747
3 0.845 0.843 0.747

18 4 (2) 3 0.045 0.044 0.109
3 0.415 0.415 0.109

20 4 (2) 3 0.585 0.587 0.591
3 0.775 0.773 0.591

21 2 4 0.015 0.011 0.0783 0.645 0.642 0.078

25 1 3 0.385 0.380 0.548

26 5 (1) 3 0.435 0.434 0.430

28 3 (1) 4 0.485 0.480 0.486
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An examination of graphs of the polynomial's behavior over a range of a for

Runs 3 and 4 (Figures 5.5 and 5.6) confirms the algorithm's prediction that no roots

exist within the phase envelope. The case of Run 9 is not so obvious. Its graph

(Figure 5.7) shows that the function exists entirely above the abscissa; hence no

root is possible. However, if the resolution of the graph is increased to examine the

region very near the axis, two local minima are revealed (Figure 5.8). One of these

corresponds to the experimental value of a determined for this run. The polyno-

mial is attempting to represent the system's behavior but is not completely success-

ful because the low concentration of certain components effectively prevents the gas

from acting like a decenary system.

It is instructive to compare the form of the a-polynomial with that of the

Rachford-Rice objective function which is superimposed on Figure 5.7. The same

high-resolution scan of the graph of the latter equation depicts no equivalent max-

ima which might identify the vapor fraction in the manner of the polynomial.

5.2.6 Lumping a Decenary System into a Quaternary System

The a-polynomial successfully converges to the proper answer for a majority

of the runs; however, it also yields multiple roots where the physics of the problem

allows only one. This suggests that the system is not being properly modeled. The

categorization of the fluid as a ten-component natural gas is overly generous in light

of the fact that six of its chemical constituents are present in mole fractions meas-

ured in the ten-thousandths. It was decided to represent this sparse gas as a four-

component lumped system, consisting of methane, ethane, nitrogen and propane.

The mole fractions of this new fluid are normalized and the resulting cubic

polynomial in a is solved. The Fourier-Budan theorem predicts a maximum of one
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root in the two-phase region, to which all sixteen runs converge. The numbers

tabulated in Table 5.5 and displayed graphically in Figure 5.9 attest to the validity

of this lumping scheme. An attempt was made to eliminate the next leanest

component--propane--from the mixture and model the system as a ternary, but this

resulted in spurious roots for all data runs and was hence rejected as unrealistic.
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Table 5.5 - Results of the a-Polynomial and Fourier-Budan Theorem:
"Lumped" 4-Component Natural Gas

(Gregory et al., 1971)

Run Root Limit Newton- Roots on [0,1]

(Actual) Raphson
Iterations Initial Guess Calculated Experimental

1 1 3 0.635 0.631 0.603

3 1 3 0.035 0.038 0.155

4 1 3 0.995 0.998 0.911

7 1 3 0.815 0.819 0.761

8 1 3 0.935 0.932 0.908

9 1 3 0.925 0.920 0.795

10 1 3 0.715 0.711 0.687

12 1 3 0.895 0.899 0.890

14 1 3 0.845 0.842 0.830

15 1 3 0.765 0.770 0.747

18 1 3 0.035 0.037 0.109

20 1 3 0.635 0.631 0.591

21 1 3 0.015 0.012 0.078

25 1 3 0.775 0.779 0.548

26 1 3 0.475 0.473 0.430

28 1 3 0.535 0.536 0.486
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusiors

1. The Rachford-Rice objective function can be represented as a polynomi ' in a,

the system vapor fraction. Its coefficients involve elementary symmetric func-

tions, which can be expressed in terms of a determinant whose elements are

functions of equilibrium ratios and feed composition.

2. The polynomial has been sh'own to be well-behaved within the two-phase

vapor-liquid region if the system is properly defined in terms of the number of

its components. The vapor fraction root on the interval [0,1] can be quickly

determined using an ordinary interval-halving technique to provide an initial

estimate to the Newton-Raphson iterative method.

3. The regular behavior of the polynomial lends itself to use as a descriptive tool

for the conditions of the system within the phase envelope. The Rachford-

Rice objective function is not capable of this task as evidenced by Figure 5.7;

its unpredictable, singular nature offers no clue to the reason a root was not

found on the interval [0,1] for this case. As discussed earlier, a close exami-

nation of the curve of the polynomial revealed a local minimum at the experi-

mental value of a. This became a realistic root (a < 1) once the system was

lumped into four components.
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4. The theory of polynomials is well-developed and their behavior and zeros can

be predicted with good confidence. By the use of the Fourier-Budan theorem,

it can be shown mathematically that only one real root for the a-polynomial

can exist on the interval [0,1] for a well-defined system. This eliminates the

need to solve for all the roots of an N-th order polynomial.

5. The Fourier-Budan theorem can be used as a tool for investigating various

lumping schemes whereby multicomponent fluids are condensed to equivalent

systems composed of fewer components. The phase behavior of sparse fluids

having dilute concentrations of several constituents does not seem to be well-

described by the polynomial of degree appropriate to the number of com-

ponents. In this case, the polynomial yields no roots or at least two roots

inside the phase envelope for certain temperature and pressure conditions. It

appears that a lumping scheme can be tuned by generating pseudocomponents

to give successive polynomials of lower degree until only one root is deter-

mined on the interval 0 < a < 1.

6.2 Recommendations

1. Further study should focus on coupling the polynomial algorithm to an equa-

tion of state and extending this work to flash calculations involving more than

two phases.

2. Timing studies could be conducted to determine the exact savings in CPU time

realized by the use of the polynomial instead of the Rachford-Rice objective

function.
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3. Peng et al. (1975) estimate that 75% of the total computing time in composi-

tional reservoir simulation may be related to the phase-behavior part of the

program. The savings in computational workload realized by the use of the

generalized equation developed in this work might be applied to the employ-

ment of an EOS better able to predict fluid thermodynamic properties. The

highly nonlinear nature of the equations proposed by Benedict, Webb and

Rubin (1940, 1942, 1951) or Lee and Kessler (1975) require iterative solutions

but they yield much more accurate representations of fluid behavior, espe-

cially of nonhydrocarbon systems.

4. Since the coefficients of the generalized polynomial depend only on the feed

composition and equilibrium ratios, research should continue to develop highly

accurate K-value prediction mr'thods (e.g., on the basis of convergence pres-

sure). If this can be done with sufficient accuracy, the fugacity-convergence

approach and its inherent dependence on an equation of state can be sup-

planted for flash calculations where nothing more than the phase split and

compositions are required. The polynomial algorithm can be solved on a pro-

grammable scientific calculator and would provide the engineer with a valuable

predictive tool in situations where he or she has no access to a computer capa-

ble of running an EOS-based flash routine.
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MATHEMATICAL PROOF OF THE GENERALIZED EQUATION
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KNOWN:

N N N N { )NYzi Ci nl(1 + a Cj) =) z, zic aN-p(.....ci....CN (A-i)
i=1 ji p=1 i=1

POSTULATE:

Nc (N-p) N p[. N 1Szi ci lI +a cj)---Y, a NP rIc1 ap-j I A-2)
i=1 j i P=1 k=1 j=1 = i -

~zCf~~c~ = N _ CN-p N(~+ ai -I N(A-3)

p=1 i=1 k=1 j=1 JJ

Prove that the coefficients of a in Equation (A-i) and Equation (A-3) are

equivalent:

{aNP (C1 ., 6i,- CN} { Ck (-i)+i' L j} (A-4)

PROOF:

We can express the a-function as:
N

HCk
aN-p(C...., CN) = k=1 ap-1(C I Cw )  (A-5)Ci...

N

HCk

where k represents (N-1) terms: N-p = (N-i) - (p-1)Ci

Eliminate the ji- 1 term in the RHS of Equation (A-5) by rewriting the a-function

as:

aC7lC , -1,...., C 1) ap(C C,..., C) - Ci- 1 ap_2(Cj. CWI)(A-6)
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a,._ 2(C j -1, ... , 1) = ap. 2(C I. CW') - Ci-1 ap_3(C I 1 C.., )(A-7)

a_3(C... C,71) = ap_3(C l' ,...., C) - Ci-I ap_4(C I..., CW.!)(A-8)

ap.<,_)( f1....d -1....Cf 1) = .. ,_. )(C.. ..... f ) -

ap<p,(CICW)= p P,(CI CW- ) aoC l -

I,.... CWI-) (A-9)

Recall that ao = I and then substitute Equations (A-7), (A-8),..., (A-9) into Equation

(A-6):

apl(f1.... i1,...CWf1) = ap_1(C? 1... CWI ) - Ci-I ap_2(C 1 ...,Cvf)

+ Ci-2 a,_3(C 1..... C,7l) - C-3 a_4(C I... C 1) +

• .. ± Ci"<P-2) ap._l,,)(Ci I,, Cf 1) ± Ci-(P-1) (A-10)

After writing the recursive form for the RHS of Equation (A-10), the equation

becomes:

ap_1(c? ... , - ...cWI) = (-1J+I ci-U-I) ap _j (A-11)

j=1

Substitute Equation (A-11) into Equation (A-5):

N1IC

aN_,p(Cl C,, CN)= -k=1 1 ,+, a"-. ]  (A-12)Ci ItCi-. A-2

Combine Ci terms:

CI)=N Ck (_,, 1p-3
aN.p(C C,..., n= I t ( J (A-13)

k=l

Equation (A-13) = Equation (A-4) Q.E.D.
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ALGORITHM FLOWCHART
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E START

INPUT:

Number of components

Feed composition

Equilibrium ratios

Subroutine ALPHACOEFF Subroutine SYMFUNCTION

Calculate coefficients of alpha Calculate elementary symmetric

polynomial functions

Subroutine BUDAN Subroutine DETERM

Predict number of roots of Calculate the determinant of the

polynomial on interval (0,1]

by Fourier-Budan t m symmetric function matrix

Subroutine ALPHAROOT Function FACTORIAL

Find the root of the polynomial Calculate n!

Output table with results

Subroutine ALPHAPLOT

Generate various plots

STOP
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COMPUTER CODE
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S7 Dec 91
• BRETTI D. WEIGLE
• Petroleum and Natural Gas Engineering Section
• Mineral Engineering Department
* College of Earth and Mineral Sciences
• The Pennsylvania State University
* University Park. Pennsylvania

• M.S. thesis
• Advisor. Dr. Michael A. Adewumi

* Program ALPHATEST (FORTRAN 77)

• This program calculates values of the vapor fraction,
• given equilibrium ratios, Ki, and feed mole fractions,
* zi. It can be used to reproduce experimental results of
• equilibrium flashes.

• ALPHATEST calls ALPHACOEFF, BUDAN, ALPHAPLOT, and
* ALPHAROOT
• ALPHACOEFF calls subroutine SYMFUNCTION
• SYMFUNCTION calls subroutine DETERM and function FACTOR

• VARIABLES: alpha = calculated system vapor fraction
• beta = experimental system liquid fraction
• coefficient = coefficient of alpha polynomial

Ki = equilibrium ratio for component i
molefrac = feed mole fraction of component i

• Ncomp = number of components in feed
* Npress = number of data sets to be evaluated

Pi = system pressure, psia
Ti = system temperature. F

• xalpha = experimental system vapor fraction

• It is formatted to input zi, temperature, pressure, liquid
* mole fraction, and Ki

IMPLICIT REAL*8(a-h,o-z)
REAL*8 Ki(500,100),molefrac(0:100)
PARAMETER(Npress= 16,Ncomp=l 10)
DIMENSION alpha(500), beta(500), coefficient(0:100),

@ Pi(500), Ti(500), tarray(2), xalpha(500)

• Data Input

* The number of components (Ncomp) and the number of data sets
• to be run (Npress) are specified as PARAMETERs'
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* Open and Rewind Input and Output Files

OPEN(unit=-I ,file='indata',status= 'old')
OPEN(uniit-=7,file='table',status:='unknown')
OPEN(unit=-8,file= 'plot',status=-'unknown')

REWINlD(unit= 1)
REWTND~unit=7)
REWIND(unit=8)

read(l,*) (znolefrac(i), i = 1, Ncornp)
do 1000 j = 1, Npress

read(1,*) (KiU,i), i = 1, Ncomp)
xalphaoj) = lIdO - betaoj)

1000 continue

* Choose between single or multiple runs

wrt(,)Taut n aast ne

write(6,*) 'Evaluate one data set? enter 1'

read(5,*) numsets

if(numsets EQ. 1) then
wnite(6,*) 'Enter number of data set for this run'
read(5,*) j
go to 2 100

end if

do 2000 j = 1, Npress

2100 write(7,*)
write(7,*)
write(7,*) 'RUN '
write(6,*) 7J=- j
write(7,2500) Pioj),Tioj),betaoj)

2500 formatCPressure = ',f6.1,' psia Temperature = ,f6.1,' F
@Liquid Mole Fraction = ',f6.4)

* Call subroutines

* Calculate coefficients of polynomial

call ALPHACOEFF(NcompNpressjmolefrac,Ki,coefficient)

* Predict the number of roots on [0,11 by Fourier-Budan theorem
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call BUDAN(jNcomp,coefficientnumroot)

* Solve for the roots by Newton-Raphson method

call ALPHAROOT(j,Ncomp,coefficientxalphanumroot,alpha)

* Generate various plots (EDIT the file to remove comments for specific
* options)

call ALPHAPLOT(Ncompjjnolefac,alpha,coefficient, i)

* ALPHAROOT has internal output section to compile a table
* listing statistics on the determination of alpha

2000 continue

* Produce this format to plot data points as dots:
* (PLOTFAT=20)

* 2
* x(l) y(l)
* x(I) y(l)
* 2
* x(2) y(2)

x(2) y(2)
* etc.

do 3000 j = 1, Npress

write(8,3500) alphao),xalpha(j),alpha(j),xalpha(j)
3500 formnat('2 j,e 16.9,10x,el 6.9j,e 16.9,10x,e 16.9)

3000 continue

CLOSE(unit=l)
CLOSE(unit=7)
CLOSE(unit=8)

stop
end

* 4 Dec 91

BRETT D. WEIGLE
Petroleum and Natural Gas Engineering Section

* Mineral Engineering Department
* College of Earth and Mineral Sciences
* The Pennsylvania State University
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* University Park, Pennsylvania

* M.S. thesis

* SUBROUTINE ALPHACOEFF

* This subroutine calculates the coefficient for each term in
* the general polynomial for the vapor fraction, alpha:

* P(alpha) = cO + cl*alpha + c2*alpha**2 + ... +

* c(Ncomp- 1)*alpha**(Ncomp- 1)
* Equation 4.29 in the thesis.

SUBROUTINE ALPHACOEFF(NcompNpressdjmolefrac,Ki,coefficient)

IMPLICIT REAL* 8(a-h,o-z)
REAL*8 Ki(500,100), molefrac(0:100)
INTEGER p

DIMENSION coefficient(0:100), c(100)

OPEN(unit= 14,f'de='coeff',status='unknown)
OPEN(unit= 15,file='coeff.plot',status='unknown')

if(Ncomp .LT. 2) then
write(6,*)You cannot flash this system'
stop

end if

* Calculate Ci = Ki - 1

do 0500 k = 1, Ncomp
c(k) = Ki(jjk) - 1.d00

0500 continue

* p-loop increments the power of alpha

C write(15,*)Ncomp

do 1000 p = 1, Ncomp
temporary = 0.d00

do 2000 j = 1, p

* Zero-order elementary symmetric function, aO[l/Ci], defined as I

if(p-j EQ. 0) then
apj = 1.dO0
go to 2500
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end if

* Call subroutine to calculate the elementary symmetric
* function, apj

call SYMFUNCTION(Ncompj,p,c,apj)

2500 ratio = 0.dOO

do 3000 i = 1, Ncomp
ratio = ratio + molefrac(i)/(c(i)**(j-l))

3000 continue

temporary = temporary + ((-1.d0)**(j+l))*apj*ratio
2000 continue

coefficient(Ncomp-p) = temporary

C write(14,*)'Coefficient(',Ncomp-p,') = ',coefficient(Ncomp-p)
C write( 15,*)Ncomp-p,coefficient(Ncomp-p)

1000 continue

return
end

* 4 Dec 91

* BRElT D. WEIGLE
* Petroleum and Natural Gas Engineering Section
* Mineral Engineering Department
* College of Earth and Mineral Sciences
* The Pennsylvania State University
* University Park, Pennsylvania
,

* M.S. thesis
,

* SUBROUTINE SYMFUNCTION

* This subroutine calculates the elementary symmetric function

* a(p-j)( I/Ci)

***************************************i i***************************

SUBROUTINE SYMFUNCTION(Ncompj,pc,apj)

IMPLICIT REAL*8(a-ho--z)
REAL*8 mmatrix(100,100)
INTEGER factor,p

DIMENSION c(100), s(100)
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* Compute the power-sum series: s = sigma[ (1/Ci)**lambda ]

n=p -j
do 100 lambda = 1, n

sum = O.dOO

do 2000 i = 1, Ncomp
sum = sum + (1.dO/c(i))**lambda

2000 continue
s(lambda) = sum

1000 continue

Build the matrix MMATRIX

do 3000 k = 1, n

do 4000 1 = 1, n
if(1 .LE. k) mmatrix(kj) = s(k-1+1)
if(1 .EQ. k+l) mmatrix(kl) = DFLOAT(k)
if(l .GT. k+l) mmatrix(k,l) = O.d00

4000 continue

3000 continue

* Since al(1/Ci) forms a [lxl] matrix, its determinant is the
* element itself

if(p-j .EQ. 1) then
det = mmatrix(l,l)
go to 5000

end if

* Compute the determinant of MMATRIX

call DETERM(mmatrix,n,det)

* Compute the elementary symmetric function

5000 apj = det/factor(n)

retum
end

* Function to compute the factorial
***********************************
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FUNCTION factor(n)
INTEGER factor,i,n

factor = 1
if(n .GT. 0) then

do 6000 i - 2.n
factor - factor*i

6000 continue
end if
end

* 4 Dec 91

* BRETT D. WEIGLE
* Petroleum and Natural Gas Engineering Section
* Mineral Engineering Department
* College of Earth and Mineral Sciences
* The Pennsylvania State University
* University Park, Pennsylvania

* M.S. thesis

* SUBROUTINE DETERM

* This program calculates the determinant of an NxN matrix.
* First, partial pivoting is performed on a nonsingular matrix by
* Gaussian elimination. This produces a triangular matrix whose
* determinant can be calculated by computing the product of all
* the diagonal entries.
* The augmented matrix does not contain the normal last column

which represents the right-hand side of a system 'of linear
* equations; AUG is the same as the original matrix.

* VARIABLES:
* N = dimension of matrix
* AUG = augmented matrix
* IJ,K = indices
* MULT = multiplier used to eliminate an unknown
* PIVOT = used to find nonzero diagonal entry

SUBROUTINE DETERM(aug,n,det)

IMPLICIT REAL*8(a-h,o-z)
REAL*8 mult
INTEGER pivot
DIMENSION aug(100,100)

* Gaussian elimination

* l n Ii|I
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do 7000 i = 1, n

* Locate nonzero entry

if(aug(i,i) .EQ. 0) then
pivot = 0
j=i+ 1

3000 if((pivot .EQ. 0) .AND. (j .LE. n)) then
if(aug(j,i) .NE. 0) pivot = j
j=j+ 1
go to 3000

end if

if(pivot .EQ. 0) then
print *,'Matrix is singular'
stop

else

* Interchange rows I and PIVOT

do 4000 j = i, n
temp = aug(ij)
aug(ij) = aug(pivotj)
aug(pivotj) = temp

4000 continue

end if

end if

* Eliminate l-th unknown from equations I+, .... N

do 6000 j = i+l1, n
mult = -aug(ji) / aug(i,i)

do 5000 k = i, n
aug(j,k) - aug(j,k) + mult * aug(ik)

5000 continue

6000 continue

7000 continue

* Calculate the determinant of matrix AUG by computing the

* product of the diagonal elements

prod = EdO
do 8000 i = 1, n
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do 9000 j = 1, n
if(i .EQ. j) prod = prod * aug(i,j)

9000 continue

8000 continue

det = prod

return
end

S4 Dec 91
,

• BRETT D. WEIGLE
* Petroleum and Natural Gas Engineering Section
• Mineral Engineering Department
• College of Earth and Mineral Sciences
* The Pennsylvania State University
• University Park, Pennsylvania
,

• M.S. thesis

• SUBROUTINE ALPHAROOT

• Subroutine uses an interval-halving technique to find
* the best root value to initialize the Newton-Raphson (N-R)

• iterative calculaions which determine the real root of
• the alpha polynomial on the interval [0,11.

• PARAMETERS: delta = alpha increment
• epsilon = alpha convergence criterion
• VARIABLES: alower = lower bound of alpha increment

• aupper = upper bound of alpha increment
• falpha = the alpha polynomial
• fprime = first derivative of alpha polynomial
• guess = iterative variable for alpha
• guessO = initial estimate for N-R
• intcount = # of intervals until sign change
• iter = # of iterations until N-R converged
• isign,isign2 = flags for function sign change
• isign.isign2 = flags for function sign change
• numroot = flag for # of zeros (from BUDAN)

SUBROUTINE ALPHAROOT(j'NcomnpcoefficienLxalphanumroot,
@ alpha)

IMPLICIT REAL*8(a-h,o-z)
INTEGER p

DIMENSION alpha(500), coefficient(0:100), xalpha(500)
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PARA ETER(delta = 0.01idO, epsilon = l.d--06)

* Write table heading

write(7,*)Ihe Fourier-Budan Theorem yields ",numroot,' roots on
@this interval'

write(7,3500)
3500 format('Intervals',4x, 'Initial Guess',4x,'Iterations',4x,'Calc.

@Alpha',4x,Exp. Alpha')

* Check flag NUMROOT provided by subroutine BUDAN to determine
* root-search scheme

if(numroot EQ. 0) then
write(6,*) "No root on the interval [0,1] for data set "j
intcount = 0
write(7,3900) intcount,xalpha(j)

3900 format(i4,61 x,f5.3)
write(7,*)'No root on the interval [0,1]'
return

end if

if(nummot .EQ. 1) then
ilower = 0
iupper = 0

end if

if(numroot .GE. 2) then
ilower = 0
iupper = 1

end if

* Use incremental search to determine initial guess
* Interval Endpoint DO-Loop

do 0400 jroot = ilower, iupper

intcount = 0

* Test the polynomial at endpoint for initial sign value

ifjroot. EQ. lower) then
guess - DFLOAT(ilower)
alower = guess
aupper = alower + delta

end if

if(jroot. EQ. iupper) then
guess = DFLOAT(iupper)
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aupper = guess
alower = aupper - delta

end if
ichange = 0

0600 falpha = O.dO
do 1500 p = 1, Ncomp

term = coefficient(Ncomp-p)*guess**(Ncomp-p)
if( (Ncomp-p) .EQ. 0 ) term = coefficient(0)
falpha = falpha + term

1500 continue

* Initialize ISIGN2 on first pass with endpoint

if(ichange .EQ. 0) then
if(falpha .GE. 0.) then

isign2 = 1
else

isign2 = 0
end if

end if

* Note the sign of the function

if(falpha .GE. 0.) then
isign = I

else
isign = 0

end if

* Test function for sign change and increment or decrement the
* search variable as appropriate

if(isign2 .EQ. isign) then
if(jroot .EQ. lower) then

alower = aupper
aupper = aupper + delta
guess = aupper

else iffjroot .EQ. iupper) then
aupper = alower
alower = aupper - delta
guess = alower

end if
end if

* Exit subroutine if no sign change is detected on interval [0,1]
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if( (guess .GT. 1.) .OR. (guess .LT. 0.) ) then

write(6,*) 'No root on the interval [0,1]"
write(7,3800) intcount,xalpha(j)

3800 format(i4,61x,f5.3)
write(7,*)No root on the interval [0,1]'
return

end if

* If NO sign change but still within interval, repeat the sequence

if(isign .EQ. isign2) then
isign2 = isign
intcount = intcount + 1
ichange = I
go to 0600

else

* If there IS a sign change:
* Halve the interval where the function crosses the x axis

guessO = (alower + aupper) / 2.dO
end if

* Provide this guess to Newton-Raphson to begin calculations

guess = guessO

* N-R is limited to 1000 iterations for convergence

iter = 0

do 1000 iterlimit = 1, 1000

iter = iter + I
falpha = O.d00
fprime = 0.d00

do 2000 p = 1, Ncomp
fapha = falpha + coefficient(Ncomp-p)

@ *guess**(Ncomp-p)
fprime = fprime + (Ncomp--p)*coefficient(Ncomp-p)

@ *guess**(Ncomp-p- 1)
2000 continue

calc = guess - falpha/fprime
error = DABS((calc - guess)/calc)
guess =calc
if(erncr .LE. epsilon) go to 3000
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1000 continue

print *,'N-R method failed to converge after 1000 iterations'

* Output results to file "TABLE"
*

3000 write(7,3600) intcount,guess0,iter,guess,xalpha(j)
3600 forrnat(i4,13x,f5.3,10x,i4,13xf9.6,7x,f5.3)

alpha(j) = guess

* Begin search for root from opposite end of interval

0400 continue

return
end

* 6 Dec 91
,

* BRETT D. WEIGLE
* Petroleum and Natural Gas Engineering Section
* Mineral Engineering Department
* College of Earth and Mineral Sciences
* The Pennsylvania State University
* University Park, Pennsylvania

* M.S. thesis

* SUBROUTINE ALPHAPLOT
*

* This subroutine is used for several purposes:
* 1. Plotting F(alpha) vs alpha [Rachford-Rice obj function]
* 2. Plotting F(alpha) vs alpha (polynomial]
* 3. Plotting Fprime vs alpha [polynomial]

SUBROUTINE ALPHAPLOT(Ncompj,molefrac,alphacoefficient,Ki)

IMPLICIT REAL*8 (a-h,o-z)
REAL*8 Ki(500,100),molefrac(100)
DIMENSION alpha(500),coefficient(0:100)

INTEGER p

PARAMETER(start = 0.OdO, end = 2.OdO, stepsize = 0.0005d0)

OPEN(unit= 11 ,file=f'"a. plot ',status= 'unknown )
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OPEN(unit= 12,f ie= 'fprime .plot',status= 'unknown')

* Number of data points for plotting

number = IDINT((end - start + stepsize)/stepsize)

* F(alpha) vs alpha [polynomial]
* F(alpha) vs alpha [polynomial]

* Adjust Ncomp.Npress in PARAMETR

write(I1.*) number
do 1000 phase = start,end,stepsize

falpha = 0.dOO
fprime = 0.dOO
do 2000 p = I,Ncomp

falpha = faipha + coefficient(Ncomp-p)*
@ phase* *(Ncomp-p)

C fprine = fprime + (Ncomp-p)*coefficienINcomp-p)*
C @phase**(Ncomp-p-1)

2000 continue
write(I 1,3600) phase ,falpha

C write(11,3600) phase/prime
3600 fbrmat(f 7.3,2x,f25.12)
1000 continue

C* Rachford-Rice objective function
C
C do 4500 k = I ,Npress
C k =6
C write(11,*) number
C do 3000 phase = start,endstepsize
C falpha = 0400
C do 4000 i = I Ncomp
C faipha = faipha + (molefrac(i)*(Ki(kJi) - 140))I
C @(1400O + phase*(Ki(k,i) - .d0))

C* End of i loop
C 4000 continue
C
C write(]1,3500) phase/alpha
C 3500 formattl 7.25.12)

C* -End of phase loop
C 3000 continue

C* ~ End qofk loop
C 4500 continue

CLOSE(unit=- 11)
CLOSE(unit= 12)

return
end
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* 6 Dec 91
.

* BRETT D. WEIGLE
* Petroleum and Natural Gas Engineering Section
* Mineral Engineering Department
* College of Earth and Mineral Sciences
* The Pennsylvania State University
* University Park, Pennsylvania

* M.S. thesis

* SUBROUTINE BUDAN

* Subroutine uses the Fourier-Budan Theorem to determipe
* the number of roots that the alpha polynomial has on tn,
* interval [u,v].
,

* PARAMETERS: iu = lower bound of alpha interval
* iv = uppper bound of alpha interval
* VARIABLES: coefficient = coefficient of alpha polynomial
* dcoeff = coefficient of polynomial derivatives
* deriv = derivatives of alpha polynomial
* fvapor = the alpha polynomial
* ia,ib = # of sign changes for derivative series
* ivapor = alpha = vapor fraction
* jsign,ksign = flags for derivative sign change
* numroot = number of zeros on the interval

SUBROUTINE BUDAN(J,Ncomp,coefficientnwnroot)
IMPLICIT REAL*8(a--ho-z)

INTrEGER p

DIMENSION dcoeff(0:100,0:100), coefficient(0:100), deriv(0:100)

PARAMETER(iu = 0, iv = 1)

C DATA (coefficient(l), I = ONcomp-l) /-j.,I.,-2.,3.,-4.,5. /
OPEN(unit=2,file="test",status= unknown)
REWIND(Unit=2)

ia = 0
ib = 0
do 0500 ivapor = iu, iv, 1

* Evaluate the polynomial function at the endpoints iu and iv

fvapor = OdO
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do 0600 p = 1, Ncomp
fvapor = fvapor + coefficient(Ncomp-p)*ivapor**(Ncomp-p)

0600 continue
write(2,*) fvapor = ",fvapor
write(2,*) - -

* Calculate coefficients of first derivative

do 1000 n = Ncomp-1, 0, -1
dcoeff(0,n) = coefficient(n)
write (2,*) "dcoeff(0,',n,') = ",dcoeff(0,n)

1000 continue
write(2,*) " "

* Calculate coefficients of 2nd- and higher-order derivatives
* as multiples of those of the first derivative

do 1500 m = 1, Ncomp-I

do 2000 n = Ncomp-m, 1, -1
dcoeff(mn-1) = n*dcoeff(m-l,n)

write (2,*) "dcoeff(',m,',n-1,) = ",
@dcoeff(m,n-1)

2000 continue
write(2,*) " "

1500 continue

* Evaluate the derivative series at the endpoints iu and iv

do 3000 n = 1, Ncomp-1
deriv(m) = 0.dO

do 4000 n = Ncomp-m, 1, -1
term = dcoeff(m,n-1)*ivapor**(n-1)
if( (n-I) .EQ. 0 ) term = dcoeff(mn-1)
deriv(m) = deriv(m) + term
write(2,*) 'inter deriv(°,m, ") = ",deriv(m)

4000 continue

write(2,*) 'total deriv(',m,) = ",deriv(m)
write(2,*) " "

3000 continue

* Count the sign changes between the terms of the series

if(fvapor. LT. 0.) then
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ksign = 0

else
ksign = 1

end if
write(2,*) 1csign = ',ksign,' for fvapor'

do 5000 i = 1, Ncomp-l
if(deriv(i) .LT. 0.) then

jsign = 0
else

jsign = 1
end if

write(2,*) 'jsign = ',jsign,' for deriv(',i,T'

* Increment A or B, depending upon the endpoint under evaluation

iffivapor EQ. iu) then
if(ksign .NE. jsign) then

ia = ia + I
write(2,*) 'ia = ',ia,' for deriv(',,'

end if
end if

iffivapor .EQ. iv) then
if(ksign .NE. jsign) then

ib = ib + I
write(2,*) -ib = -,ib,' for derivC',i,')'

end if
end if

ksign = jsign
write(2,*) lcsign = ',ksign,' after deriv(',i,2Y
write(2,*)

5000 continue

0500 continue

* Pass a flag to calling program to indicate root conditions

write(2,*) 'ia =',ia,' and ib = 'ib
numroot = ia -ib

write(2,*) 'numroot = ',numroot

write(2,6000) Ncomp-I, numroot, iu, iv, J
6000 formnat(This polynomial of order 'j3,' has 'i3,' zeros on the in

@terval [',i2,',ij2,'J for J = 'i3)

CLOSE(unit=2)
return
end


