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ABSTRACT

The Rachford-Rice objective function for flash calculations exhibits a nearly
flat slope across the two-phase region and sharp discontinuities near the dewpoint.
These features make iterative solution procedures sensitive to the initial estimate of
the root and prone to spurious values if a correction step throws the algorithm out-

side the two-phase region or near the phase boundary.

This work centers on the recasting of the Rachford-Rice objective function into
a polynomial function of the vapor fraction, . The degree of this polynomial is
one less than the number of components in the system and its coefficients can be
calculated from the feed composition and the equilibrium ratios. A recursive
expression is developed that involves symmetric functions and can be easily pro-

grammed on a computer or scientific calculator.

The principal advantage of this new form of the objective function is that the
theory of polynomials is well-developed. The location of their zeros can be
predicted with confidence by techniques based on sound mathematical principles,
such as the Fourier-Budan theorem. The a-polynomial is well-behaved over the
two-phase region and its root can be quickly located by a hybrid method of
interval-halving technique and Newton-Raphson procedure. The validity of the new
objective function and its automatic coefficient-generating algorithm are tested using

several multicomponent systems for which experimental data are available.

Results of these tests prove conclusively the validity of the generalized polyno-
mial objective function. The versatility of this form of the flash objective function,

compared with the original Rachford-Rice version, is demonstrated. Another




iv

potential advantage of the polynomial form is its ability to handle dilute systems in
which some components are present but in very low concentrations. It also prom-

ises possible usage as a means of developing appropriate lumping schemes.
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Chapter 1

DISCUSSION OF THE PROBLEM

1.1 Introduction

Determination of the equilibrium state of coexisting liquid and vapor phases,
particularly for multicomponent fluid mixtures, is of vital interest to the petroleum
and chemical industries. Many processes in petroleum production and refining
involve repetitive flash calculations for design and operational purposes. The pri-
mary goal of performing flash calculations is to determine the relative amounts and
compositions of the coexisting phases for a given feed composition at a specified

condition of temperature and pressure.

This work is confined solely to two-phase vapor-liquid equilibrium computa-
tions, although its results will no doubt find application in multiphase flash prob-

lems in the future.

1.2 The Generic Flash Algorithm

To begin the calculation, the following variables must be specified: the system

pressure and temperature, the molar composition of the feed stream, z; , and an ini-

. . e . i .
tial estimate of the equilibrium ratios, K; = o The process is assumed to occur
i

under isothermal and isobaric conditions. The stages of the calculation are:

1. Compute initial estimates of the equilibrium ratios by one of the established

techniques or by an empirical correlation.




2. Calculate the phase distribution and compositions corresponding to the given
K-values. This involves the iterative solution of the following objective func-

tion, developed by Rachford and Rice (1952):

N Zi(Kl'—l) _
2 l+a (K, -1)

i1=1

(1.1

where a is the vapor molar fraction.

3. Use an equation of state (EOS) to calculate the component fugacities in each

phase and check for equality.

4. If equality is not achieved (i.e., the phases are not in equilibrium), correct the

K-values on the basis of the fugacities and repeat steps 2-4.

This correction is commonly performed using a successive substitution-type
method or a second-order Newton-type scheme. These algorithms are well-known
and are described in several papers [e.g., Risnes et al. (1981); Michelsen (1982);
Boston and Britt (1978)].

Successful implementation of the generic flash algorithm described above
requires three principal elements. These are (1) a general estimate of the set of
equilibrium ratios to start the procedure; (2) a good equation of state to improve K;;
and (3) a robust objective function that guarantees convergence to a single value of
. A poor first guess of K-values may produce a phase split that is physically
impossible under the prevailing pressure and temperature. Satisfactory methods are
available for generating these values. Furthermore, existing equations of state do a
fairly good job of predicting phase properties, and other efforts continue along this

line.




One area that has not enjoyed equal amounts of attention for a long time is the
form of the objective function. Invariably, the Rachford-Rice objective function
(Equation (1.1)] is most often used. Recent investigations (Warren, 1991) have
shown that this objective function does exhibit some strange behavior which may

affect its ability to generate good results for some conditions.

1.3 Objectives of the Investigation

This study is aimed at evolving a generalization of the new polynomial form
of the Rachford-Rice objective function developed by Warren (1991). The resulting
generalized polynomial function of the vapor fraction, «, should be capable of han-
dling an N-component mixture. The coefficients of the generalized polynomial
should depend on only two variables, the molar composition of the feed stream and
the equilibrium ratios, and should be easy to obtain, either analytically or numeri-

cally. Appropriate algorithms are to be developed for this purpose.

The principal advantage of a polynomial form of the flash-calculation objective
function is that the theory of polynomials is well-developed and semi-analytical
soluticn techniques exist for equations up to fifth-order (Zaguskin, 1961). For
higher-order polynomials, the Newton-Raphson iterative method usually provides a

fast and accurate determination of the roots.

Determination of all the zeros of this polynomial is unnecessary since the phy-
sics of the problem demands that only the zeros on the bounded interval [0,1] are of
practical interest. Furthermore, the physics also suggests that only one zero (or
value of o) exists on this interval, which represents the two-phase vapor-liquid
region. It can be shown mathematically that this is indeed the case for well-defined

systems, as will be demonstrated in §.2.




Chapter 2

LITERATURE REVIEW

A survey of the pertinent literature reveals that apparently only one other
worker, Warren (1991), has studied the particular aspect of flash calculations tar-
geted in this research. A comprehensive review of the literature pertaining to the
use of cubic equations of state in flash calculations was conducted in order to pro-

vide a reference point for the testing of the polynomial objective function.

This review is sub-divided into three sections: flash calculation algorithms;
equilibrium ratios; and cubic equations of state. Particular emphasis is laid on the

Peng-Robinson equation of state.

2.1 Vapor-Liquid Equilibrium Flash Calculations

This discussion will be confined to two-phase vapor-liquid equilibria. The
work to date concentrates on developing robust algorithms with rapid convergence
rates. Robustness implies the ability to continue the calculations after recovering
from a spurious value of the vapor fraction computed in the neighborhood of the
critical point or at the phase boundaries. Abhvani and Beaumont (1987) present an
excellent review of EOS-based flash algorithms. They divide the papers into two
categories according to solution method, those using some variant of the successive

substitution method (SSM) or those employing a second-order Newton-type method.

The SSM technique is the traditional solution algorithm, but it exhibits a poor

rate of convergence and has stability problems close to saturation points and in the




critical region. Risnes et al. (1981), Michelsen (1982), and Mehra et al. (1983)

made attempts at acceleration and stabilization of this method.

Similarly, many workers have proposed various forms of second-order Newton
procedures to avoid the slow rate of convergence of the SSM, such as Boston and
Britt (1978), Fussell and Yanosik (1978), Asselineau et al. (1979), Fussell (1979),
Baker and Luks (1980), and Varotsis et al. (1981). Others advocate a combination
of successive-substitution and Newton methods; the former is used to provide good
initial values to the rapidly converging latter. Informative studies include Mott
(1980, 1983), Mehra et al. (1982), Michelsen (1982), Nghiem et al. (1983), and
Abhvani and Beaumont (1987).

Benmekki (1984) developed a general algorithm for flash calculations that can
utilize any cubic equation of state and features a specified calculational path for
computing the phase boundaries. This is an attempt to ensure that bubblepoint and
dewpoint computations originate from within the two-phase region, thus guarantee-

ing meaningful values of the equiliurium ratios.

Warren (1991) made a radical departure from previous efforts at enhancing
flash calculation algorithms when he formulated an explicit linear equation for the
vapor fraction of a binary system. He successfully extended this to a quadratic
equation for a ternary system and a cubic equation for a quaternary mixture. The
success achieved by Warren and the possibility of the existence of a generalized
polynomial expression for the vapor fraction in a two-phase, N-component fluid sys-

tem motivated the current work.




2.2 Vapor-Liquid Equilibrium Ratios

The use of initial equilibrium ratios close to the final values for a multicom-
ponent fluid is crucial to the rapid convergence of any flash calculation. Experi-
mental values are preferred because the prediction of K; for a particular fluid at
various combinations of temperature, pressure and composition requires lengthy cal-
culations. Therefore, predictive methods for K-values are a limiting factor in the

speed and robustness of any flash calculation algorithm.

The expression "equilibrium constant” was coined by Souders et al. (1932)
and was defined as the ratio of the vapor mole fraction to that of the liquid. The
basis for most predictive methods had its genesis when Cox (1923) observed that
the lines on a semilogarithmic plot of vapor pressure against temperature appeared
to converge to a single pressure. Katz aiid Hachmuth (1937) demonstrated an
analogous behavior for equilibrium constants; they converged to unity at a fluid
mixture’s critical pressure.

White and Brown (1942) attempted to develop 'a correlation for K-values based
on this "convergence" pressure. Hanson and Brown (1945) used experimental data
to correlate the convergence pressure (p,) at one temperature as a function of the
molal average boiling point of the equilibrium vapor and liquid. They also showed
that the convergence pressure concept could be extended from binary to multicom-

ponent systems.

Hadden (1948, 1953) produced nomographs for equilibrium constants of pure
components as functions of temperature and pressure, and incorporated convergence
and vapor pressures intc nomographs for mixtures. He demonstrated that mixture

convergence pressure is a function of the operating temperature and of the liquid-




phase composition exclusive of the lightest component concentration. This compo-
sition dependence led Muskat (1949) to propose the use of the term "equilibrium
ratio” in place of "equilibrium constant." Edmister (1949) presented a graph involv-
ing the rato of differences between the convergence and critical pressures and the

ratio of differences between the system and critical temperatures.

Winn (1952) developed nomographs based on Hadden’s (1948) results that
allow the determination of K-values at a convergence pressure of S000 psia. For
systems with p, # 5000, he provides a translation to find the value of K; at other
"apparent” convergence pressures. The methods proposed by these three authors

require charts and do not lend themselves to computer calculations.

Hoffmann et al. (1953) attempted to extend Cox’s (1923) vapor pressure graph
for the purpose of determining equilibrium ratios by plotting log Kp against the

component characterization factor F, where

Kp = product of equilibrium ratio and pressure
1 1
F=b|—~-=— 2.1
= o
b = constant required to translate the vapor pressure curve
for a hydrocarbon onto the straight line of the Cox chart
Ty = hydrocarbon boiling point
T = system temperature
Brinkman and Sicking (1960) presented an iterative method for finding the conver-

gence pressure based on the slope, sp, of the plot mentioned in Hoffmann et al.

(1953). Then, the equilibrium ratio could be determined as

(2.2)




Standing (1979) observed that the composition dependence of the equilibrium
ratio is negligible at pressures below 1000 psia. He proceeded to combine the work
of Hoffmann et al. (1952) and Brinkman and Sicking (1960) to develop a correla-
tion for K-values for the crude oils studied by Katz and Hachmuth (1937):

K = %10‘0 +cF) 2.3)

where a and c are the intercept and slope (respectively) of log Kp vs. F plots of the
abovementioned oils. Both g and c are expressed as functions of pressure. He also
presented equations for the heavy fraction and the common reservoir gases N,, CO,

and H,S (referred to as permanent gases).

Wilson (1969) published a K-value equation that currently enjoys widespread

use in flash calculations:

B
K, == 2.4)
PRi
where
B =537(1 + ;)1 - TL) 2.5)

Ri
Pr; = reduced pressure of the i —th component
Tpr; = reduced temperature of the i—th component
w; = Pitzer acentric factor of the i —th component
Wilson’s equation fails to predict accurate equilibrium ratios for most fluids above
pressures of 500 psia, as illustrated by Warren (1991). Whitson and Torp (1981)

attempted to correct this problem by re-introducing the system convergence pressure

to the Wilson equation:

K,"—‘

(2.6)

A-1
pci CAB
D PRi




where
- 147 |*°
A=1-| 221 Q2.7
pk - 147

P.; = critical pressure of the i —th component

Risnes and Dalen (1984) took an approach based on the equation of state used
in the flash calculations. Their basic idea was to assume the mixture or feed to be
liquid and then evaporate up to one-half of the system to form a gas phase by use
of the fugacities. The initial K-values then could be calculated from the resulting
phases. This method is reported to perform well near the critical point and along

the bubblepoint line but often fails along the dewpoint curve.

Reportedly, the most accurate X-value predictor is that proposed by Varotsis
(1989). He used over 1000 experimental equilibrium ratios to construct an X-Y plot
such that each reservoir fluid’s position on the "map” is determined by its coordi-
nates X and Y. These coordinates are described by a polynomial fitted to the
apparent pressure mentioned in Winn (1952). He proposes an equation for the con-

vergence pressure based on the mole fraction of methane and nitrogen in the fluid.

Each pure hydrocarbon component is represented on the map by its own set of
coordinates (X;, Y; ), which are calculated as functions of the component acentric
factor. Specific values are given for the permanent gases and correlations based on

molecular weight are specified for the heptane-plus fraction.

Finally, the straight line that joins the pressure and temperature coordinates
(X, Y) of the fluid with the position of each component on the map (X;, Y; ) inter-
sects the K-value axis at a point that corresponds to the equilibrium value of the

selected constituent. Varotsis (1989) presents tables for three different crude oils
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and gas condensates at varying temperatures and pressures that display K-values
remarkably close to experimental values. They are an order-of-magnitude improve-
ment over those predicted by the equations of Wilson (1969) or Whitson and Torp
(1981).

The method of Varotsis (1989) was attempted in the current work. His K-
value predictor was formulated using data for crude oils and gas condensates con-
taining the C; — C¢ alkane series, the heptane-plus pseudocomponent and the per-
manent gases. It will not properly describe systems (such as the methane-ethane-
propane temnary) containing fewer components than these "typical” reservoir fluids.
For lack of a suitable replacement expression for p, , Wilson’s equation is used in

the current work.

2.3 Cubic Equations of State (EOS)

The equation of state (EOS) is the heart of a modem flash calculation algo-
rithm. Ideally, it should be able to accurately represent the thermodynamic proper-
ties of the fluid of interest over the complete range of operating pressures and tem-
peratures. Since engineering applications rarely focus on an isolated chemical
species, the EOS should incorporate mixing rules that allow it to extend its predic-
tive capabilities to the behavior of multicomponent fluids. Its component-specific
descriptive parameters should be readily calculable from well-known properties,
such as critical temperature and pressure, molecular weight and acentric factor.
Finally, the associated computations should not consume excessive computer time,

especially if the equation of state is to be used for repetitive calculations.

The engineer is faced with the choice of using a complex EOS exhibiting a

high degree of non-linearity and many adjustable parameters, or a cubic EOS which
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possesses an analytical solution and requires the estimation of two or three parame-
ters. Mathias and Benson (1986) presented a comparison of average central-
processing-unit (CPU) times required by three cubic EOS and by three complicated
EOS to compute fugacity coefficients and enthalpy departures. They asserted that
the time required for any of the candidate equations to calculate the density root (or
compressibility factor root) is negligible compared to that involved in executing the
various mixing rules. In fact, for systems containing more than about six com-
ponents, the cubic EOS become more computationally burdensome than the compli-
cated EOS simply because of the cross terms inherent to the cubic EOS mixing

rules.

Engineers frequently use cubic EOS because they work well over the range of
most industrial operating conditions and are easily programmed for solution on a
computer. The two cubic EOS which have gained the widest acceptance are
Soave’s modifications of the Redlich-Kwong (1949) equation of state (SRKEOS)
(Soave, 1972) and that presented by Peng and Robinson (1976b) (PREOS). The
PREOS and suggested improvements are examined in this work for possible use in

flash calculations because of the author’s familiarity with this EOS.

2.3.1 Development of the Peng-Robinson EOS

Upon the success of the SRKEOS, Peng et al. (1975) undertook a further study
to formulate a cubic equation of state with an improved capability to predict liquid

densities and other fluid properties, particularly in the vicinity of the critical region.
This study resulted in a further modification of the attractive pressure term of

the classical equation of state proposed by van der Waals (1873). The result was

the EOS presented by Peng and Robinson (1976b):
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RT a(T)

- 2.8
P=30 = Jp+b)+b(v-b) (2.8)
The values of the parameters are obtained from
RT,
b =0.07780 2.9
Pe
2T 2
a(T,) = 0.45724 — (2.10)
P.
aT)=aT.) Tz, ®) 2.11)
nNt=1+x1-T" (2.12)
x = 0.3746 + 1.48500 - 0.16440° + 0.01667w° (2.13)

Equation (2.12) has the same form as that used by Soave (1972) but X was obtained
by fitting a larger range of vapor pressure data as a function of the reduced tem-

perature and the acentric factor (Pitzer et al., 1955) of each component.

In order to use the equation for systems containing more than one component,

the following mixing rules are presented:

a= EE xina"j (214)
ij
b=Y xb (2.15)
i
where
aij = (1 - Sij)a"%aj% (2.16)

Equations (2.14) and (2.15) are consequences of the mixing rule proposed by Kay
(1936), while Equation (2.16) was developed by Zudkevitch and Joffe (1970). The
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experimentally determined binary interaction coefficient, §;;, characterizes the
binary formed by component i and component j. The importance of §;; in accu-
rately reproducing P-V-T data was discussed by Peng and Robinson (1976b) and by
Robinson et al. (1985).

The PREOS can be written in the form of a cubic equation in the compressibility

factor:;
Z3-(1-B)Z2+(A -3B2-2B)Z - (AB -B?-B%» =0 2.17)
where
A= (2.18)
R2T?
- bp
B RT (2.19)
- PV
Z= o (2.20)

2.3.2 Selection of the Proper Root in Cubic EOS

Equation (2.17) yields one or three roots depending upon the number of phases
in the system. The authors stated that, in the two-phase region, the largest root is
for the compressibility factor of the vapor while the smallest positive root

corresponds to that of the liquid.

Lawal (1987), however, asserted that this criterion was insufficient to select the
proper root. He proved that, in the event of multiple real roots, the smallest of the
positive roots larger than or equal to B must be chosen for the compressibility of

the liquid.
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Asselineau et al. (1979) compared the calculated volume to the pseudo-critical
volume to assign the root to the proper phase, under specific conditions. Poling et
al. (1981) examined the order of magnitude of the isothermal compressibility,
B = —(dv/dp)r/v, to ascertain the presence of the liquid or vapor phase. Gosset et
al. (1986) offered two discriminants, one based on the Cardan criterion for the
number of real roots for a cubic equation and a heuristic approach similar to that of

Asselineau et al. (1979).

2.3.3 Modifications to the Peng-Robinson EQS

Numerous attempts have been made to correct for the deficiencies inherent in a
cubic equation of state by introducing additional parameters into the PREOS.
These changes improve some aspect of the EOS’s performance (usually liquid den-
sity predictions) but at the cost of increased complexity and the requirement for
tables or correlations to determine the additional parameter(s) for each fluid com-

ponent. This review will touch on a limited number of these studies.

2.3.3.1 Volume Corrections

The modification of the SRKEOS proposed by Péneloux et al. (1982) also
formed the basis for two other studies concemed with the PREOS. These authors

suggested that the use of a "pseudo volume” defined by
V=v+Yx (2.21)
i

could be used to effect a translation along the volume axis, leaving unchanged the

predicted equilibrium conditons. They chose ¢ so that correct saturated liquid




densitdes were exactly reproduced at the reduced temperature Tp = 0.7. They
rejected the acentric factor as a correlating parameter in favor of the Rackett
compressibility factor, Zp, , developed by Spencer and Danner (1972):

RT,
¢ = 0.40768

(0.29441 = Zg,) (2.22)

¢
Their third parameter did improve predictions of saturated liquid densities.

Almost simultaneously, Jhaveri and Youngren (1988) and Mathias et al.
(1989) presented three-parameter modifications of the PREOS based on the work of
Péneloux et al. (1982). The first authors correlated the third parameter, ¢, with
molecular weight. The second study retained the Péneloux-Rauzy-Fréze volume
correction scheme but added a further term involving the bulk modulus to handle
the critical region. The bulk modulus is dimensionless and is defined as:

2
=- 1—[ P (2.23)

RT | ov

T

From an examination of the graphs accompanying both publications, the work of
Mathias et al. (1989) seems to produce results closer to the experimental values for

saturated volumes and densities.

2.3.3.2 Temperature Dependence

Xu and Sandler (1987a,b) postulated that the molar co-volume term, b, is not
independent of temperature and they disputed the fitting of vapor pressures used by
Peng and Robinson (1976b) to characterize the attractive constant, a. They corre-

lated vapor pressure and volume data for 16 components at both subcritical and
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supercritical conditions and proposed to replace the numeric coefficients of a and b

found in Equation (2.9) and Equation (2.10) with:

1_ & Iy
v.!'= $a/Th (2.24)
i=0
and
1o &y Iy
' = Tb/Th 2.25)
i=0

where i refers to the species and I denotes either subcritical or supercritical condi-
tions.

Wu and Sandler (1989) generalized the temperature-dependent p‘arametcrs of
Xu and Sandler (1987a,b) by performing least-squares fits of y, and y, as func-
tions of acentric factor and reduced temperature. They were able to accomplish this
task only for the n-alkane series because of insufficient data. For their intended
application of the work (petroleum reservoir simulation), they envisioned the use of
the fluid-specific parameters for the permanent gases, water and light ends and the

generalized parameters for the heavy pseudocomponents.

Stryjek and Vera (1986a,b,c.d) re-worked Equation (2.13) to obtain a better

reproduction of vapor pressure data at low reduced temperatures:

Ko = 0.378893 + 1.4897153w - 0.17131848? + 0.0196554w’ (2.26)

and modified Equation (2.12) by the introduction of one compound-characteristic

adjustable parameter, X;:
K =Xy + X (1 +Tp*)0.7 - Tg) (2.27)

Stryjek and Vera (1986b) and Proust and Vera (1989) listed values of x; for over
160 compounds of industrial interest. Stryjek and Vera (1986d) and Wilczek-Vera
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and Vera (1987) examined mixing rules of varying complexity for use with the
Peng-Robinson-Stryjek-Vera (PRSV) EOS. For the current work, the PRSV EOS
with the criginal PREOS mixing rules (as formulated by Stryjek and Vera, 1986b)
is used and produces noticeably better results than did the PREOS.

2.3.4 References on Cubic EOS

Abbott (1979) and Martin (1979) presented comprehensive reviews of cubic
equations of state available at that time, and Vidal (1983) and Vera et al. (1984)
updated the topic. Huron and Vidal (1979) proposed composition-dependent mixing
rules while Mathias and Copeman (1983) discussed mixing rules dependent on
volume. Finally, Peng and Robinson (1976b), Peng and Robinson (1977), Robinson
and Peng (1978), Robinson (1979) and Peng (1986) developed specific applications
of their EOS.




Chapter 3

DEVELOPMENT OF THE POLYNOMIAL FUNCTION
FOR SIMPLE SYSTEMS

This chapter discusses the work published by Rachford and Rice (1952) and
Warren (1991) on performing flash calculations. It shows the development of the
Rachford-Rice objective function [Equation (1.1)] and extends Warren’s work as a
precursor to developing a generalized, multicomponent equation for the vapor frac-

tion.

3.1 The Rachford-Rice Flash Objective Function

We will briefly examine the derivation of the Rachford-Rice objective function
that is universally used today in flash calculations. After plotting its behavior, it
will become plain why it is so difficult to solve by iterative techniques such as the

Newton-Raphson method.

3.1.1 The Material Balance Development

Flash calculations are used to determine the compositions and quantities of the
vapor and liquid phases at equilibrium which result when an N-component fluid of a
particular composition is subjected to a particular pressure and temperature. The
composition of the feed stream, F, is denoted by X 2; and it flashes into L moles of
liquid with composition Z x; , and V moles of vapor with composition Ly;. The

resulting material balance equations are:




F=L+V

FZ" = LI" + Vy‘

As defined in Chapter 1, the equilibrium ratio is:

and, rearranging, one is left with the equation:

Yi = xK;

Substituting Equation (3.4) into Equation (3.2) yields:

FZ,' = VI“K,' +LI;

Simplify by isolating the x; term and dividing through by F:

VK" L
Z; =X T\"F

Dividing Equation (3.1) through by F and solving for -f’; yields:

L_,.v
F F
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(3.1)

(3.2)

(3.3)

3.4)

3.5)

(3.6)

3.7
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Substituting Equation (3.7) in Equation (3.6) and simplifying the equation results in:

X; = (38)

N
Imposing the constraint of ) x; =1 on Equation (3.8) leaves:

i=1

N
1=3 3.9)

Rearranging:
Y v -1=0 (3.10)
i=1 1+—F(K,-—1)
Recalling Equation (3.4), we can write:
z;K;
Yi = v (3.11)
1+ F (K, -1)
N
Imposing the constraint of ) y; = 1 on Equation (3.11) yields:
i=1
N zK;
p -1=0 (3.12)
i=]
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Combining Equation (3.10) and Equation (3.12) leaves:
N Z; ( Ki 1 )
Y, v =0 (3.13)
i=1 1+F(K‘—l)
Defining the vapor fraction, , as:
vV
o= — 3.14
F (3.14)

and substituting Equation (3.14) into Equation (3.13) yield the Rachford-Rice objec-

tive function:

N . -
Z : =0 (3.15)

3.1.2 A Graphic Representation of the Rachford-Rice Objective Function

As the authors noted, their formulation of the objective function was prone to
instability near the values of o that represented the phase boundaries, namely, 0 and
1. They showed that the slope of the function near these points may be quite steep.
It is this feature that tends to throw derivative-based root-finding techniques out of

the two-phase region, yielding spurious roots.

Figure 3.1 depicts the behavior of the objective function over a wide range of
o for a binary system of 70% methane and 30% ecthane (Bloomer et al., 1953).
Figure 3.2 does the same for a ternary system consisting of 85% methane, 10%
ethane and 5% propane (Parikh et al., 1984). Although values of the vapor fraction
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Figure 3.1: The Behavior of the Rachford-Rice Objective Function for a Methane-
Ethane Binary System
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Figure 3.2: The Behavior of the Rachford-Rice Objective Function for a Methane-

Ethane-Propane Ternary System
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have no physical meaning outside the interval {0,1], these graphs serve to illustrate
how ill-behaved the objective function is. Its slope is almost flat as it traverses the
two-phase region and it is plagued by spiky singularities.

This work will attempt to develop a new expression for a, one that possesses
reasonable slope over the desired interval and has no discontinuities near the phase

boundaries.

3.2 Warren’s Explicit Equations for the Vapor Fraction

Waﬁen (1991) expanded the Rachford-Rice objective function into a polyno-
mial in a for a binary, ternary and quaternary fluid system. He did this by setting
N equal to 2, 3 or 4, respectively, and reducing the resulting equations to their sim-
plest polynomial form by algebraic manipulations. To demonstrate the validity of
his work, Warren also showed that the higher-order polynomials would reduce to
those for smaller systems when the appropriate mole fractions and equilibrium con-
stants were removed. |

We will assume (as did Warren) that, under isovaiic and isothermal conditions,
the equilibrium constant does not change such that the quantity (K; — 1), which
appears in the objective function, can be represented by a constant, C; .

We will reproduce the entire process here for a binary system but will show

only the final result for a ternary and quaternary system, since the algebra can be

quite tedious and repetitive.
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3.2.1 Binary System

Starting with the objective function as defined in Equation (3.15):

El o (K -1 - (3.15)
and defining C; = K; ~ 1, Equation (3.15) can be rewritten as:

3 % Gi 3.16

2 1+aC; .16

i=1

For a two-component system, setting N =2 in Equation (3.16) and expanding

term-wise yields:

2, Cy z,C,
1+aC1 l+aC2—

3.17)

Moving the terms with the subscript "2" to the right-hand side of the equation:

2, Cy 27 Cy
1+aC; 1+aC, (3-18)
By multiplying each side by (1 +a C;) (1 +a C,), one obtains:
Z;CPA+aCl)=~(z22C (N +aCy (3.19)

Expanding each side yields:

Zlcl"r‘O.ZlClCz: 2C2-0.22C1C2 (3.20)
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Move a terms to the left-hand side of the equation and all remaining terms to the

right-hand side, then recall that, for a binary system, z; + 2, = 1:

O.(Cl C2)=—(21C1+22C2) (3.21)

Dividing both sides through by C, C, and substituting (K; — 1) yields the explicit

form of the objective function for a binary system:

1 £2 ] (3.22)

3.2.2 Ternary System

[ 3 3 ]
'Zl & z Cj 3 Z;
@ +al— ]+ T — =0 (3.23)
I-[ Cj i=l H Cj
ji ] jei

3.2.3 Quaternary System

P . -
Z; C
3 2 [ 4-2) ‘-;1 [/z*:* 1] - _ %
o + « Z Yl + a 3 + 3 2 =0 (3.24)
i=1 : n C; i=] r[ Cj
L J#i i J#i

3.3 Extension of Warren’s Work to Larger Systems

Warren’s method can be used to develop polynomial expressions for systems

having five, six and seven components. It will be observed that the terms of the
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equation expand in a regular fashion, thereby suggesting the possibility of develop-

ing a recursive relationship dependent only on N, the number of components. Only

the algebra for the five-component system will be presented, as those for six- and

seven-component systems follow the same procedure.

3.3.1 Quinary System

We begin with the objective function:

5 z; C;
)) 1+aC

i=l

which, when expanded for five components, becomes:

Z4 Cl + 22C2 Z3C3 Z4C4 25C5
+
l1+aC; 1+aC, 1+aC; 1+aCqy 1+aCs

5
Multiplying through by [T (1 + a C;) yields:
i=1

C(l+aC(1+aCy)(1+aCy)(1+aCs)+
2;C,(1+aCP+alC)(1+aCyp(1+aCs+
73 C3(1+aC+aC(l+aC(1+aCs)+

2,Ca(1+0aC)A+aCh(l+aCy(+aCs+

2sCs(1+aC(d+aC)l+al3y)(1+aly =

Expanding each term:

a‘zl Cl C2C3C4C5+

=0

(3.16)

(3.25)

(3.26)
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a321C1 (C2C3C4+C2C3C5+C2C4C5+C3C4C5)+
022, C;(C,C3+C5C4+C3C5+C3C4+ C3C5+C4Cs)+
az; C (C2+C3+C4+C5)+21C1+

(!422C1C2C3C4C5+

0} 2,Co(C{C3C4+C,{C3Cs5+C,C4Cs5+C5C4Cs)+
022,C,(C1C3+C{Cy+C;Cs5+C3C4+ C3C5+C4Cs)+
a22C2(C1+C3+C4+C5)+22C2+

atz;C,C,C5C,Cs+
032;C3(C{C,C4+C,C,C5+C,C4C5+C,C4Cs)+
a22;C3(C;C+C{C4+C{C5+C,Cy+ C,C5+C4Cs)+
2z23C3(C1+Cr+Cy+Cs5)+23C3+

a*z,C,CyC3C4Cs+

3 24C4(C{C,C3+C,C,C5+C2C3C5+C1C3Cs)+
a2z,C4(C,C,+C,C3+C;Cs+C,C3+ C,C5+C3Cs)+
024 Ca(C1+Cr+C3+Cs5)+24Cy+

atz25C,C,C3C4Cs+

03 25C5(C;C,C3+C1CC4+CyC3C4+C,C3C4)+

0225C5(C; C,+C1C3+C1Ca+CyC3+ C2C+C3Cy)+
0z5Cs(C1+Cr+C3+Cy)+25C5 =0 (3.27)

5
Dividing through by the term [] C; and adding like terms yields:

i=]
0.4 + a3 {21

23
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11 1,1
+—+ +
ZS{cﬁ'c2 Cs c,,”

1 1 1 1 1

2 . + + + + +
“{"[czq C2Ca  CaCs  C3Cs  C3Cs @ CaCs

r
1 1 1 1 1 1
+ + + + +
2 | C1C3 " C1C4  C1Cs  C3C4 C3Cs  C4Cs

SN WS WS S SR
| C1C;  C1Cy €1 Cs CiCq CCs  CyCs |

23

1 1 1 1 1 1]
+ + + + +
] CiC; T CiC; T CiCs  CiC3  C;Cs | C3Cs

1 1 1 1 1 1
+ + + + + +
25[ C,C, C1C3 C,Cq CpCy C,C, c3c4]}

al s C,+C3+C4+Cs s C,+C3+C4+Cy4 .
! C,C3C4Cs 2 C,C3C4Csq

5 C1+C2+C4+C5 +7 C1+C2+C3+C5 +
3 C,C,C,Cs 4 C,C,C;Cs

C1+C2+C3+C4 Z, + 4]
+
’s| T C,C,C, Cq ¥ C,C3CCs  C,C;CaCs
1%-2 1

Z3 ' 24 + Zs
C1C,CaCs  C1C,C3C5  C,C2C3Cq

=0 (3.28)

To maintain similarity with the forms of the quaternary and ternary equations, we

can separate the general term in the coefficient for a in Equation (3.28) into four

fractions:

z.[Cj+Ck+C[+CM

Cj

Ck CI Cm

H

1

1

1

b1

+ +
CeCiCn C;CCpn  C;CtCn

C; Cx G
(3.29)
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After multiplying each of the five fractions by z; and collecting terms with common

denominators, the following form appears:

Z; +Zj

GGt o

5
We can invoke Y z; =1 to construct fractions with similar subscripted terms in
i=1

both numerator and denominator:

1=z, -2, -2,
C. C Cp

(3.31)

This yields a final polynomial expression of the same general form as those of War-

ren (1991):

1-2 1-2 1-2 1-2 1-2
a4+a3{ L+ g 2 + 24 5}+

op) C, Cs C, Cs

1-2y-2 1=-zy-23 1-2zy-24 1-2y-25 1-25-2;
a? + + +
C,C, C,C, C,Cy C:Cs C,C5

1-2-24 1=-29-25 1-23-24 1-23-25 1-24-24
+ + +
C,Cy C,Cs C;C, C3Cs Cs4Cs

l-2y-29-23y 1-2y-25-24 1-2y-29~-25 1-z;-23-124
a +
C.CCs CiCCy C,CyCs CiCyCy

1-2z,-23-125 1—21—24-25+1—22—z3—-z4 1-29-23-125
+ +
CCqCs C,C4Cs C,CsCy C,CqCy

+

1-25-24-25 1-23-24-125 2y 2,
+ + + + +
C,C4Cs C3CCs CyCyCyCs C1C3C4C5

Z3 Z4 + Zg
+ =
C,C,C4Cs C€,C,C3C5 €,C,C5Cy4

0 (3.32)
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This yields the polynomial expression for a quinary system:

s (1-2z) 4 5 (1-z -2z;)
o + o ' o’ |3 = +
2z, ¢=1j=§+1 Ci C;
4 5 6 (1-z -z;,-2) 5.z
i=] j=i+l k=i+2 i &j ok =1 TI C;
j#i

3.3.2 Reduction to Quaternary System

Before proceeding to develop the equations for six- and seven-component sys-

tems, we must ensure that the quinary equation will reduce to that of a quatemary

system under the proper conditions. This is accomplished by setting z5 equal to

zero and K5 equal to one (Warren, 1991).

When z5 becomes zero, so must x5 and ys. This would seem to leave K¢

undefined:

= —g— = undefined (3.34)

We can remove this difficulty by the application of 1’'Hospital’s Rule. The expres-

sion becomes:
@s
dys 1
im K¢ = —— = — =1 3.35
o 5 T Tax, 3.33)
ys—0 dxs

Therefore, Cs=Ks-1=1-1=0.
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5
To avoid division by zero, multiply Equation (3.32) by J] C; :

i=1

a*C,C,C3C4Cs+
a3[(l—zl)C2C3C4C5+(1—22)C1C3C4C5+(1—23)C1C2C465+
(1-29)C,C,C4 c5+(1-z5)c1czc3c4]+
az[(1—21—27)C3C4C5+(1—zl—z3)C2C4C5+(1—21-24)C2C3C5
+(1-2;-25)CC3C4+(1-27-23)C1C4Cs5+(1~27~29)C,C5Cs+
(1-27-25)C1C3C4+(1-23-2)C,C,Cs5+(1=23-25)C;C,Cy+

(1-24-25)C, C2C3]+
a[zlcl(C2+C3+C4+C5)+22C2(C1+C3+C4+C5)+
23C3(C1+Cy+C4+C5)+24Cy(C;+C,+C3+Cs) +

25C5(C1+C2+C3+C4)]+Z] C1+22C2+Z3C3+Z4C4+25C5=0
(3.36)

Let z5 and C5 equal zero:

o C;C,C3C 4+

a2[(1-zl)C2C3C4+(1—22)C1C3C4+(1—23)C1C2C4+
(1-129Cy c2c3]+

a[zIC,(C2+C3+C4)+22C2(C1+C3+C4)+z3C3(C,+C2+C4)+

Z4C4(C1+C2+C3)+ZlC1+12C2+Z3C3+Z4C4=0 (337)
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This is identical to Equation (3.21) in Warren’s work, which is the expanded form
of the quaternary equation. We can now safely derive the expressions for six- and

seven-component systems.

3.3.3 Senary System

(1-2z2) 5 6 (-2z;-2,)
5 4 ' 3 s J
a+a[2 C_]+a[z§_‘,————-cicj ]+

i=1 ' i=1 j=i+l

4 5 6 (l-z -2 ~2)
a2[2 > X C;CJ-}C,‘ k]+

i=l j=i+l k=i+2

3 4 5 6 (l-Z"-Zj—Zk“Zl) 6 Z; 3.38
@Y X ¥ X C.C G G > (3.38)

6
i=1 j=i+l k=i+2 [=i+3 I-I
*

3.3.4 Septenary System

(1-2z2) 6 1 (-2 -1z
at + o ']+a‘[ ——‘-——’-—]4—
[Z C, XX ¢

i=]

s 6 1 (l-z -2 ~-2)
3 ! J
@[t £ F L],

4 S 6 1 (1-z-2z;-2,-2)
R R 2

i=] j=i+) k=i+2 l1=id3

alY X X X )) CngCkCl_cm

i=l j=i4l k=42 [=i43 m=ivd

[3 4 5 6 7 (l—z,--zj-z,‘—z,—,,,)]

z.
=0 (3.39)

:
.

:
e
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3.4 Formulation of a Generalized Equation for the Vapor Fraction

The objective function can be recast in the following form:

N N
2z CGJIIA+aCj)=0, where C;, C; = constant (3.40)

i=1 j#i
Equation (3.40) is in the form of the generating function for the elementary sym-

metric functions, a,:

ﬁ (1+tx)= f‘, 1" a, (x;) (3.41)
r=0

i=1

According to Macdonald (1979), ag(x;) = 1 and @, (x;) =0 for all » > n.

We can now express the objective function in terms of the r-th elementary sym-

metric function in C; :

N N N N-1 a
Z Z; Ci n (1 + O Cj) = Z Z; C" z (Vi a,(C],..., Ci""' CN) =0 (342)
i=1 j#i i=] r=0

where C; indicates the exclusion of the i-th term from the operation.

Since o does not involve i, we can invert the order of the summations:

N-1 N A
E o Z Z; C" a, (Cl""’ Ci geeey CN) =0 (343)
r=0

i=l

A working definition of the elementary symmetric function a, could be "tak-

ing permutations of the elements of a set r terms at a time.” For example,

al(Cl. Cz,..., CN) = (Cl + C2 + -+ CN) (3.44)
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C -1 C —l,... CcvH = ; + e o — 4
02( 1 » %2 y UN ) = CICZ 31:3 C . ,:N (3.45)

The condition C‘,- is equivalent to the j#i condition imposed on the summa-
tion terms in the earlier versions of the a-polynomial and herein lies the computa-
tional awkwardness. We want to find an expression that allows the summation to
proceed over all N components, which is an operation readily represented by a
DO-loop in computer programming.

To eliminate C;, we must expand the symmetric function. In Chapter 4, we

will tackle this problem after a discussion of symmetric functions.




Chapter 4

DEVELOPMENT OF THE GENERALIZED EQUATION

In this chapter, we shall present a brief introduction to the theory of symmetric
functions to show why they provide such a powerful tool to express permutations.
Then we will show the reasoning used in the search for a recursive expression for a
in terms of N, C; and z; . Finally, we will present a generalized multicomponent
equation for the vapor fraction, a, that is compact and readily programmed on a

computer.

4.1 Introduction to Symmetric Functions

4.1.1 Notation and Definitions of Partitions

Any collection of v non-negative integers (excluding zero) whose sum is w is
called a v-partition of w. The individual integers are referred to as parts of the par-

tition and are conventionally written in descending order of magnitude.

David et al. (1966) state that if there are A distinct parts, say py, ps,..., P
with p1>p>p3> - - - >py 21 and if p; is repeated &; times, with i =1, 2,..., A,

then the partition is written (pr ’p;‘ .. .p:‘). The weight, w, of the partition is

written as

A
w = Ep,-n,- (41)
i=1
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and the number of parts, or length, is

A
Vv = 2 R; (42)
i=1
Macdonald (1979) refers to n; as the multiplicity of i in the partition. For example,
the partition (42213) has weight 13, 6 parts and 3 distinct parts. In our notation,

pp=4and ®; =2, p,=2and N, =1; p3=1land w3 =3

4.1.2 Symmetric Functions

A symmetric function is one in which the individual parts can be interchanged

without altering the value of the function, such as

X; = X3+x3+x3+ - +1x, 4.3)
i 1 2

The number, n, of the quantities x does not affect the relationships between the
various forms of the symmetric functions, but does appear in the final expressions.
David et al. (1966) write

i x; =(1), i x =(r) and i‘, x/xi=(rs), forr #s 4.4)

i=1 i=1 iz
This leads directly to the definitions of two special forms of symmetric functions.
MacMahon (1920) defines the unitary or a-functions as
n

g =(1")= %Y x.x,r=12 - 4.5)

i1<...<i'

and the power sums, or s-functions, as

s, =) =YXx,r=12, .- (4.6)
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A special case of the a-function is the augmented unitary symmetric function, u,

(David et al., 1966):
u, = [1"] =r(1") = rla, = T x,.% , @.7)

summed over all ordered sets iy, . . ., i,.

4.1.3 Recursive Expressions for Symmetric Functions

4.1.3.1 Interexpressibility Tables

Roe (1918) compiled comprehensive interexpressibility tables relating the vari-
ous classes of symmetric functions to one another. These consist of a matrix of
coefficients to be used in a polynomial which might yield, for example, u, = f (s,).
Of interest to this work is her relationship between the a-functions (often called ele-
mentary functions) and the s-functions; it is presented here in a form more clearly

expressed by David et al. (1966):

1 A (=1 +m) s;:‘...sp’:‘
SETT z 2 ml.m! m o= “-8)
: m=1 P R1TAT Dy

David et al. (1966) also used this equation to construct interexpressibility
tables describing polynomials in power-sum series (s) for a-functions up to and
including weights of 12. For instance, a unitary symmetric function of weight 3

would be represented by the following polynomial from their Table 1.5.3:

a= Ly 300+ 23] 4.9)
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which, in terms of s-functions, is:

1

)

[s% -352s1+2s3] (4.10)

and, when written as power sums, becomes:

n 3 n n n
a3=%[ [E I"] - 32 Xiz ZI" + 22 X?} (411)

i=1 i=1 i=1 i=1

However, neither Equation (4.8) nor Equation (4.11) is conducive to solution by

computer without a tremendous table look-up effort.

4.1.3.2 Determinant Form

Fortunately, David et al. (1966) present another relationship between a, and

s, in determinant form:

51 1 0 0 0
s, s 2 0 0
s3 S s 3 0
1 3 %2 91 det M
a = r—!u, = r—!det Se 53 Sy Sy ol = —r—'— 4.12)
r-1
Sr Sr-1 5,2 S,3 7 Sy

This provides a practical method of calculating a, that is also readily programm-

able on a computer.
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4.2 Search for a Recursive Expression for the Vapor Fraction

Armed with a working knowledge of symmetric functions, we can manipulate

the a equation developed in Chapter 3:

N-1 N ~
E o { Z Z; C" a,(Cl,..., C",..., CN)} =0 (343)
r=0

i=1
to eliminate the exclusion term C; and expand the symmetric functions into a more

recognizable form. We will examine the results for several values of r and use

them to write a general expression for a as a function of N.

4.2.1 CaseI: r =N-2

Equation (3.43) yields the following coefficient for a:

N -
a‘”“z) { Z Z; C,- aN_z(Cl,..., C",..., CN)} (4.13)

i=1

We can expand the symmetric function ay_, as shown in Equation (4.14). Since

the exclusion of C; from the product on the RHS gives (¥ -1) terms, we must sub-

tract CL from the sum to yield (N-2):
i

A A 1 1 1 1
aN_z(Cl,..., C‘-,.... CN) = (CIC,CN)['C—I + Fz- + o+ a - C—l (4.14)

To eliminate C; , we can write the product on the RHS of Equation (4.14) as

. C.C
(CyCi+Cy) = .(_.._I.C_N)_ (4.15)

This maneuver will allow the summation to proceed over all N components.
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After substituting Equation (4.15) into Equation (4.14), we have:

(C1~Cy)
&

1 1+...+__1__L} @16

aN-2(Clv--’ Civens CN) = Cl + C2 Cy C,'

Substituting Equation (4.16) into Equation (4.13), cancelling C; , multiplying by z; ,

and then summing over i gives:

i=

N N .
a2 (CyCy) [Z z‘.][_l_+_l.+ ”"1_']"2 L 4.17)
1

N N
We recall that ¥ z; = 1 and recognize that (C,Cy) = [] C. Noting the pres-
i=1 k=1

. .. 1 1 .
ence of an elementary symmetric function in [E— + o+ E—], we can write
1 N

Equation (4.17) as:

a(N _2)

Tcdla, 14, L] -5 & (4.18)
k=1 Cy Cv| ;

4.2.2 CaseII: r =N-3

Equation (3.43) now becomes:

N -
a(N—”{ z Z; C" ay_3 (Cl""’ C" gony CN )} (4-19)

i=1
We can expand the symmetric function ay_3 as shown in Equation (4.20). We

eliminate C"i in the same manner as in Equation (4.15) and remove zl- in a similar
i

fashion. But this also deletes the term —Clz— which is necessary to cancel the
i
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corresponding term in the product. Therefore, we must compensate by adding L:

C?
" (C1Cy) 1 1
aN_3(C1,..., C",..., CN) = C‘. C1C2 + CICB +
1 11 1 1 i
+ ——— e | —— e — ]| — 420)

Substituting Equation (4.20) into Equation (4.19) and making consolidations similar

to the previous development yields:

N N 2z N 2z
(N-3) i SR U I I S U RN i
04 [H Ck] az[cl gooes CN] al[cl geoey CN Z . + Z ;

k=1

(4.21)

423Caselll: r=90

We have saved consideration of this case for last because the properties of a,
are not readily apparent. It would seem reasonable to interpret a((Cy,..., ¢ iveees CN)
as meaning "taking permutations of the elements of a set zero terms at a time."
However, when r = 0, " —1 and we know from previous developments that our
o-polynomial does have a constant term. Therefore, ay(C;,..., (:‘,-,..., Cy) must

equal one, after Macdonald (1979). So, for r = 0, Equation (3.44) becomes:

N
{Zq@} (4.24)
i=1
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We show Equation (4.18) and Equation (4.21) again to look for patterns that may

assist us in writing the expression for the (N —p)-th term:

N=2) _1._ _l._ - N _{.‘_ 4.1
o o CN] ) C, (4.18)

N
IT Cifja,
k=1

i=

[

N N 2z N Z:

(N-3) 1 1 1 1 i i
a I I C,.llay| —,..., —| —a|—,.... — 2: —_ 4 Z —_—
L=1 k} 2[C1 CN] l[cl Cv)a G S c?

4.21)
4.2.4 The General Case: r=N-p),p=1,2,..,N
After substituting for r, Equation (3.43) becomes:
N N R
Y a¥P) Y 2 Cay,(Crons Civs Cy)t = 0 (4.23)
p=1 i=1

By continuing the expansion of this equation in the same fashion as in the first two
cases, we note a descending order of the symmetric function and an ascending

exponent of C; with each additional term. This leads to a general expression:

N N ' 1 \
3 a1 T 4 CrCn)|gpaCit e G -
p=1 i=1

Cila, oCit s CFYD + €72, 3(C11 e C§Y) = €30, 4(CT1 .., O

+ - 2CP Vg CTL,. CFY) £GP =0 (4.24)
1




N
Multiply by z; , sum i from 1 to N and recall that (CCy) =] Ci:
k=1

N Z:
-ne-b ! =
=D 2 c.(p-l)]} =0 (4.25)

N
Since JT C, does not involve p, we can move this term outside the summa-
k=1

tion sign and then divide it out as a factor common to all powers of a. By examin-
ing the relationship between p, the subscripts of a and the superscripts of C; , we

can collapse Equation (4.25) into a more compact form:

N , N g

Yy a®-?) f -1y* (@, )Y S lt=0 (4.26)

p=1 j=1 s1 ¢!

where a,_; = a,_;(C{',..,Cy") (4.27)
apg = 1 (428)

C" = (Kl )T.P- 1 (4.29)
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4.3 A Generalized Multicomponent Equation for the Vapor Fraction

Using the determinant expression for the elementary symmetric functions that was

presented in 4.1.3.2, Equation (4.27) becomes:

det M

ap_j = ap°j( Ci”l s cery Cﬁl )= (p_])' (430)
The matrix M has dimensions (p—j) X (p~j) and elements given by:
S+ ifl <k
[myl =1k if ] =k+1 4.31)
0 ifl >k+1
N 1 A
The s clements are given by 53 = Y, ek A=12,..,@-j) (4.32)
i=1 i




Chapter 5

VALIDATION OF THE GENERALIZED EQUATION

The first test of validity for Equation (4.26) requires that it be equivalent to the
form of the objective functon presented in Equation (3.40). Second, it must gen-
erate the same coefficients for the @ polynomial that were produced through the
expansion of the objective function in Equation (3.25) through Equation (3.32).
Third, the equation must predict the proper vapor fraction for a fluid undergoing an

isothermal, isobaric flash process.

The first test is supplied by a mathematical proof in Appendix A. The second
test can be accomplished by comparing the coefficients produced by Equation (4.26)
with those of Equation (3.33). Since this equation has already been shown to
reduce to that for a quaternary system under the proper constraints on z5 and K5,
then, by induction, we can state that the polynomial produced by Equation (4.26)

will do the same and therefore should be valid for any number of components.

The third test will be satisfied by comparing the equilibrium ratios generated
by Equation (4.26) with experimental values determined for several multicomponent

hydrocarbon fluids.

5.1 The Generalized a Equation for a Quinary System

For a five-component system, Equation (4.26) becomes:

| s g
fs_‘, a®r) { f‘, [(—1)’*1 a,_; 2 E%]} =0 (5.1

p=l j=1 i=1




which will yield a quartic polynomial in a:
4 3 2 =
HaQ® + P + Ho0” + & + o = 0

5.1.1 Coefficient p, (p = 1)

.1.14=00(C"-“)[21 4'22+Z3+24+Z5]
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(5.2)

(5.3)

We have already said that ao(C,-"l) is defined as one and the sum of the mole frac-

tions also equals one, so Equation (5.3) yields:

He=1

5.1.2 Coefficient u. (p = 2)

1 5 1 5 Zl'
H3=a1(C7) X 2z —~agCi) Y =
i1 a1 G

1 1 1 1 1
= + + + + 1) -
& [Cl C2 C3 Cq Cs ]()

Z, 22 23 Z4 Zg
1 + + +
( )[ c,'c, ", T T, }

1-2 1-2 1-z2 1-2 1-2
1+ 2+ 3+ 4+ 5

W3 =—¢] C, c, C. C,

5.4)

(5.5)

(5.6)

(5.7
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§.1.3 Coefficient i, (p = 3)

-1 5 21 5 Z" -1 5 Zi
Wp=ay(C7) Tz —ayC7) X - +alCi) X —3 (-8
i=1 i=1 Ci i=1 G
1 1 1 1 1 1 1 1
= + + + + + +
M2= | CC, T CiCs T CiCs T C1Cs T CoCs T CaCa « C3Cs & CaCq
1 1 1 1 1 1 1 2! 22 z3
+ + - + + + + + + —
C:Cs T CuCs ]” [cl .'G T 65] ¢, "G
Z4 Zs Z, Zy 23 24 Zg
+ =+ —| + (1) + + + + 5.9
Cq Cs] ct c} ¢} ci? c}]

By = UMD SENSAR TF I S S W S
25 C1C; CiCs  CiCa <CiCs CaC3  Cofs CiCs  CsCq
1, 1 %412 23 24 25 nn+2p 1 +23

CiCs Cs CcE Cc} ¢} ¢} c¥ GG (G

Zy+ 24 Z1+ 24 27+ 24 27+ 2,4 Zy+ 24 23+ 24 23+ 25

C.Cs C,Cs C,€3; C,Cs C,Cs CiCsy CoCs

Z4+25 Zl 7.2 23 24 25
+ + + + (5.10)
CLs CcE ¢} ¢} c} c?

1—21-22 1-21—23 1-’21—24 1—21—25 1-22—23
C\Ca C1Cs CiCq C\Cs CyCs

1—-24-12 1-24-2 1-2,-2 1-2,-2 1-2,-2
2 4+ 215 3 4 3 5 4 '5 (5.11)
CCy C.Cs CiC, CiCs C4Cs
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5.1.4 Coefficient yu, (p = 4)

ul-a3(C )ZZ -a2(C 1)2 C +a1(C l)z —.—-aO(C‘l)E (512)

i= 1 C2 c3

1 1 1 1 1
= + + + + +
H [ C1CoCs L C,C:Cs  C1€CoCs  CiC:Ca T C1CCs

1 1 1 1 1
+ + + + 1) -
C,CiCs  CaC3Cq  C2C1Cs  CoCaCs  CaC4Cs ]( )

<+

1 1 1 1 1 1 1 1
+ + + + + + +
[ Ci.C, C;C; C,Cs CiCs CaC3 CyCs Cofs  CsCq

1 1 2, 22 23 24 Zs
+ + + + + +

1 1 1 1 1 21 22 23 24 25
bt —+—+ + + + + -
[ ¢, € C3 C4 Cs ] [ ct c? ¢} c} c? ]

z z z z
1y = 2SS4+ (5.13)
c} i Cz Cy C; C;
z
It is evident that the c 2‘C terms in the second part of Equation (5.13) will cancel
i

2
those in the third part, while the -C—'i- terms in the third part will negate the entire

fourth part of the equation. The first and second parts yield:

1-21-22—23 1—21-‘22-24 1-21-22'-25 1-21—23-24

= + + +
H C,CoC, C,CoCa C.CoCs C,C+Ca




50

1-2y-23-24 1-21—24-25+l-22—z3—z4+1—22—23—25
+
C,C5Cs C,C4Cs C,C4Cy C,CiCs

+

1-2y-24-25 1=-23-24-125

+ (5.14)
C,.CoCs C:CoCs
5.1.5 Coefficient p, (p = §)
B 1 o e g
Ho=aaCiN) Xz -ax(C) X = +axC7) X —5 -
i=1 =21 Gi i=1 G
€ 3 5 + a7 3 (5.15)
a i —< tapll; Y .
TS c? facd

The analogous cancellations of the higher-order CL terms will occur, leaving a
i

sum of five terms having the form

l-z,-2; -z - g
C C; G C (3.16)

Since the mole fractions must sum to one, we can replace the numerator of Equa-
tion (5.16) with the mole fraction of the remaining component, z,, , to yield:
2 Z2 23

= +
Ho C,C3CCs ¥ C1C3CCs ¥ C1CL4Cs

24 + Zg
C1C,C+Cs | C1CoC+Ca

(5.17)

A term-by-term comparison with Equation (3.32) shows that the generalized a poly-

nomial [T -;aation (4.26)] produces identical results.
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5.2 Reproduction of Experimental Vapor-Liquid Equilibrium Data

5.2.1 Flash Calculation Package

The flash calculation package used in this work incorporates the K-value equa-
tion of Wilson (1969) and the modified PREOS proposed by Stryjek and Vera
(1986a). An attempt was made to use the K-value prediction of Varotsis (1989)
but, as noted in Chapter 2, it was developed to characterize a broad-spectrum
petroleum reservoir condensate or crude oil. It experiences difficulty handling an
arbitrary hydrocarbon mixture, such as the artificial systems for which equilibrium

data is available to validate this work.

The volume correction of Mathias et al. (1989) and the complementary calcu-
lation of Schick and Prausnitz (1968) for mixture pseudo-critical volume are incor-
porated into the PRSV EOS but since it is only required to generate compressibility
factors and fugacities, the modifications have no noticeable effect on the computa-
tions. The PRSV EOS shows marked improvement over the PREOS when used to
duplicate bubblepoint and dewpoint studies performed by Warren (1991).

The binary interaction coefficients used in the PRSV EOS are taken from
Knapp et al. (1982) and Walas (1985). Physical property data and equation param-
eters for the chemical components are extracted from Stryjek and Vera (1986b,c),

Kumar (1987, and Proust and Vera (1989).

The computation of the determinant used to generate the elementary symmetric
functions is accomplished with a modified Gaussian elimination routine. The first
elementary symmetric function, a,, is defined by a [1x1] matrix, whose deter-

minant constitutes the element itself. By definition, ag is set equal to one.
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The polynomial is evaluated at the bubblepoint line (o = 0) and an interval-
halving technique is used to march across the two-phase region until the value of
the polynomial changes sign, indicating the vicinity of the root. Then a Newton-

Raphson iterative search is conducted to converge to the exact value of a.

5.2.2 Binary System

The fugacity-based flash algorithm is used to replicate the equilibrium ratios
determined by Bloomer et al. (1953) for a methane-ethane system at a temperature
of —60 °F over a pressure range of 100-900 psia. Comparisons of calculated and

empirical values of K¢y, and K¢y, appear in Figure 5.1 and 5.2, respectively. The

results lie within the margin of error attributable to the PRSV EOS.

5.2.3 Septenary System

Standing (1977) provides a sample flash calculation for a seven-component
hydrocarbon system reported by Dodson and Standing (1941), complete with values
for experimental X; and the vapor fraction. This sort of data allows the calculation
of o solely on the basis of computing the coefficients of the a-polynomial and
determining the applicable root, with no recourse to the equation of state. Once the
interval-halving search provides an initial estimate of the root, the Newton-Raphson
technique converges in three iterations to a value of a identical to that calculated by

Standing.
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5.2.4 Predicting Roots with the Fourier-Budan Theorem

A useful theorem for predicting the number of roots of a polynomial that can
occur on a particular interval is that of Fourier and Budan (Barbeau, 1989). Sup-
pose p(t) is a polynomial over the field of real numbers, R, and that u and v are real
numbers with u <v and p(u)p(v) #0. The number of zeros between u and v
cannot be greater than A — B, where A is the number of changes of sign in the
sequence { pu), p'W), p”W), ... p™(u) } and B is the number of changes of
sign in the sequence { p(v), p’v), p”(v), ... pP™™(v) }. If this number differs

from A - B, it must do so by an even amount.

An interesting aspect of the polynomial expression for the vapor fraction is its
capability to mathematically confirm the existence of a unique value within the
two-phase region for a particular set of feed conditions. This is equivalent to stat-
ing that the polynomial has only one zero on the interval 0 £ o < 1. From the phy-
sics of the problem, we know this to be true but, by the use of the Fourier-Budan

theorem, we can also prove it rigorously.

Let us test this theorem on the septenary system of Standing (1977) utilized in

5.2.3; this is represented by a sixth-order polynomial:

HeO + psd + Pt + P30 + a2 + o+ g =0 (5.18)
where
Ho=  -9.58519 ;=  87.24949
py = 6590501 up,= -21.71701
M= -12072959 pg=  -1.76522

He = 1.00000
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We can differentiate Equation (5.18) six times and form the derivative sequences

for u=0and v = 1. The sign changes are summarized in Table 5.1.

Table 5.1 - Derivative Series of Fourier-Budan Theorem:
7-Component Hydrocarbon System (Standing, 1977)

u=0 v=l
f (@) - +
[ + -
(@) - +
7 + +
ARCY - -
PG - -
O + +

A=5 B =4
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Since A — B =1, there exists only a single root of the polynomial on the
interval [0,1]; an examination of the graph of the function (Figure 5.3) confirms this
fact. Therefore, we can use the interval-halving and Newton-Raphson solution pro-
cedures outlined at the beginning of this chapter with confidence that they will

obtain a unique, realistic value of the vapor fraction.

5.2.5 Decenary System

Gregory et al. (1971) performed equilibrium measurements on a lean natural
gas at cryogenic conditions. It is reported as a ten-component system with the feed
composition shown in Table 5.2. This is a very "sparse” ten-component gas, with
six components present in extremely dilute concentrations. The K-values for the
last four constituents were zero for eleven of the sixteen operating conditions tested
in this work, denoted in Table 5.3 by the run number assigned by the investigators.
The remaining twelve sets of published data duplicate conditions in one of the
tested runs or are incomplete due to apparatus failure. The use of the Fourier-
Budan theorem provides warning that perhaps this gas would be better represented

by an equivalent "lumped" system.

Recall that the number of roots predicted by the Fourier-Budan theorem is the
maximum possible and may differ from the true value by only an even integer.
This is demonstrated in Table 5.4, where both the predicted and actual number of
roots for each run are tabulated. The Newton-Raphson technique converges to the
experimental value for ten of the sixteen runs. Three other data points follow the

proper trend, while no root is found on the interval [0,1] for three other conditions

(Figure 5.4).
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Table 5.2 - Feed Composition:
10-Component Natural Gas
(Gregory et al., 1971)

Component 2 Component Z;
w————__——_ %
Nitrogen 0.00600 n-Butane 0.00070
Methane 0.95970 i-Pentane 0.00030

Ethane 0.03000 n-Pentane 0.00010

Propane 0.00390 | 3-Methylpentane | 0.00025

i-Butane 0.00070 | 2-Methylhexane | 0.00015




Table 5.3 - Experimental Flash Conditions:
10-Component Natural Gas
(Gregory et al., 1971)

Run Pg:;s:)re Temgcfr)ature Run Pr(;ﬁ:)rc Temg’%r)ature

1 300.0 -156.3 14 100.0 -200.0

3 100.0 -206.0 15 500.6 -127.0

4 700.0 -103.0 18 23.0 -252.0

7 500.0 -125.0 20 497.0 -129.0

8 498.5 -120.0 21 235 -251.5

9 695.0 -105.0 25 700.0 -107.0

10 100.0 -203.3 26 298.0 -157.5
12 100.0 -195.0 28 500.0 -130.0
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Table 5.4 - Results of the a-Polynomial and Fourier-Budan Theorem:
10-Component Natural Gas

(Gregory et al., 1971)

Roots on [0,1]
Run | Root Limit g;l‘:;};’;;
(Actual) ;
Iterations Initial Guess | Calculated | Experimental

1 2 3 0.605 0.603 0.603
3 0.825 0.822 0.603
3 2 (0) * SHBES L R Ll 0.155
4 2 (0) *® shhEw hhkwk 0'911
7 3 4 0.775 0.772 0.761
8 1 3 0.905 0.904 0.908
9 2 (0) * T ITT Ty 0.795
10 4 (2) 4 0.695 0.692 0.687
4 0.915 0.912 0.687
12 2 4 0.895 0.891 0.890
5 0.965 0.966 0.890
14 3 4 0.835 0.830 0.830
15 2 3 0.735 0.737 0.747
3 0.845 0.843 0.747
18 4 (2) 3 0.045 0.044 0.109
3 0.415 0.415 0.109
20 4 (2) 3 0.585 0.587 0.591
3 0.775 0.773 0.591
21 2 4 0.015 0.011 0.078
) 3 0.645 0.642 0.078
25 1 3 0.385 0.380 0.548
26 5() 3 0.435 0.434 0.430
28 3 4 0.485 0.480 - 0.486
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Figure 54: A Comparison of Predicted and Experimental Vapor Fractions for a
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An examination of graphs of the polynomial’s behavior over a range of o for
Runs 3 and 4 (Figures 5.5 and 5.6) confirms the algorithm’s prediction that no roots
exist within the phase envelope. The case of Run 9 is not so obvious. Its graph
(Figure 5.7) shows that the function exists entirely above the abscissa; hence no
root is possible. However, if the resolution of the graph is increased to examine the
region very near the axis, two local minima are revealed (Figure 5.8). One of these
corresponds to the experimental value of & determined for this run. The polyno-
mial is attempting to represent the system’s behavior but is not completely success-
ful because the low concentration of certain components effectively prevents the gas
from acting like a decenary system.

It is instructive to compare the form of the a-polynomial with that of the
Rachford-Rice objective function which is superimposad on Figure 5.7. The same
high-resolution scan of the graph of the latter equation depicts no equivalent max-

ima which might identify the vapor fraction in the manner of the polynomial.

5.2.6 Lumping a Decenary System into a Quaternary System

The a-polynomial successfully converges to the proper answer for a majority
of the runs; however, it also yields multiple roots where the physics of the problem
allows only one. This suggests that the system is not being properly modeled. The
categorization of the fluid as a ten-component natural gas is overly generous in light
of the fact that six of its chemical constituents are present in mole fractions meas-
ured in the ten-thousandths. It was decided to rcpresent this sparse gas as a four-

component lumped system, consisting of methane, ethane, nitrogen and propane.

The mole fractions of this new fluid are normalized and the resulting cubic

polynomial in a is solved. The Fourier-Budan theorem predicts a maximum of one
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root in the two-phase region, to which all sixteen runs converge. The numbers
tabulated in Table 5.5 and displayed graphically in Figure 5.9 attest to the validity
of this lumping scheme. An attempt was made to eliminate the next leanest
component--propane--from the mixture and model the system as a ternary, but this

resulted in spurious roots for all data runs and was hence rejected as unrealistic.
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Table 5.5 - Results of the a-Polynomial and Fourier-Budan Theorem:
"Lumped" 4-Component Natural Gas

(Gregory et al., 1971)

Run ?Aogttuall).-inﬁt gae ;;::c?n Roots on [0,1]
Tierations Initial Guess | Calculated | Experimental
1 1 3 0.635 0.631 0.603
3 1 3 0.035 0.038 0.155
4 1 3 0.995 0.998 v 911
7 1 3 0.815 0.819 0.761
8 1 3 0.935 0.932 0.908
9 1 3 0.925 0.920 0.795
10 1 3 0.715 0.711 0.687
12 1 3 0.895 0.899 0.890
14 1 3 0.845 0.842 0.830
15 1 3 0.765 0.770 0.747
18 1 3 0.035 0.037 0.109
20 1 3 0.635 0.631 0.591
21 1 3 0.015 0.012 0.078
25 1 3 0.775 0.779 0.548
26 1 3 0.475 0.473 0.430
28 1 3 0.535 0.536 0.486




70

! T
o O
08 — ® —
°
T" (]
el
& °
E
t ™
o 06—
2. s —
% °
e
= °
© °
© 04— —
[+
t &
(=]
o
<
>
0.2 |— |
®
™
o
; 1 | | I
0 0.8 1

02 04 0.6
Vapor Fraction, alpha polynomial

Figure 5.9: A Comparison of Predicted and Experimental Vapor Fractions for a
Lumped 4-Component Natural Gas




Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The Rachford-Rice objective function can be represented as a polynomial in a,
the system vapor fraction. Its coefficients involve elementary symmetric func-
tions, which can be expressed in terms of a determinant whose elements are

functions of equilibrium ratios and feed composition.

The polynomial has been shown to be well-behaved within the two-phase
vapor-liquid region if the system is properly defined in terms of the number of
its components. The vapor fraction root on the interval [0,1] can be quickly
determined using an ordinary interval-halving technique to provide an initial

estimate to the Newton-Raphson iterative method.

The regular behavior of the polynomial lends itself to use as a Jescriptive tool
for the conditions of the system within the phase envelope. The Rachford-
Rice objective function is not capable of this task as evidenced by Figure 5.7,
its unpredictable. singular nature offers no clue to the reason a root was not
found on the interval [0,1] for this case. As discussed earlier, a close exami-
nation of the curve of the polynomial revealed a local minimum at the experi-
mental value of a. This became a realistic root (& < 1) once the system was

lumped into four components.
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4. The theory of polynomials is well-developed and their behavior and zeros can
be predicted with good confidence. By the use of the Fourier-Budan theorem,
it can be shown mathematically that only one real root for the a-polynomial
can exist on the interval [0,1] for a well-defined system. This eliminates the

need to solve for all the roots of an N-th order polynomial.

5. The Fourier-Budan theorem can be used as a tool for investigating various
lumping schemes whereby multicomponent fluids are condensed to equivalent
systems composed of fewer components. The phase behavior of sparse fluids
having dilute concentrations of several constituents does not seem to be well-
described by the polynomial of degree appropriate to the number of com-
ponents. In this case, the polynomial yields no roots or at least two roots
inside the phase envelope for certain temperature and pressure conditions. It
appears that a lumping scheme can be tuned by generating pseudocomponents
to give successive polynomials of lower degree until only one root is deter-

mined on the interval 0 £ o £ 1.

6.2 Recommendations

1. Further study should focus on coupling the polynomial algorithm to an equa-
tion of state and extending this work to flash calculations involving more than

two phases.

2. Timing studies could be conducted to determine the exact savings in CPU time
realized by the use of the polynomial instead of the Rachford-Rice objective

function.
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Peng et al. (1975) estimate that 75% of the total computing time in composi-
tional reservoir simulation may be related to the phase-behavior part of the
program. The savings in computational workload realized by the use of the
generalized equation developed in this work might be applied to the employ-
ment of an EOS better able to predict fluid thermodynamic properties. The
highly nonlinear nature of the equations proposed by Benedict, Webb and
Rubin (1940, 1942, 1951) or Lee and Kessler (1975) require iterative solutions
but they yield much more accurate representations of fluid behavior, espe-

cially of nonhydrocarbon systems.

Since the coefficients of the generalized polynomial depend only on the feed
composition and equilibrium ratios, research should continue to develop highly
accurate K-value prediction methods (e.g., on the basis of convergence pres-
sure). If this can be done with sufficient accuracy, the fugacity-convergence
approach and its inherent dependence on an equation of state can be sup-
planted for flash calculations where nothing more than the phase split and
compositions are required. The polynomial algorithm can be solved on a pro-
grammable scientific calculator and would provide the engineer with a valuable
predictive tool in situations where he or she has no access to a computer capa-

ble of running an EOS-based flash routine.
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Appendix A
MATHEMATICAL PROOF OF THE GENERALIZED EQUATION
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KNOWN:

N N N N-p) N N

Z 2; C,‘ n (l+a Cj) = E av P Z Z; Ci aN—p (Cl,..., C,‘,..., CN) (A-1)
i=i J# p=l i=1

POSTULATE:

N N N N-p) N i+l N Z;
SuCIla+ac)= T a¥P G L |V 6T | (A2
i=1 j i=l Yy

J# p=l k=1 Jj=1

3 o) 3 z,.ci{ll'v] a$ [(—1)!’+l fc’%} }(A-3)
k=1

p=1 i=1 j=1 i

Prove that the coefficients of o in Equation (A-1) and Equation (A-3) are

equivalent:

A N . —j
{aN_p (Cl’"" Ci yoroy CN)} = {kl—ll Ck ['il (“1)"+1 %L]} (A-4)

PROOF:

We can express the ag-function as:

N
fie
A =1 - 2 - -
ay_pC e Cirs ) = =5 8p1(Ci LG Chh  (A-S)
N ]
IT Ci
where k=l represents (N-1) terms: N-p = (N-1) - (p-1)

i
Eliminate the C“,-"1 term in the RHS of Equation (A-5) by rewriting the a-function
as:

8y €t v €71 CFY = €T O - Cil a, o(Ci . CNL1)(A6)
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8y o CTt s €7is CFY = @, o€ CFY = €71 5(CiY ey CRY AT

cit,...Gh..,cyh = cil,..,cyh - ¢! Cil.... Cvl )(A-8
ap_3( 1 e & aeess N) ap_3( 1 seees N) i ap_4( 1 seees N-l)( )
@ p-1)Cit o ¢, oy = @p(p-(Ci' s CFY) =

CeDaycCil,.... Cyly) (A-9)

Recall that ap = 1 and then substitute Equations (A-7), (A-8),..., (A-9) into Equation
(A-6):

8y (C7 s €y OFY) = @) (€T, O = €7V o(CiY e CRD
+ Cla, 5(Cit e CFY) = € a, (€ O +

o2 G0 Da, (€L O £ €7D (A-10)

«iter writing the recursive form for the RHS of Equation (A-10), the equation

becomes:
a4, (Cit s G G = 5:1 1y ¢ g, (A-11)
J:
Substitute Equation (A-11) into Equation (A-5):
f1c
k
A _ k=l i+l Bp=i )
aN—p (Clv---’ Cl 9y CN) C‘ [,g ( l)’ C‘J_l ] (A 12)
Combine C; terms:
~ N , ap_j
aN_p(Cl,..., C,',..., CN) = 1—[ Ck i ("'1)”‘l C—J (A-13)
k=1 =1 i

Equation (A-13)

Equation (A—4) QE.D.
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ALGORITHM FLOWCHART




START

INPUT:
Number of components
Feed composition
Equilibrium ratios

Subroutine ALPHACOEFF
Calculate coefficients of alpha
polynomial

Subroutine SYMFUNCTION
Calculate elementary symmetric
functions

]

Subroutine BUDAN
Predict number of roots of
polynomial on interval [0,1]
by Fourier-Budan theorem

Subroutine DETERM
Calculate the determinant of the

symmetric function matrix

Subroutine ALPHAROOT
Find the root of the polynomial

Output table with results

Function FACTORIAL

Calculate n!

Subroutine ALPHAPLOT

Generate various plots

sTOP
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Appendix C
COMPUTER CODE
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University Park, Pennsylvania

M.S. thesis
Advisor: Dr. Michael A. Adewumi

1 02 o R 2 o o oo o o e 0o o o oo o o o o o e o o o o o

*

Program ALPHATEST (FORTRAN 77)

0 e a2 o e e o o K 2 02 2 02 a0 o e o o 0 o o o K ok K

I!’Illllli{}l’i‘l**l{i{i*li

VARIABLES:

This program calculates values of the vapor fraction,
given equilibrium ratios, Ki, and feed mole fractions,
i. It can be used to reproduce experimental results of
equilibrium flashes.

ALPHATEST calls ALPHACOEFF, BUDAN, ALPHAPLOT, and

ALPHAROOT

ALPHACOEFF calls subroutine SYMFUNCTION
SYMFUNCTION calls subroutine DETERM and function FACTOR

alpha = calculated system vapor fraction

beta = experimental system liquid fraction
coefficient = coefficient of alpha polynomial
Ki = equilibrium ratio for component i
molefrac = feed mole fraction of component i
Ncomp = numbcr of components in feed
Npress = number of data sets to be evaluated
Pi = system pressure, psia

Ti = system temperatre, F

xalpha = experimental system vapor fraction

It is formatted to input z, temperature, pressure, liquid
mole fraction, and Ki

ke o o200 e a0 o oo oo oo oo oo e oo ool oo 0o o o oo o e e o o o e o oo o o

&+ »

Data Input

IMPLICIT REAL*8(a-h,0~2)
REAL*8 Ki(500,100).molefrac(0:100)
PARAMETER(Npress=16,Ncomp=10)
DIMENSION alpha(500), beta(500), coefficient(0:100),
Pi(500), Ti(500), tarray(2), xalpha(500)

The number of components (Ncomp) and the number of data sets
to be run (Npress) are specified as PARAMETERs®
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* Open and Rewind Input and Output Files

L
*
*

*® * % & »

-

OPEN(unit=1,file="indata’,status="o0ld ")
OPEN(unit=7,file="table’ status="unknown")
OPEN(unit=8,file="plot”,status="unknown")

REWIND(unit=1)
REWIND(unit=7)
REWIND(unit=8)

read(1,*) (molefrac(i), i = 1, Ncomp)
do 1000 j = 1, Npress

read(1,*) Pi(), Ti(j), beta(j)
read(1,*) (Ki(j,i), i = 1, Ncomp)
xalpha(j) = 1.d0 - beta(j)

1000 continue
Choose between single or multiple runs

write(6,*) ‘Evaluate one data set? enter 1°
write(6,*) ‘Evaluate all data sets? enter 2°
read(5,*) numsets

if(numsets .EQ. 1) then
write(6,*) ‘Enter number of data set for this run’
read(5,*) j
go to 2100

end if

do 2000 j = 1, Npress
2100 write(7,*) “ °
write(7,*) * °
write(7,*) ° RUN
write(6,*) J = °, j
write(7,2500) Pi(j),Ti(j),beta(j)
2500 format(Pressure = °f6.1, psia Temperature = °f6.1,” F
@Liquid Mole Fraction = °f6.4)
Call subroutines
Calculate coefficients of polynomial

call ALPHACOEFF(Ncomp,Npress.j,molefrac,Ki,coefficient)

Predict the number of roots on [0,1] by Fourier-Budan theorem




call BUDAN(j.Ncomp,coefficient,numroot)

* *

call ALPHAROOTY(j,Ncomp,coefficient,xalpha,numroot,alpha)

Solve for the roots by Newton—Raphson method
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*
* Generate various plots (EDIT the file to remove comments for specific
* options)
*
call ALPHAPLOT(Ncomp,j,molefrac,alpha,coefficient,Ki)
* ALPHAROOT has intemal output section to compile a table
* listing statistics on the determination of alpha
2000 continue

e 2 2 v e oo o e o 2 o e o e o e 2 a2 ok e a a o e o e o o e ook o e o e 3 afe ol s e ol o ok o sl ool o e e ol o ok o o o o o ok sk o ook
Produce this format to plot data points as dots:

L L I JEE BN BN BE 3K 3K B )

ae e 2 2 2 N o e o b s e o o afe ol ok o o afe ook o e o ok o ol o e e o o afe o ol o ol o ol o o ol ol a0 o ok o ol ol o e ol o e o e o o ok o ok ke ak ook

(PLOTFAT=20)

2
x(1) y(1)
;(1) y(1)

x(2) y(2)
x(2) y(2)
etc.

do 3000 j = 1, Npress

write(8,3500) alpha(j),xalpha(j),alpha(j),xalpha(j)
3500 format("2°/,e16.9,10x,616.9/,16.9,10x,216.9)

3000 continue

CLOSE(unit=1)
CLOSE(unit=7)
CLOSE(unit=8)

stop
end

(2232333112333 L P I i iRl d i34 4l 231117 32122312 2Ty
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M.S. thesis
SUBROUTINE ALPHACOEFF

This subroutine calculates the coefficient for each te:m in
the general polynomial for the vapor fraction, alpha:

P(alpha) = c0 + cl*alpha + c2*alpha**2 + .. +

c(Ncomp-—1)*alpha**(Ncomp-1)
Equation 4.29 in the thesis.

LR BN JEE JEE JEE JEE R R JEE R I BE AR

3 2 2 o 2 2 af e a0 3 2k e 2 e afe 2 2 e o ke ke ok e afe e abe 2 o abe ab o ke ok sk o abe 3 e e sk e s ok e o ake o ok ak o o o 3 ol ok o ok o ok o ok ook o ok ok ook ok

SUBROUTINE ALPHACOEFF(Ncomp,Npress,jj,molefrac,Ki,coefficient)

IMPLICIT REAL*8(a-h,0~2)
REAL*8 Ki(500,100), molefrac(0:100)
INTEGER p

DIMENSION coefficient(0:10C), ¢(100)

OPEN(unit=14,file="coeff",status="unknown")
OPEN(unit=15,file="coeff.plot " status="unknown")

if(Ncomp .LT. 2) then
write(6,*) "You cannot flash this system”
stop

end if

* Calculate Ci = Ki - 1

do 0500 k = 1, Ncomp
ck) = Ki(jk) - 1.d00
0500 continue
*

*

p-loop increments the power of alpha

C write(15,*)Ncomp

do 1000 p = 1, Ncomp
temporary = 0.d00

do 2000 j = 1, p

*

Zero—-order elementary symmetric function, a0[1/Ci], defined as 1

if(p~j .EQ. 0) then
apj = 1.d00
go to 2500
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end if
* Call subroutine to calculate the elementary symmetric
* function, apj

call SYMFUNCTION(Ncomp.,j,p.c.apj)
2500 ratio = 0.d00
do 3000 i = 1, Ncomp
ratio = ratio + molefrac(i)/(c(i)**(j-1))
3000 continue

temporary = temporary + ((—1.d0)**(j+1))*apj*ratio
2000 continue

coefficient(Ncomp-p) = temporary

C write(14,*)"Coefficient(",Ncomp-p,) = °,coefficient(Ncomp—p)
C write(15,*)Ncomp—p,coefficient(Ncomp-p)
1000 continue
return
end

2 2 s o e o o e ol o ok o ol o ol o ke oo e o ol v e sl g e ade e o e e afe e o ade o e o o e ol bk o e o e ok o o ofe e o e o ok o o o e ok ko ok
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SUBROUTINE SYMFUNCTION
This subroutine calculates the elementary symmetric function

a(p-p{1/Ci}

R ehbehb bbb bbb kbbb h ke bbbk kbbb bk bk kb kb bk bk bk ke ke

L B I I B BN R BE R N BN K EE BE X B EE

SUBROUTINE SYMFUNCTION(Ncomp,j,p.c.apj)
IMPLICIT REAL*8(a-h,0-2)

REAL*8 mmatrix(100,100)

INTEGER factor,p

DIMENSION ¢(100), s(100)
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*

Compute the power—sum series: s = sigma[ (1/Ci)**lambda ]

n=p-]
do 1000 lambda = 1, n
sum = 0.d00

do 2000 i = 1, Ncomp

sum sum + (1.d0/c(i))**lambda
2000 continue
s(lambda) = sum
1000 continue
* Build the matrix MMATRIX

do 3000 k = 1, n

do 40001 =1, n
ifd .LE. k) mmatrix(k,]) = sk-1+1)

ifd .EQ. k+1) mmatrix(k,)) = DFLOAT(k)
if@ .GT. k+1) mmatrix(k,]) = 0.d00
4000 continue
3000 continue
* Since al{1/Ci} forms a [1x1] matrix, its determinant is the
* element itself

if(p—j .EG. 1) then
det = mmatrix(1,1)
go to 5000

end if

*

Compute the determinant of MMATRIX

call DETERM(mmatrix,n,det)

#*

Compute the elementary symmetric function

5000 apj = det/factor(n)

returmn
end

SRR ke bbbk kb k kb h kb hh bk bk k kb hhk kR k®
*

* Function to compute the factorial

(YT IYIT I IR R I R A2 2 T2 2 23233 P2 22 21223ttt it iyt itl)
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FUNCTION factor(n)
INTEGER factor,i,n

factor = 1
ifm .GT. 0) then
do 6000 i = 2n

factor = factor*i
6000 continue
end if
end
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SUBROUTINE DETERM

This program calculates the determinant of an NxN matrix.
First, partial pivoting is performed on a nonsingular matrix by
Gaussian elimination. This produces a triangular matrix whose
determinant can be calculated by computing the product of all
the diagonal entries.

The augmented matrix does not contain the nommal last column
which represents the right-hand side of a system of linear
equations; AUG is the same as the original matrix.

VARIABLES:
N = dimension of matrix
AUG = augmented matrix
IJK = indices

MULT = multiplier used to eliminate an unknown
PIVOT = used to find nonzero diagonal entry

2t o e e 2 ae o a3 o ol o o e o 2o 2 e b e o o afe a0 ae e a2 e age o o o o o e ale e ade oo ol ol ade el e o e ol ol o e ke ol ol ke e ek ok

LA I K K N K K I BN B JNE JE N IR JEE N N R B K K N I SR I IR S )

SUBROUTINE DETERM(aug,n,det)

IMPLICIT REAL*8(a-h,0-z)
REAL*8 mult

INTEGER pivot
DIMENSION aug(100,100)

*

Gaussian elimination




»*

do 7000 i = 1, n

Locate nonzero entry

if(aug(i,i) .EQ. 0) then
pivot = 0
j=1+1

3000 if((pivot .EQ. 0) .AND. (j .LE. n)) then

»*

*

if(aug(j.i) .NE. 0) pivot = j
i=j+1
go to 3000

end if

if(pivot .EQ. 0) then
print *,’'Matrix is singular’
stop

else

Interchange rows I and PIVOT

do 4000 j = i, n
temp = aug(i,j)
aug(i,j) = aug(pivot,j)
aug(pivotj) = temp
4000 continue
end if

end if
Eliminate I-th unknown from equations I+1, ..., N
do 6000 j = i+l, n

mult = -aug(,i) / aug(ii)
do 5000 k =i, n

aug(j.k) aug(j,k) + mult * aug(ik)
5000 continue -
6000 continue
7000 continue
* Calculate the determinant of matrix AUG by computing the -

product of the diagonal elements

prod = 1.d0
do 8000 i = 1, n
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do 9000 j = 1, n
ifi .EQ. j) prod = prod * aug(i,})

9000 continue
8000 continue
det = prod
return
end
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SUBROUTINE ALPHAROOT

Subroutine uses an interval~halving technique to find

the best root value to initialize the Newton—Raphson (N-R)
iterative calculations which determine the real root of

the alpha polynomial on the interval {0,1].

PARAMETERS: delta = alpha increment
epsilon = alpha convergence criterion
VARIABLES: alower = lower bound of alpha increment
aupper = upper bound of alpha increment
falpha = the alpha polynomial
fprime = first derivative of alpha polynomial
guess = iterative variable for alpha
guessO = initial estimate for N-R
intcount = # of intervals until sign change
iter = # of iterations untii N-R converged
isign,isign2 = flags for function sign change
isign,isign2 = flags for function sign change
numroot = flag for # of zeros (from BUDAN)
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SUBROUTINE ALPHAROOT(j.Ncomp,coefficient,xalpha,numroot,
@ alpha)

IMPLICIT REAL*$(a—h,0—2)
INTEGER p

DIMENSION alpha(500), coefficient(0:100), xalpha(500)




*

*

PARAMETER(delta = 0.01d0, epsilon = 1.d-06)

Write table heading

write(7,*) The Fourier-Budan Theorem yields “,numroot,” roots on
@this interval’
write(7,3500)

3500 format( Intervals”4x,Initial Guess’,4x, Iterations’,4x, Calc.
@Alpha“,4x,’Exp. Alpha“)

Check flag NUMROOT provided by subroutine BUDAN to determine
root—search scheme

iflnumroot .EQ. 0) then
write(6,*) ‘No root on the interval [0,1] for data set
intcount = 0
write(7,3900) intcount,xalpha(j)
3900 format(i4,61x.f5.3)
write(7,*)'No root on the interval [0,1]°

retum

end if

if(numroot .EQ. 1) then
ilower = 0
iupper = 0

end if

iflnumroot .GE. 2) then
ilower = 0
iupper 1
end if

Use incremental search to determine initial guess
Interval Endpoint DO-Loop

do 0400 jroot = ilower, iupper
intcount = 0
Test the polynomial at endpoint for initial sign value
if(jroot. EQ. ilower) then
guess = DFLOAT(ilower)
alower = guess
aupper = alower + delta
end if

if(jroot. EQ. iupper) then
guess = DFLOAT(iupper)
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aupper = guess

alower = aupper — delta
end if

ichange = 0

falpha = 0.d0
do 1500 p = 1, Ncomp

term = coefficient(Ncomp—p)*guess**(Ncomp—p)
if( Ncomp-p) .EQ. 0 ) term = coefficient(0)
falpha = falpha + term

continue

Initialize ISIGN2 on first pass with endpoint

ifichange .EQ. 0) then
if(falpha .GE. 0.) then

isign2 = 1
else
isign2 = 0
end if
end if

Note the sign of the function

if(falpha .GE. 0.) then

isign = 1
else

isign = 0
end if

Test function for sign change and increment or decrement the
search variable as appropriate

if(isign2 .EQ. isign) then
ifjreot .EQ. ilower) then
alower = aupper
aupper = aupper + delta

guess = aupper
“else if(jroot .EQ. iupper) then
aupper = alower
alower = aupper — delta
guess = alower
end if
end if

Exit subroutine if no sign change is detected on interval [0,1]
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if( (guess .GT. 1.) .OR. (guess .LT. 0.) ) then
write(6,*) ‘No root on the interval [0,1]°
write(7,3800) intcount,xalpha(j)
format(i4,61x,f5.3)
write(7,*)'No root on the interval [0,1]°
retum

end if

If NO sign change but still within interval, repeat the sequence
if(isign .EQ. isign2) then

isign2 = isign

intcount = intcount + 1

ichange = 1

go to 0600

else

If there IS a sign change:
Halve the interval where the function crosses the x axis

guessO0 = (alower + aupper) / 2.d0
end if
Provide this guess t0 Newton—Raphson to begin calculations
guess = guess)

N-R is limited to 1000 iterations for convergence

iter = 0

do 1000 iterdimit = 1, 1000
iter = iter + 1
falpha = 0.d00
fprime = 0.d00

do 2000 p = 1, Ncomp

falpha = falpha + coefficient(Ncomp—p)
‘gucss.‘(Ncomp_p)
fprime = fprime + (Ncomp-p)*coefficient(Ncomp—p)
*guess**(Ncomp—p-1)
continue

calc = guess - falpha/fprime
error = DABS((calc — guess)/calc)
guess = calc

iferror .LE. epsilon) go to 3000




1000 continue

print *,'N-R method failed to converge after 1000 iterations’

*

QOutput results to file "TABLE"

3000 write(7,3600) intcount,guessQ,iter,guess,xalpha(j)
3600 format(i4,13x,£5.3,10x,i4,13x,9.6,7x,£5.3)

alpha(j) = guess

*

Begin search for root from opposite end of interval

0400 continue

return
end
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SUBROUTINE ALPHAPLOT

This subroutine is used for several purposes:

1. Plotting F(alpha) vs alpha [Rachford-Rice obj function)
2. Plotting F(alpha) vs alpha [polynomial]

3. Plotting Fprime vs alpha [polynomial]
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SUBROUTINE ALPHAPLOT(Ncomp,J,molefrac,alpha,coefficient,Ki)
IMPLICIT REAL*8 (a-h,0-2)

REAL*8 Ki(500,100),molefrac(100)

DIMENSION alpha(500),coefficient(0:100)

INTEGER p

PARAMETER(start = 0.0d0, end = 2.0d0, stepsize = 0.0005d0)

OPEN(unit=11,file="fa.plot",status="unknown")




OPEN(unit=12, file="fprime.plot",status="unknown")

*

Number of data points for plotting

number = IDINT((end ~ start + stepsize)/stepsize)
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* F(alpha) vs alpha [polynomial]
* F’(alpha) vs alpha [polynomial]
* Adjust Ncomp,Npress in PARAMETER

write(11,*) number
do 1000 phase = start,end,stepsize
falpha = 0.d00
fprime = 0.d00
do 2000 p = 1,Ncomp
falpha = falpha + coefficient(Ncomp-p)*

@ phase**(Ncomp-p)

C Sfprime = fprime + (Ncomp—p)*coefficieng Ncomp—p)*
C @ phase**(Ncomp—p-1)

2000 continue

write(11,3600) phase,falpha

C write(11,3600) phase fprime

3600 format(f7.3,2x,£25.12)

1000 continue
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C* Rachford-Rice objective function

do 4500 k = I,Npress
k=6
write(11,*) number
do 3000 phase = startend,stepsize
falpha = 0.d00
do 4000 i = 1Ncomp
falpha = falpha + (molefrac(i)*(Ki(ki) — 1.d0)) /
(1.d00 + phase*(Ki(k,i) — 1.d0))
End of i loop
continue

*

olslololalololoXe oo Ko Ke!
H

write(11.3500) phase falpha
Sformas(f7 3 2xf25.12)
‘End of phase loop

oYe!
*

&

3

C 3000 continue
C* End of k loop
C 4500 continue
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CLOSE(unit=11)
CLOSE(unit=12)

return
end

100
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SUBROUTINE BUDAN

Subroutine uses the Fourier-Budan Theorem to determine
the number of roots that the alpha polynomial has on the
interval [u,v].

PARAMETERS: iu = lower bound of alpha interval
iv = uppper bound of alpha interval
VARIABLES: coefficient = coefficient of alpha polynomial
dcoeff = coefficient of polynomial derivatives
deriv = derivatives of alpha polynomial
fvapor = the alpha polynomial
ia,ib = # of sign changes for derivative series
ivapor = alpha = vapor fraction
jsignksign = flags for derivative sign change
numroot = number of zeros on the interval
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SUBROUTINE BUDAN(J,Ncomp,coefficient.numroot)

IMPLICIT REAL*8$(a~h,0~z)
INTEGER p

DIMENSION dcoeff(0:100,0:100), coefficient(0:100), deriv(0:100)
PARAMETERGu = 0, iv = 1)

DATA (coefficient(l), | = ONcomp-1) [-1.1.-2.3.-4.5./
OPEN(unit=2,file="test" status= "unknown")

REWIND(unit=2)

ia=0
ib=20

do 0500 ivapor = iu, iv, 1

Evaluate the polynomial function at the endpoints iu and iv

fvapor = 0.d0
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1000

2000

1500

3000

do 0600 p = 1, Ncomp
fvapor = fvapor + coefficient(Ncomp—p)*ivapor**(Ncomp-p)
continue
write(2,*) ‘fvapor = ‘fvapor
write(2,*) ©

Calculate coefficients of first derivative

do 1000 n = Ncomp-1, 0, -1
dcoeff(0,n) = coefficient(n)
write (2,*) °dcoeff(0,’,n,”) = ".dcoeff(0,n)
continue
write(2,*)

Calculate coefficients of 2nd— and higher—order derivatives
as multiples of those of the first derivative
do 1500 m = 1, Ncomp-1

do 2000 n = Ncomp-m, 1, -1
dcoeff(m,n—1) = n*dcoeff(m-1,n)
write (2,*) “dcoeff(",m,’,",n-1,) = °,

@dcoeff(m,n-1)

continue
write(2,*) °

Pl

continue
Evaluate the derivative series at the endpoints iu and iv

do 3000 m = 1, Ncomp-1
deriv(m) = 0.d0

do 4000 n = Ncomp-m, 1, -1
term = dcoeff(m,n—1)*ivapor**(n-1)
if( (n-1) .EQ. 0 ) term = dcoeff(m,n—1)
derivim) = derivim) + term
write(2,*) ‘inter deriv(,m,”) = ‘.deriv(m)
continue

write(2,*) ‘total deriv(.m,) = “.deriv(m)
write(2,*) © °
continue

Count the sign changes between the terms of the series

if(fvapor. LT. 0.) then
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kSign =0
else

ksign = 1
end if

write(2,*) ksign = “ksign,” for fvapor’

do 5000 i = 1, Ncomp-1
if(deriv(i) .LT. 0.) then
jsign = 0
else
jsign =
end if
write(2,*) ‘jsign = ‘,jsign,” for deriv(’,i,")’

Increment A or B, depending upon the endpoint under evaluation

if(ivapor .EQ. iu) then
if(ksign .NE. jsign) then
ia = ia + 1
write(2,*) ia = ‘jia,” for deriv("i,?)”
end if
end if

if(ivapor .EQ. iv) then
if(ksign .NE. jsign) then
ib =ib + 1
write(2,*)
end if
end if

“ib,” for deriv(’,i,")’

ksign = jsign
write(2,*) ‘ksign
write(2,*) °~ °
5000 continue

“ksign,” after deriv(’,i,")’

0500 continue

Pass a flag to calling program to indicate root conditions

write(2,*) ‘ia = ‘jia,” and ib = °,ib
numroot = ia - ib
write(2,*) ‘numroot = ‘numroot

write(2,6000) Ncomp—1, numroot, iu, iv, J

6000 format(“This polynomial of order i3,” has ",i3,” zeros on the in

@terval [',i2,%,%,i2,] for J = °i3)

CLOSE(unit=2)
return
end
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ABSTRACT

The Rachford-Rice objective function for flash calculatons exhibits a nearly
flat slope across the two-phase region and sharp discontinuities near the dewpoint.
These features make iterative solution procedures sensitive to the initial estimate of
the root and prone to spurious values if a correction step throws the algorithm out-

side the two-phase region or near the phase boundary.

This work centers on the recasting of the Rachford-Rice objective function into
a polynomial function of the vapor fraction, a. The degree of this polynomial is
one less than the number of components in the system and its coefficients can be
calculated from the feed composition and ** _quilibrium ratios. A recursive
expression is developed that involves symmetric functions and can be easily pro-

grammed on a computer or scientific calculator.

The principal advantage of this new form of the objective function is that the
theory of polynomials is well-developed. The location of their zeros can be
predicted with confidence by techniques based on sound mathematical principles,
such as the Fourier-Budan theorem. The a-polynomial is well-behaved over the
two-phase region and its root can be quickly located by a hybrid method of
interval-halving technique and Newton-Raphson procedure. The validity of the new
objective function and its automatic coefficient-generating algorithm are tested using

several multicomponent systems for which experimental data are available.

Results of these tests prove conclusively the validity of the generalized polyno-
mial objective function. The versatility of this form of the flash objective function,

compared with the original Rachford-Rice version, is demonstrated. Another




iv

potential advantage of the polynomial form is its ability to handle dilute systems in
which some components are present but in very low concentrations. It also prom-

ises possible usage as a means of developing appropriate lumping schemes.
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NOMENCLATURE

Roman

A = pressure-dependent constant [Equation (2.6)]
A = parameter for the PREOS [Equation (2.18)]
A = number of sign changes in derivative series (Section 5.2.4)
a = intercept of log Kp vs F plot [Equation (2.3)]
a = unitary or elementary symmetric function [Equation (3.41)]
a(T) = attractive constant for PREOS [Equation (2.11)]
a(T.) = attractive constant at critical point for PREOS [Equation (2.10)]
B = parameter for the PREOS [Equation (2.19)]
B = number of sign changes in derivative series (Section 5.2.4)
b = translation constant for Cox chart [Equation (2.1)]
b = molar co-volume for PREOS [Equation (2.9)]
C; = constant used in the objective function [Equation (3.16)]

C; = excluded term [Equation (3.42)]
¢ =slope of log Kp vs F plot [Equation (2.3)]

¢ = volume translation parameter [Equation (2.21)]
F = number of moles in feed stream (Section 3.1.1)
F = component characterization factor [Equation (2.1)]
K; = equilibrium ratio (Section 1.2)
L = number of moles in the liquid phase (Section 3.1.1)
M = interexpressibility matrix [Equation (4.12)]
m = clement of matrix M [Equation (4.31)]
N = number of components in the fluid system (Section 1.3)
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= number of terms in the set [Equation (3.41)]

= a partition of 7 into at most A parts [Equation (4.8)]

= pressure

= part of a partition [Equation (4.1)]

= polynomial as a function of ¢ (Section 5.2.4)

= polynomial as a function of u (Section 5.2.4)

= polynomial as a function of v (Section 5.2.4)

= real gas constant [Equation (2.8)]

= field of real numbers (Section 5.2.4)

= power sum symmetric function [Equation (4.6)]

= slope of plot [Equation (2.2)]

= temperature

= exponential term in generating function [Equation (3.41)]
= augmented unitary symmetric function [Equation (4.7)]
= real number (Section 5.2.4)

= number of moles in the vapor phase (Section 3.1.1)

= molar volume

= pseudo volume [Equation (2.21)]

= length of a partition [Equation (4.2)]

= real number (Section 5.2.4)

= weight of a partition [Equation (4.1)]

= fluid "map" coordinate from Varotsis (Section 2.2)

= component "map" coordinate from Varotsis (Section 2.2)
= mole fraction in the liquid phase (Section 3.1.1)

= argument of symmetric function [Equation (3.41)]

= fluid "map” coordinate from Varotsis (Section 2.2)




Greek

;

Subscripts

B
c
i,jkd.m
ij
k

= component "map" coordinate from Varotsis (Section 2.2)
= mole fraction in the vapor phase (Section 3.1.1)
= compressibility factor [Equations (2.20), (2.22)]

= mole fraction in the feed stream (Section 3.1.1)

= vapor fraction [Equation (1.1)]
= isothermal compressibility (Section 2.3.2)
= binary interaction coefficient [Equation (2.16)]

= bulk modulus [Equation (2.23)]

xi

= function to describe a (T') away from critical point [Equation (2.11)]

= function of acentric factor in PREOS [Equation (2.13)]

= function of acentric factor in PRSV EOS [Equation (2.26)]
= parameter in PRSV EOS [Equation (2.27)]

= coefficient of polynomial [Equation (5.2)]

= multiplicity of a part in a partition [Equation (4.1)]

= EOS variable [Equations (2.24), (2.25)]]

= Pitzer acentric factor for the i-th component [Equation (2.5)]

= boiling point [Equation (2.1)]
= critical property

= individual components of the fluid system

= interaction between component i and component j of the fluid system

= convergence pressure (Section 2.2)
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Abbreviations

CPU
EOS

°F

LHS
PREOS
PRSV EOS
psia
QE.D.
RHS
SRKEOS
SSM

xii

= constant pressure [Equation (4.29)]

= reduced property

= Rackett compressibility factor [Equation (2.22)]
= order of symmetric function [Equation (3.41)]

= constant temperature [Section 2.3.2, Equation (4.29)]

= fluid state [Equations (2.24), (2.25)]

= component of fluid system [Equations (2.24), (2.25)]
= order of derivative

= first derivative

= second derivative

= third derivative

= computer central processing unit

= equation of state

= degree Fahrenheit

= left-hand side (of an equation)

= Peng-Robinson equation of state

= Peng-Robinson-Stryjek-Vera equation of state

= pounds per square inch, absolute

= quod erat demonstrandum, which was to be proved (Appendix A)
= right-hand side (of an equation)

= Soave-Redlich-Kwong equation of state

= successive substitution method
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Chapter 1

DISCUSSION OF THE PROBLEM

1.1 Introduction

Determination of the equilibrium state of coexisting liquid and vapor phases,
particularly for multicomponent fluid mixtures, is of vital interest to the petroleum
and chemical industries. Many processes in petroleum production and refining
involve repetitive flash calculations for design and operational purposes. The pri-
mary goal of performing flash calculations is to determine the relative amounts and
compositions of the coexisting phases for a given feed composition at a specified

condition of temperature and pressure.

This work is confined solely to two-phase vapor-liquid equilibrium computa-
tions, although its results will no doubt find application in multiphase flash prob-

lems in the future.

1.2 The Generic Flash Algorithm

To begin the calculation, the following variables must be specified: the system

pressure and temperature, the molar composition of the feed stream, z; , and an ini-

tial estimate of the equilibrium ratios, K; = ;—'— The process is assumed to occur
i

under isothermal and isobaric conditions. The stages of the calculation are:

1.  Compute iritial estimates of the equilibrium ratios by one of the established

techniques or by an empirical correlation.



2. Calculate the phase distribution and compositions corresponding to the given
K-values. This involves the iterative solution of the following objective func-

tion, developed by Rachford and Rice (1952):

N Z"(Kl'—l) _
2 l+a (K, -1)

i=1

(1.1)

where « is the vapor molar fraction.

3. Use an equation of state (EOS) to calculate the component fugacities in each

phase and check for equality.

4. If equality is not achieved (i.e., the phases are not in equilibrium), correct the

K-values on the basis of the fugacities and repeat steps 2-4.

This correction is commonly performed using a successive substitution-type
method or a second-order Newton-type scheme. These algorithms are well-known
and are described in several papers [e.g., Risnes et al. (1981); Michelsen (1982);
Boston and Britt (1978)].

Successful implementation of the generic flash algorithm described above
requires three principal elements. These are (1) a general estimate of the set of
equilibrium ratios to start the procedure; (2) a good equation of state to improve K;;
and (3) a robust objective function that guarantees convergence to a single value of
a. A poor first guess of K-values may produce a phase split that is physically
impossible under the prevailing pressure and temperature. Satisfactory methods are
available for generating these values. Furthermore, existing equations of state do a
fairly good job of predicting phase properties, and other efforts continue along this

line.




One area that has not enjoyed equal amounts of attention for a long time is the
form of the objective function. Invariably, the Rachford-Rice objective function
[Equation (1.1)] is most often used. Recent investigations (Warren, 1991) have
shown that this objective function does exhibit some strange behavior which may

affect its ability to generate good results for some conditions.

1.3 Objectives of the Investigation

This study is aimed at evolving a generalization of the new polynomial form
of the Rachford-Rice objective function developed by Warren (1991). The resulting
generalized polynomial function of the vapor fraction, &, should be capable of han-
dling an N-component mixture. The coefficients of the generalized polynomial
should depend on only two variables, the molar composition of the feed stream and
the equilibrium ratios, and should be easy to obtain, either analytically or numeri-

cally. Appropriate algorithms are to be developed for this purpose.

The principal advantage of a polynomial form of the flash-calculation objective
function is that the theory of polynomials is well-developed and semi-analytical
solution techniques exist for equations up to fifth-order (Zaguskin, 1961). For
higher-order polynomials, the Newton-Raphson iterative method usually provides a

fast and accurate determination of the roots.

Determination of all the zeros of this polynomial is unnecessary since the phy-
sics of the problem demands that only the zeros on the bounded interval [0,1] are of
practical interest. Furthermore, the physics also suggests that only one zero (or
value of @) exists on this interval, which represents the two-phase vapor-liquid
region. It can be shown mathematically that this is indeed the case for well-defined

systems, as will be demonstrated in §.2.




Chapter 2

LITERATURE REVIEW

A survey of the pertinent literature reveals that apparently only one other
worker, Warren (1991), has studied the particular aspect of flash calculations tar-
geted in this research. A comprehensive review of the literature pertaining to the
use of cubic equations of state in flash calculations was conducted in order to pro-

vide a reference point for the testing of the polynomial objective function.

This review is sub-divided into three sections: flash calculation algorithms;
equilibrium ratios; and cubic equations of state. Particular emphasis is laid on the

Peng-Robinson equation of state.

2.1 Vapor-Liquid Equilibrium Flash Calculations

This discussion will be confined to two-phase vapor-liquid equilibria. The
work to date concentrates on developing robust algorithms with rapid convergence
rates. Robustness implies the ability to continue the calculations after recovering
from a spurious value of the vapor fraction computed in the neighborhood of the
critical point or at the phase boundaries. Abhvani and Beaumont (1987) present an
excellent review of EOS-based flash algorithms. They divide the papers into two
categories according to solution method, those using some variant of the successive

substitution method (SSM) or those employing a second-order Newton-type method.

The SSM technique is the traditional solution algorithm, but it exhibits a poor

rate of convergence and ! stability problems close to saturation points and in the




critical region. Risnes et al. (1981), Michelsen (1982), and Mehra et al. (1983)

made attempts at acceleration and stabilization of this method.

Similarly, many workers have proposed various forms of second-order Newton
procedures to avoid the slow rate of convergence of the SSM, such as Boston and
Britt (1978), Fussell and Yanosik (1978), Asselineau et al. (1979), Fussell (1979),
Baker and Luks (1980), and Varotsis et al. (1981). Others advocate a combination
of successive-substitution and Newton methods; the former is used to provide good
initial values to the rapidly converging latter. Informative studies include Mott
(1980, 1983), Mehra et al. (1982), Michelsen (1982), Nghiem et al. (1983), and
Abhvani and Beaumont (1987).

Benmekki (1984) developed a general algorithm for flash calculations that can
utilize any cubic equation of state and features a specified calculational path for
computing tiie phase boundaries. This is an attempt to ensure that bubblepoint and
dewpoint computations originate from within the two-phase region, thus guarantee-

ing meaningful values of the equilibrium ratios.

Warren (1991) made a radical departure from previous efforts at enhancing
flash calculation algorithms when he formulated an explicit linear equation for the
vapor fraction of a binary system. He successfully extended this to a quadratic
equation for a ternary system and a cubic equation for a quaternary mixture. The
success achieved by Warren and the possibility of the existence of a generalized
polynomial expression for the vapor fraction in a two-phase, N-component fluid sys-

tem motivated the current work.




2.2 Vapor-Liquid Equilibrium Ratios

The use of initial equilibrium ratios close to the final values for a multicom-
ponent fluid is crucial to the rapid convergence of any flash calculation. Experi-
mental values are preferred because the prediction of K; for a particular fluid at
various combinations of temperature, pressure and composition requires lengthy cal-
culations. Therefore, predictive methods for K-values are a limiting factor in the

speed and robustness of any flash calculation algorithm.

The expression "equilibrium constant” was coined by Souders et al. (1932)
and was defined as the ratio of the vapor mole fraction to that of the liquid. The
basis for most predictive methods had its genesis when Cox (1923) observed that
the lines on a semilogarithmic plot of vapor pressure against temperature appeared
to converge to a single pressure. Katz and Hachmuth (1937) demonstrated an
analogous behavior for equilibrium constants; they converged to unity at a fluid
mixture’s critical pressure.

White and Brown (1942) attempted to develop 'a correlation for K-values based
on this "convergence” pressure. Hanson and Brown (1945) used experimental data
to correlate the convergence pressure (p;) at one temperature as a function of the
molal average boiling point of the equilibrium vapor and liquid. They also showed
that the convergence pressure concept could be extended from binary to multicom-

ponent systems.

Hadden (1948, 1953) produced nomographs for equilibrium constants of pure
components as functions of temperature and pressure, and incorporated convergence
and vapor pressures into nomographs for mixtures. He demonstrated that mixture

convergence pressure is a function of the operating temperature and of the liquid-




phase composition exclusive of the lightest component concentration. This compo-
sition dependence led Muskat (1949) to propose the use of the term "equilibrium
ratio" in place of "equilibrium constant." Edmister (1949) presented a graph involv-
ing the ratio of differences between the convergence and critical pressures and the

ratio of differences between the system and critical temperatures.

Winn (1952) developed nomographs based on Hadden’s (1948) results that
allow the determination of K-values at a convergence pressure of S000 psia. For
systems with p, # 5000, he provides a translation to find the value of K; at other
"apparent” convergence pressures. The methods proposed by these three authors

require charts and do not lend themselves to computer calculations.

Hoffmann et al. (1953) attempted to extend Cox’s (1923) vapor pressure graph
for the purpose of determining equilibrium ratios by plotting log Kp against the

component characterization factor F, where

Kp = product of equilibrium ratio and pressure

1 1

F=b[ﬁ_-7—‘] 2.1

b = constant required to translate the vapor pressure curve
for a hydrocarbon onto the straight line of the Cox chart
Ty = hydrocarbon boiling point
T = system temperature
Brinkman and Sicking (1960) presented an iterative method for finding the conver-

gence pressure based on the slope, sp, of the plot mentioned in Hoffmann et al.

(1953). Then, the equilibrium ratio could be determined as

K=—c¢ 2.2)




Standing (1979) observed that the composition dependence of the equilibrium
ratio is negligible at pressures below 1000 psia. He proceeded to combine the work
of Hoffmann et al. (1953) and Brinkman and Sicking (1960) to develop a correla-
tion for K-values for the crude oils studied by Katz and Hachmuth (1937):

K = %10@ + cF) 2.3)

where a and c are the intercept and slope (respectively) of log Kp vs. F plots of the
abovementioned oils. Both a and c are expressed as functions of pressure. He also
presented equations for the heavy fraction and the common reservoir gases N,, CO,

and H,S (referred to as permanent gases).

Wilson (1969) published a K-value equation that currently enjoys widespread

use in flash calculations:

B
K" = —_— (24)
Pri
where
B =53701 + 0,)(1 - ‘:1—) @.5)

Ri
Pr; = reduced pressure of the i —th component

Tp; = reduced temperature of the i —th component

w; = Pitzer acentric factor of the i—th component
Wilson’s equation fails to predict accurate equilibrium ratios for most fluids above
pressures of 500 psia, as illustrated by Warren (1991). Whitson and Torp (1981)
attempted to correct this problem by re-introducing the system convergence pressure

to the Wilson equation:

K.- = (26)

Pr Pri

Pci ]A—lCAB




where
a7 106
A=1-| 2—=L (2.7)
pk nd 14.7

Pci = critical pressure of the i —th component

Risnes and Dalen (1984) took an approach based on the equation of state used
in the flash calculations. Their basic idea was to assume the mixture or feed to be
liquid and then evaporate up to one-half of the system to form a gas phase by use
of the fugacities. The initial K-values then could be calculated from the resulting
phases. This method is reported to perform well near the critical point and along
the bubblepoint line but often fails along the dewpoint curve.

Reportedly, the most accurate K-value predictor is that proposed by Varotsis
(1989). He used over 1000 experimental equilibrium ratios to construct an X-Y plot
such that each reservoir fluid’s position on the "map" is determined by its coordi-
nates X and Y. These coordinates are described by a polynomial fitted to the
apparent pressure mentioned in Winn (1952). He proposes an equation for the con-

vergence pressure based on the mole fraction of methane and nitrogen in the fluid.

Each pure hydrocarbon component is represented on the map by its own set of
coordinates (X;, Y; ), which are calculated as functions of the component acentric
factor. Specific values are given for the permanent gases and correlations based on

molecular weight are specified for the heptane-plus fraction.

Finally, the straight line that joins the pressure and temperature coordinates
(X, Y) of the fluid with the position of each component on the map (X;, Y; ) inter-
sects the K-value axis at a point that comresponds to the equilibrium value of the

selected constituent. Varotsis (1989) presents tables for three different crude oils
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and gas condensates at varying temperatures and pressures that display K-values
remarkably close to experimental values. They are an order-of-magnitude improve-
ment over those predicted by the equations of Wilson (1969) or Whitson and Torp
(1981).

The method of Varotsis (1989) was attempted in the current work. His K-
value predictor was formulated using data for crude oils and gas condensates con-
taining the C; — C¢ alkane series, the heptane-plus pseudocomponent and the per-
manent gases. It will not properly describe systems (such as the methane-ethane-
propane ternary) containing fewer components than these "typical” reservoir fluids.
For lack of a suitable replacement expression for p, , Wilson’s equation is used in

the current work.

2.3 Cubic Equations of State (EOS)

The equation of state (EOS) is the heart of a modem flash calculation algo-
rithm. Ideally, it should be able to accurately represent the thermodynamic proper-
ties of the fluid of interest over the complete range of operating pressures and tem-
peratures. Since engineering applications rarely focus on an isolated chemical
species, the EOS should incorporate mixing rules that allow it to extend its predic-
tive capabilities to the behavior of multicomponent fluids. Its component-specific
descriptive parameters should be readily calculable from well-known properties,
such as critical temperature and pressure, molecular weight and acentric factor.
Finally, the associated computations should not consume excessive computer time,

especially if the equation of state is to be used for repetitive calculations.

The engineer is faced with the choice of using a complex EOS exhibiting a

high degree of non-linearity and many adjustable parameters, or a cubic EOS which
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possesses an analytical solution and requires the estimation of two or three parame-
ters. Mathias and Benson (1986) presented a comparison of average central-
processing-unit (CPU) times required by three cubic EOS and by three complicated
EOS to compute fugacity coefficients and enthalpy departures. They asserted that
the time required for any of the candidate equations to calculate the density root (or
compressibility factor root) is negligible compared to that involved in executing the
various mixing rules. In fact, for systems containing more than about six com-
ponents, the cubic EOS become more computationally burdensome than the compli-
cated EOS simply because of the cross terms inherent to the cubic EOS mixing

rules.

Engineers frequently use cubic EOS because they work well over the range of
most industrial operating conditions and are easily programmed for solution on a
computer. The two cubic EOS which have gained the widest acceptance are
Soave’s modifications of the Redlich-Kwong (1949) equation of state (SRKEOS)
(Soave, 1972) and that presented by Peng and Robinson (1976b) (PREOS). The
PREOS and suggested improvements are examined in this work for possible use in

flash calculations because of the author’s familiarity with this EOS.

2.3.1 Development of the Peng-Robinson EOQS

Upon the success of the SRKEOS, Peng et al. (1975) undertook a further study
to formulate a cubic equation of state with an improved capability to predict liquid

densities and other fluid properties, particularly in the vicinity of the critical region.

This study resulted in a further modification of the attractive pressure term of
the classical equation of state proposed by van der Waals (1873). The result was
the EOS presented by Peng and Robinson (1976b):
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RT a(T)
- - 2.
P v-b v(v+b) + b(v-b) 28
The values of the parameters are obtained from
RT,
b =0.07780 2.9)
P.
27 2
a(T,.) = 0.45724 — (2.10)
c
a(T)=a(T,) nTp, w (2.11)
n“=1+x1-Tp"% 2.12)
x = 0.3746 + 1.4850w — 0.1644w? + 0.01667w° (2.13)

Equation (2.12) has the same form as that used by Soave (1972) but xk was obtained
by fitting a larger range of vapor pressure data as a function of the reduced tem-

perature and the acentric factor (Pitzer et al., 1955) of each component.

In order to use the equation for systems containing more than one component,

the following mixing rules are presented:

a= ZE X,‘Xja,'j (2.14)
ij
b= 2 x;b; 2.15)
i
where
a; = (1 - §;)a;"a;* (2.16)

Equations (2.14) and (2.15) are consequences of the mixing rule proposed by Kay
(1936), while Equation (2.16) was developed by Zudkevitch and Joffe (1970). The
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experimentally determined binary interaction coefficient, §;;, characterizes the

ij s
binary formed by component i and component j. The importance of 8;,- in accu-
rately reproducing P-V-T data was discussed by Peng and Robinson (1976b) and by

Robinson et al. (1985).

The PREOS can be written in the form of a cubic equation in the compressibility

factor:
Z3-(1-B)2?2+ (A -3B*-2B)Z - (AB -B2-B¥) =0 2.17)
where
A= (2.18)
R2T2
g=2p (2.19)
RT
z=2 2.2
RT (2.20)

2.3.2 Selection of the Proper Root in Cubic EOS

Equation (2.17) yields one or three roots depending upon the number of phases
in the system. The authors stated that, in the two-phase region, the largest root is
for the compressibility factor of the vapor while the smallest positive root

corresponds to that of the liquid.

Lawal (1987), however, asserted that this criterion was insufficient to select the
proper root. He proved that, in the event of multiple real roots, the smallest of the
positive roots larger than or equal to B must be chosen for the compressibility of

the liquid.
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Asselineau et al. (1979) compared the calculated volume to the pseudo-critical
volume to assign the root to the proper phase, under specific conditions. Poling et
al. (1981) examined the order of magnitude of the isothermal compressibility,
B = —(dv/dp )y /v, to ascertain the presence of the liquid or vapor phase. Gosset et
al. (1986) offered two discriminants, one based on the Cardan criterion for the
number of real roots for a cubic equation and a heuristic approach similar to that of

Asselineau et al. (1979).

2.3.3 Modifications to the Peng-Robinson EOS

Numerous attempts have been made to correct for the deficiencies inherent in a
cubic equation of state by introducing additional parameters into the PREOS.
These changes improve some aspect of the EOS’s performance (usually liquid den-
sity predictions) but at the cost of increased complexity and the requirement for
tables or correlations to determine the additional parameter(s) for each fluid com-

ponent. This review will touch on a limited number of these studies.

2.3.3.1 Volume Corrections

The modification of the SRKEOS proposed by Péneloux et al. (1982) also
formed the basis for two other studies concemned with the PREOS. These authors
suggested that the use of a "pseudo volume" defined by

F=v+Y o @2

4

could be used to effect a translation along the volume axis, leaving unchanged the

predicted equilibrium conditions. They chose ¢ so that correct saturated liquid
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densities were exactly reproduced at the reduced temperature Ty =0.7. They
rejected the acentric factor as a correlating parameter in favor of the Rackett
compressibility factor, Zp, , developed by Spencer and Danner (1972):

RT,
¢ = 0.40768

(0.29441 - Zg,) (2.22)

<
Their third parameter did improve predictions of saturated liquid densities.

Almost simultaneously, Jhaveri and Youngren (1988) and Mathias et al.
(1989) presented three-parameter modifications of the PREOS based on the work of
Péneloux et al. (1982). The first authors correlated the third parameter, ¢, with
molecular weight. The second study retained the Péneloux-Rauzy-Fréze volume
correction scheme but added a further term involving the bulk modulus to handle

the critical region. The bulk modulus is dimensionless and is defined as:

__ e
o= RT[ " ]T (2.23)

From an examination of the graphs accompanying both publications, the work of
Mathias et al. (1989) seems to produce results closer to the experimental values for

saturated volumes and densities.

2.3.3.2 Temperature Dependence

Xu and Sandler (1987a,b) postulated that the molar co-volume term, &, is not
independent of temperature and they disputed the fitting of vapor pressures used by
Peng and Robinson (1976b) to characterize the attractive constant, a. They corre-

lated vapor pressure and volume data for 16 components at both subcritical and
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supercritical conditions and proposed to replace the numeric coefficients of a and b

found in Equation (2.9) and Equation (2.10) with:

1 2 Iri
Yo = Zai Tk (2.24)
i=0
and
| 2 Iri
v = ThiTh 225)
i=0

where i refers to the species and I denotes either subcritical or supercritical condi-
tions.

Wu and Sandler (1989) generalized the temperature-dependent parameters of
Xu and Sandler (1987a,b) by performing least-squares fits of y, and vy, as func-
tions of acentric factor and reduced temperature. They were able to accomplish this
task only for the n-alkane series because of insufficient data. For their intended
application of the work (petroleum reservoir simulation), they envisioned the use of
the fluid-specific parameters for the permanent gases, water and light ends and the
generalized parameters for the heavy pseudocomponents.

Stryjek and Vera (1986a,b,c,d) re-worked Equation (2.13) to obtain a better

reproduction of vapor pressure data at low reduced temperatures:

KXo = 0.378893 + 1.4897153w — 0.17131848w? + 0.01965540° (2.26)

and modified Equation (2.12) by the introduction of one compound-characteristic

adjustable parameter, x;:
K =xy+K; (1+Tx%)X0.7 -Tpg) (2.27)

Stryjek and Vera (1986b) and Proust and Vera (1989) listed values of x, for over
160 compounds of industrial interest. Stryjek and Vera (1986d) and Wilczek-Vera
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and Vera (1987) examined mixing rules of varying complexitv for uce with the
Peng-Robinson-Stryjek-Vera (PRSV) EOS. For the current work, the PRSV EOS
with the original PREOS mixing rules (as formulated by Stryjek and Vera, 1986b)
is used and produces noticeably better results than did the PREOS.

2.3.4 References on Cubic EOS

Abbott (1979) and Martin (1979) presented comprehensive reviews of cubic
equations of state available at that time, and Vidal (1983) and Vera et al. (1984)
updated the topic. Huron and Vidal (1979) proposed composition-dependent mixing
rules while Mathias and Copeman (1983) discussed mixing rules dependent on
volume. Finally, Peng and Robinson (1976b), Peng and Robinson (1977), Robinson
and Peng (1978), Robinson (1979) and Peng (1986) developed specific applications
of their EOS.




Chapter 3

DEVELOPMENT OF THE POLYNOMIAL FUNCTION
FOR SIMPLE SYSTEMS

This chapter discusses the work published by Rachford and Rice (1952) and
Warren (1991) on performing flash calculations. It shows the development of the
Rachford-Rice objective function [Equation (1.1)] and extends Warren’s work as a
precursor to developing a generalized, multicomponent equation for the vapor frac-

tion.

3.1 The Rachford-Rice Flash Objective Function

We will briefly examine the derivation of the Rachford-Rice objective function
that is universally used today in flash calculations. After plotting its behavior, it
will become plain why it is so difficult to solve by iterative techniques such as the

Newton-Raphson method.

3.1.1 The Material Balance Development

Flash calculations are used to determine the compositions and quantities of the
vapor and liquid phases at equilibrium which result when an N-component fluid of a
particular composition is subjected to a particular pressure and temperature. The
composition of the feed stream, F, is denoted by Z z; and it flashes into L moles of
liquid with composition X x; , and V moles of vapor with composition £ y; . The

resulting material balance equations are:




F=L+V

Fz; = Lx; + Vy;

As defined in Chapter 1, the equilibrium ratio is:

and, rearranging, one is left with the equation:

yi = xK;

Substituting Equation (3.4) into Equation (3.2) yields:

FZ,‘ = Vx,-K; + LI,'

Simplify by isolating the x; term and dividing through by F:

=X "

VK" L
*F

Dividing Equation (3.1) through by F and solving for % yields:

L_, .V
F F
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(3.1

(3.2)

(3.3)

3.4

(3.5)

(3.6)

3.7
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Substituting Equation (3.7) in Equation (3.6) and simplifying the equation results in:

Z
X = (3.8)
Vv
1+ i3 (K;-1)
N
Imposing the constraint of }° x; = 1 on Equation (3.8) leaves:
i=1
N Z;
1 =3 v 3.9)
i=l e -
1+ 3 (K; -1)
Rearranging:
N 2;
) T -1=0 (3.10)
i=1 I+F(K,--1)
Recalling Equation (3.4), we can write:
zK;
Yi = v (3.11)
1+ 7 (K;-1)
N -
Imposing the constraint of ) y; = 1 on Equation (3.11) yields:
i=]
N z;K;
p2 -1=20 3.12)

- Vv
i=] 1+F(K‘-1)
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Combining Equation (3.10) and Equation (3.12) leaves:

N oz (K -1)
Y =0 (3.13)

< v
=Ll (K- 1)

Defining the vapor fraction, a, as:

v
a=+ (3.14)

and substituting Equation (3.14) into Equation (3.13) yield the Rachford-Rice objec-

tive function:

N (Ki-1)
% l+a(K; -1)

i=1

(=

(3.15)

3.1.2 A Graphic Representation of the Rachford-Rice Objective Function

As the authors noted, their formulation of the objective function was prone to
instability near the values of a that represented the phase boundaries, namely, 0 and
1. They showed that the slope of the function near these points may be quite steep.
It is this feature that tends to throw derivative-based root-finding techniques out of

the two-phase region, yielding spurious roots.

Figure 3.1 depicts the behavior of the objective function over a wide range of
o for a binary system of 70% methane and 30% ethane (Bloomer et al., 1953).
Figure 3.2 does the same for a ternary system consisting of 85% methane, 10%
ethane and 5% propane (Parikh et al., 1984). Although values of the vapor fraction
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Figure 3.1: The Behavior of the Rachford-Rice Objective Function for a Methane-
Ethane Binary System
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Figure 3.2: The Behavior of the Rachford-Rice Objective Function for a Methane-

Ethane-Propane Temary System
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have no physical meaning outside the interval [0,1], these graphs serve to illustrate
how ill-behaved the objective function is. Its slope is almost flat as it traverses the
two-phase region and it is plagued by spiky singularities.

This work will attempt to develop a new expression for o, one that possesses
reasonable slope over the desired interval and has no discontinuities near the phase

boundaries.

3.2 Warren’s Explicit Equations for the Vapor Fraction

Warren (1991) expanded the Rachford-Rice objective function into a polyno-
mial in a for a binary, ternary and quaternary fluid system. He did this by settin:
N equal to 2, 3 or 4, respectively, and reducing the resulting equations to their sim-
plest polynomial form by algebraic manipulations. To demonstrate the validity of
his work, Warren also showed that the higher-order polynomials would reduce to
those for smaller systems when the appropriate mole fractions and equilibrium con-

stants were removed.

We will assume (as did Warren) that, under isobaric and isothermal conditions,
the equilibrium constant does not change such that the quantity (K; — 1), which
appears in the objective function, can be represented by a constant, C; .

We will reproduce the entire process here for a binary system but will show

only the final result for a ternary and quaternary system, since the algebra can be

quite tedious and repetitive.
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3.2.1 Binary System

Starting with the objective function as defined in Equation (3.15):

N Z,'(K"—l) _
)> l+a(K;,-1)

i=1

0 (3.15)

and defining C; = K; ~ 1, Equation (3.15) can be rewritten as:

N .
> —=—=0 (3.16)

i=1
For a two-component system, setting N =2 in Equation (3.16) and expanding

term-wise yields:

2, Cy 2,Cy
1+aC, 1+aC,

(3.17)

Moving the terms with the subscript "2" to the right-hand side of the equation:

2, Cy 2, Cy
1+aC, 1+aC, (3.18)
By multiplying each side by (1 +a C,) (1 +a C,), one obtains:
2, CPU+aCy)=-(z,C) (A +aCy (3.19)

Expanding each side yields:

zlC,+az,ClC2=—22C2—a22C,C2 (3.20)
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Move a terms to the left-hand side of the equation and all remaining terms to the

right-hand side, then recall that, for a binary system, z; + z5 = 1:

a(Cl C2)=-(Zl C1+22C2) (321)

Dividing both sides through by C; C, and substituting (K; — 1) yields the explicit

form of the objective function for a binary system:

h = ] (3.22)

3.2.2 Ternary System

S
'Zl K Z Cj 3 Z;
o + a |5 + YT 5— =0 (3.23)
I1¢C; =T G
L J#e - J®

3.2.3 Quaternary System

[ 4 4 ]
2; C
s o ]& (-2z) 2 [,E ’] [
o + a’ |y C o 2 + Y 3 =0 (3.29)
i=1 i ¢ i=1 e
L J#i J J*i

3.3 Extension of Warren’s Work to Larger Systems

Warren’s method can be used to develop polynomial expressions for systems

having five, six and seven components. It will be observed that the terms of the
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equation expand in a regular fashion, thereby suggesting the possibility of develop-

ing a recursive relationship dependent only on N, the number of components. Only

the algebra for the five-component system will be presented, as those for six- and

seven-component systems follow the same procedure.

3.3.1 Quinary System

We begin with the objective function:

5 Zi C"
o 1+a(C;

i=

which, when expanded for five components, becomes:

21C1 22C2 Z3C3 Z4C4 25C5 =0
1+aC, 1+aC, 1+aC; 1+aC, 1+aCs

5
Muldiplying through by [] (1 + a C;) yields:

i=]

2;C(1+aCr(1+aC3)(1+aCp(+als)+
2C,(1+aC))+aC)(l+aC)(d+als)+
23C3(1+aC)P(A+aC)(+aCy)(1+alCs+
24C4(1+aC)P(N+aCr)(l+aCy)(1+aCq+
2sCs(1+aCpP+aCr)(+alC)(1+aCy) =0

Expanding each term:

a‘11C1C2C3C4C5+

(3.16)

(3.25)

(3.26)




a3le1(C2C3C4+C2C3C5+C2C4C5+C3C4C5)+
022, C;(C,C3+C,C4+CyC5+C3C4+ C3C5+C4Cs)+
azlcl(C2+C3+C4+C5)+21C1+

a*z,C,C,C3C4Cs+

0> 25C4(C; C3C4+CC3C5+C1C4Cs+C3C4Cs)+
022,Co(C{C3+C,C4+C Cs5+C3C4+ C3C5+C4Cs)+
®z3C(C1+C3+Cy4+Cs)+2zCo+

atz2,C,C,C3C4Cs+

3 2;C3(C,C2C4+C,C,Cs5+C,C,C5+C,C4Cs)+
022;C3(C; C2+CyC4+C Cs+C,Cy+ C2C5+C4Cs)+
0z23C3(C1+Cr+Cy+Cs)+23C3+

a*z,C{C,C3C4Cs+

3 2,C4(C;C2C3+C1C,Cs5+C,C3C5+C,C3Cs)+
a22,C4(C,;C2+C{C3+CCs5+C,C3+ C2C5+C3Cs)+
024 C4(C1+Cr+C3+Cs)+24Cy+

a*z5C{CyC3C4Cs+

03 25C5(C,C2C3+C1CaC4+C C3C,+C,C3C,)+
0?23 C5(C;Ca+C1C3+C1Ca+CyCa+ C7C4+C3Cy)+
az5C5(C1+Cy+C3+Cy)+25C5 =0

5
I1 C: and adding like terms yields:

i=l

Dividing through by the term
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(3.27)
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1 1 1 1
+ + +
zS[c,+<3 C, c4}}
2 1 .t ,_t .t ., 1 ,_1 +
@ {Zl [ C,C3  C2Cs  CpCs ' C3Ca C3Cs  CoCs
1 1 1 1 1 1
+ + + + + +
‘21 C1C; T C1Ca T C1Cs CT3Ca  CaCs @ CoCs
1 1 1 1 1 1
+ + + + + +
231 C1Cy ' C1Cq T C1Cs ' C,Ca T C,Cs T CaCs
1 1 1 1 1 1
z — + + + + + +
‘1 C1C; C1C3  C€1Cs  C,C3 C,Cs C3Cs _
1 1 1 1 1 1
+ + + +
25[c1c2+c1c3 C,Ca  C,Cs ' C,Ca c3c4”
Cr+C3+C4+Cs C1+C3+C4+Cs
(04 Zl + 2 +
C,C3C,Cs C,C3C,4Cs
, C1+Cr+C4+Cs s Ci1+C,+C3+C,
| €1CyC4Cs Yl €1CaCsC
; C1+C2+C3+C4 + 21 + 22 +
5 Cc,C,C5C, C,C3C4Cs €,C3C,Cs
23 24 25
+ + = 2
C.iC,CaCs 1 TG, GG, T Cic,c.¢. - ° (3.28)
To maintain similarity with the forms of the quaternary and temary equations, we
can separate the general term in the coefficient for a in Equation (3.28) into four

fractions:
5 Cj+ck+cl+cm =2 1 + 1 + 1 + 1
‘I ¢jCCiCn “1CCiCn " C;CiCn CiCCpn  CCiC

(3.29)
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After multiplying each of the five fractions by z; and collecting terms with common

Jenominators, the following form appears:

Z"+Zj

—_— 3.30
G G C, -39

5
We can invoke ) z; =1 to construct fractions with similar subscripted terms in
i=l

both numerator and denominator:

I—Zk—Zl-Zm
Ce G Cp

(3.31)

This yields a final polynomial expression of the same general form as those of War-

ren (1991):

o+ o 1 -2z . 1-22+ 1-24 . 1—z4+ 1-2z4 .
C, C, Cs Cs Cs

2 1"2]-22 1—21—23 1-21-24 l-Zl—Zs 1—'22—23
a + + + +
C,C; C,C; C,Cy C:Cs C2C;

1—22—24 1—Z2-25 1“23-‘24 1—23—25 1-'24—25
+ + + + +
C,Ca C, Cs C,C, Cs Cs C.Cs

1-21—22‘23 1—21-22-24 1—21-22"25 1"21-23—24
a + + +
C.CLs C.CCa C,CoCs C.C+Ca

1"21-23—25 1-21-24‘25+1-22-Z3‘24 1-22-23—25
+ +
C,CCs C,CaCs C,CoCa C,C+Cs

+

1=-29-24-25 1-23-24-24 2 z,
+ + + + +
C,C4Cs C3C4Cy C,C3C4Cs  C1C3C,4Cs

23 + Z4 + Zg
C,C,C4Cs C,C3C43Cs C,C,C3C4

0 (3.32)
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This yields the polynomial expression for a quinary system:

i=1 ] i=] j=i+l J
4 5 6 (1-2z -2, -2) 5 z;
0[):2 X ¢ k}+z — =0 33
i=1 j=i+l k=i+2 U B i=1 T1¢<;
j#H !

3.3.2 Reduction to Quaternary System

Before proceeding to develop the equations for six- and seven-component sys-
tems, we must ensure that the quinary equation will reduce to that of a quaternary
system under the proper conditions. This is accomplished by setting z5 equal to

zero and K 5 equal to one (Warren, 1991).

When z5 becomes zero, so must x5 and ys. This would seem to leave K

undefined:

. 0
lim Kg = — = fi .
] ’1m 5 0 undefined (3.34)
ys—0

We can remove this difficulty by the application of 1’Hospital’s Rule. The expres-

sion becomes:
@s
dys 1
lim K¢ = —— = — =1 .
o3 T @k, T 1 (3.35)
ys—0 dxs

Therefore, Cs = Ks~1=1-1=0.
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5
To avoid division by zero, multiply Equation (3.32) by [] C; :

i=
atC,C,C3C,Cs+
a3[(1—zl)C2C3C4C5+(i—22)C1C3C4C5+(1—23)C1C2C4C5+
(1-24C, c2c3c5+(1-z5)c1c2c3c4]+
a2[(1—zl—zz)C3C4C5+(1—zl—z3)C2C4C5+(l—zl—z4)C2C3C5
+(1-2;-25)C7C3C4+(1-25-23)C1CyCs+ (1 —-29-24)C;C3Cs+
(1-27-25)C;C3C4+(1-23-24)C1CyCs5+(1-23-25)C1C,Cy+
(1—24—25)C1C2C3]+
a[zlcl(C2+C3+C4+C5)+z2C2(C,+C3+C4+C5)+
23C3(C1+C+Cy+C+24C4(C1+Cr+C3+Co +

25C5(C1+C2+C3+C4)]+Zl C1+22C2+Z3C3+Z4C4+25C5=0

(3.36)

Let z5 and C equal zero:

a3C1C2 C3 C4+

az[(1—21)C2C3C4+(1”Zz)C1C3C4+(l"Z3)C1C2C4+
(1-24)C1 C2C3]+
a[zlcl (C2+C3+C4)+22C2(C1+C3+C4)+Z3C3(C1+C2+C4)+

Z4C4(C]+C2+C3)+ZlC1+22C2+Z3C3+Z4C4=0 (337)

o
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This is identical to Equation (3.21) in Warren’s work, which is the expanded form

of the quaternary equation. We can now safely derive the expressions for six- and

seven-component systems.

3.3.3 Senary System

o8 + o [26: (122;)] + o [i 26: u_’_i)} +
i=1 i i=1 j=i

az[i é i (l—z,--zj-zk)] .

is1 jesik=iv2  Ci Cj Ci

Z.

3 4 5 6 (I‘Zi-Zj—Zk—ZI)
a [Z PIEEDYD)
i=l j=i+l k=i+2 [=i+3

6
C: C; C; C, >

=1 6
i= HCJ

]#l

0

3.3.4 Septenary System

21 jhw kmwisies GGG G

7

i 5 53 g 0mazuzacuow)

il jael k=e2 =i mma CiCiG G -C
z»

:
e

,
tE

(3.38)

(3.39)
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3.4 Formulation of a Generalized Equation for the Vapor Fraction

The objective function can be recast in the following form:

N N
2z G JIA+aC;)=0, where G, C; = constant (3.40)

i=1 i

Equation (3.40) is in the form of the generating function for the elementary sym-

metric functions, a,:

MMA+tx)= 3¢ ax) (3.41)

i=] r=0

According to Macdonald (1979), ag(x;) =1 and a,(x;) =0 forall r > n.

We can now express the objective function in terms of the r-th elementary sym-

metric function in C; :

N N N N-1 .
'Zl Z; C" I_I (1 + C}) = zl Z; C" §0 o a, (Cl""’ Ci geoey CN) =0 (342)
i= Jj#i i= r

where C; indicates the exclusion of the i-th term from the operation.

Since o does not involve i, we can invert the order of the summations:

N-1 N a
Z a { Z Z; C" a,(Cl,..., Ci""’ CN)} =0 (343)
r=0 i=1

A working definition of the elementary symmetric function a, could be "tak-

ing permutations of the elements of a set r terms at a ime.” For example,

al(C,. C2,..., CN) = (Cl + C2 + -+ CN) (344)
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az(cl—ls Cz-l,..., CN—I) = 1 + 1 + . 1

| (3.45)
CiC, CiCs Cn-1 Cy

The condition C; is equivalent to the j=i condition imposed on the summa-
tion terms in the earlier versions of the a-polynomial and herein lies the computa-
tional awkwardness. We want to find an expression that allows the summation to
proceed over all N components, which is an operation readily represented by a
DO-loop in computer programming.

To eliminate C;, we must expand the symmetric function. In Chapter 4, we

will tackle this problem after a discussion of symmetric functions.




Chapter 4

DEVELOPMENT OF THE GENERALIZED EQUATION

In this chapter, we shall present a brief introduction to the theory of symmetric
functions to show why they provide such a powerful tool to express permutations.
Then we will show the reasoning used in the search for a recursive expression for a
in terms of N, C; and z; . Finally, we will present a generalized multicomponent
equation for the vapor fraction, a, that is compact and readily programmed on a

computer.

4.1 Introduction to Symmetric Functions

4.1.1 Notation and Definitions of Partitions

Any collection of v non-negative integers (excluding zero) whose sum is w is
called a v-partition of w. The individual integers are referred to as parts of the par-

tition and are conventionally written in descending order of magnitude.

David et al. (1966) state that if there are A distinct parts, say p, P2..... Pa
with p>p,>p3> - - - >pj 2 1 and if p; is repeated &x; times, with i =1, 2,.., A,
then the partition is written (pr ‘p;’ .. .pf"). The weight, w, of the partition is

written as

A
w = Zpﬂt,— (41)
i=1




37

and the number of parts, or length, is

A
vV = ZTC,' 4.2)

i=1

Macdonald (1979) refers to ®; as the multiplicity of i in the partition. For example,

the partition (42213) has weight 13, 6 parts and 3 distinct parts. In our notation,

py=4 and nty =2; pp=2and my =1; py =1land 73 =3

4.1.2 Symmetric Functions

A symmerric function is one in which the individual parts can be interchanged

without altering the value of the function, such as

Yx; = x;+x+x3+ -0 +Xx, (4.3)

The number, n, of the quantities x does not affect the relationships between the
various forms of the symmetric functions, but does appear in the final expressions.
David et al. (1966) write

n n n

Yxi=(1), Y x'=(r)and Y x,-’xj'-' =(rs), forr #s (4.9)

i=1 i=1 i%j
This leads directly to the definitions of two special forms of symmetric functions.
MacMahon (1920) defines the unitary or a-functions as

n

a = (1") = 2 Xi X, » r=12, --- 4.5)

i1<...<i,

and the power sums, or s-functions, as

s’=(r)=zn:x,~',r=l,2,--- 4.6)
i=]
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A special case of the a-function is the augmented unitary symmetric function, u,

(David et al., 1966):
u, = [1"] =r(1) =rla, = 3 x.%, 4.7

summed over all ordered sets iy, . . ., i,.

4.1.3 Recursive Expressions for Symmetric Functions

4.1.3.1 Interexpressibility Tables

Roe (1918) compiled comprehensive interexpressibility tables relating the vari-
ous classes of symmetric functions to one another. These consist of a matrix of
coefficients to be used in a polynomial which might yield, for example, u, = f (s,).
Of 1nterest to this work is her relationship between the a-functions (often called ele-
mentary functions) and the s-functions; it is presented here in a form more clearly

expressed by David et al. (1966):

7‘
( 1)(r+m) Spl

4.8)
Tl owm

s
Pa
2 I

1 A
ar:,._ =Y X
m=1 P

P

David et al. (1966) also used this equation to construct interexpressibility
tabl-s describing polynomials in power-sum series (s) for a-functions up to and
including weights of 12. Foi instance, a unitary symmetric function of weight 3

would be represented by the following polynomial from their Table 1.5.3:

ay= L0300+ 23] 49)
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which, in terms of s-functions, is:

a3=—317[s13 —352Sl+283] (410)

and, when written as power sums, becomes:

i=l

n 3 n n n
a:,:%—{ [Z x,-] - 3§xi2§xi + 221 x,-3} 4.11)

However, neither Equation (4.8) nor Equation (4.11) is conducive to solution by

computer without a tremendous table look-up effort.

4.1.3.2 Determinant Form

Fortunately, David et al. (1966) present another relationship between g, and

s, in determinant form:

S 1 0 0

0
s, 54 2 0 0
$3 S s 3 0
1 1 3 %2 9 det M
a = —;!—u, = —I'Tdﬂ Se S3 Sy 8 0 M 4.12)
r-1
Sr Sr-1 Sp-2 Sp-3 00 8y

This provides a practical method of calculating a, that is also readily programm-

able on a computer.




4.2 Search for a Recursive Expression for the Vapor Fraction

Armed with a working knowledge of symmetric functions, we can manipulate

the a equation developed in Chapter 3:

N-1 N a
Z o’ {Z Z; C,' a,(Cl,..., C",..., CN)} =0 (343)
r=0 i=]

to eliminate the exclusion term C; and expand the symmetric functions into a more
recognizable form. We will examine the results for several values of r and use

them to write a general expression for a as a function of N.

4.2.1 CaseI: r=N-2

Equation (3.43) yields the following coefficient for a:

W-2 + ~
(o A ) Z Z; C,' aN_z(Cl,..., C,' yoosy CN) (413)
i=1

We can expand the symmetric function ay_, as shown in Equation (4.14). Since

the exclusion of C; from the product on the RHS gives (N-1) terms, we must sub-

tract CL from the sum to yield (N-2):
ay 2(Cl""’ CA.’_“' CN) = (CICACN) ._!... + .l. + o+ L - L (4.14)
B ' ' ¢, G, Cv G

To eliminate C; , we can write the product on the RHS of Equation (4.14) as

A C+C
(C~CiCy) = (;C.’Y_)_ (4.15)

This maneuver will allow the summation to proceed over all N components.
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After substituting Equation (4.15) into Equation (4.14), we have:

. Cy-CW) 1 1 1 1 1
aN-Z(Cl""’ C“,..., CN) = IC- N [Cl + C—z + - 4 —C,';V- - —C— (416)
] $

Substituting Equation (4.16) into Equation (4.13), cancelling C; , multiplying by z; ,

and then summing over i gives:

N N
N-2) N | R AR SRR S - 4.17
a (CCN) [Elz,][cl + C2+ + CN] Y . 4.17)

: N N
We recall that ¥ z; = 1 and recognize that (C,~Cy) = [] C,. Noting the pres-
i=l k=1

. .. 1 1 .
ence of an elementary symmetric function in [—C—- + -+ o | we can write
1 N

Equation (4.17) as:

o™-2)
k

1 C L Ll_g & 4.18
r=Il klla Cl,...,-CT —Z——- (4.18)

4.2.2 Case II: r =N-3

Equation (3.43) now becomes:
N -
aw-3){ E Z; C‘- an_3 (Cl,..., C" geeey CN )} (419)
i=1

We can expand the symmetric function ay_3 as shown in Equation (4.20). We

- A . . . 1 . .
eliminate C; in the same manner as in Equation (4.15) and remove C ina similar
i

fashion. But this also deletes the term -C_’li. which is necessary to cancel the
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corresponding term in the product. Therefore, we must compensate by adding é:
i

. C1CN) | 1 1
very Ciyenry = + T
aN—3(C11 Cl CN) C,‘ [C1C2 C1C3 +
1 1|1 1 1 1
————— e | — — ¢ e ] — 4.20)
Cn-1Cv G [Cl C2 Cn ] C‘Z]

Substituting Equation (4.20) into Equation (4.19) and making consolidations similar

to the previous development yields:
” 1 1 1 1 |¥ oz Ny
(N-3)
o Ck 75 ] et Sl Bl / | R e —_— 4 —
[Ig ] [Cl CN] l[cl CN]'E C; Z‘; of
(4.21)

423 Casell: r=0

We have saved consideration of this case for last because the properties of a
are not readily apparent. It would seem reasonable to interpret ag(Cy,..., Ci»eor Cy)
as meaning "taking permutations of the elements of a set zero terms at a time."
However, when r = 0, " =1 and we know from previous developments that our

a-polynomial does have a constant term. Therefore, ao(C;,..., C;,..., Cy) must

equal one, after Macdonald (1979). So, for r = 0, Equation (3.44) becomes:

N
{Zn&} (4.29)
i=1
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We show Equation (4.18) and Equation (4.21) again to look for patterns that may

assist us in writing the expression for the (N —p)-th term:

N 1 1 Nz

N-2) !

o C.lla —_—ery —| - —_ (4.18)
[ ] ‘[Cl C~} %c

4.21)
4.2.4 The General Case: r= N-p),p=1,2,.. N
After substituting for r, Equation (3.43) becomes:
N N ~
Y aV?) {3z Ciay,(Chns G Cy)p = 0O (4.23)
p=1 i=1

By continuing the expansion of this equation in the same fashion as in the first two
cases, we note a descending order of the symmetric function and an ascending

exponent of C; with each additional term. This leads to a general expression:

. .
z (Cl"'CN)[ap-l(C iten CyY -

i=1

N

2 oaN-p)
p=i

Cilap o(Cilhs CFNY + €72, 5(Ci . CFY) = €30, ((C .., CFY)

+ - 2 G, (CL.L CFY iC,-""‘”]} =0 (4.24)




N
Multiply by z; , sum i from 1 to N and recall that (C;--Cy) = J] Ci:

k=1
z P IT Ce ap-l‘ap-zzc—+ap-3_f.?2'—“‘+
p=1 k=1 i=1 “i i=1 C;
-ne-D =
-1 E o 1)}} 0 (4.25)
N
Since J] C; does not involve p, we can move this term outside the summa-
k=1

tion sign and then divide it out as a factor common to all powers of a. By examin-
ing the relationship between p, the subscripts of a and the superscripts of C;, we

can collapse Equation (4.25) into a more compact form:

N

Z aW‘p) { f [(_1)]+1 (a _])Z 1] } =0 (426)

p=1 j=1 i/~

where a,_; = a,_;(C{',.,CN") (4.27)
ap=1 (4.28)

Ci=K)r -1 (4.29)
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4.3 A Generalized Multicomponent Equation for the Vapor Fraction

Using the determinant expression for the elementary symmetric functions that was

presented in 4.1.3.2, Equation (4.27) becomes:

- - det M
ay_j=a,_j(C; LGyl = (pc—j)T (4.30)
The matrix M has dimensions (p~—j) x (p—j) and elements given by:
Se—141 if l Sk
[myl =1k ifl =k+1 (4.31)

0 ifl > k+1

N A
The s elements are given by 55, = Y [—-l—] , A=1,2,..,(p-)) (4.32)

i=l




Chapter §

VALIDATION OF THE GENERALIZED EQUATION

The first test of validity for Equation (4.26) requires that it be equivalent to the
form of the objective function presented in Equation (3.40). Second, it must gen-
erate the same coefficients for the a polynomial that were produced through the
expansion of the objective funcdon in Equation (3.25) through Equation (3.32).
Third, the equation must predict the proper vapor fraction for a fluid undergoing an

isothermal, isobaric flash process.

The first test is supplied by a mathematical proof in Appendix A. The second
test can be accomplished by comparing the coefficients produced by Equation (4.26)
with those of Equation (3.33). Since this equation has already been shown to
reduce to that for a quaternary system under the proper constraints on z5 and K5,
then, by induction, we can state that the polynomial produced by Equation (4.26)

will do the same and therefore should be valid for any number of components.

The third test will be satisfied by comparing the equilibrium ratios generated
by Equation (4.26) with experimental values determined for several multicomponent

hydrocarbon fluids.

5.1 The Generalized a Equation for a Quinary System

For a five-component system, Equation (4.26) becomes:

5 . 5 ¢
forglrmiidle o

J=1

_—
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which will yield a quartic polynomial in a:
Haot + paa® + Py + o+ pg =0 (5.2)

5.1.1 Coefficient p, (p = 1)

u4=ao(c,'—l)[21+22+Z3+Z4+25] (5.3)

We have already said that ay(C i’l) is defined as one and the sum of the mole frac-

tions alsc equals one, so Equation (5.3) yields:
He=1 5.4)

5.1.2 Coefficient y, (p = 2)

5 35 zl.
My=a(Ci) Yz —aoCiTH I ol (5.5)
l'=l l=1 i
1 1 1 1 1
= +—— =+ — + 1) -
o [ AT A N }( ’
2, Z9 Z5 Z4 Zg
1 .
()[C1+C2+C3+C4+C5] 66
1-2 -2, 1-2z3 1-: 1-2
hy = — : 2 (5.7)
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5.1.3 Coefficient y, (p = 3)

Z; Z;
c;?

C. (5.8)

N N
Ha=a)C) X z; —a(C7) X
=1

i i=l

5
+agCH X
i=1

1 1 1 1 1 1 1 1
= + + + + + + +
H2 [ C1Cy  CiCs  CiCa ' CiCs ' C;Cs  CTiCa TCols  CsCa

1 1 1 1 1 1 1 21 22 23
+ + - + + + + + +
CiCs C4Cs ]( ) { C, C, Cj Cs, Cs ] c, C, Cj
24 ZS Zl 22 23 24 ZS
+—+—=—|+(1) + + + + (5.9)
Cq Cs] [ ct ¢} ci c} c? ]
Hy = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +

C1C2 C1C3 C1C4 C1C5 C2C3 C2C4 C2C5 C3C4

1 1 2 22 23 Z4 Zs 21tz zy+23

+ -— -—
CiCs CCs CcE C?2 Cc2 Cc} c& CC; CiCy

21+Z4 Z)+ 24 27+ 24 2+ 24 27+ 24 Z3+ 2,4 I3+ 2z5
CiCa CiCs CiCs CiCs CoCs  CaCs  Cols

24+ 2 b4 b4 b4 24 F4
4 ‘5 l2 22 + 32 + > + 52
Cis Cc} c? c?2 c} ci

(5.10)

1-2,- 1-2,- 1 -2z, - 1-2,- 1-2,-
1~ 22 + 21— 23 + 1™~ 24 + 1- 25 + 22— 23
c,C, C,Cs C,C, C,.Cs C,Csy

Ky =

1l-2z,-12 1-2,-2 1-2,-2 1-2,-2 1-2,-2
2 4+ 2 5+ 3 4+ 23 s+ 24 5
C,C, C.Cs CiC, CiCs C4Cs

(5.11)




5.1.4 Coefficient y, (p = 4)
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- 3 4 5z ) 5z 4 5 2z
W =a3C)Y 2 —aCTOE T +aiGTHY —7 - aGTHY — (.12
i=1 i=1 “i i=l C,’ i=l1 C,'
MUy = 1 + 1 + 1 + 1 + L +
171 ¢c,cCy €€, C,CCs C1C3C4 CCaCs
1 1 1 1 1
+ + + + 1) -
CiC4Cs C,C3C4 CyC3Cs  CoC4Cs  C3C4Cs ]( )
1 1 1 1 1 1 1 1
+ + + + + + + +
1 1 3 22 Z3 24 Zs
+ + + +
CCs * CoCs ] C; TG, TG T T Cs}
1 1 1 1 1 Zy 22 Z3 Z4 Zs
+ + + + -
[ ¢, €y C3 C4 Cs ] c? ¢} c? ¢} «c? }
¥4 Z3 23 ¥4 Zs
D =5+ =5+ +—=5+— (5.13)
c; ¢3 ¢} ¢} c;
¥4
It is evident that the = 2‘c terms in the second part of Equation (5.13) will cancel
itj

those in the third part, while the

c?

terms in the third part will negate the entire

fourth part of the equation. The first and second parts yield:

1-2,-25-25

1"21“22-24

l-2,-29-25 1-23-23-24

W =""c¢.c,

C,CoCa C,C,Cs C,C5Cq
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1-2,-23-25 l1=2y~-24-25 1=-29-23-24 1-27-23-25

P TG0 T CiCaCs T CCsCa T CLaCs
1-25-24-25 1-23-24-12;5
+ 5.14
CyC4Cs C3C4Cs G419
5.1.5 Coefficient i, (p = 5)
Ho=8a4CT) T 2 -as(CT) X 7 +ax)CT) X —5 -
i=1 i=1 Ci i=1 C;
€N T 2t alch 3 = (5.15)
a(C; —— + ay(C; — .
I\~ P Ci3 (A fart C,-4

The analogous cancellations of the higher-order CL terms will occur, leaving a
i

sum of five terms having the form

1-2z,-2; -2, -z
C.CiC G

(5.16)

Since the mole fractions must sum to one, we can replace the numerator of Equa-

tion (5.16) with the mole fraction of the remaining component, z,, , to yield:

2, Zy + Z3
+
C,CC4Cs CCCCs  CCCCs

-+

24 Zg
C1CoC+Cs | C1C1CoCa

(5.17)

A term-by-term comparison with Equation (3.32) shows that the generalized a poly-

nomial [Equation (4.26)] produces identical results.
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5.2 Reproduction of Experimental Vapor-Liquid Equilibrium Data

5.2.1 Flash Calculation Package

The flash calculation package used in this work incorporates the K-value equa-
tion of Wilson (1969) and the modified PREOS proposed by Stryjek and Vera
(1986a). An attempt was made to use the K-value prediction of Varotsis (1989)
but, as noted in Chapter 2, it was developed to characterize a broad-spectrum
petroleum reservoir condensate or crude oil. It experiences difficulty handling an
arbitrary hydrocarbon mixture, such as the artificial systems for which equilibrium

data is available to validate this work.

The volume correction of Mathias et al. (1989) and the complementary calcu-
lation of Schick and Prausnitz (1968) for mixture pseudo-critical volume are incor-
porated into the PRSV EOS but since it is only required to generate compressibility
factors and fugacities, the modifications have no noticeable effect on the computa-
tions. The PRSV EOS shows marked improvement over the PREOS when used to

duplicate bubblepoint and dewpoint studies performed by Warren (1991).

The binary interaction coefficients used in the PRSV EOS are taken from
Knapp et al. (1982) and Walas (1985). Physical property data and equation param-
eters for the chemical components are extracted from Stryjek and Vera (1986b,¢),

Kumar (1987) and Proust and Vera (1989).

The computation of the determinant used to generate the elementary symmetric
functions is accomplished with a modified Gaussian elimination routine. The first
clementary symmetric function, a;, is defined by a [1x1] matrix, whose deter-

minant constitutes the element itself. By definition, a is set equal to one.
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The polynomial is evaluated at the bubblepoint line (o = 0) and an interval-
halving technique is used to march across the two-phase region until the value of
the polynomial changes sign, indicating the vicinity of the root. Then a Newton-

Raphson iterative search is conducted to converge to the exact value of o.

5.2.2 Binary System

The fugacity-based flash algorithm is used to replicate the equilibrium ratios
determined by Bloomer et al. (1953) for a methane-ethane system at a temperature
of —60 °F over a pressure range of 100-900 psia. Comparisons of calculated and

empirical values of K¢y, and K¢y, appear in Figure 5.1 and 5.2, respectively. The

results lie within the margin of error attributable to the PRSV EOS.

5.2.3 Septenary System

Standing (1977) provides a sample flash calculation for a seven-component
hydrocarbon system reported by Dodson and Standing (1941), complete with values
for experimental K; and the vapor fraction. This sort of data allows the calculation
of a solely on the basis of computing the coefficients of the a-polynomial and
determining the applicable root, with no recourse to the equation of state. Once the
interval-halving search provides an initial estimate of the root, the Newton-Raphson
technique converges in three iterations to a value of a identical to that calculated by

Standing.
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Figure 5.2: A Comparison of Predicted and Experimental Equilibrium Ratios for

Ethane
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5.2.4 Predicting Roots with the Fourier-Budan Theorem

A useful theorem for predicting the number of roots of a polynomial that can
occur on a particular interval is that of Fourier and Budan (Barbeau, 1989). Sup-
pose p(t) is a polynomial over the field of real numbers, R, and that 4 and v are real
numbers with u <v and p(u)p(v) # 0. The number of zeros between u and v
cannot be greater than A — B, where A is the number of changes of sign in the
sequence { p(u), p’(u), p”’W), ... ") } and B is the number of changes of
sign in the sequence { p(v), p’v), p”(v), ... p™(v) }. If this number differs

from A = B, it must do so by an even amount.

An interesting aspect of the polynomial expression for the vapor fraction is its
capability to mathematically confirm the existence of a unique value within the
two-phase region for a particular set of feed conditions. This is equivalent to stat-
ing that the polynomial has only one zero on the interval 0 < @ < 1. From the phy-
sics of the problem, we know this to be true but, by the use of the Fourier-Budan

theorem, we can also prove it rigorously.

Let us test this theorem on the septenary system of Standing (1977) utilized in

§.2.3; this is represented by a sixth-order polynomial:

Re® + pse® + peat + paa® + pya? + o+ g =0 (5.18)
where
Ho=  -9.58519 s =  87.24949
= 6590501 pg= =21.71701
Wp= -12072959 ps=  —1.76522

He = 1.00000
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We can differentiate Equation (5.18) six times and form the derivative sequences

for u =0 and v = 1. The sign changes are summarized in Table 5.1.

Table 5.1 - Derivative Series of Fourier-Budan Theorem:
7-Component Hydrocarbon System (Standing, 1977)

u=0 v=1
f (@) - +
[ + -
f (@) - +
(o) + +
f 9o - -
@) - -
FANC) + +

A=5 B =4
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Since A — B =1, there exists only a single root of the polynomial on the
interval [0,1]; an examination of the graph of the function (Figure 5.3) confirms this
fact. Therefore, we can use the interval-halving and Newton-Raphson solution pro-
cedures outlined at the beginning of this chapter with confidence that they will

obtain a unique, realistic value of the vapor fraction.

5.2.5 Decenary System

Gregory et al. (1971) performed equilibrium measurements on a lean natural
gés at cryogenic conditions. It is reported as a ten-component system with the feed
composition shown in Table 5.2. This is a very "sparse” ten-component gas, with
six components present in extremely dilute concentrations. The K-values for the
last four constituents were zero for eleven of the sixteen operating conditions tested
in this work, denoted in Table 5.3 by the run number assigned by the investigators.
The remaining twelve sets of published data duplicate conditions in one of the
tested runs or are incomplete due to apparatus failure. The use of the Fourier-
Budan theorem provides warning that perhaps this gas would be better represented

by an equivalent "lumped"” system.

Recall that the number of roots predicted by the Fourier-Budan theorem is the
maximum possible and may differ from the true value by only an even integer.
This is demonstrated in Table 5.4, where both the predicted and actual number of
roots for each run are tabulated. The Newton-Raphson technique converges to the
experimental value for ten of the sixteen runs. Three other data points follow the

proper trend, while no root is found on the interval [0,1] for three other conditions

(Figure 5.4).
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Table 5.2 - Feed Composition:
10-Component Natural Gas
(Gregory et al., 1971)

Component 2; Component Z;
e ==L—_=Q
Nitrogen 0.00600 n-Butane 0.00070
Methane 0.95970 i-Pentane 0.00030

Ethane 0.03000 n-Pentane 0.00010

Propane 0.00390 | 3-Methylpentare | 0.00025

i-Butane 0.00070 | 2-Methylhexane | 0.00015




Table 5.3 - Experimental Flash Conditions:
10-Component Natural Gas
(Gregory et al., 1971)

%_——'—T———

Run P{;Z?:)re Temg,%r)ature Run Pr(xe,ss §;1)re Tcmg%r)ature

1 300.0 -156.3 14 100.0 -200.0

3 100.0 -206.0 15 500.6 -127.0

4 700.0 -103.0 18 23.0 -252.0

7 500.0 -125.0 20 497.0 -129.0

8 498.5 -120.0 21 235 -251.5

9 695.0 -105.0 25 700.0 -107.0

10 100.0 -203.3 26 298.0 -157.5
12 100.0 -195.0 28 500.0 -130.0
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Table 5.4 - Results of the a-Polynomial and Fourier-Budan Theorem:
10-Component Natural Gas

(Gregory et al., 1971)

Roots on {0,1]
Run | Root Limit g;;;xtsogx;
(Actual) :
Tterations | 1iial Guess | Calculated | Experimental

1 2 3 0.605 0.603 0.603
3 0.825 0.822 0.603
3 2 (0) * sk mak ek 0.155
4 2 (0) * [T T T sk 0911
7 I 4 0.775 0.772 0.761
8 1 3 0.905 0.904 0.908
9 2 (0) * T I shdkk 0.795
10 4 (2) 4 0.695 0.692 0.687
4 0915 0912 0.687
12 2 4 0.895 0.891 0.890
5 0.965 0.966 0.890
14 3 4 0.835 0.830 0.830
15 2 3 0.735 0.737 0.747
3 0.845 0.843 0.747
18 4(2) 3 0.045 0.044 0.109
3 0.415 0.415 0.109
20 4 (2) 3 0.585 0.587 0.591
3 0.775 0.773 0.591
21 2 4 0.015 0.011 0.078
) 3 0.645 0.642 0.078
25 1 3 0.385 0.380 0.548
26 5 3 0.435 0.434 0.430
28 3 4 0.485 0.480 0.486
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Figure 54: A Comparison of Predicted and Experimental Vapor Fractions for a

10-Component Natural Gas




63

An examination of graphs of the polynomial’s behavior over a range of a for
Runs 3 and 4 (Figures 5.5 and 5.6) confirms the algorithm’s prediction that no roots
exist within the phase envelope. The case of Run 9 is not so obvious. Its graph
(Figure 5.7) shows that the function exists entirely above the abscissa; hence no
root is possible. However, if the resolution of the graph is increased to examine the
region very near the axis, two local minima are revealed (Figure 5.8). One of these
corresponds to the experimental value of o determined for this run. The polyno-
mial is attempting to represent the system’s behavior but is not completely success-
ful because the low concentration of certain components effectively prevents the gas
from acting like a decenary system.

It is instructive to compare the form of the a-polynomial with that of the
Rachford-Rice objective function which is superimposed on Figure 5.7. The same
high-resolution scan of the graph of the latter equation depicts no equivalent max-

ima which might identify the vapor fraction in the manner of the polynomial.

5.2.6 Lumping a Decenary System into a Quaternary System

The a-polynomial successfully converges to the proper answer for a majority
of the runs; however, it also yields multiple roots where the physics of the problem
allows only one. This suggests that the system is not being properly modeled. The
categorization of the fluid as a ten-component natural gas is overly generous in light
of the fact that six of its chemical constituents are present in mole fractions meas-
ured in the ten-thousandths. It was decided to represent this sparse gas as a four-

component lumped system, consisting of methane, ethane, nitrogen and propane.

The mole fractions of this new fluid are normalized and the resulting cubic

polynomial in a is solved. The Fourier-Budan theorem predicts a maximum of one
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root in the two-phase region, to which all sixteen runs converge. The numbers
tabulated in Table 5.5 and displayed graphically in Figure 5.9 attest to the validity
of this lumping scheme. An attempt was made to eliminate the next leanest
component--propane--from the mixture and model the system as a ternary, but this

resulted in spurious roots for all data runs and was hence rejected as unrealistic.
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Table 5.5 - Resuits of the a-Polynomial and Fourier-Budan Theorem:
"Lumped"” 4-Component Natural Gas

(Gregory et al., 1971)

Run | Root Limit | pesior Roots on (0.1
(Aemah licrations Initial Guess | Calculated | Experimental

1 1 3 0.635 0.631 0.603
3 1 3 0.035 0.038 0.155
4 1 3 0.995 0.998 0911
7 1 3 0.815 0.819 0.761
8 1 3 0.935 0.932 0.908
9 1 3 0.925 0.920 0.795
10 1 3 0.715 0.711 0.687
12 1 3 0.895 0.899 0.890
14 1 3 0.845 0.842 0.830
15 1 3 0.765 0.770 0.747
18 1 3 0.035 0.037 0.109
20 1 3 0.635 0.631 0.591
21 1 3 0.015 0.012 0.078
25 1 3 0.775 0.779 0.548
26 1 3 0.475 0.473 0.430
28 1 3 0.535 0.536 0.486
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusiors

1. The Rachford-Rice objective function can be represented as a polynomi ° in a,
the system vapor fraction. Its coefficients involve elementary symmetric func-
tions, which can be expressed in terms of a determinant whose elements are

functions of equilibrium ratios and feed composition.

2. The polynomial has been shown to be well-behaved within the two-phase
vapor-liquid region if the system is properly defined in terms of the number of
its components. The vapor fraction root on the interval [0,1] can be quickly
determined using an ordinary interval-halving technique to provide an initial

estimate to the Newton-Raphson iterative method.

3. The regular behavior of the polynomial lends itself to use as a descriptive tool
for the conditions of the system within the phase envelope. The Rachford-
Rice objective function is not capable of this task as evidenced by Figure 5.7;
its unpredictable, singular nature offers no clue to the reason a root was not
found on the interval [0,1] for this case. As discussed earlier, a close exami-
nation of the curve of the polynomial revealed a local minimum at the experi-
mental value of a. This became a realistic root (& < 1) once the system was

lumped into four coinponents.
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4. The theory of polynomials is well-developed and their behavior and zeros can
be predicted with good confidence. By the use of the Fourier-Budan theorem,
it can be shown mathematically that only one real root for the a-polynomial
can exist on the interval [0,1] for a well-defined system. This eliminates the

need to solve for all the roots of an N-th order polynomial.

5. The Fourier-Budan theorem can be used as a tool for investigating various
lumping schemes whereby multicomponent fluids are condensed to equivalent
systems composed of fewer components. The phase behavior of sparse fluids
having dilute concentrations of several constituents does not seem to be well-
described by the polynomial of degree appropriate to the number of com-
ponents. In this case, the polynomial yields no roots or at least two roots
inside the phase envelope for certain temperature and pressure conditions. It
appears that a lumping scheme can be tuned by generating pseudocomponents
to give successive polynomials of lower degree until only one root is deter-

mined on the interval 0 € a £ 1.,

6.2 Recommendations

1.  Further study should focus on coupling the polynomial algorithm to an equa-
tion of state and extending this work to flash calculations involving more than

two phases.

2. Timing studies could be conducted to determine the exact savings in CPU time
realized by the use of the polynomial instead of the Rachford-Rice objective

function.
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Peng et al. (1975) estimate that 75% of the total computing time in composi-
tional reservoir simulation may be related to the phase-behavior part of the
program. The savings in computational workload realized by the use of the
generalized equation developed in this work might be applied to the employ-
ment of an EOS better able to predict fluid thermodynamic properties. The
highly nonlinear nature of the equations proposed by Benedict, Webb and
Rubin (1940, 1942, 1951) or Lee and Kessler (1975) require iterative solutions
but they yield much more accurate representations of fluid behavior, espe-

cially of nonhydrocarbon systems.

Since the coefficients of the generalized polynomial depend only on the feed
composition and equilibrium ratios, research should continue to develop highly
accurate K-value prediction m:thods (e.g., on the basis of convergence pres-
sure). If this can be done with sufficient accuracy, the fugacity-convergence
approach and its inherent dependence on an equation of state can be sup-
planted for flash calculations where nothing more than the phase split and
compositions are required. The polynomial algorithm can be solved on a pro-
grammable scientific calculator and would provide the engineer with a valuable
predictive tool in situations where he or she has no access to a computer capa-

ble of running an EOS-based flash routine.
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Appendix A
MATHEMATICAL PROOF OF THE GENERALIZED EQUATION
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KNOWN:
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Prove that the coefficients of a in Equation (A-1) and Equation (A-3) are

equivalent:

o N . a,_;
{aN_,, (Crrer Cirerer CN)} = {1‘[ C, Lﬁl (-1y*! -é’L]L” (A-4)

k=1

PROOF:

We can express the a-function as:

N
I1G
A k= - A - -
ay—p(C o Cirs C) = o= Gy (€71 6T G (AS5)
N [}
I Gk
where k=lc represents (N—1) terms: N-p = (N-1) - (p-1)
i

Eliminate the € ‘-'1 term in the RHS of Equation (A-5) by rewriting the g-function

as:

@y 1 €7 CTn Y = 0, (€T CFY) = Gl a, 5(CT ., Ci11)(A6)
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Recall that ay = 1 and then substitute Equations (A-7), (A-8),..., (A-9) into Equation
(A-6):

@y (€71 ey €Tt O = @ (€11 CFD = GV ay (€T, D)
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After writing the recursive form for the RHS of Equation (A-10), the equation

becomes:
8y (€ s €71 CY) = f‘, -1y ¢,V Da,_; (A-11)
]
Substitute Equation (A-11) into Equation (A-5):
N
IT Ce
A k=1
aN.p(Cl,-.-, C",-.-y CN) = C’ Li ( ),+1 C ] -1 ] (A-lz)
Combine C; terms:
A N is1 Op-j
aN.P(Cl,..., C",..., CN) = H Ck i ("l)/ _C-l— (A-l3)
k=1 =1 i

Equation (A-13) Equation (A-4) Q.ED.




Appendix B
ALGORITHM FLOWCHART




START

INPUT:
Number of components
Feed composition
Equilibrium ratios

Subroutine ALPHACOEFF
Calculate coefficients of alpha

polynomial

Subroutine SYMFUNCTION
Calculate elementary symmetric
functions

Subroutine BUDAN
Predict number of roots of
polynomial on interval [0,1]
by Fourier-Budan theorem

Subroutine DETERM
Calculate the determinant of the

symmetric function matrix

Subroutine ALPHAROOT
Find the root of the polynomial

Output table with results

Function FACTORIAL

Calculate n!

Subroutine ALPHAPLOT

Generate various plots

STOP
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Appendix C
COMPUTER CODE
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7 Dec 91
BRETT D. WEIGLE
Petroleum and Natural Gas Engineering Section
Mineral Engineering Department
College of Earth and Mineral Sciences
The Pennsylvania State University
University Park, Pennsylvania

M.S. thesis
Advisor: Dr. Michael A. Adewumi
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* Program ALPHATEST (FORTRAN 77)

.2 20 200 200 3k 30 2 e 30 2002300 200 2 2 3 2 302 28 202K a3 o a0 0 e oK ek AR R ok ol e e e o o ook ol e o ok e o o ok ok ok ok ok

This program calculates values of the vapor fraction,
given equilibrium ratios, Ki, and feed mole fractions,
zi. It can be used to reproduce experimental results of
equilibrium flashes.

ALPHATEST calls ALPHACOEFF, BUDAN, ALPHAPLOT, and
ALPHAROOT
ALPHACOEFF calls subroutine SYMFUNCTION

VARIABLES: alpha = calculated system vapor fraction
beta = experimental system liquid fraction
coefficient = coefficient of alpha polynomial
Ki = equilibrium ratio for component i
molefrac = feed mole fraction of component i
Ncomp = number of components in feed
Npress = number of data sets to be evaluated
Pi = system pressure, psia
Ti = system temperature, F
xalpha = experimental system vapor fraction

It is formatted to input zi, temperature, pressure, liquid
mole fraction, and Ki

# % B % % X OB O % B B B R # X X X R X B B ® R B

MR RN R R R Rk kR kR R R R Rk e oo sk ek ok

IMPLICIT REAL*8(a-h,0-2)

REAL*8 Ki(500,100),molefrac(0:100)
PARAMETER(Npress=16 Ncomp=10)

DIMENSION alpha(500), beta(500), coefficient(0:100),
@ Pi(500), Ti(500), tarray(2), xalpha(500)

. Data Input

* The number of components (Ncomp) and the number of data sets
* to be run (Npress) are specified as PARAMETERs’

SYMFUNCTION calls subroutine DETERM and function FACTOR
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*

Open and Rewind Input and Output Files

OPEN(unit=1,file="indata’,status="0ld ")
OPEN(unit=7.file="table’,status="unknown")
OPEN(unit=8,file="plot " status="unknown")

REWIND(unit=1)
REWIND(unit=7)
REWIND(unit=8)

read(1,*) (molefrac(i), i = 1, Ncomp)
do 1000 j = 1, Npress

read(1,*) Pi(), Ti(j), beta(j)
read(1,*) (Ki(,i), i = 1, Ncomp)
xalpha(j) = 1.d0 - beta(j)

1000 continue
*

* Choose between single or multiple runs
*
write(6,*) ‘Evaluate one data set? enter 1°
write(6,*) ‘Evaluate all data sets? enter 2°
read(5,*) numsets

if(numsets .EQ. 1) then
write(6,*) ‘Enter number of data set for this run’
read(5,*) j
go to 2100

end if

do 2000 j = 1, Npress

2100 write(7,*) “ °
write(7,*) * °
write(7,*) * RUN
write(6,*) J = 7, j
write(7,2500) Pi(j),Ti(j),beta(j)
2500 format(Pressure = °,f6.1,” psia Temperature = °6.1,” F
@Liquid Mole Fraction = °f6.4)

Call subroutines

Calculate coefficients of polynomial

* # % & 8

call ALPHACOEFF(Ncomp,Npress,j,molefrac,Ki,coefficient)

* #*

Predict the number of roots on [0,1] by Fourier-Budan theorem
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call BUDAN( ,Ncomp,coefficient,numroot)

*

Solve for the roots by Newton—Raphson method

*

call ALPHAROOT(j,Ncomp,coefficient,xalpha,numroot,alpha)

*
* Generate various plots (EDIT the file to remove comments for specific
* options)
*®
call ALPHAPLOT(Ncomp,j.molefrac,alpha,coefficient,Ki)
* ALPHAROOT has intemal output section to compile a table
* listing statistics on the determination of alpha
2000 continue

e e 20 e o e e a2 o o e o o 2 29 e ae e s o e ae e 3k o 30 o ol ae e o e o a2 o e o o e s ol e 2 ol ol o e ol e e ol e o e o ok o ok ok ke ok e 3k

Produce this format to plot data points as dots:
(PLOTFAT=20)

2
x(1) y(1)
Jzt(l) y(1)

x(2) y(2)
x(2) y@)
etc.
e o 2 e o e s o e 2 e e o e o e o e e oo a e ol o o o o 2 o ok e sl ool o o e ol oot o ol ke ol e o ol o ol e ool e ol o o ol a ool o ol e ol ko

* % N R B R R EN

do 3000 j = 1, Npress

write(8,3500) alpha(j),xalpha(j),alpha(j),xalpha(j)
3500 format(2°/,e16.9,10x,16.9,/,16.9,10x,616.9)

3000 continue

CLOSE(unit=1)
CLOSE(unit=7)
CLOSE(unit=8)

stop
end
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BRETT D. WEIGLE
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Mineral Engineering Department
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University Park, Pennsylvania
M.S. thesis
SUBROUTINE ALPHACOEFF

This subroutine calculates the coefficient for each term in
the general polynomial for the vapor fraction, alpha:

P(alpha) = ¢O + cl*alpha + c2*alpha**2 + .. +

c¢(Ncomp—1)*alpha**(Ncomp-1)
Equation 4.29 in the thesis.

#* % % B % £ X ¥ % % % & # &

o a0 2 38 e af o 3 o e 2k afe afe e al ol ae o a2 a0 0 o a2 sk e a2 a0 ke o ok 2 3ol e ol ke ok e ol e abe b e o s o ol e o o ol o ok ol e o e o e ok ol ok ok

SUBROUTINE ALPHACOEFF(Ncomp,Npress,jj,molefrac,Ki,coefficient)

IMPLICIT REAL*8(a~h,0-2)
REAL*8 Ki(500,100), molefrac(0:100)
INTEGER p

DIMENSION coefficient(0:100), c(100)

OPEN(unit=14,file="coeff",status="unknown")
OPEN(unit=15,file="coeff.plot",status=""unknown")

if(Ncomp .LT. 2) then
write(6,*) You cannot flash this system’
stop

end if

*

Calculate Ci = Ki - 1

do 0500 k = 1, Ncomp
ck) = Ki(jk) — 1.d00
0500 continue

* p-loop increments the power of alpha

C write(15,*)Ncomp

do 1000 p = 1, Ncomp
temporary = 0.d00

do 2000 j =1, p
| * Zero—order elementary symmetric function, aO{1/Ci], defined zis 1
| .
1 if(p-j .EQ. 0) then
|

apj = 1.d00
go to 2500




2500

3000

2000

C
C

end if

Call subroutine to calculate the elementary symmetric
function, apj

call SYMFUNCTION(Ncomp,j.p.c.apj)
ratio = 0.d00
do 3000 i = 1, Ncomp
ratio = ratio + molefrac()/(c@i)**(j~1))

continue

temporary = temporary + ((—1.d0)**(j+1))*apj*ratio
continue

coefficient(Ncomp—p) = temporary

write(14,*)"Coefficient(",Ncomp-p,) = °coefficient(Ncomp~p)
write(15,*)Ncomp—p,coefficient(Ncomp—p)

1000 continue

return
end
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SUBROUTINE SYMFUNCTION
This subroutine calculates the elementary symmetric function

a(p-j){1/Ci}
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SUBROUTINE SYMFUNCTION(Ncomp,j.p.c,apj)
IMPLICIT REAL*8(a—h,0-2)

REAL*8 mmatrix(100,100)

INTEGER factor,p

DIMENSION ¢(100), s(100)
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*

Compute the power—sum series: s = sigma[ (1/Ci)**lambda ]

n=p-j
do 1000 lambda = 1, n
sum = 0.d00
do 2000 i = 1, Ncomp
sum = sum + (1.d0/c(i))**lambda
2000 continue

s(lambda) = sum
1000 continue

. Build the matrix MMATRIX
do 3000 k = 1, n

do 40001 =1, n
ifd .LE. k) mmatrixk,]) = sk-1+1)
ifd .EQ. k+1) mmatrix(k,]) = DFLOAT()
if@ .GT. k+1) mmatrix(k,]) = 0.d00
4000 continue

3000 continue

* Since al{1/Ci} forms a [Ix1] matrix, its determinant is the
* element itself

if(p—j .EQ. 1) then
det = mmatrix(1,1)
go to 5000

end if

*

Compute the determinant of MMATRIX

call DETERM(mmatrix,n,det)

*

Compute the elementary symmetric function

5000 apj = det/factor(n)

retum
end

TI I I T IR 2 3324223 22 2232413 f A2t ddfd 311132 2 2221t 2341 Rty
»

* Function to compute the factorial

*
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FUNCTION factor(n)
INTEGER factor,i,n

factor = 1
if(n .GT. 0) then
do 6000 i = 2n

factor = factor*i
6000 continue
end if
end
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SUBROUTINE DETERM

This program calculates the determinant of an NxN matrix.
First, pantial pivoting is performed on a nonsingular matrix by
Gaussian elimination. This produces a triangular matrix whose
determinant can be calculated by computing the product of all
the diagonal entries.

The augmented matrix does not contain the normal last column
which represents the right-hand side of a system ‘of linear
equations; AUG is the same as the original matrix.

VARIABLES:
N = dimension of matrix
AUG = augmented matrix
LJK = indices
MULT = multiplier used to eliminate an unknown
PIVOT = used to find nonzero diagonal entry
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SUBROUTINE DETERM(aug,n,det)

IMPLICIT REAL*8(a—h,0-2)
REAL*8 mult

INTEGER pivot
DIMENSION aug(100,100)

L 4

Gaussian elimination




do 7000 i = 1, n

*

Locate nonzero entry

if(aug(i,i) .EQ. 0) then

pivot = 0
j =i+ 1
3000 if((pivot .EQ. 0) .AND. (j .LE. n)) then
if(aug(j,i) .NE. 0) pivot = j
j=j+1
go to 3000
end if

if(pivot .EQ. 0) then
print *,’Matrix is singular”
stop

else

*

Interchange rows 1 and PIVOT

do 4000 j = i, n
temp = aug(i,j)
aug(i,j) = aug(pivot,))
aug(pivot,j) = temp
4000 continue

end if

end if

*

Eliminate I-th unknown from equations I+1, .., N

do 6000 j = i+l, n
mult = ~aug(j,i) / aug(,i)

do 5000 k =i, n
aug(j.k) = aug(j,k) + mult * aug(ik)

5000 continue
6000 continue
7000 continue
. Calculate the determinant of matrix AUG by computing the
* product of the diagonal elements

prod = 1.d0

do 8000 i =1, n




9000

do 9000 j = 1, n
ifi .EQ. j) prod = prod * aug(i,))
continue

8000 continue

det = prod

retum
end

skkkkikk bk hkbh kb kb h Rk kb hkkk ko kkkk bk ko ki kb ko kh kR k kR kkk kR Rk kk

# % % 8 8 B B BB BB ERERERERENRERRERRERENRREREERREN

4 Dec 91

BRETT D. WEIGLE
Petroleum and Natural Gas Engineering Section
Mineral Engineering Department
College of Earth and Mineral Sciences
The Pennsylvania State University
University Park, Pennsylvania

M.S. thesis
SUBROUTINE ALPHAROOT

Subroutine uses an interval-halving technique to find

the best root value to initialize the Newton-Raphson (N-R)
iterative calculations which determine the real root of

the alpha polynomial on the interval [0,1].

PARAMETERS: delta = alpha increment
epsilon = alpha convergence criterion
VARIABLES: alower = lower bound of alpha increment
aupper = upper bound of alpha increment
falpha = the alpha polynomial
fprime = first derivative of alpha polynomial
guess = iterative variable for alpha
guessQ = initial estimate for N-R
intcount = # of intervals until sign change
iter = # of iterations untii N-R converged
isign,isign2 = flags for function sign change
isign,isign2 = flags for function sign change
numroot = flag for # of zeros (from BUDAN)
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SUBROUTINE ALPHAROOT(j,Ncomp,coefficient,xalpha,numroot,

@ alpha)

IMPLICIT REAL*8(a~h,0~2)
INTEGER p

DIMENSION alpha(500), coefficient(0:100), xalpha(500)
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*

*

3500

3900

PARAMETER(delta = 0.01d0, epsilon = 1.d-06)

Write table heading

write(7,*) The Fourier-Budan Theorem yields °“,numroot,” roots on
@this interval’

write(7,3500)

format(“Intervals’,4x, Tnitial Guess’4x, Iterations”,4x, Calc.
@Alpha“4x, Exp. Alpha”)

Check flag NUMROOT provided by subroutine BUDAN to determine
root—search scheme

if(numroot .EQ. 0) then
write(6,*) ‘No root on the interval [0,1] for data set °j
intcount = 0
. write(7,3900) intcount,xalpha(j)
format(i4,61x,f5.3)
write(7,*) No root on the interval [0,1]°
retum
end if

if(numroot .EQ. 1) then
ilower =

OO

-0

Use incremental search to determine initial guess
Interval Endpoint DO-Loop

do 0400 jroot = ilower, iupper
intcount = 0
Test the polynomial at endpoint for initial sign value

if(iroot. EQ. ilower) then
guess = DFLOAT(ilower)

alower = guess
aupper = alower + delta
end if

if(jroot. EQ. iupper) then
guess = DFLOAT(iupper)
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aupper = guess

alower = aupper — delta
end if
ichange = 0

0600 falpha = 0.d0
do 1500 p = 1, Ncomp

term = coefficient((Ncomp—p)*guess**(Ncomp—p)
if( Ncomp~p) .EQ. 0 ) term = coefficient(0)
falpha = falpha + temm

1500 continue

*

Initialize ISIGN2 on first pass with endpoint

if(ichange .EQ. 0) then
if(falpha .GE. 0.) then

isign2 = 1
else
isign2 = 0
end if
end if

*

Note the sign of the function

if(falpha .GE. 0.) then

isign = 1
else
isign = 0
end if
. Test function for sign change and increment or decrement the
* search variable as appropriate

if(isign2 .EQ. isign) then
if(jroot .EQ. ilower) then
alower = aupper
aupper = aupper + deita
guess = aupper
“else if(jroot .EQ. iupper) then
aupper = alower

alower = aupper — delta
guess = alower
end if
end if
*
. Exit subroutine if no sign change is detected on interval [0,1]




3800

*

*

*

2000
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if( (guess .GT. 1.) .OR. (guess .LT. 0.) ) then

write(6,*) No root on the interval [0,1]°

write(7,3800) intcount,xalpha(j)

format(i4,61x,f5.3)

write(7,*)'No root on the interval [0,1]”

retum
end if

If NO sign change but still within interval, repeat the sequence

if(isign .EQ. isign2) then
isign2 = isign
intcount = intcount + 1
ichange = 1
go to 0600

else

If there IS a sign change:
Halve the interval where the function crosses the x axis

guess0 = (alower + aupper) / 2.d0
end if

Provide this guess to Newton-Raphson to begin calculations
guess = guessO
N-R is limited to 1000 iterations for convergence

iter = 0
do 1000 iterlimit = 1, 1000

iter = iter + 1
falpha = 0.d00
fprime = 0.d00

do 2000 p = 1, Ncomp
falpha = falpha + coefficient(Ncomp—p)
*guess**(Ncomp—p)
fprime = fprime + (Ncomp-p)*coefficient(Ncomp-p)
*guess**(Ncomp—p-1)
continue

calc = guess — falpha/fprime
error = DABS((calc - guess)/calc)
guess = calc




99
1000 continue

print *,'N-R method failed to converge after 1000 iterations’
Output results to file "TABLE"
3000 write(7,3600) intcount,guess0,iter,guess,xalpha(j)

3600 format(i4,13x,f5.3,10x,i4,13x,19.6,7x,£5.3)

alpha(j) = guess

*

Begin search for root from opposite end of interval

0400 continue

retumn
end
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SUBROUTINE ALPHAPLOT

This subroutine is used for several purposes:

1. Plotting F(alpha) vs alpha [Rachford~Rice obj function]
2. Plotting F(alpha) vs alpha [polynomial]

3. Plotting Fprime vs alpha [polynomial}
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SUBROUTINE ALPHAPLOT(Ncomp,J,molefrac,alpha,coefficient,Ki)
IMPLICIT REAL*8 (a-h,0-7)

REAL*8 Ki(500,100),molefrac(100)

DIMENSION alpha(500),coefficient(0:100)

INTEGER p

PARAMETER(start = 0.0d0, end = 2.0d0, stepsize = 0.0005d0)

OPEN(unit=11,file="fa.plot",status="unknown")




100
OPEN(unit=12,file="fprime.plot",status="unknown")

*

Number of data points for plotting

number = IDINT((end - start + stepsize)/stepsize)
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* F(alpha) vs alpha [polynomial]
> F“(alpha) vs alpha [polynomial]
* Adjust Ncomp,Npress in PARAMETER

write(11,*) number
do 1000 phase = start,end,stepsize
falpha = 0.d00
fprime = 0.d00
do 2000 p = 1,Ncomp
falpha = falpha + coefficient(Ncomp—p)*

@ phase**(Ncomp—p)
C Jorime = fprime + (Ncomp—p)*coefficient Ncomp—p)*
C @ phase**(Ncomp—p-1)
2000 continue
write(11,3600) phase,falpha
C write(11,3600) phase fprime

3600 format(f7.3,2x,125.12)

1000 continue
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C* Rachford—Rice objective function
C

C do 4500 k = 1,Npress

C k=6

C write(11,*) number

C do 3000 phase = startend stepsize

C falpha = 0.d00

do 4000 i = 1Ncomp
Sfalpha = falpha + (molefrac(i)*(Ki(k,i) ~ 1.d0)) /
@ (1.d00 + phase*(Ki(k,i) — 1.d0))
End of i loop
continue

nnaqQnnn
b
S
3

write(11,3500) phase falpha
Jormar(f7 3.2x f25.12)
‘End of phase loop

an
*W
v
S

C 3000 continue
C* End of k loop
C 4500 continue
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CLOSE(unit=11)
CLOSE(unit=12)

return
end




a9 o e 2 o 20 200 00 4 o a0 o0 e e 2 20 o ool ok a0 o0 o o % = oo oo e o 3 ool o o ol ke ok e o o ol 6 o o ok ok e e ke s o ok ke o o ok ke sk ok ok ok e ok

#* % % X O % ¥ % O X H % F X X X X X X X X X ¥ X % * ® ¥

6 Dec 91

BRETT D. WEIGLE
Petroleum and Natural Gas Engineering Section
Mineral Engineering Department
College of Earth and Mineral Sciences
The Pennsylvania State University
University Park, Pennsylvania

M.S. thesis
SUBROUTINE BUDAN

Subroutine uses the Fourier-Budan Theorem to determine
the number of roots that the alpha polynomial has on tn¢
interval [u,v].

PARAMETERS: iu = lower bound of alpha interval
iv = uppper bound of alpha interval
VARIABLES: coefficient = coefficient of alpha polynomial
dcoeff = coefficient of polynomial derivatives
deriv = derivatives of alpha polynomial
fvapor = the alpha polynomial
ia,jb = # of sign changes for derivative series
ivapor = alpha = vapor fraction
jsignksign = flags for derivative sign change
numroot = number of zeros on the interval
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*

SUBROUTINE BUDAN(J,Ncomp,coefficient,numroot)

IMPLICIT REAL*8(a~h,0-2)
INTEGER p

DIMENSION dcoeff(0:100,0:100), coefficient(0:100), deriv(0:100)
PARAMETER(u = 0, iv = 1)

DATA (coefficient(i), | = ONcomp—-i) [-1.1..-2.3..-4.5./
OPEN(unit=2 file="test",status="unknown")

REWIND(unit=2)
ia=20
ib=20

do 0500 ivapor = iu, iv, 1

Evaluate the polynomial function at the endpoints iu and iv

fvapor = 0.d0
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*

1000

2000

1500

*

3000
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do 0600 p = 1, Ncomp
fvapor = fvapor + coefficient(Ncomp—p)*ivapor**(Ncomp-p)
continue
write(2,*) “fvapor = °fvapor
write(,*) ©

Calculate coefficients of first derivative

do 1000 n = Ncomp-1, 0, -1
dcoeff(0,n) = coefficient(n)
write (2,*) “dcoeff(0,",n,”) = °.dcoeff(0.n)
continue
write(2,¥) ~ °

Calculate coefficients of 2nd— and higher-order derivatives
as multiples of those of the first derivative

do 1500 m = 1, Ncomp~1

do 2000 n = Ncomp-m, 1, -1
dcoeff(m,n—1) = n*dcoeff(m-1,n)
write (2,%) ‘dcoeff(",m,’,’'n-1,) = 7,
@dcoeff(m,n-1)
continue
write(2,*) °

continue ‘

Evaluate the derivative series at the endpoints iu and iv

do 3000 m = 1, Ncomp-1
derivim) = 0.d0

do 4000 n = Ncomp-m, 1, -1
term = dcoeff(m,n—1)*ivapor**(n—1) 1
if( (n=-1) EEQ. 0 ) term = dcoeff(m,n-1)
deriv(im) = deriv(im) + term
write(2,*) ‘inter deriv(‘m,”) = "deriv(m)

continue

write(2,*) ‘total deriv("m,) = “deriv(m)
write(2,*) °
continue

Count the sign changes between the terms of the series

if(fvapor. LT. 0.) then
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ksign = O
else

ksign = 1
end if

write(2,*) ‘ksign = “ksign,” for fvapor

do 5000 i = 1, Ncomp-1
if(deriv(i) .LT. 0.) then

jsign = 0
else

jsign = 1
end if

write(2,*) ‘jsign = °,jsign,” for deriv(’.i,)"

*

Increment A or B, depending upon the endpoint under evaluation

ifivapor .EQ. iu) then
if(ksign .NE. jsign) then

ia =ia + 1
write(2,*) ‘a = “ia,” for deriv(’,i,")’
end if
end if

if(ivapor .EQ. iv) then
if(ksign .NE. jsign) then

ib=ib + 1
write(2,*) ib = %ib,” for deriv(’,i,")’
end if
end if
ksign = jsign

write(2,*) ksign
write(2,*) “ °

“ksign,” after deriv(’,i,")’

5000 continue

0500 continue

*®

* Pass a flag to calling program to indicate root conditions

*

write(2,*) ‘ia = “jia,” and ib = ’jb
numroot = ia — ib
write(2,*) ‘numroot = “,numroot

write(2,6000) Ncomp-1, numroot, iu, iv, J
6000 format(‘This polynomial of order °i3,” has °,i3,” zeros on the in
@terval [%i2,",,i2,"] for J = “,i3)

CLOSE(unit=2)
returmn
end




