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ABSTRACT

The present study investigates compressibility effects on turbulence by direct numerical

simulation of homogeneous shear flow. A primary observation is that the growth of the

turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks pro-
vided by compressible dissipation and the pressure-dilatation, along with reduced Reynolds

shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are

proposed for these dilatational terms and verified by direct comparison with the simulations.

The differences between the incompressible and compressible fields are brought out by the

examination of spectra, statistical moments, and structure of the rate of strain tensor.
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1 Introduction

Homogeneous turbulent flow has long been viewed as a simple model of turbulence which

is sufficiently realistic to have fundamental physical features that persist in more complex
flows. For example, hairpin vortices which have been observed in boundary layer experiments

and simulations of channel flow, have been identified through direct numerical simulation
(DNS) of homogeneous shear flow by Rogers and Moin (1987). Similarly, the longitudinal
streaks observed in wall boundary layers have been shown by the simulations of Lee, Kim

and Moin (1990) to exist in homogeneous shear flow when the shear rate is high enough
to be comparable to those encountered near the wall in btundary layers. Rogallo (1981),
who was the first to perform DNS of this flow, showed by direct comparison with physical

experiments that the simulated flow statistics were in good agreement with experimental

data.

In the past several years, there has been a strong activity in the area of compressible
turbulent simulations. The first fundamental study of compressible isotropic turbulence
was conducted by Passot and Pouquet (1987) who demonstrated the presence of shocks
in the flow. Their results motivated the study by Erlebacher et al. (1990) to classify the
different possible regimes in isotropic turbulence attainable from arbitrary initial conditions.

They quantified the conditions for the presence or absence of shocks. Other results on

decaying isotropic turbulence can be found in Sarkar et al. (1989), Lee, Lele and Moin

(1990), and Zang, Dahlburg, and Dahlburg (1992). Results on forced isotropic turbulence

are also available (Kida and Orszag 1990). Simulations have now moved on to the next
level of complexity, namely, homogeneous turbulence subjected to a linear mean velocity
field. For example, Coleman and Mansour (1991) have considered turbulence subjected to

homogeneous compression.

Homogeneous shear turbulence has a production term which continuously feeds energy
into the system, which then cascades down to the smaller scales. This flow exhibits some of

the properties of incompressible turbulent shear flows, with the added presence of acoustic

waves, density fluctuations, and dilatational velocity fields. Direct numerical simulations of
such flows can provide complete statistics not available from physical experiments. Com-

pressibility effects on the flow can be obtained from the simulaf .ns, and perhaps more

importantly, mechanisms responsible for these effects can be identified, and turbulence mod-
els for compres3ibility-related phenomena can be devised. The compressible problem was

considered by Feiereisen et al. (1982) who performed relatively low resolution 64' simula-
tions and concluded that compressibility effects are small. Recently Blaisdell, Mansour and

Reynolds (1990) have also considered compressible shear flow, and identified eddy shocklets
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in the flow for high enough turbulence Reynolds and Mach number.

Research on the small-scale properties of homogeneous turbulence is primarily focussed

on understanding the intermittency of high dissipation regions. It has been numerically

established that the rate of strain tensor has a preferred shape in regions of strong dissipation

(Ashurst et al. 1987b). Furthermore, the vorticity tends to align with the intermediate

eigenvalue (whose most probable sign is positive). While this alignment property of the

vorticity is a consequence of a simplification of the Euler equations (Vieillefosse 1984), the

shape of the tensor is still unexplained. Alignment of other vectors have been considered by

Ashurst et al. (1987a).

In this paper, we use databases from the DNS of homogeneous compressible turbulence to

clarify the sources of reduced growth of kinetic energy with increased levels of cordpessibility.

This is then used to propose a new decomposition of pressure into incompressible and com

pressible components. In turn, this leads to an improved model for the pre.sure-dilatation

term. Finally, we analyze the rate of strain tei .or after decomposition into solenoidal and

irrotational components. Differences between the two tensors are brought out through the

use of one-dimensional probability functions.

2 Governing Equations

The compressible Navier-Stokes equations are written a a frame of reference moving with

the mean flow V1. This transformation, which was introduced by Rogallo (1981) for in-

compressible homogeneous shear, removes the explicit dependence on u1(X2) in the exact

equations for the fluctuating velocity, thus allowing periodic boundary conditions in the x2

direction. The relation between the moving frame x4 and the lab frame xi is

X - S t X2 , X* = 2 , X3 = 3

Here S denotes the constant shear rate i1.2. In the transformed frame x!, the compressible

Navier-Stokes equations take the form

9tp + (pu,'),i - St(pu2'),l = 0 (1)

O(pui') + (PUj'Ui'), = P.-.+T'ijj - Spu 2iil

+ St(PU2 'Ui'),r + Stp,1i 2 - St"ii,1 (2)

9tp + j'pd + Ipu' = Stu,'P, + yStpu',1 + P
+ (- - 1)4[T,j - 2StT,12 + S 2 t 2 T 1 1 ] (3)
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p = pRT (4)

where 0 = rijjuj/Ox is the dissipation function, rij the viscous stress, uj' the fluctuating
velocity, p the instantaneous density, p the pressure, T the temperature, R the gas constant.

The molecular viscosity ji, and thermal conductivity r" are taken to be constant. In terms

like uj in the above system, the comma denotes a derivative with respect to the transformed

coordinates x.
A Fourier collocation method is used for the spatial discretization of the governing equa-

tions. A third order, low storage Runge-Kutta scheme is used for advancing the solution in
time. The nonlinear terms are dealiased by discarding modes lying in the highest third of
the wave number range resolved by the grid. This procedure fully dealiases the quadratic

and not tOle cubic non-linearities in the Navier-Stokes equations.

3 Statistical Moments and Spectra

We have performed simulations for a variety of initial conditions and obtained turbulent
fields with Taylor raicroscale Reynolds numbers Re,\ up to 45 and turbulent Mach numbers

Mt up to 0.7. Note that Re, = qA /v where q = and A = q/Vwiwi , while Mt = q/'d
where l is the mean speed of sound. All the 3imulations have been performed with -y = 1.4,

and Prandtl number Pr = 0.7. The computational domain is a cube with side 27r. The

results discussed here were obtained with a uniform 1283 mesh overlaying the computational
domain.

In the case of homogeneous shear flow, the mean velocity iii varies linearly in space apd

remains invariant in time. The mean density 5 is uniform initially and does not evolve in
time. However, due to the mean viscous dissipation, the mean pressure 5 and temperature

T increase in time.

3.1 Effect of Compressibility on Kinetic Energy

Figs. 2-5 show results from two selected cases which have identical initial data for the velocity
and thermodynamic variables. The initial data is incompressible, that is, the density is

constant and the divergence V.u = 0. The initial pressure is calculated from the Poisson

equation appropriate for incompressible flows, and the temperature is obtained from the
ideal gas equation of stae. The variable parameters for the problem are the shear rate S,

viscosity A, and the speed of sound l. The two cases have identical values for S and ji, but

different values for the speed of sound Z leading to different initial Mach numbers Mt,o. Table

1 lists the initial parameters for these cases. The simulation of Case 1 ran up to St = 18
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when Mt = 0.46 and ReA = 43, while Case 2 was continued up to St = 21 when Mt = 0.67

and Re, = 41.

The Favre-averaged kinetic energy K is defined by K = pui."ui"/2"-. Note that the overbar
over a variable denotes a conventional Reynolds average, while the overtilde denotes a Favre

average. A single superscript ' represents fluctuations with respect to the Reynolds average,
while a double superscript " signifies fluctuations with respect to the Favre average. The

evolution of the kinetic energy K as a function of non-dimensional time St is shown in Fig. 1.
Physical experiments and DNS of the incompressible case indicate that K, after an initial

transient, evolves as K0 exp(ASt). The feature of exponential growth is carried over to the

compressible case, as evidenced by the approximately linear regime in the plot of ln(K/Ko)

in Fig. 2 for St > 7. Although the picture of exponential growth survives, the growth rate of
K shows a significant decline with a decrease in the speed of sound. Figure 3 shows that the

growth rate A = d(ln K/Ko)/d(St) decreases by about 30% when Mt increases from 0.2 to

0.4. We note that the reduction of kinetic energy growth rate with increasing compressibility

is a consistent trend in all our simulations.

In order to understand the phenomenon of reduced growth rate of kinetic energy, we
consider the equation governing the kinetic energy of turbulence in homogeneous shear which

is

(TK) = -pP - T, - ;9e. + (5)

where P = -S't 24 is the production, c = Vwiw the solenoidal dissipation rate, f,=

(4/3)7d'2 the compressible dissipation rate and p'd' the pressure-dilatation. The last two

terms represent the explicit influence of the non-solenoidal nature of the fluctuating velocity

field in the kinetic energy budget.

If the notion of exponential growth in homogeneous shear flow is correct, A should asymp-

tote to a constant. The relative importance of the various terms on the rhs of (5) can be

gauged by their contribution to A. We, therefore, normalize (5) by ;5SK. The terms on the

rhs of (5) are plotted in Fig. 4 after being thus normalized. According to Figs. 4a-4b,the

dilatational terms are negative and reduce A. By St = 20, the combined contribution of

the dilatational terms is approximately 20% of A, implying that they need to be considered

in turbulence modeling. The normalized production, *P/SK, is plotted in Fig. 4c. The

normalized proauction in Case 2 begins to deviate from that in Case 1 around St = 5, and
eventually asymptotes to a value noticeably smaller than in Case 1. Thus, the production is

reduced due to compressibility. The normalized dissipation in Fig. 4d also shows a decrease

in Case 2 relative to Ctse 1, but to a smaller degree than the production. The reduction in

growth rate of K in Case 2 relative to Case 1 seems to be primarily due to the dilatational

terms during the early phase of the evolution and, for the later phase (St > 8), is related to
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a decreased level of production.

3.2 Measures of Compressibility

Apart from the differences in the evolution of turbulence statistics in the case of compressible

flow relative to incompressible flow, a question that arises is how compressible is the turbu-

lence? The turbulent Mach number Mt = v'2-iK/Z and the normalized rms density pr /'P are

measures of departure from incompressibility, since both these quantities are zero for strictly

incompressible flow. Mt shows a monotone increase in Fig. 5a reaching a maximum of 0.6,

which is larger than the upper bound of Mt in free shear layers and wall boundary layers

encountered in aerodynamic practice. Figure 5b shows that, after starting from zero density

fluctuations, both simulations develop significant rms density levels at St = 18, and most of

the increase in rms density occurs rapidly within St < 3 for Case 2 (with the higher initial

Mt). The velocity field is no longer solenoidal in compressible flow, that is, d = V-u # 0. For

homogeneous flow, the Helmholtz decomposition gives a unique decomposition of the veloc-

ity field into incompressible and compressible components by u = ul + uc , where V. uI = 0

and V x u = 0. The departure of the velocity field from solenoidality is another measure

of compressibility, and can be represented by the ratio of dilatational variance to enstrophy

Xd - wiw i or by the fraction of kinetic energy which is dilatational XK = KI/K. The for-

mer quantity Xd is more general, because the Helmholtz decomposition required for obtaining

KC is unique only for homogeneous flows. Figure 6 shows that after an initial transient, Xd

increases monotonically for Case 1, but levels off at about 8% for Case 2. The quantity XK

(not plotted here) is comparable to Xd, leveling off at approximately 6% for Case 2. Since

the mean shear leads to anisotropy of the Reynolds stress tensor, the dilatational fraction

of each Reynolds stress component is obtained. Except for the transverse component u'u,

the dilatational contribution to the Reynolds stress tensor was a few percent, comparable to
the magnitude of XK. The ratio of-a'o1~2I U"'" is substantially larger, as shown in Fig. 7.

Since the dilatational component i a relatively poor mixer of scalar compared to the vortical

component, the large ratio of u2 u7 /U/u1 implies that mixing is preferentially decreased by

compressibility in the direction of shear.

3.3 Compressible and Solenoidal Spectra

The Fourier component of the velocity is decomposed into components perpendicular and

parallel to the wave number vector from which the solenoidal spectrum E3 (k) and com-

pressible spectrum E,(k) are calculated. Figure 8 compares the solenoidal and compressible

spectra at St=15 (when Mt = 0.55) for Case 2. The compressible energy is small relative to
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the incompressible energy for all modes. The compressible spectrum is flatter at low wave

numbers (k < 16) relative to the incompressible spectrum. The two spectra have similar

slopes in the intermediate wave number range. The solenoidal spectrum is compared in Fig. 9

between an incompressible run (M = 0) and a compressible run at St = 17. The compress-

ible run has an initial ,vit of 0.4 and the initial velocity and pressure fields are the same as in

the incompressible run. LFrom Fig. 9, it appears that the shape of the solenoidal spectrum is

not altered by compressibility, even though the compressible fluctuations are non-negligible

at this time- prm,/7 = 0.12 and Xk = K/K = 0.05. However, the pressure spectrum in

Fig. 10 shows significant differences between these two cases. In the compressible case, the

pressure spectrum seems to be relatively flatter than in the incompressible case.

4 Modeling the Dilatational Terms

We showed :n Fig. 4 that the compressible dissipation f, and the pressure-dilatation p'd'

contribute significantly to the kinetic energy budget and therefore require modeling. In

Sarkar et al. (1991), we proposed a model for the compressible dissipation c = al4Mt based

on an asymptotic analysis and DNS of isotropic turbulence. In the present simulations, after

starting from a variety of initial conditions, C, "- 0.5c5M t, suggesting that al = 0.5.

Our direct numerical simulations of isotropic turbulence and homogeneous shear flow

provided a data base for the pressure-dilatation and suggested a theoretical approach towards

modeling it. The evolution of the pressure-dilatation p'd' for Case 1 is depicted by the solid

curve in Fig. 11. /,From numerical experiments, it was found that the nominal time period

of the oscillations in p'd' decreased approximately linearly with the speed of sound. This

suggested that one could isolate the oscillatory part of p'd' by decomposing the fluctuating

pressure p' into the sum of an incompressible part p11 and a compressible part PC'* The

incompressible pressure p 1 satisfies

2i' = i-u , - 2ftijpuj - -i(uj'uj), j - 2Vjjj(Tuj') (6)

while the remainder p ' is the compressible pressure. The rhs of (6) collects all terms that

depend on ; in the equation obtained by taking the divergence of the momentum equation.

In the simulations, since p' is available from the compressible Navier-Stokes solution and

p ' is evaluated from (6), we obtain pc' as the difference p' - p'. Since p' = p1' + pP' we

have p'd = pt'd' + pC'd'. The oscillations are substantial only for pc'd' (dotted curve in

Fig. 11), and furthermore, the peaks and valleys in the evolution of pc'd seem to be much

more symmetric around the origin than those in p'd' (solid curve in Fig. 11). The component

pt'd' (dash-dotted curve in Fig. 11) does not have strong temporal oscillations, and shows
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a systematic decrease with time. In order to gauge the relative importance of the two

components pC'd and pl'd' of the pressure-dilatation in the evolution of the turbulent kinetic

energy, we calculate the time integrals of these components. The integrated contribution of

pl'd is about an order of magnitude larger than that of pc'd in Case 2. Examination of

other DNS cases indicates that, in general, pc'd has a negligible contribution to the turbulent

kinetic energy evolution relative to pt'd'. Therefore, it seems that only the component p"d'

of the pressure-dilatation requires modeling in shear flows.

In order to model pI'd', we consider the Poisson equation (6) for the incompressible
R' So

pressure. After splitting the pressure into a rapid part pR' and a slow part p , we obtain the

following exact expressions for the rapid pressure-dilatation and slow pressure-dilatation:

.[ ~ ~ ~ kr j,. .Pld 2im,n J lnic(7

- . k-mki "k lujui - i u7lj-tm) dk (8)

Here * denotes the complex conjugate of the Fourier transform 4 and E,,j represents the

spectrum of tb,- Reynolds stress tensor ' Using scaling arguments (see Sarkar (1991) for

details) to simplify (7)-(8) we find that pR'd' depends on the production "P while pS'd' depends

on the dissipation e.. Finally, we propose the following model for the pressure-dilatation:

28 2
p'd' = a 2-5iiibiiq2Mt + C3pEk1'I. 3 "fji(M)q (9)

where bij = ,' /q2- bij/ 3 is the anisotropy tensor, Mt = V2i2K/Z the turbulent Mach

number, and c, the solenoidal dissipation. To obtain the functional dependence x(Mt) in

the last term of Eq. (9), one would require data from a flow with mean homogeneous com-

pression. In this paper, we validate and calibrate the first two terms in the model for P'd'.

In homogeneous shear, the model becomes

t1d' = -a 2-PMt + -a&3TES (10)

where P -Stuqu2. Because the production P = 0 in decaying isotropic turbulence, the

variation of the incompressible pressure-dilatation with , can be verified using DNS of

isotropic turbulence. The ratio p1'd/(-E.'3 M ) is shown as a function of non-dimensional

time in Fig. 12. The decaying isotropic turbulence simulations, D1,D2 and D3 start with

Mto of 0.6,0.5, and 0.4 respectively. pd'/(-M ) reaches an equilibrium value by a time

of 0.25, substantiating the validity of the second term in (9). Based on the DNS value of

the equilibrium ratio. the model coefficient a3 in (9) is taken to be 0.2. The remaining part

of the model for the pressure-dilatation is calibrated against simulations of homogeneous
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shear flow. Fig. 13 shows results from three cases S1,S2 and S3 with Mp of 0.2,0.3, and
0.4 respectively. Cases S2 and S3 have shear S=15, while Case Si has S=20. After St = 5,
the ratio (p'd' - 0.2PEoMt)/(p-'Mt) evolves in a similar fashion for the three cases and
exhibits a slight decrease with time. In the period 5 < St < 15, the three cases S1-S3
encompass a range of turbulent Mach numbers of 0.21 < M < 0.65. The results of Fig. 13
suggest that, with a coefficient a 2 = 0.15, the proposed model (9) is able to parametrize the
pressure-dilatation for 0.2 < Mt < 0.6.

5 Structure of the Rate of Strain Tensor

In this section, we study several properties of the rate of strain tensor S, to help identify
characteristics of the flow which are solely the result of compressibility effects, and how
these characteristics differ from corresponding properties in an incompressible turbulent flow.
Because the flow is anisotropic, it is useful to consider characteristics of the flow both with
respect to the laboratory frame of reference, and with -espect to a frame of reference attached
to, and rotating with an individual fluid elemenL. Global orientation properties of Sj are
established by studying the principal directions of Sij in the laboratory frame of reference.
(In isotropic turbulence, this diagnostic does not provide useful information.) On the other
hand, local properties can be characterized by considering the relative orientation of vectors
such as velocity, vorticity or scalar gradients, with respect to the principal directions of Sij.

We consider the rate of strain tensor, decomposed according to

i S c + se + . i,7 . (11)

where S and S' are respectively constructed from the solenoidal and compressible (irrota-
tional) velocities uI and u'. Both SAf and S9 are deviatoric. The properties of these tensors
are expressed in terms of invariant quantities, i.e. eigenvalues -nd eigenvectors. Because Sij
is symmetric, its eigenvalues Aj, i = 1, 2,3 are real, and its eigenvectors are in the directions
of maximal or minimal extension (depending on the sig, :. of the Aj) of the tensor. These
directions are given by the tensor's three eigenvectors. For future reference, the eigenvalues
are ordered from smallest to largest:

,\ < A2 < A3- (12)

The first three invariants of the tensor Sij, defined as the coefficieats of the polynomial
characteristic equation, are related to small scale phenomena, and can be expressed in terms
of the eigenvalues. These relationships are:

I = -(A, +,\2 +A3)
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II = A 1A2 +A 1 A3 +A 2A3

III = -AIA2\3

If the tensor is deviatoric, I = 0, -II = SipSji which for incompressible flow is proportional

to the dissipation, and in isotropic flow, III is proportional to the third moment of the
velocity gradient probability distribution function (pdf).

We present results from one simulation with S = 15, and P = 1/150, M0o = 0.3, R.A0 = 20

and incompressible initial data. The simulated flow is analyzed at St = 1, 3,5, 7, 9, which

are all sufficiently resolved. More details of this analysis can be found in Erlebacher, Sarkar

and Hussaini (1991). Note that all the pdf's that foilow are unconditioned and unweighted.

Sampling for the pdf's (probability density function) is done on a grid resolution of 4x9Gx96

although the simulation was performed on a 963 mesh. This proviks over 400,000 sample

points.
The pdf of )/A' and A2/Ac are shown in Figs. 14 and 15. Both plots show that

after nn initial transient, the eigenvalue .atios have single peaks. These are located at -

0.25 for the solenoidal ratio, and at approximately -0.375 for the irrotati-nal ratio. As a

consequence, the rate of strain tensors S' and SP, respectively, have preferred strains in the

ratios (-4 : 1 : 3) and (-8 : 3 . 5) along the principal axes. Conditioning of A'/A, with

respect to e, sharpens the peak for higher values of dissipation. Further processing of the
irrotational ratio distribution is un-.erway. A check of the pdf of the irrotational ratio was

also performed from a 1283 database (Casc 2) with 800,000 sample pointr, and its shape
is qualitatively similar with the peak at -0.375. Note that the pdf of the irrotational ratio

is more broadband than that of the solenoidal ratio. However, the location of the peak is

well defined, and constant in time. This equilibrium structure of (-4 : 1 : 3) for Sij is

observed in incompressible flow, first by Ashurst, Kerstein, Kerr & Gibson (1987). They

considered the statistics of (A1) 2 (SfS 1 ) conditioned on the dissipation and for'id that the

preferred ratio was most dominant in regions of high dissipatio- . In a later work, Chen et

al. (1990) displayed scattergrams of II versus III based on incompressible mixing layer

DNS data, which clearly demonstrated that I is proportional to (-I)3I2 in the regions of

highest dissipation. This is i.1 fact a statement about the preferred shape of the S. principal

ellipsoid. Our results indicate that compressibility does not substantially affect this preferred

structure of Ihe solenoidal Sl.

The distribution of A[ and AT show some dist.nctive differences, as illustrated in Figs.

16-17. Both figures show negatzve skewness of the distributions, and a flattening in time,

although the effect is mL.h more severe for A' On both plots, the most probable value

foi the eigenvalue shifts towards more r egative values. In the irrotational case, the effect

is extremely strong. However, the most probable ratio of Ac to A' (see Fig. 15) remains
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invariant in time. Figure 17 also indicates that the amount of change in the distribution of

A decreases with time, but there is no strong evidence that the shape of the pdf is evolving

towards a steady state.
Information on structural differences in the flow as they relate to preferred directions of

straining for both the solenoidal and dilatational components of the flow are presented next.

After the eigenvectors of the rate of strain tensors are normalized to unity, we compute the

angle Oij between eigenvector fi and the unit vector in the coordinate direction xj. The pdf's
of I cos 01 and I cos09I are then computed. The cosine of 0 is chosen instead of 0 so that
the probability density function based on a Gaussian distribution for the velocity derivatives

is flat. In Figs. 18-19, we respectively plot the pdf of Icos0 fI and IcosO0 I, (i = 1,2,3) at
St = 9 to illustrate that the solenoidal and irrotational rate of strain tensors have different

preferential alignments in the laboratory frame of reference. Note that RX = 33 at this time.

The direction of maximum compression of St (f,) tends to be at approximately 45* to both
the x and y axes, with no preferred orientation with respect to z. The alignment of f, is also

in the 450 direction, while ft has no unambiguous preferred direction. The irrotational rate
of strain tensor exhibits markedly different properties. Most of the distributions of cos ii

have two strong peaks, thus indicating two preferred directions of alignment. For example,
ff is most often aligned along one of the ti,. coordinate axes. This is true of the other
two principal directionf. but to a lesser degree. Interestingly enough, all three pdf's of Y
exhibit a valley in the neighborhood of 45' . Statistics based on the database of Case 2 (at a

higher shear and higher Reynolds number than the results plotted in the preceding figures)

show that the pdf's of 1 cos Ofil and I cos 0jI are sharper. In particular, the tendency for fq to

align is strongest in a direction at 30* to the x axis and not 450- Finally, we notice that all

the pdf's of I cos Oij, tend towards a steady distribution with increasing Si. The distribution

of I cos 09 1 reaches an equilibriated state at a much earlier stage than does [cos Of1.

6 Conclusions

We have performed DNS of homogeneous shear using a i28 grid to ascertain the influence of
comvressibility on turbulence statistics and structure. The primary result is the stabilizing

effect of compressibility on the growth of kinetic energy. We find that the reduction in

growth rate is due to the pressuse-dilatation and compressible dissipation acting as sinks for

the kinetic energy, and due to the reduced level of the Reynolds shear stress. After starting

w;th zero density fluctuations, the simulations develop significant density fluctuations and

moderate leves of energy in the dilatational component. The dilatational velocity component
is strongly anisotropic, and consequently its contribution to the transverse rns velocity is
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much larger than to the other rms turbulent velocities. Although, the turbulent Mach number

and rms density fluctuations are significantly large, the shape of the energy spectrum is

practically unaffected by compressibility. However, the pressure spectrum is much flatter for

the compressible case relative to the incompressible case. The eigenvalues and eigenvectors

of both the solenoidal and irrotational rate of strain tensors were examined for preferred

structure. In principal axes, the solenoidal rate of strain tensor has a preferred shape of (-

4:1:3) in accord with previous results available for incompressible flow. The irrotational rate

of strain tensor has a different preferred shape. The pressure-dilatation correlation needs to

be modeled for compressible flow. We consider a form of the pressure equation obtained by

taking the divergence of the momentum equation, deduce a formal solution for the pressure-

dilatation, and then simplify to obtain a model for the pressure-dilatation. The model seems

to compare well with DNS data in isotropic turbulence and homogeneous shear turbulence.
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Case S v Mt,o R,o p' d'
1 20 1/150 0.2 14 0 0
2 20 1/150 0.4 14 0 0

Table 1: Parameters for the DNS cases of homogeneous shear flow
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Fig. 1. Schematic of homogeneous shear flow.
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Fig. 2. Time evolution of turbulent kinetic energy.
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Fig. 3 Growth rate of turbulent kinetic energy.
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Fig. 4a. Contribution of pressure -dilatation to the growth rate of K.
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Fig. 4b. Contribution of compressible dissipation to the growth rate of K.
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Fig. 4c. Contribution of production to the growth rate of K.
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Fig. 4d. Contribution of solenoidal dissipation to the budget of K.
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Fig. 5a. Evolution of turbulent Mach number.
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Fig. 5b. Evolution of rins density.
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Fig. 6. Evolution of ratio of dilatational variance to enstrophy.
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Fig. 7. Compressible fraction of transverse Reynolds stress.
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Fig. 8. Energy spectra at St=15 for Case 2.
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Fig. 9. Solenoidal velocity spectra for compressible and incompressible runs.
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Fig. 10. Pressure spectra for compressible and incompressible runs.
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Fig. 11. Evolution of pressure-dilatation in Case 1.
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Fig. 12. Tnoprsible pressure-dilatation in decaying isotropic turbulence.
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Fig. 13. Incompressible pressure-dilatation in homogeneous shear turbulence.
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Fig. 14. Pdf of solenoidal eigenvalue ratio.
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Fig. 15. Pdf of irrotational eigenvalue ratio.
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Fig. 16. Pdf of most compressive solenoidal eigenvalue.
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Fig. 17. Pdf of most compressive irrotational eigenvalue.
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Fig. 18. Pdf of the orientation of the most compressive
solenoidal eigenvecLor with respect to tie three coordinate axes.
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Fig. 19. Pdf of the orientation of the most compressive
irrotational eigenvector with respect to the three coordinate axes.
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