
NAVAL POSTGRADUATE SCHOOL
Monterey, California

Lfl

c9v,

N __MAR30 J99

THESIS

USING OBJECT-ORIENTED DATABASES
FOR IMPLEMENTATION OF

INTERACTIVE ELECTRONIC TECHNICAL MANUALS

by

Evyatar Chelouche

March, 1992

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

92-07968

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED I b. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

9q. NAME OF JERFORMj G ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION1-nputer cince Nept. (if aplicable) Naval Postgraduate School
Naval Postgraduate School 37

6c. ADDRESS (City. State. and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City. State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE.(Include Security Classification)
Using Object-Oriented Databases for Implementation of Interactive Electronic Technical Manuals

9I PERSONL AUTHOR(S)yata helouche

Pa TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
rogress FROM 10/90 TO 03/92 March 1992

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Object-Oriented Databases, Interactive Electronic Technical Manual,
Computer-aided Acquisition and Logistic Support.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Computer-aided Acquisition and Logistic Support (CALS) is a Department of Defense (DoD) and Industry

strategy to transition from paper-intensive acquisition and logistic processes to a highly automated and integrated
mode of weapon systtun acquisition and operation. A newly demonstrated technology in the context of the CALS
initiative is the Interactive Electronic Technical Manual (IETM), which is a portable computer system developed for
the use of technicians maintaining weapon systems. The introduction of IETM systems will relieve the technician
from the need to carrv extensive volumes of hard-copy technical manuals, provide him with easy interactive access
to the required technicad data and is expected to have a profound impact on the way weapon systems maintenance is
conducted and the costs associated with it.

Object-Oriented Database Management Systems (OODBMS) is a new technology that marries the characteristics
of object-oriented prograrmming languages and data persistence provided by database systems. This thesis explores
issues related to the utilization of OODBMS for the implementation of IETM databases, discusses the benefits of this
approach and addresses some architectural issues of OODBMS in the context of IETM implementation.

*20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED UNLIMITED [] SAME AS RPT.] DTIC USERS UNCLASSIFIED

22, Nf RESPONSIBLE INDIVIDUAL 22b. TELEPHONE include Area Code)Y
W11 (408) 646-3391 A /Wq

0 FORM 1473, e4 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

Approved for public release; distribution is unlimited.

Using Object-Oriented Databases

for Implementation of
Interactive Electronic Technical Manuals

by

Evyatar Chelouche

Major, Israeli Air Force

B.S., Technion, Israel Institute of Technology, 1985

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 1992

,uthor: ___.

-:- 'Evyatar Chelouche

Approved by: ___or

CDR . notti, Second Reader

Robert B. McGhee, Chairman

Department of Computer Science

ii

ABSTRACT

Computer-aided Acquisition and Logistic Support (CALS) is a Department of

Defense (DoD) and Industry strategy to transition from paper-intensive acquisition and

logistic processes to a highly automated and integrated mode of weapon system acquisition

and operation. A newly demonstrated technology in the context of the CALS initiative is

the Interactive Electronic Technical Manual (IETM), which is a portable computer system

developed for the use of technicians maintaining weapon systems. The introduction of

IETM systems will relieve the technician from the need to carry extensive volumes of hard-

copy technical manuals, provide him with easy interactive access to the required technical

data and is expected to have a profound impact on the way weapon systems maintenance

is conducted and the costs associated with it.

Object-Oriented Database Management Systems (OODBMS) is a new technology that

marries the characteristics of object-oriented programming languages and data persistence

provided by database systems. This thesis explores issues related to the utilization of

OODBMS for the implementation of IETM databases, discusses the benefits of this

approach and addresses some architectural issues of OODBMS in the context of IETM

implementation.

Acoession For

NTS r:fI

-J

:I I

iii ta- I
A~l~~.

TABLE OF CONTENTS

I. INTRODUCTION ... 1

II. PROBLEM STATEMENT 3

A. THESIS FOCUS 3

B. THESIS GOALS 3

C. OPEN QUESTIONS 4

III. DATABASE TECHNOLOGY REVIEW 5

A. EVOLUTION OF DATABASE TECHNOLOGY 5

B. OBJECT-ORIENTED PROGRAMMING LANGUAGES 6

C. OBJECT-ORIENTED DATABASES 6

D. COMBINING RELATIONAL AND OBJECT-ORIENTED

CONCEPTS 7

IV. COMPUTER-AIDED ACQUISITION AND LOGISTIC SUPPORT 9

A. BACKGROUND 9

B. CALS OBJECTIVES 10

C. CALS IMPLEMENTATION STRATEGY 11

iv

1. CALS Standards 11

2. Technology Development and Demonstration 11

3. DoD Infrastructure Modernization 12

D. DON CALS ARCHITECTURE/IMPLEMENTATION PLAN 12

1. Implementation Plan Phases 13

2. Infrastructure Modernization 13

V. DON CALS ORIENTED SYSTEMS & DATABASE ENVIRONMENT ... 14

A. BACKGROUND 14

B. DON CALS PROCESS ARCHITECTURES 14

1. Engineering Drawings 15

2. Logistic Support Analysis Record 16

3. Technical M anuals 17

VI. INTERACTIVE ELECTRONIC TECHNICAL MANUALS 18

A. BACKGROUND 18

B. PROBLEMS OF PAPER-BASED TECHNICAL MANUALS 19

C. METHODS FOR TECHNICAL MANUAL AUTOMATION 20

D. SPECIFICATIONS FOR IETM 21

E. THE INTERACTIVE ELECTRONIC TECHNICAL MANUAL DATA

B A SE 22

1. IETMDB Content 22

V

2. IETMDB Structure...................................23

3. IETMDB Functional Requirements........................23

VII. DESIGN OF AN OBJECT ORIENTED IETMDB.................... 25

A. INTRODUCTION...................................... 25

B. CDM CHARACTERISTICS AND STRUCTURE................ 25

1. General Characteristics................................ 25

2. General Structure.................................... 29

3. Elements.. 30

4. Templates... 33

a. Node.. 35

b. Node Alternatives............................... 37

C. Node Sequence................................. 39

d. If Node.......................................40

e. For Node..................................... 42

5. Linking Elements....................................43

6. Primidtive Elements................................... 45

7. Context Filtering Elements............................. 45

8. Content Specific Elements............................. 46

C. OBJECT-ORIENTED MAPPING OF THE CDM................ 47

1. Mapping CDM Structures to Object Classes................. 47

2. Mapping CDM Structures to Instance Variables...............49

vi

3. Mapping Multiple Occurrences of Subelements 51

4. Mapping Subelement Ordering 51

D. AN OBJECT CLASS HIERARCHY FOR IETM

IMPLEMENTATION 52

1. General Structure of the IETM Object Class Hierarchy 52

2. The IETM Subject Class Layer 54

3. Functions of Interaction Classes 55

a. Dialog Class 55

b. Dialog-alt Class 58

c. Fillin Class 60

d. M enu Class 60

e. Prom pt Class 61

f. Choice Class 62

g. Selection Class 63

4. The IETMDB System Environment 64

VIII. BENEFITS OF USING OODB FOR IETMDB IMPLEMENTATION 66

A. INTRODUCTION 66

B. CORE OBJECT-ORIENTED CONCEPTS 66

1. Encapsulation 67

2. C lassification 67

3. Inheritance 68

vii

4. Aggregation 68

5. Polymorphism 69

C. OTHER OBJECT-ORIENTED CHARACTERISTICS 69

1. Object Identifier 69

2. Consistent Data M odel 70

D. OODB ARCHITECTURAL ISSUES 70

1. Clustering of Data 71

2. Q ueries .. 71

3. Authorization 72

E. UTILIZING OODB CAPABILITIES IN AN IETMDB

IMPLEMENTATION 72

1. Using Encapsulation 73

2. Using Classes and Inheritance 74

3. Using Aggregation 74

4. Using Polymorphism 75

5. Clustering Strategy for IETMDB 76

6. Queries in an IETMDB 77

7. Authorization Control in an IETMDB 78

8. Using a Consistent Data Model 78

Vill

IX. CONCLUSIONS ... 80

X. FUTURE RESEARCH .. 82

LIST OF REFERENCES.. 83

INITIAL DISTRIBUTION LIST 86

LIST OF TABLES

TABLE I SGML SYNTAX FOR ELEMENT DECLARATION 32

TABLE 2 SGML SYNTAX FOR ENTITY DECLARATION 33

TABLE 3 SGML SYNTAX FOR ATTRIBUTE LIST DECLARATION 34

TABLE 4 THE NODE TEMPLATE 36

TABLE 5 THE NODE ALTERNATIVES TEMPLATE 38

TABLE 6 THE NODE SEQUENCE TEMPLATE 40

TABLE 7 THE IF NODE TEMPLATE 42

TABLE 8 THE IF NODE TEMPLATE 44

TABLE 9 THE FOR NODE TEMPLATE 46

TABLE 10 THE DIALO3 CLASS DEFINITION 59

LIST OF FIGURES

Figure 1 The Structure and Content Tagging Approaches 26

Figure 2 Non-Redundant Referencing 27

Figure 3 Relational Links in the CDM 27

Figure 4 Context Dependant Filtering in the CDM 28

Figure 5 User Interaction and Branching in the CDM 29

Figure 6 Content Data Model Structure 30

Figure 7 Technical Information Organization and its View in the CDM 37

Figure 8 Using the NODEALT Template 39

Figure 9 Using the NODESEQ Template 41

Figure 10 Using the IFNODE Template 43

Figure 11 Using the FORNODE Template 45

Figure 12 Mapping CDM Structures to OOP Classes 50

Figure 13 The IETM Object Class Hierarchy Layers 54

Figure 14 Objects in a Standard User Interface 56

Figure 15 The Subject Layer Class Hierarchy 57

Figure 16 The IETM System Environment 65

xi

ABBREVIATIONS

CAD Computer Aided Design

CAE Computer Aided Engineering

CALS Computer-aided Acquisition and Logistic Support

CAM Computer Aided Manufacturing

CDM Content Data Model

CIM Computer Integrated Manufacturing

DBMS Data Base Management System

DOD Department of Defense

DON Department of the Navy

DTD Data Type Definition

EDS Electronic Display System

IETM Interactive Electronic Technical Manual

IETMDB Interactive Electronic Technical Manual Data Base

ILS Integrated Logistic Supnort

LSA Logistic Support Analysis

LSAR Logistic Support Analysis Record

NSIA National Security Industrial Association

OODBMS Object-Oriented Data Base Management System

OOP Object-Oriented Paradigm

xii

OOPL Object-Oriented Programming Languages

OSD Office of the Secretary of Defense

PDES Product Data Exchange Standard

RDBMS Relational Data Base Management System

SGML Standard Generalized Markup Language

TID Technical Information Document

xiii

ACKNOWLEDGEMENTS

I would like to thank the following individuals for their assistance in preparation

of this thesis:

1. CDR B. B. Giannotti, for his invaluable help in establishing contacts within
NAVAIR, and his assistance in creating the framework for my research in the
CALS domain.

2. Mr. Shawn P. Magill (AIR-41144), and members of his staff, especially Ms.
Cynthia Janosky, for organizing a very educational tour to NAVAIR and DTRC,
and for continuous support in obtaining background material on the
implementation of CALS in the Navy.

3. Mr. Joseph Garner and other staff members of the David Taylor Research Center,
CALS Technology Integration Lab, for the details on their current research in
IETM systems and IETM specifications.

4. CDR Stephen M. Carr (AIR-41142C), on enlightening discussions which assisted
me in narrowing down the vast research domain that exists in CALS to the one
topic which I selected as the focus of this thesis.

5. Prof. C. Thomas Wu, my thesis advisor, for his guidance throughout this thesis
effort and for facilitating my attendance at the 1991 CALS Exposition and
Conference. Both experiences were invaluable to me in the process of pursuing
expertise in CALS systems.

xiv

I. INTRODUCTION

Computer-aided Acquisition and Logistic Support (CALS) is a Department of

Defense (DoD) and Industry strategy to transition from paper-intensive acquisition and

logistic processes to a highly automated and integrated mode of weapon systems

acquisition and operation. The CALS initiative has set three major goals for changing the

existing relationship between government and industry: reduction of procurement lead

time by creating integrated and shared databases between government and industry,

reduction of weapon systems life-cycle costs by transitioning from a paper intensive mode

of information exchange to a digital information exchange based on accepted standards,

and improving system quality by providing integrated databases for design, manufacturing

and logistics.

From the user perspective, CALS signals a new era in development of computerized

systems based on new hardware and software. One of the newly demonstrated

technologies in the context of the CALS initiative is the Interactive Electronic Technical

Manual (IETM), which is expected to have a profound impact on the way weapon

systems maintenance is conducted and the costs associated with it.

The requirement for creation of integrated and shared databases as part of the future

CALS system environment, provides the motivation for evaluation of new database

technology. The current focus of database technology research is on Object-Oriented

Database Management Systems (OODBMS), a technology that marries the characteristics

of object-oriented programming languages and data persistence provided by database

systems.

The purpose of this thesis is to pursue new knowledge in a domain which is at the

intersection of the front edge of database technology research and the new technologies

evolving in the context of the CALS initiative. More specifically, this thesis will explore

issues related to the utilization of object-oriented database technology for the

implementation of Interactive Electronic Technical Manual (IETM) systems.

The thesis is structured as follows: Chapter II contains the problem statement and

an outline of the thesis goals. Chapter III reviews the evolution of database technology,

and provides background information on the characteristics of object-oriented languages

and object-oriented databases as well as recent attempts to develop a new methodology

that combines the relational and object-oriented approaches. Chapters IV through VI

provide the background for understanding the systems domain of CALS: Chapter IV

contains a broad overview of the CALS initiative. Chapter V narrows the CALS

perspective to the domain of CALS systems in the Navy, whereas Chapter VI focuses on

a specific CALS system, namely the IETM and the IETM Data Base (IETMDB). Chapter

VII presents the proposed solution of utilizing OODB technology for the implementation

of IETMDB. Chapter VIII discusses the benefits of this approach by comparing it to the

alternative approach of implementing an IETMDB with relational database technology.

It also discusses some architectural issues of object-oriented databases in the context of

IETMDB implementation. Concluding remarks are in Chapter IX, followed by notes for

future research in Chapter X.

2

II. PROBLEM STATEMENT

A. THESIS FOCUS

CALS provides new horizons for both the researcher in computer science and the

developer of computer applications. Many unexplored issues need to be addressed before

CALS can be fully implemented in existing or future systems environments. Some areas

that require further research are within the domains of information management, database

architecture and implementation. telecommunications, interconnection of computerized

systems, definition of standards and development of software engineering tools.

This thesis will focus on the domain of database management systems. The primary

focus will be on the application of OODBMS for the implementation of IETMDB

systems. However, to provide a better understanding of the capabilities provided by the

object-oriented approach, a secondary focus will be placed on the study of its capabilities

in comparison to those provided by the well established Relational Data Base

Management System (RDBMS) approach. This secondary focus will be in the context

of IETMDB systems as well.

B. THESIS GOALS

The following are the goals of this thesis:

1. Provide better understanding as to the potential use of OODBMS in the

implementation of IETMDB.

3

2. Provide better understanding of the advantages and disadvantages in using
different database methodologies for IETMDB implementation.

3. Identify potential enhancements to the IETMDP concept through application of
advanced concepts of database architecture.

C. OPEN QUESTIONS

A finer definition of the thesis goals is contained in the following set of open

research questions:

1. How can object-oriented features such as encapsulation, inheritance and
polymorphism be used in the implementation of an IETMDB?

2. What are the advantages/disadvantages of implementing an IETMDB using an
OODBMS vs. using a RDBMS?

3. What form of database architecture is needed to support a DBMS with both
relational and object-oriented capabilities, such that existing relational databases
can be linked together with future object-oriented databases, for the purpose of
IETMDB implementation?

4. How can object-oriented technology assist in enhancing the IETM concept to
include additional functional capabilities in the logistics and maintenance domain?

The answers to these questions were sought throughout the entire thesis research

effort. The details and findings are provided in the following chapters.

4

III. DATABASE TECHNOLOGY REVIEW

A. EVOLUTION OF DATABASE TECHNOLOGY

Database technology has undergone four generations of evolution, beginning with

file systems, hierarchical database systems, network database systems and relational

database systems. Although the hierarchical, network and relational data models have the

same modeling power (Ullman, 1982), Relational Data Base Management Systems

(RDBMS) are by far the most popular DBMS's. This is mainly due to the firm

theoretical foundation on which they stand, as well as the ease of their design,

maintenance and use (Bracket, 1987).

Relational database technology has limitations too. Amongst these are the inability

to define compound (complex) entities, a limited set of data types, and the inability to

define different versions of data (versioning). This imposes a difficulty when creating a

data model for applications in the areas of engineering, manufacturing and multimedia

systems. These applications require advanced facilities for modeling complex nested

entities (e.g. engineering objects and compound documents), user-defined data types and

long unstructured data (images, audio, etc.) and versioning of data (Kim, 1991, p. 21).

These modeling facilities have become available by means of the object-oriented

paradigm.

5

B. OBJECT-ORIENTED PROGRAMMING LANGUAGES

Object-oriented Programming Languages (OOPL) were developed as tools for

realizing the object-oriented paradigm. This paradigm introduced new semantic concepts

for data modeling: objects and classes. Objects are an encapsulation of data (attributes

or instance variables) and behavior (methods). Instances of objects that have the same set

of attributes and share the same methods are grouped in classes. Classes are organized

in a class hierarchy in which classes inherit attributes and behavior from direct and

indirect ancestor classes (Kim, 1991, pp. 21-22). The domain of an attribute can be any

class, thus facilitating definition of complex objects which can have simple or complex

objects as their attributes values (Kim, 1991, pp. 21-22).

Object-oriented design, and the use of OOPL, have improved code reusability,

maintainability and modularity (Cox, 1986). However OOPL, as in other programming

languages, lack the capability of supporting persistent data, i.e. data that can survive

beyond a single programming session (Andrews and Harris, 1987, p. 430). Databases

offer this capability which is the basis for extending the object-oriented paradigm to the

database domain.

C. OBJECT-ORIENTED DATABASES

Object Oriented Data Base Management Systems (OODBMS) are emerging as the

new generation of DBMS technology, and come as a natural extension to OOPL.

OODBMS offer both the advanced data modeling concepts (encapsulation, inheritance,

6

aggregation) that were unavailable in earlier DBMS technologies, and support of

persistent objects, which the OOPL are lacking.

Although OODBMS technology has great potential, it currently suffers from several

weaknesses: First, the weakness of a data modei exists due to the absence of a standard,

and the lack of a formal foundation for a database language. Second, the complexity of

the data model and database language, create difficulties for implementors, as well as

users (Kim, 1991, pp. 26-29) (Premerlani et al., 1990, p. 99). This state of relative

immaturity has been the grounds on which intermediate solutions have been constructed,

which combine relational and object-oriented concepts.

D. COMBINING RELATIONAL AND OBJECT-ORIENTED CONCEPTS

Several approaches exist for integrating relational concepts and object-oriented

concepts in a single DBMS. One approach is using an object-oriented interface layer that

hides the details of the RDBMS from the application. The programmer uses an OOPL

for his application, but the interface translates the operations to RDBMS service requests

(Premerlani et al., 1990, pp. 99-109).

Another approach is to add relational capabilities to an existing OODBMS, thus

enabling continued use of the well known relational model in a OODBMS environment.

This allows conventional relational applications to include complex data (objects) (Nelson

et al., 1990)(NPS52-90-025, May 1990, p. 3).

Taking into consideration other approaches that advocate maintaining separation of

RDBMS and OODBMS (for reasons of performance optimization, technology availability

7

etc.), one can see the difficulty in developing a strategy for implementing a DBMS. This

thesis will compare various methodologies for implementing a DBMS for the IETM

system, which is one of the promising innovations in the domain of CALS systems. An

overview of the CALS program is the subject of the following chapter.

8

IV. COMPUTER-AIDED ACQUISITION AND LOGISTIC SUPPORT

A. BACKGROUND

The advance of computer technology throughout recent years created the basis for

increased automation of design and manufacturing processes, thereby introducing new

systems for Computer Aided Design (CAD), Computer Aided Manufacturing (CAM),

Computer Aided Engineering (CAE), and Computer Integrated Manufacturing (CIM). As

complexity of the design, production, maintenance and use of various industrial products

increased, so did the volume of information created during the different stages of the

product life-cycle. The organizations procuring these products were faced with an

ongrowing influx of data and information, thus complicating the acquisition and system

support tasks, resulting in an increase of systems life-cycle costs and an overall reduction

of system reliability, maintainability, and availability.

The Department of Defense (DoD), as one of the main U.S. Government agencies

involved in system procurement, initiated the Computer-aided Acquisition and Logistic

Support (CALS) drive in 1985, to control information flow between Industry and DoD

agencies. CALS is a joint DoD and Industry strategy aimed at automating the paper-

intensive acquisition and logistic processes, facilitating data integration, exchange and

access between government and industry maintained databases, thus eliminating duplicate

data, and providing a framcwork for integrating existing islands of automation within

DoD and Industry. CALS focuses on generation, access, management, maintenance,

9

distribution and use of technical data associated with weapon systems, such as engineering

drawings, product definition and logistic support analysis data, technical and training

manuals, etc.(DoD-OSD, CALS, 1989, pp. 3-5).

B. CALS OBJECTIVES

Three main objectives were defined for the CALS program (DoD-OSD, CALS,

1989, p. 9):

1. Reduce lead time. A shared and integrated data environment is expected to
contribute to the shortening of weapon system design, development, production,
maintenance and resupply activities.

2. Reduce life-cycle costs. A transition from a paper-intensive mode of information
exchange to a digital technical information exchange based on accepted standards
is expected to increase savings, as well as reduce the extent of duplicate data.

3. Improve system quality. Integrated databases will improve design and
manufacturing by providing the basis for integrating reliability and maintainability
factors into CAD/CAE tools and enhancing data consistency.

Digital file exchanges are the goal for the near term, between now and the mid

1990s, whereas advanced technologies and shared and integrated product databases are

the goal set for the mid 1990s and beyond (DoD-OSD, CALS, 1989, p. 5). To meet these

goals, DoD has defined both policy (DoD Directive 5000.2, Part 6, Section N) and

implementation strategy to be carried out by the different services (DoD-OSD, CALS,

1989, pp. 11-19).

10

C. CALS IMPLEMENTATION STRATEGY

Five areas have been identified as being critical to the implementation of CALS:

development of data-interchange standards, development and demonstration of new

technology, acquisition policy and program management guidance, DoD infrastructure

modernization and training to affect the necessary cultural change (DoD-OSD, CALS,

1989, pp. 11-19) (NSIA, "CALS: Making it happen", 1991, pp. 4-5). Three of these areas

are related to the topic of this thesis:

1. CALS Standards

Transitioning from a paper-intensive mode of information exchange to a

digital file transfer and distributed database access mode, requires definition of a common

interface between DoD and Industry. For this purpose several functional, technical and

data-management standards have been defined.'

2. Technology Development and Demonstration

Research and development (R&D) are carried out in several areas (DoD-OSD,

CALS, 1989, p. 15):

Initial standards published in the context of the CALS initiative were:
MIL-STD- 1840A Automated Interchange of Technical Information,
MIL-D-28000 Initial Graphics Interchange Standard (IGES),
MIL-M-28001 Standard Generalized Markup Language (SGML),
MIL-R-28002 Standard for Raster Images Representation,
MIL-D-28003 Computer Graphics Metafile (CGM) Representation,
MIL-STD- 1388-2B Requirements for Logistic Support Analysis Record (LSAR).

The standardization process is an ongoing process and additional standards can be
expected in the future. Current efforts are targeted on the definition of a Product Data
Exchange Standard (PDES).

11

1. Development of a Product data Exchange Standard (PDES) to support a neutral
representation of product data between dissimilar computer systems.

2. Integration of Reliability and Maintainability (R&M) analysis into the design
process.

3. Logistic applications in the domain of electronic technical manuals, portable
delivery devices, ordering of parts, etc.

4. Database management and access in the distributed system environment of DoD
and Industry.

5. Application of CALS technologies in leading weapon system development
programs.

From the above mentioned R&D areas, this thesis will explore issues related to both

the development of logistic applications and database management.

3. DoD Infrastructure Modernization

The DoD has identified a need to modernize its system infrastructure to

support the reception , integration, acces and use of digital technical information. This

process encompasses systems for electronic technical manuals, engineering drawing

repositories, computer-aided design and technical information integration ,DoD-OSD,

CALS, 1989, p. 19). For practical reasons, the scope of this thesis will be narrowed

down to the systems domain defined in the Department of the Navy (DoN) CALS

Architecture/Implementation Plan.

D. DON CALS ARCtlITECTURE/IMPLEMENTATION PLAN

Guidelines and requirements for implementation of the CALS program within the

Navy were initially defined in the DoN, CALS Strategic Plan, 1988 (pp. 1-7), and were

12

later expanded and detailed in the DoN, CALS Architecture/Implementation Plan, 1991

(pp. 1-30). The plan defined three phases for the implementation of CALS, as well as the

application development and infrastructure modernization that will take place during each

phase:

1. Implementation Plan Phases

1. Phase 1 (1988 - 1991). Use of first generation CALS standards in weapon system
dcvelopment and definition of an architecture to support receipt, storage, handling
anu use of digital technical information.

2. Phase 11 (1992 - 1996). Application of second generation CALS standards to
facilitate interchange of digital data between dissimilar hardware and software
s,,stems. Implementation of Navy CALS infrastructure modernization.

3. Phase III (1997 -). Development and application of Integrated Weapon Systems
Data Bases (IWSDB) spanning over the entire product life-cycle.

2. Infrastructure Modernization

Infrastructure modernization is focused on three application areas: Engineering

Data Automation, Logistic Support Analysis (LSA) Automation and Technical Manual

Automation. The major thrust of this modernization effort is to take place during the

application of Phase II of the implementation plan.

The objective of this thesis is to address issues related to different DBMS

approaches for implementation of IETM systems. This coincides with the modernization

effort that strives to automate technical manuals, thereby providing new technology that

can support the application of Phase II of the Navy CALS Implementation plan.

13

V. DON CALS ORIENTED SYSTEMS & DATABASE ENVIRONMENT

A. BACKGROUND

The following sections will briefly describe the existing and planned CALS oriented

systems architecture environment in the Navy, while highlighting database architecture

aspects of these systems. The word "oriented" is used to emphasize that the description

does not necessarily follow the existing Navy organizational definition of CALS systems.

Furthermore, since the boundaries between logistics and maintenance systems are not

always clearly defined, an exact definition of the term "logistics" (as contained in the

CALS acronym) will be avoided at this time, to prevent exclusion of systems that serve

both disciplines.

The purpose of this review, therefore, is to identify systems and databases in the

logistic/maintenance environment and to identify problems associated with these systems

and databases.

B. DON CALS PROCESS ARCHITECTURES

Three process architectures have been identified and described in (DoN, CALS

Architecture/Implementation Plan, 1991, pp. 4-24): the Engineering Drawings Process

Architecture, the Logistic Support Analysis Record (LASR) Process Architecture and the

Technical Manuals Process Architecture. Each process architecture is described in terms

of the underlying process, the different manipulators of data (creators, managers and users

14

of data), the databases and interactions on them and the existing and planned

implementations (systems) to support the process architecture. The following details of

these process architectures will assist in obtaining a better understanding of the DoN

CALS system/data environment and the potential use of these databases:

1. Engineering Drawings

Engineering drawings are created during the design and development

processes as the means of documenting product definitions. Along with these drawings,

various associated information is provided, such as parts lists, textual descriptive data,

indices, configuration control data, etc. (DoN, CALS Architecture/Implementation Plan,

1991, pp. 9-13). The engineering drawings are used not only to support the design and

development processes, but for Integrated Logistic Support (ILS), Logistic Support

Analysis Records (LSAR), acquisition planning, production cost estimates, product

manufacturing, quality assurance, installation and maintenance. Elements of the drawings

are used as source data for creating ILS products such as technical manuals, training

materials etc. (DoN, CALS Architecture/Implementation Plan, 1991, p. 10).

Until recently, standard media for engineering drawings has been either paper or

aperture cards. The Engineering Data Management Information and Control System

(EDMICS) is an on-going Navy project designed to automate storage and retrieval of

engineering drawings which are maintained as raster images in distributed repositories,

thus eliminating the need to store engineering drawings on hard-copy media. An indexing

method is used to access the raster image files maintained in optical storage devices.

15

2. Logistic Support Analysis Record

Logistic Support Analysis (LSA) is an iterative analytical process applied

throughout the system acquisition program in order to define supportability related design

factors and to ensure development of a fully integrated system support structure (DoD

Directive 5000.2, 1991). MIL-STD-1388-1A defines the sub tasks of conducting this

analysis (e.g. Program Planning and Control Tasks, Mission and Support System

Definition Tasks, etc.).

The Logistic Support Analysis Record (LSAR) defines detailed data elements that

identify the logistic support resource requirements of a given system (MIL-STD- 1 388-2B,

1991, ...). LSAR data is used for conducting LSA tasks, develop ILS products, maintain

products and product configuration control and update other management and

configuration data bases (MIL-STD-1388-2B, 1991, ...). MIL-STD-1388-2B defines a

standard DoD format for a normalized relational database containing all data elements

necessary to support the LSA process.

A full implementation of the LSAR relational database, as defined by MIL-STD-

1388-2B, has not yet materialized due to limited funding. Currently two proprietary

software systems (LEADS, SLIC) are used by different Navy activities to support the

LSA process. The SLIC system has limited relational capability to support ad-hoc SQL

queries, and is based on a flat-file data architecture. Thus the current state of LSAR data

automation can be characterized as suffering from the following problems: lack of

software standardization, lack of system connectivity to facilitate data sharing between

16

sites, and lack of a database architecture to support data integration and flexible data

retrieval.

3. Technical Manuals

Technical manuals are developed primarily for the purpose of conducting

system maintenance. LSAR data and engineering drawing data are retrieved from the

source level LSAR and engineering drawing databases and used by the Technical Manual

authoring systems for the purpose of developing technical manuals (DoN, CALS

Architecture/Implementation Plan, 1991, pp. 5-8). These authoring systems maintain

application level databases to capture technical manual content, format etc., thus providing

primarily for print-on-demand capability of technical manuals. However, a far more

revolutionary approach to the acquisition and use of technical manuals has been

advocated, in the form of Interactive Electronic Technical Manual (IETM). The ITEM

concept is the subject of the following chapter.

17

VI. INTERACTIVE ELECTRONIC TECHNICAL MANUALS

A. BACKGROUND

The increasing complexity of weapon systems developed in recent years has resulted

in greater volumes of printed technical manuals to support the maintenance of these

systems. However, the overall quality of these manuals has been recognized as being

poor (NAVINSGEN, Review of Navy Technical Manual Program, 1984), thereby

reducing the quality of the preformed maintenance and decreasing the readiness level of

operational systems (aircraft, ships, subsystems, etc.).

One of the major CALS R&D thrusts within the DoD community is to improve

maintenance and logistic-support by automating technical manuals. Different systems

were developed in the past and other systems are currently being developed for

management, printing, distribution and use of technical manuals. Some of these

development efforts are unique to specific services while others are Joint Services

efforts2 .

2 Examples for management systems are: Air Force Technical Order Management
System (AFTOMS), which was later transformed to the Joint Uniform Services Technical
Information Service (JUSTIS). Examples for printing systems are: Navy Print On Demand
System (NPODS). Examples for delivery/presentation systems are Air Force Integrated
Maintenance Information System (IMIS), Navy Technical Information Presentation
System (NTFIPS).

18

B. PROBLEMS OF PAPER-BASED TECHNICAL MANUALS

Currently, the main method of delivering technical manual data from the contractors

to the DoD is in paper form3. To bettr understand the motivation for development of

IETM systems, some of the problems associated with this mode of data delivery are listed

below (DTRC-89/007, February 1989, pp. 6-7 and 16-17):

1. Weight and space demands for technical manual libraries.

2. Time required to locate data within a given manual.

3. Requirements to reference other technical manuals, resulting in a mass of paper
required to preform maintenance tasks.

4. Low quality updates due to reliance on manual insertion of new correction pages
or pen-and-ink corrections made to existing pages.

5. High investment required for training technicians.

6. Rising costs associated with maintaining technical manuals.

7. Low quality maintenance due to the discrepancy between the reading capability
of the technician and the language and format of the manuals.

8. Lack of guidance from experienced personnel, thereby resulting in a higher rate
of maintenance errors and increased down-time.

The previously outlined problems associated with delivery of technical manuals in

paper form, from the perspectives of both the acquiring organization and the end-user,

' Alternate automated methods for data delivery have been defined in MIL-STD-
1840A, Automated Interchange of Technical Information. Although requirements for
digital delivery of data have started to appear in recent acquisition contracts, the bulk of
data delivered under existing contracts is still in paper-form.

19

establish the justification for Technical Manual automation. Methods to achieve this

objective are detailed in the following section.

C. METHODS FOR TECHNICAL MANUAL AUTOMATION

Three methods for Technical Manual automation have been defined in (DTRC-

89/007, February 1989, pp. 13-15). The methods differ by the extent of computer

technology application and technical manual data organization:

1. Storage of digitized Technical Manuals which are created in page-oriented form,
and are thereafter raster-scanned and stored in digital storage devices. For the
purpose of maintaining such a repository, a basic file system with indexing
capability will suffice, although usage of a DBMS can provide additional
capabilities for conducting queries and searches.

2. Same as the previous method, only that intelligent scanning software is used to
identify text and vector graphics that compose the scanned image. Thus the
automated system maintains some knowledge of the data content of the technical
manual page, enabling advanced techniques of data access. In this case utilization
of a DBMS is an essential requirement.

3. Production of frame-oriented technical manuals. In this method text data and
image data are created as separate entities and are subsequently maintained as
separate entities in the DBMS. Text and images are merged as a result of
interactive input by the user, who creates a demand for representation of a new
frame on the output device. The data in the frame serves as guidance for the user
in performing his current task.

The first two methods are practical for automation of existing technical manuals,

whereas the latter would be more cost-effective if used for the development of Technical

Manuals for new weapon systems. The Interactive Electronic Technical Manual (IETM)

20

is based on the previously described concept of a frame-oriented technical manual. More

details on the IETM concept can be found in (DTRC-89/007, February 1989, pp. 18-82).

D. SPECIFICATIONS FOR IETM

The Defense Quality and Standardization Office established a Tri-Service ITEM

Working Group in 1989 to foster the exchange of ideas and to develop a set of DoD

specifications for IETM acquisition. A series of five specifications and handbooks for

IETM Acquisition has been drafted by the ITEM Working Group and the David Taylor

Research Center, which is the Navy's representative to and the chair of the ITEM

Working Group'.

4 The draft specifications and handbooks consist of:
1. David Taylor Research Center, DTRC Report 90/025, Proposed Draft Military

Handbook Presenting Requirements for an Electronic Display System for Interactive
Electronic Technical Manuals (IETMs), by Jorgensen E. L., Rainey S. C. and
Fuller J. J., July 1990.

2. David Taylor Research Center, DTRC Report 90/026, Proposed Draft Military
Handbook for Preparation of View Packages in Support of Interactive Electronic
Technical Manuals (IETMs), by Rainey S. C., Jorgensen E. L. and Fuller J. J., July
1990.

3. Tri-Service Working Group for Interactive Electronic Technical Manuals, Draft
MIL-M-GCSFUI, Manuals, Interactive Electronic Technical: General Content,
Style, Format, and User-Interaction Requirements, by Fuller J. J. and others, April
1991.

4. Tri-Service Working Group for Interactive Electronic Technical Manuals, Draft
MIL-D-IETMDB, Data Base, Revisable: Interactive Electronic Technical Manuals,
for the Support of, by Fuller J. J. et al., April 1991.

5. Tri-Service Working Group for Interactive Electronic Technical Manuals, Draft
MIL-Q-IETMQA, Quality Assurance Program: Interactive Electronic Technical
Manuals and Associated Technical Information; Requirements for, by Fuller J. J.
et al., April 1991.

21

One of the specifications contains detailed requirements for an Interactive Electronic

Technical Manual Data Base (IETMDB) (MIL-D-IETMDB, April 1991). IETMDB

requirements, as well as issues related to the database content and structure, are detailed

in the following section.

E. THE INTERACTIVE ELECTRONIC TECHNICAL MANUAL DATA BASE

As with any other database, the IETMDB can be characterized by the data content

(i.e. the types of data elements, attributes and relationships between elements, which are

maintained in the database) and the database structure type (i.e. the methodology used to

implement the DBMS: relational, object-oriented, etc.). The IETMDB content and the

IETMDB structure, as well as additional IETMDB functional requirements are detailed

below:

1. IET!' 3 Content

The IETMDB is a complete collection of data elements, attributes and

relat;)nships pertaining to a specific weapon system (or other equipment acquired by the

IGovernment).

22

The IETMDB elements are structured in accordance with the hierarchical

relationships defined in the Content Data Model5 (CDM) Data Type Definitions (DTD)6

and named in accordance with the CDM Data Element Dictionary (Tag Set Descriptions).

2. IETMDB Structure

No structurai requirements on the actual Data Base Management System

(DBMS) methodology are imposed by MIL-D-IETMDB, i.e. the database can be either

a relational or an object-oriented database (MIL-D-IETMDB, April 1991, p. 3).

3. IETMDB Functional Requirements

The following is a list of IETMDB functional requirements. Additional details

can be found in (MIL-D-IETMDB, April 1991, pp. 6-12).

1. The ITEMDB can serve as the basis for construction and update of weapon-system
electronically displayed ITEMs and automated construction of IETM View
Packages".

The Content Data Model is a spacification for a weapon system technical
information database. The model was developed by Air Force Human Resources
Laboratory (AFHRL-TP-90-10, May 1990), and makes use of the Standard Generalized
Markup Language (SGML) specified in (ISO-8879, 1986).

6 The Document Type Definition (DTD) defines the grammar of the tag language

used within a document (i.e. the names of tags which label the data items and the
structure of the data. A good example for use of SGML and DTD can be found in
(AFHRL-TP-90-10, May 1990, pp. 8-14).

7 An IETM View Package is defined as "a fully organized and formatted item of
computer-processible Technical Information derived from an IETMDB and capable of
interactive electronic display to an end user by means of an Electronic Display System
(EDS)" (DTRC Report 90/026, July 1990, p. 13).

2. The IETMDB can provide direct access to logistic-support information related to
a specific weapon system.

3. The IETMDB, or portions of it, can be interchanged by means of standardized
formats and procedures.

4. The IETMDB shall not contain format directions for arrangement of text and
graphics on a display screen (i.e. the data will be "format-free").

As mentioned above, the IETMDB specification does not contain a requirement for

usage of a specific DBMS methodology. One of the goals of this thesis is to investigate

the application of OODBMS methodology in the implementation of IETMDB. This topic

is the subject of the following chapter.

' In page-oriented technical manuals a strong binding exists between the page data
(text and images) and the page format. This binding is eliminated in the frame-oriented
technical manual concept.

24

VII. DESIGN OF AN OBJECT ORIENTED IETMDB

A. INTRODUCTION

The purpose of this chapter is to demonstrate how an IETMDB can be designed by

utilizing object-oriented design concepts and methodology. The first section provides a

detailed description of the Content Data Model (CDM), which is used by the MIL-D-

IETMDB specification to describe the technical information elements and their

relationships. The second section maps the requirements of the CDM to the various

characteristics of the Object-Oriented Paradigm (OOP). The third section contains an

actual design of an Object-Oriented class hierarchy for the implementation of IETMDB.

B. CDM CHARACTERISTICS AND STRUCTURE

The following is an outline and brief description of the CDM characteristics and

structure. Additional details can be found in (MIL-D-IETMDB, April 1991)(Caporlette,

1991).

I. General Characteristics

The CDM was developed to represent technical information elements and their

relationships in an integrated database environment, thus providing capabilities that were

non-existent in earlier forms of non-integrated flat-file technical data representations. The

CDM main capabilities are (Caporlette, 1991):

25

1. Elimination of data redundancy. This is achieved by tagging technical data
according to content, and not according to format or structure. Figure 1 provides
a comparative view of these approaches whereas Figure 2 depicts the non-
redundant referencing capability provided by the CDM9.

SStructure Tagging

Pam 2.1 Para 2.2 Par 2.3

Content Tagging

Warning Text 1 Graphic 1

Figure 1 The Structure and Content Tagging Approaches

2. Creation of links between data elements that have unique relationships. This
capability supports establishing relational links to access specific data, as depicted
in Figure 3. Thus instead of the common reference to data that is used in hard-
copy technical manuals (e.g. "see section 1.2 ...") the user is provided with the
capability to actually access the data when using the appropriate device, namely
the IETM.

9 Figures 1 through 4 were adapted from (Caporlette, 1991).

26

Conditionm st 1 Stop 2n

Figure 2 Non-Redundant Referencing

Figue 3Rana Links 2nteD

27

3. Provide capability for dynamic selection of technical information based on
variables dependant upon usage scenario. An example, in which the variable is
the expertise level of the technician, is depicted in Figure 4.

il s,- Nc - Skl Expert "

Tet1aWarning1 textib Graphic lb

Figure 4 Context Dependant Filtering in the CDM

4. Provide capability for user interaction and branching, as depicted in Figure 5.
This is a fundamental requirement of the IETM concept, because of the
unpredictability of the maintenance task flow.

As mentioned earlier, these capabilities were not provided by earlier models

of technical data. The dual layered CDM structure, which provides these capabilities, is

detailed in the following subsections.

28

T he ba Dialog Ansnsist o two lysw: r - No

Answer -
Yes or No ?Tx2&Gahc2etb

Figure 5 User Interaction and Branching in the CDM

2. General Structure

The basic structure of the CDM consists of two layers: the Generic Layer,

which defines the general characteristics of the CDM and the structures which are

common to all applications, and the Content Specific Layer which defines content specific

structures and their relationships for a given application.

The Generic Layer consists of templates, linking elements, primitive elements

and context filtering elements. The Content Specific Layer uses the Generic Layer

templates and elements to define the application elements and relationships.

The overall CDM structure is depicted in Figure 6.

29

TEMPATESGENERIC LAYER

ELEMENTS ELEMENTS ELEMIENTS

CONTENT SPECIFIC
ELEMENTS CONTENT SPECIFIC

LAYER

Figure 6 Content Data Model Structure

3. Elements

Elements are used to capture data. A SGML Data Type Definition (DTD)

declaration of an element consists of three parts: the element name, requirements for

beginning and end tags' ° and the definition of the element structure (sometimes referred

to as the element content model). The element structure definition details either the

elements that make up the specific element (i.e. identify the sub-components) or the actual

data of the element. Elements can have multiple occurrences and can have attributes

associated with them.

'0 The beginning and end tags are part of the SGML syntax.

30

For the purpose of providing examples of CDM structures throughout this

chapter, an abbreviated description of SGML syntax and examples of usage of element

declarations, entity declarations and attribute list declarations11, is contained in Table 1

through Table 3. Additional details on the SGML syntax can be found in MIL-M-

28001A, July 1990 (Appendix A). Semantics of the definitions of CDM structures can

be found in MIL-D-IETMDB, April 1991 (Appendix A).

" Elements and attributes describe the actual data. Entities, on the other hand, are
merely a SGML language mechanism for string substitution. See details in Table 1.

31

TABLE I SGML SYNTAX FOR ELEMENT DECLARATION

Element Declaration

Syntax:

<!ELEMENT element-name [tag-minimization] elementstructure >

Examples:

<!ELEMENT aircraft - - (body , system+)>
<!ELEMENT body - o (fuselage & wings & tail-section)>
<!ELEMENT system - o (hydraulic+ & navigation* & armament?)>

SGML syntax Explanation

<!ELEMENT ... > Element declaration

- o Requirements for start and end tags minimization:
first position = start tag, second position = end tag
- = required, o = optional

Grouping of subcomponents

* + ? Occurrence indicators:

* = zero or more, + = exactly one, ? = zero or one

I & Connectors:
= order of elements (sequence)

I = only on element of group is used (or)
& = elements may occur in any order (and)

Examples explanations:

The aircraft element consists of 2 subcomponents: a (single) body subcomponent and one or
more systems subcomponents. The system element has at least one hydraulic
subcomponent, zero or more navigation subcomponents and possibly a single armament
subcomponent.
The usage of the aircraft element requires that the aircraft data be preceded by a start tag
and succeeded by an end tag, whereas the usage of the body element requires only that a
start tag precede the body data.

32

TABLE 2 SGML SYNTAX FOR ENTITY DECLARATION

Entity Declaration

Syntax:

<!ENTITY entity-name entity-text>

Examples:

<!ENTITY dod "Department of Defense">
<!ENTITY % text "(PCDATA)">

Comments:

The entity declaration serves as a string substitution mechanism

SGML syntax Explanation

<!ENTITY name 'text"> Declaration of general entity.
Declared in DTD and referenced in the document instance

<!ENTITY % name "text"> Declaration of parameter entity.
Declared in DTD and referenced in DTD (mechanism for
shorthand). Usage reference is %name.

4. Templates

Templates define a set of semantic rules for creating either generic elements

or content specific elements. The definition of the element is not restricted to the content

of the template used to define it, i.e. additional semantic rules can be added to those

defined by the template. The templates provide structures that can be used for definition

of composite elements, execution of context dependant filtering, the capture of user

interaction sequences and execution of conditional branching and iteration.

33

TABLE 3 SGML SYNTAX FOR ATTRIBUTE LIST DECLARATION

Attribute List Declaration

Syntax:

<!ATTLIST elementname attributedefinition list>

Examples:

<!ATTLIST aircraft
type (fighter I helicopter I transport I undefined) "undefined"
branch (af I navy I army I mc I cg) #REQUIRED
tailno NUMBER #REQUIRED >

SGML syntax Explanation

<!ATTLIST ... > Attribute list declaration

"value" Definition of a default value

#KEYWORD Keywords for attribute specification requirements:
(e.g. #REQUIRED) #REQUIRED = a specified value is required

#IMPLIED = the value is implied by the application
#CURRENT = required on first usage of that attribute for that

element, otherwise defaults to previous value
#CONREF = filled in only when the element's content model is

empty

KEYWORD Keywords for attribute declared values:
(e.g. NUMBER) CDATA = character data

NUMBER = all digits
NAME = beginning with alphabetic character, then either

alphanumeric, '-' or
ID = a unique identifier
IDREF = a reference to an ID
NUTOKEN = begins with digit and contains name characters
ENTITY = a reference to an externally declared entity

Five templates are defined in the CDM Generic Layer: The Node template,

the Node Alternatives template, the Node Sequence template, the If Node template and

the For Node template. Following are the details of each template:

34

a. Node

The Node (NODE) contains the content of the technical information,

context filtering preconditions and postconditions and link elements that provide for cross-

referencing to other technical information (nodes). The link element provides for

definition of composite structures of nodes, thus creating an implied hierarchy of technical

information elements.

Table 4 contains the definition for the NODE template and an example 2

for its use. The example describes the content specific "system" element, which employs

the NODE template from the generic layer. The "system" element is used to describe any

component which has technical information associated with it. The system-subsystem

hierarchy of an aircraft (i.e. vehicle/system/subsystem/subassembly) can be modeled in

the CDM by using the content specific "system" element to define any component in the

vehicle hierarchy. Figure 7 shows the relationship between the aircraft technical

information hierarchy, and its representation in the CDM context specific layer.

12 Content specific examples given in this chapter are taken from (MIL-D-IETMDB,

April 1991, Appendix B) which contains the content specific element DTDs for display
of technical information for an O-level maintenance technician.

35

TABLE 4 THE NODE TEMPLATE

Template name: NODE

Generic template:

<!ELEMENT "NODE" - o (precond*, link*, (NODE I NODEALTS I
NODESEQ)*, postcond*)>

<!ENTITY % a.node
"id ID #IMPLIED
name CDATA #IMPLIED
type CDATA #IMPLIED
itemid CDATA #IMPLIED
cdm NAME #FIXED node'
ref IDREF #CONREF" >

Semantic interpretation:

1. The content specific element utilizing the NODE template may contain preconditions,
which will be evaluated at presentation time. The NODE will be presented if all conditions
evaluate to true.
2. The element may contain relational links to other elements.
3. The element may contain subcomponents that employ the NODE, NODE_ALTS, or
NODESEQ templates.
4. The element may contain postconditions which record presentation events.

Usage example:

<!ELEMENT system - o (precond*, link*, %system;*, %descinfo;*, %task;*, %partinfo;*,
%faultinfo;*)>

<!AiTLIST system
%a.node; >

Example comments:

1. The context specific "system" element employs the NODE template from the generic layer.
The "system" element contains a list of preconditions which define the elements applicability,
relational links to other elements, sub-system elements (by means of the %system;* entity) and
descriptive, task, part, and fault information about the system.
2. Although the NODE template allows for postconditions as well, these are optional and are
not used in the context of the example.

36

Vehicle (F-1)ua

Hierarchical View of
FSubassembly (Attitude Indicator) Technical Information

~F-18

Content Specific Layer

Note: The System elements employ the
NODE template of the Generic Layer

Figure 7 Technical Information Organization and its View in the CDM

b. Node Alternatives

Node Alternatives (NODEALTS) is a list of mutually exclusive nodes,

grouped together by the fact that they apply to different contextual situations. The

content specific layer NODEALTS element is a reference to a set of nodes that might

apply in different situations. No hierarchy is implied between the generic NODEALTS

element and the content specific NODE element.

Table 5 contains the definition for the NODEALTS template and an

example for its use. The example describes the content specific "descinfoalt" element,

which employs the NODEALT template from the generic layer. Figure 8 depicts the

37

relationship between the actual descriptive information contained in the technical manual,

and the way it is modeled in the content specific layer of the CDM using the NODEALT

template from the generic layer.

TABLE 5 THE NODE ALTERNATIVES TEMPLATE

Template name: NODEALTS

Generic template:

<!ELEMENT "NODE" - o (NODE)+ >

<!ENTITY % a.nodealts
"id ID #IMPLIED
cdin NAME #FIXED 'node_alts'
ref IDREF #CONREF" >

Semantic interpretation:

1. The content specific element utilizing the NODE template must contain components that
employ the NODE template.
2. The components must be of the same element type and at the same level in the hierarchy.
3. The each alternative, the NODE whose precondition evaluates to "true" will be presented.
4. The preconditions must be mutually exclusive such that no more than one NODE will have
a precondition that evaluates to "true".
5. There need not be an applicable component for every possible situation.

Usagze example:

<!ELEMENT descinfoalts - o (descinfo)+ >
<!ATTLIST descinfoalts

%a.node_alts; >

Example comments:

1. The "descinfoalts" element is uses the NODEALTS templatc to facilitate context filtering
of descriptive information.

38

IVehicle (-8

System (Weapons) oHier..,rr~ic&"i -,,ew of
~Techncal Information

Descriptive Information

T

[Saftey Operation Maintenance

Syvem
F.18 Content Specific Layer

View
yter m

SDescifo-alts Note: The System and Descinfo elements employ
the NODE template of the Geneic Layer

Descinfo l The Descinfoalts element employs the

Safey Opraflof Manenc NODE,_.ALTS template

Figure 8 Using the NODEALT Template

c. Node Sequence

The Node Sequence (NODESEQ) template is used for definition of

content specific elements that capture user interaction sequences. The components of a

NODESEQ are elements that use the NODE, NODEALTS, IF-NODE or FORNODE

templates. The components of a NODESEQ are traversed in their order of appearance,

to include branching and iteration as implied by the different templates.

Table 6 contains the definition for the NODESEQ template and an

example of its use. The example describes the content specific "step-seq" element, which

employs the NODESEQ template from the generic layer. Figure 9 depicts the

39

relationship between the actual descriptive information contained in the technical manual,

and the way it is modeled in the content specific layer of the CDM using the NODESEQ

template from the generic layer.

TABLE 6 THE NODE SEQUENCE TEMPLATE

Template name: NODE_SEQ

Generic template:

<!ELEMENT NODESEQ - - (NODE I NODEALTS I IFNODE I FOR_NODE)+ >

<!ENTITY % a.node-seq
"id ID #IMPLIED
cdm NAME #FIXED 'nodeseq'
ref IDREF #CONREF" >

Semantic interpretation:

1. The content specific element utilizing the NODE template must contain components that
employ the NODE, NODEALTS, IF NODE or FORNODE templates.
2. The components of a NODESEQ are traversed in u.e order of appearance.

Usage example:

<!ELEMENT step-seq - o (step I step-alts I if-step I for-stcp I task I taskalts)+ >
<!ATTLIST step-seq

%a.node_seq; >

Example comments:

1. The "step-seq" element uses the NODESEQ template to provide capability to create
sequences of steps and tasks that comprise a maintenance procedure.

d. If Node

The If Node (IF_NODE) template is similar to an if-then-else statement

in programming languages. It contains a precondition which is evaluated, and according

40

Ro (Subassemly
(Gun)(

Remo W
Hierarchical View of

PreRemoval [Removal Post-Removal Technical Information
Safety Check Instructions Inspection

Gun Content Specific Layer
view

StP-Seq Note: The System and Task elements employ

the NODE template of the Genexc Layer

Stop stop nThe Step-seq element employs the

Satey Removal . NODESEQ template

Figure 9 Using the NODESEQ Template

to the outcome a NODESEQ (which is a then/else component of the IFNODE) might

be traversed.

Table 7 contains the definition for the IFNODE template and an example

for its use. The example describes the content specific "ifstep" element, which employs

the IF-NODE template from the generic layer. Figure 10 depicts the relationship between

the actual descriptive information contained in the technical manual, and the way it is

modeled in the content specific layer of the CDM using the IFNODE template from the

generic layer.

41

TABLE 7 THE IF NODE TEMPLATE

Template name: IFNODE

Generic template:

<!ELEMENT IFNODE - - (precond, NODE SEQ, NODESEQ?) >

<!ENTITY % aif node
"id ID #IMPLIED
cdm NAME #FIXED 'ifnode'
ref IDREF #CONREF" >

Semantic interpretation:

1. The precondition will be evaluated during presentation.
2. If it evaluates to "true", the first NODESEQ will be traversed.
3. Otherwise, if there exists a second NODESEQ, it will be traversed.
4. If a second NODESEQ doesn't exist, no action will be taken.

Usage example:

<!ELEMENT if_step - o (precond, step-seq, step-seq?)>
<!ATTLIST if-step

%a.if node; >

Example comments:

1. The "ifstep" element uses the IFNODE template to provide capability for conditional
selection of steps, to be executed in a specific maintenance procedure.

e. For Node

The For Node (FORNODE) provides the capability of iterating over a

NODESEQ, in a similar manner to the "for loop" of a programming language. It's

components are preconditions and postconditions to initialize, test and update the loop

control variable, as well as a NODESEQ which constitutes the "loop body".

Table 8 contains the definition for the FORNODE template and an

example of its use. The example describes the content specific "forstep" element, which

42

Hierarchical View of Content Specific Layer
Technical Information View

Pressure Loss (Hydraulic) (Hydraulic Task
(HdalcPressure Loss)

Identiy LeakStep...seq

Leak Detected? If-.Stop

Leak Detected - Yes Leak Detected - No Step .seq Stp.sq
Procedure A Procedure B (No Leak) (ek

Note. The Task element employs the NODE
template of the Generic Layer

The ILstep element employs the
IF...NODE template

Figure 10 Using the IFNODE Template

employs the FORNODE template from the generic layer. Figure I1I depicts the

relationship between the actual descriptive information contained in the technical manual,

and the wvay it is modeled in the content specific layer of the CDM using the FORNODE

template from the generic layer.

5. Linking Elements

The generic layer link element provides the capability to create links between

different elements of the CDM. The linking mechanism employed by the CDM is based

on the HyTime standard (ISO/IEC 10744, April 1991). The link element attributes

contain identifiers that point to either a CDM element or a location element that resolves

43

TABLE 8 THE IF NODE TEMPLATE

Template name: IFNODE

Generic template:

<!ELEMENT IF_NODE - - (precond, NODESEQ, NODESEQ?) >

<!ENTITY % a.ifnode
"id ID #IMPLIED
cdm NAME #FIXED 'ifnode'
ref IDREF #CONREF">

Semantic interpretation:

1. The precondition will be evaluated during presentation.
2. If it evaluates to "true", the first NODESEQ will be traversed.
3. Otherwise, if there exists a second NODESEQ, it will be traversed.
4. If a second NODESEQ doesn't exist, no action will be taken.

Usage example:

<!ELEMENT ifstep - o (precond, step-seq, step-seq?)>
<!ATTLIST if-step

%a.if node; >

Example comments:

1. The "if-step" element uses the IF_NODE template to provide capability for conditional
selection of steps, to be executed in a specific maintenance procedure.

to the desired data. Seven different location elements are defined in the CDM: the

external element pointer, the element location pointer, the data entity location pointer, the

data location pointer, the aggregate location pointer, the generated location pointer and

the span location pointer. Additional details on the HyTime standard can be found in

ISO/IEC 10744, April 1991.

44

Hierarchical View of Content Specific Layer
Technical Information View

Calibrate (Magnetic Compass) Task
pass)(Compass Calibration)

I
CalirateStep-seq

At 30 Degree IntervalsFote1 -7
[Calibrate for ei~ng SO..S~

Note: The Task element employs the NODE
template of the Generic Layer

The For.step element employs the
FOR-NODE template

Figure 11 Using the FORNODE Template

6. Primitive Elements

The primitive elements in the CDM generic layer consist of the basic text

element (which is a text string of parsable character data), table elements (table, column

header, entry), graphics elements (graphic, graphic primitive), audio, video and process

elements (audio, video, process, parameter) and dialog elements (dialog, fill-in, menu,

prompt, choice, selection).

7. Context Filtering Elements

Context filtering elements provide the capability to present to the user only

the information that applies to his session (preconditions) or record presentation events

45

TABLE 9 THE FOR NODE TEMPLATE

Template name: FORNODE

Generic template:

<!ELEMENT FORNODE - - (postcond, precond. postcond, NODESEQ) >

<!ENTITY % afor_node
"id ID #IMPLIED
cdrn NAME #FIXED 'for-node'
ref IDREF #CONREF" >

Semantic interpretation:

1. At the beginning of the loop the first postcondition is evaluated and the value is assigned to
the specified property.
2. The precondition is evaluated, and if it evaluates to "true" the NODESEQ is traversed.
3. At the end of each iteration the second postcondiuon is evaluated and the value is assigned
to the specified property.
4. If the precondition evaluates to anything but "true", the loop is terminated.

Usage example:

<!ELEMENT for step - o (postcond, precond, posicond, step-seq)>
<!ATTLIST for-step

%a.fornode; >

Example comment,:

1. The "for-step" element uses the FORNODE template to provide capability for iterating
over a scries of steps.

for later filtering (postconditions). This capability is useful for training, recording

maintenance activities and other control purposes.

8. Content Specific Elements

The content specific elements define those elements that are specific to the

application.

46

Appendix B of MIL-D-IETMDB contains the content specific elements DTD

for display of technical information for an 0-level maintenance technician. Examples for

content specific elements are: descriptive information element, paragraph element, task

element, person element, equipment element, fault information element, etc. Other

examples can be found in Table 4 through Table 8 and in (MIL-D-IETMDB, April 1991,

Appendix B).

C. OBJECT-ORIENTED MAPPING OF THE CDM

The MIL-D-IETMDB specification requires that the database elements be structured

according to the hierarchical relationships defined in the CDM DTDs and named in

accordance with the CDM Data Element Dictionary (Tag Set Descriptions) (MIL-D-

IETMDB, April 1991, p. 6). In view of these requirements the following guidelines were

constructed for mapping CDM structures to Object-Oriented Paradigm (OOP) structures:

1. Mapping CDM Structures to Object Classes

As mentioned earlier the CDM consists of two layers: the generic layer which

defines general characteristics and generic structures which are common across all CDM

applications, and the content specific layer which defines the content specific structures

for a given application. Implicit in this structure are requirements for code reusabilitv and

code sharing, which the OOP provides for by means of abstraction, inheritance and

polymorphism (Wu, 1991).

The generic layer structures map into two types of classes: abstract (formal)

classes (i.e. classes that have no instances, and actually serve as encapsulators of common

47

structure and behavior to be inherited by other classes), and "regular" object classes (i.e.

classes that have instances). The generic layer templates map to the former, whereas all

other generic layer elements (i.e. linking, primitive and context filtering elements) map

to the latter. For example, the NODE template:

<!ELEMENT "NODE" - o (precond*, link* (NODE I NODEALTS I
NODESEQ)*, postcond*)>

<!ENTITY % a.node

"id ID #IMPLIED
name CDATA #IMPLIED
type CDATA #IMPLIED
itemid CDATA #IMPLIED
cdm NAME #FIXED 'node'
ref IDREF #CONREF" >

maps to the abstract class Node, whereas the generic layer primitive element "prompt":

<!ELEMENT prompt - o (%text; I %graphic;)>
<!ATTLIST prompt

id ID #IMPLIED
ref IDREF #CONREF >

will map to a "regular" class named Prompt, which has instances. The topic of defining

the instance variables for these classes is addressed in the following subsection.

The content specific layer defines the content specific elements used by the

application. Each content specific element constitutes a separate class. For example, the

content specific equipment element:

48

<!ELEMENT equip - o (precond*, link*, %equip;*)>
<!ATrLIST equip

%a.node;
cage CDATA #IMPLIED
icc CDATA #IMPLIED
nsn CDATA #IMPLIED
qty CDATA #IMPLIED >

will map to the Equip class which will define the structure and behavior of all equipment

objects. The mapping of CDM structures to OOP structure is depicted in Figure 12.

2. Mapping CDM Structures to Instance Variables

Instance variables are the attributes of the object. It follows that the element

attributes map to the instance variables. In the previous example the "equip" element had

two groups of attributes. The first group composed of those attributes defined in the

NODE template and associated with the "equip" element by means of the entity reference

"a.node;". These attributes are directly inherited from the Node class. The second group

contains four additional attributes that describe the type and number of equipment items

required for a certain task. These attributes map to the Equip class instance variables.

Instance variables are objects of other classes and thereby provide the

mechanism for defining the object structure (i.e. subcomponents3). The element

structure, on the other hand, is defined by the element subcomponnents. For example,

the "table" element:

13 This characteristic of OOP is known as aggregation.

49

OOP Classes GENERIC LAYER

A bstact ------------------------------ EN lA ThS

Classes

PRET ITERN
ELEM4ENTS

Object
Classes

* LINKING
ELE-MENTS

CONTENT SPECIFIC

LAYER

CONTENT SPECIFIC
* ELEMENTS

Figure 12 Mapping CDM Structures to OOP Classes

<~!ELEMENT table - o (precond*, link*, (colhddef*', entry+)+)>
<!ATTLIST table

%a.node, >

50

is an aggregation of preconditions, links, and at least one column entry that may have a

header. These objects define the structure of the Table class, and are therefore mapped

to the Table class instance variables as well. This coincides with the notion that the

"table" object need not know about the internal structure of its instance variables (which

could be a single entry object, a collection of entry objects, etc.).

3. Mapping Multiple Occurrences of Subelements

As mentioned earlier, the element structure definition allows for multiple

occurrences of subelements. For example, the "table" element can have zero or more

preconditions and at least one entry 4 . To capture this dat, the Table class object will

have a "precond" instance variable, which will be set to nil if no preconditions exist or

be set to a given sequence of preconditions otherwise. It will be the responsibility of the

loading program to create the correct objects according to the DTD definition of the

element structure 5 .

4. Mapping Subelement Ordering

The element structure contains connectors that define rules for ordering of

subelements"6 . This knowledge of the correct order (as defined in the DTD) is needed

by the loading program in order to create instances of the correct class to capture the data.

The order of the subelements will not be maintained explicitly by the corresponding

14 See definition of multiple occurrences in Table 1.

's See discussion on the software environment in Section D, Subsection 3.

16 See definition of connectors in Table 1.

51

database object, but will be implicit in the class type used by the loading program to bind

the data to the specific instance variable.

For example, the "I" connector defines an exclusive-or relationship among

element subcomponnents of the "choice" element:

<!ELEMENT choice - o ((%text; I %graphic;), (postcond+ I %dialog;))>
<!ATTLIST choice

id ID #IMPLIED
ref IDREF #CONREF
default (Yes I No) 'No' >

It will be the responsibility of the loading program to create either a text

object or a graphics object, when a new choice object is created. The choice object will

have two instance variables to capture the two subcomponnents of the "choice" element.

D. AN OBJECT CLASS HIERARCHY FOR IETM IMPLEMENTATION

1. General Structure of the IETM Object Class Hierarchy

When designing an Object Class Hierarchy one has to take into consideration

two fundamental parameters: the overall functionality provided by each class, on one

hand, and the class extensibility characteristics, on the other hand. While striving to

maximize both, it is important to note that in certain cases maximizing functional

capabilities will not necessarily increase the probability of reuse, since construction of a

clear view of the class behavior might become difficult due to an excessive number of

methods. What is needed therefore is a balance between functionality and adaptivity.

52

A class hierarchy design based on a layered structure provides classes that

have a good balance between functionality and adaptivity, such that the ease of their reuse

is maximized. One such approach is to create a protective layer between the low level

system classes that implement hardware specific characteristics and the application classes

that implement the user requirements. The protective layer is called the Subject Layer

or the Base/Application Layer and its merits were discussed in (Wu, 1991). In

accordance with this approach, the following layers have been defined for an object class

hierarchy for IETM implementation:

1. Physical Layer - This layer will provide the low level functionality which is
mostly system dependant (e.g. file access, key searches, etc.).

2. Subject Layer - This layer will provide the data view defined by the CDM, i.e. all
the data elements defined in the CDM (MIL-D-IETMDB, 1991, Appx A-B) will
have respective objects in this layer.

3. Application Layer - This layer will consist of object classes to provide the specific
functionality defined by the application (e.g. presentation, computations etc.).

The structure and functionality of the physical layer are beyond the scope of

this thesis. In order to maintain generality of the subject layer, specific application

functionality is left for implementation in the application layer. For example, the details

that define the appearance of the technical information on the screen, also known as the

Formatting Output Specification Instance (FOSI) (MIL-M-28001A, July 1990, Appendix

B), are restricted to the application layer because different applications can have different

FOSIs, vet access the same technical manual information in the database. For these

53

reasons the focus of the following section is placed on the remaining layer, i.e. the subject

layer.

Figure 13 depicts the relationship between the different layers that compose

the IETM class hierarchy.

User

Akpplication L-ayer

~Subject Layer

Physical Layer

Data

Storage

Figure 13 The IETM Object Class Hierarchy Layers

2. The IETM Subject Class Layer

The primary function of the IETM subject layer is to -rovide CDM

functionality. This includes providing access to higher level objects as defined by the

54

CDM and hiding low level details from the presentation applications (or any other

applications that might require CDM data access).

For the purpose of providing an example of the structure and functionality of

the proposed subject layer, a closer look will be taken at the CDM structures that provide

the interaction between the user and the IETM. This section of the CDM contains the

"dialog" elements : dialog, dialog-alts, fillin, menu, prompt, choice and selection (MIL-D-

IETMDB, April 1991, pp. A-21 through A-23). An example of a standard user interface

screen that utilizes these elements is depicted in Figure 1417. Following the guidelines

set in the previous sections, an object class hierarchy has been defined to capture the

functionality of the interaction elements.

3. Functions of Interaction Classes

There are different approaches for conducting object oriented design.

Following is a discussion on the functionality of the various user interaction classes, using

an approach similar to the responsibility-driven design approach presented in (Wirfs-

Brock and Wilkerson, 1989):

a. Dialog Class

The dialog object provides the basic interaction capabilities required by

the user of the IETMDB. As can be seen in the dialog element definition:

Figure 14 was adapted from (Wampler, 1991, LP-25).

55

1:T-SIe 1 2.Title 2 3.TitIe 3 4.Ttle 4 5.nte 5 1 itle e I 7.TtU 7 S.Tite 8 e.itio 8
1. ItemI ...

2. Item 2 ... Menu Bar

4. Item 4 ... 2. Item 2 ... Dialog Box

3. Item 3 ... ,Box/ ~4. Item 4... /Slcia
CEnry as g Menus Choices h/

TITLE

Entry: X Z Choice I Item 1
Pi-Ins Entry: [77IF] Cholce 2 Item 2 l

Entry:] Choice 3 Item 3
Entry; F] Choie 4 1item 4

Entry:--] Choice 4

Push-Button
Choie 5

Figure 14 Objects in a Standard User Interface

<!ELEMENT dialog - o (precond*, link*, (%text;)?,
(dialog_alts I dialog I fillin I menu I selection)+)>

<!ATIVLIST dialog
%a.node;
agent CDATA 'human' >

the dialog element is an aggregation of the following subcomponents: precondition(s),

link(s), an optional text title and one or more subdialog components. The basic

functionality required from the dialog class object is to capture the dialog data in its

instance variables through set methods and retrieve the data through get methods. All the

responsibility for finer dialog functionality (behavior) is provided by the dialog subobjects

(i.e. functionality is shared via aggregation). The dialog object will be therefore required

56

Otject -

Direct Inheritance

Selection

Figure 15 The Subject Layer Class Hierarchy

to capture the user input and delegate it to the appropriate component object. Since the

dialog structure implies that a dialog can have multiple subdialogs, appropriate methods

are needed to identify the correct subobject to which the dialog object will send the

message containing thc user input as one of it's arguments.

Additional functionality provided by the dialog object is embedded in its

precond and link instance variables. The precondition object provides the dialog with the

capability to evaluate an expression at presentati)n time, and according to the result

allow/disallow the display of the dialog. The link instance variable provides the

57

capability to link the dialog to other data (such as special graphics, etc.). Therefore, the

dialog object will also need to be able to test its precondition and display itself, if the

precondition resolves to true, as well as activate links as a result of user request. Here

again, rather than the dialog class providing the required functionality, the appropriate

behavior will be provided by the classes of the receiving subobjects.

Table 10 contains the definition of the dialog class. Definitions for the other

interaction classes can be constructed in a similar manner.

b. Dialog-alt Class

The dialog-alt object provides the user with the capability to make

context sensitive selection of dialog objects, as well as reduce data redundancy in the

database. As can be seen in the dialog-alts element definition:

<!ELEMENT dialog-alts - o (dialog)+ >
<!ATTLIST dialog-alts

%a.node_alts; >

the dialog element uses the attributes defined by the nodealt template. The dialog object

will inherit these attributes from the node-alt class. The dialog-alt subcomponent is a

collection (set) of dialog objects which were grouped together because they are

conceptually the same dialog applied at different contextual situations" .

" The filtering is performed by evaluation of the preconditions of the dialogs. The

semantic rules of the nodealt template define that the dialogs should be mutually
exclusive, such that the precondition of only one dialog will evaluate to true.

58

TABLE 10 THE DIALOG CLASS DEFINITION

Class Dialog

Inherits from Node

Inherited by N/A

Functionality 1. Provide access to data required for user interaction.

Instance Variables Name Inherited Description
From

id Node Item identification
name Node Element name
type Node Information type
itemid Node Reference designator
cdm Node Template type
ref Node Reference to data element
agent Dialog counterpart type
precond Context dependant filtering subobject
link Relational links to other elements
title Text string to capture title
subdialog Either a dialog-alts, dialog, fillin, menu or

selection object, or any combination of these

Class Methods

new(self, precond, link, title, subdialog) Create a new dialog object

Object Methods

get_agent(self) Return identification of dialog counterpart
get-precond(self) Return dialog precondition
get_link(self) Return link object to additional info
get_title(self) Return dialog title
gct_subdialog(self) Return subdialog object
set-agent(self, agent) Sct agent instance variable
set-precond(self, precond) Set precond instance variable
set link(self, link) Set link instance variable
settitle(self, tide) Set title instance variable
setsubdialog(sclf, subdialog) Set subdialog instance variable

The basic functionality required from the nodealt object is the functionality

required from a collection, i.e. add, delete, get-item, etc. Since the preconditions of all

59

objects in the collection have to be evaluated, the order of the dialogs in the collection

is insignificant. The implementation of the collection will have to provide for

enumeration control to assure that all objects are evaluated. Specific dialog behavior will

be provided by sending messages to the selected dialog object.

c. Fillin Class

The fillin object provides the user with the capability to input data. As

can be seen in the fillin element definition:

<!ELEMENT fillin - o (link*, prompt, property, (%text;)?)>
<!ATTLIST fillin

id ID #IMPLIED
ref IDREF #CONREF
range CDATA #IMPLIED >

the fillin element is constructed of a prompt which contains the question displayed to the

user (this could be either a text or a graphic symbol), a property which will be the object

to receive the user response, and an optional text element that defines a default value to

be presented as the default fillin.

The functionality required from the fillin object is to capture the user input

(and delegate it to the property subobject), display itself in the given display context

(which is defined by the using application) and initialize the default value for the fillin.

d. Menu Class

The menu object provides the capability to display to the user several

choices for selection. As can be seen from the menu element definition:

60

<!ELEMENT menu - o (link*, prompt, choice+)>
<!ATTLIST menu

id ID #IMPLIED
ref IDREF #CONREF
select (single I multiple) 'single' >

the menu is an aggregation of a prompt and a collection of available choices. The basic

functionality required from the menu object is to capture the identification of the

selection(s) made by the user and activate the correct choice response(s) by sending a

message(s) to the correct choice subobject(s). The menu object is required to display

itself in a given display context, defined by the user application.

e. Prompt Class

The prompt object provides the capability to display to the user a certain

message, which can be either a text message or a graphic symbol (such that the user

interprets as a message). As can be seen in the prompt element definition:

<!ELEMENT prompt - o (%text; I %graphic;)>
<!ATTLIST prompt

id ID #IMPLIED
ref IDREF #CONREF >

the prompt consists of either a text or a graphic subcomponent.

The basic functionality required from the prompt class object is to delegate

a display message received by itself to the subobject that contains the prompt data.

This is a good setting to demnnstrate one of the advantages of using the

Object-Oriented approach by giving an example of the extensibility of OOP classes: since

61

the prompt object doesn't need to know the details of what object is captured as its

subobject instance variable, the latter could conceptually be an audio subobject as well.

All that is needed is that the subobject class (i.e. the audio class) contain an object display

method (it is assumed that the intention of display is to preseni, which in the audio object

case would be sound generation, i.e. show yourself = sound yourself). Thus the

functionality of the prompt class is extended by sharing the behavior provided by the

audio class object in a very straightforward manner that doesn't require excessive

recoding.

f. Choice Class

The choice object is a subelement of a menu, i.e. upon it's selection a

specific sequence of actions is executed. As can be seen in the choice element definition:

<!ELEMENT choice - o ((%text; I %graphic;), (postcond+ I %dialog))>
<!ATTL.IST choice

id ID #IMPLIED
ref IDREF #CONREF
default (Yes I No) 'No' >

the choice element contains a data subobject (which can be either a text or a graphic) and

an execution subobject (which is either a postcondition or a dialog) that defines the action

to be taken if the object is selected by the user.

The basic functionality required from the choice object is to display its data

subobject and to execute the appropriate action associated with the choice. The former

is done by sending a display message to the data subobject (both text and graphic objects

62

have display methods), whereas the latter is done by sending an execute message to the

execution subobject.

g. Selection Class

The selection object provides the user with the capability to make a

selection from a given picture, text string or table. As can be seen in the selection

element definition:

<!ELEMENT selection - o ((link, (postcond+ I %dialog;))+,
(text I table I graphic)) >

<!ATTLIST selection
id ID #IMPLIED
ref IDREF #CONREF >

the selection element contains three subcomponents - the link, execution and data

subcomponents. The semantics defined by this structure are that each selection element

defines pairings of links with selectable data elements (which are either text, table or

graphic elements). Each link must have a link-end specifying the selectable (data) item.

Each link is paired with an execution subelement which defines the action to take once

the selection is chosen.

The functionality required from selection class objects is to display the

selection object (by sending a display message to the data subobject) and to execute the

appropriate action defined by the selection by sending an execute message to the

execution subobject.

63

4. The IETMDB System Environment

The IETMDB is not a stand-alone system, but rather a part of a system

environment that facilitates storage in, and retrieval from, the IETMDB.

The primary component of this system environment is the IETMDB Loading

Program. This program accepts two kinds of input: the DTD which describes the

technical information CDM and the Technical Information Document (TID). The loading

program checks that the TID syntax is in accordance with the grammar defined by the

DTD, and creates the appropriate objects in the database. This means that the loading

program will have the knowledge of which type of aggregations to create (i.e collections,

dictionaries etc.), and that the correct objects will be created in the database, as the

parsing of the TID commences.

Figure 16 contains a depiction of the IETMDB system environment.

64

DTD TIDa

Figure 16 The IETMN System Environment

65

VIH. BENEFITS OF USING OODB FOR IETMDB IMPLEMENTATION

A. INTRODUCTION

The previous chapter was focused on presenting the proposed solution, namely

demonstrating how an IETMDB can be designed by utilizing object-oriented design

concepts and methodology. The purpose of this chapter is to present the pros and cons

of using Object-Oriented Data Base (OODB) technology for implementation of IETMDB.

The first section provides background on some of the core object-oriented concepts and

capabilities, and compares them to those provided by Relational Data Base (RDB)

technology. This comparison is mainly for the purpose of emphasizing the unique

features of OODBMS. The second section contains a description of some OODB

architectural issues that are closely related to application perfo;mance. The final section

discusses the unique features of OODB in the context of implementing an IETMDB. The

discussion is targeted at obtaining a better understanding of the extent that an IETMDB

implementation can exploit OODB capabilities and features.

B. CORE OBJECT-ORIENTED CONCEPTS

Although a prescribed standard for OODB systems does not exist yet, some

concepts of OOP can generally be regarded as core object-oriented concepts (Kim, 1991,

pp. 22-23). These concepts are: encapsulation, classification, inheritance, aggregation and

66

polymorphism (Kim and Lochovsky, 1989, Part 1). Each of these concepts is hereby

briefly described.

1. Encapsulation

Objects encapsulate both data and program code. In OOP terminology these

are known as the object state (i.e. the values of the object attributes or instance variables)

and the object behavior (i.e. the methods that are recognized by the object, and that cause

a change in the object state).

The RDB technology counterpart of an object is a tuple. In most RDBMS

implementations a tuple can only capture data, and not behavior. However, some recent

efforts have been conducted in the area of Extended Relational Data Bases (ERDB) in

order to incorporate references to procedures as attributes of tuples and allow complex

data types 9.

2. Classification

Classes are groupings of objects that share the same set of attributes and

methods, Hence, an object is an instance of a class.

In the RDB, a table (relation) groups together tuples that share the same

attributes. As stated earlier, in most implementations these attributes capture data values

alone, and not behavior. In the case of ERDB the value of a behavioral attribute need

19 Postgres (an extension of the Ingres RDB) is an example of ERD3. A shared
complex object in Postgres is represented by a field that contains a sequence of
commands to retrieve data from other relations that represent the subobjects. Code
replication can be avoided by storing the procedure in a separate relation (i.e.
normalization is required) and by passing the object to the procedure as an argument
(UCB/ERL. M86/85. 1987, pp. 6-8).

67

not be the same for all tuples, hence behavior is not generally shared amongst all tuples

in a relation' °.

3. Inheritance

Classes are organized in a class hierarchy which is a rooted, directed acyclic

graph, such that classes inherit all the attributes and methods of both direct and indirect

ancestor classes. A class is said to be a specialization of classes it inherits from, and

conversely a generalization of classes that inherit from it. Single inheritance implies that

the class can have only one direct ancestor, whereas multiple inheritance implies that the

class can have multiple direct ancestors.

In the RDB, the notion of inheritance does not exist. Furthermore, in some

instances, in order to share data between two relations it is necessary to create a third

relation.

4. Aggregation

The domain of an attribute of a class can be any class, hence the value of ar

attribute of an object may also be an object or even a set of objects. The attributes of an

object form an aggregation of other objects, that can be either simple objects (e.g. integer,

string etc.) or complex objects (i.e. that their attributes form aggregations as well).

Aggregation is another form for sharing data and behavior, which in some applications

can be defined dynamically (dynamic binding). The aggregation relationships define a

20 Sharing can he simulated by having the same attribute value for all tuples, but this

implies redundancy.

68

directed graph of classes, that may be cyclic. This graph is sometimes called the

Aggregation Hierarchy, to contrast it from the Inheritance Hierarchy described earlier.

In the RDB, the domain of an attribute is restricted to primitive data types.

The attribute can have only a single value (and not a set of values) and the data type of

the attribute can not change dynamically.

5. Polymor phism

The term polymorphism describes a situation in which objects of different

classes can invoke the same method (i.e. the receiver of the message can take many

forms). This feature is especially important in the context of extensibility and reuse of

software.

Polymorphism is a feature unique to OOP; however, the RDB have no

characteristic with similar capabilities.

C. OTHER OBJECT-ORIENTED CHARACTERISTICS

Besid,. the core obect-oriented concepts mentioned previously, there are other

characteristics of OOP that should be mentioned in the context of this study. These are

the concepts of the object identifier and the consistent data model:

I. Object Identifier

In the RDB, the key (identifier) of a tuple is the values of a set of attributes.

These attributes represent real world data, which if altered cause the definition of a new

tuple. In 00DB each object has a unique identifier, thus the attributes of the object can

change without the object losing it's identity (Loomis, 1990, p. 81). The representation

69

of complex objects can be conducted uniformly by the value of the attribute being set to

an object identifier (or a set of identifiers) of instances of the attribute domain (Kim,

1991, p. 24).

2. Consistent Data Model

In the RDB environment, the data models used for the application

programming language and the database manipulation language are often different, thus

leading to what is known as the "impedance mismatch" (Copeland and Maier, 1984). By

using OOP, the same data model can be used by both the application and the database

interface, hence providing the basis for eliminating the need for a separate database

programming language and maintaining a consistent data model throughout the software

development process (Loomis, 1990, pp. 81-82).

D. OODB ARCHITECTURAL ISSUES

Many architectural issues can be discussed in the domain of database design.

Amongst these are storage management, indexing techniques, concurrency control,

optimization, version control, and integrity. The purpose of the following discussion into

the domain of architectural issues is to investigate if a relationship exists between

characteristics of the IETM application (as defined by its functional and performance

requirements) and a preferred design of the underlying OODB which is used to support

it. In other words, are there architectural characteristics of OODB that would render a

.:.rtain OODBMS implementation more suitable than another, for the purpose of

implementing IETMBD? The following subsections will provide some background,

70

whereas the actual evaluation in the context of IETMDB will be deferred to the following

section.

1. Clustering of Data

Clustering is a technique used to store a set of related objects close together

in secondary storage, such that the cost of Input and Output (1/0) operations required to

retrieve them is minimized. In the RDB, clustering is more straightforward, since tuples

of the same relation can be clustered on the same segment of disk pages, thus maintaining

the integrity of the logical entity (i.e. the relation) in physical storage. The fact that

complex objects can be stored in OODB gives room for multiple options for clustering

data, some of which are detailed in (Kim, 1990, p. 32).

Since every clustering option is optimal only to a certain access scenario (i.e.

dependant on the type and frequency of object accesses defined by the nature of the

application), it is important to analyze the user application access scenario to determine

if a certain clustering strategy would provide higher performance from the user

perspective.

2. Queries

Because the domain of an object attribute can be any class, a query in an

OODB can result in considerable data retrieval because the query is formulated against

the nested definition of a class (Kim, 1990, p. 33). Although it has been shown that

object-oriented queries can be evaluated in a similar manner to relational queries, some

query optimization problems have yet to be solved (Kim, 1990, p. 33)(Kim, 1989).

71

It is therefore necessary to evaluate the nature of expected queries in a given application

because the required operations to preform the query (e.g. selections, joins, etc.) places

performance demands on the OODBMS.

3. Authorization

In the RDB, the smallest unit of authorization is a relation or an attribute of

a relation. In OODB the smallest unit of authorization should logically be an object, but

that might be potentially expensive, since the database will have to maintain authorization

triples (i.e. object i.d., authorization type, authorized user) on each object rather than on

each class (Kim, 1990, p. 37). Besides the common authorization types (create, read,

update) it is necessary to define new authorization types for creating a subclass, and

executing and changing methods (Kim, 1990, p. 37). Thus, when evaluating an OODB

for a certain implementation, it is also necessary to consider the authorization

requirements of the application, and potential use of the new authorization types suggested

earlier.

E. UTILIZING OODB CAPABILITIES LN AN IETMDB IMPLEMENTATION

As mentioned earlier, no structural requirements are imposed by MIL-D-IETMDB

on the actual DBMS methodology used to implement IETMDB (i.e. the implementation

methodology can be either relational or object-oriented) (MIL-D-IETMDB, April 1991,

p. 3). Having presented in the previous sections some of the unique features of

OODBMS, and the merits of OODB in comparison with RDB, it is appropriate at this

stage to attempt to establish the thesis that OODB capabilities can be utilized when

72

implementing an IETMDB, thereby resulting in a smaller development effort than the one

that would have been required if RDB technology had been used. This will be done by

evaluating OODB unique features and architectural characteristics in the context of

implementing an IETMDB.

1. Using Encapsulation

The fact that an object encapsulates both the data and the behavior associated

with the data, relieves the application program from the responsibility of redefining this

behavior upon every access to the data, thereby enhancing sharing. In an OODB

implementation of an IETMDB, both the prompt and the choice objects 2' can have

subcomponents which are graphic objects. Because the graphic object encapsulates the

data (i.e. the image) and the behavior associated with it (e.g. display the image), both the

choice and the prompt objects are relieved from the need to define how to display their

graphic subcomponents. Both objects share the behavior defined by the graphic object,

and conversely the graphic object behavior is defined only once. As mentioned earlier

this sharing capability is not provided by the RDB. It can be implemented in the ERDB

by creating a graphic relation with the procedural attribute having redundant values (e.g.

the display procedure), or in a normalized version by creating one relation to capture the

graphic data and another relation to capture the behavior. Both ERDB solutions are much

more complex, and therefore more difficult to design, than the proposed OODB

alternative.

21 See details on the prompt and choice objects in Chapter VII, Section D, Subsection

3.

73

2. Using Classes and Inheritance

For each element in the CDM a corresponding class is defined in the

OODB22. Inheritance was used to implement the reusability characteristics of generic

layer templates, by defining them as abstract classes from which other generic layer

elements (classes) and content specific elements (classes) inherit 3 .

As mentioned earlier the concept of inheritance does not exist in either the

RDB or the ERDB. A solution using RDB technology will require a more complex

schema to support the implementation of the generic layer templates and their reuse by

content specific elements.

3. Using Aggregation

Data typing in OODB is much less constrained than in the RDB (Loomis,

1990, p. 81). Furthermore, OODB allows complex objects to be modeled as collections

of objects of primitive data types and arbitrarily complex objects that in turn consist of

these complex objects (Kim, 1991, p. 24).

In the IETMDB, the dialog object is such a complex object2 4. The

subcomponents of the dialog object form an aggregation of primitive data types (e.g.

22 See discussion on mapping of CDM structures to object classes in Chapter Vii,

Section C, Subsection 1.

23 See discussion on the mapping of CDM structures to object classes in Chapter VII,

Section C, Subsection 1.

24 See details on the dialog object in Chapter VII, Section D, Subsection 3.

74

text) as well as complex data types (e.g. dialog, dialog-alts). The subcomponents can

have multiple occurrences, which means that the dialog object can be arbitrarily complex.

The functionality required from the dialog object is to support the entire

interactive process, which is a task requiring multiple data types and numerous methods.

Yet, these are not provided directly by the dialog object itself, but rather through a

carefully defined aggregation of subcomponents, each carrying its own data and behavior

(i.e. functionality) to be shared by the top level dialog object. Although the aggregation

hierarchy can become very complex (especially because the underlying graph can be

cyclic), the high level abstract data type of a dialog can still be supported. As mentioned

earlier, this level of abstract data typing is not available in RDB technology.

The significance of being able to define arbitrarily complex objects to

implement the user interaction with the IETM system is that the human interface engineer

can exercise a high degree of freedom in "he design of the interface: no restrictions on

menu hierarchy depth, freedom to switch interaction objects (i.e. fill-in, selection list, etc.)

in any level and between levels. All this can be achieved without imposing additional

complexity on the schema design, which would have been the case if RDB technology

had been used.

4. Using Pol morphism

Polymorphism provides the capability for enhancing software reusability

(Nierstrasz, 1989, p. 10) and improving code extensibility (Wu, 1990). An example for

polymorphism in an IETM application is that both a text object and a graphic object can

75

be potential receivers of a display message. This can be extended even further to include

an audio object2.

5. Clustering Strategy for IETNMDB

Kim (1990, p. 32) lists four options for clustering objects on secondary

storage:

1. Clustering all objects belonging to the same class in the same segment of disk
pages (i.e. the inheritance and aggregation hierarchies are disregarded).

2. Clustering of objects belonging to a class hierarchy rooted at a user specified class
(i.e. candidates for clustering are determined by the inheritance hierarchy).

3. Cluster together objects and other objects that they recursively reference (i.e.
candidates for clustering are detennined by the aggregation hierarchy).

4. Cluster together classes on a class hierarchy (rooted at a user specified class) and
a subset of class attribute graphs rooted at these classes (i.e. combination of option
no. 2 and no. 3).

Clustering of objects is optimal for a certain object access scenario which is

application dependant. The IETM usage scenario is expected to be similar to the scenario

of the regular maintenance routine preformed by a technician using a hard-copy manual:

there is a beginning task (root task) which has a sequential list of subtasks or steps.

Occasionally the technician jumps to another section of the manual to perform a

perquisite task (e.g. safety inspection before disassembly of a part) or reference a detailed

See discussion on extensibility in the context of the audio object in Chapter VII,
Section D, Subsection 3.e.

76

diagram. He then returns to the main list to preform the next step (which could be the

root of a new task).

Clustering option no. 1 does not seem appropriate for IETM implementation

because the IETM access scenario does not require a sequential scan of all objects in a

certain class. Option no. 2 could be used, but would not render the expected performance

improvements since the IETMDB inheritance hierarchy is very shallow. Option no. 3

seems the most appropriate for IETMDB implementation because of the nature of the

CDM element subcomponents: preconditions, links, etc. Preconditions have to be

evaluated in order to determine if the object can be displayed whereas the links to other

objects should be available such that no search is required if the user elects to traverse

a link to another piece of data.

The issue of defining a preferred clustering strategy for IETMDB

implementation requires further research and collection of empirical data.

6. Queries in an IETMDB

The IETM is not a query oriented system. The retrieval of data is conducted

according to the hierarchical navigation defined by the user input. All navigation options

are predetermined and the next step/branch is preformed by "pointing and clicking".

Furthermore, some of the hardware devices contain no keyboard in order to support the

simplicity of IETM usage (i.e. by restricting the allowable user input types).

If this philosophy of ar IETM with no queries is maintained, than no special

evaluation of the nature of expected queries is required. However, in the event that the

IETM interface specification is altered in the future to allow search and query mode (in

77

addition to navigation mode), then a careful study of expected query performance should

be conducted. It is important to note that an OODB has built in provisions for executing

"class searches" similar to the table searches conducted in RDB. The fact that each object

has a unique identifier, and that each object is an instance of a specific class provides us

with the capability to access all instances of a given class, even though the objects might

not be stored together in secondary storage.

7. Authorization Control in an IETMDB

The creator of an IETM (i.e. the author of the technical manual) and the field

user (i.e. the technician) are two distinct entities. The authorization to create a new

subclass falls only to the IETM development domain, and could be used to restrict

dissemination of data from existing classes to newly defined classes. In the user domain,

the restriction of access to certain data is performed by means of context dependant

filtering (MIL-D-IETMBD, 1991, p. A-3). Therefore, placing additional restrictions in

the form of authorization to perform methods is not really required.

The details of authorization control in an IETM authoring environment are left

for future research.

8. Using a Consistent Data Model

As pointed out earlier, OOP facilitates using the same data model for both the

application and the database interface, hence eliminating the need for a separate database

programming language. This reduces the total effort required for the system software

development process and contributes to cost reductions in the software maintenance phase,

78

as well. Although this benefit is applicable to any application domain, and not only to

the IETM application, it is appropriate to end the discussion on the benefits of using

OODB for IETMDB implementation by re-emphasizing this important feature. New

technologies need to be applied in order to decrease the magnitude of software

maintenance costs, and 00DB technology has good potential in helping the software

industry move forward to achieve this goal.

79

IX. CONCLUSIONS

The main goal of this thesis was to gain better understanding of the potential use

of OODB technology for implementation of CALS systems. The IETM system served

as an excellent candidate for this purpose, being a system which is currently at the front-

edge of CALS development efforts of all three services: Navy, Air-Force and Army.

Based on the MIL-D-IETMDB specification, an OODB was designed for

implementing the IETMDB. The benefits of using an 00DB approach for the

implementation of IETMDB were demonstrated, and discussed in comparison to the

alternative of implementing the IETMDB by means of the well established RDB

approach. The conclu ion, in this respect, is that not only are none of the RDB

capabilities given up by adopting the OODB approach, but on the contrary, there is much

to be gained: a unified data model and a simple schema contribute tremendously to the

overall reduction of the effort required for the development and maintenance of software

systems in general, and IETM systems in particular.

OODB is still a young technology, and not all of the issues concerning it are yet

resolved. There are many architectural aspects of 00DB that might have an impact on

IETMDB performance, some of which were touched upon earlier in the thesis. There still

remains a large area for further research in the domain of the architectural characteristics

of OODB, before one will be able to empirically establish that it is a superior approach

over the RDB approach, for a given application domain. This is the main reason that this

80

stucy is qualitative in nature: theory and practice have to advance even more before

qWantitative tools can be developed and put into use to assist in reaching a decision as to

the preferred DBMS approach for a given application.

Another problem that is not addressed by this new technology is the problem of the

enormous install-bases of data that exist in earlier forms of DBMSs. Clearly, it seems

unlikely that an organization would invest in converting its databases to a new form of

technology, whenever the latter becomes available. The cost will be far to great. Thus

alternative approaches should be researched, as suggested by Hsiao in his paper on

Federated Databases and Systems (1992). This, and other topics for future research are

detailed in the final chapter.

81

X. FUTURE RESEARCH

Because of the limited time frame allocated to the thesis research detailed in this

document, it was impossible to study in depth some of the topics that were defined

initially, and others that were not planned but surfaced during the study. These topics are

hereby listed, together with some of the questions that remain open for future research:

1. Implementation of an object-oriented IETMDB. All IETM implementations
presented in the CALS 1991 Exposition utilized RDB for IETMDB
implementations. Significant knowledge will be obtained by the actual
implementation of an object-oriented IETMDB, as advocated in this thesis.

2. A preferred clustering strategy for IETMDB. The strategy recommended in this
thesis needs to be evaluated in a laboratory environment, and the results compared
to those obtained by utilizing other strategies.

3. Authorization control in an IETMDB. Details of authorization control in the
IETM authoring environment need to be studied more closely. It is not clear if
the mechanisms built into the data model are sufficient.

4. Using the Federated Database concept in an IETM systems environment. During
the initial testing of the CDM, data from the gun system of both the F-16 and the
F- 15 aircraft (which are equipped with the same gun) was input into the database.
This test revealed inconsistencies in data of the same (weapon) subsystem across
different (vehicle) platforms. Thus the problem of putting existing technical data
into IETMDBs is eminently clear, and it gets even worse when different data
models are used for data representation. Can a Federated Database approach serve
as a practical solution for this problem? What DBMS approach should be used to
concur the mountains of existing technical data, given that a requirement for
IETMDB will be defined not only for future weapon systems (i.e. as they are
developed) but also to the hundreds of weapon systems that exist today?

82

LIST OF REFERENCES

Air Force Human Resources Laboratory, AFHRL-TP-90-10, Content Data Model:
Technical Summary, by Earl M. and Gunning D., May 1990.

Andrews T. and Harris C., Combining Language and Database Advances in an Object-
Oriented Development Environment, OOPSLA '87 Proceedings, October 1987; Special
Issue of SIGPLAN Notices, Vol. 22 No. 12, December 1987, pp. 430-440.

Bracket M. H., Developing Data Structured Databases, Prentice-Hall Inc., 1987.

Caporlette B. K., Integrated Maintenance Information System (IMIS), Content Data Model
(CDM), Proceedings of the 4th Annual CALS Progress Review, November 1991, pp.
AP72-AP80.

Copeland G. and Maier D., Making Smalltalk a Database System, Proceedings of the
ACM SIGMOD, June 1984, pp. 316-325.

Cox B. J., Object-Oriented Programming: An Evolutionary Approach, Addison-Wesley
Publishing Co., 1986.

David Taylor Research Center, DTRC-89/007, The Electronic Delivery of Automated
Technical Information for Logistics Support of Navy Weapon Systems: Potential, System
Description and Status, by Rainey S. C., Fuller J. J. and Jorgensen E. L., February 1989.

David Taylor Research Center, DTRC-90/026, Proposed Draft Military Handbook for
Preparation of View Packages in Support of Interactive Electronic Technical Manuals
(IETMs), by Rainey S. C., Jorgensen E. L. and Fuller J. J., July 1990.

Department of Defense, Computer-aided Acquisition and Logistic Support, 1989.

Department of Defense, Directive 5000.2.

Department of Defense, MIL-M-28001A, Markup Requirements and Generic Style
Specification for Electronic Printed Output and Exchange of Text, July 1990.

Department of Defense, Draft MIL-STD-1388-2B, DoD Requirements for a Logistic
Support Analysis Record, January 1991.

Department of the Navy, CALS Architecture/Implementation Plan, 1991.

83

Department of the Navy, CALS Strategic Plan, 1988.

Hsiao D. K., Federated Databases and Systems, to appear in the International Journal on
Very Large Databases (VLDB Journal), Vol. 1, No. 1, March 1992.

International Standards Organization, ISO/IEC CD 10744, Information Technology -

Hypermedia/Time-based Structuring Language (HyTime), April 1991.

Kim W., A Model of Queries for Object-Oriented Databases, Proceedings of the
International Conference of Large Data Bases, August 1989.

Kim W. and Lochovsky F. H., Object-Oriented Concepts, Databases and Applications,
Addison-Wesley Publishing Company, 1989.

Kim W., Architectural Issues in Object-Oriented Databases, Journal of Object-Oriented
Programming, March-April 1990.

Kim W., Object-Oriented Database Systems: Strengths and Weaknesses, Journal of
Object-Oriented Programming, July-August 1991.

Loomis M. E. S., ODBMS vs. Relational, Journal of Object-Oriented Programming, July-
August 1990.

National Security Indastrial Association (NSIA), "CALS: Making It Happen", CALS Expo
'91 Conference & Exposition Guide, November 1990.

Naval Po -aduate School, Report NPS52-90-025, Object-Oriented Database Managment
Systems, oy Nelson M. L., May 1990.

NAVINSGEN, Review of Navy Technical Manual Program, 1984.

Nelson M., Moshell J. M. and Orooji A., A Relational Object-Oriented Management
System, 9th Annual International Phoenix Conference on Computers and Communications
(IPCCC '90) Proceedings, March 1990, pp. 319-323.

Nierstrasz 0., A Survey of Object-Oriented Concepts, in Object-Oriented Concepts,
Databases, and Applications, edited by Kim W. and Lochovsky F. H., Addison-Wesely
Publishing Company, 1989, pp. 3-22.

Premerlani J. et al., An Object-Oriented Relational Database, Communications of the
ACM, Vol 33 No. 11, November 1990.

84

Tri-Service Working Group for Interactive Electronic Technical Manuals, Draft MIL-D-
IETMDB, Data Base, revisable: Interactive Electronic Technical Mani.,ils, for the Support
of, Fuller J. J. et al., April 1991.

Ullman J. D., Principles of Database Systems, Computer Science Press, 1982.

University of California Berkeley, Electronics Research Laboratory, Memorandum No.
UCB/ERL M86/85, The Postgress Papers, edited by Stonebraker M. and Rowe L. A.,
June 1987.

Wampler J., A Common User Interface for Maintenance Information Systems, Proceedings
of the 4th Annual CALS Progress Review, November 1991, pp. LP22-LP23.

Wirfs-Brock R. and Wilkerson B., Object-Oriented Design: A Responsibility-Driven
Approach, Object-Oriented Programming Systems, Languages and Applications 1989
Conference Proceedings (OOPSLA '89), pp. 71-75.

Wu C. T., Benifits of Abstract Superclass, Journal of Object-Oriented Programming,
February 1991, pp. 57-62.

85

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Computer Science Dept., Code CS
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5002

4. Chief of Naval Research
800 N. Quincy Street
Arlington, Virginia 22217-5000

5. Curriculm Officer I
Computer Technology Program, Code 37
Naval Postgraduate School
Monterey, California 93943-5002

6. Professor C. Thomas Wu, Code CS/WqI
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5002

7. CDR B. B. Giannotti
NROTC Unit
RAS 104
University of Texas
Austin, Texas 78712-1184

8. Mr. Shawn P. Magill
Naval Air Systems Command (AIR-41144)
Washington, District of Columbia 20361-4110

86

9. CDR Stephen M. Carr, SC, USN
Naval Air Systems Command (AIR-4114A)
Washington, District of Columbia 20361-4110

10. Mr. Joseph Garner

CALS Technology Integration Lab, Code 185
David Taylor Research Center
Bethesda, Maryland 20084-5000

11. Israel Air Force Attache
Embassy of Israel
ATTN: Commander, Systems Divison
3514 International Dr., N.W.
Washington, District of Columbia 20008

12. Major Evyatar Chelouche 2
P.O. Box 67
Reut, 71908
Israel

87

