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NOMENCLATURE

asv specific surface area common to solid and vapor phases, m2 M-3

a.0 specific surface area common to a and P phases, m2 M-3

aay specific surface area common to cF and y phases, m2 M-3

A constant in equation (3.9),, 23.4851064

A amplitude of pressure oscillation, kPa (Section VI)

B constant in equation (3.9), 2969.2287, K-1

B amplitude of temperature oscillation, K (Section VI)

co  specific heat at constant pressure, J kg-I K-1

dp particle diameter, m

Da Darcy number, K/H 2

f frequency of oscillation, Hz

F geometric factor defined in equation (2.10)

9 gravitational acceleration, m S-2

G mass velocity, kg M-2 s-

hsv fluid-to-particle heat transfer coefficient, W m-2 K-1

hsf specific latent heat of fusion, J kg'

h0 fluid-to-particle heat transfer coefficient between Y and f3 phases, W M-2 K-'

h Y fluid-to-particle heat transfer coefficient between a and 7 phases, W M-2 K-1

H height of the packed bed, m

k thermal conductivity, W i -1 K-1

k13 relative permedbility for fluid phase

kT, coefficient of capillar) pressure gradient with respect to temperature, N m-2

ke coefficient of capillary plrcssWe with respect to liquid volume fraction, N m 2

K pnrmeabllty, n 2



L length of the packed bed, m

LHSPB latent heat storage packed bed

LTE local thermal equilibrium

mfi condensation rate, kg M-3 s-1

P pressure, N M-2

PCM phase change material

R gas constant for refrigerant-12, J kg-1 K-1

Rep particle Reynolds number, p~v*dp/g,

s saturation, E/E

S normalized saturation,(s-sim)/(I-Sim)

SHSPB sensible heat storage packed bed

t time, s

T temperature, K

Tmelt melting temperature of PCM, K

u velocity componaent in x-dlrection, m s-I

V volume, m 3

v velocity vector, m s1

oX thermal diffusivity, M2 S-1

porosity

ep volume fraction of liquid phase

Cy volume fraction of vapor phase

EG volume fraction of solid phase

Ahvap latent heat of vaporization for Refrigerant-12, J kg-'

E dimensionless temperature, (T-To)/(Tin-To)

p. absolute viscosity, kg m-1 s-I

xi



p density, kg M-3

P s saturation vapor density, kg M-3

It dimensionless time, tu*/L

Subscripts

av average inlet

f fluid (liquid+vapor)

feff effective property for fluid

in inlet

o initial

s solid

seff effective property of solid

v vapor

veff effective property of vapor

liquid

y vapor

a solid

aeff effective property for solid

Superscripts

f fluid (liquid+vapor)

s solid

v vapor

f3 liquid

y vapor

o solid

xii
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SECTION I

1.1 Objectives

This report presents a series of investigations that have been carried out for the

application of a packed bed (with encapsulated phase change material-PCM) as an energy

storage/release unit for spacecraft thermal management systems. In this regard, relevant

studies performed in the Department of Mechanical Engineering at The Ohio State

University before and during the course of the Contract F33615-89-C-2949 have been

assembled in this report for integrity of the material presented. The fundamental studies

performed form an integral part of the preliminary investigations for the actual application,

and these will be presented sequentially in the present report.

A set of investigations related to the single and multiphase transport processes in

packed beds, and the behavior of sensible and latent heat storage packed beds was carried

out. The main objective of this work was to analyze different aspects of the applications of

packed beds by considering a set of problems which were designed to provide physical

insight for a number of outstanding points related to transport phenomena in porous media

as well as different packed bed energy storage systems including sensible heat storage and

latent heat storage ones.

1.2 Introduction

Packed beds with single-phase flow have been analyzed in applications ranging from

chemical catalytic reactors and pebble bed or rock pile heat storage units to fixed-bed

nuclear propulsion systens and spacecraft thermal management systems employing packed

beds of encapsulated phase change materials. A major part of the studies conducted to date



on packed bed applications %% ith single-plhase flow concentrates on utilizing incompressible

fluids, liquid or gas, as the heat transporting medium. In these investigations a constant

mass flow rate is assumed at every cross section of the packed bed and, therefore, there is

no need for soiving any continuity or momentum equations. The problem reduces to

solving the governing energy equations for the solid and fluid phases. For this category of

problems, the two commonly employed models are the so called single-phase conductivity

and two-phase Schumann models. The main distinction between these two models is that,

where local thermal equilibrium is assumed to prevail between the solid and the fluid

phases in the single-phase model, no such assumption is made in the two-phase model.

Therefore, the single phase conductivity model reduces to one governing energy equation

in which conduction in both phases is taken care of by the use of an effective thermal

conductivity, where in the two-phase model there are two governing energy equations,

each of them possessing a fluid-to-solid convective heat transfer term. The origin of the

two-phase models is the classical Schumann model (Schumann, 1929). Riaz (1977)

presented an investigation and comparison of both the single-phase conductivity model as

well as the two-phase Schumann model. From a theoretical point of view, both of these

models are quite inadequate because they incorporate many simplifying assumptions, such

as neglecting the transient heat storage and the conduction terms in the fluid phase.

The second major class of problems dealing with the single-phase flow through

porous media studied to date concentrates on the compressible gas flow through a porous

medium. It is essential to consider a compressible working fluid--hence, an equation of

state for the vapor phase--in studying multiphase flow with phase change in porous media.

In this category of roblems too, there is a lack of analysis of the complete transient, non-

isothermal and nonthermal equilibrium flow of a compressible gas. One-dimensional,

transient, isothermal flow of an ideal gas through a porous medium has been studicd



analytically by the use of perturbation methods by Kidder (1957). Morrison (1972) also

obtained analytical solutions by perturbation methods for one-dimensional isothermal and

adiabatic flows of an ideal gas. In both of these investigations Darcy's formulation has

been used for fluid flow. Nilson (1981), on the other hand, obtained an analytical solution

for one-dimensional isothermal flow through a porous medium in a study which utilized

Ergun's equation (Ergun, 1952) to account for the inertial effects. In all of these

investigations it was assumed that the gas phase was in local thermal equilibrium with the

solid phase. Goldstein and Siegel (1971) performed :n analytical investigation on a steady,

nonisothermal ideal gas flow in a porous medium. They also utilized the local thermal

equilibrium assumption in the governing energy equation and Darcy's formulation for fluid

flow. Most of these studies which incorporated Darcy's formulation for fluid motion have

the drawback of not being applicable to high speed flows in which the inertia effects have

to be accounted for.

It can be seen that the models used in both categories of problems described above are

incomplete in one aspect or another since they concentrate on either the momentum

transport in an isothermal or adiabatic flow or the energy transport in an incompressible

flow. In addition they incorporate some simplifying assumptions such as local thermal

equilibrium between the solid and the fluid phases, neglect of conduction and transient

storage terms in the gas phase energy equation, and neglect of inertial effects in the fluid

phase momentum equations. Therefore, their application is limited to certain special cases.

These cause a need for a more rigorous formulation of the transport processes in a porous

medium for establishing a more flexible and reliable model with a wide range of

applicability. The main objective of Section II is to present a rigorous analysis and

investigation for transient transport processes in a compressible gas flow through a packed

bed with no assumption of local thermal equilibrium beteen the solid and fluid phases.

3



Ergun-Forchheimer relation will be employed as the vapor phase momentum equation in

order to account for the inertia effects in addition to the viscous effects. This is very

essential for non-Darcy regime flows in porous media. More specifically, it is essential in

flows with particle Reynolds numbers greater than 0.1 in which Darcy formulation

becomes inaccurate. This point has been neglected in many of the previous studies dealing

with single and multiphase transport phenomena in porous media. Likewise, the majority

of the previous works on multiphase transport in porous media almost exclusively employ

local thermal equilibrium (LTE) between the solid and fluid phases considered. This

assumption is usually not satisfactory for the step change problems in which, during the

early stages of the transport processes, there may be considerable difference between the

temperatures of the flowing fluid and solid particles. This is also true even during the later

stages of the transport processes in high-speed flows or high permeability porous media in

which the fluid-to-solid interaction time or interaction surface area respectively may not be

large enough for the temperatures of the fluid and solid phases to become close enough for

LTE to be a reasonable assumption. The thermal interactions between the vapor and the

solid phases, and how the fluid flow as well as the pressure and density fields are affected

by these interactions will be analyzed in detail. Another objective of Section II is to gain a

better understanding of the situations under which the local thermal equilibrium assumption

and one- or two-dimensional consideration of certain field variables would be justifiable.

In this regard the effect of certain characteristic nondimensional parameters, such as the

particle Reynolds number, the Darcy number and certain thermophysical parameters, on the

general qualitative behavior of the transport phenumena in packed beds will be investigated

thoroughly.

One further step into these studies leads to n-ultiphase flow of a single pure substance

in liquid and vapor forn, and the accompanying tiaiasport processes in packed beds. The

'4



flow of a mixture of a vapor and noncondensible gases, such as air and water vapor,

through a porous medium, and the accompanying phase change (condensation) and the

multiphase transport processes involved have received considerable attention in a number

of investigations related to different applications. These include phase change in building

insulation materials (Vafai and Whitaker, 1986; Vafai and Sarkar, 1986; Ogniewicz and

Tien, 1981), heat pipe technology (Udell, 1985), drying of different porous materials

(Berger and Pei, 1973; Plumb et al., 1985), and phase change in porous media (Eckert and

Pfender, 1980; Motakef and El-Masri, 1986). The condensing flow of a single vapor

through a porous medium, on the other hand, received relatively little attention (Nilson and

Montoya, 1980). A rigorous model which includes the basic thermodynamics of the

condensation process and the concept of nonthermal equilibrium between the solid and the

fluid phases under condensing conditions seem to be completely absent. This fact is the

main motivation for the investigation in Section III, which is aimed at analyzing the forced

convective condensing flow of a vapor through a packed bed. This is an essential

fundamental study for the application of thermal energy storage/release system for rejection

of heat in pulsed space power supplies and some conceptual spacecraft thermal

management systems. The operating conditions of the packed beds for such applications

may require gas/vapor flow at high speeds as well as high pressures, which in turn will

dictate condensation of the working fluid. This may actually be desirable in order to

enhance the amount of thermal energy stored in the packed bed.

For analyzing the problem in Section III, the model established for single-phase

vapor flow in Section II will be expanded such that it will accommodate the liquid phase in

addition to the vapor phase of the working fluid. This will be carried out by additional

conservation equations for tie liquid phase as well as accommodations for the phase

change terms in the already available conservation equations for the vapor phase.

5



Moreover, the thermodynamic aspects of the condensation process which will introduce an

additional coupling relation will be presented.

A further stage of this study is concerned with the application of an encapsulated

phase change material (PCM) as an energy storage medium in packed beds. This problem

will be taken up in Section IV. Tiie earlier forms of the packed bed energy storage units

solely relied on the sensible heat capacity of the solid bed particles for storing thermal

energy. This form has been satisfactorily employed for various applications. However,

certain applications may impose a limitation on the size and the weight of the packed bed

system utilized. For instance, the present application of a heat rejection system in pulsed

space power supplies which incorporate packed beds, the reduction of the mass and

volume is of utmost importance. In such cases, utilization of only the sensible heat

capacity of a certain material for energy storage will most likely prove to be inefficient. The

remedy to this can be fcund in the utilization of latent heat in the process of energy storage.

Recently, encapsulated phase change materials (PCM) have received considerable attention

as energy storage materials. The use of an encapsulated PCM is very appealing since it

makes the utilization of latent heat storage capacity possible. This is achieved by using a

PCM which has a melting temperature within the temperature range of operation of the

system incorporating the packed bed. Thc principal advantage of PCMs in packed beds is

that the energy storage density of the bed is increased significantly and thus, the size and

mass of the storage system required for a particular application are reduced proportionally.

Different PCMs have been considered for tse in the packed bed energy storage units

in different applications. For applications over 450 0C significant consideration was given

to salts by Marianowski and Maru (1977). The physical properties of different PCMs

considered for storage of solar nergN ha,,e been presented by Lane (1986). A number of

(I



studies have been carried out on the analysis of latent heat storage packed beds by different

researchers. Anarithanarayanan et al. (1987) investigated the dynamic behaviof of a packed

bed which utilize(, encapsulated Al-Si shos which have a melting temperature of 577C.

Air was used as the energy transporting fluid in their study. Pitts and Hong (1987)

presented another study on transient thermal behavior of a latent heat storaige packed bed

which utilized an inorganic compound hydrate PCM, namely Na2HPO 3 .12H 2 0, as the

heat storage medium. Torab and Chang (1988) investigated the use of encapsulated phase

change materials for thermal energy storage units in space power systems. They reported

an analysis of a latent heat storage packed bed which utilized lithium hydride as the PCM,

and lithium as the transport fluid.

In the majority of models employed in the analysis of this category of problems, the

superficial velocity of the working fluid is assumed to be constant. This reduces the

system of governing equations to a set of energy equations for the working fluid and for

the PCM respectively. As pointed out before, although this is a satisfactory approach when

the working fluid is incompressible, it is not so when the working fluid is a gas or vapor

under high pressures. Moreover, when the working fluid itself undergoes phase change

(condensation), a rigorous model which consists of the governing energy, mass and

momentum balance equations in iddition to the relevant coupling thermodynamic relations

has to be employed for analyzing any phase change and the corresponding transport

phenomena. In Section IV the ,nalysis of such a problem with a rigorous model which

will basically be the expansion of the rood,.! developed in Section III will be presented.

The physical aspects of the phase change process in the PCM will be modeled and

analyzed.

7



The main objective of Section IV is to analyze the energy storage characteristics of

packed beds which utilize phase chawje materials it. the bed particles. Time history of the

crucial field variables such as the tcmperature profiles of the working fluid and the bed

particles, atiw the velocity, density and p:,ssure of the working fluid will be determined.

The determination of these quantities is imprtant since the amo ,nt of energy flowing into

and out of tlte i'acked bed, and hence the amount of energy stored in the packed bed as a

function of time, can be determined from the time histories of these variables.

The operation of the packed bed as an energy storage/release system requires the

analysis of the transient behavior of the packed bed in thermal charging and thermal

discharging modes. This behavior for both sensible and latent heat storage packed beds is

investigated in Section V in order to determine the qualitative and quantitative characteristics

of the two types of packed beds add the difference between their characteristics. This is

performed by extending the analysis in Section IV to include the thermal discharging mode

operation of both types of packed beds.

The final section of the ci.ort deal,, A ith the analysis of oscillating flow through a

packed bed This investigation is cart jcd out ii, order to determine the characteristics of the

packed bed sytcns nnder more realistic boundary conditions than the ideal conditions.

For this reason, oscillating temnpcratuie oi l~ICe,,sure inlet boundary conditions are employed

in the case sIu.ieS in Stc tion VI. The importance of such boundary conditions on the

energy storage behavior of the packed bed system is investigated.

... .. I n • mm m •i • • • mm• i • ir mu• mm lu l u i m m



SECTION II

ANALYSIS OF TRANSPORT PHENOMENA IN A

SINGLE-PHASE FLOW OF A GAS IN A PACKED BED

In this section, the model developed for analyzing the single-phase fluid flow and

transport processes in a packed bed is presented. The numerical method of solution is

discussed. A benchmarking tnat was carried out for verification of the results of the

numerical code developed in the present work is also presented. This is followed by the

presentation and a thorough discussion of the case studies performed and the result

obtained.

21 Statement of the Droblem

The problem that will be investigated in this section is the transfer and storage of heat

from a high temperature reservoir into a packed bed which consists of randomly packed

spherical particles of uniform size. The schematic diagram of the problem considered is

depicted in Figure 2.1. The extent of the packed bed in the z-direction is assumed to be

large enough so that the problem will essentially be two-dimensional. Superheated

Refrigerant-12 is used as the energy transport medium, i.e., the fluid phase flowing

through the packed bed. Refrigerant-12 (known as R-12, or dichloro-difluoro-methane)

was cken as the vapor phase because it is a highly inert and stable compound whose

critical point is well above the range of temperatures considered in the present study.

Mor -over, it ha:; a relatively high vapor density making it capable of carrying more thermal

energy, and thus requiring smaller volume flow rate for a certain application, than the

9



Insulated walls

Hot vapor ., _.O Vapor
inflow outflow
from high at
temperature uniform
reservoir y" ' ' $ pressure

4 T=O.6mv00-

Figure 2.1: Schematic diagram of the problem
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typical gases such as air. Different materials will be considered for solid particles in order

to determine the effect of different thermophysical parameters on the associated transport

processes. In this problem, the high temperature vapor in the reservoir is suddenly allowed

to flow through the packed bed initially filled by R -12 which is also initially at a uniform

temperature and pressure throughout the packed bed. The pressure in the reservoir is

higher than the initial pressure in the packed bed and it remains unchanged. A uniform

pressure equal to the initial pressure in the packed bed is maintained at the exit of the bed so

that there is always a pressure difference between the left hand and the right-hand sides of

the bed, thus sustaining the vapor flow. In essence this is a forced convection flow through

a packed bed. Therefore, relatively higher particle Reynolds number flows than the Darcy

regime flows are considered. Since the Darcy formulation would fail for these flows,

Ergun-Forchheimer relation is employed instead, in order to account for the inertial effects

as well as the viscous effects. The problem is analyzed for the case in which the two

horizontal walls of the packed bed are maintained at constant temperature.

2.2 Mathematical model

The governing equations for the transport processes in porous media are developed

here by using the "local volume aeraging" technique. This method enables us to express

the governing equations in a localized nmicroscopic sense for the porous media, which

would otherwise require a very complex microscopic analysis that does not seem to be

feasible even %kith the most advanced computational facilities. The fundamentals of the

application of this technique to poruus media are outlined by Whitaker (1977) in his work

on drying of porous media. In this work the governing conservation equations have been

deri,,ed for Darcy flow cases. Gra) (1975) also presented an extension on the application

11



of the volume averaging technique to convective and diffusive terms in the governing

equations. The volume averaging process is performed by associating a small volume V

closed by a surface S with every point in the porous medium. The two important averages

of a quantity frequently encountered in the governing equations are the so called local

volume average and the intrinsic phase average. The local volume average of a quantity (

associated with phase V is defined as:

< ( > = v dV (2.1)

while the intrinsic phase average of a quantity O associated with phase IF is defined as:

< >T = V-- (D dV (2.2)
V Jy '

where VV is the volume associated with phase '. With this formulation it becomes

reasonable to represent the intrinsic properties such as the temperature and the density of a

phase by the intrinsic phase averaged quantities, and to represent the frequently used

"superficial velocity" by the loca! volume averaged quantity.

Considerable information regarding the application of the spatial-averaging theorem

for establishing the local volume averaged forms of the conservation equations for the

convective and diffusive flows in porous media, and the models formed by using this

principle for such problems can be found in the works of Vafai and Whitaker (1986), and

Vafai and Tien (1981). The same methodology is used in the present work for establishing

the model for analyzing the energy and momentum transfer in the packed bed with forced

convective flow. The major assumptions and simplifications that are employed in this

study are:

12



(1) Refrigerant- 12 used as the vapor phase obeys the ideal gas equation of state, and the

operation range is chosen such that it is always in the superheated form.

(2) Natural convection effects are negligible. This is a very reasonable assumption

based on the fact that the bed is dominated by forced convection.

(3) The solid phase is incompressible, and the packed bed is assumed to have uniform

porosity and to be isotropic.

(4) Boundary and variable permeability effects are neglected in the vapor phase

momentum equation.

(5) The temperature range used in the analysis of the problem is relatively small (20K);

therefore, the variation of physical properties, such as thermal conductivity,

viscosity and specific heat capacity, with temperature is neglected.

(6) Due to the relatively low temperature range considered in the present study the inter-

particle and intra-particle radiation heat transfer is negligible.

With these points taken into consideration the volume-averaged governing equations

can be established in the following form by applying the volume averaging technique to the

fundamental flow and energy equations in a porous medium:

Vapor phase continuity equation:

The volume averaged form of the vapor continuity equation for a compressible fluid

takes the following form:

at(C: < p V > ) + V.(< pv> <V >) = 0 (2.3)

13



Vapor phase momentin equation:

The vapor phase momentum equation which incorporates the inertia effects as well as

viscous effects by the use of Ergun-Forchheimer relation can be written as (Vafai, 1984):

V<P<p.< >1, --R,<P< V ,. > (2.4)

In this equation, the first term on the right-hand side represents the inertia effect; or the

pressure drop due to form drag resistance of the packed bed, while the second term

represents the pressure drop due to viscous effects. Without the first term, the equation

reduces to Darcy equation.

When assumption (2) above is incorporated into this equation, the vapor flow

essentially becomes one-dimensional and it assumes the following form:

< PV >V < p, >v Fe 2
K1/2 K V (2.4a)

Vapor phase energy equation:

E <Pv > Pv +CP <p v >v <v> .V<Tv>V

(2.5)
=V.{kvffV<Tv >v } + h,.asv (<T. >S- <Tv >v)

This equation accounts for conduction and transient storage of energy in the vapor phase as

well as the transport of sensible heat by the vapor motion. Vapor-to-solid heat transfer is

modeled by a convective heat transfer term by the use of a fluid-to-solid heat transfer

coefficient.
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Solid phase energy equation:

0<T s

Sat -v seff S >sv(<Ts>s-<T,>v) (2.6)

This equation follows similarly as in the case of the vapor phase energy equation except

that there is no sensible energy transport due to motion.

Vapor phase equation of state:

From the ideal gas law, the equation of state can be written as:

< P, >v= < 1,. >v R, <T, > (2.7)

In the equations presented above, the effective thermal conductivities for the solid and

the vapor phases were modeled in the following form:

kveff = £ kv
(2.8)

kseff = (1--) ks

The permeability of the packed bed, Kv, and the geometric function F in the vapor

momentum equation can be obtained from the experimental results of Ergun (Ergun, 1952;

Vafai, 1984) in terms of the porosity, c, and the particle diameter, dp, as follows:

C3d 2

K v - P2 (2.9)
150 (1 - )

F = 1.75
50 3/2 (2.10)
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In equations (2.5) and (2.6), as, represents the specific surface area of the packed bed, i.e.,

the surface area of the solid particles per umit bulk volume of the packed bed. Based on

geometrical considerations, this ratio can be expressed in terms of the particle diametor and

porosity as (Dullien, 1979):

60 - )
d- (2.11)

For the fluid-tc-particle heat transfer -:Defficiert, hsv, it is necessary to choose an

empirical correlation from a range of available experimental results. Considerable amount

of experimental work has been carried out for determining this quantity for packed beds for

differe.nt sizes, shapes and packing configurations of solid particles. Typical expe.imental

investigations ao-d some reviewks on fluid-to-particle heat transfer coefficients may be found

in the works of B ,umeister and Bennett (1958), Bhatt,Lharyya and Pei (1975) and Barker

(965). Co; sidering the ranges of the parile diameter, dp, and the paiticle Reynolds

number, Rep, used in this investigation, the empirical correlations established by Gamson

et al. (1943) were found to be appropriate for use in the present work. These empirical

correlations which were presented in temis of CGIburn-Chi!tonJh factors %.an be expressed

in the following form af.er some manipulation:

h4 c p G for - > 350 (turbulent) (2.12)

- 2/3 -I d1

h = 18. 01, (c for <40 (laminar) (2.13)
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where G represents the rate of mass flow through a unit surface area perpendicular to the

flow direction.

Thus equations (2.3) through (2.13) form the model for analyzing the energy and

momentum transport in unsteady forced convection flow of a gas through a packed bed.

This is basically a system of five coupled governing equations which must be solved for

analyzing the five field variables, namely < p,, >v, < uv >, < Tv >v, < T, >s, and

<Pv >".

2.2.1 Initial and boundary conditions

In the problem under consideration, the initial conditions are mathematically

expressed as:

Pv(x,y,t=O) = PO

Tv(x,y,t=O) = Ts(x,y,t=O) = To (2.14)

uv(X,y,t=O) = 0

The boundary conditions used are as follows:

Pv(x=O,y,t) = Pil, Pv(x=L,v,t) = Po

Tv(x=O,y,t) = Tin at t > 0+  (2.15)

Tv(x,y=0,t) = Tv(x,y=H,t) = Ts(x,y=0,t) = Ts(x,y=H,t) = To

Constant wall temperature boundary conditions were employed in order to study the two-

dimensional effects in the transport phenomena in the packed bed. This kind of boundary

conditions will give an insight about the behavior of the packed bed during the energy

release cycle.
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2.2.2 Physical conditions for the numerical runs

To analyze the effect of different parameters on energy and momentum transport in

the packed bed, different solid particle sizes and different materials for the solid phase were

considered. A complete set of computations were carried out for particle diameter values of

1 mm, 2.5mm and 5 mm for the set of different materials which were considered for the

solid phase. Several runs were also performed for a particle diameter of 1 cm. Tile three

different materials considered for the solid phase in this study were lithium-nitrate-

trihydrate, sandstone and 1% Carbon-steel. The main criterion in selecting these materials

was to obtain a wide range of thermophysical properties and explore their effects on the

qualitative behavior of the transport phenomena since the properties of the bed material may

differ widely from one application to another. The average porosity was chosen to be equal

to the asymptotic value of 0.39 throughout the packed bed. This is a valid assumption for

all cases in which the ratio of the solid particle diameter to the characteristic global

dimension of the packed bed is below a certain value as determined by Benanati and

Brosilow (1962). The following physical data were used for the boundary conditions and

for the properties of the materials considered in the numerical computations:

Refrigerant- 12 Lithiu m- nitrate-trihyd rate

R = 68.7588 J/kg.K Cp = 2090 J/kg.K

Cp= 602 J/kg.K k = 0.5 W/m.K

k = 0.0097 W/m.K p = 1550 kg/m 3

= 12.6X 10-6 Pa.s

Sandstone 1% Carbon-steel
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C= 710 J/kg.K Cp = 473 J/kg.K

k = 1.83 W/m.K k = 43 W/m.K

p = 2200 kg/m3  p = 7800 kg/m3

Po = 100 kPa Tin = 300 K To = 280 K

The effects of three important parameters have been studied extensively in this

investigation. These are the particle Reynolds number, the Darcy number and the ratio of

the solid phase thermal diffusivity to liquid phase thermal diffusivity. Different Reynolds

numbers were obtained by varying the pressure in the reservoir, i.e., by applying different

pressure radients across the packed bed, Different Darcy numbers resulted from different

particie sizes since the permeability of the packed bed varies with the particle diameter as

g ven in equation (2.9). The ratio of solid to vapor thermal diffusivity, (aOav), was of a

different order of magnitude for each of the three materials considered for.the solid phase.

2.3 .h numerical code and solution procedure

A numerical code was developed for solving the system of governing equations

presented in the previous section. The Beam-Warming type implicit method which is

frequently used in compressible flow problems in regular media was not applicable in this

case because of the nature of the equations. Therefore, it was found necessary to employ

explicit schemes. In developing the finite difference forms of equations (2.3) through

(2.7), central difference approximations wkere used for most of the spatial derivatives for

the inner grid points. Spatial derivatives for the grid points on the left and right boundaries

were formed by first-order forw ard and back, ard difference approximations respectively.

Upwind differencing was implemented for the c,,avective terms in the vapor energy and
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continuity equations in order to ensure the stability of the numerical scheme. It was found

through numerical experimentation that using central differencing in the convective term of

the continuity equation did not make any appreciable change in the results.

While the vapor density at each grid point on the left boundary was determined from

the equation of state by using the boundary conditions for temperature and pressure, the

density at each grid point on the right boundary was determined from the equation of state

by using the vapor temperature computed from equation (2.5) and the pressure given by the

right boundary condition. For the rest of the grid points the density was computed by the

vapor continuity equation. The velocity < u v > for all the grid points except those on the

right boundary were determined by the vapor phase momentum equation which is basically

a quadratic equation in < u v, >. The velocity at the grid points on the right boundary was

computed by linear extrapolation from the preceding two grid points in x-direction.

Temperatures of the solid and fluid phases were determined by the associated energy

equations while the pressure was determined from the equation of state.

The numerical computations were performed on a CRAY XMP/28. As a result of

vectorization the CPU time required on the CRAY for a certain run using a grid mesh of 21

x 11 was approximately 30 times smaller than the CPU time required for the same run on a

VAX 8550. Due to the nature of the governing equations, small time steps had to be

employed for the stability of the numerical scheme. A systematic decrease in the grid size

was carried out and the corresponding stable At was employed until an agreement to

within 10 was achieved in the solutions between the consecutive grid sizes, and the effect

of reducing the At further did not make any appreciable change in the solutions.

A number of interesting observations were made on the stability of the numerical

code. It was found that in some cases the time step used in the early stage could be
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increased in the later stage by an order of magnitude without any influence on the accuracy

of the results. It was observed that for a fixed particle Reynolds number, Rep, decreasing

the Darcy number, Da, consistently increased the stability of the numerical scheme in bod

the early and the later stages. Decreasing Da at a fixed Rep requires using smaller particle

diameter (hence smaller permeability) and a larger pressure difference across the packed

bed.

On the other hand, for a fixed Da, smaller values of Rep translate iato smaller mass

flow rates and smaller amounts of thermal energy flowing into the packed bed per unit

time. Therefore, for small values of Rep the CPU time required for simulating the complete

charging of the packed bed becomes excessively large. For instance, for the case when

lithium-nitrate-trihydrate is the solid phase and Da=1.18xl0 "8, the CRAY CPU time

required for simulating the complete charging of the packed bed was of the order of 1 hour

for Rep=1 100. For this specific case the At employed in the computations was 1.7647x10"

5 sec. for the early stage while it was possible to push it up to 1.7647x10 4 sec. for the later

stage. The CPU time was estimated to increase significantly for small Reynolds numbers.

Therefore, full simulation of such cases is very costly on CRAY and would be extremely

tedious on regular main friames. For this reason no attempt was made to perform the

complete simulation for such cases.

".4 Benchmark of the numerical cole

In order to gain confidence in the accuracy of the results of the numerical code

developed, it was necessary to perform a benchmark agtinst some analytical solutions,

experimental reults or other reliable numerical results. As mentioned earlier, no complete

analysis of unsteady, nonisothermal and nonequilibrium flow of a gas through a porous
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medium is available in the literature. Therefore, in orde: to check the numerical code it was

necessary to compare its results with different limiting case analytical solutions dealing with

different aspects of energy and momentum transport in porous media. This benchmarking

was performed in two main sections. These were namely the comparison of momentum

transport (pressure and hence velocity distributions) in an isothermal flow of an ideal gas

through a porous nedium, and the comparison of energy transport (temperature

distribution in solid and fluid phases) of an incompressible fluid flow through a porous

medium with no local thermal equilibrium between the solid and vapor phases. The two

sources chosen for this benchmdrking were the most relevant sources that could be found

for possible comparisons.

The benchmarking of the energy transport was carried out by comparing thl analytical

solution of the simplified S.humann model presented by Riaz (1977) against the results

generated by the present numerical code. This was achieved by making the necessary

adjustments to our model in oider to reduce it to a system which was equivalent to the

simplified Schumann model, i.e., by omitting a number of the transport terms. This

comparison is depicted in Figure 2.2 for the fluid phase and solid phase temperature

distributions iespecti, el, in terms of tili diensionless variables that appear in the work of

Riaz (1977). As may be seen fron the.se figures, the agreement between our numerical

results and the analytical solution is excellent.

The benchmarking of the nomentum transport was carried out by comparing our

results vith the analytical sulution of a one-dimensional isothermal flow of an ideal gas

through a semiinfinite poroLI, medium presented by Kidder (1957). Although this

analytical solution , as obtained for a ,ciiiinfinite porous medium, it could be safely
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compared with our numerical results for small times, during which the information from

the boundary had not reached the total length of the packed bed under consideration. The

comparison of the analytical solution with the results generated by the present numerical

code is shown in Figure 2.3 in terms of the dimensional distance and time and the

dimensionless pressur," which appears in the work of Kidder (1957). Again, a very good

agreement can be observed between our numerical results and the analytical solution.

2.5 Results and discussions

For the present analysis, it wits found to be appropriate to present the results in a non-

dimensionalized form. The reference quantities that are used in nondimensionalizing the

variables are the reference density, reference velocity and reference pressure denoted by

p*, u* and P* respectively. For convenience, the reference pressure, P*, for each run is

taken to be the average of the initial pressure PO and the pressure of the vapor flowing from

the reservoir into the packed bed, Pil. Likewise, the reference density, p", is computed

from the equation of stale by using P* and the average value of the initial and the vapor

inflow temperatures. Finally the refeiwnce velocity, u*, is computed from equation (2.4a)

by using p* and the global pressure gradient applied across the packed bed. The

dimensionless time and tenIpelattire ,hosen for presenting the results are defined as t =

tu*/L, and e = (T-To)I(T11-To) respectively. For each of the computational runs two

distinct regimes were observcd. The.e tvo regimes %kill be referred to as the '"early

stage' and the 'lter stage". The early . tage lasts for a very short period of time which

starts with the applic.'ationl of the high ten perature and high pressure boundary conditions

on the left, and ends , hen the pies.,ure di,,tribution across the paked bed becomes almost

linear. This process take.,, place extremely fast, and after, ards the pressure distfibution
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remains in a quasi-steady linear state. During the early stage no appreciable thermal

penetration depth develops in the packed bed. The later stage is the period of time following

the early stage.

The vapor velocity, density and pressure distributions along the x-direction at the

midplane of the packed bed during the early stage, for the case where the solid phase

material was lithium-nitrate-trihydrate, are depicted in Figure 2.4. It was observed that for

this case the variation of different variables in the y-direction for the core region of the

packed bed did not exceed %. Therefore, it is very reasonable to present the results for

this case in one-dimensional form. The variation in the velocity distribution can be

explained by the variation of the pressure. Initially when the high pressure boundary

condition is applied, the large pressure gradient causes high velocities. Gradually as the

pressure propagat s in time and space, the large pressure gradients die away, and the

velocities follow the same trend. As mentioned earlier, there is no appreciable thermal

penetration depth during the early stage. Therefore, there is a sharp decrease in the vapor

temperature near the entrance of the bed. This drop in temperature is more pronounced

than the corresponding pressure drop. The resulting peak value of the vapor density close

to the entrance region, therefore, follows from the equation of state. Beyond the peak

region the temperature is almost constant while the pressure decreases in the x-direction.

Hence, based on the equation of state the vapor density will follow the same trend as the

vapor pressure. On the other hand, the temporal increase in the vapor density during the

early stage oC¢.urs because during this period the mass flux at any point is larger than the

mass flux at a point on its right, i.e., there is a continuous net mass flux into the bed.

Therefore, the second term on the left-hand side of equation (2.3) has a negative value.

Thus, the density has to incieaise in time during the early stage in order to satisfy the

continuity equation of the vapor phase.
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The variations of the solid and vapor temperatures, and the densiiy, velocity and

pressure of the vapor phase during the later stage for the above-mentioned case are shown

in Figure 2.5. It should be noted that the late. stage starts after the pressure distribution in

the packed bed becomes almost linear and remains in that quasi-steady state thereafter.

During this stage the thermal penetration depth develops as shown in the figure. Since the

effect of the transient term in the vapor continuity equation becomes much !ess pronounced

at the end of the early stage, an almost steady-state continuity equatioa prevails in the later

stage. This requires the existence of an inverse relationship between the vapor density and

vapor velocity distributions. This behavior can be seen in the figure as almost a mirror

image trend in the vaiations of the density and the velocity, i.e., as one increases the other

one decreases. The vapor pressure distribution is almost linear in the x-direction and

remains unchanged. Furthermore, at any time before the packed bed is fully charged, the

slope of the temperature profile is much steeper than the slope of the pressure profile

within a maior portion of the thermal penetration depth. Therefore, during such times

,he vapor density increases in the x-direction within this zone. Beyond this zone the vapor

temperature is almost constant and the vapor pressure decreases linearly, and so the vapor

density also decreases linearly. The advancement of the thermal penetration front which

translates into a temporal increase in temperature at a given x-location causes a decrease in

the vapor density in time at that location. This, of course, follows from the equation of

,tate. When ultimately a uniform temperature is reached throughout the packed bed, the

densit) ditribution becomes similar to the pressure distribution as dictated by the equation

of state. From the variation of the different field variables in Figure 2.5, it becomes evident

that the flow field is very much influenced by the temperature field.

A typical example rui in which to-dimensional variations are very pronounced is

considered next. The solit pa.rtictle material considered for this case was 1% Carbon-steel.
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Figures 2.6(a) and 2.6(b) depict the distributions of the solid and vapor phase

temperatures, the vapor density and the vapor pressure. As may be seen from these

figures, there is considerable heat loss through the horizontal walls of the packed bed due

to conduction heat transfer in y-direction and a strongly two-dimensional temperature

distribution exists within the packed bed. Apparently, a one-dimensional modeling for

such a case will yield erroneous results. In order to better track the two-dimensional

behavior of the variables a grid mesh of 21 x 21 was employed for the cases in which

sandstone or steel was considered as solid material.

It was observed from the numerical computations that during the later stage of each

run, the value of the vapor-to-solid heat transfer coefficient computed for each grid point at

each time step was very stable and did not differ more than 2% from the reference

vapor-to-solid heat transfer coefficient which was based on the reference density, p*, and

the reference velocity, u*. This suggests that an assumption that takes this value to be a

constant for all the grid points during the later stage would be very reasonable.

Considerable CPU time can be saved in this way by eliminating the otherwise required

computations from eqns (2.12) and (2.13) at each time step. However, all of the runs for

this investigation were perfomled by using the variable heat transfer coefficient.

2.5. 1 Effect of the Darcv number (Da):

In order to determine the effect of the Darcy number on energy and momentum

transport in the packed bed, different cases with different Darcy numbers were compared.

These comparisons were perforited for a fixed particle Reynolds number of 1100 using the

same solid material. Again lithium-nitrate-trihydrate was used for convenience in

presenting the results, since for this material the distribution of the field variables were

essentially one-dimensional in all of these cases. Figure 2.7 depicts the temperature
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Figure 2.7: Temperature distributions in the vapor and solid phases for different Darcy

numbers for a fixed paricle Reynolds number
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distributions in the solid and vapor phases along the packed bed at different time levels for

Darcy numbers of 1.18x10 -8, 7.38x 10-8 and 2.95x10 -7 . The time levels in this figure were

chosen such that they would result in a reasonable presentation of the penetration fronts in

each case. It can easily be seen that as the Darcy number decreases, the difference between

the solid and vapor phase temperatures decreases. The reason for this is that a decrease in

the Dar:y number translates into a decrease in the particle diameter (see equation (2.9)). As

the particle diameter decreases, the specific surface area, asv, of the packed bed increases,

thus, increasing the vapor-to-solid heat transfer interaction by offering a larger surface area.

Hence, the exchange of heat between the solid and vapor phases becomes more efficient.

Therefore, the local thermal equilibrium assumption would be more justifiable at low Darcy

number flows.

2.5.2 Effect of the particle Reynolds number (Reph-

The procedure followed for determining the effect of Rep on transport phenomena

was similar to the one carried out inl determining the effect of the Darcy number. This time

Da was fixed at 7.38x 10.8 for the same solid phase material while Rep was varied. The

tem perature distributions for the solid and vapor phases along the x-directton at the

horizontal midplane of the packed bed are shown in Figure 2.8 for Rep of 400, 1100 and

2126. As Lan be s,,en froni ihe..,e figures, the difference between the temperatures of the

solid and fluid phases at any point increases with an increase in Rep. This increase should

be attributed to (Ie velocity of the flow since the specific surface area of the packed bed is

the same ii, all of these C:ases. As the ,elocity of the flow increases, i.e., Rep increases, the

time for the solid-to vapor heat interaction de,.reases. This will cause a decrease in the

efficiency of heat .hange bet,,,,een the solid and vapor phases and, hence, the deviation

from the local themal equilibriul will increase.
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The combined effect of increasing both Rep and Da was found to have, as expected, a

much more pronounced effect on the local thermal equilibrium assumption. It becomes

evident that for high Rep and Da flows the local thermal equilibrium assumption becomes

very erroneous. Similar qualitative behavior was also found to be valid for the cases in

which sandstone or steel was used as the solid phase. Lithium-nitrate-trihydrate was

chosen just for its convenience in presenting the results.

2.5.3 Effect of the thermal diffusivities ratio (as.O~.;

It was found through numerical experimentations that the ratio of the solid phase

thermal diffusivity to liquid phase thermal diffusivity, a,/Ox,, was the most appropriate

parameter in representing the combined effects of k/kv, cps/cp, and Ps/Pv ratios, all of

which are determining factors in the overall heat transfer process. Furthermore, from the

nunerical experimentations it was also found that one-dimensional approach was very

satisfactory for all cases in which lithium-nitrate-trihydrate was used as the solid phase and

for which ox,/otv was of the order of 0.035 to 0.075, which resulted from different vapor

density values corresponding to the average operating pressures applied for different runs.

Therefore, the effect of ( v/a, kill be shown for cases in which sandstone and steel were

used as the solid phase. The tenipeiature distributions in the solid and fluid phases for two

cases in which sandstone and steel were used respectively are shown in Figs. 2.9(a) and

2.9(b). In both of these figures the value of Rep was 1100 and the Darcy number was

chosen to be 1. 18x 10-8. In the case of sandstone ots/ax, was equal to 0.57 where in the

case of steel it was 5.7 1. As can be seen from these figures the temperature distributions

are strongly t% o dimensional ini the .ase of steel and mildly two-dimensional in the case of

sandstone for % hich one dimielisional approach may, gi e ftirly good results. It should be

noted that the same qualitutive behavior Aas observed for all ranges of Rep and Da
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considered in this investigation which proves that two-dimensionality effects are not

sensitive to the particle Reynolds number and Darcy number.

For a qualitative assessment of the validity of local thermal equilibrium assumption

and the strength of the two-dimensional effects in the energy and momentum transport, the

findings of the numerical computations will be presented in an integrated form. Figure

2.10 shows this assessment for the local thermal equilibrium assumption for the case of

lithium-nitrate-trihydrate, sandstone and steel for the entire ranges of Rep and Da which

were considered in this work. It should be noted that for all the runs there is a difference

between the solid and vapor phase temperatures at time equal to zero, and therefore, the

present assessment is based on the later times during which the thermal penetration depth

is developed to some appreciable position. The dividing lines in this figure were decided

by the maximum difference betveen the solid and the vapor phase temperatures relative to

the overall temperature range (difference between the inlet vapor temperature and the initial

temperature, 20 K). For the qualitative ratings, the percentage difference relative to the

overall temperature range falls into the following categories: very poor, more than 15%;

poor, 10-15%; fair, 5-10%; good, 1-5%; very good, less than 1%. From Figure 2.10 it

can be concluded that Da is the most influential parameter in determining the validity of

local thermal equilibrium. The Reynolds number based on particle diameter is also a very

important parameter in this regard. The local thermal equilibrium assumption becomes

more viable as both Rep and Da decrease for the reasons which were explained in the

sections analyzing the effects of these parameters. This is clearly seen from the lower left

corner of each figure. By the same token it is reasonable to observe the opposite behavior

as Rep and Da increase, i.e., approaching the top right corners of these figures. Also it

may be seen that the thermophy,sical parameters ha\,e a much less pronounced influence on

the local thermal equilibrium condition. Only for the case of steel were the effects of the
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physical parameters found to be mildly significant. This is because the conduction heat

transfer becomes more dominant than the vapor-to-solid convective heat transfer in this

case. Therefore, the conduction heat transfer will play an additional role in the case of

steel. This was significantly absent in the cases of sandstone and lithium-nitrate-trihydrate.

In a similar manner a qualitative assessment of the strength of the two-dimensional

behavior is depicted in Figure 2.11. This figure shows the behavior for a fixed Da of

7.38x10-8 for the entire range of Rep used in this investigation, and the behavior for a fixed

Rep equal to 400 for the entire range of Da used in this investigation. This qualitative

behavior, for each case in the figure, was found to be exactly the same for the entire ranges

of the corresponding Da or Rep which were considered in this investigation. Therefore, for

brevity only these two cases are presented. The above-mentioned fact and Figure 2.11

confirm that the two-dimensionality effects are not sensitive to either Rep or Da, but very

sensitive to the ccJoxv ratio, i.e., to the therrnophysical properties of the materials which are

considered for the bed.

2.6 Conclusions

Solution of the transient problem with step change boundary conditions showed the

existence of two distinct stages, namely the early .stage and the later stage. It was found

that the earl) stage is mostly dominated by changes in the pressure distribution, and the

time scale for thv changes in the distribution of pressure and the dependent variables is very

short during this stage. On the other hand, the time scale for changes in the field variables

during the later Atage was found to be relatively larger, and that development of the thermal

peneuation into the packed bed played an important role in these changes.
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Modeling the flow of the vapor/gas by using an equation of state was found to be

very useful since this way it was possible to track down the pressure evolution as well as

the variations in the velocity and density of the transporting fluid during the early stage.

These can be crucial information during the start-up procedures of certain applications. It

was also shown that although no such assumption has to be made, the pressure distribution

in the packed bed assumes a linear form during the later stage.

The results obtained in the case studies performed in Section II were also helpful in

drawing a number of conclusions on the qualitative aspects of transport phenomena in

packed beds generally applicable to any porous medium. The first significant outcome of

these analyses was related to the local thermal equilibrium (LTE) assumption. It was

clearly seen fron, the results obtained that higher particle Reynolds number resulted in

larger differences between the solid and fluid phases, that is larger deviations from local

thermal equilibrium. Similar behavior was seen with increase in the Darcy number which

translates into an increase in the particle size of the packed bed. On the other hand, the

effect of the thermophysical properties on LTE was found to be much less influential.

Therefore, it can be concluded that the validity of LTE assumption is mostly dependent on

the speed of the flow and the particle size of the porous medium.

The two-dimensional behavior in the transport processes was also examined. It was

found that while the two-dimensional effects are very sensitive to the thermophysical

properties of the solid and fluid phases considered, particle size or speed of flow do not

have sgnificant effect on tA o-dimensional behavior. The results obtained show that higher

the thermal diffusivity of the solid phase relative to tl,at of the working fluid the more

pronoutnccd are the two-dimensitnal effects. This is reasonable since with higher thermal
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diffusivity in the solid phase the diffusion of heat in the transverse direction can reach the

order of magnitude of the convective heat transfer between the solid and the fluid phases.

Numerical experimentations showed that the stability of the numerical code for the

later stage simulations was primarily dependent on the magnitudes of the particle Reynolds

number, Rep, and Darcy number, Da. The maximum stable time step, At, was found to

increase with an increase in Rep or decrease in Da. While the reason for increased stability

with decrease in Da can be attributed to the increased damping forces in the packed bed, the

reason for increase in the stability of the numerical code with increase in Rep should be

related to the level of constraint that the flowing gas is under, or in other words the

magnitude of the pressure difference applied across the packed bed.

It was found out that due to the nature of the governing equations, very small time

steps have to be employed in the numerical simulation of the transport processes in

compressible flow through porous media. Numerical simulation of the complete thermal

charging process of the packed bed for cases with low Rep and/or high Da requires

excessive CPU time even on vector machines. For such cases, the use of regular main

frames becomes highly inefficient.

One significant finding in Section II was that the use of a fluid-to-solid heat transfer

coefficient btsed on a representative reference velocity, i.e., a nominal Rep and a reference

density throughout the later stage simulations would not cause a significant inaccuracy in

the numerical solutions. This is of engineering importance because considerable amount of

CPU time can be conserved by introducing this simplified form rather than performing

computations for each grid point at each time step.
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SECTION III

ANALYSIS OF MULTIPIIASE TRANSPORT PHENOMENA

IN A CONDENSING FLOW OF A VAPOR IN A PACKED BED

In this section, the problem analyzed in Section II is extended to cover the multi-

phase transport phenomena in a packed bed. This ba~ically involves the consideration of

the same flow problem at a pressure range in ,hich the vapor (working fluid) density may

reach the saturatiol vapor den,,ity causing condensation. A rigorous model for analyzing

the multiphase transport in the packed bed is developed by considering the basic

thermod, nanics of the condensation plocess. Numerical solution procedure is discussed

in detail. This is followed by the presentation of the results of a set of case studies

performed for this problem.

3.1 qhjQi nf L of the Iroblem

The problem under consideration is the transient condensing flow of a vapor through

a fixed bed of regularly sized spheiical solid particles packed in a two-dimensional channel.

Figure 3.1. depicts the ,chematit. diagram of the problem under consideration. The packed

bed is initially filled v, ith the oi king fluid (Refrigerant- 12) at a slightly superheated stale

and the whole vapoi and solid sy.stem is at uniform temperature and pressure. R-12 vapor

at a higher tcniporature and pressure forn a reservoir is suddenly allowed to flow through

the packed bed, thus depositing its thermal energy to the solid paiticles of the bed. This

basically forms a step change in the temperature and pressure at the inlet boundary. In this

probletn the pressures are high enough so that at certain times during the thermal charging
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of the packed bed, the vapor at certain locations becomes compressed enough so that its

density reaches the saturation vapor density at the prevailing temperature, thus causing

condensation to take place.

3. 2 Mathema tica model

The volume averaging technique which was used in Section II will be employed in

this section too in developing the governing equations for the present problem. In

establishing the model for the analysis of this problem, the following assumptions and

simplifications were employed:

(1) The width of the packed bed is significantly larger than the height and, therefore, the

problem is essentially two-dimensional.

(2) The vapor phase always behaves as an ideal gas.

(3) There is no local thermal equilibrium (LTE) between the solid and fluid phases but

there is LTE between the vapor and liquid phases when there is condensate present

in the packed bed.

(4) N tal o.0nvection effccts are negligible compared to the forced convection in the

vapor phase. This essentially yields a one-dimensional flow in the vapor phase.

(5) The solid and the liqtid phases ate iricompiessible, and the packed bed has uniform

porosity and is isotropic.

(6) Boundary and vauiable porosity effects are neglected.

(7) Inter-particle and intra-particle radiation heat transfer as well as themml dispersion

effects are neglected.
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(8) Variations of physical properties such as thermal conductivities, specific heat

capacities, viscosity and latent heat of vaporization with temperature are neglected.

With all these assumptions and simplifications taken into account, the volume

averaged governing equations can be established in the following form (it should be noted

that we have switched to subscripts F, y, c and f which denote the liquid, vapor, solid and

the combined fluid (liquid+vapor) phases respectively):

Vapor phase continuity equation:

t.(E y< py >7) + .< py >7< >) =-< fil > (3.1)

Due to possible phase change (condensation) in the vapor phase, there is an additional

source term, < in >, in this equation as compared to equation (2.3). Moreover, because

of phase change, the volume fractions of the vapor and the liquid phases will be functions

of time. Therefore, instead of a constant porosity value, e, in this equation we have a

variable for the vapor phase volume fraction, namely P 7(t).

Liquid phase continuity equation:

The volume averaged continuity equation for the noncompressible liquid phase can be

established as:

> p =0 (3.2)

Vapor phase equation of motion:
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7<T7  <TTE~T: " ]<
_ <p 7  Fe7 ____ It 7

=2 [< > <<v .x < v-K--] < V,/> (3.3)

This equation is similar to the one used in Section II except that E . is used instead of e,

and the definitions of F and K7 are slightly different as will be discussed later. With

assumption (4) above, this equation reduces to the following one-dimensional form:

<--" I  <7' 7/ < u7  K t < u',> (3.3a)
Kr

Liquid phase equation of motion:

The liquid phase motion is formulated by Darcy's law since any motion of the liquid

will be much smaller than that of the vapor phase:

k K
1_1 {kEVe 0 + k,<.r>V < T > f + (P -< P> )g} (3.4)

Fluid phase energy equation:

[iP (Cp1))l + C < P7 >1 (C 1) 7] < T > <Ii >Ah vap

+[P < j>( ]. >f = V.[k C v < T>

+1 a F<T > -<rT>(c)h.> + 1<Tf >ff (3.5)

Conparison of this equation v, ith equatioul (2.5) show s the additional effect of the liquid

pha.,e in the tran.,ient .toiage tei 11, conduction term and the sensible heat transport term due
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to motion. Moreover, there is an additional term accounting for the heat transfer due to

condensation as well as a convection heat transfer term accounting for the energy transport

between the solid and the liquid phases.

Solid phase energy equation:

£ap~cpo <To, >o Vk fVT
E up (C P) or at = V.'[kaeff V < T°

- hOPa 00< To >1_< Tf>r - h . aj< To >o_< T f>f] (3.6)

In this equation too, the energy transport term between the liquid and the solid phases is

modeled by a convective heat transfer term.

Volume constraint relation:

Due to the fact that the liquid and vapor volume fractions are variable, the following

volume constraint relation,, ovides a coupling equation, namely:

Co+Cy(t)+ e 0(t) = 1 (3.7)

Equation of state for vapor phase:

Following assumption (2), the equation of state for the vapor phase becomes:

< P >7 = < >7R ,< T, >f (3.8)

Thermodynamic relation ]or the saturaition density of vapor:
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exp(A -9
__ __ _ __ _ (3.9)

where A and B are constants, Tf is in degrees Kelvin and P Y, , is in kg/m3. This relation

was obtained by a least squares curve fitting method to a range of data relevant to the

present study.

Equations (3.1) through (3.9) yield nine equations in nine unknowns, namely P-0(t),

E 7(t) , < P > , < , >, < 1> <PY >, <T f> <T a> and <fn>

For the present analysis the effective theimal conductivities for the solid and fluid

phases were modeled as:

kaeff eaka
(3.10)

kfeff = ck +

hI'he permeability of the packed bed of spherical particles is given in the following

form (Ergun, 1952):

3 2
C d11

K= (3.11)
150 (1 - c)2

,here c is the porosit) and dp is the p~uiicle diameter. Therefoie, the pemeability for the

vapor phae, K9 1aid Ohe geometric 1'.L fto!, F, in the vapor phase momentum equation can

be expressed as functions ofdp and c., as (Vafai, 1984):

K) (3.12)
150 (1 - Y)
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F= 1.75 3/2 (3.13)

For the relative permeability of the liquid phase, the one suggested by Udell and Fitch

(1985) was used. This is modeled in the following form:

k r

(3.14)

where: S =-sim and s- - 1-

where S is the normalized saturation, s is the absolute saturation, and Sim is the "immobile"

saturation. The immobile saturation, sim, is the critical value of the absolute saturation. If

s is greater..., ,m -n the liquid phase in the packed bed becomes mobile. For values of

s lower than S m, any liquid phase present in the porous system will be immobile, or in the

so called pendular state. The value of 0.1 used for sam in the work of Kaviany and Mittal

(1987) will be used in the present work because of lack of any better experimental finding.

With this value of sim, the critical value of the liquid fraction at which liquid phase becomes

mobile, i.e., E[crit, was computed from equation (3.14) to be 0.039, with the value of

porosity of the packed bed taken to be 0.39, which is the average asymptotic value for

packed beds in which the particle diameter to packed bed diameter is below a certain value

(Benanati and Brosilow, 1962). For all the cases studied in the present investigation the

maximum value of cp never reached c ~crit and, therefore, the liquid was always immobile.

It should, however, be noted that the liquid was not assumed to be immobile in modeling

the problem, but the fact that it turned out to be immobile was the consequence of the

governing physical conditions of the problem.
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The empirical correlations for the fluid-to-solid heat transfer coefficients that were

used in this section are the same as those in Section 11, namely:

-2/3 -0.41ho = 1. 064 (c P) GjL .k d__
=[ [dP .] for d >350 (turbulent)

(3.15)

ho = 18. 1l(c P)jj G J.- -2/ or d o G

Gj PJJi kJLII _ for <40 (laminar)

where G represents the mass flow rate through a unit surface area perpendicular to the

direction of flo;wk, and the subscript j denotes P3 or y for the liquid or vapor phase

respectively.

The specific surface area of the packed bed for the vapor phase is expressed in the

following form:

6(1 (3.16)
a = d,

Strictly speaking, this con elation was originally derived from geometric considerations for

a fully saturated packed bed of spherical particles for a single fluid phase, in the form

a = 6(G - ) / dJ) (Dullien, 1979). However, since F-p is very small (less than 0.01)

comlalcd to C Y (approximately 0.38-0.39), equation (3.16) provides a very accurate

estimate for ao_
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Also from an analysis of the representative length scales and volume scales of the

liquid and vapor phases of the working fluid, one may obtain a relation between the

specific surface areas a. and aq as:

a = a (3.17)

and hence:

a = p-e-C E K (3.18)

Since the liquid phase was always in pendular state and, therefore, h 3 was always

zero, due to the fact that for the liquid phase the mass flow rate was zero, there was no real

need for the above information. However, aq was modeled as given in equation (3.18)

for the sake of complete modeling.

3.2.1 Initial and boundary conditions

The physical conditions initially prevailing in the packed bed are the same as those of

the previous section. They are, therefore, mathematically expressed as follows:

Tf(x,y,t=O) = T0 (x,y,t=O) = To

P (xyt=O) = Po (3.19)

u.$x,y,t=O) = 0

The pressure on the right boundary is kept at a value equal to the initial pressure in the

packed bed while vapor at a fixed high temperature and pressure is supplied at the inlet of
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the packed bed. The mathematical form of the left and right boundary conditions is as

follows:

Tf(x=O,y,t) Tin

P (x=O,y7, = Pin at t > 0+  (3.20)

P ,(x=L,y,t) Pout = PO

In the present problem, both insulated top and bottom wall boundary conditions as

well as constant temperature top and bottom wall boundary conditions will be investigated.

For the case with insulated boundary corditions we have:

T f [ T o

kfff =0 and k ocff-O = 0 (3.21)
y=0, y=H y=O,y=H

For the case with constant temperature boundary conditions at the top and bottom walls, the

boundary conditions can be expressed as:

Tf(x,y=O,t) = T,(x,y=O,t) = Tbo = To

(3.22)

Tf(x,y=H,t) = T0 (x,y=H,t) = Ttop =T o

3.2.2 Physical conditions for the numerical runs

In the present investigation too, in order to analyze the effects of different

characteristic parameters, such as Rep and Da, different particle diameters ranging from I

im to 5 m,, and different ranges of operating pressures were considered. Also two

different solid materials Nere coosidered in the present problem for determining the effect

of the themal properties of the solid phase on transport phenomena. These materials were

59



lead and 1% Carbon-steel. The value of the average porosity of the packed bed was taken

to be 0.39 following the arguments in Section II. The numerical values of different

parameters used as initial and boundary conditions are given as follows:

To = 300 Po = 796 kPa Tin = 350 K Pout = 796 kPa

and the value of Pin was different for different cases ranging from 800 kPa to 866 kPa.

The numerical values of the other physical data used in the numerical computations are as

follows:

R-12:

kY=0.0097W/m.K (cp) ,=710.J/kg.K gi=12.6xl0 6kg/m.s R =0.0687588 J/kg.K

Ahvap=l11.3xl0 3J/kg k 0=0.0545 W/m.K (c P) =1115J/kg.K t1p=179.2x10"6kg/m.s

p 1=1190.35 kg/m3

Lead:

k; = 35. W/m.K p0 = 11340. kg/m3  (c) a = 129. J/kg.K

I% Carbon steel:

ka = 43. W/m.K pa = 7800. kg/m 3  (cp)T = 473. J/kg.K

3.3 Solution procedure

The finite difference techniques utilized in the solution of the problem in Section II

were also employed in the solution of the present problem. In this problem, however,

depending on whether phase change (condensation) takes place in the vapor phase or not,
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the set of unknown variables and governing equations changes. The vapor phase

continuity equation plays an important role in determining the solution format of the

governing equations. The basic criterion which governs the phase change (condensation)

in the working fluid is the attainment of the saturation vapor density. At any point where

the vapor density reaches the saturation density corresponding to the temperature at that

point, condensation will occur. The solution format of the condensation mode includes a

switching from the vapor phase continuity equation to the thermodynamic relation giving

th, saturated vapor density for the solution of the vapor density, while the vapor continuity

equation is then used for the solution of the condensation rate.

The stability of the numerical scheme was ensured by choosing a proper combination

of Ax, Ay and At. A systematic decrease in the grid size was employed for obtaining the

convergence of the numerical scheme, and the corresponding stable At was employed. A

compromise, however, had to be made between the accuracy and the computer CPU time

required for the computational runs. A 41 x 21 grid configuration (which gives a

dimensionless Ax of 0.025) was found to yield qualitatively and quantitatively good results

for the condensation period and very good results for the problem for the cases with

insulated boundary conditions. A 41 x 41 grid configuration was employed for the cases

with constant wall temperature boundaries.

3.4 Results and discussions

In this section, part of the result, that .kill be presented for the computational runs

performed will be in terms of nondimensionalized variables. Variables < PY >Y < Py

and < uY > are nondimensionalized by using the corresponding reference quantities,
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namely P*, p*, and v*. P* was chosen to be 100 kPa, p* was calculated from the

equation of state by using P* and the initial temperature, To. The reference velocity, v*,

was computed from the vapor phase momentum equation, (3.3a), using a pressure gradient

which was based on the global pressure difference applied across the packed bed and a

density which was calculated from the equation of state by using To and Pay (the average of

the inlet and exit pressures). Temperatures of the solid and fluid phases are

nondimensionalized in the form E = (T - T0) / (Tin - TO). Time, t, is kept in

dimensional form for giving an insight of the actual magnitudes of the durations involved.

Same thing is done for the condensation rate data and the total condensate variations as well

as for the thermal charging data of the packed bed.

As in the case of the solution of the problem in Section 11, two distinctly noticeable

stages were observed in the solution of the problem considered. These were namely the

earl stage and the later stage. The early stage usually lasts for a very short period of time

during which sharp changes in the distribution of certain field variables, such as < PY >

<P,>Y and , < uy. >, occur due to the step change boundary conditions which cause very

strong transient behavior.

3.4.1 Problem with insulated wall boundary conditions

Figure 3.2 depicts the variations of the density, velocity and pressure of the vapor as

well as the variation of the liquid fraction during the early stage at the midplane of the

packed bed for insulated wall conditions for a case in which lead was used as the solid

phase. It was found that, for cases with insulated boundary conditions, one-dimensional

formulation would be very accurate since there was no appreciable variation of the field

variables in the y-direction. Figure 3.2(a) shows that the vapor pressure distribution
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evolves and becomes almost linear during the early stage. There is no appreciable thermal

penetration during this period and the spatial variation of the vapor density follows the

same trend as the vapor pressure as dictated by the equation of state, except at the entrance

of the packed bed. The tempora1 increase in the density is a result of the transient effects

dictated by the vapor phase continuity equation. At points where the vapor density reaches

the saturation vapor density, condensation occurs and the liquid phase accumulates. Due to

the physical conditions of the problem, the period of time during which the vapor phase in

the packed bed maintains a high enough density for condensation to occur is relatively short

compared to the total thermal charging period of the packed bed. The variation of the liquid

fraction is shown in Figure 3.2(d). In Figure 3.2 the early stage was somewhat extended

to include the time during which more than 99% of the condensation took place for this

case.

Beyond the early stage, the changes in the field variables are mainly caused by the

development of the thermal penetration depth since the pressure distribution remains almost

unchanged. Distributions of the field variables of interest by time during the later stage are

shown in Figure 3.3. In Figure 3.3(a) the solid lines depict the solid phase temperature

distribution while the dotted lines depict the fluid phase temperature distribution. During

the early tage, the effect of the tr'nsient term as well as the condensation (source) term in

the vapor continuity equation die out ind, therefore, during the later stage the vapor density

variation in time becomes dependent on the convective term in this equation. The mass

flow rate in the packed bed becomes constant requiring an inverse relationship between the

valor density and velocity 7igures 3.3(c,d) clearly show this behavior as a mirror image

type of tiend in the variltions of the vapor density and vapor velocity at any instant. The

spati'll variation in the \ apor density, on the other hand, can be explained from the equation

of state. At any instant before the packed bed is fully charged, the slope of the vapor
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temperature profile will be larger than the slope of the vapor pressure profile for a certain

length of the packed bed (meaning a sharper decrease in temperature than in pressure)

causing an increase in the vapor density, where exactly the opposite behavior can be seen at

the locations where the slope of the vapor temperature profile is smaller than that of the

vapor pressure profile (meaning a sharper decrease in pressure than in temperature). When

the packed bed becomes thermally fully charged, the vapor density variation follows

exactly the same trend as that of the vapor pressure as dictated by the equation of state.

The overall condensation rate in the packed bed was computed by integrating the

individual condensation rates at all the grid points over the associated volumes at each time

step. The average overall condensation rate per unit width of packed bed for the case for

which the early and later stage results have been presented is depicted in Figure 3.4(a). It

can be seen that the overall condensation rate is higher at the beginning when the transient

effects are very strong, and dies away as the sharp changes in the vapor density variation

erode. The accumulative condensate in the packed bed was also computed by integrating

the condensation rates at all grid points over the associated volumes at each time step and

totaling with the previous sum. Figure 3.4(b) shows the variation in time of the amount of

total condensate in the packed bed per unit width of the bed. As may be seen from this

figure, the accumulation is fast at the start due to high condensation rate, and builds up

quickly reaching an asymptotic value in a short time.

The next important analysis carried out was related to the thermal charging of the

packed bed. For this, ,,c needed to track down the variations of the relevant parameters

including he at flov, rates and energy storge rate. The variation in the amount of thermal

energy flowing into and out of the packed bed per unit w idth is depicted as a function of

time in Figure 3.5(a). Thcse \ ere comIputed by integrating the energy fluxes of the vapor
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Figure 3.5: (a) Rate of heat flow into and out of the packed bed

(b) Thermal charging of the packed bed (insulated top and bottom walls)
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flowing into and out of the packed bed over the inlet and the exit crosssections. A very

short section of the time history of the thennal charging process at the beginning was left

out in this figure in order to obtain a better scale that shows the variation of the heat flow

rates clearly for the whole charging duration. During this very short time interval the rate

of heat flow into the packed bed was several times larger due to the presence of large

velocities at the onset of the charging process, i.e., during the early stage. Figure 3.5(b)

shows the net energy stored per unit width of the packed bed as a function of time. This

was computed in the numerical code by integrating the net heat flow rate into the packed

bed over time. The value of the total net energy stored in the packed bed was also

determined by a thermodynamic balance analysis between the initial and the final (fully

charged) states of the packed bed. The result of the numerical computation was found to be

in very good agreement with this analytical result.

3.4.2 Problem with constant temperature wall boundary conditions

The same problem was solved for constant temperature top and bottom wall boundary

conditions. As expected, strong two-dimensional behavior was found in the variations of

many of the field variables. Therefore, rather than presenting the results in the format of

the previous section we will resort to two-dimensional contour plots for the field variable

distributions. It should be noted that the solution of this problem has early stage and later

stage parts just as in the case of insulated boundary conditions case. However, the

distribution of three fie!d variables at three time levels in the later stage will be presented

here for convenience. These \k ill be sufficient to show the two-dimensional behavior of the

problem which becomes apparent during the later stage.
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Figure 3.6 depicts the distributions of the fluid temperature, solid temperature and the

vapor density in the packed bed at three different time levels. It can be seen from this

figure that, although the two-dimensional behavior of the field variables is not very

significant at the beginning, it becomes very much pronounced as the thermal penetration in

the bed advances. In the core region of the packed bed the advancement of the thermal

front follows a similar trend as in the case of insulated boundary conditions. Near the top

and bottom walls, however, there is a temperature gradient in the y-direction due to heat

loss. Since there is no significant variation in the vapor pressure in the y-direction, the

vapor density variation in this direction is primarily determined by the fluid temperature

variation. Hence, at locations closer to the top and bottom walls where the fluid

temperature becomes lower the vapor density becomes higher. In the core reg;.on of the

packed bed the variation of the vapor density in x-direction depends on the slopes of the

temperature and pressure distributions in this direction. At points where the slope of the

temperature distribution is sharper than the slope of the pressure distribution, the vapor

density will be increasing and vice versa.

The average overall condensation rate per unit width of the packed bed was computed

in the same manner described in the previous section. Figure 3.7(a) shows the variation of

this quantity in time. Upon comparing Figure 3.7(a) with Figure 3.7(b), one can see that

condensation lasts slightly longer in the case of constant wall temperature case. This is

reasonable because due to the heat loss from the top and bottom, for the points next to the

top and bottom boundaries near the inlet of the packed bed, it takes longer for the vapor

phase to reach a temperature at Which the saturation vapor density exceeds the vapor

density. Hence, the duration of condensation at these points is prolonged. This also gives
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rise to a slightly larger amount of total condensate in the packed bed. This can be seen by

comparing Figure 3.7(b) with Figure 3.4(b).

The variations in the amounts of heat flowing into and out of the packed bed per unit

width at the inlet and exit are shown in Figure 3.8(a) as functions of time. In this case too,

a small time slice at the beginning of the charging process is omitted from this figure in

order to obtain a better scale in the figure. Figure 3.8(b) depicts the energy input into the

packed bed, the energy that is lost from the top and bottom walls by conduction, and the

net energy stored in the packed bed per unit width of the bed.

3.4.2.1 Effect of particle Reynolds number (Rep) on condensation

The effect of Rep on condensation was investigated by running three cases with

different Rep's while Darcy number (Da) was kept constant by keeping the particle diameter

fixed. The solid phase in all these cases was lead. Different Rep values were obtained by

applying different inlet pressure boundary condition for each case. Figure 3.9(a) depicts

the variation of tile average overall condensation rate per unit width of the packed bed for

the cases in which the nominal Rep values were 500, 1,000 and 1,500 respectively. The

corresponding variations of the total condensate in the packed bed per unit width as

functions of time are shown in Figure 3.9(b). From these figures it becomes apparent that

the higher the Rep the higher will be the condensation rate and the total condensate

accumulation. On the other hand, higher Rep will cause slightly shorter duration of

condensation. Higher Rep indicates higher mass flow rates as well as higher pressure

difference applied across the packed bed (larger compression forces in the vapor phase),

thus, higher condensation rate. On the other hand, higher Rep, due to higher pressure

gradient applied means potential for faster propagation of the pressure, density and

temperature distributions in the vapor phase and, thus, shorter condensation time.
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3.4.2.2 Effect of Darcy number (Da) on condensation

The effect of Darcy number on condensation was also studied by considering three

different Da values for a fixed Rep, namely 1,500. Different Da values were obtained by

changing the particle size. Figure 3.10 shows the variations of the average overall

condensation rate and the total condensate accumulation in the packed bed per unit width as

a function of time for Da values of 1.49x10 -s , 2.66x10 8 and 1.067x10 7 . The

corresponding dp values were 0.75, 1.0 and 2.0 rm, respectively. As dp increases and,

hence, Da increases, the specific surface area of the particles decreases. This causes

smaller amount of heat transfer between the solid and fluid phases and a faster advancement

of the themial penetration depth of the fluid phase (faster attainment of lower densities than

the saturation vapor density at the initial condensation points). Therefore, although

condensation zone advances faster the condensation rate and the amount of condensate

accumulation remain small. Decreasing the dp at constant Rep (by increasing the pressure

difference applied across the packed bed) increases the vapor velocities and, hence, causes

larger mass flow rates and larger condensation rates. Also as dp is reduced the specific

surface area of the particles increases. The heat transfer between the solid and fluid phases

becomes more vigorous, energy is transferred at a faster rate from the fluid to the solid

particles and, hence, it takes longer for the fluid phase at the initial condensation points to

reach temperatures high enough at which the vapor density becomes less than the saturation

vapor density and condensation stops. Hence, higher condensation rates are sustained for

longer periods of time at these points, resulting in larger condensate accumulation.
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3.4.2.3 Effect of thermal capacit, of the solid phase on condensation

In older to analyze whether the thermal capacity of the solid pLase utilized had any

effect on condensation, a dilfei ent material, namely 1% Carbon-steel, was employed as the

solid phase material for qualitative comparisons. TI variations of the average overall

condensation late and the total condensate accumulation per unit width of the packed bed as

functions of tinle are depicted in Figure 3. I 1, for the case of lead and steel as solid material

for three different Rep values. As may be seen from this figure, although for a fixed Rep

the condensation rate is almost the same at the beginning for both solid materials, high

condensation rates are su.tained for a longer peiod of time in the case of steel than in the

case of' lead. The icason for this is that the thermal capacity of steel per unit volume is

approximately 2.5 times that of' lead. l)Ie to this fact along with the high heat transfer rate

between the solid and fluid phases, the temperature propagation in the fluid phase will be

slower in the case of steel than in the case of lead because more of the themial energy of the

fluid is transferrcd to the solid in the case of' steel than in the case of lead. In the case of

steel the vapor phase will take a longer time to reach a high enough temperature at which

the vapor density % ill become low er than the satutration vapor density corresponding to that

temperature and, theref'oire, the condensation durations will be longer.

3.5 Concltusions

In this section, tile devclo)mCnt of' a model for analyzing condensation in a

convectil e tlov of a \'apot through a placked bed was carried out. This was achieved by

incorporatinrg the basic thiet tod, nam ic funudainentals of lv, ase change into thle model.
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From the results of the case studies performed, it can be concluded that the amount of

condensation of the working fluid is dependent on several parameters. For a fixed particle

size, the higher the pressure difference applied across the packed bed, i.e., higher the

nominal Rep, larger will be the rate and total amount of condensation, and slightly shorter

will be the duration of condensation in the packed bed. This is a consequence of the fact

that the working fluid has larger mass flow rates and is under larger compression forces.

The amount of condensation in the packed bed was also found to be influenced by the

thermophysical properties of tile bed particles. This could be explained by the heat

interactions between the working fluid and the solid particles which determine the time

taken for tile thLrmal penetration to travel in both tile solid and the fluid phases in the

packed bed. Larger thermal capacitance materials for the bed particles will result in

maintaining the temperature of the vapor low and the density of the vapor high, resulting in

a larger condensation rate.

Constant temperature A all conditions yielded larger amounts of condensation

compared to insulated all conditions, proving the fact that continuous heat removal from

the packed bed will result in larger amounts of condensation.

Case studies in Section 11 also established that in the case of insulated boundary

conditions with immobile liluid phase in the packed bed, the application of one-

dimen-,ional formulatiol is extremely accurate for the ranges of Rep and Da cotisidered in

this study. On the other hadlt, for constant temperature boundary conditions two-

dimensional fonmulation is absolutely necessary.

For the t )pc of ptoblet considered in this sectiol, the amouLnt of condensation in the

packed bed is \er, scnsltie to the ariationl of tile fluid temperature on which the saturation
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vapor density is highly dependent. Therefore, it is very crucial to formulate the problem

with no local thermal equilibrium assumption between the solid and the fluid phases in

order not to introduce significant inaccuracies in tracking the condensatien process.
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SECTION IV

ANALYSIS OF A LATENT HEAT STORAGE PACKED BED

UNDERGOING A CONDENSING FLOW OF A VAPOR

In this section, the problem investigated in Section III will be extended in complexity

by introducing a phase change material (PCM) to replace the sensible heat storage material

of the bed particles. Therefore, in addition to phase change in the working fluid, this

problem involves phase change in the bed particles. The model used in Section III is

modified such that it will accommodate the phase change processes in the packed bed

particles for the present problem. The numerical solution algorithm tlat shows some

appreciable differences with that of the previous problem is discussed. This is fol!owed by

a discussion of the results of a number of case studies performed.

4. 1 Statement of the i1roblem

The problem under consideration is the thermal charging of a packed bed of regularly

sized spheres of encapsulated phase change material. This form of packed bed is also

known as a latent beat storage packed bed. The schematic diagram of the problem

considered in the present study is shown in Figure 4.1. As in the previous section, the

packed bed is initially filied with R-1 2 vapor at a slightly superheated state at uniform

temperature and pressure. Then it is subjected to flow of superheated R-12 from a

reservoir whiLh has higher temperature and pressure than those initially prevailing in the

packed bed. The physical conditions for this problem are very similar to those of the

previous section. In tlhi, piuoblem, however, the packed bed incorporates a PCM whose
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melting temperature falls within the operating temperature range. Therefore, during the

course of the thermal charging process of the packed bed there will be phase change

(melting) within the encapsulated M particles.

4.2 Mathematical model

The volume averaging technique employed previously is also utilized in the present

study. All of the eight assumptions aind simplifications used in Section 3.2 are assumed to

be valid here too. In addition, the following assumption is also employed in the analysis of

this problem: the temperature within each individual bed particle is assumed to be uniform

at any instant, and the encapsulating material is assumed to have the same thermophysical

properties as the PCM.

The governing equations for the present problem are similar to those of the previous

problem except for the solid phase energy equation. Where a similar energy equation can

be used when the PCM is not undergoing phase change, this equation becomes inapplicable

when phase change is taking place in the PCM. During the process of phase change in the

PCM, the PCM temperature is assumed to remain constant at a value equal to its melting

temperature. The governing equations for this problem can be summarized as follows:

Vapor phase continuity equation:

a+ = - < fi > (4.1)

Liquid phase continuity equation:
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>L= (4.2)pp- + V. <V >- = 0(42

Vapor phase equation of motion:

V <P [</>, .<: >.Tl~: < , > It< > (4.3)
=- Y i  - 7

which takes the following one-dimensional form:

>a __<.__>___

< =/2 >uf> .±L--2.< U > (4.3a)

Liquid phase equation of motion:

<1 >=- kpK l'keve p + k-cT >V < T r>r+ (Po -_ < oP > t)I}  (4.4)

Fluld phase energy equation:

a < Tf >f
[EPPp(C~p EY<Py Y (,)Y -t- - < in > AhvAp

+Ip P(C p, < V 0 > +< p? 7 Y( ) 7< Y > <f>f=V[afV< >

+h, O < , > < f>f ] h , E<T,, >a- < Tf >f] (4.5)

Solid phase (PeM) energy equation:

When there is no phase change in the PCM we have:
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a<T >9
Eopo( ) a at V.[keffV<TO> ° ]

-h o a j >°- T,>f] hcry ay- of >f (4.6a)

and when the PCM is undergoing phase change we have:

<nT>o= Tmelt (4.6b)

Volume constraint relation:

Co+ F-4t)+ FP(t) = 1 (4.7)

Equation of state for vapor phase:

< PY >Y = < Py >7fRy< T f >f (4.8)

Thermodynamic relation for the saturation density of vapor:

exp(A - B
- Tf) (4.9)

P', s =  - RYTf

where A, and B are known constants, Tf is in degrees Kelvin and P ,, s is in kg/m3.

The modeling of the other parameters including the effective thermal conductivities of

the solid (PCM) and the fluid phases, kseff and kfef, the permeability of the packed bed, K,

the permeability for the vapor phase, K., the geometic factor, F, the relative permeability

of the liquid phase, kro, the empirical correlations for the fluid-to particle heat transfer

coefficient, hosj, and the specific surface area of the packed bed for the vapor phase and for
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the liquid phase, aRy and aq, is carried out exactly in the same way as .was done in Secti6n

HI in equations (3.10) through (3.18).

4.2.1 Initial and boundary conditions

Following the arguments in Section 3.2.1, the initial conditions for the present

problem are 'lathematically given as:

Tf(x,y,t=0) = Ts(x,y,t=0) = To

P(x,y,t=0) = Po (4.10)

u0,(x,y,t=0) = 0

There is a continuous flow of high temperature vapor into the packed bed from a

reservoir while the pressure at the exit of the packed bed is maintained at the initial bed

pressure. The following mathematical forms expresz these boundary conditions:

Tf(x=0,y,t) =Tin

P(x=0,y,t) = Pin at t >0+  (4.11)

P#x=L,y,t) = Pout = Po

where:

To = 300 K Po = 796kPa Tin = 350 K Pout " 796kPa and Pi, = 811.2kPa

Since we were primarily interested in the energy storage characteristics of the packed

beds, insulated wall boundary conditions which were the most appropriate ones have been

used in this section. These are given as:

k a fork-Tf =0 (4.12)
y=Oy=H 

y=0, y=H
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4.2.1. Physical c6nditionsfor the numerical "'runs,

In the present problem two different phase change materials (latent heat storage

materials) and a sensible heat storage material were considered for qualitative comparisons

in the thermal charging behavior of the packed bed. The PCMs selected for this study were

myristic acid which has a melting temperature equal to 331 K, and lithium-nitrate-trihydrate

which has a melting temperature of 303 K. We will refer to these materials as PCM1 and

PCM2, respectively. The sensible heat storage material chosen was 1% Carbon steel.

The physical property values of the materials which were used in the numerical

computations are as follows:

R-12:

k, = 0.0097W/m.K (Cp)Y = 710!/kg.K ty = 12.6xl0"6kg/m.s R. = 0.0687588J/kg.K

Ahvap = 111300J/kg (cp)p0 = 1115J/kg.K .t5 = 179.2x10-6kg/m.s pp = 1190.35kg/m 3

kl P =0.0545 W/m.K

Myristic acid (PCM 1):

Cp= 159OJ/kg.K k = 0.1 W/m.K p = 860kg/m3  for solid phase

Cp= 2260J/kg.K k = 0.1 W/m.K p = 860kg/m 3  for liquid phase

Lithium-nitrate-trihydrate (PCM2):

Cp = 2090J/kg.K k = 0.5 W/m.K p = 1550kg/m 3  for solid as well as liquid phase

1% Carbon.-steel:
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C= 473J/kg.K k =43 W/m.K p = 7800kg/m3

4.3 Solution procedure

The numerical scheme used for the previous problem is used here with some

modifications that accommodate the phase change processes in the PCM. These include

some flags in the numerical code that perform the checks for differentiating wi.'ch one of

equations (4.6a) and (4.6b) will be used for computing the PCM temperature.

In the solution of this problem, depending on whether phase change is occurring in

either the working fluid or the PCM at a given location and instant in the packed bed, the

governing equations and the solution format take different forms. It is assumed that the

condensation occurs when the density of the vapor becomes equal to the saturation vapor

density.

When there is no phase change in either the working fluid or the bed particles, the

field variables <p 1y >Y, C P <u,>, <1 3>, <Tf >f, <T,>o, e1,and <P 1 > Y

are determined from equations (4.1) to (4.8), respectively. At the same time P -f s is

determined from equation (4.9). This is necessary for determining when to switch to the

special solution format used for situations in which condensation takes place in the working

fluid. It is carried out in order to determine when to switch from noncondensing mode to

condensing mode solution format.

The phase change process in the PCM also needs special consideration. The

following physical characteristics of the PCM are built into the numerical code. Once the

PCM at a certain location and time reaches its melting temperature during the thermal
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charging of the packed bed, its temperature remains constant until phase change (melting) is.,

complete in the capsules at that location. During this period, the solid phase (or PCM)

energy equation should not be used for determining the PCM temperature. However, the

amount of heat that is transferred to the PCM while it is undergoing melting is integrated in

time in order to determine when the phase change is completed. Once the phase change is

completed in the PCM at a certain location, the procedure of determining the PCM

temperature is switched back to solution from the regular PCM energy equation, i.e.,

equation (4.6a), with appropriate liquid PCM properties incorporated into the numerical

code.

At each time step, after the PCM temperature reaches the melting temperature, the

convective heat transfer rate from the working fluid to the PCM and conduction heat

transfer rates to and from the PCM are summed up for each node and taken into account.

Furthermore, during a given time step both the net energy input to the PCM and the net

total energy accumulated in the PCM up to the end of that time step are computed on a unit

volume basis for each node where the PCM is undergoing phase change. This process is

carried out until the net total energy accumulated in the PCM becomes equal to the latent

heat of fdsion of the PCM. During this period the solid temperature is taken to be equal to

Tmelt as given by equation (4.6b). After this period < To >' is again computed from

equation (4.6a).

Implementation of the stability of the numerical scheme and the accuracy of the

solutions were carried out as explained in the previous sections. A 41 x 21 grid

configuration (which corresponds to a dimensionless Dx or Dy of 0.025) was found to

yield accurate enough solutions.
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4.4 Results and discussions

It was again found convenient to nondimensionalize some of the field variables in

presenting the numerical solutions, and keep others in dimensional form to have a better

understanding of the variations of the important parameters. Variables < PY > , < Py >

and < u > are nondimensionalized with respect to the corresponding reference quantities

P*, p* and v*. However, the pertinent parameters of the thermal charging of the packed

bed and the condensation of the working fluid are presented in dimensional form per unit

width of the packed bed as a function of the dimensional time. The value chosen for P*

was 100 kPa, while p* was then computed from the equation of state using P* and the

initial temperature, To. The calculation of the reference velocity, v*, was based on the

vapor phase momentum equation by incorporating the global pressure difference applied

across the packed bed and the vapor density as calculated from the equation of state by

using the mean value of the inlet and exit pressures.

Due to the physical conditions considered in the present study, the maximum local

liquid fraction of the working fluid did not exceed the critical value above which the liquid

becomes mobile, i.e., the liquid phase was always in pendular state. This, combined with

the fact that only insulated boundary conditions were considered in the present study, made

the problem essentially one-dimensional. It was checked through numerical

experimentation that the solution of the one-dimensional form of the governing equations

did not have any appreciable difference from the solution to the two-dimensional form.

Therefore, the results of the one-dimensional solution will be presented for convenience.

Two distinct stages that were observed in the previous two problems can be easily

identified in the solution of the present problem too. The early stage with very strong

transient effects, i.e., drastic spatial and temporal changes in the field variables, lasts for a

93



'- ?

very short time. During the early stage the pressure distribution across the packed bed

evolves and assumes an almost linear form which is maintained afterwards during the rest

of the charging process which will again be referred to as the later stage.

The first PCM employed for the encapsulated bed particles is myristic acid (or

PCMI), which has a melting temperature of 331 K. The results for the case in which this

material is used will be presented in detail. Once the high pressure, high temperature vapor

is applied at the inlet of the pack, J bed, the vapor moving through the packed bed becomes

compressed. Since it gives most of its excess internal energy to the colder PCM particles,

its density reaches the saturation vapor density at certain locations and condensation takes

place. Most of this condensation occurs in the early stage while the pressure distribution

linearizes and the density of the vapor adjusts itself accordingly. Aftcrwards, the vapor

reaches superheated conditions at all locations and no more condensation takes place.

The early stage variations of the density, velocity and the pressure of the working

fluid, and the liquid fraction are shown in Figure 4.2. The early stage is somewhat

extended such that it includes the period during which more than 99% of the condensation

in the working fluid is completed. The consequence of the step change boundary

conditions can easily be seen from the high velocities at the inlet of the packed bed. These

high velocities die out as the pressure distribution becomes linear. Except for a short

thermal entry region, during the early stage the changes ia the field variables are mostly

pressure dependent because there is no appreciable thermal penetration. It should be noted

that since the liquid fraction never reaches the critical value for becoming mobile, the eb

distribution remains the same throughout the later stage. The early stage results for this

problem are qualitatively similar to the ones of the problem in Section III.
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The changes in the field variables during the later stage can be attributed to the

development of the thermal penetration depth. As may be seen from Figure 4.3, the

pressure distribution remains linear. The variations of the temperatures of the working

fluid and the PCM are very smooth until the PCM reaches its inelting temperature. After

the onset of melting in the PCM, a distinct discontinuity can be observed in the smoothness

of the PCM temperature distribution. This is because for a certain length of the packed bed

there is no change in the PCM temperature while the PCM is undergoing melting. In this

region the working fluid also adjusts itself accordingly. This can be observed in the

temperature profiles for time levels 2 through 8 in Figure 4.3(a). This kind of qualitative

behavior can also be seen in the vapor velocity and density variations along the packed bed

at the corresponding time :evels. This is a consequence of the fact that the vapor density

variation is precisely related to the pressure and temperature variations. It can also be

noticed that there is an inverse relationship between the vapor density and vapor velocity.

This is due to the fact that the transient term in the vapor continuity equation loses its

dominance and the convective term dominates during the later stage. Once the packed bed

becomes thermally charged, then the vapor density distribution becomes linear similar to

the pressure distribution as can be explained by the equation of state.

The variation of the average overall condensation rate and the accumulative

condensate per unit width of the packed bed are shown in Figure 4.4. The overall

condensation rate was computed by integrating the condensation rates at the individual grid

points over the associated volumes. Integration of this over time yielded the accumulative

condensate per unit width of the packed bed. Again the qualitative behavior in these figures

is very similar to the ones in the previous section.
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Of interest to the thermal charging of the packed bed are the rates of heat flowing

into and out of the packed bed as a function of time. These were also computed for the

given crosssection of the packed bed with a unit width. The variations of these-

quantities are depicted in Figure 4.5(a) except for a very short time section at the beginning

of the charging process, which was left out for obtaining a better scale on the figure. The

variation of the net energy stored per unit width of the packed bed as a function of time is

also depicted in Figure 4.5(b). At the beginning of the charging process, the vapor flowing

out of the packed bed leaves at a low temperature close to the initial temperature and, thus,

there is a large difference between the heat flow rates at the inlet and at thelexit of the

packed bed. Hence, the rate of energy storage is large. Afterwards, for a major portion of

the charging process there is a uniform difference between the rates of heat flowing into

and out of the packed bed causing a linear increase in the amount of energy stored. Once

the phase change is complete in all particles of the packed bed, both the working fluid

temperature and the PCM temperature at the exit of the bed rise rapidly causing a rapid

decrease in the gap between the heat flow rates at the inlet and the exit. When the packed

bed becomes completely charged thermally, there remains no difference between the

amount of heat flowing into and out of the packed bed.

4.4.1 Qualitative compar~on of condensation in _the woAking fluid

Besides myristic acid (PCM1), two more materials were considered for the particles

of the packed bed. These werc lithium-nitrate-trihydrate. or PCM2, and 1% Carbon-steel.

Computational ruiis were made for these cases with the same initial and boundary

conditions as in the case of PCMI. Figure 4.6 depicts the overall average condensation

rate and condensate accumulation histories for all three cases. Since cordensation in the
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working fluid takes place in a very short span of time at the beginning, with no significant

thermal penetration in the packed bed, the difference in the results for the three materials

considered can be attributed mainly to their physical properties. An analysis shows that

the thermal capacitance per unit volume of PCM2 is only approximately 12% different from

that of steel, where the thermal capacitance per unit volume of PCM1 is almost 3 times

smaller than that of steel. Due to this fact and the high heat transfer rate from the working

fluid to the solid phase, the temperature propagation in both the solid phase as well as the

working fluid is slower in the cases with steel and PCM2 than in the case with PCM1.

Thus, for the former two cases it takes longer time for condensation to end. This is as a

result of the longer time needed for the vapor to reach at a high enough temperature at

which the vapor density becomes lower than the saturation vapor density. Consequently,

higher condensation rates are sustained for longer periods and larger condensate

accumulation takes place in the case of steel and PCM2.

4.4.2 Qualitative comoari~on of the thermal charging orocess

The three materials considered for bed particles in this section are the same as those of

the previous section. Time histories of the rates of heat flow into and out of the packed bed

for the three cases are shown in Figure 4.7, while that of the net energy stored in the

packed bed per unit width is shown in Figure 4.8. It can be seen that, although at the

beginning of the charging process the energy storage is almost the same for all three cases,

it shows a different variation during later times. While that of the case with steel looks like

a conventional charging curve which decays exponentially with time, the cases with the

PCMs have a linear variation for a major portion of the charging period. These linear

portions correspond to the time spans during which the temperature of the working fluid at

the exit of the packed bed is fairly constant and approximately equal to the melting
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temperature of the PCM, since once the PCM reaches it melting temperature its temperature

remains constant until phase change is complete in the PCM. During this period the vapor

temperature cannot drop below the melting temperature of the PCM and, thus, we have a

fairly constant vapor exit temperature. In order to illustrate this more clearly, the time

history of the vapor exit temperature is presented in Figure 4.9 for the three cases. As may

be seen from this figure, the vapor exits the packed bed at a lower temperature for a longer

period of time in the case of PCM2 than in the case of PCMl. This is partly due to the

lower melting temperature of PCM2 and partly due to its larger thermal capacitance.

Therefore, the difference between the rates of heat flowing into and out of the bed is larger

and lasts longer in this case, thus, giving a larger amount of net energy stored.

Figure 4.8 also shows that using a PCM with a certain melting temperature may not

always be a better choice over a sensible heat storage material. For instance, for the

boundary conditions and the size considered in the present Work, steel seems to perform

better than PCM1 if we are interested in the energy storage range of up to 2200 kJ per unit

depth over approximately 50 seconds with no limitation on the weight of the packed bed.

4.5 Conclusions

In this section, in which the emphasis was given to the study of the behavior of

energy storage packed beds, it was shown that the characteristics of the thermal charging of

the latent heat storage packed beds differed appreciably from those of the sensible heat

storage packed beds. While the thermal charging curve of a sensible heat storage packed

bed looks very much like the conventional charging curve of a capacitor, that of a latent

heat storage packed bed shows different behavior in that its variation is linear in time during
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a major part of the charging process. This behav;lor, which is the consequence of a fairly

constant vapor exit temperature during the part of the charging process in which phase

change takes place in the PCM, was found to be dependent on the melting temperature of

the PCM. Case studies performed showed that energy storage in a packed bed employing a

PCM would be more efficient if the melting temperature of the PCM is close to the lower

end of the operating range of the packed bed. Because this way optimum use of the storage

capacity would be realized, i.e., the least amount of energy would be able to escape from

being stored in the bed particles.

In the investigations in Section IV the differences between the solid and fluid

temperatures became even more apparent than in the previous cases in Sections 11 and III,

confirming the necessity of modeling such problems with no local thermal equilibrium

assumption.
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SECTION V

ANALYSIS OF THERMAL CHARGING AND DISCHARGING

OF SENSIBLE HEAT AND LATENT HEAT

STORAGE PACKED BEDS

5. 1 Introiduction

The operation of the packed bed which employs encapsulated PCM as energy

storage medium is of interest for the operation during thermal charging and discharging

modes. It is important to analyze the transient response of the packed bed during these

modes of operation in order to determine the duration for energy storage or removal, or for

determining the size of the packed bed required for a given operating range. In this section,

thermal charging and discharging of sensible heat and latent heat storage packed beds are

modeled and simulated. The results of this investigation show that the energy storage

characteristics of a latent heat storage packed bed are quite different than those of a sensible

heat storage packed bed, and that they are very much dependent on the melting/freezing

temperature of the phase change material utilized for energy storage.

5.2 Problem statement and formulation

The physical system considered consists of a horizontal channel filled with

randomly packed fixed particles of regularly sized and shaped spheres, forming a packed

bed as shown in Figure 5. 1. The depth of the packed bed is assumed to be large enough in

order to avoid three-dimensionality of the problem. Initially the void volume of the packed

bed is filled with quiescent working fluid which is at uniform temperature and pressure and

in thermal equilibrium with the bed particles. Vapor from a reservoir at a higher
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temperature and pressure is allowed to flow through the packed bed in the thermal charging

mode. In the thermal discharging mode, vapor at a lower temperature is considered to flow

through the packed bed. Relatively high particle Reynolds number flows are considered in

this work, assuring that the flow of the Refrigerant-12 vapor is forced convective flow in

nature.

The governing equations for the present problem were developed by use of the well

known "local volume averaging" technique and they follow from the previous work of

Vafai and Sozen (1990). It should be emphasized that in modeling the physical

phenomena, the thermophysical properties of the encapsulation material were assumed to

be essentially the same as those of the PCM in the case of latent heat storage packed bed.

Due to the insulated boundary conditions employed in this investigation, the problem

essentially reduces to be one-dimensional. The governing equations are given as follows:

Vapor phase continuity equation:

8a
< P, >)+(<p, >V< u>)0 (5.1)

Vapor phase momentum equation:

d<P>' <p,>Fe<u >2_-u<u >
x K1/'2  K, (5.2)

Vapor phase energy equation:

T,, >" >< T, >vat + <px><u > Vax

x vff <T>, +ha,, <T,>S <T> (5.3)
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Solid phase (or PCM) energy equation:

d <T,> d < 2 h T ~
(1-e)pc, dt =x <x h< T, >' (5.4)

Vapor phase equation of state:

< P, >' < p, >R<T >" (5.5)

where subscript or superscript "s" denotes the solid phase in the case of sensible heat

storage packed bed or the PCM in the case of latent heat storage packed bed.

The above set of equations forms a system of five equations in five unknowns,

namely, < p,, >v, <u,, >, < T, >v, < T. >s ,and <P, >v.

The initial conditions of the problem were as follows:

P, (x,t = 0) = P0

Tv(x,t = 0) = T,(x,t = 0) = To

uv(x,t = 0) = 0 (5.6)

and the corresponding initial values of p, are calculated from eqn. (5).

The boundary conditions of the problem were as follows:

Pv (x = 0, t) =P

Pv(x = L,t) = Po
TV(x =0t) =T . (5.7)

where P0 = 100kPa, P,, = 106.83kPa, To = 300K and T, = 350K for thermal charging

mode, and T,, = 300K for thermal discharging mode. The nominal particle Reynolds

number, Rep. for these boundary conditions was taken as 1,000.
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Modeling of the permeability of the packed bed, Kv, and geometric functibiF -in

the vapor phase momentum equation, the specific interfacial surface area of the packed bed,

the fluid-to-particle heat transfer coefficient and the effective thermal conductivities of the

two phases were carried out exactly in the same way as in Section II. Also, an average

value of 0.39 was used for the porosity of the packed bed based on the findings of

Benanati and Brosilow (1962). The diameter of the bed particles was taken to be 2 mm.

The thermophysical properties used in the present investigation were as follows:

Refrigerant-12 1% Carbon-steel Myristic acid (PCM)

Cp = 71OJkg- K-1  cp = 473Jkg-1 K-1  cp = 1590Jkg - ' K-' (solid)

k = 0.0097Wm - 1 K-1 k = 43Wm - 1 K-1 cP = 2260Jkg-' K-' (liquid)

g = 12.6x10 - kgm -' s-' p 7800kgm -3  k = 0.lWm -1 K-1

R = 68.7588Jkg - 1 K-1 p = 860kgm - 3

hsf = 200.5x103 Jkg-'

5.3 Solution Procedure

It should be noted that for the solution of the problem for latent heat storage packed

bed (LHSPB), the solution algorithm is the same as in the case of sensible heat storage

packed bed presented in Section 2.3 except that during the thermal charging process, once

the temperature of the PCM reaches its melting temperature it remains constant until melting

of the PCM is complete. This condition has been incorporated into the numerical algorithm

such that at a given point once the melting temperature is reached, the PCM temperature is

kept constant while the net rate of heat flowing into the associated volume is continuously

m'nitored and integrated over time to give the energy that is used to melt the PCM until it
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becomes equal to the amount required for melting. After this stage the PCM temperature is

again computed from eqn. (5.4), this time with the liquid properties of the PCM

incorporated in eqn. (5.4). Similar provisions are made for the thermal discharging

process of the LHSPB which involves freezing of the PCM.

5.4 Results and- discussions

The two problems considered in the present work were the complete thermal

charging and thermal discharging of two types of packed beds, one with sensible heat

storage material, chosen to be 1 % Carbon-steel, and the other one with latent heat storage

material, chosen to be myristic acid (a PCM with a melting point of 331 K). Thermal

charging or discharging was assumed to be complete when the difference between the

incoming and exiting vapor temperatures were less than 0.01 K.

In the solution of the thermal charging problem it was found that two distinct stages

were present; namely, the early stage and the later stage. These have been discussed in

detail in the previous sections. In this work, emphasis is given to the thermal charging and

discharging characteristics of the two types of packed beds using a compressible working

fluid.

Figure 5.2 depicts the variation in the temperature distribution of the vapor and

solid phases during the thermal charging processes for the case of sensible heat storage

material, while Figure 5.3 shows the corresponding variations in the case of the latent heat

storage material (PCM). The results presented in Figures 5.2 and 5.3 were obtained under

identical operating conditions (which were given after eqn. (5.7)). From Figure 5.3 it can

be easily seen how the thermal charging of the packed bed starts with sensible heating of
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the PCM particles (as can be seen from the first three time levels presented) and once the

melting temperature, 331 K, of the PCM is attained, the PCM temperature remains constant

until phase change is complete at that location and afterwards sensible heating takes place

again. Figures 5.4 and 5.5 depict the variation of the corresponding temperature

distributions for the thermal discharging modes of the two packed beds considered. From

these figures it can be seen that in the case of sensible heating or cooling of the packed bed,

the temperature distribution is quite smooth. This is seen both in Figures 5.2 and 5.4 as

well as in certain portions of Figures 5.3 and 5.5. In Figure 5.3, sensible heating of a

major portion of the packed bed occurs during the earlier stages of the thermal charging as

discussed. Similarly, it can be seen from Figure 5.5 that the major portion of the sensible

cooling is again at the early stages of the thermal discharging (time levels 1 through 5),

during which the temperature drops to the freezing point of the PCM.

The rate of heat flow (enthalpy flux) into and out of the packed bed per unit width

of the packed bed is shown in Figure 5.6 for the thermal charging of the sensible heat

storage packed bed (SHSPB). The decrease in the heat flux into the SHSPB is due to a

decrease in the mass flow rate of the working fluid, R-12. This was an interesting finding

for the compressible flow with inertia effects, and this behavior differed completely from

an incompressible flow modeled by Darcy's law. The corresponding decrease in the mass

flow rate at the exit of the SHSPB also results in a decrease in the rate of heat flow out of

the bed at the beginning. However, as the temperature of the bed particles and, hence, that

of the working fluid at the exit of the bed start increasing, i.e., less of the energy of the

working fluid is being dumped into the bed particles, the heat flux out of the SHSPB starts

increasing until the inlet and exit vapor temperatures become equal and the heat fluxes into

and out of the bed level off. It should be noted that the heat flux at the inlet of the SHSPB

starts at a value of zero at time equal to zero and sharply increases as the flow of lint vapor
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into the bed starts. This very short portion of the charging history was omitted from Figure

5.6 in order to obtain a better scale for the figure. Figure 5.7 shows the variation of heat

fluxes into and out of the SRSPB during the thermal discharging mode. As may be seen,

due to the decrease in the vapor inlet temperature ( 00 K) there is a sharp decrease in the

heat flux into the bed at the beginning. Later increase in the heat flux into the bed is due to

an increase in the mass flow rate of the vapor contrasting to the decrease during the

charging process. Earlier increase in the heat flux out of the bed is due to the same reason,

where later decrease and leveling off with the heat flux into the bed can be explained due to

the fact that the exit temperature of the vapor phase starts decreasing and gradually less

amount of thermal energy is being removed from the SHSPB. The time history of the

thermal charging and discharging of the SHSPB is shown in Figure 5.8. This figure

depicts the variation of the net energy stored per unit width of the SHSPB. In this case the

thermal charging and discharging times of the bed are practically equal,

Figure 5.9 depicts the variation of the heat flux in continuous form for the complete

thermal charging followed by the complete discharging of the SHSPB. The corresponding

variations for the latent heat storage packed bed (LHSPB) are depicted in Figure 5.10. A

few interesting points can be observed in the thermal charging and discharging of the

LHSPB. Both during the charging and the discharging modes there is a major portion of

each process during which there is quite a uniform difference between the heat fluxes into

and out of the LHSPB which is not seen in the case of the SHSPB. The reason for this

kind of behavior is the fact that during these portions of the charging or the discharging, the

temperature of the PCM in the particles downstream of the packed bed remains constant at

the melting/freezing temperature. Hence, for these portions of the charging or discharging

processes, the vapor exit temperature is practically equal to the melting/freezing temperature

of the PCM and, therefore, the difference between the inlet and exit temperatures for the
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vapor phase remains practically unchanged. This can be easily seen from Figure 5.11

which depicts the time history of the vapor exit temperature for the complete thermal

charging and discharging of both the SHSPB and the LHSPB. Another interesting

observation can be made with respect to the charging and discharging times of the LHSPB.

From both Figures 5.10 and 5.11 it can be easily observed that the thermal discharging of

the LHSPB lasts considerably shorter than the thermal charging. The reason for this can be

seen from these figures again. For the major portion of the discharging process during

which the temperature of the PCM downstream of the LHSPB remains at the

melting/freezing point, there is a constant temperature difference between the vapor inlet

and and vapor exit temperatures. This difference is larger than the corresponding

difference in the charging process, i.e., the difference betwten the vapor inlet temperature

and the melting point of the PCM during the charging process is only 19 K where during

the discharging process the difference between the vapor inlet temperature and the freezing

point of the PCM is 31 K, and, hence, energy is stored at a lower rate in the charging

process than energy is removed during the discharging process for the portions of these

processes under discussion.

Figure 5.12 depicts the time histories of the net energy stored in the packed bed

during the charging and the discharging modes of the SHSPB and the LHSPB

respectively. While the rate of energy storage and removal follows a similar trend in the

case of the SHSPB, i.e., very fast at the beginning and decaying afterwards, this was not

the behavior in the case of the LHSPB. Again, this was due to the fact that a major portion

of the packed bed remains at constant temperature (melting/freezing point) during the

themlal charging/discharging of the LHSPB.
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5.5 Conclusions

The transient processes of thermal charging and discharging of an SHSPB and an

LHSPB with a compressible working fluid were simulated. The investigations showed

distinctly different energy storage characteristics for these two kinds of packed beds. The

high energy storage density of the LHSPB was clearly observed from the studies carried

out. For the two energy storage materials considered, although the density of the sensible

heat storage material (1% Carbon steel) was approximately 9 times larger than that of the

PCM (myristic acid), the total energy storage capacity of the LHSPB was higher.

Use of a compressible working fluid and accounting for the inertia effects in the

vapor phase momentum equation resulted in a time-dependent mass-flow rate through the

packed bed. Utilization of non-local-thermal-equilibrium analysis was found to be crucial

especially in the case of LHSPB.

Also, in the case of the LHSPB it was observed that the thermal charging and

discharging times differed considerably. The main reason for this difference is that for a

major portion of the charging or discharging process the PCM temperature downstream of

the packed bed remains constant at the melting/freezing temperature of the PCM. An

important conclusion which was obtained from our results is that closer the PCM

melting/freezing temperature to the charging temperature (vapor inlet temperature during

thermal charging mode) longer will be the time taken for charging and shorter will be the

time taken for discharging of the packed bed. Likewise, closer the PCM melting/freezing

temperature to the discharging temperature (vapor inlet temperature during thermal

discharging mode) longer will be the time taken for discharging and shorter will be the time

taken for charging of the packed bed.
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SECTION VI

ANALYSIS OF OSCILLATING COMPRESSIBLE FLOW

THROUGH A PACKED BED

6.1 Introduction

In storage of thermal energy in packed beds, the dynamic behavior of the packed

bed system is an important consideration. Ideal conditions of constant temperature and

pressure inlet conditions are quite difficult to maintain. Therefore, examining those

conditions more closely approximating the real-life situations, such as variable pressure or

variable temperature inlet conditions, provides better insight to such problems.

Rigorous models have been developed by Vafai and Sozen (1990), and Sozen and

Vafai (1990) for the forced convective flow of a superheated ideal gas and forced

convective condensing flow of a vapor through a packed bed as presented in Sections II

and III. The former of these studies concentrated on the parameters influencing the LTE

and two-dimensionality of the transport phenomena while the latter one concentrates on the

condensing flows through a packed bed. The LTE assumption has not been used in any of

these studies, and inertia effects have been accounted for by the use of the Ergun-

Forchheimer relation rather than Darcy flow formulation.

In the present section, compressible flow of an ideal gas through a packed bed is

investigated for oscillating inlet pressure and oscillating inlet temperature boundary

conditions in order to represent more closely the real-life conditions for certain situations.

For example, in real applications, more often than not, some form of oscillation prevails in

the inlet pressure or temperature. It is then crucial to know the qualitative and quantitative

effects of the oscillations on the thermal charging characteristics and the net energy storage

capabilities of the packed bed. Our aim is to analyze the behavior of the transport processes

131



and energy storage characteristics in these oscillating boundary condition flows through

porous media with specific attention on packed beds.

6.2 Problem statement and formulation

A rectangular packed bed is assumed to be formed by regularly shaped and sized

spheres packed between two horizontal walls. The schematic diagram of the physical

system under consideration is depicted in Figure 6.1. Relatively high-speed flows are

considered in the present study and, therefore, the flow is essentially forced convective in

nature. In the present study the top and bottom walls are assumed to be insulated, and the

depth to be infinitely long, thus, rendering the problem essentially one-dimensional. The

working fluid was taken to be superheated Refrigerant-12 which was modeled as an ideal

gas, while the material of the packed bed particles was chosen to be 1% carbon-steel. The

governing equations following the previous section are given as follows:

Sp, <P>< P)<p>)=0 (6.1)

d<P > = <P>VFe<u,>2-- <u >  (6.2)
d.X K V 2  K,

C<p>c d<T>V P,> d<T>e<'vc" 0t d'p< u> 0x

_(6.3)

(1-e)p., c, d<T >' = - k,, d < -h,,,{< T, >s - <T >} (6.4)
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Figure 6. 1: Schematic diagram of the problem.
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<P > =<P >'R<T >v (6.5)

These equations represent the gas phase continuity equation, gas phase momentum

equation, gas phase energy equation, solid phase energy equation and the equation of state

for the working fluid, respectively, where the unknown variables solved from these

equations are, respectively, < p, >, < u, >, < T, >", < T >, and < P,>v.

Modeling of the permeability of the packed bed, Kv, and the geometric function F

appearing in the gas phase momentum equation, the effective thermal conductivities, the

fluid-to-particle heat transfer coefficient and the specific interfacial surface area of the

packed bed was performed as in Section II.

6.3 Initial and boundary conditions

The initial conditions employed in the solution of the problem were:

P (xt = 0)= PO

T(x,t = 0) = T,(x,t = 0) = To (6.6)

u,(x,t =0) = 0

corresponding values of pv being computed from equation (5).

The boundary conditions used for the case with oscillating inlet gas pressure can be

mathematically expressed as:

P (x = 0,t) = P ., + A Cos(2rcj't) (6.7)

T,(x = 0,t) = Po

where f is the frequency and A is the amplitude of the cosinusoidal variation of the inlet

pressure, and again the corresponding p, values are computed from equation (5).

The boundary conditions employed for the case with oscillating gas phase inlet

temperature condition can similarly be expressed as:
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P,(x =0,t)= P, (
P,,(x = L,t) = P0  (6.8)

T,(x= 0,t)= T,,, + B Cos(2i7ft)

where f is the frequency and B is the amplitude of the variaion of the inlet gas

temperature. P, is computed as in the previous case. The boundary conditions for the case

with constant temperature and constant pressure at the inlet are similar to those in equation

(12) with A being equal to zero.

In the case studies performed, the following values have been used for the

variables:

P0 = 100 kPa Pv = 104 kPa To = 300 K T,, = 350 K.

The nominal particle Reynolds number for the average inlet pressure and temperature was

745.

6.4 Results and discussions

The solution procedure was exactly similar to those of the problems in the previous

sections. In order to explore any differences in the transport phenomena and energy

storage characteristics of the packed bed with oscillating flow boundary conditions from

those of constant boundary conditions, we considered these cases for different ranges by

using different values for parameters A,f, and B in equations (6.7) and (6.8) in different

runs.

In previous sections we have observed that for constant temperature and pressure

boundary conditions at the inlet, the solution of the problem had two distinct stages.

Namely, the early stage during which the pressure evolution in the packed bed takes place

very rapidly causing drastic variation in the other field variables, and the later stage in

which the changes in the field variables are mostly temperature dependent. The
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distributions of different field variables along the packed bed during the early stage are

depicted in Figure 6.2 for the case with constant inlet temperature and pressure. In this

figure the gas phase density was nondimensionalized with respect to an average density

value calculated from the equation of state using average values of gas phase pressure and

temperature, i.e., average of the initial and inlet conditions. Likewise, the nominal value of

the velocity used for nondimensionalizing the gas phase velocity was computed from

equation (6.2) based on the average density and the average pressure gradient along the

packed bed. These characteristics have been discussed in detail in Sections II and III.

Similar characteristics were observed in the present work with the exception that in the case

of oscillating inlet pressure condition the pressure distribution within the packed bed was

not very close linearly as it was in the other cases. Rather, it showed an oscillating

behavior along the packed bed.

First, temperature variation of the solid and fluid phases within the packed bed with

respect to time was considered. Figure 6.3 depicts this variation for the case with constant

temperature and constant pressure inlet boundary conditions. For convenience this case

will be called Case 1. Figure 6.4 shows the temperature variations for constant

temperature, and oscillating pressure at the inlet of the packed bed. This case will be called

Case II. For Case 11, the chosen parameters were A = 2 kPa and f = 0.05Hz. For Case

III, which is for constant pressure but oscillating temperature inlet boundary condition, the

temperature variations are shown in Figure 6.5. For this case we had B = 25K and

f = 0.05Hz. Qualitatively Figures 6.3 and 6.4 depict similar behavior for the solid and

fluid phase temperature variations with larger temperature difference between the two

phases at the beginning, and narrowing difference as the thermal front moves within the

packed bed. This behavior is also valid for Case III in the downstream section of the

packed bed but not at the entrance region because of the oscillating temperature inlet
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condition. At the entrance region the temperature difference between the solid and fluid

phases can increase or decrease due to the oscillating inlet fluid temperature and due to the

fact that there will be a lag time for the response of the solid phase temperature to this

oscillation.

Figure 6.6 depicts the variation of the gas phase density, pressure and velocity at

four different time levels for three different cases for Case II during one complete cycle of

the pressure oscillation. These three cases involved different values for parameters A andf

as shown in Figure 6.6. Cases in Figures 6.6(a) and 6.6(b) have the same amplitude but

different frequency of inlet pressure oscillation, where cases in Figures 6.6(b) and 6.6(c)

have the same frequency but different amplitudes of inlet pressure oscillation. In each case

the four time levels depicted were chosen so that they would span over one complete cycle

of oscillation (the very first cycle in the process). Although the pressure distribution is

nearly linear along the packed bed du ing the first three time levels, a careful examination of

the figures at the fourth time level reveals that the pressure distribution in the packed bed

picks up from the oscillating inlet condition and shows an oscillating behavior along the

packed bed too, i.e., spatial oscillation in addition to temporal oscillation. Also as can be

expected, the range of variation of the gas phase velocity is higher in the cise with larger

amplitude in the inlet pressure oscillation. The comparison of the range of velocity

variation in Figure 6.6(c) compared to those in Figures 6.6(a) and 6.6(b) reveals this

clearly. The variation in the gas phase density can be explained by the use of the equation

of state and the variation of the pressure and temperature along the packed bed. At the

entrance region the sharp decrease in the temperature at the beginning of the charging

process requires an increase in the gas phase density since the rate of decrease in gas phase

pressure is less pronounced than that in temperature.
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Figure 6.7 depicts the time history of the net energy storage per unit width of the

packed bed for Case I and two cases of Case II. As expected, the asymptotic value of the

total net energy stored in each case is the same. As the amplitude of the oscillations in the

inlet pressure increases, the oscillations in the net energy stored become more pronounced

since the oscillations in effect result in oscillations in the mass flow rate of the gas phase

through the packed bed. Larger frequencies, on the other hand, tend to smooth the

variation in the net energy storage.

The variations in the rate of heat flow into and out of the packed bed for Case I and

Case II with A = 2kPa and f = 0.05Hz are depicted in Figure 6.8. The oscillating

behavior in this figure is that of Case II and the smooth "variation is that of Case I.

Although the heat flow rates into and out of the packed bed oscillate in Case II due to the

oscillation in the inlet pressure and, hence, the mass flow rate, the average variation of each

of these quantities is qualitatively very similar to those of Case I, i.e., the variation of the

difference between the heat flowing into and out of the packed bed has the same trend in

both cases.

The comparison of the rate of heat flow into and out of the packed bed for Cases I

and III is shown in Figure 6.9. For Case III in this figure, B = 25K and f = 0.05Hz.

Again, due to the oscillating inlet temperature, the density and velocity of the gas and,

hence, the mass flow rate into the packed bed oscillates. However, this oscillation in

temperature has a less pronounced effect on the heat flow rates into and out of the packed

bed than the oscillation in the inlet pressure has as shown in Figure 6.8. The difference

between the scales of Figures 6.8 and 6.9 should be noted. Part of the reason for this

behavior may be attributed to the fact that, in calculating the gas phase velocity, the

pressure gradient term in the gas phase momentum equation is much more dominant than

the inertia term which involves the gas phase density, which in turn varies proportional to
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the temperature. Thus, the former affects the variation in the gas phase velocity more,

causing a more pronounced oscillation in the mass flow rate of the gas phase.

In Case III we cannot talk about the complete thermal charging of the packed bed

due to the oscillating inlet temperature boundary condition. Because at the entrance region

of the packed bed, due to this oscillation, the solid temperature also oscillates (not

necessarily at the same frequency and amplitude, because the heat capacity of the solid

phase is much larger than that of the working fluid and, therefore, the temperature of the

solid phase cannot follow the temperature of the incoming gas at the same frequency and

amplitude). Yet, one can speak of a pseudo-charging of the packed bed. Figure 6.10

depicts this pseudo-charging behavior (representing the net energy stored within the packed

bed). This behavior is different from that of Case II. Because in Case II, although the gas

phase inlet pressure is oscillating, since the gas phase inlet temperature is kept constant at

the highest value that can be attained by the packed bed particles, there is continuous

thermal energy storage within the packed bed until the packed bed is thermally fully

charged. However, in Case III, due to the variation of the solid temperature in the entrance

region, there are alternating energy storage and removal from the packed bed.

In order to find out whether the qualitative behavior of the energy storage

characteristics changes with particle Reynolds number (Rep), cases with different nominal

Rep were investigated. Higher particle Reynolds numbers were obtained by increasing the

mean inlet pressure. The results are depicted in Figure 6.11 for three different cases in

which the amplitude of the inlet pressure oscillations was the same. As can be seen, the

qualitative behavior is similar in each case although higher nominal Reynolds numbers,

meaning higher mass flow rates, cause faster charging of the packed bed. The effect of the

pressure oscillations is seen most clearly in the case with lowest Rep since the amplitude of
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the oscillations is largest relative to the global pressure.difference applied across the packed

bed for that case.

6.5 Conclusions

The dynamic response of sensible heat storage packed beds with oscillating inlet

boundary conditions has been studied numerically for forced convective flow of a

compressible fluid. A finite difference scheme with uniform grid size was employed. It

was found that the average energy storage behavior did not have major differences in the

cases of constant or oscillating inlet boundary conditions although the field variables

showed oscillating behavior in cases of oscillating boundary conditions. As expected, the

variation of the energy storage was found to become smoother as the amplitude of the

oscillation of the inlet condition decreased and/or as the frequency increased. It was also

observed that due to the nature of the governing equations the response of the field

variables was more sensitive to the amplitude of the fluid pressure variation than to that of

the fluid temperature variation at the inlet of the packed bed.
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