
AD-A248 110

BOOLEAN REASONING AND
INFORMED SEARCH IN THE

MINIMIZATION OF LOGIC CIRCUITS

DISSERTATION

James John Kainec
Captain, US Army

AFIT/DS/ENG/92-02

92-08149
__________________ _________I____ l .~ 111 ! i t I y , I li, !",I .,I

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

i32 3 088

AFIT/DS/ENG/92-02 .2

IWI

r..

BOOLEAN REASONING AND

INFORMED SEARCH IN THE
MINIMIZATION OF LOGIC CIRCUITS

DISSERTATION

James John Kainec
Captain, US Army

AFIT/DS/ENG/92-02

Approved for public release; distribution unlimited

AFIT/DS/ENG/92-02

BOOLEAN REASONING AND INFORMED SEARCH IN THE

MINIMIZATION OF LOGIC CIRCUITS

DISSERTATION

Pr- ,nted to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

James John Kainec, B.S., M.S.E.E

Captain, US Army

March, 1992

Approved for public release; distribution unlimited

AFIT/DS/ENG/92-02

BOOLEAN REASONING AND INFORMED SEARCH IN THE

MINIMIZATION OF LOGIC CIRCUITS

James John Kainec, B.S., M.S.E.E.

Captain, US Army

Approved:

A-C--Y o?5 AA AYz 92-z
Frnk. Bo/ hairman

/ I

thew Kabr1y '

Mark A. Mehalic

Henry)Potoczny 1/)

Accepted:

J. S. Przernieniecki
Senior Dean

Acknowledgments

I wish to thank my committee, Dr. Frank Brown, Dr. Matthew Kabrisky, Dr. Henry

Potoczny, and Captain Mark Mehalic, for reviewing this thesis and adding their constructive com-

ments. The length of this thesis has required an inordinate effort on their part.

I would like to thank the AFIT VLSI group, in particular Captain Mehalic and Captain Keith

Jones for the loan of a SUN SPARCstation for the past year. The use of the SUN and the VLSI

Laser Printer has made my task much easier. I also would like to extend a particular thanks to

Russ Milliron for the help he gave me in the past three years in using the VLSI computer systems

(GO Buckeyes!).

I owe a special gratitude to Dr. Frank Brown for his valuable guidance while allowing me

the greatest freedom possible through this endeavor. I called upon his knowledge in all phases of

this effort. He spent many hours pointing out my miscues, small and large. His influence on my

academic ability will be an asset for years to come.

Finally, I would like to express my appreciation to my wife, Kathy, and my daughters, Sarah

and Stephanie, for their love, patience, and support which allowed me to devote the effort required

to conduct this research.

James John h iinec

iii

Table of Contents

Page

Acknowledgments...iii

Table of Contents..iv

List of Figures... xiv

List of Tables..xvi

Abstract xix

1. Introduction. 1

Background 1

Two-Level Minimization. 3

Problem Statement. 9

Scope. 9

Assumptions. 10

Approach. 10

Overview 17

11. Fundamentals of Boolean Reasoning 21

Basic Concepts of Boolean Algebra 22

Definitions. 22

Axioms 23

The Inclusion Relation 24

Intervals. 25

Theorems 25

Equivalent Boolean Equations. 27

Theorem Involving the Inclusion Relation 28

iv

Page

Definition of Subtraction 29

Literals, Terms, and Formulas 30

Literals and Terms. 30

Boolean Formulas 30

Unate and Binate Variables 31

Boolean Functions. 31

General Case. 31

Switching Functions 32

Representations of Boolean Functions. 32

Unate Functions. 34

Orthogonal Functions. 34

Evanescent Functions. 35

Boole's Expansion Theorem. 35

Minterm and Maxterm Canonical Forms 36

Minterm. Canonical Form 36

Maxterm Canonical Form 40

Incompletely-Specified Functions. 41

Free Boolean Algebras. 44

Operations on Boolean Functions. 45

Basic Operations. 45

Expansion-Based Operations 47

Simplification 60

Expansion-Based Simplification. 61

Absorption- Based Simplification Techniques 61

The Blake Canonical Form 64

Successive Extraction. 68

Recursive Multiplication. 69

v

Page

Boolean Analysis. 72

Boolean Systems. 72

Reduction 73

Extended Verification Theorem 75

Eliminants and Elimination 76

The Tautology Problem. 82

Tests for Inclusion and Equivalence 84

Tests for Inclusion 84

Tests for Equivalence. 85

Tests for Membership in an Interval 86

Computational Results 86

Irredundant Formulas 87

Sub-Minimal Formulas for Functions 87

Sub-Minimal Formulas for Intervals 88

Summary. 90

II.Functional Relations 92

The Label-and-Eliminate Procedure. 92

Relationships Among Boolean Functions 97

Normal Subsets 101

The Partial Labeling-and-Reduction Process. 102

Goal-Directed Elimination. 109

Formation of A-Consequent Terms 116

Determination of Minimal Normal Subsets 118

Evanescent Subsets. 122

The Partial Labeling-and-Reduction Process. 122

Elimination of X-Arguments and Formation of A-Consequents . .. 128

Determination of Minimal Evanescent Subsets 129

vi

Page

Implication Relations. 132

The General Method. 132

Elimination of X-Arguments and Formation of A.Consequents ... 138

Determination of Irredundant Implication Relations. 140

A Modified Approach 144

Contrast of Label-and-Eliminate Procedure with Specialized Procedures . 165

Summary 168

IV. Solutions of Boolean Equations and the Minimization Problem. 169

Solutions of Boolean Equations 169

Functional Antecedents. 169

Consistency of a Boolean Equation 170

General Solutions 173

Solutions of Switching Equations 185

Modeling of Circuits with Boolean Algebra. 193

Basic Concepts. 193

Designs and Specifications. 197

Specification Formats 202

Relationship of Equation-Solving and Minimization 217

Tabular Specifications 217

Solution * Design 219

Conventional Minimization 221

Alternative Approach 222

Summary 225

V. Formation of All Irredundant Formulas. 227

Initial Specification. 227

Brown's Method. 228

vii

Page

Modified Brown's Method 233

Useless Prime Implicants 234

Partitioning of Prime Implicants 237

A Revised Algorithm 240

Multiplication Method 246

Previous Work 249

Multiplication Algorithm 258

Computational Results 264

Summary 267

VI. Formation of a Single Minimal Formula 268

Basic Methodology 268

Three Bases for a Function 270

Base #1 - All Useful CEPIs 270

Base #2 - CEPIs of an IDF 271

Base #3 - CEPIs Covering # 272

Comparison of Bases 277

Formation of Inclusion Formulas for Base Terms 277

Previous Work 278

Formation of Inclusion Formulas for Bases #1 and #2 282

Formation of Inclusion Formulas for Base #3 298

Assignment of Costs to Terms 306

Reduction Rules 310

Prime-Implicant Tables 310

Reduction Rules for Base #1 314

Reduction Rules for Bases #2 and #3 329

Minimization Algorithms 338

Algorithm Using Base #1 338

viii

Page

Algorithm Using Base #2...............................341

Algorithm Using Base #3...............................343

Comparison of the Algorithms............................346

Summary 347

VII. Minimization of Multiple-Output Functions. 348

Initial Specification. 350

Multiple-Output Prime Implicants (MOPIs) 351

Assignment of Costs to MOPIs. 353

Formation of ''H (X, Z). 35Z

Generation of MOPIs 361

Useful MOPIs.. 362

Partitioning of MOPIs 363

Formation of Bases. 368

Base #1 - All Conditionafly-Eliminable MOPIs. 368

Base #2 - CE MOPIs Covering j. 368

Formation of a Multiple-Output Inclusion Formulas 370

Reduction Rules for Multiple-Output Functions. 373

Minimization Algorithms for Multiple-Output Functions. 373

Algorithm Using Base #1. 374

Algorithm Using Base #2. 377

Comparison of the Algorithms. 380

Summary 381

VIII. An Introduction to Search. 382

Minimization Versus Satisficing 382

Problem Representations. 383

State-Space Representations. 383

ix

Page

Problem-Reduction Representations. 384

Search Graphs 385

Heuristics in Search. 389

An Overview of Heuristics. 389

Heuristic Functions 391

Search St-dtegies. 393

Search Strategy Classifications. 393

Blind Search Techniques 394

Uninformed Search Techniques. 396

Informed Search Techniques. 398

Comparison of Search Strategies 404

Summary 405

IX. The Search Process in Mini-nization. 406

The Search Process in Logical Design. 407

Knowledge Representation. 410

Information at Outset of the Search Process. 410

Topologies. 411

Node Representation. 415

Search Space Partitioning 426

The Use of Heuristics. 430

Heuristic Functions 430

Heuristics in Formation of the Search Tree 441

Search Strategies. 443

Total Minimization - A* 443

Near Minimization - Dynamic Weighting. 446

Approximate Minimization 447

Comparison of Applied Strategies. 449

x

Page

Implementation of the Search Process. 449

General Search Algorithm. 449

Construction of F. 452

A Decomposition Strategy. 454

Summary 466

X. Alternative Minimization Techniques 469

Ledley's Problems 469

An Overview of Ledley's Problems 469

Type 1 Problems 473

Type 2 Problems 478

Type 3 Problems 487

Summary of the Approach to Ledley's Problems 490

Recurrent Circuits 491

The Advantage of Recurrent Designs. 493

Sequence of the Z-Variables. 497

Methodology for Recurrent Designs 498

Algorithms for Recurrent Designs. 501

Summary of Recurrent Approach. 508

Summary 509

XI. Conclusions and Recommendations 510

Summary 510

Conclusions. 512

Utility of Boolean Reasoning. 512

Design Trade-Offs. 513

Assessment. 514

Recommendations 516

xi

Page

Appendix A. Existing Methods.................................... 518

Early Methods 518

Boolean Simplification. 518

Map-Based Approaches. 522

Quine-McCluskey Method. 522

Algebraic Techniques for Minimization 524

Importance of Two-Level Minimization. 524

Approach of Algebraic Methods 525

Heuristic Techniques for PLA Synthesis. 526

General Concepts. 526

Simultaneous Identification and Extraction of Irnplicants 529

MINI, PRESTO, and ESPF ESSO-11. 530

Other Methods. 533

Exact Minimization Methods. 533

Recursive Realizations of Combinational Logic 534

Appendix B. Example Functions and Intervals. 538

Data Set B. 538

Data Set C. 539

Data Set D. 541

Data Set E. 543

Data Set IC. 544

Appendix C. Computational Results 547

Prototype Overview 547

Data Set B Results. 548

Data Set C Results. 550

Data Set D Results. 551

xii

Page

Data Set IC Results.......................................552

Search Results. 553

Example 06. 554

Example IC12 555

Example IC14 556

Example 1015 556

Example B8. 557

Appendix D. Procedures 559

Procedure Format 559

Chapter 2 - Fundamentals of Boolean Reasoning. 560

Chapter 8 - An Introduction to Search 577

Bibliography 583

Vita. 588

xiii

List of Figures

Figure Page

1.1. Representation of a Digital Circuit 4

1.2. A Two-Level Circuit 5

1.3. A Recurrent Design 14

2.1. Euler Diagram of A n B' = 0 24

4.1. Representation of a Digital Circuit 193

4.2. Representation of a Sequential Circuit 194

4.3. Circuit Implementation of z'z + z'yz' + zy + zyz 196

4.4. Circuit Implementation of z'y + zxV + z 197

4.5. Relationships Among Designs, Solutions, Equations, and Specifications 220

6.1. Flowchart of Reduction-Rule Application 319

8.1. An AND-OR Tree 388

8.2. Illustration of Breadth-First Search 395

8.3. Illustration of Depth-First Search 396

9.1. Topology #1 - Binary Search Tree 413

9.2. Topology #2 - Search Tree 414

9.3. Problem-Reduction Using an Intrinsic Partition 428

9.4. Graph Representation of Inclusion Formulas and Common PIs 456

9.5. Problem Representation Using an AND/OR Graph 460

9.6. Graph Representing Block XV of IC14 464

10.1. Ledley's Circuit 470

10.2. An Application of the Type 2 Problem 484

10.3. Representation of a Digital Circuit 491

xiv

Figure Page

10.4. A Recurrent Design 492

A.1. Circuit Implementation of z'z + z'yz' + zy' + xyz 520

A.2. Circuit Implementation of z'y + zV + z 522

A.3. Depiction of a Programmable Logic Array 525

A.4. Boolean 3-cube for f(z, y, z) = y' + zz 527

A.5. Multiple-Output Function Prior to PLA Minimization 528

A.6. Multiple-Output Function After PLA Minimization 529

A.7. Recursive Realizations of Combinational Logic 535

xv

List of Tables

Table Page

2.1. Shorthand Notation for Minterms 39

2.2. Truth Table for Example 2.2 39

2.3. Shorthand Notation for Maxterms 41

2.4. Incompletely-Specified Function f(z, y, z) 43

2.5. Results of Example 2.4 60

2.6. Calculation of Least-Binate Variable 82

3.1. Contrast of Label-and-Eliminate Method with Specialized Procedures 166

4.1. Truth Table for z'z + zlyz' + MI/ + zyz 196

4.2. Truth Table for a Multiple-Output Circuit 204

4.3. Truth Table With Don't Cares Specifying a Multiple-Output Circuit 205

4.4. Truth Table Which Meets Specification of Table 4.3 206

4.5. Truth Table for Example 4.7 211

4.6. Truth Table for Example 4.8 Specification 212

4.7. Truth Table for Example 4.8 Design 212

4.8. Specification for Example 4.9 214

4.9. Truth Table for Os(X, z) 214

4.10. Truth Table for qD(X, z) 215

4.11. Truth Table for ,D(X, z). 0' c(X) 216

4.12. Truth Table for Example 4.10 226

5.1. Formation of a O-Chart 252

5.2. #-Chart for Example 5.3 253

5.3. Formation of Reusch'F O-Chart 256

5.4. Data Set B (Results) 265

xvi

Table Page

5.5. Data Set C (Results) 265

5.6. Data Set D (Results) 266

5.7. Data Set IC (Results) 267

6.1. Data Set B (Bases) 277

6.2. Data Set C (Bases) 277

6.3. Data Set IC (Bases) 278

6.4. Reusch's 4-Chart 285

6.5. #-Chart for Example 6.4 289

6.6. Revised q.-Chart for Example 6.4 289

6.7. 4-Chart for Example 6.5 295

6.8. #-Chart for Example 6.6 304

6.9. Prime-Implicant Table for Example 5.3 311

6.10. Reduced PI Table for Example 5.3 311

6.11. PI Table for Example 6.8 312

6.12. Revised Table for Example 6.8 313

6.13. A Cyclic Prime Implicant Table 314

7.1. Truth Table Corresponding to O(X, Z) (Example 7.2) 359

7.2. Truth Table Which Defines h(X) (Example 7.2) 360

9.1. Utility Matrix for Example 9.2 433

9.2. Utility Matrix for Example 9.3 434

9.3. Utility Matrix for Heuristic Function #2 437

9.4. Utility Matrix for Example 9.4 438

9.5. Utility Matrix for Example 9.5 440

A.1. Truth Table for z'z + z'yz' + zy' + xyz 520

B.1. Data Set B (Statistics) 539

xvii

Table Page

B.2. Data Set B (Calculation Times) 540

B.3. Data Set C (Statistics). 540

B.4. Data Set C (Calculation Times) 541

B.5. Data Set D (Statistics). 542

B.6. Data Set D (Calculation Times) 542

B.7. Data Set E (Statistics). 543

B.8. Data Set E (Calculation Times) 544

B.9. Data Set IC (Statistics) 545

B.10.Data Set IC (Calculation Times). 546

C. 1. Data Set B - Algorithm 6.1. 549

0.2. Data Set B.- Algorithm 6.2. 550

C.3. Data Set C - Algorithm 6.1. 551

0.4. Data Set C - Algorithm 6.2. 551

C.5. Data Set D - Algorithm 6.1. 552

C.6. Data Set IC - Algorithm 6.1. 553

C.7. Data Set IC - Algorithm 6.2 554

C.8. C6 (Search Data). 555

C.9. 1012 (Search Data). 556

0.10.1014 (Search Data). 557

C.11.1C15 (Search Data). 557

C.12.B8 (Search Data). 558

xviii

AFIT/DS/ENG/92-02

Abstract

The minimization of logic circuits has been an important area of research for more than a half

century. The approaches taken in this field, however, have for the most part been ad hoc. Boolean

techniques have been employed to manipulate and transform formulas, but not for the task Boole

intended, i.e., to perform symbolic reasoning. Boolean equations, for example, are employed in

the literature on minimization principally as icons; they are never solved. The first objective of

this dissertation, accordingly, is to apply Boolean reasoning systematically and uniformly to the

minimisation problem. Boolean reasoning entails the reduction of systems of Boolean equations

to a single Boolean equation; the single equation is an abstraction, independent of the form of

the original equations, upon which a variety of reasoning operations may be performed. The

second objective of this dissertation is to apply informed search, which has arisen from research in

Artificial Intelligence, to the minimization problem. In algorithms developed in this work, a circuit

specification is reduced to a single equivalent Boolean equation O(X, Z) = 1 called a 1-normal form.

There are a number of significant advantages to using the 1-normal form rather than traditional

specification formats. It is shown that developing a particular solution Z = F(X) for O(X, Z) = 1

corresponds to constructing a two-level design which meets the specification. This approach-which

departs from conventional minimization techniques-has several advantages: a number of design

problems which cannot be handled using conventional methods are easily treated, atypical design

specifications unusable by conventional methods are dealt with in a uniform manner, and in some

cases a single algorithm, rather than a set of algorithms, suffices to solve a problem.

xix

BOOLEAN REASONING AND INFORMED SEARCH IN THE

MINIMIZATION OF LOGIC CIRCUITS

I. Introduction

The minimization of logic circuits has been an important area of research for more than a half

century. The importance of this field is discussed in the first section of this chapter. The significance

of minimizing a special class of digital circuits called two-level circuits is then discussed. A survey of

previous work in the area of two-level minimization is given; the shortcomings of existing techniques

are highlighted. A problem statement which defines the goal of this work is given. The significant

aspects of the approach developed in this work are then introduced. This chapter concludes with

an overview of the remaining chapters.

Background

A goal of electrical engineers since the invention of digital computers has been the design of

minimal digital logic circuits. Consequently, researchers have spent years in search of techniques

which produce minimal designs. The goals of these researchers have been twofold. First and

foremost is to develop methods which yield designs which are minimal, or at least reasonably close,

with respect to some specified measure of cost. Second, but gaining in importance in recent years,

is to develop techniques which themselves are efficient in their use of computing resources. Research

continues to discover techniques which better meet these two goals.

An area of research called logic minimization theory includes all methods which have been dis-

covered to minimize designs. Through the 1960s the purpose of logic minimization was to decrease

the number of discrete components required to construct logic circuitry. Basic components such

as gates and the basic constituents of gates-diodes and resistors-were expensive (Brayt 84:8).

1

Logic minimization was of great importance to find an implementation which required the fewest

gates and, hence, minimized the cost of a circuit. Designers would describe a circuit at a low level,

perhaps at the gate level; the description would be used as the input to a minimization technique

that would produce a minimal gate-level design.

The advent of integrated circuits, specifically Very Large Scale Integration (VLSI), and hard-

ware description languages (HDLs) changed the entire design process in the late 1980s. The intro-

duction of VLSI and HDLs has led to a need for automated tools for handling the design process.

Such tools fall under the purview of a field called logic synthesis. Logic synthesis consists of two

components: HDL synthesis and logic optimization. HDL synthesis is the process of converting

a design described in a hardware description language to a gate-level netlist. Logic optimization

consists of minimizing gate-level designs which result from HDL synthesis as well as mapping the

design to the intended implementation technology. The portion of logic optimization concerned

with developing minimal gate-level designs is logic minimization. The automation of logic synthe-

sis tools enables a designer to describe an initial design in an algorithmic or behavioral fashion

and to automatically produce an optimized design which has been mapped to the planned imple-

mentation technology (deGeu 89, Hardi 89). Research continues in an effort to improve both HDL

synthesis and logic optimization. This dissertation addresses the specific area of logic minimization.

The growing use of VLSI has had a great impact on digital design. The ability to place

an ever-increasing number of complex functions onto a chip has created a need for techniques

which handle the resulting complexity. VLSI circuit minimization is also important from a systems

architecture point of view. Difficulties with off-chip communication negate performance that would

otherwise be possible with VLSI technology; designers have therefore attempted to place as many

functions as feasible onto a chip. Increasing the functionality of a chip reduces the number of chips

required to build a system, which reduces the cost of a system as well as increasing its reliability.

2

This increased functionality requires each function placed on a chip to be minimized to the fullest

extent possible.

While the importance of circuit minimization has grown, the requirement that minimiza-

tion tools be efficient has likewise increased. Minimization algorithms which may have sufficed

twenty years ago may now be impractical due to increases in the size of implemented circuits.

This is not surprising considering that nearly all minimization problems in VLSI are NP-complete

(Ullma 84:311). Hence, researchers must devise minimization techniques which can handle in-

creased circuit size. Typically, assumptions are made which reduce the number of criteria which

must be handled by an algorithm; no efficient algorithm has been developed which is a general-

purpose circuit minimizer.

Designers need efficient minimization techniques so that they may examine the various design

trade-offs by determining the resulting circuit speed and size for the different ways of constructing

a circuit. Engineers often use the results to decide how a circuit will be constructed. Companies

which do not perform such experimentation will produce inferior designs (Hardi 89:57). To enable

such experimentation in the design process, minimization algorithms must take only minutes or

hours to run; a longer period of time would make an algorithm infeasible for practical use.

Two-Level Minimization

All techniques for producing minimal digital circuits start with a specification which portrays

in some manner how the circuit is supposed to operate. The specification represents the circuit's

response to a class of stimuli. The stimuli are applied to a portion of the circuit called the input

nodes or inputs. The circuit's response appears on the output nodes or outputs. A digital circuit

is abstractly depicted in Figure 1.1. The inputs are represented by the n-variable input vector X;

the outputs are denoted by the rn-variable output vector Z. The goal of a minimization technique

is to produce economical circuit implementations or designs which meet the specification.

3

z1

Inputs Outputs

Xn Zm

zl = fl(Z..,n 1
Z2 = f2(zi,..,. Xn

Figure 1.1. Representation of a Digital Circuit

An important type of circuit in digital design is two-level circuits. Two-level circuits are

designs in which only two levels of gates must be traversed between the circuit inputs and the

circuit outputs. Figure 1.2 depicts a two-level circuit; specifically, it is an AND-OR circuit. The

AND gates form the first level; the OR gate forms the second level. The inverters are not said to

form a level, because often the input signals and their complements are both available, eliminating

the need for inverters. The number of levels of a circuit is defined as the maximum number of gates

that must be traversed between the circuit inputs and the circuit outputs, less inverters required

to complement the input signals. Any circuit which has more than two levels is called a multi-level

circuit.

A literal is a letter or complemented letter such as z or y'. A term is 1, a literal, or a

disjunction of two or more literals in which no two literals involve the same letter. A sum-of-products

formula is 0, a single term, or a disjunction of terms. A convenient aspect of two-level circuits is

4

Z

f(X, Y, Z)

Figure 1.2. A Two-Level Circuit

that they correspond directly with sum-of-products (SOP) formulas representing Boolean functions.

The SOP formula z'z + x'yz' + zV + zyz corresponds to the circuit depicted in Figure 1.2. An

approach to developing economical two-level circuits is to specify a circuit with a Boolean function

f, and then to develop a minimal SOP formula F to represent the function.' The resulting formula

corresponds to a two-level design which meets the specification.

Measures used to determine the cost of a two-level circuit have a direct correlation with the

attributes of an SOP formula. For example, the number of gates in a two-level circuit is determined

by counting the number of terms in the corresponding SOP formula. Similarly, the number of gate

inputs for a circuit is measured by counting the number of literals in the corresponding formula.

Thus, measures used to determine the goodness of an SOP formula correlate to ways of developing

the cost of a circuit. Criteria used to determine the goodness of an SOP formula include the fewest

terms, fewest literals, or combinations thereof. Hence, an SOP formula with the fewest terms

'A function is denoted by a small letter, e.g., f, and a formula which represents the function is indicated by a
capital letter, e.g., F.

5

which represents a function corresponds with the two-level design with the fewest AND gates.

Quine (Quine 52) showed that a minimal formula with respect any criteria involving the number

of literals of a formula consists only of special terms called prime implicants of a function. Hence,

the following process is usually followed for developing a minimal SOP formula: develop the set P

of all prime implicants for a function, and determine a subset P of P which meets the given design

criterion. The disjunction of the terms in P constitutes a minimal SOP formula.

The process used to develop a single minimal formula is extended for multiple-output circuits,

i.e., circuits for which the number of output variables is greater than one. In this case, for the vector

Z = (z, z2, ... , z,) of output variables, a vector F = (F1, F2,..., Fn) of SOP formulas is developed

which corresponds to a two-level design such that the combination of the distinct terms in formulas

in F is minimal with respect to a given design criterion. The resulting vector F is then said to be

minimal.

Two-level minimization is one of the most important problems in logic synthesis. Two-level

circuits are very important in VLSI design due to the fact that they correspond directly to a

Programmable Logic Array (PLA) implementation. There are several advantages with regard to

using PLAs in VLSI design:

" PLAs are easy to implement,

" computer-aided design (CAD) tools exist to perform PLA layout automatically, and

" once implemented, PLAs are easy to modify.

In addition to being used to develop two-level circuits, two-level minimization techniques are em-

ployed during multi-level logic minimization. The development of a minimal two-level AND-OR

circuit representation is typically one of the first steps in the process of developing a good multi-

level circuit; for example, two-level minimization is one of the first steps taken in the SOCRATES

system (deGeu 85).

6

A substantial amount of work has been devoted to developing methods for producing mini-

mal or near-minimal two-level designs. A number of heuristic minimization techniques have been

developed over the past twenty years for producing near-minimal designs. The two most notable

examples are MINI (Hong 74) and ESPRESSO (Brayt 84). However, it is always desirable to de-

velop a minimal design rather than a near-minimal one, if it is practical to do so. Unfortunately,

the heuristic methods do not guarantee minimality of the resulting design,

In addition to work devoted to developing heuristic methods, there is a long line of research fo-

cused on techniques for producing minimal two-level designs. Quine (Quine 52, Quine 55, Quine 59)

performed some of the earliest work on the minimization of logical formulas; his techniques were

adapted by others for use in producing minimal digital designs. The methods fashioned from Quine's

work use rudimentary Boolean algebraic concepts to develop minimal SOP formulas. Other meth-

ods developed over the years based on simple algebraic ideas include those developed by Ghazala

(Ghaza 57), Chang and Mott (Mott 60, Chang 65), Tison (Tison 67), Reusch (Reusc 75), Cutler

(Cutle 80, Cutle 87), and Hong (Hong 83, Hong 91). Most of these techniques are impractical

for complex problems, although the techniques developed individually by Cutler and Hong are

a significant improvement over the foregoing methods. Their methods incorporate the use of a

branch-and-bound search process in the development of minimal formulas.

The most recent efforts devoted to the development of minimal two-level designs are the

ESPRESSO-EXACT algorithm (Rudel 89) and McBOOLE (Dagen 86). The ESPRESSO-EXACT

algorithm is theoretically similar to the ESPRESSO heuristic minimization technique. Several of

the operations used in ESPRESSO, a tautology-based algorithm in particular, are extended for use

in ESPRESSO-EXACT. A branch-and-bound search process is used in the final step of constructing

a minimal formula. A directed graph called a covering graph is used in the McBOOLE algorithm

for determining the relationships among prime implicants of a function. Techniques are provided

for determining prime implicants to retain or discard based on the covering graph of a function.

7

Cycles in the graph preclude the selection of prime implicants to retain and discard; a form of

search is used to select prime implicants for instances in which cycles appear in the graph. A

graph-partitioning technique is used to decompose the problem. Both the ESPRESSO-EXACT and

McBOOLE methods have been demonstrated to be useful for many examples which are intractable

using earlier methods.

A common attribute of the aforementioned techniques is that all are constrained in the ap-

proach taken in developing minimal formulas. In each method, a minimal vector F of formulas is

developed in which each formula Fj in F is comprised only of input variables (X-variables). Each

formula F corresponds to a circuit developed for a respective output zj. Hence, at the conclusion of

the design process, a system Z = L(X) is developed in which the vector F represents the functions

in f. We call this the conventional approach to the design process.

There exist design problems which cannot be handled using a conventional approach. One

example is the use of circuit outputs, i.e., Z-variables, to produce other circuit outputs. A second

example is the development of designs which take advantage of previously-constructed circuits.

Suppose a design exists which is represented by the equation Y = g(X) and the goal of the current

design process is to develop a circuit denoted by Z = f(X). Conventional techniques are not able to

use the Y-variables to develop a circuit denoted by Z = h(X, Y) such that the vector H correspond

to a lower-cost design than F. The limitation of the conventional approach is rooted in the absence

of a sound theoretical foundation.

A second limitation of conventional methods is that there exist atypical design specifications

which are unusable by traditional techniques. For example, suppose it is desired to convert between

JK and RST flip-flop types. The information required to make the conversion-in either direction-

is expressed by the system

Q'J + QK' = S + Q'T + QR'T' (1.1)
0 = RS+RT+ST

of Boolean equations. Traditional design techniques cannot deal with a specification such as (1.1);

it would be useful if a design approach were flexible enough to handle such a specification.

An additional observation based on an examination of existing methods is that informed

search techniques have not been widely employed in methods developed for producing digital de-

signs. Informed search techniques are often useful for efficiently dealing with complex problems

such as minimization. In view of the limitations of conventional approaches to the design problem,

the goal of this work is stated in the next section.

Problem Statement

Based on an examination of existing methods, we conclude that there continues to be a need

for improved algorithms for logic-circuit minimization, provided that the following considerations

are satisfied:

" the new methods must have a firm theoretical basis,

" they must be practical for complex problems, and

" they should be applicable to a greater variety of design problems than are existing techniques.

The primary goal of this research is to develop new theoretically-sound algorithms for producing

minimal or near-minimal digital designs for a variety of design problems. The secondary goal is to

devise algorithms that are as efficient as possible, and thus practical for complex problems.

Scope

This research considers the minimization of digital circuits at the gate or logic level, focusing

on the minimization of two-level combinational circuits. Algorithms are presented to derive minimal

combinational circuits; the circuits which are considered may have single or multiple outputs and

may be completely or incompletely specified.

9

The main purpose of this work is to develop algorithms which yield minimal-cost circuits.

The secondary goal is to produce efficient methods. Trade-offs are acceptable between the measures

of circuit minimality and algorithmic efficiency. For example, a method which produces a minimal-

cost design can be expected to be computationally intensive. On the other hand, a method which

produces a design quickly will generally not produce a minimal design.

Assumptions

The following assumptions are made in this research:

" Any changes in circuit structure are acceptable as long as the functional relationships be-

tween inputs and outputs are maintained and design criteria are met. It is inherent in the

minimization process that the circuit structure is modified.

" Cost criteria based on the number of components in a circuit are suitable for evaluating digital

designs. This assumption facilitates the ability to extrapolate the cost of an SOP formula to

the corresponding two-level design.

" All circuit components are considered to be "ideal"; hence, there is assumed to be no variation

among like components. All components have a unit delay. Actual components, even if they

perform the same function, have variances in parameter-values. These variations are ignored

to allow the concentration of effort on the logical aspects of the design.

Approach

In accomplishing the goals of this work, we advance the state of minimization theory by

applying the concepts of Boolean reasoning and informed search to develop new algorithms for

producing minimal SOP formulas. Boolean reasoring is a methodology by which systems of Boolean

equations are reduced to a single Boolean equation; the single equation is an abstraction which

enables a reasoning process "independent of the form of the original equations (Brown 90:x)". This

10

work systematically applies the concepts of Boolean reasoning in a coherent, uniform approach

to the minimization problem. Informed search techniques are generally employed in the field nf

Artificial Intelligence (AI); such methods are characterized by the use of heuristic functiorns which

estimate how close we are to a minimal solution at a given point in the search process. Informed

search techniques art incorporated as a mechanism for quickly deriving minimal or near-minimal

formulas. Minimal SOP formulas correspond to minimal two-level designs. In this section, the

significant aspects which are unique to the approach developed in the work are highlighted.

Every technique for producing an economical digital design begins with a specification which

represents how a circuit is supposed to operate. A useful way of specifying a circuit is with a single

Boolean equation

O(X, Z) = 1 (1.2)

called the 1-normal form. There are a number of significant advantages to using the 1-normal form

rather than traditional ways for specifying a circuit, e.g., a truth table. First, using a 1-normal

form specification, the minimization of completely and incompletely-specified functions is handled

in a uniform manner. 2 Thus, separate algorithms for developing formulas for completely and

incompletely-specified functions are not required as is generally the case in algebraic minimization

methodologies, e.g., the methods developed by Cutler (Cutle 80) and Hong (Hong 83). Secondly,

the use of the 1-normal form facilitates the handling of design problems which cannot be solved

using conventional minimization approaches. Moreover, :. is easy to convert from traditional ways

for specifying a circuit, e.g., a truth table, to a specification in 1-:normal form. The development

of a 1-normal form specification O(X, Z) = 1 is viewed in this work as the beginning step in the

development of a digital design.

2Completely- and incompletely-specified functions are defined in Chapter 2.

11

Once a 1-normal form specification O(X, Z) = 1 is formed for a circuit, the development of

a solution of the equation O(X, Z) = 1 for the vector Z corresponds to developing a design which

meets the specification. A particular solution of O(X, Z) = 1 for the vector Z is a system of the

form

z = f1 (X)

Z2 = f 2 (X) (1.3)

= A V),

such that O(X, f(X)) = 1 is an identity. Such a solution is represented compactly by Z = f(X). A

design corresponds to a vector F of formulas representing the functions f(X) in a particular solution

Z = L(X). A minimal design corresponds to a minimal vector F of formulas that represent the

functions L(X). The use of the 1-normal form O(X, Z) = 1 as a specification and the correspondence

of particular solutions Z = f(X) of O(X, Z) = 1 to designs is discussed in Chapter 4.

A particular solution Z = f(X) of O(X, Z) = 1 is developed from a system called a general

solution of O(X, Z) = 1 for Z, which is a representation of the set of all particular solutions of

O(X, Z) = 1. If O(X, Z) = 1 is a tabular specification (defined in Chapter 4), then a general

solution of O(X, Z) = 1 for Z may be represented by a system of the form

a I(X) _ zi < 0(x)

02 (X) < ! < P3.(X)

a 3(X) Z3 < 03 (X) (1.4)

Q,,-.CX) < n 5 &(X).

Many conventional methods for producing digital designs begin with a system equivalent to (1.4),

although such a system is not formed by solving an equation or even known to be a solution of

12

an equation. The formation of a 1-normal form specification O(X, Z) = 1 being the first step, the

construction of a general solution is considered to be the second step in the formation of a design.

The third step, the focus of most minimization techniques, is the development of a particular

solution Z = f(X) from the general solution; a design corresponds to the vector F of formulas

representing the functions f(X).

An alternative approach to the design problem is to develop a recurrent general aolution of

(1.2), i.e., one having the form

al(X) < z < (x)

,, 2(X, zI) < z2 < 62 (X,zi) (1.5)

c 3 (X, z1, z 2) < Z3 < 0 3 (X, ZI, z2)

cVM(x, 21,....,I_ -) <. A.< (X, zl,...,Znl).

A recurrent solution

Z,= f,(X)

Z2= f2 (X, z 1)

Z3 f 3 (X, zI,Z 2) (1.6)

:m f,,,(X, 2 , Z2,i..., ,,,_

is then developed from the recurrent system (1.5). System (1.6) is denoted by Z - L(X, Z) with the

understanding that each zj is dependent only on zl,..., zj -. A design represented by Z = f(X, Z)

is called a recurrent design. Figure 1.3 depicts a recurrent design. The advantage of a recurrent

system such as (1.6) is that a design may be developed in which output signals are used as well as

input signals to generate a given output signals. This allows the development in many instances of

more economical designs than can be produced using a conventional approach to minimization.

13

- Z 1

Z2

Implement Outputs in Terms
of Inputs and Other Outputs

Figure 1.3. A Recurrent Design

14

The third step in the process of developing a design-the formation of particular solutions

from a general solution-is a problem to which much effort is devoted in this work. To develop

a minimal two-level design, a minimal vector F of SOP formulas is constructed to represent the

functions f in systems (1.3) and (1.6). The cost criterion used in developing f is dependent on the

design objective. For example, if the objective is to minimize the total number of gates in a circuit,

then a vector F of formulas is developed which consists of the fewest terms.

It is well-known that a vector F of SOP formulas corresponding to a minimal two-level design

consists of prime implicants of the functions 6_ in (1.4) which cover the functions a. The process

used in this work for determining such prime implicants consists of the following steps:

" The set of all prime implicants of 6_ is formed.

" A subset of the prime implicants of /_ called a base is developed.

" A set IF of formulas, called inclusion formulas, is derived for terms t of the base which

denote coverage of each term by subsets of the prime implicants of f_. An inclusion formula

is a formula such as P,+ P2 P in which each literal P corresponds to a prime implicant of P_;

the formula P1 + P'Pa denotes that a term t may be covered either by the prime implicant

corresponding to P1 or by the combination of the prime implicants denoted by P2 and P3 .

" The set IF of inclusion formulas is reduced using a set of rules which we call reduction rules.

The reduction rules identify prime implicants of P_ to place in formulas in F as well as prime

implicants to discard from consideration.

* If the reduction rules do not identify all of the prime implicants of/_ that must be contained

in the formulas in F, then a search process is used to identify the remaining prime implicants

to place in F.

These steps are combined with thr first two steps-the formation of a 1-normal form specification

O(X, Z) = 1 and the derivation of a general solution of b(X, Z) = 1 for Z-to form a seven-step

15

methodology for the development of a minimal vector F of formulas corresponding to a minimal

design.

For most simple and some moderately complex specifications, all of the prime implicants

which are to be contained in formulas in F may be identified during the application of reduction

rules. In these cases, the last step of the process-search-is not required. Whether this occurs is

dependent on the specification itself as well as the base used in the process. For highly complex

specifications, search is generally required to form a vector F of minimal formulas.

If a set IF of inclusion formulas remains after rule reduction, informed search is applied to

identify the remaining prime implicants to include in formulas in F. One type of informed search

used in this work is called A*-search. Under certain conditions, A* guarantees a least-cost solution.

Additionally, a problem-decomposition strategy is applied which uses a graph partitioning technique

for breaking up the search problem into smaller pieces, each of which is much easier to handle than

the global search problem. When a solution is desired quickly, search techniques are used which

quickly yield a near-minimal set of prime implicants to include in formulas of F.

The theoretical foundation for techniques used to develop inclusion formulas is presented in

the Implication Relations section of Chapter 3. These techniques are an example of the utility

of the concepts of Boolean reasoning. The application of the seven-step methodology, with the

exception of the search process, for developing a minimal formula F corresponding to single-output

design is presented in Chapter 6. The formation of a minimal vector F for multiple-output circuits

with tabular specifications is introduced in Chapter 7. The search process, which is required for

many problems, is discussed in Chapter 9. Finally, the approach used to develop recurrent circuits

is outlined in Chapter 10.

16

Overview

This work is organized in three parts, together with introductory and concluding chapters.

Chapters 2 through 7 form Part I. Contained in these chapters are the Boolean reasoning concepts

used in this work. Part II, consisting of Chapters 8 and 9, discusses the use of search in the

minimization process. Chapter 10, Alternative Minimization Techniques, forms the third segment

of the work.

This chapter has provided the background and motivation of this project as well as a definition

of the problem. The scope of the effort was presented, as well as the assumptions found to be

necessary. A general approach to the solution of the problem was outlined with specific emphasis on

the aspects of the methodology used in this work which distinguish it from conventional approaches.

The concepts of Boolean reasoning are presented in Chapter 2, which provides the mathe-

matical foundation on which many of the ideas developed throughout this work are based. The

purpose of Chapter 2 is fourfold:

1. to present terminology used throughout this work;

2. to familiarize the reader with concepts and operations that are generally not well-known;

3. to describe the underlying principles of techniques that provide the building blocks for algo-
rithms presented in later chapters; and

4. to present a number of new procedures developed in the course of this work.

Chapter 2 may be skipped by a reader who is primarily interested in the minimization techniques

presented in later chapters, and then referred to only as required.

In Chapter 3, a unified set of techniques based on the Boolean-reasoning concepts of reduction

and elimination is introduced for deducing specific relationships among subsets of a set of Boolean

functions. Procedures are presented for the determination of normal and evanescent subsets of a

set of functions. Additionally, techniques are presented for the deduction of implication relations,

i.e., the coverage of a Boolean function by subsets of a set of functions. Chapter 3 is primarily of

17

theoretical interest with the exception of a method which is introduced for deducing the coverage

of a term by subsets of a set of terms-a specialization of the method for determirpng implication

relations. Variations of the technique for determining the coverage of a term are used in subsequent

chapters. An understanding of Chapter 3 is not required for a reader whose only interest is in the

minimization methods found in later chapters.

The solutions of Boolean equations, the modeling of digital circuits with Boolean algebra, and

the relationship between solving Boolean equations and the minimization problem are discussed in

Chapter 4. The correspondence between developing a good solution for a Boolean equation and

the process of developing an economical digital design which meets a specification is highlighted.

Concepts developed in this chapter are employed in later chapters. A comprehension of the second

and third sections of Chapter 4 is particularly important to understanding the approach taken to

the minimization problem in this work.

In Chapters 5 and 6, the development of SOP formulas F to represent functions f belonging

to the interval [g, h] is presented. We initially focus on thiE case in order to clearly develop the

basic strategy used throughout this work. In Chapter 5, methods are introduced for generating

all irredundant SOP formulas which represent functions belonging to the interval [g, h]. However,

since a function may be represented by thousands or even millions of irredundant formulas, it is

often not feasible to form all irredundant formulas. In these cases, we endeavor to find a single

minimal formula F which represents a function f in the interval [g, h]. Techniques for finding a

single minimal formula are presented in Chapter 6. In both chapters we concentrate on providing

a firm theoretical foundation for procedures while striving to incorporate concepts which reduce

computational effort. Chapter 5 may be skipped by the reader who is only interested in methods

for developing a single minimal SOP formula.

18

The techniques presented in Chapter 6 for single-output circuits are extended to multiple-

output circuits in Chapter 7. Algorithms described in Chapter 7 are restricted to development of

circuits with tabular specifications.

Chapters 8 and 9 form the second part of this work. Chapter 8 is primarily an introductory

chapter which gives an overview of the artificial intelligence concepts used in this research. It

is provided for those who may be unfamiliar with the concepts of informed search. Background

material is presented on search strategies. The use of state spaces and heuristic functions during

search is discussed. Chapter 8 may be skipped by a reader who has a basic understanding of search

techniques. In Chapter 9 the application of search in this work is presented. Heuristics developed

for use in the search process are discussed. Additionally, a decomposition strategy for breaking up

the search problem is introduced.

Chapter 10 is the third major section of this work. In this chapter a number of approaches

are introduced for forming minimal or near-minimal circuit designs which cannot be arrived at

using conventional minimization techniques. A procedure is presented for the generation of cascade

circuits, circuits in which a number of circuit outputs are used in the same manner as circuit

inputs (loops are prohibited). The resulting circuits are typically smaller than circuits formed

using conventional techniques. A second technique presented in thiq chapter is the formation of

minimal designs which take advantage of previously-constructed subcircuits.

Chapter 11 presents a summary of this effort. An assessment is made of the algorithms

presented in this work. The conclusions of this effort are stated. Recommendations for future work

are elaborated.

Previous research efforts in two-level logic circuit minimization are described in Appendix A.

Terms and concepts are presented as well as a discussion of the efficacy of previous methods.

19

Appendix B, Example Functions, contains descriptions of several sets of functions to which we

have applied procedures introduced in this work. The computational results of applying algorithms

to the functions listed in Appendix B are presented in Appendix C, Computational Results.

The format for procedures and algorithms found in the text is given in the first section of Ap-

pendix D. We make a distinction between "procedures" and "algorithms" in this work. Procedures

are simple techniques that are used as the "building blocks" for larger methods. We designate as

algorithms the methods used to produce minimal digital designs. In this distinction, procedures

compose algorithms. Procedures and algorithms are written in a manner that should facilitate

easy computer implementation. Additionally, because Chapters 2 and 8 are primarily background

chapters, the procedures for which the theoretical basis is described in Chapters 2 and 8 are found

only in Appendix D.

20

II. Fundamentals of Boolean Reasoning

The algorithms presented in this dissertation are based on the concepts of Boolean reasoning.

Because these concepts are not well-known, the fundamentals of Boolean reasoning are presented

in this chapter to facilitate comprehension of the methods developed in this work. The theory

and terminology presented in this chapter provide the foundation for later chapters. However, one

whose only interest is in the minimization techniques presented in later chapters may skip this

chapter and refer to it only as required for understanding subsequent chapters. Sources for much

of the terminology and notation found in this chapter include (Johns 87), (Murog 79), (Lipsc 76),

and (Nagle 75). For a more in-depth coverage of Boolean reasoning, see (Brown 90).

This chapter provides the theoretical background for a number of Boolean operations. Al-

gorithms and heuristics used to perform such operations are described; for the sake of brevity,

however, procedures which implement specific operations in a step-by-step fashion are located in

Appendix D.

Many researchers have worked to devise techniques which are better in some way than

previously-existing methods. Developments include algorithms which produce better results, the

introduction of heurisLics, and more efficient implementations of the algorithms. For example,

Brayton et al. report algorithms for a number of Boolean operations; among their significant devel-

opments is a heuristic which greatly improves the efficiency of several operations and a method for

obtaining improved results (Brayt 82). Brown presents algorithms for many techniques in Boolean

reasoning in (Brown 90). An outcome of this dissertation is the development of several new algo-

rithms or heuristics for Boolean operations such that the resulting implementations yield better

results faster than do existing methods. A number of new developments are presented in this

chapter; these are highlighted in the summary of the chapter.

21

Basic Concepts of Boolean Algebra

Definitions. An algebra is characterized by three components:

1. A set, called a carrier,

2. Operations defined on the carrier, and

3. Distinct members of the carrier which are called constants of the algebra.

In addition to these components, an algebra has associated azioms. A closed algebraic system is

governed by the Law of Substitution which states that two expressions are said to be equal if one

can be replaced by the other.

A Boolean algebra is a closed algebraic system denoted by the quintuple

< B, +,.,0,1> (2.1)

where

* B is the carrier of the algebra,

* + and • are binary operations defined on B, and

* 0 and 1 are the constants of B.

The operator • is called AND. An expression of the form a. b is called a conjunction.

The operator + is called OR. An expression of the form a + b is called a disjunction.

The * symbol is often used in lieu of the • symbol. Additionally, a • b may be replaced by the

juxtaposition ab for simplicity.

22

Axioms. A Boolean algebra is based on a set of axioms known as Huntington's Postulates

(Hunti 04). These axioms are:

1. Commutative Laws. For all a, b E B,

a+b = b+a (2.2)

a.b = b.a. (2.3)

2. Distributive Laws. For all a, b, c E B,

a+(b.c) (Ca+b).(a+c) (2.4)

a.(b+c) - (a - b)+(a.c). (2.5)

3. Identities. For all a E B,

0+a = a (2.6)

1.a = a. (2.7)

0 is the identity for the + operator. 1 is the identity for the • operator.

4. Complements. For every a E B, there ezists an a' E B such that

a+a' = 1 (2.8)

a-a' = 0. (2.9)

The "'" symbol denotes complementation. It can be shown that a' is unique.

Boolean algebras are governed by the principle of duality by which a given valid expression

has an associated valid dual expression. The dual of an expression is found by interchanging all +

and • operators and exchanging identity elements 0 and 1; additionally, the left and right sides of

23

inclusions (defined in the next section) are interchanged. Note that each of the preceding postulates

has two expressions; these expressions are duals of each other.

The Inclusion Relation. The inclusion relation, <, is defined as follows. For all a, b E B

a<b -* a.b'=O. (2.10)

(Rudea 74:8)

Statement (2.10) is isomorphic to the following property in the algebra of subsets of a set:

ACB AnB'=O, (2.11)

where A and B are arbitrary classes, i.e., subsets of a universal set S. The relation A n B' = 0 is

best visualized by use of the Euler diagram given in Figure 2.1.

Figure 2.1. Euler Diagram of A n B' = 0

24

The following statements are equivalent:

a < b (2.12)

ab' = 0 (2.13)

a'+b = 1 (2.14)

b' < a' (2.15)

a+b = b (2.16)

ab = a. (2.17)

Intervals. Let a and b be members of a Boolean algebra B, and assume that a < b. The

interval (also called a segment) [a, b] is the set of elements of B lying between a and b, i.e.,

[a,b]={zjzEB and a<z<b} (2.18)

The element a is called the lower bound of z; b is called the upper bound of z.

Theorems. Theorems which can be proven from the axioms and the definition of the inclu-

sion relation are:

1. Associativity. For all a, b, c E B,

a+(b+c) = (a+b)+c (2.19)

a.(b.c) = (a.b).c. (2.20)

2. Idempotence. For all a E B,

a+a = a (2.21)

a*a = a. (2.22)

25

3. Boundedness. For all a E B,

a+1 = 1 (2.23)

a.0 = 0. (2.24)

4. Absorption. For all a, b E B,

a+(a.b) = a (2.25)

a.(a+b) = a. (2.26)

5. Involution. For all a E B,

(a')' = a. (2.27)

6. DeMorgan's Laws. For all a, b E B,

(a+ b)' = a'.b' (2.28)
(a . b)' = a' + b'. (2.29)

7. For all a, bE B,

a+(a'.b) = a+b (2.30)

a.(a'+b) = a.b. (2.31)

8. Consensus. For all a, b, c E B,

(a.b)+(a'.c)+(b.c) = (a.b)+(a'.c) (2.32)

(a+b).(a' + c).(b + c) = (a+b).(a' + c). (2.33)

26

9. Interchange. For all a, b, c E B,

(a-b)+(a' -c) = (a+c).(a'+b) (2.34)

(a+b).(a'+c) = (a.c)+(a'.b). (2.35)

10. For alla,bE B,

a < a+b (2.36)

a.b < a. (2.37)

Equivalent Boolean Equations. It is often useful to express a Boolean equation in an

equivalent expression of the form f = 0 or g = 1. The following properties can be proven from the

Boolean axioms and theorems.

1. An arbitrary Boolean equation is equivalently expressed by the form f = 0 using the following

equivalence:

a=b 4=* a'.b+a.b'=O (2.38)

(a' • b + a. b') is the Exclusive-OR of a and b and is denoted by either (a E b) or a XOR b.

2. An arbitrary Boolean equation is equivalently expressed by the form g = 1 using the following

equivalence:

a=b -= a'.b'+a.b=l. (2.39)

(a'. b' + a- b) is the Exclusive-NOR of a and b and is denoted be either (a® b) or a XNOR b.

27

3. Systems of Boolean equations are equivalently expressed by a single equation using the fol-

lowing equivalences:

a=0 & b=0 a+b=0 (2.40)

a= I & b= 1 € a.b= 1. (2.41)

Theorem Involving the Inclusion Relation. The theorem in this section, which involves

the inclusion relation <, is useful in various applications of Boolean reasoning.

Theorem 2.1: For all elements a, b, c, and d of a Boolean algebra B, if

a < b (2.42)
c < d

then

a + c < b + d. (2.43)

Proof. Suppose (2.42) to hold. Then we conclude by the definition of the inclusion relation that

ab' 0, (2.44)

cd' 0.

In view of (2.24), the validity of the following statements may be asserted:

ab'd' = 0, (2.45)

b'cd' = 0.

28

Whence, the equation

ab'd' + cb'd' = 0 (2.46)

is valid. The following statements are equivalent:

ab'd' + cb'd' = 0 (2.47)

(a+c)b'd' = 0 (2.48)

a + c < (b'd')' (2.49)
a+c < b + d. (2.50)

Statements (2.47) and (2.48) are equivalent by distributivity. The definition of the inclusion relation

is used to form (2.49) from (2.48). Finally, DeMorgan's law and involution are used to form (2.50).

This completes the proof. 0

When there are an arbitrary number of statements of the form (2.42), Theorem 2.1 is applied

repeatedly to develop an inclusion such as (2.43).

Definition of Subtraction. The operation a - b is defined as the portion of a that is not

covered by b, i.e.,

a - b = a. b'. (2.51)

The operation a - b is sometimes called the relative complement of b with respect to a. In set

theory, the relative complement of a set B with respect to a set A, denoted A - B, is also called

the difference of A and B. However, the term "difference" has been expropriated in engineering

literature for another Boolean operation. Hence, we follow Brayton (Brayt 82) in calling a - b the

subtraction of b from a.

29

Literals, Terms, and Formulas

Literals and Terms. A literal is a letter or complemented letter such as a, b, a', b', z, and

z', where a letter denotes a variable or a member of a Boolean algebra. (The convention used

in this work is that letters such as a, b, c,... are members of a Boolean algebra and variables are

represented by letters such as ... , z, Y, z.) A term is 1, a literal, or a conjunction of two or more

literals in which no two literals involve the same letter. Examples of terms include ab'z, ac, and

z'yz'. An alterm is 0, a literal, or a disjunction of literals in which no two literals involve the same

letter. Examples include (a + y), (a + c'), and (z + y + z').

Boolean Formulas. The set of n-variable Boolean formulas on n symbols i,'...,z, is

defined by the following rules:

1. The elements of B are Boolean formulas, and

2. The symbols z z,..., a,, are Boolean formulas, and

3. If f and g are Boolean formulas, then so are

(a) f+g,

(b) f.g,

(c) f', and

4. A string is a Boolean formula if and only if it is formed by a finite number of applications of
the first three rules.

Examples of formulas include a, z', a + y, and (z . (b' + z))' + a.

A sum-of-products formula is 0, a single term, or a disjunction of terms. A product-of-sums

formula is 1, a single alterm, or a conjunction of alterms. A sum-of-products formula is often called

an SOP formula; a product-of-sums formula is called a POS formula. Unless noted otherwise, the

type of formula referred to throughout this work is a sum-of-products formula rather than a formula

of arbitrary form.

30

Unate and Binate Variables. If a variable appears in both complemented and uncom-

plemented form in the same formula, the variable is said to be opposed within the formula. If the

variable appears in only uncomplemented or only complemented form, then the variable is said to

be unopposed in the formula.

If a variable is unopposed in a formula, the variable is called a unate or monoform variable.

If a variable is opposed in a formula, then the variable is called a binate or biform variable. If a

variable is unate and appears in only uncomplemented form in a formula, then it is called a positive

variable. If a variable is unate and appears in only complemented form in a formula, then it is

called a negative variable.

Boolean Functions

General Case. An n-variable Boolean function, f : B' ---+ B, is the mapping associated

with an n-variable Boolean formula. Rudeanu, in his work on Boolean functions and equations,

gives an informal definition of a Boolean function:

Roughly speaking, a Boolean function (also called Boolean polynomial by certain au-
thors) is a function with arguments and values in a Boolean algebra B, such that f can
be obtained from variables and constants of B by superpositions of the basic operations
+,., and ' of B. (Rudea 74:16)

A more formal definition of the set of n-variable Boolean functions parallels the definition of a

Boolean formula:

1. For any element a E B, a constant function f : Bn -. B defined by

[(l,., ,.)= a V(zh., - ,Z,,) E B" (2.52)

is an n-variable Boolean function.

2. For n variables, z,..., z,,, a projection function f : B" - B defined by

f(zi,...,z) = zi V(z, ... ,zn) E B, i E f1...n, (2.53)

31

is an n-variable Boolean function.

3. If g, h : B' -, B are n-variable Boolean functions, then the functions g + h, gh, and g' defined
by

(a)
(g -+- h)(zi,..., n) ---- g(,...,Zn) + h l,...,Zn) (2.54)

(b)
gh(zj,...,z.)=g(1 , , =X) (2.55)

(c)
1(Xi,... , X,,) = (g(zi, . ., X,))' (2.56)

V(zI,..., zn) E Bn, are also n-variable Boolean functions.

4. A function is a Boolean function if and only if it is formed by a finite number of applications
of the first three rules. (Rudea 74:17)

Switching Functions. Rudeanu makes a clear distinction between Boolean functions in the

general case, and the special case of Boolean functions involving no constants except 0 and 1 which

he calls simple Boolean functions (Rudea 74:xvi). One form of simple Boolean functions is that

involving the two-element Boolean algebra B2 = {0, 1}. Rudeanu states:

In the particular case of the two-element Boolean algebra B2 = {O, 1}, every function
f : Bn --+ B2 is a simple Boolean function and will be termed a truthfunction (also called
a "switching function" or "Boolean function" by switching theorists ...) (Rudea 74:xvi)

Thus, a switching function is a Boolean function for which B2 = {0, 1}.

Representations of Boolean Functions. Every n-variable Boolean formula maps into a

corresponding n-variable Boolean function; the function is said to be represented by the formula.

A function, f : B ' --+ B, is a Boolean function if and only if it can be represented by a Boolean

formula. A Boolean formula which represents the function f is referred to by the cLpitalimed form

of the symbol, i.e., F.

Equivalent Formulas. The number of n-variable Boolean formulas which represent

an n-variable Boolean function is infinite. Formulas that represent the same function are called

32

equivalent formulas. An important task-the central theme of this work-is to determine a "good"

formula to represent a function. Typical metrics for determining the "goodness" of a formula

include the number of terms in the formula and the number of literals in the formula.

Congruent Formulas. A special case of equivalent formulas is that of congruent

formulas. Two SOP formulas are called congruent "in case one can be transformed into the other

using only the commutative law (Brown 90:239)". The formulas

a'b'c + cde + efg'

edc + g'ef + ca'b'

are congruent.

Absorptive Formulas. A term t is said to absorb a second term u if the first term

consists of a subset of the literals of the second term. In such a case, the inclusion

u < t. (2.57)

is valid. To prove (2.57), it is observed that u can be reformulated as ul • u2, in which 1 1 consists

of all of the literals in t, and where

" u2 consists of all of the literals not in t, or

" u2 is defined to be 1 in case u = t.

Hence, u = t . u 2 . By (2.37), t. u2 < t. Replacing t. u2 by u proves (2.57).

An SOP formula F is said to be absorptive in case no term in F is absorbed by any other

term in F. If one term of a formula absorbs a second term, (2.25) shows that an equivalent formula

is derived by deleting the absorbed term. An absorptive formula that is equivalent to F is obtained

33

by successive deletion of all terms absorbed by other terms in F; the resulting formula is denoted

by ABS(F). The formula ABS(F) is unique to within congruence (see (Brown 90:240) for proof).

Unate Functions. A function f(zi,..., ,) is said to be positive in a variable zi if the

function can be represented by a formula in which zi is positive. Similarly, a function f(zi,..., z,,)

is said to be negative in a variable zi if the function can be represented by a formula in which zi

is negative. If f is either positive or negative in zi, then the function is said to be unate in zi. If a

function f(zl,..., ,,) is unate in all of its variables z,..., zn, then it is called a unate function.

Unate functions are an important class of functions because many operations that may be

performed on the general case of Boolean functions are performed more efficiently on unate func-

tions. For example, given a formula F which is unate in all of its variables, it can be shown that

the minimum-term equivalent formula for F is ABS(F).

Two unate Boolean functions f and g are said to be collectively unate if each is unate and

f + g is unate.

Orthogonal Functions. A set {0, 02, ... 00b} of n-variable Boolean functions is called

orthogonal if the condition

0 iAj(2.58)

is satisfied. If the condition

- 1 (2.59)

is satisfied, then the set is called normal. If both (2.58) and (2.59) are satisfied, then the set of

functions is called orthonormal.

34

Evanescent Functions. A set {j, 02,...,Okj of n-variable Boolean functions is called

evanescent if the following condition is valid:

. = 0. (2.60)

Boole's Expansion Theorem

The most important functional theorem in Boolean algebra is Boole's Ezpansion Theorem.

This theorem is commonly-but not properly-attributed to Shannon (Shann 49) in most current-

day texts on switching theory. It is stated as follows:

If f is an n-variable Boolean function, then f has the ezpansion

f (xi, X2, , .) - z~f(0, z2, ..., n) + zif(1, z 2 ,..., zn), (2.61)

V(zi,...- , xn) E Bn, (Boole 54).

The dual of (2.61) is given by the expansion

f*z, z2 , z,) = [x' + (1, z,. . . , z,)][Zl + f(O, z3,..., z,)], V(Zl,..., ,) E B '. (2.62)

This theorem is used as the basis for efficient operations on Boolean functions (see (Brown 90)

or (Brayt 82)). The variable zi about which a function f is expanded is called the splitting variable

(Brayt 82:59). In most cases Boolean expansion is recursively applied to derive a result. When f

is expanded about a variable, two functions are derived which do not involve the variable; the new

functions derived are called leaf functions. For example, if a 3-variable Boolean function f(z, y, z)

is expanded about x, the statement

f(z, y,z) = n'f(0, Y, z) + zf(1, Y, z) (2.63)

35

is derived in which f(0, y, z) and f(1, y, z) are functions which do not involve z. In this case, z is

the splitting variable, and f(0, y, z) and f(1, y, z) are the leaf functions. The functions f(O, y, z)

and f(1, y, z) can then be expanded further about either y or z.

Expansion is often performed about each variable in turn until one or both of the resulting

leaf functions possess a specific property, e.g., are unate or are elements of the underlying Boolean

algebra B. Of particular concern is the efficiency by which the expansion process occurs. In most

cases a judicious choice of splitting variable at each stage of the expansion process will greatly affect

the amount of recursion which takes place as well as the simplicity of the formulas which represent

the leaf functions. For many applications of the expansion theorem, heuristics have been devised

to wisely choose the splitting variable at each stage of expansion; these heuristics---several of which

are reported for the first time in this work-will be discussed in later sections.

Minterm and Maxterm Canonical Forms

It is often desirable to use a restricted class of formula in which any Boolean function has only

one corresponding formula. Formulas in such classes are called canonical forms. Two canonical

forms generated using Boole's Expansion Theorem include the minterm canonical form and the

mazterm canonical form.

Minterm Canonical Form. If Boole's expansion theorem is recursively applied to a 3-

variable Boolean function f(z, y, z) about variables z, y, and z, one derives

f(z,yz) = z'f(0, , z) + Xf(1,i, z)

= X'[Yf(0, 0, z) + yf(O, 1, z)] + z[y'f(1, 0, z) + Yf(1, 1, z)]
= z'z' f(0, 0, 0) + Z'Y'zf(0, 0, 1)

" z'yz'f(0, 1, 0) + z'izf(O, 1, 1) (2.64)

+ Xy'z'f(1, 0, 0) + 23'zf(1, 0, 1)

+ zyz'f(1, 1, 0) + zYzf(1, 1, 1).

36

The values

f(0, 0, 0), f(0, 0, 1), f(O, 1, 0,..., f(,1, 1) (2.65)

are elements of B called the discrimiants of the function f. The products

X'yz', M'Yz, 'yz', ... , zyz (2.66)

consisting of all of the variables of f(z, y, z) in each term of the right side of (2.64) are called the

mintera of X = (z, y, z).

This concept may be extended for an arbitrary n-variable Boolean function. The function

f(zh... , z,,) is expanded as follows:

AX , ,,1 = A0o, .., ')Z .. '
+f(0,..., 0, OX ..'

(2.67)
" A l(,...- , 1, 1)XI ... =,,- 1n.

The values

f(O,..., 0, 0), f(O,.... O, 1 , A ,..., 1,1) (2.68)

are the discriminants of f, and the terms

' ' I ' ' ' (2.69)

37

are the minterms of X = (zi,..., z,,). The expansion (2.67) is called tae minterm canonical form

of f and is designated by MCF(f). The minterm canonical form also is called the canonical

sum-of-products form or fll disjunctive normal form.

An important result is that a function f is a Boolean function if and only if it can be expressed

in minterm canonical form (see (Brown 90:40) for proof).

Minterm Canonical Form for Switching Functions. In the special case of an

n-variable switching function f, its minterm canonical form is an SOP formula in which all of the

terms are minterms. In this instance, a minterm appears as a term in the formula if and only if

the corresponding discriminant has the value of 1. There exist 2" possible minterms in a formula

which represents an n-variable switching function; thus, there are 2" possible switching functions

of n variables.

Example 2.1: Given the three-variable Boolean function f : B3 --- B 2 represented by the formula

zyz + z'z', the following minterm canonical form represents f:

X'Y'z1 + zlyzi + Xyz. (2.70)

Often, a shorthand notation is used to represent a minterm. One such form is i, where i is

the decimal integer of the binary code for the minterm. The shorthand notation for three-variable

minterms is given in Table 2.1.

Using this notation, the formula in Example 2.1 can be written as f(z, y, z) = mo + m 2 + m7. This

notation can be shortened further to minterm list form, i.e., f(z, y, z) = E m(0, 2, 7).

Truth Tables. A function table or truth table is often used to specify a function. A

function table is generated for an n-variable Boolean function by substituting all possible com-

binations in B" for the variables in a formula which represents the function. For every element

38

Term Binary Code Shorthand Notation
z'W/z 000 "o
z'iyz 001 MI
zIyz' 01 0 Mr2
z'yz 0 11 m3
zz' 10 0 "4
zYz 101 M5

zyz' 110 In.
zXlz 1 11 M7

Table 2.1. Shorthand Notation for Minterms

(al, a) E B", the function table displays f(al,...,anv). A truth table is generated for a

Boolean function by substituting all 0, 1 combinations for the variables in a formula which repre-

sents the function. A truth table is a proper subset of a function table, except in the case of the

two-element Boolean algebra, B = {0, 11. In this case a truth table is identical to a function table.

Example 2.2: Given the two-element Boolean algebra, B = {0, 1}, Table 2.2 is the truth table for

the three-variable Boolean function f : B' --+ B 2 represented by the Boolean formula zyz + z'z'.

z Yz f (z,Y, Z)
000 1
001 0
010 1
011 0
100 0
101 0
110 0
111 1

Table 2.2. Truth Table for Example 2.2

Just as a Boolean function's truth table may be generated from a Boolean formula, a formula

to represent the function can be generated using a truth table. In this case, for each minterm

we obtain the corresponding discrimina-t directly from the truth table. This yields the function's

minterm canonical form. Because a truth table may be used to generate the minterm canonical

form of a Boolean function, a truth table completely defines a Boolean function.

39

Example 2.3: Given the truth table in Example 2.2, we construct the minterm canonical form of

the function specified by the table:

MCF(f) = z'y'z'(1) + z'yz(O) + z'yz'(1) + z'yz(O) + zy'z'(O) + zy'z(O) + zyz'(0) + zyz(1). (2.71)

After simplification by (2.6),(2.7), and (2.24) we form the equation

MCF(f) = z'y'z' + z'yz' + zyz. (2.72)

Maxterm Canonical Form. The maxterm canonical form is lefined analogously to the

minterm canonical form. It is generated using the dual form (2.62) of Boole's Expansion Theo-

rem. In some texts the maxterm canonical form is called a canonical product-of-sums form or full

conjunctive normal form.

A mozterm is an alterm which contains all variables of the formula either in complemented

or uncomplemented form. The mazterm canonical form for a switching function f is a product-of-

sums formula for f in which all of the alterms are maxterms. In this case, a maxterm appears as

an alterm in the formula if and only if the corresponding discriminant has the value of 0. Hence,

the maxterm canonical form is analogous to the minterm canonical form.

Example 2.4: The three-variable Boolean function f : B' -. B2 from Example 2.1 is represented

by the following formula in POS form:

(z + z')(z' + y)(z' + z). (2.73)

This formula has the following formula maxterm canonical form:

(z + y + z')Cz + Y, + z')(Z' + y + z)(Z' + y + z)(Z' + Y', + z). (2.74)

40

As with minterms, a shorthand notation is often used to represent maxterms. One such form

is Mi, where i is the decimal integer of one's complement of the binary code for the maxterm.

The shorthand notation for three-variable maxterms is given in Table 2.3. Using this notation,

Alterm Binary Code Shorthand Notation
z+ Y+z 000 Mo
z + +Z' 00 1 M
z+V+z 010 M2

z + + Z, 011 Ma
z'+ +z 100 M4

z'I+ + z/ 1 0 1 Ms
z'+ Y+z 110 M6
z/ +111 M

Table 2.3. Shorthand Notation for Maxterms

the formula in Example 2.4 can be written as f(z, y, z) = MjM3M 4 M5 M6 . This notation can be

shortened further to mazteerm list form, i.e., f(z, y, z) = H' M(1, 3,4, 5,6).

Incompletely-Specified Functions

It is often the case that instead of working with a single Boolean function, f, an interval of

Boolean functions is specified. This interval of functions is actually a set Y of functions defined by

:f[I g(X) <(X) _ h(X), VX E B"}, (2.75)

for which g :B -. B and h: B' --. B are Boolean functions such that g(X) < h(X), VX E B.

Since g and h are completely defined by their truth tables, (2.75) may be restated as:

T = {4 I g(X) 5 O(X) !5 h(X), VX E {0, 1}"}. (2.76)

41

Let S be the set of intervals on B, i.e.,

S = {[a, b] I a E B, b E B, a < b}. (2.77)

We may represent the set 7 by the single mapping f : B" --o 3, defined as follows:

f(X) = [g(X), h(X)], VX E {0, 1}* (2.78)

Thus, for each X E {0, 1}' , the value of f(X) is [g(X), h(X)] rather than an element of the Boolean

algebra. When a mapping is specified in this fashion, f is referred to as an irncompletely-specified

(ICS) Boolean function. A mapping which complies with the earlier stated definition of a Boolean

function is called a completely-specified (CS) Boolean function. The function g is called the lower

bound of function f; h is called the upper bound of f.

Typically, incompletely-specified Boolean functions are used in switching theory, where the

two-element Boolean algebra B = {0, 11 is employed. g and h are switching functions for which

g(X) <_ h(X), VX E {0, 1}n. Therefore, for each X E {0, 1}, f(X) is one of the intervals

[0, 0], [0, 11, or [1, 1]. The normal convention is to rename the intervals [0, 0], [0, 1], and [1, 1] as 0, X,

and 1, respectively. The symbol X signifies that either 0 or 1 may be chosen as the value of f; this

is called a donlt-care condition. X is said to be a "don't care" value.

Example 2.5: Given the equations

OzY, X) = '' + Xyz (2.79)

h(, y, z) = z'y' + zy + yz + z'z, (2.80)

the incompletely-specified function f(z, y, z) defined by g(z, Y, z) < f(z, y, z) < h(z, y, z) is given

by the truth table in Table 2.4.

42

x Y Z g(O'Y'z) h(z,y,z) f(z,ylz fAz'Y'z)
000 1 1 [1,1) 1
0 0 1 1 1 [1, 1] 1
0 10 0 0 [0, 0] 0
01 1 0 1 [0, 1] X
10 0 0 0 [0,0] 0
10 1 0 0 [0, 0] 0
1 10 0 1 [0,11 x
111 1 1 [1, 1] 1

Table 2.4. Incompletely-Specified Function f(z, y, z)

Terminology has been developed by switching theorists to discuss incompletely-specified

switching functions. One way the minimization problem has been approached is to find a completely-

specified function f in the interval [g, h] for which a formula which represents f has the fewest

possible terms. The function g forms the lower bound of the possible functions for f; therefore,

for every X E {0, 1}' for which g(X) = 1, f = 1 must be valid. In other words, every term in

MCF(g) also must appear in MCF(f). The set of minterms which appear in MCF(g) is referred

to a the on-set of the incompletely-specified function f. Formally, the on-set of f is defined as

ON-SET = {m I m E MCF(g)}. (2.81)

The function h forms the upper bound of the possible functions for f; therefore, for every X E

{0, 1}" for which h(X) = 0, f = 0 must be an identity. Where the function h is 0, the function

h' is equal to 1. Thus, no term of MCF(h') can appear in MCF(f). The set of minterms which

appear in MCF(h') is referred to as the off-set of f. Formally, the off-set of f is defined as

OFF-SET = { r 1v 4 E MCF(h')}. (2.82)

A third set of minterms, which is empty in the case of completely-specified Boolean functions, is

called the don't care-set. Given the interval (2.76) a completely-specified function may be formed

43

which specifies the cases in which 1 may be chosen to be either 0 or 1, i.e., the cases where f has a

don't care value. This function is defined as h - g. A term in MCF(h - g) may or may not appear

in MCF(f). The set of minterms which appear in MCF(h - g) is referred to as tti- don't-care set

of f. Formally, the don't-care set of f is defined as

DON'T-CARE SET = {mfm 17nl E MCF(h - g)} (2.83)

The don't-care set is sometimes referred to as the dc-set. In some cases, the minimization problem

is solved by determining a good choice of minterms from the don't care-set to add to the on-set to

produce a function f such that the number of terms in a formula representing f is minimal.

Example 2.6: For the incompletely-specified function f(z, y, z) defined in Example 2.5:

" the on-set of f is {mo, mI, M7},

" the off-set of f is {m 2,m4 , m}1, and

" the dc-set of f is {m 3 , rre}.

Free Boolean Algebras

The variables X1, X 2,..., z, may be used to construct a 2 2-element Boolean algebra in the

following manner:

* each element of the algebra is the disjunction of a subset of the 2' minterms built from the
n variables,

" the null disjunction is the 0-element, and

" the disjunction of all minterms is the 1-element.

The resulting structure is called the free Boolean algebra on the n generators zx, z-,..., zn. The

free Boolean algebra is denoted FB(zi, z2 ,. . ., zn).

44

Operations on Boolean Functions

In this section, operations are discussed which are classified as basic operations and ezpansion-

based operations. Operations on Boolean functions are not applied to the functions, but rather to

the formulas which represent the functions. Typically, the result of an operation is a formula which

represents a new function. All of the operations discussed in this section apply to functions which

are represented by sum-of-products formulas; moreover, the result of each operation is an SOP

formula.

Basic Operations. Basic operations on Boolean formulas are those which operate on a term-

by-term basis. Typically, the resulting formulas are simplified by forming equivalent absorptive

formulas.

Boolean Addition. To add two Boolean functions f and g, their corresponding SOP

formulas F and G are simply appended. Absorbed terms are deleted to derive an equivalent

absorptive result. The addition of two functions is implemented by Procedure 2.1 (Addition),

listed in Appendix D. Assuming F and G are absorptive at the outset, Procedure 2.1 returns

ABS(F + G).

Cross-Product. The cross-product of two Boolean functions f and g is the term-by-

term product of their corresponding formulas F and G. If F = " si and G = t, ji, then the

cross-product of f and g is given by

F x G ui ti. (2.84)

This operation is L.ied in lieu of the expansion-based product (described later) in some circum-

stances. The cross-product of two functions is implemented by Procedure 2.2 (Cross-Product),

45

listed in Appendix D. A quick way to simplify the result of Procedure 2.2 is to make absorptive

the resulting formula.

In circumstances involving collectively unate functions represented by formulas which are

unate in all variables, a more efficient version of Procedure 2.2 may be used to perform the cross-

product operation. Such a technique is given by Procedure 2.3 (Unate Cross-Product) in Ap-

pendix D. The result of the procedure is the minimum-term formula representing the product,

f x g, of collectively unate functions.

Boolean Division. Given a function f and a term t, the division of f with respect to

t is the function formed from f by enforcing the constraint t = 1 on the function. The division of

f by t is indicated by fit. Boolean division is also called the Boolean quotient in (Brown 90:53)

and a ratio by Ghazala (Ghaza 57). The operation f/t is implemented by Procedure 2.4 (Boolean

Division), listed in Appendix D.

A number of useful theorems involving Boolean division are found in (Brown 90:54-56). They

are restated here without proof.

1. Let f and g be n-variable Boolean functions and let t be an m-variable term (m < n). Then

f g = f/t'<g/t. (2.85)

2. Let f be a Boolean function and let t be a term. Then the statements

f't - (f lt)' (2.86)

t-f = t.(f/t) (2.87)

t' + f = t' + (f/t) (2.88)

are identities.

46

3. Let f be a Boolean function and let t be a term. Then

t. f /t _t' + f. (2.89)

4. Let p, q, and r be terms such that pq ? 0. Then

pq !5 r =: q r/p. (2.90)

5. Let f and g be Boolean functions and let t be a term. Then

g :_f/t *t ___f. (2.91)

Boolean division is convenient in applications of Boole's Expansion Theorem. For example,

the expansion of a 3-variable Boolean function f(z, y, z) about z is

f(z, y, z) = z'f(0, y, z) + zf(1, y, z), (2.92)

which can be rewritten as

f(z, Y, z) = z'(f/z') + z(f/z). (2.93)

Brayton et al. call f/z the cofactor of a Boolean function f with respect to z and denote it f.

(Brayt 82).

Expansion-Based Operations. Many operations which are performed on Boolean func-

tions are executed most efficiently using algorithms based on Boole's Expansion Theorem. In these

algorithms, expansion is applied recursively to reduce the functions on which an operation is ap-

47

plied. Expansion is performed until the leaf functions reach a base-case to terminate the recursion.

Heuristics are used to determine the splitting variable at each stage of the recursion.

Brayton's Results. The algorithms for complementation, the product of functions,

and subtraction stated in this section are taken from (Brayt 82). The key idea underlying these

algorithms is the goal of quickly deriving leaf functions which are unate; special algorithms are then

applied to the unate leaf functions. A heuristic is used to choose the "most binate" splitting variable

z (Brayt 82:59); this choice tends to keep the number of terms in the formulas representing f/a and

f/ z ' small as well as balanced. The most-binate heuristic results in a net reduction of the number

of recursive expansion operations which are performed with respect to the number of expansions

which generally would occur if the splitting variable z were chosen arbitrarily. Additionally, a

merge operation is applied to the functions returned at each stage of the recursion to ensure that

a simplified formula is returned. Brayton et al. call this process "a recursive paradigm based on

cofactor and merging operations." For a unary functional operation, the general approach is

operate(f) = merge(operate(f/z), operate(f/z')). (2.94)

Similarly, for a binary functional operation

operate(f, g) = merge(operate(f/z, g/z), op,-rate(f/z', gl')). (2.95)

(Brayt 82:59)

Splitting-Variable Heuristic. Brayton et al. developed a heuristic which works

well in determining a good splitting variable when using Boole's Expansion Theorem in the com-

plementation, product, subtraction, simplification, and tautology algorithms. If the heuristic is

used for a unary operation on a function f, it is applied to the formula F representing f. If used

48

for a binary operation on functions f and g, the heuristic is applied to the formula constructed

by appending the formulas F and G which represent the functions. A method which produces a

splitting variable based on Brayton's heuristic is implemented by Procedure 2.5 (Splitting-Variable

Heuristic), listed in Appendix D.

Merge Operation. The merge operation is used to produce a simplified formula

when using Boole's Expansion Theorem to perform a given primary operation. When using Boolean

expansion, the primary operation is applied to the leaf functions recursively. After returning from

the recursion, leaf functions are derived which are the result of applying the primary operation.

For example, if the function f were to be complemented, Boole's Expansion Theorem would be

applied in the following manner:

f= z'(//')' + (f"/z)'. (2.96)

In this case, the primary operation of complementation is applied to the leaf functions f/z' and

f/z recursively. Let us call the functions which result from applying complementation to f/x' and

f/z, go and gi, respectively. Equation (2.96) then becomes

f = X'go + zgl. (2.97)

One way of forming a formula to represent f' in (2.97) is to append z' to each term of a formula

representing go and z to each term of a formula representing gi. Suppose s and t are arbitrary

terms of formulas representing go and gi, respectively. These terms are used to form the terms X's

and zt in the formula representing f. In many instances, consensus (2.32) may be used to form a

new term st; in certain cases the term st absorbs either or both terms X's and mt. In essence, what

the merge operation does is to create the consensus term st only in those cases where at least one

49

of the parent terms, n's and zt, is absorbed. The equivalent absorptive formula is returned by the

merge operation.

Let ho be the result returned by applying an operation to the leaf function associated with

z' and let h, be the result returned by applying an operation to the leaf function associated with

z. Hence, for a unary functional operation, h0 is the result of applying the operation to f/n'; h,

is the result of applying the operation to f/z. Similarly, for a binary operation ho is the result of

applying the operation to f/z' and g/m'; hi is the result of applying the operation to f/n and g/n.

The function

z'ho + zh, (2.98)

may then be 'rcrmed. The merge operation is used to reformulate (2.98) by rewriting it as

n'ho + h'1 + h 2. (2.99)

This action is performed by removing terms of the formulas representing ho and hi and placing the

appropriate consensus terms in the formula which represents h2 . Because terms are removed from

the formulas representing ho and hl, new functions h and hl are formed. Likewise, the function

h2 is created.

Suppose s and t are terms in formulas representing ho and hl, respectively. Then n's and

zt are terms in the formulas representing n'ho and nhl, respectively, in (2.98). For each term s of

ho, it is determined whether s is either a subset or superset with respect to contained literals of at

least one term t of hl. If so, then the formula

n's + zt (2.100)

50

is replaced by the equivalent formula

X's + zt + St. (2.101)

The term at is the consensus term of z's and zt. When this replacement is made, the term At is

placed in the formula representing h 2 . Additionally, one of the following actions is also possible:

* a and t may be removed from the formulas representing ho and hl, respectively;

" s may be removed from the formula representing ho; or

" t may be removed from the formula representing hl.

Each of these cases is now examined.

Case 1: s = t

In this instance the term st is equivalent to s (or t) by idempotence. Thus, (2.101) can be

rewritten as

X'S + X. + a. (2.102)

This is simplified by absorption to s. Thus, a and t are removed from the formulas representing

ho and h, and the term s (or t) is added to formula representing h 2.

Case 2: s<t,sat

In this instance the term st is equivalent to s since it contains a superset of the literals of t.

Thus, (2.101) can be rewritten as

z'S + zt + a. (2.103)

51

This is simplified by absorption to zt + s. Thus, s is removed from the formula representing

ho and the term a is added to formula representing h2.

Case 3: t<_s,s6t

In this instance the term st is equivalent to t since it contains a superset of the literals of s.

Thus, (2.101) can be rewritten as

z's + zt + t. (2.104)

This is simplified by absorption to z's + t. Thus, t is removed from the formula representing

h, and the term t is added to formula representing h2 .

For each term s, only one term t must exist for which it is a superset to place the term into the

formula representing h2 . However, if a term s is a subset of a term t, then it must be tested

against all terms ti to determine which terms of the formula representing hi should be moved to

the formula representing h2. If both subset and superset conditions exist between a term s and a

term t, then both are removed from the formulas representing ho and hl, respectively, and s (or

t) is placed into the formula representing h2 . An algorithm for performing the merge operation is

given by Procedure 2.6 (Merge Operation), listed in Appendix D.

52

Complement. The complementation algorithm presented in this section uses both

the splitting-variable heuristic and the merge operation described previously. Boole's Expansion

Theorem is used to complement a function f in the following manner:

f'= M'fX) + X(X). (2.105)

The complementation operation then is applied recursively to the leaf functions f/z' and f/z.

Expansion is used to complement a function unless a function meets one of the following conditions:

* it is identically equal to 0;

" it is identically equal to 1; or

" the function is unate.

In the first case, 1 is returned as the complement of 0. Sim:'arly, 0 is returned as the complement

of 1. If the function is unate, a special unate complementation procedure--one more efficient than

basic complementation-is applied to the function. An implementation of the general complemen-

tation algorithm is given by Procedure 2.7 (Complementation), listed in Appendix D.

Complementing a Unate Function. Brayton et al. developed a special algorithm

to complement a unate function (Brayt 82:61-62). This algorithm uses the relationship

f= z'(f/z')' + (f/X)' (2.106)

as the basis for computation in which

* the formula representing f/z consists of all terms in F which do not include the literal X and
the terms in F which include the literal z with the literal removed, and

" the formula representing f/x' consists only of the terms in F which do not include the literal
X.

53

The validity of (2.106) is now demonstrated. Suppose a formula F which represents f is positive

in z. Then there are formulas G and H, not involving z, such that

f = iG + H. (2.107)

Complementing both sides of (2.107), we form

ft = z'H' + G'H'. (2.108)

But

f /z' = H (2.109)

f/z = G+H;

hence,

(f/z')' = H' (2.110)
(f/z)' = G'H'.

Then, by substitution in (2.108):

f= z'(f/z')' + (f/I)'. (2.111)

Similarly, if F is negative in z, then

f = z(f/z)' + (f/x')'. (2.112)

54

To minimise computation, Brayton et al. use two heuristics to choose the literal z in (2.106).

First, in the formula F the term with the fewest literals is found. Second, of the literals in the

term selected by the first heuristic, the literal which occurs most frequently in F is selected. The

first heuristic keeps the number of recursions as small as possible since for every recursive call

the number of literals of the term with the fewest literals is reduced by one. Selecting the literal

which occurs most frequently in F makes the number of terms in the formula representing f/z' as

small as possible. If many terms include x, then the number which do not-all of the terms of the

formula representing f/z'---are few. The unate complementation process is easily performed when

the number of terms in a formula is small. (Brayt 82:61)

An implementation of the unate complementation algorithm is given by Procedure 2.8 (Unate

Complementation), listed in Appendix D.

Product. The product algorithm described in this section is taken from (Brayt 82).

It uses both the splitting variable heuristic and the merge operation previously described. Boole's

Expansion Theorem is used to multiply two Boolean functions f and g as follows:

f g = n'(f/X' . g/l') + z(f/Z . g1Z). (2.113)

The product operation is applied recursively to the leaf functions (f/z' • g/n') and (f/z • g/n).

Expansion is used to multiply the functions unless the functions meet one of the following conditions:

1. either function is identically equal to 0;

2. either function is identically equal to 1; or

3. the functions are collectively unate.

If either function is identically equal to 0, then 0 is the result of the product of the functions. In the

event that either function is identically equal to 1, then the result of the product is the value of the

other function. In this case, the equivalent absorptive for nula is returned for the formula which

55

represents the second function. If the functions are collectively unate, then the most efficient way

to multiply the two functions is to use Procedure 2.3 to perform a unate cross-product operation.

The product algorithm is implemented by Procedure 2.9 (Product) in Appendix D.

Subtraction. The subtraction of a Boolean function g from a function f, f - g, is

defined as the portion of f not covered by g, i.e., f. g'. The subtraction algorithm presented in this

section is taken from (Brayt 82). As in the product operation, it uses both the splitting-variable

heuristic and the merge operation previously described. Boole's Expansion Theorem is used to

subtract function g from function f as follows:

f - g = z'(f/Z' - g/z') + n(f/n - g/z). (2.114)

The subtraction operation is applied recursively to the leaf functions (f/n' - g/z') and (flz -

g/z). Expansion is used to perform the subtraction until the functions meet one of the following

conditions:

1. either function is identically equal to 0;

2. either function is identically equal to 1; or

3. the functions are collectively unate.

If either function f is identically equal to 0 or function g is identically equal to 1, then 0 is the

result of the subtraction. If function g is identically equal to 0, then the result of the subtraction is

the function f. If function f is identically equal to 1, then the result is the complement of function

g. If the functions are collectively unate, then f - g is formed by multiplying the function f by the

complement of g. Since g is unate, the complement of g is formed using the unate complementa-

tion algorithm implemented by Procedure 2.8. The product is performed using the cross-product

operation implemented by Procedure 2.2. The result is simplified by forming ABS(F - G). The

subtraction algorithm is given by Procedure 2.10 (Subtraction) in Appendix D.

56

Exclusive-OR. In this section, two algorithrms are presented based on Boole's Expan-

sion Theorem to perform the Exclusive-OR of two Boolean functions f and g. In the first method,

a splitting variable is arbitrarily chosen for expansion. The merge operation is not used in this

procedure after expansion and recursive calculations. In the second technique, the methods devel-

oped by Brayton are extended for use in new procedure for performing the XOR operation. The

splitting variable is chosen using Brayton's heuristic. After expansion and recursive operations, the

merge operation is used to form the resulting formula.

The difference between the two procedures is the amount of time required to form a result

and the simplicity of the result. The first algorithm is significantly faster than the second-roughly

one to four times faster. However, the second technique produces a simpler formula; typically, the

number of terms in this formula is fewer than two-thirds the number of terms in a formula produced

by the first technique. The choice of one procedure over the other is dependent on considerations

such as the need for efficiency and the nature of the application.

In both XOR procedures, Boole's Expansion Theorem is used to form the Exclusive-OR of

functions f and g as follows:

f (Dg = z'(f/z' (glr') + z(flz E glz). (2.115)

The XOR operation is applied recursively to the leaf functions (f/z' E) g/n') and (f/z E g/z).

Expansion is used until the functions meet one of the following conditions:

1. either function is identically equal to 0; or

2. either function is identically equal to 1.

If either function is identically equal to 0, then the result of the XOR operation is the other

function. If either is identically equal to 1, then the result is the complement of the other function.

57

In the first XOR algorithm, of the formulas which represent f and g, the splitting variable

is found by arbitrarily choosing a variable which appears in the smaller of the formulas F and G.

A variable in chosen in the smaller formula to force the decomposition of the function which it

represents; hence, one of the termination conditions stated above is reached more quickly. The first

XOR algorithm is implemented by Procedure 2.11 (Exclusive-OR), listed in Appendix D.

The second XOR procedure is a new algorithm which adapts the methods developed by

Brayton to the XOR operation. The splitting variable is chosen using Brayton's heuristic. If

the functions f and g are found to be collectively unate, then the recursion is terminated and

the Exclusive-OR is calculated directly via the form f g + f • g'. Since it is known that the

functions are unate, the unate complementation algorithm is used to complement the functions.

Additionally, to perform the product operations, the cross-product operation of Procedure 2.2 is

used. After expansion and recursive operations, the merge operation is used to form the resulting

formula. Procedure 2.12 (Exclusive-OR) in Appendix D states the second XOR operation.

Comparison of Functions. In view of (2.38), i.e.,

f =g = f E)g=O, (2.116)

the Exclusive-OR operation may be used to compare two Boolean functions. If the right-hand side

of (2.116) is true, then f = g. On the other hand, if the right-hand is false, then f : g. Hence, to

determine whether Boolean functions f and g are equal, the following actions are taken:

1. f (D g is formed; and

2. f (D g is tested to determine if it is identically equal to sero.

If f E g is identically equal to zero, then the functions are equal. Otherwise, they are not equal.

58

An interesting by-product of the XOR test for equality is produced in the case where functions

are not equal. Given two n-variable Boolean functions f and g, an n-variable function h can be

constructed which shows all circumstances in which functions f and g are different. h is defined in

the following way:

f E g = h (2.117)

Forming the minterm canonical form for h, the minterms of h for which the associated discriminants

are not zero correspond to the minterms of f and g in which their associated discriminants differ.

Conversely, for minterms of f and g in which the respective discriminants are equal, the discrimi-

nants for the corresponding minterms of h are equal to zero. In the case of switching functions, for

minterms of f and g where the associated discriminants differ, the respective discriminant in h is

equal to one.

Example 2.4: Given the equations f(z, y) = z and g(z, y) = y, h(z, y) is found as follows:

h(z,y) = f(, y) E g(-, y)

- (Dy (2.118)
: l ' + my,'.

Minterms and discriminants are summarized in Table 2.5. For the minterm 'x'y the associated

discriminant is 1 in g(x, y) and 0 in f(z, y), i.e., they differ. Hence, the discriminant of the minterm

zay in h(z, y) is equal to 1. For the minterm z'y the associated discriminant is 0 in g(z, y) and

f(z, y), i.e., they are the same. Thus, the discrirninant of the corresponding minterm in h(:, y) is

equal to 0

Exclusive-NOR. Two algorithms based on Boole's Expansion Theorem to compute

the Exclusive-NOR of two Boolean functions f and g are listed in Appendix D. These procedures

59

z y f (z,y)I gz,y) Vhz,y)
00 0 0 0
01 0 1 1
10 1 0 1
11 1 1 0

Table 2.5. Results of Example 2.4

are analogous to the two described for the Exclusive-OR operation. The first XNOR algorithm is

implemented by Procedure 2.13 (Exclusive-NOR).

As in the second XOR method, the second XNOR procedure is a new technique which adapts

the methods developed by Brayton. The splitting variable is chosen using Brayton's heuristic. If

the functions f and g are found to be collectively unate, then the recursion is terminated and

the Exclusive-NOR is calculated directly via the form f' . g' + f . g. Since it is known that the

functions are unate, unate complementation is used to complement the functions. Additiunally, to

perform the product operations, t' e unate cross-product operation is used. After expansion and

recursive operations, the merge operation is used to form the resulting formula. Procedure 2.14

(Exclusive-NOR) states the second XNOR method.

Simplification

A formula F representing a Boolean function f may not be economical. It would be better

to generate an equivalent formula which is simpler is some sense-typically with respect to the

number of terms. Less memory is required to store a formula with fewer terms. Additionally, when

performing operations such a complementation or product, fewer computations are required if the

formulas on which the operations are applied are small. However, although it is advantageous to

have the best formula possible, expending much effort producing such a formula is not desirable.

In such circumstances, a simplification routine is used which produces a good formula (but not

necessarily the best) in an efficient manner.

60

In this section a number of simplification routines are described which produce good formulas

efficiently. Included among these procedures is one which is based on Boole's Expansion Theorem

as well as the merge operation described in previous sections and an absorption-based simplification

routine.

Expansion-Based Simplification. The simplification algorithm discussed in this section

is taken from (Brayt 82). Both the splitting variable heuristic and the merge operation described

in preceding sections are used. Boole's Expansion Theorem is used to simplify a function f in the

following manner:

f = n'(f//') + (f//). (2.119)

The simplification operation is applied recursively to the leaf functions f/z' and f/z until a point

is reached at which the functions are unate; the functions are known to be uiaate when the formulas

which represent the functions are unate in all of their variables. At this point the equivalent

absorptive formula is returned as the result. The merge operation is applied to develop a formula

to represent f by combining the simplified formulas representing f/z' and f/z. The resulting

formula which represents f generally is much simpler with respect to ti:- number of terms and

literals than the original formula; however, this outcome is not guaranteed. The simplification

algorithm is implemented by Procedure 2.15 (Simplification) in Appendix D.

Absorption- Based 'Rimplification Techniques.

Quick Simplification. In cases where speed of simplification is important-at the

expense of nct generating as good a formula as in cxpansion-based simplification-an absorption-

based simplification technique may be used to generate a simplified formula. Such a procedure is

described in this section.

61

One of the underlying concepts used by the procedure in this section is that of the consensus

of two terms. Two terms are said to be opposed in the event that a variable is opposed, i.e., exists

complemented in one term and uncomplemented in the second, between the two terms. When

exactly one variable is opposed between the two terms, then by (2.32) a new term may be formed

which is called the consensus of the terms. The consensus of two terms s and t, denoted c(s, t), is

created by deleting the literals opposed in the terms and forming the conjunction of the remaining

literals of each term. If any literals appear in both s and t, the duplicate literals are deleted. Term

c(s, t) is referred to as a consensus term; terms a and t are called its parent terms.

Given two terms s and t which have one opposed variable, in some cases it is advantageous

to form c(s, t) and in other situations it is not. In general, it is desirable to form the term c(s, t)

if it absorbs at least one of the terms s or t. If c(s, t) absorbs at least one of the terms, then by

(2.25) the absorbed term may be deleted. By following this methodology, a formula is developed

which has fewer terms-with many of the remaining terms having fewer literals-than the original

formula. Procedure 2.16 (Simplification) in Appendix D is a simplification procedure in which

terms are compared on a term-by-term basis. When it is possible to form a consensus term which

absorbs at least one of its parent terms, the consensus term is formed and the absorbed parent(s)

are deleted.

Relative Simplification. In this section, a new concept called relative simplification

is presented which has proven to be useful in procedures discussed in subsequent chapters. Of

particular importance is the Relative Simplification Theorem which facilitates the replacement of

the sum of two formulas F and G, i.e., F + G, with a simpler equivalent formula.

Given two Boolean functions f and g and SOP formulas, F and G, wh:.h represent them, the

formulas may be examined on a term-by-term basis in which every term in F is compared to every

term in G. This may be done in order to generate all of the consensus terms that c.,n be formed

between the terms in F and the terms in G. In a special case, consensus terms are generated

62

only when they absorb the parent in one of the formulas. If consensus terms are formed only

when they absorb their respective parent terms in F, and these terms replace their parent termu

to form a new formula F, this is called sim-plifying F relative to G. We call this process relative

simplification. In forming the new formula F a new function f is created. Procedure 2.17 (Relative

Simplification) in Appendix D implements the process of relative simplification. An application of

relative simplification is now introduced.

Let ABSREL(F, G) be an operator which returns a formula F constructed from F by re-

moving all terms absorbed by G. Let SIMPREL(F, G) be an operator which returns a formula

F formed by simplifying F relative to G. Furthermore, let P denote the formula developed by

simplifying F relative to G, i.e.,

F SIMPREL(F, G). (2.120)

Given the functions f, g, and f represented by F, G, and F, respectively, it can be demonstrated

that f + g =] + g. We show that f + g and f + g are equal by establishing that they are the same

function; this is demonstrated by showing 'hat the formulas F + G and P + G are equivalent.

Relative Simplification Theorem: Given functions f and g, represented by formulas F and G,

respectively, and a function f represented by the formula F which is defined as follows:

= ABSREL(F,G) (2.121)

F = SIMPREL(F,G), (2.122)

the following statement is true

f + g = f + g. (2.123)

63

Proof. Using the property of absorption (2.25), the formula F + G is equivalently expressed by

the formula F + G.

By simplifying P relative to G, consensus terms are created between terms in P and G only

when the resulting terms absorb their parent terms in F; the resulting terms replace their parent

terms in P to form F.

The property of consensus (2.32) allows the replacement of a formula by an equivalent formula

which contains consensus terms formed from parent terms in the original formula. Let h be the

set of consensus terms resulting from the consensus of terms in F and G which are formed only if

the consensus terms absorb thc: parent terms in F. Then P + G may be expressed equivalently

by P + G + H. By definition, all terms in H absorb terms in F. Again applying the property of

absorption, F + H may be equivalently expressed by a formula comprised of the terms in H plus

the terms in F not absorbed by the terms in H. The resulting formula is defined identically as the

formula F, i.e., it is the formula F. It follows that F + G + H is equivalent to F + G.

Thus, F + G - F + G; whence, f + g = i + g. This completes the proof. 0

An application of the Relative Simplification Theorem is to replace the formula F + G repre-

senting the function f + g by the equivalent formula F + G representing f + g. Since P contains

fewer terms and literals than does F, it is beneficial that an operation that is to be applied to the

function f +g be instead applied to the function I+g. In general, fewer operations must be applied

when using a smaller formula than when using a larger one.

The Blake Canonical Form

A B-olean function f is said to be included in a Boolean function g, denoted f :5 g, if

f-g' = 0. (2.124)

64

A term p is called an implicant of a Boolean function f if p < f. If a function f is expressed in

sum-of-products form, all terms in the formula are "mplicants of f. A prime implicant (PI) of a

Boolean function f is an implicant of f such that it is no longer an implicant if any of its literals

is removed (Quine 52). The following theorem formalizes the relationship between implicants and

prime implicants:

If r is an implicant of f, then there is a prime implicant p of f such that r < p.
(Brown 90:245)

Thus, the existence of an implicant implies the existence of a prime implicant which includes it.

Boolean axioms, and theorems such as consensus and absorption, are used in the literature

to reduce a Boolean formula which represents a function to a form which consists of the prime

implicants of the function. An application is minimization, one approach to which is to reduce an

SOP formula to an equivalent formula which includes the smallest number of prime implicants that

still represent the same function. The impetus for minimization is to represent a Boolean function

by a formula that can be implemented in hardware with the smallest number of components.

Example 2.6: The only term in the n-variable Boolean formula F given by

zyz + z'yz' + X' 'z' + nX./z' (2.125)

that is a prime implicant of the function f is xyz. The formula may be transformed to an equivalent

formula consisting only of prime implicants by application of Boolean axioms and theorems. An

equivalent formula which consists only of prime implicants is:

zyz + y'z' + z'z'. (2.126)

65

Another application for the prime implicants of a formula is for Boolean inference. Boolean

inference is "the extraction of conclusions from a collection of Boolean data" (Brown 90:72). The

basis for Boolean inference is the Blake canonical form. The Blake canonical form, denoted BCF(f),

of a function f is the disjunction of all of the prime implicants of f. The Blake canonical form

is a complete and simplified representation of all possible conclusions that can be inferred from

a Boolean equation. Methods for generating BCF(f) are the ezhaustion of implicants, iterated

consensu, and multiplication. Blake invented the methods of iterated consensus and multiplication

(Blake 37). Iterated consensus also is discussed in (Quine 52); additionally, the multiplication

method is found in (Samso 54). Many references on switching theory refer to the sum of all of the

prime implicants of a Boolean function as the complete sum of the function; however, it is more

suitably termed a canonical form. Brown has designated the complete sum the "Blake" canonical

form in deference to Blake whose seminal work on the generation of prime implicants of a Boolean

function preceded and encompasses most work recognized today as the "original" work on the

generation of prime implicants of a function (Blake 37)(Brown 90).

Example 2.7: The formula

zyz + y' + z'z' (2.127)

which represents the n-variable Boolean function defined in Table 2.2 is its Blake canonical form

because the formula consists of all of the prime implicants of the function.

In the process of reducing a given formula to prime implicants, superfluous terms are often

generated. A term p is superfluous in a sum-of-products formula, p + r, if p + r is equivalent to the

formula r (Quine 52:522). A superfluous term is also called a redundant term. A literal of a term

in a sum-of-products formula is superfluous if it can be removed without changing the formula to

a non-equivalent formula. Quine called a "formula irredundant if it has no superfluous clauses and

none of its clauses has superfluous literals" (Quine 52:523).

66

Once the Blake canonical form BCF(f) is generated for a function f, many prime implicants

may be deleted as redundant. A prime implicant p which cannot be deleted from the Blake canon-

ical form without changing the formula to a non-equivalent formula is called an essential prime

implicant. Therefore, an essential prime implicant appears in every irredundant formula which can

represent a Boolean function. Let f,,, be the sum of the essential prime implicants of f. If a prime

implicant p of f which is not an essential prime implicant meets the condition

p < feoo, (2.128)

then p is called an absolutely inessential prime implicant or an inessential prime implicant. An

irredundant formula cannot contain an inessential prime implicant. All prime implicants which

are neither essential nor inessential are called conditionally- eliminable prime implicants. 1 The fact

that a prime implicant is conditionally eliminable rather than inessential does not guarantee that

it will appear in an irredundant formula which represents a function f; there may be conditionally-

eliminable prime implicants which do not appear in any irredundant formula (Gane 64:179).

Example 2.8: Suppose a function f is given for which BCF(f) is the formula

ac'e' + a'c'd + cd'e + c'de' + bce + bcd + a'b'cd' + a'b'ce' + a'de' + bde' + a'bd. (2.129)

The terms ace', a'cd, and cd'e are essential prime implicants. The term cde' is an inessential

prime implicant because

c'de' < ac'e' + a'c'd + cd'e. (2.130)

'The term conitionally eiminable is borrowed from Chang and Mct, (Chang 65) who used this term to denote
prime implicants that appear in at least one-but not sil-irredundant SOP formulas that may represent a function.
The term is used in a somewhat broader sense in this work.

67

The remaining prime implicants-bce, bcd, a'b'cd', a'b'ce', a'de', bde', and a'bd-are conditionally

eliminable. The irredundant formulas that represent f are

acle' + a'c'd + cd'e + a'de' + a'b'cd' + bcd

o'e' + a'c'd + cd'e + a'b'ce' + bde' + bce (2.131)
ace' + a'c'd + cd'e + a'de' + a'b'cd' + bde' +bce
ac'e' + a'c'd + cd'e + a'b'ce' + bcd.

The essential prime implicants appear in every irredundant formula. Of the conditionally-eliminable

prime implicants, all except the term a'bd appear in at least one irredundant formula.

Two techniques will be described to generate the Blake canonical form of a Boolean function.

The first method is based on the specialized form of iterated consensus called successive eztraction.

The second procedure uses recursive multiplication to form BCF(f). In this method, a new

heuristic is introduced which significantly improves the efficiency and practicality of the recursive

multiplication method.

Successive Extraction. Iterated consensus generates the Blake canonical form of an SOP

formula by repeated application of the following rule:

If the formula contains a pair r, s of terms whose consensus c(r, s) exists and
is not included in any term of the formula, then adjoin c(r, a) to the formula.
(Brown 90:77)

Blake invented the method of iterated consensus (Blake 37); the technique is also discussed in

(Quint 52), (Quine 55), and (Samso 54).

A refinement of iterated consensus is a process called successive eziracfion. In this form of

iterated consensus, all of the variables in the given formula are found which have opposed literals.

Using this set of variables, consensus is performed within the formula on a letter-by-letter basis. For

example, suppose the variables a and b are opposed within a formula. F:rst, all possible consensus

68

terms would be formed between terms where the variable a is opposed. Then, all possible consensus

terms would be formed with respect to sets of terms where b is opposed. If there were more opposed

variables, the process would continue until the set of opposed variables was exhausted. Blake

mentioned this approach to iterated consensus in his work (Blake 37), although it is commonly

attributed to Tison (Tison 67). Procedure 2.18 in Appendix D generates the Blake canonical form

of a function using successive extraction.

Recursive Multiplication. As is the case of iterated consensus and successive extraction,

Blake also invented techniques based on multiplication to generate the sum of all of the prime

implicants of a function (Blake 37). A theorem in Brown (Brown 90:81) states that if we are given

a function f and let x be one of its variables, "then the Blake canonical form of f is given by

BCF(f) = ABS((z' + BCF(f/z)) x (z + BCF(f/z')))." (2.132)

The x operation is the cross-product operation implemented by Procedure 2.2. Note that BCF(f)

is formed in (2.132) by recursively forming BCF(f//) and BCF(f /z'). This recursion is performed

repeatedly until f meets one of the following conditions:

f f is identically equal to 1;

f I is identically equal to 0; or

o f is recognized to be a unate function, i.e., f is represented by a formula F in which F consists
only of unate variables.

When f is identically equal to 0 or 1, the formula which represents 0 or 1 is returned as the result

of BCF(f). In the event that f is represented by a formula F consisting only of unate variables,

then ABS(F) is returned as the result of BCF(f).

69

Brown (Brown 90:82-83) has shown that the efficiency of forming BCF(f) using recursive

multiplication may be improved by changing the form of (2.132) and restricting the scope of the

ABS operation. This in done in the following manner:

BCF(f) = ABS(G + H) (2.133)

in which

G = x BCF(f/z') + z x BCF(f/z) (2.134)

H = BCF(f/z) x BCF(f/z'). (2.135)

However, G is an absorptive formula because BCF(f/z') and BCF(f/z) are in Blake canonical

form. Additionally, no term in G will absorb a term in H because every term in G includes the

litera] z or z' whereas every term in H will include neither z nor z'. Therefore, the only absorptions

which must be perfo-,. ted are:

* absorptions within H; and

* absorptions of terms in G by terms in H.

Hence, equation (2.132) may be expressed as

BCF(f) = ABS(H) + ABSREL(G, ABS(H)) (2.136)

where

* G and H are given by (2.134) and (2.135), respectively; and

* ABSREL(P, Q) is an operator which returns the formula constructed from P by removing
all terms absorbed by Q.

70

Previous implementations of this recursive multiplication algorithm arbitrarily chose one of

the opposed variables in the formula F representing f to be z in (2.132). Upon cioser examination

of (2.134), it may be noted that G is formed in a manner analogous to the expansion-based oper-

ations described in earlier sections. Based on a rationale similar to the splitting-variable heuristic

implemented by Procedure 2.5, we present a new heuristic for choosing the variable X in (2.132);

this heuristic significantly improves the efficiency and practicality of the recursive multiplication al-

gorithm. The choice of z keeps the number of terms in the formulas representing f/z and f/z' small

as well as balanced. Additionally, the choice of z causes f/z and f/z' to become unate quickly; this

property is useful due to the fact that having a unate function is one of the termination conditions

for the recursion.

To apply this heuristic to an SOP formula F, the following characteristic numbers are deter-

mined for each variable zi that appears in F:

" n,: the number of terms in F in which the literal z' appears; and

" n,: the number of terms in F in which the literal zi appears.

Each variable is scored using the metric

74 * n* (2.137)

The variable zi associated with the i with the highest value for (2.137) is returned as the vari-

able z used in (2.136). A variable so chosen is called a modified splitting-variable. The heuristic

for determining the modified splitting-variable is implemented by Procedure 2.19 in Appendix D.

An algorithm which uses Procedure 2.19 and (2.136) to form BCF(f) is implemented by Proce-

dure 2.20, listed in Appendix D.

Procedure 2.20 has been applied by the author to generate the Blake canonical form for

a variety of Boolean functions. For certain classes of functions, it is significantly faster than

71

Procedure 2.18. This was not the case, however, prior to the development of the heuristic for

choice of variable z at each stage of recursion. The modified splitting-variable heuristic decreases

both the time and memory required to form BCF(I) via recursive multiplication.

Boolean Analysis

Boolean Systems. An n-variable Boolean system S(X) on a Boolean algebra B is a collec-

tion

g(X) = hi(X)

g2(X) = h2(X)

(2.138)

gk (X) = hk(X)

of simultaneously-asserted equations, for which gi(X) and h,(X) are n-variable Boolean functions

on the Boolean algebra B. The notation X denotes the vector (z 1 , z2,... , z,). S(X) is a predicate

defined by system (2.138). For a substitution A E Bn for X in system S(X), S(A) is said to be

true if each equation in (2.138) is an identity; otherwise, S(A) is said to be false. A substitution

A E Bn for X in system S(X), which causes S(X) to be true is called a solution of system S(X). A

Boolean system is called consutent if it has at least one solution. If it does not have any solutions,

then it is said to be inconsistent.

Let SI(X) and S2 (X) be two n-variable Boolean systems. SI(X) is called an antecedent of

S2(X) if every substitution A E B '
n for X that causes SI(X) to be true also causes S2 (X) to be

true. That SI(X) is an antecedent of S2(X) is denoted by SI(X) => S2 (X). S2 (X) is called a

conjequent of SI(X). If SI(X) and S2(X) are both a antecedent and consequent of each other,

i.e., if each has exactly the same Fket of solutions, then they are called equivalent systems. This is

denoted SI(X) 4==> S 2 (X).

72

Reduction. Any system of Boolean equations can be reduced to a single Boolean equation

of the form f(X) = g(X), where g(X) is any preassigned Boolean function (Rudea 74:116-117). In

particular, we may choose g(X) to be 0 or 1.

0-Normal Form. The reduced form f(X) = 0 is derived in the following manner. A

system

g1(X) = h,(X)

92(X) = h 2(X)

(2.139)

gk(X) = hk(X)

of Boolean equations can be transformed, using property (2.38), into the equivalent system

gj(X) E h1 (X) = 0

g2(X) G h2 (X) = 0

(2.140)

gk(X) E h(X) = 0.

This system of equations can then be transformed into a single Boolean equation by Property (2.40).

Since all of the equations must be simultaneously true, they are "&ed" together as in Equa-

tion (2.40). However, the "&" symbol is dropped for notational simplicity. The resulting single

Boolean equation is

f(X) = 0 (2.141)

for which f is defined by
&

f = E(g, (D h.). (2.142)
i=1

When a system (2.139) of equations is reduced to an equivalent form (2.141), (2.141) is called a

0-normal form of (2.139).

73

1-Normal Form. The reduced form p(X) = 1 for a system of equations is similarly

derived. The system of equations (2.139) can be transformed into an equivalent system using

property (2.39):

gl(X) G h1 (X) = 1

g2(X) ® h2(X) = 1

(2.143)

gk(X) G hk(X) = 1.

This system of equations is transformed into a single Boolean equation by property (2.41). Again,

the "&" symbol is dropped for notational simplicity. The resulting single Boolean equation is

p(X) = 1 (2.144)

for which p is defined by
k

p = l(g,0 (hD). (2.145)
i=1

When a system (2.139) of equations is reduced to an equivalent form (2.144), (2.144) is called a

1-normal form of system (2.139).

0-Normal Form Versus 1-Normal Form. The utility of the f(X) = 0 form versus

the p(X) = 1 form is dependent on the application (Rudea 74:52). Conversion between the two

forms is done by complementation of both sides of the equality, i.e.,

f'(X) 0 * f(X) -- 1 (2.146)

and

p'(X) = 1 <* p(X) - 0. (2.147)

74

Extended Verification Theorem. An important the-rem in Boolean algebra is the Ez-

tended Verification Theorem, stated as follows:

Let f, g : Bn -* B be Boolean functions, and assume that the equation f(X) = 0 is consistent.

Then the follouing state ments are equivalent:

f(X) = 0 == g(X) = 0 VX E B-, (2.148)

g(X) :_ f(X) VX E Bn, (2.149)
g(X) < f(X) VX E {0, 1In. (2.150)

(Rudea 74:100)

75

Eliminants and Elimination.

The Conjunctive Eliminant. Let f : B3 - B be an n-variable Boolean function

expressed in terms of variables z,,..., z, and let T = {Zh ... z} consist of the first m elements

of {z,,..., :}. The conjunctive eliminant of f with respect to T, denoted by ECON(f,T), is

defined by

ECON(f, {z,.,z)= H f(a,, ... , am, zm+,,..., zn). (2.151)

Although the first m variables are used in the above definition, the conjunctive eliminant of a

function may be found with respect to an arbitrary subset of the variables.

The following theorem follows from the definition of the conjunctive eliminant:

Let f : Bn --+ B be an n-variable Boolean function ezpressed in terms of variables
z, ..., ,,, and let R, S, and T be subsets of {z,... z,}. Then the following statements
are true:

1. ECON(f, 0) = f;

2. ECON(f, {,}) = f(0, Z2,. .. ,n) f(1, Z2,..., z.); and

S. ECON(f, R U S) = ECON(ECON(f, R), S).

(See (Brown 90:100).)

The Disjunctive Eliminant. Let f Bn --- B be an n-variable Boolean function

expressed in terms of variables X1 ,..., z, and let T f{z, ... z,} consist of the first m elements of

{zi, zn}. The disjunctive eliminant of f with respect to T, denoted by EDIS(f, T), is defined

by

EDIS(f,{z,,.. .,}) = f(a,,.. ., am, Zm+,.. ., Zn). (2.152)
(41 2.)E(o,1}-

As in the conjunctive eliminant, the disjunctive eliminant of a function may be found with respect

to an arbitrary subset of the variables by which the function is expressed.

76

The following theorem follows from the definition of the disjunctive eliminant:

Let f : B" - B be an n-variable Boolean function eopressed in terms of variables
zil..., z,, and let R, 5, and T be subsets of {i, ... z}. Then the following statements
are true:

1. EDIS(f, 0)= f;

R. EDIS(f, {z,}) = f(0, Z23 ... , z,) + f(l, z2,..., z.); and

3. EDIS(f, R U S) = EDIS(EDIS(f, R), S).

(See (Brown 90:100).)

A simple method for deriving the disjunctive eliminant of a Boolean function f is by trans-

forming the formula that represents the function to any equivalent sum-of-products form and then

replacing the literals of the variables to be eliminated, whether in complemented or uncomplemented

form, by 1 (Mitch 83).

Elimination. Given a Boolean equation, it is possible to determine constraints on cer-

tain variables in the absence of information with respect to the other variables using a process called

elimination. Equations deduced as the result of elimination are called resultants of elimination.

Using the definition of the conjunctive eliminant, a variable may be eliminated from an

equation to form an implied equation:

f(X) = 0 :- ECON(f, {zi}) = 0. (2.153)

The equation ECON(f, {m}) = 0 is called the resultant of elimination of zi from equation f(X) =

0.

Using the definition of the disjunctive eliminant, a variable may be similarly eliminated from

an equation to deduce an implied equation:

p(X) = 1 *: EDIS(p, {z,}) = 1. (2.154)

77

The equation EDIS(p, {z}) = 1, like the equation ECON(f, {,}) = 0, is the resultant of elimi-

nation of z, from equation p(X) = 1.

Theorems Involving Eliminants. A number of theorems pertaining to eliminants

are useful in Boolean reasoning. These theorems are taken from (Brown 90:103-107).

Let f : B" --* B be an n-variable Boolean function ezpressed in terms of variables z,. . ., xn and

let T be a sabset of {zi,...a.,}.

1.

BCF(ECON(f, T)) = -(terms of BCF(f) not involving arguments in T). (2.155)

The s ulting formula is in Blake canonical form.

2.

ECON(f, T) < f < EDIS(f, T). (2.156)

3. Let U be a p-element subset of {x, ... z,}, and let t be a q-argument term whose arguments

are disjoint from those in U. Then

ECON(f/t, U) = (ECON(f, U))/t, and (2.157)

EDIS(f/lt, U) = (EDIS(f, U))/t. (2.158)

4.

(ECON(f,T))' = EDIS(f',T), and (2.159)
(EDIS(f,T))' = ECON(f',T). (2.160)

78

Formation of the Conjunctive Eliminant. By its definition, one way to form the

conjunctive eliminant, ECON(f, {z}), is

ECON(f, {z}) -f/a'. f/z. (2.161)

However, it is more efficient to form the conjunctive eliminant of a function f with respect to a

single variable z in the following manner:

1. Partition the SOP formula F which represents f into terms which include the literal z', terms
which include the literal z, and terms which include neither z nor z'.

2. Given the partitioning, express F in the following manner:

f (z, y,....= z'p(y,....) + zq(y,....) + r(y,.... (2.162)

where

* p comprises the terms in F which include the literal z', with the literal divided out,

* q comprises the terms in F which include the literal z, with the literal divided out, and

e r comprises the terms in F which include neither z nor z'.

3. Form ECON(f,{}):
ECON(f, {z}) = p. q + r. (2.163)

This basic process for forming a conjunctive eliminant with respect to a variable was originally

discussed by (Schr6 90). Constructing the eliminant in this fashion reduces the number of terms

involved in the multiplication operation; only terms of the original formula which include the

variable z are involved in the multiplication p. q. When the conjunctive eliminant is formed with

respect to a set of variables, an operation of the form (2.163) is executed in turn for each variable.

After each iteration, simplification of the resulting formula reduces the number of computations

that are performed in later stages.

Let T be the set of variables with respect to which we are forming the conjunctive eliminant.

The order in which variable are selected from T to form the conjunctive eliminant can be com-

putationally significant. A heuristic which works well is to select the argument at each iteration

79

for which the multiplication operation p. q in (2.163) will be the least computationally intensive.

One way to predict the complexity of the potential multiplication operation for each variable is

to determine the number of term-by-term multiplications that would have to performed between

P and Q using the cross-product operation. Hence, the following metrics are determined for each

variable z in T:

* no: the number of terms in F in which the literal o' appears, and

" n1 : the number of terms in F in which the literal z appears.

The product

no * ni (2.164)

for each variable z is the number of multiplications that would be performed using the cross-product

operation. The variable z is selected for which no * nj is the lowest.

The best variable z to select from T to form the right side of (2.163) is one for which no*n1 = 0;

such a variable, if it exists, is unate in the formula F which represents f. In this case, one of either

P or Q would consist of no terms. Equation (2.163) would become

ECON(f, {z) = r (2.165)

where r comprises the terms in F which do not include the variable M. Hence, the formation of an

eliminant with respect to a unate variable z consists of simple term deletions.

Suppose the set T of variables contains a subset U C T consisting of two or more unate

variables. In this case, the variable z E U which appears in the greatest number of terms in F with

respect to the set of variables in U would be selected to form (2.165). This would cause the greatest

number of terms to be deleted from F at each iteration; the resulting formula which represents r

80

would consist of the fewest possible terms. The subsequent operations for the remaining variables in

T would tend to require fewer computations than those necessary if a different ordering of variables

in U were used.

In some cases variables z, y E T may exist for which the corresponding products no * nj are

nonsero and equal. In such an instance the variable would be selected for which the numbers of

terms in formulas representing p and q differ more. Suppose that for variable z the formula P

consists of two terms and Q consists of two terms. Assume that for y the formula P includes four

terms while Q has only one term. For both z and y, we would generate no * nj = 4. However, we

select y rather than z because the numbers of terms in the formulas P and Q differ more for y.

The rationale for this choice is that when tne product p q in (2.163) is formed using Procedure 2.9,

there is a tendency to reach a termination condition for the recursive operations faster when one of

the formulas, P or Q, contains a small number of terms. The formula containing the least number

of terms is the smaller of P and Q when the numbers of terms in P and Q differ the most, e.g., for

y the formula Q contains only one term.

After reviewing all of the conditions for which one variable is chosen over another in T to

compute (2.163), it is observed that the variable that is selected in all cases is the one which appears

least opposed in the formula F. This is opposite of the criterion used to select the splitting variable

in Procedure 2.5. Hence, the variable that is selected from T at each iteration is called the "least

binate' variable relative to the set of variables in T.

To calculate the least binate variable, the following calculation is performed for each z E T:

"y * (n0 * n1) - max(no, n 1) (2.166)

where -y is a large constant. A value of -y > 10 is sufficient. The variable z is selected for which

(2.166) has the smallest value. If U C T is unate in F, then y * (no * n1) = 0 for variable in

U. Subtracting max(no, nt) forces the selection of the variable which appears in the most terms.

81

Similarly, for variables where 'y*(no*nl) is equal, the variable will be selected for which max(no, ni)

is the greatest-the variable which appears least opposed in F.

Some examples of using (2.166) to select a variable z from T are given in Table 2.6. Note

that for y = 1, a variable for which no = 1 and n,1 = 10 would be selected rather than one for which

no = 2 and n, = 2. A value of -y = 10 precludes such an anomaly. Procedure 2.21 (Least-Binate

Argument) in Appendix D is an original technique based on the foregoing discussion which selects

the least binate variable from a set T of variables.

no ni no * n1 max(no, ni) Value of (2.166) (-y = 1) Value of (2.166) (,y = 10)
0 5 0 5 (1-0)- 5 = -5 (10.0)- 5 = -5
0 6 0 6 (1-0) - 6 = -6 (10. 0) - 5 = -6
1 4 4 4 (1-4) - 4= 0 (10.4) - 4 =36
2 2 4 4 (1. 4) - 2 = 2 (10.4)- 2 =38
1 10 10 10 (1.10)- 10 =0 (10.10)- 10 =90
2 5 10 5 (1- 10) - 5 =5 (10.10)- 5 =95
2 10 20 20 (1-20)- 20 =10 (10.20) - 10 =190
4 5 20 5 (1-20)-5= 15 (10.20) - 5 =195

Table 2.6. Calculation of Least-Binate Variable

Procedure 2.21 is applied in Procedure 2.22 (Conjunctive Eliminant - ECON), listed in Ap-

pendix D, which forms the conjunctive eliminant of a function f with respect to a set T of variables.

The Tautology Problem. An important problem in Boolean reasoning is to determine

whether an equation of the form

tl + t2 +"" + t = 1, (2.167)

where each t is a term, is an identity. If (2.167) is an identity, then the function tl + t2 +-.-+ th is

called a tauiology. Two algorithms are presented in tnis section for determining whether a function

is a tautology. Additionally, a problem which applies these algorithms is introduced.

82

Algorithms for Determining Tautology. Brayton et al. have developed a tautology

algorithm which uses both Boole's Expansion Theorem and the splitting-variable heuristic presented

earlier (Brayt 82). A key idea incorporated in the algorithm is that if any unate variables are

identified in a formula F representing a function being tested for tautology, all terms which include

the unate variables may be deleted. It can be shown that if a term of F includes a unate variable,

then F is a tautology if and only if the remaining terms make F a tautology (Brayt 82:60-61).

Boole's Expansion Theorem is applied recursively until a leaf function meets one of the following

conditions:

e f is identically equal to 0, or

o f is identically equal to 1.

If all resulting leaf functions meet the f = 1 criterion, then the function is a tautology; otherwise,

the function is not a tautology. Procedure 2.23 (Test for Tautology) in Appendix D implements

the tautology algorithm developed by Brayton.

The second algorithm for determining whether a function f is a tautology was developed by

Zakrevskii (Zakre 69:207-213). Zakrevskii's algorithm is similar to the one developed by Brayton

in that Boole's Expansion Theorem is applied in a like fashion. Zakrevskii tests for the special

circumstance that a term exists in the formula F which consists of a single literal z; Zakrevskii's

test is actually a special case of Brayton's test for unate variables inasmuch as the function f is

unate in the literal z. Boole's Expansion Theorem is applied to derive

f : + /(2.168)
= z'.*f/z'+ z.1. (2.169)

83

Since F includes the term z, when f/z is formed a function is derived which is identically equal

to 1. In this situation, f is a tautology if and only if f/n' is a tautology. Zakrevskii's test for

tautology is implemented by Procedure 2.24 (Test for Tautology) in Appendix D.

Of the two algorithms presented, Zakrevskii's algorithm is typically more efficient when the

number of terms in a formula is less than 50. Brayton's algorithm is best applied when the number

of terms is larger.

Sum-to-One Theorem. An application of the tautology test used in this work is to

determine whether a given term t is included in a function f, i.e.,

t < f. (2.170)

The relation of (2.170) to the tautology problem is given by the following theorem:

Let f be a Boolean finction and let t be a term. Then

t <f t=> f/t = . (2.171)

Thus, to determine if a term t is included in a function f, the function f is divided by t and fit is

tested to determine if it is a tautology.

Tests for Inclusion and Equivalence

Tests for Inclusion. One way to determine if a Boolean function g is included in a Boolean

function h, i.e.,

g < h, (2.172)

84

is to determine if each term t in the formula G which represents g is included in h. This determina-

tion may be made by applying (2.171). Hence, if h/t = 1 for every term t in G, then the function

g is included in the function h. If a function g in included in a function h, h is said to cover g.

The foregoing test for inclusion is implemented by Procedure 2.25 (Test for Inclusion), listed in

Appendix D.

A second test for inclusion of one function in another is to use the definition of the inclusion

relation and the subtraction operation. By the definition of the inclusion relation,

g :_ h 4-- gh' =O. (2.173)

Hence,

g (h 4* g - h =O. (2.174)

Thus, the inclusion of g in h is tested by using the subtraction operation to form g - h and

examining the result for equivalence to zero. A procedure which implements this test is given by

Procedure 2.26 (Test for Inclusion) in Appendix D.

Tests for Equivalence. To test two Boolean functions g and h for equivalence, the functions

may be tested for reciprocal inclusion, i.e.,

g= h-4=*g 5 hand h<g. (2.175)

Procedure 2.27 (Test for Equivalence), listed in Appendix D, applies (2.175) to test two functions

for equivalence.

85

The test (2.175) for equivalence may be expressed equivalently as follows:

g = h 4=€ gh' + g'h = 0. (2.176)

Since gh' + g'h defines the Exclusive-OR operation, XOR may be used to test two functions for

equivalence. Procedure 2.28 (Test for Equivalence) in Appendix D uses the XOR operation to test

two functions for equivalence.

Tests for Membership in an Interval. When working with intervals, it often must be

determined if a function f exists within a specified interval [g, h], i.e.,

g < f < h. (2.177)

Procedure 2.29 (Test for Membership in Interval) in Appendix D tests if a function f exists within

an interval [g, h] using Procedure 2.25.

An alternative method of testing for membership in an interval would be to use Procedure 2.26

to test the validity ofg-f =0and f -h=0. Ifg-f =0andf-h=0, then g _ f _ h. Such

a technique is given by Procedure 2.30 in Appendix D.

Computational Results. A typical application of the test for equivalence is to verify that a

new formula P developed as the result of minimization represents the same function f as an initial

formula F. Procedure 2.27 is a general-pt.:pose procedure used to test for equivalence. However,

the difference in performance betwen Procedure 2.27 and that of Procedure 2.28 is considerable

in certain cases. When a posi ' ve result is expected, i.e., g = h, Procedure 2.28 calculates a result

much faster than does Procedure 2.27. The reason for this outcome is that when Procedure 2.27

calculates a positive result, every term in G is tested for inclusion in H and every term in H is

tested for inclusion in G. On the other hand, when a negative result is expected, Procedure 2.27

86

executes considerably faster than Procedure 2.28. The failure of the inclusion test for one term is

all that is required to determine that formulas are not equivalent. A heuristic which works well in

forcing a negative result more quickly is to test terms for inclusion which have a large number of

literals prior to testing terms which have a small number of literals.

In the general case, Procedure 2.29 is used to test if g _5 f h. Using Procedure 2.29, every

term of G is tested for inclusion in f and every term of F is tested for inclusion in h. Similar to

the test for equivalence, when a positive result is expected the method based on Procedure 2.30

produces a result considerably faster than when using Procedure 2.29. Using Procedure 2.29, every

term must be tested for inclusion to positively determine inclusion of functions. However, when a

negative result is expected, Procedure 2.29 executes faster than Procedure 2.30.

Irredundant Formulas

In this section, techniques are described for generating irredundant sums of products formulas

to represent both functions and intervals.

Sub-Minimal Formulas for Functions. Quine called a formula irredundant if it has no

superfluous terms and none of its terms has superfluous literals (Quine 52). Thus, all irredundant

formulas consist of prime implicants. A way to generate an irredundant formula to represent a

function f is to form BCF(f) and then to test each term of BCF(f) for redundancy. If a term is

redundant, it is deleted; otherwise, it is kept. However, the deletion of a term may cause another

term, previously redundant, no longer to be redundant. Because of this characteristic, it follows

that the ordering of terms in the process of testing and deleting terms is important.

Consider any subformula P of BCF(f) that represents f. A term t that appears in F whose

removal from F causes the formula to no longer represent f is called a conditionally-essential prime

implicant provided that t is not an essential prime implicant of f. In developing an irredundant

87

formula, the objective 'a to identify a near-minimal set of conditionally-essential prime implicants

to be contained in the irredundant formula.

A systematic way to form such a set is to sort the terms of BCF(f) a priori such that the

terms with ihe greatest number of literals are tested for redundancy prior to testing the terms with

the fewest number of literals. The reason for this methodology is that if the cost of a formula is

based on the number of literals of its constituent terms, it is advantageous to test and delete the

terms with the greatest number of literals prior to testing the terms with fewer literals. It is not

desirable for many terms with large numbers of literals to become conditionally essential due to

the deletion of a few terms with small numbers of literals. This process does not guarantee that a

len it-cost formula is developed, although the results are generally good if not minimal. Hence, a

formula developed in this fashion is called a near-minimal or sub-minimal formula. An irredundant

formula also is called an irredundant disjunctive form (IDF) for a function. There typically are

many irredundant disjunctive forms which may represent a function. Procedure 2.31 in Appendix D

implements a process for generating a sub-minimal formula for a function; it is assumed that the

Blake canonical form for the function is generated prior to using the procedure.

In some circumstances, the prime implicants of a function f which are essential may be

known in advance of forming an irredundant formula. For such occurrences, Procedure 2.31 may

be modified such that only the prime implicants whic'. are not essential have to be tested for

redundancy in the process of forming an IDF. Procedure 2.32 in Appendix D includes this revision.

Sub-Minimal Formulas for Intervals. Just as for functions, irredundant formulas are

generated to represent an interval [g, h]. An irredundant formula for an interval [g, h] is a formula

which represents a function f belorging to the interval [g, h].

It is well-known that irredundant formulas for intervals consist of sums of prime implicants

of h which cover g. Therefore, a way to generate an irredundant formula to represent an interval is

to form BCF(h) anti then test each term successively to determine if g is included in the resulting

88

sum of prime implicants. A prime implicant of h is redundant if it can be deleted and g is included

in the sum of the remaining prime implicants of h. Otherwise, the pi'me implicant is irredundant

and the next term is tested for redundancy. Just as in the case of a function, the ordering of the

prime implicants of h when testing for redundancy is significant. Also similar to the case of a

function, an irredundant formula which represents an interval is called an irredundant disjunctive

form (IDF) for the interval. There typically are many irredundant disjunctive forms which may

represent functions in the interval.

The terminology used to classify prime implicants of functions is adapted to describe prime

implicants of h in intervals. A prime implicant of h is called an essential prime implicant if and

only if it is necessary to cover some term of g. Hence, an essential prime implicant of h will appear

in every irredundant formula which represents an f in [g, h]. Similarly, a function h., is formed

which consists of the sum of the essential prime implicants of h. A prime implicant p of h which is

not an essential prime implicant and which meets the condition

p :_ hess (2.178)

is called an inessential prime implicant. An irredundant formula which represents f in [g, h] will

never contain an inessential prime implicant. Prime implicants of h which are neither essential

nor inessential are called conditionally-eliminable prime implicants. A term t which appears in a

subformula H of BCF(h) is called a conditionally-eassential prime implicant if its removal from

F causes the condition g g h and t is not an essential prime implicant of h. Procedure 2.33 in

Appendix D implements a process for generating irredundant formulas for intervals given the Blake

canonical form for h.

In some situations, we may know which prime implicants of h are essential in advance of

forming an irredundant formula. In this case Procedure 2.33 is modified such that only the prime

implicants which are not essential have to be tested for redundancy in the process of forming an

89

IDF. Procedure 2.34 in Appendix D is a modified version of Procedure 2.33 which includes this

revision.

Summary

In this chapter the theoretical background and terminology which provide a foundation for

subsequent chapters was presented. A great portion of this chapter was devoted to summarizing

existing ideas which are used in algorithms proposed in later sections. However, a number of ideas

discussed in this chapter were new results:

" A heuristic (Procedure 2.19) was described which greatly improves the efficiency of the gen-

eration via recursive multiplication of all of the prime implicants of a Boolean function (Pro-

cedure 2.20). This heuristic improves the speed with which the *bi-ke canonical form is

developed and decreases the memory usage of the recursive multiplication technique.

" It was discovered that when forming the conjunctive eliminant of a function with respect to a

set of arguments, the ordering of the arguments is significant. A heuristic (Procedure 2.21) has

been developed which orders the arguments in a manner that generally reduces computations

and memory usage.

" A set of procedures (Procedures 2.25-2.28) was presented for evaluating inclusion and equiv-

alence of functions. Of significance is the recognition of the efficiency of one method over

another when there is a reasonable expectation of the result, i.e., when the outcome of the

test is expected to be either true or false.

* The Relative Simplification Theorem was presented which allows the replacement of the

function f + g by / + g. In general, fewer computations are necessary when applying an

operation to j + g than to f + g.

90

* New Exclusive-OR (Procedure 2.12) and Exclusive-NOR (Procedure 2.14) procedures were

described which are based on Boole's Expansion Theorem and which incorporate Brayton's

splitting-variable heuristic and merge operation.

91

III. Functional Relations

A central problem in Boolean reasoning is to deduce relationships among a collection of

Boolean functions. Brown presented in his book a method to deduce all relations among a collection

if functions (Brown 90:138-140). This method is based on the concepts of reduction, elimination,

and use of the Blake canonical form. However, often there is only a need to deduce specific

relationships among a set of functions. For these circumstances, the techniques presented by Brown

can be adapted to form efficient techniques for the deduction of particular relationships among a set

of functions. A unified set of such techniques is presented in this chapter. Procedures are provided

for:

" the deduction of normal subsets of a set of functions;

" the deduction of evanescent subsets of a set of functions; and

* the generation of implication relations.

These procedures are a prime example of the use of Boolean inference-the extraction of conclusions

from a collection of Boolean data.

This chapter is primarily of theoretical interest with the exception of a method introduced

for deducing the coverage of a term by subsets of a set of terms-a specialization of the method

for determining implication relations. Variations of the technique for determining the coverage of

a term are used in subsequent chapters. However, an understanding of Chapter 3 is not required

for a reader whose main interest is in the minimization methods found in ensuing chapters.

The Label-and-Eliminate Procedure

If an equation of the form f = 0 is consistent, and there exists an equation g = 0 that

f=0 ==* g=0, (3.1)

92

then the equation g = 0 is called a consequent or conclusion of f = 0. Given (3.1), we use the

Extended Verification Theorem to form the equivalent statement

g < f. (3.2)

Hence, if f = 0 is consistent, consequents of f = 0 may be formed using any function g which is

included in f, i.e.,

g_f = (f=O =: g=0). (3.3)

If p is a prime implicant of f, then p < f. Consequently, the statement

f=O p=O (3.4)

is valid. A consequent of the form p = 0, where p is a prime implicant of f, is called a prime

consequent of f = 0.

Our particular concern is to determine relationships among a collection fl, f,... f : B' -

B of n-variable Boolean functions. A method for determining such relationships will be discussed

in the remainder of this section. The basis of this method is the construction of systems reducible

to the form f = 0 such that certain prime consequents of f = 0 represent the relationships among

the functions.

3ppose we would like to determine the relationships among the functions in the set F =

{fl, f2, ... , fh}. Let the functions be expressed in terms of the argument-vector X = (z1 , 02,... z,).

Each function is equated to an associated label to form a system of equations:

93

A, = f1(X)

A2 = f2(X)

(3.5)
A, = fA(X).

The labels in the vector A = (A,, A2,..., At) are called A.arguments. The variables in the vector

X are called X-arguments. Using the process of reduction presented in Chapter 2, system (3.5) is

reduced to a single equivalent equation of the form f(A, X) = 0, for which f(A, X) is given by

k

f(A, X) = F(A, E) f1 (X)). (3.6)
i=1

As presented in Chapter 2, a variable zi may be eliminated from an equation f = 0 to form a new

equation

ECON(f, {zi}) = 0. (3.7)

The equation ECON(f, {i}) = 0 is the resultant of elimination of z1 from equation f = 0.

Clearly, the equation ECON(f, {z,}) = 0 is a consequent of f = 0. We may eliminate all of the

X-arguments from f(A, X) = 0 to form a consequent g(A) = 0, i.e.,

f(A, X) = 0 =* g(A) 0, (3.8)

for which

g(A) = ECON(f(A, X), X). (3.9)

In view of property (2.40), it follows that prime implicants p(A) of g(A) may be used to develop

equations of the form

p(A) = 0. (3.10)

94

We conclude that each equation p(A) = 0 is a prime consequent of f(A, X) = 0 due to the theorem

BCF(ECON(f, T)) = -(terms of BCF(f) not involving arguments in T). (3.11)

Because of this theorem, we deduce that the prime implicants p(A) of the function g(A) in the

resultant of elimination g(A) = 0 of the X-arguments from the equation f(A, X) = 0 are also

prime implicants of the function f(A, X).

Each prime implicant p(A) of g(A) consists entirely of variables A1 , A2 ,..., Aj. Additionally,

the p(A) prime implicants of f(A, X) are the only prime implicants of f which consist entirely of A-

arguments. Any implicant r of the function f(A, X) which consists entirely of A-arguments forms

a consequent r = 0 of f = 0 called an A-consequent of f = 0. The term r is called an A-consequent

term. A prime consequent which is also an A-consequent is called a prime A-consequent. Each

prime consequent p(A) = 0 of f(A, X) = 0 is a prime A-consequent.

The prime consequents p(A) = 0 represent the relationships which exist among the func-

tions in F. The labels A1 , A2 ,..., At which are equated to the functions are a form of encoding

through which we abstractly determine the relationships among the set of functions. The general

process outlined above forms the basis for the "label-and-eliminate procedure" presented by Brown

(Brown 90:139) for generating all of the prime A-consequent terms of the system (3.5). The steps

of the procedure are given as follows:

Step 1. Reduce system (3.5) to an equation of the form f(A, X) = 0.

Step 2. Eliminate X from f(A, X) = 0 to form the consequent g(A) = 0, for which

g(A) = ECON(f(A, X),X). (3.12)

Step 3. Form BCF(g(A)) to generate all of the prime A-consequents of (3.5).

95

In the next section, we explore the specific relationships among subsets of a set of functions which

are represented by the A-consequents of f(A, X) = 0. However, we first present an example which

demonstrates the application of the label-and-eliminate procedure for deducing A-consequents of

f(A, X) = 0. In a follow-up example at the conclusion of the next section, we will discuss the specific

relationships among subsets of a set of functions represented by the A-consequents of f(A, X) = 0

formed in Example 3. 1.

Example 3.1: Suppose we would like to determine the relationships among the functions of the

set ffl, f2, f3, f4}, defined by

fi = z'yz + z /z'

12 = ZYZ (3.13)

3 = YZ

A = Y'+Z'z'.

We equate the labels A 1 , A 2 , A 3 , and A 4 to the functions, i.e.,

A, = z'yz + xyz'

A2 = zyz (3.14)

A3 = YX

A 4 = Y''+z'z'

and reduce the system (3.14) to the form f(A,A 2 ,A 3 , A 4 ,Zi/,z) = 0. The function f is defined

by

f(A 1 , A2 , A3, A,, , y, z) A' z + A'zyz' + Ay' + Alz'z' + Az +

A'2zyz + A 2 z' + A 2 Y' + A 2 z' + (3.15)

A'yz + A 3 Y' + A 3 z' +

A'4V + A'4z'z' + A4zY + A 4 Yz.

96

Eliminating the variables z, y, z from f = 0 produces the consequent g(Ai, A 2, A3 , A4) = 0, for

which

g(A 1 , A2 , A3 , A4) = A'A' + AjA 2 + MA 4 + A1 A4 + A'A'A 3 + A2 A'. (3.16)1 A 2A 4 1 A2A +3 +AA4+AAA

Prime implicants of g(A) are used to generate the prime A-consequents of f(A, X) = 0. The Blake

canonical form of g(A) is expressed as follows:

BCF(A(A))=AAA + AAA' + AA 2 + A 2A4 + AA 4 + AlA 4 +AA'A 3 +A 2A. (3.17)

Using (3.17), the prime A-consequents of f = 0 are derived:

AA'A' = 0
1 2 4

A'A'aA = 0

A I A 2 = 0

A2 A 4 = 0 (3.18)

A3 A 4 = 0

AA 4 = 0
A'A'A 3 = 0

A 2A' = 0.

Each equation in (3.18) represents a specific relationship among a subset of the functions in

{fl, f2, f3, f4}. Example 3.2 at the end of the next section explains the relationships represented

by the equations (3.18).

Relationships Among Boolean Functions

Each A-consequent term p(A) has the general form

a,...-am , b ... b", (3.19)

97

where al,...,a.. are the uncomplemented literals of p and b' ... b' are the complemented lit-

erals of p. The set {al,... ,am, bi,..., b,} of variables in each term p is a subset of the set

A = {A,, A2, .. , Ak} of labels. Specific forms of the term (3.19) denote specific relationships

among a set F = {ff, f2,. . ., fh} of functions. Several such relationships are normal subsets,

evanescent subsets, and implications relations.

If the sum of functions in F is identically equal to one, we say that F is normal. A subset

of F which is normal is called a normal subset. When an A-consequent term p(A) consists only of

complemented literals b', b2, . . ., b', we deduce an A-consequent of the form

b b, ... b' --- 0, (3.20)

which may be expressed equivalently as

b -- b2 +. -- b (3.21)

Each of the labels bi, b2,... , bn may be replaced with its associated function from (3.5). Hence, we

deduce sets of functions which are normal. An A-consequent term which appears in Example 3.1

is A'A'A'4 . Thus, the functions fi, f2, and f4 form a normal set of functions, i.e.,

(z'yz + zyz') + (zyz) + (y' + z'z') = 1. (3.22)

Each A-consequent term in BCF(g(A)) is a prime implicant. Since a literal cannot be removed from

a prime implicant of a function and still be an implicant of the function, no literal can be deleted

from the resulting A-consequent terms. Consequently, each prime A-consequent term consisting

only of complemented literals represents a minimal subset of F which is normal. The collection of

all A-consequent terms of the form b'b' .. , b, denotes all possible ways in which a subset of the

98

set F may be put together to form a normal subset. As a special case of normal subsets, normal

subsets of a set F of functions are called sum-to-one subsets if each function in F is a single term.

If the product of functions in F is identically the zero-function, F is said to be evanescent. An

evanescent subset is a subset of F which is evanescent. When an A-consequent term p(A) consists

only of uncomplemented literals a,, a 2 ,. . ., an, the corresponding A-consequent has the form

aja2 ... am = 0. (3.23)

By replacing each of the labels a,, a 2,... , an with its associated function from (3.5), we deduce

sets of functions which are evanescent. In Example 3.1, one A-consequent term is AIA 2 . Thus the

functions f, and f2 form an evanescent subset, i.e.,

(z'Yz + zyz') . (zyz) = 0. (3.24)

Forming A-consequent terms from terms in BCF(g(A)), each A-consequent term is a prime im-

plicant. Since a literal cannot be removed from a prime implicant of a function and still be an

implicant of the function, no literal can be deleted from the resulting A-consequent terms. Thus,

each A-consequent term in BCF(g(A)) consisting only of uncomplemented literals represents a

minimal evanescent subset of F. The collection of all A-consequent terms of the form aja2 ... am

in BCF(g(A)) denotes all possible ways in which subsets of F form minimal evanescent subsets. If

each function in a set F of functions is a single term, evanescent subsets of F are denoted by the

Lerm product-of-zero subsets.

We consider a third relationship among functions: that of implication. Given the A-consequent

a,..'.an" b ... b = 0, (3.25)

99

DeMorgan's Law and the definition of the inclusion relation may be applied to derive the equivalent

statement:

a,... a,,,, < bl +-". + b.. (3.26)

When an A-consequent term consists of a single uncomplemented literal aj and complemented

literals b,, b2,..., b,, statement (3.26) becomes

aj b, +...+ bn. (3.27)

Relation (3.27) is sometimes written as

aj => bl+...+bn. (3.28)

Hence, we say that an A-consequent term of the form ajb' .., b' denotes an implication relation.

Suppose the label aj is associated with the function fi in (3.5); moreover, let the labels bl, ... , bn

be associated with the functions fl,. . ., f,,. An A-consequent term such as (3.27) then represents

the coverage of fj by the sum of the functions fl,..., fn, i.e,

fj < h+ --...+ f. (3.29)

If the A-consequent terms are formed from prime implicants of g(A), then no literal can be deleted

from the resulting A-consequent terms and still have the term be an implicant of g(A). Con-

sequently, each A-consequent term of the form aj b'.. • bn denotes a minimal subset of functions

necessary to cover the function associated with aj. Implication relations in which a function is

included in a minimal subset of functions are called irredundant implication relations (IIRs). All

100

A-consequent terms of the form ajb ... b, generated using the label-and-eliminate procedure rep-

resent IIRs.

Example 3.2 discusses the relationships among a set of functions represented by the prime

A-consequents developed in Example 3.1.

Example 3.2: In Example 3.1, the following prime A-consequents of f = 0 were developed:

A1A2 = 0A 3A 4 0

A1A2 = 0
A2A4 0 (3.30)
A3A4 0

A'A'A 3 = 01 2

A 2As = 0.

The A-consequents AAA 4 0 and AA'A = 0 denote the existence of normal subsets {fi, h2 14

and {fl, f3, f41. The A-consequents AIA 2 = 0, A2A 4 = 0, A 3A 4 = 0, and AIA 4 = 0 signify the

existence of the evanescent subsets {fl, f2}, {f2, f4}, {f3, f41, and {fl, f4}, respectively. Finally,

the A-consequents A' A' A 3 = 0 and A2 A' = 0 represent the implication relations f3 _< fi + f2 and

f2 -5 f3, respectively.

Normal Subsets

In many circumstances, we desire to know the normal subsets of a set F = {ff, 2.... , fk } of

functions. For example, a common problem is to determine the sum-to-one subsets among a set of

terms. The label-and-eliminate procedure may be used to determine normal subsets by forming all

prime A-consequent terms and selecting only those A-consequent terms in which all of the literals

are complemented. Unfortunately, the label-and-eliminate procedure is inefficient when we only

require particular A-consequent terms. A better approach to determining normal subsets is to

101

formulate a procedure which produces only prime A-consequent terms of the form which denotes

normal subsets of F. Such a procedure is presented in this section.

The Partial Labeling-and-Reduction Process. In the label-and-eliminate procedure, a

system (3.5) is developed in which a label is associated with each function in F by forming an

equality between a label and its associated function. The system is then reduced to an equation of

the form f(A, X) = 0. We denote this process the fAll labeling-and-reduction of a set of functions.

In the formula F(A, X) representing f(A, X) terms exist which include both complemented and

uncomplemented literals of variables in the set A = {A 1 , A2 ,..., Ak} of labels. BCF(f) may include

prime implicants consisting entirely of variables in A in which literals are both complemented and

uncomplemented. However, it would be advantageous if we could develop a function f(A, X) such

that we could ensure that prime implicants of f consisting entirely of variables in A contain only

complemented literals-our intent is to produce only A- nsequents of the form (3.20).

To derive such a function, we make the supposition that the initial formula F(A, X) which

represents f(A, X) should not contain terms which include ancomplemented literals of variables in

the set A of labels. Hence, we formulate a revised system consisting of a set of inequalities which

is reduced to an equation of the form f(A, X) = 0. For a set F of functions, we form the system

f1 (X) A 1
f2 (X) _A 2

(3.31)

fk(X) < Ak.

102

The definition of inclusion is used to produce the equivalent system

f (X) . A'= 0

f 2 (X). A'2 = 0

(3.32)

fk(X)A'A = 0.

Thus, (3.31) is equivalent to f(A, X) = 0, for which f is defined by

f(A, X) " (f(X) . A). (3.33)
t=1

Given the function f(A, X) defined by (3.33), we now must show that f(A, X) produces A-

consequent terms which represent normal subsets. Additionally, we have to demonstrate that

the A-consequent terms realized from f(A, X) = 0 contain only complemented literals from A.

In Theorem 3.1 we prove that f(A, X) as defined by (3.33) may be used to produce A-

consequent terms which represent normal subsets. The idea behind this theorem is that a subset

of the et F of functions forms a normal subset if and only if the A-consequent term which denotes

the normal subset is an implicant of f(A, X). If an implicant exists which consists entirely of

complemented literals from the set A of variables, then a prime implicant consisting of a subset of

the literals must necessarily exist. For the purposes of this theorem, whether an implicant is or is

not prime is not as critical as showing that an implicant exists if and only if a normal subset exists.

Terms in BCF(J(A, X)) which consist only of A-arguments represent minimal normal subsets.

Theorem 3.1: Given a set F = {fi,f2, ... , f} of functions and a system

f1 (X) < AI
f 2(X) < A2

(3.34)

j (X) _< Ak

103

reduced to the form f(A, X) = 0, a subset {f/,f2,...,f.} of the set F is a normal subset if and

only if A'A'...A' is an implicant of f(A,X).

Proof. We first show that if a subset {fl, f2,..., f,} of F is normal, then A'A' ... 4A < f(A, X)

If {fif, ... , Id is normal, then

fI(XV2' (X) ... f,(X) = O.(335

Hence, fl'(X)f (X) ... f,(X) is equal to the zero-function. Expressing f(A, X) in the form

fi(X)A' + 12(X)A' + + f,(X)A' + f.+1 (X)A'+,+ +... + fjf(X)A' (s < k), (3.36)

the zero-function may be added to (3.36) and the result will still represent f (A, X). Hence, f(A, X)

may be represented by the form

f'(X) f(X). ... f(X) + fi(X)A' + f2 (X)A (3.37)

+ + f.(X)A'. + f.+ 1 (X)A', + +).h(X)A', (< k).

Since fl'(X)f2(X)... f1 (X) and f, (X)A' form a consensus term f2(X) ... f,(X)A, by the property

of consensus (2.32) we may represent (3.37) equivalently by

f2(X) ... f1 (X)A + fl'(X)f2(X) ... f,(X) + fi(X)A (3.38)

+ f2 (X)A' +... + f,(X)A, + f.+,(X)A'+i + ... + fk(X)A' (s < k).

104

Similarly, f2(X) ... f'(X)A and f 2 (X)A' form a consensus term f3(X) ... f'(X)A'A'. It follows

that (3.38) is equivalent to the form

f (X)... f.(X)AA' + f2(X)... f.(X)A + f (X)f2(X).., f1 (X) (3.39)

+ f(X)A' + f2 (X)A' 2 +-- ... + f.(X)A' + f.+ 1 (X)A'.+I +... + f(X)A' (s < k).

We continue forming consensus terms in the same fashion until f.(X)A'1 A'- ... A' 1

form the consensus term A'1 A'2 ... A'. It follows that (3.39) is expressed equivalently by

A'A' . .A' + f:(X)AIA' --... - + ... -+ f2(X) ... f,(X)A'

+ fI(X)f(X) ... f,(X) + f1 (X)A' + f2 (X)A' (3.40)

+... + f.(X)A' + f.+ 1 (X)A', 1 + ... + ft(X)A' (a < k).

We thus conclude that the term A, A'... A, appears in a sum-of-products formula which represents

f(A, X). Since any term which appears in an SOP formula which represents a function f is an

implicant of f, it follows that A'A'2 ... A' is an implicant of f(A, X).

Assume on the other hand that A' A'2. .. A' is an implicant of f(A, X). Then the statement

k

A ... A. < (f1 (X) . A) (a < k). (3.41)
i=1

is valid for all substitutions for X and for (A,, A2,..., Ak). Equivalently,

a k

Z(A,) + j(,(X) . A) = 1 (s < k). (3.42)

The equat;on

a k

Z(A, + f1 (X)) + E (f 1 (X) . A:) = 1 (a <_ k) (3.43)
i=1 i=8+1

105

is equivalent to (3.42) by Property (2.30). Since (3.43) is an identity, i.e., it holds for all substitutions

for X and for (A,, A 2, ... , Ak), it holds if

A, =A2 A, = 0 (3.44)

and

A., A,+ 2 -- "" = A, = 1. (3.45)

Thus, the equation

-' fi = 1 (3.46)
i=1

is an identity; whence, {fl, f2, ... , I} is a normal subset of F. This completes the proof. 0

Lemma 3.1 shows that if a variable in a formula is unate, then the variable is unate in the

Blake canonical form of the corresponding function. This lemma is required to show that only

A-consequent terms of the desired form are deduced from system (3.31).

Lemma 3.1: Given a formula F which represents a Boolean function f, any variable which is

unate in F is also unate in BCF(f).

Proof. BCF(f) may be formed from an SOP representation F for f as follows:

Step 1. Generate consensus terms, beginning with F, until no new terms can be formed.

Step 2. Delete absorbed terms.

Any formula may be expressed equivalently by a formula which contains consensus terms formed

from terms within it. Similarly, an equivalent formula may be formed by deleting absorbed terms.

It follows that a formula developed by applying Steps 1 and 2 is equivalent to F; the resulting

106

formula is BCF(f). (This method is similar to the successive extraction technique for forming a

Blake canonical form described in Chapter 2.)

From terms z's and zt, Step 1 produces a consensus term st. Thus, Step 1 cannot introduce

a literal not already present. It is clear that Step 2 as well cannot introduce a new literal. Thus,

the Blake canonical form developed from an SOP formula F cannot contain a literal that is not

present in F. This completes the proof. 0

Theorem 3.2 shows that the A-consequent terms deducible from system (3.31) exist only in

the form which represents normal subsets of a set F of functions.

Theorem 3.2: Given a system

f 1(X) <_ A1

f2 (X) < A2

(3.47)

fk(X) < Ah.

reducible to the form f(A, X) = 0, the A-consequent terms of the prime A-consequents p(A) = 0 of

f(A, X) = 0 consist only of complemented literals of the set A = {A,, A 2 ,..., A,) of variables.

Proof. System (3.47) may be expressed equivalently as

f (X).- A'= 0

f 2(X). A; = 0

(3.48)

f (X).- A'= 0.

By (2.40), system (3.48) is reduced to an equation of the form f(A, X) - 0, for which

f(A, X) = f1 (X)A + f 2 (X)A --... + fk(X)A'. (3.49)

107

A formula to represent fi(X)A + f 2(X)A +...+ fk(X)A is constructed in the following manner:

1. For each function f,, prefix the complement of its associated label A to each term of the
formula which represents fi. The resulting formula represents the function fi • As.

2. Append together all formulas formed in Step 1. The resulting formula represents fl(X)A +
f 2 (X)A + .. . + fk(X)A. Let us call this formula F(A,X).

Because the formulas which represent each function fi(X) do not involve any variable of the set

A, and the formula F(A, X) is formed so that only the complemented forms of the variables

A 1 ,A 2 ,...,Ak appear in it, the set A of variables are unate in F(A,X). By Lemma 3.1, the

variables in A are unate in BCF(f(A, X)). It follows that if any prime A-consequents p(A) = 0 of

f(A, X) = 0 exist, then the corresponding A-consequent terms p(A) consist only of complemented

literals of the set A of variables. This completes the proof. 0

We have proven the two properties of the equation f(A, X) = 0 reduced from system (3.31)

that demonstrate that system (3.31) may be used as the basis for economically determining only

those subsets of a given set of functions which are normal. We summarize these properties:

1. If a subset of a set F of functions is normal, then we can deduce A-consequents terms which
represent normal subsets from the equation f(A, X) = 0 reduced from system (3.31). Such A-
consequent terms are implicants of f(A, X). This property was demonstrated by Theorem 3.1.

2. All A-consequent terms deduced from the equation f(A, X) = 0 reduced from system (3.31)
represent normal subsets. This property was demonstrated by Theorem 3.2 in which it was
shown that the A-consequent terms of the prime A-consequents p(A) = 0 of f(A, X) = 0
consist only of complemented literals of the set A of variables, i.e., the A-consequent terms
deducible from system (3.31) exist only in the form which represents normal subsets of a set
F of functions.

We denote the process by which we use the inclusion relation to associate labels with functions

in (3.31) and the entailing reduction to the form f(A, X) = 0 the partial labeling-and-reduction of

a set F of functions. There are several significant advantages of the partial labeling-and-reduction

process versus full labeling-and-reduction. Foremost is the fact that less time and space is needed

108

to generate A-consequent terms using the partial label-and-reduce process. When a label Ai is

equated to a function f,, we reduce to an equation of the form f(A, X) = 0 via (2.38), i.e.,

f, = Ai 4=* f1A + fA = 0. (3.50)

When an inclusion is used to associate a label with a function, we apply the relationship

f, :_ Ai -:. f 1A = 0. (3.51)

Hence, we do not have to perform the computations to form each fA,, and the terms which

represent each fA 1 do not have to be stored. The function f(A, X) produced using the partial

label-and-reduce process also is preferable when forming the consequent g(A) = 0, for which

g(A) = ECON(f(A, X),X), (3.52)

and for forming BCF(g(A)). The reason for this is discussed in the next section.

Goal-Directed Elimination. After the system

f 1 (X) < A,

f 2(X) < A2

(3.53)

fk,(X) < A,,

is reduced to the form f(A, X) 0 0, the next step for deducing normal subsets is to form the

consequent g(A) = 0, for which

g(A) = ECON(f(A, X), X). (3.54)

109

The formula which represents function f(A, X) contains terms comprising A-arguments as well as

X-arguments. When f(A, X) is formed using the partial label-and-reduce process, the A-arguments

are unate in F(A, X). The X-arguments generally are binate in F(A, X). When the conjunctive

eliminant of f with respect to X is formed, a multiplication process is performed iteratively. We

review the process of forming a conjunctive eliminant for a single variable z:

1. Partition the formula F which represents f into terms which include the literal z',
terms which include the literal z, and terms which include neither z nor z'.

2. Given the partitioning, express F in the following manner:

f (z, y,.) z'p(y,...) +I zq(y,....) + r(y,.... (3.55)

where

e p comprises the terms of F which include the literal z' with the literal divided
out,

* q comprises the terms of F which include the literal z with the literal divided
out, and

* r comprises the terms of F which include neither z nor x' .

3. Form ECON(f, {}):
ECON(!, {z}) = p. q + r (3.56)

An operation of the form (3.56) with a product p. q is performed for each variable z E {z, . . ., x.

when forming ECON(f(A, X), X). We assume that the product operation used when forming a

conjunctive eliminant maintains the "unateness" of a collectively unate variable.' The resulting

eliminant ECON(f(A, X), X) consists only of A-arguments. Since the A-arguments are unate in

F(A, X), they are unate in the formula representing ECON(f(A, X), X).

During each iteration of forming ECON(f(A, X), X) from the function f(A, X), one variable

z E {zz,..., z, } is eliminated. Since the X-arguments typically are binate, each iteration typically

produces a function which has fewer binate variables. Hence, the resulting function at each iteration

is typically "lessa" binate and "more" unate-until the final iteration, when the function is unate in

the A-variables. The fact that the function resulting from each iteration of forming the eliminant

'In the product operations presented earlier, a collectively unate variable in the multiplied formula@ is unste in
the resulting formula. See Procedures 2.2, 2.3, and 2.9.

110

becomes more unate is useful in formulating a special process for constructing a conjunctive elimi-

nant which is more efficient than the procedure described in Chapter 2. We call this special process

the "quick" method for forming the conjunctive elirminant; for brevity, we will refer to the quick

method for forming the conjunctive eliminant as "quick econ" (quick Eliminant- CONjunctive).

Several heuristics are employed in quick econ which differentiate it from other methods for

forming a conjunctive eliminant. There are two differences between quick econ and the technique

for forming the conjunctive eliminant described by Procedure 2.22. These are:

" the use of the cross-product (Procedure 2.2) to perform multiplication as opposed to expansion-
based multiplication (Procedure 2.9); and

" the use of absorption to simplify the resulting formula after each iteration of the process
rather than the simplification technique implemented by Procedure 2.15.

A similarity between quick econ and the technique given by Procedure 2.22 is that the least-

binate-argument heuristic is used to order the arguments with respect to which we are forming

the conjunctive eliminant. Example 3.3 demonstrates the application of quick econ to a function

f(A, X).

Example 3.3: Suppose we are given a system

y + z'y + z < A,

y + zy' < A 2 (3.57)

z +z < A 3

1 + Y, !< A 4

created by associating labels A,, A2 , A3 , and A4 with a set of functions as in (3.31) which is reducible

to the form f (A, X) = 0. The A-variables are defined by the vector A = (A1 , A2 , A3 , A4) and the

X-variables are defined by X = (z, y, z). The function f(A, X) is thus defined by the equation

111

f(A, X) = Azy + A'x/' + A'z +
A'2 'y + A'2z + (3.58)

A'z + A'z +

A'z' + A' y.

We eliminate the X-variables from f(A, X) = 0 to form the consequent g(A) = 0. We first

eliminate the variable z, i.e., form the function ECON(f(A, X), {z}). Using the form (3.56) to

generate ECON(f(A, X), {z}), we develop

Ps = 0

qs = A' 1+ A3 (3.59)
.'= A'Izy+A:' + Az' '+A'zy' +Az +A'' +A'V.rz AzY I"1 2 2' 3 A4z 49/

Since p. .q = 0, it follo-' s ,t ECON(f(A, X), {z}) = rs. Hence, we deduce the equation

ECON(f(A, X), {z}) A'z1 y + A'x 1 '' + A'z'y + A'zy' + A'z + A z + A'y. (3.60)

We eliminated z rather than z or y because z is unate in the formula on the right-hand side of

(3.58); hence ECON(f(A, X), {z}) is formed by deleting the terms in F(A, X) which contain the

literal z.

The variable y is eliminated to form the function ECON(ECON(f(A, X), {z}), {y}). We

thus derive

p, = A '+A '
qy = A'z + Az' (3.61)

ry = A'z + A4z'.

112

We use the term-by-term product of P and Qy to form py " qy. We thus develop the function

ECON(ECON(f(A, X), {z}), {y}) defined by the equation

ECON(ECON(f(A, X), {z}), {y}) = A'A'2z' + A'Az + A'Az + A'2 A',z + A'z + A's'. (3.62)

The variable y is eliminated rather than z because the formula on the right-hand side of (3.60)

includes three terms containing the literal z and three terms containing the literal z'; on the other

hand, the formula includes two terms containing the literal y and three terms containing the literal

y'. Thus, the number of terms resulting from the P x Q operation is nine if the variable z were

to be eliminated, but only six if the variable y is eliminated. We eliminate y since the number of

term-by-term products is less than if z were eliminated.

Finally, the function ECON(ECON(ECON(f(A, X), {z}), {y}), {z}) is formed by eliminat-

ing the variable z. Prior to eliminating z, however, we delete the absorbed term A'2 A'4 z' in (3.62).

We then develop

p. = A'A 2 + A'

A' 1 A 2 + A'A 4 + A' (3.63)

1:=0.

The function ECON(ECON(ECON(f(A, X), {z}), {y}), {z}) is equal to p . q. + r.. Using the

term-by-term product of P. and Q., we derive the formula

AA + AAA' + AA2A' + A:A2A + AA' + A'A . (3.64)

113

Formula (3.64) is not absorptive. The equivalent absorptive formula,

AA 2 + AA 4 + A'3 A'4 , (3.65)

represents ECON(ECON(ECON(f(A, X), {z}), {y}), {}) = ECON(f(A, X), X). Since g(A) =

ECON(f(A, X), X), it follows that

g(A) = A'A' + A'A' + A'A' (3.66)

A1A 2 1 AI 4 3 A 4.

The formula which represents ECON(ECON(f(A, X), {z}), {y}) is more unate than the

formula which represents ECON(f(A, X), {z}) since the right-hand side of (3.62) contains only

one binate variable, z, while the right-hand side of (3.60) is binate in z and y. Furthermore, the

formula that results after eliminating all of the X-variables, (3.64), is unate in all of its component

A-variables. Hence, the formula which represents the function resulting after each iteration of

elimination is "more" unate than the formula resulting from the preceding iteration. Moreover,

less work is performed in developing the formula which represents ECON(f(A, X), X) if the X-

variables are eliminated in the order of "binateness", i.e., eliminate unate variables first and the

most-binate variables last.

Quick econ is particularly useful when the function resulting after each iteration is more

unate than the previous function. Because the formula which represents the function contains

fewer opposed literals, the chances that a simplification procedure can reduce the number of terms

decrease after each iteration. Making the formula absorptive after each iteration works about as

well as simplification to reduce the number of terms to a manageable level. After all iterations

have been carried out, the unate formula which results is reduced to an minimal number of terms

by developing the equivalent absorptive formula. Additionally, because the function is more unate

after each iteration, as we proceed the cross-product technique for performing multiplication does

114

not produce significantly more terms in the resulting formula than the expansion-based product

operation. The primary motive for using the expansion-based product versus a cross-product

operation is that the number of terms in the formula produced by the expansion-based product

operation is significantly fewer than when using the cross-product operation; the cross-product

always returns a result quicker than does the expansion-based product. Extraneous terms which

are created using the cross-product operation generally are absorbed by other terms.

The heuristic for ordering variables with respect to which the conjunctive eliminant is formed

is the least-binate-variable heuristic described in Chapter 2. The motivation for this heuristic was

illustrated in Example 3.3. The least-binate-variable heuristic is a measure of the number of term-

by-term products required to perform the p.q product in a given iteration of forming the conjunctive

eliminant. Hence, the least-binate-variable heuristic is a direct measure of the complexity of the

product operation when using the cross-product operation. The use of this heuristic is based on the

supposition that the least amount of work will be done in the process of forming the conjunctive

eliminant with respect to a set of variables if we always choose the variable at the outset of an

iteration which will cause us to do the least work in that iteration. In practice, this seems to work

well, especially when absorbed terms are removed from the formula after each iteration.

The quick method for forming the conjunctive eliminant of a function with respect to a set

of variables is given by Procedure 3.1.

Procedure 3.1 (Quick Conjunctive Eliminant - QUICK-ECON): Given a Boolean function
f and a set T of literals, the conjunctive eliminant of f with respect to T, ECON(f, T), is found
as follows:

Step 1.

" If T is empty, then return F. It is ECON(f, T).

" Of the variables in set T, determine the least-binate variable using Procedure 2.21. Call
this variable z.

115

Step 2.

" If F 0, then return a formula F which represents 0. It is ECON(f, T).

* If F 1 1, then return a formula F which represents 1. It is ECON(f, T).
* Otherwise, continue to Step 3.

Step 3. Partition the 'erms of F into the following sets:

" P, the terms of F which include the literal z' with the literal divided out;

" Q, the terms of F which include the literal z with the literal divided out; and

* R, the terms of F which include neither z nor z'.

Using Procedure 2.2 (Cross-Product), form P x Q. Append the result to R. The resulting
formula represents ECON (f, {z}).

Step 4. Form the equivalent absorptive formula of the formula generated in Step 3. Replace the
contents of F with the absorptive formula and return to Step 1.

Our intent in using the quick method for forming the conjunctive eliminant is to efficiently

generate the consequent g(A) = 0, the resultant of elimination of X from f(A, X) = 0, for which

g(A) = ECON(f(A, X), X). (3.67)

Formation of the conjunctive eliminant of f with respect to X is a vehicle for eliminating the

X-arguments from f(A, X) = 0. A unique aspect of the elimination process in this instance is

that the forms of the functions f(A, X) and g(A) are known a priori. This allows us to guide the

elimination process so that we efficiently proceed from f(A, X) = 0 to the equation g(A) = 0 with

fewer computations than in the general case of forming an eliminant; thus, we achieve our goal of

obtaining g(A) as efficiently as possible. Therefore, we call this methodology of eliminating the

variables X from f(A, X) = 0 to derive the equation g(A) = 0-in particular to derive the function

g(A)-oal-directed elimiantion. In the next section, we discuss how g(A) = 0 is used to produce

the A-consequent terms with which we identify normal subsets.

Formation of A-Conseq t Terms. To determine all normal subsets of a set F of func-

tions, we must form all of the prime A-consequent terms of f(A, X) = 0, where f(A, X) = 0 is

equivalent to the system

116

f 1 (X) < A1

f2(X) _ A2

(3.68)
fk(X) < Ah.

One way to obtain the terms p(A) of each of the prime A-consequents p(A) = 0 of f(A, X) = 0

is by forming BCF(f(A, X)) and selecting those terms which consist only of A-arguments. From

an earlier stated theorem (2.155), we know that these terms also may be obtained by forming

the conjunctive eliminant of f(A, X) with respect to X and placing the result in Blake canonical

form, i.e., BCF(ECON(J(A, X), X)). As the outcome of goal-directed elimination we develop the

equation g(A) = 0, for which

g(A) = ECON(f(A, X), X). (3.69)

Hence, to obtain all of the prime A-consequent terms of f(A, X) we form BCF(g(A)).

Terms of BCF(g(A)) consist only of complemented literals of the set A. The formula G

which represents g(A) produced in the process of goal-directed elimination consists only of unate

A-arguments. Since there are no opposed literals in G we cannot form any consensus terms;

therefore all prime implicants of g(A) appear in formula G. Any term of G which is not a prime

implicant of g(A) is necessarily absorbed by anothex term in G. Thus, to form BCF(g(A)) we form

ABS(G), which produces an absorptive formula equivalent to G to represent g(A). By formulating

a system in the form (3.68), reducing the system to the form f(A, X) = 0, and eliminating the

X-arguments using goal-directed elimination, we realize the added benefit of producing a unate

function g(A) for which we generate the Blake canonical form via simple absorption. Furthermore,

since the quick method for forming the conjunctive eliminant makes the resulting formula absorptive

after each iteration, the formula which represents the function ECON(f (A, X), X) is absorptive.

117

Because g(A) = ECON(f(A, X), X), the function g(A) is represented by its in Blake canonical form

after the goal-directed elimination process. Hence, the elimination of X produces the consequent

BCF(g(A)) = 0. Each term,

A'Al .. Al, (3.70)

of BCF(g(A)) denotes the existence of a normal subset

{fl, f2,. . ., f.}. (3.71)

Determination of Minimal Normal Subsets. Given the partial label-and-reduce and

goal-directed elimination processes, we have the mechanisms to form a procedure for determining

all minimal normal subsets among a set F of functions. This method is stated by Procedure 3.2.

Example 3.4 demonstrates the use of Procedure 3.2 to determine the normal subsets among a set

of functions.

Procedure 3.2 (Minimal Normal Subsets): Given a set F = ff, f2,...,fk} of Boolean
functions, we determine all of the normal subsets among the set F of functions in the following
manner:

Step 1. For each function fi E F:

1. Generate an associated label Ai.

2. Prefix each term of the formula which represents f, with the complemented literal A,.

The resulting formula represents A • f,.

Step 2. Append together each of the formulas developed in Step 1. The resulting formula repre-
sents f(A, X).

Step 3. Using the quick method for forming the conjunctive eliminant (Procedure 3.1), form
ECON(f(A, X), X). The resulting function is equal to g(A); the formula which represents
g(A) is BCF(g(A)).

Step 4. Each term of BCF(g(A)) represents a normal subset. For each term of BCF(g(A)),
determine the labels contained in the term and replace the labels by the functions with which
they are associated. Return each subset of functions.

118

Example 3.4: Suppose we would like to determine the normal subsets among the functions of the

set f f, f2, 13, 1& 151 defined by

f2 = 21X22+2122'

f3= 212X2 (3.72)
A = X1S

f5= X1.

Step 1. A system of the form (3.31) is created by associating labels A,, A2, A3 , A4 , and As with

the respective functions, i.e.,

21222+212Z2 < A,

21X22+2122Z < A2

2'122 < A3 (3.73)
X2< A 4

21 :5 As.

Step 2. The system is reduced to the form f(Al, A2 , A3 , A 4, As, X1,2X2) = 0, where f is defined by

f(A 1 , A2, A3 , A4 , A5 1 , :2) = A'1X'1X2 + A'121 :' +

A'2 X1 2 2 + A'22'z 2 +
A'3 X' 1 : 2 + (3.74)
A'4 21 z' +

As'x 1 .

Step 3. Using goal-directed elimination to eliminate the variables 21 and 22 produces the conse-

quent g(A 1 , A2 , A3, A4, As) = 0, where g is defined by

g(A 1 , A2 , A3 , A4 , As) = A'1 A'2 + A'2 A'3 A' + A'2A'3 A'. (3.75)

The function g(A 1 , A2, A3, A4, A5) is in Blake canonical form.

119

Step 4. The terms in the right-hand side of (3.75) are A-consequent terms of f(A, X) = 0 which

denote the existence of the minimal normal subsets {fl, f2}, {f2, f3, f4j, and {f2, f3, fs}.

Thus, the relations

fl + f2 = 1
f2+f3+f4 = 1 (3.76)

f2+f3+A = 1

are identities.

An application of Procedure 3.2 is to determine the sum-to-one subsets among a set of func-

tions each of which is a single term. A specialization of the sum-to-one subsets concept is to

determine subsets of a set of terms which cover a given term. The sum-to-one theorem (2.171)

states that the equivalence

t < f * f/t = 1 (3.77)

is valid. Given a set T = {tl, t2 , .. .,t} of terms and a term t, we would like to determine all

minimal subsets of T which cover t. The function f in (3.77) is formed by summing the terms in

T, i.e.,

f = tI +t2 +...+ t. (3.78)

Each term of t1 + t 2 + + i4 is divided by the term t to form the function tl/t + t 2/t +... + th/t.

If t is included in tI + t 2 + ... + t, then ti/t + t 2/t + ... + tt/" 3 a tautology. Moreover, if a

subset til/t, t2/t, - . , t,/t is normal, then the subset {tl, t2, .. ., t} covers t. Hence, forming the

sum-to-one subsets of {t/t, t 2/t, ... , t/t yields the minimal subsets of fti, t 2,. .. , ts which cover

t. Example 3.5 demonstrates this process.

120

Example 3.5: Suppose a set T = {tl, t 2 , t 3 , t4 , t5 } of terms is defined by

=1 = ac

t2 = ab'

t3 = bc (3.79)
t 4 = a
t = ac'.

We would like to determine the minimal subsets of T which cover the term t = ac. To do so, we

divide each member of T by t:

til/t = 1

t2/t = b'

t3/t = b (3.80)

t 4/t = 1

t5 /t = 0.

Forming the sum-to-one subsets of {tl/t, 2 t,..., ts/t} using Procedure 3.2 yields the set of subsets

{{tl/t}, {tf4 t}, {t 21t, t3t}}. (3.81)

Hence, the term t = ac is covered minimally by the subsets til}, {t4}, and {t 2, t 3}, i.e.,

ac < ac

ac < a (3.82)

ac < ab' + bc,

respectively.

121

Evanescent Subsets

Similar to normal subsets, our concern may be to know the evanescent subsets, i.e., subsets

for which the product is the zero-function, of a set F = fi, f2, . . ., fit of functions. The label-and-

eliminate procedure may be used to determine these subsets by forming all prime A-consequent

terms p(A) and selecting only those terms in which all of the literals are not complemented. Similar

to the method presented for identifying normal subsets, a more efficient plan is to devise a procedure

which produces only prime A-consequent terms which consist of uncomplemented A-arguments. A

technique for recognizing evanescent subsets which parallels the methodology for identifying normal

subsets is presented in this section.

The Partial Labeling-and-Reduction Process. A method for identifying evanescent

subsets among a set F of functions is to develop a system reducible to the form f(A, X) = 0 from

which A-consequents of the form

aja 2 ... am = 0 (3.83)

are deduced. Each A-consequent term a1a2 ... a,, represents an evanescent subset of F. To make

the process of generating A-consequent terms efficient, we desire to enforce the requirement that

the A-consequent terms of f(A, X) = 0 consist only of uncomplemented A-variables. To en-

force this requirement, we make the supposition that the initial formula F(A, X) which repre-

sents f(A, X) should not contain terms which include complemented literals of variables in the set

A = fA,, A2 ,..., Ak} of labels. We devise a system of inequalities which is then reduced to an

equation f (A, X) = 0. For a set F of functions, we form the system

122

A, :5 f1 (X)

A2 < f 2 (X)

(3.84)

A < ft(X).

The equivalent system

ACf(X) = 0

A 2 . f(X) = 0

(3.85)
Ah..f(X) = 0

is equivalent in turn to the equation f(A, X) = 0, for which

k

f(A, X) = E(A. - f (X)). (3.86)
i=1

Similar to the proofs given in the section on normal subsets, we present proofs which demon-

strate that the terms of the A-consequents of f(A, X) = 0 represent evanescent subsets. Hence,

the system (3.84) may be used as the basis for economically determining those subsets of a given

set F of functions which are evanescent. Although applied to a system of a different form than

when forming normal subsets, we again call this process the partial labeling-and-reduction of a set

of functions.

Theorem 3.3 demonstrates that a subset of the set F of functions forms an evanescent set

if and only if the A-consequent term which denotes the evanescent set is an implicant of f(A, X).

Our concern here is to show the existence of an implicant if and only if the corresponding subset

is evanescent. If an implicant exists which consists entirely of uncomplemented literals from the

set A of labels, then a prime implicant of f(A, X) consisting of a subset of the literals must exist.

123

Terms in the Blake canonical form of f(A, X) which consist only of A-arguments represent minimal

evanescent subsets.

Theorem 3.3: Given a set F = {fl,f2,... , ft} of fusnctions and a system

A1 < f1 (X)

A2 < f 2(X)

(3.87)

Ah < fk(X).

reduced to the O-normal form f(A, X) = 0, a subset {fl, f2, . .. , f, I of the set F is an evanescent

subset if and only if A1A2 ... A. is an implicant of f(A, X).

Proof. We first show that if a subset {ff, f2, ... If} is evanescent, then AIA 2 ... A, < f(A, X).

If {fi, f2,..., f,} is evanescent, then

fl(X)f 2 (X)... f.(X) = 0. (3.88)

Hence, f(X)f 2 (X)... f.(X) is equal to the zero-function. Expressing f(A, X) in the form

Alf (X) + A2f'(X) +... +-+ Akf ,(X) (s < k), (3.89)

we can add the zero-function to (3.89) and the result will still represent f(A, X). Hence, f(A, X)

may be represented by the form

f,(X)f 2 (X) ... f.(X) + Alf (X) + A2 f2(X) (3.90)

+... + A,.(X) + A.+If.+x(X) + + Akfk(X) (s < k).

124

Since f 1 (X)f 2 (X) ... f,(X) and AIf (X) form the consensus term AIf 2 (X) .. f,(X), we may

represent (3.90) equivalently by

Alf 2(X)... f.(X) + f(X)f 2 (X)f(X) + A,.fI(X) (3.91)

+ A,/f(X) +... + A,/f(X) + A,+ 1 f'/,(X) +... + Akfk(X) (a < k).

Similarly, AIf 2 (X)... f.(X) and A~f2(X) form a consensus term AlA 2f 3 (X) ... f1 (X). It follows

that (3.91) is equivalent to

AIA 2 f 3 (X) .. . f,(X) + Alf2(X) ... f.(X) + f 1 (X)f 2(X)... . (X) (3.92)

+ Aif(x) + A 2f2(X) +... + A.f,(X) + A,+ f,,(X) + + Akfk(X) (s < k).

We continue forming consensus terms in the same fashion until AIA 2 ... A,_-If,(X) and A. f.(X)

form the consensus term AIA 2 ... A. It follows that (3.92) is expressed equivalently by

AjA 2 .. As + AIA 2 ... A,_If (X) + +Alf2(X) .. . f.(X)

+ 1(X)f 2 (X)'.. f.(X) + A IfI(X) + A 2f2(X) (3.93)
+ ... + A.f.(X) + A.+ 1 f.+ 1 (X) +... + Akft(X) (< k).

We thus conclude that the term A 1 A 2 ... A. appears in a sum-of-products formula which represents

f(A, X). Since any term which appears in an SOP formula which represents a function f is an

implicant of f, AIA 2 ... A, is an implicant of f(A, X).

Assume on the other hand that A 1 A2 ... A, is an implicant of f(A, X). The statement

k

A1 A 2 ... As <Z (A, . fi'(X)) (s < k). (3.94)
=1

125

in then valid for all substitutions for X and for (A1 , A2 ,. . . , At). We deduce the equivalent statement

(A) + Z(A, . f (X)) = 1 (a < k), (3.95)
t=1 j=l

from which follows the equation

(: + f'(X)) + E (A,. f'(X)) = 1, (s < k). (3.96)
i=1 i=s+1

Equation (3.96) holds for all substitutions for X and for (A,, A 2,..., An). Thus, it holds if

A - A2 - A, - 1 (3.97)

and

A,+= A,+ 2 = ..- = At = 0; (3.98)

whence, the statement

(X)) = 1 (3.99)

is an identity. It then follows that

l(fl(X)) = 0 (3.100)

is valid. Hence, {fi, f2, ... , f,} is an evanescent subset of F. This completes the proof. 0

We now show that the prime A-consequent terms p(A) deducible from f(A, X) = 0, where

f is defined by (3.86), contain only uncomplemented literals of the A-variables. Hence, the terms

p(A) exist only in the form which denotes evanescent subsets of a set F of functions. This statement

is established in Theorem 3.4.

126

Theorem 3.4: Given a system

A, < f1 (X)

A2 f 2 (X)

(3.101)
Ak < f,(X).

reducibie to the form f(A, X) = 0, the A-consequent terms of the prime A-consequents p(A) = 0 of

f(A, X) = 0 consis only of uncomplemented literals of the set A = f A,, A 2 , ... , Ak3 of variab~ea.

Proof. System (3.101) may be expressed equivalently as

Ai. fA(X) = 0

A2 . f2(X) = 0

(3.102)
At-fk(X) = 0.

System (3.102) is reduced to an equation of the form f(A, X) = 0, where

f(A, X) = AIfI(X) + A 2f2(X) + ... + Akft(X). (3.103)

We construct a formula to represent f(A, X) as follows:

1. For each function fi, complement the function f,. Prefix the associated label A. to each term
of the formula which represents f . The resulting formula represents the function Ai • ff.

2. Append together all formulas formed in Step 1. The resulting formula represents AlfI(X) +
A 2f2(X) + ... + Atfk(X). Let us call this formula F(A,X).

Because the formulas which represent each function fi' do not involve any variable of the set

A, and the formula F(A, X) is formed so that only the uncomplemented forms of the variables

A,, A2 ,..., Ah appear, the set A of variables are unate in F(A, X). By Lemma 3.1, the variables in

127

A are unate in BCF(f(A, X)). Consequently, if any prime A-consequents p(A) = 0 of f(A, X) = 0

exist, then the corresponding A-consequent terms p(A) only consist of uncomplemented literals of

the set A of variables. This completes the proof. 0

The benefit of using the partial label-and-reduce process to generate an equation of the form

f(A, X) = 0 is a reduction in the time and space complexity of generating A-consequent terms of

the desired form. When reducing system (3.84), the associated function A~fi is not included in

f(A, X) for each function f, because an inclusion is used rather than an equality to associate a

label A. with a function fi. Therefore, the computations required to form A~f1 are not performed;

nor do we have to store the formula which represents A~f1 . In the next section the formation of

the consequent g(A) = 0 from f(A, X) = 0 is discussed. Prime implicants of g(A) are used to form

A-consequent terms which represent evanescent subsets.

Elimination of X-Arguments and Formation of A-Consequents. Due to the manner

in which we form a system of inequalities, i.e.,

A, < f (X)
A2 < f2 (X)

(3.104)

Ak fk (X),

after reduction to the f(A, X) = 0 form, the A-consequent terms of the prime A-consequents

p(A) = 0 of f(A, X) = 0 consist only of uncomplemented literals of the set A of variables. This

was proven in Theorem 3.4. We can derive the A-consequent terms of each of the prime A-

consequents of f(A,X) = 0 by forming the conjunctive eliminant of f(A,X) with respect to

X and placing the result in Blake canonical form, i.e., BCF(ECON(f(A,X),X)). Terms of

BCF(ECON(f(A, X), X)) compose the complete set of terms p(A) of the prime A-consequents

p(A) = 0 of f(A, X) = 0.

128

Eliminating the X-arguments from f(A, X) = 0 yields the consequent g(A) = 0, where

g(A) = ECON(f(A, X), X). (3.10,)

The formula which represents f(A, X) consists of unate A-arguments and generally binate X-

arguments. The formula which represents g(A), if the means for forming the conjunctive eliminant

of f(A, X) with respect to X preserves the unateness of the A-arguments, will be unate in the

A-arguments. Hence, we know the form of the functions f(A, X) and g(A) prior to elimination the

X-arguments from f(A, X) = 0. Thus, we apply the goal-directed elimination technique discussed

in the section on deducing normal subsets. In goal-directed elimination, we form the function g(A)

by applying the quick method2 for forming the conjuctive eliminant of f(A, X) with respect to X.

The formula representing g(A) which results from goal-directed elimination is its Blake canonical

form. Each term of BCF(g(A)) forms a prime A-consequent term p(A) of f(A, X) = 0. Prime

A-consequent terms p(A) represent minimal evanescent subsets of the set F of functions. Each

term,

AIA 2 . . . A., (3.106)

of BCF(g(A)) denotes the existence of the evanescent subset

{f,, f2,..., f}. (3.107)

Determination of Minimal Evanescent Subsets. Using the the partial label-and-reduce

and goal-directed elimination processes, we have demonstrated a means for determining all minimal

evanescent subsets among a set F of functions. Procedure 3.3 is a method for determining all

2 Procedure 3.1

129

evanescent subsets. An example which demonstrates the use of Procedure 3.3 to determine the

evanescent subsets among a set of functions is given by Example 3.6.

Procedure 3.3 (Minimal Evanescent Subsets): Given a set F = {fx, 12,..., fk} of Boolean
functions, we determine all of the minimal evanescent subsets among the set of functions in the
following manner:

Step 1. For each function fi E F:

1. Generate an associated label Ai.

2. Complement each function fi.

3. Prefix each term of the formula which represents fi' with the literal A1 .

The resulting formula represents Ai • f,'.

Step 2. Append together each of the formulas developed in Step 1. The resulting formula repre-
sents f(A, X).

Step 3. Using the quick method for forming the conjunctihe eliminant (Procedure 3.1), form
ECON(f(A, X), X). The resulting function is equal to g(A). The formula which represents
g(A) is BCF(g(A)).

Step 4. Each term of BCF(g(A)) represents a minimal evanescent subset. For each term of
BCF(g(A)), determine the labels contained in the term and replace the labels by the functions
with which they are associated. Return each subset of functions.

Example 3.6: Suppose we would like to determine the evanescent subsets among the funct,ns of

the set (f , f2, f3, f4, f5 I defined by

A =

f2 = 2 1 Z2 + Z 1 2

f3 = Z1 Z2 (3.108)

A -- Z=

A5 zl.

Step 1. We create a system of the form (3.84) by associating labels A1 , A2 , A3 , A4 , and AS with

the respective functions, i.e.,

130

,A1 < z 1 z2 +zAl XII2 +1+ 12

A 3 !5 XIX2 (3.109)
A 4 _5 Zl22

A5 _ z1.

Step 2. The system is reduced to the form f(A, X) = 0, for which f is defined by the equation

f(A 1 , A2, A3, A4 , A5, zI, Z2) = A4lz'z + AIzIz 2 +

A2 z'1 z 2 + A2XIz1 2 +

A 3Z 1 + A3:'2 + (3.110)

A 4Z'j + A 4X2 +

A 5 :'

Step 3. Eliminating the variables 2x and X2 from f(A, X) produces the consequent g(A) = 0, for

which

g(A 1 , A 2, A3, A4 , As) = AjA 2 + A 2 A 3 + A 3 A 4 + A 2A 4 + A 3 A5. (3.111)

The function g(A) is in Blake canonical form.

Step 4. The terms in BCF(g(A)) are the A-consequent terms of f (A, X) = 0 which denote the

existence of the minimal evanescent subsets f fl, f2j, {f2, f31, {f3, f4, {f2, f4}, and {ff, fs.

Thus, the relations

1112 = 0

f213 = 0
f3 = 0 (3.112)

1214 = 0
f3 fS= 0

are identities.

131

Implication Relations

The third relationship among a set F = {f,, f2,...jj4} of functions with which we are

concerned is that of implication. An implication relation is one of the form

f0 !_ f -I-.. + f, (3.113)

in which {ff, f2,..., f.) is a subset of F. When using the label-and-eliminate procedure to deter-

mine all of the relationships among a set of functions, the A-consequents which denote implication

relations take the form

ajb'.., b' = 0. (3.114)

As with normal and evanescent subsets, a more efficient approach is to formulate the problem so that

only those A-consequents which have the desired form are developed. In this section, we introduce

an efficient technique for producing only those A-consequents which have the form (3.114).

The General Method. To determine coverage of a function fo by a subset of F, a sys-

tem reducible to the form f(A, X) = 0 must be devised from which A-consequents of the form

AoA' ... A' = 0 are deduced. Such A-consequents may be expressed by the equivalent statement

A0 !5 A, + .- + As (3.115)

where A 0 , A,,..., A, are members of the set A = {AO, A,,..., Ak) of labels. We replace the labels

with their associated functions to deduce the coverage of fo by a subset of F.

We would like to enforce the condition that all A-consequent terms consist of one uncomple-

mented literal, i.e., the label A 0 associated with the function Jo, and one or more complemented

literals which are labels representing a subset of F which covers fo. To produce A-consequents of

132

this form, we make the supposition that the initial formula F(A, X) which represents the function

f(A, X) should not contain terms which include the complemented literal A' or other A-literals

in uncomplemented form. Therefore, a system of inequalities is formulated which is reduced to an

equation f(A, X) = 0. For a function to be covered, fo, and a set F of functions which may cover

fo, we form the system

Ao < fo(X)

f1 (X) < A1

f 2(X) < A 2

(3.116)

fl(X) < Ak.

Applying the definition of the inclusion relation, (3.116) is represented by the equivalent system

fo(X)' . Ao = 0

f(X). A'= 0
I 0f2 (X). A' 0

(3.117)

fk(X) Aj- = 0.

This system is equivalent in turn to the equation f(A, X) = 0, for which

k
f(A, X) = A0 . fo(X)' + F(f 1 (X) • A:). (3.118)

We now present proofs which demonstrate that the terms of the A-consequents of f(A, X) = 0

represent coverage of the function fo by subsets of F. Hence, system (3.116) may be used to

economically determine the subsets of a set of functions which cover a given function. As when

determining normal and evanescent subsets, we call the process of proceeding from a system of

133

equations of the form (3.116) to an equivalent equation of the form f(A, X) = 0 the partial labeling-

and-reduction of a set of functions.

Theorem 3.5 establishes that a function fo is covered by a subset of the set F of functions if

and only if the A-consequent term which denotes the respective implication relation is an implicant

of f(A, X).

Theorem 3.5: Given a function jo, a set F = {fl, f2,..., f4} of functions, and a system

Ao < fo(X)

f1 (X) < A I

f2 (X) < A 2

(3.119)

A(X) < Ah.

reduced to the O-normal form f(A, X) = 0, the function fo is included in a subset {f f, f2,..., fa}

of the set F if and only if AoAA'... A , is an implicant of f(A, X).

Proof. We first show that if a function f0 is included in a subset {f,, f2,..., hi, then AoAA' .. A'

is an implicant of f(A, X). Since fo is included in the sum of the functions in {ff, f2,..., f.}, it

follows that

fO(X)J(X)fl(X)...J(X) 0 (3.120)

is valid. Hence. fo(X)fI(X)f(X) .f.f(X) is equal to the zero-function. Expressing f(A,X) in

the form

Aofo(X)+ f,(X)A' + f 2(X)A'2 +. .f. (X)A'f. + f+(X)A'+i +...+ fk(X)A' (s < k), (3.121)

134

we can add fo(X)f/(X)f2(X) f,'(X) to develop an equivalent representation for f(A, X):

fo(X)fI(X)f2(X)... f.(X) + Aofo(X) + fi(X)A + f2 (X)A' (3.122)

+. • + f.(X)A's + f.+(X)A.4.+ + + fk(X)A'k (a< k).

Using the same methodology as the proofs for Theorems 3.1 and 3.3, we apply consensus to form

the equivalent representation for (3.122):

+ fo(X)f/(X) ... f,(X) + Aofo(X) + f1 (X)A' (3.123)
+ .- + (X)A' + f,+ 1 (X)A', +... + fi(X)A' (a < k).

We thus conclude that the term AoA' .. . A' appears in an SOP formula which represents f(A, X).

It thus follows that AoA'- ... A'o is an implicant of f(A, X).

Assume on the other hand that Ao A' A'A...' is an implicant of f(A, X). Then the statement

k

o -A' < Ao . (X) + Z(f,(X) . A') (s < k) (3.124)

is valid for all substitutions for X and for (A,, A 2,..., Ak). From (3.124) we deduce the equivalent

statement

A, + .(A,) + Ao . fo(X) + Z(f,(X). -A) = 1 (a< k), (3.125)
i---1 i---1

which in turn is equivalent to

A.' + Z(A, + fi(X)) + fo(X) + y (fj(X) . A) = 1 (s < k). (3.126)

135

Since (3.126) is an identity, i.e., it is true for all substitutions for X and for (A, A2 ., Ak), it

holds if

A, = A2 .A 0 (3.127)

.md

Ao = As+, = A.+2 = Ak = 1. (3.128)

Thus,

fA(X) + ZUf(X)) = 1 (3.129)
i--1

is an identity. Thus, statement (3.124) implies equation (3.129). In other words, fo is included in

the subset {ff, 2,..., f,} of F. This completes the proof. 0

Theorem 3.6 demonstrates that the prime A-consequent terms deducible from (3.116) contain

only the uncomplemented literal Ao and complemented literals from the set {A,, A2,..., Aj}.

Theorem 3.6: Given a sy/stem

Ao < fo(X)

f (X) < AI

f2(X) < A2

(3.130)

fk(X) < At.

reducible to the form f(A, X) = 0, the A-consequent terms of the prime A-consequent. p(A) = 0

of f(A, X) = 0 consist only of the uncomplemented literal Ao or complemented literals from the set

A = {A,, A 2,..., A&} of variables.

136

Proof. System (3.130) may be expressed equivalently as

Ao. fo(X) = 0

f(x).A' = 0
f2 (X).A'2 = 0

(3.131)
(= 0.

By (2.40), system (3.131) is reduced to an equation of the form f(A, X) = 0, where

f(A, X) = Aofo(X) + f 1 (X)A' + + fk(X)A. (3.132)

A formula to represent Aofo'(X) +f f(X)A +... + fk (X)A' is constructed in the following manner:

1. Complement function fo. Prefix the label AO to each term of the formula which represents
f . The resulting formula represents Ao . fo.

2. For each function fi E {fl, . . . , fk 1, prefix the complement of its associated label A to each
term of the formula which represents f,. The resulting formula represents the function fi" Az.

3. Append together the formulas formed in Steps 1 and 2. The resulting formula represents
Aofo(X) + J(X)A + -.. + fk(X)A'. Let us call this formula F(A, X).

Because the formulas which represent each of the functions fo(X), f1 (X), ... , fk(X) consist only

of X-variables, and the formula F(A, X) is formed so that only the uncomplemented form of Ao

and the complemented forms of variables in A appear in it, AO and the variables in A are unate in

F(A,X). By Lemma 3.1, A0 and the variables in A are unate in BCF(f(A,X)). It follows that

if any prime A-consequents p(A) = 0 of f(A, X) = 0 exist, then the corresponding A-consequent

terms p(A) consist only of the uncomplemented form of A0 and the complemented forms of variables

in A. This completes the proof. 0

Using the partial label-and-reduce process to form the equation f (A, X) = 0 rather than the

full label-and-reduce process decreases the time and space complexity of generating A-consequents

137

of the desired form. When reducing system (3.116), the associated function Aofo(X) for function

fo(X) is not included in f(A, X). Likewise, for each function fi(X) E F, the associated function

fi(X)A- is not included in the function f(A, X). Functions Aofo(X) and fi(X)A are not included

in f(A, X) because inclusions are used rather than equalities to associate labels with functions. The

computations required to form Aofo(X) or f,(X)A are not performed; additionally, the respective

formulas do not have to be stored.

Elimination of X-Arguments and Formation of A-Consequents. Because of the form

of system

Ao _ fo(X)

f!(X) _ A,
f 2 (X) < A2

(3.133)

k(X) < At,

after reduction to 0-normal form, f(A, X) = 0, the A-consequent terms of the prime A-consequents

of f(A, X) = 0 may contain only the uncomplemented literal Ao or complemented literals in the

set A of labels. As in the methods for deducing normal and evanescent subsets, the prime A-

consequent terms are deduced using the goal-directed elimination technique for eliminating the

X-variables from f(A, X) = 0. As a result of elimination, we deduce the consequent g(A) = 0, for

which

g(A) = ECON(f(A, X), X). (3.134)

Because g(A) is formed using the quick method3 for forming the conjunctive eliminant of f(A, X)

with respect to X, the formula produced by the elimination process to represent g(A) is its Blake

3 Procedure 3.1

138

canonical form. Each term of BCF(g(A)) corresponds to a prime A-consequent p(A) = 0 of

f(A, X) = 0.

The prime A-consequent terms p(A) of f(A, X) do not necessarily represent irredundant

implication relations. In some cases-depending on the functions in F-prime A-consequent terms

represent normal subsets. Prime A-consequent terms deduced from f(A, X) = 0 may take one of

two forms:

* AoA ... A' , or

If a prime A-consequent term is of the form AoA'1 ... A', then the term represents an irredundant

implication relation. The literals of the prime implicant correspond to an irredundant subset of

F which covers the function fo. On the other hand, if a prime A-consequent term is of the form

A'- . A', then the term represents a normal subset of F. Any function is included in the sum of

functions which form a normal subset. When a prime A-consequent term of the form A' A'... A'

is deduced, Boole's Expansion Theorem may be applied to form

A'A ... A', + AoA'A' ... A'. (3.135)

It follows that the equation

AoA'A .. . A', = 0. (3.136)

is valid and a consequent of f(A, X) = 0. Consequent (3.136), although not a prime A-consequent

of f(A, X) = 0, represents an implication relation denoting the coverage of function Jo by a subset

of F. The A-consequent term AoA A'2 ... A, represents an irredundant implication relation if it is

not absorbed by a prime A-consequent term which represents an irredundant implication relation.

139

To generate all A-consequent terms of f(A, X) = 0 which represent irredundant implica-

tion relations, the following steps are taken after the function g(A) is formed using goal-directed

elimination:

1. The terms of BCF(g(A)) are separated into two groups:

(a) terms which contain the literal Ao, and

(b) terms which do not contain the literal A0 .

2. The literal Ao is prefixed to the terms which do not contain the literal A0 .

3. A formula, G, is formed composed of the terms resulting from Step 2 and the terms of
BCF(g(A)) which contain the literal Ao.

4. The equivalent absorptive formula, ABS(d), is formed for G.

Terms of 6 are the A-consequent terms of f(A, X) = 0 which represent the complete set of irre-

dundant implication relations denoting the coverage of the function fo by subsets of F. We shortly

will present an example which illustrates this process.

Determination of Irredundant Implication Relations. Procedure 3.4 outlines a method

for deducing all irredundant implication relations in which a function fo is included in a subset of

the set F of functions. Example 3.7 demonstrates the use of Procedure 3.4 to determine implication

relations in which a function is included in a subset of a set of functions.

Procedure 3.4 (Irredundant Implication Relations): Given a Boolean function fo and a set
F = {f, f2,..., ft } of Boolean functions, we determine all irredundant implication relations in
which the function fo is included in a subset of the set F of functions as follows:

Step 1. For function fo:

1. Generate an associated label Ao.

2. Complement function fo.

3. Prefix each term of the formula which represents fo with the literal Ao.

Step 2. For each function f, E F:

1. Generate an associated label A,.

2. Prefix each term of the formula which represents fi with the complemented literal A,.

140

The resulting formula represents A • f,.
Step 3. Append together each of the formulas developed in Steps 1 and 2. The resulting formula

represents f(A, X).

Step 4. Using the quick method for forming the conjunctive eliminant (Procedure 3.1), form
ECON(f(A, X), X). The resulting function equals g(A); the formula which represents g(A)
is ECF(g(A)).

Step 5. Each term of BCF(g(A)) consisting only of complemented literals represents a minimal
normal subset; append the literal Ao to each of these terms. (Do nothing to the remaining
terms.) Call the resulting formula G.

Step 6. Form the equivalent absorptive, ABS(G), for d. Each term of ABS(G) represents an
irredundant implication relation.

Step 7. For each term of ABS(G), remove the literal Ao and form a set which consists of the
functions associated with the remaining labels. Return each subset of functions.

Example 3.7: Suppose we would like to determine the irredundant implication relations which

denote coverage of the function Jo = zyz + z'yz' by subsets of the set F = {ff, f2,. . ., f6} of

functions defined by

f z

f2 = IZI+ W
f3 = ZZ (3.137)

A Z+Z'
15 = 11
fs W-- /

Steps 1-2. A system of the form (3.116) is created by associating the labels AO, A,,..., A6 with

the respective functions

Ao < zz + z'y'z'

z < Al

'z' + w < A 2

z'z' < A 3 (3.138)

z + z' < A 4

w < As

w' < A6 .

141

Step 3. Reducing to the form f(A, X) = 0, we form the equation

f(Ai,A2,A 3 , A4 , A5 , A6, w, z, y,z) = Ao zy' + Aoz'y + Aoz'z + Aozz' + AoY1z + Aoyz' +

A'z +

A'y'z' + A'w +
A'3z'z' + (3.139)
A'z + A'z' +

A w +

A'W'.

Step 4. Using goal-directed elimination to eliminate the variables w, z, y and z results in the

consequent g(Ao, A,,..., A6) = 0, where

g(Ao, A,, A2 , A3 , A4 , As, A6) ,AoA A' + AoA'A' + AoA' + A + A'A' + A (3.140)

AoI3 A O 1A 2 " 4oA A2A6 1 4AsA6.

The function g is in Blake canonical form.

Steps 5-7. The following A-consequents of f(A, X) = 0 are developed:

AoA ',A = 0

AoA A' = 0

AoA = 0 (3.141)

A2A' = 0

A A' = 0

AsA' = 0.

The A-consequents in (3.141) denote the existence of the irredundant implication relations:

fo !5 h+f3

fo 1_ f, + f2 (3.142)

fo14

142

and the normal subsets {f2, f6}, {ff, f 4 }, and {fs, f6i. The normal subsets indicate the

validity of the statements

12+f6 = 1

fl + A = 1 (3.143)

f5+f6 = 1.

When the literal AO is appended to the last three A-consequent terms of (3.141), we deduce

the A-consequents

AoAA'6 = 0 (3.144)

AoA'A' = 0 (3.145)

AoA'A' = 0. (3.146)

Equations (3.144) and (3.146) represent irredundant implication relations

o f2 + 6 (3.147)

fA A 15+f6.

However, equation (3.145) represents the implication relation

fo 5 fA + fA (3.148)

which is not irredundant since fo _ f,. The A-consequent term AoA'A' is absorbed by

AoA'.

143

A Modified Approach. When determining the inclusion of 'he function fo in subsets

of the set F = {fi, f2,. .. , } of functions, it is advantageous to make each formula F which

represents each function fi E F as simple as possible prior to the label-and-reduce and elimination

processes. To make a formula simple, terms of the formula are deleted and literals are removed

from the remaining terms where possible. Simplifying each formula prior to the label-and-reduce

and elimination processes minimizes the total amount of work that must be performed during

elimination. Memory usage also will decrease because the formulas to be manipulated are smaller.

In this section we develop an approach for simplifying formulas representing each function f,.

Suppose we have two functions f and g in which f _< g. A question that may be posed is

whether there exists a third function h such that

f < g f : h (3.149)

is valid. Additionally, if such an h exists, then what functions form a suitable h. We show in

Theorem 3.7 that a range of such functions exists given that f _5 g is true.

Theorem 3.7: Iff < g is valid, then there ezists an h defined by the interval

f g !5 h < f' + g (3.150)

such that ue may equivalently state that

f < g f : h. (3.151)

144

Proof. We may state (3.151) equivalently as

fg' = 0 4 fh' = 0. (3.152)

Since f _< g, the Extended Verification Theorem allows us to equivalently assert that

fg' = fh'. (3.153)

Reducing (3.153) to an equivalent 1-normal form, we develop the equation

(fg') E (fh') = 0, (3.154)

which may be restated in turn by the equation

(fg')h + (fg)h' = 0. (3.155)

Equation (3.155) is equivalently stated by the interval

fg _ h < f' + g. (3.156)

This completes the proof. 0

The existence of a range of h-functions for which (3.149) is true allows us to select a function h to

use in lieu of g as we please. We now show how to apply this principle to our current problem.

Our goal is to make each formula F which represents each function fA E F simpler with

respect to contained terms and literals prior to applying the label-and-reduce and elimination

processes for determining the inclusion of the function fo in subsets of F. A way to accomplish

this is to find a set F {fl, , A } of functions to use in lieu of F in the label-and-reduce and

145

elimination processes, such that each formula Fi which represents f, E P is simpler with respect

to contained terms and literals than the corresponding Fi which represents fi E F. Theorem 3.7

facilitates the development of such a set.

If fo is included in a subset of F, then the statement

fo !5fA +f2 +."+fk (3.157)

must be valid. We would like to find a sum1f +f3 +'-- +it to use in lieu of fl +f2 +f -" + fk. If

fo '-. f and fi + f2 + ".. + fh - g in Theorem 3.7, then a suitable sum is given by the interval

fo'(fh+ f2+''+ fk) !5 1 +2+...+ k <_fo+ f1+ + .f2.+ + fk. (3.158)

We are free to choose any sum which falls between the lower and upper bounds of (3.158). It follows

that we may select each function A which is a member of the interval

[(fo fi), (f. + fi)]. (3.159)

In the next two sections, we will describe a strategy for selecting a reasonable fi from this interval.

Relative Absorption. One way to develop a function to use in lieu of fi is to delete

terms included in the function fo in the formula F which represents it. These terms of are no use

in covering the function fo since they are implicants of fo. We may easily identify such terms in

each Fi, because each contains a superset of the literals contained in at least one term in BCF(f).

Any implicant of a function in necessarily included in a prime implicant of the function. Using the

ABSREL operator4 introduced in Chapter 2, we may remove terms from each F included in the

'ABSREL(P, Q) is an operator which returns the formula constructed from P by removing all terms absorbed
by Q.

146

function fo. For each function ft , the ABSREL operator is used to form a new formula Fi which

represents a function i,

, = ABSREL(F, BCF(fo)), (3.160)

in which F consists of those terms in F which are not included in fo. Each function ft may be

split into the sum of two functions, i.e.,

f , = f + h, (3.161)

one of which is fi and the other, call it ji, is represented by the terms in F absorbed by BCF(f).

We must demonstrate that the resulting function jf is in interval (3.159). Clearly, jf < fi

is valid. Thus, fi is less than the upper bound of (3.159). We now have to show that f0fi : fi.

Since, fofi _ fi is valiO, it is also true that

fof !5A +1. (3.162)

It follows that

fofufi'it'- = 0. (3.163)

The valid statement _jf fo is equivalent to stating that fifo = 0. We then form the equation

fof fi 'A,' + , fo = 0 (3.164)

147

which is in turn equivalent to

fof ii= 0; (3.165)

whence,

fofi :5 j. (3.166)

Thus, f, is in interval (3.159).

Using relative absorption, we thus form a function f, by deleting the terms in F wlich are

included in function fo. We now show how relative simplification is used to simplify each formula

i relative to BCF(f), thus deleting literals from terms in F. The formula resulting from relative

simplification is the formula i which represents the function /i.

Relative Simplification. Each formula F1 may be simplified relative to terms in

the formula BCF(f) using the relative simplification process implemented by Procedure 2.17.

We develop modified formulas Fi by forming consensus terms between terms in F and terms of

BCF(fj) when terms in F, are absorbed by the resulting consensus terms. The consensus terms

replace their parent terms in each formula F, to form a new formula F,; hence, each term in A, has

a corresponding term in F. Some terms in F are the same as those in the formula FP; other terms

in P, include (i.e., <) a corresponding term in F. Hence, the new formulas, F, represent modified

functions fi, in which

f_-,. (3.167)

148

The advantage of using the newly created terms in each F, rather than the parent terms in each

Fi is that the new terms consist of fewer literals, hence less work must be performed to eliminate

the X-arguments once we derive the equivalent 0-normal form, f(A, X) = 0, of system (3.116).

In essence, what is being accomplished in relative simplification is that some portion of the

function f' is being added to each Ai to form a new function Ai. We demonstrate this in Example 3.8.

Example 3.8: Suppose we are given a function f0 = zy + yz which we would like to cover by the

set F = {fl, f2) of functions, in which the functions in F are defined by

fh = 'y (3.168)

f2 = XY.

Forming BCF(f), we derive

BCF(f) = y' + z'z'. (3.169)

Neither f, nor f2 is absorbed by any term of BCF(f). Thus, we form the set of functions

]i = z'y (3.170)

j2 = my.

Using relative simplification, the consensus term z' would be created from the term z'y of I

and y' of BCF(fo). The term z' absorbs the term z'y, hence we form the function

S= z. (3.171)

149

Similarly, we form the function

f2 = z. (3.172)

By Boole's Expansion Theorem, z' = z'V + z'y; thus, the relative simplification process added

the term z'V to A to form li. The term zV was added to j2 to form h2. Both z'yV and zy' are

included in fj, hence a portion of fo was added to A to form /1 and to 12 to create f2.

The sum ji + fo is in interval (3.159). We expand fo with respect to fj to develop the

equivalent statement

f+ 4A + Afif. (3.173)

The function Af represents the portion of fo which is included in jf; we delete this function by

aborptior. The function f, 'f represents the portion of fo that is not included in ii; it also denotes

the maxi- um part of function fo that may be added to each A to form j. The sum A + i'fl

therefore represents the upper bound for function jf. Thus, we deduce an interval which defines

the limits)n the function ii:

, _f, <,- + j,f,. (3.174)

Selecting L. function Aj in the range given by (3.174) yields a function which in interval (3.159). 1i

is greater han ji which we demonstrated was greater than the lower bound of (3.159). Moreover,

we establish ed that fj < fi. Finally, since f'f < fo is valid, it follows that fj is less than the upper

bound of (3.159).

As a final step in forming a simplified formula for each function f,, the formula ABS(Fi) is

formed to remove absorbed terms in the formula F.

150

Identification of Implication Relations. When determining coverage of the func-

tion fo by subsets of the set F of functions, we may use the revised set P = {fil 12, ... , fk} of

functions in Procedure 3.4. Using the set P to determine subsets of F which cover fo, when a sub-

set of functions in P covers fo, the corresponding functions in F also form a subset which covers

fo. The only portion of each function fi which is not in each A are those terms in F which are

completely covered by fj; hence, they are of ro utility in covering fo.

Typically, each formula Pi which represents the function A consists of fewer terms than the

formula F representing the respective function fi. These terms are deleted from F to form Fi

during the relative absorption process. Additionally, terms in each Pi consist of equal or fewer

literals than the corresponding terms in the respective formula F. The literals are removed from

terms during the relative simplification process. Hence, we have attained the goal of making the

formulas F, representing each function fi simpler with respect to both terms and literals prior to

the label-and-reduce and elimination processes. We formalize the concepts developed in this section

with Theorem 3.8.

Theorem 3.8: If a function fo is included in a subset of the set F = 12,. .. , fk) of functions,

then the function fo is included in the corresponding subset of the set F = {fI, f2, ... , I of

functions, where each function fI is represented by

Ai = SIMPREL(ABSREL(F,, BCF(fo)), BCF(f)). (3.175)

SIMPREL represents the application of the relative simplification operation.

Proof. The proof of this statement is demonstrated in the foregoing discussion. We summarize

the steps for forming each formula F which represents a function jI.

1. Form the complement of fo.

2. Generate BCF(f).

151

3. For each function fi, take the following steps:

(a) develop a function fi, where

F = ABSREL(F., BCF(f)); (3.176)

(b) form ji, where

Pi = SIMPREL(Pi,BCF(f)); and (3.177)

(c) derive an equivalent formula to represent ft by forming ABS(FA).

This completes the proof. 0

When developing the A-consequent terms which represent implication relations in Proce-

dure 3.4, many of the prime A-consequent terms will represent normal subsets when the set P of

functions is used, whereas corresponding A-consequent terms may represent IIRs when the set F is

used. The reason for this occurrence is the fact that the functions 11, 2, ... , .f1 have some portion

of fo added to them during relative simplification. By the definition of the inclusion relation, the

following statement is valid:

fo f1+f2+..+fk - f'+fl+f2+ +...+fA=. (3.178)

Hence, if some portion of fo is added to each f. to form each fA, then the functions in Pi will likely

form normal subsets, since fo is included in fi + f2 + "'" + fk.

We now present a modified version of Procedure 3.4 which uses the set F of functions to

determine the coverage of a function fo by subsets of F.

Procedure 3.5 (Irredundant Implication Relations): Given a Boolean function fo and a
set F = {fl, f2,..., fh} of Boolean functions, we determine all irredundant implication relations
denoting the inclusion of fo in a subset of F in the following manner:

Step 1. For function Jo:

1. Generate an associated label A0 .

2. Complement function fo.

3. Form BCF(f) for use in Step 2.

152

4. Prefix each term of the formula which represents f with the literal Ao.

Step 2. For each function fi E F:

1. Form a function fi, where , = ABSREL(Fi, BCF(/)).

2. Form a function ji, where Pi = SIMPREL(IFk, BCF(f)).

3. Generate an associated label Ai.

4. Prefix each term of the formula which represents 1i with the complemented literal A .

The resulting formula represents A .1i.

Step 3. Append together each of the formulas developed in Steps 1 and 2. The resulting formula
represents f(A, X).

Step 4. Using the quick method for forming the conjunctive eliminant (Procedure 3.1), form
ECON(f(A, X), X). The resulting function equals g(A), which is represented by BCF(g(A)).

Step 5. Each term of BCF(g(A)) consisting only of complemented literals represents a minimal
normal subset; append the literal Ao to each of these terms. (Do nothing to the remaining
terms.) Call the resulting formula G.

Step 6. Form the equivalent absorptive, ABS(G), for 6. Each term of ABS(d) represents an
irredundant implication relation.

Step 7. For each term of ABS(G), form a set which consists of the functions in F; each function
of the set corresponds to a respective function in fI, f2, .. ., 1,h which were associated with
the labels in the term in Step 2. Return each subset of functions.

Example 3.9: Suppose we would like to form the irredundant implication relations which denote

coverage of the function fo = zyz + z'Vz' by subsets of the set F = {fl, f2, fs} of functions

defined by

fi = zz

12 = /Yz + ZZ,

13 = XIZZ (3.179)

f = Z'Z + XI/Z

s = Z+Z'

Step 1. We form

A = X'y + z'z + zY' + y 'z + zz, + yz'; (3.180)

the right side of (3.180) is the Blake canonical form for f'.

153

Step 2. Using BCF(f), we form the set P = {fla,..., j} of functions, for which

F, = ABSREL(F,, BCF(f)).

We derive the system

13 --- = (3.181)

hs 0

y= + 'Y'

The set P = {fi, 12,..., fk} of functions is then devised, for which

FA = SIMPREL(F,, BCF(f)).

The functions j, are defined as follows:

Ii = z
f2 = Y'

L = / (3.182)
f 4 = o
15 = z+z'

154

Step 3. A system

Ao _ xyzZ+Z'y'z'

z < A,

Y' _5 A 2

z' < A3 (3.183)

0 < A4

z +z' < As

* + z' < A 6 .

of the form (3.116) is devised by associating the labels A 0 , Aj,..., A6 with the respective

functions. The system is in turn reduced to the form f(A, X) = 0:

f(A 1 ,A 2, A 3 , A4, As, A 6 , z, ,z) = Aoxy' + Aoz'y + Aoz'z + Aozz' + Aoy'z + Aoyz'

+ Allz

+A y~'

A' z' (3.184)

+ A'40
+ A' + A'z'

5 5

A'x + A'z'.

Step 4. Using goal-directed elimination to eliminate the variables z, y, and z produces the conse-

quent g(A) = 0, for which g is defined by the equation

g(Ao, A,, A 2, A 3 , A4, As, A 6) = AOA'A + AoA'A' + AoA'' + A'A' + A'A' + A6. (3.185)

A o 3A 1 A o 2 + o 6 + A~ + A 3 A 5 s

The function g is in Blake canonical form.

155

Steps 5-7. The following A-consequents of f = 0 are deduced:

AoA'A' = 0
1 3

AoA'A' = 0

AoA = 0 (3.186)
AIA' = 0
A'A' = 0

A = 0.

The A-consequents in (3.186) denote the existence of the irredundant implication relations

Io < IA+h
fo 1 fx + - 2 (3.187)

fo s

and the minimal normal subsets {1, fs}, {i 3,1 5}, and {16}. The normal subsets indicate

that the equations

13 + A = 1 (3.188)

16 = 1

are identities. When the literal Ao is appended to the last three A-consequent terms in

(3.186), we deduce the A-consequents

AoA'A5 = 0 (3.189)
AoAA s = 0 (3.190)

AoA' = 0. (3.191)

156

Equation (3.191) represents the irredundant implicAion relation

fO <6. (3.192)

However, equations (3.189) and (3.190) represent the implication relations

fo :5 fi +s

fo 13 +f5, (3.193)

which are not irredundant since fo < is. The A-consequent terms AoA'1 A' and AoA A' are

absorbed by AoA'.

Based on the subsets of the set {fi, f2,..., jk} which cover fo, we then conclude that the

following subsets of F cover fo:

1{f, f2}, {fl, f3}, {fs}, {f6}}. (3.194)

Hence, the statements

xyz + Z'y'Z' < (z) + (y'z' + zz')

zyz + x'y'z' < (zz) + (z'z') (3.195)

z/z+ z'Y/z' < z+Z'

xyz+z''I < zY + z Y

are identities.

Covering a Term. We now discuss the special case of forming irredundant implication

relations to denote coverage of a function fo by subsets of F when fo and the elements of F are

single terms. A number of ideas may be incorporated to male efficient the process of determining

the coverage of a single term to by subsets of a set T = ft 1 , t 2, ... , tk J'f terms. We may id'entify a

157

priori the members of T which are not members of any minimal subset of T which covers to; such

terms in T are called irrelevant with respect to to. The remaining terms in T-terms which cover

some portion of to-are the only terms that must be considered when determining the coverage

of to by minimal subsets of T. We call these terms relevant with respect to to. Additionally, we

may remove certain literals from the relevant terms prior to the process for developing the minimal

subsets. We present in this section a procedure for forming minimal subsets in which irrelevant

terms with respect to to are deleted and certain literals are removed from relevant terms prior to

the subset-identificatior. pcs.,cess.

There exist three types of terms in a set T which are irrelevant with respect to to. These

categories are:

* terms in T which contain an argument which is opposed to an argument contained in to;

" terms in T containing an argument not contained in to which is unate in the formula formed
from the disjunction of terms in T; and

• terms in T which only contain variables not "related" to to.

We discuss in turn each of these categories. Irrelevant terms in T are removed from consideration

prior to the process for determining the coverage of to by minimal subsets of T.

We may apply the methodology developed in the modified approach for identifying irredun-

dant implication relations. Thus, each t, E T may be replaced by a term ti which is a member of

the interval

to - ts), (to' + ti)]. (3.196)

if to consists of the literals 11, 12, ... , 11, then to is equal to the .iisjunction of t'.- complement of the

literals, i.e.,

158

t= "I+ ++ + '- (3.197)

Any term t, which contains at least one of the literals l', 12,. .. , I' is absorbed in the sum t' + ti.

Additionally, since to consists of the literals 11, 12,..., 1l, any term ti absorbed by one of the literals

L', l ,..., 1 contains a literal that is opposed to a literal in to. Thus, to • ti = 0. It follows that the

interval (3.196) formed for a ti which contains a literal opposed to a literal contained in to is [0, t'].

Thus, we may select 4 = 0, which means that terms ti in T which contain a literal opposed to a

literal in to are irrelevant.

In addition to absorbing terms, the literals 1', 1', , l' may be used to delete certain literals

from terms ti. By property (2.30), we may remove literals from terms tj in T which are the com-

plement of the literals l, 1 1, . This operation is a specialization of the relative simplification

applied in the modified approach for identifying irredundant implication relations. Denoting the

term t4 as the term formed by remjving the literals 11, 12, .. ., 11 from ti, we thus form the interval

[(to" ti), (, + + ' + 1+)]. (3.198)

The statement 4 !5 t is valid, since t, contains a superset of the literals in 4. It follows that a

suitable term which is a member of interval (3.198) is 4.

Thus, for each t E T, we form a term & in the following manner:

* 4 = 0, if t, contains a literal opposed to a literal in to; or

* 4 contains th ; literals of t4 not contained in to.

If we divide each term in T by to, we would deduce the same result as the process described above.

This what is done in the method described in the Normal Subsets section of this chapter and

illustrated by Example 3.5 for determining coverage of a term to by subsets of a set T of terms.

159

After dividing each term of T by to, minimal normal subsets of the set T = {i-, i, • , 4} of terms

correspond to minimal subsets of T which cover to.

Terms t, E T which contain a variable z which is unate in the formula formed from the

disjunction of terms in T are irrelevant-provided that z is not contained in to. Such terms exist

only in non-minimal subsets of T which cover to. Hence, if a term tj is included in a set of

terms which covers to, we may delete it from the set and the resulting subset will still cover to.

This idea was applied by Cutler (Cutle 80:48). Moreover, he states that after all terms containing

variables which are unate in the formula formed by the disjunction of terms in T are removed from

T, the process may be performed again to remove terms containing variables which may become

unate-due to the removal of terms-in the disjunction of the remaining terms in T. The process

is executed iteratively until there are no terms t i containing arguments not contained in to which

are unate in the formula formed by the disjunction of the remaining terms in T.

The third category of terms in T which are irrelevant with respect to to are terms in T which

contain only variables not "related" to to. Variables related to to are defined by the following

recursive definition:

1. Variables in to are related to to.

2. All variables contained in terms in T which contain variables related to to are related to to.

3. All variables contained in terms in T which do not contain a related variable are unrelated
variables.

Furthermore, we say that terms in T which contain variables related to to are related term.. Like-

wise, if a term contains only variables not related to to, then we say that it is an unrelated term. If

the collection of unrelated terms does not form a normal subset, all terms in T which are unrelated

to to may be removed from T prior to identifying minimal subsets of T which cover to. This concept

is formalized by Theorem 3.9.

160

Theorem 3.9 (Unrelated Terms): Given a term to, a set T = {tj, ... ' 41t of terms, and a

subset U of T which consists of all the terms in T which are unrelated to to, if U does not form a

normal subset, then no term in U is included in a minimal subset of T which covers to.

Proof. Let us denote variables related to to by X1 and variables unrelated to to by X 2 . Let

Qt3 . . be the subset of T consisting of terms related to to. Furthermore, let U = t5 1 ,. .

We form the system

A0 5 to(X 1)
ti(X1) !5 A,

(3.199)

t. (Xj) <A.

tk(X2) <Ak

which is reducible to the form f (A, XI, X 2) = 0. The function f (A, X 1, X 2) is represented by the

formula

AotOI(Xi) + jt(X)AX + td(X2)A' . (3.200)

Elimination of the XI-arguments from f (A, XI, X 2) =0 yields a resultant of the form

gi(Ao, A,,.. ., As) + ti(X 2)A - = 0 (3.201)

since E~=+ ti(X 2)AX is independent of the X1 -arguments. Similarly, eliminating the X2-arguments

from (3.201) yields the consequent

gi(Ao, A,..., A.) + g2 (A.+I, . .. , Ak) 0 (3.202)

161

since the function gj(Ao, Aj,..., A,) is independent of the X2 arguments.

Since f (A, XI, X 2) = 0, it follows that the statement

t1 (X2)A' = 0 (3.203)

is an identity. Equation (3.203) is equivalent to the system

t0+1(X2) < A.+,

(3.204)
tk(X 2) _ Ak.

System (3.204) is included in system (3.199), therefore any consequent of (3.204) is also a consequent

of (3.199). By Theorem 3.2, the A-consequent terms in (3.203), i.e., the terms in g2(A,+,..., Ak),

consist only of complemented literals of the set {A.+1,..., Ak}. However, in view of Theorem 3.1,

A-consequent terms in (3.203) and hence f(A, X1 , X 2) = 0 consisting only of complemented literals

of{A+, ... , Aj} exist if and only if the associated terms {t.+,1 ... , ti} form a normal subset. Since

it was assumed that the terms in U do not form a normal subset, it follows that no A-consequent

terms of f(A, X 1 , X 2) = 0 exist consisting only of complemented literals of {A.+,..., Ah}. Hence,

the function g2 (A,+,..., Ak) is identically equal to zero.

Since g2(A,+,..., Ak) is identically equal to zero, all A-consequent terms denoting the cov-

erage of to are deduced from the equation

gl(Ao, A,,..., As) = 0. (3.205)

The consequent g1 (Ao, A,,..., A,) = 0 is derived from system (3.199) less the inclusions in system

(3.204). The labels in g, are associated with the term to and the terms in T which are related to

162

to. Hence, only terms in T which are related to to are included in minimal subsets of T which cover

to. This completes the proof. 0

We now present a procedure which produces minimal subsets of a set T of terms which cover a

term to. Once irrelevant terms with respect to to are omitted from T, and literals of to are removed

from terms in T (via a divide operation), we determine sum-to-one subsets of the revised set T;

sum-to-one subsets of t correspond to minimal subsets of the original set T which cover to. If it

is known beforehand that all terms in T are related to the term to, then Step 4 may be skipped in

the procedure since it will have no effect on the result. Example 3.10 illustrates the application of

Procedure 3.6.

Procedure 3.6 (Coverage of a Term): Given a term to and a set T = {tl, t 2,..., th} of terms,
we determine all minimal subsets of T which cover the term to in the following manner:

Step 1.

1. Divide each term in T by the term to. Denote the terms t1 /to by the notation fi.

2. Remo-ve from T each element ti which is equal to 0.

Step 2. Determine the set V of variables which are unate in the formula formed by the disjunction

of terms in T.

Step 3. Remove from V variables contained in the term to.

" If V = 0, then continue to Step 4.

" Otherwise, remove from T terms containing any variable in V and return to Step 2.

Step 4.

1. Determine the set U of terms in T which are unrelated to to. (We assume that terms
which are unrelated to to do not form a normal subset.)

2. Remove from T terms included in the set U.

Call the revised set T.

Step 5. For each term fi(X) remaining in T:

1. Generate an associated label Ti.

2. Prefix each term t-(X) with the complemented literal T'.

The resulting term is T' . t (X).

Step 6. Append together each of the terms formed in Step 5. The resu!ting formula represents
f(A, X), where the vector A is defined aa ,Tt,..., Th).

163

Step 7. Using the quick method for forming the conjunctive eiminant (Procedure 3.1), form
ECON(f(A, X), X). The resulting function is equal to g(A); the formula which represents
g(A) is BCF(g(A)).

Step 8. Each term of BCF(g(A)) consists only of complemented literals; each represents a minimal
normal subset denoting the coverage of to by minimal subsets of T. Call the resulting formulaG.

Step 9. For each term in G, form a set which consists of the terms {tl, t2,. .. , tk}; each term of the
set corresponds to a respective term in { 1 , t2 ,..., } which were associated with the labels
in the term. Return each subset of terms.

Example 3.10: Given a term wz and a set T = {w'z', w'z, wz', wy, wz, z'z', :y, zz, yz', u'v., uv'},

we use Procedure 3.6 to determine minimal subsets of T which cover wz.

Step 1. In the first step, we divide each term of T by the term wz. The set

{0, 0,, Y, 1, 0, Y, M,, u'V, uv'} (3.206)

results from the division process. Removing the elements of (3.206) which are equal to zero,

we develop the set

{X ', y, 1, z,, U'V', uv'}. (3.207)

Steps 2-3. Forming the disjunction of terms in (3.207), we find that the literal y is unate in the

resulting formula. Hence, we may remove terms containing y from (3.207) to form the set

{ z', 1, z, u'v, uv'}. (3.208)

Step 4. Given the term wz and the original set T of terms, the variables u and v are unrelated

to the term wz. Hence, the terms u'v and uv' are unrelated to wz. Since {u'v, uv' is

not a normal set, the terms u'v and uv' are removed from (3.208). We thus form the set

S= {z', 1, z}, which is used to determine subsets of T which cover wz.

164

Steps 5-6. We form the system

' _< T3

1 < T5 (3.209)

z < To

which is reduced to the equation f(A, X) = 0, for which

f(A, X) = z'T3 + T5 + xTS. (3.210)

The subscripts used for each label T corresponding to a term in T are chosen to to denote

the term in the original set T from which we derive the respective term in T. This allows us

to identify the subsets of T which cover wz.

Step 7. Eliminating the X-argument from f(A, X) = 0, we form the resultant g(A) = 0, where

g(A) = TTa' + V5. (3.211)

Steps 8-9. Thus, term wz is covered by the fifth term in T-the term wz. Additionally, wz is

covered by the disjunction of terms in the subset {wz', zz} of T, i.e.,

wz < WZ, + zz. (3.212)

Contrast of Label-and-Eliminate Procedure with Specialized Procedures

Significant differences exist between the general label-and-eliminate procedure and the special-

ised methods developed in this chapter. Each uses a label-and-reduce process; however, the label-

an,;-eliminate procedure employs full labeling-and-reduction while the special-purpose methods use

partial labeling-and-reduction. Using partial labeling-and-reduction rather than full labeling-and-

165

reduction reduces the number of computations as well as memory usage. Once we generate an

equation of the form f(A, X) = 0, the unified set of procedures use the goal-directed elimination

process to deduce consequents of a specific form. This process uses the quick method for forming the

conjunctive eliminant of a function with respect to a set of variables (Procedure 3.1). On the other

hand, the label-and-eliminate procedure uses a general method for forming the conjunctive elimi-

nant (Procedure 2.22). To reduce the complexity of eliminant formation, t.he label-and-eliminate

technique simplifies the formula resulting after each iteration of formation of the conjunctive elim-

inant; the specialized procedures make absorptive the resulting formula after each iteration of

conjunctive eliminant formation. Finally, after forming a consequent resulting from the elimination

of the X-arguments, the label-and-eliminate procedure must formulate a Blake canonical form to

produce all possible A-consequent terms. The unified set of procedures produces a consequent

which is represented by its Blake canonical form at the conclusion of the elimination process; the

consequent includes only those A-consequent terms which denote specific relationships among the

set of functions. Table 3.1 summarizes the differences between the label-and-eliminate procedure

and the unified set of specialized procedures presented in this chapter.

Label-and-Eliminate Procedure Specialized Procedures
Label-and- Reduce Process Full Label-and-Reduce Partial Label-and-Reduce

Conjunctive Eliminant Procedure 2.22 Procedure 3.1 (Quick-Econ)
Simplification Method Procedure 2.15 (Simplify) Absorption
Blake Canonical Form Formation Required Implicit in Process
A-Consequent Terms All A-Consequent Terms Specific A-Consequent Terms

Table 3.1. Contrast of Label-and-Eliminate Method with Specialized Procedures

We now present an example which illustrates the difference between the label-and-eliminate

procedure and the unified set of procedures for deducing specific relationships among functions.

Example 3.11: Suppose we would like to determine the relationships among members of the set

{fo, fl..., f6} of functions defined by

166

=, z
f2 --- 1z' + d

f3 = Zz (3.213)

S= Z+ Z'
f4 = w
16 - I")

Using the label-and-eliminate procedure, we form the following prime A-consequent terms which

denote all relationships among the set of functions:

1. A'A', A'A', A'As,

2. AsA6,AIA 2 A6 ,AIA 3 ;

3. AoA'1 A12 , AoA 1 A'3 , AoA 4;

4. A 2A4A'5 , A3 A'4 , AsA';
5. AoA 3A',A 2A 6A', AIA 2A', A 2A3A 6 Ao; and

6. A 2 A 3A'A',AOA 2 A6 A3,AoA 2AsA'.

The terms in line 1 denote normal subsets. Terms in line 2 represent evanescent subsets. Implication

relations in which fo is included in subsets of the other functions are represented by terms in line

3; terms in line 4 represent all other implication relations. Terms in the remaining lines portray a

relationship in which products of functions are included in sums of functions.

Using Procedure 3.2 to find all normal subsets, we would derive only those A-consequent

terms which appear in line 1. Procedure 3.3 would generate only those terms found in line 2

when determining evanescent subsets. If we wer to use Procedure 3.4 to determine the subsets

of functions in which the function fo is included, we would derive the terms found in lines 1 and

3. When deducing normal subsets, evanescent subsets, or irredundant implication relations for the

inclusion of fo, we avoid generating the consequents listed in lines 4, 5, and 6.

167

Summary

In this chapter, a new set of procedures was presented for deducing specific relationships

among subsets of a set of functions. Procedures in this set provide a more efficient way to deduce

specific relationships among a set of functions than does the general label-and-eliminate proc idure.

Having the same basic theoretical foundation, these techniques compose a "unified" set of special-

ized procedures to determine particular relationships among functions of a set of functions. In later

chapters, techniques developed in this chapter will be applied to construct efficient methods for

dealing with the minimization problem.

168

IV. Solutions of Boolean Equations and the Minimization Problem

In this chapter we discuss the solutions of Boolean equations, the modeling of digital circuits

with Boolean algebra, and the relationship between solving Boolean equations and the minimization

problem. The correspondence between developing a good solution for a Boolean equation and

the process of developing an economical digital design which meets a specification is highlighted.

A comprehension of the second and third sections of the chapter is particularly important to

understanding the approach taken to the minimisation problem in subsequent chapters.

The solutions of Boolean equations of the form f(X) = 1 are presented in the first section.

Rudeanu (Rudea 74) and Brown (Brown 9' develop solutions for Boolean equations of the form

f(X) = 0. We present a development of solutions for f(X) = 1 similar to their presentation for

the f(X) = 0 case, since solutions of the Boolean equation f(X) = 1 is our specific interest.

In the second section the modeling of circuits with Boolean algebra is discussed. Circuit

specifications correspond to Boolean functions. Designs, on the other hand, correspond to formulas

which represent a function. The object of the design problem is to develop an economical design

which implies its specification. We show in the third section that the design process is in corre-

spondence with finding good solutions for a Boolean equation. We first solve a Boolean equation in

1-normal form to develop an interval, i.e., a range of functions, for each output of a circuit. Finding

a good formula to represent a function in the range of functions, i.e., finding a "good" solution,

yields an economical design. The resulting design implies its specification, just as f(X) = 1 is

implied by any of its solutions.

Solutions of boolean Equations

Functional Antecedents. Consider an equation

f(X) = 1, (4.1)

169

where X = (zl,..., x,), and a system of the form

X2 h2

(4.2)

where each h, is a formula in a free Boolean algebra, FB(ij, i2, ... ik), on k generators il, i 2, .. , i ,

If system (4.2) is an antecedent of system (4.1), then (4.2) is called a functional antecedent or

solution of (4.1). A substitution A E Bn for X which causes (4.1) to be an identity is also called

a solution of (4.1); specifically, it is called a particular solution of (4.1). A general solution of a

Boolean equation is a representation of Lhe set of all particular solutions of the equation. There

exist various ways to represent a general solution; in this work we are concerned with interval-based

representations. For other representations, see (Brown 90) or (Rudea 74).

Consistency of a Boolean Equation. A Boolean equation is consistent if it has at least

one solution. Otherwise, the equation is said to be inconsistent. A necessary and sufficient condition

for the consistency of f(X) = 1 is given in Theorem 4.1.

Theorem 4.1 (Consistency Conditi3n): The Boolean equation f(X) = 1 is consistent if and

onl if the condition

EDIS(f(X),X) = 1 (4.3)

is satisfied.

Proof. We prove this statement inductively.

170

We first show the case of n = 1. Assume that a E B is a solution of f (z) = 1; then f (a) =1

Using Boole's Expansion Theorem, we form

a'f (0) + af (1) = 1. (4.4)

Complementing both sides of (4.4) yields a'f'(0) + af'(l) + f'(O)f'(l) = 0. Thus, f'(0)f'(l) = 0;

this may be rewritten as f (0) + f (1) = 1. Hence, EDIS(f (z), f{z}) = 1 by the definition of the

disjunctive eliminant. Suppose now that EDIS(f (z), f{z}) = 1; i.e., f (0) + f (1) =1. In this case

the element f(l) is a soluticn of f(z) = 1, because

f (f (1)) = (f (1))'f (0) + f (1)f (1) = f (0) + f (1) = 1 (4.5)

by Boole's Expansion Theorem, idempotence, and Property (2.30). Thus, f (z) =1 is consistent.

Hence, we have proven the theorem for n = 1.

For n = k, where k > 1, we assume for our induction hypothesis that &~1 , Z2 , ... , Xh) =1 is

consistent if and only if EDIS(g(z,..., zk),{ Z,...-, zk) = 1.

We now must prove the theorem for n = k+ 1. We first assume that fz, . .. ,z+ 1) =1 is con-

sistent, i.e., an A E B n exists for which f (A) = 1 is an identity. Because f (X) :5 EDIS(f (X), T)

for asubset T C X of variables in f by (2.156), EDIS(f (z,....,)Zk+l),{l,..,z+l}) = 1 is an

identity.

We now demonstrate that if

EDIS(f (z ,. . ., zh+ 1), {, .,Z+})=1(4.6)

171

is true, then f(z,,...,&+,) = 1 is consistent. EDIS(f(z,,...,zk+1),f{z,,..., zk+}) may be

rewritten as EDIS(f(z,,..., Zk+,), {z,..., Zk}U{zk+1}). Then by the definition of the disjunctive

eliminant, the function

EDIS(EDIS(f(z,,...,zk+1), {Zk+1}), {Z1,..., zk}) (4.7)

is equal to

EDIS(f(:l,...,zk.),{zl,..., uk} U {zk+1}). (4.8)

It follows that the statement

EDIS(EDIS(f(zi,,..., f {z++, ' { + i, ... , Z)= (4.9)

is also true. By our induction hypothesis, if the disjunctive eliminant of a k-variable function g

with respect to its k variables is equal to 1, then the equation g(z,,...,zk) = 1 is consistent.

Since EDIS(f(zi, , Z+l), {Zk+,}) is a function of k variables and the disjunctive eliminant of

EDIS(f(z,,..., zk+,), {Zk+1}) with respect to its k variables is equal to 1 by (4.9), it follows that

EDIS(f(zi,..., zkJ+), {zk+11) = 1 is consistent.

Let us define a k-variable function g(z,..., zk) by

g(z,,...,zk) = EDIS(f(X),{zk+,}), (4.10)

i.e.,

g(z1,...,M) = f(zAi,...,, 0) + f(I,...,z, 1). (4.11)

172

Let (a,,..., a,,) E B1 be a solution of the consistent equation g(zx,..., = 1. Thus,

f (a,,...,aO)+ f(al,...,a,,1) = 1 (4.12)

is an identity, and therefore f(a,, ... , at, zk+1) = 1 has a solution, as shown in the case of n = 1.

Thus, the equation f(z,... , h+1) = 1 is consistent, and we have proven the theorem for the

case of n = k + 1. Hence, the theorem is true for arbitrary n. This completes the proof. 0

The equation EDIS(f(X), X) = 1 is called the consistency condition for f(X) = 1, i.e., the

condition which is necessary and sufficient for f(X) = 1 to be consistent.

General Solutions. A general solution of a Boolean equation is a representation of the set

of all particular solutions of the equation. We now endeavor to develop an interval-based general

solution for a Boolean equation f(X) = 1. Such a solution is based on a lower and upper bound,

i.e., a range. Each value within the range is a particular solution, and all particular solutions are

found within the range.

The Single-Variable Case. In Lemma 4.1, an interval-based general solution for the

single-variable equation f(z) = 1 1q developed.

Lemma 4.1 (Solution - Single Variable): Let f : B --+ B be a Boolean function for which the
equation f(z) = 1 is consistent. Then the set of solutions for f(z) = 1 is given by

fz I f'(O) z f(11. (4.13)

Proof. We show that f(z) = 1 * f'(0) _ z < f(1). By Boolean expansion (2.62), f(z) = 1 is

expressed equivalently as

[z' + f(1)] - [z + f(O)] = 1. (4.14)

173

In view of (2.41), (4.14) is equivalent to the system

z'+f(i) = 1 (4.15)

+ f(O) = 1,

which, by the definition of the inclusion relation, is in turn equivalent to the system

z < f(1) (4.16)

f'(0) < z.

System (4.16) is equivalent to the interval

f'(O) < f(1). (4.17)

This completes the proof. 0

Given the set of solutions {z I f'(0) < z < f(1)) for f(z) = 1 and the consistency condition

EDIS(f(z), {z)) = 1, (4.18)

we can develop a general solution for f(m) = 1 which "extends" the range expressed by f'(O) _5

2 < f(1). When we say that we are "extending" the range for z, we mean that we form an upper

bound which is greater than a previous upper bound and a lower bound that is less than a previous

lower bound. This resilt is shown in Theorem 4.2.

Theorem 4.2 (Extended Range - Single Variable): Let f : B -, B be a Boolean function for

which the equation f(z) = 1 is consistent. Then

f(z)=1 f'(0), f(1) < z < f'(0) + f(1). (4.19)

174

Proof. In Lemma 4.1 it was shown that

(z) =1 f'(0) _5 z < f(1). (4.20)

If f(z) = 1 is consistent, then EDIS(f(z), {}) = 1. By the definition of the disjunctive eliminant

EDIS(f(z), {z}) = f(0) + f(1). (4.21)

Hence, f(O) + f(1) = 1 or f'(O)f'(1) = 0.

Using Boole's Expansion Theorem, we expand f'(0) with respect to f(1) to form the identity

f'(O) = f'(1)f(O) + f()f'(0). (4.22)

Additionally, we can add f'(O)f'(1) to f(1) to form the identity

f(1) = f (1) + f'(0)f'(1). (4.23)

Substituting for f'(0) and f(1) in f'(0) S z < f(1), we conclude that

f'(1)f'(0) + f(1)f'(O) : = < f(1) + f'(O)f'(1) (4.24)

is equivalent to f(z) = 1 provided the latter is consistent. Because f'(0)f(1) = 0, and by property

(2.30), we can simplify both the upper and lower bounds of (4.24) to form the equivalent interval

f'(0)f(1) 5 z < f'(0) + f (1). (4.25)

175

Hence, f(z) = 1 4 f'(0) -f(1) z < f'(0) + f (1). This completes the proof. 0

The n-Variable Case. We now generalize the approach used to develop an interval-

based solution for the single-variable equation f(z) = 1 to an n-variable Boolean equation f(X) = 1.

Our object is to develop a general solution of f(X) = 1 of the form

1 < to
81 _< ZI _< tj

82(2I) < 02 < t 2 (2i) (4.26)

83(ZI,Z2) < X3 !5 t 3 (z 1 , 72)

where to, 81, and t, are constants and all other s, and t are functions with variables as denoted in

(4.26).

A system in the form of (4.26) is called a subsumptive general solution of the n-variable

Boolean equation f(X) = 1 if 1 < to is the consistency condition of f(X) = 1, and if f(X) = 1 is

consistent, then every particular solution (a,, a2,..., an) of f(X) = 1 is generated by the following

procedure:

1. select a, in the range 81 < x, _1 tI;

2. select a 2 in the range s 2(al) < Z23 _ t 2 (al);

3. and so on, until we select an in the range s, (a,...,a_ 1) <: zn < t,(al,...,an_1

A method for developing a subsumptive general solution of f(X) = 1 is via a successive elimi-

nation of variables. Theorem 4.3 employs this method. The proof parallels a proof in Rudeanu

(Rudea 74:69-71) for the generation of solutions for f(X) = 0.

ISince any function is less then the 1 element, we may simply say that to 1 is the consistency condition of

f(X)= 1.

176

Theorem 4.3 (Successive Elimination of Variables): Let f : B ' --+ B be a Boolean function

for which the equation f(z,..., zX) = 1 is consistent, and let

f,(z,..., z,) = EDS(f z,..), f + . }), (i n,...,,). (4.27)

Then, the aet of solutions of

fZI,...-, X.) = 1(4.28)

is described by the system

A (., zi 1 , 0) < xi < f(zj,.. . ,z-, 1) (i-- 1,...,n). (4.29)

Proof. Given an equation f(zi,... , z,) = 1, for any i E {0,...,nj we form the resultant of

elimination

EDIS(f(zi, zn), {z,+l,..., z,.) = 1. (4.30)

The function EDIS(f(zi ... , z,), {z1, ... , znj) is a function of i variables, which by (4.27) is

equal to fi(z1,. . . , z). Since (4.30) is true, it follows that

fA(Mi,. . ., z1) - 1. (4.31)

177

For every i = n, n - 1,..., 1, we apply Boole's Expansion Theorem (2.62) to equation (4.31) to

form

fzs + A(zi,...-, zi-1, l)][zi + A(ZI,..., zi-1, 0)] = 1, (4.32)

which is expressed equivalently by the system

zl + f,(zi, ... ,z,-1,1) = 1 (4.33)

+ ~z1,...,97_1,0) = 1.

System (4.33) is equivalent in turn to the interval

fil(z, ... 0 z-1 0) ! z 5 f(zi,, z- 1, 1) (i = 1,..., n). (4.34)

Since a < b C* a'+b = 1, (4.34) is valid only if the equation fn(zI... z,-1, 0)+f(z, •. ., zIi-1,) =

1, stated equivalently as

EDIS(fi(n,..., z,), {Z}) = 1, (4.35)

is an identity. In view of (4.27), we substitute for ft in (4.35) to form the equivalent statement

EDIS(EDIS(f(zl,. Zn), {zi+, , {z,} = 1, (4.36)

which in turn is equivalent to

EDIS(f(zi,. Z.), .Zi, . , Z.}) = 1. (4.37)

178

Equation (4.37) is an identity, because it is the resultant of elimination of {z 1 ,..., ,, from

f(zl,..., z.) = 1. Consequently, if f (l,..., zn) = 1 is an identity, then so is (4.29).

Since we are assuming that f(z, . . . z,) = 1 is consistent, then the condition

EDIS(f(zi,..., z,), {zj, ... , Zn) = 1 (4.38)

is satisfied. The left-hand side of (4.38) is equal to fo, hence fo = 1. Because fo = 1 is the

consistency condition for fi(zl) = 1, then f(0) _5 x :_ f1(1) is a solution for fi(zi) = 1.

Continuing this methodology, we find that given an zl, we develop an interval f2(zi, 0) _ z2 :5

f2(zl, 1). Then, because fi(zi) = 1 is the consistency condition for f2(zl, z) = 1, f2(ml, X2) = 1

is consistent. We apply this process iteratively through the case of , finding that f2(zI, z2) =

1 through f,-1(... ,zXn-) = 1 are all consistent. In the process, intervals are formed for

Z29 .. v • Znt-l.

Given elements z,..., zn-l, we derive an interval for z,:

A (z I i ,n _l 0) _.5 z ,. 5< ,(z i, ..-.,zn- 2, 1) . (4.39)

For the interval (4.39) to be true, the equation

f,(xl,..., Zn-1, 0) + f,(zl,..., M,-1, (4.40)

must be valid. The left-hand side of (4.40) is EDIS(f,, z,}) which is equal to f, (Mi, ... ,).

Since ,- (z,., z,_ 1) = 1 is consistent, it follows that the consistency condition (4.40) holds for

fA(zi,. .. , Z,) = 1. Thus, any substitution (a, a,,) for (z1,..., :,,) which makes the statements

179

1 < fo
f 1.(0) <5 ZI <5 .f'(1)

f2'(XlhO) !5 X2 :5 h(Zl) (4.41)

3f '(Z,X2, O) _5 X3 !5 f3(Xlh X, 1)

< <_~

identities, also makes f,,(zz,...,z,) = 1 an identity. Thus, the system (4.41) defines the complete

set of solutions for f,,(,. z,) = 1. This completes the proof. 0

The name "successive elimination" for the technique developed in Theorem 4.3 refers to the

fact that we derive the equation fj.i_ (z 1,..., mi) = 1 via the elimination of zi from f (zi,..., zi) =

1. This is apparent in the progression from (4.31) to (4.37); the left-hand side of (4.37) is equal to

the function f-i_(zi,..., zI).

The system (4.41) is a subsumptive general solution for f,,(X) = 1, for which (4.38) is the

consistency condition. A particular solution is derived by selecting an a, in the range f (0) <

z, _5 fl(1), selecting an a 2 in the range f2(al, 0) 5 M2 :_ f2 (al, 1), and so on until we choose a, in

the range f,,(aj,..., an-,, 0) < z, < f,(al,..., an_1, 1). We may develop a system such as (4.41)

using any ordering of the X-arguments. The form of the general solution depends on the ordering

of the X-arguments; however, the set of particular solutions is unique.

Procedure 4.1 produces a subsumptive general solution of a Boolean equation f,(X) = 1 using

successive elimination of variables. The procedure accepts a function f,(X) and an ordering of the

X-arguments, and returns a set of intervals based on the X-argument order. The first X-argument

is treated as z,, in (4.41), the second as z,_1, and so on until the last argument in the X-argument

order is handled as z1. The consistency condition EDIS(f, (X), X) = 1 is also returned as part of

the result. Example 4.1 illustrates the application of Procedure 4.1.

180

Procedure 4.1 (Subsumptive General Solution - Successive Elimination): Given a Boolean
function f(zl,. .., z,,) and an ordering ARGS of the X-arguments, we develop a subsumptive gen-
eral solution of f(zi,..., z,,) = 1 as follows:

Step 0. Initialize accumulators ferrgnt to f(, .. ., Zn) and SOLN to empty.

Step 1.

" If ARGS is empty, then SOLN contains a set of intervals such as (4.41) which represent
a subsumptive general solution for f(zx,..., Zn) = 1. fc,,ret = 1 is the consistency
condition for f(XI,.. . , Zn) = 1. Return SOLN and fu,,,t.

" Otherwise, continue to Step 2.

Step 2.

1. Remove the first element from ARGS and call it :.

2. Form (fur,,,/z')'. It is the lower bound in the interval for the argument x.

3. Form (fu,,,tz). It is the upper bound in the interval for the argument x.

4. Form EDIS(f , {4}). Replace fu,,,,,t with EDIS(f,,,,,,t, {z}).

5. Create a list consisting of x, (fu,,,,t/Z')', and (fu,,r.,t/). This list represents the
interval (hurt/')' < X < _ Add this list to SOLN.

6. Return to Step 1.

Example 4.1: Given a function f(zI, M2, Z3) represented by the formula

b'Z:2z3 + a'b'x1a2 + ab:l X 2 + az'l 2z' + b''Z' 2 z3 + ab': 2 , (4.42)

we develop a subsumptive general solution for f(z1, Z2, X3) = 1.

Suppose the ordering of the X-arguments is given as 23, z2, X1. We form the following elimi-

nants of f:

13(21,23, 3) b' :l 2z3 +a'b'z:Z 2 + abz'lX 2 + alz'1 '2' 3 + b'z'z1 z3 + ab' ;2

f2(Zl, z2) = abx' + b'x'a' + ab'z' + b': 1 : 2 (4.43)

fi(xi) = bI + a:'
fo = a + b'.

181

Using these eliminants and (4.41), the system

1 < a+b'

a'b < Z, < b'
bz1 + a'z 1 + a'b < 2 < b' 1 + ab' (4.44)

' + a'z' + b-: + b' -' 2 < 3 b'z'z' + ab'' + a'b':1 : + ,:' 1:2

is developed. System (4.44) is a subsumptive general solution for f(XI, M2, X3) = 1.

Just as in the single-variable case, we develop an extended range for the n-variable case. This

idea is formalized by Theorem 4.4.

Theorem 4.4 (Subsumptive General Solution - Successive Elimination - Extended

Range): Let f :B -. B be a Boolean fuanction for which the equation f(, . ,) = 1 s

consistent, and let

..)= EDIS(f(:1 , ... , z,,, {:i~, . . ., 4) (i = 1,.. .. n). (4.45)

Then, the set of solutions of

(4.46)

is described byI

A, (7 ,1... Izi-1 , OY 'A (Z I, . . zi- 1, 1) <5 Mi <_ Af (z j, . .,zi-1, O)+ fj(xj,..., zi- 1, 1) (i = 1 . .,n).

(4.47)

182

Proof. In Theorem 4.3 it was shown that

fil(7 , ... , z i - i, 0) __ zi : _ f i(z , . , z -1, o - 1) (1 ... , n), (4 .4 8)

is a set f solutions for f(zI, .,zn) = 1. Then for each i, we form

fi1(z,..., , 0)- .f(z,..., 0)- 1 , 1) = 0 (4.49)

by the definition of the inclusion relation.

Using Boole's Expansion Theorem, we expand the function f(zl, .. , zi-1, O) with respect

to fi(zh...,zi-1, 1). Then f (z,...,oj-j,0) is equal to

Since (4.49) is an identity, (4.50) is equal to

A , (-C 1 . . . , I O _ I , 0) .f (z i , . ..- , z ,: 1 , 1 .(4 .5 1)

Adding f'(zj...,zjj,0). f'(z,...,z.i-, 1) to fi(ol.... , i-1, 1), and applying property

(2.30) yields

zi-1, 0) + fAi(M, ... zi-, 1), (4.52)

which in equal to f,(z1,.., i 1).

183

In view of (4.51) and (4.52), we develop the range

fil(z l ... ,Iz i, 0) , f ,(x j,..., m i _1, 1) 5 x i z, fj'(x j,..., z , _1 ,0) - -f ,(x jj , ., -, _l 1), (4 .53)

(i = 1,..., n), which is equivalent to (4.48). Hence, f(zl,..., zn) = 1 is equivalent to (4.53). This

completes the proof. 0

Procedure 4.2 is a modification of Procedure 4.1 which incorporates the extended range

concept. Example 4.2 presents the solution of the equation f(zl, z 2, z3) = 1 from Example 4.1

using the extended range.

Procedure 4.2 (Subsumptive General Solution - Successive Elimination - Extended
Range): Given a Boolean function f(zI,. . ., zn) and an ordering ARGS of the X-arguments, we
develop a subsumptive general solution of f(zI,. . . , z,) = 1 as follows:

Step 0. Initialize acc'imuiitors fcu,, to f(xj,..., z,,) and SOLN to empty.

Step 1.

" If ARGS is empty, then SOLN contains a set of intervals such as (4.41) which represent
a subsumptive general solution for f(zl,..., z,) = 1. fr 6, t = 1 is the consistency
condition for f(z1, ... , z,n) = 1. Return SOLN and fc,,,.t.

• Otherwise, continue to Step 2.

Step 2.

1. Remove the first element from ARGS and call it z.

2. Form the functions (f.,-,.n,/z')' and (f.r,,.nt/z).

3. Multiply (f,.,/z)' by (f,,,,,t/z). It is the lower bound in the interval for the
argument z.

4. Add (fcsret/z')' to fc,,,,,t/z. It is the upper bound in the interval for the argument

5. Form EDIS(hu,,,t, {z}). Replace fm,,,nt with EDIS(fm,.,,,t, {z}).

6. Create a list consisting of z, (hf,,gft/z')'.(fcr,nt/z), and (fc,,.ant/z') +(fm.& ,t/z).
This list represents the interval (fmr,/')• ,t/)_ z < (f+,,et/z')'+

(fm,,,nt/X). Add this list to SOLN.

7. Return to Step 1.

184

Example 4.2: Given the function f(Z1, X2, Z3) from Example 4.1, represented by the formula

b'zlz 2 4l + a'b'zIX2 + abz' X2 + ax'x:2' + bY z'X 3 + ab'z, (4.54)

we develop a subsumptive general solution for f(zX, z2, X3) = 1. Suppose the ordering of the X-

arguments is given as Z3, Z2, zj. The eliminants are the same as in (4.43). Using these eliminants,

we form the system

1 < a+b'

0 < X < a'+b'

a'b'_z, !5 2 zl+b (4.55)

ab'z'x2 a' + bX2 + b'' + XIZ + 2122

using the extended range concept. System (4.55) is a subsumptive general solution for f(Mi, 2, 23) =

1. We observe that the upper bounds are significantly higher and the lower bounds much lower in

(4.55) than in (4.44).

Solutions of Switching Equations. In this section we discuss solutions of Boolean equa-

tions of the form f(X) = 1 where the function f(X) is a switching function. Solutions of switching

equations are useful for developing minimal digital circuit designs.

Truth Equations. An equation of the form

f(X) = 1, (4.56)

where f(X) is a switching function, is called a truth equation (Rudea 74:346). All possible particular

solutions for f(X) = 1 are found by expressing f(X) in its minterm canonical form, MCF(f), and

determining by inspection the substitutions A E B" for X which make minterms in MCF(f) equal

to 1.

185

Example 4.3: Given the equation f(X) = 1, where

fr(X) = zyz + 'z' + y'z'. (4.57)

The minterm canonical form of f (X) is

M' Yz' + z'yz' + zyz' + zyz. (4.58)

By inspection, solutions of the equation 1(X) = 1 are

{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. (4.59)

An equation typically will have several solutions. Constant vectors, A and B, are called

equivalent with respect to f if f1(A) = f (B). Two equations are called "equivalent if they have the

same set of solutions" (Rudea 74:50).

Solutions Over a Free Boolean Algebra. Given an n + m variable switching func-

tion f : B"+' --+ B 2, an equation of the form

(X, Z) = 1, (4.60)

for which X = (Zi,..., z,) and Z = (zl,..., z,), may be solved by determining the unknowns

Z ... , Zm as a set of n-variable switching functions on the variables zi, ... , zn. Another way of

stating this is that f (X, Z) = 1 is solved with respect to unknowns z,... , zm in the free Boolean

algebra FB(zl,..., zXn). A solution of (4.60) then takes the form

Z = o(X) (4.61)

186

where t is a vector of m switching functions B ... m : --+ B 2 of the variables x, ... , z:,. For

a solution of the form (4.61), the equation

f(X, t(X)) = 1 (4.62)

is an identity for every vector X E B'. (Rudea 74:351-352)

The unknown variables, z1 , zm, in f(X, Z) = 1 are called dependent variables, because

they are functions of the X-variables in a solution of the form Z = $(X). The X-variables are

called independent variables.

We may develop solutions such as (4.61) using the method of successive eliminations for

forming subsumptive general solutions of a Boolean equation. Using this technique, we first generate

a general solution of the form:

1 < fo(X)
A (x 0) < , f, < (x, 1)

f2(X, z1,0) < z 2 < f 2 (X, zI, 1) (4.63)
f (X,z1,Z ,O) < Z3 < f 3 (X,Z, Z2, 1)

frin(XiZ ,...,l ,_ ,0) !5 ZM < ,(X, ZI,...-, Z,,_,)

We then form a particular solution, i.e., a solution of the form Z = $(X), by

1. choosing zi = 0 1(X) in the interval [f (X, 0), f 1(X, 1)];

2. selecting z2 = 0i2(X) in the interval [f2(X, 4I(X), 0), f 2 (X, 0 1 (X), 1)];

3. and so on, until we select zn - ,,(X) in the interval

fn(X, O(x),...,- I_(X), 0), f(x, l(X),..., 1_(X), 1.

187

The particular solution Z = -,(X) is

zi = O1 (X)

Z2 = 0 2(X) (4.64)

Z = (x).

Example 4.4 demonstrates the use of the method of successive eliminations for solving with

respect to unknowns z1 , . . ., z.. in the free Boolean algebra FB(zj,..., z,).

Example 4.4: Given the equation f(X, Z) = 1, where

f(X, Z) = z'1z'1 z2 + zX2 Zz 2 + zlzlz2, (4.65)

we use the method of successive eliminations to solve for z, and z2 in the free Boolean algebra

FB(zl, z2). First, we develop a general solution

1 <1
XI <5 zI <5 Z+ Z2 (4.66)

Xz'4 < Z2 <5 z"

Second, we form a function OI(X), z, = 0 1 (X), by selecting a z, in the interval x, : z, zi + z2.

We pick 0 1(X) = z. Then we form a function 0 2(X), Z2 = 02(X), by substituting x, for z1 in the

interval

1 8 8 Vz2 : ' (4.67)

188

After the substitution for z1 and simplification of the upper and lower bounds of (4.67), the interval

z1' < 2 5 Z'1 (4.68)

is derived. Thus, Z2 = z'. Hence, we develop a solution Z = P(X),

zi = 01(X) (4.69)

Z =

where

01(X) = (4.70)

0 2 (X) = 'i.!

Substituting for z, and z2 in f(X,Z) = 1, we find that f(zl,z2,O1(z1,Z2),02(:1, z)) is

identically equal to 1. Thus, f(X, 4(X)) = 1 is an identity for every vector X E B2.

Constrained Equations. In some situations a solution Z = k(X) may not exist such

that f(X, t(X)) = 1 is an identity for every vector X E B". The equation f(X, Z) = 1 is then said

to have no solution in FB(zl,..., z,,). However, there may exist an n-variable switching function

g(X)-deducible from f(X, Z) = 1-such that if

g(X) =1 (4.71)

is satisfied, then Z = t(X) is a solution for f(X, Z) = 1. The equation g(X) = 1 is called a

consaint on the solution. Such a solution is called a constrained solution; f(X, Z) - 1 is called a

constrained equation.

189

Usually, but not always, the constraint (4.71) is the consistency condition

EDIS(f (X, Z), Z) = 1 (4.72)

for f(X, Z) = 1 (Rudea 74:358). Then,

g(X) = EDIS(f(X, Z), Z). (4.73)

Example 4.5 demonstrates a problem in which the solution of an equation is subject to a

constraint.

Example 4.5: Given the equation f(X, Z) = 1, where

f(X, Z) = Z12'2 + Z'1z 2zlz2 + ZI2z' 1 (4.74)

we use the method of successive eliminations to solve for z, and z2 in the free Boolean algebra

FB(zi, Z2). First, we develop a general solution

1 < X1 + X2
Z'I <zl _I + 2'22 (4.75)

2'+X2ZI < Z2 < XIZ'+Z Z2Z1.

Unlike Example 4.4, we cannot form a function O1 (X) because zx' z'Iz2 + z21'2 in the interval

Z Z< z1 _<' z 2 + Z1 '2. (4.76)

190

By the definition of the inclusion relation, z' < z'n2 + zlz' if and only if

' • (zXZ2 + ziX4)' = 0. (4.77)

When we compute the left-hand side of (4.77) we form x'z' = 0; this can be stated equivalently as

zI + z 2 = 1. We note that this is the consistency condition of the general solution (4.75). Hence,

we can only form a solution Z = 4,(X) for f(X, Z) = 1 if the constraint zI + X2 = 1 is satisfied.

We can add 42' to the right side of z < z'2 + zzl'; then we form the interval

' <z: < ' + 2' (4.78)

function O1 (X) is formed, in which z1 = 41 (X), by selecting a zi in the interval z' < z,:_ z+z'2.

We may pick OI(X) = x'. Then we form a function 0 2 (X), z 2 = 0 2(X), by substituting 4 for z,

in the interval

4 + z2Z1 _5 Z2 _5 ZZ'2 + X/12 z1 . (4.79)

After substituting for z1, adding z'z' to the right-hand side of (4.79), and simplifying the upper

and lower bounds of (4.79), the interval

Z4 _ Z2 _5 1 + z'2 (4.80)

is formed. We select z2 = z. Hence, we develop a solution Z = t(X),

zI = O1(X) (4.81)

Z2 = 02(X),

191

where

1 (X) = (4.82)

02(X) = X4,

subject to the constraint x'Z' = 0.

Substituting for z, and Z2 in f(X,Z) = 1, we find that f(Xl,X2,Ol(Zl,2),2(Z1,X2))=

ZI + Z2. f(Z1i,:,'(M1, Z2),02(XI, X2)) = 1 is not an identity when mi = 0 and x2 = 0, the

condition specified by the constraint x'm4 = 0. f (X, 4$(X)) = 1 is an identity for every other

vector X E B2.

192

Modeling of Circuits with Boolean Algebra

Basic Concepts. In a digital circuit a set of binary signals is applied to nodes which are

called input nodes or inputs. The circuit's response to the application of the signals to the inputs

is binary signals which appear on the output nodes or outputs. Each of the outputs is a function of

the inputs. A digital circuit is represented abstractly in Figure 4.1. The inputs are represented by

the n-variable input vector X; the outputs are denoted by the r-variable output vector Z. When

m = 1, we say that a circuit is a single-output circuit. If m is greater than one, then the circuit is

called a multiple-output circuit.

X1 = Z

Z2 = f
z 2 =f 2 (zi,..,z-,)

Figure 4.1. Representation of a Digital Circuit

If the value of the output signals Z at a given instant is dependent solely on the current values

applied to the inputs X, then a digital circuit is called combinational. If a circuit has some form

of memory, i.e., if the outputs depend on previous values of the inputs and/or outputs as well as

the current values of the inputs, then we say that the circuit is sequential. A representation of a

193

sequential circuit is given in Figure 4.2. A sequential circuit has two components: a combinational

portion and a memory component. The memory component stores information regarding the

history of the circuit.

Z I 21 Z

Inputs Outputs
Iu COMBINATIONAL Z:

Yi1 CIRCUIT Y,

MEMORY

Figure 4.2. Representation of a Sequential Circuit

One of the advantages of digital circuits is that they may be described mathematically by

Boolean functions of the two-element Boolean algebra, B 2 = {0, 1}. For historical reasons digi-

tal circuits often are called switching circuits. Hence, the two-element Boolean algebra is called

uitching algebra. Boolean functions in the switching algebra are called switching fsnctions. Ad-

ditionally, the terms switching and logic often are used interchangeably. The nodes of a circuit

are depicted by Boolean variables; the gates of a circuit are modeled by Boolean operators. Ev-

ery Boolean formula which represents a switching function has a corresponding switching-circuit

implementation and vice versa, i.e., there is a correspondence between a formula and a circuit. A

conjunction corresponds to an AND gate; a disjunction corresponds to an OR gate; and a com-

plement is implemented by an inverter. The output value of a switching circuit for a particular

194

input combination is the same as the value of the corresponding switching function given the same

assignment of values to its variables.

An example of a sum-of-products formula which represents a three-variable switching function,

2: B --+ B2 , is

z'z +z' +z'+z + zz. (4.83)

The corresponding circuit for this formula is given in Figure 4.3. Each term of the formula is

implemented by an AND gate; the disjunction of the terms of the formula is implemented by an

OR gate. Because only two gates must be traversed between the circuit inputs and the circuit

output, this circuit it is called a two-level or two-stage logic circuit; specifically, it is an AND-OR

circuit. The AND gates form the first level; the OR gate forms the second level. The inverters are

not said to form a level, because often the input signals and their complements are both available,

eliminating the need for inverters. Other two-level logic circuits are NAND-NAND and NOR-NOR

circuits. The number of levels of a circuit is defined as the maximum number of gates that must

be traversed between the circuit inputs and circuit outputs, less inverters required to complement

the input signals. In general, any circuit which has more than two levels is called a multi-level or

multi-atage circuit.

Often when designing a circuit it is necessary to list the output values of the circuit for given

combinations of input values; we may use a truth table for this purpose. Switching circuits and

their corresponding switching functions have the same truth table. A truth table for the circuit of

Figure 4.3 is shown in Table 4.1.

A switching circuit may be implemented by different combinations of components and still

behave the same. Likewise, a given switching function can be represented by a variety of formulas.

In either case, the number of realizations is infinite. Different formulas which represent the same

195

z

Figure 4.3. Circuit Implementation of z'z + z'yz' + zV' + zyz

x yz f (z,Y, Z)
0 00 0
0 01 1
0 10 1
0 11 1
1 00 1
1 01 1
1 10 0

Table 4. 1. Truth Table for z'z + z'yz' + ZV, + xyz

196

function are called equivalent formulas; different switching circuits which realize the same function

are called equivalent circuits. The primary goal when minimizing a circuit is to find a simplest

formula-with respect to some criterion-which represents a given function. In some instances, we

are given a formula which represents a function and then must use a minimization technique to

produce a simpler equivalent formula. A simpler formula corresponds to a simpler switching circuit;

however, the function remains the same. For example, a simple formula equivalent to (4.83) is

my, -:- Z + zly. (4.84)

A corresponding simple circuit, equivalent to that of Figure 4.3, is shown in Figure 4.4. The

simplified circuit requires two fewer AND gates and one less inverter than the original circuit;

additionally, a three-input OR gate is required versus a four-input gate. Hence, there is a substantial

decrease in required hardware.

Z (X. y, z)

Figure 4.4. Circuit Implementation of z'y + zi/ + z

Designs and Specifications.

Relaticnship Between Designs and Specifications. An implementation of a dig-

ital circuit is called a design. A design has a correspondence with a Boolean formula. During logic

197

synthesis a design is created to meet a specification. A specification is a desired relationship-a

mapping-between input signals and output signals, i.e., it states how we would like the circuit to

respond to input stimuli. Hence, a specification usually correlates to a switching function. A design

corresponds to a formula which necessarily represents a completely-specified switching function. On

the other hand, a specification is more general than a design. A specification may correspond to a

switching function, although more typically it may be stated by an interval of switching functions.2

A design which meets a specification stated by an interval of functions will correspond to a formula

which represents a function in the range of possible functions given by the specification.

A design which is the cheapest possible circuit with respect to given cost criteria is called

a minimal design. The goal of logic minimization is to find a minimal design among the infinite

number of possible designs to meet a specification. The requirement to find a minimal design to

satisfy a specification is called the minimization problem; more generally, we call this problem the

design problem. The process of finding a minimal design is called minimization.

Since there is a correspondence between a design and a Boolean formula, an approach to

minimization is to use Boolean techniques to devise a minimal formula to represent a function. If

we can find a minimal formula, we necessarily develop an economical circuit. If a specification is

given by a function, then the object of minimization is simply to find a minimal formula to represent

that function. For example, if an SOP formula is one which consists of the fewest possible terms of

all the SOP formulas that could represent a function, then the corresponding two-level AND-OR

design would contain the fewest possible AND gates. If a specification is given by an interval of

functions, then the minimization problem is to find a least-cost formula with respect to given cost

criteria among all the possible formulas which may represent the functions in the interval; the

formula represents one of the completely-specified functions in the given range of functions.

2 An interval which specifies an output is usually called incompletely-specified Boolean function (defined in Chap-

ter 2).

198

In summary, given a circuit specification the goal of the design problem is to find a design

that:

* meets the specification;

" is realizable; and

" is economical

A specification is stated by a Boolean function (interval) and a design is given by a Boolean formula.

A design expressed by a Boolean formula meets a specification if it represents the corresponding

function (represents a function in the interval). A design represented by a formula is realizable

because every Boolean formula has a corresponding circuit and vice versa. Additionally, since

techniques are available to develop economical Boolean formulas, forming an economical formula

yields a corresponding circuit that also is economical. We now discuss criteria used to identify

economical digital circuit designs.

Minimization Criteria. When devising -a design to meet a specification, we would

like to build the best circuit possible. However, to measure what we consider a "good" circuit,

we must have a means of distinguishing a superior implementation from a poor one. Two criteria

which have been devised to determine the goodness of a circuit are cost and performance. The cost

of a circuit refers to the number of components that it takes to implement the circuit and/or the

sise of the circuit. We desire that the cost of a circuit be as low as possible. The performance of a

circuit is the response-time, i.e., the time required for a result to appear on the outputs given an

input stimulus. The response-time of a circuit is also called the delay of the circuit. A circuit with

a short delay is typically preferred over one having a longer delay.

The delay of a circuit is dependent on the number of circuit components a signal must traverse

in traveling from an input node to an output node. In general, the delay reflects the longest path,

with respect to the number of gates, of all of the possible paths between one of the inputs and an

199

output dependent on that input. Hence, one way to measure delay during the design process is to

count the maximum number of levels between the inputs and the outputs.

There exist various measures to judge the cost of a circuit. The most common metrics are:

" the number of gates,

" the number of gate-inputs, and

" the number of interconnections.

When designing using discrete components, the number of gates and gate-inputs are a direct reflec-

tion of the number of components required to implement a circuit. If a circuit is implemented using

VLSI, then the gates, gate-inputs, and the number of interconnections reflect the area required

to implement the circuit. In VLSI design we are primarily concerned with the area required to

implement a circuit. The number of gate-inputs indirectly reflects the number of interconnections.

If a given node is connected to several gates, then there is an interconnection among these gates.

Hence, if the number of gate-inputs is large, then the number of interconnections also is likely to

be substantial.

We calculate the cost of a circuit by examining the number of gates, gate-inputs, and in-

terconnections of the circuit. Many of these measures can be determined from the formula which

corresponds to the circuit. In particular, if the number of gates and/or gate-inputs in a two-level

circuit is our primary concern, then we may determine the cost of the circuit from the correspond-

ing sum-of-products formula. For example, the number of gates in a two-level circuit corresponds

directly to the number of terms in the SOP formula; the number of literals in an SOP formula

represents the number of gate-inputs in the corresponding circuit. Hence, a strategy to form an

minimal two-level circuit is to devise an SOP formula which consists of the fewest possible terms

and for each of the terms to have the fewest possible literals.

To develop an economical design for a two-level, single-output digital circuit, we endeavor to

find an SOP formula which meets our primary cost criteria. If the number of gates in the two-

200

level AND-OR circuit implementation is our biggest concern, then we would attempt to develop a

formula which contains the fewest terms. For example, if a formula consists of five terms, then the

cost of the circuit is six gates (five AND gates plus one OR gate). If the total number of gate-inputs

is the primary design consideration, then the approach would be to find a formula which contains

the fewest literals. In this approach, the cost of the formula is calculated by:

" adding one to the sum for every term consisting of a single literal, and

" adding, for terms which contain more than one literal, the number of literals in each, plus
one, to the sum.

Calculating the cost in this manner yields the total number of gate-inputs for each of the AND

gates as well as for the OR gate in the corresponding two-level AND-OR circuit. For example, the

formula

X' + y'z' + yz (4.85)

represents a circuit which costs seven gate-inputs. The terms Vz' and yz each cost three; the term

z' costs one.

We can combine the preceding measures to find an SOP formula which consists of the fewest

terms as the primary consideration and the fewest literals as a secondary concern. When evaluating

the cost of a formula, the cost of each term is calculated as follows:

* a term consisting of a single literal has a cost of k, where k is a large constant, and

" the cost of all other terms is calculated by counting the number of literals in the term and
adding k to the result.

The costs of terms contained in the formula are then summed to develop the cost of the formula.

When calculating the cost of a formula in this manner, care must be taken to ensure that k is

201

properly scaled; k must be at least one order of magnitude greater than the number of terms in

the resulting SOP formula. If k = 100, then the cost of formula (4.85) is 304. The terms yz' and

yz each cost 102; the term o' costs 100. In examining the cost of formula (4.85), the number of

hundreds corresponds to the number of terms. The remaining portion of the score, i.e., 4, represents

the number of gate-inputs to the AND gates of the circuit.

There often is a trade-off between the cost of a circuit implementation and the delay of the

circuit. Faster circuits generally require more components than a least-cost design. Conversely,

the delay of a least-cost design is usually longer than that of the fastest possible implementation.

When developing a design which meets a specification, we attempt to construct the cheapest circuit

which meets constraints on circuit delay.

Specification Formats. At the outset of the design process, we must have a circuit spec-

ification from which we derive the design. In this section, specification formats for digital circuits

are discussed.

Each of the outputs in a circuit may be treated as a separate function for which an output

signal is generated for a given input combination. We will refer to the inputs by the vector X =

(Z,.. .,z,); the output signals are represented by the vector Z = (z,...,z,,').3 Typically, a

design corresponds to a set of Boolean formulas consisting of X-variables, each of which represents

a switching function. On the other hand, a specification for each of the outputs may be either a

single switching function or an interval of functions. We normally say that the set of switching

functions corresponding to each of the outputs forms a single specification for the circuit. We may

state a specification in a number of ways. Formats include:

" Boolean formulas,

" truth tables, and

SFor single-output circuits, i.e., when m = 1, we will refer to the output node simply by the symbol z.

202

* 1-normal forms.

In the following sections we will discuss each of these specification formats. Unless otherwise noted,

the discourse is limited to combinational circuits.

Booleau Formulas. One form of circuit specification is a set of Boolean formulas

which represents a set of m switching functions. The outputs zi are related to associated functions

by the equation

zj = f,(X), j = 1,...,m. (4.86)

We may state (4.86) more compactly as

Z = L(X). (4.87)

The minimization problem entails finding a formula F to represent each of the associated functions

fj such that Fj is equivalent to the formula given as the specification for f, and the set F =

fFl,..., F,..., F.} of formulas representing the functions f(X) is minimal with respect to a

given cost criterion.

In some instances, each of the output functions zj may be specified by formulas representing

lower and upper-bound functions of an interval. Each output zj is related to an upper and lower

bound by the statement

gj(X) < zj < hi(X), j = 1,...,m. (4.88)

Given the formulas which represent the functions in the interval, we must find a set of minimal

formulas from among all of the possible formulas which represent functions in the set of intervals

203

[g,(X), hi(X)], j = 1,...,m. Each of the resulting formulas represents a function belonging to the

associated interval.

In two-level multiple-output circuits, a term may appear in SOP formulas representing func-

tions corresponding to different output nodes. A term which appears in more than one formula is

called a shared term, because the output of the AND gate which corresponds to the term is shared

by each of the OR gates which combines terms for the formulas in which the shared term appears.

It is advantageous that there exist many shared terms in a two-level design.

Truth Tables. The most common form of circuit specification is the truth table.

A truth table specifies the binary signals that should appear on each output of a circuit given

a stimulus to the input nodes, i.e., the mapping between possible input signals and the required

output signals. A truth table is of great utility because it may be used to represent the specification

of an output by a single function as well as an interval of functions. Moreover, a single truth table

specifies all of the circuit outputs.

When each of the outputs zj is specified by a single function fj, a truth table states the

mapping B" --* B" for the 2' possible input combinations. Table 4.2 depicts the two 3-variable

switching functions: zi = f1 (X) and Z2 = f2 (X).

Z1 2 X3 Zl 2

0 0 0 0 1
0 0 1 1 1

0 1 0 1 0
0 1 1 0 0
1 0 0 1 0

1 0 1 1 1
1 1 0 0 1
1 1 1 1 1

Table 4.2. Truth Table for a Multiple-Output Circuit

204

For an output zj specified by an interval [gj, h,], a truth table depicts the mapping of input

combinations A E BI to 0, 1, or X. If an input A E B' is mapped to either 0 or 1 for an output,

then the corresponding output must assume the value of 0 or 1, respectively, for the given input

combination. If an input combination A E B' is mapped to the don't-care value-depicted as X-

for a given output function, then we do not care whether the design associated with the respective

output produces a 0 or 1 for that input stimulus. For an output specified in this manner, the

corresponding lower-bound function gj(X) maps to 1 for input combinations A E B2 which map

to 1 in the truth table, and 0 otherwise. The corresponding upper-bound function h,(X) maps to

1 for input combinations A E B' which map to 1 or X in the truth table, and 0 otherwise. For a

given input combination A E B', it is possible that one output may map to 0 or 1 while another

output may map to X.

There exists another situation in circuit design that is referred to as a don't care condition

(Barte 61). In some cases, it may be known a priori that a specific input combination A E B' will

never occur on the input nodes. This condition is denoted in a truth table by a missing row, i.e.,

the row asociated with the input combination A E B' is not listed. However, this information is

useful in devising a minimal design to meet a specification. Table 4.3 is a truth table specifying

a multiple-output circuit which contains both forms of don't care condition. The assignments

X = (0, 1, 0) and X = (1, 1, 0) correspond to missing rows-input combinations which will not

occur.

X1 Z2 Z3 Z1 Z 2

0 0 0 0 1
0 0 1 1 X
0 1 1 0 0
1 0 0 X X
1 0 1 1 0
1 1 1 X 0

Table 4.3. Truth Table With Don't Cares Specifying a Multiple-Output Circuit

205

A design which meets a specification as given by Table 4.3 will correspond to a set of formulas

representing a set of completely-specified functions which have every input combination A E B'

mapped to 0 or 1. Table 4.4 corresponds to a set of functions which meet the specification of

Table 4.3.

MI X2 X3 h (X) f 2 (X)
0 0 0 0 1
0 0 1 1 1
0 1 0 1 1
0 1 1 0 0
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

Table 4.4. Truth Table Which Meets Specification of Table 4.3

1-Normal Form. A way of specifying a circuit which has received little attention by

switching theorists is the 1-normal form. Using a 1-normal form, the circuit specification is given

in the form of the single equation

O(X, Z) = 1. (4.89)

The 1-normal form has several advantages relative to other specification formats:

" It provides a standard representation on which to base analysis and synthesis.

" The function 0 corresponding to a given specification is unique.

" The function 4 is directly related to the truth-table representation of a specification.

" The normal form provides a uniform way to represent and handle don't-care conditions.
(Brown 90:215)

When specifying a circuit using a 1-normal form, the output signals Z are explicit in the

function #(X, Z). However, except for knowing which variables are associated with input nodes

206

and which variables correspond to outputs, we cannot differentiate the output variables from the

input variables in O(X, Z). Since we can control the signal applied to the inputs, we call the input

variables in O(X, Z) independent variables. Since the output signals are dependent on the stimulus

applied to the input signals, the output variables are called dependent variables.

Other specification formats may be converted to and generated from a 1-normal form. A

specification given by a set of functions (4.86) is converted to 1-normal form (4.89) using reduction:

m

O(X, Z) = l-(z ® f,(X)). (4.90)
j=1

Similarly, a set of intervals which specify a circuit can be converted to an equivalent 1-normal form.

Given

g;(X) < zj < h(X), j- 1,...,m, (4.91)

the definition of the inclusion relation, and (2.40), the equation

z}g(X) + zjh'(X) = 0 (4.92)

is formed. We complement both sides of (4.92) to form

z g'(X) + zih(X) = 1. (4.93)

The left-hand side of (4.93) is equal to 0j(X, z,). We form O(X, Z) by (2.41):

'n

0(X, Z) = 0l'I (X, z)" (4.94)
j=1

207

Given a 1-normal form, the set of functions (intervals) which specify the outputs of the circuit

may be extracted. Let Z, be the set of variables associated with the output nodes less the output

zy. We use elimination to develop a function which involves only the input variables and the output

zi. Eliminating Zj from O(X, Z) = 1 yields the resultant of elimination EDIS(O(X, Z), Zj) = 1.

The function EDIS(O6(X, Z), Zj) involves only the input variables and the output zj. Let us define

(= EDIS(O(X, Z), Zf). Then

= 1. (4.95)

If we view $j (X, zi) as a function consisting of the single variable zj, then the equation j (X, zj) = 1

may be solved for zi using Lemma 4.1. Consequently, we develop the the interval

0"(X, 0) < zj _< $j(X, 1). (4.96)

If the original specification for the outputs was a set of functions, then

0,(X,O) = $(X, 1) (4.97)

and

fj(X) = Oj(X, 1) (4.98)

are valid. If the original specification for the outputs was a set of intervals, then

g, (X) = (X, 0) (4.99)

208

and

hi (X) = ;(X, 1). (4.100)

Example 4.6 demonstrates the conversion of a set of intervals to 1-normal form and the extraction

of the set of intervals from the 1-normal form.

Example 4.6 Suppose a circuit specification is given by a set of intervals

ZiZ2 < z 1 < z1 + Z2 (4.101)

X 2 _ z2__5 z+z2.

Using (4.93), we develop the functions

461 (X, zl) = ' z'zi +IZI+ (4.102)

,2(X,z2) = X'2Z +' 1 '+X 2Z

We then form the function O(X, Z):

4(X, Z) = OI(X, z1) -0 2 (X, z 2) = ' z'z 2 + zl. (4.103)

The equation O(X, Z) = 1 is the circuit specification in -normal form.

Since q(X, Z) = 1, eliminating z2 yields EDIS(O(X, Z), z 2) = 1, for which

EDIS(O(X, Z), {z 2 }) = mizx + X2z1 + z'z 2 + z'z'. (4.104)

Similarly, we derive

EDIS(O(X, Z),{}) z'2 z + z 2z 2 + Zi. (4.105)

209

From (4.104) and (4.105), we form the functions

$1 (X, ZI) = mix' + X~z + M'X2 + Z'Z' (4.106)
S 2 (x, z2) = Z'Z' + 2Z + X.

Using (4.96) we form the intervals $(X, 0) < zj < $,(X, 1):

zIz2 <_ Z 5 z + Z (4.107)

ZlZ2< 2< Zl+Z3 .

It is very easy to convert information given in a truth table to 1-normal form and vice versa.

Expanding O(X, Z) to its minterm canonical form with respect to the X-arguments, we develop a

formula in which each term corresponds to a line in a truth table. For each term, the X-arguments

correspond to a given input combination A E B' and the discriminant represents the value of each

of the outputs zj for that input combination. Each discriminant of MCF(4(X, Z)) with respect to

the X-arguments is either a term consisting of Z-arguments (which we shall call a Z-term) or 0. 4

A discriminant corresponds to an entry in a truth table in the following manner:

" If a discriminant is a Z-term which contains the literal z , then zj = 0 for the input combi-
nation A E B3.

* If a discriminant is a Z-term which contains the literal zi , then zj = 1 for the input combi-
nation A E B'.

* If a discriminant is a Z-term which does not contain the variable zj, then zj = X for the
input combination A E B'.

" If a discriminant is 1, then z, = X for the input combination A E B' for each zj.

* If a discriminant is 0, then the input combination A E B' does not appear in the truth table.

Example 4.7 demonstrates the relationship between a truth table specification and the 1-normal

form.

"In the general came, the dlscriminant can be an SOP formula in which each term consists of Z-arguments. We
ausume for the moment that each discriminant is a Z-term.

210

Example 4.7: Suppose a specification is given by a truth table as stated by Table 4.5. Then, the 1-

normal form which represents the same specification is given by O(X, Z) = 1, where MCF(O(X, Z))

is the formula

(I Zl 3 I I .z IZa±(X'1 Z'2 Z3) *r1+ (z'1 2 Z3) Z + (iZlX'2' 3)1 +(nI:'2Z3)' Z 2 + (2 3) .Z'. (4.108)

X1 X2 Z3 Z1 Z 2

0 0 0 0 1
0 0 1 1 X
0 1 1 0 0
1 0 0 X X
1 0 1 1 1
1 1 1 X 0

Table 4.5. Truth Table for Example 4.7

An important concept that is easily conveyed using the 1-normal form is the relationship

between a design and a specification. Using the 1-normal form we formalize this relationship. A

design meets a specification if it implies the specification. A design corresponds to a set f (X) of

switching functions. Reducing the set of equ tions Z = 1(X) to an equivalent 1-normal form, we

form 4ID(X, Z) = 1, where

In

OD(X, Z) 1. f(zj 0 fj(X)). (4.109)
j=1

If the 1-normal form of the specification is 4's(X, Z) = 1, then a design meets a specification if

OD(X, Z) = 1 * 4s(X, Z) = 1. (4.110)

211

By the Extended Verification Theorem, statement (4.110) is equivalent to the inclusion

OD (X, Z) _- OS (X, Z) (4.111)

given that OD(X, Z) = 1 is consistent. The equation OD(X, Z) = 1 is consistent since it is the

1-normal form which correspoonds to a design. Example 4.8 demonstrates this concept for a single-

output function.

Example 4.8: Suppose we are given a specification stated by the truth table of Table 4.6 and a

design which meets the specification which corresponds to the function of Table 4.7.

X1 X2 Z

0 0 0
0 1 0
1 0 X

1 1 1

Table 4.6. Truth Table for Example 4.8 Specification

Z I Z2 z

0 0 0

0 1 0
1 0 1
1 1 1

Table 4.7. Truth Table for Example 4.8 Design

The specification is equivalently stated by the range

Z1Z2 z < X1. (4.112)

212

The equivalent 1-normal form for (4.112) is Os(X,z) = 1, where

qs(X, z) = zlz + zXz' + zz'. (4.113)

The design is equivalently stated by z = zj. Given this design, the function OD(X, z) is

OD(X,Z) = ZIZ + zz'. (4.114)

It is readily apparent that 10D Os; hence, the design implies the specification.

The don't-care condition associated with an input condition which will not occur imposes a

constraint on the possible input combinations. We model this constraint by forming an equation

in which the relevant input condition is set equal to 0. For example, if an input condition such as

zi = 1 and 2 = 0 never occurs in z two-input circuit, then the constraint equation

z1z' = 0 (4.115)

would be formed. By (2.40), a single equation may be formed which represents all possible input

combinations that will iot occur. We form the equation

ODc(X) = 0 (4.116)

where the left-hand side of (4.116) is the sum of the constraints representing input combinations

which do not occur. When testing to determine whether a design implies a specification, we must

consider the constraints on the inputs prior to determining the validity of the statement OD _5 s.

One way to do this is to form the equation O'Dc(X) = 1 and then to combine by (2.41) the equations

0' (X) = 1 and OD(X, Z) = 1. This enforces the constraints on the inputs of the design prior to

213

determining whether it implies the specification. To determine if a design, subject to constraints

on the inputs, implies a specification, we test the validity of the statement

OD(X, Z) . O'DC(X) < qs(X, Z). (4.117)

L. .:xample 4.9, we demonstrate the necessity of multiplying OD(X, Z) = 1 by 0' C(X) prior to

testing whether a design meets a specification.

Example 4.9: Suppose we are given a specification such as the truth table in Table 4.8. In this

table, a missing input combination forces the constraint zX'i2 = 0. Hence, VDC(X) = z'z2. The

equivalent 1-normal form for the truth table is given by

Os(X,z) = z' ' z' + ZI'2 + Z1 Z2Z (4.118)

A truth table for Os(X, z) is given by Table 4.9.

Z1 Z 2 z

0 0 0
1 0 X
1 1 1

Table 4.8. Specification for Example 4.9

z1 Z3 z Os(ZZ2,Z)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Table 4.9. Truth Table for OS(X, z)

214

Using the right-hand side of equation (4.118), we may solve for z to determine possible ways

the output z may be a function of the inputs z and z2. The interval

M2 _ z 5 M1 (4.119)

is formed subject to the consistency condition that z:Z2 = 0. We note that the consistency

condition is the constraint forced by the missing input combination in the truth table. In view of

Theorem 4.2, we use this condition to form an extended interval for z:

1 - z2 < Z _ 2i + 2. (4.120)

Given (4.120) a suitable design is represented by the equation z = Z. Reducing the design

to 1-normal form, we develop the equation OD(X, z) = 1, where

OD (X,Z) = X'1z' + zlZ. (4.121)

A truth table for OD (X, z) is given by Table 4.10.

0 0 0 1
0 0 1 0

0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1

1 1 0 0
1 11 1

Table 4.10. Truth Table for OD(X, Z)

Comparing truth tables for OD(X,z) and Os(X,z), we find that OD(X,Z) : Os(X,z). However,

the constraint #DC(X) = 0 was not imposed on the design. We form the equation 0'Lc(X) = 1 and

215

combine it with 4D(X, Z) = i to form a single equation. Since *ODC(X) = X'I22, O'DC(X) = 21 + 2-

We then form

OD(X, Z) -O'C(X) = (Z'z' + 212) -(XI + X') = ZIz + 2'2'2'. (4.122)

The truth table for O'D(X, Z) - CDCc(X) is given by Table 4. 11. By examining the truth tables, it

is clear that O'D(X, Z) - O'Dc (X) 5 OS (X, Z).- Hence, the design-subject to the constraint on the

input&--meets the specification.

2I X2 Z OD (X, Z) - OpC (X)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Table 4.11. Truth Table for OD (X, Z) OIDC (X)

216

Relationship of Equation-Solving and Minimization

Tabular Specifications. Given a circuit specification O(X, Z) = 1, a design is developed

by finding a system

Z =f (X) (4.123)

such that O(X, L(X)) = 1 is an identity. If such a system exists, then the specification is said to

be coauistent. We observe that (4.123) is a solution of q(X, Z) = 1 with respect to the unknowns

zj,...,zn in the free Boolean algebra FB(zl,.. , z,,). Hence, finding a design which meets a

specification entails finding a solution of the specification O(X, Z) = 1.

One way to approach the design problem is to use the method of successive eliminations to

form a subumptive general solution of the equation O(X, Z) = 1. We develop the general solution

1 < 40 (X)
011(x, 0) <5 z, _< 01(x,1)

0'2(X, z1,0) <_ z2 :_ 0 2 (X, z1,1) (4.124)
0'3(x, 1, 2, 0) _< Z3 < 3(x, -,,Z2,1)

O'(XIzII,...,I _ ,0) _< zM _< ¢(X1 zI I...,IZM_ ,)

from which we generate particular solutions in the form of (4.123). Because each successive sub-

sump'.ve is dependent on previously-defined Z-variables, we call the solution (4.124) a recurrent

system. System (4.124) is the most general way of portraying a general solution, since a general

solution of this form may be developed given any 1-normal form O(X, Z) = 1. In many situations,

however, we desire a general solution which is a non-recurrent system, i.e., one of the form

217

a I(x) <z, _1 :5 A(x)
'2 (X) 2 z 2 (X)

a3(X) <Z3 <_ l(X) (4.125)

a,.(x) <5 Z. :5 An(x).-

If we can form a general solution (4.125) of O(X, Z) = 1 in which each zi is stated as an independent

subsumption, then we say that the specification O(X, Z) = 1 is tabular. (Brown 90:219)

It has been shown that a specification is tabular if and only if it can be expressed by a truth

table. This is apparent in the following theorem:

A specification equivalent to 4'(X, Z) = 1 ie tabular if and only if, for each A E
{ 0, 1}, the discriminant O(A, Z) is either zero or reduces to a term on the Z-variables.
(Brown 90:220)

Our earlier discussion regarding the relationship of the 1-normal form and truth tables for circuit

specifications was restricted to tabular specifications, i.e., ones for which each discriminant of

MCF(O(X, Z)) with respect to the X-variables is either 0 or a term on the Z-variables. If a

specification is non-tabular, there exists a discriminant O(A, Z) which is an SOP formula of two or

more terms on the Z-variables which cannot be represented by an equivalent formula consisting of

a single term. Hence, for non-tabular specifications there exists no way to represent O(X, Z) = 1

with a conventional truth table. Conventional minimization techniques cannot be used to develop

designs for circuits with non-tabular specifications.

In (4.91) through (4.94) we developed an approach for reducing a system such as (4.125) to

an equivalent 1-normal form O(X, Z) = 1. The function q(X, Z) is formed in the following manner:

O(X, Z) = 01(X, z,)0 2 (X, z2)... O(X, Zm). (4.126)

218

The functions on the right-hand side of (4.126) are not unique; however, the set of intervals (4.125)

derived from the functions is unique (Brown 90:221). Statement (4.95) gives a process for forming

the functions on the right-hand side of (4.126), where ,(X, zj) - 4 i(X, zj). Then

ai (X) = 0(X, 0) (4.127)

and

f3j(X) = O,(X, 1). (4.128)

Solution * Design. In the last section we observed that from a circuit specification

O(X, Z) = 1 a design is developed by finding a system

Z = L(X) (4.129)

such that O(X, f(X)) = 1 is an identity. The design corresponds to the set F of formulas repre-

senting the functions f(X). The system Z = f(X) is a solution of O(X, Z) = 1 with respect to the

unknowns z z,...,z, in the free Boolean algebra FB(zj,..., z,,). Hence, finding a design which

meets a specification entails finding a particular solution of the specification 4O(X, Z) = 1.

We display pictorially in Figure 4.5 the relationships among designs, solutions to equations,

specifications, and equations. In Figure 4.5 we observe the statemer.t

Z = f(X) * O(X, Z) = 1. (4.130)

Statement (4.130) has two interpretations which correspond to one another. We say that Z = f(X),

a particular solution of the unknowns zj,..., z, in the free Boolean algebra FB(zi,.. ., z,), is an

antecedent, i.e., a solution, of the equation O(X, Z) = 1. Additionally, Z f 1(X) corresponds

219

to a design which implies a 1-normal form specification O(X, Z) = 1. The difference between the

interpretations is that when we form a particular solution Z = L(X) for the equation O(X, Z; = 1

our focus is on the functions f(X); on the other hand, when we develop designs which meet a

specification our attention is placed on the formulas F which represent f(X).

Z = f(X) =(X, Z) = 1

Particular
Solution

Design Specification

Figure 4.5. Relationships Among Designs, Solutions, Equations, and Specifications

We must necessarily develop a design which implies its specification, i.e., find a particular

solution for O(X, Z) = 1. However, an arbitrary particular solution is not sufficient for our purposes.

Rather, we would like to guarantee that functions L(X) in the particular solution Z = L(X)

are represented by formulas which correspond to an economical design. In his book on Boolean

equations, Rudeanu proposed the following problem which has specific relevance with respect to

the minimization problem:

Given the solution of a Boolean equation over a finite free Boolean algebra, ... , deter-
mine the best (optimal) solution according to a given criterion. (Rudea 74:408)

220

In other words, given a general solution of a Boolean equation, find the best particular so1 l:ion

with respect to a given criterion. If we interpret a "good" solution as meaning one in which the

formulas F representing f(X) are the most economical, then Rudeanu's problem of finding a good

particular solution corresponds directly to the minimization problem.

Conventional Minimization. In conventional circuit minimization, the goal is to find a

system Z = f(X) for which the set of SOP formulas which represent f(X) is minimal with respect

to some measure of cost. To develop a system Z f (X) from a tabular specification O(X, Z) = 1,

we first develop a general solution of the form

C' I(x) <_ 01 _ (x)

a3(x) _2 3 63 (X) (4.131)

c(X) < < x)

in which each output zj is specified by an interval [aj(X), Pj (X)].

Given the equation q(X, Z) = 1, we extract the set of functions which specify the outputs

of the circuit. Defining the function 4j (X, zi) = EDIS(O(X, Z), Zj), in which Zj is the set of

variables associated with the output nodes less the output zj, we develop the system

i(x , o0) _< , < l 1,)
'(X,O0) Z2 i2_< (i,l1)

i (X,O) _ Z3 < i 3 (X, 1) (4.132)

".(XO0) _ .z :, 0,m(X, 1)

221

from which a particular solution Z = 1(X) is developed. In this case,

aj(X) = j(X,O) and (4.133)

,6j(x) = jx,).

A general solution more useful than (4.132) is one based on the extended-range concept

developed in Theorem 4.2. Using the extended range we produce the general solution

'i(x,o). - I(x, 1) < , < (x' o) + I(x 1)
'2(x,0). 2(x, 1) Z2 '2< (X, 0) + 2(x, 1)
'3(X, 0) . 3(X, 1) < Z3 '3 (X, 0) + 3 (X, 1) (4.134)

'(X, 0) . (X,1I) < _ (x, 0) + j (x,1).

System (4.134) must be used when there exists a constraint condition such as an input combination

A E B" which does not occur (See Example 4.9).

Once we develop the general solution (4.134) for O(X, Z) = 1, we must apply a technique to

find the cheapest set of formulas with respect to a given cost criterion among all of the possible

formulas which may represent functions in the intervals

The resulting formulas represent functions in the range; each corresponds to a design which im-

plements a circuit for the respective output. Techniques to develop such formulas are discussed in

Chapters 6 and 7.

Alternative Approach. In conventional circuit minimization, a system such as (4.132) is

used as the basis for developing a design. This approach constrains the form of the resulting design

222

such that each output zj is a function only of the input variables X. Using the method of successive

eliminations to form a subsumptive general solution of the equation O(X, Z) = 1, we develop the

recurrent system

1 < o(X)
O'l(x , 0) _< zi ___ O1(x , 1)

0'2(X, Z1, 0) < Z2 !5 02(X,,Z1, 1) (4.135)

OM(x,,1, I...,S ,_1,0) !5 Zn ___ O (x,,1,..., _n1,1).

In view of Theorem 4.4, a recurrent system based on the extended-range concept is developed:

1 < o(X)
0;(x,o0).-01 (X,l1) <_ 0,_ (x,o0)+ 01(X,l1)

0' 2(X,Z 1 , 0). 0 2 (X, z, 1) < 23 _ (X, z, 0) + 0 2(X, z, 1) (4.136)
03(X, Z1, Z2, 0). - 3(X, Z1,z i) Z2 P Z3 03(X, Z1, Z2, 0) + 03(X, Z1, P, Z2)

O 'M(X , 1,...- , Z _ 1,o0) < n O M, < (X , I,... .,I ,_ iso)
• O,(x,1, I..., I - I1,1) +OM (x) z,,I.... ZM- 1,1)

From the recurrent system (4.136) we derive a system

z1 = f1(X)
Z2 = f2 (X, z1)

Z3 = f 3(X, z1,z 2) (4.137)

:n fm,(X,21,Z2,..., -1).

We denote the system (4.137) by Z = Lfn(X, Z) with the understanding that each zj is dependent

only on z1 ,...,z2,.. We call a design represented by Z = f,(X,Z) a recurrent design. The

advantage of a recurrent system such as (4.137) is that a design may be developed in which we use

223

output signals as well as input signals to generate a given output signals. This allows us, in many

instances, to develop more economical designs than in conventional approaches to minimization.

We may also use a recurrent system in the design process in ways that are not possible in

conventional minimization. If a portion of a circuit already has been constructed, we may be able

to use the existing subcircuit to develop a more economical design for the remainder of the circuit

than would be possible using conventional techniques. This idea is illustrated in Example 4.10. We

will discuss this approach in detail in Chapter 9.

Example 4.10: Suppose we are given the circuit specification denoted by Table 4.12. Furthermore,

suppose the output z, has been chosen to be

zI = Z1 + X2. (4.138)

The function O(X, Z) of the equivalent 1-normal form specification O(X, Z) = 1 for the truth table

is given by

3(X, Z) = '"' 2 Z'3 Z' 3lZ2 + -2 Z'3 z- + z' 3 zIz3Z + Z'nZ'1 4 + X 2 Z 3 Z1 Z 2 + XIX 3 Z I Z2 . (4.139)

Using the conventional approach to minimization we develop the general solution

z1 z+ Z Z1+ 2 (4.140)
ZlZ3 <+Z3+ZIX2Xa Z2 _ z123+Z2Z3+ 12223.

224

We note that the upper and lower bounds for both z, and z 2 are equal, i.e., they are completely-

specified. Hence, we form

ZI = Z1 +X2 (4.141)
Z2 = ZZ3 + Z2X3 + ZlZZ3. (4.142)

The formula on the right-hand side of (4.142) represents the design for z2 .

Using the alternative approach, we develop the recurrent system

1 < 1

Z1+X2 <-.5 Z < X1+Z2 (4.143)

Zl23Z1 + X233Z 1 + 3 1 '2Z33 Z1 l 5 Z2 X Z13 + Z2X3 + Z1 Z2Z 3 + Z 3Zl (4.144)

+,3Z 1 + ZZ 1 + :PI11 2 ZI ± - ZZ.3/

We have placed the upper bound of z 2 in (4.144) in Blake canonical form. A minimal set of prime

implicants in the upper bound which covers the lower bound of z 2 is {fz'3z, z3Z1 }. Hence, a possible

design for z2 is denoted by

Z2 -= Z1 -+ Z3z. (4.145)

The right-hand side of (4.145) represents a cheaper design for z2 than does the right-hand side of

(4.142).

Summary

In this chapter, we have discussed solutions of Boolean equations of the form f(X) = 1,

the modeling of digital circuits with Boolean algebra, and the correspondence of the digital design

225

M Z Z3 Z1 Z2

0 0 0 0 1
0 0 1 0 0
0 1 0 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 1
1 1 0 1 0
1 1 1 1 1

Table 4.12. Truth Table for Example 4.10

problem with that of developing solutions of a Boolean equation. Given the ideas developed in this

chapter, we may now outline the general design process that is used in this work:

1. Given a specification for a digital circuit, form an equivalent 1-normal form specification
O(X, Z) = 1 for the circuit.

2. Develop a general solution for O(X, Z) = 1. If each output of the resulting circuit is to be
a function only of the inputs, then form the general solution (4.134). If the outputs may be
formed as functions of the outputs as well as other inputs, then form the general solution
(4.136).

3. Given the general solution, form a particular solution which meets cost criteria. The formulas
representing the outputs correspond to circuit designs.

We discussed in this chapter how to form a 1-normal form specification and how to develop a general

solution for O(X, Z) = 1. In the remainder of this dissertation, we develop means for developing

particular solutions corresponding to digital circuit designs which are minimal or near-minimal with

respect to a given cost criterion.

226

V. Formation of All Irredundant Formulas

The following methodology for finding a minimal sum-of-products (SOP) formula has been

pursued by many researchers: first, develop the set of all irredundant formulas which may represent

a function; then select a formula from the set which is minimal with respect to a given cost criterion.

Forming a minimal irredundant SOP formula to represent a function is equivalent to finding an

economical design for a two-level digital circuit. The formation of all irredundant formulas to

represent either a single function or an interval of functions is discussed in this chapter. We will

present techniques for deriving a single minimal SOP formula in Chapter 6.

We present three different methods for forming all irredundant SOP formulas. In each method,

after generating all irredundant formulas, a least-cost formula F is then selected. F corresponds

to a minimal two-level design. All three approaches are based on the determination of implication

relations as developed in Chapter 3. Our third method-which we call the Multiplication Method-

is similar to many techniques found in the literature. Before presenting an implementation of the

Multiplication Method, we give an overview of several of the significant results from the past.

A comparison of computational results for each of the presented techniques is given in the

last section of the chapter. We begin with a discussion of the initial circuit specification.

Initial Specification

We assume that at the outset of the design process we are given a specification in 1-normal

form specification, i.e., O(X, z) = 1. If not, then we convert the given specification to an equivalent

1-normal form. Viewing O(X, z) as a function consisting of the single variable z, we use Theorem 4.2

to solve O(X, z) = 1 for the variable z over the free Boolean algebra FB(zi,..., z,,). We may thus

represent O(X, z) = 1 by the equivalent statement

g(X) < z < h(X), (5.1)

227

for which

g(x) = '(X, 0) . 0(X' 1) (5.2)

and

h(X) = 0'(X, 0) + O(X, 1). (5.3)

It is a well-known result that a minimal SOP formula F which represents a function f(X) belonging

to the interval [g(X), h(X)] is an irredundant sum of prime implicants of h(X) which covers g(X).

For the remainder of this chapter we discuss the development of all irredundant formulas which

represent functions f(X) belonging to the interval [g(X), h(X)]. We assume for the moment that

the function EDIS(,(X, z), {z}) in the consistency condition for O(X, z) = 1 is identically equal

to 1.

B,'wn's Method

As established in the previous section, z is a solution of O(X, z) = 1 if and only if z belongs to

the interval [g(X), h(X)]. We apply Procedure 3.4 to form all irredundant formulas which represent

functions belonging, to the interval [g(X), h(X)]. All possible irredundant formulas are found by

ascertaining all possible ways the function g(X) is included in minimal subsets of the set of prime

implicants of h(X). Procedure 3.4 may be applied to determine all possible irredundant formulas,

if the following associations are made with the parameters of the procedure:

* function g(X) is the function f0, and

* the set of prime implicants of h(X) forms the set of functions {fl, f2,..., fk}.

228

Each function of the set {ff, 2,..., fk} is a prime implicant; fo is a function represented by a SOP

formula.

Let us define the vector A = (Go, P1 , P2 , . . ., P1) of labels in which Go is the label associated

with g(X) and P1, P2 ,..., Ph are labels associated with the prime implicants of h(X). If the

function h is identically equal to 1, then BCF(h(X)) consists of a single prime implicant-the

term 1. Since BCF(h(X)) is the term 1, we derive a system of the form

Go < g(X) (5.4)

1 < P

which is equivalent to the system

Go.g'(X) = 0 (5.5)

P1 = 0.

System (5.5) is equivalent to the equation f(A, X) = 0, for which

f(A, X) = Go . g'(X) + Plt . (5.6)

If g(X) $ 0, then the only A-consequent deducible from f(A, X) = 0 is P l = 0. Hence, the only

irredundant formula which covers the function g(X) is the formula which represents the term 1.

If the function h(X) consists of a sum of prime implicants and h(X) $ 1, no subset of

the prime implicants is normal. Therefore, all terms p(A) of prime A-consequents p(A) = 0 of

f(A, X) = 0 take the form GoP ... P,. We begin by formulating the system

229

Go 5 g(x)
pI(X) !5 P,

p2 (X) <_ P2

(5.7)

pk(X) :5 Ph.

This system is reduced to the form f(A, X) = 0, for which

f(A, X) = Gog'(X) + p,(X)P + p2 (X)P; +... + ptP[,. (5.8)

Prime consequent terms GoP ... P., are generated by forming BCF(ECON(f(A, X), X)). Using

goal-directed elimination to eliminate X-arguments from f(A, X) = 0, we derive a formula G(A)

to represent g(A) = ECON(f(A, X), X) which consists of all prime A-consequent terms denoting

irredundant formulas for f(X).

We now present an algorithm for determining all irredundant formulas which represent

Boolean functions belonging to the interval [g(X), h(X)] developed from O(X, z) = 1. This pro-

cedure is a modified version of Procedure 3.4 designed specifically for the present problem. A

theoretically similar method is presented in (Brown 90:148). Hence, we call this algorithm Brown's

Method.

Algorithm 5.1 (Brown's Method): Given a 1-normal form specification O(X, z) = 1, all ir-
redundant formulas which represent Boolean functions f belonging to the interval [g(X), h(X)]
developed from O(X, z) = 1 are formed in the following manner:

Step 1.

1. Form g(X) = O'(X, 0). (X, 1).

2. Form h(X) = 0'(X, 0) + 4(X, 1).

Step 2.

1. Form a simplified formula to represent g(X) using Procedure 2.15 (Simplification). Call
the simplified formula G.

2. Develop the Blake canonical form for function h(X) using Procedure 2.20 (Blake canon-
ical form). Denote the set of prime implicants of h(X) by P.

230

Step 3.

1. Generate a label Go.

2. Complement function g(X) using Procedure 2.7 (Complementation).

3. Prefix each term of the formula which represents g'(X) with the literal G0 .

The resulting formula represents Go . g'(X).

Step 4. For each prime pi(X) E P:

1. Generate an associated label Pi.

2. Append the complemented literal Pi' to the prime pi(X).

The resulting term represents pi(X) • Pi1 .

Step 5. Append together the formula formed in Step 3 and each of the terms formed in Step 4.
The resulting formula represents f(A, X).

Step 6. Using the quick method for forming the conjunctive eliminant (Procedure 3.1), form
ECON(f(A, X), X). The resulting function is equal to g(A); the formula which represents
g(A) is BCF(g(A)). Each term of BCF(g(A)) denotes an irredundant formula for the func-
tion f(X).

Step 7. Given a term of BCF(g(A)), each complemented literal in the term GoP ... P,' is as.
sociated with a prime implicant in an irredundant formula which represents a function in
the interval [g(X), h(X)]. Generate an irredundant formula representing a function in the
interval [g(X), h(X)] by forming disjunctions consisting of prime implicants associated with
the complemented literals P'. Formulate all irredundant formulas by repeating this process
for each term of BCF(g(A)).

Example 5.1 demonstrates the application of Algorithm 5.1 to generate all irredundant for-

mulas which represent a Boolean function.

Example 5.1: Given the 1-normal form specification 4O(X, z) = 1, for which

O(X, z) = :'IZ2z' + zXz2z3 + z'Iz'2 z + Xlz2:3 + zXz 3 Z + i' 2 Z', (5.9)

and X = (Z:, X2, Z3), we apply Algorithm 5.1 to determine all irredundant formulas which may
represent a function f(X) in the interval [g(X), h(X)].

Step 1. To develop the interval [g(X), h(X)], we first generate the functions

0'(X, 0) = jZ32Z3 + Z'1Z'2 (5.10)
O(X, 1) = Z'lZ2 + 1Zl2 + X2Z3 + Z'IJ3.

231

We then form g(X) = 0'(X, 0) . 4(X, 1) and h(X) = 0'(X, 0) + 4(X, 1), for which

g(X) +' ' 2 3 (5.11)

h(X) = Z'Z ' 2j33 + 323+' 33 (5.12)

Step 2. A simplified formula to represent g(X) is given by the right-hand side of (5.11). Moreover,
the right-hand side of (5.12) is BCF(h(X)).

Steps 3-5. Having g(X) and BCF(h(X)), we form the system

G0 < 4132 +ZIZ2Z3
I I=1 71 < P,

2132 : "

OIZ2 _< P2 (5.13)

Z3Z3 _ P3

ZIZ3 < P4,

where the following associations are made between labels P and prime implicants of h(X):

* P with 'z'

" P2 with ZZ2,

* P3 with Z2Z3, and

" P4 with Z'Z3.

Given the complement of function g(X),

g'(X1, X2, 23) = X1X' + ZZ'3 + Z'Z2, (5.14)

the equation f(A, X) = 0 is formed, for which f(A, X) is defined by the equation

pi I I 'ZZ + PI'3 (515

f(A, X) = Gozlz' + Gozlx' + Gozz2 + Px z + 'ZIz + Pz22 3 + P4'2z 3 . (5.15)

Step 6. Eliminating the X-arguments ZI, X2, and Z3 from f(A, X) = 0 using goal-directed elimi-
nation, we develop an equation g(A) = 0, for which

BCF(g(A)) = GoP P2 + GoP'P3. (5.16)

Step 7. Prime implicant GoP 1P2 denotes the irredundant formula z'z' + j33; prime implicant

GoP P denotes the irredundant formula z'z' + Z2Z3. We observe that the prime implicant
z'z ' is an essential prime implicant of h because it appears in every irredundant formula
which represents a function in the interval [g(X), h(X)].

Algorithm 5.1 produces all irredundant formulas which represent functions f(X) belonging

to the interval [g(X), h(X)]. We can use the set of formulas returned by Algorithm 5.1 to develop

an economical design for a single-output digital circuit. The set of irredundant formulas may be

232

examined to determine a least-cost formula with respect to a cost criterion to represent a design.

Hence, after finding all irredundant formulas, we determine the cost of each formula based on the

given evaluation criterion. Cost criteria mentioned in Chapter 4 include:

" the fewest terms (gates);

" the fewest literals (gate inputs); and

" a combination of the fewest terms and fewest literals (gates and gate inputs).

After each formula is graded, a least-cost formula is chosen to represent the design.

As the number of terms of the formula which represents g(X)-and the number of prime

implicants of h(X)-increase, the time and space required to execute Algorithm 5.1 grow very

rapidly. Therefore, we seek methods to reduce the computational complexity of the method. Such

techniques are discussed in the next section.

Modified Brown's Method

A way to decrease the computational complexity of Algorithm 5.1 is to reduce the number

of prime implicants of h(X) involved in the partial label-and-reduce process. Hence, there is a

corresponding decrease in the number of pi(X) _5 Pi expressions in (5.7). We present two techniques

for identifying prime implicants of h(X) which may be deleted from consideration prior to these

processes.

Certain prime implicants of h(X) are not "useful" for covering the function g(X), i.e., they

are "useless". Useless prime implicants can be identified and removed from consideration prior

to the label-and-reduce process. Thus, the first method we introduce for reducing the number of

prime implicants identifies and deletes such prime implicants.

The second technique we employ is to partition the set of prime implicants of h(X) into

essential, inessential, and conditionally-eliminable prime implicants prior to the label-and-reduce

233

process. Essential prime implicants (EPIs) are prime implicants which appear in every irredundant

formula which represents a function f(X) belonging to the interval [g(X), h(X)]; each EPI is

required because it is the only prime implicant of h(X) which covers some portion of the lower

bound g(X). Inessential prime implicants (IPls) are prime implicants which are included in the

function h... (X) formed by summing all essential prime implicants; inessential PIs do not appear

in any irredundant formula. Therefore, the only difference among irredundant formulas is the

conditionally-eliminable prime implicants (CEPIs) which appear in each one. Hence, the only prime

implicants that must be involved in the label-and-reduce and elimination processes are CEPIs.

Once the useful, conditionally-eliminable prime implicants of h(X) are identified, the relative

simplification technique as applied in Chapter 3 may be used to remove particular literals from the

remaining prime implicants. This technique decreases the number of operations required in the

elimination process.

Before presenting a revised algorithm for generating all irredundant formulas, we discuss the

identification of useless prime implicants of h(X). We then present a methodology for partitioning

the prime implicants of h(X).

Useless Prime Implicants. A prime implicant p(X) of h(X) is useless with respect to

g(X) if and only if the statement

p(X) < h(X) - g(X) (5.17)

is an identity. Prime implicants which are not useless with respect to g(X) are called useful prime

implicants (Tison 67:452). A way to determine whether a prime implicant is useless is to determine

the validity of the statement p(X) • g(X) = 0; we demonstrate this by Theorem 5.1.

234

Theorem 5.1 (Useless Prime Implicants): Given a lower bound function g(X) and a prime

implicast p(X) of an upper bound function h(X), the prime implicant p(X) is a useless prime

implicant if and only if the equation

p(X) . (X) = 0 (5.18)

is an identity.

Proof. A prime implicant p of h is useless if and only if p : h - g. By the definition of subtraction,

the function h - g is equal to hg'. Because of the property

a<b 4= a-b=O, (5.19)

we may determine whether a prime implicant p is included in hg' by subtracting hg' from p and

testing whether the result is identically equal to 0. Thus,

p,< h - g 4=> p- hg' =0. (5.20)

Then, the following statements are equivalent:

p-hg' = 0 (5.21)

p(hg')' = 0 (5.22)

ph'+pg = 0. (5.23)

Equation (5.23) is equivalent to the set

ph' = 0 (5.24)

pg= 0 (5.25)

235

of equations. By the definition of the inclusion relation, ph' = 0 €* p < h. The statement p < h is

an identity because p is a prime implicant of h. Hence, the statement p 5 h - g is true if and only

if pg = 0. This completes the proof. 0

Applying Theorem 5.1, we develop a test to determine the usefulness a prime implicant p

by forming the function p. g and examining the result. If p. g 0 0, then a prime implicant is

useful; otherwise, it is useless. We use this test in Procedure 5.1 which returns the elements in a

set P of prime implicants which are useful with respect to a function g(X). In Procedure 5.1, we

determine whether a prime implicant p is useful by comparing it to each term in the formula G

which represents g(X). If one term t in G is found for which p. t 0 0, then p is useful. Otherwise,

the prime implicant is useless.

Procedure 5.1 (Useful Prime Implicants): Given a formula G which represents a function
g(z), and a set P of prime implicants, we determine the prime implicants of P which are useful in
the following manner:

Step 0. Initialize an accumulator Puefui to the empty set 0.

Step 1.

* If the set P of prime implicants is empty, then return Put./,. It is the set of useful
prime implicants.

" Otherwise, remove the first term from P and call it P. Initialize an E "cumulator GACO
by placing in it the contents of G. Continue to Step 2.

Step 2.

" If GACC is empty, then the prime implicant P is useless. Return to Step 1.

" Otherwise, remove the first term from GACC and call it t. Continue to Step 3.

Step 3.

" If t and P have any opposed literals, then t • = 0. The prime implicant P must be
compared to another term of G to determine usefulness. Return to Step 2.

" Otherwise, P is a useful prime implicant. Place 6 in Pu,,ta and return to Step 1.

236

Partitioning of Prime Implicants. We now introduce a methodology for partitioning

the prime implicants of h(X). In this methodology, the partitioning of the prime implicants is

performed in two steps:

1. The essential prime implicants of h(X) with respect to g(X) are identified.

2. The inessential prime implicants of h(X) are determined.

After the sets of essential and inessential prime implicants of h(X) with respect to g(X) have been

identified, the remaining prime implicants of h(X) form the set of conditionally-eliminable prime

implicants.

The first step in our methodology for partitioning the prime implicants is to identify the

essential prime implicants of h(X) with respect to g(X). A number of techniques for developing a

minimal formula F found in the literature also identify the essential prime implicants at the outset

of developing a minimal F. These methods test each prime implicant to determine if it essential.

However, it is possible to identify a subset of the prime implicants of h(X) which are potential

essential prime implicants with respect to g(X), such that all other prime implicants of h(X) are

not essential. We use the terms in the formula G which represents g(X) to identify potential

essential prime implicants.

Each term t in G has at least one prime implicant p of h(X) which completely contains it,

i.e., t < p. The prime implicant p is essential if and only if it necessary to cover t. If P is formed

by removing prime implicant p from BCF(h(X)), then p is essential if and only if

t: P (5.26)

is valid. If t < P, then p is not necessary to cover t, i.e., p is Lot essential. We only need to test a

subset of the prime implictnts of h(X) such that each prime implicant tested completely contains

a term in G. A way to develop such a subset is to find for each term t a prime implicant p in

237

which it is included and then test p to determine if it is essential. The test for inclusion of a term

t in a prime implicant p is simple, because t is included in p if the literals contained in t are a

superset of the literals contained in p. As a result of the manner in which we determine potential

essential prime implicants, we test at most as many prime implicants as there are terms in G. In

many caes, the number of prime imp!icants that are tested is only a fraction of the total number

of prime implicants.

Procedure 5.2 is a method for identifying all essential prime implicants of an interval [g(X), h(X)].

It is assumed that the formula representing h(X) is BCF(h(X)) and the formula G is a simplified

formula for g(X). A key aspect of Procedure 5.2 is that all elements of BCF(h(X)) do not have

to be teste-i to determine if they are essential, which greatly improves the efficiency of detecting

essential prime implicants. Procedure 5.2 returns both the set of essential prime implicants of h(X)

with respect to g(X) and the terms in G which were included in the essential prime implicants, i.e.,

the terms in G used to identify the essential PIs. Procedure 5.2 may also be used to identify essen-

tial prime implicants in a completely-specified Boolean function f(X); BCF(f(X)) is substituted

for BCF(h(X)), and a simplified formula which represents f(X) is used in place of G.

Procedure 5.2 (Essential Prime Implicants): Given an interval [g(X), h(X)] in which g(X) is
represented by a simplified formula G and h(X) is represented by BCF(h(X)), the set of essential
prime implicants of h(X) with respect to g(X) is determined in the following manner:

Step 0.

1. Initialise an accumulator P,,,,, to the empty set 0.

2. Initialise an accumulator G¢oved to the empty set 0.

Step 1.

" If G is empty, then P...,n contains all essential prime implicants and Gcoerd contains
terms of G used to identify the essential prime implicants. Return Passen and Gc.,,,.d.

" Otherwise, remove the first term from G and call it t. Initialize an accumulator P by
placing the contents of BCF(h(X)) into it. Continue to Step 2.

Step 2. Remove the first term from P and call it p.

* If t consists of a superset of the literals in p, then p will be tested to determine if it is
essential. Continue to Step 3.

238

" Otherwise, t is not included in p. Repeat Step 2. (Note: We do not have to be concerned
with exhausting P because t is included in at least one prime implicant in P.)

Step 3.

" If p is a member of Poison, then we previously identified p as being an essential prime
implicant. Additionally, term t is covered by an essential prime implicant. Add t to
GC.,Btd. Return to Step 1.

" Otherwise, continue to Step 4.

Step 4. Form a formula P by copying all terms in BCF(h(X)) into P except the prime implicant
p. Using Procedure 2.25, determine if t < P.

" If t < P, then p is not an essential prime implicant. Return to Step 1.

* If t g P, then p is an essential prime implicant. Add p to P ...,n and add t to Gcotrd.
Return to Step 1.

After identifying all essential prime implicants via Procedure 5.2, the set of inessential prime

implicants must be determined. Subsequently, a function h...(X) is formed which consists of all

essential prime implicants. A generalized technique for finding all terms in a formula F which are

includeu in a function g is given by Procedure 5.3. Thus, Procedure 5.3 may be used to identify

the inessential prime implicants in which the function h... (X) corresponds to the function g in

Procedure 5.3, and the formula F is BCF(h(X)) less all essential prime implicants. Procedure 5.3

then returns all inessential prime implicants. After identifying the inessential prime implicants, we

also know the set of conditionally-eliminable prime implicants since the CEPIs are the elements of

BCF(h(X)) which are neither essential nor inessential.

Procedure 5.3 (Covered Terms): Given a formula F and a function g, terms in F which are
included in g are determined as follows:

Step 0. Initialise an accumulator -Fcov,,, to the empty set 0.

Step 1.

" If F is empty, then Fco, 7 ,d contains all terms in the original formula F which are
included in g. Return Fcovrd.

* Otherwise, continue to Step 2.

Step 2. Remove the first term from F and call it t. Use Procedure 2.25 to determine if t < g.

" If t < g, then t is covered by g. Add t to Fo..,.d and return to Step 1.

" If t < g, then t is not covered by g. Return to Step 1.

239

A Revized Algorithm. Let G,, denote the sum of the terms in the formula G which are

returned with the essential prime implicants of h(X) in Procedure 5.2, i.e., the terms in G covered

by a single essential PI and used to determine that the prime implicant was essential. Terms in

G,., may be removed from G to form a new formula (G - Go..). Moreover, the function h.,.(X)

may be subtracted from the function represented by (G - Goo.) to develop a function §(X), i.e.,

O(X) = (g(X) - good(X)) - h...(X), (5.27)

which must be covered by the conditionally-eliminable prime implicants.' Thus, effort is reduced

by forming only those implication relations in which the portion of the lower bound which is not

covered by essential prime implicants is covered by sums of CEPIs.

After forming §(X), Procedure 5.1 (Useful Prime Implicants) is used to determine the useful

PIs of the set of conditionally-eliminable prime implicants with respect to O(X). After identifying

the useful ccnditionally-eliminable prime implicants, we may then apply the ideas illustrated by

Theorem 3.7 to simplify each of the useful CEPIs relative to the formula G' which represents the

function §'(X). This technique reduces the number of literals in each prime implicant prior to

the label-and-reduce process. Subsets of terms resulting from the relative simplification process

which cover §(X) correspond to subsets of useful conditionally-eliminable prime implicants which

cover j(X). However, becaase the terms resulting from the relative simplification process consist

of fewer literals, the label-and-reduce and elimination processes require less memory and fewer

computations.

Finally, all irredundant formulas which cover the function §(X) are gentrated. These formulas

are composed of useful conditionally-eliminable prime implicants.

IMathematiclly, we can also say that §(X) = g(X) - h...(X). Since g 0,, _< h.., is true, we know that

gco, h..* = 0. The right-hand side of (5.27) may be written as g •g ', - h. 5 ,, which, in view ofg, • h.O. = 0, may
be rewritten a g • ho.g .

240

Algorithm 5.2 is a revised version of Algorithm 5.1 which incorporates the aforementioned

techniques. Each subset of the useful conditionally-eliminable prime implicants which covers the

function (X) is added to the essential prime implicants to form an irredundant formula F represent-

ing a function f(X) belonging to the interval [g(X), h(X)]. Since this algorithm is an improvement

of Brown's Method, we call this technique the Modified Brown's Method.

Algorithm 5.2 (Modified Brown's Method): Given a 1-normal form specification O(X, z) = 1,
all irredundant formulas which represent Boolean functions belonging to the interval [g(X), h(X)]
developed from O(X, z) = 1 are formed in the following manner:

Step 1.

1. Form g(X) = O'(X, 0). 4(X, 1).

2. Form h(X) = 0'(X, 0) + O(X, 1).

Step 2.

1. Form a simplified formula to represent g(X) using Procedure 2.15 (Simplification). Call
the simplified formula G.

2. Develop the Blake canonical form for function h(X) using Procedure 2.20 (Blake canon-
ical form).

Step 3. Using Procedure 5.2 (Essential Prime Implicants), G, and BCF(h(X)), determine the
essential prime implicants of h(X).

1. Denote the set of essential prime implicants by H ... (X) and the function formed by the
disjunction of the essential prime implicants by h...(X).

2. Call the set of terms of G used to identify essential prime implicants in Procedure 5.2-
terms covered by the essential prime implicants-Gcaeed.

Step 4.

1. Form a set H of prime implicants consisting of all prime implicants of h(X) except the
essential prime implicants.

2. Use Procedure 5.3 (Covered Terms), H, and h.,.(X) to determine the terms of H covered
by h... (X). These terns comprise the set of inessential prime implicants of h(X); denote
this set of terms by Hine,,sn.

Step 5.

1. Remove from G the terms in G ,,,d; denote the resulting formula by G -

2. Using Procedure 2.10 (Subtraction), subtract the function h.,(X) from the function
represented by G - Gcotced.

3. Call the resulting formula 6 and the function which it represents 4(X).

241

Step 6.

1. Form the set He, of conditionally-eliminable prime implicants by removing the prime
implicants in Hneaaon from H.

2. Using Procedure 5.1 (Useful Prime Implicants), determine which prime implicants in set
Hr, are useful with respect to §(X). Call the set of useful prime implicants H,,,.fa.

Step 7. Complement function #(X) using Procedure 2.7 (Complementation). For each prime
implicant pi in H,,,,f, h simplify the prime implicant relative to 4', i.e.,

SIMPREL(pi, d'). (5.28)

Form a set T,,lft consisting of the terms resulting from the relative simplification process.

Step 8.

1. Generate a label Go.

2. Prefix each term of the formula G' which represents #'(X) with the literal Go.

The resulting formula represents Go §'(X).

Step 9. For each term ti E Tuelut:

1. G-rate an associated label P,.

2. Append the complemented literal P to the term ti.

The resulting term represents ti - Pl.

Step 10. Append together the formula formed in Step 8 and each of the terms formed in Step 9.
The resulting formula represents f(A, X).

Step 11. Using the quick method for forming the conjunctive eliminant (Procedure 3.1), form
ECON(f(A, X), X). The resulting function is equal to g(A); the formula which represents
g(A) is BCF(g(A)).

Step 12.

1. Each term of BCF(g(A)) consisting only of complemented literals represents a minimal
normal subset; append the literal Go to each of these terms. (Do nothing to the remaining
terms.) Call the resulting formula G.

2. Form the equivalent absorptive formula, ABS(G), for 5. Each terms of ABS(G) de-
notes the portion of an irredundant formula for the function f(X) consisting of useful
conditionally-eliminable prime implicants.

Step 13. Given an arbitrary term of ABS(G), each complemented literal in the term GoP ... P'
is associated with a conditionally-eliminable prime implicant in an irredundant formula F
which represents a function f(X) belonging to the interval [g(X), h(X)]. Generate an ir-
redundant formula representing a function f(X) in [g(X), h(X)] by forming disjunctions of
prime implicants consisting of the essential prime implicants and the terms associated with
the complemented literals P'. Formulate all irredundant formulas by repeating this process
for each term of ABS(G).

242

Just as when using Algorithm 5.1, after generating all irredundant formulas we must determine

the cost of each irredundant formula based on a given evaluation criterion. Once each formula is

assigned a cost, a least-cost formula F is selected to represent a minimal design for a two-level single-

output digital circuit. Example 5.2 demonstrates the application of Algorithm 5.2 to generate all

irredundant formulas which represent Boolean functions f belonging to the interval [g, h.

Example 5.2: Given a 1-normal form specification O(X, z) = 1, from which we have formed the
functions

g(X) = u'v'wzy'z + u'v'w'z'yz + u'Vwz'y (5.29)

h(X) = u'vw'yz' + u',/w''z' + u','w'z'y + uw'z'y'z' + uvw'z'y' + v'w'x'y'z' (5.30)

+ 1,'wz'y'z + ,.Y'wzi + u'u'wV/z + u'InVwyz' + vwz'yz + u'vwz' p

in the interval [g(X), h(X)], we apply Algorithm 5.2 to determine all IDFs representing functions
f(X) belonging to [g(X), h(X)].

Step 1. This step was performed by forming g(X) and h(X) from the 1-normal form O(X, z) = 1.

Step 2. A simplified formula to represent g(X) is given by the right-hand side of (5.29). Moreover,
the right-hand side of (5.30) is BCF(h(X)).

Step 3. Using Procedure 5.2 to determine essential prime implicants, we find that the prime
implicant u'v'w'z'y of h(X) is an essential prime implicant. Hence,

H... = u'w':'y}. (5.31)

Additionally,

Gcovgg = {u'v'w'z'Yz}. (5.32)

Step 4. After determining the essential prime implicants, the set A is formed consisting of all the
prime implicants of h(X) except the essential prime implicants:

u'V'tZ', u''w'Z'z', uw'z'l'z', uVw'zy ,'w/''y'z', (5.33)

V' wz/ z, u't'VWY , U ' zWY , Ut VWyz , VW'2yz, UiVWz'Y}.

Using Procedure 5.3 (Covered Terms), H, and h..(X), the terms of H covered by h .,(X)
are identified. These terms constitute the set of inessential prime implicants of h(X). In this
example,

H ,s,= 0. (5.34)

243

Step 5. Removing the terms in G,,,,,,d from G, we form G - Gcrn,.,d. Subtracting h...(X) from
the function represented by G - G...,,,, the function §(X) is thus formed:

§(X) = U'WzY'z + u'vwz'y. (5.35)

Step 6. The set H,. of conditionally-eliminable prime implicants is defined by removing the prime
implicants in Hi. 6 s.8 from H. Since Hi..a.n is equal to the empty set, H,. is equal to
ft. Using Procedure 5.1 (Useful Prime Implicants), #(X), and H,., we determine the prime
implicants in He, which are useful with respect to §(X). Five conditionally-eliminable prime
implicants are useful; hence,

Hu..f u = {u'v'wzy', u'v' wy'z, 'IVwyz', vwz' yz, u'Vwz'y}. (5.36)

Step 7. Complementing the function §(X), we generate 0', a formula which represents §'(X):

u+ I + vy' + vz + v'z' + v'y + v'z'. (5.37)

The set Hu,.lpa of prime implicants is then simplified relative to 6'. We thus develop the set
of terms

Tu. -. = {zy',y'z, z' vz,v1. (5.38)

Steps 8-10. Having j(X) and Tugf p, we form the system

Go < u'v'wzy'z + u'vwz'y

ZV' < P

Y'z < P2
z' <P P 3 (5.39)

Vz < P4

V < P5

where the following associations are made between labels P and prime implicants in Huseju.:

" P with u'v'wzV',

" P 2 with u'v'wyz,

" P3 with u'vwyz',

* P4 with vwz'yjz, and

" P with u'vwZ'y.

Given the complement of function #(X) represented by d', the equation f(A, X) = 0 is
formed. A formula representing f(A, X) is

Gou + Gow' + Govy' + Govz + GoV'z' + Gov'yj + Gov' (5.40)
SPtz +Py'z+Pz'+ P4 Vz + PV.

244

Step 11. Eliminating the X-arguments from f(A, X) = 0 using goal-directed elimination, we
derive an equation g(A) = 0, for which

BCF(g(A)) = GoP Pg + GoP2'Ps + GoP P3P + GoP2P3P4. (5.41)

Step 12. No actions required.

Step 13. Since BCF(g(A)) consists of four terms, there are four irredundant formulas which
represent functions f(X) in [g(X), h(X)]. The essential prime implicant u'v'w'z'y appears
in each irredundant formula. In the first irredundant formula we add the prime implicants
associated with P1 and Ps-the prime implicants u'v'wzV and u'vwz'y, respectively. The
remaining irredundant formulas are similarly developed. We thus generate the irredundant
formulas which represent f(X):

u1vw1'z1Y + ulewzy' + u'vwzy

U'V'w'z'Y + U V' Wy'z + d'vwX' y (5.42)

u'VWVZ/ + I' VWzy1 + US'VW Z + 1W' yz

U'V'w':'y + .. ' VWyz + u'VtivWyZ- + Vwz' yz.

By any cost criterion, the first two formulas of (5.42) correspond to the cheapest possible
implementations of a two-level digital circuit which meets the given specification.

Algorithm 5.2 is more efficient than Algorithm 5.1 for problems of moderate complexity.

Nevertheless, as the number of terms of the formula which represents O(X) and the number of

useful conditionally-eliminable prime implicants of h(X) increase, the time and space required to

execute the algorithm become prohibitive. Thus, we seek other means for generating all irredundant

formulas which represent a function. Such a technique is described in the next section.

245

Multiplication Method

A variation of the technique for forming all irredundant formulas discussed in the previous

section is to generate sets of implication relations and then perform a multiplicative process. Rather

than forming implication relations to represent coverage of a lower bound g(X) of a function with

prime implicants of the upper bound h(X), implication relations are formed to represent coverage

of each term of g(X) by the prime implicants of h(X). After implications relations are formed for

all terms of g(X), a multiplicative process generates the implication relations representing coverage

of the function g(X) by sets of prime implicants of h(X).

Suppose a formula G which represents g(X) consists of two terms t, and t 2 , and BCF(h(X))

consists of six prime implicants P1, ... , P6. Also, let us assume that the following irredundant

implication relations (lIRs) denote the coverage of terms t, and t2 by subsets of the set P =

{PI,..., pe} of prime implicants:

tI P4
t 1 P< + P2

tI _5 P1 + P3 (5.43)

t2 :5 Pi

t2 !5 P2-+P4

t 2 ! P3+ PS+P6.

Since the formula G is the disjunction of terms t, and t2 , we can state that

9 = tI + t 2. (5.44)

Theorem 2.1 allows us to form implication relations denoting the coverage of g(X) by subsets of

P. All possible implication relations representing coverage of g(X) are formed by constructing all

possible ways that the sums of t and t2 are covered by the prime implicants.

246

An upper bound on the number of irredundant implication relations representing the coverage

of g(X) is the product of the number of lIRs for each of its component terms. Since terms t1 and

t3 each have three irredundant implication relations, an upper bound on the number of IIRs for

the function g(X) is three times three or nine. The implication relations for g(X) are formed as

follows:

tI + t2 < (p) + (PI)

t1 +t 2 5 (p)+(P2+p4)

tl+t 2 _ (p)+(p3+ps+p6)

t +it2 (P p+ P2)+ (PI)

t + t2_ (pI + p2) + (P2 + p4) (5.45)

t+ t2 !5 (pI+P2)+(p3+ps+P6)
t1+t2 _< (p1+P3)+(pI)

tl + t2 _< (pI + P3) + (P2 + p 4)

t+ t2 < (p1+p3)+(p3+p5+P6).

Deleting duplicate prime implicants and ordering terms on the right-hand side of each statement

of (5.45), and substituting the symbol g for the sum ti + t2 on the left-hand side, we develop the

implication relations

g :5 Pl +P4

g 5 P2+P4

g .5 P3 + P4 + P5 +P6

g !5 PI +P2

g < PI + P2 +P4 (5.46)

g !5 PI+P2+P3+PS+PS

g < PI +P3

g 5 P1+P2+ P3+P4

g I P+P3+Ps+P6.

247

After forming implication relations for g(X), we observe that not all of the implication relations

in (5.46) are irredundant. Deleting the redundant relations, the set of irredundant implication

relations representing the coverage of g(X) by subsets of P is

g : P1 +P4
g :5 P2+P4

g _ P3 +P4+ PS+p6 (5.47)

g !5 PI +P2
g PI +P3.

To form the implication relations in (5.47), the techniques discussed in Chapter 3 are used to

generate A-consequent terms representing coverage of terms t, and t 2 of g(X) by subsets of P. If

we use the symbols T1 , T2 and P,. . ., P6 to denote the labels representing the terms of g(X) and

the prime implicants of h(X), respectively, the disjunction of A-consequent terms representing the

coverage of ti as given by (5.43) is

TIP + T1PP + TPP4P. (5.48)

bimilarly, a disjunction of the A-consequent terms representing the coverage of t 2 by prime impli-

cants of h(X) is

T2 P + T2 P'TP + T2 P3P P . (5.49)

If the literals T and T2 are divided out of (5.48) and (5.49), respectively, we derive the formulas

P; + P4 P + PP; (5.50)

P (5.51)

248

Using the unate cross-product operation (Procedure 2 "), the formulas (5.50) and (5.51) are mul-

tiplied to derive the formula

P{P + P;P; +4 P;P;P;Ph + P{P; + P P;P; (5.52)

+ P1 PPPP + PIP + P1 P2 P3 P4 + P1 P3 P5 P6 .

Terms of (5.52) represent coverage of g(X) as given by the implication relations (5.46). Forming

the equivalent absorptive formula for (5.52), we develop the formula

PP + + PP;P Ph + PP + PP . (5.53)

If we appended the literal g to each term of (5.53), we would have A-consequent terms representing

the irredundant implication relations (5.47). Hence, after forming A-consequent terms to denote

coverage of each term of g(X) by prime implicants of h(X), product and absorption operations are

performed to form the IliRs representing coverage of g(X) by the prime implicants of h(X).

Previous Work. A methodology similar to the one described above has been applied in

various algorithms in the literature developed for the purpose of developing all irredundant formulas

for a function. The primary differences among the algorithms are the form of the formula G which

represents the function g(X) and the method for determining the coverage of terms in G by subsets

of the prime implicants. For example, one form for G is the minterm expansion, MCF(g(X)).

Petrick used this form to develop for each minterm of g(X) a formula, similar to (5.50), which is an

alterm denoting the prime implicants of h(X) which cover the minterm (Petri 56). The conjunction

of the set of alterms--one for each minterin-is called a Petrick function. The set of terms of G is

called the baie of interval [g(X), h(X). Hence, the base used by Petrick is the minterm canonical

form, MCF(g(X)), of the function. We call a formula, such as (5.50), denoting the coverage of a

249

term of the base by subsets of prime implicants an inclusion formula, since the associated term is

included in the subsets of the prime implicants denoted by each term in the formula.

We summarize the steps followed by most methods for forming all irredundant formulas which

may represent a function:

1. form the set of prime implicants of h;

2. develop a base for [g, h];

3. develop inclusion formulas representing coverage of the terms of the base by prime implicants
of h; and

4. form the product of the inclusion formulas.

Once the product of the inclusion formulas is formed, all absorbed terms are deleted. Each term

of the resulting formula denotes an irredundant formula F which represents a function f in the

interval [g, h).

A key problem in minimization theory is to devise a base for Jg(X), h(X) and a corresponding

method for forming inclusion formulas that is efficient. In addition to the minterm canonical form

used by Petrick, other bases have been used in minimization theory. The Blake canonical form

of a function was used in (Ghasa 57), (Mott 60), (Gaine 64), and (Tison 67). Chang and Mott

(Chang 65) employed an irredundant disjunctive form of a function as a base. Reusch showed

that an arbitrary disjunctive form may be used as a base for a function (Reusc 75). A subset

of the minterm canonical form of a function called the abridged minterm base was devised by

Cutler (Cutle 80). Hong used a subset of the abridged minterm base that he called the uepi-

eliminated" minterm base (Hong 91); the epi-eliminated minterm base contains only the minterms

of the abridged minterm base which are not covered by essential prime implicants of the function.

We now present a discussion of several of these methods.

One of the first techniques for generating inclusion formulas was developed by Ghazala for

use in an algorithm for developing all irredundant formulas representing a completely-specified

250

function f (Ghasa 57). Ghasala used the Blake canonical form of a function as the base and

generated formulas denoting the coverage of each term by subsets of the prime implicants. He

called the conjunction of the inclusion formulas the presence function of f. The formula derived

by computing the conjunction and forming the equivalent absorptive formula denotes all of the

irredundant SOP formulas which represent a completely-specified function f. For example, if the

formula

P1 " (2 + P3 P4) - (P3 + P1 P4) P4 (5.54)

is the presence function, then computing the conjunction yields the formula

P1 P2P3P4 + PIP3P4 + PIP2 P4 + PIP3P4. (5.55)

The equivalent absorptive formula for (5.55) is

P1 P3P4 + PIP2 P4. (5.56)

Hence, there are two irredundant formulas which represent the function.

As a vehicle for generating inclusion formulas, Ghazala developed a matrix that he called

a q-chart. The rows in the 0-chart are associated with members of the base; the columns are

associated with prime implicants used to cover terms in the base. Since the base is composed of

the n prime implicants of the function, there are n rows and n columns in the q,-chart. Entries

in the chart are derived by forming the ratio Oi/oj, in which Oi and Oj are prime implicants of

the function. 2 Hence, a 0-chart is formed as shown in Table 5.1. Ghazala did not fill in the main

diagonal, in which each entry is equal to 1.

2 VWhen prime implicants are both members of a base, i.e., terms to be covered, as well as terms which do the
covering, we shall refer to the prime implicants of the base by the i subscript and the prime implicants which do the
covering by the i subscript.

251

1 .2

-1 02/4'1 ... 00 . 00

42 ,1/,2 - ... ,I,0 ... 0./02

• °

00 4'..4 '1/, 4' .4 . 0"" 0

Table 5.1. Formation of a O-Chart

If the entries in the j-th row of the q'-chart do not sum to 1, then prime implicant 4'j is an

essential prime implicant. Sum-to-one subsets of the entries in the i-th row denote coverage of

prime implicant 4'j by subsets of prime implicants other than 4'j (4'j always covers itself). Ghazala

presented a method called cracking for determining such subsets from the 4'-chart. Example 5.3

presents an example taken from (Ghaza 57) which illustrates a O-chart for a function and the

inclusion formulas developed from it.

Example 5.3: Given a function j, for which BCF(f) is defined by the equation

BCF(f) = d'e + cde' + a'cd + a'ce + ab'd + ab'e + b'cd + b'ce, (5.57)

the O-chart for f is given by Table 5.2.

The entries in the rows corresponding to prime implicants d'e, cde', and ab'd do not sum

to one, hence, these terms are essential prime implicants of f. The inclusion formulas denoting

coverage of the essential prime implicants are P1, P2 , and P5, respectively.

In the row corresponding to a'cd, the entries in columns two and four sum to one, i.e.,

e' + e = 1. Thus, the prime implicants from columns two and four, cde' and a'ce, combine to cover

a'cd. No other sum-to-one combinations can be formed for the row. Denoting a'cd by the label P3 ,

the inclusion formula thus representing the coverage of a'cd is P3 + P 2 P 4 .

252

Similarly, the following inclusion formulas represent the coverage of th! remaining prime

implicants:

" a'ce: P4 +PP3;

" ab'e P + P,1P1;

" b'cd P r+ P3Ps + PPs + P2P3P6 + P2P4Ps + P2P4P; and

" b'ce: P + P1 P7 + P4P6 + PP3P + P 1P 4P5 + PIP3P6.

d'e cde' a'cd a'ce ab'd ab'e b'cd b'ce
d'e - 0 0 a'c 0 ab' 0 b'c
cde' 0 - a' 0 ab' 0 b' 0
a'cd 0 e' - e 0 0 b' b'e
alce d' 0 d - 0 0 b'd b'
ab'd 0 ce' 0 0 - e c ce
ab'e d' 0 0 0 d - cd c
b'cd 0 e' a' a'e a ae - e
b'ce d' 0 a'd a' ad a d -

Table 5.2. 4-Chart for Example 5.3

Tiuon presented a consensus-based technique for forming inclusion formulas (Tison 67). Given

the Blake canonical form for a function, labels are affixed to each prime implicant to create a

formula. Then for eaca binate variable in the formula, all possible consensus tern.. are created and

added to the formula. If a new term is absorbed, then it is deleted. After consensus operations are

performed for all binate variables, the resulting formula yields the inclusion formulas. Example 5.4

demonstrates Tison's method with an example taken from (Tison 67).

Example 5.4: Given a function f, where BCF(f) is defined by the equation

BCF(f) = az' + ay + bz' + by + bz + z'y' + z'z' + xy + yz', (5.58)

253

we associate labels with the prime implicants of the functions as follows:

" az': PI;

" ay: P2 ;

* bz' P3 ;

* bY: P4 ;

* bz: Ps;

* z'y' : P6 ;

* z'z': P7 ;

* zy: PS; and

* yz': Pg.

We thus generate the formula

az'P + ayP2 + bz'P 3 + byP 4 + bzP + z'y'P + z'z'P7 + zyFs + yz'Pg. (5.59)

Since z, y, and z are the binate variables in (5.59), consensus operations are performed with

respect to these variables. First, all consensus terms are formed with respect to z:

* ayPjPs is the consensus of az'P, and zyPs;

* byP 3 Ps is the consensus of bz'P 3 and zyPs; and

e yz'P 7 Ps is the consensus of z'z'P and zyPs.

We add the new terms to (5.59) to form

a7'P + ayP2 + bx'P 3 + byP4 + bzPs + z'y'P + z'z'Pr (5.60)

+ zyPg + yz'P9 + ayP1 Ps + byP3Ps + yz'P 7 Ps.

254

All consensus terms are then formed with respect to y:

* az'P2 P6 is the consensus of ayP 2 and z'y Pe;

* bz'P4 P6 is the consensus of byP 4 and z'yP 6 ;

* z'z'PGP is the consensus of z'/P6 and yz'F-;

* az'PI PsPs is the consensus of ayPiPs and z'yP 6 ;

* bz'P 3 P6P& is the consensus of byP3Ps and z'yP 6 ; and

Szz' P6P7 PS is the consensus of z'yP6 and yz'P 7 Pg.

When the new consensus terms are added to (5.60), we find that terms az'P1 PPs, bz'PP 6 P8,

and z'z'P6 P7 Ps are absorbed by other terms. Hence, these terms are deleted. The formula which

results is

az'P + ayP + bz'P 3 + byP4 + bzP + z'y'P + z'P7 + zyP + yz'Pg (5.61)

+ ayPiPs + byP3P s + yz'P 7 Ps + az'P2 P6 + bn'P4P6 + z'z'P6P9.

All consensus terms are then formed with respect to z. The resulting terms are b'P!SP 7,

byPsP, byPsPP&, and bz'PP6 P9. These terms are added to (5.61) to generate the formula which

yields the inclusion formulas:

az'P + ayP2 + bz'P 3 + byP 4 + bzPs + z'Y!,Pe + z'z'P 7

+ zyPa + yz'P9 + ayPiPs + byP3Ps + yz'P7Pa + az'P 2P6 (5.62)

+ bz'P 4 P6 + z'z'P6P9 + bz'PSP7 + byPsP + byP 5 PrPs + bz'PsP6 P9 .

To form the inclusion formula for prime implicant ax', the labels in the terms in (5.62) which

contain the literals az' are summed. Since terms an'P and az'P2P6 contain ax', the inclusion

formula for an' is P, + P!Ps. Inclusion formulas for the prime implicants are as follows:

* az' : PI + P2 P6 ;

* ay': P2 +PPe;

255

W l': P3 + P4P6 + P 7 + P+PP ;

* by: P4 + Pa + PAP+ PsPPs;

* bz : A5 ;
* z'V(: Fe;

Sz'z' : PT + AoPg;

" zy: Ae; and

SYz' : P + PPs.

We observe that the formula from which the inclusion formulas are generated, e.g., (5.62),

is nothing more than the Blake canonical form of the function represented by the formula (5.59)

derived by affixing labels to the prime irnp!cants of the original function. The successive consensus

operations are an organized way of performing the technique of iterated consensus to develop a

Blake canonical form.

Reusch showed that any disjunctive form which represents a function may be used as a base

for "- development of inclusion formulas (Reusc 75). He also introduced a modified version of

Ghaala's q-chart in which the rows are associated with n prime implicants of the function and the

columns are associated with m terms in the base. Entrier 'n the chart are derived by forming Pi/ti,

the division of prime implicant pi by the term tj (Table 5.3). Sum-to-one subsets of the entries in

the j- th column correspond to subsets of the prime implicants which cover the j-th term of the

base. We will use Reusch's form of the q-chart in the remainder of this work.

tl t2 . . tj ...• t

PI pI/tI p/t 2 *" pI/t! ... P/tm
P2 P2 /ti P2 /t 2 ... p2 /t P/tm

.

A P/t p/t2 ... Pi/tj ... AP/t,

PN P/ti Pn/t2 ... P//ti ... m/tn

Table 5.3. Formation of Reusch's O-Chart

256

The emphasis of the foregoing discussion has been placed on the development of inclusion

formulas for bases corresponding to single functions f. However, several of the processes either

handle intervals [g, h] or may be extended to do so. We now examine Tison's extension for intervals.

Tison's method for developing inclusion formulas for intervals adds several steps to the process

outlined for functions. Similar to his method for functions, labels are affixed to the prime implicants

of the upper-bound function h and a Blake canonical form is generated. However, prior to this

process, all prime implicants which are useless with respect to the lower-bound function g are

deleted. The formula which results is used in combination with the terms of the formula G which

represents g to form inclusion formulas denoting the coverage of terms in G by subsets of the prime

implicants of h. The conjunction of the inclusion formulas derived for each term in G yields the

set of irredundant formulas which represent functions belonging to the interval. We demonstrate

Tison's method with an example taken from (Tison 67).

Example 5.5: Suppose we are given an interval [g, h],

g = abd' + a'bd + a'b'c + acd (5.63)
h = ab'+ac+ad'+a'bc'+a'bd+b'c+b'd'+cd+c'd'. (5.64)

The right-hand side of (5.64) ie the Blake canonical form for h.

The prime implicant ab' of h is useless, since g . ab' = 0. All other prime implicants are useful.

Using the remaining prime implicants of h, a formula

acP1 + ad'P2 + a'bc'P3 + a'bdP4 + b'cP + b1d'P + cdP 7 + c'd'Ps (5.65)

similar to (5.59) is developed. Using (5.65), we develop the Blake canonical form:

acP + ad'P2 + a'bc'P3 + a'bdP4 -t- b'cPs + b'd'Ps + cdP + c'd'Ps

+bcdPIP4 + bc'd'P2P3 + a'c'd'P3 P6 + a'cdP4 P + cdP1 P4Ps + c'd'P2 P3 Ps (5.66)
+ad'PPs + b'd'P5 Ps + a'bdP3P7 + a'bc'P4Ps + acP2 P7 + b'cP6 P7 .

Terms on the right-hand side of (5.63) are used in combination with (5.66) to form inclusion
formulas for the terms in G. Inclusion formulas are developed as follows:

* abd' : Only terms ad'P and ad'P1 Ps in (5.66) contain a subset of the literals of abd'. Thus,
an inclusion formula denoting the coverage of term aVd' is P2 + P1 Ps.

257

" abd: Terms a'bdP4 and a'bdP3 PT contain a subset of the literals of a'bd. An inclusion formula

denoting the coverage of term a'bd is P 4 + P3 P7 .

* a'bc : Terms b'cPs and b'cP6 P7 contain a subset of the literals of a'b'c. An inclusion formula
denoting the coverage of term a'b'c is Ps + P6 P7 .

* a'cd : Terms cdP7 and cdP1 P4P contain a subset of the literals of a'cd. Additionally, term
a'cdP4 Ps contains a subset of literals of a'cd. Hence, an inclusion formula denoting the
coverage of the term is P7 + P1 P4P + P4P. However, since term PIP4 Ps is absorbed by
P4Ps, we simplify the formula to form P7 + P4P5 .

Computing the conjunction

(P2 + P1 Ps)(P4 + PPT)(P5 + AP 7)(P 7 + P4 P6) (5.67)

of the inclusion formulas yields a formula which denotes the set of irredundant formulas F which
represent a function f in the interval [g, h].

Multiplication Algorithm. In the last section we surveyed a number of algorithms found

in the literature. A number of different bases as well as techniques for developing inclusion formulas

are used in these methods. In this section we present a new base for a interval [g, h]. Procedure 3.6

in Chapter 3 is then used to develop inclusion formulas denoting coverage of terms in our base by

subsets of prime implicants of h.

We desire a base which consists of a small number of terms. This is important because for

each term in the base, we develop an inclusion formula which denotes the coverage of each term in

the base by subsets of the PIs of h. All inclusion formulas are then multiplied together to derive

a formula similar to (5.52). After absorption, a formula is derived which denotes the irredundant

formulas representing functions f belonging to the interval [g, h]. The fewer the terms in the

base, the fewer the inclusion formulas that have to be multiplied together to derive the expression

representing irredundant formulas. Thus, a base consisting of a small number of terms requires

less work than a base with a large number of terms to develop the set of irredundant formulas

representing functions in the interval [g, hi.

258

A base that we propose is a simplified formula 0 representing the portion of the lower bound

g(X) of the interval [g(X), h(X)] that is not covered by essential prime implicants of h(X), i.e, the

function j(X) defined by the equation

4(X) = g(X) - h...(X). (5.68)

Using this base, inclusion formulas are generated to indicate the coverage of terms in 5 by useful,

conditionally-eliminable prime implicants of h(X). A multiplicative process then is used to develop

subsets denoting the coverage of (X) by sets of the CEPIs. The addition of the essential prime

implicants to each irredundant set of conditionally-eliminable prime implicants which covers 4(X)

yields a set of PIs the sum of which is an irredundant formula representing a function f belonging

to the interval [g(X), h(X)].

An algorithm is now presented for generating all irredundant formulas representing functions

in [g, h] based on the use of a multiplicative process. When developing the inclusion formula for

each t in 45, we must use the same labels P for corresponding prime implicants of h(X). After all

inclusion formulas are formed, the formulas are multiplied together to generate a formula denoting

the coverage of ?(X) by subsets of the set of CEPIs. Since the inclusion formulas are collectively

unate, i.e., they consist of the same variables all of which are unate, the most efficient technique

for multiplying the formulas together is the unate cross-product operation implemented by Proce-

dure 2.3. Furthermore, after each product operation the resulting formula is made absorptive to

eliminate absorbed terms. Because the algorithm is multiplicative, we it the Multiplication Method.

Algorithm 5.3 (Multiplication Method): Given a 1-normal form specification 4O(X, z) = 1, all
irredundant formulas which represent Boolean functions f(X) belonging to the interval [g(X), h(X)]
developed from O(X, z) = I are formed in the following manner:

Step 1.

1. Form g(X) = 0'(X, 0). (X, 1).

2. Form h(X) = 0'(X, 0) + O(X, 1).

259

Step 2.

1. Form a simplified formula to represent g(X) using Procedure 2.15 (Simplification). Call
the simplified formula G.

2. Develop the Blake canonical form for function h(X) using Procedure 2.20 (Blake canon-
ical form).

Step 3. Using Procedure 5.2 (Essential Prime Implicants), G, and BCF(h(X)), determine the

essential prime implicants of h(X).

1. Denote the set of essential prime implicants by H.,(X) and the function formed by the
disjunction of the essential prime implicants by h...(X).

2. Denote the set of terms in G used to identify essential prime implicants in Proce-
dure 5.2-terms covered by the essential prime implicants-by Gcovrd.

Step 4.

1. Form a set ff of prime implicants consisting of ill prime implicants of h(X) except the
essential prime implicants.

2. Use Procedure 5.3 (Covered Terms), H, and h...(X) to determine the terms in R covered
by h...(X). These terms comprise the set of inessential prime implicants of h(X); call
this set of terms ,

Step 5.

1. Remove from G the terms in GC ,. 4 ; call the resulting formula G - Gcovere.

2. Using Procedure 2.10 (Subtraction), subtract the function h.,.(X) from the function
represented by G - G,..,rd.

3. Call the resulting formula G and the function which it represents 4(X).

Step 6. Form the set Hc, of conditionally-eliminable prime implicants by removing the prime

implicants in , from H.

Step 7. For each term t(X) in &:

1. Using Procedure 5.1 (Useful Prime Implicants), determine which prime implicants in set
He, are useful with respect to t(X). Call the set of useful prime implicants Huo p,.

2. Using Procedure 3.6 (Coverage of a Term), t, and Hu, determine minimal subsets of
Hu,,, 4 l which cover t. The resulting formula denotes coverage of t by minimal subsets
of Houpt.

Notes:

" The same labels {P1 , . . ., Pt} must be associated with prime implicants in H,. for every

term t in G.

" Step 9 of Procedure 3.6 is not executed; we use the formula resulting after Step 8 of the
procedure.

Call the set of formulas which result from this step P.

Step 8. Initialise an accumulator ACC to be equal to the term 1.

260

Step 9.

" If P is empty, then all formulas generated in Step 7 have been multiplied together; the
resulting formula is contained in ACC. Continue to Step 11.

* Otherwise, continue to Step 10.

Step 10.

1. Remove the first formula from P and call it Q.

2. Using Procedure 2.3 (Unate Cross-Product), form the product of formulas Q and ACC.

3. Make absorptive the formula resulting from Q x ACC.

4. Replace the contents of ACC with ABS(Q x ACC).

5. Return to Step 9.

Step 11. Formula ACC indicates the coverage of j(X) by minimal subsets of the set H,, of
conditionally-eliminable prime implicants of h(X). Irredundant formulas which represent
functions f(X) belonging to the interval [g(X), h(X)] are formed by combining each minimal
subset of the set He, which covers §(X) with the set H,°,, of essential prime implicants of
h(X).

Once Procedure 3.6 is used in Step 7 of Algorithm 5.3 to determine minimal subsets of

the conditionally-eliminable prime implicants of h(X) which cover terms in G, we develop an

upper bound on the number of irredundant formulas for functions f(X) belonging to the interval

[g(X), h(X)]. This upper bound is calculated by:

1. determining for each term t in d the number of minimal subsets of the prime implicants of
h(X) which cover the term, i.e., the number of terms in the associated inclusion formula; and

2. forming the product of the resulting numbers.

The number of irredundant formulas which may represent a function often is only a fraction of

the upper bound. In some cases, however, the number of irredundant formulas is very close to the

upper bound.

Example 5.6 demonstrates the application of Algorithm 5.3 to generate all irredundant for-

mulas for the interval of Example 5.2.

261

Example 5.6: Given a 1-normal form specification O(X, z) = 1, from which we have formed the
functions

g(X) = U'V'wXz'z + u'V'w'Z'Yz + u'VtoW'y (5.69)
h(X) = u'v'w'yz' + u'v'w'z'z' + u'v'/z'y + uw'z'Vz' + uvw''y' + vw'z'y' z' (5.70)

+ V'WX'Vz + u'V'wXy + U'V'wyz + U'iWYz' + ,WX'l/z + u'vwXz Y,

in the interval [g(X), h(X)], we apply Algorithm 5.3 to determine all IDFs which represent functions
f(X) belonging to the interval [g(X), h(X)].

Step 1. This step was performed by forming g(X) and h(X) from the 1-normal form O(X, z) = 1.

Step 2. A simplified formula to represent g(X) is given by the right-hand side of (5.69). Moreover,
the right-hand side of (5.70) is BCF(h(X)).

Step 3. Using Procedure 5.2 to determine essential prime implicants, we find that the prime
implicant u'v'w'z'i of h(X) is an essential prime implicant. Hence,

H... = {u'v'w'z'yl. (5.71)

Additionally,

Gco.er.d = {u'v'w'z'yz}. (5.72)

Step 4. After determining the essential prime implicants, the set H of prime implicants is formed
which consists of all the prime implicants of h(X) except the essential prime implicants. The
set H is defined s follows:

ft = ,,'v', ',''w ',,,'z'¢/',,,':' j',v,/'z'y'z', (5.73)
V'wz'y/ z, u'v' wzV', u'v'wV'','VWYz , vwz' z, u'vwz'Y}.

Using Procedure 5.3 (Covered Terms), ft, and h.,,(X), the terms of ft covered by h...(X)
are identified. These terms comprise the set of inessential prime implicants of h(X). In this
example,

H =,. 0s . (5.74)

Step 5. Removing the terms in Gc =,a from G, we form G - , Subtracting h...(X) from
the function represented by G - Gc,=,.d, the function j(X) is thus formed:

§(X) = is' ' WZVz + U'VW,'Y. (5.75)

Step 6. The set of conditionally-eliminable prime implicants, He,, is defined by removing the
prime implicants in Haosoen from H. Since H,,n°0°°n is equal to empty set, H,. is equal tofl, i.e.,

H,. = {U'v'w'/',u'v'w'z'z',uw'z'l/z',uvw'z' ,v'w'z'y'z', (5.76)
V'/''z, U' iZ ', ui' 'wY'Z, U' vwjz', vwz'yz, U'vwz'Y}.

262

Step 7. For each term of the base, G, we use Procedure 3.6 (Coverage of a Term) to develop
a formula which indicates the coverage of the term by subsets of H.. Prior to applying
Procedure 3.6, we determine for each term the elements of H,. which are useful with respect
to the term.

For term u'V'wz'z, the useful conditionally-eliminable prime implicants are

f ',',,,, y " ' ' Y ' (5 .7 7)

The formula returned by Procedure 3.6 denoting the coverage of u%'wzxsz by subsets of
(5.77) is

+ Pg. (5.78)

The subscripts of the terms in (5.78) denote the respective prime implicants in (5.76) which
cover u'u'wzyz. Hence, the term may be covered either by the seventh or by the eighth
element of (5.76), i.e.,

U''wzy'z < u'V' Wzy' (5.79)
t IV/txY'Z !5 tUI'VItYIZ.

Similarly, for term u'vwz'y, the useful conditionally-eliminable prime implicants are:

{u'VWyz', VWz' IVW:'Y1. (5.80)

The formula returned by Procedure 3.6 denoting the coverage of u'v'wzy'z by subsets of
(5.80) is

P11 + P9P0. (5.81)

Hence, the term uvwnz'y may be covered either by the eleventh element of (5.76) or by a
combination of the ninth and tenth elements, i.e.,

UI'vwz' y < sV' w'Y (5.82)
uiVtWZy :_ U'VWYz' + VWSX'IZ.

Steps 8-10. Since there are two terms in each of the formulas (5.78) and (5.81), an upper bound on
the number of irredundant formulas for f(X) is four. We develop a formula which indicates the
conditionally-eliminable prime implicants in each irredundant formula for f(X) by multiplying
(5.78) and (5.81). The resulting formula is

P7 P1 1 + PP 9Po + POP11 + P8P9Po. (5.83)

Step 11. Since (5.83) consists of four terms, there are four irredundant formulas for f(X). Each
formula is formed by adding the conditionally-eliminable prime implicants denoted by each
term of (5.83) to the essential prime implicant u'v'w'z'y. In the first irredundant formula
we add the prime implicants associated with P7 and P 1 1-the prime implicants ui'wzy' and
u'vwz'y, respectively. The remaining irredundant formulas are similarly developed. We thus
generate the irredundant formulas which represent functions in [g(X), h(X)]:

263

UVW I X I Y + iU'i'wl'y, + U'VWZ' Y

u')'W 'Y'y + u'' Way' + u'vwyz' + vwz' yz (5.84)

uI v'w'z'y + U'V'Y wz + i vWXa:y

U'I VI WYZ' + U'V'Wy3'Z + U'VWYZ' + VW'Y yZ.

Computational Results

In this section we compare the execution times for Algorithms 5.1, 5.2, and 5.3 on several

sets of example functions and intervals. Data on each set of functions is listed in Appendix B.

Each algorithm is programmed in the Scheme dialect of the LISP programming language. The

implementation of Scheme used is PC Scheme, a version which runs on IBM-compatible computers.

The computer used to produce the results was a 20 MHz, 80386-based, IBM-compatible computer.

PC Scheme was run as a task in the Microsoft Windows environment. Of particu.ar significance is

the fact that PC Scheme uses only 640K of computer memory; an implementation of Scheme hosted

on a workstation or a minicomputer should yield results in some cases where an implementation

on a personal computer will not.

Table 5.4 contains the execution time for each algorithm on Data Set B, a set of completely-

specified functions. The times listed in the tables are given in the format:

minutes:seconds.hundredths of a second.

The times listed for each algorithm include the time required to generate the Blake canonical form

for each function as well as to develop a simplified formula to represent the function (step 1 of each

algorithm). We include as a separate entry the time required to perform these calculations in order

to illuminate the portion of computational effort devoted to these tasks. The number of terms in 5

is pertinent to both Algorithms 5.2 and 5.3. The "upper bound" entry, generated by Algorithm 5.3,

is the projected number of irredundant formulas based on the number of terms in the inclusion

formulas. The "number IDFs" column lists the actual number of irredundant formulas pioduced

264

by the algorithms. An entry of N denotes that the procedure ran out of memory for the respective

function. An entry of - denotes that we were unable to attain a result for the given item.

Function Time Alg I Alg I Alg No Terms Upper Number

Identifier BCF/Simp 5.1 5.2 5.3 0 Bound IDFs
B1 0.11 0.66 0.44 1.04 0 1 1
B2 0.27 1.38 0.61 1.21 0 1 1
B3 0.66 4.06 1.32 1.92 0 1 1
B4 2.09 15.11 5.49 5.77 1 3 3
B5 5.55 N 3:21.19 49.21 7 1152 192
B6 22.25 N K M 43 1.95 x 10"9 -

B7 1:02.41 M M M 54 9.91 x 1023 -

Table 5.4. Data Set B (Results)

Algorithms 5.2 and 5.3 were able to produce a result for function BS, a function for which

Algorithm 5.1 ran out of memory. Algorithms 5.2 and 5.3 produced results more quickly than

Algorithm 5.1 for all functions except the simplest one (Bi). Algorithm 5.2 produced a result more

quickly than Algorithm 5.3 for simple functions; Algorithm 5.2 was better for B5 which has many

irredundant formulas. In cases where the upper bound on the number of formulas is in the millions

or greater, none of the algorithms is able to produce a result without exhausting memory.

Table 5.5 contains the results for each algorithm for Data Set C, a set of completely-specified

functions. The results are similar to those produced using Data Set B.

Function Time Alg Alg Alg No Terms Upper Number

Identifier BCF/Simp l5.1 5.2 5.3 0 Bound IDFs
C1 2.74 40.43 4.78 6.32 0 1 1
C2 7.85 2:38.78 23.46 21.75 1 2 2
C3 21.19 9:18.10 1:10.47 1:08.82 0 1 1
C4 34.71 M 2:16.27 2:06.99 3 8 4
CS 2:33.52 M M N 17 2.18 x 1015 -

Table 5.5. Data Set C (Results)

265

Table 5.6 contains the results for each algorithm for Data Set D, a set of completely-specified

functions. Algorithm 5.1 produced a result only for functions Di and D2; for other functions,

Algorithm 5.1 exhausted memory before yielding a result. Algorithm 5.2 and 5.3 work about equally

as well when the respective function is represented by a single irredundant formula. In functions

which have only one irredundant formula, the associated formula consists only of essential prime

implicants. All other prime implicants are inessential.

Function Time jAig Alg Alg No Term. Upper Number
Identifier BCF/Simp 1 5.1 5.2 5.3 1 Bound IDFs

D1 3.73 55.14 4.78 5.77 0 1 1
D2 12.30 7:42.53 18.95 20.00 0 1 1
D3 30.00 M 51.57 51.85 0 1 1
D4 35.92 M 1:19.37 1:16.56 0 1 1
DS 1:17.18 M 2:52.79 2:48.67 0 1 1
D6 1:40.68 M 4:44.29 4:34.47 0 1 1
D7 2:07.86 M 6:24.53 6:04.27 0 1 1
D8 3:47.01 N 12:18.96 2:02.11 0 1 1
D9 11:36.78 M M M 2 4 4

DIO 7:07.93 M 29:45.84 28:31.75 0 1 1
Dl1 10:51.59 M M M 1 3 3
D12 11:52.99 N M N 0 1 1

Table 5.6. Data Set D (Results)

Table 5.7 contains the results for each algorithm for Data Set IC, a set of intervals. Typically,

Algorithms 5.2 and 5.3 compute a result faster than Algorithm 5.1. Algorithm 5.3 is able to pro-

duce a result for IClO, an interval for which the other procedures exhausted memory. Additionally,

Algorithm 5.3 exhausts memory during the process of multiplying the inclusion formulas represent-

ing coverage of the terms of d; hence, an upper bound on the number of irredundant formulas is

calculated prior to exhausting memory.

In general, Algorithms 5.2 and 5.3 execute more quickly than Algorithm 5.1 and are able

to produce results in many cases where Algorithm 5.1 exhausts memory. Algorithm 5.2 seems to

266

Function TimAg Ag Ag No Terms Upper Number
Identifier BCF/Sinp 5.1 5.2 5.3 0 Bound IDFs

ICl 0.28 1.49 0.71 1.27 0 1 1
IC2 0.44 2.36 1.93 2.14 2 4 4
IC3 0.61 2.75 2.03 2.15 1 3 3
IC4 1.43 6.92 3.52 3.84 1 2 2
Ics 1.81 27.62 19.28 12.36 7 1200 48
ICe 2.48 31.47 12.64 8.74 4 54 24
IC7 3.85 30.76 12.25 13.41 2 4 4
ICe 7.75 1:27.61 29.77 26.04 3 12 12
IC9 11.64 X H M 23 2.37 x 1011 -

IClO 11.54 M M 28:38.89 10 2304 1728
ICll 24.06 M M M 19 5.97 x 1O -

IC12 40.37 P M P 60 2.11 x 10 3

Table 5.7. Data Set IC (Results)

be the best prc ure to use for relatively simple functions. Algorithm 5.3 computes results more

quickly than Algorithm 5.2 for moderately complex functions.

Summary

None of the algorithms presented in this chapter is able to produce a result in cases where an

upper bound on the number of irredundant formulas is more than about two thousand. In these

situations, we must be satisfied with finding a single irredundant formula which is minimal with

respect to a given cost criterior.

We summarize the new ideas presented in this chapter:

* A methodology for partitionig of the prime implicants was introduced which allows concen-
tration of effort on determining the useful conditionally-eliminable prime implicants which
will appear in each irredundant formula.

* Two new algorithms, Modified Brown's Method and the Multiplication Method, were pre-
sented for determining all irredundant formulas which may represent a function. The par-
titioning of the prime implicants and the deletion of useless PIs were incorporated in both
techniques for efficiency purposes. Additionally, we introduced a base-G-used in the Mul-
tiplication Method which in general contains fewer terms than bases found in the literature.

267

VI. Formation of a Single Minimal Formula

The formation of all irredundant sum-of-products formulas which represent a switching func-

tion is only possible when the number of irredundant disjunctive forms (IDFs) is relatively small.

For many functions of moderate complexity, the number of IDFs may be in the millions or greater.

Hence, we often must limit our effort to developing a single minimal SOP formula with respect to a

given cost criterion, or at the very least produce a near-minimal formula which closely approximates

the cost of a minimal formula.

The procedures presented in Chapter 2 for developing sub-minimal formulas (Procedures 2.31

and 2.33) yield relatively good irredundant formulas. In many cases, however, we desire a minimal

SOP formula to represent a function. In this chapter we present a set of algorithms for developing

minimal SOP formulas. These algorithms are similar in that each requires the formation of inclusion

formulas representing the coverage of prime implicants (PIs) of a function by subsets of the prime

implicants. After all inclusion formulas are formed, a reduction step is applied which decreases

the number of inclusion formulas while identifying prime implicants to be placed in the resulting

irredundant formula. In some cases, a minimal irredundant formula which represents a function

results after the reduction step. In other instances, there remains a set of inclusion formulas; a

search process is then required to judiciously select prime implicants for the final minimal formula.

The search process is discussed in Chapter 9.

Basic Methodology

We begin the process of forming a single minimal SOP formula F by using a 1-normal form

specification O(X, z) = 1 to develop an interval [g, h]. A base is then developed for [g, h]. The base

is used as a vehicle for developing inclusion formulas denoting the coverage of each term of the

base by subsets of the prime implicants of h. The inclusion formulas are used to identify the set of

prime implicants of h which compose F.

268

A good base to use to develop a minimal formula F is one composed of prime implicants of

h. The rationale for this choice is that if prime implicants are used as the base, then the inclusion

formulas yield information which allows us to identify prime implicants to include in a minimal

formula as well as prime implicants to discard from consideration. A set of rules, which we call

reduction rules, facilitates this process. The reduction rules are so called because identifying prime

implicants to keep as well as to discard also facilitates a reduction of the number of terms and

literals in each of the inclusion formulas. The reduction rules are applied iteratively until they can

no longer be applied. Once this occurs, a search process must be used to identify the remaining

prime implicants to include in F. We summarize the basic steps in the process of forming a minimal

formula F:

1. derive a 1-normal form specification O(X, z) = 1 if not already formed;
2. construct a general solution of O(X, z) = 1 for z, in the form of an interval g(X) < z < h(X),

i.e., z E [g(X), h(X)];

3. develop the set of all prime implicants of h;

4. develop a base for [g, h];

5. develop inclusion formulas representing coverage of the terms of the base by prime implicants
of h;

6. reduce the inclusion formulas using reduction rules-identifying prime implicants of h to
include in F as well as to discard from consideration; and

7. use a search process to determine the remaining prime implicants to include in F.

For most simple and some moderately complex functions, the first six steps may identify all

of the prime implicants to place in F without having to perform the last step, i.e., search. Whether

this is possible is dependent on the function itself as well as the base used in the process. For highly

complex functions, search is generally required to form an irredundant formula. The first two steps

were discussed in Chapters 4 and 5. The search process is discussed in Chapter 9. We present in

turn the third through sixth steps in the remainder of this chapter. Step 3 is discussed in the next

section.

269

Three Bases for a Function

An important issue in the foregoing methodology is the choice of a useful base for [g, h].

Bases discussed in the literature include the Blake canonical form of h, an IDF which represents a

function f in [g, h], and any disjunctive formula which represents an f in [g, h]. We propose three

new bases for [g, h]. A distinguishing characteristic of each of these bases is that each is a subset of

the conditionally-eliminable prime implicants of h. The bases differ in the way they are formed as

well as in the number of terms they comprise. The selection of one base over another should depend

on the available computational resources, e.g., memory space, the complexity of the interval [g, h],

and the time available for computation. We use a large base only if there is enough memory to

support its use.

Base #1 - All Useful CEPIs. The first base that we propose is the set of all useful,

condit. nally-eliminable prime implicants of h. This base is similar is some respects to the Blake

canonical form base used in (Ghaa 57), (Mott 60), (Gaine 64), and (Tison 67). However, since we

know that essential prime implicants will be contained in any minimal irredundant formula F and

inessential prime implicants will not be contained in F, we need only focus our effort on determining

the coverage of the CEPIs of a function by the prime implicants of the function. This, however,

necessitates the partitioning a priori of the prime implicants of a function into essential, inessential,

and conditionally-eliminable categories-a technique used in Algorithms 5.2 and 5.3-at the outset

of the process. To limit the size of the base, as well as for a reason to be explained later, we perform

this partitioning at the beginning of each minimization algorithm presented in this work. After

the partitioning of the PIs is performed, the useful CEPIs are identified and the useless CEPIs are

discarded.

This base is used when an implementation of an algorithm which utilizes the base is hosted on

a computer which has sufficient memory capacity given the specification for which a minimal SOP

formula F is being developed. It is the base with the most terms; hence, the number of inclusion

270

formulas representing coverage of each term of the base by subsets of the prime implicants of the

function is large. Consequently, a large memory is required to form the inclusion formulas and then

to apply the reduction rules which identify prime implicants to place in F as well as to remove

from consideration.

However, it is the most desirable base because it is the least likely to require an auxiliary

search process.

Base #2 - CEPIs of an IDF. The second base that we present is a set of conditionally-

eliminable prime implicants contained in an irredundant disjunctive form which represents a func-

tion f in [g, h]. Chang and Mott (Chang 65) showed that an IDF of a function is a sufficient base.

However, we remove the essential prime implicants because they are contained in all minimal SOP

formulas.

After partitioning the prime implicants of f into essential, inessential, and conditionally-

eliminable categories, we form an IDF using Procedure 2.32 for functions or Procedure 2.34 for

intervals. If the set of essential prime implicants is first identified, then these two procedures are

more efficient for forming IDFs than is a general method for forming an IDF (e.g., Procedures 2.31

and 2.33). After an IDF is formed, the essential prime implicants are removed from the formula

leaving the terms of the base.

This base is the least desirable of the three bases presented because the formation of an IDF is

a very computationally intensive operation. However, it may be necessary to employ an algorithm

which uses this base if the memory capacity of the host computer is somewhat limited, because in

many cases this base contains the fewest terms of the three bases presented. Specifically, this base

tends to contain the fewest terms when the number of essential prime implicants of a function is

small relative to the total number of prime implicants. Hence, the number of inclusion formulas

which must be developed and stored in memory is generally smaller than when other bases are

used.

271

Base #3 - CEPIs Covering #. In the multiplication method for finding all irredundant

formulas which cover a function, it suffices to form inclusion formulas denoting the coverage by the

CEPIs of each term in G, the formula representing §, for which j is defined by the equation 0 =

g- h.a,. On the other hand, we desire a base comprising prime implicants in order to take advantage

of reduction rules which allow us to identify, using the inclusion formulas, prime implicants to place

in a minimal formula F as well as prime implicants to discard from consideration. Fortuitously,

we can use 15 to identify particular conditionally-eliminable prime implicants to include In a base.

Specifically, we select CEPIs which alone cover at least one term in G.

Example 6.1: Function C4 contains three terms in 0 (see Table 5.5), i.e.,

G = abcde'f'g'hik'l' + a'bcdef'i'jk'l + a'bcdef'gi'jk'. (6.1)

Using the prime implicants of C4, we develop inclusion formulas denoting the coverage of each term
in G by the CEPIs:

P96 + PssP13

P105 + P1oTP124 (6.2)

P105 + P1 07 P1 24P9 3

The formulas (6.2) are the inclusion formulas for the terms in (6.1), respectively.

Prime implicant P6 = abcde'f'g'hi contains term abcde'f g'hik'l'. Similarly, prime implicant
P105 = a'bcdef'i'jk' contains both terms a'bcdef'i'jkl and a'bcdef'gi'jk'. Hence, prime implicants
P 6 and P1o5 are sufficient to form a base, because the two together cover the function #.

In Example 6.1 we used inclusion formulas to illustrate the coverage of terms in C by the

conditionally-eliminable prime implicants. However, inclusion formulas do not have to be formed

to identify the prime implicants which completely cover a term in 6. We simply determine for each

term in 6 the CEPIs which are subsets with respect to literals of the term. Every term in 6 has

at least one prime implicant which alone contains it.

We develop a list of conditionally-eliminable prime implicants which completely cover terms

in 65. While forming this list, we also keep track of the terms in G that each prime implicant covers.

272

Then the set of prime implicants to include in the base is determined by following a greedy method

of selection, i.e.,

1. choose the prime implicant which covers the most terms in G;

2. choose the prime implicant which covers the most terms in 0 that have yet to be covered;
and

3. continue in the same fashion until all terms in G are covered by some member of the base.

Procedure 6.1 implements the foregoing method for forming a base. Example 6.2 demonstrates

the application of Procedure 6.1. In Procedure 6.1, a structure called an association list is used

which affiliates an element with one or more items. For example, terms are associated with prime

implicants which cover them in the following manner:

((tl pi p2 p3) (t2 p3) (t3 p5 p6) (t4 p6 p7) (t5 p8)).

An association list is a structure used in LISP programming, typically affiliating an element with

one item; we use it in a more general fashion.

Procedure 6.1 (Base #3 - CEPIs Completely Covering j): Given the formula 0 which
represents j and the set H. of conditionally-eliminable prime implicants, we form a base in the
following manner:

Step 0.

1. Initialise an accumulator BASE to the empty set 0.

2. Initialize an accumulator Gco,.d to the empty set 0. Gc..,.d will serve as an association
list in which each element is list containing a term in G along with the prime implicants
which completely cover the term. dca,.,.d is completely formed in Steps 1 through 4.

3. Initialize an accumulator Pc.. to the empty set 0. P..., will serve as an association
list in which each element is list containing a prime implicant which completely covers at
least one term in 6 along with the terms that it completely covers. P .. is completely
formed in Steps 5 through 8.

Step 1.

* If G is empty, then we have determined for each term in G the set of prime implicants
that completely cover it. Continue to Step 5.

" Otherwise, continue to Step 2.

273

Step 2.

1. Remove the first term from 0 and call it t.

2. Initialise an accumulator PI by copying into it the contents of H,.

3. Also, initialize a list T.,,, by placing t into it.

Step 3.

" If P1 is empty, then we have determined the prime implicants in He. which completely
cover t. Place the resulting list T,,eo in , and return to Step 1.

" Otherwise, continue to Step 4.

Step 4. Remove the first term from PI and determine whether it completely contains t.

" If the prime implicant completely contains t, then append the prime implicant to the
list TCS.

" Otherwise, do nothing.

Return to Step 3.

Step 5. Initialize an accumulator Gtmp by placing into it the contents of Gcovgred.

Step 6.

" If 15t.tp is empty, then we have formed the association list PCO,.,f in which each element

is a prime implicant associated with the terms in & that it completely covers. Continue
to Step 9.

" Otherwise, remove the first element from Gm.,,p and call it T .. Continue to Step 7.

Step 7.

* If all of the prime implicants have been removed from T, then return to Step 6.

" Otherwise, continue to Step 8.

Step 8. Remove the first prime implicant p from Tam,0C.

" If p does not have a corresponding element in the association list Pc.,..r, then create
one by forming a list containing p and the term t from the list T.....

* Otherwise, append the term t to the list Pa.,oc corresponding to p in Pc.,.

Return to Step 7.

Step 9. Sort P...., such that the prime implicant which covers the most terms is first, the one
which covers the second most terms is second, and so on.

Step 10. Remove the first element P.oc from P,,,., and add the prime implicant p in Pa,°oc to
BASE.

Step 11. Determine the terms t that the prime implicant p in P.,,cc completely covers (stored in
P....,). For each term t in P.,,,c:

1. Remove the corresponding list T.,,., from dco.ere.

2. For the prime implicants p in T ... , remove the term t from their corresponding lists
Pasoc in Peoer0.

274

Step 12. Remove lists P.,,1 o from P ..,.. which no longer contain any terms.

Step 13.

" If Py,., is empty, then we have formed the base. Return BASE.

* Otherwise, re-sort P.... such that the prime implicant which covers the most remaining
terms is first, the one which covers the second most terms is second, and so on. Perform
this sort in a manner such that a prime implicant p which covers fewer terms than
previously precedes the prime implicants which previously covered the same number of
terms that p now covers, e.g., if p used to cover three terms, but now covers only one,
then place it before prime implicants that used to cover one term. Return to Step 10.

Example 6.2: We demonstrate the application of Procedure 6.1 to develop a base for function C5.
CS has 93 conditionally-eliminable prime implicants; the formula & for C5 consists of 17 terms. In
this example, we will abstractly denote terms in 0 by the labels Ti, T2 ,..., T17. Prime implicants
in H,. will be denoted by the labels P1, P2 ,..., P93.

Step 0.

1. BASE = 0.

2. Gcvered = 0.

3. Peo,,,, = 0.

Steps 1-4. In these steps, the association list 15o,,,d is filled. After execution of these steps,
Gcoe,,d contains the set of lists:

C (T1 P63 P82) (T2 P68) (T3 P63) (T4 P70 P7) (T5 P21)
(T6 P84 P24) (T7 P73) CT8 P84) (T9 P84) Cr1O P73)
(T1 P70 P87) (T12 P35) (T13 P63 P82 P76) (T14 P65)
(T1 P63 P39) (T16 P63 P75) (T17 P65))

Steps 5-8. In these steps, the association list Pcv,,, is filled. After execution of these steps,
P.,.,,f contains the set of lists:

(CP63 TI T3 T13 T15 T16) (P82 TI T13) (P68 T2) (P70 T4 T11)
(P7 T4) (P21 TS) (P84 T6 T8 T9) (P24 T) (P73 T7 TIO) (P87 T1l)
(P36 T12) (P76 T13) (P65 T14 T17) (P39 TIS) (P75 P16))

Step 9. We sort the association list P,.,. in this step. The revised list is:

C (P63 TI T3 T13 TIS T16) (P84 T6 T8 T) (P82 TI T13)
(PTO T4 Ti) (P73 T7 TIO) (P6S T14 T17) (P58 T2) (P7 T4)
(P21 TS) (P24 T6) (P87 T11) (P36 T12) (P76 T13) (P39 TIS)
CP76 P16))

Step 10. Element CP63 TI T3 T13 TIS T16) is removed from Pc.,,, and P63 is added to BASE.

275

Step 11. We compute this step for terms TI,T3,T13,T15, and T16 in (P63 T1 T3 T13 T15 T16).
At the completion of this step, P o... contains the lists:

((P63) (P84 T6 T8 T9) (P82) (P70 T4 T1l) (P73 T7 T10)
(P66 T14 T17) (P58 T2) (P7 T4) (P21 T5) (P24 T6)
(P87 Tl) (P35 T12) (P76) (P39) (P7S))

Steps 12-13. Lists which no longer contain terms are removed from Pcovgs. Pcovers is then sorted.
A revised list is:

((P84 T6 T8 T9) (P70 T4 T1l) (P73 T7 TIO) (P65 T14 TI7)
(P58 T2) (P7 T4) (P21 TS) (P24 T6) (P87 T1l) (P35 T12))

Step 10. Element (P84 T6 T8 T9) is removed from P...,. and P84 is added to BASE. BASE
then contains (P63 P84).

Steps 11-13. After (P84 T6 T8 T9) is added to the base, P. is again revised and sorted. A
revised list is:

((P70 T4 Tl1) (P73 T7 TIO) (P66 T14 TI?)
(P58 T2) (P7 T4) (P21 T5) (P87 Tl1) (P35 T12))

Step 10. Element (PT0 T4 Tl1) is removed from P,,.,,, and P70 is added to BASE. BASE
then contains (P63 P84 P70).

Steps 11-13. After P70 is added to the base, Peo.... is again revised and sorted. A revised list is:

((P73 T7 TIO) (P65 T14 T17) (P58 T2) (P21 TS) (P35 T12))

Steps 10-13. In the remaining iterations, all of the remaining elements of Po,,. are added to
the base. The list returned by the procedure is:

(P63 P84 P70 P73 P65 P58 P21 P35)

The base thus consists of the set of conditionally-eliminable prime implicants:

{ P 63 , P84, P70 , P73 , P6 6, P58, P 21, P35}. (6.3)

If we are not able to use Base #1 due to memory constraints, this base may provide a useful

alternative. It is relatively simple to form-not nearly as computationally intensive as forming

Base #2. Moreover, in many functions the number of terms in this base is about the same as

in Base #2. Furthermore, we attain the added benefit that the prime implicants chosen to form

Base #3 are very likely to be included in the final irredundant formula F. This information is

useful during the search process, if search is required.

276

Comparison of Bases. We now compare the number of prime implicants contained in the

three bases for several sets of example functions. Tables 6.1, 6.2, and 6.3 contain the number of

terms in the bases for Data Sets B, C, and IC, respectively. For all three data sets, the number of

terms in Base #1 is significantly greater than the number of terms in Bases #2 and #3. For these

data sets, the number of terms in Bases #2 and #3 is about the same.

Function Number Essen Base #1 No Terms Base #2 No Terms Base #3
Identifier PIs PIs No Terms IDF No Terms G No Terms

B1 3 3 0 3 0 0 0
B2 5 4 0 4 0 0 0
B3 11 10 0 10 0 0 0
B4 25 19 3 20 1 1 1
BS 48 26 19 33 7 7 7
B6 127 33 87 68 35 43 43
B7 206 72 123 127 55 54 52
B8 525 112 400 274 162 187 183

Table 6.1. Data Set B (Bases)

Function Number Essen Base #1 No Terms Base #2 No Terms Base #3
Identifier PIs PIs No Terms IDF No Terms C No Terms

Cl 16 10 0 10 0 0 0
C2 51 19 3 20 1 1 1
C3 113 29 0 29 0 0 0
C4 149 37 7 39 2 3 2
CS 321 42 93 49 7 17 8
Ca 407 37 235 59 22 46 27
C7 446 44 174 61 17 31 18

Table 6.2. Data Set C (Bases)

Formation of Inclusion Formulas for Base Terms

Once the base for [g, h] is developed, inclusion formulas denoting the coverage of terms of

the base by subsets of the prime implicants of h are formed. An overview of a number of previous

approaches to this problem was presented in Chapter 5. First, we will discuss Cutler's methods

277

Function Number Essen Base #1 No Terms Base #2 No Terms Base #3
Ideutifier PIS PIs No Terms IDF No Terms G No Terms

IM 6 3 3 3 0 0 0
IC2 12 1 11 3 2 2 2
IC3 14 2 12 3 1 1 1
IC4 23 7 16 8 1 1 1
iC5 25 4 21 9 5 7 4
IC6 34 10 24 15 5 4 4
ICt 38 18 19 21 3 2 2
IC8 61 24 32 27 3 3 3
IC9 96 8 92 32 24 23 21
IClO 81 24 54 35 11 10 10
IC1l 136 31 98 52 21 19 19
IC12 183 14 168 61 47 60 53
IC13 206 45 156 79 34 32 32
IC14 295 38 255 106 68 77 68
ICIS 398 23 373 123 100 113 101

Table 6.3. Data Set IC (Bases)

for forming inclusion formulas. We distinguish Cutler's work from the methods discussed earlier

because he was one of the first to adopt the use of search to derive a single minimal formula F

rather than multiplying out the set of inclusion formulas to form all irredundant formulas. We

then present several new techniques which simplify the development of inclusion formulas for both

functions and intervals.

Previous Work. A technique for generating inclusion formulas for functions developed by

Cutler (Cutle 80, Cutle 87) combines both Ghazala's and Tison's approach to the problem. In his

method, coverage of a term t of the base by the set S = {pi, p , . N Im} of prime implicants of a

function is determined as follows:

1. Divide each member .f S by t to form the set {pi/t,p 2 /t,... ,pN/t}. Elements pj/t which are

equal to 0 are dropped, thus leaving a set of terms.

2. Affix labels P1, P2,..., P, to each member of {pl/t, p2 /t,...,pN/t} to form the set

G = {P(pu/t), P2 (p /i),..., P,(p,/t)}, (6.4)

in which each Pi(pi/t) is a term.

278

3. For each binate variable x in the resulting set, perform in turn the following steps:

(a) form all possible consensus terms;

(b) add the consensus terms to the set; and

(c) delete all terms which contain either x or x' .

4. If a variable x is unate in the disjunction of terms of the set at any point in the process, then
delete all terms which contain x.

5. After all terms which contain unate X-variables are deleted and consensus operations with
respect to all binate variables are performed, the resulting terms represent the subsets of the
prime implicants which cover term t.

This method is essentially the same as we presented in Procedure 3.6 for determining the coverage

of a term by subsets of a set of terms. However, terms in the set S = P, 2,...,pN} which are

unrelated to t are not deleted in the process. Furthermore, Cutler did not discuss the theoretical

underpinning of the process, i.e., the elimination of the X-arguments to derive a formula denoting

the coverage of t.

Whereas we call the disjunction of terms in the final set the "inclusion formula", Cutler,

Tison, and others have called it the inclusion function. We prefer our terminology because we

are not concerned with the function that the formula represents, but rather with what the formula

symbolises-coverage of a term by subsets of a set of terms. When the Blake canonical form is used

as the base, Cutler refers to the conjunction of the inclusion formulas-called the presence function

by Ghasala-as the Tison function. Moreover, if an irredundant disjunctive form is used as a base,

he calls the presence function the "abbreviated" Tison function. (Chang and Mott (Chang 65)

originally demonstrated that an IDF is a suitable base; they referred to corresponding presence

function as the "abbreviated" presence function.)

Cutler also developed a method for using the prime implicants of h as a base for an interval

[g, h]. Cutler's focus was on forming inclusion formulas for the useful prime implicants of the

function so that reduction rules could be used to reduce the inclusion formulas while identifying

prime implicants to place in a single minimal formula. His procedure for forming an inclusion

formula for a useful PI pi is as follows:

279

1. Compute the product pj • 9.

2. For each term t of pi • g, develop a formula denoting the coverage of t by the useful prime
implicants of h. (Procedure 3.6 may be used to develop such a formula.)

3. Form the product of the formulas denoting the coverage of each term t. The equivalent
absorptive formula for the result denotes the coverage of prime implicant pj by the useful
prime implicants of h.

The goal of this method is to cover only the portion of prime implicant pj which is required to

cover g. The portion of pj which covers g' is "filtered out" by the product operation pj . g. We

demonstrate this method in Example 6.3.

Example 6.3: Suppose we are given an interval [g, h], defined by

g = bcd + ab'cd' (6.5)

h = ac+bd+b'c+cd. (6.6)

Tile right-hand side of (6.6) is the Blake canonical form for h. Each prime implicant is useful.

For prime implicant ac, the product ac . g is formed:

ac . g = abcd + ab'cd'. (6.7)

Formulas denoting the coverage of terms abcd and ab'cd' by the prime implicants of h are then

developed. Denoting the prime implicants of h by the labels P1, P2, P3, and P4 , respectively, the

formulas developed are

* abed: P+P 2 +P 4 and

" ab'cd' : P + P3 .

The product of P1 + P2 + P 4 and P1 + P3 ,

P1 + P2 P3 + P3 P4, (6.8)

280

is the inclusion formula for prime implicant ac. Inclusion formaiias are similarly developed for all

prime implicants of h:

* ac: Pi+P2 P3 + PP 4;

Sbd: P2 +P 4 ;

W c: P3 + P; and

9 cd: P4 + P2 .

The methods that we have discussed for developing inclusion formulas have evolved as the

result of research over the past four decades. In an effort to continue this progression, we now present

several new techniques which make the process of developing inclusion formulas more efficient.

281

Formation of Inclusion Formulas for Bases #1 and #2. We introduce two techniques

for making the process of developing inclusion formulas more efficient in cases in which Bases #1

and #2 are used. First, we present a technique in which the identification of the essential prime

implicants of a function allows us to use the EPIs to simplify the development of inclusion formulas

denoting coverage of terms of the base. We achieve two benefits by using this technique:

1. the generation of inclusion formulas is more efficient; and

2. the resulting formulas contain fewer terms and literals.

In the second section, we introduce an approach which simplifies the generation of inclusion formulas

for intervals.

Essential PI Constraint. A term of the base is typically covered by a number of

combinations of prime implicants. In Example 5.3, the inclusion formula denoting the coverage of

prime implicant b'ce is the formula

Ps + PIP7 + P4P + P1 P3 P5 + P1P4 Ps + PP 3 P6 . (6.9)

Hence, b'ce is covered by the prime implicant associated with label PS-itself in this case-as well

as the combination of the prime implicants associated with labels PI and P7 , etc. We also know in

this example that the prime implicants associated with the labels P1 , P2 , and P, are essential prime

implicants, which means that they must appear in the final minimal formula. We can thus treat

essential prime implicants as a "given". It follows that if we identify the essential prime implicants

at the outset, we can then take them as given with respect to the remaining prime implicants.

For example, if we knew beforehand the essential prime implicants in Example 5.3, we then could

develop the formula

282

PS + P 7 + P 3 + P4. (6.10)

to represent the coverage of b'ce rather than (6.9). (We form (6.10) by setting the labels associated

with the essential PIs in (6.9) to 1 and deleting absorbed terms.) The second term of (6.9) denotes

the coverage of b'ce by a combination of P1 and P7 ; however, since P is an essential PI, only P 7 is

required to complete the coverage of the term. Hence, the second term of (6.10) is the single-literal

term PT.

To develop a formula such as (6.10) rather than (6.9), we restate the problem of forming

inclusion formulas denoting the coverage of a term by the prime implicants in the following manner:

Given the essential prime implicants of a function, form an inclusion formula denoting
the coverage by the conditionally-eliminable prime implicants of the portion of the term
not covered by h,,,.

Theorem 6.1 facilitates the solution to this problem. We first state the theorem and then discuss

its ramifications.

Theorem 6.1: Given a set F = {fl, f2,..., f,, fi+,..., fk} of functions, and a function I formed

by summing the first i elements of F,

S= A + f2 +"" + f, (6.11)

for wuhich f = 0 is consistent, the set F sums lo one, i.e.,

h + f2 +'" + --f+1 +'"-+-A=- 1, (6.12)

283

if aund on~ly if

f 0 == f,+1+"'+fk=1. (6.13)

Proof. In view of (6.11), we restate equation (6.12) as follows:

+ fi+l+"" + fk = 1. (6.14)

By the definition of the inclusion relation, a + b = 1 €* a' < b. Applying this equivalence, (6.14) is

equivalent to the statement

':S fi+1 +"" + Ak. (6.15)

By the Extended Verification Theorem, (6.15) is equivalent to

=0 = , fi+1+-"+fk=l, (6.16)

provided that /= 0 is consistent. This completes the proof. 0

In Chapter 3 we discussed the coverage of a term t by subsets of a set T = {4, t2 ,. . . , tk} of

terms. Procedure 3.6 implements a technique for determining these subsets. In Procedure 3.6, each

member of T is first divided by t to form the set 1T = { l, f2,.. ., 4) }. Then, sum-to-one subsets of

T correspond to subsets of T which cover t. This is the same basic approach employed by Ghasala,

Reusch, Cutler, and others. For example, the following correspondences may be made between

Reusch's 0-chart (Table 6.4) and the terminology used in Chapter 3:

* each term tj corresponds to the term t to be covered;

284

* the set (pi,P2,.... I pn} of prime implicants corresponds to the set T; and

* terms in a column of the table compose the members of set T.

In many cases, a sum-to-one subset of terms in a column of Table 6.4 includes terms pi/tj corre-

sponding to essential prime implicants pi.

__ t2 . tj__... t

P1 Pilti PIN -*. Pu/t,.....Pi/tn
M P2/t1 P2 /t 2 "" P//j - tm/t-

...

Aj Ji/tl Pi/t2 ... p/t,.......Pi/im

..- .
Pny Pn/tl Pn/t2 .. n/j.....n/tn

Table 6.4. Reusch's O-Chart

Theorem 6.1 enables the determination of subsets of the conditionally-eliminable prime impli-

cants which cover the portion of a term t. not covered by the essential Pls. If a number of essential

prime implicants combine with other Pls to cover t., then all corresponding terms pj/tj form a

sum-to-one subset. If we view the sum of the terms pi/ti which correspond to essential PIs as I

in Theorem 6.1, then the terms pj/t, corresponding to CEPIs only need to cover what i does not

cover, i.e. P'. This concept is demonstrated by statement (6.15). Statement (6.16) states that if we

enforce the condition that f = 0, then the terms not contained in I which combined with terms of

f to form a sum-to-one subset will alone form a sum-to-one subset. Thus, enforcing the constraint

f = 0 enables us to determine the subsets of the conditionally-eliminable prime implicants which

cover the portion of a term not covered by the essential prime implicants.

Let us define a function, £PTi, to be the sum of all terms pj/tj in column j corresponding

to essential prime implicants. We call the equation

EPT, = 0 (6.17)

285

the essentiul prime implicant constraint with respect to term tj. We shall refer to the essential

prime implicant constraint as the EPI-constraint.

We apply the methodology presented in Chapter 3 for determining the sum-to-one subsets

among a set of terms to determine such subsets in the j-th column of Table 6.4. Using this

methodology, we first form a system

pi(X)/t,(X) < P1

P2(X)/tj(X) < P2

(6.18)

pk(X)/tj(X) < Ph,

which is in turn reduced to an equation f. (A, X) = 0. The function fj (A, X) is defined by the

equation

h

f,(A, X) = _(pi(X)It(X) . P). (6.19)

In this caw, we define the A-vector as the vector of labels associated with prime implicants, i.e.,

A = (PI, P2,..., Ph). As in Procedure 3.6, terms pi(X)/ tj(X) which contain unate variables or

unrelated variables with respect to ti are not used to form system (6.18). We must consider all

terms pi(X)/It(X) in a column of Table 6.4 in making this assessment.

Once the equation fj (A, X) = 0 is developed, property (2.40) allows us then to form

fj (A, X) + E-,Pj(X) = 0. (6.20)

By combining the equations fj (A, X) = 0 and EPIj (X) = 0, we thus enforce the condition that the

terms pi/tj corresponding to essential prime implicants be set equal to 0. We apply goal-directed

286

elimination to eliminate the X-arguments in (6.20) to form an equation g, (A) = 0, for which gi (A)

is defined by the equation

g,(A) = ECON(fj (A, X) + EP.,j(X), X). (6.21)

After elimination, gi (A) in represented by its Blake canonical form. Terms of BCF(gi (A)) denote

the coverage of the portion of a term ti not covered by the essential prime implicants by subsets of

the conditionally-eliminable prime implicants.

Prior to performing the elimination process, we take several steps which reduce the compu-

tations and memory space required to eliminate the X-arguments. First, we represent EPI, (X)

by its Blake canonical form. We then use relative absorption and relative simplification to simplify

F (A, X) relative to BCF(tPj (X)). We denote the resulting formula by the notation Fj (A, X)

and the function it represents by the notation f, (A, X). By the Relative Simplification Theorem

(2.123), the functions f + g and f + g are equal. It then follows that equation (6.21) is equivalent

to the equation

gj(A) = ECON(!(A, X) + t'Ij (X), X). (6.22)

Hence, we may eliminate the X-arguments from f,(A, X) + FP.Ij(X) rather than fj(A, X) +

'PIj (X) to form g,(A).

Because no terms in the formula BCF(EPI, (X)) contain any A-arguments and every term

in the formula F (A, X) does, terms in BCF(ETPI(X)) may absorb terms in Fj(A, X). We use the

relative absorption operation to remove terms in Fj (A, X) absorbed by terms in BCF(EPIj(X)).

We thus form Fj(A, X), for which F, (A, X) is defined by the equation

Pi (A, X) = ABSREL(Fj (A, X), BCF(EP.i (X))). (6.23)

287

One aspect of this operation is that all terms p (X)/t, (X). P' corresponding to essential prime impli-

cants in Fj (A, X) will be absorbed by terms in BCF(EP~i (X)). Consequently, terms pi (X)/ti (X)

corresponding to essential prime implicants are not used at the outset to form system (6.18). En-

tries corresponding to inessential PIs are not involved because we know that they are covered by

the essential prime implicants. Hence, only the conditionally-eliminable prime implicants are used

to cover the term ti.

After relative absorption, we simplify the terms in F (A, X) relative to BCF(EtPi (X)) to

form j (A, X), i.e.,

Fj (A, X) = SIMPREL(Fj (A, X), BCF(EPj (X))). (6.24)

The effect of this process is to reduce the number of literals contained in terms of Fj (A, X). Fewer

computations are thus performed during goal-directed elimination. We now present an example

which illustrates the foregoing process.

Example 6.4: We develop the inclusion formulas for the function f from Example 5.3, for which
BCF(f) is defined by the equation

BCF(f) = d'e + cde' + a'cd + a'ce + ab'd + ab'e + b'cd + b'ce. (6.25)

The 4-chart for f is given by Table 6.5. In this example, X = (a, b, c, d, e) and A = (P, P 2, ... , Ps).
The inclusion formulas derived in Example 5.3 for each of the prime implicants are:

" d'e P;

" cde' P 2;

" a'cd: P3 + P 2P 4 ;

* a'ce: P4 + P1 1 3;

" ab'd: P5;

* ab'e : Ps + P1 P5;

" b'cd: P, + P3 Ps + P2Ps + P2P3 P6 + P2 P4 P5 + P2 P4P6 ; and

* b'ce: P + P1 I 7 + P4P6 + PP 3 P5 + P1 P4PS + P1 P3P6 .

We conclude from analysis of the prime implicants that d'e, cde', and ab'd are essential prime

implicants of f. Moreover, prime implicant ab'e is covered by the essential prime implicants, i.e.,

288

T1 T2 3 T4 T5 T' T7 T8
d'e cde' a'cd a'ce ab'd ab'e bcd b'ce

P1 d'e 1 0 0 d' 0 d' 0 d'
P2 cde' 0 1 e' 0 ce' 0 e' 0
P3 a'cd 0 a' 1 d 0 0 a' a'd
P4 a'ce a'c 0 e 1 0 0 ale a'
P5 ab'd 0 ab' 0 0 1 d a ad
P6 ab'e ab' 0 0 0 e 1 ae a
P7 b'cd 0 b' b' b'd c cd 1 d
Pe b'ce b'c 0 b'e b' ce c e 1

Table 6.5. 4-Chart for Example 6.4

T3 T 4 T7 TS
a'cd a'ce b'cd b'ce

P1 d'e 0 d' 0 d'
P2 cde' e' 0 e' 0
P3 a'cd 1 d a' a'd
P4 a'ce e 1 a'e a'
Ps ab'd 0 0 a ad
P6 able 0 0 ae a
P7 b'cd b' b'd 1 d
Ps b'ce b'e b' e 1

Table 6.6. Revised 4-Chart for Example 6.4

289

it is inessential. Hence we may delete the columns corresponding to d'e, cde', ab'd, and ab'e from
the #-chart to form a revised chart (Table 6.6).

For the column of Table 6.6 associated with T8, we form Fs(A, X):

Fs(A, X) = d'P + a'dP + a'P + adP + aP: + dP + Ps. (6.26)

The function CPT>s(X) is formed by summing the entries in the rows corresponding to the essential
PIs, i.e., rows 1, 2, and 5:

EZs(X) = d' + ad. (6.27)

The Blake canonical form of ECPla(X) is the formula a + d'.

Applying relative absorption, any term on the right-hand side of (6.26) which is absorbed by
a term in a + d' is deleted. We thus form

Pa(A, X) = a'dP + a'P4 + dP + Ps. (6.28)

We simplify the right-hand side of (6.28) relative to a + d' to form Fs(A, X). The term a
in BCF(EPls(X)) forms the consensus terms dP and P4 with the first and second terms of the
right-hand side of (6.28), respectively. Since these terms absorb their parent terms, they replace
their parent terms in the formula. The right-hand side of (6.28) thus becomes

dP3 + P4' + dP7 4- P. (6.29)

The new formula is then simplified with respect to the term d' in BCF(CIs(X)). We thus form
Fs(A, X):

Fe(A, X) = P+ P4+ P + Ps. (6.30)

Typically, we would then form gs(A) by eliminating the X-arguments from the equation

s(A, X) + CP.s(X) = 0. (6.31)

Since fs(A, X) + £EP-s(X) is represented by the formula

P' + P4' + P7 + P. + a + d', (6.32)

we observe by inspection that the elimination of the X-arguments a and d yields the formula
P + P4' + P7 + P. Hence, P + P4 + P + P is the inclusion formula representing the coverage of
the term b'ce by the conditionally-eliminable prime implicants.

Similarly, we form the following inclusion formulas for the remaining terms:

" a'cd: P4 + P4;

" a'ce : P4' + P3; and

* b'ed: + P+P + P4.

290

We observe in Example 6.4 that the inclusion formula P3 + P4' + P7 + P representing the

coverage of the term b'ce by the conditionally-eliminable prime implicants is the same as (6.10).'

Hence, the methodology that we have developed accomplishes the stated objective of forming an

inclusion formula denoting the coverage by the conditionally-eliminable prime implicants of the

portion of the term not covered by essential prime implicants. The resulting inclusion formula has

fewer terms and literals than would otherwise be the case. Moreover, the relative absorption and

relative simplification operations allow us to reduce the number of terms and literals in the formula

developed prior to the elimination process. Hence, less work is required during the elimination

process.

The removal of essential prime implicants from the set of prime implicants for placement in

a minimal SOP formula is not in itself a novel idea. This idea is used in the heuristic minimization

program ESPRESSO (Brayt 84). To our knowledge, however, the introduction of a constraint to

simplify the formation of inclusion formulas is a new technique. We will shortly present a procedure

which implements this method. We first introduce a constraint for intervals [g, h] which simplifies

the development of inclusion formulas for a prime implicant base.

Don't-Care Constraint for Intervals. Cutler (Cutle 80) developed a technique for

deriving inclusion formulas for prime implicants of an interval [g, h]. To form an inclusion formula

for a PI pi using his method, the following operations are performed:

1. the product pi . g is computed;

2. an inclusion formula is developed for each term t of the formula representing pj • g;

3. the product of the resulting formulas is formed; and

4. the equivalent absorptive formula for the formula resulting from the third step is developed.

I The formulas are the same with the exception that the labels associated with the prime implicants in our formulas
we complemented whereas they are not in other formulas. We use the complemented form in order to maintain
theoretical consistency with our development in Chapter 3.

291

The goal of this method is to cover only the portion of prime implicant pj which is included in

the lower bound function g; the portion of pj which covers g' is removed by the product operation

pi • g. This method is demonstrated in Example 6.3.

However, rather than placing emphasis on the product pj • g, a more direct approach to this

problem is to enforce validity of the condition

pj . g' = 0. (6.33)

In the same vein as the essential prime implicant constraint, equation (6.33) is a constraint that

we may employ to force the portion of the prime implicant pj that is included in the function g'

not to be covered. The effect of enforcing this condition is that rather than having to form a set

of inclusion formulas-one for each term of the formula representing pj • g-and then performing

product and absorption operations, we achieve the same result in the process of forming a single

inclusion formula.

In view of (2.85), we can make the following statement:

f = 0 = Ptf = 0. (6.34)

Hence, equation (6.33) implies the equation

(p, . g')/p3 = 0. (6.35)

Additionally, rather than complementing function g and multiplying by pj, the function pi • g' may

be rewritten as pj - g by the definition of subtraction. Hence, to form the left-hand side of (6.35),

we subtract g from pi and divide the result by the term pj. Equation (6.35) may be used in the

same manner as the EPI-constraint.

292

The don't-care set of a function is defined by minterms oi the function h-g. By the definition

of subtraction, h - g may be rewritten as h • g'. The function pj • g' is included in the function

h • g', since pj is a prime implicant of h. It follows that minterms of pi • g' are members of the

don't-care set of the function. We thus denote the function (pj - g)/pj by the notation)C, and

call the equation

VC) = 0 (6.36)

the don't-care constraint with respect to prime implicant pj. We also refer to the don't-care

constraint as the DC-constraint.

The DC-constraint is handled in conjunction with the EPI-constraint introduced in the pre-

vious section. A system

pi(X)/t(X) < P,
P2(X)/t,(X) < P2

(6.37)
A (x) /tj (X) <Pk

is formed which is in turn reduced to an equation fj(A, X) = 0. The function fj(A, X) is defined

by the equation

k

f,(A, X) = -(p(X)/tj(X) . Pi'), (6.38)

for which A = (P 1 , P2,..., Ph). We apply Property (2.40) to form the equation

fj(A,X) + ECPI(X) + VC,(X) = 0, (6.39)

which enforces both the essential prime implicant and don't-care constraints.

293

Terms pi(X)/t, (X) which contain unate variables are not used to form system (6.37). How-

ever, terms of the formula BCF(EPIj (X) + VDCj (X)) must be added to the terms pi (X)/ti (X) in

a column of Table 6.4 to identify the terms which contain unate variables. In some cases, a variable

which is unate in the disjunction of terms in a column of Table 6.4 will not be unate in the formula

h

-(pj(X)Iti(X)) + BCF(CFPI(X) + VC,(X)). (6.40)
i=1

Entries corresponding to terms pi(X)/tj (X) which contain variables which are unate in (6.40) are

not used to form system (6.37).

Goal-directed elimination of the X-arguments in (6.39) yields the equation gj(A) = 0, for

which gj (A) is defined by the equation

gj(A) = ECON(, (A, X) + £Plj(X) + VC,(X), X). (6.41)

After elimination, gj(A) is represented by its Dl11k ca.rc-.cal form. Terms of BCF(gj(A)) denote

the coverage by subsets of the CEPIs of the portion of a prime implicant pj which is:

" not covered by the essential prime implicants, and

" not a part of the don't-care set.

Prior to elimination, we may again use relative absorption and relative simplification to sim-

plify the formula Fj (A, X) which represents fj (A, X). We first represent the function CPIj (X) +

VC,(X) by its Blake canonical form. Terms in BCF(ET'I,(X) + DCj(X)) may absorb terms in

F,(A, X). We thus perform the relative absorption operation

ABSREL(F (A, X), BCF(EPTIj(X) + VCj (X))) (6.42)

294

to remove terms in F (A, X) absorbed by terms in BCF(PIj (X) + VCj (X)). The formula which

results from the relative absorption operation is denoted by i (A, X). Terms in Fj (A, X) may then

be simplified relative to the terms in BCF(EPIj(X) + VCj (X)) to form Pi(A, X), i.e.,

fPj (A, X) = SIMPRELCj (A, X), BCF(EPTj (X) + MC, (X))). (6.43)

F1(A, X) represents the function f,(A, X).

In view of the Relative Simplification Theorem (2.123), equation (6.41) may be restated by

the equation

gi (A) = ECON(f, (A, X) + EP1 (X) + C, (X), X). (6.44)

Replacing f, (A, X) by I, (A, X) facilitates a reduction of computations and memory space required

to eliminate the X-arguments. Example 6.5 demonstrates the use of the DC-constraint.

Example 6.5: In Example 6.3 we demonstrated Cutler's method for forming inclusion formulas
for an interval [g, h]:

g = bcd + ab'cd' (6.45)

h = ac+bd+b'c+cd. (6.46)

The right-hand side of (6.46) is the Blake canonical form for h. Each prime implicant is a useful,
CEPI. The q-chart for the function is given by Table 6.7. In this case, X = (a, b, c, d) and A =

(P,, P2, P3 , P4).

T1 T2 T3 T4

ac bd b'c cd
P, ac 1 ac a a
P 2 bd bd 1 0 b
P3 b'c b' 0 1 b'
P 4 cd d c d 1

Table 6.7. O-Chart for Example 6.5

To develop an inclusion formula for PI ac using Cutler's method, the product ac. g is formed.

The function ac. g is represented by tie formula abcd + ab'cd'. Inclusion formulas for each term in

295

abcd + ab'cd' are developed. The formulas, PI + P2 + P4 and P1 + P3 are then multiplied together
to form the inclusion formula P, + P2P3 + P3 P4 for prime implicant ac.

The function DCI(X) associated with prime implicant ac is defined by the equation

DCI (X) = (ac - (bcd + ab'cd'))/ac (6.47)

Computing the right-hand side of (6.47) yields

VC(X) = (abed' + ab'cd)/ac = bd' + b'd. (6.48)

Hence, the DC-constraint for ac is

bd' + b'd = 0. (6.49)

For the column of Table 6.7 associated with T1 , we form F1 (A, X):

F1 (A, X) = P + bdP2 + b'P3 + dP . (6.50)

Since there are no essential prime implicants, the function £P1I(X) is identically equal to
zero. The formula bd' + b'd representing *DC1 (X) is its Blake canonical form. We are not able to
absorb any term of (6.50) with either term of BCF(VC1 (X)).

We then simplify the right-hand side of (6.50) relative to bd' + b'd to form F,(A, X). The term
bP2 is formed by the consensus of bd' in BCF(DCI(X)) with the second term of the right-hand
side of (6.50). Since this term absorbs its parent term in (6.50) it replaces its parent term in the
formula. We thus form PF1 (A, X) from the right-hand side of (6.50), i.e.,

PA(A, X) = Pl + bP' + bl'P + dP4 . (6.51)

We form g1(A) by eliminating the X-arguments from the equation

fI(A, X) + DCl(X) = 0, (6.52)
i.e.,

PV + bP2b'P dV + b'd + bd' = 0. (6.53)

Eliminating arguments b and d yields the equation

P1 + P P + V =0. (6.54)

The left-hand side of (6.54) is the same inclusion formula, denoting the coverage of ac by the
conditionally-eliminable prime implicants, as formed in Example 6.3. The remaining inclusion
formulas are similarly formed.

Example 6.5 demonstrates the advantage of using the DC-constraint versus Cutler's approach

to the problem. Rather than having to form several inclusion formulas, multiplying them together,

296

and performing absorption, a single inclusion formula is generated to denote coverage of a prime

implicant.

In some cases, we find that a prime implicant pi is covered by the function 2P1i (X)+VCj (X).

This condition is identified by the combined EPI- and DC-constraint, because in such a circumstance

the function EP1 j (X) + VC, (X) is identically equal to one. Such a prime implicant is discarded

from consideration for inclusion in a minimal formula.

Incluslon-Formula Procedure for a General PI Base. We now present a proce-

dure which incorporates the EPI- and DC-constraints for generating inclusion formulas in cases

where Bases #1 and #2 are used. This procedure is equally applicable to both functions and

intervals. If a function f rather than an interval [g, h] is developed from the initial specification

O(X, z) = 1, then the function DC, (X) is identically equal to zero and thus has no effect on the

process. We assume in this procedure that all prime implicants are related to the PI pj for which

the inclusion formula is being developed; hence, we do not include a check for unrelated terms. 2

Procedure 6.2 (Formation of an Inclusion Formula): Given a prime implicant pi, the set
H.. = fpl,... , p,} of conditionally-eliminable prime implicants, a set LABS = {P, ... , Pk.} of
labels associated with each member of He,, the set H,,, = fpk+1, ... , pl) of essential prime im-

plicants, and the lower-bound function g, an inclusion formula denoting the coverage of pi by the
conditionally-eliminable prime implicants is formed in the following manner:

Step 0.

1. Form the function pi - g using Procedure 2.10 (Subtraction).

2. Derive the function iC,(X) = (pi - g)/pj using Procedure 2.4 (Boolean Division).

Step 1. Using Procedure 2.4 (Boolean Division):

1. Divide each term in He, by pj and replace the contents of H,, by the results.

2. Divide each term in H,. by pj and replace the contents of H,, by the results.

3. Remove from each set clements which are equal to 0.

Step 2.

1. Form (PI,(X), the disjunction of terms in He..

2 The definition of a related prime implicant is given in Chapter 3. See Step 4 in Procedure 3.6.

297

2. Form the Blake canonical form of CPZj(X) + PCj(X) using Procedure 2.20.

Step 3. Determine the set V of X-variables which are unate in the formula formed by the disjunc-
tion of terms in H,. and BCF(EP.j (X) + DC, (X)).

Step 4. Remove from V the variables contained in the term pj.

" If V = 0, then continue to Step 5.

" Otherwise, remove from Hc. terms containing any variable in V and return to Step 3.

Step 5. Form the set He. = {p,'P, ... ,pt'Pt} by affixing elements of LABS to the corresponding
elements of He,.

Step 6. Form F(A, X), the disjunction of terms in He.

Step 7.

1. Form the formula Fj(A, X), defined by

j (A, X) = ABSREL(Fj (A, X), BCF(EPIj (X) + VCj (X))).

2. Form the formula Fj(A, X), defined by

P (A, X) = SIMPREL(Fj (A, X), BCF(EPIj (X) + VCj (X))).

Step 8. Using the quick method for forming the conjunctive eliminant (Procedure 3.1), form

ECON(! (A, X) + EPI7(X) + DC,(X), X).

The function f,(A, X) + CPITj(X) + Cj (X) is represented by Fj (A, X) + BCF(ePTi (X) +
DC, (X)).

Step 9. The resulting eliminant is equal to g,(A) which is represented by BCF(gj(A)). The
resulting formula IF is the inc!usion formula for pj. Return IF as the result.

Formation of Inclusion Formulas for Base #3. In the previous section we discussed

a method for forming inclusion formulas in cases in which Bases #1 and #2 are used. In this

section we present a technique for developing inclusion formulas for terms in Base #3, a set of

conditionally-eliminable prime implicants which covers the function #.

Using the same methodology as in the DC-constraint, we would like to enforce the condition

that the inclusion formula for pi denotes coverage of the portion of j that pj covers and nothing

more. We therefore enforce the condition

"= 0 (6.55)

298

from which follows the constraint

(Pj - #)/pj = 0. (6.56)

We denote the function (pi - #)/pi by the notation ai and call the equation

Gj = 0 (6.57)

the G-conutraint with respect to prime implicant pj.

The &-constraint is actually a combination of the EPI- and DC-constraints discussed earlier.

The function # is defined by the equation = g . h',,. Substituting for § in (6.55), we develop the

equation

p," (g - h',,,)' = 0. (6.58)

Equation (6.58) is equivalent to the system

Pj =' = 0 (6.59)

pjhe, = 0.

The first equation of (6.59) is identical to (6.33), the condition we enforce in the DC-constraint.

The second equation means that the portion of pj covered by the essential prime implicants should

not be covered, which is in essence the LPI-constraint.

299

We use the O-constraint in the same way as the EPI- and DC-constraints. We first form the

system

pi(X)/ti(x) < P
P2(X)lti(X) < P2

(6.60)
p't(X)lti (x) <5 Pk

in which each prime implicant pi(X) is a conditionally-eliminable prime implicant. The system is

then reduced to an equation fj (A, X) = 0, for which fj (A, X) is defined by the equation

k

fj(A, X) = Z(p (X)tj (X). Pi'). (6.61)
1=1

We then form the equation

fj(A,X) + a.(X) = 0, (6.62)

which, by combining the equations fj (A, X) = 0 and Oj (X) = 0, enforces the 0-constraint.

Before forming system (6.60), terms pi(X)/tj (X) which contain unate variables or unrelated

variables with respect to tj are identified so that such terms are not used to form system (6.60).

We first represent ej(X) by its Blake canonical form. BCF(ai (X)) must be added to the terms

pi(X)/t (X) in column j of Table 6.4 when determining terms pi(X)/ti (X) which contain unate

variables or unrelated variables with respect to ti. In some cases, a variable which is unate in the

disjunction of terms in a column of Table 6.4 will not be unate in the formula

k

(p(X)tj(X)) + BCF(a,(X)). (6.63)

300

Entries corresponding to terms pi (X)/ti (X) which contain variables which are unate in (6.63) are

not involved in system (6.60).

Prior to elimination, we again use relative absorption and relative simplification. Terms in

BCF(a (X)) may absorb terms in F (A, X). We thus perform the relative absorption operation

to develop the formula Fj (A, X), defined by

PI (A, X) = ABSREL(Fi (A, X), BCF(a(X))). (6.64)

Terms in F,(A, X) are then simplified relative to the terms in BCF(aj(X)) to form Fi(A, X), i.e.,

FPj (A, X) = SIMPREL(j (A, X), BCF(a(X))). (6.65)

Elimination of the X-arguments from the equation

(A,X) + (X) = 0 (6.66)

yields the resultant of elimination gi(A) = 0. The function gj(A) is defined by the equation

g,(A) = ECON(fj(A, X) + a'(X), X). (6.67)

After goal-directed elimination, gi (A) is represented by BCF(g, (A)). Terms of BCF(gj (A)) denote

the coverage by subsets of the CEPIs of the portion of a prime implicant pi which is:

" not covered by the essential prime implicants, and

" not a part of the don't-care set.

Formation of an inclusion formula using the G-constraint is performed using Procedure 6.3.

Example 6.6 demonstrates the application of Procedure 6.3.

301

Procedure 6.3 (Formation of an Inclusion Formula): Given a prime implicant pj, the set
HC6 = fh,...,pa} of conditionally-eliminable prime implicants, a set LABS = {P,..., P} of
labels associated with each member of H,,, and the lower-bound function §, an inclusion formula
denoting the coverage of pj by the conditionally-eliminable prime implicants is formed in the fol-
lowing manner:

Step 0.

1. Form the function pj - i using Procedure 2.10 (Subtraction).

2. Derive the function aj(X) = (pj - §)/pj using Procedure 2.4 (Boolean Division).

Step 1. Using Procedure 2.4 (Boolean Division):

I. Divide each term in H,. by pj and replace the contents of H,. by the results.

2. Remove from each set elements which are equal to 0.

Step 2. Form the Blake canonical form of j(X) using Procedure 2.20.

Step 3. Determine the set V of X-variables which are unate in the formula formed by the disjunc-
tion of terms in He, and BCF(aj(X)).

Step 4. Remove from V variables contained in the term pj.

* If V = 0, then continue to Step 5.

" Otherwise, remove from He, terms containing any variable in V and return to Step 3.
Step 5. Form the set =I, - {p 1'P, ... ,pk'Pt} by affixing elements of LABS to the corresponding

elements of H,,.

Step 6. Form F(A, X), the disjunction of terms in He.

Step 7.

1. Form the formula Fj (A, X):

F (A, X) = ABSREL(Fj (A, X), BCF(ai (X))).

2. Form the formula F,(A, X):

F,(A, X) = SIMPREL(j (A, X), BCF(ai (X))).

Step 8. Using the quick method for forming the conjunctive eliminant (Procedure 3.1), form

ECON(f (A, X) + Cj(X), X).

The function 11 (A, X) + O,(X) is represented by F,(A, X) + BCF(aj(X)).

Step 9. The resulting eliminant is equal to gj(A) which is represented by BCF(gi(A)). The
resulting formula is the inclusion formula IF for pj. Return IFj as the result.

302

Example 6.6: The interval ICE is defined by lower and upper-bound functions g and h as follows:

g = a'bde'f'g + a'b'c'df'g + a'b'cde'fg' + a'b'de'f'g + ab'de'f'g' + ab'c'de'f' (6.68)

+ abcde'g + a'e'fg' + abcd'e'f + abc4f'g + abcef'g + bcd'e'fg' + bdef'g

h = a'bc'de'fg' + ab'de'f' + b'de'f'g + acd'ef' + alcef' + acef'g + cdef'g (6.69)

+ bcefg + a'bcdf'g + b'cdf'g + acdf'g + b'de'fg' + ab'c'd'efg + a'b'c'dfg'

+ be'fg' + abde'f + a'ce'fg' + cde'fg' + ade'fg' + ab'de'g' + abcde'g
+ abce'f + abe'fg' + a'b'dflg + a'bd'e'f'g

The right-hand side of (6.69) is the Blake canonical form for h. Of the 25 prime implicants, the
first 21 are conditionally-eliminable and the last four are essential prime implicants. The function
D(X) is defined by the equation

i(X) =abcdf'g + abcef'g + bcdef'g + a'bcd'e'fg' + a'b'cde'fg' + ab'de'f'g' + ab'c'de'f' (6.70)

Using Procedure 6.1 we use the conditionally-eliminable prime implicants and C to develop the
following base for the interval:

{ab'de'f', bcef'g, acdf'g, a'ce'fg'}. (6.71)
The #-chart for the function is given by Table 6.8. The terms of the base form the columns, the

conditionally-eliminable prime implicants form the rows.

We present the development of the inclusion formula for prime implicant acdf'g which is
associated with the label P11 .

Step 0. The function a 1 (X) associated with the 0-constraint for the prime implicant is defined
by the equation

all = (acdf'g - §(X))/acdf'g = b'. (6.72)

Hence, the 0-constraint for acdf'g is

Y = 0. (6.73)

Step 1. The division of members of H,. by acdfg is depicted by the column associated with acdf'g
in Table 6.8.

Step 2. b' is the Blake canonical form for all-

Steps 3-4. Variables b and e are not unate; hence, no actions are taken.

Steps 5-6. From the column of Table 6.8 associated with P,1 , we form FI(A, X):

F 1 (A, X) = b'e'P2 + b'e'P3 + beP, + eP6 + eP + beP, + b'P1 'o + P1 l + be'P21 . (6.74)

303

P2 ps p11 P17
______________ab'de'f' bef'g acdf'g a'ce' fg'

__________ cg ald' b' b'd' +bd
P1 a'b'c'd'e'f'g' 0 0 0 0
PA ab'deTf 1 0 blef 0
PA b'de'f'g g 0 ble' 0
PA acd'ef' 0 ad' 0 0
P5 abcef' 0 a be 0
A6 ref'g 0 a e 0
FT cdef'g 0 d e 0

40 bef'g 0 1 be 0
P9 a'bcd'f'g 0 a'd' 0 0
P10 b'cdf'g eg 0 b' 0
PI acdf'g cg ad 1 0
P12 b'de'fg' 0 0 0 b'd
P13 ab'c'defg 0 0 0 0
P14 a'b'c'dfg' 0 0 0 0
P15 bce'fg' 0 0 0 b
P16 abde'f 0 0 0 0
P17 a'ce' fg' 0 0 0 1
Pis cde' fg' 0 0 0 d
pig ode'! fg 0 0 0 0
P20 ab'de'' g'1 9 0 0 0
P2 1 abcde'g 0 0 be' 0

Table 6.8. O-Chart for Example 6.6

304

Step 7. The formula b' representing a 11 absorbs terms b'e'P2, b'e'P3, and b')o in Fi(A, X). We
thus form

P 1I(A, X) = beP, + ePs + eP. + beP, + Pl + be'P'2,. (6.75)

We then simplify the right-hand side of (6.75) relative to b' to form Pi(A,X). We are able to
delete the literal b from the terms beP,', beP8, and be'P21 . The formula F1 i(A, X) is defined
as follows:

P, 1 (A, X) = eP + eP6 + eP7 + eP + P' + e'P2'1. (6.76)

Step 8. Given FI(A, X) and all, we form the equation PI(A, X) + lal = 0:

ePs + eP5 + eP + eP, + P1 ' + e'P +b' = 0 (6.77)

Eliminating the X-argument b and e from equation (6.77) yields the resultant

Pl + Pr'PP + P P'1 I + PP I+ P8P' 1 = 0. (6.78)

Step 9. The left-hand side of (6.78) is the inclusion formula for prime implicant acdf'g.

The inclusion formulas for the remaining prime implicants are:

* ab'de'f' : P2 + PP2 0 ;

" b c ef'g: Fs +P 4 '4+ PP 7
1 +PhP4;a n d

" aCe'fg' : P& + P1 5 + PP + an

The G-constraint is a single constraint that encompasses both the EPI- and DC-constraints.

A benefit of this constraint is that the handling of functions as well as intervals is dealt with

implicitly. The resulting inclusion formulas are very useful for the subsequent rule reduction and

search processes due to the fact that many prime implicants in Base #3 are likely to be in the final

minimal formula.

An additional benefit to the inclusion formulas for Base #3 is that the set of inclusion formulas

gives us a better estimate on the upper bound on the number of irredundant SOP formulas for a

given function. The number of elements of this base is usually smaller than the 6 base used in

the Multiplication Method for forming all irredundant formulas. Hence, the method we used to

estimate an upper bound in the Multiplication Method, i.e., forming the product of the number of

terms in each inclusion formula, will be closer to the actual number of formulas. For example, for

305

function CS the number of terms in the 0 is 17, whereas it is 8 in Base #3. An upper bound on the

number of irredundant formulas for CS is shown in Table 5.5 to be 2.18 x I011. Using Base #3 and

the inclusion formulas developed using Procedure 6.3, we calculate an upper bound of 1.09 x I08.

We have now discussed the formation of a base and the development of inclusion formulas for

members of the base. The next step in the overall methodology is to reduce the inclusion formulas

using reduction rules. Given a prime implicant base and the corresponding inclusion formulas, the

reduction rules allow us to identify prime implicants to include in a minimal formula as well as

prime implicants to discard from consideration. However, to be able to judge when to discard one

prime implicant and when to keep another, we often have to determine whether one PI is better

than another. To do this, we associate a value, or cost, with each prime implicant. In the next

section, we discuss how these costs are determined.

Assignment of Costs to Terms

Common metrics for judging the cost of a circuit include the number of gates and the number

of gate inputs. In the case of a two-level circuit, it is possible to assign a cost to each AND-gate

in the circuit with respect to typical cost criterion such that the global cost of the circuit may be

determined by summing the individual costs of the AND-gates. For example, if the cost criterion is

the fewest gates, then each AND-gate is assigned a cost of 1. Summing the costs of the AND-gates

yields a circuit cost equal to the number of AND-gates. If the cost criterion is the fewest gate-inputs

(AND-gates only), then each AND-gate is assigned a cost equal to the number of its inputs. In this

case, summing the costs of the AND-gates yields a circuit cost equal to the AND-gate inputs in

the circuit. Because the cost of a two-level circuit may be determined by summing the cost of each

AND gate, the cost of the circuit may be determined by studying each term in the corresponding

SOP formula rather than the formula as a whole. A term in an SOP formula has a one-to-one

correspondence with an AND gate in the corresponding two-level AND-OR circuit.

306

To form a minimal two-level AND-OR circuit, we derive a minimal SOP formula to represent

the given specification. We desire a set of terms for which the sum of the costs of the corresponding

AND gates is minimal. In the course of deriving a minimal formula, we often will have a choice

among several terms when only one is required. We choose the term for which the cost of the

corresponding AND gate is the smallest. Since each AND gate has an associated cost, we in turn

associate this cost with the term which corresponds to the gate. We call this the cost of the term.

We now discuss how costs are assigned to terms for three different cost criteria: number of

gates, number of literals, and number of gates and literals.

Criterion #1 - Fewest Gates: To implement a two-level AND-OR circuit with the minimum

number of gates, we develop an SOP formula which contains the fewest terms. In this situation

each term is assigned a cost of 1 since one term is as good as another.

Criterion #2 - Fewest Gate Inputb: If the total number of gate inputs is the primary design

consideration, then the approach would be to find a formula which contains the fewest literals.

In this approach the cost of each term is assigned in the following manner:

" a term consisting of a single literal is assigned a cost of 1, and
" a term which contains more than one literal is assigned a cost equaling the number of

contained literals, plus one.

Prime implicants are terms which contain the fewest literals of the terms which may appear

in an SOP formula. Hence, all terms in a minimal SOP formula developed to minimize gate

inputs must be prime implicants.

Criterion #3 - Fewest Gates (Primary); Fewest Gate Inputs (Secondary): When we re-

quire a circuit with the fewest gates and also demand that the number of gate inputs be min-

imised, then we must find an SOP formula which consists of the fewest terms as the primary

consideration and the fewest literals as a secondary concern. We evaluate the cost of each

term as follows:

307

" a term consisting of a single literal is assigned a cost of k, where k is a large constant,
and

" a term consisting of I literals, I > 1, is assigned a cost of k + 1.

Care must be taken to ensure that k is properly scaled. k must be at least one order of

magnitude greater than the number of terms in the resulting SOP formula.

Given a set T = {tj,..., tt4 of terms, a set A = {P,..., Pk of labels associated with the

terms, and the cost criterion used to assign the cost, Procedure 6.4 associates a cost with each term

in T. An association list (defined earlier) is returned in which the label Pi corresponding to the

term t, is paired with the term's cost ci. Example 6.7 illustrates the lists returned by Procedure 6.4

for the three cost criteria.

Procedure 6.4 (Assignment of Costs to Terms): Given a set T = {t1 ,...,tt} of terms, a
set A = {P,. ... , Pt} of labels associated with the terms, and a cost criterion CRITERION, we
develop a list assc-;.ting terms (labels) with costs in the following manner:

Step 0. Initialize an association list T.,,o, to the empty set 0.

Step 1.

" If T is empty, then return Tasoc. Ta55 oc is the list associating terms (labels) with their
costs.

" Otherwise, continue to Step 2..

Step 2. Remove the first term ti from T and calculate the cost ci of ti. Remove the first label Pi

* If CRITERION = Fewest Gates, then the cost cj of t is 1.

" If CRITERION = Fewest Gate Inputs, then the cost cj of t is calculated as follows:

- if ti consists of a single literal, then c = 1; or

- if t, contains I literals, I > 1, then ci = I + 1.

* If CRITERION = Fewest Gates/Fewest Gate Inputs, then the cost ci oft is calculated
as follows:

- if t, consists of a single literal, then ci = k; or

- if t, contains I literals, I > 1, then ci = k + 1.

Note: We assume that k is a large, pre-defined constant.

Form a list (Pi cj) and - -nd it to T ...c. Return to Step 1.

308

Example 6.7: Given the set PI of prime implicants of interval IC3,

PI = {a'bcdef', a'cde'f, a'bcd'ef, a'bc'df', a'bc'ef', a'b'c'd'e'f', ac'ef

abcde'f', abc'de, abdef , ab' c' df, ab' cd'e', ab'cdf', bc'def'},

and a set P = {P 1 , P2, .. ., P1 4} of labels associated with elements of PI, we use Procedure 6.4 to

associate costs with each prime implicant.

Using the fewest-gates criterion, Procedure 6.4 returns the following list:

((P1 1) (P2 1) (P3 1) (P4 1) (PS 1) (P6 1) (P7 1)

(PS 1) (P9 1) (PIO 1) (P11 1) (P12 1) (P13 1) (P4 1)).

When the fewest-gate-inputs criterion is used, the following list is returned:

((P1 6) (P2 6) (P3 7) (P4 6) (PS 6) (P6 7) (P7 5)

(P 7) (P9 6) (P1O 6) (P11 6) (P12 6) (P13 6) (P14 6)).

Given that k = 100, the list

((P1 .05) (P2 105) CP3 106) (P4 105) (PS 105) (P6 106) (P7 104)

(P8 106) (P9 105) (P1O 105) (P11 105) (P12 105) (P13 105) (P14 105))

is returned when the third cost criterion is used.

The assignment of costs to prime implicants of a function is particularly important for judging

the benefit of one prime implicant over another. In the next section, reduction rules are presented

which allow us in many situations to select prime implicants to place in a minimal SOP formula

as well as to discard from consideration. In many cases, these decisions are based on the cost of a

given prime implicant.

309

Reduction Rules

The use of prime implicants as a base and the assignment of costs to prime implicants are done

to facilitate the use of reduction rules. Reduction rules allow us to identify prime implicants to place

in a minimal formula F as well as prime implicants to discard from consideration. Furthermore,

these rules provide a mechanism for reducing the number of terms and literals in each of the

inclusion formulas. Thus, reduction rules are very important in reducing the complexity of the

problem of developing a minimal formula.

One of the key ideas on which reduction rules are based is the concept of domination as

illustrated in prime implicant tables. We first present an overview of prime implicant charts and

related terminology. We then introduce reduction rules, originally presented in (Gaine 64) and

(Chang 65), which are applicable when Base #1 is used. Finally, we propose a revised set of rules

which is applied when Bases #2 and #3 are used.

Prime-Implicant Tables. A prime-implicant table is a table which conveys the coverage

of minterms by prime implicants of a function (Quine 52). The minterms of the function g form

the columns, the useful prime implicants of h make up the rows. The prime-implicant table for the

function

f(a, b, c, d, e) = d'e + cde' + a'cd + a'ce + ab'd + ab'e + b'cd + bce (6.79)

of Example 5.3, for example, is given by Table 6.9. Typically, the prime implicants are ordered

such that the Ple with the least cost appear in the highest rows and the PIs with the highest cost

appear in the lowest rows. The minterms appear in order of their decimal notation. The rows

of Table 6.9 correspond respectively to the prime implicants on the right-hand side of (6.79), the

Blake canonical form forf.

310

1 5 6 7 9 13 14 15 17 18 19 21 22 23 25 29 30

m X X X X
P2 x x x x
P X X X X

AS X X X X

P6 XX X X
PF X X x x

Pe X X X X

Table 6.9. Prime-Implicant Table for Example 5.3

If a single x appears in a column, the minterm associated with the column is covered by a

single prime implicant. The prime implicant in the corresponding row is thus an essential prime

implicant. In Table 6.9, for example, minterm m30 is covered only by the prime implicant corre-

sponding to P 2. Thus, the PI corresponding to P2 is an essential prime implicant. PIs corresponding

to P and Ps are also essential prime implicants. Essential prime implicants are placed in a partial

sum, PS, which contains PIs selected for inclusion in a minimal formula.

A reduced table is formed by deleting all columns covered by the essential prime implicants

as well as the rows corresponding to the essential PIs. A reduced table derived from Table 6.9

is Table 6.10. Prime implicants whose corresponding rows in a reduced table contain no x's are

inessential. Thus, the prime implicant corresponding to P is an inessential Pl. Such rows are also

deleted from the table (we left P6 in Table 6.10 for illustration purposes). Prime implicants which

remain after the first table-reduction are conditionally-eliminable prime implicants.

m7 MI5

P3 x x
P4 x x

P
P7 x
PI x

Table 6.10. Reduced PI Table for Example 5.3

311

In a reduced PI table, a row Pm is said to dominate a row Pn if Pm has x's in every column

that P does and the cost cn of the corresponding prime implicant is less than or equal to the cost

cn. Row P is said to be dominated; row Pn is said to be dominating. This is a property called

row dominance. In Table 6.10, rows P3 and P4 dominate all other rows (including each other).

All dominated rows are removed from the PI table. The table is then examined to determine if

a remaining row is the only row which contains an x for some column. If for some column a

remaining row is the only row containing an x, the prime implicant corresponding to the row must

be selected for inclusion in the current partial sum. Such a prime implicant is called a secondary

essential prime implicant. For example, if we denote P3 in Table 6.10 as the dominating row, then

rows Ps, P7 , and P4 are deleted. Once row P4 is deleted, P3 becomes a secondary essential Pl.

Columns covered by the new secondary essential PI, as well as the corresponding row, are then

removed from the table to form a new reduced table.

Example 6.8: The prime-implicant table for the interval [g, h], defined by

g = bcd + ab'cd' (6.80)
h = ac+bd+b'c+cd, (6.81)

from Example 5.9 is given by Table 6.11. Row P, dominates row P3 ; hence, row P3 is deleted.
Prime implicant ac corresponding to row P then become a secondary essential PI because it is then
the only PI which covers in10 . We then delete the columns covered by P1 . The result is Table 6.12.

In the revised table, rows P2 and P4 dominate each other. We arbitrarily choose one for
inclusion in a minimal formula. If we choose the PI corresponding to P2 , i.e., bd, then a minimal
formula is ac + bd.

M 7 m0 I 5
P1 x x

P2 x x
P3 x
P4 x x

Table 6.11. PI Table for Examp.c 6.8

After all potential reduction is performed using row dominance, it is sometimes possible to

further reduce a PI table using a property called column dominance. In a reduced PI table, a

312

P4 x

Table 6.12. Revised Table for Example 6.8

column mj is said to dominate a column rn if mj has x's in every row that mt does. Column mk

is said to be dominated; column m is said to be dominating. Column m7 dominates column mis

in Table 6.10. Dominating columns may be deleted to further reduce a PI table.

The order in which rows and columns are deleted using row and column dominance may

change the prime implicants that appear in the resulting formula. However, the cost of the final

formula will not change. (Murog 79:171)

After all potential reduction of a PI table is carried out, it may occur that the table may

not be further reduced. Such a table is called c11cic. All columns contain at least two x's in a

cyclic table (although not all tables with this property are cyclic). Table 6.13 depicts a cyclic prime

implicant table. Petrick formulated a method for determining the remaining PIS to include in a

minimal formula (Petri 59):

1. For each column j, form an alterm depicting the prime implicants which cover the associated
minterm "j.

2. Form the conjunction of the alterms and compute the product while deleting absorbed terms
in the process.

3. Each term in the resulting formula P denotes a set of prime implicants which completes
an irredundant formula. (Moreover, each term of the formula is itself a prime implicant of
the function represented by P.) Choose the least-cost set of prime implicants to complete a
minimal formula.

The conjunction of alterms for Table 6.13 is the formula

(P1 + P4) . (P1 + P2) . (P2 + PA) . (PA + P4). (6.82)

313

MA MRb Me Tnd

-P1 x x

P 2 x x
P3 x x
P4 x x

Table 6.13. A Cyclic Prime Implicant Table

Formula (6.82) is often referred to as a Petrick function. Computing the conjunction and simplifying

we develop the formula

PIP3 + P2P4 . (6.83)

Assuming the each prime implicant costs the same, either the set of PIs corresponding to P and

P3 or the set corresponding to P2 and P4 may be chosen to complete the formation of a minimal

formula.

Now that we have presented prime implicant tables and the concepts of row and column

dominance, we present reduction rules applicable to the inclusion formulas used in this work. We

will relate the reduction rules to the aforementioned concept of row dominance. The first set of

rules is applied when Base #1 is used.

Reduction Rules for Base #1. Gaines (Gaine 64) introduced a set of reduction rules

which he applied to implication relations denoting the coverage of a Blake canonical form base by

the prime implicants of a function. The implication relations used by Gaines are theoretically the

same as the inclusion formulas we use in this work. For example, if we form the inclusion formula

P + P2P3 + e2e4 (6.84)

to denote the coverage of prime implicant P by the prime implicants of a function, then Gaines

would form the set of implication relations denoting the coverage of PI:

314

P < P2 + P3 (6.85)

P < P2 + P4 .

It is obvious that P1 also covers itself. Gaines described techniques for forming implication relations

from both prime implicant tables as well as a Blake canonical form.

Gaines's rules are now restated in a fashion that applies to our inclusion formulas. The set

IF = {IF1 , IF 2 ,..., IF,,.) of inclusion formulas denotes coverage of terms of the base. We assume

at the outset that labels denoting essential prime implicants of the original function do not appear

in inclusion formulas. Additionally, a partial sum PS is initialized prior to executing reduction

rules by placing the essential prime implicants into PS. Each rule consists of three elements:

1. a condition which may occur in an inclusion formula IFj;

2. the significance of the condition; and

3. actions to be taken due to the occurrence of the condition.

Theorems justifying these rules are found in (Gaine 64).

Rule I. If the term 1 appears in the inclusion formula IF associated with prime implicant Pi,

then Pi is covered by prime implicants in PS.

1. Remove IF from IF.

2. Delete every term in which the variable Pi appears in the remaining inclusion formulas
IF&, k 6 i.

Rule II. If the term P is the only term in inclusion formula IFi, then Pi is a secondary essential

prime implicant.

1. Remove IFj from IF.

2. Add P to the partial sum PS.

315

3. Remove the literal P; from terms in the remaining inclusion formulas IFk, k 0 j. (If P;
is the only literal, then the removing P,' leaves the term 1.)

4. Delete newly-absorbed terms, if any, in all formulas IFk.

Rule I. If the literal P appears as a single term in the inclusion formula IFj associated with

prime implicant P, and the cost cl associated with P is less than or equal to the cost ci

associated with P, then P dominates Pj.

1. Remove IF from IF.

2. Delete every term in which the variable P appears in the remaining inclusion formulas
IF& k 0 j.

In all cases, Rules I and II must be applied until they can no longer be applied, prior to using

Rule III. After Rule III is used one time, Rules I and II must be applied exhaustively before again

using Rule III. Rules I and III combined are equivalent to removing a dominated row from a prime

implicant table. (Gaine 64:179)

Since Gaines used the Blake canonical form as a base, he structured the rules so that inessen-

tial and essential prime implicants are immediately identified. After all inessential and essential

prime implicants are dealt with, row domination is invoked by Rule Ill to eliminate a conditionally-

eliminable prime implicant. Typically, the first rule that will be invoked for our inclusion formulas

is Rule 11, since we use a CEPI base and form inclusion formulas denoting coverage of terms of the

base by CEPIs. However, on occasion a conditionally-eliminable prime implicant of the function h

in an interval [g, h] may be covered by the combination of the essential prime implicants and the

don't-care function h - g. Rule I would identify such a prime implicant.

After all three rules have been applied exhaustively, a subset of IF remains. Formulas con-

tained in IF after rule applications generally contain fewer terms and remaining terms consist

of fewer literals than formulas which exist in IF prior to rule applications. Gaines presented a

heuristic rule to facilitate the choice of a set of prime implicants from the remaining inclusion

316

formulas. However, this rule did not guarantee the minimality of the resulting formula. We will

present a search process for determining the remaining prime implicants to include in a minimal

SOP formula. Additionally, the reduction rules are applied throughout the search process.

Cutler (Cutle 80, Cutle 87) essentially implemented Gaines's rules in his work. Additionally,

Cutler added the consideration of cost of a prime implicant in Rule III as well as the use of a

search process to select prime implicants from the final inclusion formulas. Gaines treated all

prime implicants as having equal cost.

Prior to presenting a procedure which implements Gaines's rules, we discuss a separate rule

attributable to Chang and Mott (Chang 65) which identifies conditionally-eliminable prime impli-

cants which will never appear in an irredundant disjunctive form. In Chang and Mott's terminology,

an essential prime implicant is a PI which appears in every IDF. An absolutely-dispensible prime

implicant is a PI which appears in no IDF. All of the prime implicants that we classify as inessential

are absolutely dispensible. Moreover, certain conditionally-eliminable PIs are absolutely dispensi-

ble; such PI9 are identified by Chang and Mott's rule. Chang and Mott called prime implicants

which appear in at least one IDF conditionally-eliminabe prime implicants. 3

Chang and Mott's rule is used to identify conditionally-eliminable prime implicants (by our

definition) which are absolutely dispensible. If a prime implicant is identified as absolutely dis-

pensible, then the inclusion formulas are modified accordingly to discard the prime implicant from

consideration. Chang and Mott's rule is stated as follows:

Chang and Mott's Rule. Given a term P . .. P' other than P! in the inclusion formula IFj,

Pj is absolutely dispensible if and only if the literal P! does not appear in the inclusion formulas

IF,,..., IF corresponding to the prime implicants denoted by the labels in the term. If Pj is

absolutely dispensible, then take the following actions:

3
We use the same terminology in a somewhat broader sense; some PIz that we call conditionlly- eliinable prime

implicants are denoted absolutely dispensible by Chang and Mott.

317

1. Remove IF from IF.

2. Delete every term in which the variable P appears in the remaining inclusion formulas IF&,

k $ j.

By analysing this rule we observe that for a prime implicant P not to be absolutely dispensible

there must be a 'circular" relationship such that P works to cover all prime implicants that in

turn cover it. However, there are a number of drawbacks to using this rule:

" Applying the rule takes significant processing time because the circularity of the relationship

must be analyzed for virtually every term of every inclusion formula.

" Inclusion formulas must exist for every prime implicant, i.e., we must use base #1 at the

minimum to be able to check for circularity.

" In the course of applying Gaines's rules, most if not all of the prime implicants which are
absolutely dispensible are identified.

We have not endeavored to prove that the exhaustive application of Gaines's rules leads to the

deletion of all absolutely dispensible prime implicants that are identified using Chang and Mott's

rule.

The flowchart shown in Figure 6.1 depicts the manner in which Gaines's rules are applied.

Integrated into the flow is Chang and Mott's rule. However, this rule may be bypassed and can be

activated after Gaines's rules have been exhaustively applied.

Procedures 6.5-6.10 implement Rules I-Ill and Chang and Mott's Rule. Procedure 6.5 is a

helping procedure which deletes all terms which contain the literal P' in each formula in a set IF

of formulas. It is used by procedures which implement Rules 1, 111, and Chang and Mott's Rule.

Procedure 6.6 is a helping procedure which removes literals from terms which contain the literal

P, in each formula in a set IF of formulas. Procedures 6.7-6.9 implement Rules I-II, respectively.

Procedure 6.10 implements Chang and Mott's Rule.

318

Start

Rule I

IsLeo s

>, Nh No
e Rlet 9 MRl lIe uell

Process

Figure 6.1. Flowchart of Reduction-Rule Application

319

Procedure 6.5 (Deletion of Terms): Given a set IF = {IF,, IF 2,..., IF,} of inclusion formu-
las, and a label Pk denoting a prime implicant, all terms containing the literal Pk' are removed from
formulas in IF in the following manner:

Step 0. Initialise an accumulator IF, to the empty set 0.

Step 1.

" If I)F = 0, then IF,, is the revised set of inclusion formulas. Return IF,,.

" Otherwise, continue to Step 2.

Step 2.

1. Remove the first formula from IF and call it Fold.

2. Initialize an accumulator F.,,, to the empty set 0.

Step 3.

" If F.ld is empty, then F,,, is a revised inclusion formula. Append F,,, to IFc,, and
return to Step 1.

" Otherwise, continue to Step 4.

Step 4. Remove the first term t from F.d and determine whether Pk' is contained in the term.

" If P,' is contained in t, then do nothing.

" Otherwise, place t in F,,..

Return to Step 3.

Procedure 6.6 (Removal of Literals): Given a set IF = {IFj,IF2,...,IF,} of inclusion
formulas, and a label Pt denoting a prime implicant, the literal P,' is removed from all terms

containing the literal PA, in IF in the following manner:

Step 0. Initialise an accumulator IFcc to the empty set 0.

Step 1.

* If IF- = 0, then IF..c is the revised set of inclusion formulas. Return IFcc.

* Otherwise, continue to Step 2.

Step 2.

1. Remove the first formula from IF and call it Ford.

2. Initialise an accumulator F,.,,, to the empty set 0.

Step 3.

* If F.ld is empty, then F,,. is a revised inclusion formula. Form ABS(F,,,) and append
it to IF,,. Return to Step 2.

" Otherwise, continue to Step 4.

320

Step 4. Remove the first term t from Fo1d and determine whether P is contained in the term.

" If P, is contained in t, then remove Pk from t.

" Otherwise, do nothing.

Place t in F..,, and return to Step 3.

Procedure 6.7 (Rule I): Given a set IF = fIF, IF2,..., IF,} of inclusion formulas, Rule I is
implemented as follows:

Step 0.

1. Initialize an accumulator Pdiscad to the empty set 0.

2. Initialise an accumulator IFchk d to the empty s.t 0.

Step 1.

* If IF = 0, then IFcheektd is the revised set of inclusion formulas. Return IFchecked and
Pdiscard.

" Otherwise, remove the first inclusion formula from IF and denote it as IF,.

Step 2.

" If IFj - 1, then the prime implicant denoted by Pj is completely covered by prime
implicants in the current partial sum. Place P in Pd.jo,,d and go to Step 3.

* Otherwise, append IFj to IFcheck.d and return to Step 1.

Step 3. Using Procedure 6.5, delete terms in each formula in IFch,,a which contain the variable
P. Replace IFh.c a with the set of formulas returned by Procedure 6.5.

Step 4. Using Procedure 6.5, delete terms in each formula in IF which contain the variable Pj.

1. Replace IF with the set of formulas returned by Procedure 6.5.

2. Return to Step 1.

Procedure 6.8 (Rule II): Given a set IF = {IFI, IF 2 ,.. ., IF,} of inclusion formulas, Rule II
is implemented as follows:

Step 0.

1. Initialise an accumulator PS to the empty set 0.

2. Initialise an accumulator IFchoektd to the empty set 0.

Step 1.

" If IF = 0, then IFhh~od is the revised set of inclusion formulas. Return IFchecked and
P$-.

" Otherwise, remove the first inclusion formula from IF and denote it IFj.

321

Step 2.

" If IF - Pj, i.e., IF consists of the single term Ps', then the prime implicant denoted

by P is a secondary essential prime implicant. Place Pj in P5S and continue to Step 3.

* Otherwise, append IF, to IFh,ckd and return to Step 1.

Step 3. Using Procedure 6.6, remove the literal P' from terms which contains it in each formula

i IFcc,. Replace IFchek.d with the set of formulas returned by Procedure 6.6.

Step 4. Using Procedure 6.6, remove the literal P! from terms which contains it in each formula
in IF.

1. Replace IF with the set of formulas returned by Procedure 6.6.

2. Return to Step 1.

Procedure 6.9 (Rule III - Version #1): Given a set IF = {IF,, IF 2 ,..., IF, .} of inclusion
formulas and a cost list C : UCP cl) (P 2 c2) ... (P, cm)), Rule III is implemented as follows:

Step 0.

1. Initialize an accumulator IFchgcked to the empty set 0.
2. Initialise an accumulator Pdi, ca,,d to the empty set 0.

Step 1.

" If IF = 0, then no dominated variables were found. Return IFhked and Pdiscard.

* Otherwise, continue to Step 2.

Step 2.

1. Remove the first inclusion :ormula from IF and denote it as IFj.

2. Initialize an accumulator IF., to the empty set 0.

Step 3.

" If IF is empty, we have checked all of the terms in IF. Place IF.,cc in IFchcked and
return to Step 1.

" Otherwise, continue to Step 4.

Step 4. Remove the first term t from IFj and determine if t consists of a single literal P/ in which

L j.

* If t is a single liteial P(, then continue to Step 5.

" Otherwise, place t in IF.,c and return to Step 3.

Step 5. Using the association list C, determine if cl _ cj.

* If cg < cj, then place PI in Pdia.rd and continue to Step 6.

* Otherwise, place t in IF., and return to Step 3.

322

Step 6. Using Procedure 6.5, delete terms in each formula in IFch.cka which contain the variable
P. Replace IPc.,,. with the set of formulas returned by Procedure 6.5.

Step 7. Using Procedure 6.5, delete terms in each formula in IF which contain the variable Pi.
Replace IF with the set of formulas returned by Procedure 6.5.

Step 8.

1. Append IFch.c .d to IF. IF is the revised set of inclusion formulas.

2. Return IF and Pdt,...d.

Procedure 6.10 (Chang & Mott's Rule): Given a set IF = {IF,, IF 2,..., IF,,) of inclusion
formulas, Chang & Mott's Rule is implemented as follows:

Step 0.

1. Initialize an accumulator IFcheckd to the empty set 0.

2. Initialize an accumulator PCGtit to the empty set 0.

3. Initialize an accumulator IF.,c by copying into it the contents of IF.

4. Initialize an accumulator Fdacard to the empty set 0.

Step 1.

* If IF,,, = 0, then PCit contains a set of lists-one for each prime implicant P-in
which each denotes the prime implicants that can be used to cover Pj. Go to Step 5.

" Otherwise, continue to Step 2.

Step 2.

1. Remove the first inclusion formula from IF,, and denote it as IFj.

2. Initialize a list PC to the empty set 0.

Step 3.

* If IF is empty, we have checked all of the terms in IFj. Append PCj to PC 5,t and
return to Step 1.

" Otherwise, continue to Step 4.

Step 4. Remove the first term t from IFj:

" If t is a single literal P!, then do nothing.

" Otherwise, if any of the literals in t are not members of PCI, then add them to PCj.

Return to Step 3.

Step 5.

" If IF = 0, then IFhh ,ck is the revised set of inclusion formulas. Return IFchcked and
Phiscard.

" Otherwise, continue to Step 6.

323

Step 6.

1. Remove the first inclusion formula from IF and denote it as IF.

2. Initialize IF.. to the empty set 0.

Step 7.

" If IFj is empty, we have checked all of the terms in IFj. Place IFcc in IFchgckga and
return to Step 5.

" Otherwise, continue to Step 8.

Step 8. Remove the first term t from IFj.

* If t is the single literal Pj', then place t in IF,, and return to Step 7.

" Otherwise, initialize an accumulator T,, by copying into it the contents of t. Continue
to Step 9.

Step 9.

" If T.,, is empty, then P is absolutely dispensible. Place P in Pd,. and go to Step 11.

" Otherwise, continue to Step 10.

Step 10. Remove the first literal Pl' from T.,, and determine if Pj appears in PCI in PCat.

" If P appears in PCI, we must check the next term of IF to determine whether P is
absolutely dispensible. Place t in IF.,c and return to Step 7.

* If P does not appear in PCI, then return to Step 9.

Step 11. Using Procedure 6.5, delete terms in each formula in IF,,kd which contain the variable
P. Replace IFch.ek,d with the set of formulas returned by Procedure 6.5.

Step 12. Using Procedure 6.5, delete terms in each formula in IF which contain the variable Pj.

1. Replace IF with the set of formulas returned by Procedure 6.5.

2. Return to Step 5.

Procedure 6.11 combines the rules to implement the process depicted in Figure 6.1 for

Base #1. Chang and Mott's Rule is included as Step 3, but may skipped. Example 6.9 demonstrates

the application of the reduction rules on a set of inclusion formulas.

Procedure 6.11 (Reduction Rules - Set #1): Given a set IF = {IFj,IF2 ,...,IFm} of
inclusion formulas and a cost list C : ((PI ci) (P 2 c2) ... (P, cm)), the reduction rules are
implemented as follows:

Step 0.

1. Initialise an accumulator Pdicard to the emptyset 0.

2. Initialise an accumulator PS to the emptyset 0.

324

Step 1. Given IF, use Procedure 6.7 to apply Rule I. Procedure 6.7 returns a set P ,card of
variables and a set IF,,,io, of inclusion formulas.

" If Piacar,. is empty, then no variables were found to be discarded. Skip to Step 3.

" Otherwise, append Pdisca d to Pdiscard and replace IF with IFj,.. Continue to
Step 2.

Step 2. Given IF, use Procedure 6.8 to apply Rule II. Procedure 6.8 returns a set PS of variables
and a set IF, ,, of inclusion formulas.

* If PS- is empty, then no variables were found to be placed in the partial sum. Continue
to Step 3.

" Otherwise, append PS to PS and replace IF with IF,,viad. Return to Step 1.

Step 3. Given IF, use Procedure 6.10 to apply Chang & Mott's Rule. Procedure 6.10 returns a
set Pdiocard of variables and a set IF,,,,,d of inclusion formulas.

* If Paio..Tr is empty, then no variables were found to be discarded. Continue to Step 4.

" Otherwise, append Pdcard to Pdacard and replace IF with IF,,,i,d. Return to Step 2.

Note: This step is optional; if not used continue to Step 4.

Step 4. Given IF and the cost list C, use Procedure 6.9 to apply Rule III. Procedure 6.9 returns
a variable PA~i0car and a set IFr.vi,,d of inclusion formulas.

* If PdiTar is empty, then no variables were found to be discarded. Continue to Step 5.

" Otherwise, place Pd1 0¢,ad in Pisca ,d and replace IF with IF,,,,i°°d. Return to Step 2.

Step 5. No further reduction can take place. Return the inclusion formulas IF, the partial sum
PS, and the set Pdi,ca,d of variables to discard.

Example 6.9: Using Base #1 and Procedure 6.2, the following inclusion formulas IF are developed
for the interval ICS:

IF2 = P2 A

IF3 = 3 + +2
IF4 = 4+ 15+ 6+P8

IF5 P5+P P

IF6 = P P

IF7 = P7'+PeP' +PiPPP

IF, = P 1 + P5 P + P6P 1 + P7P 1 + Ph3

IF12 = 1+ 1+P8
IF 15 = P 1

5 + P17

IF 17 = P1+P1P 5+PP 5 PsP

IF 18 = PIS + P2 + P1

IF20 = P2' + P2'
IF21 = P21 + P1

1

325

Additionally, the inclusion formula associated with the prime implicant corresponding P16 is the
term 1. We use Procedure 6.11 to reduce the set of inclusion formulas. We assume that the cost
criterion is fewest gates; thus, the cost of each PI is equal to 1.

Step 0. Initialize P&,ced = 0 and PS = 0.

Step 1. Since IF1 . is the term 1, we delete P16 by Rule I. PIS is then added to Pe,,,t.

Step 2. No PIS are found to place in the partial sum using Rule II.

Step 3. Using Chang & Mott's Rule, no PIs are found to discard.

Step 4. The first inclusion formula in which a dominated PI is found is the formula IF 3 . Hence,
IF3 is deleted as well as any terms in other formulas which contain P3. Pdi,,.,d = {P 16 , P3}.
The revised set IF is:

IF 2 = P
IF4 = P4+P+P S+Ph

IF6 = P6 + + +P4P1

IFT = P7+ PS

IF ='7IF P11+P5PI+P +P'P21+

IF1 2 P12 + PIT1 + P PP 1 + ~~

IF15 =P1 5 + P17

IF 17 = P 1
7 + P12PI5 + P

1
5P 5

IFIS = PIS + P1 + P17
IF 20 = P20 + P2

IF21 = P2'1 + P1 .

Step 2. Since IF =P, P 2 is added to partial sum PS. IF is then removed from the set IF. In
addition, IF 20 is then represented by the term 1.

Step 1. Since IF 20 is the term 1, we delete P20 by Rule I. P ,€,,d = {P 16 , P3, P20}.

Steps 2,1,3. No actions taken.

Step 4. Ps dominates P4 in IF4. Hence, IF4 is deleted as well as any terms in other formulas
which contain P. Pd15.,.. = {P 16 , P3 , P2o, P41. The revised set IF is:

IF = +P S

IF6 = v+ v
IF = P6 + P

IF = P1+PP;5P+ 1
IF2 = P 12 + P1P + PIP 1 + PP 1 + P-P21

IF 5 = P 5 + PIT

IF 1, = P17 + P12Vls + PISPIS

326

IS = PIS + Ph + PI7

IF 21 = P2
1 + Pf1 .

Steps 2,1,3. No actions taken.

Step 4. P6 dominates Ps in IF. Hence, IF is deleted as well as any terms in other formulas
which contain Ps. P, ,d = {P 16 , P 3, P20 , P4 , Ps}. The revised set IF is:

IF. = +P

Irs = Ph+P PIFT = P7 + P8 P

IF,1 P11+PP 1 +P7P 1 +P6P I
IF12 = P12 + P17 + PIS
IF15 = P15 + P17
IF17 = P17 + P2P5 + P1PIS

IFS = PIS + P12 + P17

IF21 = P2
1 +Pf1 .

Steps 2,1,3. No actions taken.

Step 4. P& dominates P6 in IF. IF6 is deleted as well as any terms in other formulas which
contain PG. P&,d = {P16, P3 , P20 , P4 , F5, P61. The revised set IF is:

IFT = P7+ P.

IFs = Ps

IF,, = P11 + P7P21 + P8P1

IF12 = P12 + P17 + P18

IF 5 = PI5 + PI,

IF17 = P17 + P2P5 + P5P18

IFIS = PIS + P2 + P17

IF 21 = P21 + P
1,.

Step 2. Since IFs = P&, Ps is added to the partial sum by Rule I. IFS is removed from the set
IF. PS = {P2 , Ps}. Additionally, after applying this rule, IF - 1 and IF,, = P, + P21.

Step 1. Since IF 7, - 1, we delete P by Rule I. Pd,.c.rd = {P16, P3 , P20, P4 , P5 , P6, P7}.

Steps 2,1,3. No actions taken.

Step 4. P2 1 dominates P11 in IF,,. IF,, is deleted as well as terms containing P11. The revised
set IF is:

IF12 = P12 + P17 + P18

IF15 = P 1
5 + P17

IF17 = P17 + P12P15 + PISPIs

IF8 = PIS + P12 + P17

IF 21 = P21.

327

Step 2. Since IF 21 = P21, P21 is added to the partial sum by Rule II. IF21 is removed from the
set IF. PS = {P 2 , P5, P23 1 .

Steps 1,3. No actions taken.

Step 4. P7 dominates P12 in IF12 . IF 12 is deleted as well as terms containing P12 . The revised
set IF is:

IF1 5 = PIS + P 7

IF17 = P 7 +PJ 5 P5

IF, a = PI8 + P{,"

Steps 2,1,3. No actions taken.

Step 4. PI, dominates PIs in IF 15 . IF 15 is deleted as well as terms containing Pis. The revised
set IF is:

IF17 P17
IsF1 6 P= S + P1

1
7.

Step 2. Since IF 7 = P17, P17 is added to the partial sum by Rule II. IF 7 is removed from the
set IF. PS = {P 2 , P3, P21 , P17}. Additionally, after applying this rule, IF,$ 1.

Step 1. Since IFIs = 1, we delete Ps by Rule I. Then Pdi,.,d is the set

{P16, P3 , P20 , P 4, P5 , P6 , P7 , P11, P1 2, P15 , Ps}.

Steps 2-4. No actions taken.

Step 5. Since IF = 0, the reduction rules have determined a minimal set of terms to place in a
minimal SOP formula. PS = {V 2, Ps, P2 1 , P1 .} is returned with Pdiu,,,d.

Example 6.9 demonstrates a function for which the reduction rules are able to identify a

complete set of conditionally-eliminable prime implicants to place in a minimal SOP formula. The

essential prime implicants form the remaining terms to place in the formula.

Given available memory space, we would like to use Base # 1 and the corresponding reduction

rules because this combination yields a set of prime implicants which may be placed in the partial

sum which parallels the set of prime implicants that is derived from a prime implicant table up to the

point at which the table becomes cyclic. Similarly, the set of inclusion formulas which result after

the application of the reduction rules corresponds to the information contained in a cyclic prime

implicant table. Hence, a maximal number of prime implicants is both identified for membership in

a minimal sum and discarded from consideration through the use of reduction rules. Moreover, the

328

resulting inclusion formulas are reduced significantly. For examples in which a reduced PI table is

not cyclic, such as interval ICS, Base #1 and the corresponding reduction rules will identify a set of

prime implicants to place in a minimal sum. If inclusion formulas exist after exhaustive application

of these rules, then search is required to identify the remaining prime implicants.

Reduction Rules for Bases #2 and #3. In many situations, either the computational

resources are limited or the functions with which we are dealing are very complex. Bases #2 or #3

may be used in these cases. However, no one has proposed reduction rules which can be applied if

a subset of the conditionally-eliminable PIs is used as a base. A new set of rules is now presented

which is a variant of the foregoing rules. Although these rules do not guarantee the reduction which

occurs using Gaines's rules, they do significantly reduce a set of inclusion formulas while identifying

some PIs to keep or discard.

There are several differences between the proposed revised rules and the aforementioned set.

A revised Rule III is described which allows us to delete certain prime implicants from consideration

because of dominance. Additionally, Chang & Mott's Rule is not used in the revised set. We must

have inclusion formulas corresponding to all prime implicants whose labels appear in the set IF to

be able to test for circularity among the prime implicants. Since we develop only a subset of these

formulas when Bases #2 and #3 are used, we cannot apply Chang & Mott's Rule. Rules I is the

same in both the revised set of rules and the former set, whereas Rule II differs slightly. We first

discuss the revised Rule III.

In Gaines's Rule III, if the literal P,' appears as a single term in the inclusion formula IFj

associated with the prime implicant denoted by P, and tLe cost cl associated with P is less than

or equal to the cost cj associated with P,, then P, dominates Pj. This property holds true for

any set of inclusion formulas. The use of the property, however, constitutes the difference between

Gaines's Rule III and our revised Rule III. In the same vein as Chang and Mott, Gaines assumes

that inclusion formulas corresponding to all prime implicants whose labels appear in the set IF

329

are formed. Therefore, when a dominated prime implicant P is found, the inclusion formula

IFj is simply deleted, as are terms in which P1' appears in all other inclusion formulas. Since

the dominating prime implicant denoted by P1 has an associated inclusion formula IFI, we defer

judgement on P.

Using a subset of the conditionally-eliminable prime implicants, we cannot in general take

the same actions as in the former Rule III. We now examine the different possibilities that may

occur and suggest methods for handling the varying situations. It is assumed in every case that

the prime implicant denoted by P dominates the PI denoted by P in the inclusion formula IF,.

For every inclusion formula IF, we attempt to apply the following cases in order. Specifically, we

would rather use Case #1 than Case #3 if possible.

Case #1: The dominating prime implicant P has an associated inclusion formula IFt. We take

the following actions:

1. Remove IF, from IF.

2. Delete every term in which the variable Pj appears in the remaining inclusion formulas
I&~ k 0 j.

Note: This case is the same as Gaines's Rule III.

Case #2: The inclusion formula IF is of the form

P! + P11, (6.86)

and the dominating prime implicant P does not have an associated inclusion formula IFI. In

this situation, P1 is a secondary essential prime implicant. One of the two prime implicants

P or P must be used to form a minimal formula F. Since P dominates P, choosing P1

guarantees the minimality of F. We take the following actions with respect to P:

330

1. Remove IF from IF.

2. Delete every term in which the variable P appears in the remaining inclusion formulas

IFk, k:Aj.

We then take the following actions with respect to P:

1. Add P1 to the partial sum PS.

2. Delete the literal Pj' in the remaining inclusion formulas IFt, k 0 1.

3. Delete newly-absorbed terms, if any, in all formulas IF&.

Case #3: The inclusion formula IFj is of the form

P" + P" + IF, (6.87)

the dominating prime implicant denoted by P1 does not have an associated inclusion formula

IF, and IFj is a formula consisting of one of more terms each of which meets one of the

following conditions:

" it contains more than one literal;

" it contains a single literal P, and the prime implicant denoted by P, does not dominate
Pj; or

* it contains a single literal P,,, the prime implicant denoted by P.. dominates P, and

P,, does not have an associated inclusion formula IF,.

Terms which contain more than one literal have no bearing on the domination of Pj. If the

PI denoted by Pm does not dominate the one denoted by Pj, then it is of no concern to us. In

the third condition, if P.. has an associated inclusion formula IF,,, then we would use Case

#1 to process the domination of P by P,,. If IFm does not exist, then P serves the same

purpose as Pm in identifying the domination of P.

Because the dominating prime implicant denoted by P, does not have an associated inclusion

formula IFI, and other possibilities exist for covering Pj, the only action we may take is to

331

rule out the possibility that Pj appears in a minimal formula F. Hence, we take the following

actions with respect to Pj:

1. Delete the term P in IF.

2. Delete every term in which the variable Pj appears in the remaining inclusion formulas
IF&,k 0j.

There is one caveat to Case #3. Once we have identified that the prime implicant denoted

by Pj is dominated in its associated inclusion formula IF, we do not check IFj again for

this condition. In other words, Case #3 is applied only once to each IF. A simple way to

determine if we may apply this rule is to determine if Pj' is a term in IF. If it is a term, then

way may apply the rule; otherwise, we may not.

Rule II differs only slightly from Gaines's Rule II. Gaines's Rule II is applied when a term P!

is the only term in IF,. We generalize the rule to be applied when any P,' is the only term in IFj.

When 1 = j, this rule is the same as Gaines's Rule II.

Revised Rule II. If the term P, is the only term in the inclusion formula IFj (1 may or may not

be equal to j), then the prime implicant denoted by P, is a secondary essential prime implicant.

1. Remove IF from IF.

2. Remove IFI (if it exists) from IF.

3. Add P to the partial sum PS.

4. Delete the literal P/in the remaining inclusion formulas IF&, k : j.

5. Delete newly-absorbed termp, if any, in all formulas IFk.

Procedures 6.12 and 6.13 implement the revised Rules II and III, respectively. Procedure 6.14

implements the revised set of rules.

332

Procedure 6.12 (Revised Rule II): Given a set IF = {IF,, IF2 ,..., IFm} of inclusion formulas,

Rule Il is implemented as follows:

Step 0.

1. Initialise an accumulator PS to the empty set 0.

2. Initialize an accumulator IF.,k~d to the empty set 0.

Step 1.

" If IF = 0, then IFch.,t.d is the revised set of inclusion formulas. Return IFIhckd and

PS.

" Otherwise, remove the first inclusion formula from IF and denote it IF,.

Step 2.

* If IF =- P,, i.e., IF, consists of the single term P(, then the prime implicant P is a
secondary essential prime implicant.

1. If 1 6 j and P1 has an associated inclusion formula IFt in either IFthecked or IF,
then remove it.

2. Place P in FS and continue to Step 3.

* Otherwise, append IF to IFhkd and return to Step 1.

Step 3. Using Procedure 6.6, remove the literal P/from terms which contains it in each formula
in IFA.cs.d. Replace IFch.a.,d with the set of formulas returned by Procedure 6.6.

Step 4. Using Procedure 6.6, remove the literal P/ from terms which contains it in each formula
in IF.

1. Replace IF with the set of formulas returned by Procedure 6.6.

2. Return to Step 1.

Procedure 6.13 (Revised Rule III): Given a set IF = {IF,, IF 2 ,..., IF.} of inclusion formulas
and a cost list C : ((PI cl) (P 2 c2) ... (Pm c,)), Rule III is implemented as follows:

Step 0.

I. Initialise an accumulator IFch,,tsd to the empty set 0.

2. Initialise an accumulator Pdscard to the empty set 0.

3. Initialise an accumulator PS to the empty set 0.

Step 1.

" If IF = 0, then no dominated variables were found. Return IFcheckd, PdiCard, and PS.

" Otherwise, continue to St,,p 2.

333

Step 2.

1. Remove the first inclusion formula from IF and denote it as IF.

2. Initialize an accumulator Pi,,1 ,,, by placing into it all single-literal terms P, in IF.

3. Initialise an accumulator P,..,t by placing into it terms in IFj which consist of two or
more literals (the terms not placed in Pi,,Sl,).

Step 3.

* If P, 5- , does not contain the term PF, then place IF in IFchckd and return to Step 1.

* Otherwise, continue to Step 4.

Step 4.

" If a member P of P0,,j 6,, I : j, has an associated inclusion formula IF and cl :_ cj,
then place P in Pdijca,.d and continue to Step 5.

" If P i,gte, consists of only two elements, Pj and P, cl 5 cj, and P,.,t = 0, then place P
in Pg,.,.,, place P, in PS, and continue to Step 8.

" If one of the conditions

- P,,,t $ 0, Pinge, consists of only two elements, Pj and P1, and cl :_ cj, or
- P., 1 i, consists of more than two elements and a P exists such that 1 $ j and cl < cj

holds, then take the following actions:

1. Remove P! from IFj.
2. Place IF in IFh,,k,d.

3. Place P in Pdjc 6,d and continue to Step 5.

" Otherwise, no prime implicant dominates Pj. Place IFj in IFh,,ckd and return to
Step 1.

Step 5. Using Procedure 6.5, delete terms in each formula in IFchk,d which contain the variable
Pj. Replace IFch.e,.d with the set of formulas returned by Procedure 6.5.

Step 6. Using Procedure 6.5, delete terms in each formula in IF which contain the variable P,.
Replace IF with the set of formulas returned by Procedure 6.5.

Step 7.

1. Append IFch. k.d to IF. IF is the revised set of inclusion formulas.

2. Return IF, Pdi , d, and PS.

Step 8. Using Procedure 6.6, remove the literal P' from terms which contains it in each formula
in IFhp,.ck.d. Replace IFha d with the set of formulas returned by Procedure 6.6.

Step 9. Using Procedure 6.6, remove the literal P, from terms which contains it in each formula
in IF.

1. Replace IF with the set of formulas returned by Procedure 6.6.

2. Return to Step 5.

334

Procedure 6.14 (Reduction Rules - Set #2): Given a set IF = {IF, IF 2 ,...,IFm} of
inclusion formulas and a cost list C : ((Pi cl) (P2 c2) ... (Pm c.)), and a set Pac,,a which
contains the set of prime implicants which have been discarded from consideration, the reduction
rules are implemented as follows:

Step 0. Initialise an accumulator PS to the emptyset 0.

Step 1. Given IF, use Procedure 6.7 to apply Rule I. Procedure 6.7 returns a set Pdiscard of
variables and a set IF,.,i,,d of inclusion formulas.

" If hisard is empty, then no variables were found to be discarded. Skip to Step 3.

" Otherwise, append Pdicard to Pdisard and replace IF with IFr,,i ,d. Continue to
Step 2.

Step 2. Given IF, use Procedure 6.12 to apply Rule II. Procedure 6.12 returns a set PS of variables
and a set IF,.,.,d of inclusion formulas.

" If 153 is empty, then no variables were found to be placed in the partial sum. Continue
to Step 3.

" Otherwise, append FS- to PS and replace IF with IF,,,i,,d. Return to Step 1.

Step 3. Given IF and the cost list C, use Procedure 6.13 to apply Rule III. Procedure 6.13 returns
a variable Pdscr and a set IFr.,,o.d of inclusion formulas.

" If Pdscad is empty, then no variables were found to be discarded. Continue to Step 4.

" Otherwise, place Pdj0ccrd in Pdjie8 d and replace IF with IFr.v,,a. Return to Step 2.

Step 4. No further reduction can take place. Return the inclusion formulas IF, the partial sum
PS, and the set Pd°i,,rd of variables to discard.

Example 6.10: Using Base #2 and Procedure 6.2, the set IF of inclusion formulas is developed
for the function BS:

IF4 =P'+P

IF6 = PG'+ P3PS'
IFg = P9' +P2Ph P1~

IF15 = P'5 +P 1 2 P 4 +P14 PIS
IF 1 6 =

IF 7 = P7+ P1

IF19 = P 9 + P;.

We use Procedure 6.12 to reduce IF. We assume that the cost criterion is fewest gates; hence,
the cost of each PI is equal to 1. Pd,oc,,d is initialized to the empty set 0.

Step 0. Initialise PS = 0.

Steps 1-2. No actions are taken.

335

Step 3. The first inclusion formula in which a dominated PI is found is the formula IF 4 . Case #2
of Rule III applies in this situation. PI P1 is a secondary essential prime implicant. Since P4
and P[appear only in IF 4 , we delete IF 4 . Then Pi,,,,d = {P 4} and PS = {P,1 .

Steps 2,1. No actions are taken.

Step 3. The next inclusion formula in which a dominated PI is found is the formula IF16 . Case
#3 of Rule III applies in this situation. Since P1'6 appears only in IF16 , we delete the term
PI'6 in IF 16 . Then Pdiaerd = {P 4, P1s} and PS = {P 1}. At this point, the revised set IF is:

IF6 = P6+P3'P5
IF 9 = P9 + P2Ph + PhP0o

IF 15 = P1'5 + P1' 2P14 + P 4 P1'8

IF 16 = Ph + P3 + P4

IF 17 = P17 + P11

IF19 = P1 9 +P4.

Steps 2,1. No actions are taken.

Step 3. The next inclusion formula in which a dominated PI is found is the formula IF17 . Case
#2 of Rule III applies in this situation. PI P11 is a secondary essential prime implicant. Since
P, 7 appears only in IFIT, we delete IF 17 . Additionally, the literal P' 1 is deleted in terms in
which it appears in all other inclusion formulas and absorption is performed. The revised set
IF then is:

IF 6 = P6 + P3 P5

IF9 = P9 + P2Ph + PhPIo

IF 15 = V15 + P12P14+ P14P1s

IF 16 = 1

IF 9 = P.,+P,'

Then Pdioc,,d = {P 4 , P16, P17} and PS = {PI, Pl}.

Step 2. No actions are taken.

Step 1. Since IF 16 is the term 1, we delete P16 by Rule I. P 16 is already in Pdiacd

Step 2. No actions are taken.

Step 3. The next inclusion formula in which a dominated PI is found is the formula IF 19 . Case
#2 of Rule III applies in this situation. PI P- is a secondary essential prime implicar+. Since
P,9 and P4 appear only in IF 19 , we delete IF 19 . Then Pdi,..rd = {P 4, P1 6 , P 17, P19) and
PS = {P 1 , P1 I, P}. The revised set IF is:

I F6 = P6 + P3P5'

IFg = Pg 2P' 8P'

IF 15 = P 5 + P2P 4 + P 4 P 5

Step 2. No actions are taken.

336

Steps 1,3. No actions are taken.

Step 4. At this point, no further reduction can occur. We thus return IF = {IF6, IF, IFs},
PS = { P1 , P1 1, P7} and Pdi,.card = f{P 4, P16, P17, P19 }.

After applying the rules, three inclusion formulas remain from the original seven. Moreover,

three prime implicants were identified for placement in F and four were discarded from considera-

tion. Prime implicants Ps, P9, and P1 s may be chosen by inspection from the remaining inclusion

formulas to complete the formation of F. These prime implicants would be chosen by a follow-up

search process.

Using Base #1 and Gaines's rules, six prime implicants are identified for placement in F and

IF = 0 at the completion of rule reduction. In contrast, the revised reduction rules do not identify

all of the prime implicants to place in a minimal formula and do not completely reduce the inclusion

formulas. The greatest possible reduction requires more information than what is available when

Bases #2 and #3 are used. This is the cost associated with the benefit of generating a smaller base

and the subsequent smaller subset of the inclusion formulas.

In cases in which the reduction rules do not totally reduce the set of inclusion formulas, the

next step in the process of forming a minimal formula F is to execute a search process to determine

the remain prime implicants to place in F. We discuss the search process in Chapter 9. We now

introduce three algorithms which integrate the steps up to the point at which search is required in

the process of developing a minimal F.

337

Minimization Algorithms

We have discussed the first six steps of the methodology for forming a minimal sum-of-

products formula F with respect to the given cost criterion to represent a function f belonging to

the interval [g, h]. These steps are:

1. derive a 1-normal form specification O(X, z) = 1 if not already formed;

2. construct a general solution of O(X, z) = 1 for z, in the form of an interval g(X) _5 z < h(X),
i.e., z E [9(X), h(X)];

3. develop the set of all prime implicants of h;

4. develop a base for [g, hj;

5. develop inclusion formulas representing coverage of the terms of the base by prime implicants
of h;

6. reduce the inclusion formulas using reduction rules-identifying prime implicants of h to
include in F as well as to discard from consideration.

If a minimal formula is not formed after these steps, then a search process must be used to determine

the remaining prime implicants to include in F. We now present three different algorithms for

performing these steps. After introducing the algorithms, we will compare and contrast them in

an ensuing section.

Algorithm Using Base #1. The first algorithm for forming a minimal SOP F uses the

set of all useful, conditionally-eliminable prime implicants of a function as a base. A synopsis of

this algorithm is:

1. derive a 1-normal form specification O(X, z) = 1 if not already formed;

2. construct a general solution of O(X, z) = 1 for z, in the form of an interval g(X) ! z < h(X),
i.e., z E [g(X), h(X)];

3. develop the set of all prime implicants of h;

4. form a base for [g, h) consisting of the set of useful CEPIs;

5. develop an inclusion formula for every term of the base using Procedure 6.2;

6. use Reduction Rule Set #1 to reduce the set of inclusion formulas; and

7. use a search process to determine the remaining terms.

338

Algorithm 6.1 implements the first six steps of the aforementioned process. The search process is

introduced in Chapter 9.

Algorithm 6.1 (Minimization Algorithm #1): Given a 1-normal form specification O(X, z) =

1 and a cost criterion CRITERION, a minimal formula F which represents a function f belonging
to the interval [g(X), h(X)] developed from 4(X, z) = 1 is generated in the following manner:

Step 0. Initialise a partial sum PS to the empty set 0.

Step 1.

1. Form g(X) = 0'(X, 0) . 4(X, 1).

2. Form h(X) = 0'(X, 0) + O(X, 1).

Step 2.

1. Form a simplified formula to represent g(X) using Procedure 2.15 (Simplification). Call
the simplified formula G.

2. Develop the Blake canonical form for function h(X) using Procedure 2.20 (Blake canon-
ical form).

Step 3. Using Procedure 5.2 (Essential Prime Implicants), G, and BCF(h(X)), determine the
essential prime implicants of h(X).

1. Denote the set of essential prime implicants by H...(X) and the function formed by the
disjunction of the essential prime implicants by h.,,(X).

2. Denote the set of terms in G used to identify essential prime implicants in Proce-
dure 5.2-terms covered by the essential prime implicants-by Gcoverea.

Step 4.

1. Form a set 2 of prime implicants consisting of all prime implicants of h(X) less the
essential prime implicants.

2. Use Procedure 5.3 (Covered Terms), ff, and h...(X) to determine the terms in H covered
by ha..(X). These terms constitute the set of inessential prime implicants of h(X); call
this set of terms H

Step 5. Form the set He, of conditionally-eliminable prime implicants by removing the prime
implicants in Hf,,,,,f from H

Step 6.

1. Remove from G the terms in G,,.,,d; denote the resulting formula by G - Gev.

2. Use Procedure 5.3 (Covered Terms), G - Gco,,ra, and h,,(X) to determine the terms
in G - Geo,,,e covered by h.,,(X). Call the resulting terms G..,

3. Remove from G - Gc.,,,d the terms in G,,. Denote the resulting formula 5; it repre-
sents the function j(X).

339

Step 7.

1. Using Procedure 5.1 (Useful Prime Implicants), determine the prime implicants in H,.
that are useful with respect to G. Call the set of useful prime implicants Hbas0. Hbs,0
is the base.

2. Place in Hu,,i.u. the terms in H,. which are not in Hb.,,.

Step 8. Form a set LABS = {P, ... , PA'} of labels which will be used to denote the prime impli-
cants in Hb,,.

Step 9. Using Procedure 6.2 (Formation of an Inclusion Formula), H&,,,, LABS, H.... and g,
generate an inclusion formula IFj for each prime implicant in Hb.,,. Denote the set of
inclusion formulas by IF.

Step 10. Using Procedure 6.4 (Assignment of Cost to Terms), Hb.,., LABS, and CRITERION,
develop an association list affiliating a term with a cost. Each cost is paired with the label
in LABS with denotes a corresponding PI in Hb,,,. Call the resulting list LAB/COSTS.

Step 11. Using Procedure 6.11 (Reduction Rules - Set #1), the set IF of inclusion formulas, and
the cost list LAB/COSTS, apply rule reduction to the set IF. Procedure 6.11 returns a
revised set IF,.,, of inclusion formulas and a set PS,,4, of variables identified for placement
in F.

1. Replace IF with IF,,,.

2. Append PS,, to PS.

Step 12.

* If IF = 0, then a minimal formula F has been formed.

1. Replace the labels in PS with their associated prime implicants from H&b..
2. Append the contents of H .. (X) to PS. The resulting set of terms constitutes F.

3. Return F.

" Otherwise, a search process must be used to complete F.

1. Return the current inclusion formulas IF, PS, Hb,,,, and H..,(X). (PS is a set of
labels; Hb,, and H...(X) are sets of prime implicants.)

2. Also return LAB/COSTS and LABS for use in the search process.

Algorithm 6.1 is different from other algorithms found in the literature in the following ways:

* the minimization process begins with a 1-normal form specification O(X, z) = 1;

" the partitioning of the prime implicants allows concentration of effort on the useful CEPIs;

" the base consists of useful, conditionally-eliminable PIs; and

* formation of inclusion formulas is simplified through the use of the EPI- and DC-constraints.

340

Algorithm Using Base #2. We now present an algorithm for forming a minimal SOP F

which uses the set of all useful, conditionally-eliminable prime implicants which are contained in

an irredundant disjunctive form, i.e. Base #2. A synopsis of this algorithm is:

1. derive a 1-normal form specification O(X, z) = 1 if not already formed;

2. construct a general solution of O(X, z) = 1 for z, in the form of an interval g(X) < z < h(X),
i.e., z E [g(X), h(X)];

3. develop the set of all prime implicants of h;

4. form an IDF for [g, h];

5. form a base for [g, h] consisting of the set of useful CEPIs in the IDF;

6. develop an inclusion formula for every term of the base using Procedure 6.2;

7. use Reduction Rule Set #2 to reduce the set of inclusion formulas; and

8. use a search process to determine the remaining terms.

Algorithm 6.2 implements the first seven steps of the foregoing process. The search process is

introduced in Chapter 9.

Algorithm 6.2 (Minimization Algorithm #2): Given a 1-normal form specification O(X, z)
1 and a cost criterion CRITERION, a minimal formula F which represents a function f belonging
to the interval [g(X), h(X)] developed from O(X, z) = 1 is generated in the following manner:

Step 0. Initialise a partial sum PS to the empty set 0.

Step 1.

1. Form g(X) = 0'(X, 0). 4 (X, 1).

2. Form h(X) = 0'(X, 0) + O(X, 1).

Step 2.

1. Form a simplified formula to represent g(X) using Procedure 2.15 (Simplification). Call
the simplified formula G.

2. Develop the Blake canonical form for function h(X) using Procedure 2.20 (Blake canon-
ical form).

Step 3. Using Procedure 5.2 (Essential Prime Implicants), G, and BCF(h(X)), determine the
essential prime implicants of h(X).

1. Denote the set of essential prime implicants by H..(X) and the function formed by the
disjunction of the essential prime implicants by he.(X).

2. Denote the set of terms in G used to identify essential prime implicants in Proce-
dure 5.2-terms covered by the essential prime implicants-by Gcoered.

341

Step 4.

1. Form a set H of prime implicants consisting of all prime implicants of h(X) less the
essential prime implicants.

2. Use Procedure 5.3 (Covered Terms), f, and h..(X) to determine the terms in H covered
by h...(X). These terms constitute the set of inessential prime implicants of h(X); call
this set of terms Hies,,,,

Step 5. Form the set H,. of conditionally-eliminable prime implicants by removing the prime
implicants in Hi ..,, from H.

Step 6.

1. Remove from G the terms in Gee. 7 ed; denote the resulting formula by G - G,,,d.

2. Use Procedure 5.3 (Covered Terms), G - G,,,,, and h...(X) to determine the terms

in G - Gcoer d covered by h,..(X). Call the resulting terms G..,.

3. Remove from G - Gc,.,,d the terms in G°,,. Denote the resulting formula 0; it repre-
sents the function j(X).

Step 7.

1. Using Procedure 5.1 (Useful Prime Implicants), determine the prime implicants in He,
that are useful with respect to G. Call the set of useful prime implicants Husp,.

2. Place in Hu,,,.., the terms in Hc, which are not in Hu,,jui.

Step 9.

1. Using Procedure 2.34 (Irredundant Formula), Hucepa, Hs,,(X), and # form an IDF for
the function.

2. Remove the set H...(X) of essential PIs from the IDF and call the remaining PIs Hb..,.
Hb,,. is the base.

Step 9. Form a set LABS = {Pj, ... , Ph'} of labels which will be used to denote the prime impli-
-ants in Hu,,ful.

Step 10. Using Procedure 6.2 (Formation of an Inclusion Formula), Hu.,ul, LABS, H..,, and
j, generate an inclusion formula IF for each prime implicant in Hb,.. Denote the set of

nclusion formulas by IF.

Step 1l. Using Procedure 6.4 (Assignment of Cost to Terms), Huspa,, LABS, and CRITERION,
,'evelop an association list affiliating a term with a cost. Each cost is paired with the label
a LABS with denotes a corresponding PI in Hu,qp,. Call the resulting list LAB/COSTS.

Step -2. Using Procedure 6.14 (r.cduction Rules - Set #2), the set IF of inclusion formulas, and
the cost list LAB/COSTS, apply rule reduction to the set IF. Procedure 6.14 returns a
revised set IF,,. of inclusion formulas and a set PS,,,. of variables identified for placement
in F.

1. Replace IF with IF,,,,.

2. Append PS,,. to PS.

342

Step 13.

" If IF = 0, then a minimal formula F has been formed.

1. Replace the labels in PS with their associated prime implicants from Hajui.
2. Append the contents of H...(X) to PS. The resulting set of terms constitutes F.

3. Return F.

* Otherwise, a search process must be used to complete F.

1. Return the current inclusion formulas IF, PS, H.,..1, and H...(X). (PS is a set
of labels; H.,.., and Hc.,(X) are sets of prime implicants.)

2. Also return LAB/COSTS and LABS for use in the search process.

Algorithm 6.2 is unique in the following ways:

" the minimization process begins with a 1-normal form specification O(X, z) = 1;

" the partitioning of the prime implicants allows concentratioai of effort on :ae useful CEPIs;

" the base consists of useful, conditionally-eliminable prime implicants of an irredundant dis-
junctive form;

* formation of inclusion formulas is simplified through the use of the EPI- and DC-constraints;
and

" rule reduction is facilitated through the use of a revised set of reduction rules.

Algorithm Using Base #3. An algorithm is now presented for forming a minimal SOP

F which uses a set of useful, conditionally-eliminable prime implicants which covers the function 0

as a base. We summarize the algorithm as follows:

1. derive a 1-normal form specification 4(X, z) = 1 if not already formed;

2. construct a general solution of O(X, z) = 1 for z, in the form of an interval g(X) < z < h(X),
i.e., z E [g(X), h(X)];

3. develop the set of all prime implicants of h;

4. using Procedure 6.1, form a base for (g, h] consisting of the set of useful CEPIs which com-
pletely cover the function 4;

5. develop an inclusion formula for every term of the base using Procedure 6.3;

6. use Reduction Rile Set #2 to reduce the set of inclusion formulas; and

7. use a search process to determine the remaining terms.

343

The first six steps of the foregoing process are implemented by Algorithm 6.3. The search process

is introduced in Chapter 9.

Algorithm 6.3 (Minimisation Algorithm #3): Given a 1-normal form specification O(X, z) =
1 and a cost criterion CRITERION, a minimal formula F which represents a function f belonging
to the interval [g(X), h(X)] developed from O(X, z) = 1 is generated in the following manner:

Step 0. Initialise a partial sum PS to the empty set 0.

Step 1.

1. Form g(X) = 0'(X, 0) . O(X, 1).

2. Form h(X) = 0'(X, 0) + O(X, 1).

Step 2.

1. Form a simplified formula to represent g(X) using Procedure 2.15 (Simplification). Call
the simplified formula G.

2. Develop the Blake canonical form for ""action h(X) using Procedure 2.20 (Blake canon-
ical form).

Step 3. Using Procedure 5.2 (Essential Prime Implicants), G, and BCF(h(X)), determine the
essential prime implicants of h(X).

1. Denote the set of essential prime implicants by H.,.(X) and the function formed by the
disjunction of the essential prime implicants by h .. (X).

2. Denote the set of terms in G used to identify essential prime implicants in Proce-
dure 5.2-terms covered by the essential prime implicants-by Gce,.,.

Step 4.

1. Form a set F of prime implicants consisting of all prime implicants of h(X) less the
essential prime implicants.

2. Use Procedure 5.3 (Covered Terms), H, and h...(X) to determine the terms in H covered
by h...(X). These terms constitute the set of inessential prime implicants of h(X); call
this set of terms H,,es,,,

Step 5. Form the set He, of conditionally-eliminable prime implicants by removing the prime
implicants in Hin.... from H.

Step 6.

1. Remove from G the terms in G ; call the resulting formula G - Gct,,,4.

2. Using Procedure 2.10 (Subtraction), subtract the function h...(X) from the function
represented by G - G0 c,,,d.

3. Call the resulting formula G and the function which it represents (X).

Step 7.

1. Using Procedure 5.1 (Useful Prime Implicants), determine the prime implicants in HC
are useful with respect to G. Call the set of useful prime implicants Huaeu.

344

2. Place in H, 4,,.. the terms in H,, which are not in Huseju,-

Step 8. Using Procedure 6.1 (CEPIs Completely Covering §), H,,,.,u,, and §, form a base Hb.,,
for the function.

Step 9. Form a set LABS = {P,..., P,} of labels which will be used to denote the prime impli-
canto in Huo.

Step 10. Using Procedure 6.3 (Formation of an Inclusion Formula), Hu,qu,, LABS, and j, gen-
erate an inclusion formula IF for each prime implicant in Hb.,. Denote the set of inclusion
formulas by IF.

Step 11. Using Procedure 6.4 (Assignment of Cost to Terms), Hu,,uj, LABS, and CRITERION,
develop an association list affiliating a term with a cost. Each cost is paired with the label
in LABS with denotes a corresponding PI in Hu,,,j. Call the resulting list LAB/COSTS.

Step 12. Using Procedure 6.14 (Reduction Rules - Set #2), the set IF of inclusion formulas, and
the cost list LAB/COSTS, apply rule reduction to the set IF. Procedure 6.14 returns a
revised set IF,.,, of inclusion formulas and a set PS,,, of variables identified for placement
in F.

1. Replace IF with IF,.,,.

2. Append PS,,. to PS.

Step 13.

" If IF = 0, then a minimal formula F has been formed.

1. Replace the labels in PS with their associated prime implicants from Hu,..p .

2. Append the contents of H...(X) to PS. The resulting set of terms constitutes F.

3. Return F.

" Otherwise, a search process must be used to complete F.

1. Return the current inclusion formulas IF, PS, Hu,,.fl, and H...(X). (PS is a set
of labels; Hu,,.,,a, and H...(X) are sets of prime implicants.)

2. Also return LAB/COSTS and LABS for use in the search process.

The following aspects of Algorithm 6.3 are novel:

" the minimization process begins with a 1-normal form specification O(X, z) = 1;

* the partitioning of the prime implicants allows concentration of effort on the useful CEPIs;

* the base consists of a subset of the useful CEPIs derived using the lower-bound function 4;

* formation of inclusion formulas is simplified through the use of the C-constraint; and

" rule reduction is facilitated through the use of a revised set of reduction rules.

345

Comparison of the Algorithms. The utility of each of the foregoing algorithms is de-

pendent on the available computational resources as well as on the complexity of the functions

for which we are attempting to form a minimal formula F. When sufficient memory is available,

Algorithm 6.1 is the best technique to use since the resulting inclusion formulas give us the most

information about prime implicants to place in F as well as those to discard from consideration.

Hence, the least amount of work must be performed by the ensuing search process when Base #1

is used. However, if we are constrained with respect to resources, then either Algorithm 6.2 or 6.3

should be used.

Algorithm 6.1 has the largest base and consequently produces the largest set of inclusion

formulas. With the largest set of formulas, we are able to identify the largest set of prime implicants

for F. Moreover, the inclusion formulas are reduced to the greatest extent. Thus, if search is

required, it will not involve as much effort. However, this method uses a considerable amount of

memory because of the number of prime implicants and corresponding inclusion formulas. With

many inclusion formulas, the process of applying reduction rules is memory intensive. This :an

be a problem when each prime implicant of a function is about as good as the next, e.g., as in

symmetric functions.

When less memory is available, we must resort to using a smaller base. Fewer inclusion

formulas are generated when a smaller base i. used. Hence, the demands on memory resources are

not as severe as when we use Base #1. However, the cost of developing fewer inclusion formulas

is that we cannot in general reduce the set of inclusion formulas as much as when a larger base is

used. As a result, effort is shifted to the search process. Additionally, Base #2 is formed from an

IDF. The generation of an IDF requircs a considerable computational effort.

In Appendix C, we discuss the computational results of applying Algorithms 6.1 and 6.2 to

several sets of examples.

346

Summary

In this chapter, we have presented methods for taking an initial specification and developing

a single minimal SOP formula F up to the point at which the use of search is necessary. The search

process is discussed in Chapter 9. We have introduced a number of new ideas in this chapter:

" A set of algorithms for three different prime implicant bases was presented. We thus have
available an algorithm appropriate for available computing resources as well as the complexity
and size of function which corresponds to the circuit specification.

" We begin each algorithm with a 1-normal form specification .O(X, z) = 1 for which we con-
struct a general solution for z in the form of an interval z E [g(X), h(X)]. This is done to
emphasize that developing a design corresponds to solving an equation. (This technique is of
additional significance in the minimization of multiple-output circuits.)

" A methodology for partitioning of the prime implicants was presented which allows concen-
tration of effort on the useful, conditionally-eliminable prime implicants.

" An equation-based approach to the generation of inclusion formulas which incorporates the
use of constraints was formulated. This approach provides a theoretically-sound foundation
for the reasoning process utilized to generate inclusion formulas, something that has been
lacking in previous work. The use of constraints makes the process of generating inclusion
formulas more efficient.

* A modified set of reduction rules was developed for situations in which only a subset of the
set of conditionally-eliminable prime implicants is included in the base. These rules facilitate
a moderate reduction in the inclusion formulas prior to the use of search.

347

VII. Minimization of Multiple-Output Functions

In Chapter 6 we presented techniques for developing a minimal sum-of-products formula F

to represent a function f belonging to the interval [g, h]. The formula F corresponds to a minimal

single-output design which meets a 1-normal form specification q(X, z) = 1. In the general case,

however, we endeavor to form a multiple-output circuit specified by a 1-normal form

0(X, Z) = 1, (7.1)

for which X = (zl, Z2,..., z,,) and Z = (z1 , z2,..., z,). Assuming that the 1-normal form specifi-

cation (7.1) is tabular, we develop a system of the form

9 (x) <5 ZI < h (x)
g2(X) < Z2 < h 2(X)

(7.2)
g,,,(x) <5 z,. !5 h,,(X),

which is equivalent to (7.1). By applying a similar methodology as in Chapter 6, we then derive a

design by forming a system

Z,= f,(X)

2= f 2 (X)

(7.3)

,, fm(X),

such that a design corresponds to the vector F of formulas which represents the functions f(X).

Each function f,(X) is a member of the interval [gj(X), hj(X)].

In this chapter, we extend the methods discussed in Chapter 6 to facilitate development of

designs for multiple-output combinational circuits. We assume that all specifications O(X, Z) = 1

348

considered in this chapter are tabular. Additionally, all lesigns produced using techniques presented

in this chapter correspond to non-recurrent designs, i.e., designs in which each output is a function

only of the input nodes. Non-recurrent designs are those which are produced using conventional

minimization systems. For algorithmic efficiency, we restrict the cost criteria used to judge multiple-

output circuits to the fewest-gates criterion.

A vector F of formulas is said to be minimal if the formulas contained in F are collectively

minimal with respect to a given cost criterion. For example, if the cost criterion is the fewest gates,

then F is said to be minimal only if the number of distinct terms in the formulas contained in F

is minimal. Moreover, F is said to be irredundant if each formula F in F is irredundant.

We follow a similar approach in developing a minimal, irredundant vector F of SOP formulas

to represent the functions f(X) as applied in the formation of a minimal SOP formula F. The

steps in this process are:

1. derive a 1-normal form specification O(X, Z) = 1, if not already formed;

2. form a general solution of 4(X, Z) = 1 for Z to develop a set (7.2) of intervals;

3. form the set of all multiple-output prime implicants of the upper-bound functions h(X);

4. develop a base for [g(X), h(X)];

5. develop inclusion formulas representing coverage -1 the terms of the base by the multiple-
output prime implicants;

6. reduce the inclusion formulas using reduction rules-identifying multiple-output prime impli-
cants to include in formulas in F as well as to discard from consideration; and

7. use a search process to determine the remaining multiple-output prime implicants to include
in formulas in F.

A number of the steps in this process vary somewhat from the steps used in the single-output case.

With the exception of the last step-search-we will discuss each step in turn in the course of

this chapter. Differences between the foregoing steps and step in the single-output case will be

highlighted in the course of the presentation. As in Chapter 6, we present algorithms which can be

used to form a minimal design.

349

Initial Specification

A specification for a digital circuit may be stated by a single Boolean equation in 1-normal

form, i.e.,

O(X, Z) 1. (7.4)

If we are given a specification in some other medium, e.g., a truth table, we may use the methods

described in Chapter 4 to form an equation of the form (7.4). Given the equation O(X, Z) = 1, we

develop a solutian of the form (7.2) in which each output zi is defi .ed by an interval [gj (X), hj (X)].

Let us define the function j(X, zj) = EDIS(4'(X, Z), Zj), in which Z, is the set Z of variables

less the variable z2 . Viewing j (X, zj) as a function of the single variable zi, we form a gencrzl

solution based on the extended-range concept developed in Theorem 4.2. Using the extended range,

we produce the general solution

91(X) <5z, < h I(X)

92(X) < z2 < h 2 (X)

(7.5)

g,.(X) z,. < h.(X',

of q(X, Z) = 1 for Z, in which

g(X) M(X, .0) ,(X, 1) (7.6)

and

h,(X) = (x, o)+ (X, 1). (7.7)

,i50

We must use an extended range to form system (7.5) in case there exists a don't care condition

such as an input combination in B" which does not occur (see Example 4.9).

Hence, system (7.5) may be used to develop a design corresponding to the vector F of formulas

representing the functions f (X) in the system

z = h(X)
Z2 f2 (X)

(7.8)

Z.= f(X).

In the remainder of the chapter we present an approach for developing a vector F which is minimal

with respect to a given cost criterion. We discuss the formation of multiple-output prime implicants

for the upper-bound functions h(X) in (7.5) in the ensuing section.

Multiple-Output Prime Implicants (MOPIs)

A minimal vector F of SOP formulas corresponds to a minimal two-level design. In the single-

output case, a minimal formula F consists of an irredundant set of prime implicants of h(X) which

covers g(X). However, in multiple-output circuits the prime implicants of each function hi(X) do

not generally suffice to compose a minimal formula F to cover the corresponding function gj(X).

A special form of prime implicant, called multiple-output prime implicante (MOPIs), must be used

to construct a minimal F. We demonstrate the reason in Example 7.1.

Example 7.1: Suppose we are given a 1-normal form specification O(X, Z) = 1, in which

O(X, Z) = Z'I3Z3Z2 + IZ2ZlZ2 + ZIZ2X3 ZIZ 2 + ,IZ12ZIZ 2 + ziZ 2z3'Zl21 + zlX2X3ZIIZ2. (7.9)

351

We develop a system that is equivalent to O(X, Z) = 1, such as (7.5), forming a range [gj, hi] of

possible functions for each output zj:

z +2 5 <z !< Z1+ Z (7.10)
zIZ2 + z 2z 3 < z2 !_ zIz 2 + z 2 z 3 + Z1 Z 3. (7.11)

The right-hand side of (7.10) is BCF(hi); the right-hand side of (7.11) is BCF(h2). Using the

prime implicants of h, to form f, (X) and the prime implicants of h 2 to form f2 (X), the best system

Z = (X) we can form with respect to the number of distinct terms in F .a

z 1 = -+ 2 (7.12)

Z2 = ZIX2 + Z2n 3 .

The number of distinct terms in F is four in this case. However, we may replace the term z' in F,

with the term z1z'--which is not a prime implicant of hl-and still represent the function fi(X).

We thus form the system

Z1 = + - z1 (7.13)

Z2 = Xnix 2 + Z2Z3

in which the number of distinct terms in F is three. The vector F in system (7.13) has fewer

distinct terms than the F in (7.12) developed using the prime implicants of the upper-bound

functions h. The term zlz', which is shared between F1 and F2 in (7.13), is a special term called

a multiple-output prime implicant.

The use of multiple-output prime implicants is required to form a minimal F to represent

f(X). The specific utility of MOPIs, as demonstrated in Example 7.1, is to facilitate the sharing

of terms among the formulas F in F, thus making E cheaper. It is well-known that a minimal

352

design for a multiple-output function consists of multiple-output prime implicants. We now define

the set of MOPIs for a set [g,] of intervals:

A multiple-output prime implicant (MOPI) for a set [g, h] of intervals is a product of
literals which is either:

1. A prime implicant of one of the functions hI j = 1, 2,..., m; or

2. A prime implicant of one of the product functions

h h ... hh,

in which

" i,j,k= 1,2,...,m, and

" i:Aj:A.. 0k.

(Givon 70:179-180)

Thus, a multiple-output prime implicant can be a prime implicant of any of the m functions in

_, a prime implicant of the product of two of the functions h, • h,, up to and including a prime

implicant of the product of all m functions h. - hi ... h,.

Although the set of all multiple-output prime implicants is defined as the prime implicants

of the functions h as well as the prime implicants of all possible product functions formed from

the functions in h, we do not have to form the product functions to develop the set of all MOPIs.

We can use procedures which generate the Blake canonical form of a function to develop the set

of all MOPIs, providing that we use a specialized formula H(X, Z) derived from the 1-normal

form specification O(X, Z) = 1. Before presenting how 4fH(X, Z) is formed, however, we discuss

the assignment of costs to MOPIs.

Assignment of Costs to MOPIs. Similar to the cost criteria presented for developing

a minimal single-output design, there exist cost criteria that may be used to develop a multiple-

output digital design. Typical cost criteria include fewest gates, fewest gate inputs, and variations

thereof.

353

The most common cost criterion is the fewest gates in a two-level circuit. This criterion is

generally used when a two-level circuit is to be implemented with a Programmable Logic Array

(PLA), the most common method of implementing a two-level circuit. Since the size of a PLA

varies in proportion to the number of gates, our main concern is to minimize the number of distinct

terms in the corresponding vector F of SOP formulas.

Other cost criteria generally involve the number of gate inputs in some fashion. One cost

criterion is the fewest gate inputs for the AND gates in the circuit. Using this criterion, the cost of

the circuit is measured by the total number of literals contained in distinct terms in F. A variation

of this criterion is the fewest gate inputs with the fewest interconnections. Using this criterion, the

cost of f is determined by adding the total gate inputs to a sum calculated by adding for each

distinct term the number of formulas in F in which the term appears; hence, the total number of

gate inputs and interconnections is minimized. It is possible that different designs will result for a

given specification depending on the cost criterion used to measure minimality of a circuit.

For the remainder of this chapter, we presume that the fewest-gates cost criterion will be

used. We take this approach for a number of reasons. First, the most common implementation for

two-level circuits is a PLA, in which we are not as concerned with the number of gate inputs as

we are with the number of gates. Moreover, heuristic techniques exist which reduce the number of

gate inputs after a design with a minimal number of gates is developed. Additionally, most modern

algorithms for two-level design, such as MINI (Hong 74), ESPRESSO (Brayt 84), and ESPRESSO-

EXACT (Rudel 89), consider only the number of gates. Finally, techniques which are used to form

a design with the fewest gates are simpler than those which are used to develop a design with the

fewest gate inputs. We thus restrict the available cost criteria in order to reduce the complexity of

the resulting algorithms. The techniques presented in the following sections can be easily extended

to accommodate additional cost criteria.

354

Since we are assuming that the fewest-gates cost criterion is used, each multiple-output prime

implicant is assigned a cost of 1. The cost of using a MOPI is 1, whether it is contained in a single

formula F or a number of formulas in F. Thus, if a MOPI must be contained in one formula F,

then its use is free in other formulas. An application of this idea is that if a MOPI p, is essential

for the function fi and is not for f 2-but may be used to form F 2-then we will automatically use

it in F2 since it does not cost anything extra to do so with respect to our chosen cost criterion.

In some cases, this will cause a formula F contained in a minimal F to contain redundant terms.

Many of these redundant terms are absorbed by other terms in F; hence, a way to quickly reduce

the number of redundant terms after F is formed is to replace each formula F with an equivalent

absorptive formula at the end of the minimization process.

When using the fewest-gates cost criterion, each MOPI p is treated as a single entity. However,

when employing cost criteria other than the fewest gates, we sometimes must create copies of p

which must be handled distinctly. One copy must be considered for every possible combinations of

formulas in which p may appear. In fact, if p can appear in n formulas in F, then 2' - 1 copies

of p may have to be created (Barte 61:28). This requirement adds to algorithmic complexity and

increases memory usage. Hence, the handling of MOPIs is much simpler if using the fewest gates

cost criterion. We now discuss the formation of the formula $H(X, Z) used to form the set of all

MOPIs.

Formation of $H(X, Z). In Chapter 4 we discussed the correspondence between a 1-normal

form specification and a truth table. Forming MCF(O(X, Z)) with respect to the X-arguments, a

dir, riminant corresponds to an entry in a truth table in the following manner:

* If a discriminant is a Z-term which contains the literal z , then [gi(A),hj(A)] = [0,01' for
the input combination A E B2.

'The interval [0,0] is normally denoted as 0; (1 '] is denoted as 1; and [0,1] is denoted as X.

355

* If a discriminant is a Z-term which contains the literal zj, then [gj(A), h (A)] = [1, 1] for the
input combination A E B7.

* If a discriminant is a Z-term which does not contain the variable zj, then [gj (A), h, (A)] = [0, 1]
for the input combination A E B'.

* If a discriminant is 1, then [gj(A), hi(A)] = [0, 1] for the input combination A E B" for each
[g, (X), h (X).

If a discriminant is 0, then the input combination A E B" does not appear in the truth table.

This correspondence may be generalized for the case in which 4(X, Z) is not represented by its

minterm canonical form.

The formula which represents O(X, Z) is denoted by 4$(X, Z). Let us call the portion of a

term t(X, Z) in 4$(X, Z) which consists of X-variables the X.part, denoted by u(X). Let us call the

portion of t(X, Z) containing Z-variables the Z-part, denoted by v(Z). If t(X, Z) contains no Z-

variables, then v(Z) = 1. It follows that t(X, Z) = u(X) . v(Z). Furthermore, we denote a minterm

with respect to X-arguments of O(X, Z) by the notation m(X). A substitution A E B' which

makes the statement m(A) = 1 valid is a solution of m(X) = 1. Then, for a given term t(X, Z)

of 4(X, Z), if v(Z) contains the literal z , then [g,(A), h(A)] = [0, 0] for all input combinations

A E B' such that A is a solution of all equations m(X) = 1 for which m(X) < u(X). We make

similar correspondences for the remaining cases.

Bartee (Barte 61) showed that a truth table may be used to develop a formula $-in minterm

canonical form with respect to the X-variables-in which the equivalent Blake canonical form

depicts the set of all MOPIs which can be developed from the functions h. A truth table depicts

the value [g,(A), h,(A)] for a given input combination A E B'. If an A E B' exists such that

m(A) = 1 is valid and [gj(A), h,(A)] = [0,0], then the discriminant v(Z) associated with m(X) in

$ contains the literal z,. However, if [g,(A), h,(A)] is equal to [1, 1] or [0, 1], then the discriminant

v(Z) associated wil' m(X) contains neither z. nor z'. Additionally, if there exists a don't care

condition corresponding to a missing row in a truth table, i.e., situations in which [g,(A), h,(A)] is

undefined for a substitution A E B', then a minterm m(X) is created for such a row in which the

associated discriminant v(Z) is equal to 1.

356

Using Bartee's methodology, we develop a formula 4H (X, Z) using 4t(X, Z) for which the

equivalent Blake canonical form depicts the set of all MOPIs. $H(X, Z) is formed in a two-step

process:

1. For each term t in t(X, Z), create a term I to place in $H(X, Z) such that i contains the
literals that t contains with the exception of uncomp.emented Z-variables.

2. Terms are created to cover the minterrns m(X) corresponding to missing rows in a truth table,
i.e., the don't care condition in which [gi (X), hi (X)] is undefined for an input combination
A E B.

The manner in which terms are created in Step I is obvious; we now discuss how terms are created

in the second step.

In Chapter 4 we defined an equation ODC(X) = 0 which represents a constraint on O(X, Z) =

1 due to input combinations which do not occur. This constraint denotes the conditions in which

O(X, Z) = 1 has no solution Z = f(X). Another way of viewing this problem is to examine the

conditions in which a solution Z = f(X) exists for O(X, Z) = 1, i.e., the conditions in which

O(X, L(X)) = 1 is an identity. Such a solution exists if and only if the condition

EDIS(4(X, Z), Z) = 1 (7.14)

is satisfied. Consequently, the equation EDIS(O(X, Z), Z) = 1 expresses the conditions for which

[g(X),hi(X)] is defined. We can derive the conditions in which [9j(X), h,(X)] is not defined by

forming (EDIS(4(X, Z), Z))' = 0; whence,

ODc(X) = (EDIS(O(X, Z), Z))'. (7.15)

Substitutions A E B" such that A is a solution of equations m(X) = 1, for which m(X) is a

minterm included in terms of the formula representing ODc(X), are the substitutions for which

357

[g(X), hi(X)] is undefined. Hence, the terms in the formula representing ODC(X), if any exist,

are used to complete the formation of $H(X, Z).

Certain terms in I(X, Z) may be discarded from consideration while forming 4 H (X, Z); these

terms may be identified in the process of forming terms to place in $H (X, Z). A term t(X, Z) in

4(X, Z) which contain a Z-part v(Z) of the form zz ' z , i.e., all Z-variables appear and

each is in complemented form, is of no use in forming the MOPIs. In this situation, substitutions

A E B' such that A is a solution of equations m(X) = 1, for which m(X) is a minterm included in

corresponding X-part u(X), are substitutions such that [9j(A), hj(A)] = [0,0] for j = 1,2,.. .,m.

Since we are only concerned with substitutions A for which h (A) = 1, all terms t(X, Z) in $(X, Z)

in which v(Z) = zxz.' ... z ' are not placed in the formula cg(X,Z). Placing such terms in

4 'H(X, Z) will not affect the formation of the set of MOPIs; however, leaving them out is desirable

for efficiency purposes.

The formula $H(X, Z) is used to generate the set of all MOPIs which may be used to form

the vector F of formulas. After forming 4$)H(X, Z), a procedure such as Procedure 2.20 is used to

develop the equivalent Blake canonical form. Terms in BCF(OH(X, Z)) which contain a Z-part

of the form ' z' • ••, i.e., terms in which all Z-variables appear and each such variable is in

complemented form, may be deleted from BCF(OH(X, Z)). Alternatively, we may place the term

z'l ...z" in $jq(X, Z) prior to forming BCF(4'g(X, Z)) so that terms containing the Z-part

z . . . z" are inhibited from appearing in BCF(4'H(X, Z)), i.e., such terms are absorbed by the

term 44 • • • z.

We now present Procedure 7.1 which develops the formula 4gH(X, Z) from 4(X, Z). Exam-

ple 7.2 demonstrates the application of Procedure 7.1.

Procedure 7.1 (Formation of $H(X, Z)): Given a formula t(X, Z), and a set Z = {z1 ,..., z,}
of Z-variables, the formula tH(X, Z) is formed in the following manner:

Step 0. Initialize 4',, to the empty set 0.

358

Step 1.

* If 4(X, Z) is empty, then go to Step 3.

" Otherwise, continue to Step 2.

Step 2. Remove the first term t(X, Z) from 4(X, Z) and take one of the following actions:

" If t(X, Z) contains a Z-part of the form z'z4 . .', i.e., all Z-variables appear and each
is in complemented form, then t(X, Z) will not be placed in tH.

* Otherwise, remove any uncomplemented Z-variables from the Z-part of t(X, Z) and
place the resulting term in 4 'H.

Return to Step 1.

Step 3. Form ,DC = (EDIS(Ob(X, Z), Z))' and place the terms in the formula representing
*DC(X) in 4H.

Step 4. Add the term z'z' - 4,z to kg (X, Z).

Step 5. 4P.q(X, Z) has been formed. Return 4H(X, Z).

Example 7.2: Given a 1-normal form specification O(X, Z) = 1, for which

4(X, Z) -- a'b'cd' zz 2 + a'b'cdz' + a'b'cdzz + a'bc'dz'2 + a'bc'dz'z' (7.16)

+ a'bcd'ziz2 + a'bcdzlz + ab'c'dz'z' + ab'c'dz'z' + ab'cd'zl (7.17)

+ ab'cdz' + abc'd'z2' + abc'dzIz 2 + abcd'z' + abcdzIz 2 ,

X = (a, b, c, d), and Z = (z 1 , z2), we develop a formula kH(X, Z). The 1-normal form specification
corresponds to the truth table given by Table 7.1. Table 7.2 defines the functions h.

a b c d [g,(X), hI(X)j [g2 (X), h 2 (X)]
0 0 0 0 1 1
0 0 1 0 0 X
0 0 1 1 0 0
0 1 0 0 X 0
0 1 0 1 0 0
0 1 1 0 1 1
0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 0 1 X
1 0 1 1 X 0
1 1 0 0 0 0
1 1 0 1 1 1
1 1 1 0 X 0
1 1 1 1 1 1

Table 7.1. Truth Table Corresponding to O(X, Z) (Example 7.2)

359

a b c d h1 (X) h2(X)
0 0 0 0 1 1
0 0 0 1 1 1
0 0 1 0 0 1
0 0 1 1 0 0
0 1 0 0 1 0
0 1 0 1 0 0
0 1 1 0 1 1
0 1 1 1 0 0
1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 0 1 1
1 0 1 1 1 0
1 1 0 0 0 0

1 1 0 1 1 1
1 1 1 0 1 0
1 11 1 1 1

Table 7.2. Truth Table Which Defines h(X) (Example 7.2)

Step 0. tH = 0.

Steps 1-2. We iterate through Steps 2 and 3 to form the terms in $H corresponding to terms in
*(X, Z). We present the different actions that are taken in these steps.

* Terms a'b'cdz'z1 , a'bc'dz'zz, a'bcdz'z , ab'dd'z4z, ab'c'dz'z, and abcd'z'jz in 4,(X, Z)

(7.17) contain a Z-part of the form z z'. These terms are not placed in 4H-

* Uncomplemented Z-literals are removed from the terms a'b'cd'zIz2 , a'bcd'zlZ2 , ab'cd'zl,

abc'dzIz2 , and abcdzlz2 to form the terms

a'b'c'd', a'bcd', ab'cd', abc'd, abcd,

which are placed in tH-

* The remaining terms-a'b'cd'z', a'bc'd'z, ab'cdz , and abcd'z--do not contain any
uncomplemented Z-variables. These terms are simply placed in 4 H.

Step 3. The function ODC is formed in which ObDC = (EDIS(O(X, Z), Z))'. In this case,

tODC(X) = a'b'c'd.

The term a'b'c'd is added to $H.

Step 4. The term zz4 is added to $.

Step 5. The formula fH returned by the procedure is:

a'b'c'd' + a'b'c'd + a'b'cdz' + a'bc'd'z24 + a'bcd' (7.18)

+ ab'cd' + ab'cdz4 + abc'd + abcd'z' + abcd + zz'

360

With the exception of term zlz, terms in the formula correspond to rows in Table 7.2 in
which at least one of the two statements hi : 0 or h2 $ 0 is true.

Generation of MOPIs. After developing the formula 4 H(X, Z) using Procedure 7.1, a

procedure such as Procedure 2.20 is used to develop the equivalent Blake canonical form. After

forming BCF(OH(X, Z)), the term 44... , is deleted from BCF(OH(X, Z)). We denote the

formula which results after this step as M.11.

Each term t(X, Z) in M.11 contains a single multiple-output prime implicant. The X-part

u(X) of t(X, Z) is the actual multiple-output prime implicant that may be used to constitute

formulas in F. The formulas Fj that may be constructed using a given MOPI are determined from

the Z-part v(Z) of t(X, Z). Specifically, if a literal z does not appear in v(Z), then u(X) is a

MOPI that may be used to form F. For example, if z',z 2z 3zz is a term of M. 11, then the MOPI

z'z2z3 may be used to derive the formula F1, but not the formula F2. Thus, each term t(X, Z) of

M.a1 contains a MOPI, u(X), as well as an identifier, v(Z), which indicates the formulas F that

the MOPI may be used to form.

Example 7.3 demonstrates the use of the formula tH(X, Z) developed in Example 7.2 to

generate a formula M.11.

Example 7.3: Given the formula $g(X, Z) developed in Example 7.2, we apply Procedure 2.20
to form M.11. We first restate $g(X, Z):

a'b'c'd' + a'b'c'd + a'b'cd'z' + a'bc'd ' + a'bcd' (7.19)

ab'cd' + ab'cdz4 + abc'd + abcd'z2 + abcd + z4 .

Using Procedure 2.20, we form BCF(4'g(X, Z)). The formula which results is:

a'c'dz' + a'cd'z' + a'bcd' + a'bd'z' + a'b'c' + a'b'd'z' (7.20)
acz 2 + abd + ab'cd' + b'cd'z' + bcd'z' + z .

361

The term z'z' is removed from (7.20) to form M.1. Using M.11 we determine the MOPIs which
may be used to form Fl. Such MOPIs are contained in terms in M 11 which do not contain the
complemented literal z'. We thus derive the set

{a'c'd', a'bcd', a'bd', a'b'c', ac, abd, ab'cd', bcd'}

of MOPIs associated with [g,, h,]. Similarly, we derive the set

{a'cd', a'bcd', a'b'c', a'b'd', abd, ab'cd', b'cd'}

of MOPIs which may be used to form F2 . We can verify these sets by forming BCF(h,), BCF(h2)
and BCF(h, - h2) using the functions h as defined by Table 7.2. We find that these formulas are
defined as follows:

BCF(h,) = a'c'd' +a'bd' + a'b'c' + ac+ abd+bcd'

BCF(h2) = a'b'd' + a'cd' + a'b'c' + abd + bcd'

BCF(h, • h2) = a'b'c' + a'bcd' + ab'cd' + abd.

Terms in BCF(h,) and BGF(h, • h2) combine to form the set of MOPIs which may form Fl.
Moreover, terms in BCF(h2) and BCF(h,. h2) combine to form the set of MOPIs which may form
F2. The resulting sets of te, ms correspond with the sets developed from BCF(4H(X, Z)).

Useful MOPIs. After forming the set of all MOPIs, we then identify the MOPIs associated

with each interval [g,, hi] that are useless with respect to g, for forming a formula Fj. A MOPI p

is useless with respect to an interval [gj, j] if and only if the condition

p < hj - gj (7.21)

is an identity. Using this definition, we test a MOPI p for uselessness by determining the validity

of the condition

p g, 0 0. (7.22)

Procedure 7.2 determincs the useless, CE MOPIs with respect tc each [gi, h,]. Once a MOPI

p is determined to be useless with respect to [gj, h,], the literal z is inserted in the Z-part of the

associated term in Mai. The association of the literal z, with a MOPI denotes that the MOPI

362

should not be used to develop the formula F to represent a function fj in the interval [g,, hj]. If

at the conclusion of Procedure 7.2 any terms exist in M.11 which contain the Z-part of the form

z'Z' zz , i.e., all Z-variables appear and each is in complemented form, then such terms are

deleted from Me1 since they are inessential for all intervals in [g, _].

Procedure 7.2 (Useless MOPIs): Given the set {gi,g2, ... ,9g,} of functions, the set M.11
which represente the set of all multiple-output prime implicants, and the set Z = {z 1, z2 , .. . , ZM}

of Z-variables, the useless prime implicants of M.11 are identified in the following manner:

Step 0. Initialise the set , by copying into it the contents of Z.

Step 1. Remove the first literal zj from Z.

Step 2. Form Mi which is the set of all terms in M.11 which contain neither zi nor zj.

Step 3. Using Procedure 5.1 (Useless Prime Implicants), gj, and M j , determine the set of MOPIs
in M! (X) which are useless with respect to interval [gj, h,]. For each useless MOPI that is
identified, insert the !iteral z in the Z-part of the associated term in M.11.

Step 4.

" If 2 is empty, then we have completed the identification of useless MOPIs. Continue to
Step 5.

* Otherwise, return to Step 2.

Step 5.

1. Any terms in Ma1 which contain the Z-part of the form z'z' • .. z' , i.e., all Z-variables
appear and each is in complemented form, are useless and inessential for all intervals in
[g,]. Delete all such terms from M.11 .

2. Return M.11.

Partitioning of MOPIs. After identifying the useless prime implicants, we follow a method-

ology similar to that used in the single-output case and partition the MOPIs formed from h into

essential, inessential, and conditionally-eliminable categories with respect to functions in g. How-

ever, this task is considerably more complicated in the multiple-output case due to the fact that a

given MOPI may be used to form a number of different formulas F in F. Hence, the bookkeeping

required in this process is more involved than in the single-output case.

Given the set M.11 , the set Mi contains the set of MOPIs in M 11 which may be used to

constitute the formula F, i.e., the terms in M. 11 which do not contain a complemented literal z'.

Let Mj(X) denote the terms in M' in which the Z-parts have been omitted. The partitioning of

363

the elements of M j (X) with respect to g,(X) is performed in turn for each j = 1, 2,..., m. A key

aspect of this procedure is that once a MOPI p is identified as essential for a function, it will be

treated thereafter as an essential MOPI with respect to each [gj, hi] such that p may appear in F.

Let us denote M.,, (X) the MOPIs considered as essential for an interval [gj, h,]. Then, since we

use gi(X) in the process of identifying essential MOPIs (see Procedure 5.2), we may use Ml..(X)

to form a revised function j(X) = gi (X) - ms 8(X) which is used in place of gj (X) in identifying

the remaining MOPIs in Mi(X) to place in M 5,,(X).

Procedure 7.3 is used to identify essential MOPIs. As a notational device, as essential MOPIs

are identified, the Z-part in the associated terms in M.1 are filled with uncomplemented literals

zi for which no literal zj appears, j = 1, 2,. . ., m. Thus, after identifying the essential MOPIs for

all functions, terms in M. 11 will contain a Z-part which denotes whether a MOPI is not associated

with a function (denoted by a zj), is essential for a function (denoted by a zj), or associated with

a function but not essential (denoted by the absence of zj and z).

Procedure 7.3 (Essential MOPIs): Given the set {gg2, g .. , Ig of functions, the set M. 11
which represents the set of all multiple-output prime implicants, and the set Z = {z 1 , z2,..., zm
of Z-variables, the essential MOPIs in M,11 are identified in the following manner:

Step 0. Initialise the set Z by copying into it the contents of Z.

Step 1.

" If 2 is empty, then we have completed the identification of essential MOPIs. Return
M.11 and the set {, -,.., im.

" Otherwise, continue to Step 2.

Step 2. Remove the first literal zj from Z.

Step 3. Form M j which is the set of all terms in M.11 which contain neither Zi nor zj.

Step 4. Form M,, which is the set of all terms in M 1, which contain the literal z1 .

Step 5. Remove the Z-parts from terms in Mi and Mj,, to form Mi (X) and M 5,,,(X), respec-
tively.

Step 6. Form the function #j(X) = gj(X) - m .. (X).

Step 7. Using Procedure 5.2 (Essential Prime Implicants), the formula Gi(X), and Mj(X), de-
termine the set cf essential MOPIs in Mj(X) with respect to jj(X).

1. Remove the terms in G(X) used to identify the new essential MOPIs from G(X); these
terms are returned by Procedure 5.2.

364

2. For each new essential MOPI, fill the Z-part of the associated term in M 11 with uncom-
plemented literals zt for each k = 1, 2,..., m for which no literal z' appears.

Return to Step 1.

After identifying essential MOPIs, inessential MOPIs are determined. Procedure 7.4 is a

follow-up procedure to Procedure 7.3 used to identify inessential MOPIs for each interval %g, hj].

In Procedure 7.4, if a MOPI is identified as inessential for [gi, hj], then the tag z is inserted in

the Z-part of the term associated with the MOPI in M. 11. The association of the literal z with a

MOPI denotes that the MOPI should not be used to develop the formula Fj to represent a function

fj in the interval [gj, hi]. Similar to Procedure 7.2, if any terms exist in M 11 at the conclusion of

Procedure 7.4 which contain a Z-part of the form z'4 -• • z' , i.e., all Z-variables appear and each

is in complemented form, then such terms are deleted from M 11 since they are either useless or

inessential for all intervals in [g, h].

A second action is taken in Procedure 7.4. After determining the inessential MOPIs for

an interval [gi, hj], a revised lower-bound function #j (X) is derived to use in base formation and

development of inclusion formulas.

Procedure 7.4 (Inessential MOPIs and Formation of #): Given the set {il, §2,... ,m} of
functions, the set M.!l which represents the set of all multiple-output prime implicants, and the set
Z = {z 1 , z 2, ... , zvn} of Z-variables, the inessential MOPIs of M.u are identified in the following
manner:

Step 0. Initialise the set 2 by copying into it the contents of Z.

Step 1. Remove the first literal z j from 2.

Step 2. Form Mi which is the set of all terms in M 11 which contain neither Zi nor zj.

Step 3. Form Mj18 which is the set of all terms in M 11 which contain the literal zj.

Step 4. Remove the Z-parts from terms in Mi and M,, to form Mi(X) and Mj,,(X), respec-
tively.

Step 5. Using Procedure 5.3 (Covered Terms), M.j,, (X), and Mi (X), determine the set of inessen-
tial MOPIs associated with function fj(X). For each new inessential MOPI, insert the literal
z in the Z-part of the associated term in M.1u.

Step 6. Form the function #j(X) = 4i(X) - rV .. (X).

365

Step 7.

" If 2 is empty, then we have completed the identification of inessential MOPIs and for-
mation of j. Continue to Step 8.

" Otherwise, return to Step 2.

Step 8.

1. Any terms in M.11 which contain the Z-part of the form 2Z'... z4, i.e., all Z-variables
appear and each is in complemented form, are inessential for all intervals in [g, _]. Delete
such terms from Mai.

2. Return M.,1 and the set 01, #2,..., ,.

At the completion of Procedure 7.4, the set of MOPIs is partitioned into essential, useless

and/or inessential, and conditionally-eliminable MOPIs with respect to each interval [gi, hi]. Ad-

ditionally, a revised set _(X) of lower-bound functions is formed. Example 7.4 demonstrates the

partitioning of MOPIs using the 1-normal form specification of Example 7.2.

Example 7.e Jsing the 1-normal form specification given in Example 7.2, we develop the func-

tions p(X):

g1 = a'b'c'd' + abd+ ab'cd' + a'bcd' (7,23)

92 = a'b'c'd' + abd + a'bcd'.

The formula M.11 developed in Example 7.3 is

a'c'd2' + a'cd'z + a'bcd' + a'bd'z2 + a'b'c' + a'b'd'4z (7.24)

+ acz' + abd + ab'cd' + b'cd'z + bcd'2.

Using Procedure 7.2, the functions g and M 11 are used to determine the useless MOPIs. The

MOPIs ab'cd' and b'cd' which are associated with [g2, h2] are found to be useless. When the literal

z is added to the term b'cdz' in (7.24), the term then contains the literals Z'2. Hence, b'cd'z'z2

is deleted from M.11. Thus, M 11 as returned by Procedure 7.2 is the formula

366

a'c'd'z2' + a'cd'z' + a'bcd' + a'bd'z' + a'b'c' (7.25)
+ a'b'd'z' + acz + abdzIz2 + ab'cd'4 + bcd'z.

Using Procedure 7.3, the functions g(X) and M 11 are used to determine the essential MOPIs.

The only essential MOPI found among the set of MOPIs is abd. Since abd may be use to form both

F, and F2, it is essential for both [gl, hj] and [g2, h2]. At the conclusion of Proced,,re 7.3, M~u is

define by the formula

a'c'd'z' + a'cdz' + a'bcd' + a'bd'z + a'b'c' + a'bdz (7.26)

+ acz' + abdziz2 + ab'cd' + b'cd'z; + bcd'z'.

The functions j(X) are also formed in Procedure 7.3. In this example, we develop the functions

#1 = a'b'c'd' + ab'cd' + a'bcd' (7.27)
i = a'b'c'd + a'bcd'.

No MOPIs are identified as inessential using Procedure 7.4. Additionally, the functions # axe

equal to g. Hence, M.11 after the partitioning of the MOPIs is the formula (7.26); g is defined by

(7.27).

After the completion of Procedure 7.4, the set of MOPIs is partitioned into essential, inessen-

tial and/or useless, and conditionally-eliminable categories for each interval [gi, hi]. At this point,

we can form a base for [g, j.

367

Formation of Bases

After partitioning the MOPIs for each interval [gj, hi] in [g, h_], the next step in our method-

ology for developing a minimal vector F of formulas to represent f(X) is to form a base for [g, i].

We present two bases for the intervals in (g, A]. The first base is the set of MOPIs which are

conditionally-eliminable with respect to at least one interval in [g, M_]. The second base is formed

in a fashion similar to Base #3 for the single-output case.

Base #1 - All Conditionally-Eliminable MOPIs. The first base we propose is the set

of MOPIs which are conditionally-eliminable with respect to at least one interval in [g, h]. This

base is similar to Base #1 for single-output functions. MOPIs which form this base are easily

identified using M..j. After identifying essential, inessential and/or useless MOPIs, terms in M.11

corresponding to MOPIs which are conditionally eliminable contain a Z-part in which at least one

Z-variable zj, j = 1, 2,..., m, does not appear in either complemented or uncomplemented form.

As in Base #1 of the single-output case, this base is used when an implementation of an

algorithm which utilizes the base is hosted on a computer which has sufficient memory capacity

given the specification for which a minimal F is being developed. This base has the most terms;

hence, the number of inclusion formulas representing coverage of each term of the base by subsets

of the MOPIs will be larger than when employing the second base we will discuss. Thus, a large

memory capacity is required to form inclusion formulas and then apply reduction rules. It iP the

most desirable base, however, because the formation of a minimal F which requires r~e use of

search is less likely to be needed using this base.

Base #2 - CE MOPIs Covering j. The second base is a set of c inditionally-eliminable

MOPIs which covers terms in the formulas d which represent the functions #. This base corresponds

to Base #3 in the single-output case and is similarly formed. Hov ever, a given MOPI p can only

368

cover terms in a formula Gj such that p is conditionally-eliminable for [gj, hj]. Procedure 7.5

returns this base as a result.

Procedure 7.5 (Base #2 - CE MOPIs Covering §): Given M,. and j, the set M&... which
consists of MOPIs which are sufficient to cover the terms in the formulas representing # is developed
in the following manner:

Step 0.

1. Initialise an accumulator BASE to the empty set 0.

2. Initialise an accumulator .:covered to the empty set 0. -.. ,.d will serve as an association
list in which each element is a list containing a term in G along with the prime implicants
which cover the term. Q is completely formed in Steps 1 through 3.

3. Initialise an accumulator Mcoor = 0. Mc..,,a will serve as an association list in which
each element is list containing a MOPI which covers at least one term in G along with
the terms that it covers. M is completely formed in Steps 4 through 6.

Step 1.

1. Remove the first formula Gj from 0.

2. Form the set MJ of terms of Mc, which are conditionally-eliminable with respect to
[gj, hj]. These terms are members of Me, in which neither zj nor zj' appears.

Step 2. For each term t in Gj:

1. Form a list T.,, 0 c by placing t into it.

2. Determine the members of Mi which contain a MOPI p in the X-part such that t < p,
i.e., the MOPI covers p.

3. For MOPIs p which cover t, place the term associated with p from Mj in T ..oc.

Place T.,,oc in Qcovered'

Step 3.

* If 5 is empty, then we have determined for each term in 0 the set of MOPIs that covers
it. Continue to Step 4.

* Otherwise, return to Step 1.

Step 4. Remove the first element of G--,,,.d and denote it T,,,c.

Step 5. Let us denote t the term in T,.c from G. For each term t(X, Z) in T take one of
the following actions:

* If t(X, Z) does not have a corresponding element Moooc in the association list Mcovo,
then create one by forming a list containing t(X, Z) and the term t from the list T...o.

• Otherwise, append the term t to the list M.. 0 , corresponding to t(X, Z) in M. °,,..

369

Step 6.

* If G.... is empty, then o has been formed. Continue to Step 7.

" Otherwise, return to Step 4.

Step 7. Sort M .. ,. such that the MOPI which covers the most terms is first, the one which
covers the second most terms is second, and so on.

Step 8. Remove the first element M ...o from Mco,.,, and add the term t(X, Z) in M,.,oc to
BASE.

Step 9. Determine the terms t that the MOPI p that comprises the X-part of t(X, Z) in M.. 0.
covers (stored in M..,,). For each term t in M.oo.c:

1. Remove the corresponding list T.°,c from Gcov4Tgd*

2. For each term t(X, Z) in T..,. remove the terms t from their corresponding lists Maaaoc
in Mo,,,r.

Step 10. Remove lists M.. 0 . from Mcqer which no longer contain any terms t.

Step 11.

" If M,,,,,, is empty, then we have formed the base. Return BASE.

" Otherwise, re-sort Me such that the MOPI which covers the most remaining terms
is first, the one which covers the second most terms is second, and so on. Perform this
sort in a manner such that a MOPI p which covers fewer terms than previously precedes
the MOPIs which previously covered the same number of terms that p now covers, e.g.,
if p used to cover three terms, but now covers only one, then place it before MOPIs that
used to cover one term. Return to Step 8.

If we are not able to use Base #1 due to memory constraints, the base formed by Procedure 7.5

may provide a useful alternative. It is relatively simple to form. Additionally, the terms of the base

are very likely to be included in the final vector F of formulas. This information is very useful in

the search process, if search is required.

Formation of a Multiple-Output Inclusion Formulas

After developing a base for [g, h], the next step in the process of developing a minimal vector

F of formulas is to develop a set IF of inclusion formulas which denote coverage of terms of the

base. Forming IF for multiple-output functions is similar to the process used for single-output

functions. When developing a minimal formula F to represent a single-output function, a single

inclusion formula is formed for each prime implicant in the base. After the formation of an inclusion

370

formula for each term in the base, reduction rules are applied to identify prime implicants to place

in F as well as PIs to discard from consideration. In the process, the set IF of inclusion formulas is

reduced with respect to the number of contained terms and literals. In the case of multiple-output

functions, however, the formation of an inclusion formula for a term in the base is more complicated

than for single-output functions. We would like to form a single formula IFI for each MOPI p, of the

base in order to facilitate the use of the same reduction rules as used in the single-output case.2 To

accomplish this task, we must first develop a set of inclusion formulas-one for each interval [gj, hjI

that the term pt may be associated with--and then form the product of the resulting formulas.

Only in this manner can we determine the subsets of MOPIs that can be used in place of p, to

constitute the different formulas in F. This approach was originally used by Cutler (Cutle 80).

Let IF/ denote the inclusion formula for the term p, of the base with respect to [g,, h,].

Then, the single inclusion formula IFI for pi is formed by the product of the formulas IF formed

for each [9j, hJ in which pi may be used to form Fj, i.e.,

IF = 1 IFj . (7.28)
{jlp, can form F,}

If pg can only be used to form a single formula F, then the inclusion formula IF is equal to IF.

We call an inclusion formula formed as shown in (7.28) a multiple-output inclusion formula. Only

those MOPIs which are useful and conditionally eliminable with respect to the interval [gj, hj] are

used in the process of forming an inclusion formula IF' for pl. Additionally, all MOPIs in M.11 are

associated with distinct labels Pt prior to forming any inclusion formulas.

We now state Procedure 7.6 (Formation of a Multiple-Output Inclusion Formula) which uses

Procedure 6.3 (Formation of an Inclusion Formula) to form IF/. After each formula IF' is devel-

oped using Procedure 6.3, the formula IF is generated by:

2 Since we use the subscripts i and j to denote inputs and outputs, respectively, in the multiple-output case, we
will use throughout this chapter the subscript I to denote a terms of the base and the subscript k to denote MOPIs

used to cover terms of the base.

371

1. forming Il IF'; and

2. generating IF = ABS(I"I IF').

Procedure 7.6 (Formation of a Multiple-Output Inclusion Formula): Given a MOPI
pz, the set M.11, a set LABS = {P, . ., P } of labels associated with each member of M,u,
and the set # of lower-bound functions, an inclusion formula IF1 denoting the coverage of pt by
conditionally-eiminable MOPIs of each of the intervals [g, hj] for which pt may be use to form Fj
is formed as follows:

Step 0.

1. Initialize a set 2 which consists of the variables zj such that pi is useful and conditionally-
eliminable with respect to [gj, hj] (determinable by the absence of variables zi in the
Z-part of the term associated with pt in M.11).

2. Initialize an accumulator IP, , to the empty set 0.

3. Initialize IFI to the term 1.

Step 1. Remove the first variable zi from 2 and take the following actions:

1. Develop a set Mi which represents all of the MOPIs which are conditionally eliminable
for interval [g,, h,]. This set consists of all terms in M 11 which contain neither zj nor

2j.
2. Develop a set LABSJ which consists of all of the labels in LABS associated with the

terms in Mi.

3. Remove the Z-part from terms in Mi to form Mi(X).

4. Using Procedure 6.3 (Formation of an Inclusion Formula), the MOPI pl, the set Mi(X),
the set LABS J , and the lower-bound function §j, develop the inclusion formula IF'.

5. Add IF, to IF,,,.

Step 2.

* If 2 is empty, then each formula IF has been formed. Continue to Step 3.

" Otherwise, return to Step 1.

Step 3.

1. Remove the first formula from IF.e and multiply it by IF.

2. Form ABS(IF).

Step 4.

" If IF.cc = 0, then IF, has been formed. Return IF.

" Otherwise, return to Step 3.

372

Reduction Rules for Multiple-Output Functions

After an inclusion formula IFI is formed for each term of the base, we may reduce the set IF

of inclusion formulas using reduction rules. Because of the manner in which the inclusion formulas

are formed, the same reduction rules as used in the single-output case may b:e used in developing

a multiple-output design.

When using Base #1, all conditionally-eliminable MOPIs, Procedure 6.11 (Reduction Rules -

Set #1), is used to reduce IF. The set of rules is used because Base #1 in this instance corresponds

to Base #1 of the single-output case. Similarly, Base #2, CE MOPIs Covering g, corresponds to

Base #3 of the single-output case. Hence, Procedure 6.14 (Reduction Rules - Set #2) is used to

reduce the set IF of inclusion formulas when Base #2 is used.

Reducing the set IF of inclusion formulas is the final step of the process of forming a minimal

vector F of formulas prior to having to use a search process to determine the remaining MOPIs

to include in F. For many functions a minimal F is formed after the use of reduction rules,

particularly if Base #1 is used. The search process is discussed in Chapter 9. We now state two

algorithms which integrate the steps introduced up to the point at which search is required to

develop a minimal F to represent functions f in a set [g, h of intervals.

Minimization Algorithms for Multiple-Output Functions

In this chapter we have presented the first six steps of a methodology for forming a minimal

vector F of SOP formulas to represent functions f in the intervals [g, h_]. We summarize the steps

in the process:

1. derive a 1-normal form specification O(X, Z) = 1, if not already formed;

2. form a general solution of O(X, Z) = 1 for Z to develop a set of intervals such as (7.2);

3. form the set of all multiple.output prime implicants of the upper-bound functions h;

4. develop a base for [g, b];

373

5. develop inclusion formulas representing coverage of the terms of the base by the multiple-
output prime implicants;

6. reduce the inclusion formulas using reduction rules-identifying prime implicants to include
in formulas in F as well as to discard from consideration; and

7. use search to determine the remaining prime implicants to include in formulas in F.

If a minimal F is not formed after the first six steps, then a search process must be used to determine

the remaining MOPIs which compose the formulas Fj in F. We now present two algorithms for

performing these steps. We will compare the algorithms in an ensuing section.

Algorithm Using Base #1. The first algorithm for forming a minimal F uses the set of

all useful, conditionally-eliminable MOPIs as a base. A synopsis of this algorithm is:

1. derive a 1-normal form specification O(X, Z) = 1, if not already formed;

2. form a general solution of O(X, Z) = 1 for Z to develop a set of intervals such as (7.2);

3. form the set of all multiple-output prime implicants of the upper-bound functions h;

4. develop a base for [y, h] consisting of all useful, conditionally-eliminable MOPIs;

5. use Procedure 7.6 develop multiple-output inclusion formulas representing coverage of the
terms of the base by the MOPIs;

6. use Reduction Rule Set #1 to reduce the inclusion formulas-identifying MOPIs to include
in formulas in F as well as to discard from consideration; and

7. use a search process to determine the remaining prime implicants to include in formulas in
F.

Algorithm 7.1 implements the first six steps of the aforementioned process. The search process is

introduced in Chapter 9.

Algorithm 7.1 (Minimisation Algorithm #1): Given a 1-normal form specification O(X, Z) =
1, a minimal vector F of formulas which represent functions f(X) belonging to the intervals
[g(X), h(X)] developed from O(X, Z) 1 1 is generated in the following manner:

Step 0.

1. Initialise a partial sum PS to the empty set 0.

2. Initialise a variable Pdia,., to the empty set 0.

374

Step 1. Forj = 1,2,...,m:

1. Form the set Z, which is the set of variables in Z less the variable z3 .

2. Form 4i (X, zj) = EDIS(O(X, Z), Zj).

3. Form g,(X) = 1 (X, 0) . j(X, 1).

4. Develop a simplified formula to represent gj(X) using Procedure 2.15 (Simplification).
Call the simplified formula Gj.

Step 2. Using Procedure 7.1 (Formation of tH(X, Z)), develop a formula 4H(X, Z) which will be
used to form the set of all multiple-output prime implicants.

Step 3.

1. Develop BCF(1H(X, Z)) using Procedure 2.20 (Blake canonical form).

2. Delete the term z' ' ... z' in BCF(4H(X, Z)).

3. The formula which results after substeps 1 and 2 is M, 11.

Step 4. Using Procedure 7.2 (Useless MOPIs), the set g of functions, -nd Ma11 , determine the
useless MOPIs with respect to each interval [gj, hj]. The set Ma11 is revised by Procedure 7.2
to denote the useless MOPIs.

Step 5. Using Procedure 7.3 (Essential MOPIs), the set {9, g2,. . , gI}, and Ma11 , determine the
set of essential MOPIs with respect t each interval [gj, hi].

1. The set M.a1 is revised by Procedure 7.3 to denote the essential MOPIs.

2. Replace the set {g,92, ... , g.} of functions with the set _ = l, §2, gn§} returned
by Procedure 7.3.

Step 6. Using Procedure 7.4 (Inessential MOPIs and Formation of g), the set j of functions, and
M.11, determine the set of inessential MOPIs with respect to each interval [gj, hj].

1. The set Ma11 is revised by Procedure 7.4 to denote the inessential MOPIs.

2. Replace the set _ of functions with the set # = f0l,§2,..., 4m} returned by Procedure 7.4.

Step 7. Develop a set Mb.a, which consists of terms in Maj1 which have a Z-part in which at least
one Z-variable zi does not appear in either complemented or uncomplemented form. M&ae
corresponds to MOPIs which are conditionally eliminable with respect to at least one interval
[g,, hI.

Step 8. Form a set LABS = {P, ... , P,} of labels which will be used to denote the MOPIs in
Mb6484"

Step 9. Initialise IF = 0. Then, for each term in Mb.,.:

1. Remove the Z-part from the term to form pl.

2. Using Procedure 7.6 (Formation of a Multiple-Output Inclusion Formula), the MOPI pl,
the set Mb.,., the set LABS associated with terms in M6.,,, and the set # of functions,
develop an inclusion formula IFI denoting the coverage of pt by conditionally-elirrinable

MOPIs of each of thr intervals [gj, h,] for which pi may be use to form F.

3. Add IF to IF.

The set IF contains the inclusion formulas IFi developed for each term in Mb,,..

375

Step 10. Using Procedure 6.4 (Assignment of Cost to Terms), Mb,,, LABS, and CRITERION =
fewest gates, develop an association list aflliating a term with a cost. Each cost is paired
with the label in LABS which denotes a corresponding PI in Mb,,. Call the resulting list
LABICOSTS.

Step 11. Using Procedure 6.11 (Reduction Rules - Set #1), the set IF of inclusion formulas, and
the cost list LAB/COSTS, apply rule reduction to the set IF. Procedure 6.11 returns a
revised set IF,., of inclusion formulas, a set PS,,, of variables identified for use in F, and
a set P4 ,acrd of variables to discard.

1. Replace IF with IF,.,.

2. Replace PS to PSW.

3. Replace Pj0,.rd with Pditacrd.

Step 12. For each variable in PS:

1. Determine the associated term in Mba..

2. For the term equal to Mb,, in M.11, fill the Z-part of the associated term in M.11 with
uncomplemented literals zk for each k = 1, 2,..., m for which no literal z' appears.

Step 13. For each variable in Pd .. rd:

1. Determine the associated term in Mb,,,.

2. For the term equal to Mb,, in M.11, fill the Z-part of the associated term in M 11 with
complemented literals z' for each k = 1, 2,..., m for which no literal z' appears.

3. If the term in M.z1 then contains a Z-part of the form 4 • • z' , i.e., all Z-variables
appear and each is in complemented form, delete the term from M.11.

Step 14.

" If IF = 0, then a vector F of formulas has been developed. Continue to Step 15.

" Otherwise, a search process must be used to complete F. Skip to Step 16.

Step 15. For j = 1,2,...,m, form Fj:

1. Examine each term t(X, Z) in M zi to determine if the literal zj appears in the term.

" If zi appears in t(X, Z), then place the X-part u(X) in Fj.
* Otherwise, do not place u(X) in F,.

2. After each term in M.1z has been examined, form ABS(Fj).

After each formula ABS(Fj) has been formed, the development of F is complete. Return F.

Step 16.

1. Return the current inclusion formulas IF, Mb..., and M.1.

2. Also return LAB/COSTS and LABS for use in the search process.

376

Algorithm 7.1 is different from other algorithms found in the literature in the following ways:

" the minimization process begins with a 1-normal form specification O(X, Z) = 1;

" the partitioning of the MOPIs allows concentration of effort on the useful, conditionally-
eliminable MOPIs;

" the base consists of useful, conditionally-eliminable MOPIs; and

* the formation of each inclusion formula IF/ is simplified through the use of the a-constraint.

Algorithm Using Base #2. We now present an algorithm for forming a minimal F which

uses a set of useful, conditionally-eliminable MOPIs which cover the functions §. We summarize

the algorithm as follows:

1. derive a 1-normal form specification O(X, Z) = 1, if not already formed;

2. form a general solution of O(X, Z) = 1 for Z to develop a set of intervals such as (7.2);

3. form the set of all multiple-output prime implicants of the upper-bound functions h;

4. use Procedure 7.5 to develop a base for [g,) consisting of useful, conditionally-eliminable
MOPIs which cover the functions #;

5. use Procedure 7.6 develop multiple-output inclusion formulas representing coverage of the
terms of the base by the MOPIs;

6. use Reduction Rule Set #2 to reduce the inclusion formulas-identifying MOPIs to include
in formulas in F as well as to discard from consideration; and

7. use a search process to determine the remaining MOPIs to include in formulas in F.

The first six steps of the foregoing process are implemented by Algorithm 7.2. The search process

is introduced in Chapter 9.

Algorithm 7.2 (Minimization Algorithm #2): Given a 1-normal form specification O(X, Z) =
1, a minimal vector F of formulas which represent functions f(X) belonging to the intervals
[g(X), h(X)] developed from O(X, Z) = 1 is generated in the following manner:

Step 0.

1. Initialize a partial sum PS to the empty set 0.

2. Initialize a variable Pdi.ed to the empty set 0.

Step 1. Forj =1,2,...,m:

1. Form the set Z, which is the set of variables in Z less the variable zj.

377

2. Form ,(X,zi) = EDIS(4(X, Z), Z).

3. Form gj(X) = j(X, 0) . 4j (X, 1).

4. Develop a simplified formula to represent gi (X) using Procedure 2.15 (Simplification).
Call the simplified formula Gj.

Step 2. Using Procedure 7.1 (Formation of "PH(X, Z)), develop a formula 4bH(X, Z) which will be
used to form the set of all multiple-output prime implicants.

Step 3.

1. Develop BCF(IH(X, Z)) using Procedure 2.20 (Blake canonical form).

2. Delete the term zz' .. , z" in BCF(IH(X, Z)).

3. The formula which results after substeps 1 and 2 is M. 11.

Step 4. Using Procedure 7.2 (Useless MOPIs), the set g of functions, and M. 11, determine the

useless MOPIs with respect to each interval [gj, hj]. The set M.1 is revised by Procedure 7.2
to denote the useless MOPIs.

Step 5. Using Procedure 7.3 (Essential MOPIs), the set {gl, g,...,g,,}, and M. 11, determine the
set of essential MOPIs with respect to each interval [g., hj].

1. The set Mu is revised by Procedure 7.3 to denote the essential MOPIs.

2. Replace the set {g,, g2,... , g9} of functions with the set g = {.i, g,...,.q,} returned
by Procedure 7.3.

Step 6. Using Procedure 7.4 (Inessential MOPIs and Formation of), the set j of functions, and
M.1 , determine the set of inessential MOPIs with respect to each interval [gj, hi].

1. The set M.1 is revised by Procedure 7.4 to denote the inessential MOPIs.

2. Replace the set _ of functions with the set = { ,, ... , 4,} returned by Procedure 7.4.

Step 7.

1. Develop a set M, which consists of terms in M. 11 which have a Z-part in which at least
one Z-variable zj does not appear in either complemented or uncomplemented form.

Me, corresponds to MOPIs which are conditionally eliminable with respect to at least
one interval [gj, hi].

2. Using Procedure 7.5 (Base #2 - CE MOPIs Covering §), Me,, and §, develop a set
Mb... which consists of MOPIs which are sufficient to cover the terms in the formulas
representing j.

Step 8. Form a set LABS = {P[,..., P,} of labels which will be used to denote the MOPIs in
MOPI..

Step 9. Initialize IF = 0. Then, for each term in Mb.,,:

1. Remove the Z-part from the term to form pl.

2. Using Procedure 7.6 (Formation of a Multiple-Output Inclusion Formula), the MOPI pl,

the set M,., the set LABS associated with terms in M,, and the set # of functions,
develop an inclusion formula IFI denoting the coverage of p, by conditionally-eliminable
MOPIs of each of the intervals [gi, hj] for which pi may be use to form Fj.

378

The set IF contains the inclusion formulas IF, developed for each term in Mb,..

Step 10. Using Procedure 6.4 (Assignment of Cost to Terms), Mb.,, LABS, and CRITERION =

fewest gates, develop an association list affiliating a term with a cost. Each cost is paired

with the label in LABS which denotes a corresponding PI in Mce. Call the resulting list

LAB/COSTS.

Step 11. Using Procedure 6.14 (Reduction Rules - Set #2), the set IF of inclusion formulas, and

the cost list LAB/COSTS, apply rule reduction to the set IF. Procedure 6.14 returns a

revised set IF,., of inclusion formulas, a set PS.,. of variables identified for use in , and

a set P of variables to discard.

1. Replace IF with IF,,..

2. Replace PS to PS,,.

3. Replace Pi,,,d with P0is.waj

Step 12. For each variable in PS:

1. Determine the associated term in Me,.

2. For the term equal to M, in M.11, fill the Z-part of the associated term in M 11 with

uncomplemented literals zk for each k = 1, 2,..., m for which no literal z' appears.

Step 13. For each variable in Pdiacard:

1. Determine the associated term in Me,,.

2. For the term equal to Mc, in M. 11, fill the Z-part of the associated term in Ma1 with

complemented literals z' for each k = 1,2,..., m for which no literal z appears.

3. If the term in M.11 then contains a Z-part of the form zz' -• • z' , i.e., all Z-variables

appear and each is in complemented form, delete the term from M.11.

Step 14.

* If IF = 0, then a vector F of formulas has been developed. Continue to Step 15.

* Otherwise, a search process must be used to complete F. Skip to Step 16.

Step 15. Forj = 1,2,...,m, form Fj:

1. Examine each term t(X, Z) in M.1i to determine if the literal zj appears in the term.

* If zj appears in t(X, Z), then place the X-part u(X) in F,.

" Otherwise, do not place u(X) in F,.

2. After each term in Ma11 has been examined, form ABS(F).

After each formula ABS(F) has been formed, the development of F is complete. Return F.

Step 16.

1. Return the current inclusion formulas IF, Mc,, and M.

2. Also return LAB/COSTS and LABS for use in the search process.

379

The following aspects of Algorithm 7.2 are novel:

" the minimization process begins with a 1-normal form specification O(X, Z) = 1;

" the partitioning of the MOPIs allows concentration of effort on the useful, conditionally-
eliminable MOPIs;

" the base consists of a subset of the useful, conditionally-eliminable MOPIs derived using the
lower-bound functions §;

" the formation of each inclusion formula IFj is simplified through the use of the G-constraint;
and

* rule reduction is facilitated through the use of a revised set of reduction rules.

Comparison of the Algorithms. The utility the foregoing algorithms is dependent on

the available computational resources as well as the complexity of the functions for which we are

attempting to form a minimal F. When memory is available, Algorithm 7.1 is the best technique

to use since the resulting inclusion formulas give us the most information about MOPIs to place in

formulas Fi in F as well as to discard from consideration. Hence, the least amount of work must

be performed by the ensuing search process when Base #1 is used. However, if we are constrained

with respect to resources, then Algorithm 7.2 is used.

Algorithm 7.1 has the largest base and subsequently the largest set of inclusion formulas.

With a larger set of formulas, we are able to identify the largest set of MOPIs for F. Moreover, the

inclusion formulas are reduced to the greatest possible extent. Thus, if search is required, it will

not involve as much effort. However, this method uses a considerable amount of memory because

of the number of MOPIs and corresponding inclusion formulas. With many inclusion formulas, the

process of applying reduction rules is memory intensive.

When less memory is available, we must resort to using a smaller base. Fewer inclusion

formulas are generated when a smaller base is used. Hence, the demands on memory resources are

not as severe as when we use Base #1. However, the cost of developing fewer inclusion formulas

is that we cannot in general reduce the set of inclusion formulas as much as when a larger base is

used. As a result, effort is shifted to the search process.

380

Summary

In this chapter we have introduced a methodology for developing a vector F of formulas which

represents functions f belonging to a set [g,] of intervals. The resulting formulas correspond to

a multiple-output design which meets a specification O(X, Z) = 1. Algorithms presented in this

chapter contain all steps required to form a minimal F up to the point at which the use of search

is required. The search process is discussed in Chapter 9.

The concepts presented in this chapter have been extensions of the techniques presented for

single-output functions in Chapter 6. We have highlighted the differences between the techniques

used in the single-output case and the methods described in this chapter.

We have extended a number of new ideas for the multiple-output case in this chapter:

" Two algorithms, based on different multiple-output prime-implicant bases, were presented so
that we have available an algorithm appropriate for available computing resources as well as
the complexity and size of the function which corresponds to the circuit specification.

" We begin each algorithm with a 1-normal form specification O(X, Z) = 1 with which we form
a general solution for Z, thus yielding the intervals [g(X), A(X)]. This is done to emphasize
that deriving a design corresponds to solving a Boolean equation.

* A methodology for partitioning of the MOPIs was presented which concentrates effort on the
useful, conditionally-eliminable MOPIs.

" We have extended the equation-based approach to the generation of inclusion formulas in-
corporating the use of constraints for MOPIs. This approach provides a theoretically-sound
foundation for the reasoning process utilized to generate inclusion formulas, something that
has been lacking in previous work. The use of constraints makes the process of generating
inclusion formulas more efficient.

" A modified set of reduction rules was used for situations where only a subset of the set of
conditionally-eliminable MOPIs is contained in the base. These rules facilitate a moderate
r*duction in the inclusion formulas prior to the use of search.

381

VIII. An Introduction to Search

The last step in our process of forming a minimal vector F of formulas which corresponds

to a design is to perform a search process. The search process, as implemented in this research, is

presented in Chapter 9. In this chapter, we present background material on the concepts of search

for those who may be unfamiliar with such techniques. This chapter may be scanned by someone

familiar with informed search techniques. However, information presented in this chapter will be

used in our discussion of the application of search in developing minimal designs as presented in

Chapter 9.

Our presentation in this chapter is similar to discussions of search techniques as found in

texts on artificial intelligence. We introduce state-space and problem-reduction representations

used in search processes, which are two means of abstractly portraying a problem. Once a problem

is represented, a number of search strategies may be applied which use the representations for the

purpose of developing a solution to a problem. We present a number of different search strategies

which we may apply to our problem; specific attention is placed on those strategies used in this

work. To make a search strategy more efficient, heuristics are used to reduce the number of choices

that may have to be considered in the course of a search; the importance and uses of heuristics in

search are discussed. Sources for information found in this chapter are The Handbook of Artificial

Intelligence, Volume I (Barr 81), Artificial Intelligence (Rich 83), Heuristics: Intelligent Search

Strategies for Computer Problem Solving (Pearl 84), and Artificial Intelligence (Winst 84).

Minimisation Versus Satisficing

In this work we are concerned with developing minimal or least-cost designs to meet circuit

specifications. Hence, the task we are performing is called minimization, which is a process in which

we develop a solution which is at least as good as any other solution. If our goal was to find a solution

to the problem as quickly as possible without regard to the resulting quality of the solution the task

382

would be called satisficing. In many cases, the cost of the process to develop a minimal solution is

prohibitive or attaining one is impossible; in those instances, we accept near-minimal solutions to

the problem. When we accept near-minimal solutions within some bound of a minimal solution, we

perform semi-minimization. Semi-minimization is divided into two categories: near-minimization

and approimate-minimization. Near-minimisation is the case in which the acceptance region with

respect to a minimal solution is within defined bounds, i.e., the resulting solution is guaranteed

to be within some bound of a minimal one. In approximate-minimization tasks, there is a high

probability that the resulting solution is near-minimal.

We use the terminology in the foregoing paragraph to frame our discussion of search processes

in the remainder of this chapter. The definitions are adapted from terminology used by Pearl, who

presented analogous terms in a discussion of optimization (Pearl 84:14-15).

Problem Representations

Two common methods for abstractly depicting a problem in search processes are state-space

and problem-reduction representations. Both methods are means of systematically representing a

problem to facilitate problem-solving. In the current section, we introduce these representations as

well as the use of graphs in state-space and problem-reduction representations.

State-Space Representations. When we solve a problem we would like to do so in a

methodical manner. To accomplish this, we need a clearly-defined starting point as well as distinct

goals or objectives. Once we have determined our starting and ending points, we then must develop

an orderly way to realize the goals, progressing from the starting point. In many problems we

use a technique called forward reasoning in which we move from an initial configuration of the

problem through intermediate ones until we ultimately reach a goal position. A configuration

which represents a condition of the problem at a stage in the solution process is called a state of

the problem. Additionally, we call the initial problem configuration the initial state and any goal

383

condition a goal state. Rules which guide the transformation of one state of the problem to another

are called operators. Moreover, the set of all possible states derivable from the initial state using

the operators is called a atate-space. A problem representation based on forward reasoning which

uses operators to transform one state to another on the path from the initial state to a goal state

is called a state-space representation of a problem.

After we devise the state-space representation for the problem, we apply techniques to attain

a goal state from the initial configuration of the problem. This often entails determining the

appropriate sequence of operator applications. Starting from the initial state, we say that we are

searching for a goal state. A specific set of rules for moving from the initial problem state to a goal

state is called a search strategy. In forming these rules, we may find that there are short-cuts that

allow us to get to a goal state quickly, although we may forsake the opportunity to get to the best

goal state. Such techniques are called heuristics. Search strategies and heuristics will be discussed

in later sections of this chapter.

The important aspects of a state-space representation of a problem are that

* each state is a symbolic configuration of a fixed set of elements;

* operators are used to move from one state to another; and

e a search strategy is used to choose a good sequence of operator applications in order to move
forward from the initial state to a goal state.

Although a state-space representation of a problem may often be appropriate, in many circum-

stances an alternative means of depicting a problem called a problem-reduction representation may

be more suitable.

Problem-Reduction Representations. In many situations a problem may be decompos-

able into a set of smaller subproblems such that the combined solutions of the subproblems consti-

tute a solution for the original problem. A problem representation in which problems are reduced

to a set of subproblems, each of which is then solved independently, is called a problem-reduction

384

repreaenatioa. Whereas operators in a state-space representation are used to transform one state

to another, operators in a problem-reduction representation typically decompose a problem into a

set of subproblems. Once all of the subproblems are solved, the subproblem solutions are combined

to form a global problem solution. Since work proceeds backward from subproblem solutions, i.e.,

goal states, to the initial state to form a global solution, problem-reduction approaches are said to

employ backward reasoning.

The concepts which distinguish a problem-reduction representation from a state-space repre-

sentation are that

* a set of operators is used to transform a large problem into a set of subproblems;

" after decomposing the problem into subproblems, all subproblems are independently solved;
and

" after each subproblem is solved, reasoning proceeds backward from the initial goal, i.e., the
combination of subproblem solutions, to the initial problem state.

Although state-space and problem-reduction representations are different approaches for solving a

problem, graphs are used in both methods as a vehicle for the representation. The use of graphs

in both of these representations in discussed in the next section.

Search Graphs. The typical method for portraying state-space and problem-reduction rep-

resentations is through the use of search graphs. A search graph is a representation of the entire

search apace. In a search graph, the initial state is called the root node of the graph. Successors to

a given node n are called children of the node; n is called that parent of the children. Operators

are used to develop successor nodes from a given node; the arcs of the graph depict operator appli-

cations. A sequence of arcs that is traversed to go from one node to another is called a path. The

average number of children that a node may have in a search graph is called the branching factor

of the graph.

385

A search graph may be explicitly depicted; however, a search graph is more likely to be

implicitly used by a search strategy, i.e., it only exists in an abstract sense. On the other hand,

specific nodes are stored explicitly when generated by a search strategy. A node contains relevant

information such as an encoding of the portion of a problem that it represents as well as a means

for describing all points between it and the root node, i.e., how it was generated from the root

node. A node also contains information that allows us to form successor nodes for it. At a point

in the search process, the set of all nodes may be partitioned into four groups:

" nodes that have been ezpanded;

" nodes that have been ezplored, but not expanded;

" nodes that have been generated, but not explored; and

* nodes that have not been generated. (Pearl 84:34)

A node is said to be generated when it is produced and stored explicitly in the course of a search

process. A node is ezplored when at least one of its successor nodes has been generated. When all of

the children of a node n have been generated, then n is said to be ezpanded. In search strategies two

lists are typically maintained: one contains nodes that have been generated but not yet expanded

and the other nodes that have been expanded; these lists are called OPEN and CLOSED lists,

respectively.

In a state-space representation, each node in a search graph corresponds to a state in a state-

space. An arc in the search graph corresponds to the transformation of one state to another via an

operator application. A path in the search graph from the initial state to a goal state represents a

solution to the problem to be solved. The nodes which are generated in the course of a search depict

portions of the total state-space which have been explored. In general, only a small portion of the

entire state-space is examined. From a given node n, a solution may possibly be found via a path

through n and subsequently through one of its successor nodes; each successor node corresponds

to an alternative path that may be taken in the course of finding a solution. Paths through n to

386

each of its successor nodes are said to be competing branches of the search; hence, arcs from n to

the successor nodes are called OR arcs. Additionally, successor nodes reached through OR arcs are

called OR nodes. A graph in which the children of every node n correspond to alternative solutions

is called an OR graph. State-space representations are normally depicted using OR graphs.

A graph used to portray a problem-reduction representation is similar in some respect to

graphs corresponding to state-space representations. Each node in a search graph corresponds to a

state in search space. For some nodes the children may lead to alternative solutions; the arcs leading

to the children are OR arcs. However, for other nodes in the graph, a subset of the node's children

may correspond to a decomposition of the problem. Each of the subproblems must be solved to

develop a solution through the parent node. Arcs which lead to successor nodes corresponding to

subproblems are called AND arcs. Successor nodes corresponding to subproblems are called AND

nodes. A graph which includes both AND and OR arcs is called an AND-OR graph. Problem-

reduction representations are depicted using AND-OR graphs. Because of the different types of

arcs in AND-OR graphs, search strategies used to develop solutions from AND-OR graphs are more

complicated than those used to derive solutions from OR graphs.

In general, a search graph is used to depict a search space. However, any search graph has

a corresponding search tree. Searching through a search tree is simpler than searching through a

search graph. However, in some problems effort may be duplicated when using a search tree due

to the fact that in a search tree the same node may be generated several times in different paths

and hence will have to be processed repetitively. This problem may be handled by comparing a

newly-generated node to previously-generated nodes so that duplicate nodes are discarded. We will

represent the search space for the problem of developing a minimal digital design as a search tree;

hence, we restrict our discussion of search spaces in the remainder of this chapter to search trees.

Figure 8.1 depicts an AND-OR tree. Node A is the root node of the tree. Nodes B, C, and D

are children of node A. The children of node B-nodes E, F, and G-are OR nodes. Nodes K, I, and

387

J are AND nodes. The set of AND arcs, i.e., those leading to the AND nodes corresponding to a

set of subproblems, are linked together by a line which connects the arcs. In some cases, a node

may have successor nodes which are OR nodes as well as AND nodes; node D is such a node. Node

K is an OR node; nodes L and M are AND nodes.

Root Node

Figure 8.1. An AND-OR Tree

Search strategies are used to develop a solution from a search graph. Information about the

problem domain is used by a search strategy to select a node to expand at a given point in the

search process. Each search strategy uses the domain information in a specific manner to select

a node for expansion. In most search strategies a least-cost node is selected for expansion. An

evaluation function f(n) is used to evaluate the cost of a node n. The function f(n) comprises two

component functions: g(n) and h(n). The function g(n) is a measure of the exact cost of getting

from the root node to n. The function h(n)-which is called a heuristic function-is an estimate

of the cost of getting from n to a goal node. In general, f(n) is defined by the equation

f(n) = g(n) + h(n). (8.1)

388

If h" (n) is the actual cost of getting from n to a goal node, then f (n) = g(n) + h* (n) is the actual

cost of a path from the root node to a goal node which passes through n. The manner in which

f(n), g(n), and h(n) are used differs depending on the search strategy that is employed. A search

strategy that employs a heuristic function is called heuristic or informed search. Search processes

which do not use a heuristic function are called uninformed search.

The nature of the heuristic function h(n) is particularly important in search strategies. huw-

ever, the development of a heuristic function is only one way that heuristic information is used

by search processes. In most cases we desire to form a minimal solution. In other cases, we will

accept a near-minimal solution if the search process can be performed more efficiently. Heuristic

information is often used to reduce the effort required in the course of a search-sometimes at the

expense of forming a near-minimal solution rather than a minimal one. The use of heuristics is one

of the most important issues in applying search to practical problems; hence, we address the use of

heuristics in search in greater detail.

Heuristics in Search

An Overview of Heuristics. Search processes are used to develop solutions for a myriad

of problems. In most cases, the tasks to which we apply search are nontrivial. In fact, many-if

not most-problems in which search is used are NP-complete. These problems are characterized

by what is often termed a "combinatorial explosion" inherent in attempting to find a solution.

Exhaustive blind search is totally impractical for NP-complete problems because the number of

states that must be examined is too immense to explore in a lifetime. To handle such problems,

we often must devise mechanisms to reduce the effort that must be expended by a search process

by either

1. reducing the number of choices that must be made, or

2. differentiating among possible choices.

389

Rules based on task-dependent information used to reduce search effort are called heuristics. Ac-

cording to Pearl, heuristics are

criteria, methods, or principles for deciding which among several alternative courses of
action promises to be most effective in order to achieve some goal, (Pearl 84:3)

i.e., a solution to a problem. Heuristics allow a search space to be trimmed to a size which is

computationally manageable. Hence, heuristics facilitate the ability to solve problems that would

otherwise be intractable.

Heuristics are used in two ways in search processes. First, heuristics are used to eliminate

paths in a search tree. In this case, heuristics are simplifying choices or rules of thumb which

are used to identify and discard from consideration nodes which most likely lead either to non-

minimal solutions or to no solution at all. Such nodes are said to be "pruned" from the search

tree. The second way in which heuristics are used is to generate estimates of the distance between

intermediate nodes and goal nodes, i.e., via a heuristic function h(n). Heuristic functions are

used to assign costs to nodes to determine to order of node expansion. In either case, the use of

heuristics may greatly increase the efficiency of the development of a solution. However, the cost

of this efficiency is that the "best" path may be overlooked, i.e., a non-minimal solution might be

developed. A non-minimal solution is often acceptable as long as we believe its cost to be within a

reasonable bound of the cost of a minimal solution.

There exist a number of qualities which distinguish good heuristics from poor ones. These

qualities include ease of calculation, whether a minimal solution is insured, and whether a reasonable

search is performed. We would like the number of calculations involved in generating heuristic

information to be as small as possible; a heuristic should be a simple way of indicating which

course of action is preferable. Otherwise, we may spend more time calculating which alternative

to choose in a search than performing the search itself. If a minimal solution is guaranteed to be

found (if a solution exists) we often consider a heuristic to be good. However, in some cases we

390

would rather use a heuristic that minimizes search effort rather than the solution cost. Thus, a

definitive statement that a given heuristic is better than another cannot be made apart from the

problem to which they will be applied. Ideally, we would like a heuristic to expedite the pruning

of a search, because we desire only to explore nodes along a minimal path from the start state to

a goal state. In some situations, however, the ability to attain a best-cost solution may come at

the expense of an exorbitant search effort. A heuristic that is good for one problem may be bad

for another. Thus, a balance must be struck between the need to minimize solution cost and to

minimise search effort. This balance must be examined on a case-by-case basis.

Heuristic Functions. The essential algorithmic difference among various search strategies

is the nature of the heuristic function h(n) that is used to guide the search. No heuristic function

is used in uninformed search processes; alternatively, we may view uninformed search processes as

having a heuristic function in which h(n) = 0. A given heuristic function hi(n) may have certain

properties which make its use more desirable than an alternative function h 2 (n). The properties

that distinguish one heuristic function from another are

" admissibility,

" consistency, and

* informedness.

We now discuss each of these properties.

Let h*(n) be the actual cost of getting from node n to a goal node. A heuristic function h(n)

is said to be admissible if the condition

h(n) < h"(n) Vn (8.2)

is true. Thus, an admissible heuristic function h(n) never overestimates the actual cost of the

distance between a node n and some goal node, i.e., h(n) is an optimistic estimate. Admissible

391

heuristic functions are very important in search processes. In some search strategies, the A*

algorithm for example, the solution produced by the search process is guaranteed to be minimal if

an admissible heuristic function is used. An algorithm is said to be admissible if it is guaranteed

to return a least-cost solution if a solution exists.

Ideally, a heuristic function h(n) exactly estimates the actual cost h" (n). This is not normally

possible; however, we may be able to develop a heuristic function h2 (n) which always yields a better

estimate of h*(n) than does a second function hi(n). A heuristic function h2 (n) is said to be more

informed than hi(n) if both are admissible and

h2(n) > hi(n), for every nongoal node n. (8.3)

Lesa effort is required in the search process if the most informed heuristic function is used. An

algorithm which uses the more informed heuristic function h2 (n) is said to be more informed than

an algorithm which uses the function hi(n). In the A* algorithm, using a more informed heuristic

function will generally result in fewer node expansions in the process of finding a minimal solution

than if a less informed heuristic function is used, i.e., a minimal solution will be developed with

minimal effort expended.

In any search strategy we would like to avoid reopening a node that was placed on the

CLOSED list. A heuristic function that ensures this is called a consistent heuristic function. Let

k(n, n') be the cost of a cheapest path from node n to node n'. Then a heuristic function h(n) is

consistent if the condition

h(n) < k(n, n') + h(n') Vn, n' (8.4)

is satisfied. This condition is known as the triangle inequality which must hold throughout the

search space. Every consistent heuristic function is also an admissible one. It has been shown that

392

the A* algorithm is not minimal with respect to the number of node expansions if this condition

does not hold.

We will discuss the properties of heuristic functions in more detail in our discussion of the

A* algorithm in the next section in which we survey the A* algorithm as well as a number of other

search strategies.

Search Strategies

In this section we survey different search strategies which may be used to develop a solution

from a search space. Descriptions of the search types are included in this chapter. Algorithms which

implement each of the search strategies are listed in Appendix D. However, prior to introducing

search strategies we introduce terminology used to differentiate them. After introducing search

classifications, we present a number of uninformed and informed search techniques.

Search Strategy Classifications. Search algorithms may be categorized as blind, unin-

formed or informed. In blind searches the order in which nodes of the search tree are examined

is determined by the search method and not by any property of the corresponding states, i.e.,

neither g(n) nor the heuristic function h(n) is used. The function g(n) is used to evaluate nodes in

uninformed search strategies. In informed search, properties of the corresponding states are used

to guide the search in order to limit the amount of searching that must be performed, i.e., heuristic

functions are used. An evaluation function f(n) = g(n) + h(n) is used to estimate the relative

benefit or cost of continuing a search from a given node.1

An algorithm is said to be complete if it terminates with a solution if one exists; it is admissible

if it is guaranteed to return an optimal solution if a solution exists. An algorithm A, is said to

dominate an algorithm A2 if every node expanded by A, is also expanded by A 2. A, strictly

1 The literature does not distinguish between uninformed search and blind search. However, we make a distinction

between the two since we use information about a node, i.e., 9(n), to select a node for expansion in uninformed
search. In & blind searches, such as breadth-first search, the order of node expansions is based solely on the topology
of the search tree.

393

domisaes A2 if A, dominates A2 and A2 does not dominate A1 . Hence, an algorithm A1 which

strictly dominates A2 is more efficient than A2 . Furthermore, an algorithm is said to be optimal

over a class of algorithms if it dominates all members of that class. (Pearl 84:75)

In many search strategies, decisions are made such that nodes are discarded from further

consideration in the course of the search process. Strategies which make such decisions are said to

be irrevocable. If a strategy is not irrevocable, then it is said to be revocable. We will introduce

search strategies which are both revocable and irrevocable.

Blind Search Techniques.

Breadth-First Search. Breadth-first search is a brute-force approach in which the

nodes of the search tree are examined level-by-level. No node on a level is examined until every

node on the previous level has been examined. We can view breadth-first search as using an

evaluation function f(n) in which g(n) is the number of arcs between the root node and n and h(n)

is equal to sero. This type of search is managed by an OPEN list which is a queue. When a node is

expanded, its children are placed at the end of the queue to await their turn to be expanded. The

most important advantage of this type of search is that it will always find a shortest path from the

initial node to a goal node. However, a shortest path to a solution may not be a least-cost path.

Figure 8.2 illustrates a breadth-first search. The numbers in the nodes indicate the order

in which the nodes in the search tree are expanded. For complex problems, breadth-first search

requires too much memory since many nodes may be added to the OPEN list before the search

reaches a goal node, especially when the path to a goal node is long. Hence, breadth-first search is

only feasible for relatively simple problems. Procedure 8.1 (Breadth-First Search) in Appendix D

implements breadth-first search.

394

2 3 4 5

(6 7 8 9 10 11

1 13 14 15

Figure 8.2. Illustration of Breadth-First Search

Depth-First Search. Another type of search that is also a brute-force approach is

depth-first search. In depth-first search a search tree is explored in as deep a manner as possible

before backtracking. Once a node is reached in which the search may go no deeper, backtrack-

ing occurs to its parent node and another child is explored. Hence, depth-first search minimizes

backtracking as much as possible. It is a good method to use when backtracking involves complex

computations. An OPEN list in depth-first search is usually implemented with a stack. When a

node is expanded, its children are placed at the top of the stack. In complex situations, where the

number of possible nodes is large, a depth bound may be imposed to force backtracking. This forces

the search tree to be spread out rather than exploring a single path in the search.

Figure 8.3 illustrates a depth-first search. The numbers in the nodes indicate the order in

which the nodes in the search tree are expanded. Procedure 8.2 in Appendix D (Depth-First Search)

implements depth-first search. Depth-first search is good for finding a solution quickly, although it

may not be minimal. However, if a number of deep paths in a tree must be traveled which initially

bypass a solution which appears at a higher level in the search tree, then depth-first search would

be very inefficient. Depth-first search is often used to quickly find an initial solution.

395

2 7 11 13

3 4 814 1

5 6 9

Figure 8.3. Illustration of Depth-First Search

Blind AND/OR Graph Search. Blind search strategies exist for solutions of prob-

lems represented by AND/OR graphs. AND/OR graphs are used in problem-reduction representa-

tions. Rather than finding a solution path through a single node, a solution path must be formed

through each of the AND nodes since all subproblems represented by the AND nodes must be

solved to form a solution through the corresponding parent node. The methods for the uninformed

search of AND/OR graphs are adaptations of the methods used in search trees. For example,

there are depth-first and breadth-first search algorithms for AND/OR graphs. The difference be-

tween searching the AND/OR graph and an OR graph is that instead of testing a single node for

termination, a set of nodes must be tested.

Uninformed Search Techniques.

Branch-and-Bound Search. An algorithm which generalizes the breadth-first search

procedure to ensure that a minimal solution is found is called branch-and- bound search. We again

define an evaluation function f(n) as being equal to a function g(n). However, rather than g(n)

being equal to the number of arcs between the root node and n, we define it to be equal to the cost

of a path between the root node and n. Given a nonnegative cost associated with each arc, the

coot of a path between the root node and n is the sum of the arc-costs along the path. Note that

396

the measure of the cost between the start node and nodes in the search tree does not involve the

use of a heuristic function h(n); hence, branch-and-bound search is not a heuristic search.

A sorted list is used to form the OPEN list in branch-and-bound search. When a node is

expanded, each of its successor nodes is evaluated using g(n) to determine the cost of the path

between the root node and a successor node. The successor nodes are inserted into the OPEN list

in a manner that maintains that the ordering of the OPEN list, such that nodes appear in the

OPEN list in ascending order of cost. Nodes are expanded such that the least cost path from the

start state to the node to be expanded is taken, i.e., a partial path with the least cost is always

extended.

Other names for branch-and-bound search are cheapest-cost and uniform-cost search. Branch-

and-bound search is generally more efficient than breadth-first search. However, the use of this

search may again be impractical for complex problems. Procedure 8.3 (Branch-and-Bound Search)

in Appendix D implements branch-and-bound search.

Greedy Method. An algorithm which is an irrevocable variation of branch-and-bound

search is greedy search. In greedy search a function g(n) is used to determine the cost of a path

between the root node and n. Initially, the root node is expanded to generate all of its children.

Each child is then evaluated to determine the associated cost g(n). After each child is evaluated, all

but the node with the cheapest associated cost are discarded. The process then continues iteratively

until either a solution is found or no more children may be generated. Hence, greedy search is not

guaranteed to find a solution, and if a solution is found, it may not be minimal. Like depth-first

search, greedy search may be useful for quickly finding an initial problem solution. Procedure 8.4

(Greedy Method) in Appendix D implements greedy search.

397

Informed Search Techniques.

Hill-Climbing. Hill-climbing is a variation of depth-first search which uses the local

knowledge of a given node n to form a heuristic function h(n) to estimate the distance between

n and a goal node. The function h(n) is used to select a node to expand based on what appears

to be the node which is the shortest distance from a solution. In hill-climbing, the root node is

expanded to generate all of its children. Each child is then evaluated to determine the node which

is estimated to be closest to a solution. After each child is evaluated, all but the node which is

estimated to be the closest to a solution are discarded. The process continues iteratively until either

a solution is found or no more children may be generated. Hence, hill-climbing is not guaranteed

to find a solution. Additionally, if a solution is found, it may not be minimal.

Similar to the greedy method, hill-climbing is an irrevocable strategy since much of the search

space is eliminated from consideration in the course of the search. One problem with hill-climbing

is that we may come to a local minimum---called the foothill problem-which either may appear as

the minimum solution when in fact it may be sub-minimal. A second problem is called the plateau

problem in which a "best" direction cannot be determined. Hence, we may be at a dead-end at

which there exists no solution. In addition, a third problem is called the ridge problem in which

we reach a state from which we cannot move in a single step. A revocable modification of the

hill-climbing approach allows backtracking.

The hill-climbing search strategy is implemented by Procedure 8.5 (Hill-Climbing) in Ap-

pendix D. Similar to the greedy method, an application of hill-climbing is to quickly develop an

initial solution to a problem.

Best-First Search. Best-first search is implemented in a fashion similar to branch-

and-bound search. However, the difference between the two strategies is that the function g(n)

is used to evaluate each node in branch-and-bound search, whereas h(n) is used to evaluate each

398

node in best-first search. All nodes which are generated are placed in the OPEN list. The nodes

in the OPEN list are ordered so that the nodes appear in the OPEN list in ascending order of the

value of h(n). In a sense, best-first search is similar to hill-climbing in that the best apparent path

is always taken. The difference is that when we choose to expand a node and we evaluate all of

its children with h(n), we do not necessarily pick the best child as the next node to expand as in

hill-climbing. Rather, we then look at the entire search tree and examine all nodes that have been

evaluated and pick the global best. Hence, we often will jump around the search tree choosing the

next node to expand.

Best-first search will generally yield a good solution, but not necessarily a minimal one.

Variants of the best-first search exist that will guarantee a minimal solution. The power of the best-

first search is dependent on the heuristic function. Procedure 8.6 (Best-First Search) in Appendix D

implements best-first search.

Beam Search. A modification of breadth-first search in which the search progresses

level-by-level is called beam search. However, instead of expanding all nodes at a level in the search

tree, only the "best" w nodes are expanded. The pre-defined constant w is called the width of the

search. After children are generated at each level in the tree, an evaluation function f(n) is used to

determine the best w nodes. The best w nodes are kept, and the remaining nodes are discarded for

further consideration. Thus, beam search is irrevocable. This process continues until a solution is

reached or until no children are produced. Given that b is the branching factor of the search tree,

the average number of nodes that must be generated at each level of the search tree is w - b.

The evaluation function f(n) may incorporate the use of the actual cost between the root

node and a node n, i.e., g(n), as well as an estimate h(n) of the distance between n and a goal

node. A variation of beam search is to maintain an OPEN list in which a single node is expanded

at each point in the search, its children are inserted into the sorted OPEN list, and all but the first

w nodes are deleted from the list prior to the next node expansion.

399

Beam search may be used when memory resources available to the search process are limited.

Additionally, it generally produces a good solution rather quickly; beam search is often used when

performing approximate minimization. However, since pruning occurs throughout the search pro-

cess, a solution-minimal or non-minimal-may not be developed. Beam search is implemented by

Procedure 8.7 (Beam Search) in Appendix D.

A* Search. The A* search algorithm is perhaps the most widely used-as well as the

most extensively studied-search strategy used in the field of artificial intelligence. The A* search

algorithm uses an evaluation function f(n) to determine which node to expand. The evaluation

function f(n) in the A* algorithm comprises two components which yield an estimate of the shortest

path between the start node and a goal node. The first component, g(n), is a measure of the exact

cost of the path between the start node and node n. The second component is an estimate of the

distance between node n and a goal node; this component is the heuristic function h(n). The total

evaluation function f(n) for the A* algorithm is defined by the equation

f(n) = g(n) + h(n) Vn. (8.5)

If the function h(n) is admissible, then the A* algorithm is guaranteed to return a minimal solution.

The A* algorithm is implemented in the same fashion as the best-first algorithm with the

exception that the evaluation function f(n) is used rather than h(n) alone. The A* algorithm

is actually a general algorithm. By modifying the evaluation function it degenerates into other

searches. For example, by setting g(n) equal to zero the A* search becomes best-first search. If

h(n) is set equal to zero, then A* degenerates to a branch-and-bound search. Procedure 8.8 (A *

Search) in Appendix D implements A* search.

The properties of the heuristic function h(n) that may be used in the A* search have been

extensively studied to determine the effect that a given function h(n) may have on the A* algorithm.

400

The advantage of admissible heuristic functions h(n) is that they guarantee that a solution path

of minimal cost will be found if a solution path exists. The advantage of a consistent heuristic

function h(n) is that an A* search will proceed with a minimal number of node expansions. In

an ideal situation we would like to find a minimal cost path. However, in practicality we often

must relax our desire for a minimal cost solution and settle for some sub-minimal solution. If the

heuristic function h(n) is computationally expensive, the cost of performing an A* search that yields

a minimal solution may be prohibitive. It may be more important to find a sub-minimal solution

in a search of reasonable length. In some cases when an admissible h(n) is used, the combinatorics

of a problem will prohibit the search from terminating. An example in which an admissible h(n)

causes problems is when there are several roughly equal candidates to choose from at each stage of

the search. A disproportionate amount of time will be spent on determining a minimal path.

Sometimes we would rather that a heuristic function h(n) give a very accurate estimate of

h*(n) for a node n in most cases, even if the actual distance to a goal is occasionally overestimated.

In this case, we would have an inadmissible heuristic function and algorithm. Assuming that

a heuristic function hi(n) generally gives a good estimate of h*(n)-although it may at times

overestimate-it may be preferable to a function h2(n) which does not overestimate but does not

give as good an estimate of h'(n). Using hi(n) rather than h2 (n) will generally result in fewer nodes

being expanded and thus generated. Two benefits are derived from this occurrence. First, because

fewer nodes are then stored on the OPEN list, the stack space used by the search process will be

greatly reduced. Hence, less memory is required. Additionally, because fewer nodes are process,

the speed of the search will be greatly increased. The benefit of decreasing memory usage and

increasing speed comes at the expense of the guarantee that a least-cost solution will be produced.

A useful theorem regarding inadmissible heuristic functions is called the GraceJ, Decay of

Admissibility (Rich 91:79). Let h*(n) be the actual cost of the shortest path between a node n and

a goal node. Then the Graceful Decay of Admissibility is stated as follows:

401

If h(n) rarely overestimates h*(n) by more than 6, then the A* algorithm will rarely
find a solution whose cost is more than 6 greater than the cost of the optimal solution.

Hence, if we use an h(n) which overestimates h (n) by a known bound, then the A* algorithm is

useful in developing a solution which is within the bound. In this case, the A* algorithm would be

useful for near-minimisation.

Another consideration regarding the heuristic function is that it may be difficult to derive a

good admissible h(n). If the heuristic function is poor and admissible, e.g., approaches 0, it may

turn out that an A* search will degenerate into an uninformed, i.e., branch-and-bound, search.

This is a situation that we would like to avoid in many problems. Hence, rather than settle for a

bad admissible heuristic, it may be desirable to use an inadmissible heuristic function.

Dynamic Weighting. The use of an inadmissible heuristic function h(n) which is

within some bound of h*(n) has proven useful for many problems. In particular, a slight overesti-

mate of the actual h* (n) may be useful high in a search tree in order to discriminate early among

paths which appear to be equally good. The utility of this approach has been applied to develop a

search strategy called dynamic weighting.

In this strategy, the evaluation function f(n) is defined by the equation

f(n) = g(n) + h(n) + e [1 - d(n)/N] - h(n), (8.6)

for which

o g(n) and h(n) are defined as usual,

e is a pre-defined constant,

* d(n) is the depth of node n, and

* N is the anticipated depth of the goal node.

402

Early in the search tree, the heuristic function h~n) is thus weighted by a factor that is close to

(1 + e); hence, the evaluation function f(n) is close to g(n) + (1 + C)h(n). As the search proceeds

to deeper levels in the tree, the evaluation function f(n) approaches g(n) + h(n). Thus, depth-first

traversals of the search tree are encouraged early in the search tree; A*-type searches occur deep in

the tree. If the heuristic function h(n) is admissible, the dynamic-weighting algorithm is said to be

e-admissible, i.e., the solution found by dynamic weighting is guaranteed to be at most a factor of

(1 + e) over a minimal solution. Thus, dynamic weighting is useful for near-minimization, i.e., when

we desire a solution guaranteed to be within some bound of a minimal solution. An implementation

of dynamic weighting is given by Procedure 8.9 (Dynamic Weighting) in Appendix D.

Static Weighting. Whereas the dynamic-weighting method decreases the weighting

of h(n) as the search proceeds to lower level in the search tree, it is useful in some problems to

weight h(n) by the same factor throughout the search. We call such an approach static weighting.

Let W be a constant which may be greater than or equal to zero. (In most cases W is fixed at a

value greater than one.) Then the evaluation function f(n) is defined by the equation2

f(n) = g(n) + W -h(n). (8.7)

The static weighting strategy generally yields a solution which is close to a minimal solution.

However, since we cannot guarantee that a resulting solution is within a defined bound of a minimal

solution, static weighting is used for approximate-minimization. The static weighting method is

implemented by Procedure 8.10 (Static Weighting) in Appendix D.

AO* Search. The AO* algorithm is the analog to the A* algorithm for AND/OR

graphs. Because this algorithm must deal with AND/OR graphs rather than ordinary OR graphs

it is more complicated than the A* algorithm. An evaluation function f is also used in this

21n the literature, the evaluation function is sometimes defined as f(n) (1 - W)g(n) + Wh(n), in which W is
a number which may range from 0 to 1. The choice is strictly arbitrary.

403

algorithm, but it is based only on the distance between a node n and a set of goal nodes-the cost

of going from the start node to a given node is not used. However, it is more complicated because

in the case of an AND branch, the cost of going from a node to a set of solutions must be estimated.

Differing from the A* algorithm, as successor nodes are explored in the graph, the values of the

heuristic function are propagated upward in the graph. During the upward propagation, the values

of the heuristic functions for ancestor nodes are recalculated. After all calculations are complete,

the best current path is selected for search. The AO* algorithm is guaranteed to derive a minimal

solution to a problem.

Comparison of Search Strategies. A number of metrics allow us to compare the relative

worth of different search strategies for a specific problem. The metrics that we will use are:

* the number of children generated;

" the number of nodes expanded;

" the number of nodes on the OPEN list when a solution is found; and

" the proximity of the developed solution to a minimal solution.

The first three metrics give indications of the amount of work and memory space required to develop

a minimal problem solution. The last criterion measures the "goodness" of the developed solution.

In some situations, we may use one search to develop an initial solution which serves as

an upper bound for a minimal solution. Hence, after a node n is evaluated, n is discarded from

future consideration if the value of f(n) is greater than the upper bound. A metric which gives

an indication of the utility of the method used to develop the initial upper-bound as well as the

heuristic function h(n) used in the primary search is the number of nodes which are found to be

greater than or equal to the upper bound.

We will use these metrics to com, - search strategies used to develop minimal digital designs.

404

Summary

In this chapter, we have presented background material on the concepts of search for those

who may be unfamiliar with such techniques. Topics discussed included problem representation

formats, the use of heuristics in search, and search strategies.

405

IX. The Search Process in Minimization

In our process for forming a minimal vector F of formulas corresponding to a design, reduction

rules are used to reduce the set of inclusion formulas representing coverage of the terms of the base

by prime implicants. 1 In many cases, however, all of the prime implicants required to constitute

formulas in F will not be identified using the reduction rules; a set of inclusion formulas remains

after rule reduction which contains the information that is necessary to determine the remaining

prime implicants which compose formulas in F. A search process is used to determine these prime

implicants from the inclusion formulas. In this chapter, we discuss our application of search for

ascertaining the remaining prime implicants to constitute formulas in F.

We begin the chapter by introducing a number of basic issues which must be considered when

applying search to a problem. We use these issues as a framework for our discussion throughout

the chapter. Generally, these issues concern the representation of information in the search process,

the rules used to make decisions based on the given information, and the use of heuristics in the

search process. An overview of the use of state spaces in logical design is presented in light of these

issues. We introduce two state-space classifications for logical design.

Each aspect of the search process is addressed in this chapter. Specific topics include search

trees, node representations, heuristic functions, and search strategies. Additionally, we present

two problem-reduction techniques for decomposing the search problem; the use of these techniques

greatly reduces the complexity of the resulting search process. If the A* search strategy is applied,

the resulting vector F of formulas is guaranteed to be minimal. The results may only be near-

minimal-but often are minimal-when other search strategies which we present are used.

Because of the manner in which inclusion formulas are formed for both single and multiple-

output circuit specifications, the same search process may be used for the resulting inclusion for-

1In this chapter, we will use the term prime implicant to denote prime implicants as discussed in Chapter 6 as

well as multiple-output prime implicants (MOPI*) as used in Chapter 7.

406

mulas. The search process returns a set of labels; each label is associated with a prime implicant.

The only difference between the single-output and multiple-output cases is how we develop each

formula F in F using the labels associated with each prime implicant.

Near the end of the chapter, we present a general search algorithm which may be applied to

carry out the search process and construct F. This algorithm ties together the components of the

search process which are described throughout the chapter.

The Search Process in Logical Design

In her book Artificial Intelligence (Rich 83:56), Rich states five important issues which arise

in formulating search processes for a given problem. These issues provide a framework which we

will use to discuss the application of search to logical design. These issues are:

1. the direction in which to conduct the search;

2. the topology of the search process;

3. how each node will be represented;

4. selecting applicable rules; and

5. using a heuristic function to guide the search.

The fourth issue concerns the search strategy that we may use to guide a search; the use of a

heuristic function h(n) is the fifth issue. In the remainder of this section, we discuss state spaces

in logical design with respect to these issues.

In many problems we reason forward from initial states to the goal states. In other problems,

it may be possible-and advantageous-to reason backward from the goal states to the initial states.

Finally, it is possible in some cases to reason simultaneously in both the forward and backward

directions. Since our problem is to generate a minimal representation of a circuit specification, we

do not know at the outset the resulting circuit design. Hence, we are forced to pursue a forward-

reasoning strategy in which we proceed from an initial state to a yet-to-be-determined goal state.

407

This makes the circuit minimization problem a natural to be cast in a state-space representation.

Our first issue in the formulation of a search process is concerned with the direction of the search

process. In circuit minimization we usually begin with some initial state and proceed to a goal

state.

Our second and third criteria for discussing search processes-the topology of the search

process and node representation-are issues that have to be examined when we formulate the state

space for a problem. Two alternatives with respect to search topology are whether to represent

the search problem as a search graph or as a search tree. In the general case, the search problem

is represented as a graph, because a tree is a specialization of a graph. In either topology, we start

with the initial state and generate intermediate states until we reach a suitable goal state. In order

to apply rules (issue four) which facilitate movement from one state to another, we need to keep

track of information which represents a given state and well as the utility of the state with respect

to the problem. This information is used to form the node representation in a search graph. The

content of the information is problem-dependent. However, there are two ways we can represent

an arbitrary state at the node which incorporates the state in the search graph:

" represent the state explicitly by making the appropriate modifications to the initial state
required to derive the current state, or

" represent the state implicitly by storing the changes that must be made to the initial state
to derive the current state. (Rich 83:64)

From the point of view of our first three issues, we may discuss the form of state spaces that

have been used in existing circuit design methods. State spaces used in logical design are typically

representations of circuits or subcircuits, for which we present two different classifications:

" circuit fornatiion state spaces, and

" circuit transformation state spaces.

408

Nearly all circuit design techniques fall into one of these two categories. We will describe each

category in turn.

A circuit formation state space is one in which the state space represents the formation

of a design. The root node contains no circuit; it contains information required to develop the

circuit. Each arc in the circuit formation state space denotes the addition of a subcircuit to the

circuit represented by the corresponding parent node. Thus, as the search process proceeds to

lower levels in a search tree, the nodes represent partially-completed circuits. Leaves in the search

tree correspond to completed circuits which meet the specification; however, only certain leaves

represent minimal circuits. A circuit formation state space is generally used by techniques used to

develop minimal circuit designs.

A circuit transformation state space represents the transformation of a design. The root node

contains a completed circuit which meets the specification, although it is not minimal. Each arc

in the state space denotes the modification of the circuit represented by the corresponding parent

node. Thus, each node in the search space represents a complete design. Nodes lower in the tree

contain circuits which have been modified in a manner which reduces their associated cost. Leaves

in the search tree contain "solutions", i.e., circuits which cannot be modified in a manner which

makes them simpler using the available transformation rules. A circuit transformation state space

is generally used to develop near-minimal circuits. It is the approach used by local transformation

systems for minimising circuit designs such as (Darri 81), (deGeu 85), and (Enomo 85).

The circuit formation state space is the approach we will use for applying search to the

problem of developing a minimal vector F of formulas which correspond to a design. In both

circuit formation and circuit transformation state spaces, two common heuristics are used to guide

and limit the search effort:

" choosing circuits or subcircuits based on some measure of cost, and

" limiting the search to some "reasonable" set of circuits or subcircuits.

409

We use both of these heuristics in the application of search to the problem of developing a minimal

F.

Knowledge Representation

Given the information available at the outset of the search process, forward reasoning is used

to reach a goal state from the start state. In this section we describe how information is represented

while building a search tree during the search process. Two different search tree topologies are

introduced. Additionally, the data stored in each node of the search tree is described. At the

conclusion of this section, we will have addressed the first three of the five issues for formulating

the search process for our problem.

Information at Outset of the Search Process. A search process is required if the ap-

plication of rule reduction does not yield the complete set of prime implicants which constitute

formulas in F. In this event, there remains a set IF of inclusion formulas at the completion of rule

reduction. The set IF contains the information which facilitates the selection of a prime impli-

cants to form a minimal F. Hence, IF is used by the search process to select the remaining prime

implicants.

In addition to the set IF of inclusion formulas, the association list LAB/COSTS must be

used by the search process. LAB/COSTS is a list consisting of a set of pairs in which a label

Pi associated with a prime implicant pi forms a pair with the cost cj associated with pi. Cost

information is required by the search process to ensure that a least-cost set of prime implicants is

selected for containment in formulas in F.

In summary, the following information is available for use by the search process:

1. the met IF of inclusion formulas, and

2. the association list LAB/COSTS.

410

The search process yields a minimal set of labels associated with prime implicants to be placed in

F. A follow-up step to the search process uses these labels to construct each F in F. The actual

prime implicants are not used in any way during the search process.

Topologies. Using the set IF of inclusion formulas, we form two topologies to represent the

state space. Both topologies depict the search space in the form of a search tree. The rationale for

using a search tree rather than a search graph for this problem is first discussed. Each topology is

then described.

Rationale for Using a Search Tree. A search problem is generally depicted by a

search graph rather than a search tree. A search graph is normally used to reduce computational

effort and memory usage caused by the occurrence of nodes with duplicate states which may occur

in a search tree. However, if a newly-generated node n is compared to existing nodes in the OPEN

and CLOSED lists to prevent duplication, this problem is overcome. If n is cheaper than a duplicate

node n' in the OPEN list, then it replaces n' in the OPEN list. Otherwise, n is discarded. If n is

a duplicate of a node n' in the CLOSED list and is cheaper than n', then n' is removed from the

CLOSED list and n is placed in the OPEN list. Otherwise, n is discarded.

The CLOSED list contains only nodes which have been expanded. However, for some prob-

lems once a node is expanded it is rarely regenerated. (Using the A* algorithm, a node is never

regenerated once expanded if a consistent heuristic function h(n) is used.) We have observed based

on experimentation with the search process in this research that a node is rarely regenerated once

placed in the CLOSED list. Hence, a CLOSED list is not maintained. Once a node is expanded,

it is simply discarded from consideration. In the rare case that it is regenerated, we simply treat it

as if it never existed. This reduces computations as well as memory usage. First, newly-generated

nodes do not have to be compared to nodes on a CLOSED list. Second, the memory is not used to

maintain a CLOSED list. Hence, since we do not have to maintain a CLOSED list, a search tree

topology is facilitated by simply comparing newly-generated nodes to nodes in the OPEN list.

411

Topology #1. In the first topology, the search space is depicted as a binary tree in

which each node in the tree has exactly two children. For each node n, a prime implicant pi is

selected' to use in the formation of node n's children. The arcs leading to n's children correspond

to

" the selection of pi for containment in F, and

" the removal of pi from further consideration, respectively.

The information contained in n is modified in view of these decisions to form n's children. Figure 9.1

depicts Topology #1. This topology is similar to that used in a technique called the branch-and-

bound method for selecting prime implicants from a cyclic prime implicant table (Murog 79:175). In

the branch-and-bound method, a prime implicant pi is first assumed to be contained in a minimal

formula; the prime implicant table is then reduced accordingly using domination rules. If the

reduced table is cyclic, the process is performed recursively. Then, after a solution is formed

based on the selection of pi, pi is assumed not be contained in a minimal formula. The PI table is

reduced, and the process is performed recursively until a solution is developed. After both solutions

are developed, the least-cost solution is kept and the other is discarded.

Forming the search tree in this manner, the branching factor for every node is two. If k is

the number of distinct labels in the set IF of inclusion formulas, then there are k associated prime

implicants. Thus, the maximum depth of the search tree is k. Since the branching factor is two,

the maximum number of goal nodes is 2h. Hence, there are 2h possible paths between the root

node and possible goal nodes. Additionally, the maximum number of states in the search space is

2h+1 - 1. Our goal in the search process is to quickly find a minimal path to a goal node while

generating the fewest states possible of the states which exist in the search space.

2 How pi is selected will be discussed later.

412

Depth = No. PIs

b 2

Figure 9.1. Topology #1 - Binary Search Tree

Topology #2. An inclusion formula IFj in IF is selected for use in forming the

children of a node in our second topology. Each term in a formula IFj denotes combinations of

prime implicants which cover a term tj in the base. The set of terms in IF denotes the different

possible ways that prime implicants may be used to cover tj. Using the inclusion formula IFj,

we form children for a node n such that each arc leading to a child corresponds to the selection

of prime implicants denoted by a term in IFj. Suppose, for example, that the inclusion formula

P + P2P3 + P24P is selected for use in forming node n's children. Then n would have three

children; the first child is formed based on the selection of the prime implicant associated with P1

for containment in F, the second child is formed based on the selection of the prime implicants

associated with P2 and P3 for containment in F, and so on. Figure 9.2 depicts a search tree based

on Topology #2.

413

IFI = pl + p2p3 + p3p4 pI p2p3 3p4

1F2 =p5 +p6 p5 p6 p5 p6 p5 p6

Depth = No. IFs 0
b = avg no. terms 0

per IF j

Figure 9.2. Topology #2 - Search Tree

Let m be the number of inclusion formulas in IF. The maximum depth of the search tree

is m. Moreover, let b be the average number of terms in inclusion formulas in IF; then b is the

branching factor for the search tree. An approximation of the number of goal nodes is b a . The

number of states in the search space is approximated by

b" + l -1b- 1 (9.1)

For example, suppose the maximum depth and branching factor are m = 3 and b = 3, respectively.

Then, counting the root node as the first level, the number of nodes at each level of the tree is 1,

3, 9, and 27. The number of goal nodes is the number of nodes at the lowest level, i.e., 33 = 27.

Moreover, the number of states is calculated to be (3 3+1 - 1)/(3 - 1) = 40, which is in fact the sum

of the nodes at each level of the tree.

414

This topology is useful if the average number of terms in the inclusion formulas is relatively

low. If the average number of terms is high, then the branching factor of the search tree will be

high. Hence, the search space will be large. Since the figures used to calculate the number of states

in the state space are easily obtained from the inclusion formulas, we can calculate the projected

number of states for each topology prior to the search process. Based on a heuristic that the smaller

projected search space will engender a reduction of effort in the search process, we then may use

the topology for which the projected search space is smaller.

Node Representation. Now that we have presented the forms of the search tree, we discuss

the nodes of the search tree. We describe the information that is stored in each node of the tree as

well as the processes of node generation and expansion. Two ways of representing state information

in a node are introduced.

Information Contained in a Node. The set IF of inclusion formulas is the infor-

mation given at the outset of the search process. The root node may be viewed as being associated

with the set IF of inclusion formulas, i.e., IF is the initial state in the state space. Each node n

in the search tree either contains a modified set 1F of inclusion formulas based on choices made to

get to n from the root node or contains information which facilitates the generation of IF from IF.

Thus, the modified set IF of inclusion formula is the state associated with a node n. A goal node

contains a state such that the set of inclusion formulas is the empty set, i.e., no further decisions

have to be made.

In addition to containing a state, a node n contains information about the path taken from

the root node to get to n. The path must be stored in a node in our problem, since a CLOSED

list is not maintained in the process. In our topologies, arcs leading to a node either denote the

selection of prime implicants for containment in F, or-in the case of Topology #1-denote the

removal of a prime implicant from further consideration. Hence, n contains a representation of the

arcs between the root node and n.

415

Finally, when a node n is generated, the utility of n in the search space must be evaluabed so

that n is handled as appropriate for the search strategy being used. An evaluation function f(n)

is used to evaluate the utility of n. Depending on the search strategy, f(n) may comprise one or

both of the functions g(n) and h(n). The function g(n) evaluates the cost of the path between the

root node and n. The heuristic function h(n) uses fF to evaluate n's proximity to a F al node.

The values of f(n) and g(n) are stored within n.

In summary, a given node n in the search tree contains the following information:

1. a set F of inclusion formulas,

2. a representation of the path between the root node and n,

3. the value of f(n), and

4. the value of g(n).

We now discuss how this information is used to generate children for n.

Generation of a Node. For a node n, arcs leading to a child n' of n denote either

the selection of prime implicants for containment in F or the removal of a prime implicant from

further consideration. Let a(n, n') denote the arc between n and n'. To form a node n', information

contained in n is modified in view of the meaning of a(n, n'), i.e., whether a(n, n') represents the

selection or deletion of prime implicants. We first discuss the generation of a node n' when a(n, n')

denotes the selection of prime implicants for containment in F.

To create a new state associated with node n', prime implicants denoted by a(n, n') are used

to modify the set IF of inclusion formulas associated with n, thus forming a revised set IF of

inclusion formulas. Once prime implicants are selected for containment in F, they are treated as

secondary essential prime implicants. In the reduction rules presented in Chapter 6, when a prime

implicant pi is secondary essential, the literal P' associated with pi is removed from all terms in

the set IF of inclusion formulas. 7rocedure 6.6 (Removal of Literals) may be used to carry out

416

this process. After all literals associated with prime implicants denoted by a(n, n') are removed

from terms of the inclusion formulas in n, reduction rules are applied to develop the set of inclusion

formulas associated with n'.

When applying reduction rules, the same set of rules as applied prior to the search process

must be applied throughout the search process. For example, if the original base used to form the

set of inclusion formulas was the set of all conditionally-eliminable prime implicants, then Reduc-

tion Rule Set #1 (Procedure 6.11) is used to reduce the resulting inclusion formulas. Reduction

Rule Set #1 is then used throughout the search process. Likewise, if Reduction Rule Set #2 (Pro-

cedure 6.14) was used prior to the search process, then Reduction Rule Set #2 is used throughout

the search process.

In addition to developing a set F of inclusion formulas associated with n', the path between

the root node and n' is constructed. The path denotes prime implicants selected as well as removed

from consideration between the root node and n'. Since node in contains a path between the root

node and n, we simply append the prime implicants denoted by a(n, n') to n's path. The new path

is stored in n'.

After forming the state associated with n', i.e., the set of inclusion formulas associated with

n', and the path between the root node and n', an evaluation function f(n) is used to determine

the utility of n'. The composition of f(n) is dependent on the search strategy; the functions g(n)

and h(n) may be used to form f(n). If the function g(n) is used to form f(n), then the value of

g(n) is stored in each node n. The function g(n) is the cost of the prime implicants denoted by the

path between the root node and n. To form the value of g(n'), the cost of the prime implicants

denoted by a(n, n') is added to value of g(n). (The value of g(n) is zero for the root node.)

For search strategies which require the use of a heuristic function h(n), the set f? of inclusion

formulas associated with n' is evaluated using the heuristic function. The heuristic functions used

in this work are discussed in a later section of this chapter. After applying the heuristic function

417

to form the value of h(n'), the evaluation function f(n') is formed based on g(n') and h(n'). The

value of f(n') is stored in each node n' for use by the search strategy.

Procedure 9.1 (Generation of a Node) is used to form a node n' in which a(n, n') denotes the

selection of prime implicants for containment in formulas in F.

Procedure 9.1 (Generation of a Node): Given a node n, an arc a(n, n'), an association list
LAB/COSTS, a heuristic function h(n), and an evaluation function f(n), a node n' is constructed
in the following manner:

Step 1. Let IF be the set of inclusion formulas associated with node n.

1. Determine the set P of labels Pi associated with prime implicants denoted by the arc
a(n, in').

2. For each label P in P, use Procedure 6.6 (Removal of Literals) to remove each literal
P' from terms in IF.

3. Let IFt.,,p be the resulting set of inclusion formulas.

Step 2.

1. Use either Reduction Rule Set #1 (Procedure 6.11) or Reduction Rule Set #2 (Proce-
dure 6.14) to reduce the set fFt, p of inclusion formulas. (The choice is dependent on
the set of rules used prior to the search process.)

2. The resulting set fiF of inclusion formulas forms the state associated with n'.

Step 3.

1. Determine the path stored in node n.

2. Form a new path by appending the labels associated with prime implicants denoted by
a(n, n') to n's path.

3. Store the new path in n'.

Step 4. For search strategies in which g(n) is used to form f(n):

1. Determine the value g(n) stored in node n.

2. Using the labels associated with prime implicants denoted by a(n, n') and the association
list LAB/COSTS, calculate the sum of the costs of the prime implicants denoted by
a(n, in').

3. Add the value determined in step 2 to g(n); it is the value g(n').

4. Store the value of g(n') in n'.

Step 5. For search strategies in which h(n) is used to form f(n), use IF and LAB/COSTS to
determine the value of h(n').

418

Step 6.

1. Develop the value of f(n) as required for the given the search strategy.

2. Store the value of f(n') in n'.

Using Topology #1, an arc a(n, n') may denote a prime implicant pi to be removed from

further consideration. In this case, generation of a node n! is handled differently than when an

arc denotes the selection of prime implicants. Based on the removal of a prime implicant from

consideration, the inclusion formulas IF associated with node n are modified to form a revised set

f-F of inclusion formulas associated with n'. When a prime implicant is removed from consideration,

it is treated as an inessential prime implicant. In the reduction rules presented in Chapter 6, when

a prime implicant pi is inessential, terms containing the literal Pj' associated with pi are removed

from each formula in the set IF. Procedure 6.5 (Deletion of Terms) may be used to perform this

process. After all terms containing P are removed from formulas in IF, reduction rules are applied

to develop the set IF associated with n'.

As in the previous case, the same reduction rules as used prior to the search process must be

used during the search process. However, in this instance, the removal of a prime implicant pi from

consideration may cause a second prime implicant to become secondary essential. The reduction

rules identify and return such prime implicants.

After developing a set of inclusion formulas associated with n', the path between the root

node and n' is constructed. The path denotes prime implicants selected as well as removed from

consideration between the root node and n. In this case, we must have a mechanism for depicting

that a prime implicant pi is to be removed from consideration. Using this mechanism, we form the

path between the root node and n' by appending the notation to n's path that pi is to be removed

from consideration. Additionally, if any prime implicants become secondary essential due to the

deletion of pi, then these prime implicants are also added to the path. The new path is then stored

in n'.

419

After forming the set of inclusion formulas associated with n', an evaluation function f(n) is

used to determine the utility of node n'. The form of f(n) is dependent on the search strategy. If

the function g(n) is to be used to derive f(n), then we must determine the value of g(n'). Since

a(n, n') denotes the removal of a prime implicant from consideration, in most cases the value of

g(n') is equal to the value of g(n), i.e., a(n, n') does not depict the addition of a prime implicant to

the path. However, if prime implicants become secondary essential due to the deletion of a prime

implicant denoted by a(n, n'), then the cost of these prime implicants must be added to g(n) to

form the value of g(n').

For search strategies which require the use of a heuristic function h(n), the set I"F of inclusion

formulas associated with n' is evaluated using the heuristic function. After applying the heuristic

function to form the value of h(n'), the evaluation function f(n') is formed based on g(n') and

h(n'). The value of f(n') is stored in each node n' for use by the search strategy.

Procedure 9.2 (Generation of a Node) is used to form a node n' in which a(n, n) denotes the

removal of a prime implicant from consideration for containment in formulas in F.

Procedure 9.2 (Generation of a Node): Given a node n, an arc a(n, n'), an association list
LAB/COSTS, a heuristic function h(n), and an evaluation function f(n), a node n' is constructed
in the following manner:

Step 1. Let IF be the set of inclusion formulas associated with node n.

1. Determine the label Pi associated with the prime implicant pi denoted by the arc a(n, n').

2. Use Procedure 6.5 (Deletion of Terms) to delete terms containing the literal P' from
formulas in IF.

3. Let lIFtemp be the resulting set of inclusion formulas.

Step 2.

1. Use either Reduction Rule Set #1 (Procedure 6.11) or Reduction Rule Set #2 (Proce-
dure 6.14) to reduce the set IFtmp of inclusion formulas. (The choice is dependent on
the set of rules used prior to the search process.)

2. The resulting set I'F of inclusion formulas is the state associated with n'.

3. Let P be the set of prime implicants identified as secondary essential prime implicants
during rule reduction.

420

Step 3.

1. Determine the path stored in node n.

2. Form a new path by appending to n's path the denotation that the pi, as denoted by
a(n, n'), is to be removed from consideration.

3. If P # 0, then one or more prime implicants became secondary essential due to the
deletion of pi. Add these prime implicants to the path.

4. Store the new path in n'.

Step 4. For search strategies in which g(n) is used to form f(n), determine the value g(n) stored
in node n.

" If P = 0, then no prime implicants are secondary essential due to the deletion of pi. Set
g(n') equal to g(n).

" If P : 0, then one or more prime implicants are secondary essential due to the deletion
Pi.

1. Using the labels associated with prime implicants in P and the association list
LAB/COSTS, calculate the sum of the costs of the prime implicants in P.

2. Add the resulting sum to g(n); it is the value of g(n').

Store the value of g(n') in n'.

Step 5. For search strategies in which h(n) is used to form f(n), use IF and LAB/COSTS to
determine the value of h(n').

Step 6.

1. Develop the value of f(n) as required for the given the search strategy.

2. Store the value of f(n') in n'.

Explicit Versus Implicit Representation. In our problem, each state in the state

space is a modified set IF of inclusion formulas such that IF reflects the decisions that have been

made between the root node and the node associated with IiF. An explicit node representation is

formed by making modifications to the initial state required to derive the current state and storing

the new state in the node associated with the state. Hence, in an explicit node representation, the

node n' associated with the modified set TF of inclusion formulas actually contains IF. On the

other hand, in an implicit node representation, only the changes that must be made to the initial

state to derive the current state are stored in the node associated with the state. In our case, the

path stored in a node contains this information.

421

Whether an explicit or implicit node representation is used, the following information is stored

in a node n:

1. a representation of the path between the root node and n,

2. the value of f(n), and

3. the value of g(n).

Additionally, in a explicit node representation, the state denoted by the revised set IF of inclusion

formulas is stored in n. We present the advantages and disadvantages of each approach.

In an explicit node representation, all of the information associated with a node n in the

search space is contained in the node. Most importantly, the state denoted by a set IF of inclusion

formulas is contained in the node. This is advantageous when generating a node's children, because

then we only need to modify F to develop the states associated with n's children. The disadvantage

is that if the set of inclusion formulas is large, then the memory used to store each node of the

state space may be extensive. Hence, an explicit node representation is computationally efficient

at the cost of memory usage.

State information is not contained in an implicit node representation. However, when a node

n is first generated, the inclusion formulas IF associated with n must be developed in order to

derive the value of h(n) for n. The set F may then be discarded. When n is expanded, the set IF

must be regenerated using path information as well as the set IF of inclusion formulas associated

with the root node. F is used to generate the state associated with each child n' of n in order to

evaluate h(n'). The advantage of the implicit node representation is that memory usage is greatly

reduced due to the fact that only the original set IF of inclusion formulas is stored in memory.

The disadvantage of this approach is that the set IF of inclusion formulas associated with a node

n has to be derived once when n is generated and again when n is expanded.

The use of an explicit versus implicit node representation is dependent on whether memory is

at a premium on the computer system on which we host an implementation of the search sorategy.

422

If an implicit node representation is used, then the set IF of inclusion formulas associated with

a node n' is discarded after Step 5 in Procedures 9.1 and 9.2. IF is then regenerated when n' is

expanded.

Expansion of a Node. Given the procedures used to generate a node, we may now

describe how a node n is expanded. The expansion process differs depending on the topology used

in the search process. Specifically, the first step in the node expansion process-the formation of

arcs a(n, n') between n and each child n' of n--changes based on the topology. We first describe

the methodology for expanding a node when Topology #1 is used.

If an explicit node representation scheme is being used, then the set IF of inclusion formulas

associated with n is stored in n. On the other hand, if an implicit node representation scheme is

being used, then the set IF of inclusion formulas associated with n must be derived. The path

information stored in n and the set IF of inclusion formulas associated with the root node is used

to form fIF. Based on the path information, IF is modified to recreate each state associated with

the nodes on the path between the root node and n, until IF is eventually formed.

In Topology #1, each node n has two children. Arcs a(n, n') leading to the two children

denote the selection of a prime implicant pi and the deletion of pi, respectively. (We defer to a

later section the discussion of how such a prime implicant pi is determined.) Given pi, we first

form the child corresponding to the selection of pi using Procedure 9.1 (Generation of a Node).

Subsequently, the second child of n corresponding to the removal of pi from consideration is formed

using Procedure 9.2 (Generation of a Node). After the children are generated, the nodes are placed

on the OPEN list as determined by the search strategy.

423

Procedure 9.3 (Expansion of a Node - Topology #1): Given a node n and a prime implicant
pi, node n is expanded in the following manner:

Step 1.

* If an explicit node representation scheme is being used, then the set iTF of inclusion
formulas associated with n is stored in n.

e Otherwise, an implicit node representation scheme is being used. Using the path stored
in n and the set IF of inclusion formulas associated with the root node, form IF.

Sep 2. Form a child corresponding to the selection of pi using Procedure 9.1 (Generation of a
Node).

Step 3. Form a child corresponding to the removal of pi using Procedure 9.2 (Generation of a
Node).

Step 4. Return the children for placement on the OPEN list.

In the second topology, an inclusion formula IFj is used to generate the children for a node

n. (We defer to a later section the discussion of how such a formula IF is determined.) The

number of children generated is dependent on the number of terms in IF, since each term in IF

corresponds to the selection of one or more prime implicants for containment in F. Hence, arcs

a(n, ,') leading to the children denote the selection of prime implicants given by a term in IFj.

Thus, for each term in IF, a child n' corresponding to the selection of prime implicants is formed

using Procedure 9.1 (Generation of a Node). After the children are generated, the nodes are placed

on the OPEN list as determined by the search strategy.

Procedure 9.4 (Expansion of a Node - Topology #2): Given a node n and an inclusion
formula IF,, node n is expanded in the following manner:

Step 1.

" If an explicit node representation scheme is being used, then the set IF of inclusion
formulas associated with n ;s stored in ,n.

" If an implicit node representation scheme is being used, then the set IF of inclusion
formulas associated with n must be derived. Using the path stored in n and the set IF
of inclusion formulas associated with the root node, form IF.

Step 2. For each term in IF, form a child corresponding to the selection of prime implicants
denoted by the term using Procedure 9.1 (Generation of a Node).

Step 3. Return the children for placement on the OPEN list.

424

We have described how our problem may be represented using a search tree methodology as

well as how nodes are generated and expanded in the course of a search process. We have yet to

discuss heuristics used in the search process as well as the search strategies used for manipulating

and making decisions about the nodes in the search tree; these aspects will be introduced in later

sections.

The point of view taken up to this juncture has been that the search problem is represented

as a state-space and handled accordingly. However, in the next section we introduce a method for

decomposing the problem into a set of state-space searches. Hence, we handle the search process

globally using a problem-reduction format.

425

Search Space Partitioning

In many cases there exists a set IF of inclusion formulas at the completion of rule reduction,

signifying that the application of rule reduction does not yield the complete set of prime implicants

which constitute formulas in F. Thus, the use of a search process is required to determine the

remaining prime implicants to form a minimal F. As described in foregoing sections, the set IF

contains the information used by the search process to select the remaining prime implicants. In

most cases, IF is of a form such that it can be partitioned; a search process is then performed

independently for each block of the partition. The results of each search process are combined to

form the remaining prime implicants to be contained in F.

Let P; + P,1P and P4 + PP be the inclusion formulas contained in IF after rule reduction.

Clearly, any choice we make regarding the selection of prime implicant denoted by the inclusion

formula Pl + P2P has no bearing on the choices made regarding prime implicants associated with

the inclusion formula P4 + P, P,, and vice versa. Hence, the decisions we make regarding the two

formulas may be performed independently. When the choice of a prime implicant pi has a bearing

on the selection and/or non-selection of another prime implicant pj, we say that pi and pj are

related to each other. Otherwise, two prime implicants are not related to each other. Thus, given

the inclusion formulas P + P2P and P3 + PP., the prime implicants denoted by the labels in the

set P = {P 1 , P2 , P3 , P7 , Ps4 are related to each other, since the literal P3 appears in both formulas.

Given a third formula P4 + P5
1P , the prime implicants denoted by P4, Pl5 , and PE are not related

to any prime implicants denoted by labels in P.

We thus partition a set IF of inclusion formulas such that:

1. all prime implicants denoted by inclusion formulas in a block of the partition are related to
each other, and

2. no prime implicant in a block of the partition is related to any prime implicant denoted by
inclusion formulas in another block.

426

We call a partition which may be formed after the application of reduction rules an intrinsic

partition. The derivation and use of an intrinsic partition facilitates a natural decomposition

of the search process into a set of independent tasks. This decomposition greatly reduces the

computational complexity of the search process. The concept of intrinsic partitions is related to

the partitioning which may be peiformed in the course of solving a prime implicant table, although

we apply the concept to the partitioning of inclusion formulas. The fact that a prime implicant table

may be partitioned has been known for over thirty years. A recent application of the partitioning

of a prime implicant table is in the ESPRESSO-EXACT algorithm in which a reduced form of a

prime implicant table is partitioned (Rudel 89).

Using an intrinsic partition, our global search process may be portrayed in the form of a

problem-reduction representation. The first step of the search process is to decompose the initial

set IF of inclusion formulas via an intrinsic partition. An intrinsic partition, as incorporated

into our search process, is depicted in Figure 9.3. Each of the second-level nodes in Figure 9.3

corresponds to a root node for a state-space search as presented earlier. Once a state-space search

is accomplished for each of the second-level nodes, the results are combined to form the global

solution of the search process. Procedure 9.5 (Intrinsic Partition) accepts a set IF of inclusion

formulas and returns an intrinsic partition of the inclusion formulas. Example 9.1 demonstrates an

intrinsic partition of a set of inclusion formulas.

Procedure 9.5 (Intrinsic Partition): Given a set IF of inclusion formulas, an intrinsic partition
of IF is formed as follows:

Step 0.

* Initialize an accumulator IFP.t = 0.

* Initialize an accumulator IF,och = 0.

Step 1.

1. Remove an inclusion formula IF from IF and determine the set P of literals contained
in terms in IF.

2. Place IF in IF1 oct.

427

Number of nodes
is the number m
of blocks in the
the partition - &6

Each 2d level block block block block
node is a root 1 2 3 m
node for a
state-space search

Figure 9.3. Problem-Reduction Using an Intrinsic Partition

Step 2. Of the remaining inclusion formulas in IF, determine the net IF,.satd which contains
literals appearing in P.

* If IFa.t = 0, then a block of the partition comprised of a subset of the original set

IF of inclusion formulas has been formed.

1. Place IFbloj in IF 1 ,,t.

2. Reset the accumulator IFblo. = 0.

" Otherwise, we are not finished with forming the current block. Continue to Step 3.

Step 3.

1. Remove from IF formulas appearing in IF,Iat,d.

2. Place formulas in IF,,g,.d in IFbl ok.

3. Add the literals appearing in formulas in IF,.,.td to P.

4. Return to Step 2.

Example 9.1: In the course of employing Algorithm 6.2 to develop a minimal formula F to

represent the function B6, after the application of Reduction Rule Set #2 (Procedure 6.14) there

remain 13 inclusion formulas. A search process must be applied to select a set of prime implicants

to complete the formation of F using these inclusion formulas.

428

Applying Procedure 9.5 (Intrinsic Partition), we form a partition of the 13 formulas consisting

of five blocks:

Block 1:

p2s + P'22 P2 5

Block II:

Block III:

p1 2 6 +~ P;11 A 3 + P;P9

P10 5 + PLg'9 7 + P; 1 2 P;S

P91 + P1 11P88 + P 26 PBS + PIIP89 + P1'26P89

Block rV:

P108a + P540P + P'62'S6

PL3 + P53Ph3 + P59P 2

P59 + i';6PST + i'h71h3

Block V: p 7 ;i;

p;12 7 + P;11 3 P3+ P;13 P6

p;11 4 + PIOGPI 1 3 + P105 P;10
P10 + P102P;PA0 + P102PI10P;

P '+P~h+ P12 p

Five independent search processes are pei formed using the inclusion formulas contained in

each block. For many blocks, the identification of a prime implicant to be placed in F is trivial. For

example, assumin~g that the prime implicants associated with each literal R*9 are of equal cost, the

prime implicant associated with I'3S is selected from Block 1, and the prime implicant associated

429

with P20 is selected from Block II. A search process easily determines the prime implicants to place

in F for the remaining blocks.

Once each block is formed in the partitioning process, a state-space search is performed in

which the inclusion formulas contained in a block form the initial state associated with the root

node of the search. In our discussion of the search tree topology and node representation, we

deferred discussion of heuristic functions h(n) and the selection of either prime implicants pi or

inclusion formulas IFj corresponding to levels in the search tree for use during node expansion.

These issues are addressed in the next section.

The Us,- of Heuristics

The use of heuristics--heuristic functions in particular-is the fifth issue for formulating a

search process for solving a problem. In this section we present two heuristic functions used to

evaluate the utility of a node. Additionally, we elaborate on heuristics used to guide the selection

of a prime implicant pi or an inclusion formula IFj for use during node expansion. In each case,

the choice is based on information developed in the course of forming the value of h(n) for a set of

inclusion formulas associated with a node n.

Heuristic Functions. In developing a heuristic function we are concerned with the inherent

properties of the function. For example, the admissibility of a heuristic function is an important

consideration. However, an admissible function hi(n) may not be as good as an inadmissible

function h2 (n) if

1. the value of h2 (n) for a node n is generally closer to the actual distance h*(n) between n and
a goal node than is the value of h1 (n), and

2. h2(n) usually does not overestimate the value of h*(n).

430

In this section, we present two heuristic functions, hi(n) and h2(n), for estimating the distance

between a node n and a goa! node. The first hi(n) is an admissible function used to guarantee a

minimal solution when the A* search strategy is used. The second function h 2 (n) is an inadmissible

function which generally gives a better estimate of the actual value h*(n) than does hi(n).

Heuristic Function #1. The first heuristic function hi(n) we present is an admissible

function, i.e., hi(n) always underestimates the actual cost of the cheapest path between n and a

goal node. In our problem, hi(n) is used to estimate the value of a least-cost set of prime implicants

which may be selected to form a cover for terms of the base associated with a set IF of inclusion

formulas.

Let ci be the cost associated with a prime implicant pi. Given a set IF, let ni be the number

of inclusion formulas in IF in which the literal PI' which denotes pi appears. Then, we define the

utility th of a prime implicant by the equation

% = c./nj. (9.2)

The utility uj is the prorated cost of the prime implicant pi based on a supposition that pi may be

used alone to form a cover of the terms associated with the inclusion formulas in which P' appears.

Once the utility of each prime implicant is determined, we derive a value vj for each inclusion

formula IF. First, a value v' is formed for each term tk in IFj, in which v1 is defined to be the

sum of the utilities of the prime implicants denoted by literals in tk, i.e.,

v = U. (9.3)

431

Then, IF is assigned the value associated with term t with the lowest value of all of the terms in

IF. Thus, if there are I ter.-is in IFj, the value vj is defined by the equation

vi = min(vl, Vt, ..., IV) (9.4)

For example, suppose we are given an inclusion formula IF 1 = Pl + P2'P and the utilities ul = 0.5,

u2 = 1, and U3 = 0.5. Then the value associated with term Pl is 0.5; the value associated with the

term P2P'3 is 1 + 0.5 = 1.5. It follows that the value vi of IF is 0.5.

After vj is formed for each IF in IF, the set of values for formulas in IF is summed to form

a total value V associated with IF. The resulting value is an optimistic estimate of the cost of a

cover for the terms associated with inclusion formulas in IF. In many cases, V may be represented

by a fraction. Since a total cost is a whole number, we may safely round up V to the next highest

whole number. The result is defined to be the value of hi(n) for the node with the associated state

IF. Hence, If IF contains m inclusion formulas

hi(n) = E (9.5)

Examples 9.2 and 9.3 demonstrate the application of hi(n). Procedure 9.6 (Heuristic Function #1)

implements hi(n).

Example 9.2: Suppose we are given the set IF f {IFI, IF2 , IF 3} of inclusion formulas for which

we must evaluate hi(n):

IF = P P3P

IF2 = P2+P P (9.6)

IF3 = P3 +PV.

432

We first derive the utilities ui for prime implicants pi appearing in IF. The calculation of ui is

demonstrated using Table 9.1; we call the matrix appearing in Table 9.1 a utility matriz. A 1

appears in a cell if the label P' which denotes prime implicant pi appears in inclusion formula IFj..

IF 1 IF 2 IF 3 ci ,hlth=nj/n,

Pi 1 1i 1

P2 1 1 1 2 0.5
P 1 1 1 2 0.5
P4 1 1 1 2 0.5

51 1 1 1
P6 1 1 1 1

Table 9.1. Utility Matrix for Example 9.2

After the development of the utilities uj for each prime implicant pi, the value vj is determined

for each inclusion formula IF. We first demonstrate the formation of v, for IF 1 . The value av

associated with each term is the sum of the utilities of the prime implicants denoted by literals in

t&. The values v' associated with terms in IF1 are depicted as follows:

1 0.5+0.5

IF, = P' + P2P3. (9.7)

The value v1 is the minimum of the values associated with terms in IF,; heace v, = 1. Similarly,

we demonstrate the values associated with terms in IF 2 :

0.5 0 5+1

IF2 = P2 + P4'P. (9.8)

Thus, the value V2 = 0.5. Additionally, we can determine that v3 = 0.5. Then, since hl(n) =

[F7', vi, we calculate hi(n) = [1 + 0.5 + 0.51 = 2. In this instance, hi(n) = h'(n), since a

least-cost set of prime implicants which forms a cover for terms of the base associated with the

inclusion formulas (9.6) is {p2, p}.

433

Example 9.3: Suppose we are given the set IF = {IF,, IF 2, IF3 } of inclusion formulas for which

we must develop a value hi(n):

IF, = P1 Pr

IF = P' + PP' (9.9)
IF 3 = P3 + P P4.

We first determine the utilities ui for prime implicants pi appearing in IF. The calculation of Uj

is demonstrated using Table 9.2.

IF, IF 2 IF 3 c ni ui=ei/N

Pi 1 1 1 2 0.5
P2 1 1 1 1
P3 1 1 1 2 0.5
P4 1 1 1 2 0.5
Ps 1 1 1 1
726 1 1 1 1

Table 9.2. Utility Matrix for Example 9.3

After the development of the utilities uj for each prime implicant pi, the value vj is determined

for each inclusion formula IF. We first form v1 for IF,. The value v' associated with each term is

the sum of the utilities of the prime implicants denoted by literals in ik. The values v' associated

with terms in IF, are depicted as follows:

0.5 0.5+1

IF, = P1 +4 P3'P5. (9.10)

Hence, v, = 0.5. Similarly, we demonstrate the values associated with terms in IF 2 :

1 0.5+1

IF 2 = P2 +P;Ph. (9.11)

434

Thus, the value V2 = 1. Furthermore, we can derive v3 = 0.5. Since hi(n) = [I-- ,, we then

calculate hi(n) = [0.5 + 1 + 0.51 = 2. In this instance, hi(n) underestimates h*(n) since at least

three prime implicants are required to form a cover, i.e, h" (n) = 3.

Procedure 9.6 (Heuristic Function #1): Given a set IF of inclusion formulas and the asso-
ciation list LAB/COSTS, we derive the value h,(n) associated with the state IF in the following
manner:

Step 1. Determine the set P of distinct labels which appear in IF.

Step 2. For each prime implicant pi in which Pi appears in P:

1. Determine the number nj of inclusion formulas in which the literal P' appears.

2. Get the cost ci associated with pi from LAB/COSTS.

3. Calculate the utility ui = ci/nr.

Step 3. For each inclusion formula IF E IF, determine vj:

1. For each term tk in IFj, derive v by summing the utilities uj of the prime implicants
pi denoted by literals Pj' in tk, i.e.,

v= ui. (9.12)

2. Form v3 by selecting the lowest '. of the I values developed in substep 1, i.e.,

vi = min(vt, Vt,..., Iv). (9.13)

Step 4. Form hi(n) by adding the m values vi and rounding up:

hi(n) = [Vi t] . (9.14)

An important consideration is that the heuristic function hi(n) implemented by Procedure 9.6

is admissible. An admissible heuristic function is required to guarantee the admissibility of the A*

algorithm. If A* is admissible, then it returns a minimal solution. Theorem 9.1 presents the

admissibility of h,(n).

Theorem 9.1 (Admissibility of hi(n)): The heuristic function hi(n) implemented by Proce-

dure 9.6 is admissible.

Proof. The utility uj associated with each prime implicant pi is the prorated cost of the prime

implicant pi based on a supposition that pi may be used alone to form a cover of the terms associated

435

with the inclusion formulas in which Pj appears. Thus, uj is an optimistic proration of the cost

associated with each pi, i.e., we are forcing each prime implicant to appear to be more valuable

than it actually is.

The value '4 associated with a term tk of a formula IF is formed using utilities ut associated

with the prime implicants pi denoted by literals P appearing in tk. Each vt is the prorated cost

of using the prime implicants denoted by literals in tk to cover the term of the base associated

with IFj. Since we chose the value associated with the smallest v' to form vj, we are necessarily

optimistically estimating the prorated cost of covering the term of the base associated with IFj.

Since each value vj is optimistic, it follows that the sum V of the values Vj associated with

each IF E IF is an optimistic estimate of the actual cost of a minimal cover for the terms of the

base associated with formulas in IF. Rounding V up to the next highest whole number to form

hi(n) does not affect the admissibility of hi(n), since the actual cost is a whole number. This

completes the proof. 0

Heuristic Function #2. Function hi(n) is useful if we would like to guarantee the

development of a minimal vector F of formulas which correspond to a design. However, it does

not always yield a good estimate of h'(n), e.g., Example 9.3. Because hi(n) does not always yield

a good estimate of h*(n), increased effort results during the search process. In this section, we

introduce a second heuristic function h2(n) which generally is a very good estimator of h*(n),

although in some cases it may overestimate h" (n).

The difference between hi(n) and h2 (n) is the manner in which we form the utility uj associ-

ated with each prime implicant pi. To differentiate between the utilities used in the two heuristic

function, let f be the utility of a prime implicant pi for h2 (n). Suppose we are given a set

IF = {IF1 , IF 2) of inclusion formulas in which

436

IF, = P1+P2 P (9.15)

IF2 = P2+ P1P.

The utility matrix for IF is depicted by Table 9.3. Rather than placing a 1 in columns associated

with an inclusion formula IF in which appears the literal P! which denotes pi, we instead place the

reciprocal of the shortest term in IF in which P appears. Thus, since P2 appears in a two-literal

term in IF, it only does one-half the work in forming a cover p2 + p3 for the term of the base

associated with IF. Then k. is the sum of the number that appear in the columns associated with

the inclusion formulas for row i. The utility fij is defined by the equation Oai = ci/lft.

IF, IF2 Cj fluIfi i/

Pi 1 0.5 1 1.5 0.667
P2 0.5 1 1 1.5 0.667
P3 0.5 0.5 1 1 1

Table 9.3. Utility Matrix for Heuristic Function #2

We now present this methodology on a formal basis. Let us define an operator length(t) to be

the number of literals in term t. Let e, be the k-th term of inclusion formula IF. Then, n(i-the

number in row i, column j of the utility matrix-is defined by the equation

n'i= 1 9.6

min{kHfl<p }(length(tk)) (9.16)

The metric kl is defined by the equation

: i n'' (9.17)

{fjIP appears in IFJ}

437

The utility £i for our second heuristic function is then defined by the equation

'k= cifi,. (.8

Once we formulate the utility f for each prime implicant pi, the remainder of the process of forming

h2 (n) is the same as when forming hi(n) except that fij is used in place of Uj.

Example 9.4: Suppose we are given the set IF = {IF,, IF 2 , IF3 } of inclusion formulas from

Example 9.3 for which we would like to evaluate h2 (n):

IF, = P; + P3P;

IF2 = P2 + P4 (9.19)
IF 3 = P+ P4P.

We first determine the utilities f1 for prime implicants pi appearing in IF. The calculation of aij

is depicted in Table 9.4.

IF, IF2 IF3 C. fi j = C,/f,

p1 1 0.5 1 1.5 0.667
P2 1 1 1
p3 0.5 1 1 1.5 0.667
P4 0.5 0.5 1 1 1
P5 0.5 1 0.5 2
P6 0.5 1 0.5 2

Table 9.4. Utility Matrix for Example 9.4

438

After the development of the utilities i4 for each prime implicant pi, the value vj is determined for

each inclusion formula IF. We first form v, for IF,. The value v1 associated with each term is

the sum of the utilities of the prime implicants denoted by literals in th. The values ' associated

with terms in IF, are depicted as follows:

0.667 0.667+2

IFI = P + P3P5 (9.20)

The value v, is the minimum of the values associated with terms in IF,; hence, v1 = 0.667.

Similarly, we demonstrate the values associated with terms in IF 2 :

1 1+2

IF 2 = P2 + P4P6. (9.21)

In the case, the value V2 = 1. We also can determine that V3 = 0.667. Then, since h 2(n) -

IF,7=, vj , we calculate h 2(n) = r0.667 + 1 + 0.667] = r2.333] = 3. The function h2 (n) accurately

estimates h° (n) since three prime implicants are required to form a cover, i.e, h ° (n) = 3.

A characteristic of function h2 (n) is that it sometimes overestimates h*(n). Example 9.5 is

a contrived example which illustrates this characteristic as observed when using h2 (n) for more

complex sets of inclusion formulas.

Example 9.5: Suppose we are given a set IF = {1F1 ,IF 2 , IF 3 , IF 4} of inclusion formulas for

which we would like to evaluate h 2 (n):

IF, = P1 + P3 P3
IF 2 = P2'+ P3'P4 (9.22)
IF3 = P3 P2

IF, = P4 + PP2.

We first form the utilities fi for prime implicants p. appearing in IF. The calculation of ii is

demonstrated using Table 9.5.

439

__IF, IF 2 IF 3 IF4 ci I ___I ___ C/f

P11 1 0.5 0.5 1 2 0.5
p2 0.5 1 0.5 0.5 1 2.5 0.4
P'3 0.5 0.5 1 1 2 0.5

P4 0.5 1 1 1.5 0.667

Table 9.5. Utility Matrix for Example 9.5

After the development of the utilities 1 for each prime implicant pi, the value v3 is determined

for each inclusion formula IF. We first form v, for IFI. The values Vt associated with terms in

IF, are depicted as follows:

0.5 0.4+0.5
IF1 = P' + P2P . (9.23)

The value v, is the minimum of the values associated with terms in IF,; hence, v, = 0.5. The

values associated with terms in IF 2 are demonstrated:

0.4 0.5+0.667

IF 2 = P2 + P P (9.24)

In the case, the value v2 = 0.4. The values associated with IF and IF 4 are V3 = 0.5 and

V4 = 0.667, respectively. Then, h 2(n) = [0.5 + 0.4 + 0.5 + 0.667] = [2.06671 = 3. The function

h2(n) overestimates h*(n) since the only prime implicants Pi and p2 are required to form a cover,

i.e, h*(n) = 2.

In practical applications, heuristic function h2 (n) rarely overestimates h*(n). Moreover, the

instances when h2 (n) overestimates do not seem to affect the quality of the resulting solution when

A* search is used, i.e, the use of h2 (n) almost always leads to the development of a minimal solution.

We believe the function h2 (n) is an example for which the Graceful Decay of Admissibility Theorem

is applicable. Procedure 9.7 (Heuristic Function #2) implements the heuristic function h2 (n).

440

Procedure 9.7 (Heuristic Function #2): Giver a set IF of inclusion formulas and the asso-
ciation list LAB/COSTS, we derive the value h2(n) associated with the state IF in the following
manner:

Step 1. Determine the set P of distinct labels which appear in IF.

Step 2. For each prime implicant pi in which Pi appears in P:

1. Determine the value n for prime implicant pi with respect to inclusion formula IFj:

n = 1 -(.5

min{ .It<pi (length(e,)) (9.25)

2. Determine the value Ai associated with prime implicant pi:

hi= E n . (9.26)
{jP,1 appears in IF,}

3. Get the cost cj associated with pi from LAB/COSTS.

4. Calculate the utility 12j = cil/1f.

Step 3. For each inclusion formula IF E IF, determine vi:

1. For each term tk in IF, derive vt by summing the utilities fij of the prime implicants
pi denoted by literals P' in tk, i.e.,

A; = E i. (9.27)

2. Form vj by selecting the lowest vt of the I values developed in step 1, i.e.,

vj = rnin(va,,..., vt). (9.28)

Step 4. Form h2(n) by adding the m values v, and rounding up:

h3 (n) = Vi] . (9.29)

Information developed in the course of forming the values of hi(n) and h2 (n) is used to guide

the selection of a prime implicant p, or an inclusion formula IFj during node expansion. We discuss

this issue in the next section.

Heuristics in Formation of the Search Tree. In search space Topology #1, when a node

is expanded its children are formed based on the selection of a prime implicant pi for containment

in F and the removal of pi from further consideration. Using Topology #2, an inclusion formula

441

IF, is used to form a node's children such that each child corresponds to the selection of prime

implicants denoted by a term in IF. We discuss the selection of pi and IFj in this section. In

each case, the choice is based on information developed in the course of forming the value of h(n)

for a set IF of inclusion formulas associated with a node n.

Choice of a PI for Topology #1. When forming the value of h(n) associated with

node n, a utility uj is calculated for each prime implicant pi denoted by literals P' which may

appear in the set of inclusion formulas associated with n, i.e., the state associated with n. A

heuristic which seems to work well is to select a prime implicant pi to use in the expansion of n

which has the lowest utility uj. Since the utilities for each pi are determined when n is generated,

the pi with the lowest utility may be stored in n for use when n is expanded. At this point, we do

not have a method for selecting a single pi when several have a minimal utility, i.e., we do not have

a tiebreaker.

We have observed that the order of selection of prime implicants pi in the course of node

exjVansion can significantly affect the efficiency, i.e., the number of nodes expanded, of the search.

For some examples, using an arbitrary pi works better than our heuristic selection, although our

heuristic selection of pi works better than an arbitrary selection of pi over a range of functions.

More study is required for developing better heuristics to guide the selection of pi.

Choice of an Inclusion Formula for Topology #2. When forming the value of

h(n) associated with node n, a value vi is calculated for each inclusion formula IF in the set IF

of inclusion formulas associated with n. A heuristic for selecting a formula IFj for use during the

expansion of n is to select the formula in IF which has the lowest value v3. Similar to the prime

implicant pi for Topology #1, we determine the values v, for each IFj when n is generated. We

store in n an indication of the inclusion formula IF to be used when n is expanded.

442

Search Strategies

The use of search strategies to control the search process is our fourth-and final-issue which

must be addressed in formulating a search process for a given problem. The primary difference

among search strategies lies the manner in which nodes are selected for expansion at a given point

in the search process. The order of node expansion is dependent on the value of f(n) associated

with a node n as well as how this value is used to place n on the OPEN list. These factors differ

from one search strategy to another, e.g., f(n) may be comprised of g(n) and h(n) in one search

strategy and only of h(n) in another. Additionally, a search strategy may implement a heuristic

which selects only certain nodes for inclusion in the OPEN list, while the rest are discarded, e.g.,

the strategy employed beam search.

In this section we discuss several search strategies which we apply to the problem of developing

a minimal vec.-r E of formulas corresponding to a minimal digital design. We present different

search strategies depending on whether the goal in developing F is minimization, near minimization,

or approximate minimization. For minimization, the search process may required more effort than

for approximate minimization. In the discussion of each strategy, we will address the significant

aspects relevant to that strategy.

General procedures implementing each search strategy discussed in this section were described

in Chapter 8 and listed in Appendix D. A general search methodology which puts together all of

the components of the search process is presented in a later section.

Total Minimization - A*. For instances in which we would like to guarantee that a minimal

vector f of formulas which corresponds to a design is developed, we may apply the A* algorithm

using heuristic function hi(n). The A* algorithm is guaranteed to be admissible, i.e., yield a

minimal solution, if the heuristic function used by the algorithm is admissible. However, in practice

the function h2 (n) has proven to be just as useful as hi(n).

443

A liability of the A* algorithm is that if there exist many solutions which are minimal or near-

minimal, an inordinate amount of effort may be expended prior to developing a minimal solution.

Such circumstances often occur for highly-complex circuit specifications. To minimize the work

performed by the A* algorithm, we first develop a representation PS_ of an initial solution; 13 is

a set of labels which denote prime implicants which may be used to form the vector F of formulas.

The cost UB of the prime implicants denoted by P'S serves as an upper bound on the value of f(n).

Hence, if the value of f(n) for a node n is greater than or equal to YB, then node n is discarded

from consideration since it leads to solutions only as good as--or worse than-the initial solution

P$. If no solution is found which is better than PS, then P$ serves as the solution returned by

the search process.

In some circumstances, the initial solution P S and the value of the heuristic function hi(n)

for the root node will indicate that the A* algorithm does not have to be applied at all. The initial

solution forms %n upper bound on the cost of the solution. Since hi(n) is admissible, the value

of hi(n) for the root node is an optimistic estimate of the cost of the solution, i.e., it is a lower

bound. If the upper and lower bounds are equal, then PS is a minimal solution and A* search is

not required.

We present two alternative strategies for developing an initial solution. The first strategy is a

beam search, which we also use as a primary search strategy. However, when developing an initial

solution, we will tend to use a smaller width wo than would be used in a primary search process.

The second strategy is a heuristic approach which uses information produced in developing the

value of hi(n) for a node n. We perform an iterative process in which an estimated least-cost set

of prime implcants is always chosen in each iteration for containment in the initial solution.

In the process of evaluating hi(n) for a set IF of inclusion formulas, a value vt is developed

for each inclusion formula IF E IF. Once each v3 is developed, w, then take the following actions:

444

1. Select the inclusion formula IF which has the lowest value vj.

2. Select the term ti in IF, which has the lowest value v' of all of the terms in IFj.

3. Place prime implicants denoted by literals contained in ti in the initial solution PS.

4. Using Procedure 9.1 (Generation of a Node), form a child node n' for current node n based
on the choice of prime implicants denoted by the k-th term of IFj.

5.

" If the state of the child node is the empty set, i.e., IF = 0, then PS is an initial solution.
Return the initial solution.

" Otherwise, an initial solution has not been found. Form values vi for the set of inclusion
formulas in n', and return to Step 1.

During each iteration, we thus select prime implicants associated with the lowest evaluated term in

the lowest evaluated inclusion formula. This is analogous to a hill-climbing strategy, since we are

using heuristic information to make decisions on prime implicants to include in the initial solution.

Procedure 9.8 (Determination of Lower Bound and Initial Solution) implements this strategy.

Procedure 9.8 (Determination of Lower Bound and Initial Solution): Given a set IF of
inclusion formulas and the association list LAB/COSTS, we form a lower bound LB and an initial
solution PS in the following manner:

Step 1. Determine the set P of distinct labels which appear in IF.

Step 2. For each prime implicant pi in which P appears in P:

1. Determine the number ni of inclusion formulas in which the literal P' appears.

2. Get the cost cj associated with pi from LAB/COSTS.

3. Calculate the utility uj = ci/N.

Step 3. For each inclusion formula IF E IF, determine vj:

1. For each term ti in IF, derive .A by summing the utilities uj of the prime implicants
pi denoted by literals P in ti, i.e.,

4 = E uh. (9.30)
Pilth < Pv I

2. Fo~n vj by selecting the lowest'4 vof the L values developed in substep 1, i.e.,

vi = min(v ', 45). (9.31)

445

Step 4.

" If this is the initial iteration of the procedure, i.e., the first time this step is executed,
then form LB by adding the m values vj and rounding up:

LB [v1.(9.32)
* Otherwise, do nothing.

Step 5.

1. Select the inclusion formula IFj which has the lowest value vj.

2. Select the term th in IF which has the lowest value v4 of all of the terms in IFj.

3. Literals contained in th denote prime implicants which we will place in the initial solution.

Step 6. Using Procedure 9.1 (Generation of a Node), form a child node n' for current node n

based on the choice of prime implicants denoted by the k-th term of IFj.

Step 7.

* If the set IF of inclusion formulas for the new node n' is the empty set, i.e., IF = 0,
then an initial solution PS has been formed. Retun the initial solution PS and LB.

" Otherwise, return to Step 1.

The A* algorithm is suitable in many cases. However, we are sometimes willing to sacrifice

the minimality of the solution in return for quickly developing a near-minirral solution. In such

circumstances, we may apply a dynamic-weighting strategy to the problem.

Near Minimization - Dynamic Weighting. For circumstances in which we must develop

a solution F quickly at the price of minimality, but would like to guarantee that F is within a

fixed-bound of the minimal solution, the dynamic-weighting search strategy is applied to construct

a solution. The evaluation function f(n) used by the dynamic-weighting search strategy is defined

by the equation

f(n) = g(n) + h(n) + c. [1 - d(n)/N] .)jn), (9.33)

for which e is a pre-defined constant, d(n) is the depth in the search tree of a node, - nd N is the

anticipated depth of the search. If the admissible heuristic function hi(n) is used for h(n) by the

446

dynamic weighting algorithm, then the resulting solution is guaranteed to be within a factor of

(1 + e) of the minimal solution. The dynamic-weighting strategy is then said to be e-admissible.

The anticipated depth N of the goal node used to regulate the overestimate of the heuristic

portion of f(n) differs depending on the topology used in the search process. For Topology #1, the

maximum depth of the tree is the number k of prime implicants. However, a solution is generally

found much higher in the search tree, since only a fraction of the prime implicants are selected for

inclusion in the solution. Hence, we define N to be equal to half the number of prime implicants,

i.e., N = k/2. In instances in which Topology #2 is used, the maximum depth of the search tree

is the number m of inclusion formulas. In this case, the number of inclusion formulas is a good

approximation of the actual depth of the search tree; hence, we define N to be equal to the number

m of inclusion formulas.

We do not form an upper bound when using the dynamic-weighting strategy, because the

resulting value of f(n) is an intentional overestimate of the true value for a node.

Approximate Minimization. In the dynamic-weighting strategy, a near-minimal solution,

i.e., one guaranteed to be within a fixed bound of the minimal solution, is developed if an admissible

heuristic function is used. In some cases, we may want to relax the requirement that the resulting

solution is within a fixed bound of the minimal solution if:

1. we believe the resulting solution to be very close to the minimal solution, and

2. effort expended during the search process is sufficiently reduced.

If we believe that the resulting solution is close to the minimal solution, but we cannot aarantee

the proximity to the minimal solution, then we are performing approximate minimization. In

this section, we present two techniques which may be applied to develop an approximate-minimal

solution for our problem.

447

Beam Search. Beam search is an irrevocable strategy used to quickly generate a

good solution. For our problem, the evaluation function f(n) used to evaluate each node is f(n) =

g(n) + h 2(n). We use the heuristic function h2 (n) because we would like to get the best estimate

possible of the value of a set of nodes at each level in the search tree. Also, the resulting solution

is not guaranteed to be minimal in any case, so there is no imperative for using an admissible

function. In either topology presented, a width w of 3 or 4 seems to be suitable for our purposes.

We would like to discriminate among nodes at each level of the search, especially at high

levels in the search tree. Some nodes which appear good in the early levels may i.i fact lead to non-

minimal solutions. When bea" search is used as our primary search strategy, we use Procedure 9.8

to develop an initial solution. The cost UB of the initial solution is used as an upper bound; a

node n is discarded if f(n) > UB. Only nodes for which f(n) < UB are kept at each level of the

search tree, even if the number kept is less than the width w. If all generated nodes are discarded,

then we quit the search and announce that the upper-bound solution PS is the result of the search

process. If there exists a tie, so that we will have to both keep and discard nodes with the same

value of f(n), then we keep the nodes with the highesL value of g(n), i.e., the nodes likely to be

closer to a solution.

A liability of beam search is that since we expand w nodes at each level of the search tree,

we may sometimes expand more nodes in the course of a search than when using A* or dynamic-

weighting strategies. On the other hand, since all but w nodes are discarded at each level of the

search process, less memory is required in beam search than in the other strategies. In the other

strategies, a large number of nodes may have to be stored on the OPEN list for possible future

expansion.

Static Weighting. An alternative to beam search for approximate minimization is the

static-weighting strategy. Using static weighting, the evaluation function for each node is defined

as f(n) = g(n) + W . h2 (n), for which W is a pre-defined weight. Hence, more or less weight may

448

be given to the heuristic function h2(n) relative to g(n). Generally, when we use static weighting

we desire to weight h2(n) more than g(n). For our purposes, we use W = 2 to put twice as much

weight on h2(n) relative to g(n). As in beam search, since the result produced by the search is

only approximate-minimal, the function h 2(n) is used rather than hi(n). Additionally, because the

resulting value of f(n) is an intentional overestimate of the true value for a node, an upper bound

is not developed prior to applying the static weighting search strategy.

Comparison of Applied Strategies. We have applied the foregoing search strategies to

several sets of single-output circuit design problems. Computational results of the search strategy

applications are given and discussed in Appendix C. Further work must be done to ascertain the

utility of each strategy for classes of design problems. Moreover, experimentation must be conducted

to determine "good" pre-defined constants to use with the dynamic-weighting, static-weighting, and

beam search strategies.

Implementation of the Search Process

Up to this point in the chapter, we have discussed the different components of the search

process. In this section, we present a general search algorithm which ties together the aspects of

search presented in foregoing sections. We also present procedures in which the result of the search

process is used to construct the vector F of formulas which correspond to a design.

General Search Algorithm. Procedures which implement the search strategies used in

this work are described in Chapter 8 and listed in Appendix D. In each of these procedures, the

manner in which a node is expanded and evaluated using f(n), g(n), and h(n) was not addressed,

i.e., the procedures were presented in a general form. In this section we present a general search

algorithm which integrates these components into a framework used by most search routines. In

a given step, if the actions to be taken differ among search strategies, the different actions are

outlined. Algorithm 9.1 implements our general search algorithm. We assume that pre-defined

449

constants required in a particular search strategy are set a priori. Additionally, we presume that

the choices for search topology, the heuristic function, and the search strategy are pre-determined.

Algorithm 9.1 (General Search Algorithm): Given a set IF of inclusion formulas and a
list LAB/COSTS which associates labels denoting prime implicants and their associated costs, a
search process is formed to select a set PS of labels denoting prime implicants which form a vector

F of formulas in the following manner:

Step 0. Initialise an accumulator PS = 0.

Step 1. Using Procedure 9.5 (Intrinsic Partition), form a partition of IF. A search is performed
independently for each block IFloc. of IF.

Step 2.

* If a search has been performed for each block IFboc, of IF, then PS is the combined
result of the search processes. Return PS.

* Otherwise, continue to Step 3 to perform a search for another block.

Step 3.

" For the A* search or beam search strategies, use Procedure 9.8 (Determination of Lower

Bound and Initial Solution) to form an initial solution PS and a lower bound LB.

1. Determine the cost UB of prime implicants denoted by the labels in the initial
solution PS.

2. If LB = UB, then the initial solution PS is a minimal solution. Add the elements

of PS to PS and return to Step 2.

" For dynamic-weighting and static-weighting strategies, do nothing.

Step 4. Form a root node n using the initial set IFbjok of inclusion formulas, and initialise the

OPEN list by placing n onto the list.

Step 5 (All Except Beam Search).

" If the OPEN list is empty, then the initial solution PS found in the upper bound calcu-

lation in Step 3 is used to form a solution. Add the elements of PS to PS and return
to Step 2.

* Otherwise, select the first node n on the OPEN list and determine if n is the goal node.

- If n is not the goal node, then continue to Step 6.

- Otherwise, n is the goal node. Use the path in n to form a solution PS. Add the
elements of PS to PS and return to Step 2.

Step 5 (Beam Search Only).

e If the OPEN list is empty, then the initial solution PS found in the upper bound calcu-

lation in Step 3 is used to form a solution. Add the elements of PS to PS and return

to Step 2.

450

9 Otherwise, determine if one of the nodes on the OPEN list is a goal node.

- If no node on the OPEN list is a goal node, then continue to Step 6.
- Otherwise, one or more nodes on the goal list is a goal node. Choosin& he node n

for which the cost is cheapest, use the path in n to form a solution PS. Add the
elements of PS to PS and return to Step 2.

Step 6 (All Except Beam Search). Expand node n from Step 5 based on the chosen search tree
topology using either Procedure 9.3 (Expansion of a Node - Topology #1) or Procedure 9.4
(Expansion of a Node - Topology #2). The following aspects of the node expansion process
differ depending on the search strategy and topology:

" Using Procedure 9.3, both Procedures 9.1 and 9.2 are used to create a child for node n.
Using Procedure 9.4, Procedure 9.1 is used to create two or more children for n.

" The heuristic functions hi(n) and h2(n)-implemented by Procedure 9.6 and Proce-
dure 9.7, respectively-which are used depend on the search strategy as well as the
minimization goal.

" The evaluation function f(n) used to evaluate each node generated is also dependent on
the search strategy.

Step 6 (Beam Search Only). Expand all nodes on the OPEN list based on the chosen search
tree topology using either Procedure 9.3 (Expansion of a Node - Topology #1) or Proce-
dure 9.4 (Expansion of a Node - Topology #2).

1. Evaluate each node generated using the evaluation function f(n) = g(n) + h2 (n).

2. After all nodes are generated and evaluated, discard all but the w best nodes. (If there
exists a tie such that we may have to both keep and discard nodes with the same value
1(n), then keep the nodes with the higher value for g(n).)

Step 7. In this step, the children generated in Step 6 are inserted into the OPEN list such that
nodes in the resulting list appear in ascending order of f(n). For nodes with equal values of
1(n), nodes with higher values of g(n) are placed before nodes with lower values of g(n). For
each node n, perform one of the following actions:

" If n contains the same state as a node n' appearing in the OPEN list and f(n) <f(n'),
then remove n' from the OPEN list and place n in the list in the appropriate position.

* If n contains the same state as a node n' appearing in the OPEN list and f(n) _ f (n'),
then discard n.

* Otherwise, place n in the list in the appropriate position.

Return to Step 5.

Algorithm 9.1 (General Search Algorithm) returns a set PS of labels which denote prime

implicants which appear in a vector F of formulas, in the next section we describe the process

whereby we use PS to construct F and thus form a design.

451

Construction of F. The process of forming a design differs between forming a formula

F corresponding to a design for a single-output circuit and constructing a vector F of formulas

corresponding to a multiple-output circuit. The available information for constructing the formulas

is slightly different in the single-output case than for multiple-output designs. We dcribe each

cae in turn.

Formation of a Single Formula F. The partial sum PS,,.,ch developed in the

course of a search process is combined with the partial results from Algorithms 6.1, 6.2, or 6.3 to

develop a formula F which represents a function f(X) belonging to an interval [g(X), h(X)]. The

following information is available for use in constructing F after the search process:

1. a partial sum PS,,.,ch developed in the search process;

2. a partial sum PS, j., identified during the application of reduction rules consisting of labels
which denote useful, conditionally-eliminable prime implicants to be contained in F;

3. the set H.,,l of all useful, conditionally-eliminable prime implicants;

4. the set H.,. of all essential prime implicants; and

5. the set LABS of labels corresponding to elements of Hu, .

The partial sum PS,. ,,, is combined with the partial sum PS.,,h returned by Algorithm 9.1 to

form a set PS. After PSua. and PS,,arch are combined, the sets LABS and Hu,,,uj are used

to replace the labels in PS to form a set H., of prime implicants. H., is combined with H... to

construct the formula F which corresponds to a design. Procedure 9.9 implements this process.

Procedure 9.9 (Formation of F): Given the sets PS,,,,,h and PS,,,aj of labels, the sets
H,,,,,., and H,,, of prime implicants, and the set LABS of labels, the formula F is formed in the
following manner:

Step 1. Combine the sets PSoa,,ch and PSu,,a of labels to form a set PS.

Step 2. Replace labels in PS with their associated prime implicants in H,..put to form a set Hp,..
(Labels in the set LABS of labels correspond one-to-one with elements of Hu,,u,. For each
label in PS, find the identical label in LABS and then place corresponding element of Hu,,fuj
in H,..)

Step 3. Combine the sets Hp,. and H... to form F. Return F.

452

Formation of a Vector F. Formation of a vector F of formulas is different for

multiple-output than for single-output designs due to the fact that we are creating a set of formulas

rather than a single formula. Additionally, the available information for constructing Z is different

for the multiple-output case. The partial sum PSjarch developed in the search process is com-

bined with the results from Algorithms 7.1 or 7.2 to develop a vector F of formulas which represent

functions f (X) belonging to the intervals [g(X), A(X)]. The following information is available for

use in constructing F after the search process:

1. a partial mum PSI.,4 1 . developed in the search process;

2. the set Me,, which represents all conditionally-eliminabie multiple-output prime implicants;

3. the set M.i, which represents all MOPIs which are either essential or were identified for
containment in F during rule reduction; and

4. the set LABS of labels in one-to-one correspondence with elements of Mc..

For each label in PS,,,ch, we find the same label appearing in LABS, which then allows us

to determine the associated term t(X, Z) in Me.. The X-part of the corresponding term in Me,

is the MOPI denoted by the label in PS...,e,. After finding t(X, Z) in M.11 , the Z-part is filled

with the literal zj for each j in which neither zJ nor z' appears. After this process is performed

for all labels in PS,,,h, we then form each formula F of F. For each term t(X, Z) in M.,, if

the literal zj appears in t(X, Z), then the associated X-part u(X) is contained in F. After each

term in M.1 has been examined and a formula F is constructed, ABS(F,) is formed. After each

formula ABS(F,) is derived, the development of F is complete.

Procedure 9.10 (Formation of E): Given the et PSo.a.rh of labels, the sets M,. and M.,1
which represent MOPIs, and the set LABS of labels, the vector F of formulas is formed in the
following manner:

Step 1. For each label in PS...ch:

1. Find the same label appearing in LABS.

2. Elements of LABS are in one-to-one correspondence with terms in M,.. For the label
of subetep 1, determine the corresponding term t(X, Z) in Me,.

453

3. Locate the term t(X, Z) in Mi.

4. Fill the Z-part of t(X, Z) in M4 it with the literal zi for each j in which neither zj nor
2j appears.

Step 2. For j = 1,2,...,m, form Fj:

1. Examine each term t(X, Z) in M.1 to determine if the literal Zj appears in the term.

* If z appears in t(X, Z), then place the X-part u(X) in F.
" Otherwise, do not place u(X) in F.

2. After each term in M~n has been examined, form ABS(F).

Step 3. After each formula ABS(F) has been formed, the development of F is complete. Return
F.

A Decomposition Strategy

In this section we outline a problem-reduction strategy for the search process. In our discus-

sion of intrinsic partitions, we noted that a set IF of inclusion formulas may be partitioned prior

to the search process. A state-space search is then performed for each of the component blocks of

the partition of IF. However, during the course of the search process, we may be able to partition

as well the set IF of inclusion formulas associated with a given node. Hence, during the middle of

the search process, we may again decompose the problem into a set of searches rather than perform

a large search process. We call partitions which may be formed due to choices made during the

course of a search process, i.e., the selection or deletion of prime implicants, induced partitions.

Moreover, we show that an intelligent selection or deletion of certain prime implicants may facili-

tate the formation of an induced partition. We discuss how to use a set of inclusion formulas and

either cut-set or graph-partitioning techniques to determine prime implicants which are useful in

facilitating the formation of an induced partition.

454

Suppose we are performing a search for the set of inclusion formulas given by Block V of the

intrinsic partition in Example 9.1, i.e.,

IF1 = P 1
2 + P1

1 +3P+ 13P5

IF = P114 + PoP1 13 + P'osP2'io (9.34)

IF3 = P9 + P 0 2 P;P + Pe02P 1 0P

IF4 = P+ PA + P e'27P2.

Upon examination of these inclusion formulas we determine that the prime implicant in common

between IF, and IF2 is the PI denoted by P113 . Similarly, the prime implicant in common between

IF2 and IF 3 is denoted by P110.Of the remaining combinations of inclusion formulas, only IF,

and IF4 share prime implicants; they have the prime implicants denoted by P3 , P6 , and P127

in common. Using the information regarding common prime implicants, we may represent the

inclusion formulas and the prime implicants common among the formulas by a graph in which each

vertex denotes an inclusion formula and edges in the graph depict prime implicants common among

the set of inclusion formulas. A graph which denotes the shared prime implicants for the set of

inclusion formulas in (9.34) is given by Figure 9.4. Suppose that the prime implicant denoted by

P 113 is used to generate children for the root node n for which the associated state is the set of

inclusion formulas in (9.34). Due to the selection of P11 3, an induced partition may then be formed

for the inclusion formulas associated with each of n's children; this is demonstrated in Example 9.6.

Example 9.6: Suppose we are given the set IF = {IF,, IF 2, IF 3 , 1F4 } of inclusion formulas

defined by

IF1 = P2- + Ph3P3+ P13P

IF2 = P114 + Pj'o6 PI,3 + P'oVPy1o (9.35)

IF 3 = P109 + P102PgPlo + P102P11oP;
IF4 = P 2

455

IF~ IF 3

p4 p 3 p127 p110

I F pt13 3

Figure 9.4. Graph Representation of Inclusion Formulas and Common PIs

The inclusion formulas in IF represent the coverage of the PIs denoted by P 127 , P14, Plog, and

P3 , respectively, by conditionally-eliminable prime implicants. Using Topology #1, if the prime

implicant associated with P1 13 is used to generate children for the node with the ussociated state

IF, two children are generated-one based on the selection of the PI denoted by P113 and one

based on the removal of the PI from consideration. We describe in turn the formation of each of

the children.

We first discuss the formation of the child based on the selection of the prime implicant

denoted by P1 13 . The first step taken is to modify the inclusion formulas of (9.35) based on the

selection of this prime implicant to form a new set of formulas. This is performed by removing the

literal P11 3 from terms in the formulas in IF. Removing the literal P,13 from terms in (9.35) and

deleting absorbed terms, the set

456

IF 1 = P1 2 7 + P3P

IF 2 = + (9.36)

IF 3 = P P + 0 2 pIP4+P 0 2 P1 0 P,

IF 4 = P3 + P2P + P 2 7 P2

of inclusion formulas is developed. Examination of the formulas in (9.36) reveals that only inclusion

formulas IF, and IF 4 have common prime implicants. Hence, the selection of the prime implicant

denoted by P113 results in the formation of the induced partition {{IF,, IF 4}, {IF2}, {IF3}} of the

inclusion formulas.

In this instance, however, Reduction Rule Set #2 may be applied to further reduce the set

of inclusion formulas. Since IF, denotes the coverage of the prime implicant denoted with P127,

the PI denoted by P3 dominates the prime implicant denoted by P1 27. Because IF 4 represents the

coverage of the PI denoted by P3 , formula IF, may be deleted and terms which contain literal P1'2 7

may be removed from remaining inclusion formulas. Additionally, since IF2 represents the coverage

of the prime implicant denoted by P 1 14, the prime implicant denoted by P106 dominates the prime

implicant denoted by P11 4. Then, because the PI denoted by P 06 does not have an associated

inclusion formula, the term P1
1
14 is simply deleted from IF. The prime implicant denoted by Po6

then becomes secondary essential; thus, it must be selected and IF 2 is deleted from the remaining

set of inclusion formulas. It follows that after rule reduction we derive the set {P 1 3, Po 6 } which

denotes PIs which must appear in the resulting minimal vector F of formulas as well as the revised

set

IF3 = o + P; 0 2P4P4o + P 0 2 P 1 0 p*o (9.37)
+ P2IF, = P; +Pj Ph

of inclusion formulas. It is then obvious that the prime implicants denoted by P1 9o and P3 must

be selected for containment in F.

457

If we remove the prime implicant denoted by P113 from consideration, then the inclusion

formulas of (9.35) are modified based on the deletion of this prime implicant to form a new set of

formulas. In this instance, all terms containing the literal P1 M are removed from formulas in IF.

Removing such terms results in the inclusion formulas

1F1 = P';27

IF2 4 + P1 0 o11 0 (9.38)

IF3 =-10 F.+ P1'2 P;AP + P1 2 P 1 0P;9

IF4 = P3 '6 2'F'+P+

Of the formulas in (9.38), the prime implicant denoted by P 127 is coammon between IF and IF 4 .

Additionally, the prime implicant denoted by P11 0 is between IF 2 and IF 3 . Hence, the dele-

tion of the prime implicant denoted by P 113 results in the formation of the induced partition

{{IF, 1F 4}, {IF2, 1F3 }} of the. iclusion formulas. However, applying Reduction Rule Set #2 re-

sults in the selection of the prime implicants denoted by P 127 and P 2 in F and the deletion of

formulas IF, and IF4 from the revised set of inclusion formulas. We thus derive the set

IF2 = P14 + Po60lPO1 (9.39)
IF3 P 9 + P1 2P79P!4 + P2Po10 P 9

of inclusion formulas. It is then apparent that the prime implicants denoted by P 109 and P114 must

be selected for containment in F.

The use of the prime implicant denoted by P113 to form children for the node associated

with the set (9.34) of inclusion formulas thus facilitates the formation of an induced partition for

the inclusion formulas associated with each of the children. This is clear upon examination of

Figure 9.4 since the edge between the vertices of the graph denoting IF and IF 2 is associated with

P1 13 . The use of P113 also leads to further reduction of the resulting set of inclusion formulas and

identification of prime implicants which constitute formulas in F. Additionally, the selection of the

458

prime implicant denoted by P 1 1 3 leads to the formation or n induced partition of three blocks,

rather than simply a two-block partition.

Example 9.6 illustrates the selection of a prime implicant which results in the formation

of an induced partition. Inclusion formulas which form each block of the induced partition may

then be handlea independently. The use of induced partitions thus facilitates a decomposition

of the problem. ApAying this technique on a global scale throughout the search process, the

search process employs a problem-reduction approach rather than a state-space representation. An

AND/OR graph is then used to represent the search process rather than an OR g-aph. Figure 9.5

depicts a search process which uses both intrinsic as well as induced partitions. For a noL -. which

is the parent t iet of AND nodes, the results of a search for each of its children are combined to

develop n's corresponding solution.

To develop a search process based on the use of induced partitions, we must deal with two

issues:

1. the formation of a search strategy for solving a problem represented with an AND/OR tr'!e,
and

2. the development of a technique for identifying prime implicants (Topology #1) or inclusion
formulas (Topology #2) to use in the expansion of a node which facilitates the formation of
an induced partition.

Unfortunately, the author has not had the opportunity to explore these issues in depth. However,

we will offer several ideas which should provide the basis for further research.

A number of search strategies for developing least-cost solutions for problems represented

using an AND/OR graph, e.g., AO*, are found in The Handbook of Artificial Intelligence, Volume I

(Barr 81) and Artificial Intelligence (Rich 83). The strategies given in these texts must be adapted

for use in an AND/OR tree rather than the general case of an AND/OR graph. We believe that

this will actually simplify the resulting search strategy. For example, the AO* strategy does not use

459

P1 I p3 p3 p p4'

Intrinsic
Partition

p2 p2' p2 p2'

Induced Induced
Partitions Partitions

Induced
Partitions

Figure 9.5. Problem Representation Using an AND/OR Graph

460

or calculate the value of g(n) for a given node n since there may be many paths to n (Rich 91:86);

however, for our problem the value of g(n) may be useful since there will only be one path to n.

Nodes which are considered "unsolvable" are handled by the AO* algorithm; however, all nodes in

our representation are solvable, i.e., they are on the path to a solution. Other aspects of the search

process will have to be examined to develop a search strategy suitable for our problem.

We give more insight on the development of a technique for identifying prime implicants

(Topology #1) or inclusion formulas (Topology #2) to use in the expansion of a node to facilitate

the formation of an induced partition. Using the graph-based representation of a set of inclusion

formulas and common prime implicants, we can apply graph algorithms to select prime implicants

or inclusion formulas for use during node expansion. To proceed with this discussion, however, we

must define a number of terms used in graph theory. We use the terminology in the Introduction

to Graph Theory (Wilso 79).

As we earlier alluded, the points in a graph G are called vertices and the lines which connect

the points--if undirected-are called edges. A subgraph G' of G contains a subset of the vertices

and edges in G. A graph is called complete if there exists an edge between every two distinct

vertices. A path is a sequence of distinct edges in G in which each vertex on the path is distinct

(except possibly the first and last vcrtictu) that may be followed to get from one vertex to another.

A path is closed if the first and last vertices are identical; a closed path containing at least one

edge is called a circuit. G is said to be connected if there exists a path between any two vertices

in G. Otherwise, G is said to be disconnected. Each connected subgraph G' of G is called a

component of G. A connected graph has only one component; a disconnected graph has more

than one component. A disconnecting set of a connected graph G is a set of edges whose removal

disconnects G. A cutset is a disconnecting set in which no proper subset is a disconnecting set. A

cutset which contains a single edge is called a bridge or isthmus. The edge-connectivity of a graph

is the size of the smallest cutset; a graph G is said to be k-edge-connected if the edge-connectivity

461

of G is greater than or equal to k. A separating set of a connected graph G is a set or vertices whose

deletion disconnects G. A cut-vertez or articulation point is a separating set which contains only

one vertex. The ,erez-connectiviity of a graph G is the size of the smallest separating set; G is said

to be k-connected if the vertex-connectivity is greater than or equal to k. Using this terminology,

we outline several approaches for determining prime implicants and inclusion formulas to select for

node expansion which facilitate the formation of an induced partition.

In the first step of any procedure for making a selection, we form a graph G in which vertices

depict inclusion formulas associated with a node n in the search tree and edges which link vertices

represent common prime implicants between associated inclusion formulas. Moreover, if a prime

implicant is common among three or more inclusion formulas, then a complete subgraph G' is

formed which contains the vertices depicting the inclusion formulas and edges between the vertices

representing the prime implicant common among them. Additionally, if more than one prime

implicant is common between two inclusion formulas, then more than one edge will appear between

the respective vertices. It is important that multiple edges appear between two vertices vi and vj

in such an instance, because we may have to deal with more than one prime implicant to break a

direct link between v, and vi.

A simple approach for decomposing the search problem is to use bridges (Topology #1) and

cut-vertices (Topology #2). At a given point in the search process, we can use an algorithm which

determines all of the bridges and cut-vertices in G. Using Topology #1, we select a bridge in which

the edge denotes the prime implicant to use in the formation of children for a given node. In each

of the children, the associated set of inclusion formulas can be represented by a disconnected graph

of two or more components, since the edge associated with the selected prime implicant is removed

from G. A search process is then performed independently for each of the components. If more

than one bridge exists in G, then the "best" bridge to use in the selection of a prime implicant is

the one for which the removal of the corresponding edge breaks up 0 into components in which the

462

disparity in contained vertices is minimized. For example, if two bridges exist in a graph consisting

of eight vertices, and the removal of the edge associated with the first bridge breaks up the graph

into components of two and six vertices, and the removal of the edge associated with the second

bridge breaks up the graph into components of three and five vertices, then the prime implicant

denoted by the edge in the second bridge would be used to force an induced partition. Similarly,

using Topology #2, a cut- vertex denotes an inclusion formula tj use in the formation of a node's

children such that an induced partition of the inclusion formulas associated with each of the children

may be formed.

An algorithm and FORTRAN implementation which determines all bridges and cut-vertices of

a graph is found in Algorithms on Graphs (Lau 89). The original work on which this implementation

is based is (Paton 69) and (Paton 71). Additionally, the complexity of this algorithm is 0(n 2). In

many instances, it will likely be beneficial to apply an algorithm such as this one to determine the set

of bridges and/or cut-vertices. This may be followed by a procedure which aelects the one-bridge

or cut-vertex (depending on the topology)-which causes the best decomposition of the graph and

hence the problem. However, in some instances the use of bridges may only be marginally useful.

Figure 9.6 illustrates the fifteenth block of a intrinsic partition formed for interval IC14 in the

course of applying Algorithm 6.2. Using a cut-vertex approach, the vertex which denotes IF 12

would be a good choice for developing children for the root node, because it would facilitate a

partition of the graph into components of nearly equal number of vertices. Using bridges to select a

prime implicant to form children for the root node may only be marginally useful since bridges are

located only near the extremities of the graph. However, an approach which may be attempted is

to use these bridges to "whittle away" the graph until no more bridges exist; a small decomposition

of the problem may be better than none at all.

If no bridges exist in a graph representing a set of inclusion formulas associated with a node

in the search tree, a heuristic which may work is to first select a prime implicant pi which is most

463

p107 common to 1F12,

I ±F 8 Numbe undeiF4nd I1

p2

Fiur 96.GrphRereenin Boc X o 51

6 p464

common among inclusion formulas. After such a pi is used to form children for a node, the inclusion

formulas associated with each of the child nodes may be represented by a graph which contains

bridges. The reason why this occurs is that pi causes circuits in the graph; the subgraph formed

considering only the vertices associated with inclusion formulas in which P appears is complete.

Removal of the edges associated with pi decreases the number of possible circuits in the graph,

hence causing the occurrence of bridges. In Figure 9.6, the prime implicant Pi07 is associated

with edges connecting four vertices of the graph. If we were to remove these edges, then the edge

depicting prime implicant P124 is contained in a bridge in the resulting graph. Selection of P124

to form the next set of children facilitates an induced partition in which the components of the

associated graphs contain seven and thirteen vertices.

An alternative to using an algorithm to detect bridges and cut-vertices is to use a general

graph-partitioning technique. Such methods either identify cutsets to disconnect a graph into two

components or identify sets of edges for partitioning the graph into an arbitrary number of -ompo-

nents. Although an optimal partition a graph into k components, i.e., the identification of a minimal

number of edges, is an NP-complete problem (Garey 79), heuristic algorithms exist to solve the

graph-partitioning problem which are very efficient. Two such algorithms are the Kernighan-Lin

(Kerni 70) and the Fiduccia-Mattheyses (Fiduc 82) algorithms. Each of these algorithms uses an

iterative approach to determine a good graph partition. If the average number of edges incident

to a vertex is small, then the computational cost for each iteration of the Kernighan-Lin algorithm

for a graph of n vertices is O(nlog(n)). For the arbitrary case, the computational cost per iter-

ation is 0(n). The computational cost for each iteration of the Fiduccia-Mattheyses algorithm

is 0(nlog(n)). The underlying idea in both algorithms is to divide a set of an even number of

vertices into two components with an equal number of vertices such that the cutset used to form

the partition is minimal with respect to the contained edges. Each method may be generalized to

form partitions of an unequal number of vertices; moreover, each may be used to develop a partition

of more than two components. For our purposes, the partition of a graph into two components of

465

unequal number would suffice. In our problem, a cutset containing a smaller number of edges is

more likely if the components are allowed to be unequal.

No matter which methodology is followed, once we determine prime implicants which facilitate

an induced partition of the graph, the decomposition of the problem should make the total search

process far more efficient than if a decomposition strategy is not employed. For our problems, once

the number of inclusion formulas contained in a block of a partition is small, e.g., six to eight,

further decomposition may not be necessary. This may be highly dependent on the connectivity of

the graph. This issue requires further study.

There are several disadvantages to using induced partitions in the course of a search process.

Much work may be performed to identify prime implicants and form a decomposition when in

some cases a solution may be quickly developed without a problem-reduction step. Moreover, a

search process which employs this technique will more complicated than when not decomposing the

problem. However, for most problems the efficiency gain which results due to the decomposition of

the problem will likely be significant.

In the foregoing discussion, we have provided a number of suggestions on which to base further

research into this problem. More work must be done to determine the best approaches. We believe

a combination of the techniques described above may prove useful in improving the overall search

process.

Summary

In this chapter we presented a search process for identifying prime implicants to be used in

the construction of a vector F of formulas corresponding to a design. At the beginning of the search

process, we are given a set IF of inclusion formulas produced by algorithms described in earlier

chapters. The search process uses IF to form a set PS of labels which denotes a least-cost set of

466

prime implicants to be contained in F. Subsequently, the labels are replaced by their associated

prime implicants to form F.

We began the chapter by presenting a set of issues which must be considered in formulating

a search process. Throughout the chapter, we addressed each of these issues as we described the

different components of the search process. After introducing each component, a general search

algorithm was presented which integrates the components. Two decomposition strategies were

discussed for use in simplifying the search process.

Throughout the chapter, we described different methods for representing as well as manipu-

lating information. The availability of alternative approaches to solving the problem facilitates our

ability to make trade-offs during the design process. Two different trade-offs were discussed in the

chapter:

* computational effort versus memory usage, and

" speed of the search process versus minimality of the solution.

Choices regarding these issues are made in order to satisfy our design objectives as well as time

requirements. Ultimately, the circuit designer must make decisions regarding these issues. Compu-

tational resource limitations may also affect our design decisions as well.

A number of new ideas were ;ntroduced in this chapter:

" A general search algorithm which employs heuristic search was described which may be used
to develop a minimal vector F of formulas which corresponds to a design. Different search
topologies and node representations were presented for use in the search algorithm.

" We introduced a spectrum of search strategies which facilitate trade-offs between speed of
the search process and minimality of the solution. Thus, different search strategies facilitate
varying levels of effort. Search strategies were described for producing minimal, near-minimal,
and approximate-minimal solutions.

" Two heuristic functions hi(n) and h2(v,) were presented. The first, hi(n), is an admissible
function which guarantees that a minimal solution will be found when A* search is used.
Function h2 (n) produces better estimates than hi(n) most of the time, although it overesti-
mates in some cases.

467

" Two different state-space classifications-circuit formation and circuit transformation-for
representing the digital design were introduced. All digital design approaches fall into one of
these two categories.

* Two different decomposition strategies were described. The first approach, the formation of
an intrinsic partition, is similar in concept to the partitioning of a prime implicant table. A
graph-based partitioning scheme is used to form an induced partition in the second method.
The use of either technique significantly reduces effort required during the search process.

468

X. Alternative Minimization Techniques

In this chapter, we present techniques for producing desig;'s for circuit specifications which

are different from the type of designs which can be generated using conventional minimization

algorithms. In conventional approaches, a specification is stated and a design is generated such

that the circuit outputs are functions of the circuit inputs. We propose methods which facilitate

the use of signals other than the circuit inputs to produce circuit outputs.

In the late 1950s Ledley (Ledle 60) proposed a set of digital design problems for which he

developed solutions based on solving Boolean equations. Ledley devised ad hoc methods for solving

the proposed problems. However, his methods would not be useful for highly complex problems. In

the first part of this chapter, we present techniques for dealing with Ledley's problems that result

in minimal designs. An application of one of Ledley's problems is that signals from existing circuits

may be used in constructing new designs which are cheaper than what could be developed without

knowledge of the existing signals.

In the second part of this chapter, we present methods for developing approximate-minimal

recurrent circuits. The outputs of recurrent circuits are formed using other outputs as well as circuit

inputs. The cost of the resulting designs are generally lower than those of conventional designs.

We introduce algorithms which are analogous to those presented in Chapter 7, with modifications

to facilitate the handling of output nodes in a similar fashion as input nodes.

Ledley's Problems

An Overview of Ledley's Problems. Ledley proposed three design problems which he

called elementary problems of circuit design (Ledle 60). Each of the problems involves a circuit of

the form depicted in Figure 10.1. We denote input nodes by the vector X = (zX, z 2 ,.. ., zn) and

output nodes by the vector Z = (z2, z2, ... , z,,,). Additionally, intermediate nodes-those which

are internal to the circuit-are denoted by the vector Y = (yiy2,... ,yz). In the first problem,

469

-

f(X)

h,(X, Y) z

L 1

x Z9f(X)

FigUr- 10.1. Ledley's Circuit

470

called a Type 1 problem by Ledley, we know the components which compose the circuit and we are

required to analyze the circuit to determine the function that the circuit implements. In the last

two problems--called Type 2 and Type 3 problems-we are given the global circuit specification

as well as functions implemented by subcircuits; the problem is to design the remaining subcircuits

such that the global circuit specification is met. Using the notation given in Figure 10.1, we give a

formal description of each of Ledley's problems.

Type 1 Problem: Given the vectors g(X) and h(X, Y) of functions, develop a minimal vector F

of formulas to represent the vector f(X) of functions.

Type 2 Problem: Given the vector g(X) of functions and the set [fl(X),f'(X)] of intervals,

develop a minimal vector H of formulas to represent the vector h(X, Y) of functions.

Type 3 Problem: Given the vector h(X, Y) of functions and the set [f(X), fL(X)] of intervals,

develop a minimal vector G of formulas to represent the vector g(X) of functions.

Our statement of a Type 1 problem differs from Ledley's in that his concern was for the formation

of the functions f(X) rather than the formation of a mininal vector F of formulas.

Ledley developed matrix-based methods for solving the proposed problems. However, his

methods did not guarantee a minimal solution-or even a good solution. In addition, his techniques

for solving the problems are not very useful for highly complex specifications. For example, in a

Type 2 problem in which we are given an equation z = f(X), in which f is defined by the equation

f(X) = z 3z 4 + zIZ'4z 5 + z2X3z' + z 2z 4,

471

and the system 7 = g(X), in which g(X) is defined by the system

g1(X) = Z3Z4 + 23X5

g2(X) = 2324 + Z32' (10.2)

g3 (X) = 2324 + 24Xs,

the solution given by Ledley, using his methods, is

h(X, Y) = Y/ iY3 + z13/YI! + z2Y2Y3. (10.3)

However, a least-cost solution with respect to any typical cost criterion, e.g., fewest terms or fewest

literals, is

h(X, Y) = Z3Z4 + z 1/3 + z23/3. (10.4)

Methods in this section return least-cost solutions for Ledley's problems.

We present a methodology to handle each of Ledley's problems. Our methodology consists

of three steps:

1. reduce the information that is given about the problem to a 1-normal form O(X, Y, Z) = 1;

2. using O(X, Y, Z), derive a 1-normal form required for the problem; and

3. use the algorithms developed in Chapters 6 and 7 to develop a minimal design which meets
the specification given by the 1-normal form developed in step 2.

For a Type 1 problem, Step 3 may be modified to return a general solution of the 1-normal form

developed in Step 2. Returning a general solution completes the task as originally defined by Ledley,

which is an analysis problem--a problem in which information is determined about the circuit. We

modify the problem to change it to a design problem. We apply the aforementioned methodology

in turn to each -f Ledley's problems.

472

Type I Problems. In a Type 1 problem, the vectors g(X) and h(X, Y) of functions are

given, and we must determine the vector f(X) of functions. In this ploblem, we know the functions

of the subcircuits which compose the circuit and are required to analyze the circuit to determine the

vector f(X) of functions implemented by the global circuit. In addition to analyzing the circuit, we

can use the framework of the problem to develop a new circuit which meets the same specification

as does the implemented circuit. If the new design is significantly cheaper than the existing circuit,

then we may find it desirable to replace the existing circuit with the new design.

Given the vectors g(X) and h(X, Y) of functions, we use reduction to form an equivalent

1-normal form O(X, Y, Z) = 1. In the first step of the process, an equivalent 1-normal form

C(X, Y) = 1 is derived for the system Y = F(X). The system

Y1= g1 (X)
Y2 = g2 (X) (10.5)

=1 g1(X)

is equivalent to the equation

J(y g,,(X)) = 1. (10.6)
k=l

We define the left-hand side of (10.6) to be the function (X, Y). In the second step, we form an

eq.aivalent 1-normal form A(X, Y, Z) = 1 for Z = _h(X, Y). Given the system

z, = h(X, Y)

z2 = h2 (X,Y) (10.7)

= hm(X, Y),

473

we form the equation

in

J1J(zi ® hi(X, Y)) = 1. (10.8)
j=i

We define the function (X, Y, Z) to be equal to left-hand side of (10.8). The equations t(X, Y) = 1

and A(X, Y, Z) = 1 can be combined to formed the equation ,)(X, Y, Z) = 1. Subsequently, the

function ,(X, Y, Z) is defined by the equation

,A(X, Y, Z) = C(X, Y) . A(X, Y, Z). (10.9)

Formation of the equation O(X, Y, Z) = 1 is the first step in our methodology for handling Ledley's

problems.

The second step in our methodology for Ledley's problems in the development of 1-normal

form required for the type problem. In a Type 1 problem, we must derive the 1-normal form

O(X, Z) = 1 which specifies the complete circuit depicted in Figure 10.1. Elimination of the Y-

variables from ,(X, Y, Z) = 1 yields an equation O(X, Z) = 1, in which 4a(X, Z) is defined by the

equation

O(X, Z) = EDIS(,p(X, Y, Z), Y). (10.10)

The specification ((X, Z) = 1 is guaranteed to be tabular since it is developed from an implemented

circuit.

The development of a minimal vector F of formulas is the third step of our methodology for

Ledley's problems. In a Type 1 problem, we develop a design to determine if it is cheaper than the

existing circuit. Using the 1-normal form O(X, Z) = 1, either Algorithm 7.1 or Algorithm 7.2 may

be used to develop a new design. (For a 1-normal form O(X, z) = 1, Algorithms 6.1, 6.2, or 6.3 are

474

used to develop a design.) If the new design is significantly cheaper in comparison to the existing

circuit, then we may find it desirable to replace the existing circuit with the redesigned circuit.

Algorithm 10.1 (Type 1 Problem) may be used to analyze the circuit depicted in Figure 10.1 and

develop a minimal equivalent circuit.

Algorithm 10.1 (Type 1 Problem): Given the vectors g(X) and h(X, Y) of functions, a minimal
vector F of formulas is developed to represent the vector L(X) of functions in the following manner:

Step 1. Using Boolean reduction, derive an equivalent 1-normal form (X, Y) = 1 for the system
Y = 9(X).

Step 2. Using Boolean reduction, derive an equivalent 1-normal form A(X, Y, Z) = 1 for the system
Z = h(X, Y).

Step 3. Form O(X, Y, Z) = f(X, Y)- A (X, Y, Z).

Step 4. Form O(X, Z) = EDIS(b(X, Y, Z), Y).

Step 5.

" Given the 1-normal form specification O(X, z) = 1, use one of Algorithm 6.1, Algo-
rithm 6.2, or Algorithm 6.3 to develop a minimal formula F.

" Given the 1-normal form specification O(X, Z) = 1, use either Algorithm 7.1 or Algo-
rithm 7.2 to develop a minimal vector F of formulas.

Rather than forming a minimal vector F, our interest may lie-as did Ledley's-with an-

alyzing the circuit depicted in Figure 10.1 to derive the vector f(X) of functions. To form

f(X), we first must form a general solution of O(X, Z) = 1 for Z. Let us define the function

Oj(X, zi) = EDIS(O(X, Z), Z,), in which Zi is the set Z of variables associated with the output

nodes less the output zi. Viewing 4j (X, zj) as a function consisting of a single variable zj, we form

a general solution of O(X, Z) = 1 for Z:

2(X, 0) Z2 < 5 2 (X, 1)

3(X, < z 3 5 3 (X, 1) (10.11)

0' (X,O0) <_ zn < (X, 1).-

A particular solution Z f _(X) is then developed using (10.11).

475

Since O(X, Z) = 1 specifies an implemented circuit, i.e., it was developed from a design rather

than used as a vehicle for specifying a design, the upper and lower bounds of (10.11) are equal.

Thus, the genera] solution represents a single particular solution. It follows that Z is defined by

the system

2 = OI(X, 1)

Z2 = 0 2(X, 1) (10.12)

Zm= m(x, 1).

Since Z = (x), f(X) is defined by the system

f1 (X) = ,(X, 1)
f 2 (X) = 2 (X, 1) (10.13)

f,,(X) = ,,(X, 1).

Algorithm 10.2 (Type 1 Problem) implements a procedure which returns a vector f(X) of functions.

Example 10.1 demonstrates the application of Algorithm 10.2.

Algorithm 10.2 (Type 1 Problem): Given the vectors _(X) and h(X, Y) of functions, the
vector f(X) of functions is determined in the following manner:

Step 1. Using Boolean reduction, derive an equivalent 1-normal form (X, Y) = 1 for the system
Y = g(X).

Step 2. Using Boolean reduction, derive an equivalent 1-normal form A(X, Y, Z) = 1 for the system
z = (x, Y).

Step 3. Form O(X, Y, Z) = (X, Y). A(X, Y, Z).

Step 4. Form O(X, Z) = EDIS(O(X, Y, Z), Y).

476

Step 5. Letting Zj be the set of Z-variables less the variable zi, perform the following actions for
each zi:

1. Derive O3 (X, zi) = EDIS(O(X, Z), Z).

2. Form zi = ij(X, 1).

Step 6. The system Z = f_(X) was formed in Step 5, in which f,(X) = ,(X, 1). Return f(X).

Example 10.1: Let Y = g(X) be defined by the system

Y1 = z (10.14)

Y2 = 1Z3

of equations. Moreover, let z = h(X, Y) be defined by the equation

z = 11132 + z 4 Yl. (10.15)

Our goal is to determine the function f(X, Y).

Step 1. Using Boolean reduction, we derive a 1-normal form t(X, Y) = 1 which is equivalent to

Y = g(X). f(X, Y) is defined by the equation

(X, Y) = Z1Z'3Y1'IY'2 +X 2Y1112 + ZlZ'2Z 3 Y'1 Y2 + XZz/ -Y -Y + Mm2Z3 . (10.16)

Step 2. Using Boolean reduction, we derive an equivalent 1-normal form A(X, Y, z) = 1 for the

equation z = h(X, Y). A(X, Y, z) is defined by the equation

A(X, Y, z) = Y/z' + z'4Y2z' + yYf'2Z + z4YIZ. (10.17)

477

Step 3. Form O(X, Y, z) = C(X, Y) . A(X, Y, z).

Ib(X,Y,z) = zIZ' 3Y/1y'2Z'+ 2 IYi2Z'+ZIZ'2: 3 IY2Z'+ (10.18)
---- ~Y13Y'Z + zlzyX3Z' Yl2Z'+ Z lz 23zy- I0.8

Step 4. We form O(X, z) = EDIS(O(X, Y, z), Y):

O(X, z) = Iz' + Z2z' + Z3zz'+X'1z'2X'3Z+X'z'2Z4 z (10.19)

Step 5. Since z = h(X, Y) corresponds to a single-output circuit, we simply form z = O(X, 1). We

thus develop the equation

z=z::4 + z/ 2 :' s. (10.20)

Step 6. The equation z = 1(X) was formed in Step 5, for which f(X) = O(X, 1). We return

(X) = 2 24 + 1 Z23*

Type 2 Problems. Type 1 problems are of greatest utility in the analysis of existing designs.

On the other hand, Type 2 problems are very useful in developing new designs. In a Type 2 problem,

we are given the vector g(X) of functions and the set [f'(X), f"(X)] of intervals and must develop

a minimal vector H of formulas to represent the vector h(X, Y) of functions. An application

of a Type 2 problem is the use of existing signals from previously-constructed subcircuits in the

development of a new circuit which contains the subcircuits. Taking advantage of the existing

signals, the new circuits may be more economical than otherwise possible.

In the first step of our methodology, we use the information given about the problem to form

O(X, Y, Z). We are initially given the systems Y = g(X) and the set [f'(X), f(X)] of intervals.

The system Y = g(X) is used to form the equation f(X, Y) = 1, in which f(X, Y) is defined as the

478

left-hand side of equation (10.6). If we are not given the global circuit specification O(X, Z) = 1 at

the outset, then it is formed from the set [f1(X), f (X)] of intervals in which each zj is bounded

by the interval [f4(X), fu (X)]. Thus, Z is defined by the vector [ft(X), f'(X)] of intervals. The

function O(X, Z) is formed as demonstrated by (4.91) through (4.94) in Chapter 4. The equation

,(X, Y, Z) = 1 is formed by combining equation t(X, Y) = 1 and O(X, Z) = 1; it follows that

,(X, Y, Z) in a Type 2 problem is defined by the equation

iP(X, Y, Z) = f(X, Y) . O(X, Z). (10.21)

In this problem, we partition the X-variables into two blocks. The first block is the subset

X, of the X-variables which designate input nodes for the circuits corresponding to the system

Y = F(X) and which are not inputs nodes for the circuit corresponding to Z = h(X, Y). In

other words, the functions _(X, Y) are not dependent on any variables in X 1 . The second block,

X 2 , comprises the X-variables less the variables in X 1 . The 1-normal form required for a Type 2

problem in A(X 2, Y, Z) = 1, for which A(X2, Y, Z) is defined by the equation

A(X 2 , Y, Z) = EDIS(,p(X, Y, Z), Xi). (10.22)

Formation of the equation A(X 2 , Y, Z) = 1 accomplishes the second step in our methodology for a

Type 2 problem.

After forming A(X 2 , Y, Z) = 1, we use A(X 2 , Y, Z) = I as a specification for developing a

minimal design. Hence, A(X 2 , Y, Z) = 1 is used as the circuit specification when applying Algo-

rithms 7.1 and 7.2. An equation O(X, Z) = 1 is normally used as the specification in Algorithms 7.1

and 7.2. When using A(X 2, Y, Z) = 1 rather than O(X, Z) = 1, the union of the sets X 2 and Y

corresponds to the X-variables and the set Z forms the Z-variables in the two algorithms. (Given

a specification A(X 2 ,Y,z) = 1, one of Algorithms 6.1, 6.2, or 6.3 is used to develop a minimal

479

design.) Algorithm 10.3 (Type 2 Problem) returns a minimal vector H of formulas to represent the

vector h(X, Y) of functions. Example 10.2 demonstrates an application of Algorithm 10.3.

Algorithm 10.3 (Type 2 Problem): Given the functions g(X) and the set [f'(X), f"(X)] of

intervals, a minimal vector H of formulas is developed to represent the vector h(X, Y) of functions

in the following manner:

Step 1. Using Boolean reduction, derive an equivalent 1-normal form 4(X, Y) = 1 for the system

Y = g(X).

Step 2. Using Boolean reduction, derive an equivalent 1-normal form 4O(X, Z) = 1 for the set

LI(X) 5 Z 5 L'(X) of intervals.

Step 3. Form O(X, Y, Z) = (X, Y) - O(X, Z).

Step 4. Partition the X-variables into subsets X1 and X2 :

1. Let X, be the subset of the X-variables which designate input nodes for the circuits

corresponding to the system Y = g(X) and which are not inputs nodes for design

corresponding to Z = h(X, Y).

2. Let X2 denote the X-variables less the variables in X1.

Step 5. Form)(X 2 , Y, Z) = EDIS(z(X, Y, Z), XI).

Step 6.

" Given a 1-normal form specification A(X 2 , Y, z) = 1, use one among Algorithm 6.1,
Algorithm 6.2, or Algorithm 6.3 to develop a minimal formula H. The union of the sets

X 2 and Y corresponds to the X-variables and z is the Z-variable in the algorithms.

" Given a 1-normal form specification A(X2 , Y, Z) = 1, use either Algorithm 7.1 or Algo-

rithm 7.2 to develop a minimal vector H of formulas. The union of the sets X2 and Y

corresponds to the X-variables and the set Z forms the Z-variables in the two algorithms.

Example 10.2: Let Y = g(X) by defined by the system

Y1 = z1 + zIz2 (10.23)

Y2 = Z2Z3

of equations. Moreover, let f'(X) < z < fu'(X) be defined by the interval

X223 + Z12Z3Z4 + 21223 -5 Z < Z2Z3 " 3 -12 + 21Z2 + IZ3Z'4
• (10.24)

480

Suppose we would like to enforce the condition that the function h(X, Y) in the equation z =

h(X, Y) is dependent only on the variables Z4, y11 and y2. Our goal is to determine the function

h(l, Yl, Y).

Step 1. Using Boolean reduction, we derive an equivalent 1-normal form 4(X, Y) = 1 for Y =

_(X). t(X, Y) is defined by the equation

V(X,Y) = Z'=Z'3Y 4 + jz2 3,'/lZY + Z.z2=3YlY2 + (10.25)
ZIZ'2 YIY'2 + Xlz2Z 3 YlY 2 + Zl2Z 3 Y/ 2 .

Step 2. Using Boolean reduction, we derive an equivalent 1-normal form O(X, z) = 1 for the

interval fl(X) < z < r(X). O(X, z) is defined by the equation

O(X, z) = I' ' + '2 z ' + X':2z'z + Z'1zz + Z'l'23'4 +
ZIZ 2 Z 3 + Z3Z + XZ1 2X3 + Z2Z3Z + :1z 2z + (10.26)z 1 :: 4 ' +x3 n4z + z'1 z + + 'z 3 'z'

"I1Z4I+ ZlZ3Z4Z + ZIX3,Z + XIX3X4ZI

Step 3. We form O(X, Y, z) = f(X, Y) . O(X, z):

1(X, Y, z) = Z'1 ,2Y4Y2Z + Z'IZ2X31Y + Z'I '241IY += 2331111z + Z'23a 2311Z + l2I,2'3/l 1.7
II

I
Z Z2z3 YIYZ + Z'Z2XaY2z + z3YaY2 (10.27)

Z2Z4YY2Z/ + Z112X34YY12 + XlZ2X32 + lX231Y "2 Z
.

Step 4. We partition the X-variables into the subsets X, and X2. Since h(z 4 , YI, Y4) is only

dependent on X4, XI is equal to {zI, Z2, X3}. Then, X 2 equals {z4}.

Step 5. We form A(z4 , YI, Y2 , z) = EDIS(Ok(X, Y, z), Xi):

)t~z, y, y, z) ' '' '(10.28)

A 481= Yl + YZ + z' + X'4 + Yz + Z4Y 1.

481

Step 6. A general solution for z of A(z4, yI, Y2, z) = 1 is developed and used to form a minimal

formula H. We develop the interval

Y2_ z< 2++ +4. (10.29)

Clearly, we may let h = y2. We thus develop the equation z = y2 as the solution for this

Type 2 problem.

Now suppose we change the problem so that g(X) and h(X, Y) are dependent on the same set

of X-variables. The modified problem is different from the original problem starting with Step 4.

Step 4. We partition the X-variables into the subsets X 1 and X 2 . Since h(X, Y) is dependent on

all of the X-variables, X, = 0. Then, X2 = fzj, Z2, X3, Z4}.

Step 5. A(X, Y, z) is equal to O(X, Y, z).

Step 6. A general solution of A(X, Y, z) = 1 for z is developed and used to form a minimal formula

H. We develop an interval in which the lower bound is equal to

21Z2Z3YY2 + Z1Z23Z4111112 + ZIZ2Z3Z4YY2 + ZZ23YlY2 (10.30)

The upper bound in Blake canonical form is equal to the formula

2122 + Z2Z3Z4 + 212 + Z2Z3 + Z'Z3 + V1 + -212'3 +- (10.31)

482

To develop a minimal formula H, a minimal subset of terms in (10.31) is formed to cover

the terms in (10.30). There exist 12 irredundant formulas containing terms in (10.31) which

co;.er terms in (10.30):

33Z334 + Z'I2 + X2Z3
I I + I

3134 + Zl2 +23
!/ I Z 1

2z3 4 + Y1l + 2
3'1Z13 +I 1~ + Z1 3 + X133
2 z 3 4 + Z1Z2 +~~ 1

Z2Z3Z4 + 1 + 2X3 (10.32)
I I I I 9
3Z34 + Y + 1 3

I I +

2 -34 + 11 + 23

, I I

3X334 + 1IZ3 + Y2
I I II

Of the irredundant formulas, 10 contain three terms and two contain four terms. Any formula

containing only three terms may be chosen as formula H. Choosing the formula H = z3zsz3 +

y +1y3, we thus develop the equation z = z'x33 +34 +- + y2 as a solution for the given Type 2

problem.

An application of the Type 2 problem is the use of existing signals from previously-constructed

circuits to aid in the development of new circuits. Taking advantage of the existing signals, the new

circuits may be more economical than otherwise possible. In essence, the availability of the existing

signals yields a greater number of options which facilitate greater minimization. Hence, rather than

implementing a circuit corresponding to the equation Z = f(X), we may use a circuit corresponding

to the equation Z = h(X, Y). The choice depends on whether the design corresponding to H is

cheaper than the design corresponding to F. Figure 10.2 depicts the application of the Type 2

problem in which we use existing signals to develop a new design. Note that in this application,

we treat Y-variables as both outputs and as intermediate nodes.

483

Xv

x x g(X) Y ---
X-\f(X): z

Typ~e 2 Problem

x

Figure 10.2. An Application of the Type 2 Problem

484

For this application, we assume that we are given a 1-uormal form specification O(X, Z) = 1

for the portion of the circuit to be designed. Furthermore, there exists a circuit which corresponds

to the equation Y = g(X). The equation Y = g(X) is reduced to an equivalent 1-normal form

C(X, Y) = 1. The equations O(X, Z) = 1 and (X, Y) = 1 are combined to form the equation

O(X, Y, Z) = 1. O(X, Y, Z) = 1 is then used as the specification rather than O(X, Z) = 1 when

applying the algorithms presented in earlier chapters. Example 10.3 demonstrates this application

of the Type 2 problem.

Example 10.3: Suppose we are given a circuit specification O(X, z) = 1, in which O(X, z) is

represented by the formula

ziX14 z + ZI3 Z'4 Z' + 1'z'-z' + X 1 z 2 Z 3 Z 4 z + ZlX 2 X 3 Z 4 Z' + zX' 4 Z + 'Z4Z -+ '3 Z 4 Z. (10.33)

To form a design, we develop a minimal F to represent f(X) in the equation z = f(X). We first

form a general solution of O(X, z) = 1 for z; such a solution is formed by the interval 0'(X, 0) <

z < O(X, 1). In this case, we develop the interval

Zl2Z3Z4 + z 1 Z4 + zXz 4 + Z3 Z4 < Z < ZlZ2Z3X4 + zX,4 + Zz4 + z 3'z. (10.34)

The upper and lower bounds are equal in (10.34); furthermore, each formula is a Blake canonical

form. We observe that no term may be deleted from either formula; hence, a minimal F is given by

the formula zlz 2z 3z + zIz4 + z 2 7 4 + z 3 Z 4 . Using the fewest-gates cost criterion, it follows that

a least-cost design consists of four AND gates.

Now suppose there exists a circuit y = g(X), g(X) = zlz 2 z 3; we may freely use node y in

the development of a new circuit. We employ the circuit y = g(X) to develop a minimal formula H

485

which represents a function h(X, y). The equation z = h(X, y) corresponds to a circuit which may

be used in place of the circuit corresponding to z = f(X). The function C(X, y) in the equivalent

1-normal form f(X, y) = 1 for y = g(X) is defined by the equation

f (X, y) = Z'Y' + X1Z2X3Y + X'2Y' + z'Y'. (10.35)

Using O(X, z) and f(X, y), the function O(X, y, z) is formed by the product of O(X, z) and

O(X,y,z) = z' Z4'Z' + '2 z'Y'Z' + :Z'' ' XlX 2 nai 4YZ+ (10.36)

ZlX4Y'Z + ZZ 4 Y / Z + X3 Z4YZ + 2Z2Z3Z4YZ.-

Once we form 0 (X, y, z), we develop a general solut;o,- of ",IX, y, z) := 1 for z. The lower bound

for z is defined by the formula

ZlZ2Z3X4Y + 3Z4Y' + Z 2Z 4 Y + IZ4 Y. (10.37)

Additionally, the Blake canonical form of the upper bound for z is defined by the formula

zy -+ zI 2 X3z 4 + z Z4 + Z3z4 + z 4 y' + ZZ4 + z11Y + Z2y + IZ'2z3y' + z'3y. (10.38)

486

To develop a minimal formula H for the function h(X, y), a minimal subset of terms in (10.38)

is formed to cover the terms in (10.37). Upon examination of both of the formulas, we determine

that the term z4YV in (10.38) covers the last three terms in (10.37). The first term in (10.37) is

covered either by z'y or z z 2 z3 4 from (10.38). Hence, two alternative minimal formulas H are

Z4Y + Zy (10.39)

X4YI+ -1Z 3 Z34.

Using the node y, which is the output of y = g(X), facilitates a design consisting of two gates.

Thus, using y yields a saving of two gates and, hence, a 50% cost savings over a design developed

which did not consider the y node.

In the application of the Type 2 problem illustrated by Figure 10.2, a node yIk of the circuit

Y = g(X) will generally be useful only if the X-variables in the corresponding function gk(X) are

a subset of the X-variables contained in at least one function fj (X) of f (X).

Type 3 Problems. The third problem presented by Ledley is the Type 3 problem, which

is handled in a similar fashion as the Type 2 problem. In a Type 3 problem, the vector h(X, Y) of

functions and the set [f(X), f U (X)] of intervals are given and we must develop a minimal vector

G of formulas to represent the functions g(X).

We first use the information given about the problem to form -O(X, Y, Z). In a Type 3

problem, we are initially given the system Z = h(X, Y) and the set [fz(X), fU(X)] of intervals.

The set [L(X), '(X)] of intervals is used to develop O(X, Z) = 1 as described in the section on the

Type 2 problem. The system Z = h(X, Y) is used to form the equation A(X, Y, Z) = 1, in which

A(X, Y, Z) is defined as the left-hand side of equation (10.8). The 1-normal form t(X, Y, Z) = 1 is

derived by combining O(X, Z) = 1 and A(X, Y, Z) = 1. Hence, O(X, Y, Z) in a Type 3 problem is

defined by the equation

487

O(X, Y, Z) =)(X, Y, Z) . O(X, Z). (10.40)

We again partition the X-variables into two blocks. In this problem, however, the first block

is the subset X, of the X-variables which designate input nodes for the circuits corresponding to

the system Z = h(X, Y) and which are not inputs for design corresponding to Y = g(X). In other

words, the functions g(X) are not dependent on any variables in X1 . The second block-X 2-is

the X-variables except those variables contained in X1 . The 1-normal form required for a Type 3

problem is t(X 2 , Y) = 1. The function t(X 2 , Y) is defined by the equation

t(X 2 , Y) = EDIS(O(X, Y, Z), X, U Z). (10.41)

Once we form the equation t(X 2 , Y) = 1, the second step in our methodology is accomplished for

a Type 3 problem.

The equation t(X 2 , Y) = 1 is used as a specification for developing a minimal design. Th

system ,(X 2 , Y) = 1 is used as the circuit specification when applying Algorithms 7.1 and 7.2.

When using t(X 2 , Y) = 1 rather than O(X, Z) = 1 in the two algorithms, the set X2 corresponds

to the X-variables and the set Y correspond to the Z-variables. (For a system t(X 2 , y) = 1, one

among Algorithm 6.1, Algorithm 6.2, or Algorithm 6.3 is used to develop a minimal design.)

Unlike Type 1 and Type 2 problems, a Type 3 problem introduces a possible dilemma which

must be considered in development of a solution. The function EDIS(t(X2 , Y), Y) in the consis-

tency condition EDIS(((X2, Y), Y) = 1 for the general solution of t(X2, Y) = 1 for Y may not

be identically equal to 1. This is due to the fact that it is not always possible to find an equation

Y = g(X 2) such that (X 2 , g(X2)) = 1 is an identity. This situation may occur due to the fact that

we cannot always make a circuit corresponding to Y = Y(X 2) "fit" into the position preceding the

circuit corresponding to Z = h(X, Y) in Figure 10.1.

488

If EDIS((X 2 , Y), Y) is not identically equal to 1, then the equation C(X 2 , Y) = 1 is a

constrained equation. A constrained solution (defined in Chapter 4) may be formed providing that

the condition EDIS(C(X2, Y), Y) = 1 is satisfied. Alternatively, we define a function tc(X 2):

tc(X2) = (EDIS(t(X2 , Y), Y))'. (10.42)

We may then develop a general solution of t(X2, Y) = 1 for Y if and only if the condition

tc(X2) = 0 (10.43)

is satisfied. Such a condition is satisfied if the input combinations corresponding to minterms of

tc(X2) will not occur. Assuming that equation (10.43) is satisfied, input combinations correspond-

ing to the minterms of C (X 2) may be treated as don't cares and are thus useful in the minimization

process. Algorithm 10.4 (Type 3 Problem) returns a minimal vector G of formulas to represent the

vector g(X2, Y) of functions.

Algorithm 10.4 (Type 3 Problem): Given the functions h(X, Y) and the set [f I(X), _f(X)] of
intervals, a minimal vector Q of formulas is developed to represent the vector g(X) of functions in
the following manner:

Step 1. Using Boolean reduction, derive an equivalent 1-normal form A(X, Y, Z) = 1 for the system
Z = h(X, Y).

Step 2. Using Boolean reduction, derive an equivalent 1-normal form 4O(X, Z) = 1 for the set
f1 (X) < Z < f'(X) of intervals.

Step 3. Form 1b(X, Y, Z) = A(X, Y, Z) . O(X, Z).

Step 4. Partition the X-variables into subsets X, and X 2 :

1. Let X, be the subset of the X-variables which designate input nodes for the circuits
corresponding to the system Z = h(X, Y) and which are not inputs nodes for design
corresponding to Y = g(X).

2. Let X 2 denote the X-variables less the variables in X 1 .

Step S. Form t(X 2, Y) = EDIS(tk(X, Y, Z), Xi U Z).

489

Step 6.

" Given a 1-normal form specification e(X 2 ,y) = 1, use one among Algorithm 6.1, Al-
gorithm 6.2, or Algorithm 6.3 to develop a minimal formula G, in which the set X2

corresponds to the X-variables and y corresponds to the variable z in the algorithms.

" Given a 1-normal form specification f(X 2 , Y) = 1, use either Algorithm 7.1 or Algo-
rithm 7.2 to develop a minimal vector G of formulas, in which the set X 2 corresponds
to the X-variables and the set Y corresponds to the Z-variables in the two algorithms.

Step 7. Form the constraint condition ec(X2) = 0, for which c(X 2) = (EDIS((X 2 , Y), Y))'.
The function ec(X2) is returned with the vector G of formulas developed in Step 6.

Summary of the Approach to Ledley's Problems. The foregoing discussion of the

Types 1, 2, and 3 problems demonstrates the utility of the 1-normal form and the equation-solving

approach for handling the design problem. Using 1-normal form specifications and solutions of

Boolean equations, we are able to develop minimal designs for problems which cannot be handled

using conventional minimization techniques. Additionally, whereas Ledley only presented ad hoc

techniques for solving the problems that he proposed, our methodology yields minimal solutions

for all three problems.

In the second part of this chapter, we once more demonstrate the utility of the 1-normal form

and the equation-solving approach for developing designs for another type of circuit-recurrent

circuits-which cannot be handled using conventional minimization techniques. Recurrent circuits

are in many cases more economical than designs produced using conventional methods.

490

Recurrent Circuits

We showed in Chapter 4 that a specification corresponds to a 1-normal form O(X, Z) = 1

and that designs have a correspondence with particular solutions Z = f_(X) of O(X, Z) = 1. In

Chapter 7, we presented algorithms for developing a minimal vector F of formulas to represent the

functions f(X) in the particular solution Z = f(X). The resulting designs are of the form depicted

in Figure 10.3. In this chapter, we present techniques for constructing designs of the form shown in

Figure 10.4, i.e., designs corresponding to formulas F(X, Z) which represents functions L(X, Z) in

recurrent solutions Z = f(X, Z) of O(X, Z) = 1. We call such designs recurrent or cascade circuits.

The method we present produces approximate-minimal recurrent circuits. The resulting circuits

generally are of lower cost than those developed using conventional techniques.

zi Z1

Zn -- z-n

zl = f/1(i1, . . . ,i n)

22= =

Figure 10.3. Representation of a Digital Circuit

Before presenting an algorithm for producing recurrent circuits, we first discuss the cost-

advantage of recurrent designs versus non-recurrent ones.

491

ZIP1

zz

ZIZ3

Implement Outputs in Terms
of Inputs and Other Outputs

Figure 10.4. A Recurrent Design

492

The Advantage of Recurrent Designs. In conventional circuit minimization, a non-

recurrent system such as

i'(x'o). (x, 1) !5z :5 _ i (x,o0) + ii (x, 1)

2(X,0).42(X,1) !5 3 '(X,o)+ a(X,1) (10.44)

3'xo).(x, 1) <5 Z3 !5 '(X,o0) + (x, 1)

is used as the basis for developing a design. Using a non-recurrent system, each zj is a function

only of the input variables X. On the other hand, employing the method of successive eliminations

to form a subsumptive general solution of O(X, Z) = 1 for Z, we develop the recurrent system

1 < 00 (X)
01M 0) :5 Z1 _ 01(M,1)

0'2(X, Z1,0) < z 2 < 4 30(X, z1,1) (10.45)
0'(X, Z1,,Z2, 0) <_ Z3 <_ 03(X, Z1, Z2, 1)

0'(x,Z~s,, . ,0) :_ Zm <_ O,,,(x, 1,s...,i ,,,_1,1)

In view of Theorem 4.4, we form a recurrent system based on the extended range concept:

1 < 0o(X)
(xo0).- (x, 1) Z1 !5 0(xo0) + 1(x, 1)

'(x, ,,) . 2(x, ,l) 5 Z2 :_ 0'2(X, Z1, 0) + 02(X, Z, ,1) (10.46)
10'(x, ,, 0,). 3(x, ,, ,) !5 Z3 :5 0'(X,, Z,, o) + 03(X, Z1, Z2, 1)

,('(x,-,...,_ ,o0) < m :,, 0, 'x, -1,.n-1,o)
• O,, (X, Z1,.... iz, _, I1) +Obm(X, Z1,, - , _ n 1, l).

493

Finally, we derive from system (10.46) a recurrent solution

z, = f1 (X)

Z2 = f 2 (X, zI)

Z3 = f 3 (X,ZI,Z 2) (10.47)

= f,(X, ZZ2,...,9-Zy...1)-

System (10.47) is denoted by Z = f (X, Z) with the understanding that each zj is dependent

only on zl,.. ., z-1. The vector F(X, Z) which represents f(X, Z) in the recurrent solution Z =

f (X, Z) corresponds to a recurrent design. Conventional minimization techniques produce only

non-recurrent designs.

The advantage of using a recurrent system such as (10.46) as the basis for the design process

is that a design may be developed in which we use output nodes as well as input nodes to generate

a given output node. When we can use the output nodes to form inputs, we can generate designs

which coot less than those developed using conventional techniques. Example 10.4 illustrates this

point.

Example 10.4: Suppose we are given the 1-normal form specification O(X, Z) 1 1 for which we

must develop a design. Let O(X, Z) be defined by the equation

O(X, Z) = 'Z 3X4 ZZ 2 + Z23Z4ZZ 2Z3 + 2 3 4Z 2 Z3 + ' +

ZI223I 4 ZZ 2 Z 3 + I1 2 Z3 Z4 ZZ 2Z 3 + ZI1Z23Z 4 ZZ 2 Z3 + (10.48)
Z ZI+4ZZI21 4J 2 ¢-Z3''Z ZIZZ Zg2 X,, 3;i;3+4'Z + I4S

zI=zz3' ' ' + ziz' z' , 4zi,4 + zr:'2zsz4z' 14 + :rz'2z 3ziz'1 z3 +

Z 1 ' 2'X 4Z'Z3 + Z 2 Z3 z'zZ3 + ZX 2 X3 Z4Z2 Z' + (10.49)1 3:433""ZIZ22I3=442:lZ3 ; Z23:422Z3 4 2 1 : 3 4:Z

ZIlZ2Z3Z 4 ZIZ 2 Z3.

494

Using a conventional approach, we first develop a general solution of O(X, Z) = 1 for Z of the form

(10.44):

212223Z4 + z12Z3Z4 + Z1Z2z3 < Z1 < 211223 + ZlZ233 + ZZ1Z3 + Z1Z2Z3
I

2122M3 + 2Z 4 < < =213 + 22324 (10.50)

+Z2Z4 + 1X223 + 2134

2324 +21222M3+ 1223 <Z4 Z3 < xlx2X4 +21Z2Z3 + ZlZX3

+2123Z4 + Z12223 +1 X2X23Z4 +123' + 212224 + 21223 + 2324.

Using the methodology discussed in Chapter 7, a minimal F may be developed to represent functions

f(X) in the particular solution Z = f(X) of O(X, Z) = 1. One such particular solution is the

system:

Z = = 1 2' 3 + X'1X2'3 + Z12'2'3

= Z'Z224 +2123 (10.51)

Z3 = 2Z3 + XjZ2X3 3+ i2nZ + 242X3 + X3Z4.

Using the fewest-gates cost criterion, the cost of the resulting design is the number of distinct terms

on the right-hand side of (10.51); hence, the cost of F is nine gates.

Now suppose we form a subsumptive general solution of q(X, Z) = 1 for Z in which we use the

sequence (2, z1 , z 3) to construct the solution. We develop the following bounds for the Z-variables:

Z3 Lower bound:

212+23 +IX '2'X' 3X4 + Z'iX2 X3 + Z'l23X'4 + Z I:Z234 + X2M3 t

Z3 Upper bound:

ZjZ2Z3 + %223 Z Z2 3 + I2Z3"+ Z324 + Z224 + Z1Z2Z4

495

z, Lower bound:

X2Z' I I Z! ! 3 Z 4 ZI I + I1 z~3z3 2 zl~~~ 3 2 z~3 ~3

z1 Upper bound:

2123X3 + Z12Z3 + Z2Z3 + 12Z 3 + Zi2X3 + ZlZ 3 Z3 + Z3 + ZI 1 Z3Z

z2 Lower bound:

ZlX21 2 3 ZIZ 3 -+ Z2Z 3 Z4 Z3

z2 Upper bound:

:IZZ . IZ2X3Z4Z1 + I21 23Z4Z3 + ZlZ3Z1 Z3 ZIZ3Z 4 Z3 + 'Z~ 2 Z1

2 ZlZ323 + ZlZ2Z1. + IZ2Z4 + ZI 4 Z3 +Z 3Iz + Z+ 4Z1 + IZ I +X13X4

+ Z 3 4Z 3 + 23,4 + 3 ZI + Z4ZZ3 + 22 4 Z, + 2 4 ZIZ3 + M4 ZjZ3 + Z2Z3-

A suitable design F for each zi is one which contains a subset of the terms of the upper bound

which covers all of the terms of the lower bound. Using the bounds developed for a subsumptive

general solution of q(X, Z) = 1 for Z, we can develop the following particular solution Z = f(X, Z)

of O(X, Z) = 1:

z I = Z3 -Z-

= 2Z 3' (10.52)
Z3 = ZIZ 3 + ZIZ2X 3 -+ I1X23 + Z1:X2Z3 + Z324.

Using the fewest-gates cost criterion, the cost of the design depicted by (10.52) is seven gates. Thus,

for the given ordering of the Z-variables, two fewer gates are required when using the recurrent

approach versus a conventional methodology.

496

As alluded to in Example 10.4, the cost of the resulting design is dependent on the ordering of

the Z-variables used when forming the subsumptive general solution. One ordering of Z-variables

may yield a significant cost savings, while another ordering may provide little cost savings relative

to using a conventional methodology. We address this issue in the next section.

Sequence of the Z-Variables. The ordering of the Z-variables used when forming a sub-

sumptive general solution may significantly affect the cost savings realized when using the recurrent

methodology rather than a conventional approach. Ideally, we would always choose the sequence

of Z-variables which leads to a least-cost recurrent design. Unfortunately, we know of no scheme

which always produces a "best" ordering of variables. To guarantee the production of a minimal

recurrent design, we would have to construct a design for all possible orderings-an approach which

is intractable for all but trivial problems. We therefore must rely on heuristics which produce an

ordering of the Z-variables which will likely bear a cost-savings when producing a design using the

recurrent approach. This is the reason why designs developed using the recurrent approach are

only approximate-minimal.

One consideration that may affect the choice of ordering of the output variables is the delay

of each output node. The delay of an output node zi may be estimated by measuring by the longest

path with respect to the number of gates between one of the inputs zi on which zj depends and

zj. If an output node z is used as an input for the output node Z2, there will generally be an

increased delay for node Z2. To determine the delay of Z2, we then must consider the number of

gates between an mi and z, and then between z, and Z2. Hence, the disadvantage in using z1 to

create z2 is an increased delay for Z2. This is an example of the classic time versus space dilemma:

we increase circuit delay to decrease circuit cost. In some situations, however, it may be imperative

that we do not increase the delay for a specific node z,. In these cases, we specify an ordering such

that zi is produced using only input nodes zi.

497

Although the determination of a good order for the Z-variables is an important consideration,

we will not address further the issue of selecting an order for the Z-variables in this work. We leave

the issue aa an open question which requires further investigation. For the remainder of this section,

we will assume that a pre-set ordering is available for use.

Methodology for Recurrent Designs. We endeavor to follow a similar approach to de-

veloping a design as described in Chapter 7; thus, we only need modify the steps for forming a

design that are pertinent to the recurrent approach. We summarize the steps in our methodology

for developing a vector F as presented in Chapter 7:

1. derive a 1-normal form specification 4(X, Z) = 1, if not already formed;

2. form a general solution of O(X, Z) = 1 for Z;

3. form the set of all multiple-output prime implicants of the upper-bound functions h;

4. develop a base for [F, h);

5. develop inclusion formulas representing coverage of the terms of the base by the multiple-
output prime implicants;

6. reduce the inclusion formulas using reduction rules-identifying prime implicants to include
in formulas in F as well as to discard from consideration; and

7. use search to determine the remaining prime implicants to include in formulas in F.

The steps which differ between the recurrent approach and the conventional methodology are

Steps 2 and 3. In the conventional approach, a non-recurrent system (10.44) is formed to represent

a general solution of O(X, Z) = 1 for Z; a system such as (10.46) is developed in the recurrent

method. Moreover, in addition to the multiple-output prime implicants developed in Step 3, we

add a set of terms which contain output variables which we call recurrent prime implicants (RPIs).

RPIs as well as MOPIs are used to cover terms of the lower bound functions g in the recurrent

method.

498

Formation of a Subsumptive General Solution. Given a specification O(X, Z) = 1

and an ordering Z,,d., for the output variables, we develop a subsumptive general solution of

O(X, Z) = 1 for Z. Using the extended-range, we thus form

1 < 0o(X)

O'1(X, 0) .- 1 (X, 1) < z < 4(X, 0) + 1 (X, 1)

0'(X,z1,0). 4(X, z1,1) < Z2 0 4(X, Z1,0) + 2(X, z1, 1) (10.53)

0'3(X, zz2,0). 3 (X,Z 1 ,z 2 ,1) !5 Z3 < 043(X, Z1, z 2 ,O) + 0 3 (X, Z1, z 2 , 1)

'M(X M l •i I. Z M_-1, 0) 5 Zcn !5 Cirr(X , Zl, • • •, Zcn- 1, 0)

• O,n(X, Z I,.... IZM_ I, 1) +0,n(X , I,.... Zrn-1,1)

For each zj, we denote the lower-bound function by gj (X, Z) and the upper-bound function by

hi (X, Z). A simplified formula G, (X, Z) is developed to represent each gj (X, Z); terms of G, (X, Z)

are covered by the MOPIs and RPIs to develop f(X, Z).

Development of RPIs. Just as in conventional minimization, we form multiple-

output prime implicants for use in covering terms of the formulas Gj in G(X, Z). MOPIs are

used in addition to recurrent prime implicants, thus guaranteeing that the resulting design will be

no worse than what would be developed using conventional techniques. A formula M8 1 is developed

using the methodology described in Chapter 7 in which terms of Ma denote the set of all MOPIs.

Terms t(X, Z) in M.1 contain an X-part u(X) which is a MOPI. The Z-part v(Z) denotes the

formulas F in which the corresponding MOPI may be contained. This is convenient technique for

differentiating among the functions that a MOPI may represent. In recurrent designs, however,

Z-variables must also be treated in a similar fashion as X-variables. Hence, we require a method

by which we may use the Z-variables in both manners; we shall address this issue shortly.

After the subsumptive general solution is developed, we form the Blake canonical form for

each function h,(X, Z). Terms in each formula BCF(h,(X, Z)) which contain only X-variables are

499

then deleted since they correspond to MOPIs. Terms t which remain in each formula may be used

to cover the corresponding lower-bound function gj (X, Z), and possibly other functions gk(X, Z).

The functions that each t may be used to cover is dependent on the sequence Zo,,. used when

forming the subsum,tive general solution, i.e., k must precede j in Z4 dr. For example, if an

ordering of (Z2, zI, za) is used as in Example 10.4, then a system such as

93 (X) :5 Z3 :5 h3(X)
gi(X,z3) :_ Z1 z 5 hi(X,z3) (10.54)

92(x,Z3,Z1) <5 Z2 < h, CX,Z3.,Zl).

is formed. After the deletion of terms containing only X-variables in each Hj, terms remaining in

H,(X, z3) may not be used to cover g3 (X). Additionally, terms remaining in H 2(X, Z3, z1) may

not be used to cover g(X) or g1(X, Z3). The way we denoted that terms in H1 are not used to

cover g3 (X) in the conventional approach was to include a literal z in terms of H 1. However, the

variable z3 may appear in both complemented and uncomplemented form in terms in H(X, z3)

since hl(X, z3) is a function of the Z3 variable. We must have a way for representing that H, may

both contain the variable Z3 and may not be used to cover 93(X).

The method we use for handling this problem is to create a set Y of variables, in which each

Yi E Y corresponds directly with a variable zj in Z. The Y-variables replace the Z-variables for

the purpose of being used similar to X-variables, i.e., system (10.54) is rewritten as

g(X) < 23 _< h3 (X)

g1(X, y3) _ z1 _< hi(X, y3) (10.55)
g 2 (X,Y 3 ,Yl) < Z2 !5 h2(X,Y3,y,).

Each variable n formulas Hj is replaced with the corresponding variable y,. After all Z-

variables are replaced by Y-variables, we then develop a formula Mfec which will contain the set

of all recurrent prime implicants. For each formula H,, literals z' are concatenated to each term

500

in Hj for every z& that zi precedes in Z,.d.,. For (10.55), we would concatenate z to each term

in HI(X, y3); additionally, the term z4z' would be concatenated to each term in H2 (X,Y1 3 , Yl).

After these actions are performed for each formula Hi, the resulting terms are combined to form a

single set H(X, Y, Z) of terms. The formula M,,, is defined as equal to ABS(H(X, Y, Z)). M,,c

represents the set of all recurrent prime implicants.

Terms in Mr,, contain X, Y, and Z-parts. The X and Y parts are treated in a similar

manner. The Z-parts are identical in utility to the Z-parts for M.11. Procedure 10.1 (Recurrent

Prime Implicants) produces the formula M,..

Procedure 10.1 (Recurrent Prime Implicants): Given the vector H(X, Z) of formulas which
represent the functions h(X, Z) and a sequence Zd,, of Z-variables, the formula M,,c is con-
structed in the following manner:

Step 1. Form BCF(hi (X, Z)) for each function h. in h(X, Z).

Seep 2. For each formula BCF(hi (X, Z)), delete all terms which contain only X-variables.

Step 3. Form a set Y of variables which corresponds directly with the Z-variables.

Step 4. For each formula Hj resulting from Step 2, replace each appearance of a variable zi with
its corresponding Y-variable yi.

Step 5. For each formula H1 resulting from Step 4, concaterate to each term a literal z' for each
zk, preceded by zi in Z,d, .

Step 6. Combine the terms from all formulas formed in Step 5 to form a single formula H(X, Y, Z).

Step 7. Form ABS(H(X, Y, Z)). ABS(H(X, Y, Z)) is the formula M,,,. Return M,,e.

The combination of M.11 and Mr,€ represents the set of all prime implicants-MOPIs and RPIs,

respectively-which may be used to cover the :unctions g(X, Z). An identical methodology as

found in Chapter 7 may then be followed to develop f. We present two algorithms for producing

recurrent designs in the next section.

Algorithms for Recurrent Designs. We introduced two algorithms in Chapter 7 for pro-

ducing multiple-output circuits. In this section, we present two analogous algorithms for construct-

ing recurrent designs. The first, Algorithm 10.5, uses the set of all useful, conditionally-eliminable

501

MOPIS and RPIs as a base. 1 A subset of the base used in first algorithm is used as a base for the

second-Algorithm 10.6.

Algorithm Using Base #1. The first algorithm for forming an F uses the set of all

useful, conditionally-eliminable prime implicants as a base. A synopsis of this algorithm is:

1. derive a 1-normal form specification O(X, Z) = 1, if not already formed;

2. form a general solution of O(X, Z) = 1 for Z to develop a set of intervals such as (10.53);

3. form the set of all multiple-output prime implicants and recurrent prime implicants of the
upper-bound functions h;

4. develop a base for [g, h] consisting of all useful, conditionally-eliminable PIs;

5. use Procedure 7.6 develop multiple-output inclusion formulas representing coverage of the
terms of the base by the PIs;

6. use Reduction Rule Set #1 to reduce the inclusion formulas-identifying PIs to include in
formulas in F as well as to discard from consideration; and

7. use a search process to determine the remaining prime implicants to include in formulas in
F.

Algorithm 10.5 implements the first six steps of the aforementioned process. The search process

was discussed in Chapter 9.

Algorithm 10.5 (Algorithm #1 - Recurrent Designs): Given a 1-normal form specification
O(X, Z) = 1 and a Z-variable sequence Ze,,, a minimal vector F of formulas which represent
functions L(X) belonging to the intervals [I(X), h(X)] developed from O(X, Z) = 1 is generated in
the following manner:

Step 0.

1. Initialize a partial sum PS = 0.

2. Initialize a variable Pdcard = 0.

Step 1.

1. Using Procedure 4.2 (Subsumptive General Solution - Extended Range) and Zd,,,,
develop a general solution of O(X, Z) = 1 for Z.

2. For each j = 1, 2, .. ., m, develop a simplified formula Gj to represent gj(X, Z) using
Procedure 2.15 (Simplification).

'For the remainder of this chapter, we shall refer to the combination of MOPIs and RPms simply as prime
implicants (PIS).

502

Step 2. Using Procedure 7.1 (Formation of $H(X, Z)), develop a formula tH(X, Z) which will be
used to form the set of all multiple-output prime implicants.

Step 3.

1. Develop BCF(OH(X, Z)) using Procedure 2.20 (Blake canonical form).

2. Delete the term z4... z,, in BCF(OH(X, Z)).

3. The formula which results after substeps 1 and 2 is M.11.

Step 4.

1. Using Procedure 10.1 (Recurrent Prime Implicants), the vector H(X, Z) of formulas,
and Z,,., derive the formula M,,,. M,,, represents the set of all recurrent prime
implicants.

2. Append M,.. to M. 11 to form the combined set of prime implicants.

3. For all terms in each G, (X, Z), replace each variable zi with the corresponding variable
1I.*

Step 5. Using Procedure 7.2 (Useless MOPIs), the set y of functions, and M.11, determine the
useless PIs with respect to each interval [gj, hj]. The set M.11 is revised by Procedure 7.2 to
denote the useless PIs.

Step 6. Using Procedure 7.3 (Essential MOPIs), the set {g1, g, .g,,, and M.11, determine the
set of essential PIs with respect to each interval [gi h].

1. The set M.11 is revised by Procedure 7.3 to denote the essential PIs.

2. Replace the set {gl, g,... , g,,I of functions with the set = {i,, ... , "} returned
by Procedure 7.3.

Step 7. Using Procedure 7.4 (Inessential MOPIs and Formation of J, the set § of functions, and
M, 1 , determine the set of inessential PIs with respect to each interval [gj, hj].

1. The set M.11 is revised by Procedure 7.4 to denote the inessential MOPIs.

2. Replace the set # of functions with the set # = {g1, ,. .. , #,.} returned by Procedure 7.4.

Step 8. Develop a set Mb.., which consists of terms in M 11 which have a Z-part in which at least
one Z-variable zj does not appear in either complemented or uncomplemented form. Mb,,
corresponds to PIs which are conditionally eliminable with respect to at least one interval
[%, h,].

Step 9. Form a set LABS = {P, P} of labels which will be used to denote the PIs in Mb..,.

Step 10. Initialise IF = 0. Then, for each term in Mb.,,:

1. Remove the Z-part from the term to form pl.

2. Using Procedure 7.6 (Formation of a Multiple-Output Inclusion Formula), the PI p, the
set Mb.,,, the set LABS associated with terms in Mb.., and the set j of functions,
develop an inclusion formula IF, denoting the coverage of Pi by conditionally-eliminable
PIs of each of the intervals [gj, hj] for which Pi may be use to form F.

3. Add IFI to IF.

The set IF contains the inclusion formulas IF developed for each term in Mb.,,.

503

Step 11. Using Procedure 6.4 (Assignment of Cost to Terms), M&..., LABS, and CRITERION =
fewest gates, develop an association list affiliating a term with a cost. Each cost is paired
with the label in LABS which denotes a corresponding PI in Mb,,.. Call the resulting list
LAB/COSTS.

Step 12. Using Procedure 6.11 (Reduction Rules - Set #1), the set IF of inclusion formulas, and
the cost list LAB/COSTS, apply rule reduction to the set IF. Procedure 6.11 returns a
revised set IF,., of inclusion formulas, a set PSn,. of variables identified for use in F. and
a set PB jscarj of variables to discard.

1. Replace IF with IF.,,.

2. Replace PS to PS,,,,.

3. Replace Pdj,,,d with P5di ard.

Step 13. For each variable in PS:

1. Determine the associated term in Mb4ae.

2. For the term equal to Mb.,. in M.11, fill the Z-part of the associated term in M. 11 with
uncomplemented literals zk for each k = 1, 2,..., m for which no literal z appears.

Step 14. For each variable in Pdi,€,,d:

1. Determine the associated term in Mb,.,.

2. For the term equal to Mb,,, in M,11 , fill the Z-part of the associated term in M.11 with
complemented literals z for each k = 1, 2, . . ., m for which no literal z' appears.

3. If the term in Mti then contains a Z-part of the form z4 ... z,,,, i.e., all Z-variables
appear and each is in complemented form, delete the term from M.11.

Step 15.

" If IF = 0, then a vector F of formulas has been developed. Continue to Step 16.

" Otherwise, a search process must be used to complete F. Skip to Step 17.

Step 16. For j = 1,2,...,m, form Fj:

1. Examine each term t(X, Z) in M.,1 to determine if the literal zj appears in the term.

* If zi appears in t(X, Z), then place the X-;,art u(X) in F,.

* Otherwise, do not place u(X) in Fj.

2. After each term in M. 11 has been examined, form ABS(F).

After each formula ABS(F,) has been formed, the development of F is complete. Return F.

Step 17.

1. Return the current inclusion formula IF, Mb.,., and M.11.

2. Also return LAB/COSTS and LABS for use in the search process.

504

Algorithm Using Base #2. The algorithm for forming a minimal F which uses a set

of useful, conditionally-eliminable PIs which cover the functions _. We summarize the algorithm

as follows:

1. derive a 1-normal form specification O(X, Z) = 1, if not already formed;

2. form a general solution of O(X, Z) = 1 for Z to develop a set of intervals such as (10.53);

3. form the set of all multiple-output prime implicants and recurrent prime implicants of the
upper-bound functions h-,

4. use Procedure 7.5 to develop a base for [, h_] consisting of useful, conditionally-elimninable PIs
which cover the functions 0;

5. use Procedure 7.6 develop multiple-output inclusion formulas representing coverage of the
terms of the base by the PIs;

6. use Reduction Rule Set #2 to reduce the inclusion formulas-identifying PIs to include in
formulas in F as well as to discard from consideration; and

7. use a search process to determine the remaining PIs to include in formulas in F.

The first six steps of the foregoing process are implemented by Algorithm 10.6. The search process

was introduced in Chapter 9.

Algorithm 10.6 (Algorithm #2 - Recurrent Designs): Given a 1-normal form specification
O(X, Z) = 1 and a Z-variable sequence Z,,, a minimal vector F of formulas which represent
functions f (X) belonging to the intervals [g(X), h(X)] developed from O(X, Z) = 1 is generated in
the following manner:

Step 0.

1. Initialise a partial sum PS = 0.

2. Initialise a variable Pdi. 4,,d = 0.

Step 1.

1. Using Procedure 4.2 (Subsumptive General Solution - Extended Range) and Zo,d,,,
develop a general solution of O(X, Z) = 1 for Z.

2. For each j = 1, 2,. . ., m, develop a simplified formula Gj to represent g,(X, Z) using
Procedure 2.15 (Simplification).

Step 2. Using Procedure 7.1 (Formation of 4'H(X, Z)), develop a formula $H(X, Z) which will be
used to form the set of all multiple-output prime implicants.

505

Step 3.

1. Develop BCF(IH(X, Z)) using Procedure 2.20 (Blake canonical form).

2. Delete the term z'z' ... z, in BCF(IH(X, Z)).

3. The formula which results after substeps I and 2 is M.,i.

Step 4.

1. Using Procedure 10.1 (Recurrent Prime Implicants), the vector H(X, Z) of formulas,
and Z,&1A,,, derive the formula M.,. M,., represents the set of all recurrent prime
implicants.

2. Append M,. to M.,1 to form the combined set of prime implicants.

3. For all terms in each Gj (X, Z), replace each variable zj with the corresponding variable

I',.

Step 5. Using Procedure 7.2 (Useless MOPIs), the set g of functions, and M 11 , determine the
useless PIs with respect to each interval [gj, h,]. The set M.1 is revised by Procedure 7.2 to
denote the useless PIs.

Step 6. Using Procedure 7.3 (Essential MOPIs), the set {gi, g2,..., g-.}, and M.1 1, determine the
set of essential PIs with respect to each interval [gi, hi].

1. The set M.u is revised by Procedure 7.3 to denote the essential PIs.

2. Replace the set {gj, g ,....g,, } of functions with the set = ,2,..., g,) returned
by Procedure 7.3.

Step 7. Using Procedure 7.4 (Inessential MOPIS and Formation of .), the set _ of functions, and
M.,1, determine the set of inessential PIs with respect to each interval (gj, h,].

1. The set M1 is revised by Procedure 7.4 to denote the inessential PIs.

2. Replace the set j of functions with the set 0 = { , -,..., 4,} returned by Procedure 7.4.

Step 8.

1. Develop a set M.6 which consists of terms in M.11 which have a Z-part in which at least
one Z-variable zj does not appear in either complemented or uncomplemented form.
M, corresponds to PIs which are conditionally eliminable with respect to at least one
interval [gj, hi].

2. Using Procedure 7.5 (Base #2 - CE MOPIs Covering #), M,., and #, develop a set Mb...

which consists of PIs which are sufficient to cover the terms in the formulas representing

Step 3. Form a set LABS = {P, Pk} of labels which will be used to denote the PIs in
MOPIC..

Step 10. Initialise IF = 0. Then, for each term in Mb,,,:

1. Remove the Z-part from the term to form pl.

2. Using Procedure 7.6 (Formation of a Multiple-Output Inclusion Formula), the MOPI p,
the set Me,., the set LABS associated with terms in Me,, and the set j_ of functions,
develop an inclusion formula IFI denoting the coverage of pi by conditionally-eliminable
PIs of each of the intervals [g,, h,] for which p, may be use to form Fj.

506

The set IF contains the inclusion formulas IFI developed for each term in Mb....

Step 11. Using Procedure 6.4 (Assignment of Cost to Terms), M&..,, LABS, and CRITERION =
fewest gates, develop an association list affiliating a term with a cost. Each cost is paired
with the label in LABS which denotes a corresponding PI in M,,. Call the resulting list
LAB/COSTS

Step 12. Using Procedure 6.14 (Reduction Rules - Set #2), the set IF of inclusion formulas, and
the cost list LAB/COSTS, apply rule reduction to the set IF. Procedure 6.14 returns a
revised set IF,., of inclusion formulas, a set PS,,.w of variables identified for use in F. and
a set P, is., of variables to discard.

1. Replace IF with IF,,,.

2. Replace PS to PS.,..

3. Replace P&,,,, with Pdscard.

Step 13. For each variable in PS:

1. Determine the associated term in Me,.

2. For the term equal to M,. in M.11, fill the Z-part of the associated term in M. 11 with
uncomplemented literals zk for each k = 1, 2,..., m for which no literal z' appears.

Step 14. For each variable in Pdicad:

1. Determine the associated term in Me,.

2. For the term equal to M,. in M.11, fill the Z-part of the associated term in M.11 with
complemented literals z' for each k = 1, 2,..., m for which no literal z' appears.

3. If the term in M.1, then contains a Z-part of the formz'z' • • z,,,, i.e., all Z-variables
appear and each is in complemented form, delete the term from M.11.

Step 15.

" If IF = 0, then a vector F of formulas has been developed. Continue to Step 16.

" Otherwise, a search process must be used to complete F. Skip to Step 17.

Step 16. For j = 1,2,...,m, form Fj:

1. Examine each term t(X, Z) in M.1, to determine if the literal zi appears in the term.

" If zj appears in t(X, Z), then place the X-part u(X) in F,.

" Otherwise, do not place u(X) in Fj.

2. After each term in M.1 has been examined, form ABS(F).

After each formula ABS(F) has been formed, the development of F is complete. Return F.

Step 17.

1. Return the current inclusion formulas IF, Me,, and M.11 .

2. Also return LAB/COSTS and LABS for use in the search process.

507

Summary of Recurrent Approach. Given a specification O(X, Z) = 1 and a sequence

Z. ,, of Z-variables, Algorithms 10.5 and 10.6 produce designs which are minimal for the sequence

Z,&, of variables. However, the designs are approximate-minimal with respect to the possible

designs for all possible orderings of the Z-variables. The differences between the algorithms in this

chapter and thoe found in Chapter 7 are that

1. a subsumptive general solution of O(X, Z) = 1 is formed rather than a non-recurrent general

solution, and

2. a set of recurrent prime implicants is developed and used in addition to the multiple-output
prime implicants.

Since we use the RPIs in addition to the MOPIs, the resulting designs are no worse than what

would be developed using the algorithms presented in Chapter 7.

The advantage of using a recurrent method rather than a conventional approach is that the

resulting designs generally cost less. There are several disadvantages of the recurrent approach:

1. The delay is typically increased for outputs formed using other output nodes.

2. The addition of the RPIs to the MOPIs increases the memory requirements of the design
algorithm.

3. The addition of the RPIs to the MOPIs causes many MOPIs which would be essential using a
conventional approach no longer to be essential. Thus, the partitioning of the prime implicants
does not initially identify as many PIs to contain in F, and more PIs are then classified as
conditionally-eliminable rather than essential.

The resulting designs are similar to those produced using a method developed by Brown (Brown 90)

and refined by Knutson (Knuts 90). However, in their approach a subsumptive general solution of

O(X, Z) = 1 is not formed. In addition, they only use the prime implicants of the upper bound

formulas Hj (X, Z)-a subset of which is our RPIs-rather than MOPIs. Moreover, their method

is based on developing sub-minimal formulas to represents functions f, (X, Z) belonging to the

interval [gj(X, Z), hi (X, Z)] rather than considering each prime implicant individually to develop

a formula which is minimal with respect to the sequence of Z-variables.

508

Summary

In the two sections of this chapter, we presented methods in which we construct designs

which cannot be developed using a conventional approach to the design problem. In our approach

to solving Ledley's problems, we demonstrate the utility of the 1-normal form and the equation-

solving approach in the design process. Whereas Ledley only presented ad hoc techniques for solving

the problems that he proposed, our methodology yields minimal solutions for all three problems.

In the second part of this chapter, we again demonstrated the utility of the 1-normal form and

the equation-solving approach in a method for developing recurrent circuits. In recurrent circuits,

circuit outputs may be constructed using other output nodes as well as input nodes.

The following methods are unique in this chapter:

" We introduced a methodology using the 1-normal form and Boolean equation-solving ap-
proach for solving Ledley's problems in which least-cost designs are produced.

* We presented algorithms for developing recurrent circuits based on the formation of a sub-
sumptive general solution of a specification O(X, Z) = 1. The resulting designs are minimal
with respect to a sequence Z0 ,d., and approximate-minimal with respect to all possible se-
quences of Z-variables.

509

XI. Conclusions and Recommendations

In this chapter, we present a summary of the work. Conclusions are stated regarding the

utility of the resulting methods. In addition, we summarize the key contributions of this effort.

Finally, suggestions for further research are given.

Summary

Our goal at the outset of this work was to develop new, theoretically-sound algorithms for

producing minimal or near-minimal circuit designs. We endeavored to produce techniques which

integrate the concepts of Boolean reasoning and informed search in the minimization process. In

an effort to accomplish this goal, a seven-step methodology was developed on which to base new

algorithms. We review the steps of this methodology in turn.

In the first step, a 1-normal form O(X, Z) = 1 is derived which serves as the circuit specifica-

tion. A 1-normal form is useful because it is easy to develop from traditional specification formats

and can specify behavior that the traditional formats cannot indicate. Formulas F which represent

functions f(X) in a particular solution Z = f(X) of O(X, Z) = 1 correspond to circuit designs.

The use of the 1-normal form-in conjunction with the use of Boolean equation solving-facilitates

the alternative minimization techniques discussed in Chapter 10.

A general solution of O(X, Z) = 1 for Z is developed in the second step of our methodology.

If O(X, Z) = 1 is a tabular specification, then a general solution of 4(X, Z) = 1 for Z may be

represented by a system of the form

a I(x) _ Il A_ (x)
02(X) 22 02 _< (X)

(x) 3< < (X)

,(x) _ 2m: A. (x).

510

A general solution such as (11.1) was used in the techniques presented in Chapter 7 to develop

a particular solution Z = f(X). In the section on recurrent designs presented in Chapter 10, a

recurrent general solution of the form

<93 _<: 2 512(, (11.2)

0(3 (X, 21,z) 5) Z 3 < 3 %(X, Z1,z 2)

was used in the development of a circuit. A recurrent solution Z = f(X, Z) for O(X, Z) = 1

is developed which corresponds to a recurrent design. System (11.2) is the most general way of

depicting a general solution. It is particularly useful, because it can be used in the development of

a design with a non-tabular specification O(X, Z) = 1.

A vector E of a minimal design consists of prime implicants of the functions in , which cover

the functions in 9. In the third step of our methodology, the set P of all prime implicants of 3 is

developed. After P is formed, the set is partitioned into essential, inessential, and conditionally-

eliminable categories. Inessential prime implicants may be deleted from consideration since they

never appear in minimal formulas consisting of prime implicants; essential prime implicants must

appear in F. Hence, the minimization effort is focused on the selection of conditionally-eliminable

prime implicants (CEPIs) to constitute formulas in F. Subsets of the CEPIs are used to form a

base in the fourth step of our method. Prime implicants are used as a base to facilitate the use of

reduction rules in the sixth step of our method.

The development of inclusion formulas, e.g., P1 + PP 3 , which represent the coverage of the

terms of the base by CEPIs of 0 is the fifth step of our method. An equation-based approach based

on the Boolean reasoning concepts of reduction and elimination is used to construct the inclusion

formulas. This theoretical foundation allows the use of constraints, which are equations of the

511

form Cj (X) = 0 which constrain the values of the X-variables. Constraints are constructed using

knowledge of the essential prime implicants and don't-care set of a function. The use of constraints

reduces the number of computations in the elimination process. Moreover, the resulting inclusion

formulas comprise fewer terms and literals, because each formula developed then only represents

the portion of the corresponding term covered by the prime implicants which is not part of the

don't-care set or is not covered by essential prime implicants.

After an inclusion formula is developed for each term of the base, reduction rules are applied

in our sixth step to identify prime implicants which constitute formulas in F as well as those to

discard from consideration. Reduction rules are based conceptually on the ideas of domination as

used to reduce prime implicant tables. The reduction rules are so called because in the course of

identifying prime implicants to use or delete, the inclusion formulas are reduced with respect to

contained terms and literals. In many cases, the formulas in F may be completely formed after

the application of reduction rules. In other cases, a search process must be used to determine the

remaining set of prime implicants. The search process is the last step of our methodology.

In Chapter 9, we discussed five issues required for formulating a search process for a problem.

Each of these issues was addressed in constructing a search process. Of particular importance

is availability of strategies which provide the option of either developing a minimal solution-

possibly at large expense-or quickly constructing near or approximate-minimal solutions. At

the completion of the search process, a vector F of formulas is constructed which represents the

functions L in either system (11.1) or system (11.2) and corresponds to a two-level digital design.

Conclusions

Utility of Boolean Reasoning. Boolean reasoning provided a theoretical foundation that

was indispensable in the development of a new methodology for circuit minimization. This was

evident in several aspects of this work. The utility of Boolean reasoning was particularly important

512

in the development of inclusion formulas which denote coverage of terms of the base by subsets

of the prime implicants of a function. Specifically, the idea of reducing iniurmation to a single

equation allowed the use of constraints to reduce the number of computations required in the

process of developing inclusion formulas; it also reduced the complex";- J tt.e resulting formula

with respect to the number of contained terms and literals. The application of constraints in this

work was a natural outcome of viewing the design problem from a Boolean-reasoning perspective.

The reduction of information to a single equation was also important in the development of a

1-normal form specification 4(X, Z) = 1. Using Boolean equation-solving techniques in conjunction

with the 1-normal form facilitated the development of methods to handle design problems as well

as unusual specifications in a manner not possible using conventional approaches. Two examples

in this dissertation of the utility of our approach are the development of recurrent designs and the

ability to formulate least-cost solutions for Ledley's elementary design problems.

Design Trade-Offs. Two issues were used to guide the development of a set of algorithms

for solving the design problem. These issues concern the trade-offs that an engineer must make in

the course of the design process. They are

" number of computations versus memory usage, and

" minimality of the design versus speed at which we develop a design.

The first issue pertains to the classic time versus space dilemma; the second to the complexity of

the minimization problem. For complex problems, both issues may have to be addressed by the

circuit designer. An important outcome of this dissertation is a set of techniques which allow a

circuit designer to make decisions regarding these two issues during the design process.

The number of computations required to solve a problem is often dependent on the memory

available. A fast technique, which performs few computations, may require much memory. On

the other hand, a method which requires less memory to solve the problem may perform a greater

513

number of computations. An example of this trade-off in this dissertation was the use of smaller

bases in exchange for an increase in the amount of work that must be performed in the search

process. When a small base is used- hence, fewer inclusion formulas are developed and stored-

reduction rules cannot identify as many prime implicants to constitute F as when a larger base is

used. A search process must then be used to determine a greater percentage of the prime implicant

to constitute F than when a larger base is used. Thus, work is shifted to the search process. This

savings in memory requires an increase in the number of computations. The designer may select

the algorithm from our set which is suitable for the memory constraints of his hardware.

The choice between the minimality of the design versus speed at which a result is developed is

facilitated by the availability of different search strategies for use in the search process. A strategy

such as A*, which guarantees a least-cost result if an admissible heuristic function is used, will

generally take longer to produce a result than does an approximate-minimal strategy such as static

weighting. The concept in economics called the law of diminishing return is especially pertinent

to the minimization problem. A strategy which guarantees only near-minimal designs, possibly one

which is within one percent of a minimal solution, may take only a fraction of the time required

by a technique for constructing a guaranteed least-cost design. The difference between a minimal

and a near-minimal design, i.e., the last one percent of the result, is what may require a significant

effort. We thus provide a spectrum of search strategies to allow a designer to determine the amount

of time that he feels should be devoted to the development of a design.

Assessment

The most important contribution of this dissertation is that it is the first coherent, uniform

attempt to systematically apply Boolean reasoning to the minimization problem. A methodology

is developed for circuit minimization which departs from the conventional approach. In algorithms

developed in this work, a circuit specification is reduced to a single equivalent Boolean equation

514

O(X, Z) = 1 called a 1-normal form. It is shown that developing a particular solution Z f 1(X) for

O(X, Z) = 1 corresponds to constructing a two-level design which meets the specification. Thus,

forming a good solution for a Boolean equation corresponds directly to developing an economical

digital circuit. This approach has several advantages: a number of design problems which cannot

be handled using conventional methods are easily treated, atypical design specifications unusable

by conventional methods are dealt with in a uniform manner, and in some cases a single algorithm,

rather than a set of algorithms, suffices to solve a problem.

Of particular importance is the use of Boolean reasoning in the development of a technique for

producing formulas which denote the coverage of a function by subsets of a set of functions. In the

special case of all functions being terms, this formula is called an inclusion formula. An equation-

based approach which incorporates the concept of constraints is presented for the generation of

inclusion formulas. This approach provides a theoretically-sound foundation for the reason'ng

process employed to generate inclusion formulas, something that has been lacking in previous work.

The use of constraints reduces the number of computations involved in the process of generating

inclusion formulas; it also simplifies the resulting formula with respect to the number of contained

terms and literals.

The second contribution of this dissertation is the formulation of a search process in which

we could apply informed search. We introduce the use of informed search in circuit-minimization.

Significant aspects of the search process developed in this work are the formulation of heuristic

functions as well as strategies for the decomposition of the search process. The use of informed

search has not been widely employed thus far in circuit minimization.

A set of algorithms for minimizing logic circuits which incorporates the concepts of Boolean

reasoning and informed search is the third contribution of this work. The algorithms vary with

respect to memory and computational requirements, which allows a trade-off between memory

usage and the number of computations. For example, an algorithm which requires more memory

515

will generally involve fewer computations. Hence, if the memory resources of a computer used

to implement the algorithms are limited, then the algorithm which requires the least amount of

memory can be used to generate a design. Similarly, if a specification is highly complex, then an

algorithm which is memory-conserving may be used. We normally like to use an algorithm which

quickly produces a result; however, an algorithm which quickly generates a design generally is more

memory-intensive than a slower method.

Recommendations

The development of a method for solving a complex problem spawns many additional prob-

lems. Such is the case with this work. Moreover, we mentioned several issues which require further

attention.

We have provided a set of techniques which allow a circuit designer to make choices dur-

ing the design process. However, in providing these methods, we have not developed specific

guidelines which facilitate good choices. In an ideal situation, the "best" choices would be made

automatically-without human intervention-based on hardware resources and function complex-

ity. Although this may one day be possible, in the interim a set of specific guidelines should be

developed to guide the selection of algorithm and search strategy. An if-then-else set of rules seems

appropriate for this problem.

In the selection of search strategies to apply to this problem, we endeavored to propose one

strategy from each category of minimization, i.e., minimization, near-minimization, and approximate-

minimization. However, we have not performed enough experimentation and analysis to recommend

settings for pre-defined constants used in the various search strategies. Examples include overes-

timation factor e and the anticipated search depth N in dynamic weighting, the beam width w

in beam search, and the weight W in static weighting. Experimentation and analysis should be

performed- to determine "good" values for these constants.

516

More study should be devoted to the use of induced partitions for problem decomposition

in the search process as suggested in Chapter 9. The feasibility of the suggested alternatives

should be investigated and integrated into the current search process to form an AND/OR search

process. One or more of the cut-set or graph-partitioning algorithms mentioned in the text should

be implemented for use in this problem.

In our presentation of the development of recurrent circuit designs, we left unaddressed the

issue of selecting a good sequence of Z-variables which will generally lead a design whose cost is

close to that of a least-cost design. Research should look into the existence of heuristics which may

be used to guide the choice of Z-orderings.

Lastly, the methodology presented in this work may be useful in developing techniques for

more elaborate digital design problems. Examples of such problems include the development of

sequential circuit designs, the construction of multi-level logic circuits, and the formation of designs

which meet non-tabular specifications. Of these problems, the utility of this approach may be most

useful for developing designs for non-tabular specifications-a problem which has received little

attention in the past.

517

Appendix A. Existing Methods

This appendix includes background material on previous research efforts in two-level circuit

minimization which are not addressed in the main body of the text. This appendix is not meant

to be all-inclusive; rather it presents a number of notable approaches for solving the problem. In

addition to the techniques for two-level minimization, a method for developing recurrent circuits

different from the technique described in Chapter 10 is described. It is assumed that the reader is

familiar with terminology defined in the text.

Early Methods

Early methods developed for circuit optimization primarily were oriented towards minimiza-

tion of single-output circuits. Several early techniques include simplification using Boolean axioms

and theorems, map-based approaches, and the Quine-McCluskey method.

Boolean Simplification. One of the advantages of digital circuits is that they may be de-

scribed mathematically by Boolean functions i of the two-element Boolean algebra, B 2 = {0, 1}.

Since digital circuits often are called auitching circuits, the two-element Boolean algebra is called

switching algebra. Boolean functions in the switching algebra are called suitching functions. Addi-

tionally, the terms suitching and logic often are used interchangeably. (Nagle 75:76) The nodes of

a circuit are depicted by Boolean variables; the gates of a circuit are modeled by Boolean operators.

Every Boolean formula which represents a switching function has a corresponding switching circuit

implementation and vice versa. A conjunction corresponds to an AND gate; a disjunction corre-

sponds to an OR gate; and a complement is implemented by an inverter. The output of a switching

circuit for a particular input combination is the same as the value of the corresponding switching

I It is assumed that the reader understands the basic terminology of Boolean algebra. See Chapter 2 for a
discussion of the basics of Boolean algebra.

518

function given the same assignment of values to its variables. An example of a sum-of-products

formula which represents a three-variable switching function, f : B' --# B 2, is

z'z + zlyz' + Zy' + Xyz. (A.1)

The corresponding circuit for this formula is given in Figure A.1. Each term of the formula is

implemented by an AND gate. The disjunction of the terms of the formula corresponds to the

combination of the outputs of the AND gates with an OR gate. Because only two gates must be

traversed between the circuit inputs and the circuit output, this circuit it is called a two-level or

two-stage logic circuit; specifically, it is an AND-OR circuit. The AND gates form the first level;

the OR gate forms the second level. The inverters are not said to form a level, because often the

input signals and their complements are both available, eliminating the need for inverters. Other

two-level logic circuits are NAND-NAND and NOR-NOR circuits. The number of levels of a circuit

is defined as the maximum number of gates that must be traversed between the circuit inputs and

circuit outputs, less inverters required to complement the input signals. In general, any circuit

which has more than two levels is called a multi-level or multi-stage circuit.

Often when designing a circuit it is necessary to list the output values of the circuit for given

combinations of input values. Such values are defined in a table called a truth table. Switching

functions are also defined by a truth table. Switching circuits and their e.rresponding switching

functions have the same truth table. A truth table for the circuit of Figure A.1 is shown in

Table A.1.

A switching circuit may be implemented by different combinations of components and still

behave the same. Likewise, & given switching function can be represented by a variety of formulas.

In either case, the number of realizations is actually infinite. Different formulas which represent

the same function are called equivalent formulas; different switching circuits which realize the same

519

z

Figure A. 1. Circuit Implementation of z'z + z'yiz' + zy' + zyz

y z f (z, Y, Z)
0 00 0
0 01 1
0 10 1
0 11 1
1 00 1
1 01 1
1 10 0

Table A. 1. Truth Table for z'z + x'yz' + zV' + xyz

520

function are called equivslent circuits. One of the first techniques developed to minimize a switching

circuit was to take the corresponding Boolean formula and use the axioms and theorems of Boolean

algebra to produce a simpler equivalent formula. A simpler formula maps into a simpler switching

circuit; however, the function remains the same.

A simplification of expression (A.1) using the axioms and theorems of Boolean algebra is

given below.

1. Terms three and four of (A.1) are used to form a new term using consensus (2.32):

z'z + z'pz' + zy/ + zyz + zz. (A.2)

2. Term four of (A.2) is eliminated due to absorption (2.25) with respect to term five:

X'z + z'yz' + zV + zz. (A.3)

3. Terms one and four of (A.3) form a consensus term:

z'z + z'yz' + zy' + zZ + z. (A.4)

4. Term five of (A.4) absorbs terms one and four. The resulting formula is:

z'Yz' + Zy' + z. (A.5)

5. Term three of (A.5) forms a consensus with term one:

z'yz' + zy' + z + zly. (A.6)

6. Finally, term four of (A.6) absorbs term one:

zy, + z + z'y. (A.7)

Once formula (A.7) is developed, a minimized equivalent to the circuit of Figure A.1 may be

implemented. This circuit is shown in Figure A.2. The optimized circuit requires two fewer AND

gates and one less inverter than the original circuit; additionally, a three-input OR gate is required

versus a four-input gate. Hence, there is a substantial decrease in required hardware.

521

Z f(X, , Z)

Figure A.2. Circuit Implementation of z'y + z l / + z

Map-Based Approaches. Minimization using the axioms and theorems of Boolean algebra

is difficult for all but the smallest circuits due to the fact that there are no methods to guide the

choice of rule to be applied at each step of the process, i.e., it is an ad hoc technique (Mano 79:72).

Hence, other approaches have been developed to perform minimization in a more simplified manner.

Map-based approaches consist of graphical techniques used to manually construct simplified sum-

of-products formulas to represent two-level switching functions. A method found in most digital

logic textbooks is the use of a graphical technique called the Karnaugh map. For a more detailed

explanation of the use of Karnaugh maps see (Johns 87), (Mano 79), or (Nagle 75). Other graphical

approaches include Marquand diagrams and Svoboda grids; see (Svobo 79) or (Klir 72) for an

explanation of these methods. The difficulty with map-based techniques is that they are unwieldy

for functions of greater than five or six variables. Additionally, these methods do not guarantee

that a minimal formula will be derived. Hence, the use of map-based approaches is confined to

relatively simple functions.

Quine-McCluskey Method. Quine (Quine 52, Quine 55) was interested in developing

minimal representations for logical expressions. In studying this problem, he developed the substan-

tial part of what is now called the Quine-McCluskey method for logic minimization. McCluskey's

(McClu 56) contribution stems from simplifying the bookkeeping entailed using Quine's approach.

522

The Quine-McCluskey method is a tabular approach to deriving a minimal sum-of-products formula

to represent a two-level -witching function.

The first step of the technique is to develop the Blake canonical form for a function, i.e., the set

of all prime implicants of a function. The determination of a minimal collection of prime implicants

required to implement the function is the second step of the Quine-McCluskey method. Using the

set of prime implicants, a prime implicant table (discussed in Chapter 6) is constructed which

denotes the coverage by the prime implicants of the minterms of the function. The identification of

essential prime implicants, and row and column domination are used to reduce the table. Finally, a

covering problem' is performed using the reduced table to determine a minimal collection of prime

implicanta required to cover all of the minterms.

Different metrics of cost can be used to guide the solution of the covering problem. One

measure of cost, stated by Quine, is to choose a collection of prime implicants which minimizes the

total number of literals. On the other hand, McCluskey stated that the choice of prime implicants

should be made first to reduce the number of prime implicants to the least number. He called

such a collection of P1. a minimum sum. Several minimum sums may exist; the selection of one

minimum sum is based on the minimum sum which contains the least number of literals. Differing

from Quine, McCluskey states that the choice of a minimal collection of prime implicants "is not

necessarily the expression containing the fewest total literals" (McClu 56:1419). Nevertheless, the

choice of the cost measure may differ based on the intended circuit implementation.

The primary benefit of the Quine-McCluskey method is that it is a systematic method for

logic minimization. Since the method is systematic, it is easily automated. The method does

not depend on a designer's ability use the axioms and theorems of Boolean algebra to produce

a simplified formula. Likewise, the intuition required to use a map-based method to produce a

minimal formula is not required using the Quine-McCluskey method. Additionally, the Quine-

2This problem is a variation of the well-known set covering problem (Murog 79:168).

523

McCluskey method can be used for functions with a larger number of variables than map-based

methods. (Nagle 75:141)

Algebraic Techniques for Minimization

Importance of Two-Level Minimization. With the advent of LSI and VLSI in the mid to

late 1970s, minimization of two-level circuits became a vigorous area of research. Two-level circuits

are practical in LSI/VLSI due to ease of implementation in the form of Programmable Logic Arrays

(PLAs). There are a number of advantages of PLA-based implementations (Newto 86:33):

1. It is easy to implement a function in PLA form with a low probability of error. There is a
one-to-one correspondence between a symbolic representation of a PLA using Os and is and
the physical layout of the function.

2. Computer-aided design (CAD) tools have made it easy to automatically layout PLAs.

3. It is easy to change a PLA once it has been constructed. Often, all that is entailed is to
disconnect or connect a transistor.

A PLA is a grid where each input column of the grid is a literal, complemented or uncom-

plemented, each output column is a function output, and each row is a term of a sum-of-products

formula. Since each possible literal is available for every term, the object of PLA-based minimiza-

tion is strictly to reduce the number of product terms of a formula. By reducing the number of

terms, the number of rows of PLA is proportionately decreased. A depiction of a PLA is given in

Figure A.3. In this example, a three-variable multiple-output3 function is implemented. A dot at

the intersection of two lines corresponds to a connection. Note that term zxz 2 is shared between

two circuit outputs.

31n PLA optimisation, several single-output functions may be implemented; however, a set of single-output

functions is treated as a single multiple-output function. This facilitates the sharing of terms between different
functions.

524

Input columns Output columns

ZIZ2

2143 -. -- [-4 - I-

ZIZ3 ,

Z, '2 Z' 3 ZfA f2 f3

A = Z122 + 2'3
f2= Zl1233

f3 = X1X2 + 2 23

Figure A.3. Depiction of a Programmable Logic Array

Approach of Algebraic Methods. A common methodology is followed in virtually all

algebraic methods for developing a minimal SOP formula to represent a function f in an interval

[g, h]. These steps are:

1. form the set of prime implicants of h;

2. develop a base for [g, h];

3. develop inclusion formulas representing coverage of the terms of the base by prime implicants
of h; and

4. form the product of the inclusion formulas.

The primary differences among algebraic methods are the form of the base for [g, h] and the method

for developing inclusion formulas which denote coverage of the terms of the base by subsets of the

prime implicants of h.

A key problem in minimization theory is to devise a base for [g, h] and a corresponding

method for forming inclusion formulas that is efficient. A number of bases have been used over the

years. Petrick (Petri 56) used the minterm canonical form of a function. The Blake canonical form

of a function was used in (Ghaza 57), (Mott 60), (Gaine 64), and (Tison 67). Chang and Mott

525

(Chang 65) employed an irredundant disjunctive form of a function as a base. Reusch (Reusc 75)

showed that any disjunctive form which represents a function may be used as a base. A subset

of the minterm canonical form of a function called the abridged minterm base was devised by

Cutler (Cutle 80). Hong used a subset of the abridged minterm base that he called the "epi-

eliminated* minterm base (Hong 91); the epi-eliminated minterm base contains only the minterms

of the abridged minterm base which are not covered by essential prime implicants of the function.

We surveyed a number of these techniques in Chapter 5. In addition, Cutler's approach and the

ignificance of Gaines's contributions were discussed in Chapter 6.

One shortcoming of virtually all of these methods is that a specific technique must be ap-

plied to a specific design problem. For example, Cutler (Cutle 80) presented four different algo-

rithms to handle the different combinations of single- and multiple-output circuits, completely- and

incompletely-specified specifications.

Heuristic Techniques for PLA Synthesis

General Concepts. Many of the early methods for logic minimization, such as the Quine-

McCluskey method, can be applied to PLA minimization. However, the number of inputs and

outputs characteristic of functions to be implemented in VLSI, and the resulting number of prime

implicants and minterms, makes their use prohibitive (Brayt 84:9). Hence, heuristic techniques have

been developed to handle the PLA-based minimization problem which do not require generation of

function minterms or prime implicants. Heuristic techniques for PLA synthesis are characterized

by mechanisms for the expansion of function implicants and removal from consideration of other

implicants covered by newly expanded implicants (Brayt 84:10). Typically, as an implicant is

expanded other implicants are reduced correspondingly in what can be viewed as a "molding"

process. Implicants are reduced incrementally by the expansion of other implicants until they are

526

covered completely and then removed from consideration. The result is a near-minimal number of

implicaats which cover all of the output functions.

In PLA minimization, use is made of the concept of cellular n-cubes (Prath 67:125-128).

Using cellular n-cubes an n-variable Boolean function may be plotted on an n-dimensional cube.

Each vertex of the n-dimensional cube, or n-cube, corresponds to a minterm of the function.

Vertices may be grouped together if they are adjacent to form implicants of the function; vertices

are called adjacent when they are connected by arcs. Groupings which are as large as possible

depict prime implicants. Multiple-output functions are represented by a set of cubes in which each

cube corresponds to an output of the function. Groupings may be formed between various cubes

to indicate the sharing of implicants among output functions. Figure A.4 depicts a 3-cube for

the three-variable function f(z, y, z) = y' + zz. Points at five of the vertices of the cube denote

the minterms of the function. The vertices are labeled according to their zyz coordinate, a one

indicating an uncomplemented literal, a zero a complemented literal. The grouping of vertices 001

and 101 forms the implicant yz. The grouping of vertices 101 and 111, and vertices 000, 001, 100,

and 101 form the prime implicants zz and y', respectively.

111

001 0

000 100

Figure A.4. Boolean 3-cube for f(z, y, z) = y' + zz

527

An example of the molding process of PLA minimization is given in Figures A.5 and A.6.

Figure A.5 is an initial multiple-output function f(z, y, z), in which

" f(f, f 2), and

" fi(, , z) = Z'V' + V'z + X'y + Zz: + X'YZ,

* f 2 (Z, Y, z) = ZYz' + z'YZ + Zz.

A heuristic technique may produce a result as shown in Figure A.6 where

" fi(z,y,z) = z'+ xV/, and
* f2(Z, Y, Z) = V + YZ.

The number of terms is reduced from a total of six to three where the term z/ is shared between

the two outputs in the result (two terms are shared between the outputs in the initial function).

Cf significance is the fact that fl(z, y, z) could be represented by a simpler formula, i.e., Z' + !Y;

however, this would prohibit the sharing of term zy' resulting in a net increase in the number of

terms.

011 fOil f ill

001 . 001101 101

110

000 10000 L 0

Figure A.5. Multiple-Output Function Prior to PLA Minimization

528

011 A 1 011 f2 111

001 - 001

101

010 110 110

000 100 000

Figure A.6. Multiple-Output Function After PLA Minimization

Simultaneous Identification and Extraction of Implicants. Due to the potentially

large number of prime implicants for a logic function, research in the 1970s focused on techniques

which did not require the generation of all of the prime implicants of a function. These tech-

niques are characterized by the simultaneous identification and extraction of function implicants.

(Rhyne 77) and (Areva 78) describe methods which fit into this category to generate near-minimal

two-level circuits.

Rhyne's method (Rhyne 77) requires the initial generation and partitioning of all of the

minterms of the function to be minimized. Minterms are then partitioned into the on-set, off-set,

and don't-care set.4 After partitioning of the minterms, one minterm of the on-set is chosen , ni

expanded until all of the prime implicants which cover the minterm are generated. By expansion,

we mean that minterms are combined using consensus and absorption to form a prime implicant

which covers the minterms used to create it. For example, given a three-variable Boolean function

for which the on-set consists only of zyz and zyz' and further suppose that minterm zyz is chosen

for expansion. During expansion, minterm zyz is combined with zyz' to form a new term zy using

consensus. This new term absorbs the original minterms forming a prime implicant of the original

4 Rhyne actually calls minterms which belong to the on-set true forms, those that belong to the off-set falae forms,
and those that belong to the don't care set redundancies. The terminology used here is more common.

529

function. For non-trivial examples, a minterm selected for expansion will be used to generate a

set of PIs, i.e., all of the PIs which cover it. However, only one prime implicant is selected for

use. Then all minterms which are covered by the newly-formed prime implicant are removed from

consideration. Another minterm is selected and expanded until prime and minterms covered by

the next prime implicant selected are removed. The process continues until all minterms in the

on-set are covered by Pha. Mechanisms are developed to quickly identify essential PIs. Although

the original method could only handle single-output circuits, Rhyne's procedure has been updated

to handle multiple-output circuits (Perki 88).

The primary difference between Arevalo's method (Areva 78) and Rhyne's is that only a

subset of the prime implicants is generated for each minterm to be expanded. Additionally, only

the on-set and don't care-set of minterms are generated and stored. The technique produces

irredundant formulas to represent a single-output functions. Reduced formulas-not necessarily

irredundant-are generated for multiple-output functions. For multiple-output functions, product

functions are formed from multiplying each of the single output functions together. When producing

formulas for the multiple-output case, resulting terms may be prime implicants of one of the product

functions rather than PIs of individual functions (Areva 78:1032). This technique is faster than

Rhyne's, but does not produce as good results (Brayt 84:9).

MINI, PRESTO, and ESPRESSO-II. In the 1970s a variety of heuristic techniques

were developed to handle PLA-based multiple-input, multiple-output circuit minimization. Notable

examples include MINI, PRESTO, and ESPRESSO-II.

MINI (Hong 74:443) was developed by researchers at IBM to solve the PLA minimization

problem. MINI begins by assigning an equal weight to each function implicant. An initial SOP

formula is generated, followed by iterative improvement of the solution. MINI uses a three-step

process to perform minimization:

530

1. Each implicant is reduced to the smallest possible size with respect to the number of minterms
covered.

2. Implicants are examined in pairs to see if they can by reshaped by reducing one while enlarging
the other by the same set of minterms.

3. Each implicant is enlarged to its maximal size with respect to covered minterms and other
implicants that are then covered are removed.

The three steps are iterated until no further reduction can be obtained in the size of the solution.

The order in which implicants are reduced, reshaped, etc. affects the outcome of the procedure. An

advantage of MINI is that all of the minterms of a function do not have to be generated. However,

the generation of the complement of a function is required to check if the expansion of an implicant

changes the coverage of a function-if a newly expanded implicant intersected with the function

complement is null, then coverage is maintained. MINI produces a near-minimal set of implicants,

but not necessarily prime implicants, to represent both binary and multi-valued multiple-output

functions.

PRESTO, a minimizer developed by Antonin Svoboda, differs somewhat from the MINI

approach (Brown 81). In PRESTO, implicants are expanded while implicants covered by the

newly-expanded implicants are removed. A final step in PRESTO guarantees that an irredundant

cover is generated; however, the cover may include non-prime implicants. Different than MINI,

PRESTO does not generate the complement of the input function. Consequently, the expansion

process requires a check on whether all minterms covered by the expanded implicant are covered

by some other implicant of the cover (Brayt 84:10-11).

After studying the MINI and PRESTO algorithms, researchers developed improved tech-

niques which led to the development of the ESPRESSO-I and ESPRESSO-II procedures for PLA

minimization. The original ESPRESSO-I program was developed as an implementation of the MINI

and PRESTO algorithms with switches for controlling the sequence of actions in the program. This

allowed experimentation to determine the strengths and weaknesses of each program. Based on the

experiments, the authors of the program made two basic conclusions:

531

o The technique of computing a complement of a function (MINI) was superior to the PRESTO
method for checking minterm coverage, and

e Iteration as used by MINI gave a good enough improvement of designs to justify the additional
computation. (Brayt 84:11-12)

These conclusions were used to guide the development of the ESPRESSO-I method.

The authors of the ESPRESSO-I program developed improved procedures, many based on

Boole's Expansion Theorem, which increased the efficiency of the program. The result of their

efforts was the ESPRESSO-II program. The goals of the authors of ESPRESSO-II were:

1. To solve logic minimization problems with limited computing resources, and

2. To attain results close to a global optimum. (Brayt 84:12)

The sequence of operations in ESPRESSO-Il consists of the following:

1. Compute the complement of the function (off-set) in addition to the don't-care set.

2. Expand each implicant into a prime implicant and remove covered implicants.

3. Extract the essential prime implicants and put them into the don't-care set.

4. Find an irredundant cover.

5. Reduce each implicant to a minimum essential implicant.

6. Iterate expansion, irredundant cover, and reduction until no more improvement occurs.

7. Expand, find an irredundant cover, and reduce a final time using a different strategy. If the
function can be reduce further, try it again.

8. Include the essential PIs in the cover and make the PLA as sparse as possible. (Brayt 84:12-
13)

The ESPRESSO-I algorithm produces an irredundant, prime cover for a PLA-based im-

plementation of a multiple-input, multiple-output circuit. On actual circuits, the authors state

that the program produces results which are near-minimal if not a minimal representation of a

circuit. Results have been compared to an implementation of the Quine-McCluskey algorithm.

However, whereas ESPRESSO-II attained results which were near minimal, the CPU time used

532

by the Quine-McCluskey method was 10-100 times larger than ESPRESSO-II for large problems

(Brayt 84:156).

The ESPRESSO-I1 algorithm has been implemented and extended in a number of ways.

The ESPRESSO-IIC version is a version coded in the C language which is part of the Berkeley

VLSI CAD tool environment. ESPRESSO-MV is a version of ESPRESSO designed for use on

multi-valued logic. ESPRESSO-MLT extends ESPRESSO to multi-level logic minimization. The

techniques contained in ESPRESSO-IS are described in a book written by the program developers

called Logic Minimization Algorithms for VLSI Synthesis (Brayt 84).

Other Methods. Recent work has been performed to further improve PLA minimization

techniques. Malik and others have developed a modification for ESPRESSO which does not require

the generation of the full off-set (complement) of a function; this algorithm is good for functions

where the on-set of a function is small but the off-set is very large (Malik 88). Biswas, et al.,

have developed several PLA minimization algorithms (Biswa 84, Biswa 86, Gurun 87, Gurun 89).

Their latest method includes techniques for fast determination of essential prime implicants without

generating all of the prime implicants of a function and does not require generation of a function

complement or all of the prime implicants of a function. Finally, PALMINI (Nguye 87) is used

to develop minimal solutions without generating all prime implicants through the solution of a

graph-coloring problem.

Exact Minimization Methods

Two notable algorithms used to develop minimal two-level designs are the ESPRESSO-

EXACT algorithm (Rudel 89, Rude] 86) and McBOOLE (Dagen 86). Both techniques perform

the same steps as the Quine-McCluskey method: the generation of all prime implicants of a func-

tion and the selection of a minimal set of prime implicants to cover the function. However, the

means by which these steps are performed are much different.

533

McBOOLE uses graph and partitioning techniques to find minimal covers. A directed graph

called a covering graph is used for determining the relationships among prime implicants of a

function. Techniques are provided for determining prime implicants to retain or discard based on

the covering graph of a function. Cycles in the graph preclude the selection of prime implicants to

retain and discard; a form of search is used to select prime implicants for instances in which cycles

appear in the graph. A graph-partitioning technique is us,) to decompose the problem.

The ESPRESSO-EXACT algorithm is theoretically similar to the ESPRESSO heuristic min-

imisation technique. Several of the operations used in ESPRESSO, a tautology-based algorithm in

particular, are extended for use in ESPRESSO-EXACT. ESPRESSO-EXACT includes techniques

for quickly detecting and eliminating from consideration essential prime implicants and selecting

a minimum cover using the remaining prime implicants. A branch-and-bound search process is

used in the final step of constructing a minimal formula. A technique based on the formation of a

maximr.l independent set is used to control a search process to solve a covering problem involving

a reduc,!d form of a prime implicant table.

Eoth McBOOLE and ESPRESSO-EXACT have proven useful in finding minimal solutions

for functions which have up to twenty inputs and twenty outputs and over 9000 prime implicants.

Recursive Realizations of Combinational Logic

A method for generating recursive realizations of combinational logic was developed by Brown

(Brown 90) and extended by Knutson (Knuts 90). The intent of this technique is to determine how

to rece. figure u design suc' that outputs are defined in terms of the inputs and other outputs

to reduce the circuit cost. One output must be defined solely in terms of the circuit inputs; the

next output is defined in terms of the inputs and the previously defined output, etc. This process

continues until all outputs are defined, hence, the phrase "recursive" in the name of the method.

534

A pictorial description of this method is given in Figure A.7. Although the figure depicts that the

output s1 is the output which depends only on the inputs, this choice is arbitrary.

Final Circuit:

Initial Circuit:

I--.-.P Z

ZI

zi 2

2Z

ZIf=ih X1....Zm)
Z2f=2hZi,....Zm)

Znf=n(Mi, - - Xm)

Implement Outputs in Terms
of Inputs and Other Outputs

Figure A.7. Recursive Realizations of Combinational Logic

To attain a recursive circuit realization, a two-step process is used. In the first step, a

dependency analysis is performed for each output to determine minimal subsets of inputs and other

outputs that can be used to generate a given output; these sets are called minimal determining

subsets (MDS). Typically, various combinations of inputs and outputs may be used to generate an

output. Hence, a set of MDSs is developed for each output. Once the set of minimal determining

subsets is generated for each output, a sub-minimal formula is developed to represent the output

with respect to variables in each subset. A cost is then developed for the formula based on the

number of gate inputs required if the formula were to be used as the basis for a design.

535

The initial specification, given by a system of equations, in reduced to a single Boolean

equation 0(X, Z) = 1 which represents the circuit specification. Boolean reasoning is then used to

generate minimal determining subsets. After costs are associated with each of the MDSs associated

with each output, the second step of the procedure is performed. In this step, a branch-and-bound

search is performed to find the combination of MDSs to use to generate each output which produces

a least-cost circuit. As an example of this method, consider the specification

u = bc + bd + a'cd + ab'c'd'

v = a'cd + a'c'd'

w = a + b'c + b'd + bc'd'.

The cost, found by counting the number of gate inputs if the output is implemented in a two-level

AND-OR circuit, for this circuit is 34. This cost is determined by counting all literals (the inputs

to AND gates) and all terms of the formula (the input to OR gates). However, if a term consists

of a single literal, the literal is not counted with the other literals because it is input directly to an

OR gate. Additionally, it is assumed that the complement of each input is available. The minimal

determining subsets for u, v, and w are

u: {{b,v},{a,b,c,d},{a,c,d, w}}

v: {{a,b,u},{a,c,d}}

w: {{a,u},{a,b,v},{a,b,c,dj}.

Example costs are

" v: {a,c,d} costs 8,

* w: {a,b,c,d} costs 11,

"ow: {a,b,v} costs 7, etc.

536

Using the MDSs and their associated costs, a branch-and-bound search would produce the following

least-cost reconfiguration of the circuit function

u = b' + bi'

v = a'cd + a'c'd'

The cost of this realization is 16, significantly cheaper than the original cost of 34. Output v is

constructed only in terms of the circuit inputs, output u is constructed using v and a circuit input,

etc.

As currently implemented, the system to obtain recursive realizations of combinational circuits

uses only the inputs and outputs of a circuit. Intermediate nodes of a circuit are not considered.

Additionally, no consideration is given of speed of the resulting circuit. The system is significant

due to the use of both Boolean reasoning and search techniques.

537

Appendix B. Example Functions and Intervals

In this appendix, examples are described to which we apply selected algorithms introduced

in this work. The times listed in the tables in this appendix are given in the format:

hours:minutes:seconds.hundredths of a second.

The times were obtained using the BORIS toolset. BORIS is an acronym for BOolean Reasoning In

Scheme. BORIS consists of a set of procedures for Boolean reasoning programmed in the Scheme

dialect of the LISP programming language. All of the procedures described in Chapter 2 of this

dissertation are implemented in BORIS.

BORIS was originally developed by Dr. F.M. Brown at the Air Force Institute of Technology

and has been revised and extended by the author. The current version of BORIS executes in

PC Scheme, a microcomputer-based dialect of Lisp available from Texas Instruments. BORIS was

used to prototype selected algorithms presented in this work. Unless otherwise noted, the computer

used in these calculations was an 20 Mhs, 80386-based, IBM-compatible computer. PC Scheme

was run as a task in the Microsoft Windows environment.

Data Set B

Data set B is a set of rarinomly-generated switching functions. The definition of this data set

is taken from (Cutle 80:208-209).

Given that a function f(X) consists of n variables, we generate a random number rj between

0 and 1 for each minterm m, to determine if the corresponding discriminant is equal to 0 or 1:

" if rj > 0.25, then the discriminant which corresponds to m is equal to 0;

" otherwise, the discriminant which corresponds to m2 is equal to 1.

536

The expected number of discriminants of a function which are equal to 1 is (1/4) • (21); however,

the actual number varies. Statistics on data set B to include the number of variables of f(X), the

actual number of discriminants of f(X) which are equal to 1, and the number of prime implicants

(PIS) of each function are listed in Table B.1. The last column of Table B.1 lists the number of

prime implicants in the IDF representing f(X) which consists of the fewest number of terms.

Function No Vars Expected No Actual No Number Essen Inessen Least No
Identifier n MintermsI Minterms PIs PIS I PIs I PIs - IDF

B1 4 4 4 3 3 0 3
B2 5 8 10 5 4 1 4
B3 6 16 13 11 10 1 10
B4 7 32 28 25 19 3 20
BE 8 64 58 48 26 3 32
B6 9 128 135 127 33 7 67
B7 10 256 231 206 72 11 116
B8 11 512 543 525 112 13 253

Table B.1. Data Set B (Statistics)

The number of terms of the Blake canonical form, a simplified formula, and an irredundant

SOP formula (IDF) to represent each function as well as the times required to calculate the respec-

tive formulas are given in Table B.2. The method used to generate each Blake canonical form is the

recursive multiplication method (Procedure 2.20). Procedure 2.15 is the method used to formulate

a simplified formula to represent a given function. Additionally, Procedure 2.31 is used to obtain

an IDF; the time required to obtain the irredundant formula includes the time required to first

generate the Blake canonical form of the function.

Data Set C

Data set C is a set of randomly-generated n-variable switching functions, in which n = 12.

The definition of this data set is taken from (Cutle 80:210).

539

Function Number Time No Terms Time No Terms Time
Identifier PIS BCF Simp Form Simp Form IDF IDF

B1 3 0.05 3 0.06 3 0.05
B2 5 0.16 4 0.11 4 0.17
B3 11 0.33 10 0.33 10 0.44
B4 25 1.04 20 1.05 20 1.93
Ba 48 3.08 35 2.47 33 7.47
B6 127 14.56 78 7.69 68 58.22
B7 206 40.48 138 20.93 127 3:34.16
B8 525 3:49.54 316 1:29.48 274 35:55.82

Table B.2. Data Set B (Calculation Times)

In this data set an implicant is formed by generating n random numbers, rl,..., r,, between

0 and 1. Foreach i= 1,...,n:

" if ri < 1/3, then literal z is contained in the implicant;

" if ri > 2/3, then literal zi is contained in the implicant;

" otherwise, neither zn nor zi is contained in the implicant.

The functions in the data set differ by the number of implicants generated to form the function

specification; the number of implicants generated for a given function is listed under the "Number

Terms" column in the table. Statistics on data set C are listed in Table B.3.

Function Number Number Essen Inessen Least No
Identifier Terms PIs PIs P1s PIs - IDF

C1 10 16 10 6 10
C2 20 51 19 29 20
C3 30 113 29 84 29
C4 40 149 37 105 39
C5 50 321 42 186 49
C6 60 407 37 135 58
C7 70 446 44 228 61

Table B.3. Data Set C (Statistics)

Table B.4 states the number of terms of the Blake canonical form, a simplified formula, and an

IDF which represents each function as well as the times required to calculate the respective formulas.

540

Procedure 2.20 (Blake Canonical Form - Recursive Multiplication) is the method used to generate

the Blake canonical form. The procedure used to formulate a simplified formula to represent each

function is Procedure 2.15. Additionally, Procedure 2.31 is used to obtain an irredundant formula

to represent each function. The time required to obtain the irredundant formula includes the time

required to first generate the respective function's Blake canonical form.

Function Number Timej No Terms j Time jNo Termsj Time
Identifier PIn BCF I Simp Form I Simp Form IDF IDF

Cl 16 1.37 11 1.37 10 1.81
C2 51 5.00 24 2.85 20 10.60
C3 113 16.36 31 4.83 29 54.49
C4 149 28.34 45 6.37 39 1:38.38
CS 321 2:21.38 87 12.14 49 11:34.48
Ca 407 6:35.29 105 16.31 59 26:17.30
C? 446 5:55.15 102 17.03 61 29:40.19

Table B.4. Data Set C (Calculation Times)

Data Set D

Data set D is a set of randomly-generated n-variable switching functions formed in the same

fashion as data set C, in which n = 18. The definition of this data set is taken from (Cutle 80:210).

Statistics on data set D are listed in Table B.5.

The number of terms of the Blake canonical form, a simplified formula, and an irredundant

formula which represents each function as well as the times required to calculate the respective

formulas are listed in Table B.6. The time required to obtain an irredundant formula to represent

a function includes the time required to first generate the Blake canonical form.

541

Function Number Number Essen Inessen Least No
Identifier Terms P PIS I PIS PIs - IDF

D1 10 12 10 2 10
D2 20 25 20 5 20
D3 30 64 30 34 30
D4 40 95 40 55 40
DS 50 134 50 84 50
D6 60 185 60 125 60
D7 70 205 70 135 70
D8 80 299 80 219 80
D9 90 586 84 480 86
DIO 100 434 100 334 100
Dl 110 564 107 445 108

D12 120 593 119 474 119

Table B.5. Data Set D (Statistics)

Function Number Time No Terms Time No Terms Time
Identifier PIS BCF Simp Form Simp Form IDF IDF

D1 12 1.59 10 2.14 10 1.87

D2 25 6.04 21 6.26 20 7.91
D3 64 17.64 30 12.36 30 29.00
D4 95 21.53 40 14.39 40 45.37
DS 134 53.34 51 23.84 50 1:50.40
D6 185 1:13.27 61 27.41 60 3:19.54
D7 205 1:32.76 72 35.10 70 4:26.33
D8 299 3:02.14 85 44.87 80 9:10.96
D9 586 10:38.67 103 58.11 86 1:02:03.89

D10 434 6:08.66 110 59.27 100 28:48.83
Dl 564 9:38.54 125 1:13.05 108
D12 593 10:2:.26 128 1:21.73 119

Table B.6. DLta Set D (Calculation Times)

542

Data Set E

Data se. E is a set of randomly-generated n-variable switching functions formulated in the

same fashion as data det C, in which n = 24. The definition of this data set is taken from

(Cutle 80:210). Statistics on data set E are listed in Table B.7. A characteristic of this data set is

that the disjunction of the essential prime implicants of each function forms the only irredundant

SOP formula which may represent the function.

Function Number Number Essen Inessen Least No
Identifier Terms PIs PIs PIs PIs - IDF

El 10 10 10 0 10
E2 20 25 20 5 20
E3 30 42 30 12 30
E4 40 53 40 13 40
ES 50 65 50 15 50
E6 60 87 60 27 60
E7 70 109 70 39 70
E8 80 130 80 50 80
E9 90 184 90 94 90
E10 100 165 100 65 100
Ell 110 215 110 105 110

E12 120 220 120 100 120
E13 130 225 130 95 130
E14 140 347 140 207 140
E15 150 284 150 134 150
E16 160 362 160 202 160

Table B.7. Data Set E (Statistics)

The number of terms of the Blake canonical form, a simplified formula, and an irredundant

SOP formula to represent each function as well as the times required to calculate the respective

formulas are given in Table B.8. The time required to obtain an irredundant formula to represent

a function includes the time required to first generate the Blake canonical form.

543

Function Number Time No Terms Time No Terms Time
Identifier PIs BCF Simp Form Simp Form IDF IDF

El 10 2.25 10 2.53 10 2.47
E2 25 6.92 20 6.97 20 8.95
E3 42 16.59 30 14.12 30 23.01
E4 53 24.00 40 21.04 40 34.33
ES 65 33.39 50 29.06 50 47.62
Es 87 56.35 61 43.83 60 1:27.33
E7 109 1:12.56 71 51.46 70 2:08.53
E8 130 1:24.43 80 1:00.26 80 2:34.62
E9 184 3:00.76 91 1:33.54 90 5:57.13
ElO 165 2:40.94 100 1:31.17 100 4:58.47
Ell 215 3:41.24 111 1:47.93 110 7:56.75
E12 220 3:50.68 120 1:55.95 120 8:56.51
E13 225 4:24.41 130 2:20.61 130 9:36.94
E14 347 8:09.61 142 2:53.35 140 •
E1 284 5:47.57 150 2:46.20 150 •
E16 362 8:47.06 165 3:28.71 160 •

Table B.8. Data Set E (Calculation Times)

Data Set IC

Data set IC is a set of 15 randomly-generated intervals defined by a lower-bound function g(X)

and an upper-bound function h(X). The definition of this data set is taken from (Hong 83:106).

Given the number n of variables and a specified minterm density d, we generate a random

number ri between 0 and 1 for each minterm mi of the 2n possible minterms to determine if the

minterm should be a member of the on-set, off-set, or don't care-set:

* if ri > d, then the minterm mj is in the off-set;

" if ri _5 d/2, then the minterm mi is assigned to the on-set;

" othe-wise, d/2 < -, (5 d. In this case, the minterm is assigned to the don't care-set.

Statistics on data set IC to include the number of variables, the minterm density d, and the number

of minterms in the on-set and dc-set for each function are listed in Table B.9. The number of prime

implicants for each function in Table B.9 is the number of prime implicants of the function h(X).

544

Additionally, the number of terms listed for a simplified formula is the number of terms in a

simplified formula representing the lower bound function g(X).

Function No Vare Density Minterms Minterms BCF Essen lnessen LeastNo
Identifier n d ON-Set DC-Set PIs PIS PIs Pls - IDF

ICd 6 0.2 3 3 6 3 0 3
IC2 6 0.3 11 4 12 1 0 3
IC3 6 0.4 15 4 14 2 0 3
IC4 7 0.2 15 11 23 7 0 8
IC5 7 0.3 19 18 25 4 0 8
IC6 7 0.4 18 24 34 10 0 14
IC7 8 0.2 26 25 38 18 1 20
IC8 8 0.3 37 43 61 24 5 27
IC9 8 0.4 55 48 96 8 0 29
IC10 9 0.2 51 47 81 24 3 34
IC11 9 0.3 73 73 136 31 7 49
1C12 9 0.4 89 108 183 14 1 57
IC13 10 0.2 109 105 206 45 5 77
IC14 10 0.3 139 170 295 38 2 99
ICis 10 0.4 202 204 398 23 2 112

Table B.9. Data Set IC (Statistics)

The number of terms of the Blake canonical form of h(X), a simplified formula for g(X), and

an irredundant SOP formula to represent a function f(X) belonging to each interval [g(X), h(X)]

as well as the times required to calculate the respective formulas are given in Table B.10. The

method used to generate the Blake canonical form of each h(X) is the recursive multiplication

method (Procedure 2.20). Procedure 2.15 is the method used to formulate a simplified formula to

represent each g(X). Additionally, Procedure 2.33 is used to obtain an irredundant formula. The

time required to obtain each irredundant formula includes the time required to first generate the

Blake canonical form for h X) and a simplified formula for g(X).

545

Function Number Time No Terms Time No Terms Time
Identifier PIS BCF Simp Form Simp Form IDF IDF

IC1 6 0.17 3 0.11 3 0.44
IC2 12 0.28 3 0.16 3 0.88
IC3 14 0.44 3 0.17 3 1.09
IC4 23 0.93 8 0.50 8 5.60
ICs 25 0.93 13 0.88 9 13.02
1C6 34 1.38 17 1.10 15 25.65
IC7 38 2.31 20 1.54 21 52.73
iC8 61 5.06 29 2.69 27 3:15.10
IC9 96 8.57 34 3.07 32 10:27.03

ICIO 81 7.80 35 3.74 35 7:45.99
Cil 136 17.47 53 6.59 52 43:02.77

IC12 183 29.33 79 11.04 61 2:08:50.16
1C13 206 39.16 80 12.58 79 2:52:17.04
IC14 295 1:15.58 119 21.31 106 11:07:56.23
ZC1 398 2:09.51 141 27.52 123 *

Table B.10. Data Set IC (Calculation Times)

546

Appendix C. Computational Results

In this appendix, we discuss the computational results of applying two of the algorithms

presented in Chapter 6 to the several sets of examples introduced in Appendix B. In the first

section, we discuss a number of important issues with respect to the prototypes of the algorithms.

The results of applying Algorithms 6.1 and 6.2 are then presented for several data sets; the fewest-

gates cost criterion is used for all examples listed in this appendix. The final section describes the

results of applying the search strategies discussed in Chapter 9 to a number of example functions.

Prototype Overview

Prototype implementations were developed for Algorithms 6.1 and 6.2 discussed in Chapter 6.

The initial program development was accomplished using PC Scheme and a 20 MHz, 80386-based,

IBM-compatible computer. After development on a PC, the procedures were ported to the T

programming environment, Version 3.1, hosted on a SUN SPARCStation 2. The T language-a

dialect of LISP-was developed at Yale University and is very similar to Scheme. The author

developed a set of translation routines which allow the use of code developed for PC Scheme in the

T environment with very little modification.1 The results presented in this chapter were developed

using the T-based implementation. The ability to use a workstation facilitated the handling of larger

problems than was possible using a personal computer, particularly due to memory constraints.

Moreover, the T-based implementation running on a SUN SPARCStation 2 is on the average 11-12

times faster than the PC Scheme implementation for a given operation. (The speed-up appears to

be i.;variant no matter what operation is performed.)

For each set of examples, the time that it took to apply each algorithm to each member in the

set is given. This information should not treated as a measure of the true utility of the algorithms

1 The macro facilities for PC Scheme and T differ. We could not determine how to translate macros appearing
in Scheme code to macros in T. "ience, different macro routines must be written for the Scheme-based and T-baed
implementations. However, mn:ro are only used in input and output routines, and not in the implementation of
any procedures in this dissertatio-.

547

in this work. The implementations are rough prototypes which do not faithfully represeut the

algorithms presented in the text. Rather, they were developed in the course of research in an

attempt to validate the utility of various ideas. Program effectiveness was the primary consideration

during the development of the prototypes; program efficiency W, not a major concern. After

procedures presented in the text were formalized, the implementations were not changed to reflect

the theory. Implementations based on the text will likely be "cleaner" than the programs used to

develop the data in this appendix.

Another issue that must be considered in examining the speed of these prototypes is the

implementation language. Since our concern was to quickly develop working programs. we chose to

use a LISP-based environment to implement the procedures. A procedural-based implementation-

such as C-would have required a significant time investment and would not have lended itself to

experimentation as did a LISP-based implementation. A future task is to recode the procedures

presented in this work using C. A procedural implementation of the techniques should provide a

gain in speed over the implementations used in this work.

Data Set B Results

Algorithm 6.1 uses the set of all useful, conditionally-eliminable prime implicants as the base

for developing inclusion formulas. Table C.1 presents the results of applying Algorithm 6.1 to the

functions in Data Set B. In the first column, the number of inclusion formulas developed in the

course of the algorithm is listed; this number corresponds to the number of terms in the base.

The total number of terms in the resulting set of inclusion formulas is given in the second column.

The average number of terms per inclusion formula is found by dividing the number in the second

column by the num -. in the first column.

In the third, fourth, and fifth columns, the number of prime implicants identified for contain-

ment in a minimal formula F during different stages of the process is given. The number of essential

548

prime implicants is listed in the third column. The fourth column gives the number of prime impli-

cants identified during rule reduction. Finally, the fifth column lists the number of prime implicants

determined during the search process. The A* search strategy was used during the search process

with heuristic function hi(n), Topology #1, and an explicit node representation.2 Column six gives

the number of prime implicants in a minimal formula F; this number is derived by summing the

numbers in columns three through five. Finally, the total time to develop a minimal F is given in

the last column.

Function Num Num Essen Rul Red Search Total TotaIdentifier IFs Terms PIS PIS PIs PIs Time
BI 3 - 3 0.62
B2 4 - 4 0.69
B3 - - 10 - - 10 0.74
B4 3 6 19 1 - 20 0.99
B5 19 33 26 6 - 32 2.16
B6 87 187 33 34 - 67 10.36
B7 123 236 72 37 7 116 28.75
B8 400 1370 112 129 12 253 263.58

Table C.I. Data Set B - Algorithm 6.1

Table C.2 gives the results of applying Algorithm 6.2 to Data Set B. In Algorithm 6.2 an

irredundant disjunctive form is developed; the base for each function is the set of conditionally-

eliminable prime implicants appearing in the IDF. Hence, the number of inclusion formulas de-

veloped for each function is greatly reduced, which decreases memory requirements. However, the

times in Table C.2 are greater than in Table C.1 due to the time required to form an IDF. Addition-

ally, the reduction of the number of inclusion formulas shifts effort to the search process. Whereas

most CEPIs used to constitute a minimal F are identified during rule reduction in Algorithm 6.1,

a search process is important for identifying prime implicants in Algorithm 6.2. The computation

'Unless otherwise noted, this search configuration is used for all examples in this appendix, except as discussed
in the final section of the appendix.

549

time is not listed for function B8; data for function B8 will be discussed in the section on search

strategies at the end of this appendix.

Function Num Num Ewsen Rul Red Search ITotal Total
Identifier IFs Terms PIs PIS PIS I PIs Time

B1 3 - - 3 0.74
B2 4 - - 4 0.74
B3 - 10 - - 10 0.79
B4 1 2 19 - 1 20 1.12
B6 7 11 26 3 3 32 2.32
B6 36 63 33 21 13 67 11.51
B7 54 97 72 18 26 116 39.31
B8 163 551 112 25 116 253 •

Table C.2. Data Set B - Algorithm 6.2

Since the number of terms in Base #3 is comparable to the number of CEPIs in the IDF

(See Table 6.1), we speculate that an implementation of Algorithm 6.3 should be faster than the

implementation of Algorithm 6.2.

Data Set C Results

The results of applying Algorithm 6.1 to functions in Data Set C are given in Table C.3.

Additionally, Table C.4 lists the result of applying Algorithm 6.2 to each of the functions. For

this data set, Algorithm 6.2 generally produces results faster than Algorithm 6.1. The reason for

this is that the average number of terms per inclusion formula is large for this data set; hence, a

significant amount of time is spert deriving inclusion formulas for each term of the base. The time

that it takes to form an IDF in Algorithm 6.2 is more than offset by the reduction in the number

of inclusion formulas which must be formed.

550

Function Num Nm IEssen IRul Red 'Scrch Total ITotal
Identifier IF Terms PIS PIS PIS I PIS I Time

C1 - - 10 - - 10 1.20
C2 3 3 19 1 - 20 2.49
C3 - - 29 - - 29 6.34
C4 7 7 37 2 - 39 10.89
CS 93 1572 42 7 - 49 113.32
Ce 235 12471 37 21 - 58 4799.31
C7 174 3591 44 17 - 61 319.13

Table C.3. Data Set C - Algorithm 6.1

Function Num Num Essen Rul Red Search Total Total
Identifier IFs Terms PIs PIS PIS PIS Time

C1 - - 10 - - 10 1.19
C2 1 2 19 - 1 20 2.58
C3 - 29 - - 29 6.31
C4 2 4 37 - 2 39 10.75
CS 7 419 42 - 7 49 95.63
C6 22 875 37 3 18 58 1428.54
C7 20 148 44 3 14 61 131.38

Table C.4. Data Set C - Algorithm 6.2

Data Set D Results

Data Set D is characterized by functions which have few conditionally-eliminable prime im-

plicants. Hence, minimal formulas which represent functions in this data set consist primarily of

essential prime implicants. Table C.5 contains the results of applying Algorithm 6.1 to functions

in Data Set D. Virtually all time spent developing a minimal formula is spent partitioning the

prime implicants; in particular, most processing time is devoted to identifying the essential prime

implicants. The result of applying Algorithm 6.2 differ little from the data in Tabie C.5 with the

exception that fewer inclusion formulas must be developed for functions D9 and Dl.

551

Function Num Num Essen Rul Red Search Total Total
Identifier IFs Terms PIs PIs PIS PIs Time

D1 - 10 - - 10 1.24
D2 - 20 - - 20 2.52
D3 - 30 - - 30 6.18
D4 - 40 - - 40 9.34
DS - - 50 - - 50 17.64
D6 - - 60 - - 60 26.14
D7 - - 70 - - 70 35.62
D8 - - 80 - - 80 64.31
D9 22 102 84 2 - 86 230.64

DIO - - 100 - - 100 139.62
Dl 12 60 107 1 - 108 225.19
D12 - - 119 - - 119 231.50

Table C.5. Data Set D - Algorithm 6.1

Data Set IC Results

Data Set IC is a set of intervals in which each is defined by a lower-bound function g(X) and an

upper-bound function h(X), i.e., don't-care conditions exist. Table C.6 lists the results of applying

Algorithm 6.1 to each interval. All prime implicants contained in a minimal formula F representing

a function f(X) belonging to the interval [g(X), h(X)] are either essential or are identified during

the application of reduction rules. Hence, search is not required using Algorithm 6.1 for members

of this data set.

The results of applying Algorithm 6.2 to members of Data Set IC are given in Table C.7.

Since a smaller base is used in Algorithm 6.2 than in Algorithm 6.1, fewer inclusion formulas are

generated for each interval. However, much effort is shifted to the search process. The formation

of an irredundant formula and the use of a search process causes the time required to develop a

minimal formula to be greater for Algorithm 6.2 than for Algorithm 6.1. An implementation of

Algorithm 6.3 should be an improvement over Algorithm 6.2 since the number of terms in Bases #2

and #3 is comparable and an IDF does not have to be formed in Algorithm 6.3 (See Table 6.3).

The total time for developing a minimal formula for intervals IC12, IC14, and ICis is discussed

552

Function Numr Num Essen Rul Red Search Total Total
Identifier IFs Termai PIs PIs PIS PIs Time

ICl - 3 - - 3 0.77
IC2 o 10 1 2 - 3 0.71
IC3 4 11 2 1 - 3 0.71
IC4 3 6 7 1 - 8 0.80
ICs 15 45 4 4 - 8 1.54
Ice 13 31 10 4 - 14 1.49
IC7 5 10 18 2 - 20 1.55
ice 10 20 24 3 - 27 2.63
IC9 69 241 8 21 - 29 10.37

IClO 27 57 24 10 - 34 4.75
Iil 57 163 31 18 - 49 12.24
IC12 147 752 14 43 - 57 90.96
IC13 92 264 45 32 - 77 29.78
IC14 197 762 38 61 99 129.51
IC18 324 2573 23 89 - 112 1215.19

Table C.6. Data Set IC - Algorithm 6.1

in the next section; the times given is Tables C.6 and C.7 are for the A* search strategy using

heuristic function hi(n).

Search Results

In this section, the result of applying the search strategies described in Chapter 9 to a number

of examples is discussed. The examples dealt with in this section are ones for which the search

process is non-trivial, i.e., considerable effort is required during the search process. In each case,

we discuss the search process required after the application of reduction rules in Algorithm 6.2.

Examples discussed in this section are B8, C6, IC12, IC14, and ICIS.

For each example, we present data developed applying the search strategies discussed in

Chapter 9 in a number of configurations. For every search strategy, Topology #1 with an explicit

node representation was used. Six different search strategy configurations were applied to each

example:

553

Function 1 Num Num Essen Rul Red Search Total Total
Identifier IFs Terms PIS PIs PIS PIs Time

I1 - - 3 - - 3 0.74
IC2 2 4 1 1 1 3 0.81
IC3 1 3 2 - 1 3 0.80
IC4 1 2 7 1 8 1.03
ICs 4 14 4 - 4 8 1.45
ICe 5 12 10 3 1 14 1.50
IC7 3 6 18 2 - 20 1.64

IC8 3 7 24 2 1 27 2.51
IC9 24 77 8 9 12 29 19.47
ICIO 10 22 24 7 3 34 5.77
ICil 22 58 31 12 6 49 22.50
IC12 47 251 14 13 30 57 743.69
IC13 34 103 45 14 18 77 85.39
IC14 70 272 38 25 36 99 867.16
ICIS 105 928 23 22 67 112 •

Table C.7. Data Set IC - Algorithm 6.2

1. A* search using hi(n);

2. A* sea "ch using h2 (n);

3. dynamic-weighting using h1 (n), e = 0.1, and N = 0.333. number of PIs in IFs;

4. dynamic-weighting using h2 (n), e = 0.1, and N = 0.333. number of PIs in IFs;

5. beam search using h2(n) and a width w = 4; and

6. static-weighting using h2 (n) and a weight W = 2.

Each search strategy is measured based on the following criteria:

1. number of nodes generated;

2. number of nodes expanded;

3. number of nodes found to be over the upper bound (if applicable);

4. coot of the solution found; and

5. time of the search.

Example C6. Search data for function C6 is given in Table C.8. The first and second

columns of the table are the number of nod-s generated and expanded, respectively. The number

of nodes generated which are greater than or equal to a previously-determined upper bound is

554

given in the third column; an upper bound calculation is not developed for either the dynamic or

static-weighting methods. The cost of the resulting solution is in the fourth column. The fifth

column lists the amount of time spent in Algorithm 6.2 up to the point prior to the search process.

The time spent in the search process is given in the sixth column, followed by the total time in the

last column.

The minimal coot of a formula for C6 is 58. Each search strategy used produces a least-cost

result. The use of the heuristic function h2(n) rather than hi(n) yields a significant improvement

in the efficiency of the algorithm. For this example, the A* search using function h2(n) produces a

result quicker than any other method, while the A* search using the admissible heuristic function

hi(n) requires the most processing time.

Nodes Nodes Number Cost of Prior Search Total
Gen Expand I> UB Result Time Time Time

A* - hi(n) 28 14 15 58 1130.91 284.87 1415.78
A* - h2(n) 4 2 3 58 1130.91 169.97 1300.88
DW - hi(n) 72 36 - 58 1130.91 244.35 1375.26
DW - h2 (n) 36 18 - 58 1130.91 183.84 1314.75

Beam - w = 4 - h2 2 1 2 58 1130.91 184.54 1315.45
SW - W 2 - h 2 36 18 - 58 1130.91 184.65 1315.56

Table C.8. C6 (Search Data)

Example IC12. Search data for interval IC12 is given in Table C.9. The least-cost formula

for IC12 consists of 57 terms. As is the case with C6, the use of function h2 (n) rather than

h1 (n) yields a significant improvement in the efficiency of the algorithm. Other than the static-

weighting method which yieids a formula of 58 terms, each search strategy produces a least-cost

result. However, the static-weighting method produces a result faster than other methods. Hence,

there is a trade-off in this example between the quickness with which we attain a result versus the

minimality of the result.

555

Noes Nodes Number I Coat of Prior Search Total
Gen Expand > UB I Result Time Time Time

A*- hi(n) 480 240 0 57 250.79 492.90 743.69
A*- h2(n) 54 27 8 57 250.79 54.20 304.99
DW - hi(n) 276 138 - 57 250.79 208.02 458.81
DW - h 2(n) 68 34 - 57 250.79 47.62 298.41

Beam- w= -4 - h2 154 77 35 57 250.79 83.58 334.37
SW - W = 2-h 2 1 54 27 - 58 250.79 28.29 279.08

Table C.9. IC12 (Search Data)

Example IC14. Table C.10 lists search data for interval IC14. All of the search strategies

with the exception of static-weighting produce a minimal formula consisting of 99 terms. Static-

weighting yields a formula containing 100 terms; however, the static-weighting method also produces

a result faster than other search strategies. Additionally, as in previous examples, the heuristic

function h2 (n) when used with A* and dynamic-weighting significantly increases the efficiency of

the search without a degradation in the quality of the solution. Beam search requires more effort

than several other strategies due to the fact that we are requiring that four nodes be expanded at

each level of the search tree; in other strategies fewer nodes are expanded at each level. However,

for functions which are highly complex, beam search may be used to develop a solution that is

unattainable using other methods.

Most of the time spent in the production of a minimal formula is spent developing an irre-

dundant disjunctive form when forming a base in Algorithm 6.2. The use of Algorithm 6.3 should

significantly decrease the computational time required to develop a solution.

Function IC15. Search data for interval IC15 is given in Table C.11. For this example, a

solution could only be developed in the search process using the beam search, static weighting, and

dynamic weighting search strategies. Using either heuristic function, the A* search did not yield a

sclution After over 90 minutes of runtime and was not progressing towards a solution. Additionally,

a result was not developed in 90 minutes of runtime using e = 0.1 for the dynamic weighting

556

Nodes Nodes Number Coat of Prior ISearch Total
Gen Expand > UB Result Time Time Time

A* - hi(n) 279 146 28 99 735.18 131.98 867.16
A*- h3(n) 39 20 16 99 735.18 20.97 756.15

DW - hi(n) 311 162 - 99 735.18 146.96 882.14
DW - h2 (n) 61 31 - 99 735.18 18.32 753.50

Beam - w = 4 - h3 55 28 26 99 735.18 30.44 765.62
SW - W = 2 - h2 50 25 - 100 735.18 10.99 746.17

Table C.10. IC14 (Search Data)

strategy (the setting used for other examples). However, after increasing c to 0.5, a solution was

attainable. Increasing e to 1 significantly increased the speed of the search process, without an

increase in the cost of the solution. As in other examples, a solution was developed faster using

static weighting than when using other strategies.

For each of the search strategies, the best solution attainable is a formula with 114 terms.

A minimal-cost formula, developed using Algorithm 6.1, is 112 terms. Thus, although a minimal

formula was not attained using Algorithm 6.2, one reasonably close to a least-cost result was

developed. An irredundant formula for ICIS developed using Procedure 2.33 outlined in Chapter 2

consists of 123 terms (see B.10); hence, the result developed using Algorithm 6.2 and a search

strategy such static weigiting is better than one attained using a more simplistic approach.

Nodes Nodes Number Cost of Prior Search Total
Gen Expand >U B Result Time Time Time

DW - h2 (n) - e = 0.5 199 100 - 114 3499.73 1144.54 4644.27
DW - h3(n) - e = 1 122 61 - 114 3499.73 412.2 3911.93
Beam- = 4 - h 2 225 113 19 114 3499.73 1678.63 5178.36
SW- W = 2 - h2 112 56 - 115 3499.73 390.55 3890.28

Table C.11. IC15 (Search Data)

Example B8. Search data for function B8 is given in Table C.12. Similar to IC16, a result

could not be developed in a reasonable amount of time for B8 using A* search. However, we also

were unable to produce a result using dynamic weighting for B8. Using beam search a result

557

consisting of 257 terms was developed, compared to a least-cost formula of 253 terms constructed

using Algorithm 6.1. An IDF developed using Procedure 2.31 in Chapter 2 consists of 274 terms

(see B.2). Thus, we were able to develop a cheaper formula than attainable using a simpler method.

We conjecture that examples ICIS and B8 will be more easily handled once the graph-based

decomposition strategy outlined at the end of Chapter 9 is implemented.

Nodes Nodes Number Cost of Prior Search Total
Gen Expand > UB Result Time Time Time

Beam - o = 4 - h2 344 172 26 257 387.05 3979.56 4366.61

Table C.12. B8 (Search Data)

558

Appendix D. Procedures

In this appendix, the procedure format used throughout this dissertation is introduced. Pro-

cedures and algorithms are generally listed at the point in the text at which the theory for the

method is described. However, for the sake of brevity, this appendix contains the procedures

for which the theoretical basis is described in Chapters 2 and 8, which are primarily background

chapters.

We make a distinction between what are called "procedures" and "algorithms" in this disser-

tation. Procedures are simple techniques that are used as the "building blocks" for larger methods.

We designate as algorithms the methods used to produce minimal formulas. In this distinction,

procedures compose algorithms. Procedures and algorithms are written in a manner that should

facilitate easy computer implementation.

Procedure Format

Each procedure or algorithm is given in a step-by-step format. We have attempted to form

each procedure so that a specific action is taken in a step. However, substeps are sometimes

contained in a step. We denote such a condition by the form:

Step X.

1. first substep;

2. second substep; and

3. third substep.

559

Steps for which only one of several actions is to be performed--similar to a case statement-are

denoted by the form:

Step Y.

* action one;

• action two; or

* action three.

Additionally, Step 0 in procedures is reserved for initialization steps such as setting an

accumulator to some initial value.

Chapter 2 - Fundamentals of Boolean Reasoning

Procedure 2.1 (Boolean Addition): Given two Boolean SOP formulas F and G which represent
Boolean functions f and g, f + g is computed in the following manner:

Step 1. If F consists of no terms, return G. Otherwise, continue.

Step 2. If the first term in F is absorbed by any term in G, remove the term from F and repeat
Step 2. Otherwise, continue.

Step 3. Remove from G any terms absorbed by the first term in F. Remove the first term from
F, append it to G, and return to Step 1.

Procedure 2.2 (Cross-Product): Given two Boolean SOP formulas F and G which represent
Boolean functions f and g, f x g is computed in the following manner:

Step 0. Initialise an accumulator ACC to empty.

Step 1. If F consists of no terms, return ACC. Otherwise, continue.

Step 2. Multiply the first term in F successively by each term in G. The term-bi-term multipli-
cation is performed in the following manner:

" If the term in F and the term in G have any opposed literalp, the result is 0 by the
complements axiom (2.9).

" If the term in F and the term in G have duplicate lite, als, the terms are appended
together and the duplicates are removed.

" Otherwise, the terms simply are appended together.

Resulting terms which are not 0 are added to ACC.

Step 3. Remove the first term from F, and return to Step 1.

560

Procedure 2.3 (Unate Cross-Product): Given two Boolean SOP formulas F and G which
represent relatively unate Boolean functions f and g, f x g is computed in the following manner:

Step 0. Initialize an accumulator ACC to empty.

Step 1. If F consists of no terms, return ABS(ACC). ABS(ACC) is the minimum-term formula
representing f x g. Otherwise, continue.

Step 2. Multiply the first term in F successively by each term in G. The term-by-term multipli-
cation is performed in the following manner:

* If the term in F and a term in G have duplicate literals, the terms are appended together
and the duplicates are removed.

* Otherwise, the terms simply are appended together.

All resulting terms are added to ACC.

Step 3. Remove the first term from F, and return to Step 1.

Procedure 2.4 (Boolean Division): Given an SOP formula F representing a function f and a
term t, f// is computed as follows:

Step 0.

* If t = 1, return F. (f/I is defined as the functionf.)

" Otherwise, continue to Step 1.

Step 1.

* If t consists of no literals, return F.

" Otherwise, continue to Step 2.

Step 2. Divide each term in F by the first literal of t. This is performed in the following manner:

" If the literal exists in a term in F, form a new term by removing the literal from the
term. Replace the previous term in F by the new term.

" If the literal is opposed in a term in F, delete that term in F.

* If the literal does not exist in a term in F, keep the term and do nothing.

Step 3. Remove the first literal from t, and return to Step 1.

Procedure 2.5 (Splitting-Variable Heuristic): Given an n-variable SOP formula F:

Step 1. For each variable zi which exists in F, determine:

1. nt: the number of terms of F in which the literal z appears; and

2. n*: the number of terms of F in which the literal zi appears.

Step 2. For each i, calculate
a . min(, W,) + "(4+ v'). (D.1)

561

Step 3.

" If maxi min(nt, nW) > 0, then at least one variable is binate. If so, then return the
associated zi for which (D.1) is maximal. mi is the splitting variable. a and 0 are
constants which are usually set equal to I and 2, respectively.

" If maxi min(nt, n) = 0, then all variables in F are unate. Hence, apply the unate
version of the operation on the given function(s).

Procedure 2.6 (Merge Operation): Given two SOP formulas H0 and H, representing functions

ho and hl, the merge operation to construct formulas to represent functions Q0, h1 , and h2 is
performed as follows:

Step 0. Initialise accumulators Ho-Acc and H 2 to empty.

Step 1. If Ho consists of no terms:

1. Return HO-Acc as the formula representing o;

2. Return H, as the formula representing hj; and

3. Return H2 as the formula representing h2.

Otherwise, continue to Step 2.

Step 2. Initialise an accumulator HI-ACC to empty.

Step 3. If H, is empty, place all of the terms of HI-ACC in H1 . Remove the first term in H0 and
place it in HO-ACC. Return to Step 1.

Step 4. Compare the first term in Ho to the first term in H1 .

" If the term in Ho is both the subset and superset of the term in H1 , i.e., 8i = t3 , then
delete the terms from both H0 and H1 . Place the term in Ho in H2 . Append the
remaining terms of H, to HI-AcC and call it H1 . Return to Step 1.

" If the term in Ho is the superset of the term in H1 , i.e., ai < ti , then delete the term
from H0 and place the term in H2 . Append H, to HI-Acc and call it H1 . Return to
Step 1.

* If the term in Ho is the subset of the term in H1 , i.e., tj < si, then delete the term from
H, and place the term in H2 . Return to Step 3.

* If the term in Ho is neither the subset nor the superset of the term in H1 , then remove
the first term from H, and place it in HI-Acc. Return to Step 3.

Procedure 2.7 (Complementation): Given an SOP formula F which represents a Boolean
function f, f is computed as follows:

Step 0.

" If F 0, then return a value of 1.

" If F 1, then return a value of 0.

* Otherwise, continue to Step 1.

562

Step 1. Determine a good splitting variable a using Procedure 2.5.

" If a binate z does not exist, then apply the unate complementation algorithm given by
Procedure 2.8.

* Otherwise, continue to Step 2.

Step 2. Apply Boole's Expansion Theorem using the splitting variable found in Step 1. Determine
the complements of leaf functions f/z' and f/z.

Step 3. Using the formulas which represent (f/a')' and (f/z)', apply the merge operation given
by Procedure 2.6. Three formulas are returned by the merge operation. One consists of the
remaining terms of the formula representing (f/z')', the second consists of the remaining
terms of the formula representing (f/a)', and the third consists of the terms taken from the
original two formulas.

Step 4.

1. Prefix the remaining terms of the formula representing (f/z')' with the literal z'.

2. Prefix the remaining terms of the formula representing (f/a)' with the literal z.

Step 5. Append the two formulas created in Step 4 to the third formula returned by the merge
operation (the terms taken from (f/z')' and (f/z)'). The resulting formula represents the
function f'.

Procedure 2.8 (Unate Complementation): Given an SOP formula F which represents a unate
Boolean function f, f' is found as follows:

Step 0.

" If F 0, then return a value of 1.

" If F 1, then return a value of 0.

" If F consists of a single term, calculate the complement of f using DeMorgan's Law
(2.29) and return it.

" Otherwise, continue to Step 1.

Step 1. Find the term with the fewest number of literals in the formula F. Of the literals in this
term, determine the literal z which appears most frequently in F.

Step 2. Partition the terms of F into terms which include the literal z and those which do not
include z.

Step 3. The terms of F which do not include z represent the function f/z'. Since f/z' is a unate
function, determine the complement of f/z' using the unate complementation algorithm.

Step 4. Divide the terms of F which include z by the literal z. Append the result to the terms
which do not include z. The resulting formula represents the function f/z. Since f/a is a
unate function, determine the complement of /z using the unate complementation algorithm.

Step 5. Prefix every term of the formula representing (f/z')' found in Step 3 with the complement
of literal z. Append the resulting formula to the formula representing (f/z)' found in Step 4.
The resulting formula represents the function f'.

563

Procedure 2.9 (Product): Given SOP formulas F and G which represent Boolean functions f
and g, f g is computed as follows:

Step 0.

* If F 0 or G - 0 then return a value of 0.

• If F 1, then return ABS(G).

* If G = 1, then return ABS(F).

" Otherwise, continue to Step 1.

Step 1. Given formulas F and G, determine a good splitting variable z using Procedure 2.5.

" If a binate z does not exist, then multiply f and g with the unate cross-product algorithm
given by Procedure 2.3.

" Otherwise, continue to Step 2.

Step 2. Apply Boole's Expansion Theorem using the splitting variable found in Step 1. Recursively
apply the product operation to form (f/z' . g/z') and (f/z. g/n).

Step 3. Using the formulas which represent (f/n'.g/z') and (f/z.g/z), apply the merge operation
given by Procedure 2.6. Three formulas are returned by the merge operation. One consists
of the remaining terms of the formula representing (f/n' • g/z'), the second consists of the
remaining terms of the formula representing (/z • g/n), and the third consists of the terms
taken from the original two formulas.

Step 4.

1. Prefix the remaining terms of the formula representing (f/z' -g/n') with the literal z'.

2. Prefix the remaining terms of the formula representing (f/z • g/z) with the literal z.

Step 5. Append the two formulas created in Step 4 to the third formula returned by the merge
operation (the terms taken from (f/z'.g/z') and (f/z.g/z)). The resulting formula represents
the function f , g.

Procedure 2.10 (Subtraction): Given SOP formulas F and G which represent Boolean functions
f and g, f - g is computed as follows:

Step 0.

& If F 0 or G M 1, return a value of 0.

* If G 0, return ABS(F).

* If F 1, return g'. Use Procedure 2.7 to determine g'.

a Otherwise, continue to Step 1.

564

Step 1. Given formulas F and G, determine a good splitting variable z using Procedure 2.5. If a
binate z exists, continue to Step 2. Otherwise:

1. Form g' using the unate complementation algorithm of Procedure 2.8.

2. Multiply f by g' with the cross-product algorithm given by Procedure 2.2.

3. Form ABS(F - G); it is the formula which represents f - g.

Step 2. Apply Boole's Expansion Theorem using the splitting variable found in Step 1. Recursively
apply subtraction to form (//z' - g/z') and (f/z - g/z).

Step 3. Using the formulas which represent (f/z' - giz') and (f/z - g/z), apply the merge
operation given by Procedure 2.6. Three formulas are returned by the merge operation. One
consists of the remaining terms of the formula representing (//z' - giz'), the second consists
of the remaining terms of the formula representing (f/z - g/z), and the third consists of the
terms taken from the original two formulas.

Step 4.

1. Prefix the remaining terms of the formula representing (f/z' - giz') with the literal z'.

2. Prefix the remaining terms of the formula representing (f/z - g/n) with the literal z.

Step 5. Append the two formulas created in Step 4 to the third formula returned by the merge
operation (the terms taken from (f/z' - giz') and (f/z - g/z)). The resulting formula
represents the function f - g.

Procedure 2.11 (Exclusive-OR)t Given SOP formulas F and G which represent Boolean func-
tions f and g, f D g is found as follows:

Step 0.

" If F= 0, return g.

" If G 0, return f.

" If F 1, then use Procedure 2.7 to determine g'. Return g'.

" If G 1, then use Procedure 2.7 to determine f. Return f.
" Otherwise, continue to Step 1.

Step 1. Given the formulas F and G, determine which formula has the fewest number of terms.
Arbitrarily pick a variable which appears in the smallest formula. This is the splitting variable
Z.

Step 2. Apply Boole's Expansion Theorem using the splitting variable found in Step 1. Recursively
apply XOR operations to form (f /nl z g/n') and (f/z E g/z).

Step 3.

1. Prefix the terms of the formula representing (f/z' ED gl ') with the literal z'.

2. Prefix the terms of the formula representing (fz a) g/z) with the literal z.

Step 4. Append the two formulas created in Step 3. The resulting formula represents the function

565

Procedure 2.12 (Exclusive-OR): Given Boolean formulas F and G which represent Boolean
functions f and g, f E) g is found as follows:

Step 0.

" If F 0, then return g.

" If G 0, then return f.

" If F 1, then use Procedure 2.7 to determine g'. Return g'.

" If G = 1, then use Procedure 2.7 to determine f. Return f'.

" Otherwise, continue to Step 1.

Step 1. Given formulas F and G, determine a good splitting variable z using Procedure 2.5. If a
binate z exists, continue to Step 2. Otherwise:

1. Form f and g' using the unate complementation algorithm of Procedure 2.8.

2. Using the cross-product algorithm given by Procedure 2.2, multiply f by g' and f by g.

3. Make the formula which represents f • g' absorptive. Likewise, form the equivalent
absorptive formula for the formula representing f. g. Form a new formula by appending
the resulting absorptive formulas; it represents f D g.

Step 2. Apply Boole's Expansion Theorem using the splitting variable found in Step 1. Recursively
apply the XOR operation to form (f/n 'E g/ z ') and (f/z E) g/z).

Step 3. Using the formulas which represent (f/z' E@ g/z') and (f/z (D g/z), apply the merge
operation given by Procedure 2.6. Three formulas are returned by the merge operation. One
consists of the remaining terms of the formula representing (f/z 0 g/z'), the second consists
of the remaining terms of the formula representing (f/z E g/z), and the third consists of the
terms taken from the original two formulas.

Step 4.

1. Prefix the remaining terms of the formula representing (f/nz 0 g/z') with the literal z'.

2. Prefix the remaining terms of the formula representing (f/z E g/z) with the literal z.

Step 5. Append the two formulas created in Step 4 to the third formula returned by the merge
operation (the terms taken from (f/I' D gln') and (f// E g/)). The resulting forn.ula
represents the function f (D g.

Procedure 2.13 (Exclusive-NOR): Given SOP formulas F and G which represent Boolean
functions f and g, f E g is computed as follows:

Step 0.

e If F =0, then use Procedure 2.7 to determine g'. Return g'.

* If G 0, then use Procedure 2.7 to determine f. Return f.
" If F _ 1, then return g.

* If G E 1, then return f.

" Otherwise, continue to Step 1.

566

Step 1. Given the formulas F and G, determine which formula has the fewest number of terms.
Arbitrarily pick a variable which appears in the smallest formula. This is the splitting variable
Z.

Step 2. Apply Boole's Expansion Theorem using the splitting variable found in Step 1. Recursively
apply XNOR operations to form (f/z' 0 g/z') and (f/z ® g/n).

Step 3.

1. Prefix the terms of the formula representing (f/l' D g/u') with the literal o'.

2. Prefix the terms of the formula representing (f/z o g/z) with the literal z.

Step 4. Append the two formulas created in Step 3. The resulting formula represents the function
f0g.

Procedure 2.14 (Exclusive-NOR): Given Boolean formulas F and G which represent Boolean
functions f and g, f G g is found as follows:

Step 0.

" If F =0, then use Procedure 2.7 to determine g'. Return g'.

" If G = 0, then use Procedure 2.7 to determine f'. Return f.

" If F 1, then return g.

* If G= 1, then retu-n f.

" Otherwise, continue to Step 1.

Step 1. Given formulas F and G, determine a good splitting variable z using Procedure 2.5. If a

binate z exists, continue to Step 2. Otherwise:

1. Form f and g' using the unate complementation algorithm of Procedure 2.8.

2. Using the unate cross-product algorithm given by Procedure 2.3, multiply f' by g' and
f by g.

3. Append the formulas together which represent f . g' and f • g. It represents f G g.

Step 2. Apply Boole's Expansion Theorem using the splitting variable found in Step 1. Recursively
apply the XNOR operation to form (flz' D g/z') and (f/z G giz).

Step 3. Using the formulas which represent (f/z' G giz') and (f/z G g/z), apply the merge
operation given by Procedure 2.6. Three formulas are returned by the merge operation. One
consists of the remaining terms of the formula representing (f/z' ® gin'), the second consists
of the remaining terms of the formula representing (f/z 0 giz), and the third consists of the
terms taken from the original two formulas.

Step 4.

1. Prefix the remaining terms of the formula representing (fzi' G giz') with the literal z'.

2. Prefix the remaining terms of the formula representing (fin 0 giz) with the literal z.

Step 5. Append the two formulas created in Step 4 to the third formula returned by the merge
operation (the terms taken from (fz' 0 giz') and (fiz 0 giz)). The resulting formula
represents the function f E g.

567

Procedure 2.15 (Simplification): Given an SOP formula F which represents a Boolean function
f, an equivalent formula to represent f is formed as follows:

Step 0.

" If F E 0, then return a value of 0.

" If F E 1, then return a value of 1.

" Otherwise, continue to Step 1.

Step 1. Given formula F, determine a good splitting variable x using Procedure 2.5.

" If a binate z does not exist, form ABS(F). It is the simplified formula for f.
* Otherwise, continue to Step 2.

Step 2. Apply Boole's Expansion Theorem using the splitting variable found in Step 1. Simplify
the leaf functions f/z' and f /.

Step 3. Using the formulas which represent f/n' and f/z, apply the merge operation given by
Procedure 2.6. Three formulas are returned by the merge operation. One consists of the
remaining terms of the formula representing f/z', the second consists of the remaining terms
of the formula representing f/n, and the third consists of the terms taken from the original
two formulas.

Step 4.

1. Prefix the remaining terms of the formula representing f/z' with the literal x'.

2. Prefix the remaining terms of the formula representing f/x with the literal :.

Step 5. Append the two formulas created in Step 4 to the third formula returned by the merge
operation (the terms taken from f/z' and f/n). The result is a simplified formula for the
function f.

Procedure 2.16 (Simplification): Given a Boolean formula F which represents a Boolean func-
tion f, an equivalent formula to represent f is formed as follows:

Step 0. Initialize an accumulator ACC by removing the first term from F and placing it in ACC.

Step 1.

" If F is empty, form ABS(ACC). It is a simplified formula which represents f.
* If the first term in F is absorbed by any term in ACC, then remove the term from F

and repeat Step 1.

" Otherwise, continue to Step 2.

Step 2. Remove the first term F and call it T. Initialize an accumulator ACC by assigning it the

contents of ACC. Initialize a second accumulator ACCc ,,5 , to empty. Continue to Step 3.

Step 3.

• If AC is empty, no consensus terms (if any) formed by comparing T to the terms orig-
inally in A-CC absorb T. Therefore, add T to ACC. Append the contents of ACCcon,.,e,
to F and return to Step 2.

568

* Otherwise, continue to Step 4.

Step 4. Using the first term in ACC and T, form a consensus term if one can be formed and the
consensus term absorbs at least one of the parent terms. Depending on the result, take one
of the following actions:

" If no consensus term was formed, remove the first term from ACC and return to Step 3.

* If the consensus term is identically equal to 1, then the original function f is also identi-
cally equal to 1. Return a formula which represents a function which is identically equal
to 1 as the result of the procedure.

" If the consensus term absorbs the term T, add the consensus term to ACCconsen. Ap-
pend the contents of ACCCo,.. to F and return to Step 2.

" Otherwise, a consensus term was formed and it absorbs only the first term in ACC. In
this case add the consensus term to ACCon..f Remove the first term from ACC and
return to Step 3.

Procedure 2.17 (Relative Simplification): Given a formula F which represents a Boolean
function f and a formula G which represents a Boolean function g, formula G is simplified relative
to F forming a new function 4 as follows:

Step 1.

" If F is empty, return the current formula G. It is the formula G which represents the
new function 4.

" Otherwise, remove the first term from F and call it T. Initialize an accumulator ACC
to empty and continue to Step 2.

Step 2.

* If G is empty, assign it the contents of ACC. Return to Step 1.

" Otherwise, continue to Step 3.

Step 3. Using the first term in G and T, form a consensus term if one can be formed and the
consensus term absorbs at least one of the parent terms. Depending on the result, take one
of the following actions:

" If the consensus term is identically equal to 1, then the new function § also is identically
equal to 1. Return a formula which represents a function which is identically equal to 1
as the result of the procedure.

" If no consensus term was formed, remove the first term from G and place it in ACC.
Return to Step 2.

* If the consensus term absorbs the first term in G, add the consensus term to ACC.
Remove the first term from G and return to Step 2.

" Otherwise, remove the first term from G and place it in ACC. Return to Step 2.

569

Procedure 2.18 (Blake canonical form - Successive Extraction): Given an SOP formula F
which represents a Boolean function f, we generate the Blake canonical form for f as follows:

Step 0. By examining the formula F, form the set OPP of opposed variables for the function f.

Step 1.

* If OPP is empty, then f is unate. Return ABS(F) as the Blake canonical form of/.

" Otherwise, continue to Step 2.

Step 2.

" If OPP is empty, return F. It is the Blake canonical form of/.

" Otherwise, continue to Step 3.

Step 3. Remove the first variable from the set OPP of opposed variables. Call this variable z.

1. Form a formula G which consists of all of the terms of F in which z is positive. Divide
G by z using Procedure 2.4.

2. Form a formula H which consists of all of the terms of F in which M is negative. Divide
H by z' using Procedure 2.4.

3. Using the cross-product operation (Procedure 2.2), multiply G/a by H/a'. The resulting
terms are all of the consensus terms that can be formed in which the variable z is opposed.
Call the resulting formula F.

Step 4. Add F to F. Form ABS(F + F) and replace the contents of F with ABS(F + F). Return
to Step 2.

Procedure 2.19 (Modified Splitting-Variable Heuristic): Given an n-variable SOP formula
F:

Step 1. For each variable z which exists in F, determine:

1. t4: the number of terms of F in which the literal za appears; and

2. n: the number of terms of F in which the literal zi appears.

Step 2. For each i, calculate
n4* W. (D.2)

Step 3.

" If maxi(n *n') > 0, then at least one variable is binate. If so, then return the associated
z for which (D.2) is maximal. z is the modified splitting variable.

* If maxi(nt * nj) = 0, then all variables in F are unate. Hence, apply the unate version
of the operation on the given function(s).

570

Procedure 2.20 (Blake canonical form - Recursive Multiplication): Given an SOP formula
F which represents a Boolean function f, we generate the equivalent formula which is the Blake
canonical form for f as follows:

Step 0.

* If F 0, then return a formula which represents 0.

• If F 1, then return a formula which represents 1.

* Otherwise, continue to Step 1.

Step 1. Determine a modified splitting-variable x using Procedure 2.19.

" If a modified splitting-variable a does not exist, then f is a unate function represented
by a formula which only consists of unate variables. Form ABS(F) and return it; it is
the Blake canonical form of f.

" Otherwise, continue to Step 2.

Step 2. Form BCF(f/z) and BCF(f/z').

Step 3.

1. Form BCF(f/:) x BCF(f/') using the cross-product operation given by Procedure 2.2.
Call the result H.

2. Form ABS(H).

Step 4. Form ABSREL(BCF(f/z), ABS(H)) and ABSREL(BCF(f/z'), ABS(H)).

Step 5.

1. Prefix the terms of the formula representing ABSREL(BCF(f/z), ABS(H)) with the
literal z.

2. Prefix the terms of the formula representing ABSREL(BCF(f/z'), ABS(H)) with the
literal r'.

Step 6. Append the two formulas developed in Step 5 with ABS(H). The resulting formula is
the Blake canonical form of f.

Procedure 2.21 (Least-Binate Argument): Given a Boolean function f represented by an
SOP formula F and a set T of variables which appear in F, the least binate variable z relative to
the variables in T is calculated as follows:

Step 1. For each variable z E T determine:

1. no: the number of terms of F in which z' appears; and

2. n,: the number of terms of F in which z appears.

Step 2. For each z, calculate
7 * (no * ni) - max(no, ni) (D.3)

where -f is a large constant (> 10).

571

Step 3. Return the associated z for which (D.3) is the smallest value. It is the least binate variable
in T relative to the other variables in T.

Procedure 2.22 (Conjunctive Eliminant - ECON): Given an SOP formula F which represents
the Boolean function f and a set T of literals, the conjunctive eliminant of f with respect to T,
ECON(f, T), is constructed as follows:

Step 1.

* If T is empty, then return F. It is ECON(f, T).

* Of the variables in set T, determine the least binate variable using Procedure 2.21. Call
this variable z.

Step 2.

" If F 0, then return a formula F which represents 0. It is ECON(f, T).

" If F 1, then return a formula F which represents 1. It is ECON(f, T).

" Otherwise, continue to Step 3.

Step 3. Partition the terms of F into the following sets:

" P, the terms of F which include the literal x', with the literal divided out;

" Q, the terms of F which include the literal z, with the literal divided out; and

* R, the terms of F which include neithet m nor a'.

Using Procedure 2.9, multiply p by q. Append the result to r. The resulting formula represents
ECON(f, {}).

Step 4. Using Procedure 2.15, simplify the formula generated in Step 3. Replace the contents of
F with the simplified formula and return to Step 1.

Procedure 2.23 (Test for Tautology): Given a function f which is represented by the SOP
formula F, we test whether f is a tautology in the following manner:

Step 1.

" If F 0, then return a value of FALSE. f is not a tautology.

" If F 1, then return a value of TRUE. f is a tautology.

" Otherwise, continue to Step 2.

Step 2. Determine if any variables in F are unate.

" If so, delete all terms in F which include as a literal any variable which is unate. The
revised formula P represents a new function f; f is a tautology if and only if I is a
tautology. Return to Step 1 to determine if i is a tautology.

" Otherwise, continue to Step 3.

Step 3. Determine a good splitting variable z using Procedure 2.5. Form f/z and f/z'.

572

Step 4. Determine if f/z and f/z' are tautologies. f is a tautology if and only if both f/z and
f/z' are tautologies.

" If both f/z and f/z' are tautologies, then return a value of TRUE.

" If at least one of f/z and f/z' is not a tautology, then return a value of FALSE.

Procedure 2.24 (Test for Tautology): Given a function f which is represented by the SOP
formula F, we test whether f is a tautology in the following manner:

Step 1.

" If F =- 1, then return a value of TRUE. f is a tautology.

" Otherwise, continue to Step 2.

Step 2. Determine if F includes a term consisting of a single literal X.

" If so, then determine whether f/z' is a tautology. f is a tautology if and only if f/z' is
a tautology.

" Otherwise, continue to Step 3.

Step 3. Determine whether F has a binate variable. If F has any binate variables, arbitrarily
choose one and call it z.

" If a binate variable z exists, determine whether f/z' and f/z are tautologies. f is a
tautology if and only if both f/z and f/z' are tautologies. If both f/z and f/z' are
tautologies, then return a value of TRUE; otherwise, return a value of FALSE.

* Otherwise, continue to Step 4.

Step 4. If we reach this step, then f is not identically equal to 1. Nor does F include any opposed
variables; hence, f is a unate function. Thus, f is not a tautology. Return a value of FALSE.

Procedure 2.25 (Test for Inclusion): Given two Boolean functions g and h and SOP formulas
G and H which represent them, we determine if g < h in the following manner:

Step 1.

* IS" C c-osists of no terms, then g is included in h. Return TRUE.

* Otherwise, continue to Step 2.

Step 2. Remove the first term from G and call it t. Apply (2.171) to determine if t is included in
h.

" If t j h, then g 0 h. Return FALSE.

* Otherwise, return to Step 1.

573

Procedure 2.26 (Test for Inclusion): Given two Boolean functions g and h and SOP formulas
G and H which represent them, we determine if g < h in the following manner:

Step 1. Using the subtraction operation specified by Procedure 2.10, subtract function h from
function g.

Step 2. Test the result g - h obtained in Step 1 for equality to 0.

" If g - h =0, then g < h. Return TRUE.

" If g - h 0, then g g h. Return FALSE.

Procedure 2.27 (Test for Equivalence): Given two Boolean functions g and h and SOP
formulas G and H which represent them, we determine if g = h in the following manner:

Step 1. Using the test for inclusion given by Procedure 2.25, determine if g < h.

" If g 6 h, then g 0 h. Return FALSE.

* If g < h, then continue to Step 2.

Step 2. Use Procedure 2.25 to determine if h < g.

* If h 6 g, then g $ h. Return FALSE.

" Otherwise, h < g. It follows that g = h. Return TRUE.

Procedure 2.28 (Test for Equivalence): Given two Boolean functions g and h and SOP
formulas G and H which represent them, we determine if g = h in the following manner:

Step 1. Using the Exclusive-OR operation specified by Procedure 2.11, form g E h.

Step 2. Test the result g E h obtained in Step 1 for equivalence to 0.

" If g E h -0, then g = h. Return TRUE.

" If g E h # 0, then g i h. Return FALSE.

Procedure 2.29 (Test for Membership in Interval): Given a Boolean function f and two
Boolean functions g and h which specify an interval [g, h], we determine if g < f < h in the following
manner:

Step 1. Using Procedure 2.25, determine if g < f.

" If g f f, then f is not a member of interval [g, h]. Return FALSE.

* If g _< f, then continue to Step 2.

Step 2. Use Procedure 2.25 to determine if f < h.

" If f : h, then f is not a member of interval [g, h]. Return FALSE.

" Otherwise, g <f < h. Return TRUE.

574

Procedure 2.30 (Test for Membership in Interval): Given a Boolean function f and two
Boolean functions g and h which specify an interval [g, h], we determine if g < f < h in the following
manner:

Step 1. Using Procedure 2.26, determine if g - f = 0.

" If g - f 0, then f is not a member of interval [g, h). Return FALSE.

" If g - f = 0, then continue to Step 2.

Step 2. Use Procedure 2.26 to determine if f - h = 0.

" If f - h : 0, then f is not a member of interval [g, h]. Return FALSE.

" Otherwise, g - f = 0 and f - h - 0. Therefore, g < f < h. Return TRUE.

Procedure 2.31 (Irredundant Formula - Completely-Specified Function): Given a Boolean
function f and its corresponding Blake canonical form BCF(f), a sub-minimal formula representing
f is obtained in the following manner:

Step 0. Sort the terms of BCF(f) such that the terms with the greatest number of literals appear
before terms of fewer literals. Call the resulting formula F. Initialize an accumulator ACC
to empty.

Step 1.

" If F is empty, then ACC is a sub-minimal formula which represents f. Return ACC.

" Otherwise, continue to Step 2.

Step 2. Remove the first term from F and call it T.

Step 3. Apply (2.171) to determine if T is included the formula formed by appending the remaining
terms of F to ACC, i.e., T < F + ACC.

" If T < F + ACC, then T is a redundant term. Return to Step 1.

" Otherwise, T is a required term. Place T in ACC and return to Step 1.

Procedure 2.32 (Irredundant Formula - Completely-Specified Function - Essentials
Identified): Given a Boolean function f, its corresponding Blake canonical form BCF(f), and
the function's essential prime implicants, a sub-minimal formula is obtained to represent f in the
following manner:

Step 0. Initialise an accumulator ACC to the set of essential prime implicants of f. Sort the
remaining primes of BCF(f) such that the terms with the greatest number of literals appear
before terms of fewer literals. Call the resulting formula F.

Step 1.

* If F is empty, return ACC. ACC is a sub-minimal formula which represents f.
* Otherwise, continue to Step 2.

Step 2. Remove the first term from F and call it T.

575

Step 3. Apply (2.171) to determine if T is included the formula formed by appending the remaining
terms of F to ACC, i.e., T < F + ACC.

" If T < F + ACC, then T is a redundant term. Return to Step 1.

" Otherwise, T is a required term. Place T in ACC and return to Step 1.

Procedure 2.33 (Irredundant Formula - Interval): Given an interval [g, h) consisting of
Boolean functions g and h and the corresponding Blake canonical form BCF(h), an irredundant
formula representing an f in [g, h] is derived as follows:

Step 0. Sort the terms of BCF(h) such that the terms with the greatest number of literals appear
before terms of fewer Uterals. Call the resulting formula H. Initialize an accumulator ACC
to empty.

Step 1.

" If H is empty, return ACC. ACC is a sub-minimal formula which represents f.
" Otherwise, continue to Step 2.

Step 2. Remove the first term from H and call it T.

Step 3. Apply Procedure 2.25 to determine if g is included in the function represented by the
formula formed by appending the remaining terms of H to ACC, i.e., g < H + ACC.

e If g < H + ACC, then T is a redundant term. Return to Step 1.

* Otherwise, T is a required term. Place T in ACC and return to Step 1.

Procedure 2.34 (Irredundant Formula - Interval - Essentials Identified): Given an interval
[g, h] consisting of Boolean functions g and h, the corresponding Blake canonical form BCF(h),
and the set of essential prime implicants of h, an irredundant formula representing an f in [g, h] is
derived as follows:

Step 0. Initialise an accumulator ACC to the set of essential prime implicants of h. Sort the
remaining primes of BCF(h) such that the terms with the greatest number of literals appear
before terms of fewer literals. Call the resulting formula H.

Step 1.

* If H is empty, return ACC. ACC is a sub-minimal formula which represents f.
" Otherwise, continue to Step 2.

Step 2. Remove the first term from H and call it T.

Step 3. Apply Procedure 2.25 to determine if g is included in the function represented by the
formula formed by appending the remaining terms of H to ACC, i.e., g < H + ACC.

" If g < H + ACC, then T is a redundant term. Return to Step 1.

* Otherwise, T is a required term. Place T in ACC and return to Step 1.

576

Chapter 8 - An Introduction to Search

Procedures listed in this section are similar to those in Artificial Intelligence (Winst 84).

These procedures should be viewed as general outlines of each approach, since two considerations

are ignored which are usually handled in search processes. First, as nodes are generated, they are

not compared to existing nodes in the OPEN list to determine duplicates (a queue Q, stack S, or

list L corresponds to the OPEN list of nodes.). Hence, duplicate nodes may exist on the OPEN

list. Second, a CLOSED list is not maintained. All newly-generated nodes are treated as never

having been expanded.

Procedure 8.1 (Breadth-First Search): Given a root node, breadth-first search is performed
in the following manner:

Step 1. Form a one-element queue Q consisting of the root node.

Step 2.

" If Q is empty, then no solution exists. Announce the failure of the procedure.

" Otherwise, continue to Step 3.

Step 3. Remove the first node n from Q and determine if it is the goal node.

" If n is the goal node, a solution has been found. Return the solution.

" Otherwise, continue to Step 4.

Step 4.

1. Expand n by generating all of n's children, if any.

2. Add n's children to the back of Q.

Return to Step 2.

Procedure 8.2 (Depth-First Search): Given a root node, depth-first search is performed in the
following manner:

Step 1. Form a one-element stack S consisting of the root node.

Step 2.

" If S is empty, then no solution exists. Announce the failure of the procedure.

* Otherwise, continue to Step 3.

577

Step 3. Remove the first node n from S and determine if it is the goal node.

* If n is the goal node, a solution has been found. Return the solution.

" Otherwise, continue to Step 4.

Step 4.

1. Expand n by generating all of n's children nodes, if any.

2. Add n's children to the top of S.

Return to Step 2.

Procedure 8.3 (Branch-and-Bound Search): Given a root node, branch-and-bound search is
performed in the following manner:

Step 1. Form a one-element list L consisting of the root node.

Step 2.

* If L is empty, then no solution exists. Announce the failure of the procedure.

" Otherwise, continue to Step 3.

Step 3. Remove the first node n from L and determine if it is the goal node.

" If n is the goal node, a solution has been found. Return the solution.

" Otherwise, continue to Step 4.

Step 4.

1. Expand n by generating all of n's children nodes, if any.

2. For each of the children, determine the cost g(n).

3. Insert each of the children into L in a manner that mantalns a node ordering in L such
that nodes appear in L in ascending order of their associated cost g(n).

Return to Step 2.

Procedure 8.4 (Greedy Method): Given a root node, the greedy method is performed in the
following manner:

Step 1. Denote the root node as the current node n.

Step 2. Expand the current node n by generating all of n's children.

" If n has no children, then no solution was found. Announce the failure of the procedure.

* Otherwise, continue to Step 3.

578

Step 3.

" For each of the children, determine if any is a goal node. If so, then return the node
associated with the least-cost solution.

" Otherwise, determine the cost g(n) for each of the children. Then, discard all but the
cheapest cost node; denote it as the new current node n.

Return to Step 2.

Procedure 8.5 (Hill-Climbing): Given a root node, hill-climbing is performed in the following
manner:

Step 1. Denote the root node as the current node n.

Step 2. Expand the current node n by generating all of n's children.

" If n has no children, then no solution was found. Announce the failure of the procedure.

" Otherwise, continue to Step 3.

Step 3.

" For each of the children, determine if any is a goal node. If so, then return the node
associated with the least-cost solution.

" Otherwise, determine the estimated distance h(n) between each child and a goal node
for each of the children. Then, discard all but the node with the smallest h(n); denote
it as the new current node n.

Return to Step 2.

Procedure 8.6 (Best-First Search): Given a root node, best-first search is performed in the
following manner:

Step 1. Form a one-element list L consisting of the root node.

Step 2.

" If L is empty, then no solution exists. Announce the failure of the procedure.

" Otherwise, continue to Step 3.

Step 3. Remove the first node n from L and determine if it is the goal node.

" If n is the goal node, a solution has been found. Return the solution.

" Otherwise, continue to Step 4.

579

Step 4.

1. Expand n by generating all of n's children nodes, if any.

2. For each of the children, determine the estimated distance h(n) between the child and a
goal node.

3. Insert each of the children into L in a manner that maintains a node ordering in L such
that nodes appear in L in ascending order of their associated value h(n).

Return to Step 2.

Procedure 8.7 (Beam Search): Given a root node and a width w, beam search is performed in
the following manner:

Step 1. Form a one-element list L consisting of the root node.

Step 2.

" If L is empty, then no solution exists. Announce the failure of the procedure.

" Otherwise, continue to Step 3.

Step 3. Remove all nodes from L and expand each node by generating the children of each node.

" If any of the children are goal nodes, then return the node associated with the least-cost
solution.

* Otherwise, continue to Step 4.

Step 4.

1. Evaluate each of the children using an evaluation function f(n).

2. Sort the children in ascending order of the value f(n).

3. Discard all but the w best children.

4. Place the remaining w nodes on L.

Return to Step 2.

Procedure 8.8 (A* Search): Given a root node, A* search is performed in the following manner:

Step 1. Form a one-element list L consisting of the root node.

Step 2.

* If L is empty, then no solution exists. Announce the failure of the procedure.

" Otherwise, continue to Step 3.

Step 3. Remove the first node n from L and determine if it is the goal node.

" If n is the goal node, a solution has been found. Return the solution.

" Otherwise, continue to Step 4.

580

Step 4.

1. Expand n by generating all of n's children nodes, if any.

2. For each of the children, determine the cost g(n) of the path between the root node and
the child.

3. For each of the children, determine the estimated distance h(n) between the child and a
goal node.

4. For each of the children, form f(n) = g(n) + h(n).

5. Insert each of the children into L in a manner that maintains a node ordering in L such
that nodes appear in L in ascending order of their associated value f(n).

Return to Step 2.

Procedure 8.9 (Dynamic Weighting): Given a root node and constants C and N, the dynamic-
weighting method is implemented in the following manner:

Step 1. Form a one-element list L consisting of the root node.

Step 2.

* If L is empty, then no solution exists. Announce the failure of the procedure.

" Otherwise, continue to Step 3.

Step 3. Remove the first node n from L and determine if it is the goal node.

" If n is the goal node, a solution has been found. Return the solution.

" Otherwise, continue to Step 4.

Step 4.

1. Expand n by generating all of n's children nodes, if any.

2. For each of the children, determine the cost g(n) of the path between the root node and
the child.

3. For each of the children, determine the estimated distance h(n) between the child and a
goal node.

4. For each of the children, determine their depth d(n) in the search tree.

5. For each of the children, form f(n) = g(n) + h(n) + 4[1 - d(n)/N]h(n).

6. Insert each of the children into L in a manner that maintains a node ordering in L sLzh
that nodes appear in L in ascending order of their associated value f(n).

Return to Step 2.

581

Procedure 8.10 (Static Weighting): Given a root node and a constant w, the static-weighting
method is implemented in the following manner:

Step 1. Form a one-element list L consisting of the root node.

Step 2.

" If L is empty, then no solution exists. Announce the failure of the procedure.

" Otherwise, continue to Step 3.

Step 3. Remove the first node n from L and determine if it is the goal node.

" If n is the goal node, a solution has been found. Return the solution.

* Otherwise, continue to Step 4.

Step 4.

1. Expand n by generating all of n's children nodes, if any.

2. For each of the children, determine the cost g(n) of the path between the root node and
the child.

3. For each of the children, determine the estimated distance h(n) between the child and a
goal node.

4. For each of the children, form f(n) = g(n) + w- h(n).

5. Insert each of the children into L in a manner that maintains a node ordering in L such
that nodes appear in L in ascending order of their associated value f(n).

Return to Step 2.

582

Bibliography

[Areva 78] Arevalo, Zosimo and Jon G. Bredeson. "A Method to Simplify a Boolean Func-
tion into a Near Minimal Sum-of-Products for Programmable Logic Arrays," IEEE
T7rarsactions on Computers, C-27: 1028-1039 (November 1978).

[Barr 811 Barr, Avron and Edward A. Feigenbaum. The Handbook of Artificial Intelligence,
Volume I. Reading, Massachusetts: Addison-Wesley, 1981.

[Barte 61] Bartee, Thomas C. "Computer Design of Multiple-Output Logical Networks," IRE
Tanaction on Electronic Computers, EC-1O: 21-30 (March 1961).

[Biswa 86] Biawas, Nripendra N. "Computer-Aided Minimization Procedure for Boolean Func-
tions," IEEE Transactions on Computer-Aided Design, CAD-5: 303-304 (April
1986).

[Biewa 84] Biswas, Nripendra N. "Computer-Aided Minimization Procedure for Boolean Func-
tions," Proceedings of the Twenty-First Design Automation Conference, 699-702.
Washington, D.C.: IEEE Computer Society Press, 1984.

[Blake 37] Blake, Archie. Canonical Ezpressions in Boolean Algebra, PhD Dissertation. De-
partment of Mathematics, University of Chicago, Chicago, Illinois, 1937.

[Boole 54] Boole, George. An Investigation of the Laws of Thought. Originally published in
1854 by Macmillan, London. Reprinted by Dover Publications in 1958.

[Brayt 84] Brayton, Robert K., Gary D. Hachtel, Curtis T. McMullen, and Alberto
L. Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Synthesis.
Boston: Kluwer Academic Publishers, 1984.

[Brayt 82] Brayton, R.K., J.D. Cohen, G.D. Hachtel, B.M. Trager, and D.Y.Y. Yun. "Fast
Recursive Boolean Function Manipulation," Proceedings of the IEEE International
Symposium on Circuits and Systems, 58-62. Washington, D.C.: IEEE Computer
Society Press, 1982.

[Brown 81] Brown, Douglas W. "A State-Machine Synthesizer-SMS," Proceedings of the Eigh-
teenth Design Automation Conference, 301-305. Washington, D.C.: IEEE Computer
Society Press, 1981.

[Brown 90] Brown, Frank M. Boolean Reasoning: The Logic of Boolean Equations. Boston:
Kluwer Academic Publishers, 1990.

[Chang 65] Chang, D.M.Y. and T.H. Mott, Jr. "Computing Irredundant Normal Forms from
Abbreviated Presence Functions," IEEE Transactions on Electronic Computers,
EC-14: 335-342 (June 1965).

[Cutle 87] Culter, Robert Brian and Saburo Muroga. "Derivation of Minimal Sums for
Completely-Specified Functions," IEEE Transactions on Computers, C-36: 277-292
(March 1987).

[Cutle 80] Cutler, Robert Brian. Algebraic Derivation of Minimal Sums for Functions of a
Large Number of Variables, PhD Dissertation. Department of Computer Science,
University of Illinois, Urbana-Champaign, Illinois, 1980.

[Dagen 86] Dagenas, Michel R., Vinod K. Agarwal, and Nicholas C. Rumin. "McBOOLE: A
New Procedure for Exact Logic Minimization," IEEE Transactions on Computer-
Aided Design, CAD-5: 229-238 (January 1986).

583

[Darri 81] Darringer, John A., William H. Joyner, Jr., C. Leonard Berman, and Louise Tre-
villyan. "Logic Synthesis Through Local Transformations," IBM Journal of Research
and Development, 25: 272-280 (July 1981).

[deGeu 89] de Geus, Aart J. "Logic Synthesis Speeds ASIC Design," IEEE Spectrum, 26: 27-31
(August 1989).

[deGeu 85] de Geus, Aart J. and William Cohen. "A Rule-Based System for Optimizing Com-
binational Logic," IEEE Design and Test of Computers, 2: 22-32 (August 1985).

[Enomo 85] Enomoto, Kiyoshi, Shunichiro Nakamura, Takuji Ogihara, and Shinichi Murai.
"LORES-2: A Logic Reorganization System," IEEE Design and Test of Computers,
2: 35-41 (October 1985).

[Fiduc 82] Fiduccia, C.M. and R.M. Mattheyses. "A Linear-Time Heuristic for Improving Net-
work Partitions," Proceedings of the Nineteenth Design Automation Conference,
175-181. Washington, D.C.: IEEE Computer Society Press, 1982.

[Gaine 64] Gaines, R.S. "Implication Techniques for Boolean Functions," Proceedings of the
Fifth Annual Symposium on Switching Theory and Logical Design, Princeton, N.J.,
174-182. 1964.

[Garey 79] Garey, Michael R. and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W.H. Freeman, 1979.

[Ghasa 57] Ghasala, M.J. "Irredundant Disjunctive and Conjunctive Forms of a Boolean Func-
tion," IBM Journal of Research and Development, 1: 171-176 (April 1957).

[Givon 70] Givone, Donald D. Introduction to Switching Circuit Theory. New York: McGraw-
Hill, 1970.

[Gurun 89] Gurunath, B. and Nripendra N. Biswas. "An Algorithm for Multiple Output Min-
imixation," IEEE Transactions on Computer-Aided Design, CAD-8: 1007-1013
(September 1989).

[Gurun 87] Gurunath, B. and Nripendra N. Biswas. "An Algorithm for Multiple Output Min-
imisation," Proceedings of the IEEE International Conference on Computer-Aided
Design, 74-77. Washington, D.C.: IEEE Computer Society Press, 1987.

[Hardi 89] Harding, Bill. "Logic Synthesis Forces Rethinking of Design Methods," Computer
Design, 28: 51-57 (1 December 1989).

[Hong 74] Hong, S.J., R.G. Cain, and D.L. Ostapko. "MINI: A Heuristic Approach to Logic
Minimization," IBM Journal of Research and Development, 18: 443-458 (September
1974).

[Hong 91] Hong, Sung Je and Saburo Muroga. "Absolute Minimization of Completely Specified
Switching Functions," IEEE Transactions on Computers, C-40: 53-65 (January
1991).

[Hong 83] Hong, Sung Je. Design of Minimal Programmable Logic Arrays, PhD Dissertation.
Department of Computer Science, University of Illinois, Urbana-Champaign, Illi-
nois, 1983.

[Hunti 04] Huntington, E.V. "Sets of Independent Postulates for the Algebra of Logic." Trans-
actions of the American Mathematical Society, 5: 288-309 (1904).

[Johns 87] Johnson, E.L and M.A.Karim. Digital Design: A Pragmatic Approach. Boston:
PWS Engineering, 1987.

[Kerni 70] Kernighan, B.W. and S. Lin "An Efficient Heuristic Procedure for Partitioning
Graphs," Bell System Technical Journal, 49: 291-307 (January 1970).

584

[Klir 721 Ki, George J. Introduction to the Methodology of Switching Circuits. New York:
D.Van Nostrand, 1972.

[Knuts 90] Knutson, Eric J. Recursive Optimization of Digital Circuits, MS Thesis
AFIT/GCE/ENG/90D-03. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB, OH, December 1990.

[Lau 89] Lau, H.T. Algorithms on Graphs. Blue Ridge Summit, PA: Tab Books, 1989.

[Ledle 60] Ledley, Robert Steven. Digital Computer and Control Engineering. New York:
McGraw-Hill, 1960.

[Lipsc 76] Lipschuts, Seymour. Dicrete Mathematics. New York: McGraw-Hill, 1976.

[Malik 88] Malik, Abdul A., Robert K. Brayton, A.Richard Newton, and Alberto L.
Sangiovanni-VincentelUi. "A Modified Approach to Two-Level Logic Minimization,"
Proceedings of the IEEE International Conference on Computer-Aided Design, 106-
109. Washington, D.C.: IEEE Computer Society Press, 1988.

[Mano 79] Mano, M. Morris. Digital Logic and Computer Design. Englewood Cliffs: Prentice-
Hall, 1979.

[McClu 56] McCluskey, E.J., Jr. "Minimization of Boolean Functions," Bell System Technical
Journal, 35: 1417-1444 (November 1956).

[Mitch 83] Mitchell, O.H. "On a New Algebra of Logic," Studies in Logic, edited by C.S.Pierce.
Boston: Little, Brown, 1883.

[Mott 601 Mott, T.H. Jr., "Determination of the Irredundant Normal Forms of a Truth Func-
tion by Iterated Consensus of the Prime Implicants," IEEE 7 ansactions on Elec-
tronic Computers, EC-9: 245-252 (June 1960).

(Murog 79] Muroga, Saburo. Logic Design and Switching Theory. New York: John Wiley, 1979.

[Nagle 75] Nagle, H.Troy Jr., B.D. Carroll, and J.David Irwin. An Introduction to Computer
Logic, Englewood Cliffs: Prentice-Hall, 1975.

[Newto 86] Newton, A.R. "Techniques for Logic Synthesis," VLSI '85: VLSI Design of Digital
Systems, edited by E. Horbst. New York: Elsevier Science Publishers, 1986.

[Nguye 87] Nguyen, Loc Bao, Marek A. Perkowski, and Nahum B. Goldstein. "PALMINI-Fast
Boolean Minimizer for Personal Computers," Proceedings of the Twenty-Fourth De-
sign Automation Conference, 208-214. Washington, D.C.: IEEE Computer Society
Press, 1987.

[Paton 71] Paton, K. "An Algorithm for the Blocks and Cutnodes of a Graph," Communica-
tions of the ACM, 14: 468-475 (1971).

[Paton 69] Paton, K. "An Algorithm for Finding a Fundamental Set of Cycles in a Graph,"
Communications of the ACM, 12: 514-518 (1969).

[Pearl 84] Pearl, Judea. Heuristics: Intelligent Search Strategies for Computer Problem Solv-
ing. Reading, Massachusetts: Addison-Wesley, 1984.

[Perki 88] Perkins, Sharon R. and Tom Rhyne. "An Algorithm for Identifying and Selecting
the Prime Implicants of a Multiple-Output Boolean Function," IEEE Transactions
on Computer-Aided Design, CAD-7: 1215-1219 (November 1988).

[Petri 59] Petrick, S.R. "On the Minimization of Boolean Functions," Proceedings of the In-
ternational Conference on Information Processing, 422-423. Munich, Germany: R.
Oldenbourg, 1960.

585

[Petri 56] Petrick, S.R. A Direct Determination of the Irredundant Forms of a Boolean
Function From a Set of Prime Implicant.. AFCRC TR 56-110. Cambridge, Mas-
sachusetts: Air Force Cambridge Research Center, April, 1956.

[Prath 67] Prather, Ronald E. Introduction to Switching Theory: A Mathematical Approach.
Boston: Allyn and Bacon, 1967.

[Quine 59] Quine, W.V. "On Cores and Prime Implicants of Truth Functions," American Math-
ematical Monthly, 66: 755-760 (October 1959).

[Quine 55] Quine, W.V. "A Way to Simplify Truth Functions," American Mathematical
Monthly, 62: 627-631 (November 1955).

[Quine 52] Quine, W.V. "The Problem of Simplifying Truth Functions," American Mathemat-
ical Monthly, 59: 521-531 (October 1952).

[Reusc 75] Reusch, Bernd. "Generation of Prime Implicants from Subfunctions and a Unifying
Approach to the Covering Problem," IEEE Transactions on Computers, C-24: 924-
930 (September 1975).

[Rhyne 77] Rhyne, V. Thomas, Philip S.Noe, Melvin H. McKinney, and Udo W. Pooch. "A New
Technique for the Fast Minimization of Switching Functions," IEEE Transactions
on Computers, C-26: 757-764 (August 1977).

[Rich 91] Rich, Elaine and Kevin Knight. Artificial Intelligence. (Second Edition.) New York:

McGraw-Hill, 1991.

[Rich 83] Rich, Elaine. Artificial Intelligence. New York: McGraw-Hill, 1983.

[Rudea 74] Rudeanu, Sergiu. Boolean Functions and Equations. Amsterdam: North Holland,
1974.

[Rudel 89] Rudell, Richard L. Logic Synthesis for VLSI Design, PhD Dissertation. Department
of Electrical Engineering and Computer Science, University of California, Berkeley,
California, 1989.

[Rudel 86] Rudell, Richard and Alberto Sangiovanni-Vincentelli. "Exact Minimization of
Multiple-Value Functions for PLA Optimization," Proceedings of the IEEE Inter-
national Conference on Computer-Aided Design, 352-355. Washington, D.C.: IEEE
Computer Society Press, 1986.

[Samso 54] Samson, E.W. and B.E. Mills. Circuit Minimization: Algebra and Algorithm, for
New Boolean Canonical Ezpreaaions. AFCRC TR 54-21. Cambridge, Massachusetts:
Air Force Cambridge Research Center, April, 1954.

[Schr6 90] Schr~der, E. Vorlesungen iber die Algebra der Logik. Leipzig: Volume I, 1890.
Reprinted by Chelsea Publications, Bronx, N.Y., 1966.

[Shann 491 Shannon, C.E. "The Synthesis of Two-Terminal Switching Circuits," Bell System
Technical Journal, 28: 59-98 (January 1949).

[Svobo 79] Svoboda, Antonin and Donnamaie White. Advanced Logical Circuit Design Tech-
niques. New York: Garland STPM Press, 1979.

[Tison 67] Tison, Pierre. "Generalization of Consensus Theory and Application to the Mini-
mization of Boolean Functions," IEEE Transactions on Electronic Computers, EC-
16: 446-456 (August 1967).

[Ullma 84] Ullman, Jeffrey D. Computational Aspects of VLSI. Rockville, MD: Computer Sci-
ence Press, 1984.

586

[Wilso 79] Wilson, Robin J. Introduction to Graph Theory. (Second Edition.) London: Long-
man Group, 1979.

[Winst 84] Winston, Patrick Henry. Artificial Intelligence. Reading, Massachusetts: Addison-
Wesley, 1984.

[Zakre 69] Zakrevskii, A.D. "Testing for Identities in Boolean Algebra," LYaPAS: A Program-
ming Language for Logic and Coding Algorithms, edited by M.A. Gavrilov and A.D.
Zakrevskii. New York: Academic Press, 1969.

587

Vita

Captain James J. Kainec was born on 8 July 1960 in Garfield Hts., Ohio. Following graduation

from high school in Bedford (Cleveland), Ohio in 1978, he received an appointment to the United

States Military Academy at West Point, New York. Upon graduation from West Point in May 1982

with a degree of Bachelor of Science, he received a commission as a Second Lieutenant in the United

States Army Signal Corps. After the completion of the Signal Officer Basic Course at Fort Gordon,

Georgia, Captain Kainec was assigned to the 25th Infantry Division, Schofield Barracks, Hawaii.

There he served as the Communications Platoon Leader for Headquarters, 1st Infantry Brigade,

the Communications-Electronics Staff Officer for the 1st Battalion, 27th Infantry "Wolfhounds",

and the Battalion Maintenance Officer for the 125th Signal Battalion. In 1986, Captain Kainec

attended the Signal Officer Advanced Course at Fort Gordon, Georgia. Before beginning a master's

program, he completed the US Army Teleprocessing Operations Officer Course at the Air Force

Institute of Technology. Captain Kainec received the degree of Master of Science in Electrical

Engineering from the Air Force Institute of Technology in 1988. Captain Kainec's next assignment

will be as an instructor in the Department of Electrical Engineering and Computer Science, at the

United States Military Academy, West Point, New York.

Permanent address: 374 Union Street
Bedford, Ohio 44146

588

I Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

woiic reportng Drien -or ri s co lection of nformato o - est mateo to average i hour Der re pone, including the time for reviewing instructions. searching existing data $ource'
gatnerq and mantannq he data needed and compieting ano reviewing the cOleCtion of information Send comments regarding this burden estimate or any other asoect of this
coecton of intormanOn, nouong suggestions for reducing this ouraen to Washington Heaoquarters Servces, Directorate for information oerations and Reports. 1215 Jefferson
O&s rrqgpn a v. Sue '24 Arhngton VA 22202-4302 and to the Oficue of Management and Budget. PaPervocrk Reduction Project (07040 18) Washington, DC 20S03.

1. AGENCY USE ONLY (Leave Wiank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1992 PhD Disserttin
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

BOOLEAN REASONING AND INFORMED SEARCH IN
THE MINIMIZATION OF LOGIC CIRCUITS

6. AUTHOR(S)

James J. Kainec, Captain, U.S. Army

7. PERFORMING CRGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
REPORT NUMBER

School of Engineering

Air Force Institute of Technology (AU)
Wriaht-Patterson AFB, OH 45433 AFIT/DS/ENG/92-02

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Dr. John Hines

WL/ELED
WPAFB, CH 45433-6543 AVN 785-4448

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution
unlimited

13-' The minimization of logic circuits has been an im-
portant area of research for more than a half century. The
approaches taken in this field, however, have for the most part been
ad hoc. Boolean techniques have been employed to manipulate formulas,
but not to perform symbolic reasoning. Boolean equations are employed
principally as icons; they are never solved. The first objective of
this dissertation is to apply Boolean reasoning systematically and
uniformly to the minimization problem. Boolean reasoning entails the
reduction of systems of Boolean equations to a single equation; the
single equation is an abstraction, independent of the form of the
original equations, upon which a variety of reasoning operations may
be performed. The second objective is to apply informed search, which
has arisen from research in Artificial Intelligence, to the minimiza-
tion problem. A circuit specification is reduced to a single
equivalent equation called a 1-normal form. It is shown that forming
a particular solution for the equation corresponds to deriving a design.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Boolean Alcebra- Boolean Sums; Logic Circuits 608 ,
Artificial Intelligence; Heuristic Methods 16. PRICE CODE
Boolean Functions

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIEL UNCLASSIFIED UNCLASSIFIED UL
N4 7540-0 .23C 550j Stanoard ;orrn 298 (Rev 2-89)

Qn od b, A.14~t T~
2 98 112

