
AD-A248 107~

OTICSEL-ECTEDOF
SATOOL1 11: AN IDEI 0 CASE" WORIKBNCII

USING ADA AND THlE X WVINDOW SYSTEMN

THlESIS

Capa, USAf'

A FIT/C CS/ EN G /92M .01

This d cunnt has been apoved 9-8 4
fm Public releatse and sole; its 111111 92 I0140
tdistzibution is unlimited.cLII1111 i 11 I I

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

92 3 31 071

AFIT/GCS/ENG/92M-04

DTICi ELECTE
. A /PR 0 1 1992

SATOOL II: AN IDEFo CASE WORKBENCH
USING ADA AND THE X WINDOW SYSTEM

THESIS ________Accesion For
Betty Topp NTIS CRA&I

UTI . :ouCIZd CICaptain, USAF DT IN; A8 [
Ua .- ;; oo.ced []

AFIT/GCS/ENG/92M-04 Justification

By
Dist i2 :'tioa2 I

Availably Codes
Avail ar;d I or

Dist Spucial

Ap

Approved for public release; distribution unlimited

AFIT/GCS/ENG/92M-04

SATOOL II: AN IDEF0 CASE WORKBENCH

USING ADA AND THE X WINDOW SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems

Betty Topp, Bachelor of Science in Computer Science

Captain, USAF

March, 1992

Approved for public release; distribution unlimited

I ~Fo rm Approved
REPORT DOCUMENTATION -PAGE OMBNo, 0704.0188

Pubk repvrtn l,.det. I i h .wdecur vfr ,I i Maivn',s efmaieo wv aveiaqe ui u pet ,espnie. nuuding the time for reviwinginstructons searching existing data sources.
3athr.nJ arnd miand Omments regarding this burden estimate or any other aspect of this I
.oiection t fAffatilVi , iU11 1 es. .fQ1 ile .inJ d . ,i uur en i., Vasirn i.v deadgiarteis)eiUlces, uirectorate for intiurratlion Operations and eports, 1Z 15 jeflerson
Davis tHihwayu ite 1l.04v A cngtn YA -...2-4302 nd W the Office vt Mandyemrn tand Buage, Paperworked R-',on Project 0704.0188). Vashington. UC MLi503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3 HEPORT TYPE AND DATES COVERED

I March 1992 Master's thesis___________________1
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SATOOL II: AN.IDEFo CASE WORKBENCH
USING ADA AND THE X WINDOW SYSTEM

6. AUTHOR(S)
Betty Topp, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

AFIT/GCS/ENG/92M-04

9. SPONSORINGi MONITORING AGENCY NAME(S) AND ADDRESS(ES) '10. SPONSORINGi MONITORING

LtC James Sweeder AGENCY REPORT NUMdER

SDIO/SDA, Room 1E149
The Pentagon, Washington D.C. 20301-7100
(202)-693-1826

S11 SUPPLEMENTARY NOTES

12a. DISTRIBUTIONIAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

[I13. ABSTRACT (Maximum 200 words)
7The objective of this research effort is to perform an object oriented analysis, design and implementation of the

graphical user interface (GUI) for the SATool II system. SATool II is a Computer Asisted Software Engineering
(CASE) workbench developed using Ada and the X Window system. It is designed to serve as an IDEFo graphical
project editor and data dictionary editor. IDEF0 is the ICAM Definition Method Zero graphical notation
language adopted by the Air Force to produce a function model of a manufacturing system or environment.
The Air Force Institute of Technology is conducting on-going research in the use of IDEFo in the requirements
analysis phase of the software lifecycle. This thesis describes the object oriented design and implementation of
the GUI based on an entity-relationship model developed by earlier research efforts for the IDEFo language. It
also describes the integration of the overall SATool II system composed of the essential model, drawing model,
machine-independent Ada graphical support environment, and the graphical user interface. .

,14. SUBJECT TERMS 15, NUMBER OF PAGES

Computer Aided Design. Software Engineering, Ada Programming Language, Object 180
Oriented Design, X Window System, Computer Asisted Software Engineering 16 11C ? CODE

17. ECURiTY (LASSWFICATION 18. SECURITY CLASSIFICATiO| 19- SECURITY CLASSiNCATiON 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

GENERAL INSTRUCTIONS FOR COMPLETING SF 29'8
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in~eachbI'ock of the- form follow. It is important to stay with in the lines to, meet
qptical scanning requirements.

B lock 1. Agency Use Only(Leave blank). Bllock 12a. Distribution/Availability Statement.
Blok,,. ER~qDat. Fll ublcaton ateDenotes public availability or liriiatilohs. Cite any
Bloc~ ~ ReortDat. Fll ublcaton ateavailability-to the- public. Enteradditional

Lncluding day, M~onth, and year, if available,(e.g. 1 littonorsealmknginllcpas(e.
Jan-8).Mus cie atleat te yar.NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered. DD e oD53.4 Dsrbto
State whether report is interim, final, etc. IfDO,-SeoD5204,"isrbtn
applicable, enter inclusive, report- dates (e.g. 10 Statements-on Technical
Jun 87 - 30 Jun 88).Douet.

DOE - See authorities.
Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB '2200.2.
the part of the report that provides the mo NTIS - Leave blank.
meaningful~and complete information. When a
report is prepared in more than one volume,Blc12.DsrbtoCde
repeat the primary-title, add volume number, and Bak1b itiuir oe
include subtitle for the specific volume. On DD-Laebak
classified documents en, er the title classification DOD Ee blank.iutoncteore
iparentheses. from the Standard Distribution for

Block S. Fudn jNumbers, To include contract Unclassified Scientific and Technical
and grant numbers; may-include program Reports.
element humber(s), project number(s), task NASA - Leave blank.
number(s), anid work unit number(s). Use the NTIS - Leave blank.
follomuing labels:

C -Contract PR - Project Block'13. Abstract. Include a brief (Maximum
6- Grant TA - Task 200 words) factual summary of the most

PE -Program WUI Work Unit significant information contained in the report.
E I , i r nt Accession No.

B3'ockG, Author(s). Name(s) of person(s) Block'14. Subiect Terms. Keywords or phrases
responri'ble for writing the report, performing identifying major subjects in the report.
the research, or credited with the cornttmt of the
report. If editor or compiler, this should follow
the namne(s). Block 15. Number of Paaes. Enter the total

number of pages.
Bloc . Qfrmn r anization Name s) and

___r L~A Self-explanaoy Black 16. Price Code. Enter appropriate price
Block 8. Performing~ OrganizationReprt code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. Secrt Classifications. Self-

perfrmin th reprt.explanatory. Enter U.S. Security Classification in
Block 9. f nftnMonitorinciAgiencv N'afnes) a .cordance ovith U.S. Security Regulations (i.e.,
a'nd Add fess~esI. Self--:xplanatory. UNCLASSIFIED). if form contains classified

Bloc 10 S, ®r)2cio'Moitoioainformation, stampd cassifi cation on the top and
Bloc~~k 1(3. p!orniAencv bottom of the page,

Report-N-umber. (if knottn)

Block I). $unint otes. Enter 2lock 20. Limitation of Abstract, This block must
information oot included elsewhere such as. be completed to assign a limitation to the
Prepare d in coopor,1on with., Tran:,. of,. To be ab-(ract. Enter either UL (unlimited) or SAR (same
published in..- . Nca feport is reviseci, inclvde as report). An entry In this block is necessary if
a saLn-irent tThJ-edi nevv reporc supzredes thie abstract is to be 'inited. if lan , the abstract
or Supplenm-arit 'h-- 0143r report is assuvmed to be uril iimited

Preface

This thesis documei~ts the analysis, design, and implementation of SATool

II, an object-based IDEF0 Computer Assisted Software Engineering (CASE) work-

bench. IDEF0 is a methodology used by the Air Force Program for Integratcd

Computer Aided Manufacturing (ICAM) in an effort to increase the manufacturing

productivity of the Aerospace Industry through the application of computer tech-

nology (18:1-1). SATool II is the culmination of ongoing research at the Air Force

Institute of Technology (AFIT) Department of Electrical Engineering associated with

the Strategic Defense Initiative Organization (SDIO) and its interest with the IDEF0

language.

SATool II is a CASE workbench designed to create, modify and preserve IDEFo

diagrams and associated data dictionary used to describe a software or manufacturing

system. It is written in Ada and uses an Ada/X Window interface to create the

graphical images for the user interface. The Ada/X Window interfkxce allows SATool

II to operate independently from any particular type of computer hardAare. An

object oriented approach was used to analyze, design and implement this workbench.

SATool II was designed around an abstract entity relationship model of the IDEF0

methodology consisting of an essential model and a drawing model.

I would like to thank my advisor, Dr Thomas C. Hartrum, whose patience,

support and guidance made the successful completion of this research effort possible.

I would also like to thank Bruce Clay for his advice on X Windows, Dave Doak for

the many hours of help with the Olympus System, and Rick Norris for teaching me

the value of the -i option. I especially Avant to thank my husband Danny and my

son Bob for their loving support. And, above all, thank you Lord for guiding nie

through the longest days.

Betty Topp

ii

Table of Contents

Page

Preface.........

Table of Contents

List of Figures.

List of Tables xii

1. Introduction.

1.1 Background 2

1.1.1 The IDEF0 Methodology. 2

1.1.2 The C Version of SATool. 2

1.1.3 The Ada Version of SATool. 3

1.2 Problem Statement. 4

1.3 Assumptions. 4

1.4 Scope and Limitations. 5

1.5 Standards. 5

1.6 Approach 5

1.7 Equipment and Software. 6

1.8 Sequence of Presentation. 6

11. Literature Review 7

2.1 Introduction 7

2.2 CASE Tool Enhancements 7

2.3 Highlighting With Color 9

2.4 Online Documentation 10

111

Page

2.53 Configuration Management. 10

2.6 Automatic Diagram Layout 11

2.7 Summary. 13

III. Requirements Analysis 14

3.1 Introduction. 14

3.2 General Requirements 14

3.3 Requirements Analysis for the Graphical User Interface . .16

3.4 Essential Model. 16

3.4.1 AFIT Data Dictionary Format 21

15 Drawing Model. 24

3.6 Summary. 34

IV. SATool II System Design...

4.1 Introduction. 35

4.2 Generic Multiple Object Manager 35

4.3 Essential Model Design 37

4.4 Drawing Model Design 39

4.5 MAGSE Design. 39

4.6 Graphical User Interface Design. 41

4.7 Overall SA~fool II System Design. 45

4.8 Summary. 45

V. Implementation. 47

5.1 Introduction. 47

5.2 Overall SATool II System Environment 48

5.3 Window Types. 48

5.4 Dialogue Window 52

5.5 Title Window 52

iv

P ag e

5.6 Drawving Window 53

5.7 Main Menu Window. 53

5.7.1 Project Button- 53

5.7.2 Diagram Button 56

5.7.3 Dictionary Button. 58

5.7.4 Output Button. 58

5.7.5 Options Button 58

5.7.6 Utility Button. 59

5.8 Tools Title Window 60

5.9 Tools and Objects Windows 60

5.9.1 Create Button. 61

5.9.2 Update Button. 62

5.9.3 Move Button 62

5.9.4 Delete Button 62

5.9.5 Clear Diagram Button 62

5.9.6 Undo Button 67

5.10 Data Dictionary Editor. 67

5.11 Summary. 69

VIJ. Testing and Evaluation. 76

6.1 Introduction. 76

6.2 Testing. 76

6.2.1 Unit Tests 76

6.2.2 External Function Tests. 77

6.2.3 Integration Tests 77

6.2.4 System Tests 77

6.2.5 Acceptance Tests. 78

6.2.6 Installition Tests. 78

v

Page

6.2.7 Regression Tests 78

6.3 Test Results.and Evaluation 78

6.3.1 MAGSE Interface. 78

6.3.2 Graphical User Interface 79

6.4 Summary. 80

VII. Conclusions and Recommendations. 81

7.1 Summary 81

7.2 Conclusions. 81

7.2.1 Research Accomplishments. 81

7.2.2 SATool II. 82

7.3 Recommendations. 82

7.3.1 SATool II Menu Selections. 82

7.3.2 System Enhancements 83

7.3.3 The MAGSE Subsystem 83

7.3.4 The Essential and Drawing Models. 84

Appendix A. Essential Subsystem Implementation Packages. 85

Appendix B. Drawing Subsystem Implementation Packages. 89

Appendix C. MAGSE Siihsystem Implementation 91

Appendix D. SATool II User's Manual 93

D.1I Introduction. 93

D.1.1 Background and Purpose 93

D.1.2 Features 93

D.1.3 System Requirements 93

D.1.4 Overview. 93

D.2 Getting Started. 94

vi

Page

D.2.1 Qu ick Start 94

D.2.2 Operating Environmenft. 94

D.3 A Guided Toutr.. 96

D.3.1 -Introduction. 96

D.3.2 The Main Screen 96

D.3.3 The Keyboard and Mouse. 97

D.3.4 Using Tools and Objects 97

D.3.5 Creating and Viewing a Project. 97

D.3.6 Saving and Loading a Project. 99

D.3.7 Error Handling. 99

D.3.8 Exiting SATool II. 99

D.3.9 Summary. 99

D.4 Objects and Tools. 100

D.4.1 Introduction 100

D.4.2 The Objects 100

D.4.3 The Tools 102

D.4.4 Summary 103

D.5 Main Screen Menus 103

D.5.1 Introduction 103

D.5.2 PROJECT Menu. 103

D.5.3 DIAGRAM M\enu. 104

D.5.4 DICTIONARY Menu 105

D.5.5 OPTIONS Menu. 105

D.5.6 UTILITY Menu 108

D.6 Printing A Window 108

D.6.1 Introduction 108

D.6.2 X Clients for Window Capturing and Printing 109

D.6.3 Printing ai, IDEF0 Diagram and Project. 110

vii

P ag e

Appendix E. SATool II Configruration Guide. 112

E.1 Introduction 112

E.2 SATool II Configuration File. 112

Appendix F. SATool II Test Cases 117

F.1 Unit Test Cases 117

F.1.1 General Main Screen Windows. 117

F.1.2 Main Menu Buttons. 117

F.1.3 Tools Window Buttons. 120

F.2 Integration Test Case 123

Appendix G. SATooI II User Evaluation Form 149

Appendix H. IDEF0 Diagram Syntax Reviewv. 157

Bibliography. 165

VJita 167

List of Figures

Figure Page

1. IDEFo Activity Essential Data Model 18

2. IDEFo Data Element Essential Data Model 19

3. Original IDEF0 Drawing Model Relationships 25

4. Original IDEFo Drawing Model Classes 26

5. Original IDEFo Drawing Model Entities and Attributes 27

6. Revised IDEFo Drawing Model Entity Relationship Diagram 28

7. Revised IDEFo Drawing Model Entities and Attributes 29

8. Essential Model Design 38

9. Drawing Model Design 40

10. MAGSE Design 42

11. Graphical User Interface Design 44

12. Overall SATool II System Design 46

13. Booch Module Symbols 47

14. Overall SATool II System View 49

15. SATool II Subprogram Package Dependencies 50

16. Dialogue Window Package Dependencies 52

17. Title Window Package Dependencies 53

18. Drawing Window Package Dependencies 54

19. Main Menu Window Package Dependencies 55

20. Project Button Package Dependencies 57

21. Diagram Button Package Dependencies 58

22. Output Button Package Dependencies 59

23. Options Button Package Dependencies 59

24. Utility Button Package Dependencies 60

ix

Figure Page

25. Tools Title Window Package Dependencies 60

26. Tools Window Package Dependencies 61

27. Objects Window Package Dependencies 62

28. Create Button Package Dependencies 63

29. Update Button Package Dependencies 64

30. Move Button Package Dependencies 65

31. Delete Button Package Dependencies 66

32. Clear Diagram Package Dependencies 67

33. Undo Button Package Dependencies 68

34. Activity Data Dictionary Editor Screen 70

35. Data Element Data Dictionary Editor Screen 71

36. Data Dictionary Button Package Dependencies 72

37. Data Dictionary Main Menu Title Window Package Dependencies . . 73

38. Data Dictionary Main Menu Window Package Dependencies 73

39. Data Dictionary Activity Edit Menu Window Package Dependencies 74

40. Data Dictionary Data Element Edit Menu Window Package Dependen-

cies 74

41. Data Dictionary Text Window Package Dependencies 75

42. Essential Subsystem Package Dependencies 86

43. Essential Fact Utilities Package Dependencies 87

44. CLIPS System Package Dependencies 88

45. Drawing Subsystem Package Dependencies 90

46. MAGSE Subsystem Package Dependencies 92

47. SATool II Main Screen Face 98

48. Activity Data Dictionary Editor Screen 106

49. Data Element Data Dictionary Editor Screen 107

50. IDEFo Activity and Data Elements 158

Figure Page

51. Sample IDEFo Hierarchical Decomposition 159

52. A-0 Diagram for 'Control Elevator' 160

53. AO Diagram for 'Control Elevator' 161

54. Al Diagram for 'Control Elevator' 162

55. IDEFo Arrow Types 164

xi

List of Tables

Table Page

1. Data Dictionary Entry Format fbr Activity 22

2. Data Dictionary Entry Format for Data Element 23

xii

SAT rol II: AN IDEF0 CASE WORKBENCH

USING ADA AND THE X WINDOW SYSTEM

I. Introduction

The IDEFo methodology was developed by the U. S. Air Force Program for

Integrated Computer Aided Manufacturing (ICAM) in an effort to increase the man-

ufacturing productivity of the Aerospace Industry through the application of com-

puter technology (18:1-1). The IDEFo methodology is part of the IDEF (ICAM

Definition) method and is used to produce graphical representations of functions

and their interrelationships for a manufacturing system or environment (18:1-1).

IDEFo stands for "ICAM Definition Language Zero" (10:3).

To help promote the IDEFo methodology, the Air Force Institute of Technology

(AFIT) Department of Electrical and Computer Engineering developed the prede-

cessor to SATool II, a Computer-Aided Software Engineering (CASE) tool known as

SATool (15:1-1). That tool is a graphical editor written in the C programming lan-

guage and uses the window and graphics features provided by the Sun Microsystems

workstations. Several Lnhancements were suggested for this tool which included Lhe

suggestion to make it a portable tool. These suggestions led to the creation of SATool

II, an improved CASE tool for the IDEF 0 methodology (8:5-12) (27:1-2). SATool

II falls into the category of CASE workbench since it not only provides a diagram

editor but also other functions within its environment like a data dictionary editor

and a syntax checking capability.

The following section provides a description of the background information as-

sociated with the development and implement, tion of SATool II. A brief dscription

1

of the IDEFo methodology ispresented. Then, a discussion of the rationale that led

to the creation of SATool II.,.

1.1 Background

1.1.1 The IDEFo Methodology IDEFo is based on SofTech's Structured Anal-

ysis and Design Technique (SADT) (18:iii). It is used to produce a function model

via the graphical, representation of a manufacturing system's functions and the inter-

relationships of those functions with each other (18:1-1). The IDEFo methodology

is also useful' in describing software systems and has been introduced as a graphical

language for modeling software system requirements (17:3).

AFIT tailored the IDEF 0 methodology to better describe software systems by

adding the requirement of a data dictionary (10:3). The data dictionary is a struc-

tured analysis modeling tool used to "organize the data elements that are pertinent

to a system, with precise, rigorous definitions so that both the user and the sys-

tem analyst will have a common understanding of all inputs, outputs, components

of stores, and intermediate calculations" (28:189). The modified IDEF0 methodol-

ogy uses the data dictionary to describe the objects found in each IDEFo diagram.

The data dictionary and the objects it defines are described further in the Require-

ments Analysis chapter. A review of the IDEFO diagram syntax can be found in

Appendix H.

1.1.2 The C Version of SATool In 1987 Johnson completed a thesis at AFII

for which he built a computer-aided graphics editor called SATool written in the

programming language C (15:1-8). SATool provides a graphics editor used to create

IDEFo structured analysis diagrams and the capability to create and manipulate data

dictionaries in accordance with the IDEFo requirements (10:3). However, SATool

relied on the Sun workstation's graphics features to implement the user interface

which reduced the portability of the tool to other systems (27:1-2). There were

also several deficiencies observed in the user interface (27:1-2). These included,

2

among others, the difficulty to modify existing diagrams, the inability to create

a comprehensive data dictionary, and the lack of a hierarchical structure for the

creation, manipulation and deletion of the diagrams. In subsequent research, several

changes to the SATool system were suggested. These included added features like

portability, an improved user interface, and the ability to handle more than one

diagram per session (15:5-12).

1.1.3 The Ada Version of SATool The suggested improvements to the SATool

system brought about the development of SATool II. Portability of the system and a

more user friendly interface were the two major improvements suggested. Additional

features, like diagram syntax checking and automatic diagram layout, were also

identified. This section provides an overview of the groundwork for the present

design of SATool II based on these suggested improvements.

The portability issue was addressed by proposing a system written in Ada

using the X Window System for the user interface. The X Window system does not

mandate a particula. user interface (23.79). "The purpose of the X Window system

is to provide a network-transparent and vendor-independent operating environment

for workstation software"(16:4). Network transparency implies that the application

can run on whatever CPU is most convenient (16:5). In contrast, the windowing

systems offered by Apple's MacIntosh and Microsoft Windows do require that the

application adhere to a particular interface style (27:1-4).

After the completion of the C version of SATool, the structure of the system was

re-evaluated by a group of graduate students at AFIT who took an object ociented

approach to redesign of the system (1:641). An IDEF0 diagram was now viewed as

an entity composed of objects from two distinct models. This approach was used

by Smith (25) who laid the groundwolk to convert the user interface of SATool to

the X Window System and developed an early version of what is now the essential

model (17"1-2).

3

In 1990-91, Tevis (27), Kitchen (17), and Shyong (24) completed thesis work

which created several building blocks for the updated version of SATool. Kitchen

developed the essential model objects and operations and started work on the Ada

based expert system used for diagram syntax checking. This work was later com-

peted by Shyong. Tevis developed the drwing model objects and operations as well

as the X Window/Ada Interface called the Machiiie-Independent Ada Graphical

Support Environment (MAGSE). The essential model contains all the data dictio-

nary information required to describe the objects identified in the IDEF0 model (all

object descriptions, relationship information, etc). The drawing model contains all

the graphics information that is part of what the IDEFo diagram looks like. This

information includes attributes such as the location and size of all boxes and lines on

the diagram. The drawing model uses the X Window system as an interface between

SATool II and its users. A detailed description of these models is provided in the

Requirements Analysis chapter.

1.2 Problem Statement

The purpose of this thesis was to develop and implement the SATool II system

by creating a graphical user interface (GUI) that tied together the essential and

drawing models as well as the X Window/Ada interface created by Tevis, Kitchen,

and Shyong. The result is a system that allows an entire IDEFo project to be created

or loaded into the SAToo II y:'stem, viewed, manipulated and stored with a user

interface that is network-transparent and easy to use.

1.3 Assumptions

1. Kitchen's essential model and Tevis' drawing model are complete with respect

to the types of objects, attributes and relationships among the objects they

have developed.

4

2. The Ada interface ource code supplied by Science P pplications International

Corporation (SAIC) works correctly when used for calling X Windows library

functions from an Ada program (27:1-5).

3. The functions implemented in the X Window programming library perform as

described in the X Window documentation (27:1-5).

4. Tevis' X Window/Ada interface provides all necessary functions and procedures

to implement the SATool II graphical user interface and works correctly.

1.4 Scope and Limitations

This thesis concentrates specifically on the development of the graphical user

interface for the SATool II system. This tool provides the required interfaces and

system enhancements to facilitate the work performed by a user in the development

of applications using the IDEFo methodology.

1.5 Standards

The SATool II application source code is documented using the guidelines

and standards written in (11). The actual Ada coding practices used were object-

oriented analysis, design, and implementation, loosely-coupled packages, consistent

indentation, and consistent naming of packages, procedures, functions, and variable

names (27:1-6).

1.6 Approach

The research was approached in four phases:

1. A review of work done by Tevis and Kitchen and research into the possible

enhancements to the system.

2. Analysis and design of all necessary components of the graphical user interface

that tie the essential and drawing model together.

5

3. Implementation-of all the graphical user interface components.

4. Unit tests, overall system integration tests, and user evaluations to ensure the

proper function of the final product.

1.7 Equipment and Software

The following equipment and software were used during this research:

1. Sun Microsystems Sun 3/110 workstation

2. AT clone personal computer.

3. BSD UNIX operating system (version 4) and MS-DOS 3.3

4. Verdix Ada compiler (version 5)

5. SAIC source code modules for the Ada interface to X

6. X Windows System library (version 11, release 4) (14)

1.8 Sequence of Presentation

This thesis is divided into seven chapters. The first chapter is the thesis in-

troduction. Chapter 2 presents the findings of the literature review performed for

this research effort. Chapters 3, 4, and 5 present the Requirements Analysis, Design

and Implementation of the SATool II system. The SATool II test suite and results

are presented in Chapter 6. Chapter 7 summarizes the thesis findings and presents

several recommendations for further work to be done with the SATool II system

project.

6

II. Literature Review

2.1 Introduction

This chapter presents several CASE tool enhancement options that could be

used to improve the overall performance of the SATool II user interface. A better

user interface was one of the suggestions given for the original tool. The following

sections discuss the criteria used to select the proposed enhancements to the user

interface as well as discuss several possible enhancements for the present system.

2.2 CASE Tool Enhancements

As computer hardware becomes more powerful and less expensive, the software

developed for use in computer systems is becoming more complex. The traditional

methods and tools used to develop smaller applications, have become inadequate for

use in the development of the larger, more complex software systems. "Historically,

the most significant productivity increases in manufacturing or building processes

have come about when human skills have been augmented by powerful tools. For

example, one man and a bulldozer can probably shift more earth in a day than

50 men working with hand tools" (26:362). In the Software Engineer's world, one

such class of tool is known as Computer-Aided Software Engineering (CASE) tools

which can be used to extend the capabilities of Software Engineers by aiding the

software development process. There are several types of CASE tools available, but

the one of most interest to this research is the CASE workbench. A CASE workbench

is a software engineering support tool which assists the analysis and design stages

of the software development process by means of multipurpose diagram editing,

design analysis and checking, query language facilities, data dictionary facilities,

and report/forms generation (26:363).

Following is a review of current literature on CASE workbenches which identi-

fies several features that can be used to ei,hance the CASE workbench environment.

7

The enhancements identified were selected based on -a set of criteria compiled by

Matingly (19:2-26 - 2-30). The purpose of this set of criteria is to be used in the

evaluation of CASE tools. In a similar light, it can also serve as a set of guidelines

for selecting enhancements that will enrich a CASE workbench environment. There

are five categories identified that useful to this research effort:

" Ease of Use - Refers to the "user friendliness" of the tool. Does it have an

online help facility? Does the graphical user interface have an easy to use menu

system? Does it have safeguards for error prevention, and in case one occurs

can the tool recover gracefully from it? Can the tool environment be controlled

so as to shut off unwanted features?

" Power - Refers to performance features like the capability to easily modify

diagrams and save the current work and be able to reload it into the system.

This category also includes the ease of adding macros systematically to the

system to increase the entire collection of possible operations.

" Robustness - Includes such criteria as consistency, adaptability and maintain-

ability. Can objects be stored and retrieved consistently? Can the tool evolve

with changing requirements? Can the tool be easily repaired once bugs are

found in it?

" Functionality - Does the tool support all aspects of the methodology? Does

I lie tool operate correctly and produce correct output?

" Ease of Insertion - How long does it take to learn the tool? How easy is it to

integrate into the overall software development process.

This set of criteria was used to identify four enhancements that could increase

the performance of the SATool II system in three of the above categories. The first

two sections present features that can be useful in the design of the user interface t.o

enhance ease of use and power. The last two sections present features that can be

used to increase the functionality of the CASE tool itself.

8

2.3 Highlighting With Color

Highlighting is used to display information- in special formaus to emphasize its

importance and to set aside special areas of the screen. Some of the most common

forms of highlighting are blinking, sounds, color, and boxing (7:98-100). Color will

be the focal point of discussion in this section.

Research in the management information systems and the reference disciplines

have made several major findings (12:121):

" Color improves performance in a recall task.

" Color improves performance in a search-and-locate task.

" Color improves performance in a retention task.

" Color improves comprehension of instructional materials.

" Color improves performance in decision judgment task.

However, care must be taken to avoid the overuse of color. For example, it

is easy to misuse color in the interface design and end up with displays that are

error prone and unpleasing to look at. There are two common mistakes made when

designing color interfaces (26:2t3-285):

" The interface designer tries to use color to communicate meaning.

" Too many colors are used in the display and/or the colors are used in incon-

sistent ways.

The problem with trying to communicate meaning through color is that there

are no standard conventions on what the meaning of colors are. So, the meaning the

designer wants a color to have may be misinterpreted. There is also the problem of

dealing with color blind users. They may not be able to perceive that a particular

9

color is displayed. Therefore, color should be used only for highlighting purposes, to

draw a user's attention to a certain part of the display.

The designer must also avoid the over-use of color as well as- using colors that

are too bright, and saturating the diagram with too many colors. Sommerville

suggests a set of guidelines for the effective use of color in any system interface. The

bottom line of these guidelines is that the designer should try to be as conservative

as possible when designing color displays (6:67-77).

2.4 Online Documentation

Along with written documentation, a well designed online help facility can

improve the productivity of users and increase their satisfaction with the software

system (7:54-55). Online help includes user invoked help messages, status messages,

prompts and error messages. The purpose of this facility is to allow the user to

have greater control over the system by providing him with as much information

as he needs to understand the system. Help messages should be tailored to the

user's current context. The help message should be related to the action the user

is currently performing. The help facility should also allow the user to pick the

verbosity level of help messages to allow for various levels of expertise as users become

more familiar with the system. Finally, messages should be positive rather than

negative. They should use an active mode of address and should never be insulting

or attempt humor (26:277).

2.5 Configuration Management

Configuration management is concerned with the development of procedures

and standards for managing an evolving software system (26:552). A configuration

management facility in a CASE workbench can be particularly helpful when con-

trolling multiple design versions of a given project. Configuration management tools

allow individual versions of a system to be retrieved support system building from

10

components, and maintain relationships between components, and their documen-

tation (26:552). This type of control is difficult to achieve. However, if implemented

appropriately, it can facilitate the implementation of other features like rapid proto-

typing (26:552).

2.6 Automatic Diagram Layout

One of the goals of this research was to determine an automatic layout algo-

rithm for IDEFo diagrams. Following is a discussion of layout algorithms for data

flow diagrams, which are similar in several respects to IDEFo diagrams.

Drawing data flow diagrams can be very time consuming even in the most user

friendly of systems (21:11). An alternative to drawing the diagram from scratch

is to have the user input the project information into a requirements database or

repository and have the CASE tool draw out the diagrams based on that informa-

tion. The overall objective when creating data flow diagrams whether manually or

automatically is clarity (readability) of the diagram. Clarity is not easy to achieve

because it is difficult to identify the important characteristics of the diagram. A bal-

ance must be achieved between the symbols, text, and white space in the diagram

layout (21:11).

The approach taken by Prototzko et al (21) to solve the diagram layout problem

is to access a project database to extract the system flow information. The data is

converted to a directed-graph-like internal representation that allows the CASE tool

to follow the system flow to and from any system flow object. This is followed by the

placement of each of the data flow objects in a grid structure. A placement algorithm

is then used to place all data flow objects in a grid structure. Finally the data flow

arcs are placed between the objects by means of a routing algorithm (21:11-12).

Batini et al (2) takes a similar approach to produce a data flowx diagram layout

algorithm. Two types of graphic standards are identified for data flow diagrams. The

straighL line stai dard creates DFD's where all processes are coniected b3 straight

11

lines. In this case the DFD is also called a bubble chart and the processes are

identified with circles instead of boxes with rounded edges. The second standard

is the grid standard that makes all process connections run along the lines of a

rectangular grid in which the diagram is embedded (2:538-539).

The grid standard was chosen for the layout algorithm since it creates diagrams

with high regularity and modularity (2:539). The placement algorithm takes into

consideration the number of connections for each process and embeds each one into

the grid by first placing the ones that have only one connection in the innermost

part of the grid. The grid is viewed as a set of arrays of grid cells whose perimeter

grows as the number of connections per process grows (2:539). This description is

a simplistic view of the placement algorithm described in (2). The layout algorithm

uscs the following strategy (2:540-541):

* Find a two dimensional or planar representation for the DFD grid that tries

to stay within five prescribed guidelines (2:539):

1. Minimize the crossings between connections.

2. Minimize the global number of bends in connection lines.

3. Minimize the global length of connections.

4. Minimize the area of the smallest rectangle covering the diagram.

5. Place -xternal boundary symbols so as to minimize crossings.

T Then give an orthogonal shape to the planar representation finding an orthog-

onal representation. This follows the second guideline.

" Finally, the grid embedding is completed by assigning integer lengths to line

segments, according to guidelines three and four.

The layout algorithms discussed so far have been directed towards data flow

diagrams. Evn though there are several similarities between DFDs aad IDEFo

12

diagrams, the restrictive syntax rules of the IDEFo methodology may provide a

more direct approach to laying out IDEFo diagrams. Further research is suggested

in this area.

2.7 Summary

This chapter presented several enhancement options for the SATool II system.

A set of CASE tool evaluation criteria was identified to aid in the selection of these

enhancement options. SATool II must be made attractive to the user if it is going

to be used in a software development process that includes the IDEFo methodol-

ogy. The evaluation criteria was used to determine what enhancements would make

SATool II more attractive. The enhancement features presented in this literature

review addressed this concern by advocating a good user interface design by means

of appropriate highlighting and help facilities. It also presented the options of auto-

matic diagram layout and configuration control as functional enhancements to allow

the speedup of the software development process.

13

III. Requirements Analysis

3.1 Introduction

This chapter presents an analysis of the requirements for the design and im-

plementation of the graphical user interface (GUI) for the SATool II system. It

also presents a review of the requirement models created to capture the information

found in the IDEFo diagrams.

3.2 General Requirements

Following is a summary of the system requirements identified for SATool II

(17:34):

1. All parts of SATool II must be implemented in Ada.

2. The tool must have a graphical user interface (GUI).

3. The tool must be implemented on a workstation supporting X-Windows and

Ada.

4. The tool must provide for the creation, editing, and output of IDEFo diagrams

(i.e., the manipulation of IDEF0 syntax).

5. The tool must provide for the creation, editing, and output of the AFIT Data

Dictionary formats.

6. The tool must provide for the storage of the essential data model information

of an IDEFo model that is separated from the stored drawing data model

information.

7. The tool must provide for the storage or automatic generation of the drawing

data model information (i.e., the diagrams) of an IDEF0 model that is separate

from the stored essential data model information.

14

8. The tool must be integrated with an Ada based expert system for the purpose

of identifying IDEFo syntax and modeling errors.

9. The tool must allow for the user to terminate work on an IDEFo model, leaving

it in an unfinished state. For example creating an activity with no connecting

data elements leaves the IDEF0 model in an incomplete state.

10. The tool must be developed using an object oriented design methodology in

order to assess its potential in the construction of an Ada based CASE tool.

An analysis of these requirements suggests five subproblems to be solved:

1. The development and implementation of an object model to create, retrieve

and restore IDEFo essential model information (requirements 1, 4, 6, 9, and

10) (17:35).

2. The development and implementation of an interface to an Ada based expert

system (requirement 8) (17:35).

3. The development and implementation of an object model to create, retrieve

and restore IDEFo drawing model information (requirements 1, 4, 7, 9, and

10).

4. The development and implementation of a method to create, retrieve and out-

put AFIT Data Dictionary information (requirement 5) (17:35).

5. The development and implementation of a graphical user interface using the

X Window system and Ada that is capable of manipulating the essential and

drawing model information in order to present a complete, homogeneous pic-

ture of an IDEF0 project to the user (requirements 2, 3 and 4).

The first three subproblems were addressed and satisfied by Tevis (27), Kitchen

(17), and Shyong (24) during their research. The work they completed became the

foundation for the final design and implemicntation o" the GUI system. Kitchen

15

provided the essential model that would capture the data dictionary 'information of

the IDEFo diagrams. Tevis developed the drawing model for the IDEFo diagrams

as well as the X-Window-Ada interface. Shyong implemented the expert system

specified by requirement 9. The fourth and fifth subproblems defined the major

thrust on requirements for the design of the GUI for the SATool II system.

3.3 Requirements Analysis for the Graphical User Interface

Based on the requirements specified in the previous section, the SATool II

system must be capable of handling an entire IDEFo project during any given session.

This implies that the system must be able to maintain information on the project's

hierarchical decomposition. These requirements also specify that the data stored for

each project must be easily created, modified, stored, and reloaded. The SATool II

system must maintain a data dictionary for any project that is loaded into the system

as well as show the project information in a graphical format similar to the format

given for the manual drawings. The requirements also suggest that an automatic

diagram layout feature by a part of the final product.

Since the GUI design is based on the two models designed to capture the

information found in the IDEFo diagrams, the following two sections review the

essential and drawing model composition. There are two basic types of objects

present in an IDEFo diagram, activities and data elements (see Appendix H for

details on IDEFo syntax). Th(essential model maintains the logical relationships

between activities and data elements as well as the data dictionary information for

each data element and activity. The drawing model maintains the physical (location,

shape, etc.) information on data elements and activities.

3.4 Essential Model

The present version of the essential model description was designed by Kitchen

(17). Figure 1 and Figure 2 show the entity relationship diagrams that d .scribe thib

16

model. Figure 1 describes the attributes of an activity and its relationship with

other activities and data elements. Figure 2 completes the picture by showing the

attributes of the data elements and its relationship with other data elements and

activities. Overall, there are six entities and twelve relationships defined by the

essential model.

The six objects defined by the essential model are:

1. Project: This entity refers to the project the activity or data element is asso-

ciated with. Its one identifying attribute is Pname and contains the project

name.

2. Activity: An activity represents a function performed by a given system. There

are seven attributes associated with the activity:

* Name: Used as the unique identifier.

* Activity Number: Used to determine the location of the activity in the

diagram hierarchy.

* Description: Used to describe the activity's function.

* Version: records the current version number of the activity.

e Date: indicates the creation date of the activity.

* Changes: captures what has changed between this activity and the pre-

vious version.

* Author: The creator of the activity.

3. Historical Activity: This is an activity that belongs to another project and

is "called" by the activity in this project. Its two identifying attributes are

Project and Activity Number. Project represents the project the activity comes

from and Activity Number shows which activity in the project to address.

17

project

O:m inputs :n part of I:m

I:rn outputs O:n 0: composed ;nI

...... Lin is O:n name
controlle

data b
Ctivit numbelement activity

...........

O:m is 0: descri tio
mechanize

version
Ctivit numbe

0:1 calls I:rn aTI

late
historical
activity I:rn O:n author

based on

roject

...................

defined
ref elsewhere

...................

Figure 1. 1DEFO Activity Essential Data Model

project 1 ~

contromled

b verrio

defivid
* elsewhereo

Figure... 2.....aaElmn.Esnia.aa oe

:n is 19

4. Ref: Captures any reference associated with an activity or data element. The

identifying attributes are Reference and Type. The reference-entity allows an

activity or data element to be associated to written documents other than

those defined by the IDEF0 methodology. This allows for abetter description

of the object and its function.

5. Data Element: Data Elements are used to define the data that is passed from

activity to activity. This data can be simply information passed, yet, it can also

be defined as a control mechanism for the activity. There are ten attributes

associated with the data element:

* Name: Identifying Attribute is the name of the data element.

* Description: Gives a description of the data element.

* Data Type: Indicates the type of data. For example, is it a character

string or an integer.

* Minimum: Holds the minimum value the data element can take.

* Maximum: Holds the maximum value the data element can take.

* Range: The data value range (if applicable).

* Version: The current version of the data element.

* Changes: How is this data element version different from previous version.

e Date: Date of creation of present version.

* Author. Name of person who created this entity.

6. Values: Used for data elements that do not consist of other data elements and

have enumerated values. Each value object is identified by a single attribute

Value which contains one of the values the data element can take on.

Of the twelve relationships defined by the ER diagram, two share the same

name and definition (Part-Of and BasedOn). So, they are only described once here.

The relationships are defined ii, the following manner:

20

1. PartOf: A; data element or an activity are part of exactly one project. A

project 'May contain one or more activities or data elements.

2. inputs: An activity can have zero or more data elements as input.

3. Outputs: An activity must have at least one output data element.

4. IsControlledBy: An activity must have at least one control data element.

5. Is_-Mechanized_-By: An activity can have zero or more mechanism data ele-

ments.

6. Composed-Of: Each activity has one parent activity, except for the A-0 activity

which has no parent. On the other hand an activity can have zero or more

children activities.

7. Consists-Of: This relationship is used for building pipelines (bundles/joins

and forks). It shows that a data element can be broken down into other data

elements (fork) and at the same time a data element can be part of a group of

data elements that feed into a parent data element (bundle/join).

8. Calls: An activity can call zero to many historical activities and at the same

time a historical activity can be called by zero or more activities.

9. BsedOn: Shows that a data element or activity can have zero or more refer-

ences and at the same time a reference can be related to zero or more activities

or data elements.

10. Can-Have: Associates a data element that consists of enumerated values to

those values. Each value is associated with one or more data elements.

3.4.1 AFIT Data Dictionary Format Even though the IDEFo methodology

does not explicitly require a data dictionary, it does require a glossary (10:73). AFIT

introduced the use of the data dictionary to bpport this requirement. The present

version of the AFIT data dictionary format was established by Kitchen (17). A data

21

dictionary entry is required for each activity and data element. Table 1 shows the

data dictionary format for an activity. Table 2 shows the format for a data element.

Format Field [Description [Size

(S) Name activity name C25
(S) Type defaults to ACTIVITY N/A
(S) Project project name C25
(S) Number activity number of this activity C20
(ML) Description text description C60
(MF) Inputs data element name C25
(MF) Outputs data element name C25
(MF) Controls data element name C25
(MF) Mechanisms data element name C25
(G) Calls: N/A
(S) ... Project different or same project name C25
(S) ...Activity Number activity number of called acti-vity C25
(S) Parent name of parent activity C25
(ML) Reference reference cite C60
(S) Ref Type type of the reference C25
(S) Version version -f this entry CIO
(ML) Changes a history of the changes C60
(S) Date mm/dd/yy (date of creation) C8
(S) Author author's name C25

Table 1. Data Dictionary Entry Format for Activity

The field classifications for the AFIT data dictionary formats shown are as

follows (17:52):

" (S) -The field consists of a single field that appears on a single line.

" (ML) - The field consists of a single field that appears on one or more lines.

* (MF) - The field consists of one or more fields, and each is a single field that

appears on a single line.

• (G) - The field consists of two or more fields grouped together and multiple

groups are allowed. However, each group member is still a single field that can

only appear on a single line.

22

Format Field Description (Size

(S) Name data element name C25
(S) Type defaults to DATA ELEMENT N/A
(S) Project project name C25
(ML) Description text description C60
(S) Data Type type of the data, if known C15
(S) MIn Value minimum data value, if known 015
(S) Max Value maximum data value, if known C15
(S) Range range of values, if applicable C60
(MF) Values enumeration values, if applicable C25
(MG) Decomposition: N/A
(S) ...Part Of name of parent data element C25
(MF) ...Composition subcomponent data element names 025
(MG) Sources/Destinations: N/A
(MF) ...Outputs activity(s) where output C25
(MF) ...Inputs activity(s) where input C25
(MF) ...Controls activity(s) where a control C25
(ML) Reference reference cite C60
(S) Ref Type type of the reference C25
(S) Version version of this entry C10
(ML) Changes a history of the changes C60
(S) Date mm/dd/yy (date of creation) 08
(S) Author author's name C25

Table 2. Data Dictionary Entry Format for Data Element

23

* (MG) - Two or more fields are grouped together and multiple groups are al-

lowed. Each group member -is permitted to be a single field, a single field

of multiple lines, or multiple fields. "herefore, each group member must be

classified with either a 'S', 'ML?, or 'MF' field classification.

3.5 Drawing Model

The present version of the drawing model is a modified version of the drawing

model established by Tevis (27) (see Figure 3 through Figure 5). While reviewing

the drawing model several inadequacies were found in the type of attributes each

object was given to store necessary information. All previously identified objects

are still found in the present model (Figure 6). However, the terminator object is

decomposed into its subclass objects (simple turn, junctor, and arrow) since they

each have a different set of attributes (Figure 7). The relationships between the

objects were simplified by deleting the relationship between a label and a historical

activity. A label now identifies a data element, a squiggle, or a footnote. The

historical activity relationship is taken care of by the essential model. It has no

physical attribute that needs to be shown in the IDEFo diagram, and therefore,

need not be repeated in the drawing model. The relationship between the verbal

addition objects and the squiggle were also changed. Footnotes are now identified

by labels. Squiggles can either point to a label or a note.

Following is a. description of the objec s defined by the revised drawing model:

1. Diagram: A diagram can be composed of zero or more drawable objects. It

can be derived from a single box, but does not have to be. This allows for the

creation of the A-0 diagram which has no parent activity (or box). It is not

considered a drawable object. Instead it is a template for objects to be drawn

on. Its attributes are:

24

~0:

for i historical II data I II
exposition I I II I I lemnt I activityl y 1atiiyelmn I I

identifies identifies b It reprCsente(

verb .al suglliebox terminator
additionlaesgmn

is gt
a oainattaches attaches attaches

frto

:1:

defined

nietL elsewhere J

Figure 3. Original IDEF0 Drawing Model Relationships

25

drawable

object

is
a

for F
eposition 1connector

only stub

verbal line
label sqigeaddition segment box terminator

is

a

note

Figure 4. Original IDEF0 Drawing Model Classes

26

drawable

object

name

for
exposition x diagram

only

picture cnme

verbal 7 7ine
addition squiggle label segment bo terminator

4 istoricadieio

loe

Ifoot-
n 7.Innector

stub

meta-I

note

Figure 5. Original IDEFO Drawing Model Entities and Attributes

27

Diagram Activity

DefinesFEO composed a
of

+ 0:1O:M.M

Drawable erived 0:1 Box
Metanote Object rom

0:1

is a onnects
Footnote to

O:M

Note Arrow

Squiggle Line Simple Junctor

Label Segment Turn

I I
0:1 0:1 O:M O:M

Points 0:1 2 onnects onnects
to to 3 to

4 43
0-.1

0:1 1 1 onnects

Id's 1 0:2 < to

Id's O:M < i 0:1 >

a onnects
to

r 1:M

Data 1 Builds
Element

a >
L

Figure 6. Revised IDEFo Drawing Model Entity Relationsbip Diagram

28

Redr 3 2 tte

ID

Metanote Squiggle EdP

Footnote Tr

ictiD bjct

Figure 7. Revised IDEFO Drawing Model Entities and Attributes

29

* BoxID- The unique identification string of the activity box this diagram

is derived from.

" CAfumer - It is the activity number of the parent activity.

" ReaderJl - Name of the first person that reviewed the diagram.

" Reader.2- Name of the second person that reviewed the diagram.

" ReaderS - Name of the third person that reviewed the diagram.

" RevDatel - Date of first review.

* RevDatc2 - Date of second review.

" RevDate3 - Date of third review.

2. DrawableObject: A drawable object is any one of the other eleven objects

shown in the ER, diagram: FEO, metanote, footnote, note, squiggle, label, line

segment, simple turn, junctor, arrow, box. It has three attributes that are

globally shared by all drawable objects:

" ID - The unique identification string for each object in the system.

" StartPt - Location of the object on a diagram. This is the only location

information needed for some objects, like FEO's, notes, and arrow heads.

Other objects, like line segments and squiggles require an end point also.

Those attributes are identified for each object individually.

* DiagramID - The unique id string for the diagram that contains a par-

ticular object.

3. FEO: For Exposition Only (FEO) is an indicator that there is separate figure

associated with this diagram. For example, a context diagram. Its only at-

tribute is Pictlure. This is a reference id to that other figure associated with

the diagram.

30

4. Metanote: A note that provides information about the diagram as a whole. Its

only attribute, Text, holds the string of information the user wishes to convey

about the diagram.

5. Footnote: A note that is placed at the bottom of the diagram. It too has only

one attribute, Text. It is used to clarify any ambiguities that may be perceived

with the objects and their relationships within the diagram.

6. Note: A small message used to help clarify a particular part of the diagram

drawing. Its purpose is the same as that of a footnote. The only difference is

that a footnote is placed at the bottom of the diagram and a note is placed

among the diagram objects. There is usually a squiggle associated with a note.

Its used to show what area the note is referring to in the diagram. Its attributes

are:

* Text - Holds a descriptive string about an area of the diagram.

e SquiggleID - Unique squiggle identifier that associates the note with a

given area of the diagram.

7. Squiggle: used to assist readability in a crowded part of the diagram. It usually

points to a label or a note. Its only attribute is EndPt. Indicates how long

the squiggle is.

8. Label: Used to identify a data element by providing its name. It i, usually

associated with a line segment; but, in the case of crowding, a squiggle can be

used as a link between the line segment and the label. A label can also be used

to identify a footnote by providing the footnote number. A squiggle is always

used to point to the label when the label is associated with a footnote.

e Text - Contains the label text, it could be a data element name or a

footnote number.

3 1

* ObjectID - The unique id of the line segment or squiggle it is associated

with.

" DEName - Name of the data element associated with this label. This

could be a blank field if the label is associated with a footnote instead.

9. Line Segment: A data element consists of one or more line segments that are

connected to each other by simple turns or junctors and are finalized by an

arrow. Its attributes are:

e EndPt - Determines the length of the line segment.

* DENTame - The data element this line segment is associated with.

10. Simple Turn: A data element can be constructed of one or more line segments.

These line segments can be connected to each other by simple turns. All the

line segments connected by simple turns define the same data element.

9 EndPt - Determines direction of the simple turn.

* LinelID - Line segment id of line attached at the start point of the simple

turn.

* Line2_ID - Line segment id of the line attached at the end point of the

simple turn.

11. Junctor: Line segments can also be connected to each other viajunctors. These

differ from simple turns in that they are usually used to define the members

of a pipeline. So, a junctor can actually be connecting three different data

elements.

* EndPti - Determines direction of the junctor.

* EndPt2 - Determines direction of the junctor.

32

* LinelID - Line segment id of line attached at the start point of the

junctor.

* Line2_[D - Line segment id of the line attached at the first end point of

the junctor.

* LineMID - Line segment id of the line attached at the second end point

of the junctor.

12. Arrow: An arrow is what should really be called a terminator because the

presence of an arrow determines whether or not a data element has been com-

pletely defined. It. is always attached to a line segment on one end. The other

end can be attached to an activity box or left blank.

* Symbol - The arrow can have several shapes (see Figure 55 in chapter 2).

It can be a simple arrow-head, a tunnel arrow, a to-all or a from.all.

* Direction - Determines which way the arrow is pointed.

* Text - Used to identify the single character allowed in the to-all and

froir-all arrows.

* ObjecciLD - Unique id of a line segment, a box or a null object.

* Object 3D - Unique id of a line segment, a box or a null object.

13. Box: Defines the location of an, ctivity in the diagram. It has two attributes:

* EndPt - Determines the size of the box.

* AclName - Unique activity id of the associated activity.

There are thirteen relationships shown in the drawing model ER diagram. Of

these thirteen, there are only seven distinct relationships:

I Defines: For every activit3 there is one box defined.

33

2. DerivedLFrom: A diagram may be derived from an activity box, except for the

A-0 diagram which has no parent activity. On the other hand a box can have

zero or one diagramassociated with it.

3. Points-To: A squiggle points to a label or a note.

4. Id's: A label id's a data element by keeping its name or a footnote by keeping

the number of the particular footnote at the bottom of the diagram.

5. Connects-To: All the subcomponents of a data element are associated to each

other via the connector stubs.

6. Builds-A: A data element is composed of one or more line segments. In turn

each line segment must have only one data element associated with it.

3.6 Summary

This chapter presented the SATool II system requirements and the IDEFo

models that were created to satisfy those requirements. One of the goals of these

requirements was to create an object based system. Research done by Kitchen (17)

and Tevis (27) identified the essential and drawing models needed to construct an

object based system for SATool II. Shyong (24) completed work that fulfilled the

requirement for an expert system. The drawing model was revised by redefining the

relationships between objects and the attributes of those objects. The essential model

and the AFIT data dictionary format remain as defined in (17). The requirements

specified for the SATool II system as well as the structure of the essential and drawing

models are the primary factors influencing the GUI design and implementation.

34

IV. SATool I1 System Design

4.1 Introduction

The design of the SATool II system is divided into four major parts: the Essen-

tial Subsystem, the Drawing Subsystem, the Machine-Independent Ada Graphical

Support Environment (MAGSE) Subsystem, and the Graphical User Interface (GUI)

Subsystem. The object oriented design (OOD) process methodology used through-

out the development of SATool II is based on (5). The process is divided into four

steps (5:190):

9 Identify the classes and objects at a given level of abstraction.

* Identify the semantics of these classes and objects.

* Identify the relationships among these classes and objects.

* Implement these classes and objects.

The identification of the object classes, the objects and the relationship be-

tween them was accomplished via the analysis of the Entity-Relationship Diagrams

described in chapter 3 for the essential and drawing models. The semantics of the

classes were defined via the use of the Generic Multiple Object Manager. This man-

agei will be discussed in the next section. The implementationi of the object classes

and objects is discussed in the next chapter.

4.2 Generic Multiple Object Manager

The Generic Multiple Object Manager is a modified version of the Booch

component Queue Nonpriovity Balking Sequential Unbounded Unmanaged Iterator

(4:166-169). Its function is to maintain a sequential list of items. The abstract data

type (ADT) for this mana,er describes the operations that can be performed on

35

objects that are managed by it. Following is the abstract data type for the Generic

Multiple Object Manager:

Structure GenericMultipleObjectManager (manager,

object,

boolean,

pointer)

Declare

Create() => manager

Clear(manager) => manager

AddObject(item, manager, pointer) => manager', pointer'

SetObject(pointer, item) => manager'

RemoveObject(manager, pointer) => manager', pointer'

IsEqual(manager, manager') => boolean

IsEmpty(manager) => boolean

LengthOf (manager) => natural

InitializeIterator(pointer, manager) => pointer'

GetNext(pointer) => pointer'

ValueOfObj ect (pointer) => object

IsDone(pointer) => boolean

end Generic Multiple Object Manager

There is a separate manager declared for each type of object identified in the

Essential and Drawing Subsystems. The manager can add an object, modify it once

it's been added, view the contents of the object, or delete it from the list.

36

4.3 Essential Model Design

The Essential Subsystem is composed of seven object managers (Figure 8).

They are based on the essential model Entity-Relationship diagrams shown in Chap-

ter 3 (see Figure 1 and Figure 2). These figures identified 6 entities and 10 types

of relationships among the entities. Based on the domain analysis done by Kitchen

(17), those entities and relationships were reduced to seven object classes (types),

six of which have to be tracked via an object manager like the one described in the

previous section.

The project manager maintains the name of the project being held in the

SATool II environment. Since there is only one project in the SATool II system

at any time, a multiple object manager was not required. The activity, historical

activity, and data element object classes are a reflection of the entities described in

the previous chapter.

Three relation classes were identified as requiring a manager. The Calls relation

manager handles the relationships that are identified between an activity and a

historical activity. The Consists-Of relation manager handles the relationships that

are identified between an activity and other activities or between a data element and

other data elements. The final manager identified was the ICOM relation manager.

This manager maintains all the objects from the ICOM relation class. This class is

a summary of the Input, Control, Output, and Mechanism relationships identified

between an activity.and a data element in the essential model ER diagram.

An integral part of the Essential Subsystem is the Expert subsystem designed

by Kitchen (17) and Shyong (24). This subsystem is composed of four object classes

whose compound function is to determine if the essential model objects created for

a particular project follow the rules set by the IDEF0 methodology. Its operations

answei questions about the logical relationships between the essential model objects

and questions about the syntax adherence of those objects to those prescribed by

the IDEF0 methodology.

37

Essential

Activity Dt Historical ClsConsists ICOME lem e:nt A t vtRe ai nfRelation Relation
Manager Manageri Maae aae aae aae

Essential Data
Fact Ditionary

~CLIPS/Ada

LEGEND

Working Object
Memory ssena__

.nterface seta~OB is
..__ / --@ visible

I " to A

Rules file

Figure 8. Essential Model Design

38

4.4 Drawing Model Design

The Drawing Subsystem is composed of twelve object managers (Figure 9).

They are based on the drawing model Entity-Relationship diagram shown in Fig-

ure 6 (chapter 3). Each object class in the subsystem corresponds to a drawing entity

identified in the ER diagram. Each manager is an instantiation of the Generic Mul-

tiple Object Manager. The general operation of this generic manager was described

in 4.2. The Drawing Utilities object shown in Figure 9 is used to manage input and

output of a given project's drawing model. The operations of this manager are to

store and retrieve the drawing objects to and from a storage file into the SATool II

editing environment.

4.5 MAGSE Design

The MAGSE was designed and implemented by Tevis (27). It was designed to

serve as a general purpose interface between an Ada application and the X-Window

system. Its present function is to serve as an interface between the SATool II system

and the X Window System. Figure 10 shows the overall design of the MAGSE

subsystem. There are seven object classes in the subsystem (27:3-20 - 3-22):

1. Drawing Primitive - This class contains several basic objects that can be placed

on an X-Window screen: lines, boxes, circles, pixels, and text strings. The

operatioats that can be performed on these objects are: DrawObject and

EraseObject. These basic objects are used by the SATool II system to build

the IDEF0 diagram objects.

2. 2-D Plane - This class contains a two dimensional plane. The operations that

can be performed on it are: Set..XYDimensions, ClipComplex.Primitive on

the plane, and RenderComplex-Primitive on the plane.

3. 2-D Matrix Stack- Contains a stack that stores matrices used to perform two-

dimncnsional transformations. It': operations include: PushMttrix, Pop-Matrix,

39

jagrarn
Manager

-EO
Manage

ine Seg
Manage

rrow
Manage -

etanote
Manage

rawing
Subsystem -ootnote raNving

Manage Utilities

Note
Manag

Imple
Turn
i ana

quiggle
Manage

Juntor
Mana-e

0

Label LEGEND

Manag
Object

Box B is
Manag Z" <D Yisible

to A

Figure 9. Drawing Model Design

40

Multiply.Matrix with the matrix on the top of the stack, Rotate, Scale, and

Translate with a matrix at the top of the stack.

4. 3-D Pyramid - Contains a three-dimensional perspective pyramid. It sets the

X,Y,Z dimensions of the pyramid, the viewing location and perspective of the

pyramid, and clips and renders complex primitives in the pyramid.

5. 3-D Matrix Stack - Contains a stack for storing matrices used in performing

three dimensional transformations. The operations are the same as for a 2-D

Matrix Stack.

6. Input Device - The class contains a keyboard a cursor and a three button

mouse. It's operations include: Read_-KeyboardInput, GetCursorPosition,

Detect 3Mouse.Movement, Detect.AButtonClick, and DetectWindowEvents.

7. Window Manager - Contains a window manager object. There are seven win-

dow types: drawing window, acknowledge window, confirm window, dialogue

window, column menu window, sign window, and text window. The manager

can create, move, hide, display, store and delete these window types.

4.6 Graphical User Interface Design

The design of the GUI takes into consideration the requirements specified in

3.2 for the fourth and fifth subproblems, the design of the graphical user interface for

the original version of SATool, and a review of several other graphical user interfaces

(27:3-24). The result is a design that has four separate managers (Figure 11):

1. Project Manager- Contains the one project object that is present in the SATool

II system environment. This manager is responsible for ensuring that an ex-

isting project can be loaded for modifications and saved. It also allows the

user to create a project from scratch. This manager also has the capability

of transforming a project that exists only in its essential model form (i.e. no

41

devit 2-D 2-D
plce matrix

planestack

drawing
p~rimi tivye

pyramidl matrix
stack

LEGEND

C) Object

Figure 10. MACSE Design

42

drawing objects defined) and creates the diagram model. This project man-

ager is not the same as the project manager defined for the essential subsystem.

This project manager is in charge of handling the essential subsystem objects

as well as the drawing subsystem objects.

2. Diagram Manager - Manages the diagrams that are graphically presented to

the user. This manager ensures that the user can create and delete IDEF0

diagrams in the prescribed hierarchical format. It allows the user to view and

modify diagrams in a hierarchical order as well as allowing the user to access

a specific diagram without having to go through the entire hierarchy. Eke the

project manager above, this diagram manager views a diagram as consisting

of both the essential and drawing model objects.

3. Data Dictionary Manager - The data dictionary manager allows the user to

view the data dictionary information and perform modification operations on

the attributes of essential model objects. Only the modification of existing

objects is allowed. Creation and deletion of objects must be done via the

diagram manager. This manager does not deal with the drawing model objects

at all.

4 Environwent Manager - Allows the user to control the S \Tool II editing envi-

ronment via the following operations:

* Turn Grid On/Off- Allows the user to create his liagrams with or without

a guiding grid.

* Change Drawing Font - Controls the type of character that is used in the

diagrams.

e Change Line Thickness - Controls the thickness of the drawing lines.

* Change Objct Dimensions - Controls the size of objects in the diagram.

43

c2roObjec

Environment2 visiblear

to A

Figure 11. Graphical User' Interface Design

44

4.7 Overall SATool II System Design

The overall SATool II System design is shown in Figure 12. This system is

composed of the Graphical User Interface subsystem, the Essential Model subsystem,

the Drawing Model subsystem, and the MAGSE subsystem. The MAGSE subsystem

works as the interface between the SATool II system and the X-Window System. The

GUI performs the calls to the CLIPS Expert system operations to perform the syntax

and logical checks on the Essential subsystem objects. This design evolved as a result

of the design of the GUI which ties together all the other managers created for the

SATool II system.

4.8 Summary

This chapter described the design of all the components of the SATool II sys-

tem. There are four subsystems that contain managers to handle all the objects

found in the system. The essential model subsystem manages all logical objects that

contain the data dictionary information associated with activities and data elements

within an IDEF0 project. It also manages the expert system used for syntax check-

ing. The drawing model subsystem manages the drawable objects that define where

the activities and data elements appear on a diagram within an IDEFo project. The

MAGSE subsystem is used to manage the interface between the X-Window system

and the Ada based SATool II system. Finally, the GUI is the part of the SATool II

system that allows a user to view an IDEFo project and check its conformance wiih

IDEFo rules by tieing together the essential subsystem, the drawing subsystem, and

the X-Window System.

45

iX-Windows

LEGEND

~ object

>~ B is
Visible
to A

Figure 12. Overall SATool 11 System Design

46

V. Implementation

5.1 Introduction

This chapter describes the implementation of the Graphical User Interface

(GUI) subsystem identified in the previous chapter. The purpose of the GUI is to

bind all other subsystems into one homogeneous, user friendly environment. The

package dependencies for the Essential, Drawing, ani MAGSE subsystems are de-

scribed in Appendices A through C. The package dependencies for each module in

the GUI will be shown via diagrams composed of a modified version of module sym-

bols presented in (3:55-59). Figure 13 shows the three types of module symbols used

in this chapter to describe the SATool II system packages. The first module is used

to represent the main SATool II subprogram. The second module represents the

packages that encapsulate the object operations in the system. The third symbol

represents all the packages in an entire subsystem. This third symbol is used as a

space saver since there are some packages in the GUI system that require access to

all objects and operations from the essential subsystem and the drawing subsystem.

All Packages
in Subsystem

Subprogram Package

Figure 13. Booch Module Symbols

The following sections describe how the GUI subsystem is logically divided.

As described in the previous section, the GUI is composed of the project manager,

diagram maiager, data dictionary manager, and the envirunment m.nager. The

47

implementation of these managers is viewed from a window perspective. First, the

overall SATool II system environment is described, then each of the GUI windows

and their function are described along with their package dependencies.

5.2 Overall SATool II System Environment

Figure 14 shows the main SATool II window system presented at the start of

program execution. There are six distinct windows shown in this figure. Of these

six, there are two windows which hold the menus that implement the four GUI

managers. How each manager was implemented is discussed in the sections that

present a description of the menu windows.

The first window shown in Figure 14 is the SATool II title window. Below it

are the main menu window and the diagram edit menu title window used to identify

the tools window. The tools window sits on top of the objects window. Both the

main menu window and the tools window encapsulate the operations defined for the

four GUI managers. The diagram window is next to the tools and objects windows.

There are several other types of windows managed by the GUI that fall into the

category of popup windows that do not appear in this figure.

Figure 15 presents the package dependencies of the SATool II application. The

SATool II subprogram is used as a control mechanism for the GUI components.

The arrows going from the packages to the main subprogram indicate that the sub-

progiam can view the objects contained in each package and can only perform the

operationb allowed by those packages. The following section describes the window

types contained in the GUI.

5.3 Window Types

The GUI is implemented as a subsystem based on window objects. Each

type of window has its own set of operations that can be performed on it by any

give application. In general, the operations encapsulated by Lach wind)w package

48

SAtooii - the IDEFO Project Editor

Welcome to the SAtoolIl prototgpe.. .Select from the PROJECT menu to begin

Diagram PROECT =DIAGRAM DICTIONARY OUTPUT OPTIONS UTILITY
Edit Menu

AUTHOR: DATE: jREADER: I
crea e PROJECT: REV: DATE: I
Update

move--

Delete

Clear W o

Box
Line Segment

Arrow
Sl ple Turn

Squige
[Label

Hote

footnoe
etante
FEo HODE: A TITLE: tUHBER:

Figure 14. Overall SATool 11 System View

49

MAGSE Environment
Interface SATool2 Types

ia~ow Object

DialogDrawing

Title Help Tools Main Tools Objects Drawing
Window Window Title Menu Window Window Window

Window Window

Figure 15. SATool II Subprogram Package Dependencies

50

are create-window, view-window-contents, and get-window.id. The following list

summarizes the various types of windows present in the GUI subsystem:

* Permanent Windows - these are windows that once created, are constantly

displayed on the screen.

- Text Window - A text window is used to output lines of text to the screen.

- Drawing Window - Allows text and graphical objects to be drawn on it.

- Sign Menu Window - These menus have a set of button-like icons that

the user "clicks" on with a mouse.

* Popup Windows - These are windows that are created and show up only when

needed. Once the operation is completed they are erased from the screen.

- Column Menu Window - This window differs from the sign menu window

in that it is usually used as a submenu once an upper menu choice has

been selected. Instead of buttons, its choices are displayed in a column

format.

- Dialogue Window - This popup window is used by an application to accept

a string of text from the screen.

- Acknowledge Window - This popup window is used to convey messages

to the screen. These messages can range from error messages to simply

acknowledging the completion of an operation.

- Confirm Window - This is a type of dialogue window that accepts one of

three answers from a user: yes, no, cancel.

The following sections describe how these window types are used in the GUI

subsystem. There is one section for each GUI package described in Figure 15. It

can be observed that the MAGSE interface package is accessed by each packag,! in

51

the GUI. The MAGSEInterface package is a central player in every package of the

GUI subsystem since it is the gateway the system uses to communicate with the X

Window environment to output information to the screen about the window objects

it contains.

5.4 Dialogue Window

The dialogue window package actually encapsulates three different types of

window: dialogue, acknowledge, and confirm. Their operations are limited to cre-

atewindow and get.ser.response. Its package dependencies are listed in Figure 16

Dialog
Window

MAGSE Drawing DD

Interface Window Text

Figure 16. Dialogue Window Package Dependencies

5.5 Title Window

The purpose of the title window is to Identify the SATool 1I System. It is a

text window with no operations associated with it other than the create and view

52

operations. The only package dependency it has is the MAGSEJnterface package

(Figure 17).

MAGSE Title
Interface Window

Figure 17. Title Window Package Dependencies

5.6 Drawing Window

The drawing window is used to view the IDEFO diagrams. The operations

associated with it are create-window, clear-window, place-object-on-window,

delete-object-from window. Existing diagrams are output to it via the Diagram

button in the main menu and are edited via the diagram editing menus found to its

left. Its package dependencies are shown in Figure 18.

5.7 Main Menu Window

The main menu window provides access to the project manager, diagram mal-

ager, data dictionar3 massager and environment manager identified in Figure 11 of

Chapter 4. These managers are divided into six sections that can be accessed via

the six buttons seen in the main menu window. The package dependencies at this

level are seen in Figure 19. The following subsections will provide a description of

the operations provided by each button in the main menu.

5.7.1 Project Button The project button encapsulates the project manager

functions. Its package dependencies are shown in Figure 20. This button provides

ten operations:

53

Drawing
Window

MAGSE SA
Interface Diagram

Figure 18. Drawing Window Package Dependencies

1. Create Project - Allows a user to create a project from scratch. The SATool II

system requires unique project names. If a user tries to create a project using

the name of an exiting project, the system will output an error message to the

screen and allow the user to try again.

2. Load Project - Allows the user to access an existing project.

3. Save Project As - Multiple versions of a project can be saved by accessing

this operation. A given project is loaded or created. If the user wants to

make modifications to the project and save the original project as well as the

modified one, he can do so by saving the project under a new name. As with

the create operations names here must also be unique.

4. Save Project - This operation is used when the project that was loaded or

created is to be stored with the name given to it when it was created or loaded.

Once the project has been saved, the project is deleted from the SATool II

program environment.

54

MAGSE Environmen Project
Interface Types Manager

- ASEESS ESS

Main
Dialog Menu Utility
Window Window Button

Project Diagram Dictionary Outpu Options
utton Button Button Button Button

Figure 19. Main Menu Window Package Dependencies

55

5. Lay Out Project - This operation is used to automatically create diagrams,

given the essential model objects file exists.

6. Derive Project - This operation is used to automatically create the essential

model objects, given the drawing model objects file exists.

7. Show Directory - Allows the user to see the projects available for editing in the

present directory.

8. Change Directory - Allows the user to access a different directory so he can

view the projects contained in it.

9. Clear Project Environment - Deletes the present project from the SATool II

environment without saving the changes, if any.

10. Exit Program- Allows the user to exit the SATool II program after first checking

if the present project has been saved. If it has not been saved, it gives the user

the option of saving it under the given name or a new name.

5.7.2 Diagram Button The Diagram manager is divided into three parts.

This was done to create a more efficient system for the user. The edit operation was

given its own windows and menus. This diagram editor is located left of the drawing

window (see Figure 14). The print operation is handled by the Output Button

located in the main menu. The Diagram Button was given the view operation.

Within it there are three direct viewing options and two diagram traveisal options:

1. Show A-0 Diagram - Outputs to the diagram window the first diagram in the

hierarchy, the A-0 diagram.

2. Select by Diagram Name - Outputs to the diagram window the diagram iden-

tified by the user. The id used by this operation is the activity name.

3. Select by Hierarchy - First, the operation outputs a hierarchical view of the

diagrams via a pyramid schem, of lines and boxes. The view can go as far

56

Draw ESS
MAGSE Subsystem Subs m
Interface

MAC SE DRAVES

Dialog Project
Window Button

Figure 20. Project Button Package Dependencies

as twenty levels deep. The user is allowed to click on one of the boxes shown

in the hierarchy diagram. The chosen diagram is then output to the diagram

window.

4. Go to Child Diagram - Allows downward traversal of the diagram hierarchy

from parent to child, one layer at a time.

5. Return to Parent - Allows upward traversal of the diagram hierarchy from child

to parent, one layer at a time.

6. Refresh Diagram - Refreshes the diagram image in the drawing window.

Once the desired diagram is output to the drawing window, it can be edited

using the diagram edit menu windows located at the left hand side of the screen.

The diagram button package dependencies are shown in Figure 21.

57

MAGSE Diagram Drawing
Interface Button Window

MA 3E

Figure 21. Diagram Button Package Dependencies

5.7.3 Dictionary Button When a user clicks on the dictionary button, a

whole new layer of windows is output to the screen. The data dictionary editor

operations and package dependencies will be described in a separate section.

5.7.4 Output Button The Output button is used to control the hard copy

printouts the user might want to get from his project diagrams. The operations

provided by this button allow the user to print out the IDEF0 diagrams as well as

the data dictionary entries. The package dependencies are shown in Figure 22. This

button has two operations:

1. Output Data Dictionary - Outputs all the data dictionary entries into printable

text file. The format of the entries is the same as that seen in the Data

Dictionary Editor.

2. Output Diagram - Provides information to the user on how to output any given

diagram using the X Window environment.

5.7.5 Options Button The environment manager is encapsulated by the Op-

tions Button. It provides operations to change the present SATool II editing envi-

ronment. Its package dependencies are shown in Figure 23. It has four operations:

1. Grid - Allows user to turn on or off a grid in the drawing window. This grid

can be used to aid in the construction of a diagram.

58

MAGSE Output Drawing
Interface Button Window

MA3E

Figure 22. Output Button Package Dependencies

2. Drawing Font - Changes the text font for labels and notes appearing in the

drawing window.

3. Line Thickness - Changes the line thickness of activity boxes and line segments

of a diagram.

4. Dimensions - Changes the size of objects in the diagram.

MAGSE Options Drawing
Interface Button Window

MA(1)E

Figure 23. Options Button Package Dependencies

5.7.6 Utility Button The utility button has two operations. The first is Check

Syntax. This operation allows the user to do a CLIPS syntax check on the essential

model objects in the project. Presently, there is no equivalent check for drawing

model objects. The second operation provided by the utility button is Refresh Screen.

It can be used to redraw all the windows and their text. The package dependencies

for this button are shown in Figure 24.

59

MAGSE Utility Drawing
Interface Button Window

MA(SE

Figure 24. Utility Button Package Dependencies

5.8 Tools Title Window

This window is used to identify the diagram editing windows that sit below

it. It has no operations associated with it. Its package dependencies are shown in

Figure 25.

Tools
MAGSE Title
Interface Window

Figure 25. Tools Title Window Package Dependencies

5.9 Tools and Objects Windows

The Tools and Objects windows are directly related to each other. The user can

access these menus directly so he can create IDEFO diagrams or edit existing ones.

These menus were placed in permanent sign menu windows instead of the popup

column menu windows to provide easier access to the user. The way these two

windows work together is by allowing the user to click on one of the tools window

buttons. If the cieate, upddte, move, or delete buttons are selected, the system

60

then waits for the user to click on one of the object buttons. The tools window

and objects window package dependencies are shown in Figure 26 and Figure 27

respectively. Following is a discussion of the operations provided by each button in

the tools menu.

MAGSE Environmen Project
Interface Types Manager

Dialog Tools Drawable
Window WIndow Class

Create Update Move Delete Diagram Undo
Button Button Button Button Button Button

Figure 26. Tools Window Package Dependencies

5.9.1 Create Button The create button allows the user to create an A-0 di-

agram when there is a new project in the system. If the project already has one or

more diagrams, the usei must first bring up one of those diagrams before any cre-

ation or editing can be done. This ensures that the diagram system is hierarchically

correct. Once a diagram has been reated, it is displayed in the drawing window and

61

MAGSE Objects
Interface Window

Figure 27. Objects Window Package Dependencies

the user can begin to place activities and data elements in it. Subsequent diagrams

can be created by first clicking on the Create button, then the Diagram button, and

then clicking on an activity box in the diagram. This creates the diagram associated

with the given activity box. If that box already has a diagram associated with it,

an error message is issued. The package dependencies are shown in Figure 28.

5.9.2 Update Button The update button- allows updates of data element

names, activity names and numbers, label text, and note text (includes footnotes

and metanotes). Package dependencies are outlined in Figure 29.

5.9.3 Move Button This button allows an object to be moved from one place

to another in the diagram. It ensures that illogical placements do not occur. For

example, placing an arrow-head inside an activity box. The package dependencies

for this button are shown in Figure 30.

5.9.4 Delete Button Objects are deleted by first clicking on the Delete but-

ton, then an object button, and then clicking on the target object in the diagram.

All traces of that object then erased from the essential subsystem and the drawing

subsystem. Package dependencies for this button are shown in Figure 31.

5.9.5 Clear Diagram Button Clicking on this button will cause the present

diagram to be erased front the drawing window. There is no need to call a save

62

MAGS. Draw ESS
eASe Subsystem Subsystem

Interface

MA 3EDR

Create
Button

Object

Dialog Objects Drawing Drawing
Window Window Window Package

Figure 28. Create Button Package Dependencies

63

Draw ESS
MAGSE Subsystem ubste
Interface

Up date
Button

Dialog Objects Drawing
Window Window Window

Figure 29. Update Button Package Dependencies

64

Draw ESS

MAGSE Subsystem ubsteInterface

Move
Button

Dialog Objects Drawing Drawing
Window Window Window Package

Figure 30. Move Button Package Dependencies

65

Draw ESS
MAGSE Subsystem Subystem
Interface

MAG SE D

Delete
Button

Object
Dialog Objects Drawing Drawing
Window Window Window Package

Figure 31. Delete Button Package Dependencies

66

opera.ion because all creations and modifications are saved into the respective sub-

systems when they are made. Deleting the diagram from the screen will cause the

system to wait for a diagram to be called up via the Diagram button in the main

menu window before any more operations can be performed with the diagram edit

menu. Figure 32 shows the package dependencies for this button.

MAGSE Drawable
Interface Class

Clear

Diagram -

SA Draw'igDiagram 1I win

Figure 32. Clear Diagram Package Dependencies

5.9 6 Undo Buthn This button lets the user undo the last command. If

creation was made, then the created object is deleted. If an object was moved, it

is placed b-.ck into its original location, and so on. The package dependencies are

shown in Figure 33

5.10 Data Dictionary Editor

When the Dictionary button is pressed in the main menu window, the user is

given four choices Ile can veew the data dictiontry entries for all activities, all data

(;7

MASEDraw ESS

InracSe Subsystem Subsstm

MA' EDA

Undo

Button.

Object
Dialog Object Draing Drawving
Window Window Window Package

Figure 33. Undo Button Package Dependencies

68

elements, a single activity, or a single data element. Depending on which choice is

made, the system will then bring up a new set of windows.

There are separate edit screens for the activity and data element entries (see

Figure 34 and Figure 35). In general, each screen has four windows: a title window,

an edit window, an options window, and a text window. The title window is used to

identify the Data Dictionary editor. The text window shows the data dictionary entry

information for each activity or data element, one at a time. The edit window allows

changes to be made to the text via its edit buttons. The entry is then automatically

updated in the screen. The options menu allows the user to traverse through all the

data dictionary entries via the Next Activity or Next Data Element button. Each

entry may be several pages long and can be viewed page by page with the em Next

Page button. This window system can be exited via the Exit button. The data

dictionary package dependencies are outlined in Figure 36.

5.11 Summary

This chapter presented the implementation of the Graphical User Interface

subsystem. In the previous chapter this subsystem was identified as having four

general object managers. In this chapter it was shown how these four managers

were implemented within the SATool II system via the different menus and windows

provided by the application. The GUI is divided into a set of window objects and

the SATool II subprogram is used as a means of couLrol for these windows and the

operations that are defined for each.

69

Activity Next Page INext Activity I I Exit
Edit Menu

- General Activity Information
Activity Name *......

Name Control-Elevator
Type ActivityActivit U Number Project Control-Elevator
Number AO

Append Description Description :
OccriptloDeoc AO control elevator

ICON Information :
Replace Description Data Element Relationship To Activity

summonsindlcatlon C
floor-sensor c

I Ap'end Reference door-sensor c
_ system.control c

control-signals o
passenger-requests

Replace Reference overload-sensor I
floornotordrivoit
door_.otor.drlve M

{ Reference Type Calls
No calls relation info for this activity.

Version Parent Act

Reference
Append Version Changes Reference No text present.

Ref Type
Version

Replace Version Changes Changes

Changes Ho text present.

Version Date Date
Author

Version Author

Figure 34. Activity Data Dictionary Editor Screen

70

Data Element I Next Page INext Data Element] Exit
Edit Menu_

Data Element Name : General Data Element Information

Append Description Name summnoindication

Replace Description Type Data Element
Project Control-Elevator

Data Type Description :

Min Value Descriptionot-nul1

Data Type
Max Value in VayueMax Value
Data Range Range

I Append Values Values :
Values No text present.

Replace Values Decomposition

S pPart of :
Append References No parents found for this data element.

Composed of :Replace References No children found for this data element.

Reference lype ICON Information :
Activity Relationship To Activity

IVersion Control-Elevator C

StoreRequest c
Elevator-Control cnAppend Version Changes MageSumeons.Request c
Hanage-Destination c

Replace Version Changes Check-Destination c
Control-Request cVersion Date StoreDestRequest c

Version Author = Reference :
Reference No text present.

Ref Type
Version

Changes
Changes No text present.

Date

Figure 35. Data Element Data Dictionary Editor Screen

71

Environment Activity Activity Data Element Data Element
Types Class Manager Class Manager

DD D Eit DD["S " y

ESS E SS

MAGSE
Int erface

Dictionary Drawing
MA3EButton -Window

Window Title Window Window Window Window

Figure 36. Data Dictionary Button Package Dependencies

72

DD
MAGSE Edit Menu
Interface Title Window

= MA'E

Figure 37. Data Dictionary Main Menu Title Window Package Dependencies

MAGSE ESS
Interface SUbst

DD DD 1

Tex t Main Menu
Window Window

Figure 38. Data Dictionary Main Menu Window Package Dependencies

73

MAGSE Essential
Interface Subsystem

Activity
MA E Edit Menu = S

Window

=> DD
Dialog Text
Window Window

Figure 39. Data Dictionary Activity Edit Menu Window Package Dependencies

MAGSE Essential
Interface Subsystem

DD
Data ElementMA' EEdit Menu ESS_ _ .

Window

Dialog Text
Window Window

Figure 40. Data Dictionary Data Element Edit Menu Window Package
Dependencics

74

DD
MAGSE Text
Interface Window

Figure 41. Data Dictionary Text Window Package Dependencies

75

VI. Testing and Evaluation

6.1 Introduction

This chapter presents the testing procedures, test results, and evaluation of

the SATool II system. "Software testing is defined as the execution of a program

to find its faults" (13:191). Myers states that "a good test case is one that has a

high probability of detecting a previously undiscovered defect, not one that shows

that the program works correctly" (20). The purpose of the tests performed on the

SATool II system was to determine how many faults could be found. A test was

successful if it found an anomaly in the system. It failed if it did not detect an

error. The following section describes the tests performed on SATool II. The results

of these tests are then discussed. Finally, an evaluation is made of the system as a

whole based on the test results.

6.2 Testing

There are seven types of tests that can be performed on a software system

(13:192-204). The following subsections discuss the tests performed on the SATool

II system based on these seven types of tests.

6.2.1 Unit Tests Also known as white box testing because the test is based

on knowledge of the internal design of the module. It is used to validate single

programs or modules. These are essentially path tests and are typically conducted

in isolated or special test environments. Each module in the SATool II system was

tested using this white box approach. This included all the operations performed

by the main menu buttons and the operations performed by the diagram editing

buttons. General test casvs were defined for each module based on the possible

paths the module could f'!ow (see Appendix F).

76

6.2.2 External Function Tests Validate the external system functions, as

stated in the external specifications. This is also known as black box testing be-

cause the test performed has no knowledge of the internal design of the modules

being tested. This type of test was used in conjunction with the integration test

described below.

6.2.3 Integration Tests Validate the interfaces between system parts (mod-

ules, components, subsystems). It can be performed in one of three ways:

* Bottom- Up - Each module is tested separately using special development drivers

that provide the needed system functions. As more modules are added to the

system, the driver is replaced by the modules that perform the simulated func-

tions.

* Top-Down - Uses a prototyping approach. A basic system skeleton is con-

structed and new modules are added and tested as they are developed. The

function of lower level modules are simulated by program stubs.

* Big Bang - Each module is developed first. Then, the are all assembled and

run together. This is the least effective of the three methods. The need for

special drivers or module stubs is eliminated; but, each module is only given a

cursory test with this method and the likelihood of a total system integration

failure is great.

Integration testing for SATool II was performed using the top-down approach.

The main subprogram was developed and implemented with stubs for each major

function. As each module was developed, it was attached to the main system and

tested to ensure proper integration.

6.2.4 System Tests Validate the system to its initial objectives. The ro-

bustness of the system as a whole is considered during these tests. They take into

77

consideration factors like peak loads and volume the system can accept, security, per-

formance under peak and normal conditions, system reliability, and recovery mecha-

nisms. The SATool II code was designed to be internally robust. It tries to take into

consideration all possible inputs to the system. When a failure is detected anyway,

a secondary mechanism takes control where the program terminates as gracefully as

possible. So, the system testing for SATool II was actually embedded into the unit

and integration testing cases.

6.2.5 Acceptance Tests Validate the system or program to the user's require-

ments. This test was done in conjunction with the installation test described below.

6.2.6 Installation Tests Validate the instability and operability of the user's

system. In other words, test the system in a real user's environment. This test was

performed by getting several volunteers to use the system and fill out questionnaires

pertaining their evaluation of the system based on a set of criteria. Appendix G

contains a sample of the standard form used by the Department of Electrical arid

Computer Engineering at AFIT to evaluate software systems.

6.2.7 Regression Tests Run a subset of previously executed integration and

function tests to ensure that program changes have not degraded the system. This

type of test is usually performed once a system has been developed and is operational.

Therefore, this type test was not used at this point for SATool II. However, if future

regression testing should be required, Appendix F contains the test cases developed

for this research effort.

6.3 Test Results and Evaluation

6.3.1 MAGSE Interface Throughout the development of the SATool II ap-

plication several errors were detected in the MAGSE Interface procedures. These

errors have been corrected and documented in the code of the following procedures:

78

* MAGSEInterface.InputDevice.GetConfirmChoice

* MAGSEInterface.InputDevice.GetDialogueResponse

e MAGSEInterface.InputDevice.Get.MenuEntry Choice

* MAGSEInterface.InputDevice.WaitForAcknowledgement

The only observed discrepancy that has not been corrected in the MAGSE

subsystem is related to the exposure of window text. If a window is hidden or

covered by another window in the SATool II application and then shown again, the

contents of the window are not re-exposed as well. Since this is not a problem that

occurs often, a temporary solution has been created by the addition of a Refresh

Screen operation to the Utility Button menu.

6.3.2 Graphical User Interface The unit test cases presented in Appendix

F were used to validate the proper function of each operation the SATool II per-

forms. These test cases were useful in uncovering several logical errors. The errors

encountered have been identified and are currently being corrected.

The test cases for the integration test consist of a set of IDEFo project diagrams

for a project named ARTMOS (see Appendix F). The purpose of re-creating this set

of diagrams within the SATool II system is to ensures that the system can accurately

create the essential and drawing model information for a project that containes a

comprehensive set of diagramb. This test should be performed on the system once

the unit testing errors have all been corrected.

The installation test should be performed by obtaining user evaluations with

the CAD-Tool Human-Computer Interface Evaluation form (see Appendix G). This

form can be used to measure the user satisfaction with the tool's graphical user

interface. This test should be performed once the system has been validated at the

integration level.

79

6.4 Summary

This chapter presented the test procedures used to evaluated the SATool II

system. Comprehensive unit tests were performed during the system development

and were helpful in uncovering several logic errors. Corrections are currently being

made to the SATool II code based on the unit test results. The integration test and

installation test should be performed once the code has been validated by the unit

test cases.

80

VII. Conclusions and Recommendations

7.1 Summary

This thesis was divided into seven chapters. The first chapter presented the

background information that triggered this research effort. Chapter 2 presented the

findings of the litetature review performed in order tp explore system enhancement

alternatives for the SATool II system. Chapters 3, 4, and 5 presented the Require-

ments Analysis, Design and Implementation of the SATool II system. The SATool II

tests, results and evaluation were presented in Chapter 6. This chapter summarizes

the thesis findings and presents several recommendations for further work to be done

with the SATool II system project.

7.2 Conclusions

7.2.1 Research Accomplishments This investigation resulted in several ac-

complishments in relation to the design and implementation of the Graphical User

Interface for the SATool II system:

e The revision of the dfawing model for the SATool II system. The revision

redefined the relationships between the objects in the model and the attributes

for each object. This revision made a simpler implementation of the GUI

possible.

* The design and implementation of the revised drawing model.

* Development of a layout algorithm for IDEF0 diagrams.

* An object oriented design and implementation of the GUI was completed. The

system was implemented so that future enhancements to the system can be

easily added.

81

* Demonstration that the essential model implementation and the revised-draw-

ing model implementation have been fully integrated into the SATool II system.

This ensures that future revisions of the models are not necessary to get the

system to operate correctly.

7.2.2 SATool II The integration of the essential, drawing, and MAGSE sub-

systems into the GUI was a much larger task than seemed on the surface. Working

with faulty code found in the MAGSE subsystem only made the job more difficult.

With all the revisions and stumbling blocks encountered, the project was still ac-

complished. All the major operations required for proper system operation were

implemented. The system is now at a point where all component subsystems have

been fully integrated. Major revisions of the models are not necessary or desired at

this point since the system has been implemented using the models as they currently

stand. However there are a few minor modifications recommended for the drawing

and essential models. These are discussed in the next section.

7.3 Recommendations

7.3.1 SA Tool II Menu Selections There are still some menu options that have

not been implemented. Future revisions of the system should include the addition

of the operations defined for these menu options. These operations include:

e Main Menu Window

- Project Button

* Lay Out Project

* Derive Project

* Show Directory

* Change Directory

- Diagram Button

82

* Show by Hierarchy

Options Button

* Grid

* Drawing Font

* Line Thickness

* Dimensions

* Tools Menu Window

- Move Button

* Box

* Line-Segment

* Simple-Turn

* Junctor

* Arrow

* Squiggle

- Undo Button

7.3.2 System Enhancements Chapter 2 outlined several enhancement options

that could be added to the SATool II system in the future. These options included

highlighting via color, an online help function, an automatic diagram layout function

that creates drawings from an essential model description, and a configuration control

function for the projects managed in the SATool II system.

7.3.3 The MAGSE Subsystem The MAGSE subsystem is connected to the

X Window System via SAIC's version of Ada bindings to X Lib (14). A good

enhancement option for this subsystem would be to replace the X Lib/Ada binding

code with X Window's Motif which perforitis a function similar to that of the MAGSE

83

subsystem. The MAGSE operations should itrmain tid to. the SATool II system.

Only the internal structure of the MAGSE should be changed. This will avoid, a

major code rewrite to the system.

7.3.4 The Essential and Drawing Models The Tools Menu of the SATool 11

system provides a button for updat;ng textual information maintained by the dia-

gram header like C-Number, Readers, and Reader Dates. This textual information

presents an incongruency for the SATool II system in the- sense that all the other

textual information found in the diagram header is updated via the data dictionary

editor. If these particular diagram attributes are not necessary for the essential

model, why have them at all? If they are an essential part cf the diagram, then they

should be added as attributes of the activity objects that represent each diagram.

Another incongruency found in the implementation of the SATool II system

is the fact that the label object can be associated with either a squiggle or a data

element. This dualism causes the label object to maintain the same information (data

element name) in two separate fields when it is associated with a data element and

have an empty field (Related Data Element) when it is associated with a squiggle.

A better arrangement would be to have two separate types of labels, one associated

only with data elements and the other with squiggles.

84

Appendix A. Essential Subsystem Implementation Packages

The essential subsystem packages -and the CLIPS system packages are pre-
sented in Figure 42, Figure 43, and Figure 44. These figures outline the relationship
between the object managers of the essential subsystem and SATool II. A full de-
scription of these packages can be found in (17),and (24). The EnvironmentTypes
package shown in Figure 42 contains the Generic Multiple Object Manager all the
object managers in the essential subsystems are based on. Each object manager is
in turn accessed as a separate entity by the SATool II system. This package also
contains global variables accessed by all managers.

85

MenuJO ESSENTIAL SUBSYSTEM(es-.main) Eroiadr

Consists-OfRelation..Mana er Activity..Manag r

ICOMReltiol ana'erta-.Element-Man iger

EssentiaL-IO

CallsRelaio aagerHis orical-Activity-Minager

Environment -Types Generic..Multiple-Object.M anager Project-Manage

Figure 42. Essential Subsystem Package Dependencies

86

Essential.Fact-Utilities

ConsistsOf.RelationManager Activity.Manager

ICOM.Relation.Manager DataElement.Manager

Calls.Relation .Manager Historical.Activity-Manager

Environment-Type Project-Manager

Figure 43. Essential Fact Utilities Package Dependencies

87

Olips..Working-M~emory-Interface

Essential-Fact-Utilities Embeded..Clips (a CLIPS/Ada package)

Environment-.Types

Figure 44. CLIPS System Package Dependencies

88

Appendix B. Drawing Subsystem- Implementation Packages

The drawing subsystem packages are presented in Figure 45. This figure shows
the relationship between the object managers of the drawing subsystem and SATool
II. A full description of these packages can be found in (27). The object managers for
the drawing subsystem are all based on the Generic Multiple Object Manager which
is contained in the EnvironmentTypes package shown in Figure 42 of Appendix A.
Each object manager in the drawing system is in turn accessed as a separate entity
by the SATool I system. The DrawableClass package contains global variables
common to all drawable objects.

89

Line
Box Segment

SATool2/

FEO Terminator

Footnote Connector

Label Squiggle

Metan te Note

Figure 45. Drawing Subsystem Package Depcndencies

90

Appendix C. MA GSE Subsystem Implementation

The MAGSE subsystem packages are presented in Figure 46. This figure shows
the relationship between the MAGSE subsystem and SATool II. A full description
of these packages can be found in (27). MAGSElnterface is-the global package that
allows the SATool II system access to all other packages in the subsystem.

91

drawing
primitive

plane2D pyramid3d

SATo2

matrix2D matrix3D

window input
manage evice

MAGSEglobals

Figure 46. MAGSE Subsystem Package Dependencies

92

Appendix D. SATool II User's Manual

D.1 Introduction

D.1.1 Background and Purpose The SATool II software is an IDEFo project
editor program. IDEFo stands for ICAM (Integrated Computer Aided Manufactur-
ing) Definition Method Zero and is a rule-based graphical symbol notation language.
IDEF0 was originally designed to describe the function model of a manufacturing sys-
tem or environment. This function model then acted as a structured representation
of the system functions and of the information and objects relating those functions.
AFIT has expanded the purpose of IDEFo by using it in the requirements analysis
phase of the software life cycle. SATool II adds the power of the computer to this
requirements analysis process.

D.1.2 Features SATool II lets you completely create, modify, save, load,
check the syntax of, and print the diagrams and data dictionary information of
an IDEFo project faster and easier than using pencil and paper or even a general-
purpose computerized paint program. It supplies you with specific tools and services
to build diagrams using the IDEF0 language notation; however, it is not designed
to teach you how to put a project together. Nevertheless, SATool II's built-in help
facility will guide you through its many features and work with you in producing
IDEF0 diagrams. The user interface of SATool II should look very familiar to you.
It is based on the design of popular case tools, word processing programs, paint
programs, desktop publishing programs, and circuit design software.

D.1.3 System Requirements SATool II is an X Window System client pro-
gram. This means that the computer having the graphical display monitor that
SATool II appears on must have an X server and an X window manager program
running on it, a keyboard, and a 3-button mouse. However, the SATool II pro-
gram itself can run remotely on a computer networked with the computer having
the graphical display, keyboard, mouse and X programs. The SATool II program
currently can run on a computer (host or remote) with the UNIX operating system
and a 68000 processor. Refer to the Getting Started section for more information.

D.1.4 Overview This manual appeals to a variety of user personalities. The
an::ious user can read the Getting Started section and have SATool II running almost
immediately. The more methodical user can refer to the Getting Started section and
then the Guided Tour section for a walk through the basics of SATool II. The curious
user can study the in-depth descriptions in the Objects and Tools section and the
Main Screen Menus section. The I need it right now user can skim the Getting
Started section and the Printing a Window section to get enough information on
how to produce an IDEFo diagram on paper as quickly as possible.

93

D.2 Getting Started

D.2.1 Quick Start If you don't have time to read the manual, the steps below
can get you up and running right now. The workstation you are using should have a
graphical display, keyboard, 3-button mouse, and an X server and X window manager
running on it. If you are missing any of these items, you will need to refer to the
other sections in this manual before starting. Here are the Quick Start steps:

1. Create an SATool II directory and change to that directory.

2. Type 'satool2 RETURN'. A window outline will soon appear on the screen.

3. Use the mouse to position the window outline to a desired screen location;
press the left button to finally place the window.

4. When the SATool II screen appears, use the left mouse button to click on
PROJECT on the left side of the main menu.

5. Ir the PROJECT menu, clicl; on the Create Project selection.

6. When the dialogue box appears, type in the name of the project you wish to
create and press RETURN.

You are now ready to create and modify an IDEF0 diagram or multiple IDEF0
diagrams. You begin by creating a diagram via the Tools Window. First you click
on CREATE and then on DIAGRAM. You have the option of filling in the diagram
header information at this time. If you prefer not to do so, the information can
be updated later on via the data dictionary editor (DICTIONARY button). At
this point you can create objects in the diagram by clicking on CREATE and any
of the twelve objects on the Objects Window. Subsequent diagrams are created
hierarchically by clicking on CREATE then on DIAGRAM and then on a target
activity box in the drawing window. To save your work, click on PROJECT. Then
click on the Save Project selection. To exit SATool II, click on PROJECT. Then
click on the Exit Program selection.

D.2.2 Operating Environment SATool II uses the window and graphics fea-
tures of the X Window System produced by MIT. To run SATool II, you must have
the following:

9 A computer workstation or personal computer with an X server program and
an X window manager running on it, a graphical display, a keyboard, and a
3-button mouse

9 A host computer which runs the UNIX operating system and has a 68000
processor (The host computer can be the same as the computer workstation
or personal computer)

94

* Directory path access tothe executable version of the SATool II program

You can execute SATool II on a remote computer by using the UNIX remote
shell command (rsh). Refer to the -display command line option for more informa-
tion.

D.2.2.1 Display One of the outstanding aspects of the X Window Sys-
tem is its ability to send graphical display information over a network. The display
option tells SATool II and the X Window System the name of a remote computer
and display to exchange graphical information with. An application program that
uses the X Window System is referred to as an X client. An X client can execute on
one computer and have all of its graphical input and output handled on the display,
keyboard, and mouse of a remote computer connected through a network. When an
X client begins execution, the X Window System automatically chooses the most
efficient communication route between the client and the display. If the client exe-
cutes on the same computer where the display is located, this route is rather simple.
However, the UNIX remote shell command, the X network protocol, and an X server
program make it possible to remotely execute an X client. Below is an example sce-
nario on how to execute a remote X client and establish the remote connection back
to the host computer:

Two UNIX workstations, each with a graphical display, are on the same
network and have the same file server. The workstations are named alpha
and beta. Beta runs programs three times faster than alpha. A user who
logs into alpha can remotely use beta (rlogin or rsh) without a password
check. The same is true for a user on beta. The user on alpha has
already entered the xinit command and has an X window manager up on
the screen. The user on beta is running another type of window system.
The user of alpha wants to run SATool II on beta because the computer
is faster, but he wants alpha tu handle all the display input and output
because that is the computer he is at. To do this, he enters the following
commands:

%alpha: xhost beta
.alpha: rsh beta "SATool II -display alpha:O" &

Here is a list of important points to remember when following this example:

* An X server with an X window manager and Xterm client must be running
on the workstation of the console that you are at. In the example above, that
workstation is alpha.

95

* You enter'the commands in the example above in the xterm Window on your
computer.

* The xhost tells the X server on your computer which- remote computers are
allowed to make connections to the X server on alpha.

e The rsh beta SATool I1tells UNIX to run SATool II on beta's processor. Beta
must have direct access to the SATool II executable code (symbolic links cause
problems). The X server on alpha does. not need to know anything about the
location or purpose of the SATool II program. It only needs to know that
SATool II is an X client.

• The -display alpha:O tells SATool II to receive all of its graphical input from and
send all of its graphical output to display 0 on alpha. The displays attached to
a single processor in UNIX are numbered starting with 0. Because alpha has
only one display, the number for that display is 0.

* The ampersand tells UNIX to begin the program on beta as a separate process
and return input and output functionality to the xterm window on alpha.

D.3 A Guided Tour

D.3.1 Introduction This section walks you through the basics of SATool II.
The tour is designed to give you hands on experience immediately. You learn how
to use some of the tools and, at the same time, how to give some simple commands
and responses to the acknowledge windows, menus, confirm windows, and dialogue
boxes that appear on the screen. When you finish this section you will be able to
create, modify, save, and load an IDEFo project using SATool II. Note that the word
click is used frequently throughout this manual. This refers to pressing and releasing
a mouse button.

D.3.2 The Main Screen In the GETTING STARTED section you learned
how to execute SATool II either on your computer or remotely. Follow the steps in
that section at this time to get SATool II started. Figure 47 shows the main screen
face of SATool II. This same screen face should be in a window on your display. The
main screen has the following parts:

" Title Window. The title window is located at the top of the main screen and
identifies the program as SATool II.

" Main Menu Window. The main menu window is located just below the help
window. It contains the names of pull-down menus that list commands that
you can give SATool Il.

" Tools Title Window. The tools title window is located at the top of the Tools
Window and identifies the Tools Window used to edit diagrams.

96

* Tools Window. The tools window is located on the left side of the main screen
below the Tools Title Window. The tools window contains a button for each
tool' .haL you can use to place or modify an IDEF0 object in a diagram.

* Objects Window. The objects window is located on the left side of the main
screen just below the Tools Window. It contains a button for each of the IDEFo
objects that you can place in a diagram.

* Drawing Window. The drawing window is the large central work area for
SATool II. This is where you will create and modify a diagram in an IDEF0
project. In the drawing window you will see the top and bottom headers of an
IDEF0 diagram. The drawing window is also where SATool II displays pop-up
windows and various views of the diagrams making up a project.

* Cursor. The cursor changes form when you move from one window to the
next to remind you of the purpose of the window. In the case of the drawing
window, the cursor is an arrow.

D.3.3 The Keyboard and Mouse SATool II accepts input from you through
the keyboard and through the mouse. On the keyboard, SATool II recognizes only
the keys that normally appear on a typewriter. SATool II only uses the keyboard
with a dialogue box. When a dialogue box is displayed you can use the keyboard to
enter characters and press RETURN for SATool II to accept the characters. SATool
II uses the mouse for all other user input. Moving the mouse also moves the cursor on
the screen. SATool II detects the cursor position and its movement. It also detects
when you press a button on the mouse.

D.3.4 Using Tools and Objects When you begin SATool II, you have a project
with no diagrams. The drawing window displays a template of the IDEFo context
diagram A-0. If you click on PROJECT in the main menu and then click on Load
Project, SATool II will prompt you for a project name and load the project into
the SATool II environment. To add an IDEFo object to the diagram, click on the
CREATE button in the Tools Window and then click on one of the objects in the
objects window. Once you have created an object, you can delete it from the diagram
by selecting the DELETE button, clicking on the target object type in the Object
Window, and then clicking on the desired object in the Drawing Window.

D.3.5 Creating and Viewing a Project SATool II is not a general-purpose
paint program, therefore it doesn't just let you pick an object and do whatever you
want with it in the drawing window. It knows enough about IDEFo to guide you
in using the objects and tools properly to create IDEFo diagrams. One example
of this guidance is the operation for creating diagrams. Once you have created the
A-0 diagram, you can use thi. operation only in conjunction with a box. When you
select the CREATE tool button followed by the DIAGRAM object button, SATool

97

SAtoolil - the IDEFO Project Editor

Welcome to the SAtoolII prototype.. .Select f'rom the PROJECT menu to begin

Dlaaram PRJC DARM DICTIONARY] OTU OPIN =UTL-ITYl
Edit Menu =I

AUTHOR: DATE: READER:

Create PROJECT: IREV: IJATE:I I I

Updat-e-

Move

Delet

IClear Wino.

IDiagram

Line Segment

Simple Tr
Junctor

Squiggle
Label
Note=

Footnt
Hetinote

FB-- HODE: A ITITLE: NUMBER:

Figure 47. SATool II Main Screen Face

98

II waits for you to select a box in the current diagram. When you do, it replaces the
diagram in the drawing window with the child diagram. of that box. This diagram
will be empty if you just created it. To return to the diagram that the box belongs
to, click on the DIAGRAM button in the Main Menu Window and select the Return
to Parent selection. SATool II will return the parent diagram to the drawing window.
You can be assured that anytime SATool II changes the diagrams in the drawing
window that it has saved the contents of the current diagram in memory.

D.3.6 Saving and Loading a Project To save the project you have been work-
ing on, click on PROJECT in the Main Menu Window. Select Save Project if you
wish to save the project under its current name. Otherwise, select Save Project As
if you wish to save the project under a different name.

To load a project, click on PROJECT in the main menu and select Load Project.
SATool II will then ask you for the name of the project. Enter the project name
without any extensions attached. An error message will appear in an Acknowledge
Window if the project was not found in the current directory. You will be asked to
confirm a load operation if you attempt to load a project when there is a project
already in the SATool II environment that hasn't been saved already or cleared from
the system.

D.3. 7 Error Handling Whenever SATool II detects an error, it will display
an acknowledge window containing an error message. If the error is not serious,
SATool II will just wait for you to press a key or click a button to continue. If the
error is serious, Satool II will display a confirm window after you press a key or click
a button. In the confirm window SATool II will ask if you want to continue the
session or let the error go to the operating system and abort the program. When
a confirm window appears for a serious error, your best move is to not abort the
program. Select NO and then immediately try to save your project and exit SATool
II. SATool II keeps track in an error file of any errors that occurred in the current
session. Check this file after you exit SATool II if a serious error occurs. If will give
you a betier idea of what happened and what you can do about it.

D.3.8 Exiting SATool II To exit SATool II, first save your current project,
then click on PROJECT in the main menu and select Exit Program. If you haven't
saved the project, SATool II will ask you to confirm the exit operation without saving
the project first.

D.3.9 Summary This section walked you through the basics of SATool II. In
this section you learned how to:

* Start SATool II

* Identify different parts of the main screen

99

* Use the keyboard and mouse

" Use the objects and tools

" Create and view a project

" Save and load a project

" Exit SATool II

To print the contents of a diagram or project refer to the section on PRINTING
A WINDOW.

D.-4 Objects and Tools

D.4.1 Introduction This section describes the objects in the objects window
and the tools in the tools window that you use together to create and modify dia-
grams. To use a tool with a specific object you must first click on the tool button
and then on the object button.

D.4.2 The Objects SATool IT is an IDEF0 project editor. It was designed to
supply you with a familiar IDEFo environment to work in; hence, the purpose of the
IDEF0 objects in the objects window. Below is a description of each of the objects.

D.4.2.1 Box A box represents an activity on an IDEF0 diagram. Along
with its location in a diagram and its name, it also has many activity attributes
connected with it. The activity attributes can be inspected via the DICTIONARY
button in the Main Menu Window.

D.4.2.2 Line Segment A line segment, in connection with other line
segments and terminators, shows the flow of data from one box to the next. This
data is identified by a label related to the line segment. SATool II restricts a line
segment to lie either vertically or horizontally on a diagram. This means that the
angle between two line segments is 90 degrees or 180 degrees. One or more line
segments connected by terminators represent a data element. Along with the loca-
tions of these line segments in a diagram, the data elemer.t they represent has many
attributes connected with it. The data element attributes can be inspected via the
DICTIONARY button in the Main Menu Window.

D.4.2.3 Simple Turn A simple turn is a symbol that you attach at
the end of a line segment when you want the data element to turn in one of four
directions. It has two connections, one at each end of tht curve that forms the turn.
The system assumes that the line segments attached at zach end of the simple turn
belongs to the same data element. This assumption is besed on the current IDEF0
syntax rules.

100

D.4-2.4 Junctor A junctor is similar to a simple turn in-the sense that
it connects lines tolines. Its shape allows up to three h nes to be attached to each end
of it. However, SATool II does not assume that each line segment attached to the
junctor is part of the same data element. Via dialogue windows you let the system
know what line belongs to what data element. Junctcrs are normally used with date.
elements that must be broken down into separate sub-elements or when the same
data element must go to more than one destination.

D.4.2.5 Arrow There are six types of objects used to create the IDEFo
arrows: simple arrow head, incoming tunnel parenthesis, outgoing tunnel parenthe-
sis, to-all circle, from-all circle, and dot arrow head. When creating an arrow a menu
will pop up so you can select one of the above objects.

D.4.2.6 Squiggle A squiggle is a device used when crowding on part of
a diagram causes poor readability. You use it to relate a label to a line segment or
a footnote marker to a line segment when you cannot place the label close enough
to the object. A label has two endpoints, one near the label or footnote marker and
one near the line segment.

D.4.2. 7 Label A label is used to identify the specific data element a line
segment represents. It is automatically created and positioned when the first line
segment of a data element is created. If it is not positioned in a good location, you
can move the label via the MOVE button to a better position. If this is not possible
because of crowding in the diagram, use a squiggle to show the relationship between
a label and a line segment.

D.4.2.8 Note A note lets you put nongraphical information of an anal-
ysis into a diagram. If the object that the note refers to is not obvious, use a squiggle
to clarify the situation.

D.4.2.9 Footnote A footnote is the same as a note except that you can
use it instead of a note if crowding in part of the diagram forces you to move the
text to another location.

D.)1.2.10 Metanote A metanote is not part of the IDEF0 description in
a diagram. Instead it is observations about the diagram, such as the way it is laid
out or the choice of label or box names.

D. .2.11 FEO An FEO, or for exposition only, is a special effect feature
you can place in a diagram. It is not part of a diagram, but is used to illustrate the
purpose of a particular action taken on the diagram. SATool II implements this as
a character phrase that you can add to a diagram.

101

D.4.3 The Tools You can use a tool from the tools window to perform a
drawing operation with an object from the objects window. Each operation in Lhe
Tools Window expects you to click on the object type you wish to have the operation
performed on before the operation can be performed. Below is a description of what
you can do with the tools.

D..43.1 Create This tool adds an object to a diagram. After selecting
the CREATE button, click on the desired object button. SATool II will then output
one or more pop up menus to gain more information about the object you want to
create. Then, it waits for you to mark the position of the upper left corner of the
object. If you decide later that you want to place the object in a different position,
use the MOVE tool.

D.4.3.2 Update This tool lets you change the text in the diagram header,
or in a note, footnote, metanote, or an FEO. After selecting the UPDATE button,
click on the object type you want to update in Object Window. SATool II wili then
wait for you to click on the object you want to update in the diagram.

D..3.3 Move This tool moves an object from one location in a diagram
to another. After clicking on the MOVE button, click on the object type you want
to move in the Object Window. SATool II will then wait for you to indicate which
object in the diagram you want to move. It then waits for you to mark the new
position of the upper left corner of the object.

D.4.3.4 Delete This tool removes an object from a diagram. After se-
lecting the delete tool, SATool II waits for you to indicate which object in the diagram
you want to delete. This is a very powerful tool, but it is also very particular. SATool
II will not let you use this tool to leave behind an IDEF0 disaster. Consequently,
deleting one object may mean deleting several objects with it to keep the diagram
in order. Before SATool II takes such action if will ask for a confirmation from you
on what it plans to do. If the drawing window has parts of objects left in it after
a delete operation, click on the Redisplay DIAGRAM selection in the DIAGRAM
menu to clean up the drawing window.

D..3.5 Clear Window This tool is used to clear the Drawing Window
of its current diagram. Clearing the window does not delete the diagram. That
must be done with the DELETE button. All the CLEAR WINDOW button does is
Yr,-'ove the diagram from sight. The diagram can be called back up again by via a
selection from DIAGRAM button in the Main Menu Window.

D:4.3.6 Undo The undo tool reverses the most recent drawing opera-
lion that you just had SATool II perform with an object. If you make a drawing

102

mistake and you want SATool II to undo it, this is the tool to use. As soon as you
click on undo, the previous operation is reversed.

D.4.4 Summary This section described the objects in the objects window
and the tools in the tools window. In this section you learned how to use an object
and tool from these windows to create and modify diagrams.

D.5 Main Screen Menus

D.5.1 Introduction SATool II has six pull-down menus on the main screen:
PROJECT, DIAGRAM, DICTIONARY, OUTPUT, OPTIONS, and UTILITY. To
pull down a menu and display its contents, click on the menu button. As you move
the cursor within the menu, SATool II highlights the command under the cursor. To
select the command, position the cursor over it until it is highlighted, then click on
it. If you click outside the menu, the menu disappears and no command is selected.
Many of the commands you select in the pull-down menus will bring up dialogue
boxes, acknowledge windows, confirm windows, or other menus. To cancel any of
these commands, do the following based on the type of window in use:

" Menu - click outside the menu

" Confirm window - click on the cancel button

" Acknowledge window - press any button or key because no action is ever per-
formed

Anytime an error occurs, SATool II will display the error information in an
acknowledge window. This type of window has no effect on the state of the project,
but it will stay on the screen until you either press a key or click a button. The
rest of this section provides a detailed description of the commands listed in each
pull-down menu.

D.5.2 PROJECT Menu The project menu supplies you with a list of com-
mands you can use on an IDEF0 project.

D.5.2.1 Create Project Allows you to create a project from scratch.
The SATool II system requires unique project names. If you try to create a project
using the name of an exiting project, the system will output an error message to the
screen and allow you to try again.

D.5.2.2 Load Project The load project command uses a dialogue box to
prompt you for the name of the project to load. If a project is already in memory, it
will also use a confirm window to ask if you want to destroy that project in memory
only.

103

D.5.2.3 Save Project As The save project as command uses a dialogue
box to prompt you for the name that you want to save a project under.

D.5.2.4 Save Project The save project command saves the information
in memory into the project files with the current project name.

D.5.2.5 Lay Out Project The lay out project command creates all the
diagrams of a project completely from the essential model information.

D.5.2.6 Derive Project The derive project command derives the con-
tents of the essential model and data dictionary completely from the drawing model
(diagram) information.

D.5.2.7 Show Directory The show directory command uses an acknowl-
edge window to display the names of the projects in the current default directory.

D.5.2.8 Change Directory The change directory command uses a dia-
logue window to prompt you for the name of a new default directory.

D.5.2.9 Clear Project Environment Erases the current project from the
SATool II project environment.

D.5.2.1O Exit Program The exit program command ends the SATool
II program. If you haven't saved the current project before ending, SATool II uses
a confirm window to ask if you want to continue the exit operation.

D.5.3 DIAGRAM Menu The diagram menu supplies you with a list of com-
mands you can use on an IDEF0 diagram.

D.5.3.1 Show A-O Diagram Outputs to the Drawing Window the first
diagram in the hierarchy, the A-0 diagram.

D.5.3.2 Select by Diagram Name This operation outputs the diagram
that you specify by name to the Drawing Window.

D.5.3.3 Select by Hierarchy First, the operation outputs a hierarchical
view of the diagrams via a pyramid scheme of lines and boxes. The view can go as
far as twenty levels deep. You are then allowed to click on one of the boxes shown in
the hierarchy diagram. The chosen diagram is then output to the diagram window.

D.5.3.4 Go to Child Diagram Allows downward traversal of the dia-
gram hierarchy from parent to child, one layer at a time.

104

D.5.3.5 Return to Parent Allows upward traversal of the diagram hi-
erarchy from child to parent, one layer at a time.

D.5.3.6 Refresh Diagram The redisplay diagram command clears the
drawing window and redraws all the diagram contents.

D.5.4 DICTIONARY Menu When the DICTIONARY button is pressed, you
are given four choices. You can view the data dictionary entries for all activities,
all data elements, a single activity, or a single data element. Depending on which
choice is made, the system will then bring up a new set of windows.

There are separate edit screens for the activity and data element entries (see-
Figure 48 and Figure 49). In general, each screen has four windows: a title window,
an edit window, an options window, and a text window. The title window is used to
identify the Data Dictionary editor. The text window shows the data dictionary entry
information for each activity or data element, one at a time. The edit window allows
changes to be made to the text via its edit buttons. The entry is then automatically
updated in the screen. The options menu allows the user to traverse through all the
data dictionary entries via the Next Activity or Next Data Element button. Each
entry may be several pages long and can be viewed page by page with the em Next
Page button. This window system can be exited via the Exit button.

D.5.5 OPTIONS Menu The options menu supplies you with a list of com-
mands you can use to change user-definable options referenced by SATool II to
determine the user interface appearance and degree of service.

D.5.5.1 Grid The grid command lets you bring up a X/Y grid in the
drawing window to help you in positioning objects. The command uses a menu so
you can select on or off. The default value is off.

D.5.5.2 Drawing Font The drawing font command uses a submenu to
display the names of X Window System fonts that you can uses for the text in the
diagrams in the drawing window. The font name you choose stays in effect for the
current session until you change it to something else. The default value is "9x15".

D.5.5.3 Line Thickness The line thickness command uses a submenu
to display a choice of line thicknesses for the objects drawn in a diagram in the
drawing window. This line thickness stays in effect for the current sessions until you
change it to something else. The default value is 1.

D.5.5.4 Line Rerouting The line rerouting command lets you tell SATool
II if you want it to automatically reroute any remaining line segments in the current
diagram following an add, move, or delete tool operation. The puipose of the line

105

Activity Next Page INext Activity I I Exit

Edit Menu

SNamGeneral Activity Information
Activt Nae i

Name : Control-Elevator
Type : Activltg

Activitu Number Project Control-Elevator
Number : AO

Append Description Descriptio
n :

DescriptioDesc AO control elevator

ICON Information :
Replace Description Data Element Relationship To Activity

summoos.indication c
floorsensor c

Append Reference door-sensor c
system-control c
control-signals o
passenger-requests i

Replace Reference overloadsensor 1
floor-motordrive m
doormotordrive M

Reference Type Calls
No calls relation info for this actlvltg.

Version Parent Act

Reference

Append Version Changes Reference No text present.

Ref TypeVersion

Replace Version Changes
hanges

Changes No text present.

Version Date Date
Author

Version Author

Figure 48. Activity Data Dictionary Editor Screen

106

Data Element Next Page Next Data Element Exit

Edit Menu

Data Element Name . General Data Element Information

Append Description Name : oummono-indication

Replace Description Type : Data Element
Project : Control-Elevator

Dato Type DeecrLption :

Min Value Descriptionot-null

Data Type
Max Value Max Value

Data Range Range
Append Values Values :

Values No text present.

Replace Values Decomposition
Part of :

Append References No parents found for this data element.
Replace RCoposed of

oReferences H children found for this data element.

Reference Type ICON Information :Li ctivity Relationship To Activity

Version CantrolElevator c
I Store-Request c

Append Version Changes NElevatorCntrol cManageSumonsRequast c
NanageDestlnation

Replace Version Changes Chock_Destination c
ControlRequest c

Version Da StoreDestRequast C

Version Author Reference I
Reference Ho text present.

Ref Type
Version

Changes
Changes Ho text present.

Date

Figure 49. Data Element Data Dictionary Editor Screen

107

rerouting is to ensure lines do not pass through boxes and that they take the most
direct route-possible within the restriction of the 90 degree and 180 degree rule. The
command uses a submenu for you to select on or off from. The default value if off.

D.5.5.5 Dimensions The dimensions command lets you tell SATool
II how you want the diagrams in the drawing window displayed, either in two-
dimensions or three-dimensions. The command uses a submenu for you to select 2-D
or 3-D from. The default value is 2-D.

D.5.5.6 Syntax Observance The syntax observance command lets you
tell SATool II if you want it to check the IDEFo syntax of the current diagram in the
drawing window every time you perform a drawing operation. The command uses a
submenu for you to select yes or no from. The default value is no.

D.5.5.7 Help Level The help level command lets you tell SATool II the
level of help you want it to give you. This affects the amount of help information
that appears on the screen each time you click on an object, tool, or menu button.
The default value is 0, which means that only the help window is used to display
help information. If you use any level greater than 0, SATool II uses an acknowledge
window to display the help information. The command uses a submenu for you to
select a level from.

D.5.5.8 Warning Beep The warning beep command lets you tell SATool
II if you want a warning beep to sound each time SATool II displays an acknowledge
window. The command uses a submenu for you to select yes or no from. The default
value is no.

D.5.6 UTILITY Menu The utility menu supplies you with a list of com-
mands you can use to select other miscellaneous functions offered by SATool II.

1).5.6.1 Check Syntax The check syntax command tells SATool II to
check the IDEF0 syntax of the current project and report the errors on the screen.
This syntax checking process involves asserting facts about the project, applying a
rule base to the facts, and then listing any errors. The command uses a confirm
window to ask if you are sure you want to check the syntax.

D.5.6.2 Refresh Screen This operation is used to refresh the text of all
the windows currently shown on the screen.

D.6 Printing A Window

D.6.1 Introduction SATool II currently does not have a built-in capability to
send a diagram or project to a printer or even create a file that can later be sent to

108

a printer. But you can still easily obtain a printed copy of the IDEFo diagrams "that
you created using SATool II. This section briefly describes the X client programs
used to capture a window and print it. It also tells you how to use these programs
to obtain a laser printer copy of an IDEFo diagram created using SATool II. All
the SATool II screen and menu illustrations in this manual were obtained using this
method.

D.6.2 X Clients for Window Capturing and Printing Below is a short de-
scription of the four X client programs that are used in capturing (dumping) and
printing X windows.

D.6.2.1 xwd : X Window Dump Program This program stores a win-
dow image in a specially formatted X Window dump file.

Program Command Line Options:

-help Shows 'Usage:' command syntax
-nobdrs Pixel border is not included in window dump
-out <file> Output file name; default is standard out
-root Makes a dump of the entire root window

D. 6.2.2 xpr: X Window Dump Translator Program This program trans-
lates an X Window dump file into a printable output file.

Program Command Line Options:

-scale <scale> Scales bits; 3 changes IXI to 3X3
-height <inches> Maximum height of window on page
-width <inches> Maximum width of window on page
-left <inches> Left margin otherwise image is centered
-top <inches> Top margin otherwise image is centered
-landscape Prints image in landscape mode; default matches

window longest side to paper longest side
-portrait Prints image in portrait mode; see above
-rv Reverses foreground and background colors
-compact Compresses white pixels on PostScript only
-output <file> Output file name; default is standard out
-append <file> Appends image to previously produced xpr file
-noff Appended window appears on same page as first
-split <n> Splits window into several pages
-device <device> Specifies the device format to use for output.

For: LN03 -device ln03
LAO0 -device lalO0

109

PostScript -device ps

IBM PP3812 -device pp.
Apple LaserWriter -device lw or ps

Special Notes:

" The LN03 can handle windows up to 2/3 of the screen size

" LA100 pictures are always in portrait mode with no scaling

" Postscript cannot handle -append, -noff, or -split options

D.6.2.3 xdpr : X Window Dump, Translate, and Print Program This
program runs the commands xwd, xpr, and lpr(1) to dump an X Window to a file,
translate the file contents to a printable form, and send the translated file to a laser
printer.

Program Command Line Options:

-filename Specifies existing file containing xwd dump
-P<printer> Specifies name of printer to be used
-device <device> Specifies type of printer; see xpr options
-help Displays list of options for xdpr

(All other options are passed to xwd, xpr, and lpr(1))

D.6.2.4 xwud : X Window Undump Program This program undumps
an X Window dump file into the coordinates of the original window

Command Line Options:

-help Displays list of options
-in <file> Specifies input file; default is standard input
-inverse Undumps file in reverse video; monochrome dumps only

D.6.3 Printing an IDEFo Diagram and Project Follow these steps to create
a printed copy of an IDEFo diagram that was created using SATool II.

Note: If you already have SATool II running, skip to step 6.

1. Have an X Window Manager running on your workstation and have two xterm
windows on the screen.

2. In the first xterm window enter

satool2

110

3. When the window outline appears on the screen, position the SATool II window
so that you will have access to the secOnd xterm window.

4. Click the left mouse button to mark the position of the SATool II window
outline-and bring up the SATool II program.

5. Use SATool II to create an IDEFo diagram or load a project into SATool II
using the Load Project selection in the PROJECT menu.

6. Bring up in the drawing window of SATool II the IDEFo diagram that you
want a printed copy of.

7. Move the cursor into the second xterm -window and enter

xwd > diagramn-nane.xdmp

where diagram-name is some meaningful name for the IDEFo diagram. The
xwd program copies the IDEFo diagram into an X Window dump file. When
the xwd program starts up, the cursor will turn to a cross-hair.

8. Move the cross-hair inside the SATool II drawing window and press the left
mouse button. The xwd program will beep once to say it started storing the
window in a file and beep twice when it is done.

9. Move the cursor back into the second xterm window and enter

xpr -device ps < diagram.name.xdmp -output diagram-name.ps

The xpr program translates the IDEFo diagram file from the X Window format
to a PostScript format and puts the translated information into a new file.

10. With the cursor still in the second xterm window, enter

ipr -Pprintername diagram.name.ps

The Jpr program sends the IDEF0 diagram file to the laser printer whose name
is printer-name. The printing process takes about 10 minutes.

To get printed copies of all the diagrams in a project, follow steps 6 through
10 for each diagram.

111

Appendix E. SATool it Configuration Guide

E. 1 Introduction

The SATool II system consists of four subsystems: The Machine-Independent
Ada Graphical Support Environment (MAGSE), Essential Model Manager, Draw-
ing Model Manager, And Graphical User Interface(GUI). The MAGSE subsystem
is dependent on the Ada source code interface (Ada bindings) to the X Window
system provided by the Science Applications International Corporation (SAIC) to
perform its graphical user interface and drawing chores (27:A-I). The Essential
Model Manager is dependent on the CLIPS/Ada source code to perform its syntax
checking functions. The Drawing Model Manager is dependent on the Generic Mul-
tiple Object Manager provided by the Essential Model Manager. Finally the GUI is
dependent on all the above subsystems to perform all of its operations.

This configuration guide details the compiling order of the MAGSE, Essential
Model Manager, Drawing Model Manager, and GUI files required to create the
SATool II executable. The configuration guide for the Ada bindings to the X Window
system is found in (27). The configuration guide for the CLIPS/Ada source code
is found in (17). The next section presents the SATool II configuration file using a
UNIX script file format to better illustrate the configuration of the system.

E.2 SATool II Configuration File
#####################################i##########################

SATool II Package Compiling and Program Creation Order

Instructions : Execute Parts A through D, with their

respective levels, to produce the SATool II
system executable program.

Note : The compilation order for the Essential Model
Manager subsystem and the MAGSE subsystem are
interchangeable. Part B could be compiled
before Part A since there are
no dependencies between them.
#############

#################################### # ###################
Part A : Machine-independent Ada Graphics Support Enviroument#
Packages (MAGSE)
############################## ############# ##########################

112

Level A-i (specs)
ada. magse-nterface-.spec a
ada rnagse-globals-.spec a.

#'Level A-2 (bodies)
ada. magse-nt~rface-body. a
ada magse.globals-.body a.
ada magse-window-manager-body. a
ada magse-drawing-primitive-body a
ada magse-nput-device..body a.
ada magse-.matrix2d-.stack..body. a
ada magse-.plane2&..body. a

Level A-3 (optional)
Only compile these files if 3-D rendering will be used
ada magse-.matrix3d-stack-.body. a
ada magse-.pyramid3d-.body. a

Part B : Essential Model Packages

Level B-i (specs)
ada es..genev-.spec .a
ada es...proj-.spec.a
ada es-.activ.spec.a
ada es..Aatel-.spec.a,
ada es-.hista-.spec .a
ada es-.ICOM-.spec. a
ada es-.conof-.spec .a
ada es-.mnuio-.spec .a
ada es-.calls-.spec.a
ada es-.factw..spec a
ada, es-.esmio-.spec.a
ada. es...clpwm-.spec a
ada es-oad-save-.spec. a

Level B-2 (bodies)
ada es-.genev-.body a
ada es-.proj-..body a

113

ada es...activ...body.a
,ada es...datel-body a
ad a es-.hista..body.a
ada es-ICOM-.body. a
ada es_..conof.body a
ada es-nnuio-.body a
ada es-calls-.body a
ada es...factu.body.a
ada es...esmio-.body a
ada es-.clpwt-.body a
ada es-oad..save-.body. a

Part C : Drawing Model Packages

Level C-1 (specs)
ada dr..Ar-.sp.a
ada dr-.ar-.sp.a
ada dr-.bx-.sp.a
ada dr-.cn.sp.a
ada dr..fe-.sp.a
ada dr-.ft-.sp.a
ada dr-.jc...sp.a
ada dr-b-.sp.a
ada dr-.ln-.sp.a
ada dr...mtsp.a
ada dr-.ntsp.a
ada dr..sq..sp.a
ada dr...st.sp.a
ada dr-.dg-.sp.a
ada dr-.drawable-o.spec .a

#t Level C-2 (bodies)
ada dr-.dr-.bo.a
ada dr-.ar.bo.a
ada dr..bx-.bo.a
ada dr-.cn-.bo.a
ada dr..fe-.bo.a
ada dr-.ft-.bo.a
ada dr-.jc...bo.a
ada dr..1b.bo.a

114

ada-dr-n-.bo.a
ada, dr..mt-.bo.a.
ada, dr-nt-.bo.a
ada. dr-sq-bo.a
ada. dr--st..bo.a
ada, dr..dg..bo.a
ada, dr...drawable-io-.body.a

Part D: Graphical User Interf ace Packages#

Level D-1 (specs)
ada. sa-.title..yindow-.spec. a
ada sa-.drawing-.window-.spec. a
ada, sa-.tools-.title-.window-.spec a
ada, sa-.obj ects..yindow-.spec. a
ada. sa..dd-text-.window-.Spec. a
ada sa-ialog-window-.spec .a
ada, sa-.options...buttonspec. a
ada. sa-.output..button-.spec a
ada. sa...utility...button-.spec. a
ada. sa..proj ect...button-.spec. a
ada. sa-.dd-.activity-.edit..indow..spec a
ada sa-sdd-.data..element .edit-..window...spec a
ada, sa-.dd...main-.menu..yindow-.spec a
ada. sa-.dd-.edit-menu-.title.window-.spec.a
ada, sa..dictionary-button..spec. a
ada sa-.drawable-.objects-.spec .a
ada, sa-.clear-.diagram-.button-.spec. a
ada. sa-.create.button..spec a
ada sa-.delete-.button-.spec a
ada sa-.move-.button-.spec a
ada. sa-.update-.button-.spec .a

ada. sa-.tools-window...spec. a
ada sa..diagram-.button-.spec. a
ada. sa..main..menu-.window-.spec a

Level D-2 (bodies)
ada, sa-.title-yindow-.body. a
ada sa-.drawing-window-.body. a
ada sa-.tools-titlewindow.body a

115

ada sa..obj ects-window-.body. a
ada sa..d&.text-.window...body. a
ada sa-.dialog-window-.body. a
ada sa-options-button-.body. a
ada sa..output..button-.body. a
ada sa-utility-button-.body a
ada sa..proj ect-.button-.body a
ada sa...dactivity-.edit..yindow-body. a
ada sa..dd-.data-.element..edit..window..body a
ada sa...dd-.main-.menu-winidow..body. a
ada sa...dd.edit-.menu...title-.window-.body. a
ada sa...dictionary-.button-.body.a
ada sa-.drawable..obj ects-.body a
ada sa..clear-diagran..button-.body. a
ada sa-reate-~button-.body a
ada sa-.delete..button-.body a
ada sa-move-.button..body a
ada sa-.update-.button..body a
ada sa...tools-.window-.body. a
ada sa..diagram-.button-body. a
ada sa..main...menu-.window-.body a

Level D-3 (satool2 driver)
ada satool2.a

Level D-4 (load the driver)
a.ld -o satool2 satool2 /usr/X/lib/libXll.a utils.o

Execute driver by typing: satool2 RETURN

end of file

116

Appendix F. SATool II Test Cases

This appendix contains the unit test cases and integration test case used to
evaluate the SATool II application. The unit test cases were developed based on the
types of conditions the procedures safeguarded against (white box testing). If an
error is successfully detected, the logic of the code is then reviewed and corrected.
The integration test is based on re-creating the IDEF0 diagrams of a "real world"
project in the SATool II development environment. This test ensures the coverage
of conditions not considered during the white box testing of each system operation.

F.1 Unit Test Cases

Unit test cases were performed for each operation in the application. The
following subsections detail the test cases for the operations of each window in the
application. A successful test is defined as a failure to obtain the expected result.

F.1.1 General Main Screen Windows Unit tests for the SATool II Title Win-
dow, Tools Title Window, and Drawing Window consisted of simply bringing them
up and showing text or drawings on them.

F.1.2 Main Menu Buttons The Main Menu Window consists of six buttons,
each with its own submenu of operations. Following is a description of the test cases
for each of these operations.

F.1.2.1 Project Button

* Create Project

1. Create project in cleared system environment with new name (simple
case).

2. Create project when there is one already loaded.

3. Create project with name that has already been given to another project.

* Load Project

1. Load project in cleared system environment with valid name (simple case).

2. Load project when there is one already loaded.

3. Load project with invalid (does not exist) name.

4. Load project with no drawable object files but has essential objects files.

5. Load project with no essential objects files but has drawables.

117

" Save Project As

1. Save 'with new name (simple case).

2. Save with used name.

" Save Project

1. Save with local project name (simple case).

" Clear Project Environment

1. Clear when there is a project present (simple case).

2. Clear when environment clear already.

* Exit Program

1. Exit when last project has been saved (simple case).

2. Exit when there is still a project in environment that has not been saved.

F.1.2.2 Diagram Button

" Show A-0 Diagram

1. Show the diagram when there is one in the project (simple case).

2. Show the diagram when one doesn't exist.

* Select by Activity Name

1. Show diagram that matches name given (simple case).

2. Show diagram when there is no name match.

" Go To Child Diagram

1. Show diagram when there is a child diagram to show (simple case).

2. Show diagram when there is no child.

" Return To Parent

1. Show diagram when there is a parent diagram to show (simple case).

2. Show diagram when there is no parent (true only for A-0 diagram).

" Refresh Diagram

1. Refresh when there is a diagram loaded (simple case).

2. Refresh when there is no diagram loaded on screen.

118

F.1.2 3 Dictionary Button

e View All Activities

1. View when there are activities in project (simple case).

2. View when there are no activities in project.

* View a Specific Activity

1. View when there are activities in project and there is a name match
(simple case).

2. View when there are activities in project but there is ,no name match.

3. View when there are no activities in project.

* View All Data Elements

1. View when there are data elements in project (simple case).

2. View when there are no data elements in project.

* View A Specific Data Element

1. View when there are data elements in project and there is a name match
(simple case).

2. View when there are data elements in project but there is no name match.

3. View when there are no data elements in project.

Within the Dictionary Editor Environment:

* Next Page

1. View next page of dictionary entry when there is a next page (simple
case).

2. View next page when there is no other page for the entry.

3. View next page after an entry update has been made.

e Next Activity/Data Element

1. View next dictionary entry when there is a next entry (simple case).

2. View next dictionary entry when there is no other.

* Exit

119

1. Exit to main screen.

* Activity/Data Elements Edit Menu Buttons - for each menu entry:

1. Input valid string (withi, limits).

2. Input zero character string.

3. Input string larger than limits.

F.1.2.4 Output Button

* Output Data Dictionary

1. Output when there are activity and data element entries present in the
system.

2. Output when there are no activities or data elements present.

* Output Diagrams

1. Output message.

F.1.2.5 Options Button The operations of this button have not been
implemented yet.

F.1.2.6 Utility Button

9 Check Syntax

1. Check syntax of project that has essential model objects within (simple
case).

2. Check syntax of empty project.

* Refresh Screen

1. Refresh when the windows are blank.

2. Refresh when the windows have text.

F.1.3 Tools Window Buttons

F.1.3.1 Clear Diagram Button

1. Clear when there is a diagram present (simple).

2. Clear when there is no diagram present.

120

F.1.3.2 Create Button

* Create Diagram

1. Create A-0 when there are no diagrams present on screen, no diagrams in
project environment, project loaded.

2. Create child diagram when project loaded, one or more diagrams present
in environment, and no diagrams on screen.

3. Create child diagram when project loaded, one or more diagrams present
in environment, diagram on screen, and click on box with no child dia-
gram.

4. Create child diagram when project loaded, one or more diagrams present
in environment, diagram on screen, and click on box with child diagram.

5. Create child diagram when project loaded, one or more diagrams present
in environment, diagram on screen, but no click on box.

* Create Box

1. Create box partially outside window limits.

2. Create box on top of other box.

3. Create box on top of line segment.

4. Create box next to invalid ICOM connection.

5. Create box next to valid ICOM connection.

6. Create box next to valid CALLS connection.

7. Create box in window limits with valid name and number.

8. Create box in window limits with valid name but invalid number.

9. Create box in window limits with valid number but not valid name.

* Create Line Segment

1. Attach to available box.

2. Attach to available simple turn or junctor connection.

3. Create without attaching to anything.

4. Attach to invalid connector.

5. Create with endpoint outside window limits.

6. Attach to two simple turns that belong to two different data elements.

7. Attach to two junctors.

121

8. Attach to two boxes.

* Create Arrow

1. Attach to available line end.

2. Attach to invalid line end (already taken by another arrow, simple turn
or junctor).

3. Create without attaching to anything.

4. Attach to simple turn or junctor.

* Create Simple Turn/Junctor - The only valid case for these two is to be at-
tached to a line that has an open end. Any other case would make it an invalid
operation.

* Create Squiggle

1. Create left to right and up

2. Create left to right and down

3. Create right to left and up

4. Create right to left and down

* Create Label - automatically created when line segment is created.

* Create Note, Metanote, Footnote, or FEO

1. Create within window limits

2. Create outside window limits

F.1.3.3 Delete Button

9 Delete Diagram

1. Delete when there are boxes with children diagrams.

2. Delete when there are boxes with no children.

* Delete Box

1. Delete when there are children diagrams.

2. Delete when there are no children.

* Delete Line Segment

1. Delete when attached to simple turn.

122

2. Delete when attached to junctor.

3. Delete when attached to box.

4. Delete when attached to arrow.

* Delete Arrow

1. Delete when There is a CALLS record associated.

2. Delete when no CALLS record associated.

e Delete Simple Turn

1. Delete when attached to two lines.

2. Delete when attached to one line.

9 Delete Junctor

1. Delete when attached to more than one line.

2. Delete when attached to one line.

* Delete Squiggle - Since not attached to anything, there are no invalid conditions
tested, except for not finding a squiggle in the first place.

* Delete Label - automatically deleted when line segment is deleted.

* Delete Note, Metanote, Footnote, or FEO

1. Delete when found.

2. Delete when not found.

F.I.3.4 Update Button

* Update Diagram, Note, Metanote, Footnote, or FEO - The update button test
ensures that a valid character string is input. Z,-ro characters or a blank string
is not acceptable.

F.1.3.5 Move Button

* Move Label, Note, Metanote, Footnote, or FEO - Ensure that the object was
moved to a location within the drawing window limits.

F.2 Integration Test Case

The integration test case is based on an IDEFo project description developed
by Rottman (22). This project description is comprehensive in the types of objects
and relationships it contains.

123

A-O ARTMOS

This is the SADT "context diagram," which shows an overview of the entire op-
erating system as it relates to the "outside world." The OS, once triggered, receives
interrupts, system calls, and hardware input and produces hardware Commands, data and
OS response.

AUTHOR: MICHAEL S. ROiMAN ~ DAIE:6/30/g6 IREADER I I
FROjECT: ARTMOS IREV •1. I DATE I I

INTERRUPTS

RESET/L.AD SYSEM CALLS

A MOS NW CrnlANDS
W INPUT H4 DATA 0O

OS RESPONSE 02
03

NODE: 17TITLE: ARMOS jNU4BER: MSR2

A-I I

124

AO ARTMOS

Abstract: This diagram decomposes the view presented in the A-0 diagram. The three

activities are loading the OS, initializing the system, and executing the OS.

Al This activity loads the actual OS and application software. When the code

has been loaded, the application software is activated. The complexity of this activity will

depend on the specific needs of the target hardware.

A2 This activity performs the necessary actions to place the OS and system hard-

ware in a known state prior to execution of the main application and OS code. This

involves initializing hardware resources and creating data structures, both on the local

processor and for the system itself.

A3 This activity is the actual "operating system." It performs the multitasking of

application tasks and handles system calls and interrupts.

AUTHOR: MICHAEL S. ROTTMAN IDAE:6/30/gB IREADER I I
PROJ~ECT: ARMHS IREV: 1.1 . DATE I

REST/OAOCIISYSTE?4 CALLS INTERRUPTS

C2

BEGIN APML _ OS RESPONSE
' 03

1

INI XFER CONRO
IZE OS READY

MIT W______ W~ CCM?.DS

3 W AT 02

NODE: ITITLE: ARIMS IBER . MS93

125

A2 INITIALIZE

Abstract: This diagram shows that initialization consists of initializing both the global
system resources and the local processor resources, as well as binding any application-
provided interrupt handlers.

A21 this activity initializes all hardware and software resources shared by the pro-
cessors to place them in the desired state. One processor is designated as the master
processor, and the master is the only processor to trigger this activity.

A22 This activity initializes all hardware and software resources local to a pro-
cessor, and takes place on all processors (including the master). This activity cannot
occur until A21 INIT GLOBAL RESOURCES has completed.

A23 This activity maps application-provided interrupt handlers to local hardware
interrupts. This gives the application designer the flexibility to supply his own handlers if
necessary.

AUTHOR: MICHAEL S. R0o7MAN JDAME2/19/gO IREADER I I
PROZECM: ARTMOS IREV: 1. 1 1DATE

SYSTEM CALLS IC

INIT MASTER INIT SLAVE BIND INTERRUPT HANDLER

EINI NT GLOBAL _ _ _ _ _ _ _ _W
GLCAL G L 02
RESOURCES -& T EADY

117T 1.41 LOCA d.i'
LOCAL
RESOURCES OS READY _0_

0_1

IlNTERRUPT{
XF - R COHYIROL

NHANDLERS3 !03

NODE: jTITLE: INITIALIZE NUHEER: MSR4

126

A21 INIT GLOBAL EESOURCES

Abstract: This diagram decomposes the process of initializing global or system resources
into the initialization of all hardware devices and creation of any data structures shared
by the multiple processors. This activity occurs on only one processor, the master.

A211 This activity "programs" the hardware devices and mechanisms needed by
the entire system to place them in a known state prior to execution. An example of global
hardware could be the communications network linking the processors.

A212 This activity creates and initializes any dynamic data structures used by
the processors. One examples of global data structures could be a table showing the status
of the different processors or number of errors by each processor.

A213 This activity serves to notify the other processors that global initialization
has completed, and they can proceed with local initialization.

AUTHOR: MICHAEL S. ROT7PTMN IDAIE:2/19/98 IREADER I I I
PROJ)ECT: ARIMOS REY: 1. 1 JDATE I

INIT MASTER

E INNI I' INTI GLOBAL IVr

GLOBAL "02
PARDYA RE ! HW READY

, II

GLOBAL GLOBAL DATA READY
DATA

2

TRIGGER
MASTER M READY

NODE: ILE: INI17 GLOBAL R£ESOURCES }NUMBER: MSR5

A211

127

A22 INIT LOCAL RESOURCES

Abstract: This diagram decomposes the process of initializing local resources into the
initialization of all hardware devices and creation of any data structures needed by the
local processors. This activity occurs on all processors, including the master.

A221 This activity "programs" the hardware devices and mechanisms needed by
the local processor to place them in a known state prior to execution. Examples of local
hardware devices include timers, interrupt controllers, and input/output devices.

A222 This activity creates and initializes any dynamic data structures used by
the local processor. Examples include task management queues or lists and status tables.

A223 this activity evaluates the system configuration and selects a set of tasks
for the local processor to manage. The task sets are static: they do not change unless the
configuration changes, and processors in the same configuration always get the same set
of tasks.

A224 This activity "creates" the local tasks based on the selected task set. A
TCB is obtained and initialized for each task in the task set, then loaded into the appro-
priate task management list. When all tasks are created, OS readiness is signaled.

AUUMOR MICK1AEL S. R0T7MAN IDAME2/1g/98 IREADER I I I
PROECT: AR7hOS JREV: 1.1 JDATE I I I

INII MASTER
MASTER RaDYJ 2

IT~ INI LCA

ILOCAL I01HARDRE, JLOCAL W RE DY

IN17
LOCAL CAL ATA EADY
DATA

2

ILCCAL :- E
"
* EL-C -"

7ASKSE7

CREATE
LOCAL OS READY
TASKS 02

4

NODE: 17ITLE: INI LOCAL RESOURCES jNLHBER: MSRG

128

A224 CREATE LOCAL TASKS

Abstract: This diagrams shows how application tasks are "created" and initialized. For
each application task assigned to the local processor, this activity finds an available TCB,
allocates the amount of memory the task needs, and loads the TCB into the appropriate
task management list.

A2241 This activity controls the creation of tasks. It sequences through the set of
tasks, selecting each task for creation and passing task information to the next activity.

A2242 This activity gets an unused TCB and initializes it with information specific
to the task selected by A2241.

A2243 This activity is responsible for memory management. Memory is allocated
to the selected task according to its needs.

A2244 This activity loads the initialized TCB into the appropriate task manage-
ment list (ready or sleeping).

AUTHOR: MICHAEL S. ROTTMAN IDAE2/19/98 IREADER I I
PROJECT: ARTMOS REV: 1.1 JDAE I

1ASKSE' SELECTED C1

ISLEC OS READY

TASK TASK SELECTED 0

!CREAIE
MEM1ORY NEEDED

7CB

2T)

CB POINIER I

M4EMORY MEMORY' ASSIGNED

LOAD
7CB IN 7C8 READY

7- CB LISTS TC8 LISTS
4

NODE: 7TITLE: CREATE LOCALTASKS [NLBER: MSR7
A2241

129

A3 EXECUTE OS

Abstract: EXECUTE OS is the heart of the ARTMOS. It is responsible for the multi-
tasking of application tasks and management of system resources. Other major functions
of EXECUTE OS are the handling of system calls from the application tasks and inter-
rupts from the hardware.

A31 This activity is responsible for scheduling ready tasks to the local processor for
execution. This activity is triggered by the START ARTMOS system call, or whenever a
system call or interrupt has changed the set of ready tasks or caused the currently running
task to release the processor. In the first case, A31 checks the list of ready tasks. If any
have a higher priority than the currently running task, the running task is preempted.
Then (or when a task has released the processor) A31 selects a task from those ready to
run, restores the task's context (state), and passes control to the application task.

A32 This activity handles all application system calls for task, communications,
semaphore, interrupt, and time management. Commands to the hardware and responses
to the application are generated as needed.

A33 This activity handles any local processor interrupts, and to a large degree
is dependent upon the specific target hardware. Some systems will need more or different
handlers than others. A clock interrupt is assumed.

AUTHOR: M*ICHAEL S. ROTTMAN IDATE:7/A/g0 IREAO ER I I
PROJECT: ARTMOS IREV: 1.3 , DATE

SYSDIM CALLS
Ic

START ARThOS SYS1 CALLS
S, CHEMEL

EXECUTE XFER CONTROL XFFR COMM,
TASKS 1 L01

RUNNING TASK ,C... 1,..YF L

HADE iaNDLE CHEU

INTER-
INPUTS RPS FER CONTRO)

NODE:3 TILE: EXECUTE OS 1NL2BER: MSR8

130

A31 EkECUTETASKS

Abstract: This diagram shows the steps r~quired for the execution of application tasks.
When the set of ready tasks has changed, the ready list -is evaluated to determine if a
higher priority task is available to preempt the running task. if so, or if'the current task
has released the processor, a task must be selected from the set of ready tasks, its'context
must be restored, and control must be passed to the application~task.

A311 This activity checks the ready list to see if any ready task has a higher
priority than the running task. If so, the running task is preempted.

A312 This activity saves the context of the running task.

A313 This activity puts the running task back in the ready task list.

A314 This activity performs the actual selection of the ready task to execute.
A specific scheduling algorithm will be identified in the design phase.

A315 When a task is switched out of the processor, the exact state of the pro-
cessor (the context) is saved. The next time the task executes, this activity restores the
context, so that the task can continue as if never interrupted. Task context may include
status flags, data registers, and so on.

AUTHOR: MICHAEL S. ROT7MAN IDArEB/-"/9 IREADER I I
PROJECT: ARIMOS IREV:1.1 IDATE I I

C2 SCHEDULE

[CHK SCHEDULE RESCHEDULE

CHECK
XFER CCNTROL

IREADY I 01
,"ADt Yj 7%S K StTASKS HIGHR PRY TASK ROY

SAVE
TASK CONEX SAVED
CONTEXT

UtI C1 START ARMOS

READY ? OULE

TAS LAIST~.CNTO

ISCHED-
UL E TASK4

cON. TEXTORUNRNING TASK I 5

RUNNNNG TASK

NODE: ILE: EXECUTE TASKS mNUBER: MSR9

131

A32 HANDLE SYSTEM CALLS

Abstract: This diagram decomposes the process of handling system calls into functional ar-
eas based on the type of call. The system calls fall into the categories of task management,
communications, semaphore management, interrupt management, and time management.
Many of the calls prompt some hardware command or response from the OS, and all either
return control to the application task or trigger a scheduling operation.

A321 This activity handles requests from a task for information about itself or
to change its execution in some way. A task can terminate or delay its execution, change
its operating mode, or ask its priority.

A322 This activity performs all commuications between tasks. Tasks can syn-
chronously or asynchronously send messages and synchronously receive messages.

A323 This activity provides semaphore capabilities for mutual exclusion on re-
sources local to the processor. No global semaphores are required.

A324 This activity allows application tasks to enable or disable interrupts. In
addition, a call handles the return from an interrupt to check if the ready task list has
been affected by the interrupt.

A325 This activity supplies the requesting task with the current time value for
the local processor.

AU7HOR: MICHAEL S. R071MAN IDAE:7/4/gB IREADER I
PROJECT: ARTMOS IREV: 1.3 IAlEI I

SVSITM CALLS SEMAPHORE CALLS INTERRUPT CALLS

[ASK CALLS COW CALLS
,.._ CAr _ _C_ _GET TIME SCHEDULERUNNING TASK HANDLE PRIORI I OS DATA 05

- TASK ASK ERROR I ERROR SIGNALS 03
CALLS CXFER CCNTROL I ER CONROL G2

HANDLE SCTIV "L

CiUN:-Cfz'C.Q! CRO
I _____-_,-"I

ICATIONS / '.OlROI.

JSEMAPHO6RE
CLS 3 1S1;Fa NRCL

HANDLE A ED[LE
INTERRUPTI
CAL LLS ...F.R. N 2L

4

GET 71MV VAUUE
TIME I

YM C ATROL

5
NODE:]TITLE: HANDLE SYSTEM CALLS INLMBER: MSR10

A321

132

A321 HANDLE TASK CALLS

Abstract: This depicts the handling of task requests for information or to change their
execution in some way. Tasks can only affect their own execution, not that of other tasks.
A task can terminate or delay its execution, change its operating mode, or ask its priority.

A3211 This activity allows a task to "kill itself." Termination consists of releasing
all resources held by the task and releasing the TCB for other use.

A3212 This activity delays the calling task for a specified time by saving its context
and putting it on the sleeping task list or the ready task list, if the delay duration is zero.

A3213 This activity delays the calling task until a specified time by saving its
context and putting it on the sleeping task list.

A3214 This activity changes the priority of the calling task. If the priority is
lowered, other ready tasks may have a higher priority so EXECUTE TASKS is triggered
to check the schedule. If the priority is raised, control is returned to the task.

A3215 This activity enables or disables preemption for the processor. When pre-
emption is disabled, control returns to the calling task. If preemption is enabled, the ready
list must be checked to see if a higher priority task is ready.

A3216 This activity returns the priority of the calling task.

AUTHOR: F:CHAEL S. ROTTMAN IDATE:7/2/gO IREADER I I I
PROJECT: A-1Mos REV: 1E T

Ic1 TASK CALLS

TiERMINATE DELAY DELAY UNTIL CHANGE ICHANGE GET PRIORITY

RUNNING PI'iIN" PRIORITY PREEMPT
TASK, A-;E RESCFEDULE 01_.__-_SCHEDULE

11

01

7G c1 .4 c RCSFL I
PRII R E --NDEOAE >CFER CT2NTR

GETm X~ NER CJTO

TASK

PRPRIOITYT0

XFER I I

13

CHNE3H CVO3

a I H = | - "
= - -

iir "lr i'u'a ---- T Z i P P7
' m

A3211 TER!MINATE TASK

Abstract: This diagram shows the components actions required to terminate a task. All
memory and resources assigned to a task axe released, and the the TCB is freed for other
use.

A32111 This activity releases the memory allocated to the task.

A32112 This activity releases any resources allocated to the task, such as guarded
by semaphores.

A32113 This activity releases the TCB and triggers a rescheduling operation.

AUTHOR: MICHAEL S. ROTTMAN IDATE:5/30/98 IREADER

PROECT: ARIMOS IR-: 1.1 _ DATE

TERII $NATE

ERELEASEHL
" MEMORY MEMORY FREE

DRELEASEFD

"(C B RSCHEDUL E 0

N0DE : iINLE: TE' RAW TASK INUIM ER : MS R12

A3211

134

A3212 DELAY TASK

Abstract: This diagram delays the calling task for a specified amount of time. If the
delay duration is non-zero, the wakeup time is calculated and set, the task's context is
saved, and it is put in the sleeping task list. If the duration is zero, the task is put back in
the ready list.

A32121 This activity checks the specified duration to determine whether it is non-
zero (whether the task should be saved to the ready task list or the sleeping task list).

A32122 This activity computes the wake up time for the task based on the de-
lay duration and the current time.

A32123 This activity saves the wake up time in the TCB of the delaying (run-
ning) task.

A32124 This activity saves the context of the running task.

A32125 This activity puts the task in the sleeping task list.

A32126 This activity saves the context of the running task.

A32127 This activity puts the task in the ready task list.

AUTHOR: MICHAEL S. ROTT'IAN IOAE:O/38/gO IREADER I I
PROJECT: ARIMOS !REV.:1,2 ODATE I

SCHECK Z.ERO DURATION
,-OU RATITOOUN'O u

7 - NO-ER)U|70 SAVE

CPUTE - ASK CONT EXT .WED
WAKE UP T READY CONTEXT 'TIE __ _

3M 71M71M S..READY TASKS UT :.4

RUNNING T7. Th(AKE UP LIE71 .. IASK LIST 0

TASK CONTEXT YED
CONTEXT

i... tSLEEPING REO DULE
-S LE E=P ING,

AS q TA SK LISTi

NODE: TITLE: DELAY TASK LOR: MSR1 3

33212

135

A3213 DELAY TASK UNTIL

Abstract: This diagram delays the calling task until, a specified time. If the wake up
time is valid, the time is saved in the TCB and the calling task is switched out.

A32131 This activity checks the specified wake up time to determine if it is valid
(later than the current time). If not, control and an error are returned to the calling task.

A32132 This activity saves the wake up time in the TCB of the running task.

A32133 This activity saves the context of the running task.

A32134 This activity puts the task in the sleeping task list.

AUTHOR: MIC8~AEL S. ROiMN DAE:8/3e/90 IREADER

PROJECT: ARIMOS IRV:12 DATEI DELAY UNTIL

,- ME .CHECK]XFER CONI;RCL 0

,- UNTIL TIME TIE VALI INE 0

;AKE UP TIM~E SET
RUNNING TASK TL'E

Ii 2 SAVE1
'K CCNTE-XT SAVED

1363

/P INi

NOE TILE DELAY TAS UNI[MER S1

LA3213

136

A322 HANDLE COMMUNICATIONS

Abstract: This diagram specifies the intertask communications functionality the ARTMOS
must provide to the application. Tasks must be able to send a message to a mailbox syn-
chronously or asynchronously, as well as receive a message when bre is available.

A3221 This activity sends a message to a mailbox asynchronously. That is, the
message is sent without first checking to see if the previous message has been read (con-
sumed) yet. An outbound message is converted to an outbound datagram for sending,
along with appropriate commands to the hardware.

A3222 This activity sends a synchronous message to a mailbox. That is, the mes-
sage is sent only when the previous message has been consumed. An outbound message is
converted to an outbound datagram for sending, along with appropriate commands to the
hardware. If the mailbox is not ready within a specified interval, an error code is returned.

A3223 This activity receives a message from a mailbox. If the message is not
available (produced) within a specified interval, an error code is returned.

AUIHOR: M:CFAEL S. ROIMAN jDAIE:7/4/9g IRUOER I I I

PR0.JECI: ARIMOS IREV: 1.2 1CA7E II

CQYMUNICATION CALLS

SEND DNOWARA. j .V DATA,
OU7BOUND ___A_ _________W________

MESAE C t' = G= L

.OUID MSG XFER CONOL .XFER CONCRO 05
04

AID WAIT ; . __,___,. ___

,.. " ' '02" INBUND GRG

mJDE: ITT1LE : HANDLE COIUNICATICNS NLfBER: MSR15

137

A3221 SEND MESSAGE

Abstract: This diagram shows how a message is sent to a mailbox asynchronously. That is,
the message is sent immediately, whether the previous message has been read (consumed)
or not. This process involves building an intertask datagram from the outbound message
then producing the hardware commands to send the datagram.

A32211 This activity transforms a message into a datagram for sending. The
datagram consists of the message, some source information, and some destination infor-
mation.

A33212 This activity generates the actual hardware commands to send the data-
gram to the destination mailbox. Specific details of this activity will depend on the needs
of the particular target hardware, and so will be discussed in the design phase.

AUTHOR: MICHAEL S. ROIMAN IDAE:2/I1/g8 IREADER I I I
PROJ)ECT: ARTMOS IREV: 1.1 jDATE

SENDCI '-DVAGRAi FORMAI

OUTBOUND MSG BUILD
:2 .DAAGR IAAGRAM READY

t '-SEND PROTOCOL

t OUTBOUNJD WAMA .Y

SENDRA -ND .

XFER CONTROL .2
•03

NODE: ITITLE: SEND MESSAGE j
NLM B

ER: MSR
17

A3221

138

A3222 SEND MESSAGE AND WAIT

Abstract: This diagram shows how a message is synchronously sent to a mailbox. That
is, the message is not sent until the previous message to that mailbox has been consumed,
or a specified interval of time has passed. An error code is returned if the message cannot
be sent during the interval.

A32221 This activity transforms a message into a datagram for sending. The
datagram consists of the message, some source information, and some destination infor-
mation.

A32222 This activity checks the status of the destination mailbox. If the mail-
box is ready (the previous message has been consumed), the datagram is sent. Otherwise,
the sending task will wait for a specified amount of time.

A32223 This activity "blocks" the running task for a specified amount of time.
No details can be provided concerning the way the task is blocked until the design phase.
It could put the task on a blocked list, it could poll, or so on.

A32224 This activity generates the actual hardware commands to send the data-
gram to the destination mailbox. Specific details of this activity will depend on the needs
of the particular target hardware, and so will be discussed in the design phase.

AUTHOR: M4ICHAEL S. RO71VAN__ IDAIE:7/4/gB IREADER
PROJ~ECT: ARTMOS RV12 DATE

SENDWgAI lCl ()DA7AGRAM FORA

OUTBOUN D MSG BSUILD DV_.AG.RAM READY

112. I DATAGRAM

WAGRAM 70 E14D CHECK ND RROR
-5

MAILBOX RED

FOR CHK SC EDULE
,. WAIT TIME MAILBOX 04

("SEND PRO7OCOL

SSEND FRCORLt

DATAGR'I OUTBOUND DATGR.

4 J 02

NODE: ITLE: SEND MESSAGE AND WAIT NIJ'IBER: MSR I8

139

A3223 RECEIVE MESSAGE

Abstract: This diagram describes the requirements for receiving a message from a mailbox.
If the message is available, it is removed from the mailbox and passed to the running task,
with a "message consumed" signal sent back to the mailbox. If the message is not available
(produced) within a specified interval, an error code is returned.

A32231 This activity checks the status of the source mailbox. If the mailbox is
ready (the awaited message has been produced), the message is received. Otherwise, the
receiving task will wait for a specified amount of time.

A32232 This' activity "blocks" the running task for a specified amount of time.
No details can be provided concerning the way the task is blocked until the design phase.
It could put the task on a blocked list, it could poll, or so on.

A32233 This activity removes the message from the source mailbox and passes
it to the running task.

A32234 This activity generates a "message consumed" signal and the necessary
hardware commands to send the signal to the mailbox.

AUTHOR: MICKAEL S. SRO7MAN DA TE:7/4/g IREADER T
PROjECT: ARTMOS IREV: 1.2 JDATE

RECEIVE

RUNNINlG TSK WIAIT'
A IFOR .CHK SCH I
CHECK05
M WaL TIME A04

GE INBOUND: oSGMESSAGE WE
SIGNEL

03

NO1E 1TTE RECEIV MEAGYEC AGAIN MR1

11G FORE I NKONTROL 0

A2202

1402 T L E E GN
R

MSG
340

I 0

NOEiIL: REEV ESG ILBR S1
I -t" r I ... g 'm- A3223m

A323 HANDLE SEMAPHORE CALLS

Abstract: This diagram specifies the semaphore management actions the ARTMOS must
provide for mutual exclusion of local resources. The application tasks will have the capa-
bility to wait for a semaphore or signal that the semaphore is available.

A3231 This activity checks if the semaphore is available. If it is, it is assigned
to the running task and control passes back to the task. Otherwise, the task blocks until
the semaphore becomes available.

A3232 This activity releases the semaphore. If tasks are waiting for the semaphore,
one is unblocked and added to the ready list. Control returns to the running task if the
new task if equal or lower priority.

AUTHOR: MIC AEL S. R071MAN IDAIE:2/15/ge IREADER I
PROJECT: ARIMOS TREY: IDATE

SEKAPHORE CALLS

IWAI7 SIGNAL

WA I' VXFR CONTROL 0
RUNNtNG SK SEMAPHORE 03

Ti-G SCHEDULE

01

SEMAPHORE qCJTL
ISEM ERROR

2 02

NODE: 77ITLE: HANDLE SEMAPHORE CALLS -IHIPBER: MSR28
A323

141

A3231 WAIT SEMAPHORE

Abstract: This diagram specifies the nature of the semaphore em wait operation. The
invoking task continues operation if the semaphore is available, and blocks otherwise.

A32311 This activity checks if the specified semaphore is available. If so, the
task is given the semaphore; otherwise, the task blocks.

A32312 This activity assigns the semaphore to the running task and returns control
to it.

A32313 This activity saves the context of the running task.

A32314 This activity loads the task into the blocked task list and triggers reschedul-
ing. A maximum wait time is provided as a parameter to the system call.

AUTHOR: MICHAEL S. ROITMAN DATE:6/38/i0 IREADER
PROJ)ECT: ARIMDS IREY 1. 1 JDATE

WAIT

I
CHECK

SEM NOI AVAILABLE

-,SEMA NAME SEMAPHORE

CLADISE.' PHCRE XFER CON _____________________

RUNNING TASK SONT 01

SVE

C'ONTEX T 3

PUT IN
• ,BLOCKED TASKS BLOC ED 'CuDL

X,.,BLCKTIE T[ASK LIST. 02

NODE: ITITLE: WAIT SEMOAPHORE jNLMBER: MSR2 1

A3231

142

A3232 SIGNAL SEMAPHORE

Abstract: This diagram specifies the nature of the semaphore em signal operation. The
invoking task releases the semaphore, releasing a (possibly higher priority) blocked task if
one exists.

A32321 This activity checks the semaphore status. If the running task does not
possess the semaphore, an error code is returned. If any tasks are blocked, one is un-
blocked; otherwise the semaphore is set to "available" and control returns to the running
task.

A32322 This activity sets the semaphore to "available" and control returns to
the running task.

A32323 This activity gets the first blocked task from the blocked task list.

A32324 This activity puts the formerly blocked task in the ready task list. EXE-
CUTE TASKS is triggered to check if the new task has a higher priority than the running
task.

AUTHOR: MICHAEL S. R071MAN IDATE:6/38/98 IREADER I
PROJ)ECT: ARIMOS IREY: 1.1 JDATE I

I S AS E M A P 3 R E E R R O R

-,SEMAPHORE N M SEMAPHORE ASK .LCCX.ED

S:L'APHORE XFER COJT RL
C2

2

FREE
.. LOCKED iASKS-4 BLOCKED FREED TASK

PUT IN
READY TASKS READY CHK SCHEDULE,

TASK LIST 01
4

NODE: TITLE: SIGNAL SEMAPHORE INUBER: MSR22
A3232

143

A824 HANDLE INTERRUPT GALLS

Abstract: This diagram specifies the manner in which the application tasks can Influ-
ence interrupts and Ihow application-provided interrupt handlers must return contrcl. to
the interrupted task.

A3241 This activity enables the specified interrupt so that it can occur.

A3242 This activity disables the specified interrupt, preventing it from occuring.

A3243 This activity transfers control back to the OS after an application inter-
rupt handler so that the OS can check if a higher priority task was readied by the handler,
and preempt the interrupted task if necessary.

AUTHOR: MICHAEL S. R077MAN IDAE:6/30/98 IREADER

PROJ)ECT:, AR7lIDS IREV:1.I 1 DATE

INTERRUPT CALLS

ERABLE DISABLE RETURN

'1NTER UPTT INTERRUPT XFER CONTROL ____________)FER CONTRO
02

____________________1_ I1ERRUPI YcFER WDNTRDL

REIURN
FRGj CHK SCI -EULE

INTERRUPT 01
3

NODE: ITITLE: HANDLE INTERRUPT CALLS INUMBER: MSR23
A324

144

A33 HANDLE INTERRUPTS

Abstract: HANDLE INTERRUPTS shows the different functional requirements for in-
terrupt handling in the ARTMOS. This area by necessity is somewhat sketchy because it
depends on the specific interrupt needs of the target hardware. It is assumed that there
is a clock interrupt, but receiving a datagram or synchronizing the processor clocks may
not be interrupt-triggered. These are shown as interrupts, however, because they happen
asynchronously.

A331 This activity increments the local processor clock and wakes up any tasks
(blocked or sleeping) that are waiting for the new time.

A332 This activity receives a datagram and posts the message to the appropri-
ate mailbox.

A333 This activity synchronizes the local clock with the rest of the processor clocks,
then sees if any tasks are ready to wake up at the new time.

AWUHOR: MICHAEL S. ROIMAN IAE:7/4/g8 IREADER I I
PROJECT: ARIMOS IREV: 1.2 iDA'Ecii

INTJERRUPTS

IC'

CLOCK INERRUPT MESSAGE WNERRUPT SYNCH INTERRUPT

ANDLE
CLOCK SCHEDULE SCHEDULE_
INTERRUPT 01

SHANDOLE

RECEIVED F rnNrP _C"T'GR 1 i LC

SYNCH
CLOCK SCHEDULE

NODE: IT:LE: HANDLE !NTERRUPTS jNUMBER: MSR24
A33

145

A331 HANDLE CLOCK INTERRUPT

Abstract: This diagram depicts the actions that take place when the local processor clock
is incremented.

A3311 This activity increments the local clock as appropriate.

A3312 This activity sequences through the sleeping task list. triggerin the awaken-
ing of any tasks waiting for the new time..

A3313 This activity puts a task in the ready list.

A3314 This activity sequences through the blocked task list, triggerin the awaken-
ing of any tasks waiting for the new time.

A3315 This activity puts a task in the ready list.

AUTHOR: MICHAEL S. ROTIMAN IDAE:6/3B/ga IREADER I

PROJECT: ARTMOS REV: 1.2 JDATE

C1 CLOCK INTERRUPT

UPDATE
TIME CLOCK R R RMNTF-

ALL WOKEN CHK SCHEDUL-
A015L EPING ASK ISLEEPING {. .

"-"{I
"
T
ASKS 2 7 iASK TO WAlK-/WOKEN

PUT IN
.- ,READY ASKS IREADY

TASK LST

CHECK ALL FREED

.-.8LOC.EO TASKS. BLOCKED
TSS TASK TO FREE/FREED

PUT IN
-READY

TASK LIST

[NODE: IT17LE: HANDLE CLOCK INTERRUPT [NUM'BER: MSR25

A331

146

A332 HANDLE RECEIVED DATAGRAM

Abstract: This diagram decomposes the process of receiving a datagram. When a data-
gram arrives at a processor, the message is extracted and placed in the mailbox. If the
datagram contains a "message consumed" signal, the appropriate mailbox is "notified."

A3321 This activity checks the arriving datagram to determine if it is a data mes-
sage or a "message consumed" signal.

A3322 If it is a data message, this activity extracts the message from the datagram.

A3323 This activity loads the extracted message into the.specified destination mail-
box, then passes control back to the interrupted task.

A3324 If it is a "message consumed" signal, this activity sets the appropriate flag
in the mailbox to show that the mailbox is now "available."

AUTHOR: MICHAEL S. R077MAN IDAE:6/30/gB IREADER I
PROJECT: AR7MOS IREV:.1 I EjDA7

MESSAGE INTERRUPT

INBOUND DATAGR AJ'

D RTAGRT F

DECO1-
SPOSE MSG EXTRACTED
ATGR.'2 4

MSG TO XFER C3?TRIL XFER CO6RCL,
MAILBOX

O

CDNSLTHED X ,ER CONTROL
ISIGAL

NODE:17TI LE
: HANDLE RECEIVED DA

'
AGRAM

NLI M
BER : M SR26

147

A333 SYNCH CLOCK

Abstract: This diagram shows the synchronization of the processor docks and the actions
which must take place as a result of the changing clock value. Until an synchronization
algorithm is selected in the design phase, little can be specified. Any waiting tasks whose

time has arrived must be awakened, and the interrupted task preempted if any of the new
tasks have a higher priority.

A3331 This activity cemputes an error between the local clock and the other docks
in the system.

A3332 This activity adjusts the current dock ,ralue by the computed error.

A3333 This activity sequences through the sleeping task list, triggerin the awaken-
ing of any tasks waiting for the new time.

A3334 This activity puts a task in the ready list.

A3335 This activity sequences through the blocked task list, triggerin the awaken-
ing of any tasks waiting for the new time.

A3336 This activity puts a task in the ready list.

AUTHOR: MICHAEL S. ROITMAN tATE:5/38/gB IREADER I
PROJECT: ARTM0S IREV: 1.2 JDATE

C1 SYNCH INTERRUPT

COMMPUTE
-'TIME CLOCK CLOCK ERROR

ERROR

I ADJUST
nrOAi CLOCK SYNCHED

CLOCKCHEC K ALL W OKE CFK CH 5 0 1

.LCEPING TASKSI LEEPING LL
TASKS TASK TO WAKE/WOKEN

31

PUT IN
-REAOY TASKS READS'

TASK LIST
4

CHECK

-'BLOCKED TASKS- BLOCKED
TASKS USK TO FREE/FREED

5

PUT IN
READY
TASK LIS6

NODE: TITLE: SYNCH CLOCK IUABER: MSR27
A333

148

Appendix G. SATool II User Evaluation Form

CAD-Tool Human-Computer Interface Evaluation1

Name (administrative use only):

Estimated time spent with tool/system 1:

Do not write in these spaces

Tool Evaluated:

Class:

Group:

Exper:

First:

ID #:

PLEASE READ BEFORE PROCEEDING:

The following questionnaire is designed to provide user feedback

on the human-computer interface of the specified computer-aided de-

sign (CAD) tool. Through your responses, we hope to measure your

degree of satisfaction with the tool, with primary emphasis on the

"user-friendliness" of the human-computer interface.

122 April 1988, U. S. Air Foice Institute of Technology, AFIT/ENG(llartrum)

149

The questionnaire consists of a set of 11 factors, plus an overall

rating. We will determine your satisfaction with the tool based on

your response to six adjective pairs used to describe each factor. Each

adjective pair has a seven-interval range where you are to indicate your

feelings with an "X". Responses placed in the center of the range will

indicate that you have no strong feelings one way or the other, or that

you cannot effectively evaluate that given factor.

Evaluation begin time 1:

150

1. System Feedback or Content of the Information Displayed. The extent to which
the system kept you informed about what was going on in the program.

insufficient .. sufficient
unclear clear
useless L useful

bad good
unsatisfactory satisfactory

To me this factor is:

unimportant ZL1I ULL important

Comments:

2. Communication. The methods used to communicate with the tool.

complex simple
weak powerful
bad good

useless useful
unsatisfactory satisfactory

To me this factor is:

unimportant [III important

Comments:

3. Error Prevention Your perception of how well the system prevented user in-
duced errors.

bad good
insufficient sufficient
incomplete complete

low high
unsatisfactory _ - satisfactory

To me this factor is:

unimportant I []I J important

151

Comments:

4. Error Recovery. The extent and ease with which the system allowed you to
recover from user induced errors.

unforgiving forgiving
incomplete complete

complex simple
slow fast

unsatisfactory satisfactory

To me this factor is:

unimportant Efl7VVI important

Comments:

5. Documentation. Your overall perception as to the usefulness of documentation.

useless useful
incomplete complete

hazy clear
insufficient sufficient

unsatisfactory satisfactory

To me this factor is:

unimportant EWIIlJ important

Comments:

6. Expectations. Your perception as to the services provided by the system based
on your expectations.

152

displeased pleased
low high

uncertain definite
pessimistic optimistic

unsatisfactory _ satisfactory

To me this factor is:

unimportant 7 important

Comments:

7. Confidence in the System. Your feelings of assurance or certainty about the
services provided by the system.

low high
weak strong

uncertain definite
bad good

unsatisfactory satisfactory

To me this factor is:

unimportant important

Comments:

8. Ease of Learning. Ease with which you were able to learn how to use the
system to perform the intended task.

difficult easy
confusing clear

complex simple
slow fast

unsatisfactory _ satisfactory

To me this factor is:

unimportant l I I I M important

153

Comments:

9. Display of Information. The manner in which both program control and data
information were displayed on the screen.

confusing clear
cluttered well defined

incomplete complete
complex simple

unsatisfactory satisfactory

To me this factor is:

unimportant important

Comments:

10. Feeling of Control. Your ability to direct or control the activities performed
by the tool.

low high
insufficient sufficient

vague precise
weak strong

unsatisfactory satisfactory

To me this factor is:

unimportant MIW[fI important

Comments:

11. Relevancy or System Usefulness. Your perception of how useful the system is

as an aid to a software developer.

154

useless useful
inadequate adequate

hazy clear
insufficient sufficient

unsatisfactory satisfactory

To me this factor is:

unimportant EJIEID[fl important

Comments:

12. Overall Evaluation of the System. Your overall satisfaction with the system.

unsatisfied[ILLEI [] satisfied

(cont'd)

155

Comments on the Overall System:

Evaluation end time1:

Total time spent on evaluation 1:

Thank you for your help.

156

Appendix H. IDEFo Diagram Syntax Review

The original purpose of the IDEF0 methodology was to produce a function
model for manufacturing systems. It provided a structured representation of the
functions or activities and the information or data elements which interrelated those
functions (18:1-1). However, the nature of the IDEF0 diagram syntax is such that
the IDEF0 methodology can also be used to analyze software requirements (10:1).
The software specification products of such an analysis are composed of an IDEFo
graphical decomposition and the corresponding data dictionary (10:1). An IDEF0
system model description is composed of a set of hierarchical diagrams similar in
structure to data flow diagrams (DFD) (9:12-21). The graphical decomposition of
an IDEF0 diagram is based on activities and data elements in much the same way
data flow diagrams are composed of process boxes and data flow arrows (9:12-13).
The IDEFo diagram activities are represented by rectangular boxes and the data
elements are represented by lines with arrows (Figure 50).

An activity represents a function or action of the system (Figure 50) (10:7).
The activity name always starts with a verb (10:68). Each activity box has a single
digit integer placed at the bottom right hand corner and represents the activity
number. In the event of more than nine boxes in a diagram, lowercase letters can
also be used (10:68). Following is a more detailed description of the hierarchical
nature of the IDEF0 diagrams.

Figure 51 through Figure 54 show part of a system description for an elevator
control system using the IDEF0 methodology (24:23-25). Figure 51 shows the hier-
archical decomposition of this system. The first diagram in the hierarchy is known
as the A-0 diagram and it contains only one activity with zero or more data elements
(Figure 52). This single activity represents the system being modeled. The activity
number given to the system activity is AO. The AO box is broken down in the next
level diagram known as the AO diagram to show a more detailed description of the
system (Figure 53). The number for each activity a, this level is equal to the number
in the bottom right of each box with an "A" placed in front of it. For example the
activity number for the activity "Store Request" is Al. Each of the activity boxes
in the second diagram is then broken down to show a more detailed description of
its function. Figure 54 shows a breakdown of the first activity box from Figure 53.
Here each activity inherits the activity number of its parent activity and adds the
single digit assigned to it at the end. For example "Manage Destination" has the
activity number A12. This numbering system allows an observer to know how many
levels down the diagram hierarchy a particular activity is found. Each digit implies
a level.

The data element arrows represent the information that is passed from activity
to activity and lefine the relationships between the activities. How a dat, element

157

Control

Perform
Input Activity Output

number
1..9

Mechanism Call

Figure 50. IDEFo Activity and Data Elements

158

tl More General

Parent Activity AO M
/

II
I \ I
I \ I

I \ /
I \ I
I \ I

Child

Activity

More Detail

-/ I

/2

/ 0
/ /

/ I
- /I -

- \
- / / -%

12

Al I. A 2
A A

Al TAl l i

\ € I I '
\ g

I II \ \

i 5 I Dc ps i
I I159\ i I

I I I
\ \ t

I I I \

I I II \.

Figure 51. Sample IDEFo Hierarchical Decomposition

159

AUTHOR: Min-fuh Shyong DATE: 2/26/91 READER:

PROJECT: Control Elevator REV: 1.0 DATE:

summons indication

floor sensor

door sensor

system control

passenger

requests Control control signals

Elevator
overload

sensor _

door motor drive

floor motor drive

NODE: A-0 TITLE: Control Elevator NUMBER:

Figure 52. A-0 Diagram for 'Control Elevator'

160

AUTHOR: Min-fuh Shyong DATE: 2/26/91 READER:

PROJECT: Control Elevator REV: 1.0 DATE:

summons indication

passenger Store
floor sensor

Request
requests

1 I door sensor

received ______i system control

request Elevator signals

Schdultcotro

overload sensor Schedule control

Elevator

3 signals

floor motor
drive ddor motor drive

NODE. AOTITLE: Schedule ElevatorNUBR

Figure 53. AO Diagram for 'Control Elevator'

161

AUTHOR: Min-fuh Shyong DATE: 2/26/91 READER:

PROJECT: Control Elevator REV: 1.0 DATE:

summons indication

passenger Manage elevator
Summnons

requests Request 1Ii status

M g received
Destination

2 request

NODE: Al TITLE: Manage Request NUMBER:

Figure 54. Al Diagram for 'Control Elevator'

162

arrow is positioned on an activity determines what function that data element plays
for that particular activity (10:68). There are four types of data elements: input,
output, control, and mechanism (Figure 50). Arrows incoming at the left side of
the box represent inputs. These are converted into outputs that always come out
of the right side of the box. The top of the box is reserved for incoming control
arrows. Every box has to have at least one control arrow. Input data elements are
converted into output data elements depending on the constraints set by the control
data elements. The bottom of the box represents mechanisms. Incoming bottom
arrows represent means of performing the function. A downward arrow represents
a special case o' mechanism that indicates the activity is actually a part of another
activity or system where its decomposition can be found.

The four types of data elements can be further broken down by the type of
arrow drawn (10:68). The seven basic types of arrows are simple, pipeline, branch,
boundary, tunnel, to-all, and from-all arrows (Figure 55). A simple arrow shows a
direct, connection between tWo activities. The output data element of the first is the
input or control data element of the second activity. A pipeline arrow represents a
data element thdot is formed from several data elements (bundle/join) or one that
is broken down into subcomponents (fork). A branch shows a data element that
breaks into two or more arrows, each carrying the same information. A boundary
arrow is connected to one box only and represents the data elements that are shown
going into ur out of the parent activity. An incoming tunnel arrow is a boundary
arrow that has come from an activity other than the parent of the given activity.
The oatgoing tunnel arrow indicates that the data is going to an activity other than
one that is directly decomposed from it. A to-all arrow indicates that the output
of a particular activity will be used as a control or input data element by all other
activities in the diagram. It ha, a circle with a letter in the circle used to identify the
particular to-all arrow. How this to-all data element is used by the other activities is
determined by the fromall arrows. These arrows are composed of an incoming arrow
wvth a circle at or.,- end. In the circle is the identifying character that associates the
from.all arrow with a particular to-all arrow. From-all arrows can represent control
or input data elements. To-all arrows are always output data elements.

163

DtlDatal Data2

Tunnel Arrows

Simple Arrow

DatalFor All Arrow

A

Branch ArrowT

F 1 Datal Data5 yI From All Arrowv
[j Data4

Data2 Data6

Data3 Data-

Bundle/Join Fork a4T t5

Pipeline Arrowv Boundary Arrows

Figure 55. IDEF0 Arrow Types

164

Bibliography

1. Austin, Kenneth A. and others. "An Entity Relationship Modeling Approach to
IDEFo Syntax," Proceedings of IEEE 1990 National Aerospace and Electronics
Conference NAECON 1990, 2:641-645 (May 1990).

2. Batini, Carlo, Enrico Nardelli and Roberto Tamassia. "A Layout Algorithm for
Data Flow Diagrams," IEEE Transactions on Software Engineering, 12:538-
546 (April 1986).

3. Booch, Grady. Software Engineering With Ada. Menlo Park, California: The
Benjamin Cummings Publishing Company, 1986.

4. Booch, Grady. Software Components With Ada. Redwood City, California:
The Benjamin Cummings Publishing Company, 1987.

5. Booch, Grady. Object Oriented Design With Applications. Redwood City, Cal-
ifornia: The Benjamin Cummings Publishing Company, 1991.

6. Brown, Marlin C. Iuman Computer Interface Design Guidelines. New Jersey:
Ablex Publishing Corporation, 1988.

7. Dumas, Joseph S. Designing User Interfaces For Software. New Jersey: Pren-
tice Hall, Inc., 1988.

8. Foley, Jeffrey W. Design of a Data Dictionary Editor in a Distributed Software
Development Environment. MS thesis, School of Engineering, Air Force Insti-
tute of Technology (AU), Wright-Patterson AFB OH, June 1986 (AD-A172406).

9. Ganes, Chris and Trish Sarson. Structured Systems Analysis: Tools and Tech-
niques. St. Louis, Missouri: McDonnell Douglass Corp., 1982.

10. Hartrun, Thomas C. "IDEFo Requirements Analysis." Class handout describ-
ing the use of IDEFo for software requirements analysis, October 1989.

11. Hartrum, Thomas C. System Development Documentation Guidelines and
Standards, January 1989.

12. Hoadley, Ellen D. "Investigating the Effects of Color," Communications of the
A CM, 33:120-125 (February 1990).

13. Humphrey, Watts S. Managing the Software Process. Reading, Masachusetts:
Addison-Wesley Publishing Company, Inc., 1989.

14. Hyland, Stephen J. and Mark A. Nelson. "Ada Bindings to the X Window
System." Ada computer software source code, 1987.

15. Johnson, Steven E. A Graphics Editor for Structured Analysis with a Data
Dictionary. MS thesis, School of Engineering, Air Force Institute of Technology
(A1J), Wright-Patterson AFB OH, December 1987 (AD-A190618).

165

16. Jones, Oliver. Introduction to the X Window System. Englewood Cliffs, New
Jersey: Prentice Hall, 1988.

17. Kitchen, Terry L. An Object-Oriented Design and Implementation for the
IDEFo Esssential Data Model with an Ada Based Expert System. MS thesis,
AFIT/GCS/ENG/90D-07, School of Engineering, Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB OH, December 1990.

18. Materials Laboratory, Air Force Wright Aeronautical Laboratories, Air Force
Systems Command, Wright-Patterson AFB, OH 45433. Integrated Computer-
Aided Manufacturing (ICAM) Function Modeling Manual (IDEFo), June 1981.

19. Matingly, Joseph. Establishing a Methodology for Evaluating and Selecting
Computer Aided Software Engineering Tools for a Defined Software Engineer-
ing Environment at the Air Force Institute of Technology School of Engineering.
MS thesis, AFIT/GCS/ENG/91-D, School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, December 1991.

20. Myers, G.J. Software Reliability, Principles and Practices. New York: Wiley,
1976.

21. Prototzko, L. Beth et al. "Towards the Automatic Generation of Software
Diagrams," IEEE Transactions on Software Engineering, 17:10-21 (January
1991).

22. Rottman, Michael S. A Common Interface Real-Time Multiprocessor Operating
System for Embedded Systems. MS thesis, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, March 1991.

23. Scheifler, Robert W. and Jim Gettys. "The X Window System," ACM Trans-
actions on Graphics, 5:79-109 (April 1986).

24. Slyong, Min-Fuh. An Ada-Based Expert System for the Ada Version of SATool
II. MS thesis, AFIT/GCS/ENG/91-J, School of Engineering, Air Force Insti-
tute of Technology (AU), Wright-Patterson AFB OH, June 1991.

25. Smith, Nealon F. SAtool II: An IDEFo Syntax Data Manipulator and Graphics
Editor. MS thesis, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1989 (AD-A215289).

26. Sommerville, Ian. Software Engineering. Massachusetts: Addison-Wesley Pub-
lishing Company, 1989.

27. Tevis, Jay Evan J. An Ada-Based Framework for an IDEFo CASE Tool Using
the X Window System. MS thesis, AFIT/GCS/ENG/90D-15, School of Engi-
neering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1990.

28. Yourdon, Edward. Modern Structured Analysis. Englewood Cliffs, New Jersey:
Prentice Hall, Inc., 1989.

166

Vita

Captain Betty Topp was born March 19, 1963 in Brooklyn, New York. She

graduated in 1981 from Colegio San Antonio Abad in Humacao, Puerto Rico and en-

tered the United States Air Force Academy with the class of 1985. On May 29, 1985

she graduated with a Bachelor of Science degree in Computer Science and earned

a regular commission into the United States Air Force as a second lieutenant. Her

first assignment was to the Command, Control, Communications and Countermea-

sures (C3CM) Joint Test Force at Kirtland AFB, New Mexico. There she served

four years as a data analyst for several field experiments dealing with C3CM critical

to the joint missions of the Air Force and Army. Her next assignment was to the

Foreign Technology Division at Wright Patterson AFB, Ohio where she served for

one year as a senior programmer. She entered the School of Engineering at the Air

Force Institute of Technology in May of 1990.

Permanent address: 5495 Gander Rd S.
Dayton, OH 45424

167

