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We present a model of how objects can be visually discriminated based on the extraction of

depth-from-occlusion. Object discrimination requires consideration of both the binding problem

and the problem of segmentation. We propose that the visual system binds contours and surfaces

by identifying "proto-objects"-compact regions bounded by closed contours. Proto-objects can

then be linked into larger structures. The model is simulated by a system of interconnected

neural networks. The networks have biologically-motivated architectures and utilize a distributed

representation of depth. We present simulations that demonstrate three robust psychophysical

properties of the system. The networks are able to stratify multiple occluding objects in a

complex scene into separate depth planes. They bind the contours and surfaces of occluded

objects (for example, if a tree branch partially occludes the moon, the two "half-moons" are

bound into a single object). Finally, the model accounts for human perceptions of illusory

contour stimuli.

1 Introduction

In order to discriminate objects in the visual world, the nervous system must solve two fun-

damental problems: binding and segmentation. The binding problem (Barlow, 1981) addresses

how the attributes of an object-shape, color, motion, depth-are linked to create an individual

object. Segmentation deals with the converse problem of how separate objects are distinguished.

These two problems have been studied from the perspectives of both computational neuroscience

(Marr, 1982; Grossberg and Mingolla, 1985; T. Poggio, et al., 1988; Finkel and Edelman, 1989)

and machine vision (Guzman, 1968; Rosenfeld, 1988; Aloimonos and Shulman, 1989; Fisher,

1989). However, previous studies have not addressed what we consider to be the central issue:

how does the visual system define an object-i.e., what constitutes a "thing".

Object discrimination occurs at an intermediate stage of the transformation between 2D

image intensity values and visual recognition, and in general, depends upon cues from multiple

visual modalities. In order to simplify the problem, we restrict ourselves to discrimination based

solely on occlusion relationships. In a typical visual scene, multiple objects may occlude one

another. When this occurs, it creates a perceptual dilenuna-to which of the two overlapping

surfaces does the common border belong? If the border is, in fact, an occlusion border, then

it belongs to the occluding object. This identification results in a stratification of the two . ..
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objects in depth and a de facto discrimination of the objects. Consider the case of a tree branch

crossing the face of the moon. We perceive the branch as closer and the moon more distant, but

in addition, the two "half-moons" are perceptually linked into one object. The visual system

supplies a virtual representation of the occluded contours and surfaces in a process Kanizsa

(1979) has called "amodal completion". With this example in mind, we propose that the visual

system identifies "proto-objects" and determines which proto-objects, if any, should be linked

into objects. For present purposes, a proto-object is defined as a compact region surrounded by

a closed, piecewise continuous contour and located at a certain distance from the viewer. The

contour can be closed upon itself, or more commonly, it can be closed by termination upon other

contours.

We will demonstrate how a system of interconnected, physiologically-based neural networks

can identify, link, and stratify proto-objects into objects. The networks operate, largely in

parallel, to carry out the following interdependent processes:

" discriminate edges

* segment and bind contours

" identify proto-objects (i.e., bind contours and surfaces)

" identify possible occlusion boundaries

* stratify occluding objects into different depth planes

" attempt to link proto-objects into objects

" influence earlier steps (e.g. contour binding) by results of later steps (e.g. object linkage)

The constructed networks implement these processes using a relatively small number of neural

mechanisrrs (such as detecting junctions of contours, and determining which surface is inside

a closed contour). A few of the mechanisms used are similar to those of previous proposals

(Grossberg and Mingolla, 1985: Finkel and Edelman, 1989; Fisher, 1989). But our particular

choice of mechanisms is constrained by two considerations. First, we utilize a distributed rep-

resentation of depth-this is based on the example of how disparity is represented in the visual
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cortex (G. Poggio, et al, 1988; Lehky and Sejnowski, 1990). The relative depth of a particu-

lar object is represented by the relative activation of corresponding units in a foreground and

background map. Second, as indicated above, we make extensive use of feedback (reentrant)

connections from higher level networks to those at lower levels-this is particularly important in

linking proto-objects. For example, once a higher level network has determined an occlusion

relationship it can modify the way in which an earlier network binds contours to surfaces.

Any model of visual occlusion must be able to explain the perception of illusory (subjective)

contours, since these illusions arise from artificially arranged cues to occlusion (Gregory, 1972).

The proposed model can account for the majority of such illusions. In fact, the ability to link

contours in the foreground and background corresponds, respectively, to the processes of modal

and amodal completion hypothesized by Kanizsa (1979). The present proposal differs from

previous neural models of illusory contour generation (Ullman, 1976; Grossberg and Mingolla,

1985; von der Heydt, et al., 1989; Finkel and Edelman, 1989) in that it generates illusory objects-

not just the contours. The difference is critical: a network which generates responses to the three

sides of the Kanizsa triangle, for example, is not representing a triangle (the object) per se. To

represent the triangle it is necessary to link these three contours into a single entity, to know

which side of the contour is the inside, to represent the surface of the triangle, to know something

about the properties of the surface (its depth, color, texture, etc.), and finally to bind all these

attributes into a whole. This is clearly a much more difficult problem. We will describe, however,

a simple model for how such a process might be carried out by a set of interconnected neural

networks, and present the results of simulations that test the ability of the system on a range of

normal and illusory scenes.

2 Implementation

Simulations of the model were conducted using the NEXUS Neural Simulator (Sajda and Finkel,

1990; 1991). NEXUS is an interactive simulator designed for modelling multiple interconnected

neural maps. The simulator allows considerable flexibility in specifying neuronal properties and

neural architectures. The present simulations feature a system of 42 interconnected networks,

each of which contains an array of 64x64 units and each of which is topographically organized.

Two types of neuronal units are used. Standard neuronal units carry out a linear weighted
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summation of their excitatory and inhibitory inputs, and outputs are determined by a sigmoidal

function between voltage and firing rate. NEXUS also allows the use of more complex units called

PGN (programmable generalized neural) units which execute arbitrary functions or algorithms.

A single PGN unit can emulate the function of a small circuit or assembly of standard units.

PGN units are particularly useful in situations in which an intensive computation is being

performed but the anatomical and physiological details of the how the operation is performed in

vivo are unknown. Alternatively, PGN units can be used to carry out functions in a time-efficient

manner; for example, to implement a one-step winner-take-all algorithm. The PGN units used

in the present simulations can all be replaced with circuits composed of standard neurc:.-a! units,

but this incurs a dramatic increase in processing time and memory allocation with no change in

functional behavior at the system level.

No learning is involved in the network dynamics. The model is intended to correspond to

preattentive perception, and the interpretation of even complex scenes requires only a few cycles

of network activity. The details of network construction will be described elsewhere; we will

focus here on the processes performed and the theoretical issues behind the mechanisms.

3 Construction of the Model

The model consists of a number of stages as indicated in Figure 1. The first stage of early

visual processing involves networks specialized for the detection of edges, line orientation, line

terminations (endstopping), and line junctions (termination of one contour upon another). As

Ramachandran (1987) has observed, the visual system must distinguish several different types

of edges: we are concerned here with the distinction between edges due to surface discontinu-

ities (transitions between different surfaces) and those due to surface markings (textures, stray

lines, etc.). Only the former can be occlusion boundaries. The visual system utilizes several

modalities to classify types of edges; we restrict ourselves to a single process carried out by the

second processing stage, a network that determines which segments belong to which contours

and whether the contours are closed.

When two contours cross each other, forming an "X" junction, there are several possible

perceptual interpretations of which arms of the "X" should be joined. Our networks carry out

the sitilpt, role that discontinuities should be minimized-i.e., lines and curves should continue
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Figure 1: Major processing stages in the model. Each process is carried out by one or more
networks. Following early visual stages, information flows through two largely parallel pathways-
one concerned with identifying and linking occlusion boundaries (left side) and another concerned
with stratifying objects in depth (right side). Networks are multiply interconnected and note
the presence of the two reentrant feedback pathways.



as straight (or with as much the same curvature) as possible. Similar assumptions underlie

previous models (Ullman, 1976), and this notion is in accord with psychophysical findings that

discontinuities contain more information than continuous segments (Attneave, 1954; Resnikoff,

1989). We are thus minimizing the amount of self-generated information.

We employ a simple sequential process to determine whether a contour is closed-each unit

on a closed contour requires that at least two of its nearest neighboring units also be on the

contour. It is computationally difficult to determine closure in parallel. We speculate that, in

vivo, the process is carried out by a combination of endstopped units and large-receptive field

cells arranged in an architecture similar to that described by Rockland and Lund (1982) in Area

17 (Mitchison and Crick, 1982). Once closure is determined, it is computationally efficient for the

units involved to be identified with a "tag". Several of the higher level processes discussed below

require that units responding to the same contour be distinguishable from those responding to

different contours. There are several possible physiological mechanisms which could subserve

such a tag-one possible mechanism is phase-locked firing (Gray and Singer, 1989; Eckhorn, et

al., 1988). We have implemented this contour binding tag through the use of PGN units (section

2), which are capable of representing several distinct tags. It must be emphasized, however, that

the model is compatible with a numbe- of possible physiological mechanisms.

Closed contours are a necessary condition to identify a proto-object, but sufficiency requires

two additional components. As shown in Figure 1, the remaining determinations are carried

out in parallel. One stage is concerned with deteriiiin.:,g on which side of the contour the

figure lies, i.e., distinguishing inside from outside. The problem can be alternatively posed as

determining which surface "owns" the contour (Koffka, 1935; Nakayama and Shimojo, 1990).

This is a nontrivial problem which, in general, requires global information about the figure.

The classic example is the spiral (Minsky and Papert, 1969; Sejnowski and Hinton, 1987) in

which it is inir;,",sible to determine whether a point is inside or outside based on only local

information. The mechanism we employ, as shown in Figure 2, is based upon the following

simple observation. Suppose a unit projects its dendrites in a stellate configuration and that the

dendrites are activated by units responding to a contour. Then if a given unit is inside a contour,

all of its dendrites will be activated (i.e., will intersect the contour); if the unit is outside, then

only some of its dendrites will be activated. A winner-take-all interaction between the two units
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contour bindn

direction of figure

Figure 2: Neural circuit for determining direction of figure (inside vs. outside). Hypothetical
input stimulus consists of two closed contours (bold curves). The central unit of 3x3 array

(shown below) determines the local orientation of the contour. Surrounding units represent
possible directions (indicated by arrows) of the inside of the figure relative to the contour. All
surrounding units are inhibited (black circles) except for the two units located perpendicular to
local orientation ef the contour. Units receive inputs from the contour binding map via dendrites
that spread out in a stellate configuration, as indicated by clustered arrows (dendrites extend
over long distances in map). Units inside the figure will rtceive more inputs than those located
outside the figure. The two uninhibited units compete in a winner-take-all interaction. Note
that inputs from separate objects are not confused due to the tags generated in the contour
binding map.

will determine which is more strongly activated, and hence which is inside the figure. As shown

in Figure 2, it is advantageous to limit this competition to the two units which are located at

positions perpendiculp- to the local orientation of the contour. As will be shown below (see

figures 5-7), this network is quite efficient at locating the interior of figures. It also demonstrates

deficiencies similar to those of human perception-for example, it cannot distinguish the inside

from the outside of a spiral. The mechanism depends, however, upon the contour binding carried

out above. Each unit only considers inputs with the appropriate tag-in this way, inputs from

separate contours in the scene are not confused.

Identification of a proto-object also requires that the relative depth of the surface be de-

termined. This is carried out chiefly through the use of T-junctions. As shown in figure 3, a
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Figure 3: Primary cues for occlusion. T-junctions (shown in the inset) signal a local discon-
tinuity between occluding and occluded contours. Concave regions and surrounded contours
suggest occlusion, but are not as reliable indicators as T-junctions. Additonal cues such as
accretion/deletion of texture (not considered here) are used in vivo.

T-junction is formed by the termination of an occluded boundary (the tail of the T) upon an

occluding boundary (the head of the T). Although current evidence for cortical units selective

for such junctions is lacking, it is trivial to design such a unit based on inputs from orientation

selective and endstopped cells.

In this model, T-junctions serve as the major determinant of relative depth. Depth is rep-

resented by the relative level of activity in two topographic maps (called foreground and back-

ground). The closest object maximally activates foreground units and minimally activates back-

ground units; the most distant object has the reverse values, and objects located at intermediate

depths display intermediate values. The initial state of the two maps is such that all closed

contours lie in the background plane. Depth values are then modified at T-junctions-contours

forming the head of the "T" are pushed towards the foreground. Since multiple objects can

overlap, a contour can be both occluding and occluded-therefore, the relative depth of a contour

is determined in a type of push-pull process in which proto-objects are shuffled in depth. The

contour binding tag is critical in this process in that all units with the same tag are pushed

forward or backward together. (In the more general case of nonplanar objects, the alteration of

depth values would depend upon position along the contour)

T-junctions arise in cases of partial occlusion: however, in some instances, a smaller object



may actually lie directly in front of a larger object. In this case, which we call "surround"

occlusion, the contour of the occluded object surrounds that of the occluding object. As shown

in figure 1, a separate process determines whether such a surround occlusion is present. and in

the same manner as T-junctions, leads to a change in the representation of relative depth. The

network mechanism for detecting surround occlusion is almost identical to that discussed above

for determining the direction of figure (see Figure 2). Note that a similar configuration of two

concentric contours arises in the case of a "hole". The model is currently being extended to deal

with such non-simply connected objects.

These processes-contour binding, determining direction of the figure, and determination of

relative depth-define the proto-object. The remainder of the model is concerned with linking

proto-objects into objects. The first step in this endeavor is to identify occlusion boundaries.

Since occlusion boundaries are concave segments of contours, such segments must be detected

(particularly, concave segments bounded by T-junctions). Although many machine vision al-

gorithms exist fur determining convexity, we have chosen to use a simple, neurally plausible

mechanism: at each point of a contour, the direction of figure is compared to the direction of

curvature (which is determined using endstopped units (Dobbins, et al., 1987)). In convex re-

gions, the two directions are the same; in concave regions, the two directions are opposed. A

simple AND mechanism can therefore identify the concave segments of the contours.

Once occlusion borders are identified, proto-objects can be linked by trying to extend, com-

plete, or continue occluded segments. Linkage most commonly occurs between proto-objects in

the background, i.e., between spatially separated occluded contours. For example, in figure 3,

the occluded contours which terminate at the two T-junctions can be linked to generate a virtual

representation of the occluded segment. Since it is impossible to know exactly what the occluded

segment looks like, and since it is not actually "perceived", we have chosen not to generate a

representation of the occluded segment. Rather, a network link binds togCther the endpoints of

the "tails" of the two T-junctions. In the case where multiple objects are occluded by a single

object. the problem of which contours to link can become complex. As shown in figure 4. one

important constraint on this process is that the directions of figure be consistent between the

two linked proto-objects

Another condition in which proto-objects can be linked involves the joining of occluding
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Figure 4: Linking of occluded contours. Three possible perceptual interpretations (below) of an
occlusion configuration (above) are shown. Collinearity cannot be the sole criterion for linking
occluded edges. Consistency in the direction of figure (inside/outside) between linked objects
rules out perception c.

contours, i.e., of proto-objects in the foreground. This phenomenon occurs in our perception of

illusory contours, for example, in the Kanizsa triangle (Kanizsa, 1979) or when a gray disc is

viewed against a background which changes in a smooth spatial gradient from black to white

(Marr, 1982; Shapley and Gordon, 1987). In this case, the heads of the T-junctions are joined,

and a representation of the actual contour is generated. The conditions for linkage are that the

two contours must be smocthly joined by a line or an arc with constant curvature, and that the

direction of figure be consistent (as in the case of occluded contours above).

As indicated in Figure 1, there is an important interaction between these two (occluded and

occluding contour) linking processes. Since these links are self-generated by the system (they

do not exist in the physical world), they must be scrutinized to avoid false conjunctions. The

most powerful check on these processes is their mutual consistency-an increased certainty of the

occluded contour continuation being correct increases the confidence of the occluding contour

continuation, and vica versa. For example, in the case of the Kanizsa triangle, the "pac-man"-

like figures can be completer to form complete circles by simply continuing the contour of the

pac-man The relative ease of completing the occluded contours, in turn, favors the construction

of the illusory contours which correspond to the continuations of the occluding contours. In fact,
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we believe that the interaction between these two processes determines the perceptual vividness

of the illusion.

The final steps in the process involve a recurrent feedback (or reentry, Finkel and Edelman,

1989) from the networks which generate these links back to earlier stages so that the completed

contours can be treated as real objects. Note that the occluded contours feedback to the contour

binding stage, not to the line discrimination stage, since in this case, the link is virtual, and there

is no generated line whose orientation, etc., can be determined. The feedback is particularly

important for integrating the outputs of the two parallel paths. For example, once an occluding

contour is generated, as in the illusory contours generated in the Kanizsa triangle, it creates a

new T-junction (with the circular arc as the "tail" and the illusory contour as the "head" of the

"T"). On the next iteration through the system, this T-junction is identified by networks in the

other parallel path of the system (see Figure 1), and is used to stratify the illusory contour in

depth.

4 Results of Simulations

Linking Proto-Objects

We present the results of three simulations which illustrate the ability of the system to dis-

criminate objects. Figure 5 shows a visual scene that was pr-sented to the system. The early

networks discriminate the edge., lines, terminations, and junctions present in the scene. Figure

5A displays the contour binding tags assigned to different scene elements (on the first and fifth

cycle of activity). Each box represents elements with a common tag, different boxes represent

different tags, and the ordering of the boxes is arbitrary. Note that on the first cycle of activity,

discontinuous segments of contours are given separate tags. These tags will later be changed as

a result of feedback from the linking processes.

Figure 5B shows the output of the dzrciion of figurr network, for a small portion of the

input scene (near the horse's head). The direction of the arrows indicates the direction of figure

determined by the network. The correct direction of figure is determined in all cases: for the

horse's head, and for the horizontal and vertical posts of the fence. Once the direction of figure

is identified, occluded contours can be linked (as in figure 4), and proto-objects combined into

objects. This linkage is what, changes the contour binding tags, so that after several cycles
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Figure 5: Object discrimination and stratification in depth. Top panel shows a 64 x 64 input
stimulus presented to the system.- A Spatial histogram of the contour binding tags (each box
shows units with common tag. diffferent boxes represent different tags, and the order of the
boxes is arbitrary). Initial tags shown on left; tags after five iterations shown on right. Note
that linking of occluded contourq has transformed proto-objects into objects. B Magnified view
of a local section of the direction of figure network corresponding to portion of the image near
horse's nose and crossing fence posts. Arrows indicate direction of inside of proto-objects as
determined by network. C Relative depth of objects in scene as determined by the system. Plot
of activity (A of maximum) of units in the foreground network after 5 iterations. Points with
higher activity are "perceived" asq being relatively closer to the viewer.
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(Figure 5A, right), separate tags are assigned to separate objects-the horse, the gate posts, the

house, the sun.

The presence of T-junctions (e.g., between the horse's contour and the fence, between the

house and the horse's back) are used by the system to force various objects into different depth

planes. The results of this process are displayed in Figure 5C which plots the firing rate (percent

of maximum) of units in the foreground network. The system has successfully stratified the

fence, horse, house and sun. The actual depth value determined for each object is somewhat

arbitrary, and can vary depending upon minor changes in the scene-the system is designed only

to achieve the correct relative ordering, not absolute depth. Note that the horizontal and vertical

posts of the fence are perceived at different depths-this is because of the T-junctions present

between them; in fact, the two surfaces do lie at slightly different depths. In addition, there is

no way to determine the relative depth of the two objects in the background, the house and the

sun, because they bear no occlusion relationship to each other. Again, this conforms to human

perceptions, e.g., the sun and the moon appear about the same distance away. The system thus

appears to process occulsion information in a manner similar to human perception.

Gestalt Psychology of a Network

The system also displays a response consistent with human responses to a number of illusory

stimuli. Figure 6 shows a stimulus, adapted from an example of Kanizsa (1979), which shows

that preservation of local continuity in contours is more powerful than global symmetry in

perception (this is contrary to classical Gestalt theory-e.g., Koffka, 1935). As shown in the

middle panels, there are two possible perceptual interpretations of the contours-on the left, the

two figures respect local continuity (this is the dominant human perception); on the right, the

figur- respect global symmetry.

Figure 6A shows the contour binding tags assigned by the system to this stimulus, and figure

6B shows the direction of figure that was determined. Both results indicate that the network

makes the same perceptual interpretation as a human observer.
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Figure 6: Minimization of ambiguous discontinuities. Upper panel shows an ambiguous stimu-
lus (adapted from Kanizsa, 1979), two possible perceptual interpretations of which are shown
below. The interpretation on the left is dominant for humans, despite the figural symmetry
of the segmentation on the right. Stimulus was presented to the system, results shown after
three iterations. A Spatial histogram showing the contour binding patterns (as in 5B). The
network segments the figures in the same manner as human perception. B Determination of
direction of figure confirms network interpretation (note at junction points, direction of figure is
indeterminate).
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Occlusion Capture

The final simulation shows the ability of the system to generate illusory contours and to use

illusory objects in a veridical fashion. The stimulus is, again, adapted from Kanizsa (1979), and

shows a perceptually vivid, illusory white square in a field of black discs. The illusory square

appears to be closer to the viewer than the background, and, in addition, the four discs which

lie inside its borders appear even closer than the square. This is an example of what we call

"occlusion capture", an effect related to Ramachandran's capture phenomenon (Ramachandran

and Cavanaugh, 1985; Ramachandran, 1986), in which the illusory square has "captured" the

discs within its borders and they are thus pulled into the foreground.

Figure 7A shows the contour binding tags after one (left) and three (right) cycles of activity.

Each disc receives a separate tag. After the responses to illusory square are generated, the

illusory contours are fedback to the contour binding network and given a common tag. Note

that the edges of the discs occluded by the illusory square are now given the same tag as the

square, not the same tags as the discs.

The change in "ownership" of the occluded edges of the discs is the critical step in defining

the illusory square as an object. For example, Figure 7B shows the output of the direction of

figure network after one and three cycles of activity. The large display shows that every disc

is identified as an object with the inside of the disc correctly labeled in each case. The two

insets focus on a portion of the display near the bottom left edge of the illusory square. At

first, the system identifies the "["-shaped angular edge as belonging to the disc, and thus the

direction of figure arrows point "inward". After three cycles of activity, this same "L"-shaped

edge is identified as belonging to the illusory square, and thus the arrows now point towards the

inside of the square, rather than the inside of the disc. This change in the ownership of the edge

results from the discrimination of occlusion-the edge has been determined to be an occlusion

border. The interconnected processing of the system then results in a change in the direction of

figure and of the continuity tags associated with this edge. The illusory square is perceived as

an object. Its four contours are bound together, the contours are bound to the internal surface,

and the properties of the surface are identified.

Figure 7C displays the firing rate of units in the foreground map (as in 5C), thus showing the
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Figure 7: Occlusion capture. Upper panel shows stimulus (adapted from Kanizsa, 1979) in

which we perceive a white illusor) square. Note that the four black discs inside the illusory
square appear closer than the background. A 64 x 64 discrete version of stimulus was present,,
to the network. A Spatial histogram (as in 5A) of the initial and final (after 3 iterations)
contour binding tags. Note that the illusory square is bound as an object. B Direction of figure
determined by the system. Insets show a magnified view of the initial (left) and final (right)
direction of figure (region of magnification is indicated). Note that the direction of figure of the
"mouth" of the pac-man flips once the illusory contour is generated. C Activity in the foreground
network (% of maximum) demonstrates network stratification of objects in relative depth- The
illusory square has "captured" the background texture.
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relative depths discriminated by the system. The discs are placed in the background, the illusory

square at an intermediate depth, and the discs located within the borders of the illusory square

are located closest to the viewer. In this case, the depth cue which forces the internal discs to

the foreground is not due to T-junctions, but rather to surround occlusion (see Figure 3). Once

the illusory square is generated, the contours of the discs inside the square are surrounded by

that of the square. The fact that the contour is "illusory" is irrelevant, since once responses

are generated in the networks responsible for linking occluding contours and are then fedback

to earlier networks, they are indistinguishable from responses to real contours in the periphery.

Thus the system demonstrates occlusion capture corresponding to human perceptions of this

stimulus.

5 Discussion

In most visual scenes, the majority of objects are partially occluded. Our seemless perception

of the world depends upon an ability to complete or link the spatially separated, non-occluded

portions of an object. We have used the idea that the visual system identifies proto-objects

(which may or may not be objects) and then attempts to link these proto-objects into larger

structures. This linking process is most apparent in the perception of illusory contours, and our

model can account for a wide range of these illusions. We have only considered static visual

scenes, however, one of the major cues to the linking process is common motion of proto-objects.

During development, common motion may, in fact, play the largest role in establishing our

concept of what is an object (Termine, et al., 1987). Object definition also clearly depends upon

higher cognitive processes such as attention, context and categorization (Rosch and Lloyd, 1978),

and such processes must eventually be considered.

This model builds upon previous neural, psychological, and machine vision studies. Several

models of illusory contour generation (UlIman, 1976; Peterhans and von der Heydt, 1989; Finkel

and Edelman, 1989) have used related mechanisms to check for collinearity and to generate the

illusory contours. Our model differs at a more fundamental level-we are concerned with objects

not just contours. To define an object, surfaces must also be considered. For example, in a

simple line drawing, we perceive an interior surface despite the fact that no surface properties

are indicated. Thus, the model must be capable of characterizing a surface-and it does so, in a
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rudimentary manner, by determining the direction of figure and relative depth. Nakayama and

Shimojo (1990) have approached the problem of surface representation from a similar viewpoint.

They discuss how contours and surfaces become associated, how T-junctions serve to stratify ob-

jects in depth, and how occluded surfaces are amodally completed. However, Nakayama eschews

the construction of a bottom-up model and instead explores the external "ecological" constraints

upon perception. In addition to these Gibsonian constraints, we emphasize the importance of

internal constraints imposed by physiological mechanisms and neural architectures. Nakayama

has also explored the interactions between occlusion and surface attributes. A more complete

model must consider such surface properties such as color, brightness, texture, and surface ori-

entation. The examination of how surface features might interact with contour boundaries has

been pioneered by Grossberg (1987). Finally, in some regards, our model constitutes the first

step of a "bottom-up" model of object perception (Kanizsa, 1979; Biederman, 1987). It is in-

teresting that regardless of one's orientation (bottom-up or top-down) the constraints of the

physical problem result in certain similarities of solution as witnessed by the analogies present

with Al based models (Fisher, 1989).

One of the most speculative aspects of the model is the use of tags to identify elements as

belonging to the same object. Tags linking units responding to the same contour are used to

determine the direction of figure and to change the perceived depth of the entire contour based

on occlusion relationships detected at isolated points (the T-junctions). It is possible to derive

alternative mechanisms for these processes which do not depend upon the use of tags, but they

are conceptually inelegant and computationally unwieldy. Our model offers no insight as to

the biophysical basis of such a tag, or even whether the tag is implemented in a mechanism

based on common time, phase, frequency, or map position. However, the model does place

constraints on the spatial and temporal properties of the mechanism. For example, suppose that

a phase-dependent mechanism wert used with voltage oscillations at 50 Hz (Konig and Schillen,

1991). Assuming that neurons require dt least 2 milliseconds to process each tag, each neuron

could respond to a maximum of 10 tags (2-4 tags is probably a more reasonable estimate). This

number should correspond to the number of objects that can be simultaneously discriminated.

One could thus imagine a mechanism in which only a handful of objects can be concurrently

attended to. and units responding to each object fire in a distinct time window (e.g., the first 10
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milliseconds of every 50 millisecond interval).

At the outset, we discussed the importance of both binding and segmentation for visual

object discrimination. Our model has largely dealt with the segmentation problem, however, the

two problems are not entirely independent. For example, the association of a depth value with

the object discriminated is, in essence, an example of the binding of an attribute to an object.

Consideration of additional attributes makes the problem more complex, but it also aids in the

discrimination of separate objects (Damasio, 1989; Crick and Koch, 1990).

As Ullman (1989) has pointed out, it is not logically necessary for object discrimination to

take place before object recognition can occur. However, if one considers the function of the

multiple extrastriate visual areas leading to inferotemporal cortex, it appears reasonable that

the visual system is using all the processes at its disposal to generate meaningful representations

of the visual scene. The question of whether you have to know that something is a "thing" before

you can recognize what kind of thing it is, remains to be determined through psychophysical

experiment.

Nonetheless, our model shows that one can build a self-contained system for discriminating

objects based on occlusion relationships. The model is successful at stratifying simple visual

scenes, for linking the representations of occluded objects, and at generating responses to illusory

objects in a manner consistent with human perceptual responses. The model uses neural circuits

that are biologically-based, and conforms to general neural principles, such as the use of a

distributed representation for depth. The system can be tested in psychophysical paradigms and

the results compared to human and animal results. In this manner, a computational model which

is designed based on physiological data and tested with psychophysical data offers a powerful

paradigm for bridging the gap between neuroscience and perception.
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