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Preface

The purpose of this research effort was to investigate multilayer perceptons

as classifiers and predictors. To provide a baseline for the performance of the per-

ceptrons, the perceptron method was compared to two other classifiers--logistic

regression and k-nearest-neighbor. The focus this investigation was on the applica-

tion of discrimination methods on two particular applications-the discrimination

of Air Force pilots in terms of their decisions to remain in military service and clas-

sification of the performance of Armor Piercing Incendiary (API) projectiles. The

analysis conducted on these applications included the following investigation areas:

* Procedures for finding the appropriate architecture for a. multilayer perceptron
with regard to the specific application.

* The performance of discriminators when the features are categorical and bi-
nary.

* Methods for determining significant features.

* A method to determine the confidence to place on the significance of the fea-
tures.

o A method for determining the appropriateness of high-order features.

In performing this analysis, writing the computer code, and compiling this

thesis, I have had a great deal of help from certain specific individuals. First, I am

very thankful that I chose Maj K.W. Bauer as my faculty advisor. I am greatful

that he had the patience to listen to my ramblings and offer meaningful sugge:3tions.

I am also indebted to Capt D.W. Ruck for his quiet but pointed suggestions that

kept me moving in the right direction. Special thanks goes to Capt Jean Steppe for

her words of encouragement and sound advice at the times when I needed it most.

Finally, I'd like to thank my husband Ken and my daughter Caitlin for their concern

for me and for their ability to keep things going while Mommy was at school.

Lisa M. Belue
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Abstract

Techniques for training, testing, and validating multilayer perceptrons are thor-

oughly examined. Results obtained using perceptrons are compared and contrasted

with two multivariate discriminant analysis techniques-logistic regression and k-

nearest neighbor. Methods for determining significant input features are investigated

and a procedure for examining the confidence to place in the significance of these

features is developed. Procedures to evaluate the applicability of high-order feature

inputs are examined. These methods and procedures are applied to two very different

applications. The first application concerns the prediction of Air Force pilot reten-

tion/separation rates for input to force projection models. The second application

concerns the classification of Armor Piercing Incendiary (API) projectiles based on

firing parameters. Results showed that none of the classification methods considered

was able to accurately classify individual pilot's retention decisions, however, multi-

layer perceptrons were judged to be the superior discriminator for the classification

of API projectiles. For the API projectile analysis, a procedure to determine which

input features are no more significant than noise was demonstrated. The resulting

salient set of feature inputs was shown to train quicker and decrease the output error.

A method to identify appropriate high-order inputs was also demonstrated.

xii



AN INVESTIGATION OF

MULTILAYER PERCEPTRONS FOR CLASSIFICATION

L Introduction

This research effort explores the use of multilayer perceptrons for the classifi-

cation and prediction of outcomes for two very different applications.

In the first application, methodologies for predicting pilot retention/separation

rates for input to personnel inventory projection models were e::plored. Specifically,

the multilayer perceptron technique was investigated with the multivariate discrim-

inant analysis techniques used as a benchmark for the results. The objective was

to determine an individual's career decision based on his individual attributes. This

comparative analysis was sponsored by the Analysis Division of the Directorate of

Personnel Plans, Headquarters Air Force (AF/DPXA) and the results will be incor-

porated into their current work on overall personnel inventory analysis.

In the second application, methodologies for classifying the functioning qual-

ity of armor piercing incendiary (API) projectiles that impact one material were

investigated. The application of neural networks for classifying the performance

of the projectile based on the parameters of the test shots was developed. Also,

the multilayer perceptron methodology was compared to multivariate discriminant

analysis techniques. This portion of the analysis was sponsored by the Wright Lab-

oratories Survivability Enhancement Branch, Wright Patterson Air Force Base and

is the topic of an entire thesis titled Predicting Armor Piercing Incendiary Projectile

Effects After Impacting Composite Material(15).

Through these extremely varied applications, several aspects of the use of neu-

ral networks in comparison to traditional multivariate discriminant analysis were

1



revealed. For example, the classification of Air Force pilots was based on categor-

ical binary data while the classification of the performance of projectiles involved

continuous, measured data. Each application offered insights into the intracacies of

the overall problem of group discrimination. Specific aspects that were investigated

include

9 Procedures for finding the appropriate architecture for a multilayer perceptron

with regard to the specific application.

* The performance of discriminators when the features are categorical and bi-

nary.

a Methods for determining significant features.

* A method to determine the confidence to place on the significance of the fea-

tures.

* A method for determining the appropriateness of high-order features.

The following paragraphs provide the background, the research objectives, and

scope of this study.

1.1 Background

1.1.1 Discrirninant Analysis Techniques Only recently have neural networks

come to the forefront of discriminant analysis methods. Statistical discriminant

analysis methods such as Fisher's method, k-nearest-neighbor and logistic regression

have often been dismissed as not useful since the determination of their parameters

was difficult or they were difficult to apply once they were derived. Neural networks,

and more specifically multilayer perceptrons, have the advantage of learning their

optimal parameters and are simple to apply once these parameters are found. There

is also an appealing quality to the "brain-like" structure of neural networks that has

caused attentions to be turned to these relatively new classifiers.

2



The use of neural networks has not been explored deeply from a mathematical

viewpoint. Methods for determining the optimal structure of a multilayer perceptron,

determining significant features, and for estimating the error rate have all been

suggested, but very few formal rules have been established.

1.1.2 Classifying Pilot's Retention Decisions The Directorate of Personnel

Plans, Headquarters Air Force (AF/DPX) is responsible for overall planning and

policy determination for Air Force personnel. In support of this mission, the Analysis

Division develops and maintains force projection models to analyze the effects of

compensations and policy alternatives (12:1). The results of these projection models

are highly dependent on the retention rates that are input to them. If the retention

rates are inaccurate, predictiors on the future structure of the officer and enlisted

force may be inaccurate.

The Air Force Council, under the leadership of the Air Force Chief of Staff,

recently (December 1990) directed AF/DPXA to "develop a model for the dynamics

of the pilot management problem" (1). Currently, AF/DPXA uses a logit method

to predict these essential retention/separation rates. However, this method of pre-

diction is not always entirely reliable and a more accurate method must be found.

Air Force pilots begin their careers in one of three commissioning programs,

the Air Force Academy, Reserve Officer Training Corps or Officer Training School.

They are trained in Undergraduate Pilot Training (UPT) which lasts approximately

one year. These pilots are obligated to four, five or six years, depending on their date

of entry to pilot training. After completing UPT, the individual attends advanced

training in a specific aircraft. At the completion of advanced training, pilots are

assigned to operational units where they perform primary flight crew duties. After

an initial operational assignment, pilots can expect to continue flying in their original

weapon system, be assigned to a staff position, serve as an instructor pilot, or obtain

an advanced degree. In addition, the individual may receive assignments to long or

3



short tour locations overseas. During this time, the officer continues to incur service

obligations, for example, every time he completes training or moves to a new base.

At the completion of all service obligations, the officer is free to separate if he so

desires.

Each individual pilot weighs the benefits of staying in the Air Force with the

benefits of leaving and seeking civilian employment. Several elements enter into each

individual's decision of whether to remain or separate. Military pay may be one of

the greatest factors in the decision. The health of the civilian sector and civilian

airline hirings might also have a significant influence. Another potential factor may

be that individuals feel as though they have little say in their future assignments.

Each individual must also weigh the effects that staying in the military will

have on their family. Spouses may be unable to find employment in certain locations.

The pilot's duties may make him absent from the home too often. The factors that

enter into the separation decision are as varied as the individuals that must make

the decisions.

This research effort analyzed the individual attributes of Air Force pilots and

attempts to predict the decisions they will make. The resulting method for classifying

the retention/separation of pilots will greatly improve the management of this very

critical, expensive resource.

1.1.3 Predicting API Projectile Effects The Air Force's Computation of Vul-

nerable Areas and Repair Times (CONIART) software serves as a primary tool for

aircraft vulnerability analysis. COVART is used by the Air Force's Aircraft Sur-

vivability Research Facility, aircraft Special Program Offices and numerous logistics

centers. The COVART code incorporates impacting projectile effects into its com-

putation of aircraft damage.

For the past several years, the Survivability Enhancement Branch at Wright

Patterson Air Force Base has analyzed the penetration prediction equations for API

4



projectiles impacting materials. Their research shows that the current methods for

determining the incendiary functioning of the pzojectiles are inaccurate and there-

fore, aircraft damage analyses will also be inaccurate.

The cause of the inaccuracies in the COVART simulation stein primarily from

the use of test data that does not include shots into composite materials. Instead, it

was assumed that aluminum properties would accurately predict an API projectile

effects upon impact of a composite. This research effort investigates ways to accu-

rately classify API projectile's performance based on the parameters of the firing.

For each given shot, four independent variables are known; impact or striking ve-

locity (Vs), impact or striking mass (Ms), panel ply thickness in inches (TKIN),

and the impact obliquity angle (OBL). In this analysis, OBL is converted to the se-

cant of the angle (SECT), a commonly accepted practice in penetration mechanics'

analysis.

1.2 Research Objectives

The purpose of this research was to investigate the overall use of multilayer

perceptrons for classification. Research objectives were established in the following

areas:

" Development of Applicable Decision Factors

" Data Collection and Orientation

" Development of Classification Methodology

" Feature Selection

" Comparisons with other Classifiers

" Applications to Specific Problems

5



In order to investigate each of these objectives, two separate applications were used-

classifying Air Force pilots retention decisions and classifying API projectile firing

performance. Specifically, the following objectives were established.

1.2.1 Development of Applicable Decision Factors The first objective was an

investigation of the methods for determining the candidate factors that should be

considered when developing a classifier. For classifying pilots, the specific objective

was to identify significant factors that enter into the decisions of pilots as to whether

they should remain with or leave military service. The goal was to find a list of

at least twenty potentially relevant factors that were captured in the personnel files

maintained by the Air Force. For classifying API projectile firings, the data supplied

by the Survivability Enhancement Branch was the only datat available to the analyst

and, therefore, this research objective is not applicable.

1.2.2 Data Collection and Orientation The next objective concerned the col-

lection and orientation of the data for use in deriving both the multilayer perceptron

discriminator and the traditional multivariate discriminators. For both applications,

the sponsors provided the data. However, all classification procedures require in-

put features to be in a numeric form (as opposed to categorical). For example, the

attributes of Air Force pilots were primarily categorical. A goal was the proper

translation of this categorical data into a binary format.

1.2.3 Development of Classification Methodologies A third objective was to

actually develop classifiers for the two applications. Researchers have investigated

many structures of multilayer perceptrons, and the algorithms to implement their

use. Whether a structure works well or not is often dependent on the problem

itself (21:61) Therwfore, a goal was the investigation of multilayer perceptron struc-

tures and algorithms to find the optimal configuration for the specific applications

of classifying Ai.- Force pilots and classifying API projectile firings. Several tradi-

6



tional multivariate methods are available for predicting responses given the factors

affecting the response (5:360)(24:42). A secondary goal was to investigate the logis-

tic regression technique and the k-nearest-neighbor technique as alternatives to the

multilayer perceptron discriminator.

1.2.4 Feature Selection. Another objective was to investigate formal methods

for determining those factors that are most significant in the development of the

specific classifier. The goal of this objective was to reduce the number of features

used for each classification technique and still obtain accurate, complete results in

each prediction methodology. Two secondary goals were to compare feature selection

procedures for the multilayer perceptron technique with discriminant analysis feature

selection techniques and investigate procedures for determining the confidence to

place in the significance of a feature.

1.2.5 Comparison of Results. The next objective of the study was to de-

termine the preferred method of classification. A goal was to estimate the actual

error rates for each of the methods. In addition, a goal was to produce a subjective

comparison of the computational complexity of each method.

1.2.6 Application of Techniques to Specific Problems. An final objective was

to apply discrimination techniques judged to be most accurate to the application

areas. The goal concerning the first application was to investigate the applicability

of multilayer perceptrons and multivariate discriminant analysis techniques for clas-

sifying an individual pilot's decision as "stay" of "leave" during the next year based

on the characteristics of the individual. The rates produced by the most accurate

procedure will then be used by personnel analysts in the development of personnel

inventory models. Similarly, the goal concerning the second application was to in-

vestigate classification procedures to classify a projectile functions as "complete" or

"other" based on the parameters of the shot. The rates produced by the method

7



judged to be most accurate will be used as inputs to models such as the COVART

simulation.

1.3 Scope

This thesis develops both the multilayer perceptron technique and two discrim-

inant analysis techniques and then compares their applicability. Further, a general

discussion is offered of past attempts to predict pilot retention and projectile func-

tioning, an overview of multilayer perceptrons and an overview of the two discrimi-

nant analysis techniques used. Appendices include

1. The code for a multilayer perceptron written in FORTRAN 77 containing

subroutines for the following purposes

* Data Input

e Data Normalization

* Multilayer Perceptron Training

* Output Analysis

* Feature Selection

9 Evaluating High-Order Inputs

2. Statistical Application Software (SAS) routines for the development of the

logistic regression and k-nearest-neighbor multivariate discriminant techniques,

3. FORTRAN 77 programs and SAS routines for feature selection,

4. FORTRAN 77 programs for data translation and orientation.
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H. Literature Review

This chapter provides a review of the literature concerning the areas of mul-

tilayer perceptron analysis, multivariate discriminant analysis techniques, error rate

computations, retention rate prediction, and API projectile firing prediction. The

intent is to give the general background of each topic area and, to highlight any

aspects of these subjects applicable to this investigation.

2.1 Multilayer Perceptrons

This literature review describes certain aspects of multilayer perceptrons as

they apply to calssification and prediction. Specifically, these aspects include the

general structure, the network architecture, two implementation algorithms, the data

requirements, and the input features.

2.1.1 Multilayer Perceptron Terms Defined. Because neural networks are a

relatively new technique for discrimination, several terms particular to these net-

works are defined below.

* Backpropagation A learning algorithm for updating weights in a multilayer,

feedforward, mapping neural network that minimizes mean squared mapping

error (3).

* Epoch A complete presentation of the data set being used to train the multi-

layer perceptron. Also called a training cycle.

• Feature In neural networks, the term feature is used to define a measure-

ment which is made on input vectors which contains information useful for

distinguishing the various classes.

* Feedforward Characterized by multilayer neural networks whose connections

exclusively feed inputs from lower to higher layers; in contrast to a feedback
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network, a feedforward network operates only until its inputs propagate to its

output layer. An example of a feedforward neural network is the multilayer

perceptron (3).

* Hidden Units Those processing elements in multilayer neural network archi-

tectures which are neither the input layer nor the output layer, but are located

in between these and allow the network to undertake more complex problem

solving (3).

* Learning Algoithms In neural networks, the equations which modify some

of the .weights of processing elements in response to input and output values

(3).

9 Multilayer Perceptron A multilayer feedforward network that is fully con-

nected and which is typically trained by the backpropagation learning algo-

rithm (3).

* Neural Network An information processing system which operates on inputs

to extract information and produces outputs corresponding to the extracted

information (3).

* Single-layer Perceptron A type of neural network algorithm used in pattern

classification problems and trained with supervision. The single-layer percep-

tron generated much interest when it was initially developed in the 1950s by

Rosenblatt because of its ability to learn to recognize simple patterns. Con-

nection weights and thresholds in a perceptron can be fixed or adapted using

a number of different algorithms (3).

* Supervised Training A means of training adaptive neural networks which

requires labeled training data and an external teacher. The teacher knows the

correct response and provides an error signal when an error is made by the

network (3).
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Figure 1. Single Perceptron
Reprinted from (21:48)

Weight A processing element (or neuron or unit) need not treat all inputs

uniformly. Processing elements receive inputs by means of interconnects (also

called 'connections' or 'links'); each of these connections has an associated

weight which signifies its strength. The weights are combined to calculate the

activations (3).

2.1.2 Description of Multilayer Perceptrons. Figure 1 shows a single percep-

tron. Rogers attributes this architecture to Rosenblatt in Principles of Neurodynam-

ics published in 1959 (21:47).

Data feeds into the perceptron's input nodes numbered xo to XN.-1 and the w,

on each branch of the perceptron weights the inputs. The procedure sums across the
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weighted inputs, adds a bias term, and transforms the sum so that the activation y

of the perceptron is:

N-1

y = fh[(Zwxi)+0 (1)
i=0

The bias, or threshold is an additional node added to each layer of a multilayer

perceptron whose input is one. Therefore, the threshold times the weight connecting

the threshold to the next layer is a constant. The nonlinear transformation fi[']

most often takes the form of a sigmoid; however, it could be a hard limiter or a

linear ramp. (See Figure 2.)

For each input, the single perceptron outputs a single value that signifies the

classification of the input (21:49). Training the perceptron to classify inputs consists

of finding the weights that produce outputs near "1" for one class and near "0" for

the other class.

According to Minsky and Papert, the single layer perceptron does not allow

discrimination between classes that are not hyperplane separable (18:249-252). Be-

ginning in the 1980's, researchers developed methods for layering the single percep-

tron to allow for complex, nonlinear boundaries between classes (22:13). Figure 3

shows a three layer perceptron. (Note that the numbering scheme counts only the

"hidden" layers between input and output.) Rogers says Cybenko has shown "only

one hidden layer is sufficient for any arbitrary transformation, given enough nodes"

(21:53).

Multilayer perceptrons have two major advantages over more traditional dis-

criminant analysis techniques. First, multilayer perceptrons do not require assump-

tions as to the distribution of the data or the equality of the covariance matrices

of the groups of data to be classified. Second, multilayer perceptrons allow for the

formation of nonlinear decisions regions, including disjoint regions.
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Figure 2. Sigmoid, Hard Limiter and Linear Ramp
Reprinted from (21:50)
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Figure 3. Multilayer Perceptron
Reprinted from (21:55)

2.1.3 Structure of the Network. The input layer of a multilayer perceptron

will have as many nodes as there are features. The output layer will normally

have one node for every class of outputs. Consequently, the structure of multilayer

perceptrons varies only in the number of hidden layers and the number of nodes in

each of these hidden layers. Ruck states: "Rigorous mathematical techniques have

not been developed to determine the appropriate number of hidden layers or the

number of nodes in those layers for a given problem" (22:97).

Ruck does, however, provide a heuristic for sizing a multilayer perceptron.

First, his technique requires a baseline performance level. Next, the technique steps

through the possible multilayer perceptron architectures, investigating the following

potential components:

1. no hidden layers

2. a single layer with five nodes
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3. a single layer with more than five nodes

4. a second hidden layer with five nodes

5. more nodes in the first hidden layer

6. more nodes in the second hidden layer (22:97-99).

The heuristic concludes with the selection of the most promising architectures and

the training of these networks until performance stabilizes. Following the above

procedure, a user should be able to construct a multilayer perceptron architecture

that produces results close to the performance baseline.

2.1.4 Backpropagation Algorithm. Training algorithms are rules by which the

perceptron will update weights (learn) as the user presents data. Backpropagation

is the most prevelant method for updating the weights in a multilayer perceptron.

This algorithm is a gradient descent method for training the weights in a multilayer

perceptron while minimizing the mean squared error between the outputs of the

network and the desired outputs (16:50). Wiggins notes that if the learning rate

is small enough, the backpropagation algorithm implements a first-order gradient

descent search in the weight space for the set of weights which will minimize the

sum of the squared errors over the outputs for all exemplars in the data set (32:6).

According to several sources, Werbos first derived this technique in 1974. However,

it was Rumelhart et al. who first published and popularized the algorithm in their

book Parallel Distributed Processing (21:54).

Rogers explains that in a multilayer perceptron, the data is introduced to the

input layer and propagated through the network in a feedforward manner. Com-

paring the output of the perceptron with the desired classification yields an error

term used to compute a correction for the weights (21:53-56). Listed below is the

Backward Error Propagation Algorithm.

1. Initialize weights and thresholds to small random values.
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2. Present training input and desired output.

3. Calculate output.

4. Adapt weights and thresholds according to

w! = w + + a(w - (2)

where wij is the weight from node i to node j in the next layer, xi is
the output of node i, and 8j is the error associated with node j. 77 and
a are learning rates (for example constants of .35 and .7 respectively).
w+ is the new weight value and w-t is the old weight value. w-- is the
value of the weight before the last update. Thresholds are adapted
similarly where xi is replaced by "+1" if the threshold is added to
the weighted sum and "-1" if it is subtracted. The 6j are defined as
follows:

yy(1 - y1)(dj - yj) for output node j
x5  (1 - xj) Zk Skwjk. for hidden node j (3)

where di is the desired output for output node j and yj is the actual
output. For hidden nodes the bk are the errors for the layers above.

There are two versions of the correction calculation: instantaneous update and

batch update. Instantaneous update examines the gradient of the error surface after

the network incorporates each training vector. Batch update examines the gradient

after the network sees all the training vectors (22:15).

It is important to note that under conditions with local minima, the back-

propagation training algorithm will not necessarily find the best approximation for

a given network structure. Rumelhart and McClelland, however, claim that local

minima are unlikely to occur in networks with many hidden units. According to

these researchers, the added degrees of freedom in such networks by increasing the

dimension of the search space, actually increase the likelihood that the search will

converge over a convex surface (32:6).
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2.1.5 High-Order Inputs. High-order networks refer to networks that have

as their inputs second, third, or greater order terms. For example, if two inputs x,

and x2 represent two seperate pieces of information, then x2 or XlX2 may represent

pieces of information more important to discrimination than either term seperately.

Adding these high-order terms as inputs to a multilayer perceptron may not decrease

the overall error achieved, but training time should decrease.

Giles says the following about -high-order networks:

High-order neural networks have been shown to have impressive compu-
tational, storage, and learning capabilities. This performance is because
the order or structure of a high-order network can be tailored to the or-
der or structure of a problem. Thus, a neural network designed for a
particular class of problems becomes specialized, but also very efficient
in solving these problems. (9:4972)

Because of the number of possible inputs to this type of network, Giles suggests

several methods of choosing a representative set of terms. These techniques include

1. matching of the order of the network to the order of the problem

2. implementation of invariances if it is known a priori that the problem possesses

a given set of invari-nces

3. calculation of correlations

4. generation of representations adaptively (9:4977- 4978).

The method of calculating correlations seems most appropriate for this research

effort. One way to determine which terms will be useful in a high-order network is

to calculate correlation matrices for a representative sampling of the mapping to be

generated. The entries in the correlation matrix that are largest correspond to the

inpnt terms that are most highly correlated with the output and therefore, should

be included in the network (9:4977-4978).
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2.1.6 Data. Often the input vectors must be normalized in some fashion so

that no one feature dominates the classification process. In his dissertation, Ruck

states that the following normalization algorithm has been shown to be very effective

on many different types of pattern recognition data:

= Xij- 11j (4)

where xij is the original value of the ith vector's jth feature, x is the normalized

value, Aj is the mean of the jth feature in the training set, and &, is the standard

deviation of the jth feature in the training set (22:15). Normalization also can be

accomplished by scaling the features in each vector to values between zero and one

based on the values of the features in the training set.

2.1.7 Feature Extraction for Multilayer Percept rons. When employing neural

networks of any type, an objective is to limit the number of input features. Devijver

cites "the curse of dimensionality" as the primary reason for limiting these features

(4:187). The dilemma is that as the number of features increases, the number of

training vectors required in the training set also increases. In what has become a

rule in the neural network discipline, Foley describes a "reasonable rule of thumb" in

determining the number of training vectors required based on the number of features

to be input into the network. Accordingly, he states that the greater the ratio of

training vectors per class to the feature size is, the better the network's results are.

The guide is that the ratio should be greater than three. Satisfying this condition,

Foley summarizes, ensures the test set error rate is close to the actual error rate

(8:623).

Beyond the importance of limiting the number of features, an aim is to include

only those features that make a significant contribution to the network. Ruck's article

"Feature Selection Using a Multilayer Perceptron" develops a method for ranking
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features called saliency (23). To produce the saliency measure, "the sensitivity of the

network's output to its input is used to rank the input feature's usefulness" (23:42).

The calculation of the saliency metric begins with the calculation of the deriva-

-tive of the output with respect to a specific input. When the sigmoid nonlinearity

is used for a network with a single hidden layer, this derivative is

____ = z (1- Z)w oW.6 Wjm (5)C9Xj ,, 77tnt3

where zi is the output of node i in the output layer, wz i2 is the weight connecting the

hidden layer with the output layer, wj,,1 is the weight connecting the input layer with

the hidden layer and 61 = x1(1 - xx). From the equation above, it is apparent that

the derivative depends on the inputs to the network as well as the weights within

the network.

Finally, Ruck defines saliency for a feature input j as:

Aj = E E I2 (x,w)I (6)
XEX i xjEDj,

where x indicates the multi-dimensional vector inputs, X is the set of all training

vectors, w represents the weights in the network, i is the index of elements of x

and D, represents a set of points over which the input x, will be sampled (23:43).

Dj is usually a set of several uniformly spaced points over the expected range of

the inputs. The saliency measure ranks the features from most significant to least

significant based on the value of the formula above. It is important to note that the

weights used in the saliency calculation are fixed weights from a trained network.

Devijver describes the use of a probability of error criterion to determine the

significant input features. Although this method is more widely known and simpler

to implement than saliency, it is unreliable (4:215). The error criterion calculates the

probability of error using each feature individually in succession. Saliency examines
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each feature individually, however, the features are examined arbitrarily close to

actual training, points (22:32).

A simpler method of determining the relative significance of the input fea-

tures once the network has been trained has been suggested by Tarr. He states the

following:

When a weight is updated, the network moves the weight a small amount
based on the error. Given that a particular feature is relevant to the
problem soultion, the weight would be moved in a constant direction
until a solution with no error is reached. If the error term is consistent,
the direction of the movement of the weight vector, which forms a hyper-
plane decision boundary, will also be consistent. . . If the error term
is not consistent, which can, be the case on a single feature out of the
input vector, the movement of the weight attached to the node will also
be inconsistent. In a similar fashion, if the feature did not contribute
to a solution, the weight updates would be random. In other words,
useful features would cause the weights to grow, while weights attached
to non-salient features would simply fluctuate around zero. (28:44)

Therefore, the following alternate saliency metric is proposed:

V'w~ (7)

k

Which is simply the sum of the squared weights between the input layer and the

first hidden layer.

2.2 Multivariate Statistical Analysis

According to White, "...learning procedures used to train neural networks

are inherently statistical techniques" (31:425). Appropriately, the neural network

approach to classifier development should be compared to statistically based tech-

niques. This literature review describes certain aspects of multivariate methods as

they apply to the two specific applications. Specifically, these aspects include: the
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general structure, the method of factor selection, data requirements, the structure

of the problem, and two specific statistical techniques.

2.2.1 Multivariate Discriminant Analysis. Dillon and Goldstein define dis-

criminant analysis as "... a statistical technique for classifying individuals or objects

into mutually exhaustive groups on the basis of a set of independent variables." Fur,

ther, the method involves deriving linear combinations of the independent variables

that will discriminate between the a priori defined groups in such a way that the

misclassification rates are minimized (5:360).

Dillon and Goldstein go on to describe discriminant analysis as a rather sim-

ple "scoring system" that assigns to each individual in the sample a score that is

essentially a weighted average of the individuals's values on the set of independent

variables (5:361). Once a "score" is determined, a decision on group membership

can be made, or the score can be transformed into a probability of belonging to each

of the groups. The individual is then classified into the classification group with the

highest probability of membership.

2.2.2 Techniques for Implementation. Two discriminant analysis algorithms

will be applied to the problem of determining pilot retention rates to determine

a classification rule for each pilot's decision and to the problem of determining a

functioning/nonfunctioning API projectile.

K -Nearest-Neighbor Discrimination. Nearest-neighbor discriminant analysis is

a nonparametric method for classifying observations into one of several classes on

the basis of one or more quantitative variables. This technique uses a large number

of correctly classified sample patterns rather than any knowledge of the underlying

statistical distribution. As Devijver states, "... the analysis provides a mathematical

justification for the assumption that patterns that are close together (in the feature

space) are likely to belong to the same pattern class" (4:18).
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Letting x, and' X2 represent two observation vectors, the k-nearest-neighbor

algorithm computes the Mahalanobis distance between x, and x2 based on the total-

sample covariance matrix T:

d2(xi, x2 ) = -,X2)'T'(xi- X2) (8)

or optionally the Euclidean distance:

d2(xi, x2) = (X1 - X2)' -X 2) (9)

Using the nearest-neighbor rule, x2 is classified into the group corresponding to

the point xI, that yields the smallest d2(x1, x2). Using the k-nearest-neighbor rule,

the k smallest distances are saved. Of these k distances, let n, represent the number

of distances that correspond to group i. The posterior probability of membership in

group i is:

Pi= nipriori (10)

Znjpriorj

where j ranges over all classes. Then x2 is assigned to the group for which P, is a

maximum, unless there is a tie for largest or unless this maximum probability is less

than a specified threshold. Normally, k is set to all odd integers between one and

nine (odd to ensure a majority).

The value of k which produces the least classification error is actually used.

When k = 1 is used in the nearest-neighbor rule, x, is classified into the group

associated with the x2 point that yields the smallest squared distance d2(xI, yI)

(24:560).

The k-nearest-neighbor algorithm requires no assumptions about the distri-

butions of the variables (22:9). In addition, little information is available on the
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effects of categorical versus ordinal data in the accuracy of the resulting classifica-

tion scheme.

Logistic Discrimination. Binary response variables arise in many fields of study.

Logistic regression is used when the response is a binary function of a set of factors-

as in categorization into one of two classes (24:42). Let x be the vector of factors,

G1 be group 1 and G2 be group 2. In the case where P(x I G1) and P(x I G2)

are multivariate normal with means y and 42, respectively and common covariance

matrix, then:

P(G, Ix) = exp(a + P'x)P(G2 I x) (11)

P(G2 jx) = 1 + exp(a + fP'x) (12)

where a and P are the parameters to be found. This equation describes a multivariate

logistic function for two groups (5:386). See Figure 4 for an illustration of several

variations of this function. The logistic function repiesents an S-shaped surface with

inflection always occurring at the value 1/2 and asymptotes at 0 and 1. Changes in

a shift the surface laterally and changes in the Pl vector affect its dispersion.

A standard method for estimating the parameters a and fl is to use a maximum

likelihood function. The likelihood equations are nonlinear in a and P6. It would be

difficult to attempt to find them by hand, but computer packages such as SAS have

these options available.

The SAS LOGISTIC procedure uses the Iteratively Reweighted Least Squares

(IRLS) Algorithm to compute estimates of the parameters in the model. Let Y be

the response variable corresponding to the known vector x' of explanatory variables.

Consider the multinomial variable Zj = (Zj,... , Z(k+l)j)' such that

1 ifYj=i (13)

0 otherwise.

23



Figure 4. Multivariate Logistic Function
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With p,, denoting the probability that the jth observation has response value i, the

expected value of Zj is pj = (Plj,... ,P(k+l)j)'. The covariance matrix of Zj is Vj,

which is the covariance matrix of a multinomial random variable for one trial with

parameter vector pj. Let y be the vector of regression parameters; in other words,

^1 = (al,..., C, 1,. . . , h)'. And let Dj be the matrix of partial derivatives of p1

with respect to y. The estimating equation for the regression parameters is

_DW(Zj - pj) = 0 (14)

where Wj = w3V, w, is the weight of the jth observation, and V7" is a generalized

inverse of V.. LOGISTIC chooses V,- as the inverse of the diagonal matrix with p3

as the diagonal.

The estimates are obtained iteratively as

+ m + (E1 D/W 1Di) 'TDW1 (Z1 - 1) (15)
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where D1 , V 1 and 1j are respectively Dj, Wj, and pj evaluated at jm. The

expression after the plus sign is the step size (25:1088).

According to Dillon, "One advantage of using logistic functions for discrimina-

tion is their wide applicability." Specifically, the logistic discrimination models can

be used in the following situations:
1 4

1. Densities are multivariate normal with equal covariance matrices.

2. The measurements are independent Bernoulli variables.

3. The Bernoulli variables follow a loglinear model with equal second- and higher-

order effects.

,4. Situations (1) and (3) are combined (5:386).

Dillon and Goldstein state that the application of linear regression is appro-

priate even when categorical and ordinal factors are mixed (5:387). Although the

logistic regression method should be used under conditions of multivariate normal

densities and equal covariances, this method may also apply under nonnormal con-

ditions and may be robust enough to produce an accurate classifier.

2.2.3 Factor, Selection for Multivariate Discriminant Techniques. According

to Dillon, when several independent variables are available for inclu:;ion in the dis-

criminator, the common practice is to allow a stepwise selection procedure determine

the variables that should be included (5:375-379). These factor selection methods

often use single predictor F-values or squared partial correlation as the criteria for

selection.

This method begins with no variables in the model. At each step, the vari-

able is entered that contributes most to the discriminatory power of the model by

a certain criterion. In the SAS STEPDISC (for stepwise discrimination) procedure,

that criterion is the Wilk's lambda (likelihood ratio) criterion (25:1494). In the SAS

LOGISTIC procedure, the criterion is the adjusted chi-squared statistic (25:1076).
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Variables are entered into and removed from the model in such a way that each for-

ward selection step is followed by one or more backward elimination steps (25:1076).

The stepwise procedure stops when it is not possible to enter any more variables and

the only variable that can be eliminated is one that just entered.

It is important to realize that in many stepwise selection methods, only one

variable can be entered into the model at each step. The selection process does not

take into account the relationships between variables that have not yet been selected.

Therefore, some important factors could be omitted from the model (25:1495).

Once factors have been determined according to some criteria, therc are several

methods for identifying which variables contribute the most to the discrimination.

Traditionally, there are two methods for determining the importance of a predictor,

(1) F-values for each predictor are rank ordered, and (2) standardized discriminant

weights are calculated. The problem with these methods is that they may be inac-

curate if the predictor variables themselves are highly correlated. Dillon states that

an alternate method for finding the contribution of the variables is the calculation

of discriminant loadings. A discriminant loading gives the simple correlation of a

variable with a discriminant function. "Discriminant loadings have been extensively

used in the multiple group discriminant problem for the purpose of labeling the

discriminant axes that are uncovered and subsequently retained." (5:372-373)

Dillon says that discriminant loadings reflect common variance among the pre-

dictors, whereas standardized discriminant weights examine predictor intercorrela-

tions and may, therefore, be unstable (5:373). Subsequently, discriminant loadings

can be useful tools. To calculate discriminant loadings, the correlation of the pre-

dictors with the discriminant function is calculated i.e., corr(x, b'x) (2):

corr(x, b'x) = (b'cov(x,x)b)-2corr(x,x)Dx2b (16)
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where x is the vector of predictors (features), b'x is the discriminant function result-

ing from the features and the estimated coefficients and D. is the matrix of diagonal

entries of cov(x,x).

2.3 Comparing Classification Methods

Due to the great differences in the development and implementation of the

methodologies to be studied here, the development of a means to compare the meth-

ods is critical. Weiss reports on results of an extensive comparison of classification

methods on the same data sets. Weiss concludes that the choice of a classification

model is highly dependent on the problem itself (18:14). For the specific problems

of predicting retention rates and classifying API projectiles, the error rate and com-

putational complexity will be the deciding factors. The following sections discuss

methods for comparing these factors for the classifiers to be examined.

2.3.1 Error Rate Estimation. Although the discovery of the discriminant

function and optimal neural net structure are important, equally important is the

estimation of the classification performance of discriminator. Several sources suggest

techniques for estimating error rates (2:353-366; 9:723- 741; 4:316-317). Each error

estimation technique has positive and negative attributes associated with it in the

context of estimating retention rates for pilots. The following discussion outlines

three of these methods.

Resubstitution is a method of estimating the actual error by using the same

set of samples to design a classifier and test it. Devijver states that this method "is

uniformly poor." (4:346) This method has the disadvantage of underestimating the

error and may yield misleading results. On the other hand, Foley points out that if

the ratio of samples per class to dimensions is greater than three, then the error rate

on the training set is a good predictor of the error rate when the classifier is used on

the test set (8).
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An obvious alternative to resubstitution is a holdout estimation of the error.

This method partitions the data into two mutually exclusive subsets and uses one

subset to train the classifier and the other subset to test the classifier. In contrast

to the resubstitution method, this method may overestimate the actual error. In

addition, this method does not make good use of the available data. Normally, when

using this method, the classifier will be redesigned using all the data after an error

estimate has been made.

In a discussion by Weiss concerning the merits of several error estimation tech-

niques, he states

The simplest technique for "honestly" estimating error rates, the holdout
or H method, is a single train and test experiment. This technique breaks
the sample cases into two groups: a training group and a test group. The
classifier independently derives the error rate from the training cases, and
the error estimate is the performance of the classifier on the test cases.
(29:3)

A final method of estimating error is the rotation estimate or crossvalidation.

For this technique, the training sample is partitioned into k subsets. All but one

subset is used to develop the classification rule and the rule is tested on the remaining

subset. The left-out subset is returned to the design set and the process is repeated

k times. Provided enough data is available, this method reduces some of the bias

inherent in the resubstitution method. In many cases, however, the mean square

error may be large (11:37).

2.3.2 Comparing Computational Complexity. The following statement by Wig-

gins summarizes the complexity of comparing classification methodologies.

The complexity of neural network models makes then more difficult to
interpret than standard parametric models. Even if the model performs
well in- and out-of-sample, the reason for its performance and its behavior
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over different input ranges cannot be evaluated directly. The very aspect
of neural networks that gives them powerful analytic capability makes
them rather difficult to interpret. (32:36)

In addition,, due to the available resources, the classifiers developed in this

research effort were developed on completely different computers and with completely

different software. Any comparisons done on the complexity of the methods must

be subjective.

2.4 Determining Personnel Retention Rates

In-depth analysis of the literature shows no evidence of the use of multilayer

perceptrons or discriminant analysis to predict retention rates for Air Force pilots.

However, authors have proposed several other methods to predict the "stay" or

"leave" decision of rated Air Force personnel. Guzowski used economically quantifi-

able variables in a linear regression setting to predict the retention rates of Air Force

pilots (13:vi). Simpson also used economically motivated variables in a more sophis-

ticated regression analysis (27:vii). Both authors stress the importance of economic

indicators in an analysis of this type.

Analysts in the Navy used similar methods to predict the career decisions of

military officers. Both Whalen and Shigley analyzed factors affecting the retention of

officers in the medical profession using logistic regression (30, 26). Validation of these

analyses reveals the weaknesses of regression models for accurate prediction. Both

studies emphasize the need for increased sophistication in the prediction process.

Cromer and Julicher developed a model to descirbe Air Force pilot retention

rates. Their objective included building a model based on economic conditions to

determine the significance of airline hires on pilot retention. The methods used

by Cromer and Julicher included factor analysis, stepwise multiple regression and

multiple regression with lagged retention rates. Their results showed that no model

accurately described retention rates (27:9).
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A model developed by Gotz and McCall of RAND Corporation calculates the

probability that an Air Force officer will voluntarily remain in the service based

on a given set of retirement, compensation, and promotion policies. The voluntary

retention rates are determined in the stochastic dynamic program by finding the

individual officer's optimum time to leave the military. According to Gotz, the

optimum time occurs when the individual's expected present value of pecuniary and

non-pecuniary returns are maximized (10).

2.5 Neural Networks in Personnel Analysis

Neural Networks have been used to model several aspects of the Air Force

personnel system. An extensive review of the neural network literature by Wiggins

indicates that these networks have "proven superior to more traditional analytic

techniques in many applications.(32:i)" Wiggins discusses the use of neural networks

to determine the enlistment behavior of high school seniors. Each potential enlistee

was classified as either a likely enlister or non-enlister based on a set of individual

characteristics, current status and expectations (32:24).

Retention and reenlistment of enlisted airmen is one of the most heavily re-

searched areas in the Air Force personnel system. Researchers at Air Force Human

Resources Laboratory (AFHRL) have investigated the use of neural networks to at-

tempt to explain and quantify the factors which affect reenlistment decisions made

by individual airmen. Wiggins states that "This is an archetypical classification

problem and one to which neural networks are particularly suited." (32:24)

2.6 Classifying the Performance of API Projectiles

An armor piercing incendiary (API) projectile is a bullet that is capable
of perforating light armor and consists of a flammable mixture the is
generally encased in the nose of the projectile body. The design of the
projectile allows the jacket over the nose to deform or peel off upon
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impact of the target skin. The incendiary mixture will flash as the bullet
continues its flight. (15)

Incendiary functioning (IF) is dependent upon the interaction of forces that

occur between the projectile and target material. At present, there are six clas-

sifications for incendiary functioning: complete, partial, slowburn, delayed, non-

functioning, and frontal. Pettit provides cqmplete definitions for these six classes

(19).

Research findings concerning projectile IF did not really begin until the mid

1970's. The vulnerability community recognizes Mayerhofer's work, in 1974, as the

cornerstone of IF prediction methods. Mayerhofer's goal was to find

tools for the analyst that will first, enable him to predict the type of
function that will occur for a particular set of conditions, and secondly,
to predict flash delay time, duration, location, and size associated with
that type of function.(17:22)

The prediction method suggested by Mayerhofer was based on projectile force and

impulse (17:22-23).

Force = aszrDt sec 0 (17)

Impulse = AIV (18)

where

a = ultimate shear stress of target (psi)

* D = projectile diameter (in)

* t = target thickness (in)

* 0 = obliquity angle (radians)

9 M = projectile mass (lbs/g)
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V V = impact velocity (fps)

In 1977, Falcon Research and Development (FRD), presented methods for pre-

dicting fires once an API projectile perforated a fuel tank. The correct prediction

of an API projectile's IF constituted a critical portion of the method. Using Mayer-

hofer's method, FRD altered his method to establish their own IF prediction model

(7:22) Their work would be the basis for the IF prediction methods used today.

The FRD equations require numerous target material properties. Due to the use of

composite materials, it was necessary to substitute the properties of aluminum into

these equations. This proved to cause a large prediction error rate.

Reynolds, in his thesis entitled A Response Surface Model for the Incendi-

ary Functioning Characteristics of Soviet API Projectiles Impacting Graphite Epoxy

Composite Panels, applied linear regression and multivariate analysis to 118 test

shots to create prediction equations for projectile IF into composite material (20).

Using traditional discriminant analysis techniques, he classified three types of IF.

Since the work accomplished by Reynolds, the Survivability Enhancement Branch

has increased the number of shots in their database to 281.

A thorough examination of the pertinent literature does not reveal the use of

neural networks to attempt to classify the performance of API projectiles.
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III. Methodology

This chapter provides a discussion of the methodology used to examine each

of the following research areas

* Development of Applicable Decision Factors

* Data Collection and Orientation

* Development of Classification Methodology

* Feature Selection

e Comparisons with other Classifiers

e Applications to Specific Problems

3.1 Determining Applicable Data Elements

For a given application, an infinite number of features could be considered

relevant in the discrimination of groups of data. In order to apply any multivariate

technique, it is necessary to reduce the number of features to a finite set. An initial

consideration should be the availability of data. A certain piece of data may be

especially germane to classification, however, not be available in any useful form. For

example, for the problem of classifying pilots, information concerning the individual's

next assignment would be especially useful, however, this information is unavailable

until the assignment is actually made.

Most often, a subject matter expert may be in the best position to determine

which input features will be most applicable and which are meaningless. However,

it is only after the analyst has actually examined the input features and attempted

to construct the discriminator, that a judgement can be made as to whether the

features actually separate the data into groups.
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3.2 Data Collection and Orientation

Application of a pattern classifier requires selection of features that must be

tailored for each problem domain or application. Features should contain information

required to distinguish between classes, be insensitive to superfluous variability in

the input, and also be limited in number to reduce the number of training vectors

required. Often the analyst must use subjective judgement to select and configure

the information that will best discriminate between classes.

Once a finite set of input features has been selected, it is necessary to translate

the data into a format appropriate for input to the classifier. If the data is categorical,

it is necessary to decompose these categories into binary variables, or groups of binary

variables. Continuous data requires no translation of this type. For the two group

problem, one group's classification was translated to the value "0" and the other

class to the variable "1". (The actual numeric value of the membership variable may

be different for different types of classifiers.)

It was stated above that the data elements are translated into "binary" ele-

ments. In the strictest sense, binary features were not used. Traditionally, binary

variables take on the value "1" when something is "true" or considered "on" and take

the value "0" when "false" or "off." Due to the structure of the backpropagation

algorithm used by the multilayer perceptron, "1" and "-1" were used. As discussed

earlier, the backpropagation algorithm updates the multilayer perceptron's weights

based on the difference between the desired output and the actual output of the

network. If binary features "0" and "1" were used, the zeros input to the perceptron

would have no effect on the weight updates. Values of "-1", on the other hand, will

cause the network to update its weights. Note that the data element which repre-

sents the desired output is still coded as "0" or "1" since the multilayer perceptron's

outputs will be between "0" and "1" when a sigmoidal nonlinearity is used.
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After the translation of all data elements, a FORTRAN program (shown at

Appendix A) randomly assigned each feature vector from the population into one of

three sets:

" The Training Set: This set of feature vectors was presented to the multilayer

perceptron and the discriminant analysis classifiers for training. When each

feature vector is introduced to the specific classifier, the vector will be ap-

pended with the actual decision of the individual, i.e., the desired output of

the classifier.

" The Test Set: For the multilayer perceptron technique, the test set is used

to test the accuarcy of training while training is ongoing. After each epoch

(i.e., each complete presentation of the training set), the test set vector was

presented to the network, classified, the classification compared to the desired

classification, and a classification error computed. These test vectors act as

controls for determining when the accuracy of the perceptron is at an accept-

able level. For the discriminant analysis techniques, however, the test set and

the training set was combined and presented to the classifiers for training.

* The Validation Set: For all classification techniques, the validation set was

used to estimate an error rate for classification accuracy. After the classifiers

were optimally trained, this set was presented to the classifiers. Feature vectors

were classified and that classification was compared to the true classification

of the vector.

3.3 Development of Classification Methodology

The data sets for each application were used independently to determine the

specific multilayer perceptron structure and specific multivariate techniques that

were optimal. The overall methodology employed in developing each of the classifiers

is as follows:
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1. Use the training set and the test set to train the classifier to classify objects

onto Group 1 or Group 2 (since each of the applications was a two-group

problem). In other words, given the feature vectors in the training and test

sets, determine the optimal weights or coefficients that produce the given,

desired output for some input. Note that "optimal" here, means optimal in

terms of the particular method under consideration-multilayer perceptron or

multivariate discriminate.

2. Iterate through the various forms or structures of the discriminators to arrive

at a discriminator that yields the best classification accuracy for the training

and test sets. In the case of the multilayer perceptron, this included varying

the number of middle nodes, changing the learning rate and the momentum,

etc. In the case of the multivariate discriminant analysis techniques, these

iterations could include varying the significance levels, changing a distance

measure, or changing the variable selection criteria for the validation data.

3. Given a trained, minimum error classifier, introduce the feature vectors from

the validation set and determine the classification of each of the the vectors.

Next, compare the classification of all vectors in the validation set to their ac-

tual classification and determine an estimator for the error rate of the classifier.

4. Repeat the steps above for another training set, test set, and validation set

randomly selected from the population.

Below, the methodology for the development of each of the classification techniques

is discussed in more detail.

3.3.1 Investigation of Multilayer Perceptron Techniques The method for train-

ing a multilayer perceptron is illustrated in Figure 5. A FORTRAN program im-

plements the training of a multilayer perceptron for the two specific applications.

The program allows the user to vary certain parameters controlling the structure

of the perceptron which affect the accuracy and speed of the training. The follow-

36



ing paragraphs describe both the FORTRAN program and certain implementation

decisions.

3.3.2 The Multilayer Perceptron Program. To implement the backpropaga-

tion algorithm, the computer code for a single hidden layer multilayer perceptron

was written in FORTRAN 77. This multilayer perceptron uses a sigmoid as the non-

linear transformation. The code itself is shown at Appendix B. Several key points

concerning the program subroutines are mentioned below.

First, subroutine INPUT takes the feature vectors and desired output from as

external file. This external file actually contains the binary transformation of the

data elements described above. Data is read into two arrays-one containing the

training set feature vectors and the other containing the test set feature vectors.

Once the data is read into these arrays, each continuous feature is normalized

to a value between zero and one in the subroutine NORMAL. This normalization is

performed to ensure that no one feature dominates the training process. Standard-

ization using the sample mean and sample variance of the features is often suggested

for the backpropagation algorithm. This technique was used when possible, however,

the technique was not appropriate for binary factors. Binary variables remain coded

as "1" and "-1."

The artificial neural net subroutine (ANN) begins by initializing the weights

connecting both the input layer and hidden layer and the hidden layer and output

layer. Next, the confusion matrices are initialized. In the case of an n class problem,

a confusion matrix is an n x n matrix whose ij elements are the number of vectors

whose desired outputs are group i and are classified by the network as belonging

in group j. The rows of the table relate to the actual group membership and the

columns give the predicted group membership. Therefore, correct classifications

appear on the main diagonal and incorrect classifications appear off the diagonal.
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Figure 5. Training Procedure for Multilayer Perceptron
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The next phase in the ANN subroutine is the reordering of the feature vectors

in the training set and the test set into a random list. Random ordering prevents

the network from learning the order of the data and may speed the training time.

The training of the weights in the network is accomplished in the next phase of

the ANN subroutine. First, the activation of the hidden layer and output layers are

calculated. The activations of the output layer are compared to the desired (known)

output and the appropriate weights are updated. After all the training vectors have

been presented to the network, the weights are held constant and the test vectors

are presented to the perceptron. The error rate of the test set (in conjunction with

the error rate of the training set) was used as an indicator of the performance of the

network. Each presentation of the set of taining vectors is defined as an "epoch." By

collecting the error rate for the entire test set at the end of each training epoch, an

error curve can be constructed and a minimum erro: observed somewwhere along this

curve. To aid in the analysis of the resulting multilayer perceptron, data pertaining

to weights and errors as well as a final confusion matrix is written to several output

files.

3.3.3 Structure of the Perceptron. As the analyst applies the multilayer per-

ceptron to a classification problem, several tactical decisions are necessary which

affect the resulting structure of the perceptron. Listed below are the major decisions

affecting the structure of a multilayer perceptron. Besides the structure of the net-

work, a primary consideration is the form the input features will take. Therefore, a

discussion of the use of high-order inputs is also included here.

Implementation Decisions. Initially, when training the multilayer perceptron,

the weights must be initialized as random numbers according to some distribution.

Questions arise as to the distribution and paramaters of the distribution to be em-

ployed. Although the final results should not be affected by the manner in which
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the weights are initialized, convergence may be quicker and local minima may be

avoided for some distributions.

A second tactical decision that affects the structure of a perceptron is the values

of the learning rate (a) and momentum factor (r7) in the weight update equations.

The learning rate controls the amount of correction to the weights that is made

based on the difference between the actual output of the neural network and the

desired output. The momentum term causes the weight changes to be modified by

some factor of the amount. they were modified on the last update. For example,

if the weight change on the last iteration was in a negative direction (that is, the

weight was reduced) then the momentum term would be negative on this iteration

and would cause some proportional decrease of the current weights. The values of a

and n were varied between 0.1 and 0.9 for this analysis.

Another decision that affects the structure of a perceptron is the number of

nodes in the hidden layer. One major drawback of backpropagation classifiers may

be their long training times for certain data sets. Training times are longer when

many hidden nodes are used and when the underlying decision regions are especially

complex (29). As with other classifiers, training time is reduced and performance

is improved if the network is large enough to solve a problem yet not so large as

to estimate too many training parameters without the required number of training

vectors. For the specific applications examined, the number of nodes in the hidden

layer was varied between 5 and 100 nodes.

One of the most important decisions in the application of the multilayer percep-

tron is when to stop training. When training a multilayer perceptron to discriminate,

it is expected that two types of erroi should decrease as the number of epochs in-

creases. First, the difference between the desired output of the output nodes and

the actual output of these nodes should decrease. In other words, if the desired

classification was Group 1, then the output of Node 1 should be as close to "1" as

possible and the output of Node 2 should be as close to "0" as possible. As the
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number of times the data is presented to the netwo'.k increases, the average amount

that each node is different from "1" or "0" should decrease. The average amount

that the desired output if different from the actual output for each of the output

nodes is called the output error. Both the training set and the test set error rates

should decrease. Second, the number of feature vectors classified incorrectly in both

the test and training sets should decrease as the number of epochs increases.

The goal is to cease training at the point corresponding to a minimum error

on the test set. The choice of this point may be difficult since it is necessary to

consider the two types of error. Let No be the epoch at which the test set reaches

its minimum output error. It is not always a simple task to determine No. The error

curve may oscillate around some average minimum and even increase as the number

of epochs is increased. Consequently, it may not be possible to find the exact value

of No. For this research, in order to judge the epoch at which the error curve first

reaches its minimum, the multilayer perceptron was trained for N epochs, where

N >> than an estimated value of No. If the multilayer perceptron is trained for N

epochs, and it appears as though the error is continuing to decrease, then N should

be increased until a miminum error is observed. Figures 6 and 7 show an examples

of output error curves and classification error curves for the training set and test

set. In this case, the output error for the test set indicates that No z 400, however,

the classification error does not stabilize until approximately 800 epochs. Hence,

the selection of where to stop training a multilayer perceptron is often dependent

on whether the application requires accurate output or accurate classification. The

decision is most often left to the analyst.

The question arose as to which set of weights to use for classification when

several independent training sessions are involved. It was determined that there is no

specific relationship between the corresponding weights for each run. An "average"

of these weights, for example, would have no meaning. Therefore, the netwolk with

the minimum classification error on the test set was used for classification.
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Figure 8 summarizes the procedure used to iterate through the possible mul-

tilayer perceptron parameters discussed above and arrive at an optimal network.

Initially, the number of middle nodes, the learning rate and the momentum rate

were set to values that are suggested by those who use these networks often (21).

The network was trained and the number of epochs increased until the minimum

test set error is observed. The number of middle nodes continued to increase as

long as the minimum error continued to decrease, or the training time was shorter.

Then, the number of middle nodes was fixed and the learning and momentum rates

were tested over some range. This range of learning and momentum rates depended

on the order of the application (i.e., how many feature inputs/feature vectors were

involved) and the observed behavior of the error rate as these rates were changed.

After the multilayer perceptron was tested over the entire range of learning rates

and momentum rates, these parameters were fixed.

This is not an optimal testing methodology since the interactions of the pa-

rameters are confounded. One technique to arrive at a true "optimal" structure

would be to train the multilayer perceptron for all possible combinations of numbers

of middle nodes, learning rates and momentum rates. Due to time constraints, this

was not practical.

High-Order Inputs. In order to determine if high-order inputs would produce

a more efficient classsifier, products of features were formed and used as inputs.

The rationale for using high-order inputs and developing a classifier based on these

inputs can best be shown through a two-dimensional example. The "parity problem"

(for high-order problems) or "XOR problem" (for two-dimensions) is often used to

test classifiers to determine their ability to classify non-linearly separable decision

regions. Training a perceptron to perform this separation may require thousands of

iterations of the fastest learning rules (9:4973). Figure 9 illustrates the problem.

Rogers describes the problem as:
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Figure 8. Procedure for Determining Multilayer Perceptron Structure
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Figure 9. The XOR Problem

Feature 2

0, 00

Feature I
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If the features have different polarity (one positive and one negative),
then the output should be a one (01), and if they have the same polarity
(both positive or both negative), then the output should have a value of
zero (0o). (21:53)

Note that no single line can be drawn to separate the 01 and 0o regions. How-

ever, if Feature 1 is multiplied by Feature 2, a classification rule for the resulting

one dimensional space can easily be developed. The resulting rule would classify a

feature vector into class 01 if the product of inputs one and two were less than zero

and into class 0o if the product of the inputs was greater than zero.

In order to formally determine if a high-order network produces a lower min-

imum error rate than a network with the first-order original inputs, it would be

necessary to successively add all higher order terms. However, it has been suggested

that an examination of correlation matrices for a representative sampling of the map-

ping to be generated may prove useful. Giles presents a method to claculate these
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correlation matrices as follows:

Np
V2 (ij, k) = T[y (i) - y(i)][xS(j) - x(j)][x (k)- x(k)] (19)

s1l

where,
Np

y(i) = [ZYS(i)I/NP (SO)
s=l

and,
Np

x(i) = [ xs(i)]/Np (21)
s=1

W2(ij, k) is an element of the second-order (denoted by the subscript 2) cor-

relation matrix for the ith output node correlated with the product of the jth input

and the kth input. y'(i) is the ouput for node i for the sth training exemplar apd

XS(j) is the input for node j for the sth training exemplar. In the equations above,

Np denotes the number of vectors in the training set. The training set is denoted by

{(xS,ys)ls E (1,Np)}, and y and x are the averages of y' and x' over the training

set (9:4973). The entries in the correlation matrix that are greatest in absolute value

correspond to terms that are highly correlated with the output of the perceptron.

According to Giles, these terms "are most likely to make an important contribution

to the network when the map is implemented (9:4978).

The correlation matrix in the equation above represents second-order correla-

tions only. In order to investigate third-order and higher correlations it would be

necessary to construct larger correlation arrays.

To implement this method of generating high-order representations, a sub-

routine was included in the ANN program called CORRELATE. This subroutine

calculates the second-order correlation matrices according to the equation above,

sorts the correlations in terms of their absolute value, and writes the results to a file.

The results were interpreted as possible second-order terms to use as inputs to the

perceptron. Once again, the impetus to employ high-order inputs, was to exploit
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the use of binary features as illustrated by the XOR problem and possibly produce

a superior classifier.

Once the highly correlated second-order terms were identified, these terms

were included as inputs. The multilayer perceptron with the second-order inputs

was trained again to see if the minimum error of the test set decreased or if the

training time was less than the original feature inputs.

3.3.4 Investigation of Multivariate Techniques-Logistic Regression. Logistic

discrimination is appropriate when both qualitative and quantatative variables are

being used to attempt to discriminate between two groups. For the two group

classification problem, the SAS LOGISTIC procedure fit a linear logistic regression

model for this binary response data by the method of maximum likelihood.

A sample SAS logistic regression program is shown in Appendix D. To im-

plement the LOGISTIC procedure, one need only specify the model to be fit in

terms of the independent and dependent variables. In order to allow for easier com-

parison between the multilayer perceptron technique and the discriminant analysis

techniques, the same data format was used for the logistic regression procedure as

was used for the perceptron above. That is, when variables are referred to as binary,

this implies that they are "1" or "-1." Before estimation begins, the LOGISTIC

procedure calculates the global score statistic for testing the joint significance of all

explanatory variables in the model. The Maximum Likelihood Estimators (MLEs)

of the regression parameters are computed using the Iteratively Reweighted Least

Squares (IRLS) algorithm. The estimated covariance matrix of the MLEs is obtained

by inverting the expected value of the hessian matrix for the last iteration or the

IRLS algorithm.

Within the LOGISTIC procedure, subsets of explanatory variables may be

chosen by various model selection procedures. SAS allows for four model-selection

methods. The default method fits the complete model as specified in the model
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statement. The other three methods are FORWARD for forward selection, BACK-

WARD for backward elimination and STEPWISE for stepwise selection. In this

analysis, the model selection methods used were the default and stepwise selection.

To determine which variables should enter and leave the model, the procedure calcu-

lates the adjusted chi-squared statistics for all variables and examines the largest of

these statistics. If the variable is significant at the level specified, the variable with

the largest adjusted chi-squared statistic is entered into the model. The stepwise

procedure follows this forward selection step with one or more backward elimination

steps until no further variables can be added to the model, or if the variable just

added is the only variable that can be removed (25).

To explain further, suppose there are s explanatory variables of interest. The

full model has parameter vector

-Y = (91,...,ak,Pi,...,f6,)' (22)

where a,, ... , cq. are intercept parameters, and #I,..., 3 are slope parameters for

the explanatory variables. For a reduced model with i explanatory variables (t < s),

let & k,..., &. be the MLEs of the unknown intercept parameters for this model, and

let .1...,16 be the MLEs of the unknown slope parameters for this model. The

residual chi-square is the chi-squared score statistic evaluated at -1o, which is given

by

-to = (&I ... , 6k,,P1 .. ,/,O,... , O)' (23)

The residual chi-square has an asymptotic chi-squared distribution with s - t

degrees of freedom. The significance of a specific variable adjusted for the variables

already in the model can be determined by comparing the residual chi-square with

a chi-square distribution with one degree of freedom (25).

48



3.3.5 Investigation of Multivariate Techniques-Nearest Neighbor. In SAS,

nonparametric discriminant methods are based on nonparametric estimates of group-

specific probability densities. Either a kernal method or the k-nearest neighbor

method can be used to generate a nonparametric density estimate in each group and

to produce a classification criterion. In this analysis, the k-nearest neighbor method

with Mahalanobis was utilized. 'The procedure finds the radius rk(x) that is the

distance from x to the kth nearest training point in the metric V-' where Vt is the

pooled within-group covariance matrix(25:683). A sample SAS k-nearest -neighbor

program is shown at Appendix E.

Using the k-nearest neighbor rule, the k smallest distances are saved. Of these

k distances, let kt represent the number of distances associated with group t. Then,

the estimated group t density at x is:

f tx) k) (24)ftx) ntVk(x)

where vk(x) is the volume of the ellipsoid bounded by {zI(z - x)'Vi 1 (z - x) =

r.(x)}. When k = 1 is used in the nearest-neighbor rule, x is classified into the same

group as y where y yields the smallest squared distance d'(x,y)(25:680-685). In

general, the value of k has an effect on the degree of irregularity in the estimate of

the density function-small values of k produce jagged density estimates and large

values of k may tend to produce smoother density estimates. Formal methods of

determining the best value of k tend to be complicated and problem dependent (25).

Accordingly, values of k between one and nine were tested and the value of k that

produced the smallest estimated error for the validation set was used.

3.4 Analysis of Input Features

3.4.1 Multilayer Perceptron Input Features When designing a classifier, the

features that provide information should be included and those that provide little
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information should not be provided as inputs to the network. Once the best mul-

tilayer perceptron structure was determined, an analysis of the input Seatures was

conducted. The optimal technique for feature selection requires implicit examination

of every possible subset of the set of features under consideration (4:207-214). In a

situation with very many variables, this would be impractical. The saliency metric

allows for the examination of the inputs as they relate to the output values of the

multilayer perceptron without examining every subset.

The saliency metric (A) for feature j when a sigmoid nonlinearity is used is

restated below.

Aj= i I l(XW) (25)
xEX i xjED$

where x indicates the multidimensional vector inputs, X is the set of all training

vectors, w represents the weights in the network, i is the index of elements of x and

Dj represents a set of points over which the input x, will be sampled (23:43). Dj

is usually a set of several uniformly spaced points over the expected range of the

inputs.

The derivative of the outputs with respect to the input can be written as a

function of only the weights and activations as follows:

-- = Zi(1 - zi) Ew,-X,(I - 4,,)w, (26)&Xj 27 itt M )

where, z, is the output of node i in the output layer, x,1 is the output of node m in

the first layer and wjm is the weight connecting node j in the input layer to node m

in the first layer. The derivation equation above is applicable for perceptrons with

a single hidden layer. As the number of hidden layers increases, the calculation of

this saliency metric becomes more complex.
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As mentioned earlier, another method for determining which inputs are sig-

nificant is to examine the weights connecting the inputs and the first hidden layer.

The equation for this saliencey metric is restated below.

= (27)

k

where W,k is the weight between layer i and layer k. An advantage that this saliency

metric has over the one above, is that its calculation does not become significantly

more difficult as the size of the perceptron grows.

Both forms of saliency are calculated in the multilayer perceptron FORTRAN

program. (See Appendix B) Ruck's saliency is calculated in a subroutine called

SALIENCY and Tarr's saliency metric is available by simply squaring the weights

already available from the ANN subroutine. These methods of feature selection were

compared and based on the results, an attempt was made to reduce the number of

features used for classification.

Currently, these saliency measures are calcalated and features are included

subjectively bas,.d on the rank order according to the saliency measures. In order

to establish a more formal procedure for determining which features are significant,

a noise variable was included as a feature input along with the original inputs to

represent an absolutely insignificant piece of information. Because all continuous

features were normalized between zero and one, the noise was uniform (0,1). The

procedure for determining significant feature inputs when a noise feature is present

is outlined below.

1. Introduce a noise feature to the original set of feature vectors.

2. Determine the best architecture for the multilayer perceptron by the methods

already discussed.

3. Train the network (using the optimal architecture).
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4. Compute the saliency of all features (using either saliency measure).

5. Repeat steps 3 and 4 (with weights being initialized at the beginning of each

training cycle).

6. Characterize the distribution of the saliency of noise based on the sample

saliency values.

7. Find the pth percentile for the resulting distribution.

8. Choose only those features whose saliency is greater than this pth percentile

critical value.

9. Retrain the network with the salient features.

3..4.2 Discriminant Analysis Features Stepwise Selection Procedures. In ad-

dition to the stepwise logistic regression method for the selection of features discussed

above, SAS provides the STEPDISC procedure. The STEPDISC procedure uses

forward, backward, or stepwise selection to produce a good discrimination model.

Variables are chosen to enter or leave the model according to the following criteria:

* "the significance level of an F test from an analysis of covariance, where the

variables already .hosen act as covariates and the variable under consideration

is the dependent variable

" the squared partial correlation for predicting the variable under consideration

from the CLASS variable, controlling for the effects of the variables already

selected for the model (25:1494)."

It is important that in the selection of variables for entry into the model, only

one variable is considered at a time. Therefore, some combinations of variables are

not evaluated and some important variables could be excluded by this procedure. A

sample stepwise discriminant selection program is shown at Appendix F.

The results of the STEPDISC procedure used in this analysis were compared

to the selection of input features resulting from the saliency calculations. The overall
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purpose of examining various feature selection methods was to identify those features

that have the greatest discriminatory capability and possibly determine some smaller

set of inputs with which to train the classifiers.

Discriminant Loadings. Discriminant loadings were calculated for each of the

features under study. Once again, the purpose of calculating these loadings was

to order the features in terms of their contribution to classification. Discriminant

loadings have the advantage over traditional approaches in that they are not as

greatly affected by intercorrelations between the predictors(5).

3.5 Comparison of Methods

The overall procedure for comparing the methods of classification was to com-

pare their estimated error rate on the validation set. Random train, test and valida-

tion sets were constructed ten times. Confusion matrices were constructed for each

discrimination method and compared.

A secondary comparison was made of the feature selection methods. An at-

tempt was made to determine the features of all methods determined as significantly

important to the classification process.

In addition, a comparison was made of the approximate time required to in-

put data, train and classify using the various classification methods. All methods

developed during this analysis utilized the same computer system-SUN SPARC sta-

tion 2. As stated previously, the multivariate discriminant analysis classifiers were

constructed using SAS Version 6.0, and the multilayer perceptron was constructed

using a FORTRAN 77 program. Since the software used for each method differed,

comparisons made on the training/validation time were only approximate.

3.6 Application of Classifiers

Once the classifier with the minimum error rate for the validation set was

identified, data sets were combined and the classifier was trained on the resulting
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representation of the population. It was recommended that the classifier resulting

from entire data set be used by each sponsor to conduct their required analysis.
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IV. Results and Conclusions - Application 1: Classifying

Pilot's Retention Decisions

4.1 Data Collection and Orientation

Many, many factors could account for the decision by an Air Force pilot to

leave military service. In order to apply discriminant analysis techniques and a mul-

tilayer perceptron technique, it was necessary to reduce the large number of possible

independent variables to something manageable. AF/DPXA has a long history of

attempting to quantify the intangible characteristics of military personnel includ-

ing the decision to remain in the military. As the sponsors of this research effort,

AF/DPXA was in the most appropriate position to determine those characteristics

of individual pilots that could possibly contribute to retention decisions. As a first

step, fifty possible contributing factors were submitted to the analysts at AF/DPXA.

Of these fifty, several were deemed unimportant.

The second step was to consider the availability of data. The Air Force pos-

sesses several databases containing personnel information on military personnel.

These databases are maintained at several levels of the personnel organization. The

database available for this research effort was maintained at Headquarters AF. Even

though approximately forty factors were judged appropriate, only twenty-three were

available to the analysts at AF/DPXA. Therefore, for the purposes of this analysis,

only these twenty-three attributes will be analyzed. It is important to note, how-

ever, that now that the method of examining individual data elements is established,

additional data elements could easily be added.

4.1.1 Data Sets A feature vector is a listing of data elements available at a

specific point in time for an individual pilot eligible to separate. A data set is the

combination of all feature vectors (pilots) for a specific year. Two data sets were

used for this analysis- fiscal year (FY) 88 and FY 89. Each year's data set included
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a "snapshot" of all pilots eligible to separate that year. The data includes the actual

career decision that the pilot made by the end of the year under consideration. Each

feature vector contained attributes of the individuals represented as both ordinal

and categorical data.

4.1.2 Data Orientation The FORTRAN program that translates the person-

nel data elements for each individual pilot into continuous and binary data elements

was central to the development of a classification methodology. The program steps

through each data element for each individual checking for possible categorical vari-

ables and translating these variables into the appropriate binary/continuous format.

Because both discriminant analysis techniques and multilayer perceptrons require

numerical inputs, it was necessary to translate each of the categorical variables to

an appropratie number of binary variables. For example, the data element "PME"

(Professional Military Education) which was originally a single alphanumeric data

element was Specifically, an individual's highest level of completed PME fits into one

of four categories. This variable was translated as follows:

" Senior Service School =:. vat1 = 1, var 2 = -1

* Intermediate Service School =, var1 = -1,var 2 = 1

" Squadron Officer School = var = -1,var 2 = -1

" Other vat1 = 1, vat 2 = 1

Figure 5 graphically depicts the organization of the data sets.

In addition to translating the variables obtained from AF/DPXA, this program

adds a data element which will be referred to as "noise." This data element is

simply a uniform random variable between 0 and 1. The noise variable was added

to determine the effect of random noise during the training and evaluation of the

classification techniques. The use of this data element for feature selection will be

discussed further in future sections.
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DATA SET 1
FY 88

(10162 Pilots)

TRAINING SET TEST SET VALIDATION SFT

FOR PERCEPTRON FOR PERCEPTRON (00 Pios)

(3400 Pilots) (3362 Pilots)

TRAINING SET
FOR DISCRIMINANT

ANALYSIS

DATA SET 2
FY 89

(9425 Pilots)

TRAINING SET TETSTVLDIOST
FOR PERCEPTRON FOR PERCEPTRONt

(3200 Pilots) J (3200 Pilots) (3025 Pilots)

TRAINING SET
FOR DISCRIMINANT

ANALYSIS

Figure 10. Data Orientation
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In the development of the FORTRAN translation program the opinions of the

analyst play a part. In many cases, the level of detail of the personnel data for each

individual was excessive. In other cases, the available data did not capture a certain

aspect of an individual. It was necessary, therefore, to decide which values of the

data elements could be important to classifying the retention decision and which

were meaningless. For example, the data element academic specialty (ACADSPEC)

was available from AF/DPXA in a four character format which represented the

detailed subject area of the academic degree that the individual received. There

were over 2800 possible entries for this data element. It was determined that only

the general subject area. would be important to identifying those individuals who

would leave military service. Therefore, for this analysis only the first two characters

of the ACADSPEC data element were used. Each decision such as the one above

is reflected in the FORTRAN translation program. The FORTRAN translation

program is shown at Appendix C.

4.1.3 Data Elements The following is a description of the data elements used

for this research effort.

1. Total Active Federal Military Service Date (TAFMSD) - This data

element represents the date that the individual entered federal military service.

This data element serves as an indicator of the years of service (YOS) an

individual has completed. (Continuous)

2. Active Duty Service Commitment Date (ADSCDA) - This data ele-

ment represents the date that the individual's last service commitment expired.

This element represents the length of time the individual has been eligible to

separate. (Continuous)

3. Marital Status (MARSTAT) - This data element gives the marital status

of the individual (M=married, D=divorced, S=single). (Two binary variables)
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4. Number of Dependents (DEPN) - This data element represents the num-

ber of dependents of each individual. Note that all children residing with the

military member and the member's non-military spouse are considered depen-

dents. (Continuous)

5. Rated Management Code (RDTM) - This data element shows the major

category of weapon system that the individual flies. (Three binary variables)

" Fighter = A

* Trainer = D

" Bomber = E

" Tanker = F

" Strategic Airlift G G

" Tactical Airlift = H

" Helicopter = J

" Mission Support = K/L

6. Rated Position Identifier (RPI) - This data element describes the com-

mand level of the individual's position as well as whether the individual is in

a flying or non-flying position. (Three binary variables)

7. Grade (GRADEA) - This data element shows the grade of the individ-

ual as two digits-"0l through 06"-for Second Lieutenant through Colonel.

(Continuous)

8. Retirement Program (RETPROG) - This data element categorizes in-

dividuals into the different retirement programs based on the year that they

entered service. (Two binary variables)

* If the pilot entered service before August 1980, then he is in Retirement

Program 1 and must serve 20 years for full retirement.
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* If the pilot entered service between August 1980 and July 1986, then he

is in Retirement Program 2 and must serve 25 years for full retirement.

* If the pilot entered service after July 1986, then he is in Retirement Pro-

gram 3 and must serve 30 years for full retirement.

9. Professional Military Education (PME) - This data elements depicts

the highest level of professional military education that the individual has

accomplished. Although the original data element contained codes for all PME

courses including those used for the enlisted grades and for the other services,

the data elements were translated to the following categories:

* Senior Service School (SSS)

" Intermediate Service School (ISS)

" Squadron Officer School (SOS)

" Other

(Two binary variables)

10. Desired Professional Military Education (DPME) - This data element

combines the information from the PME data element and the year of service

that ain individual is expected to complete a specific level of PME. (One binary

variable)

11. Date of Birth (DOB) (Continuous)

12. Consolidated Base Personnel Office Code (PASCBPO) - This data ele-

ment specifies the personnel office where the individual's personnel actions are

processed and is considered the most accurate indicator of where an individual

is assigned. For the purposes of this analysis, the over 350 possible entries for

this data element were reduced to one of six regions of the United States and

one of four regions overseas. (Four binary variables)

* Region 1 - North Eastern U.S.
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- Connecticut

- Delaware

- Maine

- Maryland

- Massechusetts

- New Hampshire

- New Jersy

- New York

- Pennsylvania

- Rhode Island

- Vermont

- Virginia

- West Virginia

Region 2 - Southern U.S.

- Alabama

- Florida

- Georgia

- Louisiana

- Mississippi

- North Carolina

- South Carolina

- Tennesse

* Region 3 - Northern U.S.

- Minnesota

- Montana

- North Dakota
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-South Dakota

"Region 4 - South Western U.S.

- Arizona

- Arkansas

- New Mexico

- Oklahoma

- Texas

" Region 5 - Midwestern U.S.

- Illinois

- Indiana

- Iowa

- K~ansas

- Kentucky

- Michigan

- Nebraska

- Ohio

- Wisconsin

* Region 6 - North Western U.S.

- Idaho

- Oregon

- Washington

* Region 7 - Western U.S.

- California

- Colorada

- Nevada
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- Utah

- Wyoming

* Region 8 - European Area

* Region 9 - Pacific Area

e Region 10 - Central American Area

* Region 11 - Central Command Area

* Region 12 - Arctic Area

* Region 13 - Hawaii

* Region 14 - Alaska

13. Academic Level (ACADLVL) - This data elements lists the level of the

highest academic degree that an individual has obtained. (Three binary vari-

ables)

* Bachelors Degree = N

* Bachelors Degree plus Graduate Credits = 0

* Masters Degree = P

* Masters Degree plus Post Graduate = Q

* Doctoral Degree = R

14. Academic Specialty (ACADSPEC) - This data element describes the spe-

cialty area that the pilot received his most recently completed degree in (for

example, electrical engineering). The possible values of this data element are

too numerous to list, however, they include all major academic specialties.

(Seven binary variables)

15. Air Force Specialty Code - Duty (DAFSC) - Air Force Regulation (AFR)

36-1 lists the possible DAFSC's for all Air Force Officers. The Air Force Spe-

cialty Code (AFSC) is a code that iepresents the basic grouping of positions
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requiring similar skills and qualifications. To identify special skills, abilities,

or equipment, a specialty may be subdivided into shredouts, identified by a

letter suffix to the AFSC. Prefixes identify significant skills and abilities not

restricted to a single career field. In the case of rated individuals, the duty

AFSC describes either the weapon system that the individual is trained to fly

or the position that the individual currently holds. Listed below are some of

the more prevelant suffixes, prefixes and AFSCs contained in the data sets.

" Prefixes (Three binary variables)

- Commander = A

- Weapons and Tactics Instructor = S

- Aircraft Systems Flight Evaluation = F

- Instructor Pilot = K

- Standardization/Flight Examiner = M

- Squadron Operations Officer = N

- Safety = X

" AFSCs (Four binary variables)

- Pilot, Helicopter = 1025

- Pilot, Search and Rescue = 1035

- Pilot, Transport = 1045

- Pilot, Tactical Airlift = 1055

- Pilot, Tanker = 1065

- Pilot, Fighter = 1115

- Pilot, Forward Air Controller (FAG) = 1145

- Pilot, Mission Support = 1165

- Pilot, Strategic Bomber = 1235

- Pilot, Special Operations = 1315
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- Pilot, ElcctronicWarfare/Airborne Command and Control/Special Re-

connaissance = 1325

- Pilot, Strategic Reconnaissance = 1335

- Pilot, Flight Training Instructor = 1355

- Pilot, Special Operations, Helicopter = 1365

- Air Operations, Staff Director, Pilot = 1406

- Air Operations Officer, Pilot, Trainer = 1415

- Air Operations Officer, Pilot, Transport/Airlift = 1425

- Air Operations Officer, Pilot, Strategic Bomber/Tanker/Reconnaissance

= 1435

- Air Operations Officer, Pilot, Tactical Air Control System = 1445

- Air Operations Officer, Pilot, Fighter = 1455

- Air Operations Officer, Pilot, Special Operations = 1465

- Air Operations Officer, Pilot, Electronic Warfare/Airborne Command

and Control/Special Reconnaissance = 1475

- Air Operations Officer, Pilot, Helicopter/Search and Rescue = 1485

- Air Operations Officer, Pilot, Other = 1495

16. Air Force Specialty Code - Primary (PAFSC) - This data element

is similar to the data element Air Force Specialty Code - Duty above, but

pertains to the primary career specialty that the officer is trained to perform.

Therefore, while an individual's duty AFSC may change often as he moves from

job to job, his primary AFSC should rarely change. (Prefix = Three binary

variables, Digit = Four binary variables)

17. Prior Service Information (PRIORSV) - This data element gives infor-

mation on the individual's prior service in an enlisted grade. (Two binary

variables)

9 No Prior Service = Category 0
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* Length of Prior Service between 1 and 4 years = Category 1

* Length of Prior Service between 4 and 8 years = Category 2

* Length of Prior Service greater than 8 years = Category 3

13. Source of Commissioning (SOC) - This data element denotes the pro-

fessional military training that the pilot received prior to commissioning. In

addition, the data element reflects whether the individual was named a Dis-

tinguished Graduate (DG). (Three binary variables)

* Reserve Officer Training Corps (ROTC)

o ROTC DG

# Air Force Academy (AFA)

9 AFA DO

9 Officer Training School (OTS)

*OTS DG

0 ther

* Other DG

19 Race (RACE) - This data element identifies the individual pilot's race.

(Three binary variables)

• Caucasian

* Yellow

* Black

* Red

* Other

* Unknown
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20. Component (COMP) - This data element identifies whether the officer is

regular or reserve component. (Two binary variables)

21. Sex (SEX) - This data element identifies the individual pilot's sex. (One

binary variable)

22. Number of Flying Hours (FLYMONTH) - This data element is used

as an indicator of the average amount of flying that the individual pilot is

performing in his current duty assignment. The value entered for this data

element is the number of flying hours that the pilot flew for the month that

the data was accessed. (Continuous)

23. Separation Decision (RETAIN) - Finally, this data element identifies

whether the pilot remained in the military at the end of the year for the cur-

rent data set. The value of theis data element is "1" if the individual remained

in the Air Force and "0" if he separated. The RETAIN data element is the

information that the classifiers are attempting to predict based on the values

of all other data elements-it is the dependent variable.

After the translation of these data elements was completed, each individual's

feature vector (vector of attributes) consisted of 60 binary variables and 5 continuous

variables.

4.2 Simple Statistics for Input Features

Before the development of any multivariate analysis tool, an examination of

the simple statistics is appropriate. Tables 1 and 2 list the input features and their

means and standard deviations. Continuous variables are highlighted with '*'. The

means of the binary variables serve as indicators of whether the majority of the pilots

had that variable coded as a "1" or "-1." (If the mean is greater than 0 then the

majority had that variable coded as "1.") "POS" in this table indicates the position

of the variable in terms of the binary word that makes up the entire piece of data.
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For example, since PME is composed of two binary variables, PME (1st POS) and

PME (2nd POS) are listed in Tables 1 and 2. The feature VAR 14 (RETRPROG

2nd POS) is the same for all individuals in both data sets, therefore, this variable

was dropped from further analysis.

4.3 Development of Classification Methodology

The following section describes the process used to generate discriminators to

classify Air Force pilots into one of two groups-"stay" or "leave".

4.3.1 Application of Mulilayer Perceptron Techniques Initially, the entire set

of 65 input features was used to develop a multilayer perceptron for classification.

The methodology for constructing an optimal multilayer perceptron architecture is

shown in Figure 8. The initial "standardized" parameters for the network were set

to the following values

" Number of Middle Nodes: 25

" Learning Rate: 0.30

" Momentum Rate: 0.70

* Epochs: 2000

" Data Set: FY 88 Pilot Data (All Features)

For the 2000 epochs that the multilayer perceptron was presented data, no

decrease in error is observed, and therefore, it appears that no training took place.

The error plots in Figures 11 and 12 illustrate this lack of training. As stated earlier,

it is expected that two types of error should decrease as the number of epochs

increases-output error and classification error.

The results obtained with this "standard" structure illustrate the characteris-

tics that occur when a multilayer perceptron fails to learn, or decrease error. The

classification error varies around .5 signifying that the multilayer perceptron was
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Table 1. FY 88 and FY 89 Pilot Data (Features 1-36) - Simple Statistics

FEATURE FEATURE MEAN STANDARD
NUMBER NAME DEVIATION
VAR1* TAFMCSD 7141.83 599.16
VAR2* ADSCDA 8751.13 184.77
VAR3 MARSTAT (1st POS) -0.8966 0.4429
VAR4 MARSTAT (2nd POS) -0.9264 0.3766
VAR5 DEPN 2.3366 1.4376
VAR6 RDTM (1st POS) 0.3327 0.9431
VAR7 RDTM (2nd POS) 0.3220 0.9468
VARS RDTM (3rd POS) 0.2755 0.9613
VAR9 RPI (1st POS) 0.0462 0.9990
VAR10 RPI (2nd POS) 0.5050 0.8632
VARl RPI (3rd POS) 0.4937 0.8697
VAR12 GRADE 4.2910 1.0730
VAR13 RETPROG (1st POS) -0.8161 0.5779
VAR14 RETPROG (2nd POS) -1.000000 0
VAR15 PME (1st POS) -0.1862 0.9825
VAR16 PME (2nd POS) 0.0898 0.9960
VAR17 DPME -0.4510 0.8926
VARIS MAJCOM (1st POS) -0.2401 0.9708
IAR19 MAJCOM (2nd POS) 0.1356 0.9908

VAR20 MAJCOM (3rd POS) 0.0681 0.9977
VAR21 MAJCOM (4th POS) -0.2746 0.9616
VAR22" DOB 4851.42 595.70
VIAR23 PASCBPO (1st POS) 0.0852 0.9964
VAR24 PASCBPO (2nd POS) 0.3051 0.9523
VAR25 PASCBPO (3rd POS) 0.5450 0.8385
VAR26 PASCBPO (4th POS) -0.7255 0.6883
VAR27 ACADLVL (1st POS) 0.8596 0.5109
VAR28 ACADLVIL (2nd POS) -0.2591 0.9659
VAR29 ACADLVL (3rd POS) 0.9661 0.2582
VAR30 ACADSPEC (1st POS) -0.1832 0.9831
VAR31 ACADSPEC (2nd POS) 0.3935 0.9194
VAR32 ACADSPEC (3rd POS) -0.4268 0.9044
VAR33 ACADSPEC (4th POS) 0.5526 0.8335
VAR34 ACADSPEC (5th POS) 0.3613 0.9325
VAR35 ACADSPEC (6th POS) 0.7885 0.6151
VAR36 ACADSPEC (7th POS) 0.4963 0.8682

'*' indicates continuous variable
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Table 2. FY 88 Pilot Data (Features 37-65) - Simple Statistics

FEATURE FEATURE MEAN STANDARD
NUMBER NAME DEVIATION
VAR37 DAFSCPRE (1st P05) -0.6908 0.7231
VAR38 DAFSCPRE (2nd POS) -0.6911 0.7228
VAR39 DAFSCPRE (3rd POS) -0.8344 0.5512
VAR40 DAFSCDIGJT (1st POS) -0.6968 0.7173
VAR41 DAFSCD.1GIT (2nd POS) -0.6780 0.7350
VAR42 DAFSCDICIT (3rd POS) -0.6160 0.7878
VAR43 DAFSCDICIT (4th POS) -0.4324 0.9017
V1AR44 DAFSCDIGIT (5th POS) -0.7135 0.7007
VAR45 PAFSCPRE (1st POS) -0.6843 0.7292
VAR46 PAPSOPRE (2nd POS) -0.6598 0.7515
VAR47 PAFSCPRE (3rd POS) -0.8365 0.5480
VAR48 PAFSCDICIT (1st POS) -0.7145 0.6996
VAR19 PAFSCDIGIT (2nd POS) -0.6971 0.7170
VAR50 PAFSCDIGIT (3rd POS) -0.6428 0.7661
VAR51 PAFSCDIGIT (4th POS) -0.4732 0.8810
VAR52 PAFSCDIGIT (5th POS) -0.7314 0.6819
VAR53 PRIORSV (1st POS) -0.9065 0.4223
VAR54 PRIORSV (2nd POS) 0.9585 0.2852
VA4LR55 SOC (1st POS) 0.0545 0.9986
VAR56 SOC (2nd POS) -0.2420 0.9703
VAR57 SOC (3rd POS) -0.4188 0.9081
NIAR58 RACE (1st POS) -0.9675 0.2531
VAR59 RACE (2nd POS) -0.9877 0.2001
VAR60 RACE (3rd POS) -0.9798 0.2001
VAR61 COMP (1st POS) -0.9600 0.2800
\f'62 COMP (2nd POS) -0.9632 0.2688
VAR63 SEX 1-0.9840 1 0.1780
VAR64* FLYMONTH 144.47 59.51
VAR65- NOISE 0.4960 0.2883

''indicates continuous variable
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Figure 11. FY 88 Pilot Data (All Features) - Output Error for Structure 1

performing no better than guessing the group membership. All attempts to follow

the procedure outlined in Chapter 3 for determining the optimal parameters for the

multilayer perceptron failed, since a trained net is required to evaluate changes in the

parameters. Instead, the analyst was left to try different combinations of parameters

hoping that some training takes place.

The confusion matrix for the FY 88 training set at the time that training ceased

is shown in Table 3. At this tirhe in the training cycle, the rate for predicting those

pilots whose true classification is Group 1 (stay) was very good, but very bad for

those whose true classification was Group 2 (leave). In fact, the network classified

all but 37 individuals as staying.

Since there were such a large number of inputs (65 features) to the multi-

layer perceptron, it was suggested that the number of middle nodes be increased.

In practice, multilayer perceptrons are often diamond shaped with the number of

middle nodes being greater than the number of inputs and the number of output

nodes being smaller than the number of middle nodes (21). Also, since there were

65 inputs to the perceptron, there was the possibility that the learning rate and
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Figure 12. FY 88 Pilot Data (All Features) - Classification Error for Structure 1

Table 3. FY 88 Pilot Data (All Variables) - Confusion Matrix for Structure I

TRAINING SET
Classified Classified Total

Stay Leave
True 100% 0% 100%
Stay 2749 0 2749
True 100% 0% 100%
Leave 651 0 651
Total 3400 0 3400
Total Training Set
Error Rate: 0.1915
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momentum were set too high. A learning rate that is too high will cause the weights

to vary greatly around the minimum of the error surface while never actually find-

ing the minimum. Subsequently, these parameters were decreased and the following

structure was established:

* Number of Middle Nodes: 100

* Learning Rate: 0.015

* Momentum Rate: 0.0

* Epochs: 3000

* Data Set: FY 88 Pilot Data (All Features)

Figures 13 and 14 show the output and classification error for the multilayer

perceptron described. Once again, the output error did not decrease and the classifi-

cation error varied around 50% correct. In fact, the output error for the training set

varied very little suggesting that the perceptron has reached some minimum error

and cannot decrease the error. The classification error suggests that the multilayer

perceptron has trained to weights which classify all pilots as "stay" and that this is

the minimum error solution.

The confusion matrix for the multilayer perceptron for the training set at the

time that training ceased is shown in Table 4. Again, the network was classifying

nearly all feature vectors as Group 1.

At this stage, the validation set error rates were calculated as if the multilayer

perceptron was fully trained. The resulting error rates were 20.17% incorrect and

25.26% incorrect. These rates, taken by themselves, suggest that a relatively accurate

classifier was developed. These rates are deceiving, however, due to the lack of

discrimination of the pilots who left the Air Force.

In addition to the two structures described above, training of the multilayer

perceptron was attempted using several different learning rates, momentum rates,

number of middle nodes, and epochs. Table 5 details the ranges of the parameters
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Table 4. FY 88 Pilot Data (All Variables) - Confusion Matrix for Structure 2

TRAINING SET
Classified Classified Total

Stay Leave
True 100% 0.0% 100%
Stay 2749 0 2749

True 100% 0.0% 100%
Leave 651 0 651
Total 3400 0 3400
Total Training Set
Error Rate: 0.1915

Table 5. Multilayer Perceptron Parameters for Pilot Data Sets

Number of Middle Nodes 5-100
Learning Rate 0.01-0.70
Momentum Rate 0.00-0.70
Epochs 1-10,000

that were explored. It should be emphasized that the time required to attempt to

train the multilayer perceptron over this range of parameters was excessive. For the

hardware being used, the run time for each attempt was well over 72 hours. In the

runs with an especially large numbers of epochs, the program continued to run and

the reliability of the hardware was the reason for stopping.

By the end of the analysis effort, an attempt was made to train approximately

15 different multilayer perceptron structures. The error plots in Figures 11 through

14 are representative of all error plots for all parameters.

The confusion matrices for these attempts suggest that during training, the

weights converged to values that classified all feature vectors as Group 1 (stay).

This could be due to the fact a larger percentage of the data presented to the

75



multilayer perceptron was Group 1 data. In fact, for the FY 88 data set only 19.2

percent of the data represents individuals that left the Air Force-Group, 2. A

neural network considers the data set used to train its weights as representative of

the entire population. Consequently, networks assume that the prior probabilities of

group membership are proportional to the membership in the training set. In this

application, it is possible that the probability of membership in Group 2 was not

large enough to cause the network to adjust its weights to account for Group 2.

Another explanation for the lack of training and the large errors is that the

two groups are not separable. A basic assumption of all discriminators used in this

research effort was that the groups to be classified were separable. SAS provides pro-

cedures to determine if the group centroids are significantly different-specifically,

the Hotelling-Lawley Trace test. The results of this test showed that the null hy-

pothesis that the means were equal was rejected (p-value = .0001). According to

this test, the means are significantly different. However, the test is based on an

F-statistic with 6695 denominator degrees of freedom. With this many degrees of

freedom, it would be difficult to do anything except reject the null hypothesis. The

hypothesis that the groups are not separable was still unproven.

To examine this non-separability issue further, each of the 65 features was

standardized between 1 and 0 and the location of the standardized group centroids

was determined using SAS. The squared distance between the centroids was found to

be 1.51135. Since all of the features were standardized between 0 and 1, the greatest

that the squared distance between the centroids could be is 65. The relatively small

distance between the standardized Group 1 and Group 2 centroids strengthens the

argument that the groups are not significantly different in the current feature space.

Conclusion: The multilayer perceptron with 65 features as inputs

could not be trained to discriminate between pilots that will leave and

those that will remain in the Air Force.
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4.3.2 Application of Logistic Regression The LOGISTIC function in SAS

provides a user friendly environment for constructing a logistic regression model

for the two group problem. The only decision required by the user is to specify

the significance levels for the entry and removal of variables from the model. SAS

provides the user with information on the feature inputs themselves, as well as pa-

rameter estimates, standardized parameter estiamtes, Chi-square scores, a confusion

matrix and an estimate of the error rate.

Tables 6 and 7 show the confusion matrices for the logistic regression technique

on FY 88 and FY 89 training sets with all 65 variables. The total rate correct for

all feature vectors is 81.0% for the FY 88 data, set and 76.4% for the FY 89 data

set. These rates appeared favorable, however, further investigation of the confusion

matrices was necessary.

As in the case of the multilayer pcrceptron technique, the percentage of vectors

classified as 'stay' that were truly 'stay' was high while the percentage classified as

'leave' that were truly 'leave' is low. One might optimistically look at the confusion

matrix and notice that there were 203 individuals correctly identified as leaving for

the FY 88 data. In the context of this application, however, this identification rate

is unacceptable. It would mean underestimating those pilots that will leave the Air

Force and could be detrimental to analyses of force projections.

The reported non-error rates in the confusion matrices for the training sets

are optimistic since the same set was used to construct the discriminator and to

eveluate its performance. Because poor performance was observed for the training

set, no decrease in error was expected for the validation set. For this reason, the

validation set was not examined.

Conclusion: The logistic regression methodology using 65 features

produced a classifier with an error rate of 19.0% for the FY88 data set

and 23.6% for the FY 89 data set. The classifier performed poorly when

classifying those individuals that left the Air Force.
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Table 6. Pilot Data FY 88 - Logistic Regression Confusion Matrix

TRAINING SET
Classified Classified

Stay Leave Total
True 96.5% 3.5% 100%
Stay 5270 193 5463
True 84.3% 15.7% 100%
Leave 1092 203 1295

Total 6362 396 6758
Total Training Set
Error Rate: 0.1901

Table 7. Pilot Data FY 89 - Logistic Regression Confusion Matrix

TRAINING SET
Classified Classified

Stay Leave Total
True 92.5% 7.5% 100%
Stay 4400 357 4757
True 70.4% 29.6% 100%
Leave 1152 484 1636
Total 5552 841 6393
Total Training Set
Error Rate: 0.2360
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4.3.3 Application of K-Nearest-Neighbor. The nonparametric option avail-

able in DISCRIM was used to test the k nearest-neighbor algorithm for k = 1 through

k = 9. The nonparametric form of DISCRIM provides the following information

" Class Level Information

- Frequency of each Group's Membership

- Prior Probability of Group Membership

" Resubstitution Confusion Matrix. Resubstitution presents the same data to

both develop the classifier and evaluate the discriminator. The resulting error

rate is optimistically biased (25:685).

" Cross-Validation Confusion Matrix. Crossvalidation treats n- 1 out of n train-

ing observations as a training set. It determines the discriminator based on

these n - 1 observations and then applies the discriminator to the one obsei-

vati6n left out. This is done for n training observations. The misclassification

rate for each group is the proportion of sample observations in that group

that were incorrectly classified. This method yields a nearly unbiased error

estimate, however, the estimate has a high variance (25:685).

" Validation Set Confusion Matrix. Validation presents the classifier with a data

set that was not used to train the classifier. This method gives the most honest

estimate of error rate, but decreases information available to train the classifier.

Tables 8 and 9 show the total error rates for each value of k. Since larger values

of k smooth the region defining each of the groups, it follows that the larger values of

k will generalize better. For the values of k chosen, k = 1 perfectly classifies the data

in the training set, however, the validation sets error rate is highest for k = 1. The

nearest neighbor algorithm with k = 1 appeared to provide the least generalization

and k = 9 appeared to provide the most generalization. For the FY 88 and FY 89

data sets, k = 7 was chosen. (The validation set error rate for k = 7 was very close
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Table 8. Pilot Data FY 88 - Values of k for k-Nearest Neighbor Neighbor Technique

Resubstitution Crossvalidation Validation
k Error Rate Error Rate Error Rate
1 0.00% 26.12% 27.02%
3 13.02% 21.60% 22.23%
5 15.57% 19.99% 20.57%
7 16.37% 19.03% 19.82%
9 16.91% 18.60% 19.82%

Table 9. Pilot Data FY 89 - Values of k for k-Nearest Neighbor Neighbor Technique

Resubstitution Crossvalidation Validation
k Error Rate Error Rate Error Rate
1 0.00% 31.69% 31.40%
3 16.22% 27.86% 27.57%
5 19.18% 25.65% 26.31%
7 20.01% 24.28% 25.09%
9 20.96% 24.09% 24.28%

to the rate for k = 9, while k = 7 had a lower resubstitution error rate than the

k = 9 resubstitution error rate.)

Tables 10 and 11 shows the confusion matrices for the 7-nearest-neighbor al-

gorithm for the FY 88 and FY 89 data sets.

Once again, the k-nearest neighbor algorithm provided accurate classifications

of those individuals who remained in military service, however, it classified poorly

those who left. Again, several individuals were classified correctly as leaving the Air

Force (82 individuals for the FY 88 validation set and 178 individuals for the FY

89 validation set). These results were not viewed as successful in light of the large

number of individuals incorrectly classified.
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Table 10. Pilot Data FY 88 - K-Nearest-Neighbor Confusion Matrices

RESUBSTITUTION
Classified Classified

Stay Leave Total
True 97.84% 2.16% 100%
Stay 5345 118 5463
True 76.29% 23.71% 100%
Leave 988 307 1295
Total 6333 425 6758

CROSSVALIDATION
Classified Classified

Stay Leave Total
True 96.54% 3.46% 100%
Stay 6371 387 5463
True 84.71% 15.29% 100%
Leave 1097 198 1295
Total 6371 387 6758

VALIDATION

Classified Classified
Stay Leave Total

True 96.35% 3.65% 100%
Stay 2612 99 2711
True 88.03% 11.97% 100%
Leave 603 82 685
Total 3215 181 3396

Total Validation Set
Error Rate: 0.2067

81



Table 11. Pilot Data FY 89 - K-Nearest-Neighbor Confusion Matrices

RESUBSTITUTION

Classified Classified
Stay Leave Total

True 95.38% 4.62% 100%
Stay 4537 220 4757
True 64.73% 35.27% 100%
Leave 1059 577 1636
Total 5596 797 6393

CROSSVALIDATION
Classified Classified

Stay Leave Total
True 93.08% 6.92% 100%
Stay 4428 329 4757
True 74.76% 25.24% 100%
Leave 1223 413 1636
Total 5651 742 6393

VALIDATION
Classified Classified

Stay Leave Total
True 92.65% 7.35% 100%
Stay 2091 166 2257
True 76.67% 23.33% 100%
Leave 585 178 763
Total 2676 344 3020
Total Validation Set
Error Rate: 0.2487
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The individuals that were correctly identified as leaving the Air Force were

examined to determine if they possessed characteristics that differed greatly from

the rest of the population. The only significant difference detected was an unusually

high number of unmarried individuals with no dependents. That this characteristic

affects retention decisions is reasonable since individuals without families are more

likely to risk possible unemployment after leaving the Air Force.

Conclusion: The k-nearest-neighbor algorithm using 65 features pro-

duced a classifier with a total error of 20.67% for the FY 88 validation set

and 24.87% for the FY 89 validation set. These error rates are likely to

be unacceptable considering the poor performance classifying those that

left the Air Force.

4.4 Feature Selection

4.4.1 Multilayer Perceptron Feature Selection Results. The failure of the per-

ceptron to accurately classify pilots highlights one of the major disadvantages of

neural networks. All of the techniques for evaluating the significance of input fea-

tures are based on a trained network. Therefore, saliency cannot be calculated and

attempts to include high-order terms are not possible. It was decided that a pre-

processing method to reduce the number of features would be completed outside the

realm of neural networks. This leads to the next type of feature selection that was

developed, the logistic regression model.

Conclusion: Without a trained multilayer perceptron, the number

of features cannot be reduced by the saliency methods proposed for this

research effort.

4.4.2 Logistic Regression Feature Selection Results. The SAS LOGISTIC

procedure provided stepwise selection of features as well as chi-square scores and

the order of feature entry and removal. The levels of significance used for entry and
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removal of variables was 0.3., The results of the stepwise selection procedure are

shown in Tables 12 and 13. It was at this stage of the analysis that a uniform (0,1)

noise was added.

It is immediately obvious that the need to decompose the personnel data on

each individual into binary words puts the analyst great disadvantage. According

to Tables 12 and 13, only certain portions of the binary words are significant for the

classification process. The analyst was faced with the decision of which variables to

use and an evaluation of the meaning of teli variables chosen.

The advantage of including a variable representing noise is evident in the step-

wise selection results. In both the FY 88 and FY 89 data, SAS entered the noise

variable to the model as though it contributed to the classification. This suggests

that all variables entered after noise contribute to the classification no more than

pure noise and should not be included.

The SAS LOGISTIC model was constructed again, this time including only the

top ten variables that were chosen in the selection process (i.e., the top ten variables

in the lists in Tables 12 and 13.) Tables 14 and 15 show the confusion matrix for

the resulting reduced models. Very little change from the models with 65 inputs was

observed for these reduced models.

Initially, it was thought that the logistic regression stepwise procedure could

be used as a pre-processor for the multilayer perceptron. To see if the multilayer

perceptron could be trained with the logistic regression reduced data set, an attempt

was made to train the multilayer perceptron with the 10 most significant features.

Several multilayer perceptron architectures were tested and all attempts to train the

network failed.

To see if this reduced data set may produce a better classifier with the k-

nearest neighbor algorithm, the reduced data set was presented to the algorithm. A

with the original data set, k = 7 produced the classifier with the least validation set
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Table 12. Logistic Regression Stepwise Selection Results - FY 88

Variable Variable Number Score Variable
Step Entered Removed In Chi-Square Name

1 VAR13 1 283.8 RETPROG
2 VAR2 2 133.9 ADSCDA
3 VAR52 3 85.2374 PAFSC DIGIT (5th POS)
4 VAR28 4 70.5581 ACADLVL (2nd POS)
5 VAR16 5 62.1938 PME (2nd POS)
6 VAR27 6 38.1435 ACAD LVL (1st POS)
7 VAR5 7 23.5200 DEPN
8 VAR22 8 21.2534 DOB
9 VIAR12 9 62.2929 GRADE
10 V'AR17 10 22.5306 DPME
11 VAR4 11 13.1699 MARSTAT
12 VAR15 12 9.8369 PME (1st POS)
13 VAR24 13 9.7845 PASCBPO (2nd POS)
14 VAR57 14 7.8916 SOC (3rd POS)
15 VAR10 15 6.8891 RPI (2nd POS)
16 VAR32 16 4.7363 ACADSPEC (3rd POS)
17 1AR34 17 5.2052 ACADSPEC (5th POS)
18 VAR1 18 4.0425 TAFMSD
19 VAR53 1.9 4.4254 PRIORSV (1st POS)
20 VAR45 20 4.2777 PAFSC PRE (1st POS)
21 VAR47 21 6.3393 PAFSC PRE (3rd POS)
22 VAR55 22 3.1298 SOC (1st POS)
23 VAR1l 23 2.9734 RPI (3rd POS)
24 VAR9 24 8.4733 RPI (1st POS)
25 V'AR38 25 2.6946 DAFSC PRE (2nd POS)
26 VAR37 26 2.7555 DAFSC PRE (1st POS)
27 VAR25 27 1.8429 PASCBPO (3rd POS)
28 V'AR40 28 1.5299 DAFSC DIGIT (1st POS)
29 V'AR18 29 1.5282 MAJCOM (1st POS)
30 VAR65 30 1.5036 **** NOISE *
31 VAR63 31 1.4217 SEX
32 VAR56 32 1.3269 SOC (2nd POS)
33 VAR57 31 SOC (3rd POS)
34 VAR54 32 1.3793 PRIORSV (2nd POS)
35 VAR46 33 1.1866 PAFSC PRE (2nd POS)
36 I VAR45 32 SOC (2nd POS)
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Table 13. Logistic Regression Stepwise Selection Results - FY 89

Variable Variable Number Score Variable
Step Entered JRemoved j In jChi-Square Name
1 VAR13 1 435.4 RETPROG
2 VARi 2 135.7 TAFMSD
3 VAR12 3 239.0 GRADE
4 VAR5 4 27.3405 DEPN
5 VAR44 5 21 .4935 DAFSC DIGIT (5th POS)
6 VAR63 6 15.6870 SEX
7 VAR28 7 14.7993 ACAD LVL (2nd POS)
8 VAR25 8 13.0541 PASCBPO (3rd POS)
9 NIAR37 9 10.4393 DAFSC PRE (1st POS)
10 V'AR16 10 8.97130 PME (2nd POS)
11 VAR1( 11 29.7456 DPME
12 VAR54 12 13.8000 PRIORSV (2nd POS)
13 VAR15 13 8.6156 PME (isy P05)
14 VAR59 14 7.4902 RACE (2nd POS)
15 VAR29 15 7.0275 ACAD LVL (3rd POS)
16 VAR62 16 5.7425 COMP (2nd POS)
17 VAR10 17 5.8251 RPI (2nd POS)
18 VAR53 18 5.1975 PRIORSV (1st POS)
19 VAR9 19 4.8152 RPI (1st POS)
20 VAR11 20 7.7491 RPI (3rd POS)
21 \'AR64 21 3.7386 FLYMONTH
22 VARIS 22 3.8304 MAJCOM (1st POS)
23 VAR6 23 3.2256 RDTM (1st POS)
24 VAR65 24 3.0706 '*"*NOISE
25 VAR2 25 2.5743 ADSCDA
26 VAR23 26 2.3577 PASCBPO (1st POS)
27 VAR56 27 2.2657 SOC (2nd POS)
28 VAR7 28 2.3411 RDTM (2nd P05)
29 VAR20 29 3.5173 MAJOOM (3rd P05)
30 VAR4O 30 2.8548 DAFSC DIGIT (1st POS)
31 VAR31 31 2.0140 ACAD SPEC (2nd POS)
32 VAR55 32 1.8805 SOC (1st POS)
33 VAR50 33 1.7196 PAFSC DIGIT (3rd POS)
34 VAR43 34 3.6511 DAFSC DIGIT (4th POS)
35 VAR44 33 DAFSC DIGIT (5th POS)
36 VAR52 _____ 34 1.1990 PAFSC DIGIT (5th POS)
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Table 14. Pilot Data FY 88 - Logistic Regression Confusion Matrix (Reduced Fea-
ture Set)

TRAINING SET
Classified Classified

Stay Leave Total
True 97.13% 2.87% 100%
Stay 5306 157 5463
True 86.50% 13.50% 100%
Leave 1121 175 1296
Total 6427 332 6759
Total Training Set
Error Rate: 0.1891

Table 15. Pilot Data FY 89 - Logistic Regression Confusion Matrix (Reduced Fea-
ture Set)

TRAINING SET

Classified Classified
Stay Leave Total

True 92.00% 8.00% 100%
Stay 4382 381 4763
True 71.47% 28.53% 100%
Leave 1170 467 1637
Total 5552 848 6400
Total Training Set
Error Rate: 0.2423
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errors. The resulting 7-nearest neighbor classifier with the reduced data set produced

slightly higher error rates for the FY 88 and 89 data than the original input feature

set.

4.4.3 Other Disc'iminant Analysis Feature Selection Results. The results of

the SAS STEPDISC procedure and the discriminant loading calculations looked very

much like the logistic regression stepwise results. Although the selection results were

not exactly the same, all methods chose the same ten most significant features. For

this reason, no further analysis was conducted on these feature selection method.

Conclusion: Feature selection techniques using multilayer percep-

trois were not possible since the network failed to train on the data.

Feature selection using parametric methods (logistic regression and step-

wise discriminant analysis) produced significant features, although the

reduced feature set did not reduce the error rates.

4.5 Comparison of Methods

4.5.1 Classification Accuracy. None of the methodologies performed to levels

that could be considered successful. The multilayer perceptron did not exhibit learn-

ing, however, the classification error rate of the perceptron on the FY 88 validation

set was 20.17% and 25.26% for the FY 89 validation set. The logistic regression model

produced overall classification error rates on the training set of between 18.9% and

24.2%. The 7-nearest-neighbor algorithm produced classification error rates for the

FY 88 validation set of 20.67% and 24.87% for the FY 89 validation set. Note that

the multilayer perceptron achieved error rates comparable to the k-nearest-neighbor

algorithm by classifying all pilots as into a single group-"stay."

Although the nearest-neighbor algorithm performed similarly to the multilayer

perceptron, it should be highlighted that this nearest-neighbor methodology would

be the most difficult to implement by AF/DPXA. The multilayer perceptron and the
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logistic regression methodologies produce weights or parameter estimates once they

have been trained. These coefficients are all that is needed to classify new pieces

of data that the classifiers have not seen. The k-nearest neighbor algorithm, on the

other hand, requires a comparison with all the points in the training set to classify

a new observation.

In terms of the ability to reduce the number of features in the model, the logistic

regression model obviously outperformed the perceptron methods. The multilayer

perceptron feature selection techniques require a. trained network which, as has been

shown, can be difficult to achieve. The k-nearest-neighbor algorithm has no ability

to identify significant inputs.

Conclusion: The 7-nearest-neighbor classification methodology ex-

hibited the least classification error rate, however, the error that was

observed was significant.

4.5.2 Model Complexity. It was difficult to compare the complexity of the

models used for this application. All three classification methodologies required large

amounts of data translation and data manipulation. It seemed that the methodolo-

gies developed with the SAS package were simpler to implement and yet more difficult

to interpret. The multilayer perceptron methodology was fully understood since it

was within the scope of this research effort to actually develop this classifier.

If run time was used as the only measure of complexity for these classifiers,

then the multilayer perceptron was extremely complex. To run the software on the

SPARC station 2 required three days for the standard run (i.e., the initial perceptron

architecture). Both the logistic regression and the k-nearest neighbor methodologies

run on the same system required at most 5 hours. An investigation of the under-

lying methodology, however, suggests that the logistic regression model is the most

complex to compute due to the use of the IRLS algorithm to determine the parame-

ters. Finally, the k-nearest-neighbor classification methodology is perhaps the most
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difficult of all threc to employ. To classify a previously unseen feature vector using

this method, it is necessary to have all of the data point available so that distance

comparisons can be made.

Conclusion: The multilayer perceptron technique was too computa-

tionally complex to produce a solution in a reasonable amount of time.

The methods performed with SAS were computationally more efficient.

4.6 Application of Classifiers

Since none of the three methods produced successful classifiers, it was not

appropriate to present the entire data sets to a single classifier and produce results

that could be used by AF/DPXA.
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V. Results and Conclusions- Application 2: Classifying

API Projectile Complete Incendiary Functioning

5.1 Data Collection and Orientation

As with the pilot retention rate application, many factors could account for

the functioning or nonfunctioning of an API projectile. SEB chose a standard pene-

tration mechanics' testing sequence to obtain the data from each of the firings. SEB

fired 144 small millimeter and 141 larger millimeter API projectiles against the com-

posite test panels. Three projectile striking velocities (V) and five obliquity angles

(OBL) were chosen to provide a range of impact conditions.

5.1.1 Data Set. A feature vector for this application is a listing of the pa-

rameters of each API projectile firing. Each feature vector also contains the actual

classification of the firing as complete or other. The data set for this application

contains all of the feature vectors available from SEB for API projectiles impacting

a specific material. Figure 15 depicts the organization of the API projectile data.

All of the features for this application were measured, continuous variables, and

therefore, the problems with categorical variables encountered in the first application

do not apply.

5.1.2 Data Elements.

1. Striking Velocity (II) - The projectile's velocity was measured immediately

before impact and was assumed to be the striking velocity of the projectile on

the panel.

2. Obliquity Angle (OBL) - The obliquity angle is the angle between the

perpendicular to the panel surface and the projectile's flight path. For example,

a shot fired straight at a panel has a zero degree angle of obliquity. In this
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Figure 15. Data Orientation for API Projectile Data

analysis, OBL is converted to the secant of the angle, a commonly accepted

practice in penetration mechanics analyses. The new variable's name is SECT.

3. Striking Mass (A 8) - The striking mass is assumed to be the mass of the

projectile before firing and is measured in grains.

4. Panel Ply Thickness (TKIN) - Test panels were approximately 8" x 8" in

size and varied in thickness according to ply size. The three plys, 32, 48, and

64 are approximately .16, .24, and .32 inches respectively.

5. Incendiary Functioning (IF) - The incendiary mixture flash of an API

is known as incendiary functioning. Pictures provided by flash photography

allowed engineers to classify a projectile's type of incendiary functioning. For

this analysis, projectile firings will be classified as complete or other.
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Table 16. API Projectile Data - Simple Statistics

FEATURE FEATURE UNITS MEAN STANDARD
NUMBER NAME DEVIATION
VAR 1 PLY Ply 47.8672 13.3859
VAR 2 VS Grains 2127.2739 391.8957
VAR 3 MS Feet/Sec 870.3141 121.4655
VAR 4 SECT Radians 1.7687 0.7186

5.2 Simple Statistics for Input Features

Table 16 shows the simple statistics for the API projectile parameters.

5.3 Development of Classification Methodology

The following section describes the process used to generate discriminators to

classify API projectiles into one of two groups-"complete" or "other."

5.3.1 Application of Multilayer Perceptron Techniques Multilayer Perceptron

Training Results. In this second application, the network was initially trained with

what are considered standard parameters for this size application. The parameters

for this "standard" perceptron are listed below

* Number of Middle Nodes: 10

* Learning Rate: 0.30

e Momentum Rate: 0.70

& Epochs: 3000
* Data Set: API Projectile Data

The procedure outlined in Chapter 3 Figure 8 for determining the optimal

parameters was followed to arrive at the optimal multilayer perceptron structure for

the problem of classifying API projectiles. It was necessary to train approximately

12 networks to arrive at the following optimal configuration.
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Figure 16. API Projectile Data - Output Error for Optimal Structure

9 Number of Middle Nodes: 20

a Learning Rate: 0.20

* Momentum Rate: 0.00

* Epochs: 5000

* Data Set: API Projectile Data

Due to the random assignment of vectors to the three data sets, the initial-

ization of the weights and the the random presentations of training vectors, error

rates for a trained optimal network were slightly different for each training cycle. To

accurately estimate the error rates for the training set, test set, and validation set,

the optimal network was trained 10 times with 10 different divisions of the data set

and an average calculated. The confusion matrices for the three data sets are shown

in Table 17. Figures 16 and 17 show the classification error and output error for

this optimal parameter setting. For this network, the output and classification error

began to decrease almost immediately signifying that training was taking place.

Conclusion: The multilayer perceptron classified the data in the

validation set with an error rate of 4.5%.
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Table 17. API Projectile Data - Confusion Matrices for Optimal Multilayer Per-
ceptron Structure (Average Over 10 Runs)

TRAINING SET
Classified Classified Total
Complete Other

True 96.67% 3.33% 100%
Complete 42.2 0.1 42.3
True 0.75% 99.25% 100%
Other 1.2 156.5 157.7
Total 47.3 152.7 200

TEST SET

Classified Classified Total
Complete Other

True 86.12% 13.88% 100%
Complete 8.2 1.3 9.5
True 3.81% 96.19% 100%
Other 30.3 1.2 31.5
Total 38.5 2.5 41

VALIDATION SET
Classified Classified Total
Complete Other

True 87.95% 12.05% 100%
Complete 7.3 1 8.3
True 2.52% 97.48% 100%
Other 0.8 30.9 31.7
Total 8.1 31.9 40.0
Total Validation Set
Error Rate: .0450
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Figure 17. API Projectile Data - Classification Error for Optimal Structure

5.3.2 Application of Logistic Regression As a comparison to the results ob-

tained with the multilayer perceptron, the SAS LOGISTIC procedure was applied

to this application of classifying API projectiles. The confusion matrix for this pro-

cedure is shown in Figure 18.

The logistic regression methodology for this specific application may have been

affected by the nonnormality of the API projectile data. Also, the logistic regression

technique works well only if the groups are linearly separable. In the case of complete

functionings and other types of functionings, an examination of the data shows that

these cases overlap and are similar for all of the feature inputs.

Conclusion: The logistic regression technique for classifying API

projectiles as 'complete' functions and 'other' does not outperform the

multilayer perceptron.

5.3.3 Application of K-Nearest-Neighbor. The k-nearest-neighbor classifier

was also applied to the API projectile data to determine if it could surpass the

classification capabilities of the multilayer perceptron. This method was attempted

for k = I through k = 9. (See Table 19.) The nearest-neighbor (k = 1) form of the
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Table 18. API Projectile - Logistic Regression Confusion Matrix

TRAINING SET
Classified Classified
Complete Other Total

True 46.3% 53.7% 100%
Complete 25 29 54
True 6.4% 93.6% 100%
Other 12 175 187
Total 37 204 241
Total Training Set
Error Rate: .1411

Table 19. API Projectile Data - Values of k for k-Nearest Neighbor Technique

Resubstitution Crossvalidation Validation
k Error Rate Error Rate Error Rate
1 0.00% 8.30% 8.30%
3 4.56% 8.71% 13.49%
5 5.39% 10.37% 19.50%
7 7.47% 12.03% 17.22%
9 9.54% 14.52% 20.95%

algorithm produced the smallest resubstitution, crossvalidation and validation error

rates. The average confusion matrices for this k-nearest-neighbor method (k = 1)

are shown in Table 20.

Conclusion: The nearest-neighbor classification technique for clas-

sifying API projectiles yielded an average error rate of 5.25% on the

validation set and did not outperform the multilayer perceptron.

5.4 Feature Selection

5.4.1 Multilayer Perceptron Features.
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Table 20. API Projectile Data - K-Nearest-Neighbor Confusion Matrices (Average
Over 10 Runs)

RESUBSTITUTION
Classified Classified
Complete Other Total

True 100% 0% 100%
Complete 51.7 0 51.7
True 0% 100% 100%
Other 0 189.3 189.2
Total 51.7 189.3 241

CROSSVALIDATION
Classified Classified
Complete Other Total

True 90.91% 9.09% 100%
Complete 47 4.7 51.7
True 1.90% 98.10% 100%
Other 3.6 185.7 189.3
Total 50.6 190.4 241

VALIDATION

Classified Classified
Complete Other Total

True 90.24% 9.76% 100%
Complete 7.4 .8 8.2
True 4.09% 95.91% 100%
Other 1.3 30.5 31.8
Total 8.7 31.3 40
Total Validation Set
Error Rate: 0.0525
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Table 21. API Projectile Data - Saliency Measures

Saliency I 1 Saliency II

Order of Significance Feature S Measure Feature [Measure
I VAR 4 - SECT 19.44224 VAPR 4 - SECT 504.616
2 VAR 1 - PLY 8.083079 VAR 1 - PLY 365.419

3 VAR 2.- VS 6.854682 VAR 2 -VS 159.026
4 VAR 3 - MS 1.44831 NOISE 38.613
5 NOISE 1.10228 VAR 3 -MS 35.387

5.4.1.1 Saliency. In this stage of the analysis, a uniform (0,1) noise

variable was added as a feature input to aid in the determination of significant

features. In the following discussion, the saliency measure according to Ruck will

be termed "saliency I" and Tarr's measure will be called "saliency II." (23)(28)

Table 21 shows the two saliency measures and the order of importance according

to each measure. Each saliency measure was averaged over ten runs of the optimal

structure multilayer perceptron.

Saliency II rated Ms (VAR 3) as less significant than noise and so, according to

the procedure for determining significant features, this measure would immediately

exclude Ms. Saliency I, on the other hand, left open the question as to whether

Ms was a significant feature. Therefore, the procedure described in Chapter 3 was

performed using saliency I. For the specific application of classifying API projectiles,

the procedure was as follows:

1. In addition to PLY, VS, MS, and SECT, a noise feature, uniform (0,1), was

included as input to the multilayer perceptron.

2. The network was trained repeadtedly in accordance with the established pro-

cedure for determining the optimal network structure.

3. Sixty training cycles were run with the optimal network structure. For each of

these 60 runs, the saliency of each of the 5 feature inputs was recorded.
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Table 22. API Projectile Data - Percentiles of the Saliency of Noise

Percentile Critical Value
75th Percentile 1.3618
80th Percentile 1.4794
85th Percentile 1.6293
90th Percentile 1.8397
95th Percentile 2.0259
Distribution Mean: 1.10228

tDistribution Standard Deviation: 0.581468

4. From the 60 sample data points, the distribution of the saliency of noise was

estimated. A histogram of the data and the resultant estimated distribution

are graphed in Figure 18. The 75th through 95th percentiles of the resulting

distribution are shown in Table 22. The 95th percentile was chosen as the

required level of accuracy.

5. Figure 19 shows the relative position of the average saliency for each of the

feature inputs. The average value of VAR 3 (Ms) was well below the 95th

percentile of the saliency of noise.

To ensure that this feature was well within the 95th percentile, a confidence

interval for the mean saliency of VAR 3 was constructed. The saliency of noise

distribution and the confidence interval for M, are shown in Figure 20. The

entire confidence interval for M, falls well within the distribution of noise and,

therefore, this feature was deleted from the set of inputs

6. The network was retrained and the resulting output error and classification

error are shown in Figures 21 through 23.

An examination of the output error on the test set for the original four feature

inputs versus the salient three feature set revealed a decrease in the training time

and a slight decrease in output error. The output error curve also decreased at a
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smoother more constant rate. The classification error on the test set for the salient

feature set is no less than the original feature set, however, the error stabilizes more

quickly. For this application, the test set was fairly small (41 feature vectors). With

a larger test set, it is possible that the classification error would have decreased also.

The success of this procedure to determine significant features is not completely

evident due to the small number of original input features. When the number of

features causes the training time to be excessive, or causes the error rate to be high,

the selection of significant features becomes especially importqnt.

A word of caution is necessary. 1%, as one of the measures of the characteristic

of a projectile, has been shown to be significant (15). What has been shown here, is

that for the particular problem of classifying projectiles as 'complete' or 'other', M,

was not necessary.

Conclusion: Including a noise term as a feature input allows for an

estimation of the distribution of the saliency of noise given the struc-

ture of the perceptron and the current candidate features. By examining

the saliency of the other features in relation to this distribution, the in-

significant terms can be deleted. Specifically, for API projectiles, it was

determined that the feature Ms was not significantly different from noise

and it was deleted. The resulting salient multilayer perceptron trained

quicker, had a smaller output error, and the classification error stabilized

sooner.

5.4.1.2 hIigh-Order Inputs. In order to determine if second-order inputs

would produce a more efficient classifier, the second-order correlation matrix was

calculated. Tables 23 and 24 show the matrices for the output node associated with

a complete function and for other types of functions. High absolute values in the

ith, jth position of these matrices would indicate a high correlation with the second-
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Table 23. Correlation Between Second-Order Terms and Ouput Node 1 (Complete
Function)

Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 -0.0248 0.0044 -0.0115 -0.0000
Feature 2 -0.0121 -0.1516 -0.1216 -0.0000
Feature 3 -0.0092 0.8589 -0.1381 -0.0009
Feature 4 0.0012 0.4520 -0.0584 -0.0466

Table 24. Correlation Between Second-Order Terms and Ouput Node 2 (Other
Function)

Feature 1 Feature 2 Feature 3 Feature 4
Feature 1 -0.0300 0.0109 -0.0000 -0.0000
Feature 2 -0.0025 -0.0626 -0.1617 0.0000
Feature 3 0.0086 -0.1602 -0.1855 -0.0011
Feature 4 1 0.0020 0.0000 -0.0011 -0.0074

order term associated with the ith term times the jth term and the output of the

perceptron.

The second-order terms M5  and VSECT were most highly correlated with

the network. The feature M3 was evaluated as contributing no more than noise to

the discrimination of the classes. The high-correlation of the term MiV with the

ouput suggests that the term V is highly significant itself and we are observing the

high first-order correlation of / with the output rather than a high correlation for

the second-order term. The inclusion of the term V SECT looked more promising.

To test the use of this second-order term, a multilayer perceptron was con-

structed with only two inputs-VSECT and PLY. The ouput error for the result-

ing network is shown in Figure 24 and is compared the output error for the salient

feature set. Notice that the high-order feature set causes the network to reach its

minimum error at a slightly faster rate. The output error decreases to nearly the
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Figure 24. API Projectile Data - Output Error for High-Order Feature Set vs
Salient Feature Set

same minimum as the salient feature set. The corresponding classification errors

are shown in Figures 25 for the salient feature set and Figure 26 for the high-order

feature set. Notice that with two terms, the classification error does not vary as

greatly as the three feature salient set. Also, the high-order feature set never had a

classification error rate of less than approximately 7.5% after 1,300 epochs while the

salient feature set had rates below 7.5% throughout the 3000 epochs shown. Overall,

both perceptrons converged to approximately the same classification error at 3000

epochs.

By constructing this second-order model, the set of features required for clas-

sification was reduced without the classification error increasing. Granted, the same

amount of information must be collected for both networks (V, PLY, and SECT),

however, the high-order perceptron required only two coefficients to describe the

line that separates the feature vectors in the two-dimensional feature space. This

translated to a reduced number of calculations and easier classification for new ob-

servations.
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Figure 25. API Projectile Data - Classification Error for Salient Feature Set
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Figure 26. API Projectile Data - Classification Error for High-Order Feature Set
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Since the high-order multilayer perceptron has only two inputs, it was possible

to plot the features and their known classifications. Figure 27 shows the input

feature PLY on the x-axis and V6 SECT on the y-axis. From this plot, it was

evident that in the current feature set, the groups were approximately it linearly

separable. Therefore, the inclusion of VSECT appeared to produce a feature space

that was almost trivial to separate into "complete" and "other."

The use of high-order terms for this application led to the discovery of a set of

features in which the feature space was easily separated. This application began with

only four features. For an application with many features, and many data vectors, a

method of finding candidate high-order terms could be very useful for both reducing

the size of the network and determining an easily separable feature space. For

example, the application of high-order terms would have been more relevant in the

pilot classification application since so many inputs were coded as "1" and "-1."

Conclusion: Second-order inputs produced a multilayer perceptron

with only two inputs, resulting in a linearly separable feature space whose

discriminant function can be expressed with only two weights. If only the

first-order terms had been used, this easily separable feature space would

not have been discovered.

5.4.2 Logistic Regression Feature Selection Results. In order to compare the

multilayer perceptron procedure for selecting significant features, with a more tra-

ditional method, the SAS LOGISTIC stepwise procedure was examined. Both the

parameter estimates and their Chi-Square scores in the selection procedure serve as

indicators of the importance of a feature. Table 25 shows the standardized parameter

estimates and the Chi-Square scores for each of the input features including noise.

The results of logistic regression are very similar to those obtained using the

saliency measures. When a stepwise selection criteria was introduced (at the .3

significance level), the feature Ms was deleted as insignificant. Notice also that
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Table 25. API Projectile Data - Logistic Regression Stepwise Results

STANDARDIZED
FEATURE FEATURE PARAMETER CHI-SQUARE ORDER OF
NUMBER NAME ESTIMATES SCORE SIGNIFICANCE
VAR 1 PLY -0.211756 3.5125 3
VAR 2 VS -0.592804 18.6051 2
VAR 3 MS -0.033271 0.0869 5
VAR 4 SECT -0.870241 47.4262 1
VAR 5 NOISE -0.085831 0.5991 4

the order of significance for the logistic regression function is the same as the order

found using the saliency II measure. The STEPDISC procedure and the discriminant

loadings produced similar results.

Conclusion: Comparable results were obtained with the multilayer

perceptron feature selection techniques and the logistic regression step-

wise feature selection technique.

5.5 Comparison of Methods

For this application, the run time for the multilayer perceptron classifier was

less than the run time for the multivariate techniques. Run time was not a major

concern for this application, since all runs took no more than one hour to complete.

Overall, the techniques attempted for this application were easy to complete

compared to the pilot retention application. The multilayer perceptron technique

was especially well suited the continuous data used in this application. Whether

the perceptron can discriminate between high-dimensional binary variables as in the

pliot application is still questionable.

Conclusion: Given the multilayer perceptron software and SAS, all

classification methods were easy to use.

110



5.6 Application of Classifiers

In order to produce a classifier that can be used to SEB to predict the classifi-

cation of other firings, a multilayer perceptron was trained with all 281 data points

with the three salient features. The resulting weights are shown in Appendix G.
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VI. Final Conclusions and Recommendations

6.1 Final Conclusions for Multilayer Perceptron Methods

9 It was not determined whether decomposing categorical data elements into

binary words for input to a multilayer perceptron is a viable technique.

* Determining the optimal architecture of a multilayer perceptron is facilitated

by a predefined procedure, however, successive attempts to train the percep-

tron are still required. In addition, interactive synergism is ignored unless the

interactions between the parameters (number of middle nodes, learning rate,

etc.) are considered.

e Without a trained multilayer perceptron, it was not possible to use established

saliency measures for feature reduction. Also, it is was possible to evaluate

high-order terms for inclusion as inputs. Statistical classifiers, on the other

hand, allow statistical tests for significance before the classifier has been de-

signed.

* The introduction of noise as a feature input appears to present a method of

determining the significance of a set of features by comparing their saliency to

the saliency of the injected noise.

- Several sample measures of the saliency of noise were obtained by succes-

sive runs of a multilayer perceptron.

- The distribution of the saliency of noise was estimated.

Original feature inputs were examined to see if they exhibited saliencies

less than that of noise.

- Confidence intervals were constructed for features that were candidates

for removal from the feature set. These confidence intervals were used to

insure to the 95 percent level that the features being deleted had saliences

no larger than noise.
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- Appropriate features were ddleted and the new salient feature set was

'used to retrain the perceptron.

- For one specific application, the multilayer perceptron trained quicker,

had a lower output error and a more stable classification error with the

salient feature set.

" The two saliency measures examined rank-ordered features similarly, however,

the measurement scales and the relative measures were different.

" Multilayer perceptrons and the k-nearest-neighbor technique appear to yield

similar error rates.

" Examining the correlations between high-order terms and the outputs of the

multilayer perceptron may lead to a feature set with a quicker training time.

In addition, it may be possible through these high-order terms to determine a

feature set which easily separates the feature space.

6.2 Final Conclusions for Application 1 - Predicting Pilot's Retention

Decisions

" The multilayer perceptron with 65 features as inputs could not be trained to

discriminate between pilots that will leave and those that will remain in the

Air Force.

" The logistic regression methodology using 65 features produced a classifier with

an error rate of 19.0% for the FY 88 data set and 23.6% for the FY 89 data set.

The classifier performed poorly when classifying those individuals that left the

Air Force.

" The k-nearest-neighbor algorithm using 65 features produced a classifier with

a total error of 20.67% for the FY 88 validation set and 24.87% for the FY 89

validation set. These error rates are likely to be unacceptable considering the

poor performance classifying those that left the Air Force.
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• Without a trained multilayer perceptron, the number of features cannot be

reduced by saliency methods.

9 Feature selection using parametric methods. (logistic regression and stepwise

discriminant analysis) produced a set of significant features, although the re-

duced feature set did not reduce the error rates.

* After all classification methods had been tested, the multilayer perceptron ex-

hibited the least classification error rate, however, the error that was observed

was significant.

* The multilayer perceptron technique, with the current computer software, was

too computationally complex to produce a solution in a reasonable amount of

time. The methods performed with SAS were computationally more efficient.

6.3 Final Conclusions for Application 2 - Predicting API Projectile Per-

formance

* The multilayer perceptron classified the data in the validation set with an error

rate of 4.5%.

* The logistic regression technique for classifying API projectiles as 'complete'

functions and 'other' does not outperform the multilayer perceptron.

* The nearest-neighbor classification technique for classifying API projectiles

yielded an average error rate of 5.5% on the validation set and did not on the

average outperform the multilayer perceptron.

e Including a noise term as a feature input allows for an estimation of the distri-

bution of the sali-ncy of noise. By examining the saliency of the other features

in relation to this distribution, the insignificant terms can be deleted. Specifi-

cally, for API projectiles, it was determined that the feature V was not signif-

icantly different from noise and it was deleted. The resulting salient multilayer
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perceptron trained quicker, -had a smaller output error, and the classification

error stabilized with fewer epochs.

* Second-order inputs produced a more efficient classifier.

* Comparable results were obtained with the multilayer perceptron feature selec-

tion techniques and the logistic regression stepwise feature selection technique.

6.4 Recommendations for Multilayer Perceptron Technique

6.4.1 Distribution of the Saliency of Noise For the specific application of

classifying API projectiles, it was shown that a formal procedure for determining

significant features reduced training time and error. Now that this procedure has

been demonstrated for a single case, it is necessary to show that the procedure is cor-

rect in general. A derivation of this nature would initially require a characterization

of the distribution of the activations of the multilayer perceptron itself. The saliency

I measure for example, is merely the sum of output and hidden layer activations and

therefore, the underlying distribution of the saliency of a feature would be dependent

on the distribution of the activations.

There is a certain intuitive appeal to the use of the lognormal distribution as a

characterization of the saliency of a uniform random variate when a sigmoidal non-

linearity is used. However, the fact that the distribution of the output of a multilayer

perceptron for a uniform input is lognormal has not been shown.

It is possible that one of the two saliency measures discussed in this analysis

may be more meaningful for the procedure established to determine significant fea-

tures. Saliency I was used in this analysis, however, perhaps saliency II gives a more

realistic representation of the significance of a feature. Also, to this point, analysts

have only been able to compare saliency measures between variables trained in the

same network. Is there some optimal saliency measure for a feature that fully ex-

plains the discrimination between classes? What is needed is a formal comparison of

the two saliency measures with other more established feature selection techniques,
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in general terms. As with almost all neural network topics, it may be found that

the distribution of saliency, the accuracy of the saliency measures and the difference

between the measures are all problem/application specific.

6.4.2 Methods for Determining Optimal Architecture. In this analysis, what

was called an "optimal" multilayer perceptron structure was really sub-optimal. The

problem with a procedure that is optimal that all combinations of all parameters

must be tested over the entire parameter space. This method can be too time

consuming to be practical. In addition, once the optimal structure has been found

for a single random selection of training, test and validation sets, what happens when

new randomly chosen data sets are introduced?

One way that this problem can be addressed is by examining the interaction

of the parameters. For example, if the learning rate is reduced, are more hidden

nodes necessary? If so, it may be possible to test some subset of all possible param-

eter combinations. Perhaps, since it appears that the architecture of the multilayer

perceptron is problem-dependent, the set of all multilayer perceptron applications

could be segmented into classes and each of these classes examined in terms of the

optimal parameter set. For example, the pilot retention classification problem had

many input variables and binary data while the API projectile classification problem

had few inputs with continuous data. These are two very different types of problems

and it is possible that the selection of their structures is two very different problems.

6.5 Recommendations for Application I - Predicting Pilot's Retention

Decisions

6.5.1 Unavailable Data As previously mentioned, not all of the variables

which enter into each individual's decision-making process are available as data.

Below are variables that it is felt contribute to the retention decision made by an Air
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Force pilot, however, were not available for this analysis. If the information 'below

was available, the two groups might be separable in the resulting feature space.

1. Wife's Occupation There is no reliable data available on the occupations

of wives of Air Force pilots. Several surveys of Air Force wives have been

conducted in the past, however, only summary statistics are available and

specific occupations were not tracked.

2. Number of Permanent Change of Station (PCS) Moves It is probable

that the number of PCS moves that a pilot and his family must undergo would

have" a significant bearing on a decision to leave military service. Currently,

the personnel system does not maintain an accurate count of the number of

moves that an individual makes during his career.

3. Promotion Opportunities Statistics on promotion opportunities are not

currently available at the individual level. In addition, a variable representing

promotion opportunity may be redundant in terms of this analysis since most

of the factors that represent the probability of an individual's promotion may

already be included.

4. Taste for Military Life No data was available for this analysis in either

summary or individual form on the taste of Air Force pilots for military life.

In the future, information from individual surveys could be recorded to quantify

this variable.

5. Adequacy of Housing The adequacy of both on and off base housing may

have an effect on an individual's retention decision. Currently, the lack of

individual financial data available in the personnel system makes analysis of

this information currently impossible.

6. Perceived Next Assignment Where the pilot thinks he will be assigned

next and whether lie will be flying in that assignment may be more important
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than his current location. Obviously, until the assignment is actually made,

personnel data files would not contain this information.

6.5.2 Economic Considerations. This analysis addressed the individual char-

acteristics of Air Force pilots as a method to predict their retention decisions. How-

ever, there are other outside factors that enter into this decision. Unemployment

rates, civilian airline hires, Air Force policies, etc. may cause individuals to leave

the military without regard to their personal attributes. This analysis effort should

represent only one variable in a function describing how all factors affect individual

Air Force members and their retention decisions. Other economic variables such as

the unemployment rate and military/civilian pay ration would represent the eco-

nomic environment that the individual makes his decision in.

6.5.3 Decomposition of the Data Sets. Both the FY 88 and FY 89 data sets

for this application were large (approximately 10,000 vectors). It is possible that

there are really more than two groups underlying 1he data. Often, pilots who fly

different types of aircraft have different motivations to leave or remain in military

service. It seems that these major divisions of the pilots such as weapon system,

could be used to decompose the data into smaller sets and then use discrimination

techniques to classify the pilots as staying or leaving within these smaller sets.

It also might be possible to examine the principal components of the pilots in

the data sets to determine if there are underlying characteristics that could be used

rather than using all 65 feature inputs. This type of analysis would be performed by

analyzing the principal components as described by Dillon and Goldstein (5:37).

Factor analysis could also be applied with the factor scores used as a method

to cluster the individual pilots and then train a discriminator to classify pilots as

"stay" or "leave" within these clusters.
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6.5.4 Categorical Data Analysis Dillon and Goldstein list two difficultiesas-

sociated with using standard data analysis techniques to analyze categorical data:

1. The dependent measure is not normally distributed.

2. The dependent measure does not display constant variance across the dummy-

coded predictor variables (5:306).

There are methodologies available for analyzing categorical data that were not at-

tempted in this research effort. Multidimensional contingency tables cross-classify

the categories of one feature with the categories of another feature and can be used

for data analysis. Loglinear models, for example, are designed to study the inter-

correlations between categorical variables that form a contingency table. From this

form of an analysis, it is possible to achieve a parsimonious description of the data

in the form of a math model to account for the observations (5:303-336).

6.5.5 Application of Multilayer Perceptrons. Training Time. Although the

multilayer perceptron never appeared to train on the data, it is possible that the num-

ber of epochs was too small to allow for convergence. The problem is that increasing

the number of training epochs also increases the training time to unacceptable levels.

(One run for the pilot problem which included all 65 variables ran for 2 weeks on

a dedicated machine.) One way to speed training, is to change the computer code

for the multilayer perceptron so that calculations are handled more efficiently and

the perceptron can be trained in a shorter amount of time. The other way to speed

training would be to find a faster computer if the resources are available.

High-Order Terms In his article on high-order inputs, Giles lists several ways

to determine which high-order terms should be included as inputs to the multilayer

perceptron (9). One method he considers is adding high-order iteratively to deter-

mine if training is affected. This would be a "trial-and-error" process which could

be very time consuming. In addition, Giles mentions that the analysts knowledge of

the problem may be used to determine which features should be included.
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Giles specifically describes the situation where the inputs are binary with inputs

of "1" and "-1." (9:4973) It seems that high order terms should be able to contribute

positively to the problem of training experienced with the pilot classification problem.

Although it appears that subjective methods will be needed to determine which

feature to include.

6.6 Recommendations for Application 2 - Predicting API Projectile Per-

formance

The results of the classification of API projectiles suggests that multilayer per-

ceptrons could be a useful tool. Further study is necessary to ensure that the optimal

structure of the perceptron was discovered and that the error rates cited are correct.

The error rates for this analysis were based on 10 runs of the multilayer percep-

tron. This is probably not a sufficient number of runs for the levels of significance

acceptable to the SEB. In addition, the classification problem for this analysis was

a two-group problem, however, there are six classifications of API projectile firings.

Other combinations of groups should be tested to find the discrimination problem

that best suits the needs of the SEB.
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Appendix A. Random Data Configuration Program

* RANDOM DATA CONFIGUARATION PROGRAM

* Capt Lisa H. Belue

* Date Last Modified: 29 February 1992

* Program: datfig.f

* Purpose: The purpose of this code is to separate a data set into
* the following three sets for use in classifiers:

* (1) Training Set
* (2) Test Set

* (3) Validation Set

* Important Variables:
* XTR: Array of vectors randomly selected for the
* training set.

* XTS: Array of vectors randomly selected for the
* test set.

* XVL: Array of vectors randomly selected for the
* validation set.
* NRI: Number of vectors in the data set
* NITRAIN: Number of vectors in training set
* NITEST: Number of vectors in test set
* NIVAL: Number of vectors in validation set

EXTERNAL RNUNF
INTRINSIC REAL,NINT

INTEGER NRi,NCOLNICOL,NITRAIN,NITEST,NIVAL,I

PARAMETER(NCOL=6,NICOL=S,NRI=281,
;NITRAIN=200,NITEST=41,NIVAL=40)

INTEGER CHOICE(NRI)

REAL NOISE,X(NR1,NCOL),XTR(NITRAIN,NCOL),
;XTS(NITEST,NCOL),XVL(NIVAL,NCOL)

OPEN(UNIT=11,FILE='shotsl.dat2 ,STATUS='UNKNOWN')
OPEN(UNIT=13,FILE=,train2.dat STATUS=UNKNOWN')
OPEN(UNIT=i4,FILE='test2.dat',STATUS=IUNKNOWN')
OPEN(UNIT=15,FILE='vaI2.dat',STATUS='UNKNOWN')
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DO 10 I=1,NRl
READ(il,*)(X(I,J), J=1,NCOL)
write(* ,*) (x(i,j) ,j=1 ,ncol)

10 CONTINUE

***THE FOLLOWING CODE RANDOMLY SELECTS VECTORS FOR THE TRAINING SET
***AND WRITES THE VECTORS TO A FILE.

DO 500 J~i,NRI
CHOICE(J)=0

500 CONTINUE

DO 530 11 1,NITRAIN
WRITE(*,*) 'SELECTING TRAIN IJI

14 CONTINUE
TEMP=RNUNF()
JJ=NINT(TEMP*NRI)
IF ((JJ.LE.NR1),AND.(JJ.GT.0)) THEN
DO 510 K =1,NRI
IF (JJ.EQ.CHOICE(K)) GO TO 14

510 CONTINUE
DO 520 KK=1,NCOL

XTR(II,KK)=X (33.100
520 CONTINUE

CHOICE(II)=JJ
ELSE
GO TO 14

END IF
530 CONTINUE

DO 540 I=1,NITRAIN
WRITE(*,*) 'WRITING TRAIN IJ
NOISE=RNUNFo
WRITE(13,*)XTRCI,4XXTRI,2),XTR(I,3),XTR(I,4)

,XTRCI.6)

540 CONTINUE

***THE FOLLOWING CODE RANDOMLY SELECTS VECTORS FOR THE TEST SET
***AND WRITES THE VECTORS TO A FILE.

DO 550 II=1,N1TEST
WRITE(*,*) 'SELECTING TEST' II

15 CONTINUE
TEHP=RNUNFo
JJ=NINT(TEHP*NRl)
IF ((JJ.LE.NR1).AND.(JJ.GT.0)) THEN
DO 560 K=1,NR1
IF (JJ.EQ.CHOICE(K)) GO TO 15
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560 CONTINUE
DO 570 KK = I,NCOL

XTS(II ,KK)=X(J3 4(K)
570 CONTINUE

CHOICE(II+NITRAIN)=JJ
ELSE

GO TO 15
END IF

550 CONTINUE

DO 580 I =1,NITEST
WRITE(*,*)'WRITING TEST' ,I
NOISE=RNUNF()

,XTS(I,6)

580 CONTINUE

***THE FOLLOWING CODE READS THE VECTORS NOT SELECTED FOR THE TRAINING
***OR TEST SET INTO A VALIDATION FILE.

CNT=O
DO 590 I=1,NRI

DO 600 K1I,NRI
IF (I.EQ.CHOICE(K)) GO TO 590

600 CONTINUE
CNT=CNT+i
WRITE(* ,*) 'SELECTING VALIDATION' ,CNT
DO 610 KK=13NCOL
XVL(CNT4(K)=X(I 4(K)

610 CONTINUE
590 CONTINUE

DO 620 I=1,CNT
WRITE(*,*) 'WRITING VALIDATION' ,I
NOISE=RNUNF()

,XVLCI,6)

620 CONTINUE

END
END OF PROGRAM*****
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Appendix B. Multilayer Perceptron Program.

* MULTILAYER PERCEPTRON (SINGLE HIDDEN LAYER)

* Capt Lisa M. Belue

* Date Last Modified: 29 February 1992

* Program: NNS.f

* Purpose: The purpose of this code is to train a multilayer perceptron
* to classify groups of data based on training and test data
* presented to the perceptron. In addition, this code
* determines the error on a validation set, calculates the
* saliency of the inputs and constructs correlation matrices to
* evaluate high-order inputs

* Tools: Artificial Neural Network Estimator
* Characteristics: Single Hidden Layer
* Two Layers of Weights
* Sigmoid Non-Linearity

* Goal: This particular code is used to determine the effectiveness
* of the neural network classifier for a particular
* application.

* Main Program: The main program consists of calls for five subroutines:
* (1) INPUT: Input the data in the correct format.
* (2) NORMAL: Normalize the feature vectors.
* (3) ANN: Run a single layer neural network.
* (4) OUTPUT: Output results and weights.
* (5) SALIENCY: Computes the saliency of the features.
* (6) VALIDATE: Classifies individuals and determines
* number classified correctly.
* (7) CORRELATE: Computes the second-order correlation
* of inputs to outputs.

* Important Variables:
* NE: Number of epochs
* NM: Number of hidden nodes
* TRAIN: Number of vectors in the training set
* TEST: Number of vectors in the test set
* TOLl: Error tolerance for stopping
* TOL2: Iteration tolerance for stopping
* Cl: Gain parameter
* C2: Momentum parameter
* NGRP2: Number of classification groups
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* F: Number of features plus bias plus number of groups
* NM1: Number of hidden nodes plus one for bias
* NVAR1: Number of variables plus one for bias
* IREPTR: Number of exemplars in the training set
* IREPTS: Number of exemplars in the test set

PROGRAM NNS

INTEGER TRAIN,TEST,IREPTR,IREPTS, IREPVL,F,NGRP2,
;NVAR,NVAR1 ,NE,NM,NH1 ,NDIVNDIV1 ,NSAL,NEF

REAL TOLl, TOL2, C1, C2

***It is necessary to alter the values of the parameters below
***to suit the specific application

PARAHETER(NE=2,NM=2O ,TRAIN=2OO,TEST=4l,
IREPVL=4OTOLl=lO.O,
;TOL2=lO .O1Cl=O.2,C2=O.O,NGRP2=2,NVAR=5,
NMl=NM+l ,NVARl=NVAR+l,
IREPT.R=TRAIN ,IREPTS=TEST,F=NVARl+NGRP2,NDIV=lO,
NDIVl=NDIV+l,
NSAL=NDIVl*TRAIN)

REAL WWl(NVARl,NM,3) 8WW2(NH1,NGRP2,3) ,XXERR(NE),
;YYERR(NE) )CCONF(NE3NGRP2,NGRP2) ,CCCONFT(NE,NGRP2,NGRP2),
;NISS(NE) 2MISST(NE)

REAL XTEMP(IREPTR,NVAR1), DTEHP(IREPTR2 NGRP2),
;TRFEAT(IREPTR2 NVARl) 2TSFEAT(IREPTSINVAR1)

REAL XXI(IREPTRNVARI), Xl(IREPTR,F),Y1(IREPTSF),
;RANGE(NVAR) ,DD3(IREPTR,NGRP2) ,X2(NMl) ,X3(NGRP2),
;D3(IREPTR,NGRP2) ,Y2(NMl) aY3(NGRP2) ,E3(IREPTSNGRP2),
;MAX(NVAR) )MIN(NVAR)

REAL X2SAL(NMl) ,X3SAL(NGRP2) ,XSAL(NSAL,NVARI),
;XDIV(NVARl ,NDIVl) 1SAL(NVARI)

REAL VlCIREPVLNVARl),V2(NMI) aV3(NGRP2) ,VALCIREPVL,NVARl)

INTEGER CHOICE(IREPTR)

REAL U2(NHI) ,U3(NGRP2) )XX(IREPTR,F))YY(IREPTR,NGRP2)

***Files for both input and output:

OPEN(UNIT~il ,FILE='out .dat' ,STATUS'IUNKNOWN')
OPEN(UNIT=23,FILE='trainl .dat' ,STATUS='UNKNOWN')
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OPEN(UNIT=15,FILE'Itestl .dat' ,STATUS'IUNKNOWN')
OPEN(UNIT=2l ,FILE'Iweights .dat' ,STATUS='UNKNOWN')
OPEN(UNIT=19,FILE' errhis .dat' ,STATUS='UNKNOWN')
OPENCUNIT=24,FILE~ 'e .dat' ,STATUS='UNKNOWN')
OPENCUNIT=2O,FILE='confu.dat' ,STATUS='UNKNOWN')
OPEN(UN1T=22,FILE= 'sal .dat' ,STATUS='UNKNOWN')
OPEN (UNIT=16,FILE= 'vall.dat' ,STATUS= 'UNKNOWN')
OPEN(UNIT=17 ,FILE='valout .dat' ,STATUS'IUNKNOWN')
OPEN(UNIT=18,FILE='correl.dat' ,STATUS= 'UNKNOWN')

WRITE(ll,*) 'INVESTIGATION OF MULTILAYER PERCEPTRONS AND'
WRITE(ll,*) 'MULTIVARIATE DISCRIMINANT ANALYSIS FOR'
WRITE(ll,*) 'CLASSIFICATION AND PREDICTION'
WRITE(ll ,*)
WRITE(ll,*) 'LISA M. BELUE'
WRITE(l11,*)
WRITE(ll,*) 'TRAINING SAMPLE SET =',TRAIN
WRITE(li,*) 'TEST SAMPLE SETi = ',TEST

WRITE(*,*)'ABOUT TO DO SUBROUTINE INPUT'

CALL INPUT(IREPTR,IREPTS,F,NVARI,NVAR,X1,Y1,D3,E3,
TRFEAT ,TSFEAT ,NGRP2)

WRITE(*,*)'ABOUT TO DO SUBROUTINE NORMAL'

CALL NORMAL(F,IREPTR,IREPTS ,Xl,Yl ,NVAR,RANGE
,MAX,MIN)

WRITE(*,*)'ABOUT TO DO ANN'

CALL ANN(IREPTR,IREPTS ,NE,NGRP2,NVAR,NMI,
;X2,X3,D3,Yl,Y2,Y3,E3,WW1 ,WW2,TOLl,TOL2,C1 ,C2,
;XXERR,YYERR,CCONF,CCCONFT,NEF,MISS,MISST,NMl ,NVARI,XTEMP,
;DTEMP,DD3 ,XXl ,CHOICE)

WRITE(*,*)'ALL DONE WITH ANN'

CALL OUTPUT(NM,NE,C1,C2,TRAIN,TEST,CCONF,NEF,
CCCONFT, NGRP2)

WRITE(*,*)'ABOUT TO DO SALIENCY'

CALL SALIENCY(WW1 W2X,IREPTR, IREPTS,NVARI
,NGRP2,NDIV,
NDIV1 ,NSAL, NMl ,NM, X2SAL, X3SAL ,XSALXDIV ,SAL)

WRITE(*,*)'ALL DOME WITH SALIENCY'

WRITE(*,*)'ABOUT TO DO VALIDATION'
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CALL VALID(V1,V2,V3,VAL,WWI,WW2,IREPVL,NVAR,NVARI,NGRP2,

;NM,NM1,NE,RANGE,MAX,MIN,G3,VCONFT)

WRITE(*,*)'ALL DONE WITH VALIDATION'

WRITE(*,*)'ABOUT TO DO CORRELATE'

CALL CORRELATE(XI,WI,W2,IREPTR,NVARI,NM1,NM,NGRP2,
;U2,U3,NVAR,NM,XX,YY,YSUM,YBAR,XSUM,XBAR,COR2)

WRITE(*,*)'ALL DONE WITH CORRELATE'

WRITE(*,*)'***** ALL DONE WITH PROGRAM NN3 *****'

END

* Subroutine INPUT: This subroutine inputs the data to the feature

* matrices which are originally located in files

* TRPILOT.dat and TSPILOT.dat.

* TRFEAT(I,J): Array that contains the training vectors as read
* from the input files.
* I: Vector number

* J: Input variable number
* TSFEAT(I,J): Array that contains the test vectors as read

* from the input files.
* I: Vector number

* J: Input variable number

SUBROUTINE INPUT(IREPTR,IREPTS,F,NVARI,NVAR,

;X1,Y1,D3,E3, TRFEAT, TSFEATNGRR2)

INTEGER F,NVAR,NVARI,IREPTR,IREPTS,NGRP2

REAL TRFEAT(IREPTR,NVARI), TSFEAT(IREPTS,NVARI),
;XI(IREPTR,F), YI(IREPTS,F), D3(IREPTR,NGRP2), E3(IREPTS,NGRP2)

DO 10 I=I,IREPTR

READ(23,100)(TRFEAT(I,J), J=I,NVAR1)

WRITE(*,*)'INPUT TRAINING VECT',I

10 CONTINUE
DO 20 I2=1,IREPTS

READ(15,100)(TSFEAT(12,J2), J2=1,NVAR1)

WRITE(*,*)'INPUT TEST VECT',12

20 CONTINUE
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***** It is necessary to change the format statement below to read
***** the data from the training, test, and validation data sets.

100 FORMAT(F7.4,2X,F7.2,2X,FT.3,2X,F7.5,2X,F7.5,2X,F7.5)

DO 30 13=1,IREPTR
IF (TRFEAT(13,NVAR1).EQ.1) D3(13,1)=I.0
IF (TRFEAT(13,NVAR1).EQ.1) D3(I3,2)=0.O
IF (TRFEAT(13,NVARI).EQ.0) D3(I3,2)=I.O
IF (TRFEAT(13,NVARI).EQ.0) D3(13,1)=0.0

30 CONTINUE

DO 40 14=1,IREPTS
IF (TSFEAT(14,NVARI).EQ.1.O) E3(14,1)=I.0
IF (TSFEAT(14,NVAR1).EQ.1.0) E3(I4,2)=0.0
IF (TSFEAT(14,NVAR1).EQ.0.0) E3(I4,2)=I.0
IF (TSFEAT(I4,NVAR1).EQ.O.0) E3(I4,1)=0.0

40 CONTINUE

DO 70 17=1,IREPTR
DO 80 J3= 1,NVAR
XI(I7,J3)=TRFEAT(I7,J3)

80 CONTINUE
X1(17,NVAR1)=I.0

70 CONTINUE

DO 90 18=1,IREPTS
DO 110 J4= 1,NVAR

YI(I8,J4)=TSFEAT(I8,J4)

110 CONTINUE
Y1(I8,NVAR1)=1.O

90 CONTINUE

RETURN

END

* Subroutine NORMAL: This subroutine normalizes each of the feature
* vectors to values between 0 and 1.

* RANGE(3): Array for the range of the jth input feature.

* MAX(J): The maximum value of input feature j.

* MIN(J): The minumum value of the input feature j.

SUBROUTINE NORMAL(F,IREPTR,IREPTS,X1,Y1,NVAR,RANGE,

;MAXMIN)
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INTEGER F,IREPTR, IREPTS ,NVAR

REAL X1(IREPTR,F) ,Y1(IREPTS,F),RANGE(NVAR) ,MAX(NVAR)
;,MIN (N VAR)

DO 55 J-1,NVAR
MAX(J)=-160
MIN(J)=1OOOO.0

DO 10 I=1,IREPTR

IF(Xi(I,J).LT.MIN(J)) HIN(J)=Xl(I,3)
10 CONTINUE

DO 20 12=1,IREPTS

20 CONTINUE
RANGE(J)=MAX(J)-MIN(J)
IF (RANGE(J).LT.O.0O1) RANGE(J)=0.001

DO 30 13=1,IREPTR
IF (XI(I3,J) .GE.0) X1(I3,J)=(XI(I3,J)-MIN(J))/RANGE(J)
IF (Xl13,J) .LT.0) X1(I3,J)=(X1(I3,J)-ABS(MIN(J)))/RANGE(J)
WRITE(*)*)'NORMAL TRAINING VECT',13

30 CONTINUE
DO 40 14=1,IREPTS

IF (YI(I4,J).GE.o) Yl(14,J)=(YI(I4,J)-MIN(J))/RANGE(J)
IF (Y1(I4,J) .LT.0) Y1(I4,J)=(YI(I4,J)-ABS(MIN(J)))/RANGE(J)
WRITEC*,*)'NORMAL TEST VECT),14

40 CONTINUE
55 CONTINUE

RETURN
END

*Subroutine OUTPUT: This subroutine outputs a report showing the
* classification of the test set.

SUBROUTINE OUTPUT(NH2 NE,C1 ,C2,TRAIN,TEST,CCONF,NEF,CCCONFT,NGRP2)

REAL Cl 1C2,CCONF(NENGRP2,NGRP2) ,CCCONFT(NE,NGRP2,NGRP2)

INTEGER NH,NE,TRAIN ,TEST,NEF,NGRP2

WRITE(11 ,*)
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WRITE(11,*) 'NUMBER OF MIDDLE NODES = ',NM
WRITE(11,*) 'NUMBER OF EPOCHS =',NE
WRITE(11,*) 'CI = ',Cl,' 02 1 ,C2
WRITE(li ,*)
WRITEC11,*) 'NOTE: THIS IS THE TRAINING SET'

WRITE(11,*) 'NUMBER OF TRAIN VECTORS = ',TRAIN
WRITE(11 ,*)
WRITE(11 ,*)'*****************'
WRITE(11,*) '* 1 ICLASSIFIEDICLASSIFIED*'
WRITE(11b*) '* 1 ICLASS 0 ICLASS 1I *

WRITE(11,*) '*-----------LI---------I--------
WRITE(113 *) '*TRUE II
WRITE(11,700)'*CLASS 0 1 I',CCONF(NEF,1,1),'% 1'

;,CCONF(NEF,1,2),'. *'

WRITE(11,*) '*-----------1-- ~-----------------
WRITE(11,*) '*TRUE I I I
WRITE(11,700)'*CLASS 1 I I',CCONF(NEF,2,1),'. P',
;CCONF(NEF,2,2),'% *

WRITE(11 ,*)'*****************'
WRITE(11 ,*)
WRITE(11,*) 'NOTE: THIS IS THE TEST SET'
WRITE(11,*) 'NUMBER OF TEST VECTORS = ')TEST
WRITE(1l 3*)

WRITEC 111*)'*****************'
WRITE(11,*) '*I ICLASSIFIEDICLASSIFIED*'
WRITE(11,*) '*I ICLASS 0 ICLASS 1I *

WRITE(113*) '*--------- 1----- ----- I----------
WRITE(11,*) '*TRUE I I I
WRITE(11,700)'*CLASS 0 1 I',CCCONFT(NEF,13 1),'% I'
,CCCONFT(NEF,1,2),'. *1

WRITE(113*) '* --------- ---------- I----------
WRITE(1l,*) '*TRUE II
WRITE(11,700)'*CLASS 1 I I',CCCONFT(NEF12.1),'% 1),
;CCCONFT(NEF,2,2),'% *

WRITEC 113*)'*****************'

700 FORMAT(A12,2(F5.1,A6))
710 FORMAT(1X,11(F6.3,1X))
725 FORMAT(36(F9.6,1X))
726 FORMAT(4F3. 1 ,l)

RETURN
END

*2222222222222222222222222222222222222222222222222222222222222222222222222222222

*Subroutine ANN: Trains and Tests an artificial neural network

* D3: Vector of Desired Outputs for training set
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* XI: Vector of Input features for training set
* X2: Vector of Outputs of Hidden Layer after through sigmoid for training
* X3: Vector of Outputs of Output Layer after through sigmoid for training
* Wl(i,j,l): Weight connecting input layer i to hidden layer j
* 1=3 means weight corresponds to current iteration
* 1=2 means weight corresponds to last iteration
* 1=1 means weight corresponds to iteration before last
* W2(j,k,l): Weight connecting hidden layer j to output layer k
* 1=3 means weight corresponds to current iteration
* 1=2 means weight corresponds to last iteration
* 1=1 means weight corresponds to iteration before last
* TOLl: Error tolerance for stopping
* TOL2: Iteration tolerance for stopping
* NI: Counter for number of input nodes
* NM: Counter for number of hidden nodes
* NO: Counter for number of output nodes
* NXTR: Number of exemplars in training set
* NXTS: Number of exemplars in test set
* NE: Number of epochs through training set
* NEF: Number of epochs to reach termination of training
* Cl: Gain parameter
* C2: Momentum parameter
* E3: Vector of desired outputs for training set
* YI: Vector of input features for test set
* Y2: Vector of outputs of Hidden Layer after through sigmoid
* for test set
* Y3: Vector of Outputs of Output Layer after through sigmoid
* for test set

* XERR: Training set error for each epoch
* YERR: Test set error for each epoch
* CONF: Confusion matrix for training set
* CCONFT: Confusion matrix for test set
* MISS: Percentage of incorrect classifications -- training set
* MISST: Percentage of incorrect classifications -- test set
* XTEMP: Temporary array for Xl array
* DTEHP: Temporary array for D3 array

* 22222222222222222222222222222222222222222222222222222222222222222222222222

SUBROUTINE ANN(NXTRNXTS,NENO,NI,NMX1,
;X2,X3,D3,YI,Y2,Y3,E3,WI,W2,TOLITOL2,Cl,C2,XERR,YERRCONF

;,CCONFT,
;NEFMISSMISST,NM1,NII,XTEMP,DTEMP,DD3,XXI,CHOICE)

INTEGER NXTR,NXTSNE,NONINMI,IIJJJKKK,LL,MM,
;NEFROW,COL,NII,CHOICE(NXTR),NMI

REAL XI(NXTR,NIi),X2(NMI),X3(NO),D3(NXTR,NO),YI(NXTS,NII),

;Y2(NMl),Y3(NO),E3(NXTS,NO),WI(NII,NH,3),W2(NMINO,3),

;TOLl,TOL2,CI,C2,XERR(NE),YERR(NE),TEHP,TERMI,TERM2,MAX,

;CONF(NENO,NO),CCONFT(NE,NO,NO),HISS(NE),MISST(NE),
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;XTEMP(NXTR,NIl),DTEMP(NXTR,NO),XXI(NXTR,NII),DD3(NXTR,NO)

EXTERNAL RNUNF
INTRINSIC REAL,NINT

***** Write feature vectors and desired outputs to temporary files
DO 1 I=I,NXTR

DO 2 J=I,NI1

XX1(I,J)=XI(I,J)
2 CONTINUE

DO 3 J=I,NO
DD3(I,J)=D3(I,J)

3 CONTINUE
1 CONTINUE

***** Initailize weights to random numbers (normal distribution)
DO 4 J=I,NM

DO 5 I=I,NII
WI(I,J,I)=O.O

WI(I,J,2)=RNUNF()
Wl(I,J,2)=WI(I,J,2)-.5

S CONTINUE
4 CONTINUE

DO 6 J=I,NMI
DO 7 K=I,NO
W2(JK,I)=O.O
W2(J,K,2)=RNUNF()

W2(J,K,2)=W2(J,K,2)-.5
7 CONTINUE
6 CONTINUE

***** Initialize test and train confusion matrices
DO 8 LL=INE

DO 9 I=I,NO
DO 10 J=1,NO

CONF(LL,I,J)=O.O
CCONFT(LL,I,J)=O.O

10 CONTINUE
9 CONTINUE
8 CONTINUE

***** Begin training epochs

DO 11 LL=I,NE
WRITE(*,*)'EPOCH = ',LL

XERR(LL)=O.O
YERR(LL)=O.O

***** Randomly select training vectors for input to network
DO 12 I=I,NXTR
CHOICE(I)=O
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12 CONTINUE

DO 13 11 = 1,NXTR
14 CONTINUE

TEMP=RNUNF0C
JJ=NINT(TEMP*NXTR)
IF ((J3.LE.NXTR).AND.(JJ.GT.O)) THEN
DO 15 K=1,NXTR
IF (JJ.EQ.CHOICE(K)) GO TO 14

1s CONTINUE
DO 16 KK=1,NI1

XTEMP(II ,KK)=XX1(JJ ,KK)
16 CONTINUE

DO 17 KK=1,NO
DTEMP(II ,KK)=DD3(JJKK)

17 CONTINUE
CHOICE(II)=JJ

ELSE
GO TO 14

ENDIF
13 CONTINUE

DO 18 II=1,NXTR
DO 19 JJ=1NI1
XI(II,JJ)=XTEMP(II,JJ)

19 CONTINUE
DO 20 3=1,NO
D3(II,JJ)=DTEMP(II,JJ)

20 CONTINUE
18 CONTINUE
***End of random selection for training vectors

***Introduce training vectors to network
DO SO H=,NXTR

***Hidden layer activation
X2(NH1)=1 .0
DO 60 J=1,NM

X2(J)=0.0
DO 70 I=1)NI1
X2(J)=X2(J)+X1CMHJI)*W1(I,J,2)

70 CONTINUE
* (Avoid over/under flows)

IF (X2(J) .GT. 60.0) X2(J)=60.0
IF (X20J) .LT. -60.0) X2(J)=-6o.o
X2C3=1 .0/(1+EXPC-1*X2(J)))

60 CONTINUE

***Output activation
DO 80 K=1,NO
X3(K)=0.0
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DO 90 3=1,NMI

X3(K)=X3(K)+X2(J)*W2(J,K, 1)
90 CONTINUE

* (Avoid over/under flows)
IF (X3(K) .GT. 60.0) X3CK)=60.0
IF (X3(K) .LT. -60.0) X3(K)=-60.0
X3(K)1 .O/(14-EXP(-1*X3(K)))
XERR(LL)=XERR(LL)+ABS(D3(MM,K)-X3(K))

***Determine row of true population for confusion matrix
IF (D3(MM,K) .EQ. 1.0) ROW=K

80 CONTINUE

***Determine maximum output and column of classified
***population for confusion matrix

MAX=O.O
DO 85 K=1,NO

IF (3(K) .GT. MAX) THEN
HAX=X3 (K)
COL=K

ENDIF
85 CONTINUE

MAX=0.O
CONF(LL2 ROW,COL)=CONF(LL,ROW,COL) + 1.0

***Update upper layer weights
DO 130 J=1,NM+1

DO 140 K=1,NO
TERMI=X3CK)*(1-X3(K))*CD30*I,K)-X3(K))*X2(J)
TERM2=W2(J aK,2)-W2(J,K, 1)
W2 (3,K 3) =W2(3 ,K 2) +C1*TERN1+C2*TERM2

140 CONTINUE
DO 145 K=1,NO
W2(JK, 1)=W2(J,K,2)
W20 ,t,2)=W2(3 )K,3)

145 CONTINUE
130 CONTINUE

***Update lower layer weights
DO 147 3-1,NH

DO 150 I=1,NI+1
TEMP=0.0
DO 160 K=1,NO
TEHP=TEHP+(D3(MH,K)-X3(K))*X3(K)*(1-X3CK))*W2(3 3K,2)

160 CONTINUE
TERM1=X2(J)*(1-X2())*XO.IH,I)*TEHP
TERH2=W1(J,K,2)-W1(J,K, 1)
WI(I,J,3)=W1(I ,J,2)+C1*TERM1+C2*TERH2

150 CONTINUE
DO 1 55 I=1,NI+1
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W1(I,J,2)=WI(I,J,3)

155 CONTINUE

147 CONTINUE

50 CONTINUE

***** Additional data is run through the neural network to observe
***** behavior of the neural network on test data.

DO 51 MM=1,NXTS
Y2(NMI)=I.O
DO 61 J=I,NM

Y2(J)=O.O

DO 71 =I,NII
Y2(J)=Y2(J)+Y1(MM,I)*W1(I,J,2)

71 CONTINUE
* (Avoid over/under flows)

IF (Y2(J) .GT. 60.0) Y2(J)=60.O

IF (Y2(J) .LT. -60.0) Y2(J)=-60.0
Y2(J)=I.O/(I+EXP(-I*Y2(J)))

61 CONTINUE

DO 81 K=1,NO
Y3(K)=O.O

DO 91 J=I,NM1

Y3(K)=Y3(K)+Y2(J)*W2(J,K,I)

91 CONTINUE
* (Avoid over/under flows)

IF (Y3(K) .GT. 60.0) Y3(K)=60.0
IF (Y3(K) .LT. -60.0) Y3(K)=-60.0
Y3(K)=I.0/(I+EXP(-I*Y3(K)))
YERR(LL)=YERR(LL)+ABS(E3(MMK)-Y3(K))

***** Determines row of true population for test confusion matrix
IF (E3(MM,K) .EQ. 1.0) RW2=K

81 CONTINUE

***** Determines maximum output and column of classified
***** population for confusion matrix

MAX=0.0

DO 88 K=I,NO
IF (Y3(K) .GT. MAX) then

MAX=Y3(K)

CL2=K

ENDIF

88 CONTINUE

CCONFT(LL,RW2,CL2)=CCONFT(LLRW2,CL2) + 1.0
51 CONTINUE

***** Send error history and probability of misclassification to a file
DO 171 I=1,NO
TEHP=0.0
TEMPT=0.0
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DO 175 J=1,NO
TEMP=TEMP+CONF(LL,I ,3)
TEMPT=TEMPT+CCONFT(LL, I,J)

175 CONTINUE
DO 172 J=1,NO

CONF(LL,I ,J)=CONF(LL,I,J)*100.0/TEMP
CCONFT(LL,I,J)=CCONFT(LL,I ,J)*100.0/TEMPT

172 CONTINUE
171 CONTINUE

XERR(LL) =XERR(LL)/REAL(NXTR)
YERR(LL) =YERR(LL) /REAL(NXTS)
WRITE(19,700) LL, XERR(LL) ,YERR(LL)
WRITE(*2 *)LL,XERR(LL) ,YERR(LL)
WRITE(20,706) LL,((CONF(LL,I,J),J=1,NO), I=I,NO),

LL2((CCONFT(LL,I,3)231I,NO), I=1,NO)
WRITE(20 ,*
HISS(LL):-REAL(NO)* 100 .0
HISST(LL)=REAL(NO)* 100 .0
DO 196 I=1,NO
MISS(LL)=MISS(LL)-CONF(LL,I 21)
MISST(LL)=HISST(LL)-CCONFT(LL, 121)

196 CONTINUE
MISS (LL)=MISS(LL)/REAL(NO)
MISST(LL) =HISST(LL) /REALCNO)
WRITE(242*) LL,MISS(LL) ,MISST(LL)
WRITE(*,*)LL,HISS(LL) 2MISST(LL)

11 CONTINUE

***END OF EPOCH

NEF=NE

***Save weights to a file
* Lower layer weights from input to middle layer

WRITE(21,*) 'LOWER WEIGHTS: BETWEEN INPUT LAYER AND HIDDEN LAYER,
DO 180 I=1,NI+l

WRITE(21,710) (W1(I,J,3)23=1,NM)
180 CONTINUE

* Upper layer weights from middle layer to output layer
WRITE(21,*) 'UPPER WEIGHTS: BETWEEN HIDDEN LAYER AND OUTPUT LAYER'
DO 190 I=12NM+1

190 CONTINUE

700 FORMAT(I4,1X,F12.6,1X,F12.6)

706 FORMAT('itr=',14,' train:'22(F6.2,lX)/' 1,2CF6.2,lX)

710 FORMAT(10(iX,F12.6))
715 FORHAT(I4,1X,F6.2,1X,F6.2)
720 FORHAT(10(1X,F12.6))
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RETURN

END

* 1111111111111111111111111111111111111111111111111 liiiliii1111111111111111111

*

* Subroutine SALIENCY: This subroutine computes the saliency of each

* of the features based on the weights of the final
* calculated net. Saliency is a measure of the

* significance that a feature has on the output of

* a multilayer perceptron.
*

* XSAL(I,J): Array of input data transformed to saliency
* data configuration
* X2SAL(J): Activation of hidden layer on saliency data
* X3SAL(K): Activation of output layer on saliency data
* XDIV(J,K): Division of input feature j into k subdivisions
* SAL(J): Saliency of input feature j
* NDIV: Number of divisions for range of input feature
* NDIVI: Number of divisions plus one for bias

SUBROUTINE SALIENCY(WTI,WT2,XI,IREPTRIREPTS,
;NVARI,NGRP2,NDIV,
;NDIVI,NSAL,NMINM,X2SAL,X3SAL,XSAL,XDIV,SAL)

INTEGER NGRP2,IREPTR,IREPTS,NMI,NM,NGRP2,NVARI

REAL XI(IREPTR,NVARI),WTI(NVAR1,NM,3),
;WT2(NMI,NGRP2,3),
;XDIV(NVARI,NDIV1),
;XSAL(NSAL,NVARI),X2SAL(NMI),X3SAL(NGRP2),
;SUM,DERIV,SAL(NVARI)
;,MAXMIN

***** Creating array of divisions over range of each factor
DO 100 JJ = 1,NVAR1

DO 110 II=I,IREPTR
MAX=0.0
MIN=1000.0

IF ((XI(II,JJ).NE. -1.0) .AND. (X1(II,JJ).NE.1.0)) GO TO 120

110 CONTINUE
GO TO 130

120 DO 140 12=i,IREPTR
IF (XI(I2,JJ).GT. MAX) MAX = XI(I2,JJ)
IF (XI(I2,JJ).LT. MIN) MIN = XI(I2,JJ)

140 CONTINUE
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DO 160 K = 0,NDIV
XDIV(JJ,K+1) = MIN+((MAX-MIN)/NDIV)*K

160 CONTINUE

GO TO 100

130 JIDIV = NDIV/2
DO 190 K = 0,HDIV

XDIV(JJ,K+1) = -1.0
190 CONTINUE

DO 200 K = (HDIV+1),NDIV
XDIV(J3,K+l) = 1.0

200 CONTINUE
100 CONTINUE

***** Saliency calculations
170 DO 210 3 1,NVAR1

***Create saliency array
SAL(J)=0.0
NSAL=NDIV1*IREPTR
DO 220 JJ=1,NVAR1

DO 230 I=0,(IREPTR-1)
DO 240 K=0,NDIV

INT=((NDIV+1)*I)+(K+1)
IF (3.EQ.33) XSAL(INT,33) =XDIV(33,K+1)
IF C3.NE.33) XSAL(INT,33) = X1C(I+fIX33)

240 CONTINUE
230 CONTINUE
220 CONTINUE

***Calculate activations with fixed weights
DO 250 MM=1,NSAL

X2SAL(NN1)=1 .0
DO 260 33 1,NH

X2SAL(33)=0.0
DO 270 I 1,NVAR1
X2SAL(33)=X2SAL(33)+XSAL(HMI)*WT1CI,33 .3)

270 CONTINUE
X2SAL(33) = 1.0/C1+EXP(-1*X2SAL(J3)))

260 CONTINUE
DO 280 K =1,NGRP2
X3SAL(K)=0.0
DO 290 33 1,NH1

X3SAL(K) =X3SAL(K)+X2SALC3J)*WT2(33,K,3)
290 CONTINUE

X3SAL(K)=1 .0/(1+EXP(-1*X3SAL(K)))
280 CONTINUE

DERIV=0 .0
SUM2=0.0
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***** Saliency calculation over all vectors, divisions, and outputs
DO 300 1 = 1,NGRP2

SUM=0.0
DO 310 M2 = 1,NM1

SUM = SUM+(WT2(M2,I,3)*X2SAL(M2)
;*(1-X2SAL(M2))*WTI(J,M2,3))

310 CONTINUE
SUM2 = ABS(SUM * X3SAL(I)*(1-X3SAL(I)))
DERIV = DERIV + SUM2

300 CONTINUE
SAL(J) = SAL(J)+ DERIV

250 CONTINUE
210 CONTINUE

***** Write saliency to a file

DO 320 J = 1,NVAR1
WRITE(22,730) J,SAL(J)

320 CONTINUE

730 FORMAT('input=',I4,'saliency=',F1O.2)

RETURN
END

* Subroutine VALID: This subroutine takes unclassified data, runs it
* through the net and reports the classification
* of each vector

* G3: Vector of Desired Outputs for validation set
* VI: Vector of Input features for validation set
* V2: Vector of Outputs of Hidden Layer after through sigmoid for training
* V3: Vector of Outputs of Output Layer after through sigmoid for training
* W1(ij,l): Weight connecting input layer i to hidden layer j
, 1=3 means weight corresponds to current iteration
* 1=2 means weight corresponds to last iteration
, 1=1 means weight corresponds to iteration before last
* W2(j,k,l): Weight connecting hidden layer j to output layer k
, 1=3 means weight corresponds to current iteration
, 1=2 means weight corresponds to last iteration
, 1=1 means weight corresponds to iteration before last
* NVAR: Counter for number of input nodes
* NM: Counter for number of hidden nodes
* NGRP2: Counter for number of output nodes
* IREPVL: Number of vectors in validation set
* VERR: Validation set error for each epoch
* VCONFT: Confusion matrix for validation set
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SUBROUTINE VALID(V1,V2,V3,VAL,W1,W2,IREPVL,NVAR
;,NVAR1,NGRP2,NH,NMI,NE,RANGE,MAX,MIN,G3,VCONFT)

INTEGER NVAR,NVAR1 ,IREPVL,NGRP2,NE

REAL VAL(IREPVL,NVAR1) ,V1(IREPVL,NVARI),
;W1(NVAR1 ,NM,3) ,W2(NMI,NGRP2,3) ,V2(NH1) ,V3(NGRP2),
;RANGECNVAR) ,MAX(NVAR) ,MIN(NVAR) ,MAX2,G3(IREPVL,NGRP2),
VCONFT(NGRP2,NGRP2)

***Read in validation set
DO 10 I=1,IREPVL

READ(16,100)(VAL(I,J), J=1,NVAR1)
WRITE(*,*)'READ VALID VECTORII

10 CONTINUE

***It is necessary to change the following format statement
***to read a specific validation set.

100 FORMAT(F7.4,2X,F7.2,2X,F7.3,2X,F7.5,2X,F7.5,2XF7.5)

***Write feature vectors and desired outputs to temporary files
DO 70 17=1,IREPVL

DO 80 J3= 1PNVAR
V1(I7,J3)=VAL(I7 ,J3)

80 CONTINUE
VI(I7,NVARI)=1 .0

70 CONTINUE

DO 55 J = 1,NVAR
DO 30 13=1,IREPVL

30 CNINUE)(II3J-I())RNEJ
55 CONTINUE

DO 400 I=1,IREPVL

IF (VAL(I1NVAR1).EQ.1.0) G3(I,2)0I.0
IF (VAL(INVARI).EQ.0.0) G3(I,2)=1.0
IF (VAL(I,NVARI).EQ.0.0) G3(I,2)=0.0

400 CONTINUE

***Initialize confusion matrix
DO 200 I=1,NGRP2
DO 210 J=1,NGRP2

VCONFT(I,J)0O.0
210 CONTINUE
200 CONTINUE
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***Calculate activations for hidden layer
VERR=0.0
DO 51 MM=1,IREPVL

V2(NMI)=1 .0
DO 61 J=1,NM
V2(J)=0.0
DO 71 I=1,NVAR1

71 CONTINUE
* (Avoid over/under flows)

IF (V2(J) .GT. 60.0) V2(J)=60.o
IF (V2(J) .LT. -60.0) V2(J)=-60.O
V2(J)=1 .O/(1+EXP(-1*V2(J)))

61 CONTINUE

***Calculate activations for output layer
DO 81 K=1,NGRP2

V3(K)=O.0
DO 91 J=1,NMI

V3(K)=V3(K)+V2(J)*W2(J,K, 1)
91 CONTINUE

* (Avoid over/under flows)
IF (1/3(K) .GT. 60.0) V3(K)=60.0
IF (V3(K) .LT. -60.0) V3(K)=-60.0

VERR=VERR+ABS(G3(MH)K)-V3(K))
IF (G3(MM,K) .EQ. 1.0) RW2=K

81 CONTINUE

***Determines maximum output
HAX2=0.0
DO 88 K=1,NGRP2
IF (V3(K) .GT. MAX2) THEN
MAX2V3 (K
CL2=K

ENDIF
88 CONTINUE

VCONFT(RW2,CL2)=VCONFT(RW2,CL2)+1 .0
51 CONTINUE

***Construc confusion matrix
DO 401 I=1,NGRP2

VTEMP=0.0
DO 402 J=1 2NGRP2

VTEM=VTEP+VCNFTIJ)

402 CONTINUE
DO 403 J=1,NGRP2

VOF(,J)=VCONFT(I ,J)*100 .0/VTEMP

403 CONTINUE
401 CONTINUE
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***** Calculate average error pcr validation vector
VERR=VERR/IREPVL

***** Write error and confusion matrix to a file
WRITE(17,*)'VALIDATION ERROR',VERR
WRITE(17,*)((VCONFT(I,J),J=I,NGRP2), I=I,NGRP2)

RETURN
END

* 111111111111111 111111111111111111111111111111111111111111111111111111111

* Subroutine CORRELATE: This subroutine calculates the second-order
* correlation matrix of the product of two
* inputs with the output. The resultant matrices
* are helpful in determining which second-order
* terms should be included as input.

* X: Vector of Input features for training set
* Ul: Vector of Input features for training set
* U2: Vector of Outputs of Hidden Layer after through sigmoid for training
* U3: Vector of Outputs of Output Layer after through sigmoid for training

* Wl(i,j,l): Weight connecting input layer i to hidden layer j
* 1=3 means weight corresponds to current iteration
* 1=2 means weight corresponds to last iteration
* i=1 means weight corresponds to iteration before last
* W2(j,k,l): Weight connecting hidden layer j to output layer k
* 1=3 means weight corresponds to current iteration
* 1=2 means weight corresponds to last iteration
* i=1 means weight corresponds to iteration before last
* NVAR: Counter for number of input nodes
* NM: Counter for number of hidden nodes
* NGRP2: Counter for number of output nodes
* IREPTR: Number of vectors in training set

SUBROUTINE CORRELATE(XIWIW2,IREPTR,NVARI,NM1,NM,NGRP2,
;U2,U3,NVAR,NM,XX,YY,YSUMYBARXSUH,XBAR,COR2)

INTEGER NVAR,NVARI,IREPTR,NGRP2,NM

REAL U2(NMl),XI(IREPTR,NVARl),WI(NVAR1,NM,3),W2(NM1,NGRP2,3),
;U3(NGRP2),XX(IREPTR,NVAR1),YY(IREPTR,NGRP2),YSUM(NGRP2),
;YBAR(NGRP2),XSUM(NVARI),XBAR(NVAR1),COR2(NGRP2,NVAR1,NVAR1)

***** Initialize summing arrays
DO 300 I=I,NGRP2
YSUH(I)=O.O
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300 CONTINUE
DO 310 I=1,NVAR

XSUM(I)=O.O
310 CONTINUE

***Calculate activations for hidden layer
DO 51 MH=1,IREPTR
U2(N1)=1 .0
DO 61 J=1,NM
U2(J)=0.0
DO 71 I=1,NVAR1

U2(J)=U2(J)+X1GIM,I)*W1(I,J,2)
71 CONTINUE

* (Avoid over/under flows)
IF (U20J) .GT. 60.0) U2(J)=60.0
IF (U2(J .LT. -60.0) U2(J)=-6o.o

61 CONTINUE

***Calculate activations for output layer
DO 81 K=1,NGRP2

U3(K)=0.0
DO 91 J=1,NMI
U3(K)=U3(K)+U2(J)*W2(J,K, 1)

91 CONTINUE
* (Avoid over/under flows)

IF (U3(K) .GT. 60.0) U3(K)=60.0
IF (U3(K) .LT. -60.0) U3(K)=-60.0

U3(K)= .0/(1+EXP(-1*U3(K)))
YY ( MK) =U3 (K)

81 CONTINUE
51 CONTINUE

***Read training vectors into xx array
DO 200 I=1,IREPTR

DO 210 J=1,NVARI
XX(I,J)=X1(I,J)

210 CONTINUE
200 CONTINUE

***Calculate the mean of the outputs f or output nodes
DO 100 I=1,NGRP2

DO 110 S=1JIREPTR
YSUH(I)=YSUH(I)+YY(S,I)

110 CONTINUE
YBARCI)=YSUH(I) /IREPTR

100 CONTINUE

***Calculate the mean of the input features
DO 120 I=1,NVAR

DO 130 S=1,IREPTR
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XSUM(I)=XSUM(I)+XX(S,I)
'130 CONTINUE

XBAR(I)=XSUM(I)/IREPTR
120 CONTINUE

***** Calculate the correlation of second order inputs to outputs
DO 10 I=I,NGRP2
DO 20 J=1,NVAR

DO 30 K=I,NVAR
DO 40 S=1,IREPTR

COR2(I,J,K)=COR2(I,3,K)+(YY(S,I)-YBAR(I))*
;(XX(SJ)-XBAR(J))*(XX(S,K)-XBAR(K))

40 CONTINUE
30 CONTINUE
20 CONTINUE
10 CONTINUE

***** Write correlations to a file
DO 400 J=I,NVAR

DO 410 K=I,NVAR
WRITE(18,*)'CORRELATIONS FOR TERMS',J,' *',K
WRITE(18,*)((COR2(IJ,K)/IREPTR),I=1,NGRP2)

410 CONTINUE
400 CONTINUE

RETURN

END

***** END OF PROGRAM*****
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Appendix C. Pilot Data Configuration Program

*PILOT DATA CONFIGURATION PROGRAM
*Capt Lisa M. Belue

*Date Last Modified: 29 February 1992

*Program: datfig2.f

*Purpose: The purpose of this program is to read in data provided
* by AF/DPXA on the attributes of individual pilots and format
* it for use by both a multilayer perceptron classifier and
* a discriminant analysis classifier.

EXTERNAL RNUNF
INTRINSIC REAL, NINT

INTEGER NRI,NR2,NCOL,NICOLNITRAIN)NITEST)NIVAL,N2TRAIN,
N2TEST *N2VAL

PARAMETER(NCOL=23,NICOL=26,NRI=1O162,NR2=942S,
;NITRAIN=1000,NITEST=1000 1NlVAL=8162,N2TRAIN=1OOO,
N2TEST=1OOO,N2VAL=7425)

INTEGER CHOICE(NR1) ,CIIOICE2(NR2)

REAL NOISE

CHARACTER*15 DII,SECON,IS,DAFSC ,PAFSC

CHARACTER*20 C88(NR1 ,NCOL)
CHARACTER*20 C89(NR2,NCOL)
CHARACTER*20 X88(NR1 2NICOL)
CHARACTER*20 X89(NR2,N1COL)
CHARACTER*20 XTRB8(N1TRAIN ,NICOL)
CHARACTER*20 XTS88(NITEST,N1COL)
CHARACTER*20 XVL88(NIVALNICOL)
CHARACTER*20 XTR89(N2TRAIN ,NICOL)
CHARACTER*20 XTS89(N2TEST2 N1COL)
CHARACTER*20 XV8(2A,NlCOL)

OPENCUNIT=11 )FILE=-pilotBB.dat ,STATUS='UNKNOWN')

OPEN(UNIT=12,FILE='pilot89.dat' ,STATUS='UNKNOWN')

OPEN(UNIT=13 ,FILE= 'train88. dat' ,STATUS='UNKNOWN')
OPEN(UNIT=14,FILE='test88.dat' ,STATUS='UUKNOWN')
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OPEN(UNIT=1S,FILE='val8B .dat' ,STATUS'IUNKNOWN')
OPEN(UNIT=16,FILE= 'train89.dat' ,STATUS='UNKNOWN')
OPEN(UNIT=17 ,FILE='test89 .dat' ,STATUS='UNKNOWN')
OPEN(UNIT=18,FILE= 'val89.dat' ,STATUS='UNKNOWN')
OPEN(UNIT=23 ,FILE='train88. sas' ,STATUS='UNKNOWN')
OPEN(UNIT=24,FILE='test88.sas' ,STATUS='UNKNOWN')
OPEN (UNIT=25,FILE= 'va188. sas' ,STATUS'IUNKNOWN')
OPEN(UNIT=26 ,F:-LE='train89.sas' ,STATUS= 'UNKNOWN')
OPEN(UNIT=27 ,FILE'Itest89 .sas' ,STATUS'IUNKNOWN')
OPEN(UNIT=28 ,FILE= 'val89 .sas' ,STATUS='UNKNOWN')

DO 10 I=1,NRl
READ(11b1OO)(C88(I,J), J=1,NCOL)

10 CONTINUE

DO 20 I=1,NR2
READ(12,100)(C89(I,J), J=1,NCOL)

20 CONTINUE

*************TAFMSD,ADSCDA,MARSTAT,DEPN ,RDTM,RPI ,GRADEAIRETPROG,
******PME,MAJCOM,DOB,PASCBPO,ACADLVL,ACADSPEC ,DAFSC
******PAFSC,PRIORSV,SOC,RACE,COMP ,SEXFLYNONTH ,RETAIN

100 FORMAT(A4,A4,A1,A2,A1,A1,A2,A1,
;A1 ,A2,A4,A2,A1,A2,2XaA6,
A6 ,Al, Al, Al, Al,A,A3 ,Al)

********~**************FY 88 DATA *****************

DO 30 I=1,NRI

WRITE(*,*)'FY88 DATA ITERATION ',

********TAFHSD ********

X88(I, 1)=C88(I, 1)

********ADSCDA *****************

X88(I,2)=C88(I,2)

******** ARSTAT *****
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IF (C88C1,3).EQ.'M') THEN
K88(I,3)='-l -1'

ELSE IF (C88(I,3).EQ.'s') THEN
X88(I,3)=' 1 -1'

ELSE IF (C88(I,3).EQ.'D') THEN
X88(I,3)='-1 1'

ELSE
X88(I,3)=' 1 1'

ENDIF

DEPN

X88(I,4)=C88(I p4)
IF (X88(I,4).EQ.' .2) X88(I,4)=' o'

RDTM

IF (C88(I,S).EQ.'A') THEN
X88(I,S)=' 1 1 1'

ELSE IF Cc88(I,S).EQ.'D') THEN
X88(I,S)='-1 1 1'

ELSE IF (C88(I,S).EQ.'E') THEN
X88(I,S)=' 1 -1 1'

ELSE IF (e%8(I,S).EQU'F') THEN
X88(I5S)='-1 -1 1'

ELSE IF (C88(I,S).EQ.'G') THEN
X88(I,S)=' 1 1 -1'

ELSE IF (C88(I,S).EQ.'H') THEN
X88(I,S)='-1 1 -11

ELSE IF (C88(I,S).EQ.'J') THEN
X88(IS)=' 1 -1 -11

ELSE IF (c88(I,S).EQ.'K') THEN
X88(I,5)='-1 -1 -1)

ELSE IF (C88(I,5).EQJL') THEN
X88(I, S)=)-1 -1 -1'

ELSE
X88(I,5)='-l -1 -1'

ENDIF

RPI

IF (C88(I,6).EQ.'o') X88(I,6)=' 1 1 1'
IF (C88(I,6).EQ.'1') X88(I,6)='-1 1 1'
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IF (C88(I,6).EQ.'2') X88(I,6)=I-1 -1 -1'
IF (C88(I,6).EQ.'3') X88(1,6)=' 1 -1 1'
IF CC88(I,6).EQ.'4') X88(I,6)='-1-1 1'
IF (C88C1,6).EQ.'S') X88(I,6)='-l -1 -V
IF (C88(I,6).EQ.'6') X88(I,6)=' 1 1 -1'
IF (C88(I,6).EQ.'7") X88(I,6)='-l1 i-1
IF (C88(I,6).EQ2B8') X88(I,6)=' 1 -1 -1V
IF (C88(I,6).EQ.'9') X88(I,6)='-l -1 -Vl

GRADEA

********RETPROG

IF (C88(I,8).EQ.'l') THEN
X88(I.8)='-1 -1V

ELSE IF (C88(I,8).EQ.'2') THEN

ELSE IF (C88C1,8).EQ.'3') THEN
X88(I,8)=' 1 -1'

ELSE
X88(I,8)=' 1 1'

ENDIF

PHE

IF (C88C1,9).EQ.IAI) X88C1,9)=' 1 -1'
IF (C88C1,9).EQ.'BI) X88(I,9)=' 1 -1'
IF (C88C1,9).EQ.IC') X88(I,9)=' 1 -11
IF (C88(139).EQ.'DI) X88C1,9)=' 1 -1V
IF (C88(I.9).EQ.'E') X88(I,9)=' 1 -V1
IF (C88(119).EQ.2F') X88(I,9)=' 1 -V1
IF (C88(I,9).EQ.2G') X88C1,9)=' 1 -1V
IF (C88C1,9).EQ.2H') X88(I,9)='-l V
IF (C88(I,9).EQ.2J') X88(I,9)='-l 1'
IF (C88(I.9).EQ.'K') X88(I,9)=I- 1
IF (C88C1,9).EQ.2L') X88(I,9)='-i 1'
IF (C88(I,9).EQ.'M') X88(I,9)='-l V
IF (C88(I,9).EQ.'N') X88(I.9)='-1 1V
IF (C88(I,9).EQ.2P)) XBB(I,9)='-l 1'
IF (C88C1,9).EQ.'Q') X88(I,9)=I-1 -1V
IF (C88(I,9).EQ.2R') X88(I,9)='-i -11
IF (C88(I,9).EQ.'S') X88(I,9)=' 1 1)

IF (C88(1 29).EQ.'T') X88(I,9)=' 1 1'
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IF (C88C1,6).EQ.'2') X88(I,6)='-1 -1 -1'
IF Cc88(I,6).EQ.'3') X88(I,6)=' 1 -1 1'
IF (C88(I,6).EQ.'4') X88(I,G)='-1 -1 1'
IF (C88(I,6).EQ.'s') xa8(I,6)='-1 -1 -1'
IF Cc88(I,6).EQ.'6') X88(I,6)=' 1 1 -1'
IF (C88(I,6).EQ.'7') xsB(I,6)='-1 1 -1'
IF (C88c(r,6).EQ.'8') X88(I,6)=' 1 -1 -1'
IF (C88(I,6).EQ.'9') x88(I,6)='-i -1 -1'

********GRADEA

X88(I,7)zCB8(I 37)

RETPROG

IF (C88(138).EQ.'1') THEN
X88(I,8)='-1 -1'

ELSE IF (C88(I,8).EQ.'2') THEN
X88(I 8)='-i V

ELSE IF (C88(I,8).EQ.'s') THEN
X88(I,8)=' 1 -1'

ELSE
X88(I,8)=' 1 1'

ENDIF

IF (C88(I,9).EQ.'A') X88(I,9)=' 1 -V
IF (C88(I,9).EQ.'B') X88(I,9)=' 1 -1'

IF (C88(I,9).EQ.'c') X88(I,9)=' 1 -1'
IF (C88(I,9).EQ.'D') X88(I,9)=' 1 -1'
IF (C8G,9).EQ.'E') X88(I,9)=' 1 -1'
IF (C88(I,9).EQ.'F') XBBI.9)=' 1 -1'
IF (c88C119).EQ.'G') X88C1,9)='- 1-1
IF (C88(I,9).EQ.'H') X88(Is9)='-1 V'
IF (C88(E,9).EQ.'J') X88(I,9)='-1 1'
IF (c88(I,9).EQ.'L') XBBGI,9)='-1 1'
IF (C88(I,9).EQ.'L') X88(I,9)='-i 1'
IF (C88(I,9).EQ.'M') X88(I,9)='-1 1'
IF (C88(I,9).EQ.'N') x88(I,9)='-l11i
IF (C8s(I,9).EQ.'Qw) x88(I, 9)'I-11
IF (C88(I,9).EQ.'p') x88(I,9)='-1 -l'
IF CC88(I,9).EQ.'R') X88(I,9)='-1 -1'
IF (C88(I,9).EQ.'s') X88(E,9)=' 1 1'
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IF (C88(I,9).EQ.'U') X88(I,9)=' 1 11
IF (C88(I,9).EQ.'V') X88(I,9)=' 1 1)
IF (C88CI,9).EQ.'W') X88(I,9)=) 1 1'
IF (C88(I,9).EQ.'X)) X88(I,9)=' 1I1
IF (C88(I,9).EQ.'z') X88(I,9)=' 1I1
IF (C88(I,9).EQ.'1') X88(I,9=--1
IF (C88(I,9).EQ.'2') X88(I,9)=' 1 -1'
IF (C88(I,9).EQ.13') X88(I,9)=' 1 -1)
IF (C88(I,9).EQ.'4)) X88(I,9)=' 1 -1'

IF (C8U,9).EQ.'S') X88(I,9)=)-1 1'
IF (C88(I,9).EQ.'6)) X88(I,9)=)-1 11
IF (C88(I,9).EQ.'71) X88(I,9)=) 1I1
IF (C88(I,9).EQ.)') X88(I,9)=' 1I1
IF (C88(I,9).EQ.'9') X88(I,9)=' 1 11
IF CC88(I,9).EQ.' ') X88C1,9)=' 1 1'

********DESIRED PME *****

********COMPLETED = 1I****
****NOT COMPLETED =-l ***

IF (((X88(I,9).EQ.1-1 -1').OR.(X88(I,9).EQ.'-1 1').OR.
;(X88(I,9).EQ.' 1 -1')).AND.(X88(I,1).LT.8112)) X88(I,1O)=' 11

IF ((X88(I,9).EQ.'-1 1').OR.
;(X88(I.9).EQ.' 1 1l')).AND.(X88(I,1).LT.7S12)) X88(I,1o)=' 1'

IF (X88(I,9).EQ.' 1 -1') X88(13 10)=' 1'

IF ((CX88(I,9).NE.'-1 -1').AND.(X88(I,,9).NE.'-1 l').AND.
;(X88CI,9).NE.'1 I -1')).AND.(X88(I,1).LT.8112)) X88(I,1O)=I-1'

IF (((X88(I,9).NE.'-l 12).AND.
;(X88(I,9).NE.' 1 -1')).AND.(X88(I31).LT.7512)) X88(IiO)='-1'

IF ((X88(I,9).NE.2 1 -v').AND.CX88(x,1).LT.7112)) X88(13 10)='-1'

MAJCOM

IF (C88(I,1o).EQ.'oAl) X88(1,101)= 1 1 1 11
IF (C88(I,1o).EQ.'OB') X88(I)11)='-l -1 -1 11
IF (C88(I,10).EQ.'oC') X88(I11)1 -1 -1 -11
IF (CC8(I,10).EQ.'OD') X88(I,11)='-1 I I V
IF (C88(I10).EQ.'oE') X88(I11)='-1 -1 -1 -1'
IF (C88(I,10).EQ.'oF') X$8(I,11)=, 1 -1 1 1'
IF (C88(I,1o).EQ.'oG') X88(I,11)='-1 -1 -1 -1'
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IF (C88(I,1o).EQ.'oH') X88(I,11)=)-l -1 1 11
IF (C88(I,1o).EQ.'oI') X88(I,11)='-l -1 -1 -1V
IF (C88(I,1o).EQ.'OJ') X88(I,11)=' I 1 -1 V
IF (C88(I,10).EQ.'OK') X88(I,11)='-l 1 -1 V'
IF (C88(I1o).EQ.'OL') X88(I,11)='-l -1 -1 -1'
IF (C88(I,1o).EQ.'oM') X88(I,il)='-1 -1 -1 -V'
IF (C88(I1o).EQ.'ON') X88(I,1.)=' 1 -1 -1 1'
IF (C88(I,1o).EQ.'oo') X88(I,11)='-1 -1 -1 -V.
IF (C88(I,1o).EQ.'oP') X88(I,11)='-l -1 -1 -l'
IF (C88(I,1o).EQ.'oQ') X88(I,11)='-l 1 -1, -1'
IF (Cse(I,1o).EQ.'oR') X88(I,11)=' 1 1 1 -1V
IF (C88(I,10).EQ.'OS') X88(I,11)='-1 1 1 -1'
IF (C88(I,10).EQ.'OT') X88(I,11)=' 1 -1 1 -l'
IF (C88(I1o).EQ.'ou') X88(I,11)='-l -1 -1 V
IF (C8cr,1o).EQ.'ov') X88(I,11)=' 1 -1 -1 -l'
IF (C88(I,1o).EQ..'ox') X88(I,11)='-l -1 -1 -V'
IF (C88(I,1o).EQ.'oy') X88(I,11)='-l -1 1 -l'
IF (C88(I,10).EQ.'ozI) X88(I,11)='-l -1 -1 -V'
IF (C88(I,1o).EQ.'o1') X88(I,11)='-1 -1 -1 1V
IF (C88(I,1o).EQ.'o2') X88(I,11)='-l -1 -1 1'
IF (C88(I,10).EQ.'o31) X88(I,11)=I-1 -1 -1 1'
IF (C88(I,1o).EQ.Ios') X88(I,11)='-l -1 -1 V'
IF (C88(I,1o).EQ.'o6') X88(I,11)='-1 -1 -1 V.
IF (C88(I,1o).EQ.'o71) X88(I,11)='-l -1 -*1 1'
IF (C88(I,10).EQ.'o8') X88(I)11)='-1 -1 -1 1V
IF (C88(I,1o).EQ. '09') X88(I,11)='-1 -1 -1 V
IF (C88(I,1o).EQ.'1S') X88(I,11)=' 1 1 -1 -1'
IF (C88(I,1o).EQ.'lW') X88(I,11)='-i -1 -1 1V
IF (C88(I,1o).EQ.'1X') X88(I.11)='-l -1 -1 -1'
IF (C88(I,10).EQ.'2A') X88(I,11)='-1 -1 -1 1'
IF (CS8(I,10).EQ.'2C') X88(I,11)='-1 -1 -1 -11
IF (C88(I,1o).EQ.'2E') X88(I,11)='-1 -1 -1 11
IF (C88(I,1o).EQ.'2F') X88(I,11)=I-1 -1 -1 11
IF (C88(I,1o).EQ.'2G') X88(I,11)='-1 -1 -1 1'
IF (C88(I,1o).EQ.'2u') X88(I411)='-1 -1 -1 11
IF (C88(I,1o) .EQ. '21') X88(I,11)?-'-1 -1 -1 -1V
IF (C88(I.10).EQ.'2J') X88(I,i1)='-1 -1 -1 -1'
IF (C88(I,10).EQ.'2K') X88(I,11)='-1 -1 -1 1'
IF (C88(I,10).EQ..'2L') X88(I,.11)='-1 -1 -1 1'
IF (C88(I,10).EQ.'2H') X88C1,11)='-1 -1 -1 1'
IF (C88(I,1o).EQ.)2N') X88(I,11)='-1 -1 -1 1'
IF (C88(I,10).EQ.'2P') X88C1,11)=I-1 -1 -1 1'
IF (C88C1,1o).EQ.'2R') X88(I,11)='-1 -1 -1 1'
IF (C88(I,1o).EQ.'2w') X88(I,11)='-1 -1 -1 1'
IF (C88(I,1o).EQ.'3C') X88(I,11)='-1 -1 -1 1'
IF (C88CI,1o).EQ.'3F') X88(I,11)='-l -1 -1 -1V
IF (C88(I,1o).EQ.'3G') X88(I,11)='-1 1 1 1V
IF CC88(I,10).EQ.'31') X88C1,11)=I-1 -1 -1 -1'
IF (C88(I,1o).EQ.'3I') X88(I,li)='-1 -1 -1 -1'
IF (C88(I,10).EQ.'3R') X88(I,11)='-1 -1 -1 V'
IF (C88(I,10).EQ.'3S') X88(I,11)='-1 -1 -1 V
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IF (C88(I,10).EQ.'3V') X88(I,11)=)-1 -1 -1 1'
IF (C88(I,1o).EQ.'34') X88(I,11)=)-1 -1 -1 -1'
IF (C88(I,1o).EQ.'77') X88(I,11)='-l -1 -1 1'
IF (C88(I,10).EQ.'8J') X88(I,11)='-l -1 -1 -1)
IF (C88(I,1o).EQ.'88') X88(I,il)='-l -1 -1 1'
IF (C88(I,10).EQ.IYY') X88(I,11)=&- -1 -1 -1'

********DOB (AGE) ****

X88(I, 12)=C88(I, 11)

PASCBPO

IF(C88(I,12).EQ.'AF') X88(I,13)=' 1 -1 1 1'
IF(C88(I,12).EQ.'AH') X88(I,13)=' 1 1 1 1'
IF(C88(I,12).EQ.'AK') X88(I,13)=)-1 1 1 -1'
IF(C88(I,12).EQ.)AM') X88(I,13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'AT') X88(I,13)=I-1 1 1 1'
IF(C88(I,12).EQ.'AU') X88(I,13)=' 1 1 1 -1)
1F(C8(I,12).EQ.'AX') X88(I,13)=' 1 1 1 1'
IF(C88(I,12).EQ.'AY') X88(I,13)=' 1 1 1 1'
IF(C88(I,12).EQ.'A2') X88(I,13)='-l 1 1 -11
IF(C88(I,12).EQ.'A3') X88(I,13)='-l 1 1 -1V
IF(C88(I,12).EQ.'A4') X88(I,13)=' 1 -1 -1 11
IF(C88(I,12).EQ.'A5') X88(I,13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'A6') X88(I,13)=I-l -1 1 -1'
IF(C88(1,12).EQ.'A7') X88(12 13)=I-1 -1 1 -1'
IF(C88(I,12).EQ.2A8') X88(I,13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'A9') X88(I,13)=' 1 -1 -1 11
IF(C88(I,12).EQ.'BD') X88(I13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'BF') X88(I,13)='-1 1 1 -V'
IF(C88(I,12).EQ.'BBI) X88(I,13)=' 1 1 1 1'
IF(C88CI,12).EQ.'BH') X88(I.13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'BL') X88(I,13)=' 1 1 1 1'
IF(C88(I,12).EQ.'BN') X88(I,13)=I-1 -1 1 -1'
IF(C88(I,12).EQ.'BP') X88(I,13)=' 1 1 1 -11
IF(C88(I,12).EQ.'BV') X88(I,13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'BX') X88(I,.13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'B2') X88(I,13)=' 1 1 -1 -1.'
IF(C88(I,12).EQ.'B3') X88(I,13)=' 1 1 -1 -l'
IF(C88(I,12).EQ.'B4') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'BS') X88(I,13)=' 1 1 -1 -1)
IF(C88(I,12).EQ.'B6') X88C1)13)=& 1 1 -1 -1'
IF(C88(I,12).EQ.'B7') X88(I,13)=' 1 1 1 -1'
IFCC88(I,12).EQ.'B8') X88(I,13)=' 1 1 1 -1'
IFCC88CI.12).EQ.'B9') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'CC') X88(I,13)=' 1 1 1 1'
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IF(C88(I,12).EQ.'CD') X88(I,13)='-1 -1 1 -1'
IF(C88(I,12).Eg.'CF') X88(I,13)=)-l -1 1 -1'
IF(C88(I,12).EQ.'CH') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'CJ') X88(I,13)=' 1 1 1 1V
IF(C88C1,12).EQ.'CK') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'CL') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'CO') X88(I,13)=I-l 1 1 -1'
IF(C88(I,12).EQ.'CP') X88(I,13)='-1 1 1 1'
IF(C88(I,12).EQ.'CQ') X88(I,13)=' 1 1 1 1'
IF(C88(I,12).EQ.'CR') X88(I,13)=' 1 1 1 1'
IF(C88(I,12).EQ.'C2') X88(I,13)=I-1 1 1 -1'
IF(C88(I,12).EQ.'C3') X88(I,13)=I-1 I 1 -1'
IF(C88(I,12).EQ.'C4') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.iC5') X88(I,13)='-1 1 -1 1'
IF(C88(I,12).EQ.'C6') X68(I,13)='-1 1 -1 -1'
IF(C88(I,12).EQ.'C7') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'C8') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'C9') X88(I,13)=' 1 -1 1 -1'
IF(C88(11 12).EQ.'DF') X88(I,13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'DM') X88(I,13):=I1 1 1 -11
IF(C88(I,12).EQ.'DW') X88(I,13)=I-1 -1 1 -1'
IF(C88C1,12).EQ.'D2') X88C1,13)=' 1 -1 1 -l'
IF(C88(I,12).EQ.'D3') X88(I,13)=' 1 -1 1 -1'
IF(C88(I12).EQ.'D4') X88(I,13)=' 1 -1 1 -1.'
IF(C88(I,12).EQ.'DSI) X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'D6') X88(I,13)=' 1 -1 1 -I'
IFCC8B(I,12).EQ.'D7') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'D8') X88(I,13)=' 1 -1 1 -1'
1FCC88(I,12).EQ.'D9') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'EB') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'EC') X88(I,13)=' 1 1 1 1'
IFCC88(I,12).EQ.'EDI) X88(I.13)='-1 1 1 -11
IF(C88(I,12).EQ.'EE') X88(1113)='-1 1 1 -1'
IF(C88C1,12).EQ.'EH') X88(I,13)=' 1 -1 -1 1.'
IF(C88C1,12).EQ.'EJP) X88(I,13)='-1 -1 -1 1'
IF(C88(I,12).EQ.'EL') X88(I.13)=' 1 -1 -1 1'
IFCC88(I,12).EQ.'EH') X88(I,13)='-1 1 1 -1V
IF(C88(I,12).EQ.'EPI) X88(I,13)=' 1 1 -1 -1'
IF(C88(I12).EQ.)E2') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'E3') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'E4') X88(I,13)=' 1 I 1 -11
IF(C88(I,12).EQ.'E5') X88C1)13)=' 1 1 1 -1'
IF(C88(I12).EQ.'E7V) X88(I,13)=' 1 1 1 -11
IF(C88(I,12).EQ.'E8)) X88(I,13)=' 1 -1 1 -1'
1FCC88(I,12).EQ.'E9') X88(I,13)=' 1 -1 1 -1'
IFCC88(I,12).EQ.'FB') X88(I13)=' 1 1 1 -1'
IF(C88(I12).EQ.'FA') X88(I,13)=? 1 1 1 -1'
IF(C88(I,12).EQ.'FC') X88(I,13)='-1 -1 -1 1'
IF(C88(I,12).EQ.'FE') X88(I,13)=' 1 -1 1 -l'
IF(C88(I,12).EQ.'FF') X88(I,13)=I-1 -1 1 -1'
IF(C88(I,12).EQ.'FG') X88(I,13)='-l 1 -1 1V
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IF(C88(I,12).EQ.'FI) X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'FK') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'FM') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'FN') X88(I,13)=' 1 1 1 1'
IF(C88(I,12).EQ.'FQ') X88(1,13)=' 1 1 1 1V
IF(C88(I,12).EQ.'FRI) X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'FSI) X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'FTI) X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'FU') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'FV') X88(I,13)='-1 1 1 1'
IF(C88(I,12).EQ.'FW') X88(I13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'FX') X88(I,13)=' 1 -1 1 -11
IF(C88(I,12).EQ.'F2') X88(I,13)=' 1 -1 1 -l'
IF(C88(I,12).EQ.'F3') X88(I,13)=I-1 -1 -1 1'
IF(C88(I,12).EQ.'F4') X88(I,13)='-1 -1 -1 1'
IF(C88(I,12).EQ.'F6') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'F7') X88(I,13)=I-1 1 1 -1'
IF(C88(I,12).EQ.'F8') X88(1,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'GB') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'GC') X88(I13)=' 1 1 1 1'
IF(C88(I,12).EQ.'GF') X88(I,13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'GM') X88(I,13)='-1 -1 -1 1'
IF(C88(I,12).EQ.'GW') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'G1') X88(I,13)='-1 1 1 V'
IF(C88(I,12).EQ.'G2V) X88(I,13)=' 1 -1 1 -l'
IF(C88(I,12).EQ.'G3') X88(I,13)='-1 -1 -1 1'
IF(C88(I,12).EQ.'G4') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'GS') X88(I,13)=' 1 1 -1 -l'
IF(C88(I,12).EQ.'G6') X88(I.13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'G7') X88(I13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'G8') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.2G9') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'HBI) X88(I,13)=' 1 1 1 1'
IF(C88(I,12).EQ.IHH') X88(I,13)=' 1 1 1 -1'
IFCC88(I,12).EQ.qHI) X88(I,13)=I-1 1 -1 1'
IF(C88(I,12).EQ.'HPI) X88(I13)=' 1 1 -1 -1'
IF(C88(1412).EQ.'HS') X88(I13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'HV') X88(I,13)='-1 1 1 -1'
IF(C88(11 12).EQ.'12') X88(I,13)=I-l -1 1 -1'
IF(C88(I,12).EQ.2H3') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'H4') X88(I,13)=' 1 1 1 -11
IF(C88(11 12).EQ.'H6') X88(I,13)=' 1 I 1 -1'
IF(C88(I,12).EQ.'H7') X88(I13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'H8') X88(I,13)=' 1 1 1 -l'
IF(C88(I,12).EQ.'119') X88(I,13)='-l 1 1 -I'
IF(C88(I.12).EQ.'IC') X88(I,13)=' 1 1 -1 1V
IF(C88(I,12).EQ.'IK') X88(I,13)=' 1 1 1 11
IF(C88(I,12).EQ.'IN') X8G[)13)=' 1 1 1 11
IF(C88(I,12).EQ.'J2') X88(I,13)='-1 -1 -1 1'
IF(C88(I,12).EQ.'J3') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'J4') X88(12 13)=' 1 -1 1 -1'
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IF(C88(I,12).EQ.'J6') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'J7') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'J8') X88(I,13)=' 1 -1 1 -1'
IF(C88C1,12).EQ.'J9') X88(I,13)=I-1 -1 1 -11
IF(C88(I,12).EQ.'KB') X88(I,13)='-1 1 1 1'
IF(C88(I,12).EQ.'KF') X88(I,13)=)-1 1 1 -1'
IF(C88(I,12).EQ.IKH') X88(I,13)='-1 -1 1 -11
IF(C88(I,12).EQ.'KJ') X88(I,13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'KU') X88(I,13)='-l 1 1 1'
IF(C88(I,12).EQ.IKVI) X88(I,13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'KYI) X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'K2') X88(I,13)=3-l -1 1 -1'
IF(C68(I,12).EQ.'K3') X88(I,13)='-1 1 -1 -1'
IF(C88(I,12).EQ.'K4') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'K6') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'K7') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'K8') X88(I,13)=' 1 -1 1 1'
IF(C88(I,12).EQ.'K9') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'LAI) X88(I,13)=I-1 -1 1 -1'
IF(C88(I,12).EQ.'LC') X88(I,13)=' 1 1 1 11
IF(C88(I,12).EQ.ILD') X88(I,13)=' 1 1 1 1'
1FCC88(1,12).EQ.ILE') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'LJI) X88(I,13)=I-l -1 1 -1'
IF(C88(I,12).EQ.'LI) X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'LL') X88(I,13)=' 1 1 -1 -1'
IFCC88(I,12).EQ.'LP') X88(I,13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'LS') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'LU') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'LW') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'LY') X88(I,13)='-. -1 1 -1'
IF(C88(I,12).EQ.'L2') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'L3') X88(I,13)='-1 -1 -1 11
IF(C88(I,12).EQ.'L4') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'LS') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'L6') X88(I13)='-1 1 1 -1'
IF(C88(I,12).EQ.'L7') X88(I,13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'L8') X88(I,13)='-1 -1 1 -1'
IF(C88(I12).EQ.'L9') X88(I,13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'HA') X88(I,13)='-1 1 1 -I'
IF(C88C11 12).EQ.'MB') X88(I,13)=)-1 -1 -1 1'
IF(C88(I12).EQ.2MD') X88(I,13)=' 1 1 -1 -11
IF(C88(I,12).EQ.'ME') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'MG') X88(I,13)='-1 1 1 -I'
IF(C88(I,12).EQ.'MH') X88(I,13)='-1 1 -1 -11
IF(C88(I,12).EQ.'HK') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'ML') X88(I,13)=' 1 1 1 1'
IF(C88(I,12).EQ.'MN') X88(I.13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'MO') X88(I,13)='-1 1 1 1'
IF(C88(I,12).EQ.'MP') X88(I,13)='-1 -1 -1 V2
IF(C88(I,12).EQ.'HT') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'MU') X88(I,13)=' 1 1 -1 -1'
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IF(C88(I,12).EQ.'MW') X88(I,13)='-1 1 -1 -1'

IF(C88(I,12).EQ.'MY') X88(I,13)='-1 1 1 -1'

IF(C88(I,12).EQ.'M2') X88(I,13)=' 1 1 -1 -1'

1FCC88(I,12).EQ.'M3)) X88(I,13)=' 1 1 1 -1'

IF(C88(I,12).EQ.'N4)) X88(I,13)=' 1 1 1 -1'

IF(C88C1,12).EQ.'M5') X88(I,13)='-1 1 -1 -1'

IF(C88(I,12).EQ.'M6') X88(I,13)='-1 1 -1 -1'

IF(C88(I,12).EQ.'H7') X88(I,13)=' 1 1 1 -1'

IF(C88(I,12).EQ.'M8') X88(I,13)=' 1 1 1 -1'

IF(C88(I,12).EQ.'M9') X88(I,13)=' 1 -1 1 -1'

IF(C88(I,12).EQ.'NJ') X88(I,13)=' 1 1 -1 -1'

IF(C88(I,12).EQ.'NVI) X88(I,13)=
3 1 1 -1 -1'

IF(C88(I,12).EQ.'N2') X88(I,13)=' 1 -1 1 -1'

IF(CBB(I,12).EQ.'N3') X88(I,13)=' 1 1 -1 -1'

IF(C88(I,12).EQ.'OD') X88(I,13)=' 1 -1 1 -1'

IF(C88(I,12).EQ.'DP') X88(I,13)='-1 1 1 1'

IF(C88(I,12).EQ.'PD') XB8(I,13)=' 1 1 1 1'

IF(C88(I,12).EQ.'PE') X88(I,13)=' 1 1 1 1'

IF(C88(12 12).EQ.'PF') X88(I,13)='-1 1 1 -1'

IF(C88(I,12).EQ.'PJ') X88(I,13)=' 1 1 1 -1'

IF(C88(I,12).EQ.'PS') X88(I,13)=' 1 1 1 -I'

IF(C88(I,12).EQ.'PV') X88(I,13)=I-1 1 1 -1'

IF(C88(I,12).EQ.IRFI) X88(I,13)=' 1 1 1 1'

IF(C88(I,12).EP.'RJ') X88(I,13)='-l -1 1 -1'

IF(C88(I,12).EQ.'RM') X88(I,13)='-l -1 1 -1'

IF(C88(13 12).EQ.'RP') X88(I,13)=' 1 1 1 1'

IF(C88C1,12).EQ.IRX') X88(I,13)'I-1 1 1 -1'

IF(C88(I,12).EQ.'R1') X88(I,13)=I-1 1 1 -1'

IF(C88(I,12).EQ.'R2') X88(I,13)=' 1 -1 1 -1'

IF(C88(I,12).EQ.'R3') X88(I,13)=I-l 1 -1 -1'

IF(C88(I,12).EQ.'R4') X88(I,13)=' 1 -1 1 -1'

IF(C88(I,12).EQ.'RS') X88(I,13)=I-1 -1 1 -l'

IF(C88(I,12).EQ.'R6') X88(I,13)='-1 -1 1 -1'

IF(C88(I,12).EQ.'P'7') X88(I,13)=' 1 -1 1 -1'

IF(C88(1312).EQ.'R8') X88(I,13)=' 1 -1 1 -lV

IF(C88(I,12).EQ.'R9') X88(I,13)='-1 1 1 -I'

IF(C88(I,12).EQ.ISB') X88(I,13)=' 1 1 1 1'

IF(C88(I,12).EQ.'SF') X88(I,13)=' 1 -1 1 -11

IF(C88(I12).EQ.'SJ') X88(I,13)=' 1 1 1 1V

IF(C88(I,12).EQ.'SM') X88(I,13)='-l 1 1 -1'

IF(C88(I,12).EQ.'SP') X88(I13)='-1 1 1 -1'

IF(C88(I,12).EQ.ISQ') X88(11 13)='-1 -1 1 -l'

IF(C88(I,12).EQ.'ST') X88CI,13)=' 1 1 1 1'

IF(C88(I,12).EQ.'S1') X88(I,13)='-1 -1 1 -1'

IF(C88(I,12).EQ.IS2') X88(I,13)='-1 1 1 -1'

IF(C88(I,12).EQ.'S3') X88(I,13)=' 1 1 1 -I'

IFCC88(I,12).EQ.'S4') X88(I,13)='-1 -1 1 -1'

IF(C88(I,12).EQ.'S5') X88(I,13)=' 1 1 1 -1'

IF(C88C1,12).EQ.'TA') X88(I,13)='-1 1 1 -1'

IF(C88(I,12).EQ.'TB') X88(I,13)=' 1 -1 -1 V'

IF(C88(I,12).EQ.'TC') X88(I.13)='-1 -1 1 -1'
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IF(C88(I,12).EQ.'TD') X88(I,13)='-1 -11-'
1FCC88(I,12).EQ.'TE') X88(I,13)='-l -11-'
IF(C88(I,12).EQ.'TF') X88(I,13)=' 1 1 -1 -1'
IFCC88(I,12).EQ.'TG') X88(11 13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'TH') X88C1,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'TI') X88(I,13)=' 1 1 1 -1)
IF(C88(I,12).EQ.'TJ') X88(I,13)=' 1 1 1 1'
IF(C88(I,12).EQ.'TK') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'TL') X88(I,13)='-l 1 1 -1'
IF(C88(I,12).EQ.ITM') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'TN') X88(I,13)='-l 1 1 1'
IF(C88(I,12).EQ.'TO') X88(I,13)='-l 1 -1 1'
IF(C88(I,12).EQ.'TP') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'Tg') X88(I,13)='-1 1 -1 -1'
IF(C88(I,12).EQ.'TR') X88(I,13)=' 1 -1 1 -1'
IF(C88C1,12).EQ.'TS') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.2TT') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'TV') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ..'TW') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'TX') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'TY') X88(1b13)='-1 1 1 -1'
IF(C88(I,12).EQ.'TZ') X88(I,13)=P 1 1 1 -1'
IF(C88(I,12).EQ.'T1') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'T2') X88(I,13)='-1 -1 -1 1'
IF(C88C1,12).EQ.'T3') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'T4') X88(I,13)=' 1 1 1 -1'
IFCC88(I,12).EQ.'T5') X88(I,13)='-l 1 1 -1'
IF(C88(I,12).EQ.'T6)) X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'T7') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.)T8') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'Tg') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'UB') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'UC') X88(I,13)=' 1 I 1 -1'
IF(C88C1,12).EQ.'UDI) X88(I,13)=) 1 -1 1 -1'
IF(C8C1312).EQ.'UE') X88(I,13)='-l -1 -1 1V
IF(C88(I,12).EQ.'UF') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ..'UG') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'UH') X88(I,13)='-1 -1 -1 1'
1FCC88(I,12).EQ.'UI') X88fNI,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.tJJ') X88(I,13)=' 1 1 -1 -1V
IF(C88(I,12).EQ.'JK') X88(I,13)=' 1 1 1 -1'
IF(CBB(I,12).EQ.'UL') X88(I,13)=' I 1 1 -1'
IF(C88(I,12).EQ.'UM') X88(I,13)='-l -1 1 -1'
IFCC88(I,12).EQ.2UN') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'UO') X88C1,13)='-1 1 1 -1'
IF(C88(I.12).EQ.'UP') X88(I,13)=' 1 1 1 1'
IF(C88(I,12).EQ.'UQ') X88(I,13)='-1 -1 -1 1'
IF(C88(I12).EQ.'UR') X88(I,13)=' 1 -1 1 -l'
IF(C88(1,12).EQ.'US') X88(I,13)=' 1 1 -1 -V'
IF(C88(I,12).T .'UT') X88(I,13)='-1 -1 1 -1)
IF(C88(I,12).EQ.'UU') X88(I,13)='-1 1 -1 -l'
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IF(C88(I,12).EQ.'UV') X88(I,13)=' 1 1 1 -I'
IF(C88(I,12).EQ.'UW') X88(I,13)=' 1 -1 1 V
IF(C88(I,12).EQ.'JX') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'UY') X88(I,13)='-1 1 1 -1'
IF(CS8(I,12).EQ.'UZ') X88(I,13)='-1 -1 -1 1'
IF(C88(I,12).EQ.'U2)) X88(I,13)=' 1 1 1 -l'
IF(C88(I,12).EQ.'U3') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'U4') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'US') X88cE,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'U6') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'U7') X88(I,13)='-1 -1 1 -11
IF(C88(I,12).EQ.'U8') X88(I,13)=' 1 1 -1 -11
IF(C88(I,12).EQ.)U9') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'VH') X88(I,13)='-l -1 1 -1'
IF(C88(I,12).EQ.'VQ') X88(I,13)=' 1 1 -1 -1'
IF(C88(11 12).EQ.'WA') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'WC') X88(I,13)='-1 -1 1 -1'
IF(C88(I,12).EQ.'WD') X88(11 13)=' 1 1 -1 -1'
IF(C88(13 12).EQ.'WE)) X88(I,13)=' 1 -1 1 -l'
IF(C88(I,12).EQ.'WF') X88(I,13)=' 1 1 1 -11
IF(C88(I,12).EQ.'WGI) X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'WH') X88(I13)=' 1 1 1 -1'
IF(C88C1,12).EQ.'WI') X88(I,13)=' 1 -1 1 1'
IF(C88(I,12).EQ.'WJ') X88(I,13)='-1 1 -1 -1'
IF(C88(I,12).EQ.'WK') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'WL') X88(11 13)=' 1 -1 1 -1)
IF(C88(I,12).EQ.'WH') X88(13 13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'WT') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'WU') X88(I,13)=' 1 1 1 1'
IF(C88(I,12).EQ.'WV') X88(I,13)=)-1 -1 1 -11
IF(C88(I,12).EQ.'WZ') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'W1') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'W2') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'W3') X88(I,13)=I-1 -1 -1 1'
IF(C88(I12).EQ.'W4') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'WS') X88(I,13)=' 1 1 1 -1'
IF(C88CI12).EQ.'W6') X88(I,13)='-1 1 1 -1V
IF(C88(I12).EQ.'W7') X88(I13)='-1 1 1 -V1
IF(C88(I,12).EQ.'W8') X88(1,13)=' 1 1 -1 -1V
1FCC88(I,12).EQ.'W9') X88(I,13)=' 1 -1 1 -V1
IFCC88(I,12).EQ.'YM') X88(11 13)='-1 1 1 1V
IF(C88(I,12).EQ.'YY') X88(I,13)='-1 1 1 1'
IF(C88(I,12).EQ.'YZ') X88(I,13)=I-1 1 1 11
IFCC88(I,12).EQ.'ZA') X88(I,13)='-1 -1 1 -1V
IF(C88(I,12).EQ.'ZB') X88(I,13)='-l -1 1 -1'
IF(C88(I,12).EQ.'ZC') X88(I.13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'ZE') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'ZG') X88(I,13)=' 1 1 1 1'
IF(C88(I,12).EQ.'ZK') X88(I,13)=)-1 1 1 -1V
IF(C88(I,12).EQ.'ZL') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'ZN') X88(1,13)=' 1 1 1 1'
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1FCC88(I,12).EQ.'ZS') X88(1,13)='-1 -11-'
IF(C88(I,12).EQ.'lA') X88(I,13)=' 1 1 1 1'
IF(C88C1,12).EQ.'1B') X8I,13)=' 1 -1 -1 1'
IF(C88(I,12).EQ.'1C') X88(I,13)='-1 1 1 1
IF(C88C1,12).EQ.'1D') X88(I,13)=' 1 -1 1 -11
IF(C88(I,12).EQ.'1F') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'1H') X88(I,13)=' 1 1 1 -11
IF(C88(I,12).EQ.'1K') X88CI,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'1M') X88C1,13)=' 1 1 1 V'
IF(C88(I,12).EQ.'1P') X88(I,13)=' 1 1 -1 1'
IF(C88(I,12).EQ.'1TI) X88(I,13)=' 1 -1 1 -11
IF(C88(I,12).EQ.21U') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.'1V') X88(I,13)=' 1 1 -1 -1'
IF(C88(I,12).EQ.'2B') X88(I,13)=' 1 -1 1 -1'
IFCC88(I12).EQ.'2D') X88(I,13)=' 1 1 1 -1'
IF(C88(I12).EQ.'7A') X88(I,13)=' 1 1 1 -1'
IF(C88(I,12).EQ.27C') X88(I,13)=' 1 1 1 1'
IFCC88(I12).EQ.'7S') X88(I,13)='-1 -1 -1 11
IF(C88(I,12).EQ.'7V') X88(I13)='-1 -1 1 -11
IF(C88(I,12).EQ.'7Z') X88(I,13)=I-l -1 1 -1'
IFCC88(I,12).EQ.'8C') X88(I,13)=' 1 -1 1 -1'
IF(C88(I,12).EQ.'851) X88(I13)=-. 1 1 -11
IF(C88(I,12).EQ.'9C') X88(I,13)='-1 1 1 -1'
IF(C88(I,12).EQ.'96') X88(1R13)=' 1 1 -1 -1'

ACAD LVL

IF(C88(I,13).EQ.'A') THEN
X88(I.14)=' 1 1 1'

ELSE IF(C88(I,13).EQ.'B') THEN
X88(I,14)=' 1 1 1'

ELSE IF(C88(I,13).Eg.2C') THEN
X88(I.14)=' 1 1 11

ELSE IF(C88(I,13).EQ.'D') THEN
X88(I,14)=' 1 1 1'

ELSE IF(C88(I,13).EQ.'E)) THEN
X88(I,14)=' 1 1 1.'

ELSE IF(C88(I,13).EQ.2F') THEN
X88(I,14)=' 1 1 11

ELSE 1FCC88(I,13).EQ.'G') THEN
X88(I,14)=' 1 1 1'

ELSE IF(C88(I,13).EQ.'H') THEN
X88(I,14)=' 1 1 1'

ELSE IF(C88(I,13).EQ.'I') THEN
X88CI,14)=' 1 1 1'

ELSE IF(C88(I,13).EQ.'J') THEN
X88(I,14)=' 1 1 11

ELSE IF(C88(I,13).EQ.'N') THEN
X88(I,14)=' 1 1 11
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ELSE IF(C88(I,13).EQ.'O') THEN
X88(I,14)='-1 1 1'

ELSE IF(C88C1,13).EQ.'P') THEN
X88(I,14)=' 1 -1 i'

ELSE IF(C88(I,13).EQ.'Q') THEN

ELSE IF(C88(I,13).EQ.'R') THEN
X88(I,14)=' 1 1 -1'

ELSE IF(C88(I,13).EQ.'S') THEN
X88(I,14)=' 1 -1 -1)

ELSE IF(C88(I,13).EQ.'T') THEN
X88(I,14)=' 1 -1 -1)

ELSE IF(C88(I,13).EQ.'U') THEN
X88(I,14)=' 1 -1 -1)

ELSE IF(C88(I,13).EQ.'Y') THEN

ELSE
X88(I,14)='-1 -1 -1)

ENDIF

********ACAD SPEC *****

IF(C88(I,14).EQ.'OCI) X88(I16)=' 1 1 1 1 1 1 1'
IF(C88(I,14).EQ.'OG') X88(13 15)=I-1 1 1 1 1 1 1'
IF(C88(I,14).EQ..'OI') X88(I,15)=' 1 -1 1 1 1 1 1'
IF(C88(I.14).EQ.'OS') X88(I,1S)=I-1 -1 1 1 1 1 11
1FCC88C1,14).EQ.'OY') X88(1,15)=' 1 1 -1 1 1 1 11
IF(C88(I14).EQ.'1A') X88(I3 15)='-l 1 -1 1 1 1 1'
IF(C88(I.14).EQ.'1B') X88(1,15)=' 1 -1 -1 1 1 1 1'
IF(C88(I,14).EQ.'1C') X88(Io1S)='-1 -1 -1 1 1 1 11
IF(CI8(I,14).EQ.'1Y') X88(I,15)=' 1 1 1 -1 1 1 11
IF(C88(I.14).EQ.'2A') X88(I,16)='-1 1 1 -1 1 1 1V
1FCC88(I,14).EQ.'2B') X88(I,15)=' 1 -1 1 -1 1 1 V'
IF(C88(I14).EQ.'2C') X88(I,1s)='-l -1 1 -1 1 1 1.'
IF(C88(I,14).EQ.'2D') X88(I,15)=' 1 1 -1 -1 1 1 1'
IF(C88(I,14).EQ.'2E') X88(I?15)='-1 1 -1 -1 1 1 1'
IF(C88CI,141).EQ.'2F') X88(I,1S)=' 1 -1 -1 -1 1 1 1)
IF(C88(I,14).EQ.'2G') X88(I,15)='-1 -1 -1 -1 1 1 1'
IF(C88(I14).EQ.'2H') X88(I,15)=' 1 1 1 1 -1 1 1'
IF(C88(I,14).EQ.'2I') X88(I,15)='-l 1 1 1 -1 1 1'
IF(C88(I14).EQ.'2K') X88CI,1S)=' 1 -1 1 1 -1 1 11
IF(C88(I,14).EQ.'2Y') X88(I,1.5)='-1 -1 1 1 -1 1 11
IF(C88(I,14).EQ.'3A') X88(I,15)=' 1 1 -1 1 -1 1 1V
IF(C88(I,14).EQ.'3B') X88(I,15)=I-1 1 -1 1 -1 1 1'
IF(C88(I,14).EQ.'3Y') X88(I,15)=' 1 -1 -1 1 -1 1 11
IF(C88(I.14).EQ.'4A') X88(I,16)='-1 -1 -1 1 -1 1 1i
IF(C88(I,14).EQ.'4B') X88(I,15)=' I 1 1 -1 -1 1 11
IF(C88(I,14).EQ.'4C') X88CI)15)=I-1 1 1 -1 -1 1 1'
IF(C88(I,14).EQ.'4D') X88(I,15)=' 1 -1 1 -1 -1 1 11
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IF(C88(I,14).El.'4E') X88(I,15)='-1 -1 1 -1 -1 1 1'
IF(C88(I,14).EQ.'4F') X88(I,15)=' I1 -1 -1 -1 1 1'
IF(C88(I,14).EQ.'4G') X88(I,15)='-1 1 -1 -1 -1 1 1'
IF(C88(I,14).EQ.'41') X88(I,15)=' 1 -1 -1 -1 -1 1 1'
IF(C88(I,14).EQ.'41') X88(I,L0)W-1 -1 -1 -1 -1 1 1'
IF(C88(I,14).EQ.'4J') X88(I,15)=' 1 1 1 1 1 -1 1'
IF(C88(I,14).EQ.'41(') X88(I,15)='-1 1 1 1 1 -1 1'
IF(C88(I,14).EQ.'4L') X88(I,15)=' 1 -1 1 1 1 -1 1'
IF(C88(I,14).Eg.'4M') X88(I,15)='-1 -1 1 1 1 -1 1'
IF(C88(I,14).EQ.'4N') X88(I,15)=' 1 1 -1 1 1 -1 11
IF(C88(I,14).EQ.'40') X88(I,15)='-l 1 -1 1 1 -1 11
IF(C88(I,14).EQ.'4P') X88(I,15)=' 1 -1 -1 1 1 -1 1'
IF(C88(I,14).EQ.'4Q') X88(11 15)='-1 -1 -1 1 1 -1 1'
IF(C88(I,14).EQ.'4t') X88(1,15)=' 1 1 1 -1 1 -1 1'
IF(C88(I,14).EQ.'4S') X88(I,15)='-1 1 1 -1 1 -1 1'
IF(C88(I)14).EQ.14T') X88(11 15)=' 1 -1 1 -1 1 -1 1'
IF(C88(I,14).EQ.'4U') X88(I,15)='-1 -1 1 -1 1 -1 1'
IF(C88(I,14).EQ.'4V') X88(I,15)=' 1 1 -1 -1 1 -1 1'
IF(C88(I14).EQ.'4W') X88(I?15)='-l 1 -1 -1 1 -1 1'
IF(C88(I,14).EQ.'4Y') X88(I,15)=' 1 -1 -1 -1 1 -1 11
IF(C88(1414).EQ.'5A') X88(I,15)=I-1 -1 -1 -1 1 -1 1'
IF(C88(I,14).EQ.I5BI) X88(I,15)=' 1 1 1 1 -1 -1 1'
IF(C88(I,14).EQ.'5Y') X88(I,15)='-1 1 1 1 -1 -1 1'
IF(C88(I,14).EQ.'6A') X88(I)15)=' 1 -1 1 1 -1 -1 11
IF(C88(I,14).EQ.'6B') X88(I,15)='-1 -1 1 1 -1 -1 1'
IF(C88(I,14).EQ.'6C') X88(I,15)=' 1 1 -1 1 -1 -1 1'
IF(C88(I14).EQ.16D') X88(I,15)='-1 1 -1 1 -1 -1 1'
IF(C88(I,14).EQ.'6E') X88(I15)=' 1 -1 -1 1 -1 -1 -1'
IF(C88(I,14).EQ.'OF') X88(I,15)='-1 -1 -1 1 -1 -1 -11
IF(C88(I.14).EQ.)6G') X88(I,15)=' 1 1 1 -1 -1 -1 -1'
IF(C88(I,14).EQ.2611') X88(I,15)='-l 1 1 -1 -1 -1 -1V
IF(C88(I,14).EQ.'61') X88(I,15)=' 1 -1 1 -1 -1 -1 -1'
IF(C88(I,14).EQ.'6J') X88(I,15)='-1 -1 1 -1 -1 -1 -11
IF(C88(I,14).EQ.'6Y') X88(I,15)=' 1 1 -1 -1 -1 -1 -1'
IF(C88(I.14).EQ.27A') X88(I15)='-l 1 -1 -1 -1 -1 -11
IF(C88(I,14).EQ.'7B') X88(I,15)=' 1 -1 -1 -1 -1 -1 -1'
IF(C88(I,14),EQ.17C') X88(I,15)=I-l -1 -1 -1 -1 -1 -1'
IF(C88(I,14).EQ.'7D') X88(I15)=' 1 1 1 1 1 1 -1'
IF(C88(I,14).EQ.'7E') X88(I,15)=I-1 1 1 1 1 1 -1'
IF(C88(I,14).EQ.17F?) X88(I,15)=' 1 -1 1 1 1 1 -1'
IF(C88(I,14).EQ.'7G') X88(I,15)='-1 -1 1 1 1 1 -1'
IF(C88(I,14).EQ.'7Y') X88(I,15)=' 1 1 -1 1 1 1 -1'
IF(C88(I,14).EQ.'8A') X88(I)15)=I-l 1 -1 1 1 1 -1'
IF(C88C1,14).EQ.'8B') X88(I,15)=' 1 -1 -1 1 1 1 -1'
IF(C88(I,14).EQ.'8C') X88(I,15)=I-1 -1 -1 1 1 1 -1'
IF(C88(I,14).EQ.'8D') X88(I,15)=' 1 1 1 -1 1 1 -1'
IF(C88(I,14).EQ.28E') X88(I,15)='-1 1 1 -1 1 1 -1'
IF(C88(I.14).EQ.'8F') X88(I,15)=' 1 -1 1 -1 1 1 -11
IF(C88(I,14).EQ.'8G') X88(I,15)=I-1 -1 1 -1 1 1 -1'
IF(C88(I,14).EQ.'81') X88(I,1s)=' I 1 -1 -1 1 1 -1'
IF(C88(I,14).EQ.'8Y') X88(I,15)='-1 1 -1 -1 1 1 -1'
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IF(C88(I,14).EQ.'9A') X88(I,15)=' 1 -1 -1 -1 1 1 -V'
IF(C88(I,14).EQ.'9B') X88(I,15)='-1 -1 -1 -1 1 1 -1'
IF(C88(I,14).EQ.'9C') X88C1,15)=' 1 1 1 1 -1 1 -1'
IF(C88(I,14).EQ.'9D') X88(I,15)='-1 1 1 1 -1 1 -1'
IF(C88(I14).EQ.'9E') X88(I,15)=' 1 -1 1 1 -1 1 -1V
IF(C8C1,14).EQ.'9F') X88(I,15)='-l -1 1 1 -1 1 -1'
IF(C88(I,14).EQ.'9G') X88(I,15)=' 1 1 -1 1 -1 1 -1'
IF(C88(I,14).EQ.'9H') X88(I,15)='-1 1 -1 1 -1 1 -1'
IF(C88CI,14).EQ.'9I') X88(I,1S)=' 1 -1 -1 1 -1 1 -1'
IF(C88(I,14).EQ.'9Y') X88(I,15)='-1 -1 -1 1 -1 1 -V
IF(C88(I14).EQ.'YY') X88(I,15)=' 1 1 1 -1 -1 1 -1'
T(C88(I,14).EQ.'zZZ) X88(I,15)='-1 1 1 -1 -1 1 -1'

DAFSC PREFIX *****

DAFSC =C88C1,.i5)
FIRST =DAFSC(1:1)
IF (FIRST.EQ.'A') THEN
X88CI,16)=' 1 1 11

ELSE IF (FIRST.EQ.'SI) THEN
X.88(I,16)='-1 1 1V

ELSE IF (FIRST.EQ.IF') THEN
X88(1,16)=' 1 -1 1'

ELSE IFCCFIRST.EQ.)K)) THEN

ELSE !F(FIRST.EQ.'H') THEN
X88(T,le)=' 1 1 -1'

ELSE IF(FIRST.EQ.'N') THEN
X88(I.16)=I-l 1 -Vp

ELSE IFCFIRST.EQ.'X') THEN
X88(I,16)=' 1 -1 -1)

ELSE
X38(I.16)='-1 -1 -1'
GO TO 150

END IF

********DASFC DIGIT *****

GO TO 160
150 DIGIT =C88(1,15)

SECON =DIGIT(1:4)
IF(SECON.EQ. 1025') THEN

X88(I,17)=' 1 1 1 1 1'
ELSE IF(SECON.EQ.'1035') THEN

X88(I,17)='-1 1 1 1 1'
ELSE IF(SECON.EQ.21045') THEN

X88(I,17)=' 1 -1 1 1 1'
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ELSE IF(SECON.EQ.'1OSS') THEN
X88(I,17)='-l -1 1 1 1'

ELSE IF(SECON.EQ.'1065') THEN
X88(I,17)=' 1 1 -1 1 1'

ELSE IF(SECON.EQ.'1115') THEN
X88(I,17)='-1 1 -1 1 1'

ELSE IF(SECON.EQ.'1145') THEN
X88(I,17)=' 1 -1 -1 1 1'

ELSE IFCSECON.EQ.'1165') THEN
X88(I,1t7)='-1 -1 -1 1 1'

ELSE IF(SECON.EQ.'1235') THEN
X88(I,17)=' 1 1 1 -1 1'

ELSE IF(SECON.EQ.'1315') THEN
X88(I,17)=I-1 1 1 -1 1'

ELSE IF(SECON.EQ.'1325') THEN
X88(I,17)=' 1 -1 1 -1 1'

ELSE IF(SECON.EQ.'1335') THEN
X88(I,17)='-1 -1 1 -1 1'

ELSE IF(SECON.EQ.'1355') THEN
X88(I.17)=' I 1 -1 -1 1'

ELSE IF(SECON.EQ.'1365)) THEN
X88(I.17)=I-1 1 -1 -1 1'

ELSE IF(SECON.EQ.'1406') THEN
X88CI,17)=' 1 -1 -1 -1 11

ELSE IF(SECON.EQ.)1415') THEN
X88(I,17)='-1 -1 -1 -1 1'

ELSE IF(SECON.EQ.'1425') THEN
X88(I.17)=' 1 1 1 1 -1V

ELSE IF(SECON.EQ.'1435') THEN
X88(I.17)='-1 1 1 1 -1'

ELSE IF(SECON.EQ.21445') THEN
X88(I,17)=' 1 -1 1 1 -1'

ELSE IF(SECON.EQ.'1455') THEN
X88(I,17)=J-l -1 1 1 -1'

ELSE IF(SECON.EQ.'1465') THEN
X88(11 17)=' 1 1 -1 1 -1'
ELSE IF(SECON.EQ.'1475') THEN
X88(I.17)=I-1 1 -1 1 -1'
ELSE IF(SECON.EQ.'1485') THEN
X88(I,17)=' 1 -1 -1 1 -1i
ELSE IF(SECON.EQ.'1495') THEN
X88(I,17)='-1 -1 -1 1 -1'

ELSE
X88(I,17)='-1 -1 -1 -1 -11

ENDIF
GO TO 180

160 DIGIT =C88(I,15)
SECON =DIGIT(2:4)
IF(SECON.EQ. '1025') THEN

X88(I,17)=' 1 1 1 1 1'
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ELSE IF(SECON.EQ.'1036') THEN
X88C1,17)='-1 1 1 1 1'

ELSE IF(SECON.EQ.)1045') THEN
X88(I,17)=' 1 -1 1 1 1'

ELSE IF(SECON.EQ.'1OSS') THEN
X88(I,17)='-l -1 1 1 1'

ELSE IF(SECON.EQ.'1065') THEN
X88(I,17)=' I 1 -1 1 1'

ELSE IF(SECON.EP.'1115') THEN
X88(I17)='-1 1 -1 1 11

ELSE IF(SECON.EQ.'1145') THEN
X88(I,17)=' 1 -1 -1 1 11

ELSE IF(SECON.EQ.'1165') THEN
X88(I,17)=I-1 -1 -1 1 11

ELSE IF(SECON.EQ.'1235') THEN
X88(I,17)=' 1 1 1 -1 1'

ELSE IF(SECON.Eg.'1315') THEN
X88(I,17)='-l 1 1 -1 1'

ELSE IF(SECON.EQ.'1325)) THEN
X88(I,17)=' 1 -1 1 -1 1'

ELSE IF(SECOII.EQ.)13351) THEN
X88(I,17)='-1 -1 1 -1 1'

ELSE IF(SECON.EQ.'13S5') THEN
X88(I,17)=' 1 1 -1 -1 1'

ELSE IF(SECON.EQ.'1365') THEN
X88(I,17)='-1 1 -1 -1 1'

ELSE IF(SECON.EQ.'1406') THEN
X88(I,17)=' 1 -1 -1 -1 1'

ELSE IF(SECON.EQ.'1415') THEN
X88(I.17)='-1 -1 -1 -1 1'

ELSE IF(SECON.EQ.'1425') THEN
X88(I,17)=' 1 1 1 1 -1)

ELSE IF(SECON.EQ.'1436') THEN
X88(I,17)=I-1 1 1 1 -11

ELSE IF(SECON.EQ.)1445') THEN
X88(I,17)=' 1 -1 1 1 -1'

ELSE IF(SECON.EQ.'1455)) THEN
X88(12 17)='-1 -1 1 1 -11

ELSE IF(SECON.EQ.'1465)) THEN
X88(1,17)=' 1 1 -1 1 -1'

ELSE IF(SECON.EQ.'147S') THEN
X88(I17)='-1 1 -1 1 -1'

ELSE IF(SECcJN.EQ.'1485') THEN
X88(I,17)=' 1 -1 -1 1 -1'

ELSE ID(SECON.EQ.'149S') THEN
X88(I,17)='-1 -1 -1 1 -1'

ELSE
X88C1,17)='-1 -1 -1 -1 -1'

ENDIF
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PAFSC PREFIX *****

180 PAFSC =C88(I,16)
FIRST =PAFSC(1:1)
IF (FIRST.EQ.'A') THEN
X88(I,18)=' 1 1 11

ELSE IF (FIRST.EQ.'s') THEN
X88(I,18)='-1 1 1V

ELSE IF (FIRST.EQ.'F)) THEN
X88(I,18)=' 1 -1 V'

ELSE IF(CFIRST.EQ.'K') THEN
X88(I,i8)='-1 -1 1)

ELSE IF(FIRST.EQ.'M') THEN
X88(I,18)=' 1 1 -1)

ELSE IF(FIRST.EQ.'N') THEN

ELSE IF(FIRST.EQ.'X') THEN
X88(I,i8)=' 1 -1 -1)

ELSE
X88(I,18)='-1 -1 -1)

GO TO 120
END IF

********PASFC DIGIT *****

GO TO 130
120 DIGIT C88(I,15)

SECON DIGIT(1:4)
iF(SECON.EQ. '1025') THEN
X88(I,19)=' 1 1 I 1 1'

ELSE IF(SECON.EQ.'1035') THEN
X88CI,19)=)-1 1 1 1 11

ELSE IF(SECON.EQ.'1045)) THEN
X88(I,19)=' 1 -1 1 1 1'

ELSE IF(SECON.EQ.'1055') THEN
X88(I,19)='-i -1 1 1 11

ELSE IF(SECON.EQ.'1065)) THEN
X88(I,19)=' 1 1 -1 1 11

ELSE IF(SECON.EO..'1115') THEN
X88(I,19)='-i 1 -1 1 11

ELSE IF(SECON.EQ.'1145') THEN
X88(I,19)=' 1 -1 -1 1 1'

ELSE IF(SECON.EQ.'1165') THEN
X88(I.19)='-1 -1 -1 1 1'

ELSE IF(SECON.EQ.'1235') THEN
X88(I,19)=' 1 1 1 -1 1'

ELSE IF(SECON.EQ.'1315') THEN
X88(I,19)='-l 1 1 -1 1'
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ELSE IF(SECON.EO.'1325') THEN
X88(I,19)=' 1 -1 1 -1 1'

ELSE IF(SECON.EQ.'133S') THEN
X88(I,19)=-1 -1 1 -1 1'

ELSE IF(SECON.EQ.21355') THEN
X88(I1 19)=' 1I 1 11

ELSE IFCSECON.EQ.'i36S') THEN
X88(I,19)='-l 1 -1 -1 1'

ELSE IF(SECON.EQ.11406') THEN
X88(I,19)=' 1 -1 -1 -1 11

ELSE IF(SECON.EQ.'141S') THEN
X88(I,19)='-1 -1 -1 -1 1'

ELSE IF(SECON.EQ.'1425') THEN
X88(I,19)=' 1 1 1 1 -V'

ELSE IF(SECON.EQ.'14351) THEN
X88(I,19)='-1 1 1 1 -1'

ELSE IF(SECON.EQ.)1445') THEN
X88(I,19)=' 1 -1 1 1 -1'

ELSE IF(SECON.EQ.'14551) THEN
X88(11 19)='-1 -1 1 1 -11

ELSE IF(SECON.EQ.21465') THEN
X88(I,19)=' 1 1 -1 1 -1'

ELSE IF(SECON.EQ.)1475') THEN
X88(I,19)='-1 1 -1 1 -1'

ELSE IF(SECON.EQ.11485') THEN
X88(I,19)=' 1 -1 -1 1 -11

ELSE iLF(SECN.Enq.!j495') THEN
X88(I,19)='-1 -1 -1 1 -11

ELSE
X88(I,19)=I-1 -1 -1 -1-1

END IF
GO TO 140

130 DIGIT =C88(I,15)
SECON DIGIT(2:4)
IF(SECON.EQ. '1O25') THEN

X88(I,19)=' 1 1 1 1 V
ELSE IF(SECON.EQ.'1035') THEN
X88(I,19)='-l 1 I 1 1'

ELSE IF(SECON.EQ.'1045') THEN
X88(I,19)=' 1 -1 1 1 1'

ELSE IF(SECON.EQ.'1055') THEN
X88(I,19)='-1 -1 1 1 1'

ELSE IF(SECON.EQ.'1065') THEN
X88(I,19)=, 1 1 -1 1 11

ELSE IFCSECON.EQ.'1115') THEN
X88(I,19)='-1 1 -1 1 1'

ELSE IF(SECON.EQ.'1145') THEN
X88(I,19)=' 1 -1 -1 1 1'

ELSE IF(SECON.EQ.21165') THEN
X88(I,19)='-1 -1 -1 1 1'
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ELSE IF(SECON.EQ.'1235') THEN
X88(I,19)=' 1 1 1 -1 1'

ELSE IF(SECON.EQ.'1315') THEN
X88(I,19)='-1 1 1 -1 1'

ELSE IF(SECON.EQ.'1325') THEN
X88(I,19)=' 1 -1 1 -1 1'

ELSE IF(SECON.EQ.'1335') THEN
X88(I,19)='-1 -1 1 -1 1'

ELSE IF(SECON.EQ.'1355') THEN
X88(I,19)=' 1 1 -1 -1 11

ELSE IF(SECON.EQ.'1365') THEN
X88(I,19)=I-1 1 -1 -1 1'

ELSE IF(SECON.EQ.'1406') THEN
X88(1,19)=' 1 -1 -1 -1 1'

ELSE IF(SECON.EQ.'1415') THEN
X88(I,19)=I-1 -1 -1 -1 1'

ELSE IF(SECON.EQ.'1425') THEN
X88(I,19)=' 1 1 1 1 -1'

ELSE IF(SECON.EQ.'143S') THEN
X88(I,19)=I-1 1 1 1 -1'

ELSE IF(SECON.EQ.'1445') THEN
X88(IL,19)=' 1 -1 1 1 -1'

ELSE IFCSECON.EQ.'1455') THEN
X88(I,19)='-1 -1 1 1 -1,

ELSE IF(SECON.EQ.'1465') THEN
X88(I.19)=' 1 1 -1 1 -12

ELSE IF(SECON.EQ.'1475') THEN
X88(I,19)=I-1 1 -1 1 -1'

ELSE IF(SECON.EQ.21485') THEN
X88(I,19)=' 1 -1 -1 1 -1'

ELSE IF(SECON.EQ.'1495') THEN
X88(12 19)=I-1 -1 -1 1 -11

ELSE
X88(I,19)=I-1 -1 -1 -1 -1'

END IF

PRIORSV

140 1FCC88(I,17).EQ.'O') X88(I,20)='-l 1'
IF(C88(I,17).EQ.'1') X88(I,2O)=' 1 11
IF(C88(I,17).EQ.'2') X88(I,2O)='-1 -1'
IF(C88(I,17).EQ.'3') X88(I,20)=' 1 -1'

SOC

IF(C88(I,18).EQ.'A') X88CI,21)='-1 1 1'
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IF(C88(I,18).Eg.'B') X88(I,21)='-l 1 11
IF(C88(I,18).EQ.'C') X88(I,21)='-l 1 -1'
IF(C88(I,18).EQ.'D'5 X88(I,21)=' 1 1 1)
IF(C88(I,18).EQ.'E') X88C1,21)='-l -1 1'
IF(C88(1,18).Eg.'F') X88(I,21)=' I 1 -1'
IF(C88(I,18).EQ.'G') X88(I,21)=' 1 -1 1'
IF(C88(I,18).EQ.'H') X88(I,21)='-l 1 1.'
IF(C88(I,18).EQ.'II) X88(I,21)='-1 1 1V
IF(C88(I,18).EQ.'3') X88(I,21)='-1 -1 -l'
IF(C88(I,18).EQ.'K') X88(I,21)='-1 1 1'
IF(C88(I,18).EQ.'L') X88(I,21)=I-1 1 1'
IF(C88(I,18).EQ.'MI) X88(I,21)='-l 1 1'
IF(C88(I,18).EQ.'N') X88(I,21)='-l 1 V
IF(C88(I,18).EQ.'O') X88(I,21)='-. 1 P'
IF(C88(I,18).EQ.'P') X88(I,21)='-l 1 1'
IF(C88(I,18).EQ.'Q') X88(I,21)=' 1 -1 -1'
IF(C88(I,18).EQ.'R') X88(I,21)=I-1 1 -1'

IF(C88(I18).EQ.'T') X88(I,21)='-l -1 -1'
IF(C88(I,18).EQ.'U') X88(I,21)='-1 -1 -1'
IF(C88(I,18).EQ.'V') X88(I,21)='-1 -1 -1'
IF(C88(I,18).EQ.'V') X88(I,21)='-l -1 -1'
IF(C88(I,18).EQ.'X') X88(I,21)='-l -1 -1'
IF(C88(I,18).EQ.'y') X88(I,21)=I-1 1 1'
IF(C88(I,18).EQ.IZ') X88(I,21)='-1 1 V
IF(C88(I,18).EQ.'1') X88(I,21)='-1 1 1'
IF(CS8(I,18).EQ.'2') X88(I,21)='-1 1 11
IF(C8(I,18).EQ.'3') X88(I5 21)=I-l 1 1'
IF(C88(I,18).EQ.'4') X88(I,21)=I-l 1 1'
IF(C88(I,18).EQ.'5') X88(I,21)=I-i 1 1'

***~****RACE *****

1FCC88(I,19).EQ.'C') ',88(I,22)='-1 -1 -1'
IF(C88(I,19).EQ.'H') X88(I,22)=I-1 1 11
IF(C88(I,19).EQ.'N') X88(I,22)=' 1 -1 1'
IF(C88(I,19).EQ.'R') X88(I,22)='-1 -1 1V
IF(C88(I,19).EQ.'I) X88(I,22)=' 1 1 -11
IF(C88(I,19).EQj.'Z') X88(1,22)=' 1 1 -I'

COMP

IF(C88(I,20).EQ.'VI) XSB(I,23)=' 1 -1'
IFC(C88(I,20).NE.'R').AND.(C88(I 322).NE.'V')) X88(I,23)=I-1 11
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********SEX *****

IF(C88(I,21).EQ.'M') X88(I,24)='-1'
IF(C88(I,21).EQ.'F') X88(I,24)=' 1'

FLYMONTH

X88(I ,25)=C88(I ,22)

********RETAIN *****

********STAY 1 I****

*****LEAVE =0*****

X88(I,26)=C88(I)23)

30 CONTINUE

***THE FOLLOWING CODE RANDOMLY SELECTS VECTORS FOR THE TRAINING SET
***AND WRITES THE VECTORS TO A FILE.

DO 500 J=1)NR1

WRITE(*,*) 'INIT CHOICE' ,J
CHOICECJ)=0

500 CONTINUE

DO 530 11 =1,NITRAIN
WRITE(*,*) 'SELECTING 88 TRAIN'JI

14 CONTINUE
TEMP=RNUNF()
JJ=NINTCTEMP*NRI)
IF (CJJ.LE.NRI).AND.(JJ.GT.O)) THEN
DO 510 K =1,NR1
IF (JJ.EQ.CHOICE(K)) GO TO 14

510 CONTINUE
DO 520 KK=1,N1COL
XTR88(II,KK)=X88(JJ IKK)

520 CONTINUE
CHOICE(II)=3J

ELSE
GO TO 14

END IF
530 CONTINUE
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DO 540 I=1,NITRAIN
WRITE(*,*)'WRITING 88 TRAIN',I
NOISE=RNUNF()
WRITE(13,200)XTR88(I,2),XTR88(I,4),XTR88(I,7),XTR88(I,8),

;XTR88C1,12) ,XTR88(I,14) ,XTR88(I,19),
;NOISE,XTR88(I ,NICOL)

WRITE(23,21O)XTR88(I,2),XTR88(I,4),XTR88(I,7),XTR88(I,8),
;XTR88(I,12),XTR88(I,14),XTR88(I,19),
;NOISE,XTR88(I ,NICOL)

540 CONTINUE

***THE FOLLOWING CODE RANDOMLY SELECTS VECTORS FOR THE TEST SET
***AND WRITES THE VECTORS TO A FILE.

DO 550 II=1,N1TEST
WRITE(*,*)'SELECTING 88 TEST',II

15 CONTINUE

TEMP=RNUNF()
JJ=NINT(TEMP*NRI)
IF ((JJ.LE.NRI).AND.(JJ.GT.O)) THEN

DO 560 K=1,NRI
IF (JJ.EQ.CHOICE(K)) GO TO 15

560 CONTINUE
DO 570 KK = 1,NlCOL

XTS88(II ,KK)=X88(JJ IKK)
570 CONTINUE

CHOICE(II+NlTRAIN)=JJ
ELSE
GO TO 15

END IF
550 CONTINUE

DO 580 1 I 1NTEST
WRITE(*,*) WRITING 88 TEST',I
NOISE=RNUNF()
WRITE(14,200)XTS88(I,2),XTS88(I,4),XTS88(I,7),XTS88(1,8),

;XTS88(I,12),XTS88(I,14),XTS88(I,19),
;NOISE,XTS88(I ,NlCOL)

WRITE(24,210)XTS88(I,2),XTS88(I,4))XTS88CI,7))XTS88(I,8),
;XTS88(I,12) 2XTS88(I,14) ,XTS88(I,19),
;NOISE,XTS88(I ,NICOL)

580 CONTINUE

***THE FOLLOWING CODE READS THE VECTORS NOT SELECTED FOR THE TRAINING
***OR TEST SET INTO A VALIDATION FILE.

CNT=O
DO 590 I=1,NR1

DO 600 K=1,NRl
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IF (I.EQ.CHOICE(K)) GO TO 590
600 CONTINUE

CNT=CNT+ 1
WRITE(* ,*) 'SELECTING 88 VALIDATION' ,CNT
DO 610 KK=b1DCOL

XVL88(CNT,KK)=X88(I ,1K)
610 CONTINUE
590 CONTINUE

DO 620 I=1,CNT
WRITE(*,*) 'WRITING 88 VALIDATION' ,I

NOISE=RNUNF()
WRITE(15,200)XVL88(I,2) 1XVL88(I,4) ,XVL88(I,7) ,XVL88(I,8),

;XVL88(I,12) ,XVL88CI,14),XVL88(I,19),
;NOISE,XVL88(I ,NICOL)

WRITE(25,210)XVL88(I,2),XVL88(I,4),XVL88(I,7),XVL88(I,8),
;XVL88(I,12) ,XVL88(I,14),XVL88(I,19),

;DE,XVL88(I ,NiCOL)
620 CONTINUE

*****MULTILAYER PERCEPTRON OUTPUT FILE FORMAT
200 FORMAT(7(A20) ,F8.6,5X,A20)

*****DISCRIMINANT ANALYSIS OUTPUT FILE FORMAT

210 FORMAT(3(A20)/3(A20)/A20,F8.6,SX,A20)

***********************FY 89 DATA*****************

DO 70 I=1,NR2

WRITE(*,*)'FY89 DATA ITERATION ',

TAFMSD (YOS)

X89(I,1)=C89(I, 1)

ADSCDA

MARSTAT

IF CC89(I,3).EQ.'H') THEN
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X89(I,3)='-l -1'
ELSE IF (C89(I,3).EQ.'S') THEN
X89(I,3)=' 1 -1'

ELSE IF (C89(I,3).EQ.'D') THEN
X89(I,3)='-1 V'

ELSE
X89(I,3)=' 1 1'

ENDIF

DEPN

X89(I ,4)=C69CI ,4)
IF (X89(I,4).EQ.' 2)X89(I,4)=' 0'

********RDTM *****

IF (C89CI,5).EQ.'A') THEN
X89(I,S)=' 1 1 11

ELSE IF (C89(IS).EQ.'D') THEN
X89(I,5)='-l 1 11

ELSE IF (C89(I,S).EQ.'E') THEN
X89(I,S)=' 1 -1 1'

ELSE IF (C89(I.5).EQ.'F') THEN
X89(I,S)='-1 -1 11

ELSE IF (C89(I,5).EQ.'G') THEN
X89(I5B)=' 1 1 -1'

ELSE IF (C89(I,S).EQ.'H') THEN
X89C1,S)='-1 1 -11

ELSE IF (C89(IS).EQ.'J') THEN
X89(IS)=' 1 -1 -11

ELSE IF CC89(I,5).EQ.'K') THEN
X89(I,5)='-l -1 -11

ELSE IF (C89(I,,).EQ.2L') THEN

ELSE
X89(I S)='-1 -1 -1'

END IF

RPI

IF (C89(I,6).EQ.'o') X89(I,6)=' 1 1 11
IF (C89(I.6).EQ.'1') X(, 6)=I-1 1 1'
IF (C89(I,6).EQ.'2') X89(I,6)='-1 -1 -1'
IF (C89(I,6).EQ.'3') X89(I,6)=' 1 -1 1'
IF (C89(I,6).EQ.'4') X89(I,6)='-i -1 1'
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IF (c89(I,6).EQ.'s') 2(89(1, 6)='-1 -1 -1'
IF Cc89(I,6).EQ.'6') X89(I,6)=' 1 1 -1'
IF (C89(I,6).EQ.'7') X89(I,6)=&-1 1 -1'
IF (C89(I,6).EQ.'8') X89(I,6)=' 1 -1 -1'
IF (C89(I,6).sp.'9') X89(I,6)='-1 -1 -1V

GRADEA

X89(I,7)=C89(Ia)

RETPROG

IF (C89(I,8).EQ.'1') THEN
X89(I,8)='-i -11

ELSE IF (C89(I,8).EQ.'2') THEN
2(89(1, 8)&-l 1 1

ELSE IF (C89(I,8).EQ.'3') THEN
X89(I,8)=' 1 -1'

ELSE
X89(I,8)=' 1 1'

ENDIF

PHlE

IF (C89(I9).Ep.'A) 289(1,9>=' 1 -1'
IF (C89Q1,9).EQ.'B') 289(1,9>=' 1 -1'
IF (c89CI,9).EQ.'c') X89(I,9)=' 1 -1)
IF (C89(I,9).EQ.'D') 289(1,9)=' 1 -1'
IF (C89(I,9).EQ.'E') 289(1,9>=' 1 -1.'
IF (C89(I,9).EQ.'F') 289(1,9)=' 1 -l'
IF (C89(I,9).EQ.'G') x89(I,9)=' 1 -1v
IF (C89(I,9).EQ.'H') X89(I,9)='-1 V'
IF (C89(I,9).EQ.'J') X89C1,9)='-1 1'
IF (C89(I,9).EQ.'x') X89(I,9)='-1 1'
IF (C89(I,9).EQ.'L') X89(I,9)='-l1'V
IF (c89C1,9).EQ.'M') X89(I,9)='-1 V'
IF (c89(I,9).EQ.'N') X89(I,9)='-1 1'
IF CC89(I,9).EQ.'P') x89(I,9)='-l1 V
IF (C89(I,9).EQ.'Q') X89(I,9)='-1 -V'
IF (C89(I,9).EQ.'a') X89(I,9)='-1 -1'
IF (c89(I,9).EQ.'S') 289(1,9)=' 1 1'
IF (C89(I,9).EQ.'T') 189(I,9)=' 1 1'

IF CC89(I,9).EQ.'U') 289(1,9>=' 1 1'
IF (C89(I,9).EQ.'v') 289(1,9)=' 1 1'

IF (C89(I,9).EQ.'W') X89(I,9)=' 1 1'
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IF (C89(1,9).EQ.'X') X89(I,9)=' 1 1'
IF (C89(I,9).EQ.'Z') X89(I,9)=' 1 1)
1IF (C89(I,9).EQ.'1') X89(I,9)='-1 -1'
IF (C89C1,9).EQ.'2') X89(I,9)=' 1 -1)
IF (C89(I,9).EQ.'3') X89(I,9)=' 1 -1'
IF (C89(I,9).EQ.'4') X89(I,9)=' 1 -1'
IF (C89CI,9).EQ.'s') X89(I,9)='-1 11
IF (C89(I,9).EQ.'6)) X89(I,9)=)- 1 I.
IF (C89(I,9).EQ.'7)) X89(I,9)=' 1 1)
IF (C89(I,9).EQ.'8') X89(I,9)=) 1 1'
IF (C89(I,9).EQ.'9)) X89(I,9)=) 1 1
IF (C89(I,9).EQ.) )) X89(I,9)=' 1 1

********DESIRED PHE *****

COMPLETED 1*****
****NOT COMPLETED '-****

IF (((X89(I,9).EQ.'-1 -1' ).OR.(X89(I,9).EQ.'-l 1) ).OR.
(X89(13 9).EQ.' 1 -1' )).AND.(X89(I,1).LT.8112)) X89(I,10)=' 1'

IF (((X89C1,9).EQ.'-1 1' ).OR.
(X89(I,9).EQ.' 1 -11 )).AND.(X89(I1 1).LT.7512)) X89(I,1O)=' 1'

IF (X89(I,9).EQ.' 1 -1' ) X89(I)1O)=' 1'

IF (((X89(I,9).NE.'-1 -11 ).AND.(X89(I.9).NE.)-l V' ).AND.
(X89(I,9).NE.' 1 -1) )).AND.(X89(I,1).LT.8112)) X89(I,1O))'-1'

IF (((X89(I,9).NE.'-1 V' ).AND.
CX89(I,9).NE.' 1 -1' )).AND.CX89(I)1).LT.7512)) X89(I,10)='-V

IF C(X89(I,9).NE.) 1 -1) ).AND.(X89(I,1).LT.7112)) X89(I,10)=,-i'

MAJCOM

IF (C89(I310oYEQ.'OA') X89(I,11)=' 1 1 1 1'
IF CC89(I,1O).EQ.'OB') X89(I,11)='-1 -1 -1 1)
IF (C89(I,10).EQ.JOC') X89Ci,11)=,-1 -1 -1 -1,
IF (C89(I,10).EQ.'OD') X89(I,11)='-i 1 1 11
IF (C89(I,10).EQ.'OE') X89(I,11)=I-1 -1 -1 -1'
IF (C89(I,1O).EQ.o0F') X89(I)11)=' 1 -1 1 1'
IF (C89CI,1O).EQ.'oG') X89(I11)='-1 -1 -1 -1'
IF (C89(I,1O).EQ.'ou') X89(I,11)='-i -1 1 1,
IF (C89(I11O).EQ.)OI') X89(I,11)='-1 -1 -1 -11
IF (C89(I,10).EQ.'oJ') X89(I,11)=' 1 1 -1 1)
IF (C89(I,10).EQ.'oK') X89(I,11)='-1 1 -1 1'

173



IF (C89(I,10).EQ.'oL') X89(I,11)='-1 -1 -1 -1'
IF (C89(I,1O).EQ.'OM') X89(I,11)='-l -1 -1 -1'
IF (C89(I,1oY.EQ.'ON') X89(1,10=1' 1 -1 -1 1'
IF (C89(I,1o).EQ.'oo') X89(I,11)='-l -1 -1 -1)
IF (C89(I,1o).EQ.'OP') X89(I,11): '-1 -1 -1 -1'
IF (C89(I1o).EQ.'OQ') X89(I,11)='-l 1 -1 -l'
IF CC89CI,1O).EQ.'OR') X89(I,11)=' 1 1 1 -1'
IF (C89(I,1O).EQ.'OS') X(I1)- 1 1 -1'
IF (C89(I,1o).EQ.'OT') X89(I,11)=' 1 -1 1 -11
IF (C89(I,1O).EQ.'OU') X89(I,11)='-l -1 -1 1'
IF (C89(I,1O).EQ.'OV') X89(I,11)=' 1 -1 -1 -1'
IF (C89(I,1o).EQ.'OX') X89(I,11)='-l -1 -1 -1'
IF (C89(I,1o).EQ.'OY') X89(I,11)='-1 -1 1 -1'
IF (C89(I,1O).EQ.'OZ') X89(I,11)='-1 -1 -1 -1'
IF (C89(I,1o).EQ.'o1') X89(I,11)='-1 -1 -1 1'
IF (C89(I,1o).EQ.'o2') X89(I,11)='-1 -1 -1 1'
IF (C89(I,1o).EQ.'o3') X89(I,11)='-1 -1 -1 1'
IF (C89(I,10).EQ.'os') X89(I,11)=I-1 -1 -1 1'
IF (C89(I,1o).EQ.'o6') X89(I,11)='-1 -1 -1 1'
IF (C89(I,10).EQ.'o7') X89(I,11)='-1 -1 -1 11
IF (C89(I,10).EQ.'o8') X89(I,11)='-1 -1 -1 1'
IF (C89(I,1o).EQ. '09') X89(I,11)='-1 -1 -1 1'
IF (C89(I,1o).EQ.'1S') X89(I,11)=' 1 1 -1 -11
IF (C89(I,1o).EQ.'1W') X89(I,11)='-1 -1 -1 1'
IF (C89(I,1o).EQ.1IX') X89CI,11)='-1 -1 -1 -1'
IF ('C89(I,1o).EQ.'2A') X89(I,11)='-1 -1 -1 1'
IF (C89(I,10).EQ.'2C') X89CI,11)='-1 -1 -1 -1'
IF (C89(I10).EQ.'2E') X89(I,11)='-1 -1 -1 11
IF (C89(I,1o).EQ.'2F') X89(I,11)='-1 -1 -1 11
IF (C89(I,1o).EQ.'2G') X89(I,11)='-1 -1 -1 1'
IF (C89CI,1o).EQ.'2H') X89(I,11)=I-1 -1 -1 11
IF (C89(I.1o).EQ.'2I') X89(I,11)='-1 -1 -1 -1'
IF (C89(I,1o).EQ.'2J') X89(I,11)='-1 -1 -1 -1i
IF (C89(I,10).EQ.'2K') X89(I,11)='-1 -1 -1 1'
IF (C89(I,10).EQ.'2L') X89(I,11)='-1 -1 -1 11
IF (C89(I,1o).EQ.'2M') X89(1,11)='-1 -1 -1 1'
IF (C89(I,10).EQ.'2Nv) X89(I,11)=I-1 -1 -1 1'
IF (C89(I,10). Q.'2P') X89(I,11)="-1 -1 -1 11
IF (C89(I1o).EQ.'2R') X89(I,11)='-1 -1 -1 1'
IF (C89(I,1o).EQ.'2W') X89(I,11)='-1 -1 -1 11
IF (C89(I,10).EQ.'3C') X89(I,11)='-1 -1 -1 1'
IF (C89(I)10).EQ.'3F') X89(1,11)='-1 -1 -1 -1'
IF (C89(I,10).EQ.'3G') X89(I,11)='-1 1 1 11
IF CC89(I,10).EQ.'31') X89(I411)='-1 -1 -1 -1'
IF (C89(I,1o).EQ.'3I') X89(I,11)='-1 -1 -1 -11
IF (C89(I,1o).EQ.'3R') X89(I,11)='-1 -1 -1 1'
IF (C89(I,1o).EQ.'3S') X89(I,11)='-1 -1 -1 1'
IF (C89C1,10).EQ.'3V') X89(I,11)='-1 -1 -1 1)
IF (C89(I,1o).EQ.'.34') X89(I,11)='-1 -1 -1 -1'
IF (C89(I,1o).EQ.'?7') X89(I)11)=I-1 -1 -1 1'
IF (C89(I,1o).EQ.'8J') X89(I,11)='-1 -1 -1 -1V
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IF (C89(1,10).EQ.'88') X89(1,11)='-1 -1 -1 1
IF (C89(I,1o).EQ.'YY') X89(I,11)='-l -1 -1 -1'

********DOB (AGE) ****

PA SC BP0

IF(C89(I,12).EQ.'AF') X89(I,13)=' 1 -1 1 11
IF(C89(I,12).EQ.'AH') X89(I,13)=' 1 1 1 11
IF(C89(I,12).EQ.'AK') X89(I,13)=I-l 1 1 -1'
IF(C89(I,12).EQ.'AM') X89(I,13)=I-l -1 1 -1'
IF(C89(I,12).EQ.'AT') X89(I,13)='-1 1 1 1'
IF(C89(I,12).EQ.'AU') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.2AX') X89(I,13)=' I 1 1 1'
IF(C89(13 12).EQ.'AY') X89(I,13)=' 1 1 1 1'
IF(C89(I,12).EQ.'A2') X89(I,13)='-1 1 1 -11
IFCC89(I,12).EQ.'A3') X89(I,13)='-1 1 1 -1'
IF(C89(I,12).EQ.'A4') X89(I,13)=' 1 -1 -1 1'
IF(C89(I,12).EQ.'AS') X89(I,13)='-1 -1 1 -1'
IF(C89(I12).EQ.'A6') X89(I,13)=I-l -1 1 -1'
IF(C89(I,12).EQ.2A7') X89CI,13)=I-1 -1 1 -1'
IF(C89(I,12).EQ.'A8') X89(I.13)='-1 -1 1 -1i
IF(C89CI,12).EQ.'A9') X89(I,13)=' 1 -1 -1 1'
IF(C89(I,12).EQ.'BDI) X89(I.13)=' 1 1 -1 -1'
IF(C89(I,12).EQ.IBF') X89(I,13)=I-l 1 1 -11
IF(C89(I12).EQ.'BB') X89(I,13)=' 1 1 1 1'
IF(C89(I,12).EQ.'BI) X89(13 13)='-1 -1 1 -1'
IF(C89C1,12).EQ.'BL') X89(I,13)=' 1 1 1 11
IF(C89C1,12).EQ.'BN') X89(I,13)='-l -1 1 -1'
IF(C89(I12).EQ.'BP') X89(I,13)=' 1 1 1 -11
IF(C89(I,12).EQ.'BV') X89(I1 33W-1 -1 1 -11
IF(C89(I,12).EQ.'BXI) X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'B2') X89C1,13)=? 1 1 -1 -11
IF(C89(I,12).EQ.'B3') X89C1,13)=' 1 1 -1 -V
IF(C89C1,12).EQ.'B4') X89(I,13)=' 1 1 -1 -1'
IF(C89(I1 12).EQ.'B5') X89(I,13)=' 1 1 -1 -1'
IF(CC9(I,12).EQ.IB6') X89(15 13)=' 1 1 -1 -1V
IF(C89(I,12).EQ.'B7') X89C1,13)=' 1 1 1 -1'
IFCC89(I,12).EQ.'B8') X89(I,13)=' I 1 1 -1'
IF(C89C1,12).EQ.'B9') X89C11 13)=' 1 1 1 -1'
IF(C89C1)12).EQ.'CC') X89(I,13)=' 1 1 1 1'
IF(C89(I,12).EQ.'CD') X89(I,13)=I-1 -1 1 -11
IF(C89(I,12).EQ.'CF') X89(I,13)='-l -1 1 -1V
IF(C89(I,12).EQ.'CH') X89(I,13)=' 1 1 -1 -11
IF(C89(I,12).EQ.'CJ') X89(I,13)=' 1 1 1 1'
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IF(C89(I,12).EQ.'CKI) X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'CL') X89(I,13)='-1 1 1 -1'
IF(C89(I,12).EQ.'CO') X89(I,13)='-1 1 1 -11
IF(C89(I,12).EQ.'CP') X89(I,13)='-1 1 1 1'
IF(C89(I,12).EQ.'CQ') X89(I,13)=' 1 1 1 1'
IF(C89CI,12).EQ.'CRI) X89(I,13)=' 1 1 1 V'
IF(C89(1,12).EQ.'C2') X89(I,13)='-1 1 1 -1'
IF(C89(I,12).EQ.'C.3') X89(I,13)='-1 1 1 -1'
IF(C89(I,12).EQ.'C4') X89(I,13)='-l 1 1 -1'
IF(C89(I,12).EQ.)C5') X89(I,13)='-1 1 -1 1'
IF(C89(I,12).EQ.'C6') X89(I,13)=-. 1 -1 -lV
IF(C89(I,12).EQ.'C7)) X89(I,13)=' 1 -1 1 -1'
IF(C89(11 12).EQ.'C8') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'C9') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'DFI) X89(I,13)='-1 -1 1 -1'
IF(C89(I,12).EQ.'DH') X89C1,13)=' 1 1 1 -1V
IF(C89(I,12).EQ.'DWI) X89(I,13)='-1 -1 1 -1'
IF(C89(I,12).EQ.'D2') X89(I.13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.2D3') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'D4') X89(I,13)=' 1 -1 1 -1i
IF(C89(I,12).EQ.'DS') X89(I,13)=' 1 -1 1 -1V
IF(C89(I412).EQ.'D6') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'D7') X89CI13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'D8') X89(I,13)=' 1 -1 1 -1'
IF(C89(I.12).EQ.ID9') X89C1)13)='-1 1 1 -1
IF(C89(I,12).EQ.'EBI) X89(I13)=' 1 1 -1 -l'
IF(C89(I,12).EQ.'ECI) X89(I,13)=' 1 1 1 1'
IF(C89(I,12).EQ.IEDI) X89(I,13)=I-1 1 1 -11
IF(C89(I,12).EQ.'EE') X89C1,13)=I-i 1 1 -1'
IF(C89(I,12).EQ.IEH') XB9CI,13)=' 1 -1 -1 11
IF(C89(I.12).EQ.IEJI) X89(I,13)=I-l -1 -1 1'
IF(C89(I,12).EQ.'ELI) X89(I,13)=' 1 -1 -1 1V
IF(C89(I,12).EQ.'EM') X89(I,13)=I-1 1 1 -1'
IF(C89(I,12).EQ.IEPI) X89C1,13)=' 1 1 -1 -1'
IF(C89(I12).EQ.'E2') X89(I,13)=' 1 1 1 -1'
IF(C89(I.12).EQ.'E3') X89(I13)=' 1 1 1 -1'
IF(C89(I,12).EQ.IE4') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'ESI) X89(I13)=' 1 1 1 -V1
IF(C89(I,12).EQ.'E7)) X89C1)13)=' 1 I 1 -1'
IF(C89(I12).EQ.'E8') X89(I,13)=' 1 -1 1 -V1
IF(C89(I12).EQ.'E9') X89C11 13)=' 1 -1 1 -l'
IF(C89(I,12).EQ.'FA') X89(I,13)=' 1 1 1 -I'
IF(C89(I,12).EQ.IFB') X89(I,13)=' 1 1 1 -11
IF(C89(I,12).EQ.'FCI) X89(1313)='-i -1 -1 1'
IFCC89(I,12).EQ.'FE') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'FF') X89(I,13)=I-1 -1 1 -1'
IF(C89(I,12).EQ.IFG') X89(I,13)='-i 1 -1 1'
IF(C89('I,12).EQ.'F1') X89(I,13)=' 1 1 1 -1'
IFCC89(I,12).EQ.'FKI) X89(I13)=' 1 I 1 -1'
1FCC89(I,12).EQ.'FH') X89C1,13)=' 1 I 1 -1'
IF(C89(I,12).EQ.'FN') X89(I,13)=' 1 1 1 1'
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IF(C89(I,12).EQ.'FQ') X89(I,13)=' 1 1 1 11
IF(C89(I,12).EQ.'FR') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'FS') X89(I,13)='-1 1 1 -1'
IFCC89(I,12).EQ.'FT') X89(I,,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'FU') X89(I,13)=' 1 1 -1 -11
IF(C89(I,12).EQ.'FV') X89(I,13)='-1 1 1 1'
IF(C89(I,12).EQ.'FW') X89(I,13)=' 1 1 -1 -11
IF(C89(I,12).EQ.'FX') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'F2') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ,'F3') X89(I,13)='-1 -1 -1 1'
IF(C89(I,12).EQ.'F4') X89(I,13)='-1 -1 -1 1'
IF(C89(I,12).EQ.'F6') X89(I,13)='-1 1 1 -1'
IF(C89(I,12).EQ.'F7') X89(I,13)=I-1 1 1 -1'
IF(C89(I,12).EQ.'F8') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'GB') X89(I,13)=' 1 1 -1 -1'
IF(C89(I,12).EQ.'GC') X89(I,13)=' 1 1 1 11
IF(C89(I,12).EQ.'GF') X89(I,13)=I-1 -1 1 -1'
IF(C89(I,12).EQ.'GM') X89(I,13)='-l -1 -1 1'
IF(C89(I,12).EQ.'GW') X89(I13)=' 1 I 1 -1'
IF(C89(I,12).EQ.'G1') X89(I,13)='-l 1 1 1'
IF(C89(11 12).EQ.'G2') X89(I,13)=' 1 -1 1 -11
IF(C89(I12).EQ.'G3') X89(I,13)='-1 -1 -1 1'
IF(C89(I,12).EQ.'G4') X89C11 13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'G5') X89(I13)=' 1 1 -1 -1'
IF(C89(I,12).EQ.'G6') X89(I,13)=' 1 I 1 -1'
IF(C89(I,12).EQ.'G7') X89CI,13)=' 1 1 1 -11
IF(C89(I12).EQ.2G8') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.2G9') X89(I,13)=' I I 1 -11
IF(CB9(I,12).EQ.2HB') X89C1,13)=' 1 1 1 1'
IF(C89(I.12).EQ.'HHI) X89C1,13W=' I 1 1 -1V
IF(C89(I,12).EQ.'HL') XB9(I,13)='-1 1 -1 1'
IF(C89(I,12).EQ.IHP') X89(I.13)=' 1 1 -1 -1'
IF(C89(I12).EQ.IIS') X89(I,13)='-1 -1 1 -11
IF(CS9(I,12).EQ.2HV') X89(I,13)=I-1 1 1 -11
IF(C89(I,12).EQ.112') X89(I,13)=I-1 -1 1 -11
IFCC89(11 12).EQ.'H3') X89C13 13)=' 1 1 1 -11
1F(C89(I.12).EQ.'H4') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'H6') X89(I.13)=' 1 1 1i -1'
IF(C89(I.12).EQ.'H7') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.2H8') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'19') X89(13 13)=I-1 1 1 -11
IF(C89(I,12).EQ.'IC') X89(I,13)=' 1 1 -1 11
IF(C89(I,12).EQ.'IK') X89C1,13)=' 1 1 1 11
IF(C89(I,12).EQ.'IN') X89(I,13)=' 1 1 1 1'
IFCC89(I,12).EQ.'32') X89(I13)=I-1 -1 -1 1'
IF(C89(I,12).EQ.'J3') X89(I,i3)=' 1 -1 1 -1V
IF(C89(I,12),EQ.'J4') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'J6') X89C1,13)=' 1 -1 1 -11
1F(C9(I,12).EQ.'37') X89CI,13)=' 1 -1 1 -11
IF(C89(I,12).EQ.'J8') X89(I,13)=' 1 -1 1 -11
IF(C89(I,12).EQ.IJ9') X89(I,13)='-1 -1 1 -1'
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IF(C89(1,12).EQ.'KB') X89(I,13)='-1 1 1 1'
IF(C89(I,12).EQ.'KF') X89(I,13)='-1 1 1 -1'
IF(C89(I,12).EQ.'KH') X89(I,13)= '-1 -1 1 -1'
IF(C89(I,12).EQ.'KJ') X89(I,13)='-1 -1 1 -1'
IF(C89C1,12).EQ.'KU') X89(I,13)='-1 1 1 1V
IF(C89(I,12).EQ.'KV') X89(I,18)='-1 -1 1 -1'
IF(C89C1,12).tQ.'KY') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'K2') X89(I,13)='-1 -1 1 -1'
IF(C89(11 12).EQ. 'K3') X89(I,13)='-1 1 -1 -1'
IF(C89(I,12).EQ.'K4') X89(I,13)=' 1 1 1 -11
IF(C89(I,12).EQ.'K6') X89(I,13)=' 1 1 1 -1'
IF(CB9(I,12).EQ.'K7') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'K8') X89(I,13)=' 1 -1 1 1'
IF(C89(I,12).EQ.IK9') X89(11 13)=' 1 1 1 -1'
IF(C89(11 12).EQ.ILA') X89(I,13)='-1 -1 1 -1'
IF(C89(I,12).EQ.'LC') X89(I,13)=' 1 1 1 1
IF(C89(I12).EQ.'LD') X89(I,13)=' 1 1 1 1'
IF(C89(I,12).EQ.'LEI) X89(1,13)=' 1 1 1 -1'
IF(CB9(I,12).EQ.'LJ') X89(I,13)='-1 -1 1 -1'
IF(C89(I,12).EQ.'LK?) X89(I,13)=? 1 1 1 -11
IF(C89(I,12).EQ.'LL') X89(11 13)=' 1 1 -1 -1'
IF(C89(I,12).EQ.'LPI) X89(I,13)=I-1 -1 1 -11
IF(C89(I,12).LQ.'LS') X89C1,i,3)=' 1 1 1 -1'
IF(C9(I,12).EQ.'LU') X89(I,13)=' 1 1 -1 -11
1FCC89C1,12).EQ.ILWI) X89(I,13)=' 1 1 -1 -1'
1FCC89(I,12).EQ.'LY') X89(11 13)='-1 -1 1 -1'
IF(C89(I,12).EQ.'L2') X89(I,13)='-1 1 1 -11
IF(C89(I,12).EQ.IL3') X89(13 13)=I-1 -1 -1 1'
IF(C89(I.12).EQ.2L4') X89(I,13)='-1 1 1 -11
IF(C89(I,12).EQ.'L5') X89(I,13)=?-1 1 1 -11
1FCC89C1)12).EQ.'L6') X89(I,13)=I-1 1 1 -1'
IF(C89(I,12).EQ.'L7') X89(I13)='-1 -1 1 -1'
IF(C89(I,12).EQ.'L8') X89(I,13)=I-1 -1 1 -1'
1FCC89C1,12).EQ.IL9') X89(I,13)=I-l -1 1 -1'
IF(C89(I,12).EQ.'MA') X89(I,13)='-1 1 1 -1'
IF(C89(I,12).EQ.'MB') X89CI,13)=I-l -1 -1 1'
IF(C89(I,12).EQ.'MD') X89(I,13)=' 1 1 -1 -1'
IF(C89(I.12).EQ.2HE') X89(I,13)=' 1 1 -1 -11
IF(C89(I,12).EQ.'MG') X89(I13)='-1 1 1 -1V
IF(C89(I,12).EQ.2HH') X89(I,13)=I-1 1 -1 -1V
IFCC89(1312).EQ.IMK?) X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'MLI) X89(I,13)=' 1 1 1 11
IF(C9(I,12).EQ.'HN') X89(I,13)=' 1 1 1 -1'
IF(C9(I,12).EQ.'MO') X89(I,13)='-1 1 1 1V
IF(C89(I,12).EQ.IMP') X89(I,13)=I-1 -1 -1 1'
IF(C89(I,12).EQ.'HT') X89C11 13)='-1 1 1 -11
IF(C89(I,12).EQ.'MU') X89(I,13)=' 1 1 -1 -1'
IF(C89(I,12).EQ.'HWI) X89(I,13)='-1 1 -1 -1'
IF(C89(I12).EQ.'HY') X89(I,13)='-1 1 1 -11
IF(C89(I,12).EQ.'H2') X89(I,13)=' I 1 -1 -1'
IF(C89(12 12).EQ.'H3') X89(I,13)=' 1 1 1 -1'
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IF(C8(I,12).EQ.'N4') X89(1,13)=) 1 1 1 -1)
IF(C89(I,12).EQ.'MS') X89(I,13)='-1 1 -1-i
IF(C89(I,12).EQ.'M6') X89(I,13)='-l 1 -1 -1)
IF(C89(I,12).EQ.'W1') X89(I,13)=' 1 1 1 -1'
IF(C89(Ii12).EQ.'MB') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'49') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'NJ') X89(I,13)=' 1 1 -1 -1'
IF(C89(I,12).EQ.'NV') X89(I,13)=' 1 1 -1 -1'
IF(C89(I,12).EQ.'N2') X89(I13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'N3') X89(I,13)=' 1 1 -1 -1'
1FCC89(I,12).EQ.'OD') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.)OP') X89(I,13)='-1 1 1 1'
IF(C89(I12).EQ.'PD') X89(I,13)=' 1 1 1 1'
IF(C89(I,.12).EQ.2PE') X89(I,13)=' 1 1 1 1V
IF(C89(I,12).EQ.'PF') X89(I,13)='-1 1 1
IF(C89(I,12).EQ.'PJ') X89(I,13)=' 1 I 1 -1'
IF(C89(I,12).EQ.'PS') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'PV') X89(I,13)='-1 1 1 -I.'
IF(C89(I,12).EQ2'RF') X89(I,13)=' 1 1 1 11
11(C89(I,12),EQ.'RJ') X89(I,13)='-1 -1 1 -1V
IFCC89CI,12).EQ.'RM') X89(I,13)='-1 -1 1 -1V
IF(C89(I,12).EQ.'RP') X89(I,13)=' 1 1 1 1V
IF(C9(I,12).EQ.'RX') X89(I,13)='-1 1 1 -1'
IFCC89(I12).EQ.'Ri') 2789(I,13)='-1 1 1 -1'
IFCC89CI,12).EQ.'R2') X89(I,13)=' 1 -1 1 -1'
IF(C89(I.12).EQ.'R3') X89(I,13)='-1 1 -1 -1'
IF(C89(I,12).EQ.'R4') X89(I,13)=' 1 -1 1 -1'
1FCC89CI12).EQ.'RSI) X89(I,13)='-1 -1 1 -1'
1FCC89(I.12).EQ.'R6') X89(I,13)='-1 -1 1 -1'
1FCC89(I,12).EQ.'R7') X89(I,13)=' 1 -1 1 -1'
IF(C89(I12).EQ.'R8') X89(I,13)=' 1 -1 1 -11
IF(C89(I,12).EQ.'R9') X89(I,13)='-1 1 1 -1V
IF(C89(1212).EQ.2SB') X89(I,13)=' 1 1 1 11
IF(C89(I,12).EQ.ISF') X89(I,13)=' 1 -1 1 -1'
IF(C89(I.12).EQ.2SJI) X89(I,13)=' 1 1 1 1'
IF(C89(I,12).EQ.'SM') X89(I,13)=I-1 1 1 -11
IF(C89CI,12).EQ.'SP') X89(I,13)=I-l 1 1 -1'
IF(C89(I,12).EQ.'SQI) X89(I,13)='-1 -1 1 -1'
1FCC89(I.12).EQ.'ST') X89(I13)=' 1 1 1 1V
IF(C89(I,12).EQ.'S1') X89(I,13)='-1 -1 1 -1'
IF(C89CI,12).EQ.'S2') X89(I,13)='-1 1 1 -1V
IF(C89(I.12).EQ.2S3') X89(1,13)=' 1 1 1 -11
IF(C89(I,12).EQ.'S4') X89(I,13)='-1 -1 1 -1'
IF(C89(I,12).EQ.'SS') X89(I,13)=' 1 1 1 -11
IF(C89(I.12).EQ.'TA') X89(I,13)='-1 1 1 -I'
IFCC89(1,12).EQ.2TBI) X89(I,13)=' 1 -1 -1 1'
IFCC89(I,12).EQ.'TCI) X89(I,13)='-1 -1 1 -1'
IF(C89(I,12).EQ.'TDI) X89C1,13)='-i -1 1 -1'
IF(C89C11 12).EQ.'TEI) X89(I.13)='-1 -1 1 -1'
IF(C89(I12).EQ.2TF') X89(I,13)=' 1 1 -1 -1V
IF(C89(I,12).EQ.'TG') X89(I,13)=' 1 1 -1 -11
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IF(C89(I,12).EQ.'TH') X89(1,13)=' I 1 1 -1'
IF(C89(I,12).EQ.'TI') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'TJ') X89(I,13)=' 1 1 1 V
IF(C89(I,12).EQ.'TK') X89(I,13)=' 1 1 1 -11
IF(C89(I,!2>,EQ.'TL') X89(I,13)='-1 1 1 -1'
IF(C89(I,12).EQ.'TM') X89(1,43)='-1 1 1 -11
IF(C89(I,12).EQ.'TN') X89(I,13)='-1 I 1 1'
IF(C89(I,12).EQ.'TO') X89(I,13)='-l 1 -1 1'
IF(C89(I,12).EQ.'TP') X89(I,13).' 1 1 -1 -l'
IF(C89(I,12).Eg.'TQ') X89(I,13)='-1 1 -1 -1'
IF(C89(I.12).EQ.'Th') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'TS') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).LEQ.'TT') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'TV') X89(I,13)=' 1 -1 1 -1'
IF(C89(1412).EQ.2TW') X89(I,13)=' 1 -1 1 -l'
IF(C89(I.12).EQ.'TX') X89(I,13)='-1 1 1 -1'
IF(C89(11 12).EQ.'TY') X89(I,13)='-1 1 1 -1'
IF(C89(I,12).EQ.'TZ') X89(I,13)=' 1 1 1 --1'
IF(C89(I,12).EQ.'T1') X89(I,13)=' 1 1 -1 -11
IF(C89(I,12).Eg.'T2V) X89(I,13)=I-l -1 -1 1'
IF(C89(I,12).EQ.2T3') X89(1,13)=' 1 1 1 -I'
IF(C89(I12).EQ.'T4') X89(I,13)=' 1 1 1 -1V
IF(C89(I,12).EQ.'T5') X89(I,13)='-1 1 1 -1'
1FCC89(I12).EQ.'T6') X89(13 13)=' 1 -1 1 -1'
IF(C89C1,12).EQ.'T7') X89(1,13)=I-l 1 1 -11
IF(C89(I12).EQ.'T8') X89(I,13)=' 1 1 -1 -1'
IF(C89(I,12).EQ.'T9') X89(1,13)=' 1 -1 1 -1'
1FCC89(I,12).EQ.'UB') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'UC') X89(I,13)=' 1 1 1 -11
1F(C89(I.12).EQ.2UD') X89(I,13)=' 1 -1 1 -11
IF(C9(T,12).EQ.'UE') X89(I,13)='-1 -1 -1 1V
IF(C89(I,12).EQ.'UF') X89(I,13)='-l 1 1 -11
IF(C89(I12).EQ.2UG') X89(I,13)=' 1 -1 1 -1V
IF(C89(I,12).EQ.IUH') X89(I,13)=I-l -1 -1 1V
IF(C89(I,12).EQ.'UII) X89(I,13)=' 1 -1 1 -1'
IFCC89(I,12).EQ.'UJ?) X89(I.13)=' 1 1 -1 -1'
IF(C89(I,12).EQ.'UK') X89(I.13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'ULI) X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).FQ.'UM') X89C1,13)='-1 -1 1 -V1
IF(C89(I,12).EQ.2UN') X89(I13)=' 1 1 1 -V1
IF(C89(I2 12).EQ.'Ua') X89(I13)='-l 1 1 -1'
IF(C89(13 12).EQ.'UP') X89(I,13)=' 1 1 1 V'
IF(C89(I,12).EQ.'UQ') X89(I,13)='-l -1 -1 1V
IFCA89(I,12).EQ.'UR') X89(I,13)=' 1 -1 1 -1'
IF(C89(11 12).EQ.'USI) X89(I13)=' 1 1 -1 -1'
IF(C89(I,12).EQ.'UT') X89C1,13)='-1 -1 1 -1'
1FCC89C1,12).EQ.2UU') X89(I,13)='-l 1 -1 -1'
IF(C89C1,12).EQ.2UV') X89(I,13)=' 1 1 1 -1V
IF(C89(I,12).EQ.'UW') X89(I,13)=' 1 -1 1 1V
IF(C89(I,12).EQ.'UX') X89(12 13)=' 1 I 1 -I'
IF(C89C1,12).EQ.'UY') X89(I,13)='-1 1 1 -l'
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IF(C89(I,12).EQ.'UZ') X§9(I,13)='-1 -1 -1 1'
IF(C89(I,12).EQ.'U2') X89(1,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'U3') X89C1,13)='-1 1 1 -1'
IF(C89(I,12).EQ.'U4') X89(I,13)=' 1 1 -1 -1'
IF(C89(I,12).EQ.'US') X89('I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'U6') X89(I,13)='-1 1 1 -1V
IF(C89(I,12).EQ.2U7') X89(I,13)='-1 -1 1 -11
IF(C89(I,12).tQ.'U8') X89(I,13)=' 1 1 -1 -11
IF(C89(I,12).EQ.'U9') X89(I,13)=' 1 1 -1 -1V
IF(C89(I,12).EQ.'VH') X89(I,13)='-1 -1 1 -1'
IF(C89(I,12).EQ.'VQ') X89(I,13)=' 1 1 -1 -1.'
IF(C89(I,12).EQ.'WA') X89(I,13)='-1 1 1 -11
IF(C89(I,12).EQ.2WC') X89(I,13)=I-1 -1 1 -1'
IF(CE9(I,12).EQ.2WD') X89(1,13)=' 1 1 -1 -11
IF(C89(I,12).EQ.'WE') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ'WI) X89(I,13)=' 1 1 1 -11
IF(C89(I,12).EQ.'WG') X89(I,13)=' 1 1 1 -1'
1FCC89(I12).EQ.2WH') X89(1,13)=' 1 1 1 -l'
IF(C89(I,12).EQ.'WI') X89(I,13)=' 1 -1 1 11
IF(C89(I12).EQ.2WJ') X89CI,13)='-l 1 -1 -V1
IF(089(I,12).EQ.IWK') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'WL') X89(I,13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'WHI) X89(I.13)=' 1 1 -1 -1'
IF(C89(I,12).EQ.'WT') X89(I,13)=' 1 -1 1 -1'
IF(C89(1,i2).EQ.IWU') X89(I,13)=' 1 1 1 11
IF(C89(I)12).EQ.'WV') X89CI,13)='--1 -1 1 -1'
IFCC89(I,12).EQ.'WZI) X89(I,13)=' 1 -1 1 -11
IF(C89(I12).EQ.'W1') X89C1)13)=' 1 1 1 -V
IF(C89(I,12).EQ.'W2') X89(I,13)=' 1 -1 1 -11
IFCC89(I,12).EQ.'W3)) X89(I,13)='-l -1 -1 V
IF(C89(I,12).EQ.'W4') X89(I,13)=I-1 1 1 -1'
IF(C89(I,12).EQ.'i5') X89(I,13)=' 1 1 1 -1'
IF(C89(1112).EQ.2W6') X89(I,13)='-1 I 1 -11
IF(C89(I,12).EQ.'W7') X89(I,13)='-l 1 1 -V1
IF(C89(I12).EQ.'W8)) X89(I13)=' 1 1 -1 -1'
IF(C89(I,12).EQ.'W9') X89(I,13)=' 1 -1 1 -11
IF(C89(1,12).EQ.2YM') X89(I,13)='-1 1 1 11
IF(C89(I,12).EQ.IYY') X89(I,13)=I-1 1 1 11
IF(C89(I,12).EQ.'YZ') X89(I.13)='-1 1 1 1'
IF(CS9(I,12).EQ.IZAI) X89C13 13)=I-1 -1 1 -1'
IF(C89(I,12).EQ.IZBI) X89C11 13)='-1 -1 1 -1'
IF(C89(I,12).EQ.'ZCI) X89(I,13)=' 1 -1 1 -1V
1FCC89(I,12).EQ.'ZE') X89(I,13)=' 1 1 -1 -V1
IF(CS9(I,12).EQ.'ZG') X89(I,13)=' 1 1 1 11
IF(CB9(1,12).EQ.'ZK') X89(I,13)='-1 1 1 -V1
IF(C89(1,12).EQ.2ZLI) X89(I,13)=' 1 1 -1 -V1
IF(CS9(I,12).EQ.IZNI) X89(12 13)=' 1 1 1 11
IF(C89C1,12).EQ.'ZSI) X89(I13)='-1 -1 1 -1'
IF(C89(I,12).EQ.'IA') X89(I,13)=' 1 1 1 1'
IF(C89(I,12).FQ.'iB') X89CI,13)=' 1 -1 -1 1'
IF(C89(I,12).EQ.'1CI) X89(I,13)='-i 1 1 -1'
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IF(C89(I,12).EQ.'1D') X89(I,13)=' 1 -1 1 -1'
IF(C89C1,12).EQ.'1F') X89(I,13)='-l 1 1 -1'
IF(C89(I,12).Eg.'1H') X89(I,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'1K') X89C1,13)=' 1 1 1 -1'
IF(C89(I,12).EQ.'1N') X89(I,13)=' 1 1 1 11
IF(C89(I,12).EQ.'1P') X89C1,13)=' 1 1 -1 11
IF(C89(I,12).EQ.'1T') X89(11 13)=' 1 -1 1 -1'
IF(C89(I,12).EQ.'1U') X89(I,13)=' 1 1 1 -1'
IF(C89(I,1*2).Eg.'lV') X89(I,13)=' 1 1 -1 -1'
IF(C89(1,12).EQ.'2B') X89(I,13)=' 1 -1 1 -1V
IF(C89(I,12).EQ.'2D') X89(I,13)=' 1 1 1 -11
IF(C89(I,12).EQ.'7A') X89(I,13)=' 1 1 1 -1'
IF(C89(I12).EQ.'7C') X89(1,13)=' 1 1 1 1'
IF(C89(I,12).EQ.'7S') X89(I,13)='-1 -1 -1 1'
IF(C89(I,12).EQ.'7V') X89(I13)='-l -1 1 -1'
IF(C89(I,12).EQ.'7Z') X89(I,13)='-1 -1 1 -11
IF(C89(I,12).EQ.'SC') X89(I,13)=' 1 -1 1 -1V
IF(C89(I,12).EQ.'85') X89(I,13)='-1 1 1 -1
IF(C89(I,12).EQ.'9C') X89(I,13)='-1 1 1 -1'
.(F(C89(I,12).EQ.'96') X89(I,13)=' 1 1 -1 -1'

***~~****ACAD LVL

IF(C89(I,13).EQ.'A') THEN
X89(18 14)=' 1 1 1'

ELSE IF(C89(I,13).EQ.') THEN
X89(I,14)=' 1 1 1'

ELSE IF(C89(I,13).EQ.'C') THEN
X89(I,14)=' 1 1 11

ELSE IF(C89(I,13).EQ.'D') THEN
X89(l.14)=' 1 1 11

ELSE IF(C89(I,13).EQ.'E') THEN
X89(1 814W=' 1 1 1'

ELSE IF(C89(12 13).EQ.'F') THEN
X89(I,14)=' 1 1 1'

ELSE IF(C89(I,13).EQ.'G') THEN
X89(I,14)=' 1 1 1'

ELSE IF(C89(I,13).EQ.'H') THEN
X89C1,14)=' 1 1 1V

ELSE IFCC89(1213).EQ.2I') THEN
X89(12 14)=' 1 1 1'

ELSE !F(C89(I,13).EQ.1') THEN
X89(I,14)=' 1 1 1'

ELSE IF(C89(I,13).EQ.'N') THEN
X89(I.14)=' 1 1 1'

ELSE IF(C89(I13).EQ.10') THEN
X89(I.14)=I-1 1 1'

ELSE IF(C89CI13).EQ.'P') THEN
X89(I,14)=' 1 -1 1V
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ELSE IF(C89(I,13).EQ.'Q') THEN
X89(I, 14)='-l -1 1'

ELSE IF(C89(I,13).EQ.'R') THEN
X89(I,14)=' 1 1 -1'

ELSE IF(C89(I,13).EQ.'S') THEN
X89(I,14)=' 1 -1 -1'

ELSE IF(C89(I,13).EQ.'T') THEN
X89(I,14)=' 1. -1 -,)

ELSE IF(C89(I,13).EQ.'U') THEN
X89(I,14)=' 1 -1 -1'

ELSE IF(C89(I,13).EQ.'Y') THEN
X89(I,14)='-1 -1 -1V

ELSE
X89(I,14)='-1 -1 -1'

ENDIF

********ACAD SPEC *****

IF(C89(1,14).EQ.'OC') X89C1,15)=' 1I 111

IF(C89(I,14).EQ.'OG') X89(I,15)='-1 -1 1 1 1 1 1'
IF(C89C1114).EQ.'OI) X89(I,15)=' 1 -1 1 1 1 1 1'
IF(C89(I,14).EQ.'OY') X89CI.15)='-I1 -1 1 1 1 1 1
IF(C89(I,14).EQ.'OY') X89C1,15)=I 1 1 -1 1 1 1 1'
IF(C89(1414).EQ.'1A') X89(I,15)='-1 -1 -1 1 1 1 1V
IF(C89C1,14).EQ.'1B') X89(I,1S)=I 1 -1 -1 1 1 1 1'
IF(C89C1,14).EQ.'1C') X89CI,15)='- -II1 -1 1 1 1 1
1FCC89(I,14).EQ.'1Y') X89(I,15)= 1 1I 1 -1 1 1 11
IF(C89(I,14).EQ.'2A') X89C1,15)='-1 -1 1 -1 1 1 1V
IF(C89CI,14).EQ.'2B') X89(I,15)=I 1 -1 1 -1 1 1 1V
IF(C89C1314).EQ.'2C') X89CI15)='- -1 -1 -1 1 1 1'
IF(C89(1314).EQ.'2D') X89CI,15)=' 1 1 -1 -1 1 1 11
IF(C89CI.14).EQ.'2E') X89C1,15)=' 1 -1 -1 -1 1 1 1V
IF(C89(I,14).EQ.'2F') X89CI15)=I 1 -~1 -1 -1 1 1 1'
IF(C89C1,14).EQ.'2G') XB9(I,15)='- -1 II1 -1 1 1 1
IF(C89CI,14).EQ.'21') X89CI,15)=I' 1 1I 1 -1 1 11
IF(C89(I,14).EQ.'2K') X89CI,15)='-1 -1 1 1 -1 1 11
IF(C89CI14).EQ.'2K') X89(I,1S)=I 1 -1 1 1 -1 1 11
IF(C89(I,14).EQ..'3Y') X89(I415)='- -1 -1 1 -1 1 1'
IF(C89(I,14).EQ.'3A') X89(I,15)= 1 1I -1 1 -1 1 1V
IF(C89CI14).EQ.13Y') X89(13 15)='-1 -1 -1 1 -1 1 1V
1F(C9(I,14).EQ.13Y') X89(I,15)=' 1 -1 -1 1 -1 1 1V
IF(C89(I.14).EQ.'4A') X89(I,15)='-1 -1 -1 -1 -1 1 11
IF(C9(I,14).EQ.'4B') X89(I,15)='- 1I 1 -1 -1 1 1'
IF(C89C1,14).EQ.'4C') X89(I,15)='-1 -1 1 -1 -1 1 1'
IF(C89C1,14).EQ.'4D') X89C11 15)=' 1 -1 1 -1 -1 1 1'
IF(C89(I,i4).EQ.'4E') X89(I,15)=-i -1 -1 -1 -1 1 1V
IFCC89CI,14).EQ.'4F') X89C1,15)=I 1 1 -1 -1 -1 1 1'
IF(C89(I,14).EQ.'4G') X89C1,15)='-1 -1 -1 -1 -1 1 1V
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IF(C89(I,14).EQ.'41') X89(I,15)='-l -1 -1 -1 -1 1 1V
IF(C89(I,14).EQ.'4J') X89(I,15)=' 1 1 1 1 1 -1 1'
IF(C89(I,14).EQ.'4K') X89(I,iS)='-i 1 1 1 1 -1 1'
IF(C89(-I,14).EQ.'4L') X89(I,15)=' 1 -1 1 1 1 -1 1'
IF(C89(I,14).EQ.'4M') X89(I,15)='-l -1 1 1 1 -1 1'
IF(C89(I,14).EQ.'4N') X89(I,15)=' 1 1 -1 1 1 -1 1'
IF(C89(I,14).EQ.140') X89(I,15)='-l 1 -1 1 1 -1 1'
IF(C89(I,14).EQ.'4P') X89(I,15)=' 1 -1 -1 1 1 -1 1'
IF(C89(I,14).EQ.'4Q') X89(I,15)='-1 -1 -1 1 1 -1 1'
IF(C89(I,14).EQ.'4RQ) X89(I,15)=' 1 1 1 -1 1 -1 1'
IF(C89(I,14).EQ.'4S') X89(I1 15)=I-1 1 1 -1 1 -1 11
IF(C89(I,14).EQ,'4T') X89(I,15)=& 1 -1 1 -1 1 -1 1'
IF(C89(I,14).EQ.'4U') X89(I,15)='-l -1 1 -1 1 -1 1'
IF(C89(I,14).EQ.'4V') X89(I,1S)=' 1 1 -1 -1 1 -1 1'
IF(C89(I,14).EQ.'4W') X89(I,15)=I-l 1 -1 -1 1 -1 11
IF(C89(I,14).EQ.14Y') X89(I,15)=' 1 -1 -1 -1 1 -1 1'
IF(C89(I14).EQ.'SA)) X89(I,15)='-1 -1 -1 -1 1 -1 11
IF(C89(I14).EQ.'SBI) X89(I,15)=' 1 1 1 1 -1 -1 1'
IF(C89(I,14).EQ.'SY') X89(I,15)='-1 1 1 1 -1 -1 1'
IF(C89(I,14).EQ.16A') X89(I,1S)=' 1 -1 1 1 -1 -1 1'
IF(C89(I14).EQ.'6B)) X89(I,15)='-1 -1 1 1 -1 -1 1'
IF(C89(I,14).EQ.'6C') X89(I,15)=' 1 1 -1 1 -1 -1 1'
IF(C89(I,14).EQ.16D') X89(I,16)='-1 1 -1 1 -1 -1 1'
IF(C89(11 14).EQ.'6E') X89CI,1S)=' 1 -1 -1 1 -1 -1 -1'
IF(C89(I,14).EQ.16F') X89(I,15)='-1 -1 -1 1 -1 -1 -1'
IF(C89(I,14).EQ.16G') X89(I,16)=.' 1 1 1 -1 -1 -1 -1'
IF(C89CI14).EQ.'6H') X89(I,15)='-1 1 1 -1 -1 -1 -1'
IF(C89(l.14).EQ.'6I') X89(I,15)=' 1 -1 1 -1 -1 -1 -1'
IF(C89(1414).EQ.'63') X89(I,15)='-l -1 1 -1 -1 -1 -1'
IF(C89(1a14).EQ.'6Y)) X89(I1 15)=' 1 1 -1 -1 -1 -1 -l'
IF(C89(I,14).EQ.'7A') X89(145W'=-1 1 -1 -1 -1 -1 -1'
IF(C89(I,14).EQ.17B') X89(I,15SW' 1 -1 -1 -1 -1 -1 -1'
IF(C89(13 14).EQ.'7C') X89(I415)='-1 -1 -1 -1 -1 -1 -1'
IF(C89(I,14).EQ.'7D') X89(I15)=' 1 1 1 1 1 1 -1'
1FCC89(I,14).EQ.17E') X89(I15)=I-1 1 1 1 1 1 -1'
IFCC89CI,14).EQ.'7F') X89CI,15)=' 1 -1 1 1 1 1 -11
1F(C89(13 14).EQ.17G') X89C13 15)=I-1 -1 1 1 1 1 -11
IF(C89C1,i4).EQ.17Y') X89(I,15)=' 1 1 -1 1 1 1 -1'
IFCC89(I14).EQ.18A') X89CI415)=I-1 1 -1 1 1 1 -1'
IF(C89(I)14).EQ.1BB') X89(I,15)=' 1 -1 -1 1 1 1 -1'
IF(C89(I,14).EQ.'8C') X89(I1S)='-1 -1 -1 1 1 1 -1'
IF(C89(I.14).EQ.'8D') X89(I,15)=' 1 1 1 -1 1 1 -1'
IF(C89(I,14).EQ.18E') X89C1,15)='-1 1 1 -1 1 1 -1'
IF(C89(I,14).EQ.'BF') X89CI15)=' 1 -1 1 -1 1 1 -1'
IF(C89C1,14).EQ.'8G') X89(I,15)=I-i -1 1 -1 1 1 -1'
IF(C89C1,14).EQ.18H') X89(I,15)=' 1 1 -1 -1 1 1 -1V
IF(C89(I,14).EQ.'8Y') X89(I,15)='-1- 1 -1 -1 1 1 -1'
IF(C89(I,14).EQ.'9A') X89(I,15)=' 1 -1 -1 -1 1 1 -1'
IF(C89(I)14).EQ.'9B') X89CI16)=I-i -1 -1 -1 1 1 -1'
1FCC89(I,14).EQ.'9C') X89(I1 15)=' 1 1 1 1 -1 1 -1'
IF(C89(I,14).EQ.'9D') X89(1,15)='-l 1 1 1 -1 1 -1'

184



IF(C89(I,14).EQ.'9E') X89(I,15)=' 1 -1 1 1 -1 1 -V'
IF(C89(I,14).EQ.'9F') X89(I,15)=-"1- -1 1 1 -1 1 -l'
IF(C9(I,14).EQ.'9G') X89(1,15)=' I 1 -1 1 -1 1 -1'
IF(C89(I,14).EQ.'9H') X89(I,15)='-l 1 -1 1 -1 1 -1'
IF(C89(I,14).EQ.'91') X89(I,15)=' 1 -1 -1 1 -1 1 -1'
IF(C89(I,14).EQ.'9Y') X89(I,15)='-1 -1 -1 1 -1 1 *-l'
IF(C89(I,14).EQ.'YY') X89(I,15)=' 1 1 1 -1 -1 1 -l'
IF(C89(I,14).EQ.'ZZ') X89(I,15)='-1 1 1 -4 -1 1 -1'

********DAFSC PREFIX *****

DAFSC =C89(I,15)
FIRST =DAFSC(1:1)
IF (FIRST.EQ.'A') THEN

X89(I,16)=' 1 1 1'
ELSE IF (FIRST.EQ.'S') THEN
X89(I,16)='-1 1 11

ELSE IF (FIRST.EQ.IFI) THEN
X89(I,16)=' 1 -1 1'
ELSE IF(CFIRST.EQ.'K') THEN

ELSE IFCFIRST.EQ.)M') THEN

X89(1,16)=' 1 1 -11
ELSE IF(FIRST.EQ.'N') THEN

ELSE IF(FIRST.EQ.'X') THEN
X89(I,16)=' 1 -1 -1'

ELSE
X89(l.16)=I-1 -1 -1)
GO TO 151

END IF

********DASFC DIGIT *****

GO TO 161
151 DIGIT =CS9(I,15)

SECON = DIGIT(1:4)
IF(SECON.EQ. '1025') THEN
X89(I,17)=' 1 1 1 1 1)

ELSE IF(SECON.EQ.'10351) THEN
X89C1,17)='-1 1 1 1 1'
ELSE IF(SECON.EQ.'1046') THEN
X89(I.17)=' 1 -1 1 1 1'
ELSE IF(SECON.EQ.'1055') THEN
X89(I, 17)='-1 -1 1 1 1'
ELSE IF(SECON.EQ.'106S') THEN
X89(I,17)=' 1 1 -1 1 1V
ELSE IF(SECON.EQ.11115)) THEN
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X89(I,17)='-1 1 -1 1 11
ELSE IF(SECON.EQ.'1145') THEN
X89(I,17)=' 1 -1 -1 1 1'

ELSE IFCSECON.EQ.'il65') THEN
X89(I,17)='-l -1 -1 1 1'
ELSE IF(SECON.EQ.'1235') THEN
X89(I,17)=' 1 1 I -l 1'
ELSE IF(SECON.EQ.'1315') THEN
X89(I,17)='-1 I 1 -1 1'

ELSE IF(SECON.EQ.'1325') THEN
X89(I,17)=' 1 -1 1 -1 1'
ELSE IF(SECON.EQ.'1335') THEN
X89(I,17)='-l -1 1 -1 1'
ELSE IF(SECON.EQ.)1355)) THEN
X89(I17)=' 1 1 -1 -1 11
ELSE IF(SECON.EQ.'1365') THEN
X89(I,17)='-l 1 -1 -1 11
ELSE IF(SECON.EQ.'1406') THEN
X89(1,17)=' 1 -1 -1 -1 11
ELSE IF(SECON.EQ.'1415') THEN
X89(I,17)='-1 -1 -1 -1 11

ELSE IF(SECON.EQ. '1425') THEN
X89(1,17)=' 1 1 1 1 -1)

ELSE IF(SECON.EQ.'1435') THEN
X89(I,17)='-1 1 1 1 -11
ELSE IF(SECON.EQ.'1445') THEN
X89(I.17)=' 1 -1 1 1 -1'

ELSE IFCSECON.EQ.'14S5') THEN
X89(I,17)=I-1 -1 1 1 -1'

ELSE IF(SECON.EQ.'1465)) THEN
X89(I,17)=' 1 1 -1 1 -11
ELSE IF(SECON.EQ.'1475') THEN
X89(I17)='-1 1 -1 1 -1)
ELSE IF(SECON.EQ.'1485') THEN
X89(I,17)=' 1 -1 -1 1 -1'
ELSE IF(SECON.EQ.)1495') THEN
X89(I,17)='-1 -1 -1 1 -1'
ELSE
X89(I,17)=I-1 -1 -1 -1 -1'
ENDIF
GO TO 181

161 DIGIT =C89(I,15)
SECON = DIGIT(2:4)
IF(SECON.EQ. '1025') THEN
X89(I,17)=' 1 1 1 1 1V
ELSE IFCSECON.EQ.'1035') THEN
X89C1, 17)='-1 1 1 1 1'

ELSE IF(SECON.EQ.'1045') THEN
X89C1,17)=' 1 -1 1 1 1'

ELSE IF(SECON.EQ.11055') THEN
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X89(I,17)='-l -1 1 1 1'
ELSE IF(SECON.EQ.'1065') THEN
X89(I,17)=' I1 -1 1 1'

ELSE IF(SECON.EQ.'1115') THEN
X89(I,17)='-1 1 -1 1 1'

ELSE tF(SECON.EQ.'11451) THEN
X89(I17)=' 1 -1 -1 1 1'
ELSE IF(SECON.EQ.'1165') THEN
X89(I,17)='-l -1 -1 1 1'
ELSE IFCSECON.EQ..'1235') THEN
X89(I,17)=' 1 1 1 -1 1'
ELSE IF(SECON.EQ.21315') THEN
X89(I,17)='-l 1 1 -1 1'
ELSE IF(SECON.EQ.'1325') THEN
X89(I,17)=' 1 -1 1 -1 1'
ELSE IF(SECON.EQ.'133S') THEN
X89(I,17)='-1 -1 1 -1 1'
ELSE IF(SECON.EQ.'13S5') THEN
X89(I,17)=' 1 1 -1 -1 1'
ELSE IF(SECON.EQ.'1365') THEN
X89(I,17)='-1 1 -1 -1 11
ELSE IF(SECON.EQ.21406') THEN
X89(I.17)=' 1 -1 -1 -1 11
ELSE IF(SECON.EQ.)1415') THEN
X89(I.17)=I-1 -1 -1 -1 1'
ELSE IF(SECON.EQ.'14261) THEN
X89(I,17)=' 1 1 1 1 -1'I ELSE IFCSECON.EQ.214351) THEN
X89C1,17)='-1 1 1 1 -11
ELSE IF(SECON.EQ.114451) THEN
X89CI,17)=' 1 -1 1 1 -1'
ELSE IF(SECON.EQ.'1455') THEN
X89(I,17)=I-1 -1 1 1 -11

ELSE IF(SECON.EQ,,'14651) THEN
X89(I517)=' 1 1 -1 1 -1'

ELSE IF(SECON.EQ.21475') THEN
X89(I.17)='-1 1 -1 1 -1'

ELSE IF(SECON.EQ.'1485') THEN
X89C1,17)=' 1 -1 -1 1 -1'

ELSE IF(SECON.EQ.214951) THEN
X89(13 17)='-1 -1 -1 1 -1'

ELSE
X89(I,17)='-l -1 -1 -1 -1'

ENDIF

*****~**PAFSC PREFIX *****

181 PAFSC =C89CI,16)
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X89(I,17)='-l -1 1 1 11
ELSE IF(SECON.EQ.'1065') THEN
X89(I,17)=' 1 1 -1 1 1)
ELSE IF(SECON.EQ.'1115') THEN
X89(I,17)='-l 1 -1 1 1V
ELSE IF(SECON.EQ.'1145') THEN
X89(I,17)=' 1 -1 -1 1 1V
ELSE IF(SECON.EQ.'116S') THEN
X89(I,17)=I-1 -1 -1 1 1'
ELSE IF(SECON.EQ.'1235') THEN
X89(I)17)=' 1 1 1 -1 1'
ELSE IF(SECON.EQ.)1315') THEN
X89(I.17)='-l 1 1 -1 1'
ELSE IF(SECON.EQ.'1325)) THEN
X89(I,17)=' 1 -1 1 -1 1'
ELSE IF(SECON.EQ.'1335') THEN

ELSE IF(SECON.EQ.)1355') THEN
X89(I,17)=' 1 1 -1 -1 1'

ELSE IF(SECON.EQ.11365') THEN
X89(I,17)=I-1 1 -1 -1 1V

ELSE IF(SECON.EQ.'1406') THEN
X89(I.17)=' 1 -1 -1 -1 11

ELSE IF(SECON.EQ.'141S') THEN
X89(2E,17)=I-1 -1 -1 -1 1V

ELSE IF(SECON.EQ.21425') THEN
X89(I.17)=' 1 1 1 1 -1'

ELSE IF(SECON.EQ.11435') THEN
X89(I,17)='-l 1 1 1 -1'

ELSE IF(SECON.EQ.'14451) THEN
X89CI,17)=' 1 -1 1 1 -1'
ELSE IF(SECON.EQ.'1455') THEN
X89(I,17)=I-1 -1 1 1 -1V
ELSE IFCSECON.EQ.11465') THEN

X89(I,17)=' 1 1 -1 1 -1'
ELSE IF(SECON.EQ.'1475') THEN
X89(I,17)=I-1 1 -1 1 -V1
ELSE IF(SECON.EQ.'1485') THEN
X89(I,17)=' 1 -1 -1 1 -1'
ELSE IF(SECON.EQ.'1495') THEN
X89(I)17)='-1 -1 -1 1 -1V
ELSE
X89(I,17)='-1 -1 -1 -1 -V1

ENDIF

********.PAFSC PREFIX *****

181 PAFSC =C89(I,16)
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FIRST =PAFSC(1:1)
IF CFIRST.EQ.'A') THEN
X89(I,18)=' 1 1 I,

ELSE IF (FIRST.EQ.'S') THEN
X89(I,18)=I-1 1 11

ELSE IF (FIRST.EQ.2Fl) THEN
X89(I,18)=' 1 -1 1'
ELSE IF(CFIRST.EQ.'K') THEN
X89(I,18)=I-1 -1 1)
ELSE IF(FIRST.EQ.'H') THEN
X89(I,18)=' 1 1 -1'

ELSE IF(FIRST.EQ.'N') THEN

ELSE IF(FIRST.EQ.'X)) THEN
X89(I,18)=, 1 -1 -1'

ELSE

X89(I,18)='-1 -1 -1)
GO TO 121

END IF

********PASFC DIGIT *****

GO TO 131
121 DIGIT =C89(I,15)

SECON = DIGIT(1:4)
IF(SECON.EQ. '1025') THEN
X89C1,19)=' I 1 I 1 1)

ELSE IF(SECON.EQ.'1035') THEN
X89(I,19)=I-1 1 1 1 1'
ELSE IF(SECON.EQ.'10451) THEN
X89(I.19)=, 1 -1 1 1 1'
ELSE IFCSECON.EQ.'1055') THEN
X89(I,19)='-1 -1 1 1 1'

ELSE IF(SECON.EQ.'105) THEN
X89(I.19)=' 1 1 -1 1 11
ELSE IF(SECON.EQ.'1115') THEN
X89(I,19)=I-1 1 -1 1 1'
ELSE IF(SECON.EQ.'11451) THEN
X89(I,19)=' 1 -1 -1 1 11
ELSE IF(SECON.EQ.21165') THEN
X89(I,19)=I-1 -1 -1 1 1'
ELSE IF(SECON.EQ.)12361) THEN
X89(I1 19)=' 1 1 1 -1 11

ELSE IF(SECON.EQ.'1315') THEN
X89(I,19)='-1 1 1 -1 1'
ELSE IF(SECON.EQ.'1325') THEN
X89(I,19)=' 1 -1 1 -1 1'
ELSE IF(SECON.EQ.'1335') THEN
X89(I,19)=I-l -1 1 -1 1'
ELSE IF(SECON.EQ.' 1355') THEN
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X89(I,19)=' 1 1 -1 -1 1'
ELSE IF(SECON.EQ.'1365') THEN
X89(I,19)='-1 1 -1 -1 1'

ELSE IF(SECON.EQ.'1406') THEN
X89(I,19)=' 1 -I -1 -I I,

ELSE IF(SECON.EQ.'1415') THEN
X89(I1 19)='-1 -1 -1 -1 11

ELSE IF(SECON.EQ.'1425') THEN
X89(I,19)=' 1 1 1 1 -1'

ELSE IF(SECON.EQ.'14351) THEN
X89(I,19)='-1 1 1 1 -12

ELSE IFCSECON.EQ.21445') THEN
X89(I,19)=' 1 -1 1 1 -V'

ELSE IF(SECON.Eg. '1455') THEN
X89(I,19)=I-1 -1 1 1 -1'

ELSE IF(SECON.EQ.)1465') THEN
X89(I,19)=' 1 1 -1 1 -1'

ELSE IF(SECON.EQ.'14751) THEN
X89(I,19)=I-1 1 -1 1 -11

ELSE IF(SECON.EQ.'1485') THEN
X89(I,19)=, 1 -1 -1 1 -1'

ELSE IF(SECON.EQ.'1495') THEN
X89(I;19)='-l -1 -1 1 -1'

ELSE
X89(I,19)='-1 -1 -1 -1 -1'

END IF
GO TO 141

131 DIGIT =C89(I,15)
SECON = DIGIT(2:4)
IF(SECON.EQ. '1025') THEN
X89(I.19)=' 1 1 1 1 1V
ELSE IF(SECON.EQ.'1035') THEN
X89(I19)='-1 1 1 1 11

ELSE IF(SECON.EQ.'1045') THEN
X89(I,19)=' 1 -1 1 1 1'

ELSE IF(SECON.EQ.'10551) THEN
X89(I.19)=I-1 -1 1 1 1'
ELSE IFCSECON.EQ.'1065)) THEN
X89(I,19)=' 1 1 -1 1 1'
ELSE IF(SECON.EQ.'1115') THEN
X89(I,19)='-1 1 -1 1 11

ELSE IF(SECON.EQ. '1145') THEN
X89(I,19)=' 1 -1 -1 1 1'
ELSE IFCSECON.EQ.'1165') THEN
X89(I19)='-1 -1 -1 1 11
ELSE IF(SECON.EQ.'12351) THEN
X89(I,19)=' 1 1 1 -1 1'

ELSE IF(SECON.EQ.'13151) THEN
X89(I,19)='-1 1 1 -1 1'

ELSE IF(SECON.EQ.'1326') THEN
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X89(1,19)=' 1 -1 1 -1 1.'
ELSE IF(SECON.EQ.'1335') THEN

X~oX~9)=-1-1 1 -1 1'
ELSE IF(SECON.EQ.'1355') THEN
X89(I,19)=' 1 1 -1 -1 1'
ELSE IF(SECON.EQ.)1365') THEN
X89(I,19)='-1 1 -1 -1 1'
ELSE IF(SECON.EQ.'1406)) THEN
X89(I,19)=' 1 -1 -1 -1 11
ELSE IF(SECON.EQ.'1415') THEN
X89(I,19)='-1 -1 -1 -1 1'

ELSE IF(SECON.EQ.'1426') THEN
X89(I,19)=' 1 1 1 1 -1'

ELSE IF(SECON.EQ.)1435)) THEN
X89(I,19)='-1 1 1 1 -11

ELSE IF(SECON.EQ.'1445') THEN
X89(I,19)=, 1 -1 1 1 -1'

ELSE IF(SECON.EQ.'1455') THEN
X89(I, 19)='-1 -*1 1 1 -1'

ELSE IF(SECON.EQ.'1466') THEN
X89(I,19)=, 1 1 -1 1 -1'
ELSE IF(SECON.EQ.'1475') THEN
X89(I,19)=I-1 1 -1 1 -1'
ELSE IF(SECON.EQ.'148S') THEN
X89(I.19)=' 1 -1 -1 1 -1'
ELSE IF(SECON.EQ.'1495') THEN

ELSE
X89(I,19)=3-1 -1 -1 -1 -11

END IF

*********PRIORSV

141 IF(C89(I,!Y).EQ.1O') X89(I,2O)='-1 V'
IF(C89(I,17).EQ.'11) X89(I,2O)=' 1 1'
IF(C89(I,17).EQ.'2') X89(I,20)='-1 -11
IF(C89(I,17).EQ.23') X89(I,20)=' 1 -11

*********Soc

IF(C89C1,18).EQ.'B') X89(I121)=I-l 1 1'

IF(C89(I,18).EQ.'C') X89(I,21)=' I 1 -V
IF(C89(I,18).EQ.'D') X89(I,21)=)' 1 1V
IF(C89(I,18).EQ.'E') X89(I,21)='-I1 - V
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IF(C89(I,18).EQ.'G') X89(I,21)=' 1 -1 1'
IF(C89(I,18).EQ.'H') X89(I,21)='-1 1 1'
IF(C89(I,18).EQ.'I') X89(I,21)=-'-I 1 1'
IF(C89(I,18).EQ.'J') X89(I,21)='-l -1 -1'~
IF(C89(I,18).EQ.'K') X89(I,21)='-l 1 11
IF(C89(I,18).EQ.IL') X89(i,21,)='-1 1 1'
IF(C89(I,18).EQ.'M') X89(I,21)='-1 1 1'
IF(C89(I,18).EQ.'N') X89(I,21)=)-i 1 1'
IF(C89(I,18).EQ.'O') X89(I,21)='-l 1 1V
IF(C89(I,18).EQ.'P') X89(I,21)='-l 1 1'
IF(C89(I,18).EQ.IQ') X89CI,21)=' 1 -1 -1'
IF(C89(I,18).EQ.'R') X89(I,21)='-1 1 -1'
IF(C89(I,18).EQ.'S') X89(I,21)='-1 -1 -1'

IF(C89(I,18).EQ.'T') X89(I,21)=)-1 1 -1'
IF(C89(I,18).EQ.'U') X89(I,21)='-1 -1 -11
IF(C89(I,18).EQ.'V') X89(I,21)=I-1 1 -1'
IF(C89(1,18).EQ.'W') X89(I,21)='-l -1 -1'

IF(C89(I,18).EQ.'XI) X89(I,21)='-l 1 V
IF(C89(I,18).EQ.'Y') X89(I,21)='-l 1 1V
IF(C89(I,18).EQ.'Z') X89(I,2i)='-1 1 1'
IF(C89(I,18).EQ.'11) X89(I,21)=I-l 1 1'
IF(C89(I,18).EQ.'2') X89(I,21)=I-1 1 11
IF(C89(,I,18).EQ.'3') X89(I,21)=I-1 1 11
IF(C89(I,18).EQ.'4') X89(I,21)=I-1 1 11
IF(C89(I,18).EQ.'51) X89(I,21)='-1 1 1V

********RACE *****

IF(C89(I,19).EQ.'M') X89(I,22)='-1 1 1'
IF(C89(I,19).EQ.'N') X89(I,22)=' 1 -1 1'
IF(C89(I,19).EQ.'R') X89(I,22)='-1 -1 1V
IF(C89(I,19).EQ.'X') X89(I,22)=' 1 1 -1V
IF(C89(I,19).EQ.IZ') X89(I,22)=' 1 1 -1'

COHP

IF(C89(I,2O).EQ.'R') X89(I,23)='-1 -11
IF(C89(I,20).EQ.'V') X89(I)23)=' 1 -1V
IF((C89(I,2O).NE.'R').AND.(C89(I,2O).NE.'V')) X89(I,23)='-l1 V

********SEX *****

IF(C89(I,21).EQ. 'M') X89(I,24)='-1'

191



FLYMONTH

X89(I ,25)=C89(I ,22)

********RETAIN *****

********STAY = 1I****
*****LEAVE = 0*****

X89(I ,26)=C89(I,23)

70 CONTINUE

***THE FOLLOWING CODE RANDOMLY SELECTS VECTORS FOR THE TRAINING SET
***AND WRITES THE VECTORS TO A FILE.

DO 700 J=bNR2
WRITEC*,*PIINIT CHOICE',J
CHOICE2(J)=O

700 CONTINUE

DO 730 11 = 1,N2TRAIN
WRITE(*,*)'SELECTING 89 TRAIN',II

34 CONTINUE
TEMP=RNUNF()
JJ=NINT (TEHP*NR2)
IF ((JJ.LE.N,-t2).AND.(JJ.GT.0)) THEN
DO 710 K =1,NR2
IF (JJ.EQ.CHOICE2(K)) GO TO 34

710 CONTINUE
DO 720 KK=1,NICOL

XTR89(II,KK)=X89(J3J(KK)
720 CONTINUE

CHOICE2(II)=JJ
ELSE

GO TO 34
END IF

730 CONTINUE

DO 740 I=1,N2TRAIN
WRITE(*,*)'WRITING 89 TRAIN'IJ
NOISE=RNUNFoC
WRITE(16,200)XTR89(I,2) ,XTR89(I,4) ,XTR89(I,7) ,XTR89(I,8),
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;XTR89(I,12) ,XTR89(I,14) ,XTR89(I,19),
;NOISE,XTR89(I ,NlCOL)

WRITE(26,210)XTR89(I,2) ,XTR89(I,4) ,XTR89(I,7) ,XTR89CI,8),
;XTR89C1,12) ,XTR89(I,14),XTR89(I,19),
NOISE,XTR89(I ,NICOL)

740 CONTINUE

***THE, OLLOWING CODE RANDOMLY SELECTS VECTORS FOR THE TEST SET
***AND WRITES THE VECTORS TO A FILE.

DO 750 II=i,N2TEST
WRITE(*,*)'SELECTING 89 TEST'I

35 CONTINUE
TEMP=RNUNF()
JJ=NINT(TEMP*NR2)
IF ((JJ.LE.NR2).AND.(JJ.GT.0)) THEN

DO 760 K=1,NR2
IF (JJ.EQ.CHOICE2(K)) GO TO 35

760 CONTINUE
DO 770 KK =1,NICOL

XTS89(II,KK)=X89(JJ,KK)
770 CONTINUE

CHOICE2(II+N2TRAIN+1 )=JJ
ELSE

GO TO 35
END IF

750 CONTINUE

DO 780 I = 1,N2TEST
WRITE(*1 *)'WRITING 89 TEST'J
NOISE=RNUNF()
WRITE(17,200)XTS89(I,2) ,XTS89CI,4) )XTS89(I)7) ,XTS89(I,8),

;XTS89(I,12) 1XTS89(I ,14) ,XT589(I, 19).
;NOISE,XTS89(I ,NICOL)

WRITE(27,210)XTS89(I,2)1 XTS89(I,4),XTS89(I,7),XTS89(I,8),
;XTS89(I,12),XTS89(I,14),XTS89(I,19),
;NOISE,XTS89(I ,NICOL)

780 CONTINUE

***THE FOLLOWING CODE READS THE VECTORS NOT SELECTED FOR THE TRAINING
***OR TEST SET INTO A VALIDATION FILE.

CNT=0
DO 790 I=1,NR2

DO 800 K=11 NR2

IF (I.EQ.CHOICE2(K)) GO TO 790
800 CONTINUE

CNT=CNT+ 1
WRITE(*,*) 'SELECTING 89 VALIDATION' ,CNT
DO 810 KK=1,NICOL
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XVL89(CNT,KK)=X89(1,KK)
810 CONTINUE
790 CONTINUE

DO 820 I1,CNT
WRITE(*,*) 'WRITING 89 VALIDATION' ,I
NOISE=RNUNF()
WRITE(18,2OO)XVL89(I,2) ,XVL89(I,4) ,XVL89(I,7) ,XVL89(I,S),

;XVL89(I, ±2) ,XVL89(I ,14) ,XVL89(I, 19),
;NOISE,XVL89(I, NiCOL)

WRITE(28,210)XVL89(I,2),XVL89(I,4),XVL89(I,7),XVL89(I,8),
;XVL89(I,i2) ,XVL89(I,14) 1XVL89(I,19),
;NOISE,XVL89(I ,N1COL)

820 CONTINUE

END

END OF PROGRAM*****

194



Appendix D. SAS Logistic Regression~ Sample Program.

options linesize=78;
data pilots;

input vanl 1-4 var2 21-24 var3 41-42 var4 44-45
#2 var5 1-2 var6 21-22 var7 24-25 var8 27-28
var9 41-42 varlO 44-45 varl 47-48
#3 varl2 1-2 varl3 21-22 varl4 24-25
vanS5 41-42 varl6 44-45
#4 var17 1-2 varl8 21-22 var19 24-25 var20 27-28
var2l 30-31 var22 41-44
#5 var23 1-2 var24 4-5 var25 7-8 var26 10-11
var27 21-22 var28 24-25 var29 27-28
var30 41-42 var3l 44-4,5 var32 47-48 var33 50-51
var34 53-54 var35 56-'57 var36 59-60
#6 var37 1-2 var38 4-5 var39 7-8
var40 21-22 -var4l 24-25 var42 27-28
var43 30-31 var44 33-34
var45 41-42 var46 44-45 var47 47-48
#7 var48 1-2 var49 4-5 var50 7-8
var5l 10-11 var52 13-14
var53 21-22 var54 24-25
var55 41-42 var56 44-45 var57 47-48
#8 var58 1-2 var59 4-5 var60 7-9
var6l 21-22 var62 24-25 var63 41-42
#9 var64 1-4 var65 21-28 retain 33-34;

%~include train88;

proc logistic data~pilots outestpaaln covout;
model retain=varl var2 var3 var4 vanS var6 var7 var8 var9 varlO

varl varl2 varl3 varl4 vanS5 var16 varl7 varl8
varl9 1var20 var2l var22 var23 var24 var25 var26
var27 var28 var29 var30 var3l var32 var33 var34
var35 var36 var37 var38 var39 var40 var4l var42
var43 var44 var45 var46 var47 var48 var49 var5O
var51 var52 var53 var54 var55 var56 van57 van58
var59 var60 var6l var62 var63 var64 van65 / covb
selectionstepwise
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slentry=O .3
slstayO0.3
ctable
corrb;

output outpred pphat lower=lcl upperucl;
title 'Pilot Retention Analysis--All Factors';

run;
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Appendix E. SAS K-Nearest-Neighbor Sample Program

options linesize=78;
data pilots;

input varl 1-4 var2 21-24 var3 41-42 var4 44-45
#2 var5 1-2 var6 21-22 var7 24-25 var8 27-28
var9 41-42 varlO 44-45 varli 47-48
#3 varl2 1-2 var3 21-22 varl4 24-25

varl5 41-42 varl6 44-45
#4 var17 1-2 varl8 21-22 varl9 24-25 var20 27-28
var2l 30-31 van22 41-44
#5 var23 1-2 var24 4-5 var25 7-8 var26 10-11
var27 21-22 var28 24-25 var29 27-28
var30 41-42 var3l 44-45 var32 47-48 var33 50-51
var34 53-54 var35 56-57 var36 59-60
#6 var37 1-2 var38 4-5 var39 7-8
var40 21-22 var4l 24-25 var42 27-28
var43 30-31 van44 33-34
var45 41-42 var46 44-45 var47 47-48
#7 var48 1-2 var49 4-5 varSO 7-8
vat51 10-11 var52 13-14
var53 21-22 var54 24-25
var55 41-42 var56 44-45 var57 47-48
#8 var58 1-2 var59 4-5 var60 7-9
vat6l 21-22 var62 24-25 var63 41-42
#9 var64 1-4 var65 21-28 retain 33-34;

%include train88;

data valid;
input varl 1-4 var2 21-24 var3 41-42 var4 44-45

#2 var5 1-2 var6 21-22 var7 24-25 var8 27-28
var9 41-42 varlO 44-45 varli 47-48
#3 varl2 1-2 varl3 21-22 varl4 24-25

var15 41-42 varl6 44-45
#4 varl7 1-2 varl8 21-22 varl9 24-25 var20 27-28
var2l 30-31 var22 41-44
#5 var23 1-2 var24 4-5 vat25 7-8 var26 10-11
var27 21-22 var28 24-25 var29 27-28
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var3O 41-42 var3l 44-45 var32 47-48 var33 50-51
var34 53-54 var35 56-57 var36 59-60
#6 var37 1-2 var38 4-5 var39 7-8
var40 21-22 var4l 24-25 var42 27-28
var43 30-31 var44 33-34
var45 41-42 var46 44-45 var47 47-48
#7 var48 1-2 var49 4-5 var50 7-8
var5l 10-11 var52 13-14
var53 21-22 var54 24-25
var55 41-42 var56 44-45 var57 47-48
#8 var58 1-2 var59 4-5 var60 7-9
var6l 21-22 var62 24-25 var63 41-42
#9 var64 1-4 var65 21-28 retain 33-34;

%include val88;

proc discraim datapilots crossvalidate testlist rethod=npar k=7
testdata=valid;

class retain;
priors proportional;
testclass retain;
var vanl var2 var3 var4 var5 var6 var7 var8 var9 varlO

varl var12 varl3 varl4 vanS5 varl6 varl7 var.18
varl9 var20 var2l var22 var23 var24 var25 var26
var27 var28 var29 var30 var3l var32 var33 var34
var35 var36 var37 var38 var39 var40 var4l var42
var43 var44 var45 var46 var47 var48 var49 varSO
var~i var52 var53 var54 var55 var56 var57 var58
var59 var60 var6l var62 var63 var64 var65;

title 'Pilot Retention Analysis--All Factors';
run;
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Appendix F. SAS Stepwise Discriminant Analysis Sample Program.

options linesize=78;
data pilots;

input vanl 1-4 var2 21-24 var3 41-42 var4 44-45
#2 var5 1-2 var6 21-22 var7 24-25 var8 27-28
var9 41-42 varlO 44-45 varil 47-48
#3 var12 1-2 varl3 21-22 var14 24-25
var15 41-42 var16 44-45
#4 varl7 1-2 varl8 21-22 varl9 24-25 var20 27-28
var2l 30-31 var22 41-44
#5 var23 1-2 var24 4-5 var25 7-8 var26 10-11
var27 21-22 var28 24-25 var29 27-28
var30 41-42 var3l 44-45 var32 47-48 var33 50-51
var34 53-54 var35 56-57 var36 59-60
#6 var37 1-2 var38 4-5 var39 7-8
var4O 21-22 var4l 24-25 var42 27-28
var43 30-31 var44 33-34
var45 41-42 var46 44-45 var47 47-48
#7 var48 1-2 var49 4-5 var5O 7-8
var~i 10-11 var52 13-14
var53 21-22 var54 24-25
var55 41-42 var56 44-45 var57 47-48
#8 var58 1-2 var59 4-5 var60 7-9
var6l 21-22 var62 24-25 var63 41-42
#9 var64 1-4 var65 21-28 retain 33-34;

%include train88;

proc stepdisc data~pilots short;
class retain;
var vanl var2 var3 var4 var5 var6 var7 var8 var9 varlO

varil varl2 varl3 var14 vanS5 vanl6 varl7 varl8
vanl9 var20 var2l var22 van23 var24 van25 var26
van27 var28 var29 van30 van3l var32 var33 var34
van35 van36 var37 van38 var39 van40 van4l van42
van43 var44 van45 var46 van47 var48 var49 var5O
vanS 1 van52 van53 var54 van55 var56 var57 var58
var59 var60 van6l var62 van63 var64 var6s;
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title 'Pilot Retention Analysis--All Factors';
run;

200



Appendix G. Resulting Multilayer Perceptron Weights

LOWER WEIGHTS: BETWEEN INPUT NODE I AND HIDDEN LAYER

3.744487 -5.661802 1.236460 1.922172 -2.029330 10.354836

6.098336 2.147858 4.904820 -11,311367 -1.917496 1.841209

9.352450 -3.212702 3.711942 2.021291 -12.909331 -1.363645

-5.616950 1.299951

LOWER WEIGHTS: BETWEEN INPUT NODE 2 AND HIDDEN LAYER

1.347507 -0.970914 1.164620 1.239261 -6.904645 -0.094074

0.736928 0.922072 -0.114203 8.686078 -2.432656 -0.232804

-13.721185 -6.776404 -16.773806 0.401682 5.524731 -1.627905

5.696426 0.477476

LOWER WEIGHTS: BETWEEN INPUT NODE 3 AND HIDDEN LAYER

1.919518 0.870390 1.480452 1.972719 -2.842570 0.711223

-1.605092 2.106697 -0.150365 -9.008704 -3.020168 1.646644

0.529753 -4.272395 5.095506 1.684121 -12.894631 -1.940293

-15.640748 1.351816

LOWER WEIGHTS: BETWEEN INPUT BIAS AND HIDDEN LAYER

0.350284 3.616477 2.234319 1.472493 2.479678 -2.922721

-2.494206 1.428351 -1.127116 8.068166 1.193551 1.970396

4.1'j7944 3.937369 8.015651 1.656948 18.750011 0.094867

5.196889 2.342147

UPPER WEIGHTS: BETWEEN HIDDEN LAYER AND OUTPUT LAYER

OUTPUT NODE 1 OUTPUT NODE 2

1.622562 -2.391974

1.518672 -1.350263

0.701384 0.101410

1.359723 -0.511516
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-3.708065 3.423710

4.255523 -4.189113

-1.464045 1.800414

0.722850 -1.476495

-0.951802 0.532561

-7.536643 7.476709

-1.830029 1.852042

-0.883811 0.523115

-5,536485 5.647514

-3.824516 4.102173

-6.893157 6.807547

-0.724301 0.604316

8.788891 -8.774087

-1.048357 0.822975

-11.893315 11.845622

0.077864 0.398423

0.755320 -0.879614
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