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ABSTRACT

The small perturbation, two-dimensional transonic equation
is manipulated with a separation-of-variables approach to
obtain two ordinary, nonlinear, differential equations.
Numerical integration of these differential equations results
in new transonic boundary surfaces for planar external flows.
A key ingredient in these solutions is the identification of
dependence of two integrations constants, « and f, on the
parameter (1-M,2). The anticipated behavior for both the Mach
number and the pressure coefficient is used as a guide in the
actual selection of the adjustable constants in the problem.
The physical reality of our boundary surfaces is examined by
displaying the boundary conditions they satisfy. The strictly
sonic flow (M,=1.0) has an analytic representation
corresponding to a divergent surface which goes supersonic.
This sonic solution is compared with an Euler-CFD approach
confirming the validity of our results over the region where
small perturbations apply. Solutions are also shown for
M,=0.8,0.9,1.1, and 1.2 . These results are consistent with
known behavior for both subsonic and supersonic external flow.
Since the results of this work yield actual transonic
contours, we can examine shockless surfaces for design
applications. The possibility of starting with transonic
surface is of interest tc present day CFD approach. Finally an
entire transonic upper surface is presented for M,=0.8, by
patching a subsonic Mach number, which reaches a plateau at
M=1.0, with a sonic flow. This patching requires the careful
interpretation of a nondimensional reference length, called
Y,, which is a function of M,.
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I. INTRODUCTION

The governing nonlinear equations, together with realistic
boundary conditions have always been the main difficulty in
transonic aerodynamic analysis, [Ref. 1]. While the hodograph
transformations approach 1linearizes these equations, the
transformations are confined to a limited number of transonic
flows due to complicated boundary conditions. The small
perturbation approach simplifies the full potential
Equations; furthermore, 1like other predictive methods, it
succeeds in retaining the great sensitivity of transonic flows
within small perturbations. This paper expands on the exact
solution of the small perturbation, nonlinear, two
dimensional, transonic equation, using the guidelines and
tools given by Biblarz 0., [Refs. 2 and 3]. Starting with a
separation-of-variables approach, Chap. III reveals two
nonlinear, ordinary, differential equations which lead into
two exact solutions. Chaps. IV and V describe the numerical
integration of these implicit solutions, which finally yield
the boundary surfaces. Later, these boundary surfaces are
found to satisfy the boundary conditions for a two dimensional
surfaces. These findings are then compared with a finite
difference solution of the Euler Equations for the sonic
solution. The usefulness of the shockless, transonic, boundary

surfaces appears once transformed to dimensional body




surfaces; '"patching" (i.e., translating), the dimensional,
subsonic, body surface of C=0 at the upstream inflow, with
the dimensional, sonic body surface, enables us to form

complete transonic upper surfaces of interest for design.




II. THE TRANSONIC EQUATION

The small perturbation nonlinear, two dimensional

Transonic Equation

MZ(y+1)
(1M D + By = =D (1)

o0

is described by the velocity potentials

u=90, v=2>0, (2)

Multiplying egqn. 1 by 1/U, enables us to transform the

Transonic Equation to
(1-M2) by * by, = M2 (7+1) b0y (3)
where the nondimensional velocity potentials are
_.u _ v
(bx - Fm (by - E (4)

The Meyer solution for the de-Laval nozzle defines a

velocity potential
o(x,y) = b —}—{2—2+b(y+1)M3%2+b2(Y+1)2M3% (5)

which satisfies the nondimensional form of equation (3)
M,=1.0

for
The Meyer solution belongs to a general class of

sonic flows as reported by Guderley and Yoshihara, [Ref. 4].




The transonic equation (1) may be modified to a more
useful form if multiplied by M,%(y+1) /U,, instead of just 1/U-
»s LO give )

(1-M2) by + 0y = 0,0, (6)

Here the modified velocity potentials are

= w2 u — a2 \%4
d)X = I‘fco (Y+1) —[-J:, ¢y - Mcn (Y+l) Fw

(7)

For a given problem, M, and vy are constants, and egn. 6 is
really less cluttered. However, notice that M,’(y+1)/U, is
already given in the derivatives of ¢ in egns. 7, and
therefore appears in the expressions of C, and the boundary

surfaces as will be shown later. This form of the modified

transonic equation (6) will be examined in the next chapters.




III. THE GOVERNING DIFFERENTIAL EQUATIONS

An exact solution to the modified transonic equation 6 has

been given by Biblarz, [Ref. 2], starting from

d(x,y) = ¢S(x,y) + (1-MZ) x (8)

where ¢°(x,y) refers to the sonic, small perturbation solution
(M,=1.0). In other words, "any flow which satisfies the sonic
equation also satisfies the full transonic range with similar
boundary conditions,! [Ref. 2].

An exact solution may be obtained by using the separation-
of-variables approach with the potential function ¢ (x,y) of

the form
d(x,y) =E(x)In(y) + (1-M2) x (9)

Substituting the above ¢ function in the modified
transonic equation 6 results in two ordinary, second order,

nonlinear differential equations

g d%8 4y -

D oo AE =0 (10)
d*N _jnz = g (11)
dy? i

where A is a separation constant.




A simple solution to the first differential eqgn. 10 is

obtained by multiplying both sides by df/dx,

dE(dE d%8) _ dE - 12
dx(ddeZ) o (M) =0 (12)
or
d[3(dEV _ Agl]
&[3(&) 25] 0 (13)
Thus 3
g _ | 3Ape (14)
dx \J Sy e
dx = ——d&
3 15
ETYO (15)
Jz
and
e = dé
X XO f———-—-————3 (16)
_3_)“.8;'2+a
Jz

where «o and x, are integration constants.
A similar procedure can be performed to solve the second

differential egn. 11 yielding

iﬂd_"’fl)_ﬁﬂxzho (17)
<ﬁf(dy2 dV( n
or
dfifdn\z _ A ] . 1
dy Z(dy) 3n] ° (18

[e))




an, 2A
—_l = L nd (19)
a3y i\' 3N + P

dy:i_—gn___

\l%n° + B

(20)

and d
y-y0=if__J___

l (21)
%’fn"' + P

where f and y, are integration constants.

Eqns. 16 and 21 are exact solutions to the differential
eqns. 10 and 11. In fact, boundary conditions are needed to
evaluate the integration constants o, 8, X, Yo as well as A.
An important step in this procedure is the recognition of «

and B as functions of (1-M.%), [Ref. 2], i.e.,

@ =20 (1-M2)° (22)

B =2C, (1-1) (23)

The upper positive sign and the lower negative sign in the
above equations will be shown to belong to M,21.0 and M.,<1.0
respectively, namely,

az0 & (<0 for M,=21.0

a<0 & <0 for M,<1.0

See Appendix B.




.

The constants, «, § and A can be shown to be related by the

expression
2 - 2w’ (24)

Since C, ,C, and A are positive constants

C,C = L1 (25)

wl

The usefulness of these definitions will be outlined in
more detail once we use the exact solutions from eqgns. 16 and
21, while verifying the correct boundary conditions for the
pressure coefficient C,.

Upon inserting egns. 22 and 23 in egns. 16 and 21 we have

- d§
X - X, = f3
(26)
\J—3—"Ez £ Cy(1-M2)7
Y-y =t dn
21 3 2 (27)
-?rn t C,(1-M;)

Factoring out C, and C, we obtain

f & (28)

3
312 a2y 2
J-EEZE + (1-M2)




dn

[ 22
3G,

Introducing new dependent variables

Finally, if we define new independent variables

(3

i
2

N & (1-M?%)

dfj

Ve 2 (1-3)

(29)

(30)

(31)

(32)

(33)

(34)

(35)




egns. 32 and 33 then follow as

dt
X =
(36)
f3\/52 £ (1-M2)°
_ af
Y=z 37
f fi® £ (1-M2) (37)

This set will be numerically integrated to obtain
transonic surfaces with their corresponding C, and Mach numbexr

profiles.

10




Iv,

NUMERICAL INTEGRATION

We can rewrite eqns. 36 and 37 in a more general form and

specify the two integral limits

+
x= dz (38)
0 Jzz + (1-M2)°
7
aw
Y=12 (39)
f 1w (1-MD)

$(1-4%) 3

As indicated before, the upper and lower sign within the

integrand root and the integral limits is used for M,=z1.0 and

M,<1.0 respectively. In addition, our flow of interest is only

the first quadrant in X and Y,

external flows. To show this clearly,

which represents physical

for the subsonic case

M,<1.0, egns. 38 and 39 reduce to the form

: d

X = f Z 0282~ (1-M2) (40)
o Yz? - (1-M)°

L] 1
Y= - f aw - fiz (1-M2) 3 (41)
3 - (1=

(1-1»13)% ‘/W (1-22.)

11




and for M, z1.0 we have

4
x=[ 22 £20 (42)

3
o Yz% + (1-M})°

’ aw 2 3
= - - . - 3
g f 3 : fiz- (1-M2) (43)
3 W+ (1-MD)

“(1-M3)

However, we will frequently retain the more general "z
notation in our discussions further on.

Before we head to numerical solutions, we should indicate
that sonic flow (M,=1.0) can be given in explicit form through
eqns. 40,41,42,43, i.e., the resulting equations for sonic

flow are

4
dz
{

Y = -'ﬂ/_d_w (45)

¢ = (%x)3 (46)

= (—21-,) (47}

12




Having defined §,7,X and Y in eqgns. 30,31 and egns. 34,35,

we can express the sonic solution rewriting eqns. 46 and 47 as

E= % (x—xo)3(9§'l) (48)
= 22
RTaE e o)

Providing the sonic perturbation potential from eqn. 9
d)s = En (50)
and inserting eqns. 48 and 49 we have, [Ref. 2]

s o 1 (xx)°
3

(51)
Y‘Yo)z

Next, egns. 40 to 43 are numerically integrated and
plotted in Figs. 1 and 2 for wvarious M., (e.g.,
0.8,0.9,2.0,1.1,1.2). Plotting % vs. ¥ for ¥>0 in Fig. 2 is an
appropriate choice for investigating physical external flows
as stated earlier.

Our numerical solution has been based upon the Newton-
Cotes method of order 4, [Ref. 5], which may be applied to an

even number of subintervals, each described as,

Zf(x) dx=_(-bg_‘é?l[7 £(a) +32 f( a;b)ﬂz f(_é;_b)m f(ﬂ%ﬂ)w f(b)]

(52)
(See appendix A).

13




Numerical solutions which express £ and %, as has been
noted, can be combined with egns. 30,31 and eqns. 34,35 and
substituted in egn. 9 to give a complete solution for the

perturbation potential in terms of the positive constants A or

(C]I Cz)l and (x()l Yo)-

14




V. BOUNDARY SURFACES

For an inviscid flow, the condition to be applied at the
surface of a solid boundary is that the direction of the flow
velocity vector is tangent to the solid surface, [Ref. 6]). In
terms of perturbation velocities this boundary condition

becomes

[

(53)
dX) surface

dy v
( i

The modified velocity perturbation potential as pointed out

earlier is

— 2 \%
¢, = M (ye1) - (54)
thus
v b (55)
U“’ Meo (Y+1)
We can show by substitution that
AX| syrface ME(‘Y*‘J.)

Now, deriving the perturbed potential function in eqn. 9

with respect to y gives

¢, = ] (57)

15




Egqn. 19 for y>0 becomes

dn

- | 24 3 ' (58)
dy “l 3N + P

This relation can be rearranged using % and § in egns. 31 and

23 to yield

1
an _ _~2 [=3 M2 59
7%& = =y J f° £ (1-M]) (59)
Upon using this equation and the relation of egn. 30 to the

derived velocity potential in egn. 57 results in

AV oz
o, = (2] e TE @ (60)
1

The last equation can be rewritten with the benefit of the

related constants C,, C, and A in eqgn. 25, hence

¢, = ~28/ 7 & (1-M) (61)

Once we have found the form of ¢,, the expression for the

surface boundary condition is given as

ZF7$:33-8¢ f? 2 (1-M2) (62)

wito

Rle

( )surface

However, an important result to observe is that £ and % in the
R.H.S. of this equation are given implicitly as a function of
X and Y respectively in our earlier numerical integration

golution, while the L.H.S. is expressed by x and y. To get

16




compatibility, we then transform the L.H.S. of eqn. 62 using

the chain rule dy _ 4y dx/dx

x - ax dv/dy (63)

Deriving eqn. 34 with respect to x and egn. 35 with respect to

y gives L )
% - cl'ﬁ(%&)z (64)
. C-(.23_A)- (65)
Y
therefore
’ng = %%’ (66)

Equation 62 can be rewritten using the above transformation as

ay _ (2 __ Y %3 (1-MD)
ax (3) M2 (y+1) A - (67
or
dy Co[2P 1 p oy
= -{2) 8
Ve (1-mE) (3) M3 (y+1) (68)

We are now in a position to compute the exact boundary
surfaces out of eqn. 68. Starting with the L.H.S. we then

define

E(Y) = 1

= 69
[T 2 (120) (69)

17




Having defined eqn. 69 we can plot E(Y) vs. Y in Fig. 3 for
various M,, (e.g., 0.8,0.9,1.0,1.1,1.2), keeping in mind our
"1+" notation for the supersonic (upper sign) and subsonic
(lower sign).

The asymptotic value of E(Y) occurs at ¥, where

1
i - 7 (1-M2) 3 (70)
In other words, the asymptotic value can be expressed as

¥,=Y,(M,), or as function of (1-M,%), which has been

numerically found to be

y, s —2:4

(71)

E
6

|1-M2]

Y, vs. M, is sketched in Fig. 4 to demonstrate an interesting
symmetry with respect to M,=1.0 . Here Y,=o but note that for
practical reasons we can adopt finite values of ¥, (perhaps as
low as 7 to 20) to represent conditions sufficiently close to
M,=1.0

Defining the integral of the R.H.S. of egn. 68 as

X

and redoing numerical integration allow us to plot K(X) vs. X
for y=1.4 in Fig. 5. It is important to realize that K(X)>0

for M,<1.0 and K(X)<0 for M,=21.0 , before solving eqn. 68.

18




Therefore, integrating both sides of eqn. 68 yields for K(X)>0

fE(”) d¥ = K(X) (73)

and for K(X)<0

[E®af = k(@) (74)
)
Once we specify X for K(X) we can immediately solve the L.H.S.

integrals of eqgns. 73 and 74 for Y, expressing

(Y) = Y(X) (75)

surface

namely, the required boundary surface for any chosen M,.
We can rewrite egns. 73 and 74 in the more complete form

for M.<1.0 as

Y

ay = -(2\2 fz (76)
v i - (1-MD) Y+1 0
and for M_=1l.0
Y ~ 2 X
a¥ = -(3) ——— [t ak 77
n i+ (LoaE) V3 Myl g

Egqns. 76 and 77 are equivalent to egns. 73 and 74 which
finally yield the boundary surfaces. These are shown
nondimensionaly in Figs. 6 and 7 for M,=0.8,0.9,0.97 and in

Fig. 8 for M,=1.0,1.1,1.2

19




l

The sonic surface is most easily verified by direct
analytical expansion of egn. 77, using the sonic relations
stated in egns. 46 and 47.

(2Y° .5 20 1 [{13P.2
f(_f") ax = _(3) (y+1) [(3x)dx (78

Yo

Solving the above integrals on both sides gives

5
Y - Y= - (%) X (79)

Recall that ¥, » = for the sonic case. However, choosing for
example Y,=20 gives an asymptotic value of %#=0.01, (eqn. 47),
and E(Y,)=1000, (egn. 69), for our explicit sonic solution.

(See also Figs. 2 and 3). Therefore, dividing by a finite Y,

enables us to obtain the nondimensional sonic boundary surface

I U (_2_)5’1" (80)
(y+1) \3/ | ¥,

This will be shown to be a divergent surface which increases

as a function of vy .

g

the Mach number to supersonic conditions.

20




VI. PRESSURE COEFFICIENT

For a flow with small perturbations the pressure
coefficient is given by, [Ref. 8]
5 2 2
7“+<1_M3>(-z) (_V)

0, U,

o0

CP = - (81)

]

A first order approximation for the linearized pressure

coefficient in a two dimensional planar flow is

C, = - (82)

Recall the modified velocity potential

b, = M3<v+1>ﬁ (83)
Thus
7. Mf(d;xﬂ) o)
and from egn. 82 we see that
c, = ______22¢x (85)
Mo (y+1)

Now, deriving the potential function in eqgn. 9 with
respect to x we have

b, = %—{ + (1-M2) (86)

21




Rewriting eqgn. 14 using the relation for « in eqgn. 22 as

dE | 3 (87)
= \ng + C, (1-MZ2)

By taking advantage of f{ as stated in eqn. 31 and factoring

out C,, egn. 87 becomes

i
=3 3\/ 22y (1-M2)° (88)

S

~

Substituting egqn. 88 and the relation for % in eqn. 31 to the

velocity potential ¢, in eqn. 86 yields

1
by = ﬁ(3clcz)3 VY 1102+ (1-12) (89)

Once again, using the benefit of the related constants C,, C,

and A in egn. 25, egn. 89 becomes

b, = fi 3\/ B2 x (1-M3)° + (1-M2) (90)

therefore eqn. 85 for C, follows as

-2 ~ 23 2,2 2
c = "2 B2 4 (1-M%)7% + (1-M2) 91
PoME(y+1) [n V ] oy

We must anticipate the above expression for C, to satisfy the

boundary conditions on external boundary surfaces as will be

explored further on.

22




VII. THE LOCAL MACH NUMBER

The velocity vector V is given by the undisturbed uniform

velocity U, and the perturbation velocities for the 2D flow as
V=13I(+u +Jv (92)
Thus, we may obtain the local Mach number M in terms of the

above velocities and the local speed of sound "a".

.. PP _ (U + u)? + v2
Y a?

M (93)

Neglecting higher powers of the perturbation velocities gives

2 2
o (1 A (94)
M? = =
a2

In addition, the ratio of the local speed of sound to the

undisturbed uniform speed of sound becomes

a? T
';3 =5 (95)
or
a2 - TO/Tw

were T, designates the stagnation temperature.

23




Eqn. 96 can be replaced using the well known relation

Wi}
N
\V]

4 = 2 (97)

JA)
8 v

Substituting the local speed of sound from egn. 97 to eqn. 94

results as

1+ Y—lhﬁ (98)

Having stated C, in eqn. 82, egn. 98 is reduced to the form

M? _ Mii-c,)
o - — (99)
1+1§—M2 1+—72—M,,,

Rearranging egn. 99 and factoring out M’ yields the final
expression for the local Mach number
MZ(1-C,)

M2 m P (100)
1+i-;—1Mjcp

Note that M=M, when C,=0 as it should.
This important relation, combined with the corresponding
eqn. 91 for C,, will be used when discussing the boundary

conditions in the next chapter.

24




VIII. BOUNDARY CONDITIONS

Rather than providing the boundary conditions for the
governing differential egns. 10 and 11 to evaluate the
constants, we imposed a solution by defining o and f§ in eqns.
22 and 23 respectively. That is to say, boundary conditions
have been already implied in the definitions of « and . This
procedure led us to reveal the boundary surfaces upon using
the tangency condition and compute the pressure coefficient C,
on the body surface, (eqn. 91).

Thus, we arrive at the necessity to verify the validity of
the expression for C, for the boundary surface, and verify the
following requirements:

® At the upstream end (X/Y,=0), we must require that C,=0
ensuring the unperturbed Mach number of the transonic

inflow to equal M,.

® For the subsonic inflow at the downstream end (X @ Y/Y,=1)
we must require that the local Mach number saturates
towards M=1.0 . This is because of the well known relation
in gas dynamics for a convergent flow.

We first restrict our attention to the first requirement,
for M,=21.0 at X/¥,=0

E=8"=0 (101)
At Y/Y,=1 eqn. 70 becomes

1
ﬁ - ﬁt = _(l_Mj) 3 (102)
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Inserting the above terms of ¢ and % in eqns. 90 and 91 gives
R P ——
Oy = ~(1-02) 7 J(1-M2)7 + (1-M3) =0 (103)

and
C,@ (X/Y, =0, ¥Y/¥,=1) =0 (104)

Therefore, from egn. 100

(1.05)

o0

Me (X/¥, =0, ¥Y/¥, =1) =M

Hence, eqns. 104 and 105 comply with the first requirement.
The complete behavior of the pressure coefficient and the
local Mach number are plotted in Figs. 9 and 10 for M,=1.0 and
M,=1.1. In addition, it is important to note that the boundary
surfaces ought to be truncated at M,<1.2, so as not to exceed
the small perturbation assumptions.

Now, for M,<1.0 at X/¥,=0

E=8"=0 (106)
However, at Y/Y,=0
oo it = (107)
Thus, eqn. 91 results as
C, @(X/¥, =0, ¥Y/¥, =0) = (108)

We immediately conclude that the above coordinate (0,0) can
not serve as the upstream start for the subsonic inflow.
Instead, we must localize a new upstream end coordinate along

the boundary surface whose §' and % values satisfy egn. 91
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for the equality C,=0 . Since every coordinate on the boundary
surface (X/¥,,¥/Y,) is a function of £ and 7, (egqn. 76), we can
numerically scan the locus of all the coordinates, i.e., the
boundary surface, for such values of £ and #* that will
satisfy eqn. 91. For example, scanning the results for the
subsonic boundary surface of M, =0.8 reveals; £=§'=-0.35763 and
7=%'=3.01393 at the coordinate (X/Y,=0.31366,Y/Y¥,=0.40616).
Inserting the above values of £ and 4 in egn. 91 yields
C,=0.0003 . Hence, by relocating a new upstream coordinate for
the subsonic inflow we are then able to satisfy our first
requirement., (This is shown later in Figs. 11 and 12).

We now consider the second requirement for the subsonic

outflow at the downstream end where

E -8 =-(1- M) (109)

1
fe(y/y,=1) - f* = (1-M%) 3 (110)

or equivalently d¥/dX - 0

~

Substituting these terms for £ and 7 in eqgns. 90 and 91 gives

b, = (1-242) (111)

and )
, - -2 (1-M?) (112)

MZ (y+1)
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Thus, we can express the local Mach number using egn. 100

2 1+2(1—1\4‘3)

M2 = M2 (y+1)
1_ (‘Y-—l)Mzz(l—Mj)

2 M2 (y+1)

(113)

Upon expanding egn. 113 and factoring out M,? we obtain

2 —-—
e = Me(y-1)42 (114)
ME(y-1) +2
or equivalently
M=1 (115)

Hence, we have verified the second requirement: The local
Mach number saturates at the downstream end to the value M=1.0
for any subsonic irflow M,<1.0 . The pressure coefficient and
the local Mach number behavior along the boundary surface are
plotted in Figs. 11 and 12 for M,=0.8 and M,=0.9 respectively,
showing clearly both the upstream and downstream boundary
conditions.

Knowing that boundary conditions require the gradient of
the potential function ¢ to vanish far away from the body
gives rise to an important question: How is the flow pattern
along the boundary surface propagated into the flow field? We
treat this question by considering a computationally efficient
flow solver developed by J. A. Ekaterinaris, ([Ref. 7]. This
CFD solver consists of the inviscid Euler equations and uses

fully implicit two dimensional Crank-Nicholson method with a
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central difference ADI scheme, and fourth and second order
numerical dissipation, [Ref. 9]1. This solver has been modified
here to solve the inviscid flow around our earlier boundary
surface solution for the chosen sonic case M,=1.0 . By
¢reating a grid mesh which consists of a boundary surface
edge, we are able to map the flow pattern. Upon observing the
constant Mach lines as graphed in Fig. 14, we deduce that the
flow is shockless through the whole transonic range; a shock
is formed further downstream at the local Mach number M=1.9

These results are in complete accordance with the inviscid
small perturbation transonic solution, (see Fig. 9). 1In
addition, each vector oa Fig. 13 describes the resultant flow
direction at a specified grid point, (not the streamlines !),
colored by Mach levels. Thereby, we may evidence the far-field

boundary conditions

Vv=0 u=vs=0 (116)

oo

In other words, the flow pattern is propagated out from the
boundary surface gradually towards satisfying the far-field
boundary conditions far away from the body.

It is of special interest to inspect the dimensional
boundary surface for possible design applications; For
example, the dimensional, subsonic, boundary surface of
M,=0.8 is obtained by multiplying the nondimensional
coordinates  (X/Yoos,¥/Yoos) bY Yooe=2.84 , i.e., the

dimensional, downstream end coordinate results as (X,,2.84),
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as plotted in Fig. 15a. Similarly, mulctiplying the
nondimensional, sonic coordinates (X/Yyq,Y/You) bY Youq=14,
yields the dimensional, sonic, boundary surface, where the
dimensional, upstream, starting coordinate becomes (0,14).
Now, translating the dimensional, sonic, boundary surface,
(Fig. 15b), by (AX,AY)=(X,,-(14-2.84)), to match the
downstream end coordinate of the above dimensional, subsonic,
boundary surface, ‘"patches" both dimensional boundary
surfaces, to form a 2D planar upper surface as shown in Fig.
15. We may use this technique to "patch" any subsonic boundary
surface in order to form our transonic upper surface of

interest.
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IX. CONCLUSIONS

We have shown that an exact solution for the transonic
equation satisfies the complete behavior of the pressure
coefficient, and the local Mach along a 2D-surface for planar,
external flow. It is of special interest to inspect the
dimensional boundary surface for possible design applications;
For example, the dimensional, subsonic, and sonic boundary
surfaces are obtained by multiplying the nondimensional
coordinates (X/Y,,Y¥/Y,), by the corresponding Y¥,. Translation
of the dimensional, sonic, boundary surface, to match the
downstream end coordinate of the above dimensional, subsonic,
boundary surface, "patches" both dimensional boundary
surfaces, to form a 2D planar upper surface as shown in Fig.
15. This technique may serve as a powerful tool for the
implementation of supercritical, shockless, planar surface
designs, because of the saturation of §j with Y (Fig. 2), we
can also describe certain internal flows such as planar
converging, diverging tunnel walls. We may also extend these

results to axisymetric transonic flow.
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APPENDIX A
COMPUTER PROGRAMS

Ckhkkkkdkhkhhkhhkhkdkhdhkhhhkhhhhhhkhrhkhhhdbhkhhkhdrdbdhrhkhkhbhhkddhbhhdhrhiddk

* THIS FORTRAN PROGRAM USES NUMERICAL INTEGRATION BASED ON
THE NEWTON-COTES FORMULA TO SOLVE NUMERICALLY EQNS. 40 AND 42.

THE OUTPUT IS IN THE FORM OF ¢ vs. X

kkkhkkkkkkkhkhkkhkhkhhkhhbhhkdkhhdkhkhkhkdkhhhkdkhkhrkhhkhrhkdhhkhkhhkhkhkhkhkkhkhkhkk

program KSI

PARAMETER (N=5)

IMPLICIT REAL*8(A-H,0-2)

IMPLICIT REAL*8 ‘M)

IMPLICIT REAL*8 (K)

INTEGER INDEX, I

DIMENSION X (N) ,XDOT (N),SAVEX (N),SAVED (N) ,KSI(N)

DIMENSION MACH(N),X1(N), X2 (N)

MACH (1) =0.8D0
MACH(2)=0.9D0
MACH (3)=1.0D0
MACH (4)=1.1D0
MACH(5)=1.2D0

KSI(1)=0.0D0O
KSI (2)=0.0D0
KSI(3)=1.0D-3
KSI(4)=0.0D0
KSI(5)=0.0D0
Gk ok ok o K o ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ko o ok ok ok ok ok ok ok ok

C MAIN PROGRZAM *
c***********************************************************
DO 100 I=1,5
IF(I.LT.3) THEN
H=-0.001D0
GOTO 5
END IF
H=0.01D0
5 IF(I.LT.3) THEN
TF=-(1.0D0-MACH(I)**2)
GOTO 10
END IF
TF=120.0D0
10 IF(I.LT.3.AND.KSI(I).GT.TF.OR.
I.GE.3.AND.KSI(I).LE.TF) THEN
30 do 50 index=1,5
CALL DERIVative (KSI,N,I,X1,X2,XDOT,MACH)
CALL NEWTONCOTES (KSI,XDOT,X,SAVEX,SAVED,H,N, INDEX, I)
50 end do
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WRITE (10+i,*) X(I),KSI(I)
GOTO 10
END IF

100 END DO

STOP
END

C % K gk K ok gk g dek K g ke gk Jode ke deodk ok g g de ke g gk dodede ke de do g ded ke dede ok K de ok dede dededekdek kok ok kk

c

SUBROUTINE DERIVative *

CF %k kK kg dkok ok dk K deok deok ok de ko kok ok Kk ok ke ok ke ke ke ok dede ek ok ke de ok de de ok dede e e de ok ok K ke ke ok

10

20

30

SUBROUTINE DERIVative (KSI,N,I,X1,X2,XDOT,MACH)
IMPLICIT REAL*8(A-H,0-2)

IMPLICIT REAL*8 (M)

IMPLICIT REAL*8 (K)

DIMENSION XDOT (N),X1 (N),X2 (N),KSI(N),MACH (N)
GO TO (20,20,10,10,10) ,I
X1(I)=KSI(I)**2+(1.0D0-MACH(I)**2)**2

X2 (I)=X1(I)**(1.0D0/3.0D0)

XDOT(I)=1.0D0/X2(I)

GOTO 30

X1(I)=-(KSI(I)**2-(1.0D0O-MACH(I)**2)*+*2)
X2 (I)=-X1(I)**(1.0D0/3.0DO0)
XDOT(I)=1.0D0/X2 (1)

RETURN

END

Chkkkkhkhkkhkhkhkhkhkhkkhkhhhkkhhkdhdhhkhkddhhhhhhddrhkhhhkhkdrkhdhdhthhkhkid

C

SUBROUTINE NEWTONCOTES *

Chkhkkkkkhkkkhkdkhhkhkkhkkkhkkkkthkkthhdhhthhdkhkhkhhkhkdhkhbhkkhkbkkhkbdkhkhdddd

SUBROUTINE NEWTONCOTES (XKSI,XDOT,X,SAVEX, SAVED, H, N, INDEX, I)
IMPLICIT REAL*8(A-H,0-2)

IMPLICIT REAL*8 (M)

IMPLICIT REAL*8 (X)

DIMENSION X({N),XDOT (N),SAVEX(N),SAVED(N), KSI(N)
GO TO (1,2,3,4,5) ,index

SAVEX (I)=X(I)

SAVED (I)=XDOT (I)

KSI(I)=KSI(I)+0.25D0*H

RETURN

SAVED(I)=7.0DO*SAVED(I)+32.0D0*XDOT (I)
KSI(I)=KSI(I)+0.25D0*H

RETURN

SAVED(I)=SAVED(I)+12.0D0*XDOT(I)
KSI(I)=KSI(I)+0.25D0O*H

RETURN

SAVED (I)=SAVED(I)+32.0D0*XDOT(I)
KSI(I)=KSI(I)+0.25D0*H

RETURN

X(I)=SAVEX(I)+(H/90.0D0)* (SAVED(I)+7.0D0*XDOT(I))
RETURN

END

Chhkdkkkkkkkhkhkhkhkhkhhkkhkhkhkhkkkhkhhhkhhhkkdhhhkhhkhhkkdhhhkhdhkdkhhkhkhhdhhkkhk
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khkkkkkkkkkkkkkhkkhkhkhkhkkhkhhkkhkhkhkhkhkkkdhhhkhkhkthkhkdhkbhkrhkkhhkdkhkhkid

THIS FORTRAN PROGRAM USES NUMERICAL INTEGRATION BASED ON

THE NEWTON-COTES FORMULA TO SOLVE NUMERICALLY EQNS. 41 AND 43.

THE OUTPUT IS IN THE FORM OF % vs. Y

khkkkkkkhkhkkkhkdkhkkkhkhkkkkhkkdhkdkdhkkhkkkhkhkkhkhhkhkhkhkkhkhkkhkhkhkkhkkhkkhkkhkkkdkk

Cc

program ETTA

PARAMETER (N=5)

PARAMETER (K=2000)

IMPLICIT REAL*8(A-H,0-2)

IMPLICIT REAL*8 (M)

INTEGER INDEX,I,J

DIMENSION Y(N),YDOT(N),b SAVEY(N) ,6 SAVED (N) ,TF(N) ,MACH (N)
DIMENSION ETA(N),ETA11(K),Y11(K),Y1(N),Y2(N)
MACH (1) =0.8D0

MACH (2)=0.9D0

MACH (3)=1.0D0

MACH (4)=1.1D0

MACH (5)=1.2D0

H=0.01D0
c***********************************************************
INTEGRAL FINAL LIMITS *
C***********************************************************
DO 7 I=1,5
IF (MACH(I) .EQ.10D0) THEN
TF(I)=0.0D0
GOTO 7
END IF

7

c

IF(MACH(I) .GT.1.0D0) THEN
TF(I)=(-(1.0D0-MACH(I)**2))**(1,0D0/3.0D0)

GOTO 7
END IF
TF(I)=(1.0D0-MACH(I)**2)** (1,0D0/3.0D0)
END DO
Chhkkkhkhkkkkkhkkhkkkkhk kb kkhhhkkkhkkk ko khkhkkkkkhkkkhkkkk k&
MAIN PROGRAM *
ChAk ok ko kkhhk ok k ko k ok kk ok k ok hk ok kkkk ok Ak ok kkh ko kkkkkkkkkkkk Kk kk &
DO 100 I=1,5
J=1

10
20

50

ETA(I)=14.0D0
Y(I)=2.0D0/(ETA(I)**(1.0D0/2.0D0))
IF(ETA(I)-H.GT.TF(I)) THEN
do 50 index=1,5
CALL DERIVative(ETA,N,I,Y1,Y2,YDOT,MACH)
CALL NEWTONCOTES (ETA, YDOT, Y,SAVEY,SAVED, H,N, INDEX, I)
end do
ETA11 (J)=ETA(I)
Y11 (J)=Y(I)
J=J+1
GOTO 10
END IF
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H=0.001DO
IF(ETA(I)-H.GT.TF(I)) THEN
GOTO 20
END IF
80 DO 90 L=J-1,1,-1
WRITE (20+1,*) Y11(L),ETA11(L)

90 END DO
100 END DO

STOP

END
Chhkkdkhkkhkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkhkkkkkkkkkkkkkkdkkkkk
c SUBROUTINE DERIVative *

Q& de ke ke ke ke ke keokoke ok ke sk ke ke ok ok ok e ek ok ok ke ke ke ke ok ok ok ke ke e ek ke ke ek ok ke ke ke ke ke ke ek ke ke ke ok ok

SUBROUTINE DERIVative (ETA,N,I,Y1,Y2,YDOT,MACH)
IMPLICIT REAL*8(A-H,0-2)
IMPLICIT REAL*8 (M)
DIMENSION YDOT(N), Y1 (N),Y2(N),6ETA(N) A6 MACH(N)
GO TO (20,20,10,10,10) ,I

10 Y1(I)=ETA(I)**3+(1.0D0O-MACH(TI)**2)
Y2 (I)=Y1(I)**(1.0D0/2.0D0)
YDOT(I)=1.0D0/Y2(I)
GOTO 30

20 Y1(I)=ETA(I)**3-(1.0D0-MACH(I)**2)
Y2 (I)=Y1(I)**(1.0D0/2.0D0)
YDOT(I)=1.0D0/Y2(I)

30 RETURN

END
Chhkkkdkhk ko kdkkkdekhkkkk ko k ko kkkkkkkkkkkkkkkkkk ko k*
c SUBROUTINE NEWTONCOTES *

Chkhkkkhkhkkhkhkhkhkhkkhkhdhdkdhhkhhdddddddbdhkdkbkhdkhkdkhkkhkkhkkkkdhhkhk

SUBROUTINE NEWTONCOTES (ETA, YDOT, Y, SAVEY, SAVED, H, N, INDEX, I)
IMPLICIT REAL*8(A-H,0-32)
IMPLICIT REAL*8 (M)
DIMENSION Y (N), YDOT(N),6 SAVEY (N),b SAVED (N),ETA(N)
GO TO (1,2,3,4,5) ,index

1 SAVEY(I)=Y(I)
SAVED (I)=YDOT(I)
ETA(I)=ETA(I)-0.25D0*H
RETURN

2 SAVED(I)=7.0D0*SAVED(I)+32.0D0*YDOT(I)
ETA(I)=ETA(I)-0.25D0*H
RETURN

3  SAVED(I)=SAVED(I)+12.0D0O*YDOT(I)
ETA(I)=ETA(I)-0.25D0*H
RETURN

4  SAVED(I)=SAVED(I)+32.0D0*YDOT(I)
ETA(I)=ETA(I)-0.25D0*H
RETURN

5  Y(I)=SAVEY(I)+(H/90.0DO0)* (SAVED(I)+7.0D0*YDOT(I))
RETURN
END
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APPENDIX B
FORM OF o AND f

The expressions for o and § as introduced in [REF. 2] are

@ = £C (1-M2)° (117)

B = +C, (1-M2) (118)
for 0.8sM,sl1.2

Upon inserting egns. 117 and 118 in egns. 16 and 21 yields

:
X = dz (119)

3
o Y22 + (1-M2)°

f

dw
Y = -
J 1w (1-md) (120

-(1-42)

These relations are numerically integrated and plotted in
Figs. 16 and 17. We observe the same solutions for M,=1.0 as
expected, but distinguish a different set of solutions for the
subsonic case M,<1.0

Applying the same procedure as in Chap. IV, we easily

compute the expression for the boundary surfaces

dy TS
iR+ (1-pE) (3) M2 (y+1) (121)
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The numerical integration of eqgn. 121 is shown in Fig. 18 for
various M,, (e.g., 0.8,0.9,0.97,1.0,1.1,1.2). The diverging
contours of the subsonic solutions appear to give
contradictory results once investigating the pressure

coefficient behavior

- 3
¢, = —2—[7 YT+ @M+ (1-4D) (122)
Mo (y+1)
along the boundary surface. This implies as shown in Fig. 19

that the boundary surface within the portion of C,>1.0 is not

a realistic solution.
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APPENDIX C
FIGURES

KSI(X)

KSI(X) for M =0.8-1.2
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Figure 1. Numerical integration of egqns. 40 and 42.




ETTA(Y)

ETTA(Y) for M =0.8-1.2

4.0

3.57

3.0

2.57

2.0°

1.57

1.0~

0.57

.....................................................................................................................................

.....................................................................................................................................

. H
..................................................................................................................................

......................................................................................................................................

..................................................................................................................................

..............................................................................................................................

MACH 1.2

MACH 0.8 ]
i MACH 1.1 !
................................. e N MACH 09

i MACH 1.0

0.0

Y - Axis

Figure 2. Numerical integration of egns. 41 and 43.




E(Y) vs. Y for M =0.8-1.2
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Figure 3. Numerical solution of E(Y).




YO vs. M,
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Figure 4. Equation 71.




K(X) vs. X for M=0.8-1.2
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Cp & local MACH FOR M,=1.0
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Cp & local MACH for M.=1.1
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Figure 14. Mach lines for M,=1.0
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Figure 17. Numerical integration of egn. 120.
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Figure 19. C, for M,=0.8 .
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