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ABSTRACT

The small perturbation, two-dimensional transonic equation

is manipulated with a separation-of-variables approach to

obtain two ordinary, nonlinear, differential equations.

Numerical integration of these differential equations results

in new transonic boundary surfaces for planar external flows.

A key ingredient in these solutions is the identification of

dependence of two integrations constants, oe and fl, on the

parameter (1-M.2). The anticipated behavior for both the Mach

number and the pressure coefficient is used as a guide in the

actual selection of the adjustable constants in the problem.

The physical reality of our boundary surfaces is examined by

displaying the boundary conditions they satisfy. The strictly

sonic flow (Mw=l.0) has an analytic representation

corresponding to a divergent surface which goes supersonic.

This sonic solution is compared with an Euler-CFD approach

confirming the validity of our results over the region where

small perturbations apply. Solutions are also shown for

M,=0.8,0.9,1.1, and 1.2 . These results are consistent with

known behavior for both subsonic and supersonic external flow.

Since the results of this work yield actual transonic

contours, we can examine shockless surfaces for design

applications. The possibility of starting with transonic

surface is of interest to present day CFD approach. Finally an

entire transonic upper surface is presented for M,=0.8, by

patching a subsonic Mach number, which reaches a plateau at

M=1.0, with a sonic flow. This patching requires the careful

interpretation of a nondimensional reference length, called

Y0, which is a function of M0.
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I. INTRODUCTION

The governing nonlinear equations, together with realistic

boundary conditions have always been the main difficulty in

transonic aerodynamic analysis, [Ref. 1]. While the hodograph

transformations approach linearizes these equations, the

transformations are confined to a limited number of transonic

flows due to complicated boundary conditions. The small

perturbation approach simplifies the full potential

Equations; furthermore, like other predictive methods, it

succeeds in retaining the great sensitivity of transonic flows

within small perturbations. This paper expands on the exact

solution of the small perturbation, nonlinear, two

dimensional, transonic equation, using the guidelines and

tools given by Biblarz 0., [Refs. 2 and 3]. Starting with a

separation-of-variables approach, Chap. III reveals two

nonlinear, ordinary, differential equations which lead into

two exact solutions. Chaps. IV and V describe the numerical

integration of these implicit solutions, which finally yield

the boundary surfaces. Later, these boundary surfaces are

found to satisfy the boundary conditions for a two dimensional

surfaces. These findings are then compared with a finite

difference solution of the Euler Equations for the sonic

solution. The usefulness of the shockless, transonic, boundary

surfaces appears once transformed to dimensional body

I



surfaces; "patching" (i.e., translating), the dimensional,

subsonic, body surface of CP=O at the upstream inflow, with

the dimensional, sonic body surface, enables us to form

complete transonic upper surfaces of interest for design.
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II. THE TRANSONIC EQUATION

The small perturbation nonlinear, two dimensional

Transonic Equation

(I2-) oxx +  -M 0 (y+) xd(1)

is described by the velocity potentials

U = Ox v = cY (2)

Multiplying eqn. 1 by 1/U, enables us to transform the

Transonic Equation to

where the nondimensional velocity potentials are

=2 _ V (4)
¢ U. U.

The Meyer solution for the de-Laval nozzle defines a

velocity potential

X2~y 2 y 1 24] (5)

which satisfies the nondimensional form of equation (3) for

M0 =1.0 . The Meyer solution belongs to a general class of

sonic flows as reported by Guderley and Yoshihara, [Ref. 4).

3



The transonic equation (1) may be modified to a more

useful form if multiplied by M,2(y+1)/U,, instead of just I/U-

, to give 2 = + (6)

Here the modified velocity potentials are

__ uc+ = M(Y+1) v (7)
U- U.0

For a given problem, M. and T are constants, and eqn. 6 is

really less cluttered. However, notice that Mc2 (,y+I)/Uw is

already given in the derivatives of 0 in eqns. 7, and

therefore appears in the expressions of Cp and the boundary

surfaces as will be shown later. This form of the modified

transonic equation (6) will be examined in the next chapters.

4



III. THE GOVERNING DIFFERENTIAL EQUATIONS

An exact solution to the modified transonic equation 6 has

been given by Biblarz, [Ref. 2], starting from

4(x,y) = Vs(xy) + (1-M2)x (8)

where 4S(x,y) refers to the sonic, small perturbation solution

(M.=1.0). In other words, "any flow which satisfies the sonic

equation also satisfies the full transonic range with similar

boundary conditions," [Ref. 2].

An exact solution may be obtained by using the separation-

of-variables approach with the potential function O(x,y) of

the form

(x,y) = (x) 1(y) + (l-M )x (9)

Substituting the above 0 function in the modified

transonic equation 6 results in two ordinary, second order,

nonlinear differential equations

dd _ = 0 (10)
dx dx2

d__ -
2  0 (1)

dy2

where X is a separation constant.

5



A simple solution to the first differential eqn. 10 is

obtained by multiplying both sides by d /dx,

dXdxd dx2d d() = 0 (12)

or
d_I ) I k2] = 0  (13)

Thus
d -3 k2 + 0: (14)
dx 2

dx d(
3 _X 2 + O
2

and

x -x 0  f [ + (16)

2

where a and xo are integration constants.

A similar procedure can be performed to solve the second

differential eqn. 11 yielding

~~_ ( Xq '2-di = 0 (17)
dy dy2) dy

or
d [I(d )2 - 3  = 0 (18)

6



_dr 2X q (19)dy

dy = (20)

and d
y 321 + ,n(21)

where 3 and Yo are integration constants.

Eqns. 16 and 21 are exact solutions to the differential

eqns. 10 and 11. In fact, boundary conditions are needed to

evaluate the integration constants a, 0, x0, Yo as well as X.

An important step in this procedure is the recognition of Y

and g as functions of (I-M,.2), [Ref. 2], i.e.,

a ±C 1 (1-M )2  (22)

p = ±C 2 (I-M.) (23)

The upper positive sign and the lower negative sign in the

above equations will be shown to belong to M~al.0 and M,<1.0

respectively, namely,

!-0 & 1350 for M'1l.0

U<0 & fl<o for M.<1.0

See Appendix B.

7



The constants, a, fl and X can be shown to be related by the

expression _2 ( M) 3 (24)

X 3

Since C, ,C 2 and X are positive constants

c c 2" = (25)q :3

The usefulness of these definitions will be outlined in

more detail once we use the exact solutions from eqns. 16 and

21, while verifying the correct boundary conditions for the

pressure coefficient Cp.

Upon inserting eqns. 22 and 23 in eqns. 16 and 21 we have

x -X3=f 3T c3 d& (26)

- Y0 = -+f dil(7S113 ± C2 (I-M2)(N 3

Factoring out C, and C2 we obtain

1

X-X 0 =C3 2 (_M)2 (28)

2C

8 •



1

y y=O±C 2
2 f d(29)

23 (3C)1 ± (l-M )

Introducing new dependent variables

3 )12 (30)

2X ) 3(31)
-n3C2

the above simply becomes

yyo ( ± Y-- C2 6(- 3 ) (33)

1 9
2 3 (3. _M2) 2

Finally, if we define new independent variables

-(x - Xo) C.,6-  3 ) (34)

9



eqns. 32 and 33 then follow as

y = +f d (37)
± lM22

q ± ( -M,

This set will be numerically integrated to obtain

transonic surfaces with their corresponding CP and Mach number

profiles.

10



IV. NUMERICAL INTEGRATION

We can rewrite eqns. 36 and 37 in a more general form and

specify the two integral limits

X=f 3  dZ (38)
o VZ 2 k ( , M )2

f ,W3 ± (I-M. )

As indicated before, the upper and lower sign within the

integrand root and the integral limits is used for M;-.0 and

M,<L.0 respectively. In addition, our flow of interest is only

the first quadrant in X and Y, which represents physical

external flows. To show this clearly, for the subsonic case

M <1.0, eqns. 38 and 39 reduce to the form

f 3 dZ 0>>- (!-M.) (40)
o VZ2  (l-M) 2

ii 1
r : f , dW 3i I-dW3 - -M)2)(41)

(1.-Me) w  IM 2

Vi



and for M.I.O we have

X =f 3 dZ 0 (42)

y= f dW 3>-(I-M-.) 3 (43)

However, we will frequently retain the more general _+"

notation in our discussions further on.

Before we head to numerical solutions, we should indicate

that sonic flow (M.=1.0) can be given in explicit form through

eqns. 40,41,42,43, i.e., the resulting equations for sonic

flow are

d f (44)

Y f dw(45)

Solving equations 44 and 45 we obtain our sonic solution

= 3 (46)

() (47)

12



Having defined 4,I,X and Y in eqns. 30,31 and eqns. 34,35,

we can express the sonic solution rewriting eqns. 46 and 47 as

i (x-x 0 ) 3(3) (48)3- 3 2

= (y-y0) 1 2 (9

Providing the sonic perturbation potential from eqn. 9

S= t (50)

and inserting eqns. 48 and 49 we have, [Ref. 2]

=V 1 (x-xo) (51)
3 (y-yo) 2

Next, eqns. 40 to 43 are numerically integrated and

plotted in Figs. 1 and 2 for various M,, (e.g.,

0.8,0.9,1.0,1.1,1.2). Plotting vs. Y for Y>0 in Fig. 2 is an

appropriate choice for investigating physical external flows

as stated earlier.

Our numerical solution has been based upon the Newton-

Cotes method of order 4, [Ref. 51, which may be applied to an

even number of subintervals, each described as,

f(x)dx= b- 7 f (a) +32 f_.-) +12_f(- )+3 2 f(3(a+b, )+7 f (b)]
a 90 4 2

(52)

(See appendix A).

13



Numerical solutions which express and i, as has been

noted, can be combined with eqns. 30,31 and eqns. 34,35 and

substituted in eqn. 9 to give a complete solution for the

perturbation potential in terms of the positive constants X or

(CI, C2), and (x0, Yo).

14



V. BOUNDARY SURFACES

For an inviscid flow, the condition to be applied at the

surface of a solid boundary is that the direction of the flow

velocity vector is tangent to the solid surface, [Ref. 6]. In

terms of perturbation velocities this boundary condition

b e c om e s d) , v

(x surface U.

The modified velocity perturbation potential as pointed out

earlier is
v= (y+1) (54)

thus

v _ y (55)
U- M IY+1)

We can show by substitution that

( dy\ _ Y (6HE) =.- y(56)
dxl surface h1 (y+1)

Now, deriving the perturbed potential function in eqn. 9

with respect to y gives

py d-D-(57)
dy

15



Eqn. 19 for y>O becomes

d 21 3 
+  (58)

This relation can be rearranged using and fl in eqns. 31 and

23 to yield I_a= -C,2Vq ±(-! (59)
dy

Upon using this equation and the relation of eqn. 30 to the

derived velocity potential in eqn. 57 results in

2 C 1

The last equation can be rewritten with the benefit of the

related constants C1, C2 and X in eqn. 25, hence

2 3j ± (1 -Ma2) (61)
3

Once we have found the form of Oy, the expression for the

surface boundary condition is given as

- =1--2 3 ± (1-M!) (62)

surface 3 M! (y+1)

However, an important result to observe is that and i in the

R.H.S. of this equation are given implicitly as a function of

N and v respectively in our earlier numerical integration

Bolution, while the L.H.S. is expressed by x and y. To get

16



compatibility, we then transform the L.H.S. of eqn. 62 using

the chain rule dy _ dY dX/ dx (63)

dx dX dY/ dy

Deriving eqn. 34 with respect to x and eqn. 35 with respect to

y gives
=dX 6(- (64)

dx 2dX

Equation 62 can be rewritten using the above transformation as

dY.. (C2 6 ±2(i%)3 (67)

or

We are now in a position to compute the exact boundary

surfaces out of eqn. 68. Starting with the L.H.S. we then

define E(Y) = 1 1(67
±3 ±i-Nd (69)

17



Having defined eqn. 69 we can plot E(Y) vs. Y in Fig. 3 for

various M., (e.g., 0.8,0.9,1.0,1.1,1.2), keeping in mind our

"_±" notation for the supersonic (upper sign) and subsonic

(lower sign).

The asymptotic value of E(Y) occurs at Y0 where
1
1(-M ) 3 (70)

In other words, the asymptotic value can be expressed as

Y0=Y0 (M.), or as function of (1-M,2), which has been

numerically found to be
2.4

Y0 2.4 (71)

Y0 vs. M. is sketched in Fig. 4 to demonstrate an interesting

symmetry with respect to M.=1.0 . Here Y0=co but note that for

practical reasons we can adopt finite values of Y0 (perhaps as

low as 7 to 20) to represent conditions sufficiently close to

M.=l.0 .

Defining the integral of the R.H.S. of eqn. 68 as

X

K(X) =(22 1 f dk (72)3 M.2 (y+1) 0

and redoing numerical integration allow us to plot K(X) vs. X

for 7=1. 4 in Fig. 5. It is important to realize that K(X)>0

for M,<1.0 and K(X)<0 for M.aI.0 , before solving eqn. 68.

18



Therefore, integrating both sides of eqn. 68 yields for K(X)>0

f E(9) d? = K(X) (73)
Y

and for K(X)<O

f E(Y) dYP = K(X) (74)

y0

Once we specify X for K(X) we can immediately solve the L.H.S.

integrals of eqns. 73 and 74 for Y, expressing

(Y)surfaca = Y(X) (75)

namely, the required boundary surface for any chosen M,.

We can rewrite eqns. 73 and 74 in the more complete form

for M.<1.0 as

dY _ (2\2 1 I dk (76)

- (1-3.)

and for M.!l.0

Y dkX

f (12 f21d (77)

1'0 f3 + (lM.2)30

Eqns. 76 and 77 are equivalent to eqns. 73 and 74 which

finally yield the boundary surfaces. These are shown

nondimensionaly in Figs. 6 and 7 for M,=0.8,0.9,0.97 and in

Fig. 8 for M,=1.0,1.1,1.2

19



The sonic surface is most easily verified by direct

analytical expansion of eqn. 77, using the sonic relations

stated in eqns. 46 and 47.

d - ()2 f f(_Ig) 3 d (78)
YO0

Solving the above integrals on both sides gives

y4-y4=- 1 (1)5_y4 (79)y 0_ o (y+l)3

Recall that Y0 -> o for the sonic case. However, choosing for

example Y0=20 gives an asymptotic value of i=0.01, (eqn. 47),

and E(Y0)=I000, (eqn. 69), for our explicit sonic solution.

(See also Figs. 2 and 3). Therefore, dividing by a finite Y0

enables us to obtain the nondimensional sonic boundary surface

as a function of .

Y 1 2 ()(5( ) (80)

This will be shown to be a divergent surface which increases

the Mach number to supersonic conditions.

20



VI. PRESSURE COEFFICIENT

For a flow with small perturbations the pressure

coefficient is given by, [Ref. 8]

C- + (l.- ) (81)

A first order approximation for the linearized pressure

coefficient in a two dimensional planar flow is

c2u
2. (82)

Recall the modified velocity potential

= M2 (y+1) u!- (83)U.

Thus
U (84)
U.  M.I(y+1)

and from eqn. 82 we see that

cp = M(2y1 (85)

Now, deriving the potential function in eqn. 9 with

respect to x we have

d + (I-M) (86)

x 

(86)

21



Rewriting eqn. 14 using the relation for a in eqn. 22 as

dE _ 3 _ 3 2 + C (1_M!) 2  (87)
dx N 2

By taking advantage of as stated in eqn. 31 and factoring

out C,, eqn. 87 becomes

1
d _ cd 3 2 (1_M!) 2  (88)
dx 1

Substituting eqn. 88 and the relation for j in eqn. 31 to the

velocity potential 0. in eqn. 86 yields

X = ( 2 (1_M!) 2 + (1-M!) (89)

Once again, using the benefit of the related constants C1, C2

and X in eqn. 25, eqn. 89 becomes

X = fl V/ 2 ± (-M2) 2 + (-M2) (90)

therefore eqn. 85 for CP follows as

-2 -_ [. (¥+I)
C= IV [Y +: / ) _1M! 2 + (1-M!) (91)

We must anticipate the above expression for CP to satisfy the

boundary conditions on external boundary surfaces as will be

explored further on.

22



VII. THE LOCAL MACH NUMBER

The velocity vector V is given by the undisturbed uniform

velocity U, and the perturbation velocities for the 2D flow as

= i(U.+u) + fv (92)

Thus, we may obtain the local Mach number M in terms of the

above velocities and the local speed of sound "a".

M2=J.L_- (u+ u) 2 + V2  (93)
a2  a2

Neglecting higher powers of the perturbation velocities gives

M2 = U (I + (94)

a
2

In addition, the ratio of the local speed of sound to the

undisturbed uniform speed of sound becomes

a2  T (95)

aw T.

or

a 2  To/T. (96)
2 To/(

were To designates the stagnation temperature.

23



Eqn. 96 can be replaced using the well known relation

2 1+ Y-1M!
a - 2 (97)

a. 1+ Y-iM2
2

Substituting the local speed of sound from eqn. 97 to eqn. 94

results as

M2  2 =.

! 1 + Y-1M (98)
( 2

1 + 2C-1M2
2

Having stated C, in eqn. 82, eqn. 98 is reduced to the form

- 2  -M (I -C) (9

2 2

Rearranging eqn. 99 and factoring out M2 yields the final

expression for the local Mach number

AMC (1-c )
H2 Y-1 P(100)

2 M C

Note that M=M, when CP=O as it should.

This important relation, combined with the corresponding

eqn. 91 for CP, will be used when discussing the boundary

conditions in the next chapter.

24



VIII. BOUNDARY CONDITIONS

Rather than providing the boundary conditions for the

governing differential eqns. 10 and 11 to evaluate the

constants, we imposed a solution by defining a and fl in eqns.

22 and 23 respectively. That is to say, boundary conditions

have been already implied in the definitions of u and fl. This

procedure led us to reveal the boundary surfaces upon using

the tangency condition and compute the pressure coefficient Cp

on the body surface, (eqn. 91).

Thus, we arrive at the necessity to verify the validity of

the expression for Cp for the boundary surface, and verify the

following requirements:

* At the upstream end (X/Y0=0), we must require that Cp=0
ensuring the unperturbed Mach number of the transonic
inflow to equal M.

* For the subsonic inflow at the downstream end (X @ Y/Y0=1)
we must require that the local Mach number saturates
towards M=1.0 . This is because of the well known relation
in gas dynamics for a convergent flow.

We first restrict our attention to the first requirement,

for Mal.0 at X/Y0=0

0 (101)

At Y/Y0=1 eqn. 70 becomes
1

( = -(-M.) 3 (102)

25



Inserting the above terms of and i in eqns. 90 and 91 gives

=x : -(i-Mn) V (1-M!) 2 + (1-m!) = 0 (103)

and

CP @ (X/YO 0  Y/ Y=) =0 (104)

Therefore, from eqn. 100

M@ ( X/ Y = 0 , Y/Y = I) =M. (105)

Hence, eqns. 104 and 105 comply with the first requirement.

The complete behavior of the pressure coefficient and the

local Mach number are plotted in Figs. 9 and 10 for M,=1.0 and

Mw=l.1. In addition, it is important to note that the boundary

surfaces ought to be truncated at MSl.2, so as not to exceed

the small perturbation assumptions.

Now, for M,<1.0 at X/Y0=0

= 0 (106)

However, at Y/Y0=0
CO (107)

Thus, eqn. 91 results as

CP@ ( X/ =O, Y/YO=) - (108)

We immediately conclude that the above coordinate (0,0) can

not serve as the upstream start for the subsonic inflow.

Instead, we must localize a new upstream end coordinate along

the boundary surface whose * and i" values satisfy eqn. 93.
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for the equality Cp=0 . Since every coordinate on the boundary

surface (X/Y0,Y/Y) is a function of and j, (eqn. 76), we can

numerically scan the locus of all the coordinates, i.e., the

boundary surface, for such values of * and j* that will

satisfy eqn. 91. For example, scanning the results for the

subsonic boundary surface of M.=0.8 reveals; = *=-0.35763 and

= *=3.01393 at the coordinate (X/Y0=0.31366,Y/Y0=0.40616).

Inserting the above values of ' and * in eqn. 91 yields

Cp=0.0003 . Hence, by relocating a new upstream coordinate for

the subsonic inflow we are then able to satisfy our first

requirement. (This is shown later in Figs. 11 and 12).

We now consider the second requirement for the subsonic

outflow at the downstream end where

- -(1 M2)(109)

1

@i (y/ yo=i1) (1 -MJ ~4) 3 (110)

or equivalently dY/dX -> 0

Substituting these terms for and j in eqns. 90 and 91 gives

x= (1-s)(11)

and

- (112)
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Thus, we can express the local Mach number using eqn. 100

2(1,+22(1-M.;)

M 2  ) (113)l-.!!_ ___ 2(-
1- 1) 2 2(1 -M!)

2 M2(y+1)

Upon expanding eqn. 113 and factoring out M.2 we obtain

M2 = M!(y-l)+2 (114)

M!(y-1)+2

or equivalently
M=1 (115)

Hence, we have verified the second requirement: The local

Mach number saturates at the downstream end to the value M=1.0

for any subsonic inflow M<I.0 . The pressure coefficient and

the local Mach number behavior along the boundary surface are

plotted in Figs. 11 and 12 for M,=0.8 and M,=0.9 respectively,

showing clearly both the upstream and downstream boundary

conditions.

Knowing that boundary conditions require the gradient of

the potential function 0 to vanish far away from the body

gives rise to an important question: How is the flow pattern

along the boundary surface propagated into the flow field? We

treat this question by considering a computationally efficient

flow solver developed by J. A. Ekaterinaris, (Ref. 7]. This

CFD solver consists of the inviscid Euler equations and uses

fully implicit two dimensional Crank-Nicholson method with a
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central difference ADI scheme, and fourth and second order

numerical dissipation, [Ref. 9]. This solver has been modified

here to solve the inviscid flow around our earlier boundary

surface solution for the chosen sonic case M,=I.0 . By

creating a grid mesh which consists of a boundary surface

edge, we are able to map the flow pattern. Upon observing the

constant Mach lines as graphed in Fig. 14, we deduce that the

flow is shockless through the whole transonic range; a shock

is formed further downstream at the local Mach number M=1.9 .

These results are in complete accordance with the inviscid

small perturbation transonic solution, (see Fig. 9). In

addition, each vector on Fig. 13 describes the resultant flow

direction at a specified grid point, (not the streamlines !),

colored by Mach levels. Thereby, we may evidence the far-field

boundary conditions

V= U. u = V = 0 (116)

In other words, the flow pattern is propagated out from the

boundary surface gradually towards satisfying the far-field

boundary conditions far away from the body.

It is of special interest to inspect the dimensional

boundary surface for possible design applications; For

example, the dimensional, subsonic, boundary surface of

M,=0.8 is obtained by multiplying the nondimensional

coordinates (X/Y(0.8),Y/YO(0.)) by Y 0.8)=2.84 , i.e., the

dimensional, downstream end coordinate results as (X,,2.84),
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as plotted in Fig. 15a. Similarly, multiplying the

nondimensional, sonic coordinates (X/Y(I,),Y/YO(.)) by YI.0)=1 4 ,

yields the dimensional, sonic, boundary surface, where the

dimensional, upstream, starting coordinate becomes (0,14).

Now, translating the dimensional, sonic, boundary surface,

(Fig. 15b), by (AX,AY)=(XI,-(14-2.84)), to match the

downstream end coordinate of the above dimensional, subsonic,

boundary surface, "patches" both dimensional boundary

surfaces, to form a 2D planar upper surface as shown in Fig.

15. We may use this technique to "patch" any subsonic boundary

surface in order to form our transonic upper surface of

interest.
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IX. CONCLUSIONS

We have shown that an exact solution for the transonic

equation satisfies the complete behavior of the pressure

coefficient, and the local Mach along a 2D-surface for planar,

external flow. It is of special interest to inspect the

dimensional boundary surface for possible design applications;

For example, the dimensional, subsonic, and sonic boundary

surfaces are obtained by multiplying the nondimensional

coordinates (X/Y0,Y/Y0), by the corresponding Y0. Translation

of the dimensional, sonic, boundary surface, to match the

downstream end coordinate of the above dimensional, subsonic,

boundary surface, "patches" both dimensional boundary

surfaces, to form a 2D planar upper surface as shown in Fig.

15. This technique may serve as a powerful tool for the

implementation of supercritical, shockless, planar surface

designs, because of the saturation of i with Y (Fig. 2), we

can also describe certain internal flows such as planar

converging, diverging tunnel walls. We may also extend these

results to axisymetric transonic flow.
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APPENDIX A
COMPUTER PROGRAMS

* THIS FORTRAN PROGRAM USES NUMERICAL INTEGRATION BASED ON
THE NEWTON-COTES FORMULA TO SOLVE NUMERICALLY EQNS. 40 AND 42.

THE OUTPUT IS IN THE FORM OF vs. X

program KSI
PARAMETER (N=5)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT REAL*8 tM)
IMPLICIT REAL*8 (K)
INTEGER INDEX,I
DIMENSION X(N) ,XDOT (N) ,SAVEX (N) ,SAVED (N) ,KSI(N)
DIMENSION MACH (N) ,X1 (N) ,X2 (N)

MACH (1) =0. 8D0
MACH(2) =Q.9D0
MACH (3) =1.ODO
MACH(4) =1.1DO
MACH(5) =1.2D0

KSI (1) =0. ODO
KSI (2) =0. ODO
1(SI (3)=1.OD-3
KSI (4) =0. ODO
KSI (5) =0. ODO

c MAIN PROGRAM*

DO 100 I=1,5
IF(I.LT.3) THEN
H=-0.001D0
GOTO 5

END IF
H=0. QiDO

5 IF(I.LT.3) THEN
TF=- (1.0D0-MACH(I)**2)
GOTO 10

END IF
TF=120.ODO

10 IF(I.LT.3.AND.KSI(I) .GT.TF.OR.
I.GE.3.AND.KSI(I).LE.TF) THEN

30 do 50 index=1,5
CALL DERIVative (KSI,N,I,X1,X2,XDOT,MACH)
CALL NEWTONCOTES(KSI,XDOT,X,SAVEX,SAVED,H,N,INDEX,I)

50 end do
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WRITE(10+i,*) X(I) ,ISI(I)
GOTO 10

END IF
100 END DO

STOP
END

c SUBROUTINE DERIVative*

SUBROUTINE DERIVative (KSI,N, I,X1,X2,XDOT,MACH)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT REAL*8 (M)
IMPLICIT REAL*8 (K)
DIMENSION XDOT(N) ,X1(N) ,X2(N) ,KSI(N) ,MACH(N)
GO TO (20,20,10,10,10) 1I

10 X1(I)=KSI(I)**2+(1.0D0-MACH(I)**2)**2
X2 (I) =X1 (I) ** (1.ODO/3.ODO)
XDOT(I)=1.ODO/X2 (I)
GOTO 30

20 X1(I)=-(KSI(I)**2-(1.0D0-MACH(I)**2)**2)
X2 (I) =-X1 (I) ** (l.OD/3 .ODO)
XDOT(I)=1.ODO/X2 (I)

30 RETURN
END

c SUBROUTINE NEWTONCOTES*

SUBROUTINE NEWTO7NCOTES (KSI, XDOT, X, SAVEX, SAVED, H,N, INDEX, I)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT REAL*8 (M)
IMPLICIT REAL*8 (K)
DIMENSION X(N) ,XDOT (N) ,SAVEX (N) ,SAVED (N) ,KSI(N)
GO TO (1,2,3,4,5) ,index

1 SAVEX (I) =X (I)
SAVED(I) =XDOT(I)
KSI (I) =KSI (I) +0.25D0*H
RETURN

2 SAVED(I)=7.0D0*SAVED(I)+32.0D0*XDOT(I)
KSI (I) =KSI (I) +0.25D0*H
RETURN

3 SAVED(I)=SAVED(I)+12.ODO*XDOT(I)
KSI (I) =KSI (I) 0.25D0*H
RETURN

4 SAVED(I)=SAVED(I)+32.0D0*XDOT(I)
KSI (I) =KSI (I) +0.25D0*H
RETURN

5 X(I)=SAVEX(I)+(H/90.ODO)* (SAVED(I)+7.ODO*XDOT(I))
RETURN
END
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THIS FORTRAN PROGRAM USES NUMERICAL INTEGRATION BASED ON
THE NEWTON-COTES FORMULA TO SOLVE NUMERICALLY EQNS. 41 AND 43.

THE OUTPUT IS IN THE FORM OF ff vs. Y

program ETTA
PARAMETER (N=5)
PARAMETER (K=2000)
IMPLICIT REAL*8 (A-H, O-Z)
IMPLICIT REAL*8 (M)
INTEGER INDEX,I,J
DIMENSION Y(N) ,YDOT(N) ,SAVEY(N) ,SAVED(N) ,TF(N) ,MACH(N)
DIMENSION ETA(N) ,ETA11(K) ,Y11(K) ,Y1(N) ,Y2(N)
MACH (1) =0. 8D0
MACH(2) =0.9D0
MACH (3 )=1. ODO
MACH (4)=1. IDO
MACH(5) =1.2D0
H=0. OlDO

c INTEGRAL FINAL LIMITS*

DO 7 I=1,5
IF(MACH(I) .EQ.10D0) THEN

TF(I)=0.0D0
GOTO 7

END IF
IF(MACH(I) .GT.l.ODO) THEN

TF(I)=(-(1.ODO-MACH(I)**2))**(1.ODO/3.ODO)
GOTO 7

END IF
TF(I)=(1.0D0-MACH(I)**2)**(1.0D0/3.0DO)

7 END DO

c MAIN PROGRAM*

DO 100 I=1,5
J= 1
ETA(I) =14. ODO
Y(I)=2.ODO/(ETA(I)**(1.ODO/2.ODO))

10 IF(ETA(I)-H.GT.TF(I)) THEN
20 do 50 index=1,5

CALL DERIVative(ETA,N,I,Y1,Y2,YDOT,MACH)
CALL NEWTONCOTES (ETA, YDOT, Y, SAVEY, SAVED, H,N, INDEX, I)

50 end do
ETAll1 (J) =ETA (I)
Y1 (J) =Y(I)
J=J+1
GOTO 10

END IF
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H=0. Q0lDO
IF(ETA(I)-H.GT.TF(I)) THEN
GOTO 20

END IF
80 DO 90 L=J-1,1,-1

WRITE(20+i,*) Y11(L) ,ETAI1(L)
90 END DO
100 END DO

STOP
END

c SUBROUTINE DERIVative*

SUBROUTINE DERIVative (ETA, N, I,Y1, Y2, YDOT,MACH)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT REAL*8 (M)
DIMENSION YDOT(N) ,Y1(N) ,Y2(N) ,ETA(N) ,MACH(N)
GO TO (20,20,10,10,10) 1I

10 Y1(I)=ETA(I)**3+(1.0D0-MACH(I)**2)
Y2 (I) =Y1 (I) ** (1.ODO/2.ODO)
YDOT(I)=1.ODO/Y2 (I)
GOTO 30

20 Y1(I)=ETA(I)**3-(l.0D0-MACH(I)**2)
Y2 (I) =Y1 (I) ** (1.ODO/2.ODO)
YDOT(I)=1.ODO/Y2 (I)

30 RETURN
END

c SUBROUTINE NEWTONCOTES*

SUBROUTINE NEWTONCOTES (ETA, YDOT, Y, SAVEY, SAVED, H,N, INDEX, I)
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT REAL*8 (M)
DIMENSION Y(N) ,YDOT(N) ,SAVEY(N) ,SAVED(N) ,ETA(N)
GO TO (1,2,3,4,5) ,index

1 SAVEY (I) =Y (I)
SAVED(I) =YDOT(I)
ETA(I)=ETA(I) -0.25D0*H
RETURN

2 SAVED(I)=7.ODO*SAVED(I)+32.ODO*YDOT(I)
ETA(I) =ETA(I) -0.25D0*H
RETURN

3 SAVED(I)=SAVED(I)+12.ODO*YDOT(I)
ETA(I) =ETA(I) -0.25D0*H
RETURN

4 SAVED(I)=SAVED(I)+32.ODO*YDOT(I)
ETA(I)=ETA(I) -0.25D0*H
RETURN

5 Y(I)=SAVEY(I)+(H/90.ODO)*(SAVED(I)+7.ODO*YDOT(I))
RETURN
END
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APPENDIX B
FORM OF a AND

The expressions for a and fl as introduced in [REF. 2] are

a = ±C (1-Mf ) 2  (117)

1 +c2 (l-M ) (118)

for 0.8sMcsl.2

Upon inserting eqns. 117 and 118 in eqns. 16 and 21 yields

X= f 3  dZ (119)0 'VZ 2 + (1-M ) 2

f_ W (120)2) Vw, + (3.-M )

These relations are numerically integrated and plotted in

Figs. 16 and 17. We observe the same solutions for M.21.0 as

expected, but distinguish a different set of solutions for the

subsonic case M,<1.0 .

Applying the same procedure as in Chap. IV, we easily

compute the expression for the boundary surfaces

dY (12 1 (121
i1 3 + (1 \ 3 1 M(y+)(121)
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The numerical integration of eqn. 121 is shown in Fig. 18 for

various M,,, (e.g., 0.8,0.9,0.97,1.0,1.1,1.2). The diverging

contours of the subsonic solutions appear to give

contradictory results once investigating the pressure

coefficient behavior

2 + 1M 2 
+ i] (122)M2 (y+1)

along the boundary surface. This implies as shown in Fig. 19

that the boundary surface within the portion of CP>1.0 is not

a realistic solution.
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APPENDIX C
FIGURES

KSI(X) for M =.8-1.2
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Figure 1. Numerical integration of egns. 40 and 42.
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Figure 2. Numerical integration of eqns. 41 and 43.



*E(Y) vs. Y for M =0.8-1.2
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Figure 3. Numerical solution of E(Y).
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Figure 4. Equation 71.



K(X) vs. X for M =0.8-1.2
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Figure 5. Numerical integration of eqn. 72.
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SUBSONIC BOUNDARY SURFACES
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Cp & local MACH FOR M,,=1.O
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Figure 9. Cpand local Mach for M,=1.0
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Figure 10. C pand local Mach for M,=1.1
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ETTA(Y) FOR MACH 0.8 - 1.2

7-I

6

4. ...

.... .... .... ............... ............. ................. ....................... ............... ......... .............. ...

4 2 .......... .. .. .

1 -  , ~.............................. ." i ' ii i ....................
3~ . ....... ...... .........

o ... .... ... ...... .......! .......... ........ ........................ , ............... ... ....
2~~ ~~~ .VI ..............

-1 ..... ..... ' .. .... . ... ." .. ... . ......................... ............................ ........... ............. ...........

0 2 4 6 8

Y -AXIS

Figure 17. Numerical integration of eqn. 120.
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