
AD'-A248 081

NAVAL POSTGRADUATE SCHOOL .
Monterey, California

DTIC
AD- EIT) T , I (.

S•livTAR 3 0 1992 |

THESIS

EVALUATION AND IMPROVEMENT
OF

THE ASW SYSTEM EVALUATION TOOL

by

Peng-tso Chang

March 1992

Thcsis Advisor: Yuh-jeng Lee
Co-Advisor James N. Eagle

Approved for rpblic relesste: d,•,tribitirn iz nlhimited

92-07837

UNCLASSIFIED
SECURITY CLASSIFCATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
IL. REPORTSECUR.TYrCLASSIFICATION lb. RESTICTIVE MARKINGS

UNCLASSIFIED
"2&. SECURITYCLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABIIITY OF REPORT

Approved for public release;
distribution is unlimited.

2b. DCLASSIFCATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6aL NAME OF PERPORMING ORGANIZA-ION 6b. OFFICE SYMBOL 78. NAMEOFMONTrORINGORGANIZATION
Computer Science Dept. (If Applicable) Naval Postgraduate School
Naval Postgraduate School CS

6c. ADDRESS (city. ste. and _IP code) 7b. ADDRESS (ciy, swe. anId ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NA.MEOF FUNDING/SPONSORING 6b. OHICESNM4BOL 9. PROCUR.E INSU'MENT DENTFICATION NUaMBER
ORGANIZATION (If Applicable)

8c ADDRESS (city, slate, and ZIP code) 10. SOURCEOF FUNDING NUMBERS

PROGRA-M PROJEC7 TASK WORK UNIT
ELL%Nfr NO. NO. NO. ACCESSION NO.

II- TITLE (Include Security Claisificaiaoa)

EVALUATION AND IMPROVEMENT OF THE ASW SYSTEM EVALUATION TOOL

12. PERSONAL AUTIOR(S)

Peng-tso Chana
13s. TYPEOFREPORT 13b. TMIE COVLKIi) 14. DATE OF REPORT (year, month. PAGE OUIN'T

Master's Thesis FROM 10 March 1992
16 SUPPLF..ME'ARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

17. COSATI CODES 18. SUBJECT TE'.MS (contnue on reverie ifnecessary and identify by block number)

FUID GROUP SUBGROUP object-oriented Programming, Object-oirented Simulation,
ASW System Simulation, ASW System Evaluation Tool

19. ABSIRACT (Cotinue on reverie Vf necessapy and identify by block number)

The Antisubmarine Warfare System Evaluation Tool (ASSET) is a generic high-level antisubmarine warfare (ASW)
modeling tool, designed to aid ASW personnel in the development and refinement of ASW top-level warfare requirements
and the ASW Master Plan. The primary objcctive of this thesis is to analyze and implement the improvements suggested
in previous evaluations of various sub-areas of ASSET. The glimpse rate model for submarine detection used in ASSET
has been substituted with compound Lambda-Sigma jump model. There is a different target radiated frequency in each
environmental region. Each target will have its own detection rate to reflect the differences in its operating characteristics.
Multiple engagements between platforms are used to eliminate the limitations of interaction between opponent platforms.
The glimpse rate model is used to determine detection opportunities of maritime patrol aircraft (MPA) and to approximate a
continuous-looking sensor pattern, A different criterion of selecting search probability area (SPA) and MPA pairs using the
ratio of MPA's time on-station over the SPA size was implemented. The feasibility of convering current ASSET code to
CLOS was investigated. In addition, part of the code was converted to CLOS.

20. DISTIUBUnION/AVAI.ABIIfIYOFABSTRhACT 21. ABSTRACSE.CURrTYCLASSIFICATION

]UNCLA&SRUEDAJNXIMED '-SAMFASRIT. [D---CUSELS UNCLASSIFIED

22a. NAMEOFRESPONSIBLELNDIVIDUAL 22b. TELEPIIONE (Include Area 22c. OrFICESYMBOL

Yuh-Jeng Lee Code) (CS/Le(408) .646-2361
DD FORM 1473, 84 MAR 83 AN'(cdition may be used unuJ exhausted SECURIY CLASSIFICATION OFTIHS PAGE

AU oihcr cdtiOnS arc obsolete UNCLASSIFIED

Approved for public release; distribution is unlimited.

Evaluation and Improvement

of

the ASW System Evaluation Tool

by

Peng-tso Chang
LT. Commander, Republic of China Navy

B.S., Chinese Naval Academy, 1980

Submitted in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1992

Author: //Y a !eng-tso Chang

Approved by: 3 '.
S''hjejl[_,ee, Thesis Advisor

JamlS .fEaeCavisor

Robert B. McGhee, Chairman

Department of Computer Science

ABSTRACT

The Antisubmarine Warfare System Evaluation Tool (ASSET) is a generic high-

level antisubmarine warfare (ASW) modeling tool, designed to aid ASW

personnel in the development and refinement of ASW top-level warfare

requirements and the ASW Master Plan. The primary objective of this thesis is

to analyze and implement the improvements suggested in previous evaluations of

various sub-areas of ASSET. The glimpse rate model for submarine detection

used in ASSET has been substituted with compound Lambda-Sigma jump model.

There is a different target radiated frequency in each environmental region.

Each target will have its own detection rate to reflect the differences in its

operating characteristics. Multiple engagements between platforms are used to

eliminate the limitations of interaction between opponent platforms. The glimpse

rate model is used to determine detection opportunities of maritime patrol

aircraft (MPA) and to approximate a continuous-looking sensor pattern. A

different criterion of selecting search probability area (SPA) and MPA pairs

using the ratio of MPA's time on-station over the SPA size was '.Mplemented.

The feasibility of convening current AS.SliT code to CLOS was investigated. In

addition, part of the code was converted to CLOS.

Aceessi~ouo Pr

b . _ . ..

I

iii .

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. OVERVIEW OF ASSET ... I

B. PREVIOUS WORK AT NPS ... 2

C. OBJECTIVES ... 3
D. ORGANIZATION OF THESIS .. 3

II. OBJECT-ORIENTED SIMULATION 4

A. BASIC CONCEPTS OF OBJECT-ORIENTED COMPUTING 4

1. Objects, Classes, and Inheritance ... 4

2. Encapsulation .. 6

3. Polymorphism .. 6

4. Dynamic Binding .. 7
B. MODELING PERSPECTIVES .. 8

1. Potential Benefits of Object-oriented Approach 8
a. Modular Implementation .. 8
b. Conveniently Extensible .. 8
c. Reduced Code Size .. 9
d. Natural Representation of Objects 9
e. Reusable Software Systems .. 9

2. Disadvantages .. 10
a. Run-time Cost .. 10
b. Memory ... 10
c. Program Complexity .. 10
d. No Standard Model ... 11

C. SIMULATIONS WITH OBJECT-ORIENTED
IMPLEMENTATIONS .. 11

III. ACOUSTIC DETECTION MODELING 13

A. EXISTING ASSET MODEL ... 13

1. Glimpse Rate Model .. 13

iv

2. Interaction between Acoustic Platforms 14

B. SUGGESTED IMPROVEMENTS TO ASSET 14

1. Compound Lambda-Sigma Jump Process 14
a. Global Lambda-Sigma Jump Process 15
b. Individual Lambda-Sigma Jump Process 15
c. Total Signal Excess ... 15

2. Target's Radiated Frequency .. 15

3. Target's Detection Rate ... 16

4. Multiple Engagements between Submarines 16

5. Responding False Alarm Target .. 16

C. IMPLEMENTATION OF IMPROVEMENT IDEAS 16

1. Structure File .. 17
a. PlatformacousticParms .. 17

2. RB-Installer File .. 17

a. New Radio Buttons .. 17

3. Class Umpire .. 17
a Data Field Deleted .. 18

b. New Data Fields .. 18

c. New Method .. 18
d. Modified Functions .. 18

4. Class EnvironmentManager ... 19

a. Data Fields Deleted .. 19

b. Modified Functions .. 19

5. Class AcousticPlatforms .. 10

a. Data Fields Deleted .. 19
b. New Data Fields .. 20

c. Modified Functions .. 20

d. New Functions .. 20

6. Changes on User Inputs .. 20

IV. MPA MODELING 24

A. CURRENT MPA DETECTION RATE MODE 24

1. Detection Rate Calculation .. 24

V

2. Determination of Detection .. 25

3. Evaluations of Current Model ... 26

B. ALLOCATION MODEL .. 27

C. IM PROVEMENTS .. 28

1. Glimpse Rate Model ... 28

a. Area of the Search Region .. 28

b. Determination of Detection .. 29

c. Effect of False Contacts .. 29

2. MPA Allocation Model .. 29

a. Determination of SPA/MPA Matching 29

b. After Prosecuting a Target .. 30

D. IMPLEMENTATION DETAILS .. 30

1. Structure File .. 30

a. MPAstruct .. 30

2. Class ASW OC .. 30

a. Modified Functions .. 30

3. Class MPAsquadron .. 31

a. Modified Functions .. 31
b. New functions .. 31

c. Deleted Functions .. 32

V. CONVERTING ASSET CODE TO CLOS 33

A. DIFFERENCE BETWEEN CLOS AND OBJECT LISP 33

B. CONVERTING TO CLOS .. 34

1. Class Definition .. 34

2. Method Definition .. 34

3. Replace Free Variables References 34

4. Remove Calls to Ask .. 35

5. Create Instance .. 35

6. Change Function Names ... 35

7. Changes of Dialogs .. 35

C. RESULT .. 36

vi

VI. CONCLUSION .. 37

A. SUMMARY .. 37

1. Detection Model .. 37

2. MPA Model .. 37

3. Convening ASSET Code to CLOS 38

B. FUTURE WORK .. 38

APPENDIX A MODIFIED MODULES OF ASSET CODE 39

REFERENCES .. 134

INITIAL DISTRIBUTION LIST ... 136

vii

I. INTRODUCTION

A. OVERVIEW OF ASSET

The Antisubmarine Warfare Systems Evaluation Tool (ASSET) is a generic

high-level ASW modeling and analysis tool. It is designed to aid ASW personnel

in the development and refinement of ASW top-level warfare requirements and

the ASW Master Plan. Current version of ASSET (version 1.0) was

implemented in Macintosh Allegro Common Lisp (MACL) version 1.3.2 and

designed for use on a Apple Macintosh II computer.

The ASSET is used to model open ocean scenarios involving submarines,

maritime patrol aircraft (MPA), shore-based command and data-fusion centers,

and a variety of passive acoustic sensors. These tactical objects interact in a

particular geographic location against an analogous enemy force structure. The

simulation scenario is specified by a user-supplied architecture that determines

all aspects of environment, command control, sensor interaction, and platform

maneuver. This structure is created through a series of predefined windows,

each dealing with a specific topic, such as Geoplot Edit Window, Track Input

Window, and Region Build Edit Window.

Once the parameters are determined by the user, the scenario is repeated as a

Monte Carlo simulation to produce statistically meaningful measure of

effectiveness (MOE). Output data regarding the detection, localization, and

prosecution of enemy platforms can then provide a quantitative basis for

decisions regarding assessments and system appraisals. The modular nature of

I I i1

the object-oriented structure of ASSET makes expanding the scope of the

simulation possible.

The ASSET is programmed in Macintosh Allegro Common Lisp, an object-

oriented programming language, which allows related elements in the simulation

to inherit data and functionality via hierarchical class structure. The simulated

objects in ASSET can be broken into three groups: (1) command, control, and

communication (C3) objects; (2) acoustic radiators; and (3) ASW detectors. The

C3 objects consist o'(level I commands, level 2 commands, fusion centers,

antisubmarine warfare operational centers (ASWOCs), Submarine Operating

Authorities, and communication satellites. A more detailed description of

ASSET and its capabilities can be found in the ASSET Technical Documentation

and User's Manual [RI 90].

Weaknesses of the ASSET that have been identified include the following:

unable to use lower-level models, only part of ASW problem is considered,

difficult for the novice to use, excessively simple acoustic and maritime patrol

aircraft (MPA) modeling, and slow execution time.

B. PREVIOUS WORK AT NPS

Several evaluations on the various sub-models of ASSET have been

conducted at the Naval Postgraduate School. [CA 91] examined and evaluated the

acoustic detection modeling in ASSET. An alternate detection model has been

suggested that incorporates aspects of the glimpse rate model and the more

standard Lambda-Sigma (X-cy) model.

[SH 91] evaluated the MPA detection and allocation models utilized by

ASSET. It also proposed a potential long term course of action for evolving

2

ASSET into a comprehensive, flexible, and simple-to-use tool for top level ASW

appraisals and assessments.

(VE 91] investigated the mathematical development of the tracking

algorithm. Some possible modifications to the existing Kalman filter tracking

algorithm were suggested to better match the data input and increase

computational efficiency.

C. OBJECTIVES

The primary objective of this thesis is to implement and verify the

improvements suggested in previous NPS evaluations of various sub-areas of

ASSET. We want to test whether the suggestions are feasible. A second

objective is to improve the overall efficiency of the ASSET run-time system.

The feasibility of converting current Object Lisp code to Common Lisp Object

System (CLOS) is also being investigated.

D. ORGANIZAT.ON OF THESIS

Chapter II provides an overview of object-oriented programming language

(OOPL) in simulation application. We review the basic characteristics and

benefits of OOPL and some applications in the object-oriented simulation field.

Chapter III describes the cccrent detection modeling and possible improvements,

followed by a description of implementation changes. Chapter IV contains the

description of the current MPA modeling, possible improvements, and the details

of implementation. Chapter V presents the work of converting current version

to CLOS. Finally, Chapter VI is the conclusion and summary along with a brief

statement of recommendations for future ,ork. Appendix A contains the source

code of revised and new modules of ASSET.

3

II. OBJECT-ORIENTED SIMULATION

In discrete event simulations, we normally simulate the behavior of various

objects that may be mathematical or statistical constructs, or in most cases,

physical and observable entities. For example, in a manufacturing factory, the

objects are the machines of interest, the types of parts that are to be produced,

and the operations needed to complete their manufacture. Such objects are

usually the central focus of the simulation studies and are easy to identify. The

purposes of simulations are to find a convenient means of modeling the objects

and to manipulate and control their behaviors, including the interactions between

the objects.

In a simulation, the user creates computer models of the various elements of

the simulation, describes how they will interact with one another, and sets them

moving. This is similar to typical object-oriented programming, in which the

user creates the entities in the universe for the program, describes how they will

interact with one another, and finally sets them in motion. Due to the

similarities, there are many advantages in using the object-oriented paradigm for

discrete event simulations.

A. BASIC CONCEPTS OF OBJECT-ORIENTED COMPUTING

1. Objects, Classes, and Inheritance

Object-oriented languages combine the descriptions of data and

procedures within a single entity called an object. An object consists of well

defined set of variables (called slots within the object) that can be manipulated

only by a set of methods defined exclusively for that purpose. A class is a

4

description of one or more similar objects. It is used to specify the implemented

data structures and the operations that can be perforned.

The variables making up an object can be divided into two Kinds: class

variables and instance variables. A class variable is the one we associate to the

class itself and is shared in both name and value by all instances of a class. An

instance variable is shared in name only by all instances of a class.

A method is a procedure or operation that is defined for an object. A

message is the instruction sent to an object to perform one of its methods.

Ideally, the only way to access any of the variables making up an object is by

sending the object a message. In this way, an object is said to be encapsulated in

that its internal structure may be modified without affecting usir-written code

that accesses the object.

Inheritance can be defined simply as code sharing mechanism. It allows

a new class to be defined based upon the definition of an existing class withoui

having to copy all the existing codc. A child class (or subclass) inherits all the

variables and methods defined for its parent class (or superclass). Inheritance is

uually transitive, so a class can inherit features from superclasses many levels

above. Exceptions can be han,'led at any level by altering the values of the

affected variables.

Inheritance means that the behavior and data as--.)ciated with child

classes are always extensions of tae properties associated with parent classes. A

subclass must have all the properties of the parent class, and others as well. On

the other hand, since a child class is a more specialized (or restricted) form of

the parent class, it is also, in a certain sense, a contraction of the parent type.

5

2. Encapsulation

Data abstraction is a methodological approach to problem solving in

programming where information is consciously isolated and hidden in only one

part of a program. In particular, the programmer develops a series of abstract

data types. Each abstract data type can be viewed as having two faces. From the

outside, a client (user) of an abstract data type sees only a collection of

operations that together characterize the behavior of the abstraction. On the

other side of the interface, the programmer defining the abstraction sees the data

variables that are used to maintain the internal state of the object. For example,

in a graphics package, a graphical object may be defined to have interval values

of position, shape, and extent; on the other hand, operations such as moving and

combining objects are all that the user needs to change the internal values of an

object. Once declared, the graphical object then becomes a data type within the

language. In a data base application, a record becomes a general data type and its

operations may include storage and retrieval of the records.

3. Polymorphism

Polymorphism can be defined as allowing a method to operate on

objects of different data types. True polymorphism allows the various

operations to be created and tested independently of one another. Adding a new

version of the operation has no effect upon the existing code at all.

Polymorphism allows the definition of flexible software elements amenable to

extension and reuse.

S!rnplc ,olymorphism allows each of different classes to have its own

miplementation of an operation. Multiple polymorphism allows each class to

6

have several operations with the same. name. The proper operation is chosen

based upon the arguments provided.

4. Dynamic Binding

Many benefits of object-oriented programming result from its dynamic

binding. When you call a function in a language such as C, the compiler and the

linker cooperate to generate a call to a physical address. While this is very

efficient, one must take care to associate the function with the appropriate data

structures. Strongly typed languages attempt to catch mismatched data types at

compile time. Others do a poorer job of catching these errors, and sometimes

the problems are not detected until the output starts looking strange.

In object-oriented programming languages, the programmer is relieved

of the burden of calling the right method with the specific data structure.

Instead, the programmer uses a generic name for the function, and the receiving

object looks up for the proper method. This run-time binding is sometimes

called "late binding" and has several advantages. In the programming world, late

binding means that references are symbolic and methods can be compiled without

re-compiling all its callers. The same symbolic names are used, despite the type

of object. Finally, a single message can invoke several methods. This is known

as polymorphic behavior and it allows code to be written independent of the

receiver.

For simulation, late binding means that the specific mnachine needed for

the part can be determined when the part finishes its previous operatioa. It

doesn't have to be established at the start of the simulation. The time to complete

the part can also depend on the current set of resources and the state of the

system. For example, consider a conveyor handeling packages. How those

7

packages occupy space on the conveyor is determined at the time they are placed

there, not in some predetermined set of fixed-size bins.

B. MODELING PERSPECTIVES

Modeling with objects focuses on what the objects are in the real system,

inatead of what the objects in a simulation language represent. In a simulated

system the general entities can be grouped as classes, and specific entities should

be objects. If the objects appear to share some common characteristics, then they

can be ni subclass of a more general class. Methods should be defined for specific

operation' if needed. Division of objects into classes, recognition of methods,

and the organization of hierarchies form the basic approach to object-oriented

modeling.

1. Potential Benefits of Object-oriented Approach

a. Modular Implementation

Object-oriented programming enables the programmer to define an

organization of classes that models the relationships among the various kinds of

objects. The programer can define classes that serve as building blocks. Each

individual aspect of structure and behavior is abstracted and defined separately.

The progra'nmer then creates new classes that inherit the desired combination of

building blocks. Therefore, object-oriented approach allows for a modular

implementation.

b. Conveniently Extensible

The Object-oriented simulation is conveniently extensible. Using a

set of classes with documented structure and behavior as building blocks, users

can create new classcs and add customized behavior. Through function and

operator overloading, old symbols take on additional meaning. Inheritance

8

permits new objects to be defined from existing ones, only the differences need

to be noted. Old models are reusable because their methods and objects continue

to be useful.

c. Reduced Code Size

In side-by-side comparisons code written in object-oriented

programming languages are substantially smaller than that written in procedural

languages [CO 87]. The reduced code size means that a single person can manage

more tasks. In the simulation of complex systems, building larger and more

realistic models are possible without an increase in manpower.

d. Natural Representation of Objects

Objects in most simulations tend to be physical and real, and can

easily be represented pictorially. Therefore, object-oriented simulation models

often have a natural pictorial (iconic) representation and are easily animated.

The user can often translate directly his simulation model into an animated

simulation without additional conceptual changes.

Since the objects contain their own functionality, intelligence can be

built directly into this functionality using the machinery of artificial intelligence

and expert systems. In addition, objects provide a natural basis for concurrency.

The idea is that each object could be assigned to its own processor and run

independently until some form of coordination is needed. Although it isn't clear

exactly what form the coordination should take, there is a natural division among

the simulation components when viewed as objects.

e. Reusable Software Systems

By reducing the interdependency among software components,

object-oriented programming permits the development of reusable software

9

systems. Such components can be created and tested as independent units,

isolated from other software components.

2. Disadvantages

a. Run-time Cost

Dynamic binding is flexible but with some run-time cost. Dynamic

method binding requires the execution of some run-time mechanism to match a

method to a message. The cost of dynamir typing involves a run-time search to

discover the code to execute every timc - operation is used on a data value.

b. Memory

Object-oriented environments (like CLOS) require machines with

lots of RAM. In addition, the use of any software library frequently imposes a

size penalty over the use of systems especially constructed for a specific project.

With the advance in hardware technology, however, this has become less serious.

c. Program Complexity

Although object-oriented programming is often touted as a solution

to the problem of software complexity, overuse of inheritance often replaces one

form of complexity with another. Understanding the control flow of a program

that uses inheritance may require several multiple scans up and down the

inheritance graph.

Some object-oriented languages require extensive class libraries be

understood before becoming proficient. This increases the learning time and

forces users to become more dependent on documentation and high-level

debugging tools.

10

d. No Standard Model

Different object-oriented approaches use different terminology to

define similar concepts. There is no single, agreed upon standard for object-

oriented model.

C. SIMULATIONS WITH OBJECT-ORIENTED

IMPLEMENTATIONS

Many object-oriented systems are suitable for performing simulations. None

have clearly been proven to be generally superior as research into understanding

object-oriented programming continues. Among the widely used languages,

Simula was designed as a simulation language, Smalltalk [GO 831 contains an

extensive set of classes and methods to support simulation, and C++ [ST 87] was

designed to be applied to simulation. Uses of Smalltalk as a simulation language

and environment can be found in I GO 83], and in the tutorial of [KN 86, KN

87].

There are several Lisp-based object-oriented languages with mechanisms for

abstraction, polymorphic typing, and dynamic binding. These include Flavors

(which supports a more primitive function than an object), CommonLoops, and

New Flavors. A Lisp based object-oriented simulation system is described in [ST

881. DEVS-Scheme is an implementation of DEVS for hierarchical, modular

system within an object-oriented framework [KI 87]. DEVS is a simulation

formalism developed in [ZE 84].

There are also several hybrid object-oriented s. stems that combine the

object-oriented approach with traditional procedural features. For example,

Objective-C [CO 871 adds objects, similar to Smalhalk, to the definition of C.

With the similarity between Smalltalk and Objective-C, a translator has been

11

recently introduced to convert Smalltalk into Objective-C [SC 87]. Thus

Smalltalk could be used for design and prototyping, and later converted to C

through Object-C for efficient execution. Actor [DU 86] provides a Smalltalk

type environment with Pascal-like procedural programming and artificial

intelligence features.

Object-oriented systems provide a practical approach for those who design

simulation software. Object-oriented languages provide a natural framework for

development. The information hiding and abstraction facilities make it easy to

develop and maintain complex software components. The extensible platform is

an attractive way to add new concepts and features to an existing simulation. It is

just a matter of time before existing simulation languages attempt to exploit

various aspects of the powerful features of the object-oriented systems.

12

III. ACOUSTIC DETECTION MODELING

A detection-rate model is used in ASSET version 1.0 to model acoustic

systems in which detection opportunities occur over continuous intervals of time.

It is used for modeling the detection capabilities of submarines, maritime patrol

aircraft (MPA), fixed area sensor (FAS), mine fields, and trip wires.

The first section gives a brief description of i.ie existing ASSET model and its

possible problems. The second sectih reviews !he alternate model suggested in

[CA 911 and provides some additionAd ideas on improving the current model. The

implementation details for improvement are discussed in the third section.

A. EXISTING ASSET MODEL

1. Glimpse Rate Model

Because ,of computatiunal limitatioits, ASSET uses a discrete glimpse

rate to model :he c....:inuz.us process of passive acoustic detection. By drawing an

exponentially disi-ibuted randorn variable for the time of the next glimpse (i.e.,

detection opportunity), run time for complex simulations can be held to an

acceptable level.

In the glimpse rate model, detection opportunities occur at times

determined by a Poisson process with user specified rate g. When an opportunity

occurs, the target is detect,:,l if and only if signai excess (SE(t)) is greater than

zero. The details of glimpse rate ;icodel usd ii. ASSET can be found in [RI 90].

The glimpse rate is a user input which greatly affect the results of a run.

[CA 91] points out that there is no good guidance for selecting the glimpse rate g.

If g is small, the time between glimpses can be quite long. Rapid changes in the

13

mean signal excess may be missed, causing searchers to have little to no success

detecting other platforms. If g is too large, the time between glimpse can become

small enough that the model approaches continuous glimpsing, resulting in a

unrealistically Hgh cumulative detection probability CDP(t). This happens

because ASSET draws an independent fluctuation value for each look, possibly

underestimating the expected correlation between signal excess values at closely

spaced times.

Another major drawback is that currently there is only one radiated

frequency for each acoustic platform in ASSET. In addition, there is a single

mean glimpse interval by all searchers regardless of the searcher type or mission.

2. Interaction between Acoustic Platforms

During the period of a hostile encounter, a platform can engage with (or

be engaged by) ý. nly one opposing platform. If a platform is engaging with an

opponent, then it will not be detectable by any other platform.

B. SUGGESTED IMPROVEMENTS TO ASSET

1. Compound Lambda-Sigma Jump Process

The Lambda-Sigma jump process as described in [WA 91] is a model

where the times of random fluctuations in signal excess occur according to a

Poisson process with rate X per unit time. The amount of the fluctuation at time t

(D(t)) is drawn independently from a normal distribution with mean zero and

standard deviation ;. The deviation value remains constant until the next

fluctuation occurs in the Poisson process, at which time a new deviation is drawn,

independent of previous values. The deviation step function is added to the mean

signal excess curve, resulting in a discontinuous signal excess curve. Like the

glimpse rate model, a detection occurs if signal excess is nonnegative.

14

The advantages of using the Lambda-Sigma jump process in ASW

analyses are:

(1) It modeis random fluctuations of signal strength in a handy and adaptable
manner.

(2) It captures the idea of correlation in signal excess between closely spaced
times.

(3) For simple geometries, close-form expressions for CDP (t) are available.

(4) It is extremely easy to simulate.

a. Global Lambda-Sigma Jump Process

The ocean fluctuation value determined by a Lambda-Sigma

stochastic process is used to simulate global area environmental correlation for all

targets. This value is used as one of the variables in computing the signal excess.

b. Individual Lambda-Sigma Jump Process

To reflect the acoustic environmental differences among the various

searchers' local environment regions, an individual Lambda-Sigma value is also

used as one of the variables in computing the signal excess.

c. Total Signal Excess

Total signal excess is the sum of the mean signal excess plus the

global and individual Lambda-Sigma fluctuation values.

2. Target's Radiated Frequency

The most detectable radiated frequency of a target will be selected from a

list of environment-frequency pairs according to the environmental region it is in.

The frequency is then used to determine propagation loss and sweep width in

computing the signal excess. This wvill allow a different target radiated frequency

in each environmertal region.

15

3. Target's Detection Rate

Each target will have its own detection rate to reflect the differences in its

operating characteristics. Consequently, each searcher-target pair will have its

own mean time (betweer glimpse) for scheduling detection opportunity events.

4. Multiple Engagements between Submarines

When a platform is engaging with an opponent, it is still detectable to

other opponent searchers, but it will not detect any more platforms before it

finishes the engagement. Thus it is possible for a platform to be deiected and

attacked while it is engaging a third platform. To simplify the calcaiation of the

probability of a kill in this complex engagement, the events of engagement are

sequentially processed. The probability of a kill is treated independently among

all searcher-target pairs involved in this multiple engagement. The system will

check that either the searcher or target is active before processing engagement

events and platform kill events.

5. Responding False Alarm Target

When a false target appears during search, the searcher will send a

detection report and will continue the search operations. Also, the platform having

a false detection will still be detectable to other unengaged platforms.

C. IMPLEMENTATION OF IMPROVEMENT IDEAS

In this section we describe implementation ideas of the improvements

mentioned above. The changes can be classified into three categories: data

structures, modified functions, and new functions. They are categorized by their

physical locations in the application package distributed by Metron.

16

1. Structure File

a. Pla(formacousticParins

The structure Platformacousticparms specifies acoustic parameters

of a platform. The following data fields are modified:

individualSigma Sigma for individual Lambda-Sigma

process

LmabdaSigmaValue Individual fluctuation of target's signal

excess

meanInterval Mean time between fluctuation

detectableInterval Target's detectable interval (1/Lambda)

env-freq-list List of target's zadiated frequencies in each

region

2. RB-Installer File

a. New Radio Buttons

Two new radio buttons are added for input of the compound

Lambda-sigma jump process:

lambdaSigmaProcess- Radio button for input of Lambda-Sigma

rb parameters

env-freq-rb Radio button for input of environment-

frequency pairs of a acoustic platform

3. Class Umpire

The class Umpire describes the variables and methods to peiform the

setup of platform detection and engagement event schedules. It is modified as

follows:

17

a Data Field Deleted

FOMglimpseInterval

b. New Data Fields

globalSigma Sigma for global Lambda-Sigma

process

globalLambdaSigcmaValue Global fluctuation for signal excess

globalMean Interval Mean time between global fluctuation

c. New Method

updateGlobalLambdaSigmaValue: Updates global Lambda-

Sigma value and schedules for next update.

d. Modified Functions

setupForReplication: Initializes globalLambdaSigmaValue and

schedules for next update.

setNextDetectionOpportunity: Allows engaged target being

detectable to searchers that are not yet engaged. It also checks range

when scheduling next detection opportunity for engaged platforms.

processf~et act ionOpportunity: Engaged platformi will not

detect any other target.

setNextDetectionOpportunity: Allows engag-'d target being

detectable to searchers that are not yet engaged. It also checks rarge

when scheduling next detection opportunity for engaged platforms.

processDetectionOpportunity: Engaged platforms will not

detect any other target. Engaged platforms is detectable to unengaged

searchers.

18

getDetectionOppResult: Determines target's most detectable

radiated frequency. Uses global and individual Lambda-Sigma value to

adjust mean signal excess.

processPlatformKill: Checks if thz platform had been killed

already.

setNextFal!eAlarm: Checks if the platform is active before it sets

up another false alarm.

processFalseAlarm: Checks if the platform is active before it

processes the false alarm.

4. Clzs EnvironmentManager

The class EnvironmnentManager contains the acoustic characteristics

information for each environmental region, and defines the methods of getting

propagation loss and sweep width. Its modifications are described as follows:

a. Data Fields Deleted

sigma

b. Modified Functions

getPL-AN-Sigma. : Target's most detectable frequency is used to

determine propagation loss and ambient noise.

getSweepW"-dth: Target's most detectable frequency is used to

determine sweep width.

5. Class AcousticPlatforms

The code that describes the variables and ooerations of an acoustic

platform is changed as follows:

a. Data Fields Deleted

glimpseInterva! Now using target's detectable interval

19

b. New Data Fields

individualSigma Sigma of individual Lambda-Sigma

process

lambdaSigmaValue Individual fluctuation for signal excess

meanInterval Mean time between updating individual

Fluctuation

detectableInterval target's detectable interval used to schedule

next glimpse

c. Modified Functions

editEnv-Freq: Inputs environment-frequency pairs of a platform.

setForStart: Initializes env-freq-list, Lambda-Sigma process

parameters, target's detectable interval and schedules event for next

update of individual Lambda-Sigma value.

setForStart: Initializes env-freq-list, Lambda-Sigma process

parameters, target's detectable interval and schedules event for next

update of individual Lambda-Sigma value.

d. New Fi.,zctions

updateLambdaSigmaValue: Updates Lambda-Sigma value and

schedule event for next update of individual Lambda-Sigma value.

6. Changes on User Inputs

This section explains the changes on some necessary inputs that the user

needs to specify in setting up the simulation. The details of setting up a whole

simulation run can be found in [RI 90]. The user now should enter Global Mean

Interval (I/A) and Global Sigma during setting up Umpire Parameters. This can be

20

done by choosing the Edit Umpire Parameters menu item under Simulajon menu,

which displays the Simulation Umpire Edit window shown in Figure 1.

@of aalýeal IIIIINr

* t ~ Dh ulW O:Il lllilale. i40C w

b-oo , - -Nwhoap

4- .- nt I'

Figure 1. Simulation Umpire Edit Windov

The Edit Submarine window in Figure 2 contains added radio buttons:

Lambda-Sigma Process, Detectable Interval, and Frequency Environment Pairs.

To create or edit a submarine object, the user needs to specify appropriate

parameters in Lambda-Sigma Process Edit window shown in Figure 3. For each

environmental region the user must enter a most detectable frequency of the

platform. The Frequency Environment Edit window is shown in Figure 4.

21

Imuiu111lin .- U pW a I r

*IWI UEA .11PS Sul

tri 030.

0014w Clan II am ~

= 6011 E1814 -
0

Figure 2. Edit Submarine Window

IIN

f INW CIIM=I

Figure 3. Edit Lambda-Sigma Process Parameters Window

22

- limumuion . = , Owbpet U111119 is U

~ MinMIT

__ __ _ __ __RAMuI~

--- d t-

Figure" 4. N EdtFequm yEoiomn aisWno

23I

IV. MPA MODELING

In this chapter we review ASSETs current MPA detection rate model and

allocation model, including discussion of the disadvantages and suggested

improvements. This is followed by a description of the implementation details.

A. CURRENT MPA DETECTION RATE MODEL

The MPA acoustic detection model uses a detection rate scheme to decide

whether a detection is made. This model is derived from the passive sonar

equation and the random search formula.

The MPA is assumed to lay buoys in a pattern to provide uniform coverage of

the designated search region. When an MPA is cued to a search region, the search

area is the 86% containment region provided by the tracker-correlator. If the MPA

is not cued, then the search region has user-input size, and is randomly located in

the user-input area search region. If a target is in the designated MPA search

region at the beginning of the MiPA's time on-station, then it is assumed that the

target remains in the search region for the entire MPA's time on-station. And, if

the target is outside the search region at the beginning of the MPA's time on-

station, then it is assumed that the target remains outside the search region for the

entire MPA's time on-station.

1. Detection Rate Calculation

The ASSET calculates a detection rate for each target that lies within the

search region when the MPA arrives on-station. The detection rate is the ratio of

the area searched per unit time over the total area of the search region. ASSET

uses a constant detection rate y given by:

24

Y =NVW/As

where N is the number of sonobuoy channels processed, V is the average target

speed,W is the acoustic sweep width of a single sonobuoy, and As is the search

area.

The number of sonobuoy channels processed, N, is the smaller of

following two values: user-selected number of buoys per search, or the user-

selected number of buoys that can be processed.

The single buoy acoustic sweep width, W, is calculated as twice the

maximum detection range, Rmax, the maximum range at which the adjusted or

actual figure of merit (FOM) is equal to the propagation loss from the user-entered

Proploss Table. Mean FOM is given by:

FOM = SL - NTL + DI - DT.

where SL is the target radiated source level, NL is the total noise level (self-noise

+ ambient noise), DI is directivity index of the receiver, DT is the detection

threshold or recognition differential.

Actual FOM is obtained by adding a value representing the

environmental uncertainty correction to the mean FOM. The uncertainty

correction is a normally distributed random variable with a mean of zero and a

standard deviation of 9 dB. ASSET generates a single uncertainty correction, and

thus a single Rmax, that is used for the entire MPA search period. SL, NL, DI,

and DT are user-entered parameters for the particular MPA-submarine pair.

2. Determination of Detection

After the detection rates are calculated for each submarinL that is within

the search region when the MPA arrives, ASSET sums each of these rates with the

user-entered false alarm rate to obtain a collective contact rate (r). The

25

probability distribution for the time to initial contact is an exponential distribution

with a rate equal to the collective contact rate. ASSET generates an exponential

random number t that represents the time when the MPA detects a real or false

target. The exponential random number is obtained from

t =- ln(U [0, 11) / F

where U[0,1] is a uniform random number between zero and one. A detection is

reported at time t if t is less than or equal to the total time that the MPA is on

station.

To determine if a target in the search region is detected, ASSET stacks

the detection and false alarm rates end to end. ASSET then draws another uniform

random number, on the interval [0, 1], to determine whether a submarine (or false

alarm) will be reported as the contact. ASSET only allows one detection (real or

false) per MPA mission.

3. Evaluations of Current Model

[SH 911 has indicated several drawbacks in current ASSETs MPA

model. Targets outside of the search region at the beginning of MPA's on station

are excluded the search. So an MPA can not detect targets crossing the search

region boundary during its searching.

The ability of an MPA to detect and kill a target is affected by the MPA

and submarine', false alarm rate. Apparently due to the limitation that engaged

platforms are not detectable by opponent platforms, even extremely small

submarine false alarm rates significantly reduce the detectability of the submarine.

In addition, currently only a single contact is performed per MPA

mission, even if that contact is a false alarm and the MPA has sufficient time to

26

remain on-station. After the MPA completes one engagement, no further search

is conducted.

B. ALLOCATION MODEL

In ASSET each antisubmarine warfare operational center (ASWOC) has a

specific non-overlapping ocean area of responsibility and several assigned MPA

squadrons, both defined by the user. Based upon fused submarine picture obtained

from the ASW fusion cer. ,r, ASWOCs cue their MPA assets to investigate areas

that are likely to contain targets of interest. Remaining MPAs also may be

assigned to perform uncued area search. ASWOCs make their MPA search

assignments decisions regularly at user-specified allocation intervals. At each

allocation interval, the fusion center will provide the ASWOC with an 86% search

probability area (SPA) for each suspected target within the ASWOC's ocean area.

ASSET prepares a table that matches all pairs of available MPA and SPAs,

giving the times of station, transit time to the SPA, and SPA size at mid-time on-

station. Available MPAs include all MPAs on the ground in a ready status and

those MPAs conducting uncued search that have not yet reported a detection.

ASSET first eliminates each SPA/MPA pairs whose projected SPA size

exceeds a user-entered maximum, and pairs whose computed time on-station is

less than the user-entered minimum (uncued, divertable MPA may have a different

user-entered minimum). From the remaining pairs, ASSET selects the first

SPA/MPA combinations with minimum transit time. This process continues until

either all the SPAs or all the MPA have been exhausted. If any available MPA

remains, up to a user-entered maximum will be assigned to search a user-

designated uncued search region. The MPA's search region is randomly located

inside this designated uncued area search region.

27

[SH 91] points out that the way ASSET selects SPA/MPA pairs can be

improved. Also ASSET only allocates MPA at the predetermined allocation

intervals.

C. IMPROVEMENTS

[SH 911 has suggested several alternate models of MPA. Most of the MPA

modeling improvements mentioned here are derived from that report but with

some modifications.

1. Glimpse Rate Model

All the continuous detection sensors in ASSET except the MPA use a

glimpse rate to determine detection opportunities. An MPA Glimpse Rate Model

(MGRM) approximates a continuous-looking sensor pattern that has a probability

of detection (Pd) of less than 1.0 with a glimpsing sensor region that has a Pd of

1.0 (as ASSET currently does with the tripwire sensor). The sensor region would

then be glimpsed to provide a detection rate identical with that obtained by a

continuous sensor conducting a random search.

Detections for MGRM are based on the random search model where the

detection rate is the ratio of the relative area searched per unit time over the total

area of search region. Random search predicts that a target, moving randomly

through a field of continuous stationary sensors, will be detected at a certain rate.

By glimpsing the sensor field at this detection rate, MGRM can produce an

identical detection rate regardless of how the target is moving.

a. Area of the Search Region

For a cued search, the sonobuoys will be uniformly placed through

the circular search region of tracker-correlator's best estimate of target position.

28

Otherwise, the search region will be randomly placed within the user-entered

uncued search region.

b. Determination of Detection

When an MPA arrives on-station, MGRM will calcuiate a glimpse

rate and initial glimpse time for each potentially detectable target. As in A3SETs

other glimpse models, a target is deemed potentially detectable if its range from

the MPA is less than its maximum speed multiplied by the MPA search time. The

initial glimpse time will be determined from an exponential random draw using the

inverse of the glimpse rate (or detection rate) as the mean glimpse interval.

Detection rate will be computed as ASSET currently does. If the target is within

the SPA when the glimpse occurs it is considered a successful detection.

c. Effect of False Contacts

The false contacts are generated by a Poisson process with a user-

entered false contact rate. An exponentially distributed random number will be

drawn to determine the time of the false contact. It will transmit a false target

report at the time of false alert if the MPA is still on station and has not yet been

killed. The MPA will spend the same amount of buoys for target classification, as

it does in a normal engagement. A false contact will not be pro-essed if the MPA

is engaged at the time of the false alert.

2. MPA Allocation Model

a. Determination of SPA/MPA Matching

The allocation of the next MPA would be to the MPA/SPA pair with

the largest ratio of MPA's time on station to SPA size. This will increase

cumulative detection probability without increasing the processing time to perform

an allocation.

29

b. After Prosecuting a Target

When the MPA finishes the prosecution of a submarine, it will stay

in the search region until the end of its time on station. This will enable the MPA

to have opportunities to detect other targets. Also if time permits, the MPA can be

directed to other cues.

D. IMPLEMENTATION DETAILS

This section provides implementation details for the suggested improvements.

They are categorized by their physical locations in the application package

distributed by Metron.

1. Structure File

a. MPAstruct

The MPAstruct defines the operation characteristics of an MPA.

One data field is added:

engagedP Indicates whether an MPA is currently

engaging with opponent platform

2. Class ASWOC

The ASWOC class describes the ASWOC's geographical location,

assigned squadrons, specific ocean area of responsibility, and operations. We

redefine two of its methods:

a. Modifled Functions

makeMPAassignment: The selection of next cue is the cue with

the largest ratio of MPA's time on station over SPA size.

getSearchValues: SearchValues now contains searchTime,

missionCount, MPA, SPA size.

30

3. Class MPAsquadron

The class MPAsquadron defines variables of its command, operation

characteristics, weapon status, and operations. We describe the modification in

following sections:

a. Modified Functions

dispatchMPAtoAreaSearch & dispatchMPAtoCue:

Schedule detection opportunities for the MPA to every possible

submarine target based on the inversion of detection rate to the

target.

endMPAflight: Resets MPAstruct-engagedp flag to NIL after

finishing its flight.

beginSearch: Schedules detection opportunity for the MPA to

every possible submarine target based on the inversion of detection

rate to the target.

localizeTarget: Checks if the MPA is on station and the

target is active before doing anything.

loneMPA: Checks if the MPA has not being killed yet before

o,,Ing anything.

b New Functions

aetNextDetectionOpportunity: Schedules next detection

opportunity for MPA.

processDetectionOpportunity: Determines target

detection; schedule next detection opportunity.

targetDetectedp: Determines it the target is detected by

checking if the target is inside search region.

31

targetCoveredp: Checks if the submarine is inside the given

search region.

setNextFalseAlarm: Schedules false alarm event during

MPA's time on station by making exponential draw fr'in mcan

time between false alarm.

proceb.sFalseAlarm. Transmit a false target report if the

MPA is still on station and not being killed; expends buoys for

target classification; schedule next false alarm event.

endEngagement: Reset MPAstruct-engagedp flag to Nil.

transmitEalseAlarmRaport: Transmit the false target

report to its command.

p.osecuteTarget: Determines who wins during engagement;

if time permit and still carry enough weapons MPA will stay for

another detection opportunity.

c. Deleted Functions

getSubInSearchArea

32

V. CONVERTING ASSET TO CLOS

lc ASSET was implemented in Macintosh Allegro Common Lisp Version

1.3.2 which uses Object Lisp as object-oriented extension of Common Lisp.

Recently Apple's support of this version was stopped, and CLOS became the

standardized Common Lisp package for version 2.0 release. For the benefit of

future maintenance of the ASSET, we decide to convert the current code to

CLOS.

This chapter proides a summary of the diffirr ices between Object Lisp and

CLOS, the work of converting current ASSET code to CJOS, and the results we

have achieved.

A. DIFFERENCES BETWEEN CLOS AND OBJECT LISP

Machintosh Common Lisp (MCL) Version 1.3.2 uses the object protocol

Object Lisp which supports multiple inheritance but only simple method

combination. In Object Lisp ore could make an object submarine with an

instance SSN 688, then create SSN 977 which inherits from SSN 688, and SSN

755 which inherits form SSN 977. CLOS uses a class-instance protocol. In

CLOS we cannot make a subclass from SSN 688, since' it is not a class. Instead,

we must create another class, possibly a subclass of submarine.

Binding and scoping have changed substantially. Instead of object variables,

there are slots in CLOS classes and instances. Rather than asking an object to run

its version of an object function, CLOS applies methods of generic functions to

instances. The detailed information of difference between Object Lisp and CLOS

33

can be found in the user's manual of Macintosh Allegro Common Lisp Version

1.3.2 and [ST 901.

B. CONVERTING TO CLOS

1. Class Definition

Generally in MCL 1.3, de fob je ct defines the class hierarchy, and

exist creates an object instance and sets its own binding of variables to initial

values by using function have. Most frequently, the corresponding material in

CLOS goes into the defclass with its slot specifiers. The initialize-

instance specifies the values of slots that cannot initialized with initialization

arguments or initial forms. It also perform any other necessary initialization. If

have is used dynamically in the program, one can transform uses of have into

static slots and values in defclass.

2. Method Definition

All object functions must be turned into generic functions. That is,

every piece of code of the form

(defobfun (Die submarine) argumerts body)

must be transformed to

(defmethod Die ((submarine submarine) L ;t.-of-args)

body)

3. Replace Free Variables References

Since the slot-values and variables do not access the same namespace, we

must bring all fre! variable references into the slot namespace. We have two

wZys of dealing with free variables: set them explicitly with slot-value or use

accessor calls. Using accessors are usually preferable, since they allow us to

change the representation of our classes without changing any of the user code.

34

4. Remove Calls to Ask

Instead of ask, we now use slot-value or an access ,r for a value,

or a call to a method. Depending on the context, we should choose the

appropriate call. We must run methods on instances of a class. All calls must

now be directed to instances, not to class object. An Object Lisp asking for the

object function setForStart

(ask submarine (setForStart))

becomes a call to the appropriate method of setForStart for an instance of

acousticPlatform, SSN688:

(setf SSN688 (make-instance 'submarine))

(setForStart SSN688)

5. Create Instance

Rather than creating all new objects with oneof, we create instances

with make-instance. Similarly, we replace kindof with deffclass. Note

that in CLOS, we cannot make instances directly into classes. Instead, we make

new classes based on the class we want to specialize, then create instances of those

classes.

6. Change Function Names

Numerous functions names and other symbols have changed in both

Common Lisp and Macintosh Common Lisp. Functions involving dialog items

or windows are frequently affected.

7. Changes of Dialogs

The implementation of dialog has changed substantially in MCL Version

2.0. Dialogs as a separate class have disappeared. Dialog items may now be

35

added to all views. Some functions have changed to reflect the new definition of

dialog.

C. RESULTS

The source code of ASSET contains about 29,000 lines. Most the work of

converting it to CLOS can be done by mechanically transforming the source

code. We used a conversion utility program to help converting the class and

method definitions, referencing a free variable, running a method, creating a

instance, and changing function names. This utility program will accept a text

file (of MACL) and try to convert it to MCL program. Unfortunately, due to

time constraints we are not able to make the utility program a total solution for

the porting. To complete the conversion, we still need to manually convert all

window system to the newer version.

36

VI. CONCLUSION

A. SUMMARY

In this thesis, we presented the idea of object-oriented simulation. In

addition, we implemented the improvements suggested in previous evaluations of

ASSET in NPS. Some modifications to those suggestions were made during the

implementation process. Part of the current ASSET source code is converted to

CLOS but more work is needed to complete the task.

1. Detection Model

A compound Lambda-Sigma jump detection model was implemented to

simulate the detection of submarines. Also the target's most detectable frequency

and detection rate were allowed to vary with environmental region. Multiple

engagements between platforms were allowed.

2. MPA Model

A glimpse rate model was used to determine detection opportunities of

MPA and to approximate a continuous-looking sensor pattern. The glimpsing

sensor field detects a target which is within the sensor region at the time of a

glimpse with a probability of detection of 1.0.

ASSET allocates MPA to cues generated from the tracker-correlator by

selecting SPA/MPA pairs using the ratio of MPA's time on-station to the SPA

size as the selection criterion. If time permits, the MPA will stay on search

region after prosecuting a submarine for another detection opportunity.

37

3. Converting ASSET code to CLOS

We investigated the feasibility and technique of converting current

ASSET code to CLOS. We used a conversion utility to help us transform the

current ASSET code to CLOS. Due to time constraints, only part of the

converting task was completed.

B. FUTURE WORK

There are several areas that could be enhanced to improve the ASSET. The

user interface could be improved for easier setup of a simulation architecture. It

is possible to speed up the overall performance of the ASSET by porting it to a

SUN workstation with a more powerful CPU. Various modules such as surface

ASW platforms, active and nonacoustic sensors could be added to form a more

complete ASW simulation. In addition, it would be useful to add machine

intelligence features into platform tactics to better represent smart platforms.

The bottle neck of ASSET performance has not been exactly located. It is

possible to further specd up ASSET's performance.

38

APPENDIX A MODIFIED MODULES OF ASSET CODE

CHANGE LOG:

in (defstruct platformAcousticParms)
new data field added for individual lambda-sigma process and
detection model:

(individualSigma 0) sigma for individual fluctuation
(lambdaSigmaValue 0) fluctuation of target's signal excess
(meanlnterval 1000) mean time between fluctuation
(detectableInterval 1) target's detectabl interval(1/lambda)

for scheduling detection event
(env-freq-list nil) environment-frequency pairs list for a

target used to determine its radiated
frequjency in a particular environment

in (defstruct MPAstruct)
new data field added for MPA's detection model:
indicates whether a MPA is engaging with (or been engaged by) a
target

(engagedp nil)

(defstruct coast-event
time
object
procedure
data
updateList

(defstruct coast-message
send-time ; Time message sent.
receipt-time ; Time message received at last node.
type ; E.g. 'Detect-msg

sender
content
size

39

transmission-path
transmission-count

(defstruct obu-contact
id
receipt-time
track-association
sensor
categorization
spatial-data
altitude
HFDFp)

(defstruct obu-track
id
number-of-contacts
head-state-covariance
head-contact-id
head-spatial-data
tail-state-covariance
tail-contact-id
tail-spatial-data
altitude
(contacts nil :type list)

(defstruct obu-data-field
type
obs-time
lat
Ing
brg
maj
min
cse

40

cse-unc

spd-unc

(defstruct obu-state-field
ref-lat
ref-Ing
(state nil :type (array float 4)
(covariance nil :type (ar-ray float '(4 4)))

(defstruct obu-serisor
name
single-report-to-trackp

(defstruct obu-category
pinnedp
lockedp
assoc-count
cluster-count
ambiguity-list
ambiguity-resolution
ambiguity-resolution-time

(defstruct sen-detect-parnis
sensorName
ga
bw
pd
pfa
rho
msize

41

min-delay
max-delay
type
pos-unc
spd-unc
cse-unc

(defstruct target- state -parms
targetNarne
tat
Ing
cse
Spd
detectablep
communicatingp

(defstruct platformStateParms
(platformNamefil
(platformnType 'general)
(classType nil)
(generalCommTypc 'surface)
(targetType nil)
(side nil)
(opponents nil)
(fat 0)
(Ing 0)
(hgt 0)
(cse 0)
(spd 0)
(nav 0)
(activep t)
(communicatingp nil)
(engagedp nil)
(engagementlnterval nil)
(engagedPlatform nil)
(inTrailp nil)
(trailedPlatform nil)

42

(cuedp nil)
(cueinglnterval nil)
(interceptingp nil)
(targetObject nil)
(postEngageMotionOrder nil)
(deletedp nil)

(defstruct platformAcousticParms
(sigFreq nil)
(spdThresh 0)
(RNslow 0)
(RNfast 0)
(SNlist nil)
(DI-RD-list nil)
(sigFreq nil)

;; new data field added for individual lambda-sigma
;; process
°9

(individualSigma 0)
(lambdaSigmaValue 0) ;fluctuation of target's signal excess
(meanlnterval 1000) ;mean time between fluctuation
(detectablelnterval 1) ;target's detectabI interval(1/lambda)

;for scheduling detection event
(env-freq-list nil) ;environment-frequency pairs list for a

;target; used to determine its radiated
;frequjency in a particular environment

(defstruct locationOrder
lat
Ing
hgt

)

(defstruct movementOrder
time
cse
tLat
tLng
spd
nay
area

(defstruct patrolOrder
time
region
patrolDuration

(defstruct transitOrder
time
track
legnumber

(defstruct planOrder
time
plan
stepnumber
duration
legnumbler
repositionp

(defstruct region-parnis
regionName

44

cPoints
minMax
minLat
maxLat
midnLng
maxLng
cenLat
cenbng
gridpts
ptArea
totalArea
checkpts
thePoles
theN ormaf s
theRngs
theBrgs
cVectors
sVectors)

(defstruct trackParms
endPoints
JegTotal

(defsti-uct planParms
planlist
stepTotal

(defstruct coverage-parins
chkLng
range
time

(defstruct posit

45

lat
Ing
hgt
time

(defstruct MPAstruct
ASWOC
squadron
baseLat
baseLng
(readyp t)
(searchingp nil)
searchStartTime
searchEndTime
missionEndTime
lat
Ing
radius
searchRegion
(buoyCount 0)
(torpedoCount 0)
(totalilightHours 0)
(failureTime 0)
(miissionCount 0)

;;new data field added for MPA's detection model;
;;indicates whether a MPA is engaging with(or been engaged
;;by) a target

(engagedp nil)
drawn~fission
keepOutOrder
nextContact
kiiledp

(defstruct spaceSensorStruct

46

key 1
key2
boolcan Keys
kcey Ibins
key2bins
velocityBiahs
dep~hBins
probabilities

(defstruct serisorPd
FAR
Wiref'd
buoyPdVec
boatPd Array

(defstruct NAArea
NA-index
windS peed
windDirection
visibility
surfAirTemp
seaSurfTemp,
cloudCover
JerlovType
bioluminesence

(defstruct forceStruct
side
sideColor
menuTitle
forceDefiniti on
wvork SpaceList
workSpaceFile
classFile

47

noiseFrequencyFil,
noiseFrequencit-
objectKeyList
instanceList
opponentList
liniji sv.
connect~ist

(defStruct objectStruct
template
index
(classNameList 0
(classList 0)
(objectNameList 0
(objectList 0
menuTitle
disabledp
dialogText
classObject
platformType
in itList

(defstruct subobject-category
name
parent- subobjec t
descendent-subobject-Iist

(defstruct radio-button
symbol
value

48

(4') COAST MOE CALCULATION STRUCTURES:

(defstruct coast-moe
(number-of-data-elements 0)
(sum-of-data 0)
(sumn-of-squared -data 0)
(data nil)
(abscissa 0)

(defstruct MOEstruct

menuTitle
headings
CGheadings
side
even tType
initialcount
count
MOEarray
currentIndex
elapsedTi me

(defstruct MOEeventStruct
repNumber
time
eventiD
object 1
object2
data

(defstruct MOEobjectStruct
side
type
class

49

name
)

50

;; CHANGE LOG:
.9

;; lambdaSigmaProcess-rb added
radio button for inputting lamda-sigma parameters

;; env-freq-rb added
radion button for inputting environment-frequency pairs of
a acoisticplatform

;;..... LOAD "Object Editor RBs" Folder Contents:

(let ((directory "coastLibrary;FolderH - RBs:")
(files (list "general RB type"

"data-edit-rb"
"Lat Lng RB"
"Select and Modify RB"
"Table Selector RB"
"Build Connectivities RB"))

(dolist (i files)
(load (make-pathname :directory directory :name i))

)

(ask objectEditor

(have 'rb-installation-list nil)

(have 'Sensor-rb
(oneof select-&-modify-rb

:dialog-item-text "Sensors"
:window-title "Select Sensors"
Adialog-item-position (make-point -1 391)
:dialog-item-size (make-point 140 16)
:radio-bution-pushed-p nil

51

.radio-button-c luster '0
Ar- symbol 'Sensor-rb)

(have 'Link-rb
(oneof select-&-modify-rb

:dialog-item-text "C3 Links"
.window-title "Select Links"
.dialog-item-position (make-point -1 408)
.dial og-item-size (make-point 140 16)
.radio-button-pushed-p nil
:radi o-button-c luster '0
:rb-symbol 'Link-rb)

(have 'Connect-rb
(oneof ConnectivityRadioButton

:dialog-item-text TC3 Connectivities"
:dial og-i tem-posi tion (make-point -1 426)
:dialog-i tem- size (make-point 140 16)
:radio- button-pu shed -p nil
:radio-button-cluster '0
:rb-symbol 'Connect-rb)

(have 'Location-rb
(oneof fat-Ion-rb

:dialog- item-text "Location"
:dial og-item- position (make-point -1 338)
:dial og- item- size (make-point 140 16)
:radio-button-pushed-p nil
:rTadio-button-c luster '0
:rb-symbol 'Location-rb.)

(have 'Region-rb

(oneof table- selec tor-rb

52

.dial og-item-text "Region"

.dial og- i em- position (make-point -1 374)

.dialog-item- size (make-point 140 16)
.radio-button-pushed-p nil
:.radio-button-c luster '0
.rb-symbol 'Region-rb
table-dlata-form '(ask regionManager rgnList))

(have 'Tripwire-rb
(oneof table-selector-rb

.dialog-item-text "Tripwire"
.dial og-item-position (make-point -1 374)
.dialog-i tem- size (make-point 140 16)
:radio- button-pushed-p nil
.radio-button-c luster '0
:rb-symbol 'Tripwire-rb
:table-data- form '(ask trackManager trackLi st))

(have 'Sensor- Region-rb
(oneof table-selector-rb

.dial og-item-zext "Sensor Region"
.dial og-i tem-posi tion (make-point -1 374)
.dial og-i tem- size (make-point 140 16)
:radio-button-pushed-p nil
.radio- button-clIuster '0
:rb-symbol 'Sensor-Region-rb
:table-data-form '(ask regionManager rgnList))

(have 'Operating-Region-rb
(oneof table-selector-rb

.dial og-i tem- text 'Operating Region"

.dial og-i tem- position (make-point -1 374)

.dial og-i tem- size (make-point 140 16)
.radio-button-pushed-p nil
.radio-button-cluster '0
:rb-symbol 'Operating -Region- rb
:table -d ata-form '(ask regionManager rgnList))

(have 'Area-Search-Region-rb

53

(oneof' table-selector-rb
:dialog-item-text "Area Search Region"
:dial og-item-position (make-point -1 374)
:dialog-item-size (make-point 14.0 16)
:rad io-button-pu shed -p nil
:radio- button-c luster '0
:rb-symbol 'Area-Search-Region-rb
:table-data-form '(ask regionManager rgnList))

(have 'Plan-rb
(oneof table- selector-rb

:dialog-item-text "Motion Plan"
:dial og-item-posi tion (make-point -1 374)
:dial og-i tem- size (make-point 140 16)
:radio- button-pushed -p nil
: radio- button-cluster '0
:rb-symbol 'Plan-rb
:table-data- form '(ask PlanManager motionPianList))

(have 'Replenishment-rb
(oneof table-selector-rb

:dialog-item-text "Replenishment Plan"
:dialog-item-position (make-point -1 374)
:dial og-i tem- size (make-point 140 16)
:rad io- button-pu shed -p nil
: radi o- button -cluster '0
:rb-symbol 'Replenishment-rb
:table- data-form '(ask PlanManager motionPianList))

(have 'commander-rb
(oneof table-selector-rb

:dialog-i tem- text "Commander"
:dialog-item-position (make-point -1 374)
: dialog-item- size (make-point 140 16)
:radio-button-pushed-p nil
: radi o- button -cluster '0
:rb-symbol 'commander-rb
:table-data- form
'(let ((side (ask my-dialog

(ask currentObject

54

(platforrnStateParms-side platformState))))
(indexList (list (ask my-dialog (ask currentObject

commandindex)))))
(getNamesFromlndices side index.List)))

(have 'fusionCenter-rb
(oneof table-selector-rb

:dialog-item-text "Fusion Center"'
.dialog-item-position (make-point -1 374)
:dialog-item- size (make-point 140 16)
:radio- button-pushe4-p nil
:radio-button-cluster '0
.rb-symbol 'fusionCenter-rb
.table-data- form
'(let ((side (ask my-dialog

(ask currentObject
(platformStateParms- side platformState))))

(indexList (list (ask my-dialog (ask currentObject
fusion Index)))))

(getNamesFromlndices side indexList)))

(have 'frequency-rb
(oneof table-selector-rb

.dialog-item-text "Signature Freq"
.dialog-item-position (make-point -1 374)
.dial og-i tem- size (make-point 140 16)
:radio-button-pushed-p nil
.radio-button-cluster '0
.rb-symbol 'frequency-rb
:table -data- form
'(ask my-dialog

(ask currentObject
(getFreqList (platform StateParms- side

platformState)))))

(have 'subMissions-rb
(oneof table- selec tor- rb

Adialog-item- text "Select Mission"
.dialog-item-position (make-point -1 374)
:dialog-item- size (make-point 140 16)

55

:radio-button-pu shed -p nil
.radio-button-c luster '0
.rb-symbol 'sub~bssions-rb
.table-data-form '(ask my-dialog (ask currentObject

sub~fissionList)))

(have 'AcousSig-rb
(oneof data-edit-rb

.dialog-item-text "Acoustic Sig"
.dialog-item-position (make-point -1 374)
.dialog-item-size (make-point 140 16)
.rad io-button-pu shed -p nil
: radi o- button -cluster '0

.data-key :acousticSig

;;new radio button for acoustic platform

(have 'LambdaSigmaProcess-rb
(oneof data-edit-rb

.dialog-item-text "Lambda- Sigma Process"

.dialog-item-position (make-point -1 374)

.dialog-item- size (make-point 140 16)

.rad io- button-pu shed -p nil
: radic,-button-c luster '0
.data-key :LambdaSigmaProcess

(have 'SubmarineWeapons 1 -rb
(oneof data-edit-rb

.dialog-item-text 'Submarine Weapons 1V
.dialog-item-position (make-point -1 374)
:dialog-item-size (make-point 140 16)
.radio-button-pu shed -p nil

56

:radio-button-cluster '0
:data-kty :SubmarineWeaponsl

(have 'SubmarineWeapons2-rb
(oneof data-edit-rb

:dialog-item-text "Submarine Weapons 2"
:dialog-item-position (make-point -1 374)
:dialog-item- size (make-point 140 16)
:radio-button-pushed-p nil
: radi o- button-c luster '0
:data-key :SubmarineWeapons2

(have 'SubmarineTactics-rb
(oneof data-edit-rb

:dialog-i tem- text "Submarine Tactics"
:dialog-itemn-position (make-point -1 374)
:dal og-item- size (make-point 140 16)
:radio-button-pushed-p nil
:*radio- button-clIuster '0
:data-key :SubmarineTactics

(have 'sensorParms-rb
(oneof data-edit-rb

:dialog-item-text "Detection Parameters"
:dialog-item-position (make-point -1 374)
Adialog- item- size (make-point 140 16)
:radio-button-pushed-p nil
.radio-bution-cluster '0
:data-key :sensorParnis

(have 'N4PASquadron-rb
(oneof data-edit-rb

:dialog-item-text "Squadron Parameters"
:dialog-item-position (make-point -1 374)
:dialog- item- sizl# (make-point 140 16)

57

:radio-button-pushed-p nil
.radio-button-cluster '0
:data-key :MPASquadron

(have 'MPAstores-rb
(oneof data-edit-rb

.dialog-item-text "Stores Parameters'
:dialog-item-position (make-point -1 374)
:dial og-item- size (make-point 140 16)
:radio-button-pushed-p nil
.radio-button-c luster '0
:data-key .MIPAstores

(have 'general- motion -rb
(oneof data-edit-rb

Adialog- item-text "General Motion"
:dialog-item-position (make-point -1 374)
:dialog-item-size (make-point 140 16)
:radio-button-pushed-p nil
:.radio- button-c luster '0
:data-key :generalMotion

(have 'reports-rb
(oneof data-edit-rb

:dialog-item-text "Detection Reports"
:dialog-item-position (make-point -1 374)
:dial og-item- size (make-point 140 16)
:radio-button-pu shed -p nil
: radio-button-c luster '0
:data-key :reports

(have 'orbitParms-rb
(oneof data-edit-rb

:dialog-item-text "Orbital Parameters"

58

:dialog-item-position (make-point -I1 374)
:dial og-i tem- size (make-point 140 16)
:radio-buuton-puslied-p nil
:radio-button-clu ster '0
:data-key :orbitParms

(have 'SOAallocation-rb
(oneof data-edit-rb

:dialog-item- text "Alloc Parameters"
:dialog-item-position (make-point -1 374)
:dialog-item-size (make-point 140 16)
:rad io-button-pu shed -p nil
: radio- button-cl uster '0
:data-key :SOAallocationParms

(have 'AS WOCallocation-rb
(oneof data-edit-rb

Adialog- item- text "Alloc Paramneters"
:dialog-item-position (make-point -1 374)
:dial og-item-size (make-point 140 16)
:radio- button-pus!ied-p nil
: radio- button-clIuster '0

:data-key :ASWOCallocationPamis

(have 'HFDF-rb
(oneof data-edit-rb

:dialog-item-text "1-FDF Detection"
:dialog-item-position (make-point -1 374)
:dialog-item- size (make-point 140 16)
:rad io-button-pu shed -p nil
:radio-button-cluster '0
:data-key :HFDFparms

(have 'minefield-rb
(oneof data-edit-rb

59

:dial og-i tem- text "M1inefield Parameters'
:dialog-item-position (make-point -1 374)
:dial og- item- size (make-point 140 16)
:radio-button-pusbed-p nil
.radio-button-cluster '0
:data-key :MinefieldParms

(have 'tripwireParrns-rh
(oneof data-edit-rb

.dialog-item-text "Tripwire Parameters"
Adialog- item-position (make-point -1 374)
:dial og-item- size (make-point 140 16)
:radio-button-pushed-p nil
: radio-button -cluster '0
:data-key :TripwireParms

(have 'submarine Sen sorPD-rb
(oneof coast-RB-type

:dial og-i tem-text "Sub Sensor PDs"
.dialog-item-position (make-point -1 374)
.dialog-i tem- size (make-point 140 16)
:radio- button- pushed -p nil
.radio-button-cluster '0
:dialog-item-action
'(ask (ask my-dialog currentObject) (editSubmarinePDs))

(have 'surfaceSensorPD-rb
(oneof coast-RB-type

:dialog-item-text "Surf Sensor PDs"
.dialog-itern-posiuion (make-point -1 374)
.dial og-i tem- size (make-point 140 16)
:radio-button-pushed-p nil
:.radio- button-clIus ter '0
.dialog-i tem- action
'(ask (ask my-dialog currentObject) (editSurfacePDs))

60

(have 'subSubPk-rb
(oneof coast-RB-type

.dialog-item-text "Sub Sub PKs"
.dialog-item-position (make-point -1 374)
.dialog-item- size (make-point 140 16)
.radio-button-pushed-p nil
.radio-button-cluster '0
:dialog-item-action
'(ask (ask my-dialog currentObject) (editSubSubPks))

I (have 'MIPASubPk-rb
(oneof coast-RB-type

.dialog-item-text "MPA Sub PK'
:dialog-item-position (make-point -1J 374)
.dialog-item-size (make-point 140 16)
:radio-button-pushed ., nil
:radio-button-cluster 'C
:dialog-item-action
'(ask (ask my-dialog currentObject) (editMFASutL~ks))

(have Iminefie'd Range -rb
(uneof coast-RB-type

:dialog-item-text "Sub Mine Ranges"
.dialog-izem-position (make-poin't -1 374)
:dialog-i em- size (make-point 140 16)
:radio- button-pushed-p nil
.radio-button-cluster '0
.dialog-item-action
'(ask (ask my-dialog currentObject) (edit~tneFieldRanges))

(have 'minefieldPk-rb
(oneof coast-RB-type

.dialog-item-text "Minefield Pks"
.dialog-item-position (make-point -1 374)

61

:dialog-item-size (make-point 140 16)
:radio-bLtton-pushed-p nil
:radio-button-cluster '0
:dialog-item-action
'(ask (ask my-dialog currentObject) (editMinePks))

(lave 'SN-rb
(oneof coast-RB-type

:dialog-item-text "Self Noise"
:dialog-item-position (make-point -1 374)
:dialog-item-size (make-point 140 16)
:radio-button-pushed-p nil
:radio-button-cluster '0
:dialog-item-action
'(ask (ask my-dialog currentObject) (editSN))

)
)
(have 'DI-RD-rb
(or.eof coast-RB-type

:dialog-item-text "DI, RD"
Adialog-item-position (make-point -1 374)
:diaiog-item-size (make-point 140 16)
:radio-button-pushed-p nil
:radio-button-cluster '0
:dialog-item-action
'(ask (ask my-dialog currentObject) (editDI-RD))

;; new radio button for acoustic platform
..

(have 'ENV-FREQ-rb
(oneof coast-RB-type

:dialog-item-text "Freq. - Environment"
:dialog-item-position (make-point -1 374)
:dialog-item-size (make-point 140 16)
:radio-button-pushed-p nil
:radio-button-cluster '0

62

:dialog-item-action
'(ask (ask my-dialog currentObject) (editEnv-Freq))

63

;; CHANGE LOG:
°.

e9'

data field "sigma" in EXIST function deleted;

getPL-AN-Sigma modified
target's radiated frequency is used on deciding PL & AN

9,

getSweepWidth modified
target's radiated frequency is used on deciding PL & AN
which in turn decide sweep width

(setq environmentM.aiaager (kindof nil))

(defobfun (exist environmentManager)(init-list)
(usual-exist init-list)
(have 'aliPLfrequencies nil)
(have 'EnvRegionList nil) ;form is: (Q Env-rgn obji } { Env-rgn

;obj2 } ...)
(have 'PL-list nil)

;PL-list will be in following form:
; (FreqI (PL-Il PL-12 ...) Freq2 (PL-21 PL-22 ...) ..

; where PL-ij is in form: ("PLname .PLprimaryRgn" PL-array
; FreqAtWhichPLdefined)

; NOTE: FreqAtWhichPLdefined will equal FreqK in PL-list
immediately preceeding
the proploss list (ie all PL-ij's in (getf PL-list FreqK) will
be: ("PLname" "PLprimaryRgn" PL-array FreqK)).

This info s redundant, but necessary since the proploss,
PL-ij, can be assigned to an env rgn at *any* frequency.
Thus, in order to re-constitute the proploss we need to
know the frequency at which it was defined (not the
frequency at which it is being used).

(have 'defaultAN 60.0)

64

(have 'defau I tinitialSphericalPL 66.2)
(have 'defaultSpherical 20.0)
(have 'defaultlnitialCylindricalPL 31.1)
(have 'defaultCylindrical 10.0)
(have 'envFile (make-pathname

:directory "coastData:Environment Folder:"
:namne "Env ironment.File "))

(printStatus "LOADING ENVIRONMENTAL DATA" 2)
(readEnv Manager)

(defobfun (writeEnvManager environmentManager)0
(with-open-file (toStreamn envFile

.direction :output
.if-exists :supersede
:if-does-not-exist :create

(fresh-line toStream)
(write allPLfrequencies :stream toStream)
(te~rpri toStream)
(write defaultAN :stream toStream)
(terpri toStream)
(write default Initial Spheric aPL -stream toStream)
(terpri toStream)
(write defaultSpherical :streamn toStrearn)
(terpri toStream)
(write defauliCylindrical :stream toStream)
(terpri toStream)
(write sigma :stream toStream)
(terpri toStream)
(write PL-list :stream toStreamn :escape t

:level nil :length nil :array t)
(terpri toStreamn)
;Save # of Env Rgns in file:
(write (list-length EnvRegionList) :stream toStream)
(dolist (thisEnvRgn EnvRegionList)

(ask thisEnvRgn (wriecEnvRgn toStream))

(terpri toStream)))

65

(defobfun (readEnvManager environmentManapar)0
(unless (probe-file envFile)

(print "Warning froin (readEnvManager evivironmentManager); file
does not exist:")

(print envFile)
(return-from readEnvManager nil)

(with-open-file (fromStream envFile
:direction :input
:if-does-not-exist nil

(let ((flength (file-length fromStream))
(envManager (self))
numberOfRgns thisRgn

(if (or (null flength) (<z flength 5))
(returni-from readEnvManager nil)

(setq allP~frequencies (read fromStreamn nil nil))
(setq defaultAN (read fromStreamn nil nil))
(setq defaultlnitialSphericaPL (read fromStream nil nil))
(setq defaultSpherical (read fromStream nil nil))
(setq defaultCylindrical (read fromStrearn nil nil))
(setq sigma (read fromStream nil nil))
(setq PL-list (read fromStream nil nil))
(setq numberOfRgns (read fromStream nil nil))
(setq EnvRegionList nil)
(dotimes (k numberOfRgns)

(setq thisRgn (oneof Env RegionType))
(ask thisRgn (readEnvRgn fromStream envManager))
(setq EnvRegionList (cons thisRgn EnvRegion.List))

(setq EnvRegionList (reverse EnvRegionList))

modified function

66

(defobfun (getPL-AN-Sigma environmentManager)(searcherObj targetObj)
(let* ((sPos (ask searcherObj

(list (platforrnStateParms-lat platformState)
(platformStateParmns-lng platformState))))

(tPos (ask targetObj
(list (platforniStateParmns-lat platformState)

(platformStateParmns-Ing platformState))))
(rng (car (getRngBrg (car sPos)(cadr sPos)

(car tPos)(cadr tPos) *gireatCjrcle*)))

;;new local data used to obtain target's most
;;detectable radiated frequency

(targetEnvRgn nil)
(tagetEnvRgnName nil)
(searcherEnvRgn nil)
(ambNoise nil)
(PL-val nil)
(AN-PL-pair nil) freq ;CHANGE

;;this block modified to incorporat target's radiated frequency
;;on deciding PL & AN

(dolist (thisEnvRgn EnvRegionList)
(when (objectinRegionp searcherObj (ask thisEnvRgn geoRegion))

(setq searcherEnvRgn thisEnvRgn)
(return)

(when searcherEnvRgn
(dalist (thisEnvRgn EnvRegionList)

(when (objectlnRegionp targezobj (ask thisEnvRgn geoRegion))

67

(setq targetEnvRgn thisEnvRgn)
(return)

(setq targetEnvRgnNarne (ask targetEnvRgn envRgnName))
(setq freq (first (getf (ask targetobj

(platformAcousticParms-env-freq-list
platformAcoustics)) targetEnvRgnName)))

(setq AN-PL-pair (ask searcherEnvRgn (getf ambNoise&PropLoss
freq)))

(setq ainbNoise (first AN-PL-pair))
(if (setq PL-array (third (second AN-PL-pair)))

(setq PL-val (aref PL-array (round rng)))

(if (null ambNoise) (setq ambNoise defaultAN))
(if (null PL-val) (setq PL-val (getDefaultSpherical rng)))
(return-from getPL-AN-Sigma

(values PL-val ambNoise sigma))

,;modified function

(defobfun (getSweepWidth env ironmentManager)(target NP)
(let*(

;;new local data used to obtain target's most
;detectable radiated frequency

(targetEnvRgn nil)
(tagetEn vRgnNamne nili)
(freq nil)

(AN-PL-pair nil1)
(ambNoise nil)

(PL-array nil)
(FOM nil)
(detecuionRange 0)

;;this block modified to incorporat target's
;;radiated frequency on deciding sweep width

(dolist (thisEnvRgn EnvRegionList)
(when (objectlnRegionp target (ask thisEnvRgn geoRegion))

(setq targef.EnvRgn thisEnvRgn)
(return)

(when targetEnvRgn
(setq targetEnvRgn Name (ask targetEnvRgn envRgnName))
(setq freq (first (getf (ask target

(platformAcousticParms-env-freq-list
platformAcoustics))

targetEnvRgnName)))
(setq AN-PL-pai~r (ask targetEnvRgn

(getf ambNoise&PropLoss freq)))
(setq ambNoise (first AN-PL-pair))
(setq PL-array (third (second AN-PL-pair)))

(if (null ambNoise) (setq ambNoise defaultAN))
(setq FOM (- NP ambNoise))
(if (null PL-array)

(setq detectionRange (P~ngFrom.PL&Spreading FOM 2))
(dotimes (i (car (array-d imens ions PL-array)))

(if (aref PL-array i)
(if (< (aref PL-array i) FOM)
(setq detecfionRange i))

(return-from getSweepWidth
(*2 detectionRange))

69

(defobfun (getDefaultSpherical env ironmen tManager)(rng)
(if (< mng 0.001)(return-from getDefauhtSpherical defaultlnitialSphericalPL))
(return-from getDefaultSpherical

(+ defaultlnitialSphericalPL (* defaultSpberical (log rng 10)))

(defobfun (RngFromPL&Spreading env iron ment Manager) (PropLoss

SpreadExpt)

,;The spreading law exponent is 1 for cylindrical, 2 for Spherical

,;The PL=0 distance is assumed to be one yard, I m = 2027 yds.

;I Returns range in nm

(if (< PropLoss 0)
(return-from RngFromPL&Spreading 0.001)
(return-from RngFromPL&Spreading

(float (/ (expt 10 (IPropLoss (* 10 SpreadExpt)))
2027))

(defobfun (getPLnames environmentManager) (freq)
(let ((PLsAtFreq (getf PL-list freq "Not Found"))

(when (equalp PLsAtFreq "Not Found"9)
(princ "Warning from getPLnarnes: no PLs at given freq)
(princ freq) (terpri)
(return-from getPLnames nil)

(return-from getPLnames (mapcar #'first PLsAtFreq))

70

(defobfun (getPLregioris environmentManager) (freq)
(let ((PLsAtFreq (getf PL-list freq "Not Found"))

(when (equalp PLsAtFreq "Not Found")
(princ "Warning from getPLregions: no PLs at given freq "

(princ freq) (terpri)
(return-fromn get.PLregions nil)

(return-from getPLregions (mapcar #second PLsAtFreq))

(defobfun (getPLarray environmentManager) (freq PLname)
(let ((PLsAtFreq (getf PL-list freq))

(dolist (PL PLsAtFreq)
(if (string-equal (first PL) PLname)

(return-from getPLarray (third PL)))

(princ "Warning from get.PLarray: no PL with freq, name: "

(print (list freq PLnanie)) (terpri)
(return-from getPLarray nil)

(defobfun (get.PL environmentManager) (freq PL~narne)
(let ((PLsAt.Freq (getf PL-list freq))

(dolist (PL PLsAtFreq)
(if (string-equal (first PQ) PLname)

(return-from getPL PL))

(princ "Warning from getPL: no PL with freq, name: "

(print (list freq Pl~name)) (terpri)

71

(return-from getPL nil)

(defobfun (putPL environmentManager) (PL freq)
(let ((PLsAtFreq (getf PL-list freq "Not Found"))

(when (equalp PLsAtFreq "Not Found")
(princ "Warning from puEPL: bad freq
(princ: freq) (terpri)
(return-from putPL nil)

(setf (getf PL-list freq) (cons PL PLsAtFreq))

72

;; CHANGE LOG:
°9

;; new data fields and input dialogs of globallambda-sigma jump model
;; for signal excess calculation added; user is required to specify
;; them during data input stage:
,' globalLambdaSigmaValue
,' globalSigma

," globalMeanlnterval
9.

;; setUpForReplication modified
;; initializes globalLambdaSigmaValue and schedules event in
;; exponentially separate time to update its value
°°

;; updateGlobalLambdaSigmaValue added to update global lambda
;; sigma value in exponentially separate time

;; FOMglimpselnterval and its input dialog deleted;
;; now using target's Detectablefnterval to schedule next detection
°, event

;; setNextDetectionOpportunity modified
;; it now allows engaged target being detectable to searcher that is
;; not engaged; also check range when scheduling next detection
;; opportunity for engaged platforms
'°

;; processDetectionOpportunity modified
;; engaged searchers searcher won't detect other targets;
;; engaged targets is detectable to other searchers
°°

;; getDetectionOppResult modified
;; determines target's most detectable radiated frequecy;
;; using global and individual lambda-sigma-value to adjust
;; MSE(mean signal excess)

;; processPlatformKill modified
;; check if it was killed before

;; setNextFalseAlarm and processFalseAlarm modified
;; check if the searcher was killed before doing anything
;; it won't set the engaged flag of searcher; so it can deal
;; with real target while it is processing FA

73

°,

,,,,°,, ,,°,, o ,°,o,o,oo° 9,,, 9,o ,9,9,, 99,,,,, °° ,99°,. 99,,,,, ,,° °o* ,°o°,,,o°,°, ... ° ,

(setq Umpire (oneof nil))

9.o9 99,o 999t~ °.9.,,.°,Ho..oo~o,,, 999999999 99999,99999999999999999999.99999°)o9999oo

(defobfun (exist Umpire) (init-list)
(usual-exist init-list)

(have 'prehostilitiesDuration 50)
(have 'hostilitiesDuration 200)

9.°99.o 999°,9,,o,,,.° 99999,,,,°°o°.°o, 999,o9o99999999999999999999°9999999999o99

(have 'globalSigma 0)
(have 'globalMeanInterval 1000) ;mean time between change

;of lambda-sigma signal excess
(have 'globalLambdaSigmaValue 0) ;lambda-sigma signal

;excess
9999919999,,, 9Y199999999Il I 9199991 9 999999999999999999 'fla 1 ll!l~ 91 9 99l lll99999 1 1

(have 'maxClosingSpeed 50)
(have 'maxSubDetectionRange 100)
(have 'maxSurfaceDetectionRange 100)
(have 'hostilitiesp nil)
(have 'name "Simulation Umpire ")
(have 'btitle "EDIT Umpire Parameters")
(have 'etitle "EDIT Umpire Parameters")
(have 'dataNameList

'(:main (prehostilitiesDuration hostilitiesDuration
globalSigma globalMeanlnterval)))

(have 'dataValueList
'(:main (,prehostilitiesDuration ,hostilitiesDurat'on

,globalSigma ,globalMeanlnterval)))
(have 'dataTypeList

'(:main (data data data data)))
(have 'dataTextList

'(:main ("Prehostilities Duration" "Hostilities Duration"
"Global Sigma" "Global Mean Int")))

(have 'dataTemplateText
'(:inain (("flours" ".0 - unlimited]")("Hours" "[0 - unlimited]')

("decibles" "[0 - 201") ("Hours (1/Lambda)"
"[0.25 - unlimited]"))))

74

(have 'dummyRBdata nil)
(have 'Rb-datanamelist nil)
(have 'Rb..datavaluelist nil)
(have 'Rbjlesignatorlist nil)
(have 'UmpireDatafile

(make-pathname
:directory "coastData;Umpire Folder:"

:name "Umpire Data File"))
(printSitatus "LOADING UMPIRE DATA" 2)
(recal lUmpireData)

(defobfun (editParameters Umpire) (
(let ((mySelf (self)))

(editObjeci mySelf :main)

(defobfun (recallUmpireData Umpire) (
(with-open-file (rstreamn umpireDataFile

:direction :input
:if-does-not-exist :create)

(setq dataValueList (read rstreamn nil dataValueList))
(mapc #'(Iambda(x y)

(if (listp x)(mapc $'set x y)))
dataNameList
dataValueLi.st)

(defobfun (saveUmpirc-Data Umpire) (
(with-open-file (rstrearn umrireDataFile

.direction :output
.if-exists :supersede
.if-does-not-exist :create)

(prin I dataValueList rstream)

75

;;modified function

(defobfun (setUpForReplication Umpire) (

(let ((ctime (getCurrentTime))

(displayNotHostilitiesFlag)
(setq hostilitiesp nil)

:;set up globalLambdaSigmaValue and schedule event in
:,exporeutially separate time to u-pdate its value

(setq globalLambdaSiginaValue (* globaiSigma (normaiDraw)))
(addEvent (make- coast-e vent

:time (+ cTiaie (exponential Draw global Meanin terv al))
.objert (self)
:procedu~re 'update~ilubal'Lambdavigma Value
:datva nil
:updaiel-ist nil))

(t'eginFOMde tecti onOpportu ni ties cTi me)
(bu-ginFalseAlarms cTime)
(addEvent (make-coast -event

.time (+ pretiostilitiesDuration cl.ime)
:object (self)
:procedur: 'processBeginHostilities
:data nil
:updatcList nil))

(addEvent (make-coast -event
:time (4- prehostilitiesDuration hostilitiesDuration

c Time)
:object (self)

76

:procedure 'processEndOfReplication
:data nil
:updateList nil))

(defobfun (proces sBeginHostili ties Umpire) (cTiine data)
(setq hostilitiesp t)
(di splayHostilitiesFiag))

(defobfun (processEndOfReplication Umpire) (cTime data)
(setq hostilitiesp nil)
(endReplication)
(di splayNotHostilitiesFlag)

new function added to update global lambda-sigma
value in exponentially separate time interval

(defobfun (updateGlobalLambdaSigmaValue Umpire) (cTimne data)
(setq globalbambdaSigmaValue (* globalSigma (normalDraw)))
(addEvent (make-coast-event

:time (+ cTime (exponential Draw globalMeanlnterval))
.Object (self)
:procedure 'update GlIoball-ambdaSigmaV al ue
:data nil
:updateList nil))

(defobfun (beg i nFOMdetectionOpportuni ties Umpire) (cTime)
(dolist (sideStruct (ask objectManager forceStructures))

(dolist (searcher (getf (foirceStruct-instanceList sideStruct 0 :OMsearchers))
(dolist (waget (getf (force Struc t- instanceLi st sideStruct):FQMtargets))

'77

(setNextDetectionOpportunity ctime (list searcher target))))))

* .. °.o.° .. o .• .•.o.°.•.°•o•... •* .. ** •... .•• .. o .. •°.o.o •........•

;;targetIs radiated frequency changes depending
which environment region the target is in;
if searcher is engaging the detection will be rescheduled with
exponential draw with target's detectable interval as mean

(defobfun (setNextDetectionOpportunity Umpire)(ctime platforms)
(let* ((searcher (car platforms))

(searcherStzte (ask searcher platformState))
(target (cadr platforms))
(targetState (ask target platformState))
(rng (car (getRngBrg (platformStateParms-lat searcherState)

(platformStateParms-lng searcherState)
(platformStateParms-lat targetState)
(platformStateParms-lng targetState)
greatCircle)))

(maxDetectionRange
(if (equalp 'submarineTarget

(platformStateParms-targetType targetState))
maxSubDetectionRange
maxSurfaceDetectionRange))

(separation (- mg maxDetectionRange))

(targetAcoustics (ask target platformAcoustics))
(targetEnvRgn nil)
(tagetEnvRgnName nil)
(envRgnList (ask environmentManager envRegionList))
(SF nil) ;arget's most detectable radiated frequency
(meanDetectInterval
(platformAcousticParms-detectablelnterval

targetAcoustics))

;; determine target's most detectable radiated frequecy

(dolist (thisEnvRgn envRgnList)
(when (ask environmentManager

78

(objectlnRegionp target (ask thisEnvRgn geoRegion)))
(setq targetEnvRgn thisEnvRgn)
(return)

(setq targetEnvRgnName (ask targetEnvRgn envRgnName))
(setq SF (first (getf (ask target

(platformAcousticParms-env freq-list
platfo, mAcoustics))

targetEnvRgnName)))
9,,,, 99• 9 9 •t9999t 999'999 t9~~9 Y9• 19~99•9 t99 9t 9•99 9,,,,)99

;; check that both platforms are active
, °.°°°° °9999.99,°9,, 99,9,9,9,9,,,,°, 9999.o,,°°.°°,°o,,,,°99°9•°. 99

(when
(and (platformStateParms-activep searcherState)

(platformStateParms-activep targetState))

;; if searcher is engaged schedule next detection opportunity
;; based on earlist possible time these plafforms can come
;;within range or on mean detection interval whichever is
;; longer; now engaged target still detectable
;; by non-engaged searacher

(when (platformStateParms-engagedp searcherState)
(if (< 0 (- separation (* maxClosingSpeed

meanDetectlnterval)))
(addEvent (make-coast-event

:time (+ cTime (max meanDetectlnterval
(/ separation maxClosingSpeed)))

:object (self)
:procedure 'setNextDetectionOpportunity
:data platforms
:updateList platforms)

)
(addEvent (make-coast-event

:time (+ cTime (exponentialDraw
meanDetectlnterval))

:object (self)
:procedure 'setNextDetectionOpportunity
:data platforms
:updateList platforms)

79

)
(return-from setNextDetectionOpportunity nil)
)

#1
depending upon range: begin random glimpsing,
or calculate earliest possible time these platforms can come within range
(based on maxDectionRange MaxCIosingSpeed and meanDetectinterval)

(if (< 0 (- separation (* maxClosingSpeed
meanDetectinterval)))

(addEvent (make-coast-event
:time (+ cTime (max meanDetectlnterval

(/ separation maxClosingSpeed)))
:object (self)
:procedure 'setNextDetectionOpportunity
:data platforms
:updateList platforms)

)
(addEvent (make-coast-event

:time (+ cTime (exponentialDraw
meanDetectlnterval))

:object (self)
:procedure 'processDetectionOpportunity
:data platforms
:updateList platforms)

)
)

)
)

(defobfun (process DetectionOpportunity Umpire)(ctime platforms)
(let* ((searcher (car platforms))

(target (cadr platforms))
(searcherState (ask searcher platformState))
(targetState (ask target platformState))
(maxDetectionRange

(if (equalp 'submarineTarget
(platformStateParms-targetType targetState))

maxSubDetectionRange maxSurfaceDetectionRange))

80

(target.Acoustics (ask target platforrnLAcoustics))
(meanDetectInterval
(platformnAcousticParms-detectablelnterval

targetAcoustics)) ;target's detetable interval

(when (and (platformnStateParms-activep searcherState)
(platforrnStateParms-activep targetState))

;;engaged searcher searcher won't detect other targets
;;engaged target is detectable to other searchers

(when (platformStateParms-engagedp searcherState)
(addEvent (make-coast-event

:time (+ cTime (e xponenti al Draw mean Detectlnterv al))
:object (self)
:procedure 'processDetectionOpportunity
:data platforms
:updateList platforms)

(return-fromn process Detection Opportunity nil)

(if (< (car (getRngBrg (platformStateParms-lat searcherState)
(platformStateranns-Ing searcherState)
(platform StateParms-lat targetState)
(platforrnStaterarms-Ing targetState)
greatCircle~))

maxDetectionRange)
(if (getDetectionOppResult searcher searcherState

target targctState)
(processTargetDetection ctime searcher searcherState

target targetState))

(setNextDetectionOpportunity ct~ime platforms)

81

;;modified function

(defobfun (getDetectionOppResult Umpire)(searcher searcherState target
targetState)
(let ((searcherAcoustics (ask searcher platformnAcoustics))

(targetAcoustics (ask target platformAcoustics))
(envRgnList (ask environmentManager envRegionList))
(targetEnvRgn nil)
(targetEnvRgnName nil)
(SF nil)

~;determine target's most detectable radiated frequecy

(dolist (thisEnvRgn envRgnList)
(when (ask environmentManager

(objectlnRegionp target (ask thisEnvRgn geoRegion)))
(setq targetEnvRgii thisEnvRgn)
(return)

(setq targetEnvRgnName (ask targetiEnv Rgn envRgnName))
(setq SF (first (getf (ask target

(platformAcousticParms-env-freq- list
platformAcoustic s))

targc LEn vRgn Name)))

(multiple-value-bind
(PL AN sigma)
(ask environmentManager (getPL-AN-Sigma searcher target))
(let* ((RN (if (< (plat~formnStateParms-spd targetSt~ate)

(piatformnAcousticParnns-spdlhresh
targetAcoustics))

(platformiAcousticParmns-RNslow targetAcoustics)
(platformnAcousticParms-RNfast targetAcoustics)))

(SN (if (< (platfomnn~tateParms-spd searcherState)
(platformnAcousticParmms-spe-Thresh

searcherAcoustics))

82

(car (getf (platform.AcousticParrms-SNlist
searcherAcoustics) SF))

(cadr (getf (platformAcousticParms-SNlist
searcherAcoustics) SF))))

(DI (car (getf (platforrnAcousticParms-DI-RD-list
searcherAcoustics) SF)))

(RD (cadr (getf (platformnAcousticParrns-DI-RD-list
searcherAcoustics) SF)))

(FOM (if (and RN SN AN DI RD)
(- RN (+ (- (powerSumn SN AN) DI.) RD))))

(MSE (if (and FOM PL)(- FOM PL)))

;;using global and individual lambda-sigma-value
;;to adjust MSE

(SE (if MSE
(+ WSE (+ globaltambdaSigmaValue

(ask searcher
(platformAcousticParms-lambdaSigmaValue

platformAcoustics))))))

(return-from getDetectionOppResult
(if SE (if (< 0 SE) t nil) nil)

(dfbfn(poes~reteedo mpr) cie erce eace)tt

(defofun (rocestfr taens-argeteecinUpr)(Time searher Stearcer)at

(addEvent (make-coast-event
:time (+ cTime repoatDelay)
:object (self)
:procedure 'transmitDetectionReport

83

:data (list searcher target)
:upda~eList (list searcher target)

(when
(and (or (equalp, 'AS W-attack (ask searcher mission))

(equalp 'ASW-trail (ask searcher mission)))
(equalp 'submarineTarget (ask target targetType))

(if (and hostilitiesp (equalp ASW-arttack
(ask searcher mission)))

(processSubSubEngagement ctime reportDelay searcher
searcherState target targetState)

(processTrackAndTrail ctime reportDelay searcher
searcherState target targetState

(ask searcher subTrailTime))

(when
(and (or (equal p 'ASuW-attack (ask searcher midssion))

(equalp 'ASuW-trail (ask searcher mission)))
(ecjualp 'surfaceTarget (ask target targetType))

(if (and hostilitiesp (equalp ASuW-attack
(ask searcher mission)))

(processSubSurfaceEngagement ctime report.Delay searcher
searchcrState target targetState)

(processTrackAndTrail cti me reportDelay searcher
searcherState target targetState
(ask searcher surfaceTrailTime))

(defobfun (processTrackAndTrail Umpire) (cTime delay searcher searcherState
target targetState trailTir-ne)
(when (and (ask searcher patrolRegion)(ask target patroiRegion))
(let"' ((heInterval (+ (exponential Draw trailTime) delay))

(ask searcher (beginTrail ctime tbelnterval target))

84

(ask target (beginEngigement ctime thelnterval searcher))
(addEvent (make-coast -event

:time (+ ctime thelnterval)
:obje.:c (self)
:procedure 'ProcessEndTrail

:data searcher
:updateList (list searcher)

(addEvent (make-coast-event
:fjme (+ cTime thelnterval)
:object (self)
:procedure 'processPlatformDisengage
:data target
:updateList (list target)

(recordMOEevent (make- MOEeventS truct
:eventlD :trailingPcriods
:object I (ask searcher MOEeventObjectlndex)
:object2 (ask target MQEeventObjectlndex)
:data (dround theinterval 3)))

(defobfun (processSubSubEngagement Umpire) (ctime delay searcher
searcherState target targetState)

(let* ((targetClass (ask target (platformStateParms-classType
platformState)))

(pkList (ask searcher (getf SubmarinePkAssocList
targetClass)))

(searchei-PK (car pkList))
(target.PK (cadr pkList))
(subSubEngagement'rime (ask searcher

subSubEngagementTime))
(thelnterval (+ (exponential Draw subSubEngagementTi me)

delay))

(if (not (and (numberp, searciierPKXnumberp targetPK)))
(return-from processSubSubEngagement nil))

85

(if (ask searcher (or (< currentASWt ASWtPE)
(< cwrentCtMs CtMsPE)))

(return-from processSubS ubEngagement nil))

(setq searcherPK (ask target (expendCounterMeasures
searcberPK)))

(setq target.PK (ask target (expendASWtorpedos targetPK)))

(setq targetPK (ask searcher (expendCounterMeasures
targetiPK)))

(setq searcherPK (ask searcher (expendASWtorpedos
searcberPK)))

(let ((target-killed-p (if (> searcherPK (random 1.0),) t nil))
(searcher-killed-p (if (> target.PK (random 1.0)) t nil))

(aksace)bgnnaeetcietenevltre)
(ask searher (beginEngagement ctime theInterval teargher))

(if target-killed-p
(addEvent (make-coast-event

:time (+ ctime thelnterval)
:object (self)
:procedure 'processPlatforrnKill

:data target
:upda'4eList (list target)

(addEvent (make -coas t-event
:timne (+ ct~ime theinterval)
:object (self)
:procedure 'processPl atformD isengage
:data target
:updateList (list target)

(if searcher-killed-p
(addEvent (make-coast-event

:time (+ ctime theinterval)
:object (self)
:procedure 'processPlatformKill

:data searcher
:updateList (list searcher)

86

(addEvent (make -coast-event
:time (+ ctime theInterval)
:object (self)
:procedure, 'processPlatformnDisengage
:data searcher
:updateList (list searcher)

(dfofn pocs Sb ufcenggmctUmie)(tiedea

(dfo>u (poSubS uracens~nge(agegentUmpire) (ctmedlayfr~aeam-a

searcherState)
(platfortmStateParms-lng searcherState)
(platformStateParmns-lat targetState)
(platformnStateParms- Ing targetState)
greatCircle)))

(ask searcher (resumePlan ctime interceptLegCount))
(if (> (ask searcher currentASuWt) 0)

(processSubSurfaceAttack ctime searcher searcherState
target targetState))

(return-from processS ubS urface Engage men t)

(mul tiple-value- bind
(CPAdistance timeToCPA InterceptCourse)
(calculateCPA searcherState targetState (ask searcher

interceptSpeed))
(if (and InterceptCourse

(< timeToCPA (ask searcher maxA SuWlnterceptTime))
(< CPAdistance ASuWweaponsRange)

(let ((cpa (getlatIng (platformSrtateParmns-lat searcherState)
(plaiformStateParms-lng searcherState)

87

(* timeToCPA (ask searcher interceptSpeed))
InterceptCourse
(platformStateParms-nav searcherState))))

(unless glb.batchp

(drawTrack (list (list (platformStateParmns-Iat
searcberState)

(platforrStateParms-Ing searcherState)
)cpa))

(sleep .5)
(drawTrack (list (list (platformnStateParms-lat

searcherState)
(platformStateParms-lng, searcherState)

)cpa))

(ask searcher (interruptPl an ctime Interceptcourse
timeToCPA target))

(ask searcher (resumePlan ctime interceptLegCount))

(defobfun (processSubSurfaceAttack Umpire) (ctime searcher searcherState
target targetState)
(let ((thel nterval (exponential Draw (ask searcher

subSurfaceEngagementTime))))
(ask searcher (processSurfaceAttack target targetState

thel nterval))
(ask searcher (beginiEngagement ctime thelnterval Larget))
(ask target (beginEngagement ctime thelnterval searcher))
(addEvent (make-coast-event

:time (+ ctime thelnterval)
:object (self)
:procedure 'processPlatformnDisengage
:data searcher
.updateList (list searcher)))

(addEvent (make-coast-event
:time (+ ctime thelnterval)
:object (self)

88

:procedure 'processPlatformnDisengage
:data target
:updateList (list target)))

(defobfun (transitd~etectionReport Umpire) (ctirne platforms)
(let* ((searcher (car platforms))

(target (cadr platforms))
(targetState (ask target platformState))
(messageType (case (platformStateParrns-targetType targetState)

(submarineTarget 'Sub-Detect-msg)
(surfaceTarget 'Surf- Detect-msg)))

(when (not messageType)
(retura-from trans mi tDetectionReport))

(ask searcher
(transmit ctime

(make-coast- message
:send-time ctime
:type messageType
:content (list (make-obu-report

ctime targetState))
:size 0
:transmission-path (list searcher)
:transmission-count 0)))

(defcbt'un (processEndTrail Umpire) (ctime platform)
(ask platform (endTrail ctime))

(defobfun (processPlatformDi sengage Umpire) (ctime platform)
(ask platform (endEngagement ctime))

89

..'.

;;modified function

(defobfun (processPlatformKill Umpire) (ctime platform)
(let* ((platformState (ask platform platformState))

(platform-activep (platformStateParms-activep
platformState))

check if it was killed already
(if (not platform-activep)

(return-from processPlatformK ill nil)

(ask platform (die))

(defobfun (beginFalseAlarms Umpire) (cTime)
(dolist (sideStruct (ask objectManager force Structures))

(dolist (searcher (getf (force Struct-ins tanceLi st sideStruct)
:FOMsearchers))

(setNextFalseAlarm ctime searcher 'sul-faceTarget)
(setNextFalseAlarm ctime searcher 'submarineTarget))))

;;modified function

(defobfun (setNextFalseAlarm Umpire)(ctime searcher targetrype)

;check if the searacher was killed
(if (ask searcher (not (platformStateParms-activep pl atformnState)))

(return-from processFalseAlarm nil)

(if (>= 0 (ask searcher computedFAR))
(return-fromn setNextFalseAlarm))

(addEvent

90

(make-coast-event
:time (+ ctime (ask searcher (exponentialDraw

(24 computedFAR))))
:object (self)
:procedure 'processFalseAlarm
:data (list searcher targetType)
:updateList (list searcher)

;: modified function

(defobfun (processFalseAlarm UmpireXctime data)
(let ((searcher (car data))

(targetType (cadr data)))

check if the searcher was killed
(if (ask searcher (not (platformStateParms-activep platformState)))

(return-from processFalseAlarm nil)
)
(if (ask searcher (platformStateParms-engagedp platformState))

(progn
(setNextFalseAlarm ctime searcher targetType)
(return-from processFalseAlarm nil)))

(let ((reportDelay (ask searcher (getReportDelay targetType))))

(addEvent
(make-coast-event

:time (+ cTime reportDelay)
:object (self)
:procedure 'transmitFalseAlarmReport

:data data
:updateList (list searcher)
)

)
)

(setNextFalseAlarm ;time searcher targetType)
)

91

(defobfun (transmitFalseAlarmReport Umpire) (ctime data)
(let* ((searcher (car data))

(targetrype (cadr data))
(uncertainty #I(if (equalp submarineTarget targetType)

maxSubDetectionRange
maxSurfaceDetectionRange) SCU1# 30)

(platformState (ask searcher PlatformState))
(lat (platformStateParms-lat pliatformState))
(Ing (platformStateParms-Ing platformState))
(messageType (case targetType

(submarineTarget 'Sub-Detect-msg)
(surfaceTarget 'Surf-Detect-msg)))

(ask searcher
(transmit ctime
(make-coast- message

:send-time ctime
:type messageType
:conten t (list (make-Cfal se-obu-report

lat Ing uncertainty ctime targetType))
:size 0
: transmission -path (list searcher)
:transmission-count 0)))

92

;; CHANGE LOG:
'I

;; new data fields and input dialogs added for individual
;; lambda-sigma process:
;; individualSigma
,; lambdaSigmaValue
;; meanlnterval
o9

;; glimpse interval deleted now using target's detectable interval
;; to schedule next detection event:
;; detectableInterval
•9

;; editEnv-Freq added for inputting environment/frequency pairs
;; of a acousticplatform

;; setForStart modified
;; initializes env-freq-list, lambda-sigma process parameters,
;; target's detectable interval and schedules event for updating
;; individual lambda-sigma value

;: updateLambdaSigmaValue added
;; update lambda-sigma value and schedule event for next update
9,

(setq acousticPlatform (kindof generalPlatform))

;; modified function

(defobfun (exist acousticPlatform) (init-list)
(usual-exist init-list)
(have 'platformAcoustics (make-platformAcousticParms))
(have 'spdThresh 12.5)
(have 'RNslow 135)
(have 'RNfast 150)
(have 'sigFreq nil)

93

(have 'individualSigma 0)
(have 'lambdaSigmaValue 0)
(have 'meanlnterval 1000) ;(=lllambda)
(have 'detectablelnterval 1) ;platform's detectable interval

(have 'SNlist 0)
(have 'Di-RD-list ())
(push 'SNlist saved VarNames)
(push 'DI-RD-list saved VarNames)

(have 'env-freq-list 0
(push 'env-freq-list saved VarNames)

(have 'dataNameList (append dataNameList
'(:LambdaSigmaProcess

(IndividualSigma meanInterval detectableinterval)
:acousticSig
(spd'Fhresh RNslow RNfast))))

(have 'dataValueList (append dataValueList
'(:LambdaSigmaProcess

(,individualSigma ,meanlnterval ,detectablelnterval)
:acoustikSig
(,spdThresh ,RNslow ,RNfast))))

(have 'dataTypeList (append dataTypeList
'(:LambdaSigmaProcess (data data data)
:acousticSig (data data data))))

(have 'dataTextList (append dataTextList
'(:LambdaSigmaProcess

("Individual Sigma" "Mean Interval(1/Lambda)"
"Detectable Int.")

:acousrticSig ("Speed Thresh."
"Rad Noise-slow" "Rad Noise-fast"

(have 'dataTemplateText (append dataTemplateText
'(:LambdaSigmaProcess

("Decibels" "C0 - 20]")
("Hours" "(0.25 - unlimited]")
("Hours" "[0.25 - unlimited]"))

:acousticsig

("Knots" "f[0 - 301"1)

94

("Decibles" "t(0 - 3001'#)
("Decibles" "[0 - 3001")))))

(let * ((rb-designators '(LambdaSigmaProcess-rb acousSig-rb,
SN-rb DI-RD-rb env-freq-rb frequency-rb))

(rb-values (list dummyRBdata duminyRBdata. dummyRBdata.
dumrnyRBdata dummyRBdata sigFreq))

(rb-names '(dummyRBdata dummyRBdata. duminyRBdata
dumniyRBdata dummyR.Bdata. sigFreq))

(update-rb- lists rb-designators rb-values rb-names)

(defobfun (editSN acousticPlatform) (
(setq SNlist
(inputPairs (getsearchFreqList (forceStruct-opponentList

sideStruct)) SNlist
(list "self noise by frequency" "freq" "slow spd" "fast spd")))

(defobfun (editDl-RD acousricPiatform) (
(setq DI-RD-list
(inputPairs (getsearchFreqList (forceStruct-opponentList

sideStruct)) DI-RD-list (list "DI and RD by frequency"
"freq" "DI" "RD')))

;;new function for inputting environment frequency pair
;;of a acoustic platform

(defobfun (editEnv-Freq acousticPlatform) (
(setq env-freq-list

(inputPairs (ask env iron mentM anager (getEnvRgnNanies))
env-freq-list (list "frequency in environments"

"~environment" "frequency~ "").. t))

95

modified function

(defobfun (setForStart acousticPlatform)0
(usual- setForS tart)
(setf (platformAcousticParms-sigFreq platforrnAcoustics)

sigFreq
(platformAcousticParrns-spdTbresh platformAcoustic s)

spdT'hresh
(platformnAcousticParmns-RNslow platformAcoustics)

RNslow
(platformAcou sticParms- RN fast platformAcouskis)

RNfast
(platformAcousticParms-SN list platformAcoustic s)

SNlist
(platform AcousticParms- DI- RD- list platformAcoustics)

DI-RD-list

(platforntAcousticParms-env-freq-list platformAcous~ics)
env-freq-list

(p1 atformAcousticParms-individual Sigma platformAcoustics)
individualSigma

(p1 atformAcousticParmns-lambdaSigmaValue
platformAcoustics)
(* individualSigma (normaff)raw))

(platformnAcousticParmns-meanlnterval plat~formiAcoustics)
meanlnterval

(platformAcousticParms-detectablelnterval
platformAcoustics)

detectablelniterval

schedule next update event of lambda-sigma value
(addEvent (make- coast-event

:ti..me (+ (getCurrenttime) (exponential Draw (platformAcousticParms-
meanlnterval platformnAcoustics)))

:object (self)
:procedure 'updateLambdaSigmaValue
:data nil

96

:updateList nil)

new fuiiction

(defobfun (updateLambdaSigmaValue acousticPlatform) (c time data)
(setf (platformAcousticParms-lambdaSigmaValue

platformiAcoustics)
(*(platformAcoustic Parms-ind ividual Sigma

platformAcoustics) (normaiDraw)))
(addEvent (make- coast-event

.time (+ (getCurrenttime) (exponential Draw (platform AcousticParms-
meanlnterval platformAcoustics)))

:object (self)
:procedure 'updateLambdaS igmaVal ue
-data nil
:updateList nil)

97

;; CHANGE LOG:

;;makeMPAassignments modified
;;the selection of next cue is the cue with the largest ratio of
;; (PA's time on station/SPA size);

;;getSearch Values modified
;;searach Values now contain
;;searchTime (IvWA's time on station)
;;missionCount
;; MPA
;; SPA size

(setq ASWOC (kindof command))

(defobfun (exist ASWOC) (init-list)
(usual-exist mnit-list)
(have 'allocation Interval 2)
(have 'allocationStartTime 0)
(have 'MiAareaSearchMax 0)
(have 'minTstalnitial 4)
(have 'minTstaDiversion 2)
(have 'max SPAsize 50000)
(have 'assumed SearcherNav *rhumbline*)
(have 'assumedTargetVel 10)
(have 'assumedTargetTau 4)
(have 'allocationInterval 12)
(have 'operatingRegion)
(have 'AreaSearchRegion)
(have 'currentAssignmentList)
(have 'dataNameList (append data.NameList

'(:ASWOCallocationParms
(allocation StartTime allocationlnterval

MPAareaSearchMax
maxSPAsize minTstalnitial mi nTstaDi version))))

(have 'dataValueList (append dataValueList
'(:ASWOCallocationParms

98

(,allocationStartTime ,allocationlnterval
,MPAareaSearchMax, maxSPAsize ,minTstalnitial
,minTstaDi version))))

(have 'dataTypeList (append dataTypeList
'(:ASWOCallocationParmns

(data data data data data data))))
(have 'dataTextList (append dataTextList

'(:ASWOCallocationParms
("ALLOC START TIME" "ALLOC INTERVAL"
"#MPAs AREA SEARCH" "MAX SPA SIZE"

"MIN TSTA ASSIGNED" "MIN TSTA
DIVERTED"))))

(have 'dataTemplateText (append dataTemnplateText
'(:ASWOCallocationParms

(("Hours" "[0 - 72]")
("Hours' "[0 - 721"')
("MPAs" "[0 - 100]"1)
("SQR NM" "[0 - 100,000]")
("Hours" "[0 - 72]"1)
("Hours" "[0 - 72]"0)

(let* ((rb-designators '(Operating-Region-rb Area-Search-Region-
rb ASWOCallocation-rb))

(rb-values (list operatingRegion AreaSearchRegion
dummyRBdata))

(rb-names '(operating Region AreaSearchRegion
dummyRBdata))

(update-rb-lists rb-designators rb-values rb-names)

(defobfun (setForStart ASWOC)(
(u sual-setForS tart)
(setq currentAssignmentList 0
(if (not operatingRegion) (return-from setForStart))

(addEvent (make-coast-event
-time (+ (getCurrentTime) allocation StartTime

(- 0. 1 (randomn 0.2)) allocationlnterval)
:oiject (self)

99

:procedure 'processMPAAl location
:data (+ (getCurrentTime) allocationStartTime

allocationlnterval)
.updateList nil)

(defobfun (processMPAAllocation ASWOC) (ctime data)
(addEvent (make-coast-event

:time (+ data (- 0.1 (random 0.2)) allocationlnterval)
:object (self)
:procedure 'processNiPAAl location
:data (+ data allocationlnterval)
:updateList nil)

(resetCurrfentAssignmentList ctime)
(let ((search Values (getSearch Values

ctime
(getUnassignedCues)
(append (getAvailableMPAs)

(getDi vertableMPAs))))

(makeMPAassignments ctime search Values)

(resetAreaSearch ctime)

(defobfun (getUnassignedCues ASWOC)
(let ((a1 ,,K ues (getTacticalPicture 'Subpicture operatingRegion))

(uia~signedCues ()))
(dolist (cue ailCues)
(if (isOpenCuep cue) (push cue unassigned Cues))

(return-from getUnassignedCues unassignedCues)

100

(defobfun (isOpenCuep ASWOC) (cue)
(let ((open t))

(dolist (Assignment currentAssignmentList)
(when open

(let ((assignedCue (cadr Assignment)))
(when (< (car (getRngBirg (car assignedCue)

(cadr assignedCue)
(car cue)
(.cadr cue)
*greatCiircle *))

(+ (sqrt (/ (caddr cue) pi))
(sqrt (/ (caddr assignedCue) pi))))

(setq open nil)

(return-from isOpenCuep open)

(defobfun (resetCurrentAssignmentLisi ASWOC) (ctime)
(let ((newList ()))

(dolist (assignment currentAsiignmentList)
(if (< ctime (car assignment))

(push assignment newList)))
t..etq currentAssignmentList newList)

(defobfun (getAvailab!eMPAs ASWOC)
(let ((thisAswoc (self))

(availableMPAlist nil))
(mapc #(lambda (x)

(mapc #'(lambda (y) (push y avai lableMiPA list))
(ask x (getAvailableMPAs thisAswoc))))

(getf (forceStruct-instance'List sideStruct) :ownMPAs))
(return -from getAvailableMPAs availableMiPAlist)

101

(defobfun (getDivertableMLPAs ASWOC)(
(let ((thisAswoc (self))

(divertableMiPAlist nil))
(mapc #'(lambda (x)

(mapc #Xlambda (y) (push y divertableMPA list))
(ask x (getDivertableNlPAs thisAswoc))))

(getf (forceStruct-instanceList sideStruct) :ownM[PAs))
(return- from getDivertableMIPAs divertableMEPAlist)

(defobfun (getMOPAsOnAreaSearch ASWOC)
(let ((thisAswoc (self))

(availableM[PAlist nil))
(mapc #'(lambda (x)

(mapc #'(lambda (y) (push y availableNiPAlist))
(ask x (getM[PAsOnAreaSearch thisAswoc))))

(getf (forceStruct-instanceList sideStruct) :ownM[PAs))
(return-from getMPAsOnAreaSearch availableMlPAlist)

modified function

(defobfun (getSearch Values ASWOC) (ctime tracks AvailableMPAs)
(let* ((trackCount (list-length tracks))

(MPACount (list-length AvailableMPAs))
(search Values (make-array (list trackCount MPACount))))

(dotimes
I MPAO.)unt)

(letv- ((MIPA (nth j AvailableMPAs))
(missionCcount (MEPAstruct-missionCount MIPA))
(currend~at (MPAstruct-lat MPA))
(currentLng (MiPAstruct-lng MPA))

102

(flightSpeed (ask (MPAstruct-squadron MPA) flightSpeed))
(missionTime (if (MPAstruct-searchingp WPA)

(- (MIPAstruct-midssionEndTime MiPA) ctime)
(ask (MPAstruct-squadron MPA) missionTime)))

(timeThresh (if (MPAstruct-searchingp MPA)
minTstaDiversior'
minTstalnitial))

(dotimes
(i trackCount)
(let* ((track (nth i tracks))

(spaLat (car track))
(spaLng (cadr track))
(spaArea (caddr track))
(SPArange (car (getRngBrg currentLat currentLng

spal-at spaLng
assumedSearcherNav)))

(transitTime (/ SPArange flightSpeed))
(ReturnRange (car (getRngBrg (MIPA struct-baseLat MIPA)

(MPAstruct-baseLng MPA)
spaLat spaLng
assumed SearcherNav)))

(TeturnTimne (IReturnRange flightSpeed))
(searchTime (-missiontime (+ transitTime returnTime)))

(if (< time~hresh searcbTime)
(let ((effArea

(+ spaArea
(expandAOUpos
assumedTargetVel
assumedTargetTau
(+ transitTime (/ searchTime 2)))))

(if (< effArea maxSPAsize)

;;searachValues now contain
searchTime (MCPA's fira, on station)
missionCount
MEPA
SPA size

103

(setf (aref searchValues i j)
(list searchTime,

missionCount
MPA
(list spaLat spaLng effArea)

(rctum-fj cm getSearchValues scarchValues)

;;modified f-inction

(defobfun (makeMPAassignments ASWOC) (cti me search Values)
(let* ((dimensions (array-dimensions search Values))

(t~rackCount (car dimensions))
(MPACount (cadr dimensions))
(assignmentList Q

(do ((doneCueing nil)
(nextCue nil nil)
(NIPA nil)(theCue nil)(iCue nilX)jCue, nil))

(doneCueing ())
(setq doneCucing t)
(dotimes

(i trackCotint)
(dotimes

(j MPACount)
(if (aref search Values i j)
(if nextCue

;;the selection of cue is decided on the ratio of
;;MPA's time on station/SPA- size

(when (or (> (/ (car (aref searchValues i j)) (caddr (cadddr
(aref searchValues i j))))

104

(I(car nextCue) (caddr (cadddr nextCue))))
(and (/ ((car (aref searchValues i j))

(caddr (cadddr (aref searchValues ij))
(I(car nextCue) (caddr (cadddr

nextCue))))
(< (cadr (aref search Values i j))

(cadr nextCue)))

)st P cdr(rf erhausij)
(setq MPA~u (cadddr (aref searchValues i j)))
(setq nextCue (aref searchValues i j))
(setq iCue i)(setq jCue j)

(progn
(setq WPA (caddr (aref searcbValues i j)))
(setq theCue (cadddr (aref search Values i j)))
(setq nextCue (aref search Valucs i j))
(setq iCue i)(setq jCue j))

(when nextCue
(setq doneCueing nil)
(push (list WPA theCue) assignmentList)
(dotimes (i trackCount) (setf (aref searchValues i jCue) nil))
(dotimes Qj MACount) (setf (aref search Values iCue j) nil)))

(dolist (assignment assignmentList)
(let ((MPA (car assignment))

(cue (cadr assignment)))
(setq currentAssigmentList

(remove-if #'(lambda(xXequalp x (MPAstruct-keepOutOrder
WPA)))

cuz-rentAssignment.List))
(ask (MiPAstruct-squadron MPA) (dispatchMPAtoCue ctime MPA

cue))
(push (list (MPAstruct-mrissionEndTime WPA) cue)

currentAssignmentList)

105

(defobfun (resetAreaSearcb ASWOC) (ctime)
(let* ((AvailableMPAs (getAvailableMPAs))

(MPAsOnAreaSearch (getMPAsOnAreaSearch))
(searchRegion areaSearchRegion)

(sort availableMPAs #'(lanbda(x y)
(< (MPAstruct-missionCount x)

(MPAst~ruct-n-issionCount y))))
(dotimes
(i (min (- MPAareaSearchMax (list-length MPAsOnAreaSearch))

(list-length AvailableMPAs)))
(let* ((MIPA (nth i availableMNWA.-,

(searchArea (ask (MIPAstruct- quadron, MPA)
uncuco SearchArea))

(cuePoint nil)
(cue nil)
(openCuep nil)

(dotimes (i 20)
(when (not openCuep)

(setq cuePoint (getRandomPointInRegion searchRegion))
(setq cue (list (car cuePoint) (cadr cuePoint)

searchArea))
(setq openCuep (isOpenCuep cue))

(if (and (= i 19)(not openCuep))(print "overlap"))

(ask (MPAstruct-squadron MPA) (dispatchM[PAtoAreaSearch
ctime MPA cue searchRegion))

(push (list (MPAstruct-missionEndTime MIPA) cue)
current As sign mentLis t)

106

;;CHANGE LOG:

new data field added in MPAstruct
engaged

dispatchMPAtoAreaSearch and dispatchMPAtoCue modified
schedules detection opportunity for the MPA to every possible
submarine target based on the inversion of detection rate to the;; target;

setNextFalseAlarm added to schedule FA event

endMPAflight modified
reset MPAstruct-engagedp flag to NIL after finish its flight

beginSearch modified
schedules detection opportunity for the MPAQ to every possible
submarine target based on the inversion of detection rate to the;; target;

setNextDetectionOpportunity added
glimpse rate detetection model used; now target's radiated
frequency is used to get DI, RD. NP. sweepWidth;
then mean glimpse interval is computed
by inversing the detection rate(NVW/A);
excludes submarine target not inside search area before MPA
search ends depending upon range: begin random glimpsing,
or calculate earliest possible time these platforms can come
within range (based on maxDectionRange MaxClosingSpeed and
Glimpselnterval); engaged MPA won't have further detection on
other targets

;;processDetectionOpportunity added
if MPA is already engaged then it schedule next detection
opportunity based on target's acoustic parameters (i.e. radiated
frequency, DI, RD, NP) to get sweepWidth and calculate detection

;; rate of target, then invert the detection rate to get glimpse
interval; otherwise it will check if the target is detected by it

targetDetectedp and targetcoveredp added
check if the target is inside the MPA search circle

;;setNextFalseAlarm added
schedule false alarm event during MPA on station time

107

;; by making a exponential draw from mean time between false
;; alarm (/24 computedFAR)

;; processFalseAlarn added
;; if the M.PA is still on station and not being killed it will t'ansmit
;; a false target message, schedule next false alarm, expend buoys
;; for target classification

;; endEngagement added
;; reset MPAstruct-engagedp flag to NIL

;; transmitFalseAlarmReport added
t; transmit the false alarm report to its command

;; localizeTarget modified
,; check if the MPA is on station and the target is active
;; before doing anything

,; processDetectionEvent modified
;; check if MPA is on station and the target is active
;; before doing anything

;; prosecuteTarget added
;; if time permit and still carry enough weapons MPA will
,; stay for another run after it finish prosecution
'9

;; loseMPA modified
;; check if the MPA has not being killed yet

;; getSubslnSearchArea MPAsquadron deleted
•9

(setq MPAsquadron (kindof communicator detectionReporter))

(defobfun (exist MPAsquadron) (init-list)
(usual-exist init-list)
(have 'commander)
(have 'commandObject)
(have 'commandlndex (symbol-value (getf init-list

:commandlndex)))

108

(have 'MPAlist)
(have tsubList)
(have 'SubmaninePkAssocList 0
(push 'SubmarirePkAssocList saved VarNames)
(have 'squadronSize 9)
(have 'missionTime 11)
(have 'turnaroundTime 6)
(have 'failureTime 100)
(have 'repairTimne 48)
(have 'prosecutionTime 2)
(have 'channel sMonitored 16)
(have 'flightSpeed 200)
(have 'uncuedSearchArea 10000)
(have 'assumedSearcherNav *rhuml)Iline*)
(have 'buoyLoadOut 50)
(have 'buoysPcrSearch 19)
(have 'buoysPerEngagement 4)
(have 'torpedoLoadOut 4)
(have 'torpedosPerEngagement 2)
(have 'DJ-RD-Iist 0)
(push 'DI-RD-Iist saved VarNames)
(have 'dataNaricf~st (ipprnd dataNarneList

:M'AF~quadion
,\S-gLadroir.ize missionTime turnaroundTime

f::i-.-eTjlne repairTime prosecutionTime
c himrne!diiMojitorfed flightSpeed uncuedSearchArea)

:MIPAStores
(buoyLoadOut buoysPerSearch buoysPerEngagement
torpedoLoadOut torpedosPerEngagement))))

(have 'dataValueLi';t (append dataValueList
'(:MPAsquadron

(,s.quadronSize ,missionTimne ,tumaroundTime
,failureTi me ,repairTime ,prosecutionTimie
,channelsNlenitored ,flightSpeed
,uncuedSeai ch Area)

:MPAStores
(,buoyLoadOut ,bwlysPerSearch

,buoysPerEngagement, torpedoLoadOut
,torpedosPerEngagement))))

(have 'dataTypeList (append dataTypeList
'(:MPAsquadron

(data data data data data data data data data)
:MPAStores

109

(data data data data data))))
(have 'dataTextList (append dataTextList

'(:MPAsquadron
("Squadron Size" ".Mission Time" "Turnaround Time"
"Exp Time to Fail" "Exp Time to Repair" "Exp

Prosecution Time" "Total Channels" "Transit Speed"
"Uncued Search Area")

:MPAStores
("Buoy Loadout" "Buoys / Search" "Buoys /

Localization" "Torpedo Loadout"
"Torpedo / Engagement"))))

(have 'dataTemplateText (append dataTemplateText
'(:MPAsquadron

(("Integer" "[0 - 50]")("Hours" "1[0 - 5001")
("Hours" "[0 - 5001")("Hours" "I [0 - 5001")
("Hours" . [0 - 5001")"Hours" "1[0 - 24]")
("Integer" "[0 - 501")("NM per Hr" "[0 - 241")
("NM squared" ".[0 - 50000]"))

:MPAStores
(("Integer" "f [0 - 100]")
("Integer" "[0 - 1001")
("Integer" "10 - 100]")
("Integer" "[0 - 100]")
("Integer" "[0 - 1001')))))

(setf (getf dataTextList :reports)
'("REPORT TYPE" "POSITION ERROR" "SPEED ERROR"

"COURSE ERROR" "Exp Localization Delay"
"False Alarm Rate" "Track Initiation"))

(setf (getf dataTemplateText :reports)
'(("POS or POS+VEL" "[POS, POS+VEL]")
("Nautical Miles" "10 - 1000]")
("Knots" "[0 - 301")
("Degrees" "[0 - 1801")
("Hours" .[0 - 100]')
("FA per Hour" "[0 - I ??]")
("Single Contact to Track' "0 - no, I - yes")))

(let* ((rh-designators '(MPAsquadron-rb MPAStores-rb
commander-rb DI-RD-rb MPASubPk-rb))

(rb-values (list dummyRBdata dummyRBdata commander
dummyRBdata dummyRBdata))

(rb-names '(dummyRBdata dummyRBdata commander
dummyRBdata dummyRBdata))

110

(update-rb- lists rb-designators rb-values rb-names)

(remove-rbs t(location-rb))
(if (gerif init- list :isClass)(remove-rbs X(commander-rb

(when (not (getf init-list :isClass)) fso~ne-b)

(remf C3-connectivitiesS Surf- Detect- msg)
(remf C3-connectivities 'Sub-SI-msg)
(remf C3-connectivities 'Surf-SI-msg)
(update-rb-lists '(Connect-rb) (list C3-connectivities)

'(C3 -con necti v i ties)))

(defobfun (editDl-RD MPAsqujadron) (
(setq DI-RD-list
(inputPairs (getsearchFreqList (forceStruct-opponentList

sideStruct)) DI-RD-list (list "DI and RD by frequnecy"
"freq" "DI"t "RD")))

(defobfun (editMPASubPKs MPAsquadron)0
(let ((classList

(getClassesFromlndices
(getf (forceStruc t-objectKeyl~ist sideStruc t)

:submarineTargets.))))
(setq SuibmarinePkAssocList

(inputPairs classList SubmarinePkAssocList
(list "pk vs. sub class" "class" 'pk" "target pk")))

(defobfun (setForStart MPAsquadron) (
(usual -setForS tart)
(setq comniandObject (getObjectFromName

commander
command Index

IlI

(platformStateParms-side platformState)))
(have 'subTargetList (getf (forceStruct-instanceList sideStruct)

:submarineTargets))
(if (not commandObjec t)(return-from setForStart nil))
(setq MPAlist nil)
(dotimes (i squadronSiz.c)

(push (make-MiPAstruct
:ASWOC commandObject
:squadron (self)
:baseLat (ask cofmrnandObject

(platformStateParms-Iat platformstate))
:baseLng (ask cominandObject

(platformStatePa~rms-ing platformstate))
:Iat (ask commandObject

(platformnStateParnis-lat platfonnstate))
:Ing (ask comnimandObject

(platforniStateParnns-Ing platformstate))
:buoyCount buoyLoadOut
:torpcdoCount torpedoLoadOut
.failureTime (exponential Draw failureTime)

MPAIist

;;modified function

(defobfun (dispatchMPAtoAreaSearch MPAsquadron) (c(time MPA cue
arcaSearcbRegion)
(let* ((targettat (car cue))

(targetLng (cadr cue))
(targetRadius (sqrt (/ (caddr cue) pi)))
(targetRange (car (getRngBrg (N4PAstruct-lat MPA)

(MPAstruct-lng MPA) targetLat targetdng
assumed SearcherNav)))

(tran sitTime UI targetRange flightSpeed))
(ReturnRange (car (getRngBrg (MiPAstruct-baseb~at MIPA)

(MPAstruct-baseLng MPA)

112

targetLat targetLng
assumed SearcherNav)))

(returnTime (IRctnrnRange flightSpeed))
(searchStartTime (+ ctime transitTime))
(missionEndTime (+e ctime missionTime))
(searc hEndTime (-missionE-ndTime returnTime))
(flightHours (+ (MPAstruct-total~ightHours MPA)

missionTime))
(misssionCount (+ (MPAstruct-miissionCount MPA) 1))

(unless glb.batchp
(if (MPAstruct-drawnMission MIPA)

(plotCueingPicture
(nth 0 (MPAstruct-drawn~fission MPA))
(nthi I (MIPAsti-uct-drawnNission MPA))
(nth 2 (MIPAstruct-drawn~fission M1PA))
(nth 3 (MPAstruct-drawn~iission MPA))
(nth 4 (MIPAstruct-drawn~fission MPA))))

(plotCueingPicture
(MPAstruct-lat MPA)
(MIPAstruct-Ing MIPA)
targetiat
targetiLng
targetRadius))

(setf (MPAstruct-drawn~fission MPA) (list
(MEPAstruct-lat MPA)
(MPAstruct-Ing MPA)
targetLat
targeting
targetRadius)

(setf (MIPAstruct-searchingp MIPA) t
(MEPAstruct-searchStartTime MPA) searchStarTime
(MPAstruct-searchEndTime MPA) searchEndTime
(MPAstruct-missionEndTirne MPA) missionEndTime
(MIPAstruct-lat MPA) targetLat
(MPAstruct-lng MPA) targeting
(MPAstruct-searchRegion MPA) areaSearchRegion
(MIPAstruct-radius MPA) targetRadius
(MPAstruct-totaL~lightHours MPA) flightflours
(MPAstruct-missionCount MIPA) misssionCount

(setf (MPAstruct-keepOutOrder MIPA) (list

113

(MPAstruct-missionEndTime MPA) cue))
(addEvent (make-coast-event

:time (+ ctime transitTime)
:object (self)
:procedure 'beginSearcli

:data MPA
:updateList subTargetList))

(addEvent (make -coast-event
:time (+ ctime transitTime)
:object (self)
:procedure 'setNextFalseAlarni
:data MPA
:updateList nil))

(addEvent (make-coast-evernt
:time mnissionEndTime
:object (self)
:procedure 'endMlPAflight
:data MPA
:updateList nil))

,;modified function

(defobfun (dispatchMPAtoCue MlAsquadron) (ctime MPA target)
(let* ((targetLat (car target))

(targetLng (cadr targct))
(targetRadius (sqnt (/ (caddr target) pi)))

(targetRange (car (getRngBrg (MPAstruct-Iat MPA)
(MPAstruct-lng.MPA)
target.Lat targetLng
assumedSearcherNav)))

(transItTime (ItargetRange flightSpeed))
(ReturnRange (car (getRngBrg (MPAstruct-baseLat M.PA)

(MPAstruct-baseLng N4P44
targetLat targetLng
assumed SearcherNav)))

(returnTime UI ReturnRange flightSpeed))

114

(searchStartTime (+ ctime transitTime))
(missionTime (if (MPAstruct-searchingp MIPA)

(- (MIPAst~ruct-missionEndTime MIPA) ctime)
rnissionTime))

(missionEndTime (+ ctime missionTime))
(searchEndTime (- mis~sionEndTime returnTime))
(flightHours (if (MPAstruct-searchingp MIPA)

(MPAstruct-total~lightHours MPA)
(+ (MPAstruct-totalFlightHours MPA)

miss jonTime)))
(ni sssionCou nt (if (MPAstruct-searchingp UFA)~

(MEPAstruct-missionCount MPA)
(+ (MPAstruct-missionCount MPA) 1)))

(unless glb.batcbp
(if (MPAstruct-drawnMission MPA)

(plotCueiit~oPicture
(nth 0 (Mf'Astruct-drawnN~ission MPA))
(nth I (MPAstruct-drown~fission MPA))
(nth 2 (MPAstruct-drawnNission MPA))
(nth 3 (MIPAstruct-drawnMission MIPA))
(nth 4 (MPAstruct-drawnNission MIPA))))

(p!ctCueingPicture
(MiPAstruct-lat MPA)
(MPAstruct-Ing MPA)
target.Lat
targeting
tai getRadius))

(setf (MIPAstruct-drawn~fissinvi MPA) (list
(MPAstruct-lat MPA)
(MPAstruct-lng MIPA)
targetLat
targeting
targetR adius)

(setf (MPAstruct-searchingp MIPA) t
(MPAstruct-searchStartTime MPA) searchStartTime
(MPAstruct-searchEndTime MPA) searchEndT*Iime
(MPAstruct-missionEndTime MPA) missionEnd'Fime
(MPAstruct-lat MPA) taget-Lat
(MPAstruct-Ing MPA) targeting
(MPAstrurt-radius MPA) targetRadius
(MPAstruct-searchRegion MPA) nil

115

(MPAstruct-total~lightHours MPA) flightHours

(MPAstruct-missioitCount MPA) misssionCount

(setf (MPAstruct-keepOutOrder MPA) (list (MPAstruct-nmissionEndTime
MPA) target))

(addEvent (make-coast-event
:ume (+i ctime transitTime)
:object (self)
:procedure 'beginSearch
:data MPA
:updateL 'st subTargetList))

(addEvent (mak,?-coast-event
:time (+ ctime transitTime)
:object (self)
:procedure 'setNextFalseAlarm

:data WPA
:updateList nil))

(addEvent (make-coast-event
:time rn-ssionEndTime
:object (self)
:procedure 'endMPAfligh#.
:data MPA
:updateList nil))

(defobfun (endMPAflight MiPAsquadron) (ctime MPA)
(if (or (not (MPAstruct-searchingp MPA))

(MPAstruct-killedp MPA))
(return-from endM4PAflight nil))

(unless glb.batchp
(if (MPAstruct-drawnMission MIPA)

(plotCueingPicture
(nth 0 (N'PAstruct-drawn~fission MWA))
(nth I (MPAstruct-drawnNission MPA))
(nth 2 (N'PAstruct-drawnNission MPA))
(nth 3 (MPAstruct-drawnNission MPA))
(nth 4 (MPAstruct-drawnMission MPA)))))

(setf (MIPAstruct-lat MIPA) (MPAstruct-baselat MPA)
(MIPAstruct-lng MIPA)(MlAstruct-baseLng MPA)

116

(MPAstruct-readyp MPA) nil
(MiPAstruct-searchingp MPA) nil
(MPAstruct-.searchStartTime MPA) nil

*(MYPAstnict-searchEndTime MPA) nil
(MIPAstruct-rn-ssionEndTime NIPA) nil
(MPAstruct-radius MPA) nil

*(MPAstruct-searchRegion MPA) nil
(MPAstruct-drawnNission MPA) nil
(MPAstruct-keepOutOrder MPA) nil
(MPAstruct-nextContact MPA) nil
(MPAstruct-engagedp MPA) nil

(if (> (MPAstruct-totalFlightHours MPAI
(MPAstruct-failureTime MPA))

(addEvent (make-coast-event
:time (+ (getCurrentTime) tumnaroundTime

(exponential Draw repairTime))
:object (self)
:procedure 'repairMPA

:data MPA
:updateList nil))

(addEvent (make-coast-event
:time (+ (getCurrent'rime) tumaroundTime)
:object (self)
:procedure 'readyWiA

:data MPA
:updatcList nil))

(defobfun (repairMPA MiPAsquadron) (ctime MPA)
(setf (MPAstruct-failureTime MPA)

(+ (MIPAstruct-totalilightHours MPA)
(exponential Draw failureTime))

(readyMIPA ctime MPA)

(defobfun (readyMPA MPAsquadron) (dtime MPA)

117

(setf (MPAstruct-readyp MPA) t
(MPAstruct-buoyCount MPA) buoyLoadOut
(NiPAstruct-torpedoCount MPA) torpedoLoadOut

(defobfun (getAvailableMPAs MPAsquadron) (thisAswoc)
(let ((availableMPAs()

(dolist (x MPAlist)
(if (and (not (MPAstruct-killedp x))

(equalp thisAswoc (MEPAstruct-ASWOC x))
(MPAstruct-readyp x)
(not (MlPAstruct-searchingp x)))

(push x availableNiPAs)))
(return-from getAvailableMPAs availableM4PAs)

(defobfun (getDivertableMPAs MPAsquadron) (thisAswoc)
(let ((divertabieMIPAs)

(dolist (x NiPAlist)
(if (and (not (MiPAstruct-killedp x))

(equalp thisAswoc (MPAstruct-ASWOC x))
(MPAstruct-searchRegion x)

(>= (MPAstruct-buoyCount x) (+ buoysPerSearch
buoysPerEngagememn)))

(push x divertableMPAs)))
(return-fromn getDivertableMPAs di vertableMiPAs)

(defobfun (getIMPAsOnAreaSearch MPAsquadron) (tbisAswoc)
(let ((availableMPAs 0

(dolist (x MPAlist)

118

(if (and (not (MIPAstruct-killedp x))
(equalp thisAswoc: (MPAstruct-ASWOC x))
(MPAstruct-searchRegion x))

(push x availableMEPAs)))
(return-from getM[PAsOnAreaSearch availableMPAs)

(defobfun (plotSelf MPAsquadron)0
(unless glb.batchp
(if (and (platFormnStateParms-activep platFormState)

(clockls~np))
(mapc #'(lambda(MPA)

(if (MPAstruct-drawnMission MPA)
(plotCueingPicture
(nth 0 (MPAstruct-drawnNission MPA))
(nth 1 (MPAstruct-drawnMission MPA))
(nib 2 (MPAstruct-drawnNission MPA))
(nth 3 (NIPAstruct-drawnMission MWA))
(nth 4 (MOPAstruct-drawnNission MPA)))))

MIPAlist

911

;;new function

(defobfun (setNextDetectionOpportunity MPAsquadronXctime data)
(let* ((MPA (car data))

(target (cadr data))
(targetState (ask target platformState))
(targetAcoustics (ask target platform.Acoustics))

(if (or (not (MIPAstruct-searcbingp MOPA))
(MIPAstruct-killedp MPA)
(not (platformStateParrns-activep targetState))

(return-from setNextDetectionOpportunity nil))

#1
glimpse rate detetection model used; now target's radiated
frequency is used to get DI, RD, NP, sweepWidth
then mean glimpse interval is computed by inversing the
detection rate (NVW/A)

(let* ((mg (car (getRngBrg (MPAstruct-lat MOPA)
(MPAstruct-lng MPA)
(platformStateParmns-lat targetState)
(platformStateParms-Ing targetState)
assumedSearcherNav)))

(separation (- rng (MPAstruct-radius MWA)))
(maxClosingSpecd (ask umpire maxClosingSpeed));
(RN (if (< (platformStateParms-spd targetState)

(platformAcousticParms-spdllhresh targetAcoustics))
(platformAcousticPanms-RNslow targetAcoustics)
(platformiAcousticParms-RNfast t~argetAcoustics)))

(targetEnvRgn nil)
(tagetEnvRgnNarne nil)
(envRgnList (ask environment.Manager envRegionList))

(SF nil)
(DI nil)
(RD nil)
(NP nil)

120

(sweepWidth 0)
glimpseinterval
meanGlimpselnterval
(searchTime 2)

(dolist (thisEnvRgn EnvRgn.List)
(when (objectlnRegionp target (ask thisEnvRgn geoRegion))

(setq targetEnvRgn thisEnvRgn)
(return)

(when targetEnvRgn
(setq targetEnvRgnName (ask targetEnvRgn envRgnName))

(setq SF (first (getf (ask target (platformAcousticParms-env-freq-list
platformAcoustics)) targetEnvRgnName)))

(setq DI (first (getf DI-RD-Iist SF)))
(setq RD (second (getf DI-RD-list SF)))
(setq NP (if (and DI RD) (- (+ RN DI. RD)))

(setq sweepWidth (if NP (ask environmentManager (getSweepWidth target
NP)) 0))

(if (or (eql 0 sweepWidth)
(eql 0 (* (askr target (cond (track meanTransitSpeed)

(patroiRegion mean.Patroi Speed)
(t interceptSpeed)))

(min channelisMonitored buoysPerSearch)
sweep Width))

(eql 0 (* pi (MPAstruct-radius MPA)(MPAst~ruct-radius MPA))))
(return -fromn setNextDetectionOppoi-tunity nil)

(setq meanGlimpselnterval (/ (I (ask target (cond (track
meanTransitSpeed)

(patroiRegion meanPatroiSpeed)
(t intercepiSpeed)))

(min channeisMonitored buoysPerSeaich)
sweep Width)
(* pi (MPAstruct-radius MPA)(MPAsiruct-radius

MPA)))))
(setq GlimpseInterval (exponential Draw meanGlimpselnterval))

(setq searchTime (- (MPAstruct-searchEndTime MPA) (MPAstruct-
searchStartTime MPA)))

121

#1
exclude submarine target not inside search area before
MPA search ends

1#
(when (and (< separation (* searchTime maxClosingSpeed))

(< (+ cTime Glimpselnterval) (MPAstruct-searchEndTime
MPA)))

#1
check if MPA is engaged

I#

(when (MPAstruct-engagedp MPA)
(if (< 0 (- separation (* maxClosingSpeed GlimpseInterval)))
(addEvent (make-coast-event

:time (+ cTime (max GlimpseInterval
(separation maxClosingSpeed)))

:object (self)
:procedure 'setNextDetectionOpportunity
:data data
:updateList (list (self) target))

)
(addEvent (make-coast-event

:time (+ cTime GlimpseInterval)
:object (self)
:procedure 'setNextDetectionOpportunity
:data data
:updateList (list (self) target))

)
)

(return-from setNextDetectionOpportunity nil)
)

#1
depending upon range: begin random glimpsing,
or calculate earliest possible time these platforms can come
within range (based on maxDectionRange MaxClosingSpeed and
GlimpseInterval)
1#
(if (< 0 (- separation (* maxClosingSpeed GlimpseInterval)))

(addEvent (make-coast-event
:time (+ cTime (max GlimpseInterval

(/separation maxClosingSpeed)))

122

:object (self)
:procedure 'setNextDetectionOpportunity
:data data
:updateList (list (self) target))

(addEvent (make-coast-event
:time (+ cTime GlimpseInterval)
:object (self)
:procedure 'processDetection~pportunity
:data data
:updateList (list (self) target)

new fnctio

(dfbfn(poes~tctonporuit W~qado) cim.daa
(lt)(P frtdt)

(M; new functiong MPA

(when ((MPA (istrdat-na)) pMIA

(lret* ((RN (if(pask r~tt~rm- target pltfrmtae)
(tageacfoutics (skticarget plaTfre~oshtics)))titis

(wen(ad(platformi~coateParms-activep targettAte)tcs

(platformAcousticParms-Rfspthrs targetAcous tics)))

(targetEnvRgn nil)
(tagetEnvRgnName nil)
(envRgnLisz (ask envifonmentManager envRegionList))
(SF nil)
(DI nil)

123

(RD nil)
(NP nil)
(sweepWidth 0)
glimpselnterval
meanGlimpseinterval)

(dolist (tbisEnvRgn EnvRgnList)
(when (PbjecrinRegionp target (ask thisEnvRgn geoRegion))

(setq targetEnvRgn thisEnvRgn)
(return)

(when targetEnvRgn
(setq targetEnvRgnName (ask targetEnvRgn envRgnName))
(setq SF (first (getf (ask target

(platformAcousticParms-env- freq-list
platforrnAcoustics))

targetEnvRgnName)))
(setq DI (first (getf DI-RD-list SF)))
(setq RD (second (getf DI-RD-list SF)))
(setq NP (if (and DI RD) (- (+ RN DI) RD))))

(setq sweepWidth (if NP (ask environmentManager
(getSweepWidth target NP)) 0))

(if (or (eql 0 sweepWidth)
(eql 0 (* (ask target (cond (track meanTransitSpeed)

(patroiRegion meanPatroiSpeed)
(t interceptSpeed)))

(min channeisMonitored buoysPerSearch)
sweepWidth))

(eqI 0 (* pi (MPAstruct-radius MPA)(MPAstruct-radius
MPA))))

(return -from processDetectionOpportunity nil))
(setq meanGlimpselnterval
(I 1((*(ask target (cond (track meanTransitSpeed)

(patroiRegion mean PatroliSpeed)
(t interceptSpeed)))

(min channeisMonitored buoysPerSearch)
sweep Width)

(*pi (MPAstruct-radius MPA)(MPAstruct-radius
MPA)))))

(setq GlimpseInterval (exponentialDraw
meanGlimpselnterval))

(addEvent (make-coast-event
:time (+ cTime (exponentialDraw glimpselnterval))

124

:object (self)
:procedure 'processDetectionOpportunity

:data data
:updateList (if target (list target))

(return-from processDetectionOpportunity nil)

(if (targetDetectedp MPA target targetState targetAcoustics)
(processDetectionevent ctime data))

(setNextDetectionOpportunity ctime data)

;;new function

(defobfun (targetDetectedp MPAsquadron) (MPA target targetState
target Acoustics)
(if (not (targetCoveredp MPA target targetState))

(return-fromn targetDetectedp nil)
(return-from targetDetectedp t)

;;new function

(defobfun (targetCoveredp MPAsquadronXMPA target targetState)
(return-from targetCoveredp
(<~ (car (getRngBrg (MPAstruct-lat MPA)

(MPAstruct-Ing MPA)
(platfornS tateParms-lat targetState)
(platformStateParms-lIng targetState)
assumed SearcherNav))

(MEPAstruct-radius MIPA)

125

new function

(defobfun (setNextFalseAlarm MPAsquadron) (cTime MPA)
(if (>= 0 computedFAR)

(return-from setNextFalseAlarm))
(addEvent
(make-coast-event

:tiine (+ ctime (exponentialDraw (I24 coniputedFAR)))
.Object (self)
:procedure 'processFalseAlarmn

:data MPA
:updateList (list (self))

;;new function

(defobfun (processFal seAlarm MI'A squadron)(c time MPA)
(if (or (not (MPAstruct-searchingp MWA))

(MPAstruct-killedp MIPA))
(return-from processFalseAlarrn nil)

(if (MPAstruct-engagedp MIPA)
(progn
(setNextFalseAlarm ctime MPA)
(return-from processFalseAlarm nil)))

(let ((reportDelay (getReportDelay 'submarineTarget)))
(expendBuoys MPA buoysPerEngagement) ; expend buoys for

;target classification
(addEvent

126

(make-coast-event
:time (+ cTime report.Delay)
:object (self)
:procedure 'transmitFalseAlarmReport

:data MPA
:updateList (list (self))

(set.NexiFalseAlarm ctime WPA)

,;new function

(defobfun (endEngagement MPAsquadron) (ctime MPA)
(setf (MPAstruct-engagedp MPA) nil))

,;new functi~n

(defobfun (transmitFalseAlarniReport MiPAsquadron) (ctime MPA)
;check if the MPA still on station and not being killed
(if (or (not (* IPAstruct-searchingp MPA))

(MPAstruct-killedp MPA))
(return. from transmitFalseAlarmReport nil)

(let ((theReport (list (make-false-obu -report
(MIPAstruct-lat M4PA)
(MPAstruct-lng MPA)
(MPAstruct-radius MPA)
ctime 'submarinerarget)))

(transmit ctime
(make-coast-message
.send-time ctime
:type 'Sub-Detect-msg
.content theReport

127

:size 0
.transmission-path (list (self))
:transmission-count 0))

modified function

(defobfun (Proces,,DetectioraEvent MPAsquadron) (ctime data)
(let* ((NIPA (car data))

(target I.,adr data))
(targetState (ask target platformState))

check if MPA is on station and the target is active
(if (not (and. (platformStateParmns-activep targetState)

(MPAstruct-searchingp MPA))

(return-from ProcessDetectionEvent nil))
(setf (NlAstruct-searcbRegion MPA) nil)
(addEvent
(make-coast-event

:hime (min (+ ctime (getReportDelay))
(MPAstruct-searcbEndTime MPA))

:object (self)
:procedure 'localizeTarget
:data data
:upda*.eList (if target (list target))

modified function

(defobfun (localizeTarget MPAsquadron) (ctime data)
(let* ((Iseif (self))

128

(UFA (car data))
(target (cadr data))
(targetState (ask target platformState))
(theFavt (if target

(list (make-obu -report ctime
(ask target plat~forrnState)))
(list (make-false-obu-report

(N4PAstruct-lat MPA)
(MEPAstruct-l-ng MPA)
(M[PAstruct-radius MPA)
ctime 'Sub-Detect-msg)))))

;;check if the MPA is on station and searching
;:the target is active

(if (not (and (platforinStateParms-activep targetState)
(MPAstruct-searchingp MPA))

(returni-from localizeTarget nil))

'transmiit ctime
(make-cnas t-message
:send-time ctime
:type, 'Sub-Detect-msg
:content theRcport
:size 0
:transmission-path (list "self))
:transm-iission-count. 0))

(when (Or (< (MPAstruct-torpedoCount MPA) torpedtosPerEngagement)
(< (MPAstruct-buoyCount MPA) buoysPerEr'gagement))

(endMPAflight ctime MPA)
(return-from localizeTarget nil))

(when (and (hostilitiesp) target)
(expendBuoys MPA buoysPerEngagement)
(let ((engagem-IntTime (exponentialDraw prosecutionTit ne)))

(when (MPAstruct-searchEndTime MPA)
(whtui (< (+ cTime engagementTime) (MPAstruct-searchEndTime MPA))
(ask target (beginEngagement ctime engagementTime Iself))
(setf (MlPAstruct-engagedp MIPA) t)

129

(addEvent
(make-coast-event

:time 1+ cTime engagementTime)
:object (self)
:procedure 'prosecuteTarget

:data data
:updateList (if target (list target))

moiidfnto

)dfbu poeueagt Psudo)(tm aa
(lt)(P crdt)

(tafrget (paros datea))tM~qarn)(tm aa
(et"' ((MPAt (cs arge data))~ at)

(MPAreSide (platformStateParms-side plge~ atfom) at)
(MPAreType (platformStateParms-classType plargtfoState))

(pklist (getf SubmarinePkAssocList targetType))
(searcherPK (ask target (expendCounterMeasures (car pklisi.,
(targetPK (ask target (expendSubSams (cadr pklist))))
(objeciNumbei MOEeventObjectindex)

(if (not (and (platformnStateParms-activep targetState)
(MPAstrct-sea&_Thingp MPA))

(return-from prosecuteTarget nil))
(wwhen (not (and (numberp searcherPKXnumberp targetPK)))

(ask target (endEngagement ctime))
(return-from prosecuteTarget nil))

(cxpendTorpedos MPA torpedosPerEngagement)

130

(when (> targetPK (random 1.0))
(loseN4PA ctime MPA (ask target MOEeventObjectlndex)))

;;when MPA kill the target it will start another run if time
;;permidt and still enough weapons and buoys

(when (> searcherPK (random 1.0))
(if (and (< ctime (MPAstruct-searchEndTime WPA))

(< (MPAstruct-torpedoCount MPA) torpedosPerE-ngagement)
(< (MlAstruct-buoyCount MPA) buoysPerSearch)

(endEngagement ctime MPA)
(endNirAflight ctime MPA)

(ask -arget (die objectNumber))
(return-from prosecuteTarget nil))

(if (MPAstruct-killedp MPA)(return-fromn prosecuteTarget nil))

(when (Or (< (MPAstruct-torpedoCount MPA)
toipedosPerEngagement)
(< (MPAstruct-buoyCount MPA) buoysPerSearch))

(endMPAflight ctime MPA)
(ask target (endEngagement ctime))
(return-from prosecuteTarget nil))

(expendBuoys MWA buoysPerEngagement)
(expendrorpedos MPA torpedo sPerEngagement)
(when (and

(> (ask target subEscapeMPAprob) (random 1.0))
(> searcherPK (random 1.0)))

(ask target (die objectNumber))

;;if time permits MPA will stay for another run

(if (< ctime (MIPAstruct-searchEndTime MlPA))

131

(endEngagement ctime MIPA)
(trndMPAflight ctime WPA)

(return-from prosecuteTarget nil)

(ask target (endEngagement ctime))

(defobfun (expendBuoys MPAsquadron) (MIPA theNumber)
(setf (MIPAstruct-buoyCount MOPA)

(max 0 (- (MIPAstruct-buoyCount MPA) theNumber)))
(recordMOEevent (make-MOEeventStruct

:eventID :buoyexpense
:objectl MOEeventObjectlndex
:object2 nil
:data theNumber))

(defobfun (expendTorpedos MPAsquadron) (MPA theNumber)
(setf (MiPAstruct-torpedoCount MPA)

(max 0 (- (MPAstruct-torpedoCount MPA) theNumber)))
(recordMOEevent (make-MOEeventStruct

:eventlD :MPAtorpedoExpense
:objectl MOEeventObjectlndex
:object2 nil
:data theNumber))

;;modified function

(defobfun (loseMPA MvPAsquadron) (ctime PAPA killer)
(if (MPAstruct-killedp MPA)

(return-from loseMPA nil))
(setf (MPAstruct-killedp MPA) t)

132

(endM[PAflight ctime MPA)
(let ((Iside side))

(ask MOEmonitor (updateRunningMOE :MPAkilI Iside)))
* (recordMOEevent (make-MOEeventStruct

:eventliD :attrition
:object 1 MOEeventObjectlndex
:object2 killer)))

133

REFERENCES

[CA 91] Callahan, S. M., Evaluation of Detection Modeling in
ASSET, Master's Thesis, Naval Postgraduate School,
Monterey, CA, September 1991.

[CO 87) Cox, B. J., Object-Oriented Programming: An Evolutionary
Approach, Addison-Wesley, Reading, MA. 1987.

[DU 86] Duff, C. B. Designing an Efficient Language, Byte, 11(8),
pp2 1 1-224, 1986.

[GO 83] Goldberg, A. and Robson, D., The Smalltalk-80: The
Language and its Implementation, Addison-Wesley, Reading,
MA. 1983

[KI 871 Kim, T. G. and Aeigler, B. P., The DEVS Formalism
:Hierarchical, Modular System Specification in an Object
Orientated Fraenwork, Proceedings of the 1987 Winter
Simulation Conference, Atlanta, GA.

[RI 90] Richardson, H. R., Lent, S. C., and Stefanick, T.A., ASW
Systems Evaluation Tool (ASSET) Technical Documentation
and User's Manual, Metron Inc., March 1990.

[SC 87] Schmucker, K. J. and Cox, B. J., Producer: A Tool for
Translating Smalltalk-80 to Objective-C, OOPSLA 1987
Conference Proceedings, Orlando, Fl.

[SH 91] Shaffcr, R. NI., Evaluation of The MPA Detection and
Allocation AModels Utilized by ASSET, Master's Thesis,
Naval Postgraduate School, Monterey, CA. September 1991.

[ST 88] Stephen D. Roberts., Joe Heim., A Perspective on Object-
Oriented Simulation, Proceeding of the 1988 Winter
Simulation Conference.

[ST 90) Steele, Guy L., and others. Common Lisp: The Language.
2nd. edition. Digital Press, Maynard, Mass. 1990

134

(VE 91] Vebber, P. W., Az Examination of Target Tracking in ASSET,
Master's Thesis, Naval Postgraduate School, Monterey, CA.
September 1991.

[WA 911 Wagner, D. H., "Cumulative Detection Probability," draft of
Chapter 5 for 3rd ed. of Naval Operations Analysis, June
1991.

[ZE 84] Zeigler, B. P., Multifacetted Modelling and Discrete Event
Simulation, Academic Press, London and Orlando. FL. 1984.

135

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA. 22304-6145

2. Library, Code 052 2
Naval Postgraduate School
Monterey, CA. 93943-5002

3. Chief of Naval Operations 1
Antisubmarine Warfare Division (OP-71B2)
Wachington D.C. 20350-2000
Attn: CDR Moses

4. Metron, Inc. 1
11911 Freedom Drive
Suite 800
Reston, VA. 22090-5603
Attn: Dr. Richardson

5. Dr. Yuh-jeng Lee, Code CS/Le 5
Department of Computer Science
Naval Postgraduate School
Monterey, CA. 93943-5100

6. Dr. James N. Eagle, Code OR/ER 1
Department of Operations Research
Naval Postgraduate School
Monterey, CA. 93943-5100

7. LT Commander Peng-tso Chang 3
37, Lane 142, Ho-kuang St.
Tso-ying, Kaohsiung
Taiwan, Republic of China

136

