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EXECUTIVE SUMMARY

This report describes the basic physics and numerical techniques used in implementing a

range-dependent, tropospheric microwave propagation model. This propagation model al-

lows for both finite surface conductivity and variable (i.e., highly irregular) surface terrain.
The model is based upon the electromagnetic parabolic wave equation (PE) and employs

a novel implementation of the split-step Fourier PE (SSFPE) algorithm to efficiently com-

pute the electromagnetic radiation fields. This physics report reviews the fundamentals

of the PE method and provides a detailed error analysis of the SSFPE algorithm. The

generalization of the SSFPE algorithm to handle nonflat boundaries is also discussed.

The propagation model is implemented as the VTRPE (variable terrain radio parabolic

equation) computer code and is used in the prediction of radar system performance. The

VTRPE code has the following characteristics:

(1) full-wave propagation physics (i.e., field amplitude and phase are computed);
(2) direct solution of electromagnetic fields;

(3) exact treatment of refraction and diffraction phenomena;
(4) exact treatment of multipath phenomena;

(5) range-dependent atmospheric refractivity inputs, N(z, r);

(6) infinite or finite conductivity surface boundary conditions;

(7) linear transmitter field polarization (vertical or horizontal);

(8) variable surface terrain elevation and surface dielectric properties;

(9) frequency dependent atmospheric attenuation;

(10) frequency range: • 0.1 --+ 30 GHz;

(11) generalized transmitter radiation patterns;

(12) arbitrary transmitter/receiver geometry;

(13) automatic selection of the SSFPE range step-size and FFT transform size; and

(14) automatic monitoring of SSFPE solution global error.

The VTRPE model properly accounts for the dominant mechanisms governing tro-

pospheric radio wave propagation, including the effects of anomalous propagation arising

from spatial changes in atmospheric refractivity and variable terrain features.
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§1.0 INTRODUCTION

This report describes the physics and numerical techniques used to model microwave
propagation in range-dependent environments by means of the parabolic wave equation
(PE).

The method of parabolic wave equations was first proposed in 1944 by Leontovich1 as a
means of solving elliptic partial differential wave equations. He used the technique to solve
the problem of electromagnetic wave propagation above a plane earth. In 1946 Leontovich
and Fock2 applied the PE method to the problem of transhorizon radio wave propagation
above a spherical earth, thereby making a breakthrough in electromagnetic wave propaga-
tion modeling. Approximately 30 years passed before a practical algorithm for solving the
Leontovich-Fock parabolic wave equation was developed. In 1973, Hardin and Tappert 3

developed the split-step Fourier parabolic equaton (SSFPE) algorithm and applied it to the
problem of modeling ionospheric radar propagation.4 The split-step Fourier PE algorithm
exploited advances in computer hardware and the development of the fast Fourier trans-
form algorithm to yield an efficient numerical solution to the Leontovich-Fock parabolic
wave equation. In 1977 Tappert5 introduced SSFPE methods to the underwater acoustics
community, where it rapidly became a valuable tool for predicting range-dependent under-
water sound propagation. In 1983 the split-step Fourier PE method was reapplied to radar
propagation by Ko, Sari, and Skura6 to study anomalous tropospheric microwave prop-
agation. Subsequently, Dockery and Konstanzer7 applied the SSFPE method to analyze
phased array radar performance. Since then several others, including Ryan8 and Craig, 9

have developed electromagnetic PE models.

The scope of this report is restricted to a description of the electromagnetic PE model
physics and the split-step Fourier PE algorithm. A detailed description of the numerical
and computational issues associated with implementing specific algorithms is left for a
later document. By intent, only the salient and most important ideas are described;
no attempt is made to cover classical electromagnetism or the mathematical theory of
partial differential equations. The reader is directed to standard texts for the necessary
background material.

This report focuses on the propagation of radio waves in an inhomogeneous atmosphere
with the transmitter and receiver located near the surface of the earth, in the troposphere.
The emphasis will be on short wavelengths, the so-called microwaves, which are charac-
teristic of radars and short-range microwave communication links. The wavelength range
of interest is from about 3 meters down to about 1 cm, which corresponds to a frequency
range of approximately 100 MHz to 30 GHz. This encompasses, to a large extent, the bulk
of the search and acquisition radars in current use. It will be assumed that the wavelength
is sufficiently small that ionospheric reflections are absent but yet long enough that large
numbers of atomic or molecular resonances in the gaseous components of the atmosphere
do not occur in a small wavclcngth intcrval. In other words, it will be assumed that the
frequency is well above the ionospheric plasma frequency but low enough that dispersion
effects are not important.

A further assumption is that the atmosphere can be modeled as a simple material
medium, viz., a linear, isotropic, nonionized medium. This implies a negiect of the effects



of the earth's magnetic field on wave propagation, and a restriction of propagation paths
to the lower portion of the atmosphere - the troposphere. The limitations imposed by
these assumptions are flexible and depend, for instance, upon whether the transmission
path under consideration is long and near the earth's surface or short and high in the at-
mosphere. In any case, the above restrictions are commonly accepted as being appropriate
for the problem of tropspheric microwave propagation and lead to no significant errors in
electromagnetic field calculations.

The methods described in this report form the basis of the VTRPE (variable terraini radio
parabolic equation) computer program.10 The primary use of the VTRPE model is in the
analysis and performance prediction of radar and communication systems operating in the
microwave region. In practice, the actual performance of such systems in the atmosphere is
often quite different from the characteristics predicted based upon free-space propagation.
Free-space ranges are often several orders of magnitude different from observed detection
ranges in the atmosphere. The reason for this discrepancy is threefold:

1. The earth's surface is a finite conductor and scatters (reflects) incident energy in
various directions, leading to complicated spatial interference patterns.

2. The curved earth casts a shadow giving rise to diffraction phenomena.
3. Inhomogeneities in the atmospheric index of refraction cause significant refraction

or bending of radio wave energy.

To adequately represent the above types of "anomalous" propagation effects, a propagation
model must incorporate full-wave propagation physics and range-dependent environmental
inputs. The electromagnetic parabolic wave equation does just this.

'I ne remainder of this report is divided into two major sections. First, the fundamental
physics and mathematical relations describing tropospheric microwave propagation over a
spherical earth are developed. Starting with the basic Maxwell's equations that govern the
electromagnetic fields, a parabolic wave equation is derived for the nonzero field compo-
nents. Second, this parabolic wave equation is numerically solved by using the split-step
Fourier PE algorithm, and the resulting _rror terms are discussed.
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§2.0 PROPAGATION PHYSICS

The scope of this section is to develop, from the fundamnental equations of electrody-
namics, a parabolic wave equation (PE) that. governs the propagation of electromagnetic
waves in the troposphere. In later sections, this parabolic wave equation will be solved
numerically for the electric and magnetic radiation fields by means of the split-step Fourier
PE (SSFPE) algorithm. The model problem in mind is the propagation of linearly polar-
ized microwave radiation through an inhomogeneous troposphere over a spherical earth.
The analytical development will proceed as follows: First, Maxwell's equations and some
basic concepts of classical electromagnetism are reviewed in order to derive vector wave
equations for the electromagnetic radiation fields. By design, the exposition is terse, and
the reader is referred to standard texts on classical electromagnetic theory for the de-
tails. 11-1 3 Next, from the vector wave equations an equivalent scalar Helmholtz equation
is derived for the nonzero field components. This Helmholtz equation is then transformed
from spherical coordinates to an equivalent "earth-flattened" coordinate system. Finally,
the elliptic Helmholtz equation is approximated by the Leontovich-Fock parabolic wave
equation.

The discussion is restricted to the propagation of electromagnetic radiation in the tro-
posphere, which is assumed to be a linear, isotropic nonionized medium. The electrical
properties of the troposphere are modeled by a lossy dielectric. The su> Zace of the earth
will be modeled as a nonferrous dielectric sphere with finite conductivity. A source of
electromagnetic radiation (i.e., a transmitter) is assumed to be located at RO = (ro. 0, 0)
on the polar axis of an earth-based spherical coordinate system (r, 0, 0). The source is as-
sumed to emit linearly polarized, monochromatic radiation having a simple harmonic time
dependence t given by exp(-iwt), where w = 21rf is the radian frequency. (No generality
is lost by this last restriction, since by Fourier's theorem any linear field of arbitrary time
dependence can be synthesized from a knowledge of its spectral components.) Further-
more, it is also assumed that the frequencies of interest are all well above the ionospheric
plasma frequency and that effects of the earth's magnetic field can be ignored.

2.1 Maxwell's Equations

With the above restrictions, the source-free monochromatic Maxwell's equations in ra-
tionalized inks units are (bold faced symbols denote vector fields)

V x E(rw) = +iwB(rL),

V x H(rw) = -i1wD(r,w),

V. B(rw)= 0,

V- D(r,w) 0,
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where

E(r,w) = electric field intensity vector (V/m),

H(r,w) = magnetic field intensity vector (A/m),

B(r, w) = magnetic field induction vector (Wb/m),

D(r,w) =-electric field displacement vector (C/m),

and the implicit time-dependence exp(-iwt) has been suppressed. Henceforth, for nota-
tional simplicity, the explicit frequency dependence of the field quantities is suppressed.

The macroscopic fields D and H are related, respectively, to E and B by constitutive
relations that characterize the electromagnetic properties of the material medium involved.
For isotropic materials the constitutive relations are

D(r) = e(r)E(r),

B(r) =p(r)H(r),

where c is the absolute (complex) permittivity and u is the absolute magnetic permeability.
For most nonferrous materials, the permeability p is very close to that of free space p().14

Accordingly, the medium permeability will be set equal to its vacuum value: y(r) =- 1L0. It
also proves useful to define the the vacuum wave number ko and the dimensionless relative
(complex) permittivity s by

c(r) = 1 - i + is2 = e1(r) + i!a'r)
fo WE0j

ko = w fyoco,

where eo is the vacuum dielectric constant, a is the medium conductivity and el is the
usual relative permittivity of the medium.

Maxwell's equations (1) then assume the form:

"V x E(r) = +VipoH(r), (2)

"V x H(r) = -iweoc(r)E(r), (3)

poV .1H(r) = 0, (4)

E0V . e(r)E(r) = 0. (5)

2.2 Vector Wave Equations

Maxwell's equations, Eqs. (2)-(5), are a set of first order partial differential equations in
which the E and H fields are coupled. An equivalent set of second-order uncoupled vector
wave equations may be derived from them, in which the electric and magnetic fields occur
separately. For example, by taking the curl of Eq. (3), using standard vector identities,
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and employing Eq. (2), one can eliminate the electric field and obtain an equation for the
magnetic field H alone:

V x V x H(r) - -iweoV x [E(r)E(r)],

Ve(r) (6)
-Z 7-r) x V x H(r) + k e(r)H(r).

By using the vector identity V x V x C = V(V - C) - V 2 C, and the fact that the magnetic
field is solenoidal, Eq. (6) may be cast into the form of a vector wave equation:

V 2 H(r) + V(r) x V x H(r) + k02e(r)H(r) = 0. (7)

Once the magnetic field is found, by solving Eq. (7), the electric field is then obtained from
the Maxwell curl relation of Eq. (3):

i
E(r) = weoc(r)V x H(r).

In a similar fashion, the magnetic field H may be eliminated by taking the curl of Eq. (2)
and using Eq. (3) to get a vector wave equation involving the electric field alone:

V 2 E(r) + V E(r) 7%(r)] + kg(r)E(r) = 0. (8)

The Maxwell curl relation of Eq. (2) may then be used to obtain the H-field:

H(r) = V x E(r).
"Wp0

The vector wave equations (7) and (8) are no more tractable than Maxwell's equations
unless an assumption is made regarding the field polarization. In many cases, the transmit-
ter emits radiation that is linearly polarized in the meridian plane containing the receiver.
For a linearly polarized transmitter, the resulting electric field vector may be assumed
to have components lying either wholly within (vertical polarization) or perpendicular to
(horizontal polarization) the meridian plane containing the source and observation point.
Thus, for the vertically polarized case, the nonzero magnetic field component is H = H¢•,
which may be computed from Eq. (7), while for the horizontally polarized case, the only
nonzero electric field component is E = Eeo, which may be obtained from Eq. (8).

2.3 Vertical Polarization

If the source emits vertically polarized radiation, then the electric field vector will have
components in the meridian plane containing the source and receiver. F -- Ervr + E860,
while the magnetic field vector has a single nonzero component perpendicular to this plane:
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H = HOp. It thus proves simpler to solve for the single magnetic field component by using
Eq. (7) and then compute the remaining electric field components from the Maxwell curl
relation of Eq. (3):

E(r) = V x H = E(r) +Eo(r)Co,
weoe

Er 0(14, sin 0)I ~Er=
weOr sin 0O

-- 0(rHf)
Ea=wcoer Or

Working in a spherical coordinate system (r, 0, 0), with respective unit vectors (Er, •t.• ),

the first two terms in Eq. (7) become 15

-2 0H4 [1 02(rie) I a OHO

- r2 sinlO - +0eco)+i- Or2  + r2sin00 00

1 02&2 HO HO 2 cot 0 OHl 9
r2 sing0 ot 2  r2 sin2 _90 r2 sin 0 c ,

and

Vl 1 O(rHO) + 10 O (sinBH4)j

Cýt [ 1 O(sin0.4) 10,5 1~ Deo(rHcs)1(0
r rsin0 N0 0 O Or j'

Equations (9) and (10) reveal that, in general, the individual vector components of the
magnetic field will be coupled due to the presence of the term. This coupling, or depo-

larization, is analogous to the Faraday rotaticn observed in optically active materials. A
significant simplification arises if the propagation medium is assumed to have no compo-
nents of Ve(r) parallel to the source magnetic field (i.e., io- Ve - 0). In this case, Eqs. (9)
and (10) will have only a single nonzero cocuxtaent:

SV2H 1 02 (rH6 ) 1 0 (sin _ HO

r Or2  r 2 sin00 --0 a r 2 sin 2 0

.V e x x H - 1 [1 O(sinOHO) 1 O j 1 O& O(rH6) (-- xVxH--- 00-- ± (12)
r r[rsin0 Do '600 ,+Eo'r Orr

The r and 0-deri-atives appearing in Eqs. (11) and (12) may be combined to give the
following compact form for the vector wave equation (7):

( 01 (rH1) a 0sinl O06 (C cotK0 )
r Ov e Or + r 2 sinft e 00 ± - r2 1 cot 1 H -0. (13)
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As it stands, Eq. (13) is not in the desired Helmholtz form but can be transformed into
it by a change of the dependent variable:

u.(r) = OHO(r), vn(r) = v¶W. (14)
n

where n is the complex index of refraction referenced to the vacuum dielectric constant f0.
In terms of u, the partial derivative termis in Eq. (13) can be shown to have the form

j910(r14) I aO10&(ufi-E)

-s=if6r-r• a,_ (ide)2 2 o1-] 2

= _ . -as (15)
rr k +r 2 OR J

and

0 sinG 0OHI e 0 sinG O(nUV/- 6)
00 & 08 ifrsinSd9 e 09

sin [a02u (1 csc 2 9 cotd e - 02(16_ - [ -jo-2 i+07-+- - --5o
re [462 6J 4q + 09)]

Now, with the new field variable u,. Eq. (13) takes on the desired Helmholtz equation
form:

1 0Ou" 1 0 2u 2r Or - + -r + [kO2(r) + e.(r)],., = 0. (17)

with
3csc 2 0 cotd& 0 2C¼ 1 -O- 02ý-!

4 r2 2r2eo' - Or 2  r2 T h'2
3 csc2 0 cot S On n 0 2 n- 1  2 nr 1,(

4- r rn------ r 89 2 Jr2

In Eq. (17) the full 0-dependence is retained in the c-dependent terms in the coefficient
of u,, even though 9 = 0 in the derivation. This appears to be a contradiction. which
will now be justified, albeit heuristically.

The terms involving Y.- occur in the coefficients of the partial derivative operators in
Eq. (11) and will be neglected. Basically this amounts to neglecting small variations in the
field amplitude. but retaining the O-dependence in the term k2o., which affects the phase
of the field. This is most easily understood in the context of geometrical optics, where the
large k0 solution to

[v2 + kdc(r)] H0,-- 0.



is expressed in the form1 3  =HO+ = Q-ik

where the phase function S satisfies the eikonal equation

(VS)2 = 4r).

Thus, small changes in E can lead to large overall phase errors in the eikonal kOS and cause
appreciable errors in the field. This is not the case for the amplitude function Q, which is
only weakly dependent on variations in e.

Neglecting the azimuthal variation in Eq. (10) but including it in the k206 factor is
termed a 2½-D approximation to the full 3-D Helmholtz equation. It has the advantage of
retaining, to lowest order, the effects of azimuthal environmental variability while reducing
computational complexity.

2.4 Horizontal Polarization

If the source emits horizontally polarized radiation, then the electric field vector has the
single nonzero component E = Ek(r)iZ. Analogous with the case of vertical polarization,
the single electric field component E1 may be obtained from E4. (8) which, in spherical
coordinates, becomes

"I oj2(rEO(r)) 1 0. 6 0E(r) r 2  1 1

r or 2  +r2 sin+ I s ± ( r2 Sin 2  =

Again paralleling the vertical polarization case, Eq. (19) can be converted into a scalar
Helmholtz equation by introducing a new dependent field variable uh, defined by

uh =-uh(r)= v -in OE(r), (20)

and dropping the &-derivative term in Eq. (19). With the new field variable, Eq. (19) then
becomes

10 O94uf 1 92 uh r20r r-X----+ -, -- 2 + [k F(r)+bEh(r) uh =-0, (21)

where

4r 2 sin 2 9' (22)

Thus both the horizontal and vertical polarization cases can be expressed in terms of a
scalar Helmholtz equation of the form

ro2 18 102 21

[0r ±-w+ +koc'r) + bdarj u(r) = 0, (23)

where u and be are defined by Eqs. (14) and (18) for vertical polarization, and by Eqs. (20)
and (22) for horizontal polarization.



The additional term & is generally small, except in two cases: The first occurs for
vertical polarization with propagation near the boundary separating dissimilar dielectrics
with finite conductivity, in which case the spatial derivatives of the index of refraction n
may become large. The second occurs for long propagation paths at low frequencies where
the wave number ko is small and then the spherical correction terms become important.
Inclusion of the &E correction allows one to deal in a unified manner with propagation over
idealized boundaries as well as treat propagation in the presence of subsurface overburden.

2.5 Earth-Flattening Transform

The coupling of r and 9 variables in Eq. (23) is not desirable for numerical purposes
and can be eliminated by means of a simple transformation from the spherical (r, 9, €)
coordinate system to an equivalent cartesian (ý, -q, () coordinate system defined by

= a ln(r/a),

= aoCos 0, (24)

r7= aO sin 0,

where a is the earth's radius, and ( = 0 corresponds to the surface of the earth. This
transformation, suggested by Pryce,16 is known as an earth-flattening transformation, and
with the approximation ( z, h was also studied by Pekeris. 17

In terms of the new coordinates defined by Eq. (24), the metric

ds2 = dr 2 + r 2de2 + r 2 sin2 9dO2

becomes

ds2 =e/a[2 + d77
2 + d( 2  (1 sin2 j7 (25)

1 C2 + +q2 •

In most problems of interest, 0 < 1, in which case Eq. (25) can be expanded in powers of
9 to yield

ds2 = e2C/a dý2 + d,72 + d(2 - ( 3dq -a7dC)2 + (-4)]. (26)

It is a fairly simple matter to determine the geodesics of the non-Euclidean (i.e., non-
fiat) space whose metric is given by Eq. (26). Let the source point be located at (ý = 0, rq =
0, ( = (0) and limit attention to geodesics which pass through the source. From symmetry,
it is obvious that the geodesics lie in a plane containing the (-axis. We may without
any loss of generality confine ourselves to geodesics in the CC-plane. These geodesics will
then coincide with straight lines through the source, the equations of which are given
parametrically by

C = atan- 1 (tan V,,+ - sec ai,

1 n (1 ± sin Se-(°/a + -ag -2 °(/a (27)

( =CO -ln + sinlf-11' +_6



where s is the geodesic distance (arc length) from the source. The parameter 0b is a constant
along the geodesic, being the angle the geodesic makes with the horizontal at the source.
In terms of the original spherical coordinates (r, 0, 0), Eq. (27) reduces to the equation for
a straight line:

rsinO = s cosV,

r cos O = s sin V + aeCO/a.

Also, the distance along the geodesic between the points (0, 0, Co) and (ý, 0, () is simply

s = a [Ce2(o /a - 2 c((o+C)/a cos(ý/a) + 62C/, 1/2

In what follows, the meridian plane containing the source/receiver will be taken to be
the rO-plane. In this case, the earth-flattening transformation, Eq. (24), is simply defined
in terms of new "cartesian" coordinates (x, z) by

X = a9,
h (28)

z =aln(l +h/a),;:•h(1 - h), if h/a <<1(2'
2a

where h = r - a is the local altitude referenced to the mean earth radius a. This leads to
the following Helmholtz separated form for Eq. (23)

[ 92 t82 2(,z)].(9
Ox+ + + K2 (x, w(x, z) = O. (29)

The new dependent variable w and the "effective" wave number K are defined for horizontal
polarization by

Wh = V-r s-in0 EO(r),

= e "/(a sin(x/a) EO(x), (30)

,z: vGEO(x), if x/a < 1 and z/a < 1

and

K 2 k2 2 7" 3 csc2 (X/a)4a 2  
(31)k _ 3

0 k 2 ns 4x2, ifx/a <l

with m the modified index of refraction, defined by

r h
m =- n(r,9). = n(r)(1 + h). (32)

a a

10



For vertical polarization, the new variables are

WV = V•r-Sn8HOr),

= e+3z/(2a) Vla sin(x/a) HO(x) (33)
rn(x, z)

' •HOx), if x/a<<1 and z/a<<1

m

and
K 2 z) 2kM2  3csc2 (x/a) cot(x/a) Om

z 4 a2  am ax (34)
-2mm1 (2r-1 mn (3m-4

m 5x2_ 05z 2  a Lz

If the medium is spherically stratified and has no range dependence, then the effective
wave number takes the form

Kv X, Z) 0e 422k2 ,2 -3 if X/a << 1
22(xz) +- 1 ko9rIeff(z) 4 if «1

mff (Z) = m()+ k m Oz2 -r am 8Z

;; n2 (z)(1 + 2z/a), if z/a <I 1

which is the same form as the earth-flattening approximation discussed by Pekeris. The
Pekeris transform, however, was based upon z = r - a and is only valid for small z/a in
contrast to that given by Eq. (28), which is exact.

2.6 Boundary Conditions

The solutions to Maxwell's equations are not unique until boundary conditions on the
fields are prescribed. These boundary conditions are (1) a Sommerfeld radiation-type
boundary condition at infinity18

lim r A-- ikoA (35)

where A denotes the field component (i.e., A =_ E for horizontal polarization, A =_ HO for
vertical polarization), and (2) continuity of the tangential electric and magnetic fields at
the earth's surface, r = a. If the propagation medium is lossy - i.e., the dielectric constant
is complex with a positivc imaginary part -- then the Sommerfeld radiation condition may
be replaced by the simpler condition that the fields vanish as r -- c .

The continuity of tangential field components at r = a is implemented by modeling the
earth as a locally homogeneous dielectric with finite conductivity. This is a reasonable

11



approximation at microwave frequencies, since the penetration depth of the fields into the
earth's surface is small compared to spatial variations in the surface dielectric properties.

For example, in the case of microwave propagation over seawater, it can be shown by
standard techniques that the electric and magnetic fields within the ocean decay exponen-
tially with distance from the air-sea boundary.12 The vertical scale length over which the
field components in the water decay to 1/c of their value at the interface is termed the
skin depth 6. The high-frequency form of 6 is 19

6 0 /, SW,

where a. is the surface conductivity. A typical value for the conductivity of seawater
is a ;- 4 S/m, which means the order of magnitude of 6 is about 250/V7f, with f, the
frequency, in hertz. For typical marine radar frequencies (f ; 1010 Hz), 6 • 0.025 m.

The small skin depth means that, as an approximation, the boundary condition of
tangential field continuity can be replaced by the Leontovich surface impedance boundary
condition

20

-O(rA) Z(rA) (36)
r rLa = - r a.

The quantity Z is the local, flat surface impedance given by Fresnel formulas:

Z = iko0 r - cos2 O for horizontal polarization,

Z =- cos2 ý, for vertical polarization,

with e, the complex dielectric constant of the earth's surface and ýg the grazing angle
of the field at the earth's surface. In most applications, the surface grazing angle is very
small, and it is appropriate to use the limiting forms

A ik= vs 1, (37)

S= -1,. (38)

The Leontovich impedance boundary conditions, Eq. (37) and Eq. (38), may also be
transformed to earth-flattened cartesian coordinates where they become

wh, z) I=o - + iko /JT-I) Wh(X,O) (39)

for horizontal polarization and

au,(x, Z) [1 1 aim(x, z) + ____V__(__) 40
O z=0 - 2 +-Tx,0) 5Z +=o E ) (

for vertical polarization.
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2.7 Propagation Factor

In analyzing the various propagation phenomena, it is useful to separate those system
parameters not influenced by the environment, antenna radiation characteristics for exam-
ple, from propagation effects that are environmentally influenced, such as ducting caused
by spatial variations in the refractivity. Following Kerr,21 define the one-way generalized
transmission equation, which relates the power received by an omnidirectional receiver at
"a point in space, Pr(r), to the power emitted from a transmitting antenna, Pt, by

Pr(r) =Gt[, (41)A (2koR)l

where

Gt = transmitting antenna power gain,
2wr

k0 = vacuum wavenumber = 27r

1R = distance between transmitter and receiving point,

F = pattern propagation factor.

The radiating characteristics of an antenna are specified in terms of the antenna radia-
tion pattern function f(O, 0) where (0, 0) are the zenith and azimuthal angles, respectively,
of a spherical coordinate system centered at the antenna, with polar axis pointed in the
direction of maximum transmission. The antenna radiation pattern function f is defined
to be the ratio of electric (or magnetic) field strength E(8, €) radiated in the dihection
(6, 0), to the peak transmitted field strength E0 :

E(O,€)E0

The radiation pattern function is related to the time-averaged Poynting vector S of the
radiated wave field by

S(9,) = If(0, 0) 12-So,

where So is the energy flow per unit area corresponding to the peak field E0. In general,
the antenna radiation pattern function f is a complex valued quantity.

The antenna gain G is expressed in terms of the pattern function as

G=
f( 4o) kf(", )2 diQ

Note that the radiation pattern function f and the corresponding antenna gain G are
defined with respect to free-space propagation conditions, and therefore do not include
any environmental effects.

13



Environmental effects are included in the generalized transmission equation via the
pattern propagation factor F. The pattern propagation factor is defined as the ratio of
the field magnitude at a point in space, E(r), to the magnitude of the field at the same
point but under free-space conditions, E 0 (r):

E(r)F E0(r) "(42)

This definition of the pattern propagation factor assumes that the transmitting antenna
is aligned with its maximum response axis pointed directly at the observation point. The
pattern propagation factor is the key part of Eq. (41), and is the fundamental quantity to
be computed by the PE model. Because of the large dynamic ranges of the various terms
in Eq. (41), it is customary to work in dB-space by defining the dimensionless variables
PF and PL by

PF 920log JF, (43)

PL 20 log(2koR) - 20 log IF1. (44)

The quantity PF is often called the propagation factor, while PL is denoted the path loss.
The remaining task is to compute the pattern propagation factor F defined by Eq. (42),

which, for linearly polarized radiation, is just the ratio of the C-components of the electric
or magnetic qleld vectors:

F¢Ef(r)l horizontal polarization (45)F _= Fh~) -- iE~d(r)l,

and

F F,(r) = IHO(r)l vertical polarization (46)
FH j-F r) -

where Ef and Hf' are the free-space electric and magnetic field components. By con-wher

vention, the pattern propagation factor is defined with respect to the free-space field of a
unit-strength point dipole.

Following Papas,22 the free-space dipole fields are computed by using the dyadic Green's
function F(r, ro), which is the solution of

V x V x F(r, ro) - k 2 r(r, ro) = u6(r -- r0),

where u is the unit dyadic. The dyadic Green's function IF can be expressed in terms of a
scalar Green's function Go as

=(u + 1VV)GO,

where the scalar Green's function Go satisfies

(V 2 + k2 )GO(r, ro) = -6(r - ro). (47)

14



The appropriate outgoing wave solution of Eq. (47) is

Go(r, ro) 4 ir r- ro (48)
47r ir-rol 48

Two types of dipole fields are required: (1) a vertically polarized field arising from a
point vertical electric dipole (VED) with electric dipole moment oriented along the z-axis,
P -pz i,; and (2) a horizontally polarized field arising from a point vertical magnetic dipole
(VMD) with magnetic dipole moment oriented along the z-axis, m = mn.E Employing
the dyadic Green's function r, the electric and magnetic fields from a VED are given by

Eed(r) = V x (p x VGO), (49)

Hed(r) = iwp x VGO, (50)

while the fields from a VMD are given by

Himd(r) -V x (m x VGo), (51)

Emd(r) -iwpom x VGo. (52)

For both the VED and VMD cases, let a unit-strength point dipole be located at ro =
(ro, 0, 0) in a spherical coordinate system (r, 9, €), with the dipole moment oriented along
the polar axis. Using the scalar free-space Green's function Go, Eq. (48), and equations
(50) and (52), the O-components of the dipole fields are given by

,e~)~~kRe sin 9 (r (k± 0 + VED (53)Hed(r) = ;,

Emd(r) = ý eiko R sine r~ (ko + ),VMD (54)

where R = Ir-rol= r2 ±ro - 2rro cos 9, and 0 is the polar angle.

The propagation factor for horizontal polarization F - Fh then becomes

Fh(r) = E,(r)

Emd(r) (

41r ju(r)jR [1+ (koR)-2 2

k0wpo (r sin 9) 2

while that for vertically polarized radiation F = F, is

Fv(r) = H(r)
Hed(r) 2(56)
47r ln(r)u(r)1R 2 -l (kR)2l

53
kw (r sin 0)Y~L-



To express the propagation factor F in earth-flattened (x, z) coordinates, the dipole
fields defined in Eq. (53) and Eq. (54) need to be converted. First, the source-receiver
separation distance R becomes

R =r - ro V(r - re) 2 ± 4rr0 sin 2 (0/2),

-- 2a(z+zo)/(2a) 1inh2(z- ) + sm x

,,(+z 4 zo3 n/

+ 2- ) (z -Zzo) + x2 + O(X4i2a),

- (z- zo) 2 + X2 , if /xa < 1 and (z + zo)/a <1. (57)

The lasi relation in Eq. (57) has a relative error of < 2.5X10- 3 for horizontal ranges x < 200
km and altitudes z < 30 kin. In like manner, the angular dipole coefficient (r/R) sin 0 has
the limiting forms:

r sin9 = (alR)e'la sin(x/a).

-- R if /a< land (z+zo)/a.<<

-+1, if (Z-zo)/x< . (58)

Finally, the propagation factor takes the following limiting form for altitudes and rangs
typical of tropospheric propagation:

47-R2 _3 I,-,(X)lFh(x) P kowhio V71 + (koýR)-2'

-4 kop V l+(kx) if (z - zo)/x <1 (59)

and

47rR 2 _3 Im(x)w(x)l
Fv (x) _X 2To(x W • •V1 + -(koR)--2,

47r Vxf[rn(x)w(x)j if (z - zo)/x < (60)

kow v1i + (kox)-2'

2.8 Parabolic Wave Equation

Although Eq. (29) follows exactly from Maxwcl!*s equations, analytic solutions are only
possible if K is independent of x. Nor is direct numerical solution an easy alternative.
This follows from the fact that Eq. (29) is an elliptic partial differential equation; hence
solving for a solution at one point requires that it must be numerically solved over the
entire propagation doaain simultaneously. Standard finite difference approaches to solving
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elliptic boundary value problems also tend to require griding schemes on the order of a
wavelength. For the long ranges involved in tropospheric propagation, this would lead to
unacceptably large problem sizes.

To deal with these issues, Leontovich and Fock introduced the concept of a parabolic
wave equation to treat the problem of transhorizon radio wave propagation. Their approach
may be summarized as follows: First, an envelope transformation is performed to remove
the anticipated rapid phase variation:

w(x) = C+ix z ,(x), (61)

where k is a reference wave number. ( For most tropospheric problems, the natural choice
is k = ko.) Next, Eq. (61) is substituted into Eq. (29) to get

.2i (x)+ +%(x) (K2(x)- k) (62)
_Ox Oz2 - C a 2

The essence of the Leontovich-Fock PE approximation is to assume that variations of the
envelope function with range are small relative to other terms, and therefore to drop the
P term to get a parabolic equation in the longitudinal coordinate x:

2i.k0(x) + + (1'(x) +- k2) ((x) = 0. (63),5- + + _a2 ¢() 0

The advantage of Eq. (63) over Eq. (62) is that it is parabolic rather than elliptic in
range. This means that it is an initial value problem and can be solved efficiently by
marching algorithms. Also, the surface boundary conditions retain the same form in the
PE approximation as in the original Helmholtz equation.

The justification for dropping the second derivative term is usually made on the grounds
that the envelope function ý, is a slowly varying function of the range coordinate x. While
pedagogically correct, such a derivation of PE does not yield any insight into the approx-
imation nor the errors that are incurred in using it. Al alternative approach to deriving
the PE is via factorization of the elliptic wave equation. If we define an operator Q(x) by

Q92= +K 2 (x), (64)

then Eq. (29) can be expressed in the equivalent factored form

-+iQ)( -- iQ) W(x) + i [ ,Q] w(x)= 0. (65)

(The notation -, Q a2 - Q 8 is the commutator of the operators 8 and Q.)
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For range-independent propagation, the commutator [-,Q] = 0 and the equation

satisfied by outwardly propagating waves is just

Od(X) = iQ(x)w(x). (66)
OX

Equation (66) is an exact formal solution to the range- independent Helmholtz equation,
and is the most general PE that is exact for range independent media. Following Tappert,5

a parabolic wave equation with the Q operator defined by Eq. (64) will be denoted as the
general PE (GPE) and the Q operator will be denoted as the GPE propagator. GPE is the
most complete PE that is evolutionary in range and neglects backscattering. For range-
independent environments, it is exact within the limits of the far-field approximation, and is
the starting point for all numerical PE algorithms. In following sections, the computational
techniques used to solve the PE will be derived.

2.9 Variable Terrain Physics

The preceding sections have dealt with the problem of radio wave propagation over
a smooth spherical earth. This enabled the surface boundary conditions on the electro-
magnetic field components to be satisfied on the confornml spherical shell r = a, where
a is the average earth radius. In reality, the surface of the earth is not smooth but has
a nonun".form topography. What effect, does this varying terrain have on the propagation
of radio wbaves? Intuitively, one expects that the Leontovich surface impedanc, boundary
condition

oO(rA) =-Z(rA) (67)

will be modified. This, in fact, is the case.

If the terrain relief ý(() is a. function of the meridian angle 9, such that r a + C(O) is
the radial distance corresponding to the local surface, the boundary condition in Eq. (67)
will become

e(rA) =-Z(rA)f (68)

where A denotes the electromagnetic field g-component (i.e., A =_ E-0 for horizontal polar-

ization; A HO for vertical polarization), and 2 is the normal derivative to the surface
nI

defined by ,. This surface normal derivative is specified by

a T 8
0 _ r- N1 (69)

Using Eq. (69), the Leontovich boundary condition may be written as

(rA) (9A IZv 
(70)
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The new boundary condition, Eq. (70), is seen to be more complicated than the smooth
surface condition in Eq. (67) due to the presence of the term involving V. This com-
plication is difficult to deal with numerically, and it seems logical to investigate whether
a modification to the standard earth-flattening transformation would, in effect, "smooth"
out the variable terrain. Accordingly, let us define the surface-locked cartesian coordinate
system (x, h), where x is the local horizontal (range) coordinate and h is a new verti-
cal coordinate measured with respect to the local terrain elevation. The new flattening
transform is defined by

X ao,(71)

h = a ln(r/a) - C(().

In terms of the (x, h) coordinates, the normal derivative, Eq. (69), takes on the simple
form 0 _ 0

On 01i'

and the boundary condition Eq. (70) becomes

8(rA) Z(rA)
a h=LO =- Ah=o"

Thus, the new transformation defined by Eq. (71) has indeed led to a simplification of the
surface boundary condition-but at what price?

If the transform defined by Eq. (71) is applied to the scalar Helmholtz equation in
spherical coordinates

ra 2 1a 1 a2  22 1r + -57-• + n2 00 2(r, 9) + bn (r) u (r, 0) = 0, (2

r2 j02 + k+22(72)

then the result is

+(1 )2 ]2 2a Ox2 h a&u a 2 U k 2m2 +±m u(h,x.)=0 (73)
-a 10h2 - a 5Ox-h _a2 ± ± [k_ _

where

a=00, a-002.

Equation (73) is no longer in Helmholtz format-the flattening transformation has de-
stroyed its separability by admixing the xh-derivatives. 02

The complications in Eq. (73) can be shown to arise from the ,T term in Eq. (72).
Ultimately the Leontovich-Fock parabolic approximation is to be applied, which amounts
to keeping terms to first order in ay. This suggests an approach that first makes a PE
approximation in spherical coordinates to Eq. (72) and then applies the earth-flattening
transformation Eq. (71). Accordingly, let us define the envelope function ý' by

u(r, 9) = e0ikaO(r, 9),
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and then write Eq. (72) in parabolic form as

10 0a i2ka &V 222a2.
+ -T + 6n - 2 •, .(74)

rorr r r 08 TI

Next, let us apply the transform, Eq. (71), to get

h-2--V, + i2k - - a Ob )++ 6rn - k2] 0. (75)

The term involving o can be removed by a simple change oi variable:

=> e ikh,

in which case Eq. (75) takes on the final form:

02 2 [2 ~ 2 a 2h4-)
h-+ i2k2!L + [klrn + m + k( 2h - 1) ' = 0. (76)I.h_ ax

Comparing with the form of the PE for a smooth surface, Eq. (63), the effects of variable
terrain are seen to be incorporated into a modified wavenumber Kmod define-A by

K2 0d(hz) = k&2m 2 + 6M + ý' (a 2  (,d h x)- ')It& - 1 .(77)

The inclusion of variable terrain in the PE approximation is thus modeler by modifying
the medium index of refraction via Eq. (77) and then proceeding with numerical solutions
as in the smooth-surface PE. Having solved Eq. (76) for the field in xh-coordinates, it is a
simple matter to transform them back to physical space and then compute the propagation
factor F.
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§3.0 NUMERICAL SOLUTIONS

This section describes methods for the numerical solution of the generalized one-way
parabolic wave equation

ax = iQ(x)t&(x), (78)

where the generalized PE (GPE) operator Q is defined to be

02
OX) = z2 + K2(x) - k, (79)

with k a reference wave number. Because of the square root appearing in Eq. (79), the
usual techniques for solving parabolic partial differential equations are not possible. This
is because Q belongs to the class of pseudodifferential operators23 since it contains both
multiplicative, K 2 , and differential, ej, operators under the radical. Hence, Q(x)tl(x)
cannot be expressed as a finite Taylor series in local operators about the point x. The Q
operator may be expressed in terms of a dimensionless "kinetic energy" operator T and a
"potential energy" operator V as

Q(x) = k l - T(z)-- V(x, z) - k, (80)

where the kinetic and potential energy operators are

1 02
T(z) =- 1 _

kgaz
2

y(x, z) =t-K(, 0~k. (s1)

If lIT + V1i << 1, then a formal Taylor series expansion of Eq. (80) gives

Q(x) % Qi(x) = ko - k - -j-(T + V), (82)

which is the standard parabolic equation (SPE) operator first proposed by Tappert. 5 The
SPE approximation to Q basically assumes that the propagation occurs within a small
cone of angles centered about k.

An alternative approximation to Q was developed by Feit and Fleck 24 for propagation in
optical fibers and used by Thompson and Chapman 2 5 for underwater acoustic propagation.
In this form, the GPE operator is approximated as:

Q(x) : Q2(x) = k0(Vi -T - 1) + K(x) - k, (83)

This approximation is known as a wide-angle parabolic equation (WAPE) operator since
it is valid for much wider propagation angles than the SPE.
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Suppose, for the moment, that the GPE Q-operator is not a function of the range
coordinate x: Q --.* Q(z). Then, the formal solution of Eq. (78) is just

04r, z) -- ei( )Q(z)1 p(xo z),

where the exponential of the operator Q is defined by its power series expansion. The
conventional numerical approach to solving Eq. (78) is to use finite-difference methods and
approximate the exponential operator ex>p[iQ(x - x0)] by using Cayley's method:26

IiQ(z-x + )_ QAX
I - ~iQAX*

If the Q operator is now discretized by a finite-difference approximation in z, a complex
tridiagonal system of equations results. This is simply the standard Crank-Nicholson
method for a parabolic partial differential equation.27

There are two fundamental problems with this approach however. First, the trunca-
tion error of the Crank-Nicholson scheme is only second order in Az and Ax, and thus
requires small mesh intervals to achieve high accuracy. This in turn leads to very large
matrix systems and many range steps. The second problem with the finite-difference ap-
proach is a lack of rigorous error bounds on the solution that can be monitored during the
computations to assure a fixed, preset global error.

To deal with both these issues, an alternative solution method is used that is based upon
spectral operator techniques. This spectral technique is known as the split-step Fourier

PE algorithm (SSFPE) and w-as developed by Hardin and Tappert.A The remainder of
this section deals with development of the SSFPE algorithm, associated error bounds, and
numerical implementation using the fast Fourier transforn algorithm.

3.1 Magnus Expansion

Given the parabolic equation Eq. (78), there still exists a problem of developing a
numerical solution. The difficulty arises from the nonlocal nature of the Q operator. To
solve the GPE, techniques from time-dependent quantum scattering theory are used to
express the solution in terms of an evolution operator.28 Let us define the wave evolution
operator U(x, xo) that determines the PE wave field ',(x) at the point x = (x, z) in terms
of the wave field V,(x 0 ) at the point x0 = (0, Z) by the equation

Vt(x) = U(xxOh5(xO).

It follows by substitution into Eq. (78) that U is an operator satisfying the partial differ-
ential equation

-UfX.xO) = iQ(x)t7(x.xo). (84)
ax

Clearly, U must also satisfy" the initial condition

U(xo'xo) = 1, (85)
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and possess the group property

U(x, xO) = U(x, x)U(x, xO). (86)

Flurthermore, if there are no dissipative processes present, it follows from the complex
Poynting theorem that the z-integrated field energy density must be constant with range

J I0(x, z)12 dz J k{(xo, z)12 dz,

and this leads to the important result that the evolution operator U must be unitary:
Ut(x, xo) U-l(x,xo), where Ut is the (Hermitiatt) adjoint of U. The importance of
_Laving a unitary operator for numerical work should not be underestimated, since this
form for U leads to numerical methods that can be shown to be absolutely convergent for
all range step sizes.

Integrating Eq. (84) and using Eq. (85) yields an integral equation for the evolution
operator

U(x, x0) = i +i Q(t, z)U(t, xo, z) dt.

Solving the above integral equation iteratively yields Dyson's expansion for U:

U(x,xo,z)= l+ij Q(t,z)dt- dxj dx2 Q(x1,z)Q(x2 ,Z) (87)

-- if dxl f dx 2 J dx 3 Q(xl,z)Q(x 2,z)Q(x 3 ,z) +
.To-1 J XO Z. 0

The x-ordering of the integrands in Eq. (87) is very important because, in general, the
Q operators at different x-positions do not commute. Thus the ordering of the operators
is determined by the range to which they refer, with operators referring to earlier ranges
always appearing to the right. Though the Dyson expansion is a formally eý:act solution
"for U, it is not very useful for calculations, since if the series in Eq. (87) is truncated after
a finite number of terms, the result is no longer a unitary operator.

A formal solution to Eq. (84) that does preserve the unitaxy Tiature of U can be found by
using a technique developed by Magnus. 29 The Magnus result is bamcý upon enw exponential
operator expansion which effectively includes all terms in the Dyson expansion. The details
are found in Ryan, 8 and yield

SU(x, xO z) exp(i LQ(x1, z) dx 1  / dxlL dx2 Q(xiz),,Q(x2,z)]

x~ x1' rX2

-- d j dIQ )Qx2 dx3zQ(x1,z),Q(X2,Z)},Q(X3, z) (88)
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While the Magnus expansion provides an exact formal solution to the GPE wave field,
three approximations must be made before it is useful for numerical computations. First,
the infinite series in the Magnus exponent must be truncated. Keeping the first term in
the operator exponential in Eq. (88), yields the first-order Magnus approximation U1 :

U(XXo, z) Ž- U1(axo, z),,i $f O ,- ) a
U i(X, Xo, z ) =_ Q= _ i(z-zo)I , (89)

where H is the range-averaged PE "Hamiltonian"

H= Q(t,z)dt, A=x-xo. (90)

Second, the pseudodifferential GPE operator, Q, is factored into the sum of two ordinary
operators, one of which is independent of range:

Q(x, z) ; A(z) + B(x, z). (91)

This factorization of Q is not unique; in general, the A and B operators do not commute
with each other. For example, if the SPE operator, Eq. (82), is used to approximate Q(x),
then

1 02
A(z) = 1 ,. (92)

2k 0-2

B(x,z) = (ko - k)- -V (x, z), (93)
9

while if the WAPE operator, Eq. (83), is used

A(z)= ~k-() - k0 (94)

B(x, z) = K(x, z) - k. (95)

Finally, the Hamiltonian H is evaluated by using the midpoint rule as

H(-x, z) =-jo Q(tz)dt,

A2 02Q•(t, Z)
Q(xo + A/2, z) + 24 OX2 ' tE(xo,xo+A),

,zzA(z)+B(;ý,z) =-x0+A!/2. (96)

If this is done, a formal solution of Eq. (78) can be expressed in exponential operatoi
form as

¢(X + A, Z) -.I U (x + A,X, Z)O(X' Z),

- e+iAH(x, z) V(x, z),
t([~X+A}

-exp {+?[ALA(z) + L B(t, z) dt} g'(X, Z).

-, exp {+iA[A(z) + B(x. z)]) V'(x, z). (97)

24



3.2 Split-Step PE Algorithm

The first-order Magnus expansion, Eq. (97), :s not suitable for numerical work since the
A and B operators appearing in the exponent do not in general commute. To resolve this,
the Trotter product formula3 0 is used to symmetrically factor the Magnus expansion into
the product of simpler operators, UA and UB

UA = UAA)= e+iAA(z)

UB - UB(A) - +iAB(x+A/2,z)

to yield the split-step PE algorithm:

Vb(X + A,z) = UA(4)UB(A)UA(4)V'(x,z),

= e+iAA(z)/2 e+iAB(x+A/2,z) e+iAA(z)/ 2 )(x, z). (98)

The operator UA is known as the free-space propagator and is the exact formal solution to
the parabolic equation in the absence of refraction. Physically, the split-step PE algorithm
amounts to

(1) a half-step of free-space propagation, UA(4);

(2) a phase correction, UB(A), to account for refractive effects; and
(3) finally, another half-step of free-space propagation, UA(-).

In actual use, the split-step algorithm is used to advance the PE field multiple range
steps:

On = eiAnA/2 eiAnB, eiAIA/ 2 n--1,

where

An = In- -Xn1,

On = 0(xn, z),

Bn = B[(xn.- + xn)/2, z].

By using the group property of the evolution operator, Eq. (86), the split-step algorithm
may be iterated to give

V'n = ela A/2C eiAB, ei~n A/2e iA..-I A/2eiAB,-1 eiAn-1A/2 Vn-2,

= eCi1 r A/2 eiABn ei(An+An- )A/2 eiABn-I elan-1A/2 On-2,

= CiAn A/2 eiAn Bn .i(An+An- )A/2 ... eiA2B2e(A2 +A )A/2CiAi Bl eiAI A/2 00.

3.3 Split-Step PE Truncation Error

At each step of the PE calculation, there will be a certain amount of error induced in
the solution due to round-off error and the intrinsic error of the split-step PE algorithm.
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The round-off error is caused by performing calculations using floating-point arithmetic on
finite-word-length computers. This type of error is highly dependent upon the hardware
characteristics and actual numerical algorithms used, and will not be discussed further.

The intrinsic error is termed truncation error and arises from the various approximations
in going from the exact Magnus solution in Eq. (88) to the split-step algorithm in Eq. (98).

The split-step PE is thus predicated on four approximations:

(1) approximating the exact square root GPE operator, Eq. (79), by a finite sum of

ordinary operators;
(2) truncating the formally exact Magnus solution for the evolution operator and keep-

ing only the first term in the exponent, Eq. (89);
(3) evaluating the PE Hamiltonian by the midpoint rule, Eq. (96); and
(4) approximating the exponential Magnus operator by a symmetrized factorization of

individual operators, Eq. (98).

Each of these steps introduces an intrinsic truncation error in the split-step PE solution-
the ability to quantify these errors is crucial to the successful implementation of a numerical
PE code.

Although the Magnus expansion provides an exact formal solution to the PE wave field,
three approximations must be made to it before numerical computations are feasible. First,
the infinite series in the Magnus exponent is truncated after the first term

U(XO +A,XOz), H Q(t,z)dt, (99)

where H is the range-averaged PE Hamiltonian.

The truncation errors incurred by using Eq. (99) are a function of the range dependence
of the Q operator. If Q, or equivalently K, is independent of x, then Eq. (99) is exact. For

range-dependent K, the truncation error in U may be quantified by examining the next
term in the Magnus expansion and gives

XO+}

U(XO±+A, X01Z) exp iAH ± J dxijdx2 [Q(aXiZ),Q(X2 ,Z)]}
XO

=exp{iAH -_ [L-,Q] + O(/N4)}. (100)

Thas, when Q is range-dependent, truncation errors proportional to O(A 3 ) are incurred

no matter what form of the PE operator is used. Furthermore, how the range-averaged
PE Hamiltonian H is evaluated critically affects the error budget. For example, if Q is

expanded in a Taylor series about the midpoint, i = (x+xo)/2, and the integral in Eq. (98)

is evaluated by the midpoint rule, then

U(XO+ AX0, ) =exp (iAQ(;k, z) + -A- f{IQ"(ý, z) - 4 [Q'(.t, z), Q(T, z)]} + O(A4),

where Q'(r, z) = OQ(ý, z)/Ox and Q"(j, z) = 02 Q(t, z)i(x2 .
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The local truncation error T1 incurred in the PE field solution by using Eq. (99), with
Q evaluated at the midpoint 5, is then

TM [U(xo + A, x0, z) - V•Q(,z)] tI'(XO, z),
T1I

A3iQ"(, z) - 4 [Q'(, z)Q( Z) - Q(i, z)Q'(Y, z)] I'(xo' z),
A3 r @2 B(•z) 4[OB(x'z) aB(., z)

7 i x 4 z)A(,)- A(z). ______Z)24 a[ ax O a I ý (101)

A second type of truncation error occurs if the symmetrized operator splitting, defined
by Eq. (98), is employed to compute the propagator. This splitting error can be evaluated
by using the Baker-CampbeUl-Hausdorff3 1- 33 (BCH) expansion of two noncommuting
operators:

34

eAeB =exp(A+B+•dA, BI +1[A,[A,B]+ 1[[A,B],B]+...).

Applying the BCH expansion to Eq. (98) gives

CN/2ia A/2=A 3  + A 3 -4
ei&A/2 eigB eiDa/=expi AA + AB -- 2--2 [[A, P],B] + A3-[B[,A],A] +O(A 4 )j,

and the local truncation error T2 caused by using the Trotter product formula, with B
evaluatted at the midpoint is thus

T'2 = {eiA[A+B(t)] _ JiaA/2 JiAB 19 JAf2}I ;(xo Z),

iA3 ,2[[A,B(&.)],B(i)] - [[B(•),A],A] }¢(x,,z)

=iA3 [2(AB 2 - 2BAB + B 2 A)- (BA2 - 2ABA + A2 V(xo, z).
24 B)] Z (102)

If the SPE operator is used to approximate Q, then the third-order local truncation
error terms axe given explicitly by

A3 1. 0OW 03V7 N
T y- A tko 02-V +2 ) &P (04,z), (103)

and

i3 f 1!04 1__ ,,2T A = 4-z 4 + Mk V - k2 (IV) JV, (xo, Z)
4.08 k 3 1 4x , Z 2V (xo, z)4

+ 0i2k08 -3 -X-,Z) + 9 (104)
jz-ax -7 Oz 5z2  OZ2
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where V = V(J, z). Equatioils (103) and (104) show that the local truncation error for
the symmetrized operator splitting is linear in frequency (via the k0 tern.s) and cubic in
the range step-size, A.

To simplify the analysis, let us assume that the potential energy function V is inde-
pendent of the range x. (In most applications, the horizontal x-derivatives of V are much
smaller than corresponding vertical z-derivatives.) In this case, the third-order local ab-
solute error in the PE field, 6(3)0, caused by advancing with the range step A is given
by

O)4s(ro+ A,Z)= O 1 [ 4f/ - k2  ] J (xo, z)

0,3,V O,(Xo, Z) 02? V02 ¢(X(), z)'
-OZ3 DZ + Cz2  1Z2a (105)

Instead of working with the pointwise error estimate, 6(3) defined above, it proves
more useful to consider the total relative error per range step E( 3), which is normalized

by the vertical energy density of the PE field:

E z(3) = 16•())IlI

--0 'II
-- V(106)

f IV12 dz

The term II6( 3)VII may be evaluated by integrating by parts and takes the form
-4iA3  f * - V 41 k(0• 2 0 2 f, 02 •V5• 2',11-3-1 0* Q 0 0- a V dz,-8o _ -5--7Z4- - ( \ )z .9Z Oaz OZ2Oz"2

i, 2 av o 2  12 + 02 1 4 2 Vz 2 I21
48k~t ] [o yZ- az2  T - &2 az2 oz dz48ko' [LI

4Z 2 z0 az(107)

To ensure that the total error in the computed PE solution is bounded, the PE step-size
A is chosen so that the third-order error term E(3) is small relative to the first-order term

EM: 3
E(3) < fre << 1,

wihere %El is a specified error tolerance, and

E(1) 1() 1

( =2�j72 - k'V1 2 dz. (108)
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This implies that the PE range step-size should be chosen so that

"A2 < 24cr j6(01)i

and determines the PE range step, A, by

Aj2 = j f 2 1a2 va2 1 ' . (109)

,-•0)z 2 T2 z 4 8Z2  0Z2 1 4 Oz2 O9Z L0

"In numerical implementation, the vertical derivatives appearing in Eq. (109) are evaluated
by numerical finite-difference approximations. As the PE code advances the field, the local
error budget is monitored and the range step-size is dynamically adjusted to keep the local
error below a preset threshold. The question of a more detailed error analysis will not
be covered in this repor&. The interested reader is referred to Ryan 8 for analysis of the
split-step PE truncation errors.

3.4 Split-Step Fourier PE Algorithm

The PE solution, b(x+A, z), at range x+A is obtained from the known field, k(x, z), at
range x by means of the split-step PE algorithm, Eq. (98). The presence of the differential
operator, A(z), in the exponent can be dealt with by transforming to a basis in which
A(z) is diagonal. One such basis is the Fourier basis, with the z-space Fourier transform
. boiag defined as

'IP(X, P) = Y[7/0(x, Z) 0 JkXX, z)e-iPzdz,

and the inverse transform F- 1 being defined by

Tr 17 *(X, p) ei dp.
t¢(x,z) =Y 1 [•I(x, p)] - 2 l a,•eizp

The conjugate transform variable p can be associated with the vertical wave number, via
p = ko sin 0, where 0 is the propagation angle with respect to the horizontal.

As is well known, the vertical derivative operator in z-space is related to the conjugate
p-space operator by

- • =•(-iv)",'

in which case the SPE operator Eq. (92) is implemented via

CiAA(z)/2v,(X, Z) = -1 [-iA9"/4 '(XP)] (110)

= F- {eiAp214ku.F(Xz)]}.
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Similarly, the WAPE operator Eq. (94) is implemented via

ei-A( z) -" Z[ e-i(k VI-k70 )i(x,p)]

=_ -- [e-,(k0-v•0--r [¢(x, z)j.

Now any function may be expressed in terms of even and odd components, so the PE
field can also be written as

4,(X, zZ)= Oe(X, Z) + 0ko(X, z),

where

e(,Z' ) -= ½[O(X, Z) + O(X',-z)]

/o(X, z) = [0 (x, z) - V'(x, -z)].

Being a linear operator, the Fourier transform may also be expressed in terms of even and
odd components as

9(X P) = Y[O(x, Z)] = Te(X P) + ,PO(',p),

where 'Ie and %, are represented in terms of Fourier sine and cosine transforms as

'I'e(Xp) = )Fc[4'e(xz)] 2orP,(xz)cos pzdz

and

4'0 (x,p) = 1, [Oo(x, z)] -i2 0(x,z) sinpz dz.

The corresponding inverse sine and cosine transforms are defined 'y

V'e(x,z) =-F [Pe(x,p)]= - qT,(x,p) cospzdp,S7r

and

= iY' 1 [%o(xp)] i •.,(x,p)sinpzdp.
7r 0

In practice, the infinite Fourier transforms are replaced by finite discrete Fourier trans-
forms (DFTs) over the domain (0, Za,.), which in turn are evaluated numerically using the
fast Fourier transform algorithm. 35 The actual FFT algorithms implement fast real-valued
sine and cosine transforms to reduce core storage and improve computational speed. 35 ,36

When using DFTs, it is important to satisfy the Nyquist sampling theorem to avoid
transform aliasing problems. 37 If Pmax is the maximum vertical wave number and N is
the discrete cosine/sine trarnform size, then the Nyquist condition is just

ZmaxPmax =r 7N. k112)
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3.5 Reflectionless Absorber Boundary

The appropriate boundary condition to be satisfied as z -+ oo by the PE field 01(x, z) is
the Sommerfeld outgoing wave radiation condition, Eq. (35). Since the split-step Fourier
algorithm employs finite Fourier transforms, the implementation of a radiation-type bound-
ary condition is quite complicated. This follows from the fact that truncation of the infinite
z-domain down to a finite interval in the Fourier transform leads to the introductior of
spurious discrete standing wave solutions in the vertical. In effect, the terminal impedance
at the end of the transform grid is not properly "matched" to the radiation boundary
condition.

To circumvent this problem and attenuate the spurious standing wave solutions intro-
duced by the finite Fourier transforms, a complex absorber potential Vabs(Z) is added to
the split-step B operator:

,-- B(x, z) =*> B(x, z) +r ý- Vabs(W.

2

The particular form of the complex absorber or "sponge" is found by recourse to a nuclear
optical model38 analog based upon the theory of reflectionless potentials. 39 The specific
form chosen is

V-abs(Z) = V sech2 [a(z- Zmax)] (113)

where the parameters {V0, I } are determined parametrically by minimizing transmission
and reflection coefficients from the sponge region. 40

3.6 PE Starting Fields

The split-step PE method must be initialized with a starting field distribution V'(xo, z)
at some distance xO from the source, since the parabolic wave equation is not valid in the
region of the source. Two options are available to compute the starting fields. First, the
initial z-space field may be obtained by analytic methods, assuming free-space conditions
and treating the source as a point radiator. This option, though, is not useful for highly
directional antennas.

The second approach is to use the duality of the antenna aperture field distribution and
antenna radiation pattern function. 41 In free space, the antenna radiation pattern function
f(p) and the antenna aperture field distribution A(z) are a Fourier transform pair:

_ f(p - po) = A(z)e-i(P-PO)z dz, (114)

where

p = ko sine0, (115)

-o = ko sin0o. (116)
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In Eq. (115), 6 is the elevation angle measured with respect to the horizontal (0 > 0 is
up), and in Eq. (116), 60 is the antenna maiplobe vertical pointing direction. The antenna
pattern finction is used to construct even and odd symmetry p-space fields in the form

'e(0,p) = f(p)e-Pz + f(-p)e+ZPZO, (117)

and

(0,p) (p)=-ipz _ f(- p)e+iPz0, (118)

where the Fourier shift theorem has been used to properly account for a nonzero source
altitude, zo. Given the above even/odd symmetry p-space fields, the corresponding z-space
PE field is obtained by taking the inverse cosine or sine transform of Eq. (117) or Eq. (118),
respectively:

VIC(0, Z) = [TC 1 €(0, P)I I

and

V =00 ,Z) = R00O)A

3.7 Antenna Patterns

The PE method is capable of modeling the radiation emitted by directional antennas,
provided that the complex antenna radiation pattern, Eq. (114), is known. Often this
information is not av.-;.lable for specific radar systems, so simplified generic antenna pat-
terns are used. These generic patterns display some of the features of real antennas while
retaining fairly simple analytical forms. Each of the analytic antenna patterns is specified
in terms of a normalized p-space steering parameter, t, defined by

sin 0 - sin 00 P -iPO

2

where
Pw e = ko sin(20bw))

22
and Obw is the half-power (i.e., 3-dB down) beamwidth. The following analytic antenna
radiation patterns are useful:

3.7.1 sin(x)/x

The uniformly illuminated aperture corresponds to a radiation pattern having the func-
tional form

f(t) = ' a= 1.3916. (119)
at

The scale parameter a is determined by solving the nonlinear equation

sin X 1

x V'2"

This pattern has the narrowest mainlobe width, at the expense of high sidelobe levels.
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3.7.2 Gaussian

The Gaussian antenna radiation pattern has the functional form
whre i= n2

f(t) = C_,21l, where G =2 (120)

This pattern is the optimal compromise between sidelobe level and mainlobe width

3.7.3 Compound

The compound radiation pattern is a one-parameter pattern that is a blend of the
uniformly illuminated aperture and the cosine-squared aperture distribution, having the
functional form

A 2 sin(at) [ 1-c 1 1].
1 + c at L 2 1- (at/') 21'

Th, parameter a controls the mainlobe width and is determined by solving the nonlinear
equation

sinea [2c+ !I + c
a 1 - (a/r)2 - "

The uniform aperture corresponds to c = 1, while the cosine-squared aperture corresponds
to c =0.

3.7.4 Hansen

Another single parameter pattern is obtained from the circular aperture distributions
analyzed by Hansen. 42 This pattern has the functional form

{ i(• for x>O0

t) -H - (121)
i1 (H) for x < 0,

where

x = H 2 - (at) 2,

and 11 and i1 are the first-order spherical and modified Bessel functions defined by

sin z cos z

( = sinh• + cosh z

lz= z2 + z

The quantity a, which determines the 3-dB point in the pattern, is found by solving the
transcendental equation {=/- 

1 (v-2-) for C >

V,-a_2 -Ha2  
o.
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The first sidelobe level, SLL, in the radiation pattern can be shown to have a value of

SLL = 30.84 + 20 log 3il,) dE,

down from the peak, and is located at

2

The parameter H allows a trade-off between low sidelobe level and mainlobe beamwidth.
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§4.0 CONCLUSION

This report describes the basic physics and analytical techniques used to model mi-
crowave propagation in range-dependent environments. These techniques have been im-
plemented in a range-dependent propagation computer model - the VTRPE code. The
VThPE computer model is used to predict and analyze the performance of radar and com-
munication systems operating in spatially varying environments. The methods described
herein account for spatial variations in the atmospheric refractivity as well as for variations
in surface dielectric properties and topography.
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