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EXECUTIVE SUMMARY

This report describes the basic physics and numerical techniques used in implementing a
range-dependent, tropospheric microwave propagation model. This propagation model al-
lows for both finite surface conductivity and variable (i.e., highly irreguiar) surface terrain.
The model is based upon the electromagnetic parabolic wave equation {PE) and employs
a novel implementation of the split-step Fourier PE (SSFPE) algorithm to efficiently com-
pute the electromagnetic radiation fields. This physics report reviews the fundamentals
of the PE method and provides a detailed error analysis of the SSFPE algorithm. The
generalization of the SSFPE algorithm to handle nonflat boundaries is also discussed.

The propagation model is implemented as the VT RPE (variable terrain radio parabolic
equation) computer code and is used in the prediction of radar system performance. The
VTRPE code has the following characteristics:

(1) full-wave propagation physics (i.e., field amplitude and phase are computed);
(2) direct solution of electromagnetic fields;
(3) exact treatment of refraction and diffraction phenomena;
(4) exact treatment of multipath phenomena;
(5) range-dependent atmospheric refractivity inputs, N(z,r);
(6) infinite or finite conductivity surface boundary conditions;
(7) linear transmitter field polarization (vertical or horizontal);
(8) vanable surface terrain elevation and surface dielectric properties;
(9) frequency dependent atmospheric attenuation;
(10) frequency range: = 0.1 — 30 GHz;
(11) generalized transmitter radiation patterns;
(12) arbitrary transmitter/receiver geometry;
(13) automatic selection of the SSFPE range step-size and FFT transform size; and
(14) automatic monitoring of SSFPE solution global error.

The VTRPE model properly accounts for the dominant mechanisms governing tro-
pospheric radio wave propagation, including the effects of anomalous propagation arising

from spatial changes in atmospheric refractivity and variable terrain features.
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§1.0 INTRODUCTION

This report describes the physics and numerical techniques used to model microwave
propagation in range-dependent environments by means of the parabolic wave equation

(PE).

The method of parabolic wave equations was first proposed in 1944 by Leontovich! as a
means of solving elliptic partial differential wave equations. He used the technique to solve
the problem of electromagnetic wave propagation above a plane earth. In 1946 Leontovich
and Fock? applied the PE method to the problem of transhorizon radio wave propagation
above a spherical earth, thereby making a breakthrough in electromagnetic wave propaga-
tion modeling. Approximately 30 years passed before a practical algorithm for solving the
Leontovich-Fock parabolic wave equation was developed. In 1973, Hardin and Tappert®
developed the split-step Fourier parabolic equaton (SSFPE) algorithim and applied it to the
problem of modeling ionospheric radar propagation.* The split-step Fourier PE algorithm
exploited advances in computer hardware and the development of the fast Fourier trans-
form algorithm to yield an efficient numerical solution to the Leontovich-Fock parabolic
wave equation. In 1977 Tappert® introduced SSFPE methods to the underwater acoustics
community, where it rapidly became a valuable tool for predicting range-dependent under-
water sound propagation. In 1983 the split-step Fourier PE method was reapplied to radar
propagation by Ko, Sari, and Skura® to study anomalous tropospheric microwave prop-
agation. Subsequently, Dockery and Konstanzer’ applied the SSFPE method to analyze
phased array radar performance. Since then several others, including Ryan® and Craig,?
have developed electromagnetic PE models.

The scope of this report is restricted to a description of the electromagnetic PE model
physics and the split-step Fourier PE algorithm. A detailed description of the numerical
and computational issues associated with implementing specific algorithms is left for a
later document. By intent, only the salient and most important ideas are described:;
no attempt is made to cover classical electromagnetism or the mathematical theory of
partial differential equations. The reader is directed to standard texts for the necessary
background material.

This report focuses on the propagation of radio waves in an inhomogeneous atmosphere
with the transmitter and receiver located near the surface of the earth, in the troposphere.
The emphasis will be on short wavelengths, the so-called microwaves, which are charac-
teristic of radars and short-range microwave communication links. The wavelength range
of interest is from about 3 meters down to about 1 cm, which corresponds to a frequency
range of approximately 100 MHz to 30 GHz. This encompasses, to a large extent, the bulk
of the search arnd acquisition radars in current use. It will be assumed that the wavelength
1s sufficientily small that ionospheric reflections are absent but yet long enough that large
numbers of atomic or molecular resonances in the gaseous components of the atmosphere
do not occur in & small wavclength interval. In other words, it will be assumed that the
frequency is well above the ionospheric plasma frequency but low enough that dispersion
effects are not important.

A further assumption is that the atmosphere can be modeled as a simple material
medium, viz., a linear, isotropic, nonionized medium. This implies a negiect of the effects




of the earth’s magnetic field on wave propagation, and a restriction of propagation paths
to the lower portion of the atmosphere — the troposphere. The limitations imposed by
these assumptions are flexible and depend, for instance, upon whether the transmission
path under consideration is long and near the earth’s surface or short and Ligh in the at-
mosphere. In any case, the above restrictions are commouly accepted as being appropriate
for the problem of tropspheric microwave propagation and lead to no significant errors in
electromagnetic field calculations.

The methods described in this report form the basis of the VIRPE (variable terrain radio
parabolic equation) computer program.l® The primary use of the VIRPE model is in the
analysis and performance prediction of radar and communication systems operating in the
microwave region. In practice, the actual performance of such systems in the atmosphere is
often quite different from the characteristics predicted based upon free-space propagation.
Free-space ranges are often several orders of magnitude different from observed detection
ranges in the atmosphere. The reason for this discrepancy is threefold:

1. The earth’s surface is a finite conductor and scatters (reflects) incident energy in
various directions, leading to complicated spatial interference patterns.

2. The curved earth casts a shadow giving rise to diffraction phenomena.

3. Inhomogeneities in the atmospheric index of refraction cause significant refraction
or bending of radio wave energy.

To adequately represent the above types of “anomalous” propagation effects, a propagation
model must incorporate full-wave propagation physics and range-dependent environmental
inputs. The electromagnetic parabolic wave equation does just this.

T ne remainder of this report is divided into two major sections. First, the fundamental
physics and mathematical relations describing tropospheric microwave propagation over a
spherical earth are developed. Starting with the basic Maxwell’s equations that govern the
electromagnetic fields, a parabolic wave equation is derived for the nonzero field compo-
nents. Second, this parabolic wave equation is numerically solved by using the split-step
Fourier PE algorithm, and the resulting .rror terms are discussed.




§2.0 PROPAGATION PHYSICS

The scope of this section is to develop, from the fundamental equations of electrody-
namics, a parabolic wave equation (PE) that governs the propagation of electromagnetic
waves 1n the troposphere. In later sections, this parabolic wave equation will be solved
numerically for the electric and magnetic radiation fields by means of the split-step Fourier
PE (SSFPE) algorithm. The model problem in mind is the propagation of linearly polar-
ized microwave radiation through an inhomogeneocus troposphere over a spherical earth.
The analytical development will proceed as follows: First, Maxwell’s equations and some
basic concepts of classical electromagnetism are reviewed in order to derive vector wave
equations for the electromagnetic radiation fields. By design, the exposition is terse, and
the reader is referred to standard texts on classical electromagnetic theory for the de-
tails.11~13 Next, from the vector wave equations an equivalent scalar Helmholtz equation
is derived for the nonzero field components. This Helmholtz equation is then transformed
from spherical coordinates to an equivalent “earth-flattened” coordinate system. Finally,
the elliptic Helmholtz equation is approxiraated by the Leontovich-Fock parabolic wave
equation.

The discussion is restricted to the propagation of electromagnetic radiation in the tro-
posphere, which is assumed to be a linear, isotropic nonionized medium. The electrical
properties of the troposphere are modeled by a lossy dielectric. The su: Jace of the earth
will be modeled as a nonferrous dielectric sphere with finite conductivity. A source of
electromagnetic radiation (i.e., a transmitter) is assumed to be located at Ry = (r¢,0,0)
on the polar axis of an earth-based spherical coordinate system (r,8,¢). The source is as-
sumed to emit linearly polarized, monochromatic radiation having a simple harmonic time
dependence t given by exp(—iwt), where w = 27 f is the radian frequency. (No generality
is lost by this last restriction, since by Fourier’s theorem any linear field of arbitrary time
dependence can be synthesized from a knowledge of its spectral components.) Further-
more, it is also assumed that the frequencies of interest are all well above the ionospheric
plasma frequency and that effects of the earth’s magnetic ficld can be ignored.

2.1 Maxwell’s Equations

With the above restrictions, the source-free monochromatic Maxwell’s equations in ra-
tionalized mks units are (bold faced symbols denote vector fields)

V x E(r,w) = +1wB(r.w},
V x H(r,w) = —wD(r,w),
V.B(r,w) =0,
V- -D{r,w) =0,

(1)



where

E(r,w) = electric field intensity vector (V/m},
H(r,«) = magnetic field intensity vector {A/m),
B(r,w) = magnetic field induction vector (Wb/m)},
D{r,w) = electric field displacement vector (C/m),

and the implicit time-dependence exp(--iwt) has been suppressed. Henceforth, for nota-
tional simplicity, the explicit frequency dependence of the field quantities is suppressed.

The macroscopic fields D and H are related, respectively, to E and B by constitutive
relations that characterize the electromagnetic properties of the material medium involved.
For isotropic materials the constitutive relations are

D(r) = e(r)E(r),
B(r) = u(r)H(r),

where ¢ is the absolute (complex) permittivity and u is the absolute magnetic permeability.
For most nonferrous materials, the permeability 4 is very close to that of free space pg.14
Accordingly, the medium permeability will be set equal to its vacuum value: p(r) = pug. It
also proves useful to define the the vacuum wave number kg and the dimensionless relative
(complex) permittivity ¢ by

o(r)

e(r) . .
gry —==¢ €9 = g1(r) + 11—,
(r) ” 1 + 12 = g1(r) wee
ko = wy/oco,

where ¢y is the vacuum dielectric constant, o is the medium conductivity and &1 is the
usual relative permittivity of the medium.

Maxwell’s equations (1) then assume the form:

V x E(r) = +uvvugH(r), (2

V x H(r) = ~iwege(r)E(r), (3)
4oV - H(r) = 0, (@)
eV -e(r)E(r) = 0. (5)

2.2 Vector Wave Equations

Maxwell’s equations, Egs. (2)-(5), are a set of first order partial differential equations in
which the E and H fields are coupled. An equivalent set of second-order uncoupled vector
wave equations may be derived from them, in which the electric and magnetic fields occur
separately. For example, by taking the curl of Eq. (3), using standard vector identities,




and employing Eq. (2}, one can eliminate the electric field and obtain an equation for the
magnetic field H alone:

V x V x H(r) = —iwegV x [e(r)E(r)],
Vs(r)
&(r)

By using the vector identity V x V x C = V(V-C) - V2C, and the fact that the magnetic
field is solenoidal, Eq. (6) may be cast into the form of a vector wave equation:

(6)

x V x H(r) + k2e(r)H{r)

Ve(r)
&(r)

Once the magnetic field is found, by solving Eq. (7), the electric field is then obtained from
the Maxwell curl relation of Eqg. (3):

VZH(r) +

x V x H(r) + kﬁe(r)H(r) = 0. (7)

E(r)=

weoe( )V = H(r).

In a similar fashion, the magnetic field H may be eliminated by taking the curl of Eq. (2)
and using Eq. (3) to get a vector wave equation involving the electric field alone:

VIE(r)+V {E(r") (())} + kpe(r)E(r) = (8)

The Maxwell curl relation of Eq. (2) may then be used to obtain the H-field:

H(r) = ——V x E(r).

The vector wave equations {7) and (8) are no more tractable than Maxwell’s equations
unless an assumption is made regarding the field polarization. In many cases, the transmit-
ter emits radiation that is linearly polarized in the meridian plane containing the receiver.
For a linearly polarized transmitter, the resulting electric field vector may be assumed
to have components lying either wholly within (vertical polerization) or perpendicular to
(horizontal polarization) the meridian plane containing the source and observation point.
Thus, for the vertically polarized case, the nonzero magnetic field component is H = Hzéy,
which may be computed from Eq. (7), while for the horizontally polarized case, the only
nonzero electric field component is E = E4é4. which may be obtained from Eq. (8).

2.3 Vertical Polarization
If the source emuts vertically polarized radiation, then the electric field vector will have

components in the meridian plane containing the source and receiver, E = E.é, + FEyéy,
while the magnetic field vector has a single nonzero component perpendicular ‘o this plane:

5



H = H4é,. It thus proves simpler to solve for the single magnetic field conponent by using
Eq. (7) and then compute the remaining electric field components from the Maxwell curl
relation of Eq. (3):
E(r) = ——V x H = E{r)é + Eg(r)és.
WEGE
: O(Hysin @)

Er = weger sin § a8
—¢ O{(rH
Ey = ¢ ol 4)).
wegsr  Or

Working in a spherical coordinate system (r, 8, ¢}, with respective unit vectors (€x.€g.€4),
the first two terms in Eq. (7) become'®

-2 94 10%:H,) 1 o, 0H,
2 9y ¢ 3, »
VH= r2sinf 06 (e,.-}-egc()tg)'rﬁp{ or? +r25in939(5m9 o6 )
1 9*H, , 2cot§ OH,
2 51 I SN IR =1, {9
résinf J¢ risin®d  resiné 0¢
= rHy) B(sin8H,)
- x ¥ xH= c0frisinb { or LY IY }

(10)

é¢, 1 a(smBI:%) 1 ac 4 l?i?(rH¢)
rsiné a6 cd8  cor Or )

Equations (9) and (10) reveal that, in general, the individual vector components of the
magnetic field will be coupled due to the presence of the term This coupling. or depo-
larization, is anaiogous to the Faraday rotaticn obser\ed m optically active materials, A
significant simplification arises if the propagation medium is assumed to have no compo-
nents of Ve(r) parallel to the source magnetic field (i.e., é5- Ve = 0). In this case, Egs. (9)
and (10) will have only a single nonzero component:

¢y V' H = ) -t r? sm669( AT ") - rZsing’ (1)

. Ve -1 1 O(sinbH,)18: 108:8(rHy)
. — ; [ — e —— 2
"% xVxH r {rsinﬂ o6 .;88+58r or ) (2)

The r and §-derivatives appearing in Egs. {11) and {12) may be combined to give the
following compact form for the vector wave equation (7):

1 (TH¢)+ ¢ Osingdly {12, 1 Lutﬂau
e Or r2sinf 36 ¢ 08 0 2

" 2sin?@ BB)H =0 {13

91
Br

£
T




As it stands, Eq. (13) is not in the desired Helmholtz form but can be transformed into
it by a change of the dependent variable:

gy 9
we(r) = T Hy(r), n(r) = Ve, (14)

where n is the complex index of refraction referenced to the vacuum dielectric constant ¢g.
In terms of u, the partial derivative terms in Eq. {13) cau be shown to have the form

. 9 18(rH,) 1 92 18{uyre)

gre Or  Jendore or

_J_r [108 Ou_
" Vesinblror or

_ 1o o (1 e (15)
" Vesiné lr@r ar 42 T E° a2 M °

and

O sinf 0H, ¢ 9 sinf duvecsch)
88 ¢ 08  /rsin808 ¢ 96 ’

16
_ sin @ ?_2_3+ 1+csc2€+cot86¢‘ %625“'12' (16)
"V @ T laT T % a8 e Ui

Now, with the new field variable u,, Eq. {13) takes on the desired Helmholtz equation
form:

82“(- 2 -
302 + [kge(r) + Scp(r)luy = 0, (17)

= 1
_.—r —_—
2

b (r)”-ggﬁ_.cmﬁ?f 18%:77 7 9%:7 %
BT 4 2 2r2: 06 or2 2 52 8
3csc?6 cot@Bn  n §nd N 52n-1

In Eq. (17) the full ¢-dependence is retained in the ¢-dependent terms in the coefficient
of uy, even though g—g = 0 in the derivation. This appears to be a contradiction. which
will now be justified, albeit heuristically.

The terms involving gg occur in the coefficients of the partial derivative operators in
Eq. (11) and will be neglected. Basically this amounts to neglecting small variations in the
field amplitude. but retaining the ¢-dependence in the term kgs. which affects the phase

of the field. This is most easily understood in the context of geometrical optics, where the
large kg solution to

{Vz + kg:‘(r)] H,=0,

7




is expressed in the form!3

H¢ — Qe—ikgs’

where the phase function § satisfies the eikonal equation
(V8)? = ¢(x).

Thus, small changes in ¢ can lead to large overall phase errors in the eikonal k¢S and cause
appreciable errors in the field. This is not the case for the amplitude function ¢}, which is
only weakly dependent on variations in ¢.

Neglecting the azimuthal variation in Eq. (10) but including it in the k?,s factor is
termed a 2.—}_,-»13 approximation to the full 3-D Helmholtz equation. It has the advantage of
retaining, to lowest order, the effects of azimuthal environmental variability while reducing
computational complexity.

2.4 Horizontal Polarization

If the source emits horizontally polarized radiation, then the clectric field vector has the
single nonzero component E = E4(r)é4. Analogous with the case of vertical polarization,
the single electric field component Ej may be obtained from Eq. (8) which, in spherical
coordinates, becomes

18%(rE4(x)) 1 8 . OE4r) 9
— — P o { —_
W i ey R L I

S| Be(r) =0 (19)

Again paralleling the vertical polarization case, Eq. (19) can be converted into a scalar
Helmboltz equation by introducing a new dependent field variable uj, defined by

up = up(r) = Vrsin@Ey(r), (20)

and dropping the ¢-derivative term in Eq. (19). With the new field variable, Eq. (19) then
becomes

18 0Juy 1 azuh .2 B
e T - — i e 3 = 2
o r R + 7 552 + [Aof(r)+é£h(r)] up =0, (21)
where 3
bep(r,8) = —-———~4r,2 s (22)

Thus both the horizontal and vertical polarization cases can be expressed in terms of a
scalar Helmholtz equation of the form

[ 18 182 , 1
|52 7 155 + gz + et +8en) ) = 0 )

where u and 8¢ are defined by Eqgs. (14) end (18) for vertical polarization. and by Eqgs. {20)
and (22) for horizontal polarization.



The additional term 6¢ is generally small, except in two cases: The first occurs for
vertical polarization with propagation near the boundary separating dissimilar dielectrics
with finite conductivity, in which case the spatial derivatives of the index of refraction n
may become large. The second occurs for long propagation paths at low frequencies where
the wave number kg is small and then the spherical correction terms become important.
Inrlusion of the é¢ correction allows one to deal in a unified manner with propagation over
idealized boundaries as well as treat propagation in the presence of subsurface overburden.

2.5 Earth-Flattening Transform

The coupling of r and # variables in Eqg. (23) is not desirable for numerical purposes
and can be eliminated by means of a simple transformation {rom the spherical (r, 8, ¢)
coordinate system to an equivalent cartesian (£,7,() coordinate system defined by

C = aln(r/a),
£ = abcos ¢, (24)
7 = afsin ¢,

where a is the earth’s radius, and ¢ = 0 corresponds to the surface of the earth. This
transformation, suggested by Pryce,!® is known as an earth-flattening transformation, and
with the approximation ¢ ~ k was also studied by Pekeris.!”?

In terms of the new coordinates defined by Eq. (24), the metric
ds? = dr® + r2d8? + r?sin? 0dg?

becomes

12 2
2_ 2 2 3.2 302 sin” 6, (§dn — nd¢)
ds _eC/“[dg +dn? +d¢? = (1= =) a | (25)
In most problems of interest, 8 < 1, in which case Eq. (25) can be expanded in powers of
8 to yield
9 Edn — nd€)?
ds? = e%/e [d{z +dy? +d¢? - -(—‘"'—Eé—;]i +O(a™t )} . (26)
a
It is a fairly simple matter to determine the geodesics of the non-Euclidean (i.e., non-
flat) space whose metric is given by Eq. (26). Let the source point be located at (£ = 0,7 =
0,¢ = (p) and limit attention to geodesics which pass through the source. From symmetry,
it is obvious that the geodesics lie in a plane coutaining the (-axis. We may without
any loss of generality confine ourselves to geodesics in the £(-plane. These geodesics will
then coincide with straight lines through the source, the equations of which are given
parametrically by

£ = atan”! (ta_n ¥+ hd sec 1[,6_(0/0) - ai,
a

2s 2
¢=Co+ Latn {1+ Zein peSofe 4 I —%o/a)
2 a al




where s is the geodesic distance (arc length) from the source. The parameter ¢ is a constant
along the geodesic, being the angle the geodesic makes with the horizontal at the source.
In terms of the original spherical coordinates (r, 8, ¢), Eq. (27) reduces to the equation for
a straight line:

rsinf = s cos i,

rcosf = ssiny + aebo/e,

Also, the distance along the geodesic between the points (0,0, (p) and (£,0, () is simply

S=a {624‘0/“ - QE(CO“FC)/G COS(&/([) + ezc/a] 1/2 '

In what follows, the meridian plane containing the source/receiver will be taken to be
the r@-plane. In this case, the earth-flattening transformation, Eq. (24), is simiply defined
in terms of new “cartesian” coordinates {z,z) by

z = ab,

. h ) (28)
z=aln(l+hfa) =~ k{1~ ﬂ)’ ifhfakl

where h = r — a i1s the local altitude referenced to the mean earth radius a. This leads to
the following Helmholtz separated form for Eq. (23) :

a2 o2 2

The new dependent variable w and the “effective” wave number K are defined for horizontal

polarization by
wp = Vrsing Ey(r),

= ¢+ /2% /g sin(z [a) E4(x), (30)

~ V1 Ey(x), ifz/a<land:z/a<k1

and
Kﬁ = kgm2 - Sescir/a) cscz(zrr/a)’
~ a2 _ Y :
~ k§m rpsl ifr/fa < 1

with m the modified index of refraction, defined by

m=n(r0,6)" = n(r)(1+ 1) (32)



For vertical polarization, the new variables are

Vvr sin ¢ H¢( )
_ Hdz/(20) VOsIn(z/0) Sm(x/ a

m(z,z)

Wy =
VEERIY Hy(x), (33)

R ~\T—/n——iH¢(x), ifrfeg€land z/ak 1

and
K2(2,2) = klm? — 3esc?(z/a) _ cot(z/a)dm
’ 4a? am Oz (34)
8%m-1 #m~1  mom™!
T T2 T s

If the medium is spherically stratified and has no range dependence, then the effective
wave number takes the formn

. 3 .
Ag(.‘lf,Z) = kgmgff(z) - Z‘x—i, if :r/a <1

19m _2(19@)2+J_?_m
m 022 m Oz am 9z |’

~n2(z)(1 + 2z/a), if zjlak1

mljse) =mi(:) 4 :

which is the same form as the earth-flattening approximation discussed by Pekeris. The
Pekeris transform, however, was based upon z = r — a and is only valid for small z/a in
contrast to that given by Eq. (28), which is exact.

2.6 Boundary Conditions

The solutions to Maxwell's equations are not unique until boundary conditions on the
fields are prescribed. These boundary conditions are (1) a Sommerfeld radiation-type
boundary condition at infinity8

lim » (-(?-é - ikoA) , (35)

r—s00 T

where A denotes the field component (i.e., 4 = E,, for horizontal polarization, A = Hy for
vertical polarization), and (2) continuity of the tangential electric and magnetic fields at
the earth’s surface, r = a. If the propagation medium is lossy — i.e., the dielectric constant
is complex with a positive imaginary part -— then the Sommerfeld 1ad1at10n condition may
be replaced by the simpler condition that the fields vanish as r — oo .

The continuity of tangential field components at r = @ is implemented by modeling the
earth as a locally homogeneous dielectric with finite conductivity. This is a reasonable

11



approximation at microwave frequencies, since the penetration depth of the fields into the
earth’s surface is small compared to spatial variations in the surface dielectric properties.

For example, in the case of microwave propagation over seawater, it can be shown by
standard techniques that the electric and magnetic fields within the ocean decay exponen-
tially with distance from the air-sea boundary.1? The vertical scale length over which the
field components in the water decay to 1/e of their value at the interface is termed the
skin depth 6. The high-frequency form of § is1?

&~ \2/poosw,

where o, is the surface conductivity. A typical value for the conductivity of seawater
is ¢ &~ 4 S/m, which means the order of magnitude of ¢ is about 250/\/f, with f, the
frequency, in hertz. For typical marine radar frequencies (f = 101° Hz), 6§ ~ 0.025 m .
The small skin depth means that, as an approximation, the boundary condition of
tangential field continuity can be replaced by the Leontovich surface impedance boundary
condition??
O(r4)
or

The quantity Z is the local, flat surface impedance given by Fresnel formulas:

Z = ikgy/es ~ cos® g  for horizontal polarization,

ik ' . .
Z=22Jeq —cos? 9y for vertical polarization,
Es

= ~Z(r4)

r=aqa

(36)

r=a

with €, the complex dielectric constant of the earth’s surface and ¥, the grazing angle
of the field at the earth’s surface. In most applications, the surface grazing angle is very
small, and it is appropriate to use the limiting forms

Zp = thgves — 1, (37)
 k .
ZU: 2_62\/53 "1- (38)
8
The Leontovich impedance boundary conditions, Eq. (37) and Eq. (38), may also be
transformed to earth-flattened cartesian coordinates where they become

Owy,(z, 2)
Oz

- (51-5 +ikoVE =1 1) wi(z,0) (39)
z=0 :
for horizontal polarization and

_ ( 1 1 dm(z,z)
z=0

Owy(z, 2) L ik \/5: 1
0

<

"2 m(z,0) 0z

g

) wy,(z,0) (40)

L=

for vertical polarization,




2.7 Propagation Factor

In analyzing the various propagation phenomena, it is useful to separate those system
parameters not influenced by the environment, antenna radiation characteristics for exam-
ple, from propagation effects that are environmentally influenced, such as ducting caused
by spatial variations in the refractivity. Following Kerr,2! define the one-way generalized
transmission equation, which relates the power received by an omnidirectional receiver at
a point in space, Pp(r), to the power emitted from a transmitting antenna, Py, by

Py(r) :Gt[ F r, (1)

P (2koR)

where

G = transmitting antenna power gain,
27

kg = vacuum wavenumber = —,

A
R = distance between transmitter and receiving point,

F = pattern propagation factor.

The radiating characteristics of an antenna are specified in terms of the antenna radia-
tion pattern function f(4, ¢) where (8, ¢) are the zenith and azimuthal angles, respectively,
of a spherical coordinate system centered at the antenna, with polar axis pointed in the
direction of maximum transmission. The antenna radiation pattern function f is defined
to be the ratio of electric (or magnetic) field strength E(6, ¢) radiated in the direction
(6, 9), to the peak transmitted field strength Ey:

s6,8)= =22

The radiation pattern function is related to the time-averaged Poynting vector S of the
radiated wave field by

5(8,9) = |£(8,¢)}*So,

where S is the energy flow per unit area corresponding to the peak field Ey. In general,
the antenna radiation pattern function f is a complex valued quantity.

The antenna gain G is expressed in terms of the pattern function as

4

G =

Note that the radiation pattern function f and the corresponding antenna gain G are
defined with respect to free-space propagation conditions, and therefore do not include
any environmental effects.
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Environmental effects are included in the generalized transmission equation via the
pattern propagation factor F. The pattern propagation factor is defined as the ratio of
the field magnitude at a point in space, E(r}, to the magnitude of the field at the same
point but under free-space conditions, Eg(r):

E(r)
Eg(r)

This definition of the pattern propagation factor assumes that the transmitting antenna
is aligned with its maximum response axis pointed directly at the observation point. The
pattern propagation factor is the key part of Eq. (41), and is the fundamental quantity to
be computed by the PE model. Because of the large dynamic ranges of the various terms
in Eq. (41), it is customary to work in dB-space by defining the dimensionless variables
PF and PL by

F =

: (42)

PF = 20log |F|, (43)
PL = 20log(2koR) — 20 log |F|. (44)

The quantity PF is often called the propagation factor, while PL is denoted the path loss.

The remaining task is to compute the pattern propagation factor F defined by Eq. (42),
which, for linearly polarized radiation, is just the ratio of the ¢-components of the electric
or magnetic feld vectors:

|E4(r)] . .
"= Fy(r)= m, horizontal polarization (45)
» (X
and =
F=F)/(r)= -l-l;ﬁ%s-(r—))!—‘, vertical polarization (46)
s (r

where Egs and H f are the free-space electric and magnetic field components. By con-
vention, the pattern propagation factor is defined with respect to the free-space field of a
unit-strength point dipole.

Following Papas,?? the free-space dipole fields are computed by using the dyadic Green's
function I'(r,rg), which is the solution of

V x V x I'(r,rg) - k2T(r,rg) = ué(r - rg),

where u is the unit dyadic. The dyadic Green's function I' can be expressed in terms of a
scalar Green’s function Gy as

1
k2

where the scalar Green's function Gg satisfies

T =(u+—=VV)G,

(V2 4+ k2)Go(r,r9) = —8(r — o). (47)




The appropriate outgoing wave solution of Eq. (47) is

1 eik’!l‘ - l’.'()l

Go(r,rg) = —

4r |r—rg] (48)

Two types of dipole fields are required: (1) a vertically polarized field arising from a
point vertical electric dipole (VED) with electric dipole moment oriented along the z-axis,
P = p.€,; and (2) a horizontally polarized field arising from a point vertical magnetic dipole
(VMD) with magnetic dipole moment oriented along the z-axis, m = mé,. Employing
the dyadic Green’s function I', the electric and magnetic fields from a VED are given by

Eed(r) = 2V x (b x VGo), (49)
H.4(r) = iwp x VG, (50)

while the fields from a VMD are given by

H,, (r)= -V x (m x VGy), (51)
E, 4(r) = —twpom x VGy. (62)

For both the VED and VMD cases, let a unit-strength point dipole be located at rg =
(r0,0,0) in a spherical coordinate system (r, 8, ¢), with the dipole moment oriented along
the polar axis. Using the scalar free-space Green’s function Gy, Eq. (48), and equations
(50) and (52), the ¢-components of the dipole fields are given by

H,4(r) = %eik"}zsinl? (fé) (ko + é—) , VED (53)
= 9B kR o (TN (L L
Emd(r) = TrzeoRsing (R) (A0+ R), VMD (54)

where R = |r — rg| = \/r2 -+ r?) ~— 2rrg cos 8, and 6 is the polar angle.

The propagation factor for horizontal polarization F' = F, then becomes

Ey4(r)
Erna(r)
_4m  |u(r)|R?
~ kowto (1 5in )

Fy(r) =

3

(55)

[

1+ ®kR)Z) 7,

while that for vertically polarized radiation F = F,, is

| By(r) |
Hed(r)
4 |n(r)u(r)|R?
~ kow (rsine)%

Fy(r) =

ki

(56)

(5]

[1 + (kOR)—Z} B
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To express the propagation factor F in earth-flattened (z,z) coordinates, the dipole
fields defined in Eq. (53) and Eq. (54) need to be converted. First, the source-receiver
separation distance R becomes

R = |r~xo| = \/(r — ro)? + 4rro sin?(6/2),

z—2zp

2a
2 fo N2 g2 47,2
(e - 2002 + w2 + 0wt a),

~\fz—z)2 422, Heja<land(z4z)/agl.  (57)

2qelz+20)/(26) [qinh2( )+ sinz(éi-),

(14

The last relation in Eq. (57) has a relative error of < 2.5x10™3 for horizontal ranges = < 200
km and altitudes z < 30 km. In like manner, the angular dipole coefficient (r/R)sin 8 has
the limiting forms:

~sinf = (a/R)e*/% sin(z/a),

R
_-,%, if r/a < 1and (z+29)/a < 1
—1, f(z—z)/ekl. (58)

Finally, the propagation factor takes the following limiting form for altitudes and ranges
typical of tropospheric propagation:

2
Fy(x) ~ 47R 2 lw(x)|

kow;so 1+ (kgR)-2

L AnyE  w(x)] if (2 - z0)/z < 1 (59)

kowio /1 + (kpz) =2

and

_4nR? -2 _Im(x)uw(x)|

kow 1+ (kgR)~2’
—_ 471' \/ﬂm(x)w(x)l lf (Z — ZO)/'T & 1 . (60)

kow /1 + (koz)~2

2.8 Parabolic Wave Equation

Although Eq. (29) follows exactly from Maxwell's equations, analytic solutions are only
possible if K is independent of r. Nor is direct numerical solution an easy alternative.
This follows from the fact that Eq. (29) is an elliptic partial differential equation; hence
solving for a solution at one point requirss that it must be numerically solved over the
entire propagation domain simultaneously. Standard finite difference approaches to solving




elliptic boundary value problems also tend to require griding schemes on the order of a
wavelength. For the long ranges involved in tropospheric propagation, this would lead to
unacceptably large problem sizes.

To deal with these issues, Leontovich and Fock introduced the concept of a parabolic
wave equation to treat the problem of transhorizon radio wave propagation. Their approach
may be summarized as follows: First, an envelope transformation is performed to remove
the anticipated rapid phase variation:

w(x) = ek y(x), (61)

where k is a reference wave number. { For most tropospheric problems, the natural choice
is k = kg.) Next, Eq. (61) is substituted into Eq. (29) to get

SO(x) | 0%P(x)

. 9%p(x)
2ik Ey + £ .

912

+ (Is'?(x) - l‘e?) H(x) = — (62)

The essence of the Leontovich-Fock PE approximation is to assume that variations of the
envelope function with range are small relative to other terms, and therefore to drop the

2
%ﬁ; term to get a parabolic equation in the longitudinal coordinate z:

:a’l,b(X) 62'(,[’(X) -9 72 _ )
R (A (x) ~ k )z,b(x) =0. (63)
The advantage of Eq. (63) over Eq. (62) is that 1t is parabolic rather than elliptic in
range. This means that it is an initial value problem and can be solved efficiently by
marching algorithms. Also, the surface boundary conditions retain the same form in the
PE approximation as in the original Helmholtz equation.

The justification for dropping the second derivative term is usually made on the grounds
that the envelope function ' is a slowly varying function of the range coordinate r. While
pedagogically correct, such a derivation of PE does not yield any insight into the approx-
imation nor the errors that are incurred in using it. An alternative approach to deriving
the PE is via factorization of the elliptic wave equation. If we define an operator Q(x) by

2
Q) = 5 + K2(x), (64

then Eq. (29) can be expressed in the equivalent factored form

Y

(58; + z‘Q) (5% - iQ) w(x) +1 [5% QJ w(xj = 0. (65)

(The notation [E%’Q] = ?ﬁ - Qg% is the commutator of the operators 3‘% and @Q.)
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For range-independent propagation, the commutator {%,Q} = 0 and the equation
satisfied by outwardly propagating waves is just

2 = iy, (66)

Equation {66) is an exact formal solution to the range- independent Helmholtz equation,
and is the most general PE that is exact for range independent media. Following Tappert,®
a parabolic wave equation with the @ operator defined by Eq. (64) will be denoted as the
general PE (GPE) and the @ operator will be denoted as the GPE propagator. GPE is the
most complete PE that is evolutionary in range and neglects backscattering. For range-
independent environments, it is exact within the limits of the far-field approximation, and is
the starting point for all numerical PE algorithms. In following sections, the computational
techniques used to solve the PE will be derived.

2.9 Variable Terrain Physics

The preceding sections have dealt with the problem of radio wave propagation over
a smooth spherical earth. This enabled the surface boundary conditions on the electro-
magnetic field components to be satisfied on the conformeal spherical shell r = a, where
a is the average earth radius. In reality, the surface of the earth is not smooth but has
a nonun’form topography. What effect does this varying terrain have on the propagation
of radio waves? Intuitively, one expects that the Leontovich surface impedanc. boundary
condition 3(rA)
r
£ = ~Z(rA)

will be modified. This, in fact, is the case.

If the tetrain relief (@) is a function of the meridian angle 8, such that »r = a + ({§) is
the radial distance corresponding to the local surface, the boundary condition in Eq. (67)
will become

, (67)

r=a

r=a

o(rA)

N
- = —Z(r4)| : (68)

r=a+{{6) lr:a+((9)

where A denotes the electromagnetic field ¢-component (i.e., A = E for horizontal polar-

ization; A = Hy for vertical polarization), and 52— is the normal derivative to the surface
defined by {. This surface normal derivative is specified by

o mH 10¢
g4 7 =5
n- Aoz o0 (69)
Using Eq. (69), the Leontovich boundary condition may be written as
ora) N I w10 R (70)
ar r=a+{ a9 r=a+{ r=a+(




The new boundary condition, Eq. (70), is seen to be more complicated than the smooth
surface condition in Eq. (67) due to the presence of the term involving %’3. This com-
plication is difficult to deal with numerically, and it seems logical to investigate whether
a modification to the standard earth-flattening transformation would, in effect, “smooth”
out the variable terrain. Accordingly, let us define the surface-locked cartesian coordinate
system (x,h), where z is the local horizontal (range) coordinate and % is a new verti-
cal coordinate measured with respect to the local terrain elevation. The new flattening
transform is defined by

z = a#b,

h = aln({r/a) — {{8). (1)

In terms of the (z, h) coordinates, the normal derivative, Eq. (69), takes on the simple

f
orm P
on ~ 8h’
and the boundary condition Eq. (70) becomes
D) _z0a4
Oh lp=g h=0

Thus, the new transformation defined by Eq. (71) has indeed led to a simplification of the
surface boundary condition—but at what price?

If the transform defined by Eq. (71) is applied to the scalar Helmholtz equation in
spherical coordinates

{é’iga 19
et wiy g 1 7.}

L3

+ kEn?(r,0) + 5n(r)] u(r,8) = 0, (72)

then the result is

v 2a 6%u & 8u  Hu

] @l0u 2a 0y aou Ou [9 2 _ .
P+(a)}3h2 a Ozoh a28h+3132+[k0m +6mluth2) =0 (73)

where

Equation (73) is no longer in Helmholtz format—the flattening transformation has de-
stroyed its separability by admixing the zh-derivatives.

The complications in Eq. (73) can be shown to arise from the %‘; term in Eq. (72).
Ultimately the Leontovich-Fock parabolic approximation is to be applied, which amounts
to keeping terms to first order in Z’%' This suggests an approach that first makes a PE
approximation in spherical coordinates to Eq. (72) and then applies the earth-flattening
transformation Eq. (71). Accordingly, let us define the envelope function ¢ by

u(r.8) = e!FWy(r 9),
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and then write Eq. (72) in parabolic form as

19 8¢  i2ka 5 k2q?
r&rgf+zra%:};+(kénz+6n— T: )gb::(}. (74)

Next, let us apply the transform, Eq. (71), to get

%y . (O adY 2 2 721 ., e
W+z2k(-§;-—gb—g)+{kﬂm +ém—k}z;u—-0. (75)
The term involving %VH can be removed by a simple change of variable:
w = 6azah,¢,’

in which case Eq. (75) takes on the final form:

Py B 2,00 ,
ETV] + z?ké—x— + {k(z,m2 +ém + kz(gz- — 2ha — 1)} =0 (76)

Comparing with the form of the PE for a smooth surface, Eq. (63), the effects of variable
terrain are seen to be incorporated into a modified wavenumber K o4 define:l by

- 2
Kfnod(h,x) = k»gm‘z +6m+ B2 (:_2 —2ha — 1) . (77)

The inclusion of variable terrain in the PE approximation is thus modelec by modifying
the medium index of refraction via Eq. (77) and then proceeding with numerical solutions
as in the smooth-surface PE. Having solved Eq. (76) for the field in zh-coordinates. it is a
simple matter to transform them back to physical space and then compute the propagation
factor F,




§3.0 NUMERICAL SOLUTIONS

This section describes methods for the numerical solution of the generalized one-way
parabolic wave equation
Fh(x)

=2 f
5o tQ(x)H(x), (78)
where the generalized PE (GPE) operator @ is defined to be

-2 s krux)-k 79
Q(x) = -C;g—z-%» {(x)-—*k, (79)

with k a reference wave number. Because of the square root appearing in Eq. (79), the
usual techniques for solving parabolic partial differential equations are not possible. This
is because @ belongs to the class of pseudodifferential operators?® since it contains both
multiplicative, K2, and differential, ;%27, operators under the radical. Hence, Q(x)u’(x)
cannot be expressed as a finite Taylor series in local operators about the point x. The @
operator may be expressed in terms of a dimensionless “kinetic energy” operator T and a
“potential energy” operator V as

Qx) = ko/T-T(z) = V(z,2) ~ F, (80)

where the kinetic and ;otential energy operators are

1 &
T(z) = ""i:g‘a—;f ,
V(z,z) =1- K¥z,2)/48 . (81)

U ||T + V|| < 1, then a formal Taylor series expansion of Eq. (80) gives
=k
Qx) = Qux) = ko~ k~ (T + V), (82)

which is the standard parabolic equation (SPE) operator first proposed by Tappert.® The
SPE approximation to @ basically assumes that the propagation occurs within a small
cone of angles centered about k.

An alternative approximation to @ was developed by Feit and Fleck?* for propagation in
optical fibers and used by Thompson and Chapman?® for underwater acoustic propagation.
In this form, the GPE operator is approximated as:

Q(x) = Qa(x) = ko(VI =T — 1) + K(x) — k. (83)

This approximation is known as a wide-angle parabolic equation (WAPE) operator since
it is valid for much wider propagation angles than the SPE.
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Suppose, for the moment, that the GPE Q-operator is not a function of the range
coordinate z: ¢ — Q(z). Then, the formal solution of Eq. (78) 1s just

Pz, z) = T 200Dy 4y 1),

where the exponential of the operator @ is defined by its power series expansion. The
conventional numerical approach to solving Eq. (78) is to use finite-difference methods and
approximate the exponential operator exp[iQ(z — z¢)] by using Cayley’s method:?8

' .
(Qe-za) o, LT 3IQAT
11— %iQA;r

If the Q operator is now discretized by a finite-difference approximation in z, a complex
tridiagonal system of equations results. This is simply the standard Crank-Nicholson
method for a parabolic partial differential equation.??

There are two fundamental problems with this approach however. First, the trunca-
tion error of the Crank-Nicholson scheme is only second order in Az and Az, and thus
requires small mesh intervals to achieve high accuracy. This in turn leads to very large
matrix systems and many range steps. The second problem with the finite-difference ap-
proach is a lack of rigorous error bounds on the solution that can be monitored during the
computations to assure a fixed, preset global error.

To deal with botl. these issues, an alternative solution method is used that is based upon
spectral operator techniques. This spectral techmique is knovmn as tne split-step Fourier
PE algorithm (SSFPE) and was developed by Hardin and Tappert.? The remainder of
this section deals with development of the SSFPE algorithm, associated error bounds, and
numerical implementation using the fast Fourier transform algorithm.

3.1 Magnus Expansion

Given the parabolic equation Eq. (78), there still exists a problem of developing a
numerical solution. The difficulty arises from the nonlocal nature of the @ operator. To
solve the GPE, techniques from time-dependent quantum scattering theory are used to
express the solution in terms of an evolution operator.?8 Let us define the wave evolution
operator U(x,Xg) that determines the PE wave field ¢*(x) at the point x = (r, z) in terms
of the wave field v¥/(xg) at the point xg = (zg,z) by the equation

y(x) = U(x,x0)¥(x0p).

It follows by substitution into Eq. (78) that U’ is an operator satisfying the partial differ-

ential equation
AU (x.xq)

or

Clearly, I’ must also satisfy the initial condition

= 1Q(x)U(x.xg). {84)

U{xp.x0) = 1. (83)
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and possess the group property
U(X, X()) = I](X, X1 )U(Xl, Xo)- (86)

Furthermore, if there are no dissipative processes present, it follows from the complex
Poynting theorem that the z-integrated field energy density must be constant with range

/h/)(x,z)!2dz= /[z,’)(:m,z)l“)dz,

and this leads to the important result that the evclution operator U must be unitary:
Ut(x,x0) = U~}(x,%g), where Ul is the (Hermitian) adjoint of U. The importance of
..aving a unitary operator for numerical work should not be underestimated, since this
form for U leads to numerical methods that can be shown to be absolutely convergent for
all range step sizes.

Integrating Eq. (84) and using Eq. (85) yields an integral equation for the evolution
operator

U(x,xq) =1+ / Q(t, 2)U(t, zg, 2) dt
Ty

Solving the above integral equation iteratively yields Dyson’s expansion for [7:

U(e,20,2) = 1 +i f “Qu,z)dt— [ e / dz7 Q(e1,2)Quz2: 2)
Z] G‘xg (87)
i f dml/ dxz/ de3 Q(a1,2)Qz2,2)Q(c3,2) + -

The z-ordering of the integrands in Eq. (87) is very important because, in general, the
@ operators at different z-positions do not commute. Thus the ordering of the operators
is determined by the range to which they refer, with operators referring to earlier ranges
always appearing to the right. Though the Dyson expansion is a formally exact solution
for U, it is not very useful for calculations, since if the series in Eq. (87) is truncated after
a finite number of terms, the result is no longer a unitary operator.

A formal solution to Eq. (84) that does preserve the unitary nature of U can be found by
using a technique developed by Magnus.?? T'he Magnus result is bascd upon eu exponential
uperator expansion which effectively includes all terms in the Dyson expansion. The details
are found in Ryan,® and yield

UGz, 50,5) =exp(i [ Qar,2)der = 3 (o [ dea [QUr1.9),Qa2. )]
Loh] xo z

[+]

—é / dry [ dzo M?dmif {[[Q(Il,o) Q(z2,2)], Q(z3,2)] (88)

~ T Lo

+ [[Q(xs,z),Q(xz,z)l,Q(xl.zn} ' )



While the Magnus expansion provides an exact formal solution to the GPE wave field,
three approximations must be made before it is useful for numerical computations. First,
the infinite series in the Magnus exponent must be truncated. Keeping the first term in
the operator exponential in Eq. (88), yields the first-order Magnus approximation Uy:

U(LP,(EQ,Z) = Ul(xaxfhz)’

Uy(z,20,2) = ¢ Jr0 A2 (ile—zo) (89)
where H is the range-averaged PE “Hamiltonian”
1 ro+A
=3 Qt,z)dt, A=z-zg. (90)
o

Second, the pseudodifferential GPE operator, ¢, is factored into the sum of two ordinary
operators, one of which is independent of range:

Q(z,z) = A(z) + B(z,2). (91)

This factorization of @ is not unique; in general, the A and B operators do not commute
with each other. For example, if the SPE operator, Eq. (82), is used to approximate Q(x),
then

1 8%
A(.«.,) = méﬁ s ) (92)
B(z,2) = (ko — k)=5 V{2, 2), (93)

while if the WAPE operator, Eq. (83), is used

A)= R+ 25—k (94)

B(x,z) = K(z,2) — k. (95)
Finally, the Hamiltonian H is evaluated by using the midpoint rule as
1 oo+A
H(m,z}xm/ Qt,z)dt,
Ay,
A2 92t 2)
R~ 2,2)+ — = (T,
Qzo +A/2,2) + 51 B2 v tE€(zo, o+ D),
~ A(z)+ B(Z,z) T=xzo+A/2. (96)

If this is done, a formal solution of Eq. (78) can be expressed in exponential operato
form as

Yz + A, 2) 2 Ui(x + A, z,2)9(z, 2),
= ¢HtAH(z,2) b(z, 2),

( +A
= exp i+i[AA(z) + / B(t, =) dt]} (2, z),

~ exp {+1A[A(z) + B(E. 2)]} ¥(x, 2). (97)

24




3.2 Split-Step PE Algorithm

The first-order Magnus expansion, Eq. (97), ‘s not suitable for numerical work since the
A and B operators appearing in the exponent do not in general commute. To resolve this,
the Trotter product formula®® is vsed te symmetrically factor the Magnus expansiop into
the product of simpler operators, U4 and Ug

U = Up(Q) = eH840),

UB = U’B(A) = e+i&B(£+A/2,z),
to yield the split-step PE algorithm:

P(z + A, 2) = Us($)Ug(A) Uas(§) 9(z, 2),
= €+2'AA(:)/2 e-Q-iAB(a:-+-A/2,z) e+iAA(z)/2 Wiz, 2). (98)

The operator U 4 is known as the free-space propagator and is the exact formal solution to
the parabolic equation in the absence of refraction. Physically, the split-step PE algorithm
amounts to

(1) a half-step of free-space propagation, U A(%);

(2) a phase correction, Ug(A), to account for refractive effects; and

(3) finally, another half-step of free-space propagation, U A(%—)

In actual use, the split-step algorithm is used to advance the PE field multiple range

steps:
¢n — ezAnA/z etAan ezAnA/z ‘(,bn_l ,

where

Ap =1y~ Tn-1,
Yn = P(xn,2),
By = Bl(zn-1 +20n)/2,z].

By using the group property of the evolution operater, Eq. (86), the split-step algorithm
may be iterated to give
Y = 1O A[2Gi0Bn iAn A[2,iB0 -1 A/2iABn_1 (iBn_14]2

= iAnA[2iABn i AntAn_1)A/2iABn 1 iAn_14/2,

= eiAnAl2¢i0n B i(AntAn-1)A/2 . (ifs By (i(Ar+81)A/2,i0 By i A/2

3.3 Split-Step PE Truncation Error

At each step of the PE calculation, there will be a certain amount of error induced in
the solution due to round-off error and the intrinsic error of the split-step PE algorithm.
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The round-off error is caused by performing calculations using floating-point arithmetic on

finite-word-length computers. This type of error is highly dependent upon the hardware

characteristics and actual numerical algorithms used, and will not be discussed further.

The intrinsic error is termed truncation error and arises from the various approximations

in going from the exact Magnus solution in Eq. (88) to the split-step algorithm in Eq. (98).
The split-step PE is thus predicated on four approximations:

(1) approximating the exact square root GPE operator, Eq. (79), by a finite sum of
ordinary operators;

(2) truncating the formally exact Magnus solution for the evolution operator and keep-
ing only the first term in the exponent, Eq. (89);

(3) evaluating the PE Hamiltonian by the midpoint rule, Eq. (96); and

(4) approximating the exponential Magnus operator by a symmetrized factorization of
individual operators, Eq. (98).

Each of these steps introduces an intrinsic truncation error in the split-step PE solution—

the ability to quantify these errors is crucial to the successful implementation of a numerical
PE code.

Although the Magnus expansion provides an exact formal solution to the PE wave field,
three approximations must be made to it before numerical computations are feasible. First,
the infinite series in the Magnus exponent is truncated after the first term

1 zo+A

Uo+A,m0,2) met®f, H= Qt,z)dt, (99)
o

where H is the range-averaged PE Hamiltonian.
The truncation errors incurred by using Eq. (99) are a function of the range dependence
of the Q operator. If Q, or equivalently K, is independent of z, then Eq. (99) is exact. For

range-dependent K, the truncation error in U may be quantified by examining the next
term in the Magnus expansion and gives

To+A
. 1 1
U(zo + A, 29,2) R exp  tAH — 3 /d$1/ dry [Q(z1,2),Q(z2,7)] 7
T
Iy

3
=exp{iAH _2 [3Q

4
& 5;,@] +oah}. (100)

Thus, when Q is range-dependent, truncation errors proportional to O(A?) are incurred
no matter what form of the PE operator is used. Furthermore, how the range-averaged
PE Hamiltonian H is evaluated critically affects the error budget. For example, if @ is
expanded in a Taylor series about the midpoint, & = (z+¢)/2, and the integral in Eq. (98)
is evaluated by the midpoint rule. then

3
Uleo +B.70.2) = exp(i0Q(z,2) + 57 {1€(2,2) - 4[Q'(7 ), Q@ 2)] } + 0(a)),

where Q'(%,z) = 8Q(&,2)/0z and Q"(z, z) = 2Q(7,z) /0.
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The local truncation error T incurred in the PE field solution by using Eq. (99), with
Q evaluated at the midpoint 7, is then

= [U(-’”o + A, 1:072) - eiAQ(:E,z)} 11’(1’0» Z),
3
~ 9-{2'@“(5: 2) - 4 [Q (&, 2)Q(F,2) - Q,2)Q' (&, 2)] [ (w0, 2),

-2 { O*B(z,2) _, [BB(x OB(E:2) 1 _ Al )aBéi,z)]}¢(x0’z)_

2
0z (101)

A second type of truncation error occurs if the symmetrized operator splitting, defined
by Eq. (98), is employed to compute the propagator. This splitting error can be evaluated
by using the Baker-Campbell-Hausdorff31~33 (BCH) expansion of two noncommuting
operators:34

edeB = exp (A+ B+ 3[4,Bl + ]‘1§{A7 {4, B]] + ’1%“*413]78] +e0).

Applying the BCH expansion to Eq. (98) gives
: B 3 _ 3
DA/ B A2 _ oy {AA +AB- %[[A,B] Bl + %Z 1[B,4],4] + O(A“)} :

and the local truncation error T3 caused by using the Trotter product formula, with B
evaluated at the midpoint is thus

T = { AlA+B(D)] _ iAA/2 iaB eiAA/2} P(z0,2),
A3 _ .
~ 512004 B@), B@) - [[B2), 4], 4] (zo.2),
‘A3
-8 [2(A32 —2BAB + B2A) — (BA% — 2ABA + A?B)|y(xy, 2) -

24 L (102)

If the SPE operator is used to approximate ), then the third-order local truncation
error terms are given explicitly by

62V 6317 )
. and
— iad fl1a'v PV d
2= 18k { [4 o4 TR g s ~ k" } Vi)
. OV 03V M(xg,z)  O?V 0%P(xy, 2)
+ ['2k°aza 33] 3: T2 92 } » (104)
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where V = V(%,2). Equations (103) and (104) show that the local truncation error for
the symmetrized operator splitting is linear in frequency (via the kg terms) and cubic in
the range step-size, A.

To simplify the analysis, let us assume that the potential energy function V is inde-
pendent of the range z. (In most applications, the horizontal z-derivatives of V' are much
smaller than corresponding vertical z-derivatives.}) In this case, the third-order local ab-
solute error in the PE field, §(3)¢, caused by advancing with the range step A is given

by
18tV F1%
4 2 A% _k() ( ) } d’(x()az)

BV 0v(cg,z) 02V 8%p(zg, 2)
oA 8 a2 o2 } (105)

Instead of working with the pointwise error estimate, §3) t defined above, it proves
more useful to consider the total relative error per range step E(®), which is normalized
by the vertical energy density of the PE field:

E(3) . “6(3)1!)”
el
_ Jy*é®ydz
RS
The term ||6(3)¢|| may be evaluated by integrating by parts and takes the form

10V (BV) 5 PV oy &y

. 3 [
(3)V’(TO+A Z) k \l

(106)

0 _FVoy &V,
16990 = 557 /‘/’ Fa -8 (3 57 3 + o 9t 0

_iAd 2 62V 1 0%V O%yi?
st (50) i

T 45:27 9,2
L OV 3|¢($0,0}12}
4 622 z=0 32 )

3#)
bz

(107)

To ensure that the total error in the computed PE solution is bounded, the PE step-size
A is chosen so that the third-order error term E(®) is small relative to the first-order term
EM):
E®3)

E’m’ Ceret K1,

wlhiere €, is a specified error tolerance, and

R Lot
el

AT . 62
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This implies that the PE range step-size should be chosen so that

6y

2 ¢ 10Ny
&= e gy

and determines the PE range step, A, by

o2 _
24e,.qf / P* —————-kgv}d;dz
A2 = 0z° |
- 7\ 2 2 : 277 92112 277 Sl 12
/[ko(ax) ol + av 3y lavam]d”%avam

8z 152 52 922 3z 220
In numerical implementation, the vertical derivatives appearing in Eq. (109) are evaluated
by numerical finite-difference approximations. As the PE code advances the field, the local
error budget is monitored and the range step-size is dynamically adjusted to keep the local
error below a preset threshold. The question of a more detailed error analysis will not
be covered in this repori. The interested reader is referred to Ryan® for analysis of the
split-step PE truncation errors.

. (109)

3.4 Split-Step Fourier PE Algorithm

The PE solution, ¥(z+ A, z), at range z-+ A is obtained from the known field, ¢)(z, z), at
range r by means of the split-step PE algorithm, Eq. (98). The presence of the differential
operator, A(z), in the exponent can be dealt with by transforming to a basis in which

Afz) is diagonal. One such basis is the Fourier basis, with the z-space Fourier transform
F boiag defined as

U(z,p) = Flo(z,2)] = /'OO W(z,z)e” P dz,

-0

and the inverse transform F~1 being defined by
m .
(z,2) = FL[¥(z,p)] = / ¥(z,p)et*P* dp.
27 Joo

The conjugate transform variable p can be associated with the vertical wave number, via
P = kgsin@, where 8 is the propagation angle with respect to the horizontal.

As is well known, the vertical derivative operator in z-space is related to the conjugate
p-space operator by
o\" . \n
=) = (=",
( az) (—p)

in which case the SPE cperator Eq. {92) is implemented via
CEAA(Z)/z‘(/)(I,Z) = .7_--1 [e—iAp?-/tlko \Il(x,p)} ,

110
. {e—mpz/e;kg}-w(x’z)]}. (110)
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Similarly, the WAPE operator Eq. (94) is implemented via

¢34y, = 71 B VET Nz, ).

A — (111)
=5 [y,
Now any function may be expressed in terms of even and odd components, so the PE -

field can also be written as
Y(x,2) = Pe(z, z) + Yolz, 2),

where

Ye(,2) = $[¥(z, 2) + P(z, ~2)),
Yo(x,2) = §[U(z, 2) — (z, —2)].

Being a linear operator, the Fourier transform may also be expressed in terms of even and
odd components as

¥(z,p) = FlY(z,2)] = Ye(e, p) + Yo(2, p),

where ¥, and ¥, are represented in terms of Fourier sine and cosine transforms as
[e ]
Y (z,p) = Fe[te(z,2)] = 2]0 Ye(z, 2) cospz dz,
and

Wolz,p) = Felo(x,2)] = --i2/0 Yoz, z)sinpz dz.

The corresponding inverse sine and cosine transforms are defined y
oo

1
Yelz,2) = F; Welz,p)] = /0 ¥, (z, p) cos pz dp,

. o0
vole,9) = iF Wole,p)] = - [ (e p)sinpe do

In practice, the infinite Fourier transforms are replaced by finite discrete Fourier trans-
forms (DFTs) over the domain (0, Zymaz ), which in turn are evaluated numerically using the
fast Fourier transform algorithm.3® The actual FFT algorithms implement fast real-valued
sine and cosine transforms to reduce core storage and improve computational speed.3:36

When using DFTs, it is important to satisfy the Nyquist sampling theorem to avoid
transform aliasing problema.37 If P,.qr is the maximum vertical wave number and N is
the discrete cosine/sine transform size, then the Nyquist condition is just

Zmampmaz = 7TJV. . (112)




3.5 Reflectionless Absorber Boundary

The appropriate boundary condition to be satisfied as z — oo by the PE field v(z, z) is
the Sommerfeld outgoing wave radiation condition, Eq. (35). Since the split-step Fourier
algorithm employs finite Fourier transforms, the implementation of a radiation-type bound-
ary condition is quite complicated. This follows from the fact that truncation of the infinite
z-domain down to a finite interval in the Fourier transform leads to the introductior of
spurious discrete standing wave solutions in the vertical. In effect, the terminal impedance
at the end of the transform grid is not properly “matched” to the radiation boundary
condition.

To circumvent this problemn and attenuate the spurious standing wave solutions intro-
duced by the finite Fourier transforms, a complex absorber potential V 5,(z) is added to
the split-step B operator:

k
B(z,2) = B(s,2) + 52 Vaps(2).

The particular form of the complex absorber or “sponge” is found by recourse to a nuclear
optical model®® analog based upon the theory of reflectionless potentials,3® The specific
form chosen is

Vabs(2) = Vo sech®[a(z = Zinaz )] (113)

where the parameters {Vj,a} are determined parametrically by minimizing transmission
and reflection coefficients from the sponge region.4®

3.6 PE Starting Fields

The split-step PE method must be initialized with a starting field distribution v(zg, )
at some distance zg from the source, since the parabolic wave equation is not valid in the
region of the source. Two options are available to compute the starting fields. First, tie
initial z-space field may be obtained by analytic methods, assuming free-space conditions
and treating the source as a point radiator. This option, though, is not useful for highly
directional antennas.

The second approach is to use the duality of the antenna aperture field distribution and
antenna radiation pattern function.! In free space, the antenna radiation pattern function
f(p) and the antenna aperture field distribution A(z) are a Fourier transform pair:

m 0
fo-po)= [ A g, (114)
—0
where
p=kgsind, (115)
po = kg sin 8. (116)
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In Eq. (115), 6 is the elevation angle measured with respect to the horizontal (6 > 0 is
up), and in Egq. (116}, 6y is the antenna mairlobe vertical pointing direction. The antenna
pattern function is used to construct even and odd symmetry p-space fields in the form

$e(0,p) = fp)e P?0 4 f(~p)etiFio, (117)

and

@o(0,p) = f(p)e P — f(—p)etiFo, (118)

where the Fourier shift theorem has been used to properly account for a nonzero source
altitude, zg. Given the above even/odd symmetry p-space fields, the corresponding 2-space
PE field is obtained by taking the inverse cosine or sine transform of Eq. (117) or Eq. (118),
respectively:

¥e(0,2) = F7H[T(0,p)],

and

$o(0,2) = Fy {¥o(0,p)].

3.7 Antenna Patterns

The PE method is capable of modeling the radiation emitted by directional antennas,
provided that the complex antenna radiation pattern, Eq. (114), is known. Often this
information is not av.ilable for specific radar systems, so simplified generic antenna pat-
terns are used. These generic patterns display some of the features of real antennas while
retaining fairly simple analytical forms. Each of the analytic antenna patterns is specified
in terms of a normalized p-space steering parameter, ¢, defined by

_sinf—sinfyp  p-—pp

sin( 65 ,) Py

*

where 1
pPL = kO Sin("ebw)v
2 2

and 6, is the half-power (i.e., 3-dB down) beamwidth. The following analytic antenna
radiation patterns are useful:

3.7.1 sin(x)/x

The uniformly illuminated aperture corresponds to a radiation pattern having the func-
tional form

sin{at
(1) = ’“(:’ ) 4=13916. (119)
a
The scale parameter a is determined by solving the nonlinear equation
sinz 1
&I Vfé”

This pattern has the narrowest mainlobe width, at the expense of high sidelobe levels.
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3.7.2 Gaussian

The Gaussian antenna radiation pattern has the functional form

In2
5

Ff(t)=e 9" where o= (120)

This pattern is the optimal compromise between sidelobe level and mainlobe width

3.7.3 Compound

The compound radiation pattern is a one-parameter pattern that is a blend of the
uniformly illuminated aperture and the cosine-squared aperture distribution, having the
functional form

f@) =

2 M{c 1-c 1 ] 0<e<1.

l1+¢ at 2 1—(at/x)?

The narameter a controls the mainlobe width and is determined by solving the nonlinear
equation

sina 5 l—c¢ =1+c
a

2+ .

1—(a/m)?2] V2
The uniform aperture corresponds to ¢ = 1, while the cosine-squared aperture corresponds
toc=4(.

3.7.4 Hansen

Another single parameter pattern is obtained from the circular aperture distributions
analyzed by Hansen.*? This pattern has the functiopal form

il( €& >
H _ﬂ\/’i , forz2>0

)= —7=4 .
1(H) 1_1%/%!%}, for x < 0,

(121)

where
z = H? — (at)?,

and j; and i; are the first-order spherical and modified Bessel functions defined by

. sinz cosz
]1(;) - 7 5
z z
. sinhz coshz
21(2) = - 3 - .
pa <

The quantity a, which determines the 3-dB point in the pattern, is found by solving the
transcendental equation

ilg HT-a?) 1
_ ll(H) N T , fOfC 2 %

T V2H 1 (VaI=H7)
V2 J—l—(\/—%_zﬁjf—, forC<%.




The first sidelobe level, SLL, in the radiation pattern can be shown to have a value of

3i1(H)
H

SLL = 30.84 + 20log { } dB,

down from the peak, and is located at

2
ap PO =4/14 (-—-~———5763) .

H

The parameter H allows a trade-off between low sidelobe level and mainlobe beamwidth.




§4.0 CONCLUSION

This report describes the basic physics and analytical techniques used to model mi-
crowave propagation in range-dependent environments. These techniques have been im-
plemented in a range-dependent propagation computer model — the VIRPE code. The
VTEPE computer model is used to predict and analyze the performance of radar and com-
munication systems operating in spatially varying environmenis. The methods described
herein account for spatial variations in the atmospheric refractivity as well as for variations
in surface dielectric properties and topography.
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