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SUMMARY

OBJECTIVES

To present results for the application of various metrics and a new classification
scheme to the iterated transform image compression technique. To present results for
the compression of Digital Terrain Elevation Database (DTED) images and 24-bit per
pixel color images, and to compare these results to other existing image compression
techniques.

RESULTS AND CONCLUSIONS

Results show that a new classification technique based on archetypes can reduce
encoding time while maintaining compression and fidelity. The use of various metrics
has been determined to result in little differences in the final encoding quality thus
indicating that the use of the root mean square (rms) metric is preferred (due to the
computational simplicity associated with this metric).

Encodings of DTED data using an iterated transform algorithm modified to en-
code coastlines with increased accuracy are presented. These results compare fa-
vorably with an adaptive discrete cosine transformation (ADCT) and mean residual
vector quantization algorithm. Results for two different iterated transform algorithms
for encoding 24-bit per pixel (bpp) color images are presented. The first method trans-
forms the red, green, blue (RGB) image to the luminance-chrominance representation
before encoding, and results in performance similar to ADCT algorithms. The sec-
ond method encodes the RGB subimages directly using common transformations, and
does not perform as consistently as the luminance-chrominance method.
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1. INTRODUCTION

The compression of images (and other 3-dimensional data arrays) is a field of

rapidly growing importance. This report presents several results pertaining to this

field, with particular emphasis on the application of a technique having its roots in

the study of fractal objects and dynamical systems, namely iterated transformations.

This report is divided into four main parts: (1) a brief introduction to the basic

formalism and methodology of iterated transform image compression, (2) a section

describing some results for alternative metrics and classification schemes pertaining

to iterated transform image compression, (3) a section on the compression of the
Digital Terrain Elevation Database (DTED), and (4) a section on the compression of

24-bit color images.

1.1 BACKGROUND

The iterated transform method has its roots in the theory of iterated function sys-

tems (IFS), which has been popularized and studied extensively by Barnsley (1988,

Barnsley & Sloan, 1988). The method has received particular interest partly be-

cause of the fractal nature of the encodings. The iterated transform method was

first presented and applied to gray scale images by Jacquin (1989, 1990a and 1990b).

A thorough description of the iterated transform algorithm used here is given else-

where (Fisher, Jacobs, & Boss, 1991 and Jacobs, Fisher, & Boss, 1991). The following

is a brief overview of the technique.

Theoretical Background. The image is encoded in the form of an iterative system

(a space and a map from the space to itself) W : F - F. The space F is a complete

metric space of images, and the mapping W (or some iterate of W) is a contraction.

The contractive mapping fixed point theorem ensures convergence to a fixed point upon

iteration of W. To compress an image, the goal is to construct the mapping W with

fixed point "close" [based on a properly chosen metric 6(f, g)] to a given image that

is to be encoded, and such that W can be stored compactly. The collage theorem

provides motivation that a good mapping can be found (Barnsley, 1988). Decoding

then consists of iterating the mapping W from any initial image until the iterates

converge to the fixed point.

Let I = [0,1] and In be the n-fold Cartesian product of I with itself. Let F be the

space consisting of all graphs of real Lebesgue measurable functions z = f(x, y) with
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(X,y,f(x,y)) E 3. Let D1,..., D,, and R 1,..., R, be subsets of 12 and vl,...,v,,

J3 - 1 be some collection of maps. Define wi as the restriction

wi -- ViIDi.l"

The maps w,..., w, are said to tile 2 if for all f E F, UZ= wi(f) E F. This means

the following: for any image f E F, each Di defines a part of the image f fn (Di x I)

to which wi is restricted. When wi is applied to this part, the result must be a graph

of a function over R,, and 2 = Ut'Ri. This means that the union U!=lWi(f) yields

a graph of a function over J2 and that the Ri's are disjoint. The map W is defined as

n

W= . (1)
i=1

The encoding procedure is as follows: Since the goal is to limit the memory required
to specify W, 12 is partitioned by geometrically simple sets Ri with U =1 R, = 12. For

each Ri, a Di C J2 and wi : Di X I -_ J3 is sought such that wi(f) is as 6 close to

f fn (R, x I) as possible; that is,

8(f n (Ri X I),wi(f)) (2)

is minimized. This is referred to as covering Ri with Di. So that the contractive
mapping fixed point theorem will ensure convergence to a fixed point, the wi's must

be chosen such that W or some iterated of W is contractive. The motivation for

minimizing expression ( 2) is provided by the collage theorem.

Implementation. To limit the memory required to specify wi, only maps of the

form

wiY = c di 0 y fi (3)
z 0 0 s Z oiI

are considered, where wi is restricted to D, x I. In the implementation described here,

the Di's and Ri's have been restricted to be squares, thereby further restricting the
possible values for the coefficients a,, bi, ci, di, ei, and f, in equation 3. Insisting that

w, map (the graph above) D, to (a graph above) R, while minimizing condition (2),

determines s, and o,. (If any point in the transformed graph over R, is outside the

allowed range of pixel values, it is clipped.) In this way, w, is determined uniquely

for a chosen metric. The results in sections 2 and 3 use the root mean square error

(,.,) as the chosen metric. Further discussion .ind some results for other metrics are

discussed in section 1.2.
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Let R be the collection of subsets of 1P from which the RA are chosen, and let D be
the collection of subsets of P from which the Di are chosen. In the implementations
described here, R and D were chosen to be squares of varying sizes. Although the
Di's and Ri's are not strictly the domains and ranges of the wi's, the terminology will
be used because it is descriptive.

For a given choice of R and D, the encoding problem is reduced to choosing a set
{Rj} C R, and the corresponding set {Dj} C D, such that good compression and an
accurate encoding of the image results. The method used to find good Di's determines
how much computation time the encoding takes. For each Ri, a search for Di through
all of D would clearly result in the choice that would best minimize expression (2),
but for applications for which encoding time is a consideration, such a search may
require too much computation time. Therefore, a classification scheme can be used
in the following way. First, all the domains are classified into a set of classes. During
encodn.g, each range square is classified using the same classification procedure as
the domains, and a search for the optimal domain square in the same class (or similar
classes) is performed. If the classification is fast, and separates the domains and ranges
such that they cover well [i.e., expression (2) is effectively minimized], then encoding
time will be reduced with little loss in image fidelity. The scheme employed for the
encodings presented in sections 2 and 3 was relatively straightforward. Seventy-two
classes were defined by the brightness and edge-like character of the quadrants of
each square. The classification scl~eme began by computing the average intensity for
each quadrant of the (range or domain) square. Then a symmetry operation was
applied to force the square into an orientation with its brightest quadrant in the
upper left quadrant, and to put the second brightest quadrant into the upper right
quadrant (or the third brightest if the second brightest could not be so oriented).
This process divided the squares into three main classes (and defined a symmetry
operation for each square). Each of these three main classes was then subdivided by
determining the amount of the variation of the average brightness of the subquadrants
for each quadrant of the square. The quadrants of the square were thereby ordered
from first to fourth by the amount of variation within each quadrant. There are 24
possible permutations for the order of the relative brightness variations, resulting in
a total number of 72 classes. In section 1.3, an alternative classification scheme using
archetypes is examined.

In the implementation described by Fisher, et al. (1991) and Jacobs, et al. (1991),
which was used to encode the images in sections 2 and 3, a recursive quadtree

partitioning method was used to reduce the error in regions of high variability and to
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increase compression in "flat" areas of the image. The quadtree partitioning allowed

the range squares to vary in size. For a given R,, if a ii could not be found such

that expression (2) was less than a predetermined error criteria (e,), the range square

was subdivided into four equal squares, and the process was repeated until the error

criteria was satisfied or a range square of a predetermined minimum size rmin was

reached. For range squares of size rmin, the best w was stored whether or not e, was

satisfied.

1.2 METRICS

Each Ri of R, and Di of D are of the form

r il ri2 ... rlm di di 12 ... d 1m 1
ri. ri.2 •.. ri 2mi di2l di22 d i2m

ri ml ri. ... rimm dim, dim2 .. dtm

The transformed domain (which covers the range) is of the form

. si*di,,+oi si*di,2 +oi ... sj*dilm +oi

wi(Di) 8i * dil+O i ". d22+i i .~m+ (4)

si * dim "+ oi si * dim2 + oi ... Si *dimm + oI

The distance between the transformed domain and the range is measured by some

metric, such as one of the Ln metrics. These metrics can be easily computed since

the distance is given by

U1

S~(RFw'(D) -m si * dij, + oi) - rikfl}

The primary task during the encoding process is minimizing the error [the distance

between R, and w:(D,)]. Not surprisingly, the final result of the encoding is dependent

upon the choice of the metric used during the minimization.

There exists in the literature some debate about which metric should be used in

minimizing the error of an encoding to achieve the most visually appealing image. In

the case of iterated transforms, the choice of the metric is also of interest since the

convergence of mappings is dependent on the metric used. To date, only the LOO and
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L' metrics have been employed in iterated transform algorithms. In the following

paragraphs, we briefly discuss some results using other metrics.

The results for encoding several images using the L', n E {1, 2,3,4,5,o} indi-

cated two primary conclusions. First, as might be expected, when the error of the

resultant encoding was measured in a given metric, the encoding performed by mini-

mizing that metric had the least error. Second, for the metrics tested, the differences

between the encodings were very small, i.e., it was difficult to visually differentiate

between the encoded images, and there was no consensus as to which metric resulted

in the best appearing images.

Since there is no clear choice of metrics based on the visual quality of the encoded

images, other factors can be considered in choosing a metric, namely, ease of imple-

mentation. The task of determining what values of s and o minimize condition (2) is

computationally simple only for the L' metric. Since this gain in speed and simplic-

ity more than outweighs any small perceived visual gain obtained by using another

metric, results in this report use L' (rms) during encoding, and all results for the

error of encodings are also measured in 5 rms.

1.3 CLASSIFICATION METHODS

The main point of this section is to introduce a new classification method, based

on archetypes, which can be used to increase the speed of iterated transform com-

pression alogrithms. Finding a set of archetypes uses many of the same techniques

used in making a vector codebook for a vector quantization (VQ) encoder. Vector

quantization is a well-studied technique commonly used to compress digital images.

Because it introduces some of basic ideas that will be used to construct archetypes,

the following section describes, in some detail, a method used to construct a vector

codebook. The specific method discussed was first decribed by Linde, Buzo, and Gray,

(1980). The following discussion will serve to better understand the similarities and

differences between archetypes and VQ codebooks, and also to better understand the

method used to produce the mean residual VQ encodings in section 2 of this report.

Vector Quantization Codebooks. In VQ, an image (a large 2-dimensional array of

pixels) is subdivided into many smaller arrays, called the target vectors. Each target

vector is encoded as a code vector, which is drawn from a list of code vectors, called

the codebook. The storage of the image is then simply a list of the codes that indicates
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which code vector in the codebook best matches the sequence of target vectors that
make up the image. The subsequent reconstruction of the image is then simply a
pasting together of the indicated code vectors.

Encoding an image is a simple procedure. For each target vector, a search through
the code vectors is performed to find the one that (measured in a given metric) is
closest. Therefore, the most interesting problem in such an encoding scheme, and the
problem that has been the focus of most of the research in this field, is the construction
of the codebook.

The ideal codebook would be that set of vectors for which the total error of the

reconstruction is zero. To have a codebook for which this is possible (for any image)
would require a code vector which has as many bits as the original target vector,
i.e., there would be no compression. A useful codebook would be one for which it is
possible to "accurately" encode any image with only a modest amount of information.
This requires that the codebook be composed of a limited number of code vectors (so
that good compression is achieved), and which have a wide variety of characteristics
(so that images can be encoded accurately). To simplify the codebook, a common
technique is to subtract the mean value of each target vector from each target vector,
and include it separately as part of the encoded image. Therefore, only variations
about the mean need to be contained in the codebook.

A specific method to generate a codebook based on the general method of Linde
et al. (1980) is shown in figure 1. The initial state is assumed to be a single code
vector (of all zeros) and a set of "teaching" vectors (all of mean zero). A search is
then performed to determine those two elements of the teaching set which, when used

to encode the entire set, gives minimum square error. The search is not performed for
all possible sets of any two elements because such a search is too time-consuming. For
example, a full search for the first step, for a teaching set of 8 x 8 vectors drawn from
five 512 x 512 images requires the computation of of 20,478 square errors for each of

209,725,440 different combinations. Consequently, thi two elements are determined
from a search of a randomly chosen subset of 200 elements. Each of the 19,900 possible

combinations is checked, with the minimum error pair beginning used as the initial
code vectors.

The entire set of teaching vectors is then sorted into subsets by determining which
of the new code vectors best encodes them. Each subset is then used to compute a
new best code vector. In this case, the best code vector is simply determined by
computing the average of all the vectors in the subset. This process is then repeated
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until a self-consistent set of code vectors is obtained.

If the number of self-consistent code vectors is less than the desired number of code
vectors, then each code vector is bifurcated into two new code vectors, by dividing
the subset of teaching vectors, precisely as described previously. This process of

iterating to self-consistency then bifurcating is continued until the number of desired
code vectors is obtained. (Note, the only problem encountered with this process is
when a subset of the teaching vectors consists of exactly one vector, in which case the
subset cannot be divided. To continue the process of bifurcation for this case, after
all other subsets have been divided, the subset that has the most elements is divided

once more. This extra division of the largest subset is performed for all subsets of
size one, then, and only then, is the self-consistency iteration performed.)

FN TBIN ALL
OD VTOR ELEMENTS

CODE IECTORS BY EXISTING
FOR EAChI BIN CODE VECTORS

DETERMINE
NEW CODE
VECTORS
FOR EACHI

BIN

NO

Figure 1 . A flowchart showing how to make a codebook.

Archetype Classification Applied to Iterated Transforms. In an iterated

transform algorithm, the purpose of classification is (as mentioned previously) to
reduce the number of domains that has to be checked to find an acceptable covering.

Ideally, it would be possible to compute some simple property (or set of properties)
that would result in identifying the optimal covering with no need for an actual
computation of the error. The classification mentioned at tbe end of section 1 is based
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upon the idea that by orienting blocks in a canonical form (based upon brIghtness),

and then subdividing these primary classes further by " ,he location of strong edges,

it should be possible to find good coverings with minimal computation. In fact, this

classification method performs moderately well. However, in a few cases the optimal

covering can only be found by searching through all classes, i.e., the classification

procedure fails to classify "similar" objects into nearby classes. Consequently, it

seems likely that some other classification scheme may perform better.

Since the goal of the encoding scheme is to find good coverings, it is reasonable

to try to base the classification scheme on finding good coverings. This is what the

archetype classification scheme is designed to do. So, what is an archetype? An

archetype is that member of a class that is best able to cover all the other members

of the class. The following describes how archetypes are determined and used.

The archetype, A, for a set of vectors is determined by searching through the

entire set to find that member of the set which can cover the other members best.

That is, for each member, 61, 1 E {1,2,.. .,neementa}, the best transform, w, of the

form of equation (3) is found for every other member, 4, k E {1,2,.. . nelements}

and k 0 1, such that the rms distance, 8rmS,,, given by

n

is minimized. The archetype is then chosen as that member for which the total error,
Arms1, which is given by

n

Arms1 = E 6 rmlk

k=1

is minimum. That is A = Lj if and only if A rm,, _ Arrnmk for all k.

If some method exists to separate the entire set of vectors into classes, then each of

the classes (i.e., each of the sets) has a definable archetype. Clearly, the determination

of the archetypes for some set of classes is given by the flowchart in figure 2a.

A more useful set of archetypes can be generated if, rather than stopping once the

archetypes are determined, the archetypes are then used to perform the sorting of

the vectors into classes (i.e., the archetype that best covers a given vector defines the

class into which the vector is classified), with the reclassified vectors then being used
to determine new archetypes. This process can then be iterated to self-consistency.

A flowchart of this process is shown in figure 2b.
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t
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Figure 2. A flowchart showing how to make self-consistent archetypes.

The determination of archetypes is obviously very similar to the determination
of a vector quantization codebook; however, there are major differences. The most
fundamental difference is, for archetyping the goal is not to find out how much two
vectors look like each other, but rather to find a way of deciding how much two vectors
can be made (by means of the transformation w) to look like each other. In additon,
the code vectors in VQ algorithms are computed from the set of teaching vectors, but
are not actually a member of the set of teaching vectors. This is different from an
archetype, which is a member of the teaching set.

So, how would one use archetypes in an iterated transform algorithm? One method
would be to determine a set of archetypes for an image, and then encode the image

using the set of archetypes as the set D. This idea borrows the basic concept of VQ,
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in which a small set of appropriate code vectors make up a codebook. The set D
will have very few, but carefully chosen members. As a result, a large number of

relatively compactly specified wi's can be used to encode an image. This method is

the opposite extreme of an algorithm where the set D is large, the wi's require more
bits for storage, and fewer wi's are used to encode the image. This method of using
the computed set of archtypes for the set D actually produces good encodings based

on fidelity versus compression performance. The problem with this method is that

determining the archetypes entails performing almost the same calculations necessary

in encoding the image with a more general set D. Therefore, even though D is small

in number, the encoding time is not reduced.

A second method for employing archetypes in an iterated transform algorithm

is to use archetypes as a classification method. Following the procedure outlined
above, a set of archetypes can be found from an image or set of images. This set of

archetypes can then be used to define the classes into which ranges and domains are
binned at the start of the iterated transform encoding procedure, i.e., each range and

domain is assigned to the class of the archetype that covers it best. Once again, this
idea borrows a technique used in VQ. In VQ, the codebook is generated from a set of
images which does not typically include the images the algorithm will ultimately be

used to encode. With this classification method, the classes are defined from images
other than the ones that will ultimately be encoded. If the images used to find the

archetypes are sufficiently general, then a good set of archetypes to classify domains
and ranges for a broad variety of images will result. If for a specific application, the

set of images to be encoded have similar characteristics, archetypes could be found

from a set of images with these same characteristics, and the classification method

might work particularly well. Before examining some results, it should be noted
that the idea of using predetermined archetypes (from images other that the one

being encoded) is somewhat contrary to the basic concept of the iterated transform

method. Therefore, it is necessary to emphasize that the archetypes are being used
only to classify domains and ranges in an efficient way so as to reduce encoding time,

and have no other role in the encoding procedure.

Figures 3 and 4 show data for an algorithm encoding 256 x 256 Lena using both
the standard classification method and an archetype classification method. These

encoding algorithms used only 16 x 16 domains covering 8 x 8 ranges. The encodings

in this section were at approximately 16:1 compression. The A symbols show the peak
signal-to-noise ratio (PSNR) versus number of bins searched for a set of runs using
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the standard classification method. PSNR is defined as,

/ rms '
PSNR = -20 * log o 2 -1

where rms is the root mean square error of the reconstructed image. Data are shown

for 1, 4, 6, 12, 24, and 72 classes searched. The accuracy of the encoding increases

as the number of classes searched increases, as does the time necessary to perform

the search, where the complete 72-class search yields the best possible result for this

encoding. The o symbols show the results of the search using an archetype-based
classification method. A set of 72 archetypes found from five images (a dog image,

two images of people, one image of a city, and an image of an airfield) were used to

define the classes. The Lena image was not included in this set of images. Data are

shown for searches of 1, 2, 3, 4, 6, 12, 24, and 72 of the 72 classes. Figure 3 shows that,
for a given number of classes searched, the archetype classification scheme results in

an improvement in the accuracy of the encoded image. This demonstrates that the

archetype classification method does indeed separate the vectors into classes that are

better able to cover each other. In figure 4, note that, for a given number of classes

searched, the total relative encoding time for the archetype classification encodings are

longer than the standard encodings. This is because sorting the domains and ranges

in the archetype classification scheme requires more time than it does for the standard

classification method. Therefore, to outperform the standard classification method,
the archetype method must yield more accurate encodings while searching through

fewer classes. Indeed, figure 4 shows that the curves for the archetype classification

and standard classification cross over, thus indicating that the archetype classification

can (by searching fewer classes) result in improvements in both encoding accuracy

and encoding speed.

2. APPLICATION TO DTED

Application of image compression to geographic map data is of particular interest

to the Navy. Geographic map data comes in a variety of formats, and there has

been extensive work done in compressing map databases for various applications. In

this section, the problem of compression of the Digital Terrain Elevation Database

(DTED) is addressed. The database consists of elevation data for a grid of longitude-

latitude coordinates where the grid points are roughly 100 meters apart. A complete

description of DTED can be obtained from the Defence Mapping Agency. Alward

and Nicholls (1986) examined hierarchical data structures as applied to DTED. The
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data structures result in some data compression, although compression was not the

primary goal of that investigation. In this section, the problem of interest is evalu-
ating the performance of the iterated transform method on DTED. This would be
useful for applications where data compression is the primary concern, and issues like
hierarchical structure, access time, and decoding time are of secondary importance.
As a means of evaluation, the DTED images were also compressed with an adaptive

discrete cosine transform algorithm (ADCT) and mean residual vector quantization
algorithm (MRVQ). DTED data can be thought of in terms of a gray scale image

where the longitude and latitude identify the pixel, and the elevation is the pixel
value. For the purpose of possible Navy application, the data were transformed from
their original linear scale between 0 and 10000 meters, to a logarithmic scale between

0 and 255. The quantization results in a compression from 14 bits per datapoint
to 8 bits per datapoint. This logarithmic scale, shown in figure 5, represents lower

elevations more accurately than higher elevations, the rationale for this being that
lower elevations areas are more likely to be important for Navy applications, and
that nearly all of the earth's surface (particularly near coastlines) is at relatively low
elevation.

255-

,,IJ191

> 120-
,_jLLJ
X

64

0~0

0 2200 4400 6600 8800
ELEVATION (meters)

Figure 5. The scale transformation used for the DTED data.
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Figure 6. The original DTED Norway image.

Tests in this section were performed on a 512 x 512 section located in the fiords
of Norway. This test image is shown in figure 6. This section of Norway covers the

section of the earth from 50 to 50 25.6' east and 610 to 61' 12.8' north. In figure 13,

the same data are shown in false color. (note: all color images are collected at the end

of the report.) The elevation range for each color band is shown in figure 13. This
section of DTED was chosen because the topology of the fiords serve as a severe test

of the fidelity of the compression methods. A more thorough study where a broad

area of the database containing a representative amount of flat and mountainous

regions would be necessary in determining the compression and fidelity possible for

the complete database.

The iterated transform algorithm was identical to that used by Jacobs et al. (1991)

except for one significant modification. The algorithm was modified to encode sec-
tions of the image on coastlines with increased accuracy. For image sections that

contained roastline, the error criteria was tightened. This resulted in more segmen-
tation, and therefore higher fidelity in these areas. The ADCT algorithm used was

similar to that described by Chen and Pratt (1984), except for a modification similar
to that described above for the iterated transform algorithm. To encode coastlines

more accurately, the decision level quantizer table was compressed for sections of the
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image on coastlines. Improving the fidelity at the coastlines resulted in a decrease

in the overall compression-fidelity performance. The MRVQ algorithm used was as

described in section 1.3. A more complete description of the method has been de-

scribed by Linde et al. (1980). Codebooks were generated from two different training

sets. One training set included 3 sections of DTED similar to (but not including) the

section tested. The other codebook was generated from a diverse set of five digitized

photographs, all distinctl, different from DTED images (a collection of faces, aerial

photos, etc.).

The compression methods being considered are properly applied to images with
a dynamic range appropriate to the number of bits used to store the image, and a

relatively smooth distribution of gray level intensity values over this range. In figure 7,
the number of datapoints at each (nonzero) elevation is plotted versus elevation for
the 512 x 512 section of DTED, which is 10 east of that section shown in figure 6.

In figure 8, this section is displayed as a series of "contours," sea level is displayed in
gray, and all pixels with an elevation that is a multiple of 100 (± 2) are displayed in

black, with all other elevations being displayed in white. It appears that the majority

of the data contained in this section of DTED were created from 100-meter contour
maps, the result being that a disproportionate number of datapoints are at multiples

of 100 meters. In the southeast corner of the map, it can be seen that the number of

points at 100 meters are far more dispersed. In this section of the map, roughly the

number of datapoints that would be expected based on random elevations are present.

In figure 7, it is also evident that between the 100-meter multiples, quantization is
also present on a finer level. The biased quantization illustrated by figures 7 and 8 is

evident in other sections of DTED, including the section of figure 6.

Because of this biased quantization, the reconstructed image resulting from com-
pressed encodings will have a smoother distribution of pixel values than the original

image. This will lead to an artificially poorer measured fidelity of the encoded im-

ages. In areas of DTED where the data are "properly" digitized, this situation will
not occur. Because not all the data are quantized at a course resolution, but only

most of it, taking advantage of this quantization is not simple. Although it has not
been done here, before applying lossy compression techniques such as iterated trans-

forms, ADCT, or VQ, requantization of the data in such a way that the majority of

the datapoints retain their correct values could result overall improved performance.

Figures 9, 10, and 11 show gray scale reconstructed images from typical encodings

of the image in figure 6 using iterated transforms, ADCT, and MRVQ respectively.
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Figure 7 The distribution of elevations for a section of DTED.

Figure 8 .Pixels of value 100 ±2 meters.
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Figure 9. The decoded iterated transform Norway image, compression = 44.86:1,
PSNR 32.98 dB.

Figure 10 . The decoded ADCT Norway image, compression = 30.30:1,
PSNR = 32.52 dB.
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Figure 11 . The decoded MRVQ Norway image, compression = 32:1,
PSNR = 31.16 dB.

Table 1 . Compression and fidelity results for encodings of DTED.

Method Compression PSNR(dB)
Iterated Transforms 44.86:1 32.98
Iterated Transforms 21.49:1 35.08

ADCT 30.30:1 32.52
ADCT 21.08:1 34.92

MRVQ (general codebook) 32.00:1 31.16
MRVQ (DTED codebook) 32.00:1 31.37

The fidelity and compression of these (and other) encodings are summarized in ta-
ble 1. These same results are shown in false color in figures 14, 15, and 16 respectively.
The sharp color boundaries of the false color display act to magnify small errors in the
encodings. This, combined with the topography of steep cliffs rising directly out of
the fiat ocean resulted in the distortion along the coastlines, particularly in the ADCT
encodings. The compression versus fidelity results indicate that the iterated trans-
form algorithm performed well when compared with the ADCT and MRVQ methods.
Other important factors to consider when comparing these compression algorithms
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are access time, decoding time, and encoding time. Iterated transforms, along with

ADCT are variable bit-rate methods, which would result in slower access times than

the fixed bit rate MRVQ algorithm. Iterated transform encoding requires an extensive

search procedure, making it slower than MRVQ, which also requires a search, albeit

a shorter one. Iterated transform encoding is also slower than ADCT, which requires

only a transformation and quantization. For most applications, encoding would be

a one-time procedure; therefore, encoding time would not necessarily be an impor-

tant concern. If an application required all or a large fraction of DTED be encoded,

then the computer costs for encoding become significant. For many applications, the

speed of decoding an image might be a critical requirement. The decoding for iterated

transforms is a simple iteration, making it faster than ADCT (where decoding takes

as long as encoding), and slower than MRVQ, which is essentially a table lookup.

3. APPLICATION TO COLOR

Application of the iterated transform compression method has, to date, been

limited to 6-bpp gray scale images (Jacquin, 1989, 1990) and 8-bpp gray scale images.

Another common format for images is 24-bpp color. As equipment that can display

these images becomes cheaper and more common, the 24-bpp format will become

more widely used. In fact, the Joint Photographic Experts Group (JPEG) image

compression standard is being set up for 24-bpp color image. In the 24-bpp format, an

image is made up of red, green, and blue subimages, each subimage being represented

with 8 bits. Because a relatively large amount of information is used to store each

pixel, there is a large potential for compression of these images. This potential for

compression is enhanced by the fact that there is often a high degree of correlation

between the pixel values of the three subimages. A standard approach for encoding

24-bpp color images is to transform the images from the RGB representation to the

YIQ luminance and chrominance representation. The luminance (Y) image (black

and white television picture) generally contains the bulk of the information content

of the image. The chrominance (I and Q) contains image color content, and generally

contains a small fraction of the image information. This allows for spatial averaging

of the chrominance with little loss in image fidelity. A flow diagram indicating the

encoding and decoding process is given in figure 12.

All the data presented in this section are 512 x 512 pixel images. The spatial

averaging reduced I and Q to 128 x 128 arrays. During decompression, I and Q
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Figure 12. The encoding and decoding of a color image.

were expanded to 512 x 512 by means of linear interpolation. In figures 17-19
are shown the original images, the iterated transform reconstruction and adaptive

discrete cosine transform reconstruction for the image of Lena. Figures 20-22 and
23-25 show the original and both reconstructed images for the vegetables and the

mandrill respectively. The fidelity of these images is given by

+=1 J= [(Rij - R 1)2 + (G., - Gj)2 + (B -_ B ]
PSNR = -10* log10 {3 x 5122) x (28 - 1)2

where Rij, Gij, and Bij are the pixel values of the original image and Rj, G ., and
Bj are pixel values of the reconstructed image. The compression and fidelity results
for these encodings given in table 2 indicate that the compression versus fidelity

performance of the iterated transform method is competitive with, but does not
surpass the ADCT results.

A second method for compressing 24-bit images using iterated transforms was also
tested. Instead of converting to the YIQ representation, the method takes advantage
of the similarity between the R, G, and B images by using the same (or similar) trans-
formations for all three subimages whenever possible. For this reason, the method
will be called common transformations. With this method, the first step is to encode
one color subimage (say the R subimage) in the normal fashion. This will be referred
to as a primary encoding. The second step is to perform a secondary encoding of the

other images.
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Table 2. Compression and fidelity results for 24-bit images encoded using YIQ approach.

Image Method Compression PSNR(dB)
Lena Iterated Transforms 65.54:1 29.00
Lena ADCT 63.44:1 30.15

Vegetables Iterated Transforms 69.63:1 29.23
Vegetables Iterated Transforms 90.01:1 28.40
Vegetables ADOT 60.16:1 30.25
Vegetables ADCT 73.14:1 29.58
Mandrill Iterated Transforms 50.95:1 21.38
Mandrill ADCT 47.20:1 22.25

A secondary encoding is performed by encoding (say the G subimage) using the
same set of Rj's as was used to encode the R subimage. Each A- in the G subimage
is encoded using the same wi (i.e., the same Di, si, and oi) as was used to encode the
corresponding R in the R subimage. If the predetermined error criteria is not met
for a given R,, the optimal offset (oiG) is calculated, and replaces oiR, while Di and
si remain unchanged. The error is recalculated using the new offset, and compared
with the predetermined error criteria. If the error criteria is still not met the optimal
offset (siG) and scale (0 ,G) factors are calculated to replace siR and oR, with only Di
remaining unchanged. The error is again recalculated using the new scale and offset,
and compared with the predetermined error criteria. If the error criteria is still not
met, a search is performed for the optimal wi. To store each wiG, an identification
code indicating if wi is identical to wiR, wiG has a new offset, wiG has a new scale and
offset, or wi G is completely different from wiR, is required, followed by the information
not contained in wi . Scale factors are stored with 5 bits, offsets with 7 bits, and
complete transformations with approximately 30 bits. The identification code takes
2 bits to store, so the net savings per transform is 28, 21, 16, or roughly break even
(a variable length code, sometimes less than two bits, sometimes more than two bits,
is normally needed to identify the range size, and is not required here) depending on
whether or not offset, scale, and domain information is required. The last subimage
(in this case, the B subimage) is then encoded using the wi's from the R. subimage,
just as was done for the G subimage.

This tcchnique can be carried one step further when encoding the last subimage by
first checking for common transformations with the primary image, and then checking
for common transformations with the secondary image. This additional step requires
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Table 3. Compression and fidelity results for 24-bit images encoded using
common transformation approach.

Image Primary Secondary Tertiary Compression PSNR(dB)
Lena R G & B 62.3:1 27.7
Lena R G B 63.7:1 27.6
Lena R B G 62.8:1 27.5
Lena G R & B 57.5:1 28.8
Lena G R B 56.9:1 28.8
Lena G B R 56.9:1 28.8
Lena B R & G 64.6:1 27.1
Lena B R G 63.6:1 27.1
Lena B G R 64.6:1 27.1

Vegetables R G & B 57.2:1 28.1
Mandrill R G & B 21.9:1 21.7

an additional bit for each identification code for the tertiary subimage. Data using

the common transformation method on three different images are given in table 3. In

the table, results for applying the method with R, G, and B permuted are given for

the image of Lena. It is seen that the different permutations of R, G, and B yielded
similar results. Permuting R, G, and B in the algorithm when encoding the other

two images resulted in smaller variations than for the image of Lena. The results

also indicated that the extra bit for the identification code required for the tertiary

encoding is sufficient to cancel out any gain in performance that might be attained by

using the tertiary encoding. Comparing the results with the data given for the YIQ

method shows that the YIQ method is a superior method. This was especially true

in the case of the image of the mandrill, where the great bulk of the information is in

the Y subimage, and the correlation between the R, G, and B subimages is relatively

small.
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Figure 13. The false color version of figure 6, and the elevation legend for false
color images.

Figure 14 . The false color decoded iterated transform Norway image.
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Figure 15 The false color decoded ADCT Norway image.

Figure 16 . The false color decoded MRVQ Norway image.

25



Figure 17. The original color image of Lena.
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Figure 18. The decoded iterated transform color image of Lena.

"ril

Figure 19 . The decoded ADCT color image of Lena.
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Figure 20. The original color image of vegetables.
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Figure 21. The decoded iterated transform color image of vegetables.

Figure 22. The decoded ADCT color image of vegetables.
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Figure 23. The original color image of the mandrill.
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Figure 24. The decoded iterated transform color image of the mandrill.

... .I .

Figure 25. The decoded ADCT color image of the mandrill.
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