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PREFACE

The (oncurrent Processing for Advanced Simulation project developed pro-
grainming systems for large-scale simulations. This paper outlines experiments
that explore the effect of multiprocessing scheduling algorithms on the overall
performance of Time Warp based simulations. This paper will be of interest to
programmers and designers of mu Itiprocessor systems.

The work has been conducted in the Applied Technology Program of the
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SUMMARY

The Time Warp multiprocessing scheme promises speedup for object-oriented
discrete-event simulations. The Concurrent Processing for Advanced Simulation
project has constructed a Lisp-based Time Warp system for implementing sim-
ulations with many large, complex objects. Since many objects share a single
processor, the CPU time allocated to each object must be scheduled. Since
object events are not preempted, we are scheduling which objects have events
processed rather CPU time per object. We developed approaches to schedul-
ing, ranging from a simple Round-Robin mechanism to complex ones involving
queue length.

We developed ten different scheduling algorithms which we named: Worst
Case, Conventional Round-Robin, Lowest Local Virtual Time (LVT) First, Pri-
ority LVT, Largest Queue Priority, Bradford/Fitch, Anti-Penalty, Queue Anti-
Penalty, Queue Cycle, and Positive Infinity.

Results show that LVT, ani-messages, rollbacks, returned messages, and
anti-reminders are good parameters for scheduling of system resources. Input
queue size is also an important factor, but when taken with or without LVT, it
does not produce results as good as using LVT alone. The round-robin scheduler
was one of the worst performers. The poor performance of the simple round-
robin scheduler indicates the advantages of using state information to determine
the scheduling order in the Time Warp system.

Benchmarks of the schedulers showed that the Anti-Penalty scheduler per-
formed better than the others. The Anti-Penalty algorithm is based on a com-
posite measure of simulation advance rate, flow control, and the appearance of
specific message types. The benchmark simulation executed on a five processor
Time Warp system.
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1 Introduction

The Time Warp multiprocessing scheme promises speedup for object-oriented
discrete-event simulations. RAND's Concurrent Processing for Advanced Simu-
lation project has constructed a Lisp-based Time Warp system for i.nplementing
simulations with many large complex objects. Time Warp is an optimistic strat-
egy for distributed simulation that distributes objects and workload across nodes
in a network of workstations. This paper describes a study of the scheduling
algorithm used to share the same processing unit among a number of objects'.

To minimize storage fragmentation, our multiprocessing system operates as
a single job per processor. The system allocates dynamic storage from a single
heap shared by a processor's resident objects. The task scheduler allows each
object to execute for a a number of simulation event cycles before switching
contexts to another. Our experiments vary the number of cycles, the frequency
an object is selected for execution, and the order of object selection. Our goal
was to identify parameters that play a major role in Time Warp scheduling and
to test various mechanisms that improved its performance.

After describing the general class of Time Warp systems, we review the
different classes of distributed schedulers and argue for the existence of a new
class. We then describe the different variants of schedulers we tested, the results,
and then close with a discussion of the costs and benefits of using different
features of the state to improve performance.

2 The Time Warp Mechanism

Time Warp is an object-oriented message-passing scheme for transparent multi-
processing [4, 6]. It is particularly well suited for object-oriented discrete-event
simulations with large numbers of objects having complex behaviors. Objects
require a large amount of code to define their behavior. Time Warp differs
from single processor discrete-event simulations in three key ways. First, while
conventional discrete-event simulations have a single simulation clock serving
all objects, each Time Warp object has its own clock. Second, in a conven-
tional discrete-event simulation, all objects execute with the same simulation
time, whereas in a Time Warp simulation, each object proceeds at its own rate.
Third, conventional discrete-event simulations require state saving only for ex-
cursions (where an object would predict the future by simulating it). In a Time
Warp simulation, on the other hand, frequent state saving is required, in order
that objects computing with incorrect values can restart after a rollback.

Time Warp objects communicate by sending messages. All messages have
time stamps indicating both the sending and receiving time. If a message arrives
in an object's future, the system puts it on the object's input queue for future

1 This is an expanded version of an article which originally appeared in the April 1990 issue
,4f Oprmhng Systrms Review



2

processing. Messages arriving in an object's past cause the object to roll back
to a time prior to the message. Messages that have already been sent are can-
celled by sending a corresponding anti-message. When an object's time is the
same as a message's time, the system removes the message from the input queue
(also called event queue), evaluates the message text, and processes any output
messages. This object cycle serves as a basis for our non-preemptive scheduling
algorithms. This contrasts with a preemptive scheme that might suspend an ob-
ject's execution in the middle of a cycle. We choose non-preemptive scheduling,
because it's difficult to move objects between machines in the middle of an event
cycle. Likewise, in our Lisp programming environment, preemptive algorithms
require complex and expensive context switches.

Global Vzrtual Time (GVT) is the time of the farthest behind local clock for
all simulation objects. This time is equivalent to the real time of the simulation.
All input and output is synchronized with GVT. Since an object cannot senr, a
message into its past, objects can never roll back to a time earlier than GVT. All
messages and states saved prior to GVT are subject to fossil collection, which
frees their storage space. The computation of GVT occurs at periodic intervals.

Since our workstations are quite large (8 - 24 megabyte workstations), each
can service many objects. A Time Warp scheduling routine running on each
processor optimizes various system parameters to reduce the global program
execution time. Because we wanted to scale the system up, we did not allow
interprocessor communications between scheduling algorithms. Finally, it is
extremely difficult to compute event dependencies from program source code.
Consequently, our algorithms assume no known scheduling dependencies.

3 A New Category of Distributed Scheduler

There are many types of single processor schedulers: deadline, priority, pre-
emptive, non-preemptive, etc. Two of the main objectives for all scheduling
disciplines are to maximize throughput and reduce overhead [3]. Distributed
schedulers must also meet the same requirements. A review of the literature
reveals two categories of distributed schedulers.

I. Scheduling of independent tasks

2. Scheduling of dependent tasks

Tannenbaum [11] states that the first type can be scheduled randomly, and
then only discusses how to handle the scheduling of dependent tasks. There are
also numerous studies of dependent systems (7, 8, 9, 101.

Dependency information is normally not part of the simulation code, nor
in general can it be computed alitomatically. Consequently. the dependency-
bascd schemes are not appropriate for our purposes. Time Warp processes may
be scheduled in various orderings and the system will still complete execution.
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Thus, Time Warp would appear to fall into Tannebaum's first category. How-
ever, our results show random scheduling to be extremely poor. Although there
are dependencies in a Time Warp simulation, we can't reliably predict them.
Therefore, our schedulers fall into a third category that rely on indirect measures
of dependency based on simulation state.

The schedulers discussed in this paper are also not covered by Casavant and
lKuhl's[21 taxonomy of distributed schedulers. At the top of their hierarchical
structure is local versus global scheduling. They describe global schedulers as
those that decide where a task should execute. Local schedulers run concur-
rently (one on each processor) and determine the scheduling for their respective
processors only Since our schedulers make no decision of where a task should
execute, they must be local. Casavant and Kuhl discuss subcategories of global
sChedulers, but their taxonomy stops at this point.

Nonetheless, many of Casavant, and Kuhl's subcate,ories for global sched-
,lhers apply to our local schedulers. For instance, some of our schedulers fall
into their dynamic category. because they use run-time information about the
task to determine the scheduling order. They are noncooperatire, because indi-
vidual processors make decisions independent of the actions of other processors.
Our schedulers also use sub-optimal approximations to determine which task to
schedule next. For example, Time Warp information such as Local Virtual Time
(L\'T) and input queue length prove useful for the schedulers but. are clearly
ion-optimal. We wil, show that the best schedulers are tho.e that are local,
non-cooperative, and use sub-optimal approximations. We will also rhow that
a well-chosen scheduling method results in improved Time Warp performance.

4 Time Warp Scheduling Algorithms

Our first task was to identify system characteristics that affect total system
throughput: a simulation's start-to-finish wall clock time. We instrumented
the Time Warp system to measure various parameters that determine system
performance. Taese include the lengths of Time Warp message queues, stan-
dard deviation of LVT across all objects, CPU time per object cycle, number
of rollbacks, network utilization, and many others. Starting with the simplier
schtdulers. we examined advance rates and execution statistics to make infer-

on how to improve the (GVT advance rate. Though wr could not examine
all conilmat ions of the,,e sy,-,t em parameters, we choose important combinat ions
that would account for wid'ly varying event times and system load. We tested
th" following ten ,scheduling algorithmls.

I Vorst Case: An unlimited Round-Robin schbeduler where each object
runs to coipletion or exhaustion of its input queue. This algorit hi works
wf lI in simulations with no interaction between objects. but exhibits worst-
rase and even divergtut behavior with dependent objects We were not
able to test this schonm on a iy but the most trivial sinuIlations.
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2. Round-Robin: We implemented this algorithm as a control in the ,x-
periment. This is essentially the random scheduling algorithm in Tannen-
baum's taxonc.ny. Each object executes a fixed number of object-cycles
befcre relinquishing control. A very large number of object-cycles would
make the Round-Robin scheduler degenerate into the Worst Case sched-
uler. By experiment, we've determined that three is the best number of
cycles.

3. Lowest LVT First: This algorithm isolates LVT as a measure for schedul-
ing. The idea is to process the object with the lowest LVT firs, to get it
closer in time to other objects in the system. This scheduler is essen-
tially the Round-Robin scheduler in which the order of object execution
is changed, but the number of cycles per object remains constant. Each
time the system cycles through the queue, it places the object with the
lowest LVT at the head. The reasoning behind this algorithm is as follows:
rollback occurs when object B sends a message, X, to object A with a
time stamp earlier than A's current LVT. Thus, object A must roll back
to a time previous to X's time stamp.

4. Priority LVT: Like the Lowest LVT First algorithm, this scheduler em-
phasizes objects with low LVTs. It computes the standard deviation of the
LVTs of the processor's objects. It then places all objects with LVTs less
than the mean LVT plus the standard deviation onto a priority scheduling
queue. Objects on the priority queue get more event cycles than objects
on the standard scheduling queue. The idea of both this and the Lowest
LVT scheme is to allow objects that are farthest behind to catch up with
the others.

5. Largest Queue Priority: This algorithm emphasizes objects with large
unprocessed event queues. It is exactly the same as Priority LVT except
that it computes the standard deviation of unprocessed event queue sizes.
When an object's queue length is greater than the mean plus the standard
deviation, it goes onto the priority queue. The belief is that a large event
queue predicts a large processing requirement. Processing more of the
events should even out the wide disparity in LVTs, resulting in improved
performance.

6. Queue Cycle: This algorithm emphasizes queue length rather than LVT
as a heuristic for measure of performance. This algorithm simply schedules
the object with the largest unprocessed event queue next. It schedules each
object for three cycles.

7. Bradford/Fitch: The Bradford/Fitch algorithm attempts to emphasize
objects doing useful work by penalizing objects with high LVTs. For each
object, it computes a penalty value. Out of those objects with the lowest
penalty, it picks one at random and cycles it up to three times. After
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each object cycle, the Bradford/Fitch algorithm checks if any rollbacks
or returned messages occurred since it last checked. A returned message
indicates that an object's input queue is full and is thus returning any new
ones to the sender. Rollbacks and returned messages suggest that other
objects need to be processed for the system to continue doing useful work.
Thus, if any are detected, the scheduler then finds the object with the
lowest LVT and schedules it; otherwise, the same object is rescheduled.

8. Anti-Penalty: This algorithm is a variation on the Bradford/Fitch sched-
uler that attempts to stop the cycling for anti-messages and anti-reninders.
Anti-reminders are generated by the priority request mechanism [5]. Like
the Bradford/Fitch scheduler, the penalty function finds the object with
the lowest LVT to schedule. However, it continues scheduling that object
for up to three cycles or until a rollback, returned message, anti-message,
or anti-reminder shows up. Bradford/Fitch only considers returned mes-
sages and rollbacks.

9. (tieue Anti-Penalty: This variant of the Anti-Penalty and Bradford/Fitch
algorithm uses unprocessed event queue length, rather than lowest LVT,
as the penalty function.

10. Positive Infinity: This algorithm puts objects that have reached positive
infinity, meaning they have nothing more to do, on a low priority queue.
It schedules objects below positive infinity three times more often than
those at positive infinity, because objects at positive infinity have finished
working and are just waiting for the system to complete or to roll back.
This scheduler focuses on the termination condition in Time Warp, while
ignoring the interval previous to termination.

There are a large number of system parameters that are potential measures
of systern performance. We selected ones that seemed reasonable based on
our understanding and experience with the Time Warp system. Attempting to
rover all possible combinations of these measurements is beyond the scope of this
paper. lowever, we have tested a reasonably wide range and have shown that
crtain combined measurements are better indicators of system performance

than others.

5 A Test Simulation

Because of t ime constraints, we picked a single worst case Time Warp simulation
in which all objects commnicate with all other objects at every simulation time
step. We maintained constant parameters for the execution of the simulation
.arying only processor load and scheduling algorithms.

Th'e simulation consists of a number of moving objects which have pre-
assigned velocities. These move about on a grid and change direction when
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they bump into the surrounding walls or when two or more land on the same
grid. A graphics object displays moving object location on a regular basis, and
a console object prints the numeric location and direction changes. All objects
were programmed to accept information in a non-deterministic order. However,
with the exception of the console display, the simulation is still deterministic.

The simulation was run oil a network of four SUN-4 workstations connected
by a ten megabit local area network. Each processor has its own local disk to
avoid paging over the network. The network was run without any load other
than that created by Time Warp. The controlling workstation is a 10 NIIP
processor with 24 megabytes of main memory running the 12 megabyte GVT
and graphics process. The three Time Warp processors are eight megabyte
SUN-4's running a 12 megabyte process with three objects per machine. There
is no dynamic load balancing (dynamic load balancing is the subject of another
paper [1].

Measured wall-clock time does not include Time Warp system initialization.
ll)wever, the times are effected by the size of the Time N'Varp GVT interval as
,,he last GVT cycle may have few events. With a GVT cycle time of five seconds
and a miiiimnum simulation execution time of 100 seconds, there is an error of
only five percent.

6 Experimental Results

W\e tested the tell algorithms described in the previous section. The worst-
case scheduler is more than O(n3) where n is the number of messages between
objects. Only in extremely simple cases (lid it ever complete and is therefore
excluded from the figures.

To compare the performance of the algorithms, the test simulation was run
wit i each 16 times. As we are running a public network of workstations, network
delays and uncontrolled processor loads cause a variance in execution time. A
good algorithm will also be responsive to these independent changes. The his-
togramns in Figures 1-9 show the distribution of execution times for the different
schedulers. For example, Figure 1 shows that the Lowest INT First scheduler
executed nile times at 110 seconds, six times at 120 seconds, and one time at
130 seconds.

The Anti-Penalty scheduler produced the best performance, followed by a tie
between the Queue Anti-Penalty schedtiler and the Bradford/Fitch sclieduler.
The results show the correctness of the assumptions made by the Bradford/Fitch
scheduler: scheduling the object with tie lowest LVT next and blocking when
it can miake no more progress reduces simulation wall-clock time.

The only difference between the Anti-Penalty sc h,,duler and tie Bradford/Fitch
scheduler is when the scheduler blocks tie currently executing object. The Brad-
ford/Fitch scheduler blocks as soon as a rollback or a returned message is sent,
berause any more work done by the currently executing object at this point will
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be wasted. The Anti-Penalty scheduler goes one step further. It also blocks an
object if anti-reminders or anti-messages are sent. Anti-messages indicate that
an object will be rolled back, so it is best to block the current object so that the
Objuct to roll back can do so immediately, because any messages it gets after the
anti-message are likely to be undone. It also considers anti-reminders, because
the priority request mechanism can cause an object to roll back. The results
show that blocking on anti-messages and anti-reminders in addition to rollback
or returned messages enhances the performance of the scheduling algorithm.

These results show that LVT, anti-messages, rollbacks, returned messages,
and anti-reminders are the best indicators of system load. Input queue size is
also an important factor, but when taken with or without LVT, it does not
produce results as good as using LVT alone. The Round-Robin scheduler was
one of the worst performers. The poor performance of the simple Round-Robin
scheduler indicates the advantages of using state information to determine the
scheduling order in the Time Warp system.

Figure 10 ranks scheduler performance, with the best at the bottom. For
each scheduler, there is a bar indicating the range of times it took to execute.
The shaded portion of the bar indicates times below the mean, and the unshaded
port ion of the bar illustrates the times above the mean. The mean time for each
scheduler is the dividing line between the shaded and unshaded regions.

From Figure 10, we can see that there were three groups of schedulers: those
whose times ranged from 100 to 110, from 100 to 130, and from 100 to 200. The
th re sclieduers in the fastest group all depend on aspects of the object state
information. This shows the dramatic difference the use of Time Warp state
informat ion in scheduling decisions can make on system performance.

7 Conclusions

We tested ten different algorithms for the Time Warp system. Through timing
comparisons. we have shown that the best performance is achieved by examin-
ing information about the object's state to determine which object to schedule
next. These algorithms fall into a new category for distributed system sched-
ulers. The previous categories consisted of schedulers for independent processes
amd schedulers for processes with nested dependencies. The schedulers have at-
tributes of Casavant and Kuhl's taxonomy: they are local, noncooperative, and
use sub-optimal approximations, but they don't firmly fit into that taxonomy
eit her A category that applies to these schedulers would cover local schedulers
of independent processes that benefit from the use of process state information
in the scheduling decision.

Benchmarks of the schedulers showed that the Anti-Penalty scheduler per-
formed better than the others. The Anti-Penalty scheduler selects the object
with the lowest INT to schedule. It continues scheduling it for up to three cycles
or uintil a rollback, returned message, anti-message, or anti-reminder shows up.



The benchmarks were executed under a simulation executed on a five-processor
Time Warp system. The benchmarks also showed that LVT, anti-messages, roll-
backs, returned messages, and anti-reminders are the best indicators of system
load on rime Warp.

The dynamic load balancing techniques that we have tested use the same
inputs for measuring processor load under Time Warp as do the scheduling
algorithms. While a description of load balancing is left to another paper, it is
important to point out that the same parameters for measuring processor load
apply to both scheduling and load balancing.
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Figure 4. Queue Cycle Scheduler
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Figure 7: f3radford/Fitch Scheduler
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Figure 9: Largest Queue Priority Scheduler
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Figure 10: Summary of Schedulers


