
AD-A248 028 (I

OF

AUTOMATING THE WEEKLY FLIGHT
SCHEDULING PROCESS AT THE
USAF TEST PILOT SCHOOL OTIC

0E:LECTE
THESIS MAR 3 11992

Gary G. Foster, Captain, USAF w

'D DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY 0

AIR FORCE INSTITUTE OF TECHNOLOGY 0
IN_

Wright-Patterson Air Force Base, Ohio

92 3 ~31~~2

AFIT/GOR/ENS/92M-10

AUTOMATING THE WEEKLY FLIGHT
SCHEDULING PROCESS AT THE
USAF TEST PILOT SCHOOL

THESIS

Gary G. Foster, Captain, USAF

Approved for public release; distribution unlimited

AFIT/GOR/ENS/9 2M- 10

AUTOMATING THE WEEKLY FLIGHT SCHEDULING PROCESS

AT THE USAF TEST PILOT SCHOOL

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

Accession For

NTIS qBA&I
DTIC TAB LI
Uxauoxced []

Gary G. Foster, B.S.

Captain, USAF ---

March 1992/u i

Approved for public release; distribution unlimited

THESIS APPROVAL

STUDENT: Captain Gary G. Foster CLASS: GOR-92M

THESIS TITLE: Automating the Weekly Flight Scheduling Process at
the USAF Test Pilot School

DEFENSE DATE: 3 March 1992

COMMITTEE: NAME/DEPARTMENT SIGNATURE

Advisor Captain John Borsi
(AFIT/ENS)

Reader Dr James Chrissis---
(AFIT/ENS)

Preface

The objective of this study was to develop and automate a

solution technique for producing weekly flight schedules at the

USAF Test Pilot School. Currently, the flight scheduling process

at the Test Pilot School is performed manually. In addition, due

to the large quantity of data that must be processed to develop a

flight schedule for an entire week, flight schedules at the Test

Pilot School are developed on a daily basis. Such a shortsighted

approach can often lead to scheduling problems.

Stemming from earlier work accomplished in this area by

Captain Lisa Hassel, a mixed integer programming approach to

solving this problem was investigated. However, due to the large

size of the resulting mixed integer programming model, all known

solution techniques were impractical. Consequently, a heuristic

algorithm was developed. The heuristic algorithm presented in

this thesis demonstrated the capability to produce reasonable

weekly flight schedules in less than ten minutes of processing

time.

In developing the heuristic algorithm, as well as writing

this thesis, I have had a great deal of assistance from others.

I would like to express my appreciation to my faculty advisor,

Captain John Borsi, for his insight and direction. I would also

like to thank Dr. James Chrissis for his help and constructive

comments. Finally, T would especially like to thank my family,

for making "it" all worthwhile.

Gary G. Foster

ii

Table of Contents

Page

Preface..........................ii

List of Figures.......................vi

List of Tables.......................vii

Abstract.........................viii

1. Introduction........................1

1.1 Background......................1

1.2 TPS Curriculum....................3

1.3 TPS Flight Scheduling Process
Description......................4

1.4 Quality of Training Requirements 6

1.5 Research Objective..................7

1.6 Overview........................8

2. Literature Review....................9

2.1 Scheduling Theory Overview 9

2.1.1 Constraints...................9

2.1.2 Scheduling Performance Measures 11

2.2 The Resource-Constrained Scheduling
Problem........................12

2.3 Problem Formulation of RCS Problems 13

2.3.1 Network Approach..............13

2.3.2 Binary Integer Programming
Approach...................14

2.4 Solution Methods for RCS Problems..........15

2.5 Complexity Theory.................19

2.6 Heuristic Methods for Solving

RCS Problems.....................20

iii

3. Problem Formulation 24

3.1 Model Formulation 24

3.1.1 Decision Variable Set 27

3.1.2 Objective Function 28

3.1.3 Constraint Sets 29

3.1.4 Workload Leveling 34

3.2 A Small Example Problem 36

3.2.1 Example Problem Description 36

3.2.2 Example Problem Formulation 39

3.2.3 Example Problem Objective Function . . . 40

3.2.4 Example Problem Constraint Sets 41

3.2.5 Example Problem Solution 46

4. Heuristic Approach 48

4.1 Heuristic Approach Background 48

4.1.1 Flight Scheduling Problem
Characteristics 49

4.1.2 Flight Scheduling Algorithm Goals . . 51

4.2 Scheduling Algorithm Description 52

4.3 Coded Algorithm Development
and Description 61

4.3.1 Algorithm Testing 63

4.3.2 Testing Limitations63

4.3.3 Coded Algorithm Output 64

4.3.4 Example Problem Solution 65

4.4 Full Scale Application 66

5. Conclusions and Suggestions 68

5.1 Conclusions 68

iv

5.2 Suggestions for Further Work 70

Appendix A. Heuristic Algorithm Applied
to the Example Problem 72

Appendix B. Heuristic Algorithm Applied a
Full-Size Problem 79

Appendix C. TPS Flight Scheduling Program
Operating Instructions 95

Appendix D. TPS Flight Scheduling Program
Source Code 99

Bibliography 129

Vita 131

v

List of Figures

Figure Page

1.1 TPS Flight Scheduling Time Line 4

4.1 Scheduling Algorithm Flow 53

4.2 Resource Allocation Flow 56

4.3 Example of Algorithm Progression 62

vi

List of Tables

Table Page

3.1 Example Problem Instructor Availability 37

3.2 Example Problem Aircraft Availability 38

3.3 Example Problem Mission List 39

3.4 Example Problem Solution Schedule
(Mixed Integer Programming Approach) 46

4.1 Example of Re-Prioritizing Missions 60

4.2 Example Problem Solution Schedule
(Heuristic Algorithm Approach) 66

vii

Abstract

This study investigated different scheduling solution

approaches that could be automated and applied at the USAF Test

Pilot School (TPS). Currently at the TPS, flight schedules are

manually developed on a daily basis. Weekly flight schedules are

not developed due to the large quantity of data that must be

processed to develop a flight schedule for an entire week. A

weekly flight scheduling approach would reduce the occurrence of

scheduling problems and unbalanced resource utilization, both of

which are often the result of a daily flight scheduling approach.

In addition, posting a flight schedule for the entire week would

improve communication between the scheduling staff and affected

personnel.

A literature search revealed that the TPS flight scheduling

problem belongs to the class of resource-constrained scheduling

problems. Furthermore, since such problems are placed in the

class of NP-complete problems, heuristic methods are the most

practical approach to solving real-size resource-constrained

scheduling problems. A heuristic scheduling approach which is

capable of producing reasonable weekly flight schedules at the

TPS is detailed in this thesis and was incorporated into a

software package.- ,The computerized heuristic has demonstrated

the capability of producing reasonable flight schedules in

minutes for weekly flight scheduling problems consisting of

multiple aircraft types, 25 instructor pilots, 50 students, and

up to 24 different mission types.

viii

AUTOMATING THE WEEKLY FLIGHT SCHEDULING PROCESS

AT THE USAF TEST PILOT SCHOOL

1. Introduction

1.1 Background

"In support of aircraft test and evaluation, the USAF Test

Pilot School (TPS), located at Edwards AFB, trains technically

competent test pilots, navigators, and engineers" (8:1). To

ensure quality training, the sequence of and time between

training events are crucial. Hence, the scheduling of training

events is a significant responsibility of the TPS staff --

unfortunately, it is also a time consuming responsibility.

Before each class of students enters the TPS program, major

training events (items such as flight techniques and classroom

academics) are formed into an overall integrated academics and

operations schedule (9). This schedule, although useful as a

planning guide for the flight scheduling process, cannot

represent or incorporate the inherently dynamic nature of flight

operations. The weekly flight schedule is dependent on many

variables (aircraft availability, weather, etc.) that cannot be

controlled or predicted by the TPS staff. Therefore, the TPS

staff is forced to perform flight scheduling on a weekly basis.

1

In developing the weekly TPS flight schedule, the scheduler

must ensure that enough flights are scheduled to maintain pace

with the integrated academics and operations schedule. At the

same time, the scheduler must also ensure that the students and

instructor pilots are not overworked with too many flights (4:3).

The scheduler must consider quality of training requirements

which govern the minimum and maximum number of days allowed

between specific types of student flights. The combination of

the guidelines above, unforeseen circumstances (weather, illness,

eta), and resource constraints (aircraft, students, instructors,

etc) cause the development of a weekly flight schedule to be a

complex and time-consuming process.

An investigation into automating the scheduling process at

the TPS was conducted in late 1990. The emphasis of this

investigation focused on a zero-one (binary) integer programming

approach to automating the overall TPS schedule (8:vii). The

investigation indicated that a binary integer programming

approach is unsuitable for optimizing the overall TPS schedule

because the resulting number of variables makes the problem

computationally impractical (8:45). Consequently, the

investigation recommended the development of heuristic scheduling

methods for the TPS scheduling problem (8:46). Heuristic methods

are solution approaches that apply knowledge of and experience

with a particular problem in order to obtain a solution. They do

not guarantee optimal solutions. However, heuristic methods

often produce reasonable solutions. The investigation also

2

classified the TPS scheduling problem as a resource-constrained

scheduling problem -- a scheduling situation where resource

limitations affect the schedule (1:268). The weekly flight

schedule problem falls under this classification because its

solution is dependent on the levels of resources (students,

instructors, and aircraft) available throughout different periods

of the flight week.

1.2 TPS Curriculum

-ne USAF Test Pilot School provides training in two distinct

courses -- the Experimental Test Pilot Course and the Flight Test

Engineer/Navigator Course. Although they are separate, the two

courses are integrated to instill cooperation and understanding

among test team members. Each class consists of 25 students --

typically fifteen pilots, seven engineers, and three navigators.

All students attend the same academic courses (6:5). The program

duration is currently 44 weeks. TPS classes enter in both

January and July; therefore, there is approximately a six month

period when two classes are present (9).

The curriculum is divided into four phases; Performance,

Flying Qualities, Systems Test, and Test Management (6:5). All

four phases have integrated academic and flying programs.

Ideally, the Performance, Flying Qualities, and Systems Test

phases occur sequentially, and the Test Management phase spans

the entire program (9). Various topics are covered in each phase

by the following methods; 1) academic theory, 2) flight test

3

techniques (FTT), 3) flying, and 4) final reports (6:9-35).

Students are trained in various flight test techniques through

academic lessons, FTT demonstration flights, and FTT data

flights. In FTT demonstration missions, students receive hands

on training of flight test techniques from instructors.

1.3 TPS Flight Scheduling Process Description

Although flight schedules at the TPS are made on a daily

basis, aircraft requests are made for an entire week at a time.

The TPS scheduling officer must request resource support

(aircraft type, number, day of week, time of day, etc.) from the

6510th Test Wing (4:3). The deadline for this request is six

days prior to the start of a given flight week; however, the

2 WEEKS PRIOP 1 WEEK PPIOR FLIGHT WEEK TO

BE SCHEDULED

t f f f >\, t /

-o -3

In

I-~ 0 1f 0

oa

g0

D 0'

i0 00H

Figure 1.1 TPS Flight Scheduling Time Line

4

request is usually made on the Thursday two weeks .rior to the

flight week of concern. Figure 1.1 depicts a t-.,e line of the

TPS flight scheduling process. Aircraft requests are based on 1)

the integrated academics and operations schedule which contains a

list of expected flights that should be flown during a particular

week, 2) a database containing student flights that are currently

scheduled, and 3) flights needed for staff checkouts, upgrades,

and proficiency (4:3). On the Thursday before the flight week,

the scheduler receives a list of aircraft (type, number, day of

week, and time of day) that the 6510th Test Wing expects to be

able to support (4:5). Aircraft support is not considered firm

until 1500 hours the day prior to a given flight day. Prior to

this time, requests can be made for additional aircraft, as well

as cancellations of current projected aircraft support. There is

no guarantee that requests for additional aircraft will be

provided. When the projected aircraft support becomes available,

the availability of students and instructors must be obtained in

order to develop a complete flight schedule.

Because each scheduled flight has an aircraft type and

instruction requirement, and instructor pilots have different

aircraft qualifications, flights may require specific instructors

as well as specific aircraft. The expected daily availability of

students and instructors must also be considered. Student and

instructor availability throughout periods of a given week is

recorded on a non-availability form. It is the responsibility of

the individual students and instructors to ensure this form

5

accurately represents their availability status throughout the

week. There are three flight periods per day; however, students

fly only in the first two periods due to academics in the

afternoon. Once all information regarding flights and resource

availability is obtained, it is used to develop the flight

schedule. Within the flight week, non-mission capable aircraft,

weather, incomplete missions, and other factors may require that

some missions be changed. However, changes to the schedule are

kept to a minimum (5:6).

1.4 Quality of Training Requirements

Within the last year, the TPS incorporated additional

scheduling requirements in order to enhance the quality of

training (9). The purpose of these scheduling requirements

primarily concern workload and safety. Many of these

requirements address specific FTT missions. Yet, others are

common to all FTT missions. For instance, flight restrictions

regarding academic test days as well as restrictions on the

minimum and maximum number of days between FTT academics,

demonstration, and data flights apply to all FTT missions. A

complete list of the scheduling restrictions regarding quality

can be found in the Quality of Training Guidelines (3) at the

USAF Test Pilot School.

6

1.5 Research Objective

The primary objective of this research is to develop a

solution method which can be used to automate the TPS weekly

flight scheduling process in order to reduce the work required by

the TPS staff to produce a weekly flight schedule. The solution

method must take into consideration the major guidelines that

currently impact the present flight scheduling process. In

addition, the solution method must incorporate quality of

training requirements which are common to all flight test

techniques (3). Feasibility is obviously a goal of a weekly

flight schedule; however, the flight schedule must also 1)

maintain the pace of the integrated academics and operations

schedule, and 2) minimize the number of violations to the quality

of training requirements. The importance of student and

instructor workload versus quality of training is determined by

the TPS and must be reflected in the resulting scheduling method.

The automated scheduling method must produce an effective and

feasible flight schedule based on the expected availability of

resources (students, instructors, and aircraft) for each day of

the week. If unforeseen changes in the availability of resources

occur during the middle of a flight week, the flight schedule

should be adjusted manually in accordance with daily scheduling

procedures. The goal of the automated scheduling process is to

produce a reasonable initial weekly flight schedule for any given

flight week given the projected aircraft support and expected

availability of instructor pilots and students.

7

1.6 Overview

The remaining chapters provide a detailed description of

this thesis effort. Chapter 2 contains an overview of the

literature that relates to and contributed to the work

accomplished in this study. In Chapter 3, the TPS flight

scheduling problem is presented as a mathematical programming

model. Also in this chapter, a small sample problem is solved

based on the mathematical formulation. In Chapter 4, the

heuristic algorithm is presented. This chapter discribes the

development, flow, and performance of the heuristic algorithm.

Finally, conclusions and suggestions are presented in Chapter 5.

8

2. Literature Review

The focus of this chapter is to illustrate and summarize

current literature that contributes to the topic of resource-

constrained scheduling (RCS). This chapter first presents an

introduction to scheduling theory and typical goals of common

scheduling problems. A description of the RCS problem and its

characteristics is provided, including a short discussion of

complexity theory. Various approaches and techniques used for

solving RCS problems are also presented.

2.1 Scheduling Theory Overview

In general, scheduling problems are concerned with finding

the sequence of activities which is 1) compatible with all

constraints and 2) optimal with respect to some criterion of

performance (7:5). Activities refer to tasks (or jobs) which

must be scheduled for processing/completion. In this study,

activities are TPS flights.

2.1.1 Constraints. The sequence in which activities are

processed often depends upon three primary types of constraints:

technological, precedence, and resource (7:5,48,197).

Technological constraints restrict the order in which the

operations that comprise a particular activity must be processed

9

(7:48). For example, if the activity is fixing a flat tire, the

operation of removing the lug nuts must be performed prior to

removing the flat tire. However, if the level of scheduling

detail in a given problem assumes that the activities consist of

only a single operation, technological constraints do not apply.

Because TPS flights (activities) are scheduled as single

operation activities, technological constraints do not apply in

this study.

Precedence constraints are similar to and often confused

with technological constraints. Precedence constraints limit the

choice of schedule by demanding that certain activities (rather

than operations within an activity) are accomplished before

others (7:48). For example, a valid TPS flight schedule must

ensure that students receive their demonstration flight(s) for a

given flight test technique prior to their data flight(s) on the

same technique.

Resource constraints are usually the most limiting

constraint type. Resource constraints limit the choice of

schedule based on limitations in resources needed for the

completion of activities (7:197). For instance, if a given

flight requires an F-4 aircraft, yet an F-4 is only available on

Tuesday morning, then the given flight must be flown Tuesday

morning. The remaining flights must be scheduled around this

resource limitation. In short, constraints are the driving force

in most scheduling problems. Once all constraints are satisfied

(if possible), schedule feasibility is obtained.

10

2.1.2 Scheduling Performance Measures. Given that a

feasible schedule is attainable, the goal is to find the schedule

which is optimal with respect to some criterion of performance.

Probably the most common scheduling goal is to minimize the time

duration of completing all activities (7:12). With regard to the

TPS, the program duration is fixed (44 weeks); therefore, a

scheduling goal of trying to minimize the time to complete every

TPS activity is not appropriate. Activities must be completed

within the duration of the program, but there is no incentive for

early completion.

Another common scheduling goal is to minimize the number of

late jobs (activities compltted after a requested due date)

(7:9). Scheduling algorithms that seek to minimize the number of

late jobs typically follow the same general pattern. They

initially sequence the activities in order of increasing due

dates (20:16). That is, the job with the earliest due date is

ordered first, and the job with the latest due date is ordered

last. Using the initial ordering of jobs, a search is made to

find the first late job. If no job is late, the sequence is

optimal. If a late job is found, the sub-sequence of jobs up to

and including the first late job is examined. The job in the

sub-sequence with the longest processing time is moved to the end

of the sequence. This process is repeated until the number of

late jobs cannot be reduced by re-sequencing the jobs.

With the introduction of resource limitations, an algorithm

that only considers processing times would have to be modified.

11

Given that the jobs require different resources, the sequence in

which they are processed also depends on the resource

availability over the time that the sequence spans. For example,

given that a job is late, moving it to the top of the sequence

would not yield any improvement if the resource required to

process that job is not available at that time. The scheduling

problem could also be expanded to include a sub-goal of producing

a schedule that utilizes resources (such as instructors) on a

near equal basis. Scheduling objectives may incorporate multiple

goals, ranked in order of importance (7:25). Scheduling

objectives are numerous, complex, and often conflicting;

therefore, it is often difficult to determine a specific

objective as being the most beneficial for a particular problem

(7:9).

2.2 The Resource-Constrained scheduling Problem

Resource-constrained scheduling (RCS) problems are concerned

with the allocation of resources as well as the processing

sequence of the activities (1:5). In most RCS problems, the

general resource structure contains multiple units of several

different resource types (1:268). At the TPS, there are three

resource classes; aircraft, instructors, and students. The

manner in which resources are allocated is dependent on the

selected sequence of activities. At the same time, a sequence's

feasibility depends on the availability of the resources at

different time periods during the project duration.

12

Problem characteristics play a key role in how a given

scheduling problem is formulated and solved. The TPS weekly

flight scheduling problem has the following characteristics:

multiple resource types are present;
resource levels are integral;
resource levels vary by period, but are known;
activities are of single operation;
activity durations are known;
activities should not be interrupted;
precedence constraints exist.

Scheduling problems containing these elements can be classified

as resource-constrained scheduling problems (19:413). Methods of

problem formulation and solution techniques for RCS problems are

the topics of discussion in the following sections.

2.3 Problem Formulation of RCS Problems

RCS problems are most commonly formulated as assignment

problems with side constraints (12:560). The two primary methods

by which this formulation is accomplished are 1) networks with

side constraints to represent the resource limitations and other

constraints (1:268; 18:1163), and 2) zero-one (binary) integer

program (12:560; 14:1206; 15:449).

2.3.1 Network Approach. Since the 1960s, networks have

been a popular approach in solving scheduling problems (14:1206).

By the pure nature of their design, networks are ideal for

handling precedence constraints (7:193). Yet, although many

scheduling problems can be solved very efficiently with a network

formulation, some scheduling constraints cannot be handled

13

efficiently within a network structure. Moreover, unless the

underlying design matrix of the formulated network is totally

unimodular, an integral solution to the LP-relaxation is not

guaranteed (2). Non-integral solutions violate the assumption

that activities are not to be interrupted once started. For

example, in the TPS weekly flight schedule, it is unrealistic to

schedule the first half of a flight on Tuesday and the second

half -f the flight on Friday. Consequently, a network approach

may require post-processing of the solution in order to obtain an

integral solution.

In addition, networks often obtained their efficiency in

obtaining a solution by inherently requiring preprocessing of the

problem in order to formulate the problem as a network.

Preprocessing refers to reducing the problem size by eliminating

solution options which are determined to be infeasible by a

review of the constraints or problem structure. Although

preprocessing is a beneficial process, it creates a trade-off

between the time needed to formulate the problem and the time

needed to solve the problem. Networks can be time-consuming and

difficult to build -- especially efficient networks which require

preprocessing the problem.

2.3.2 Binary Integer Programming Approach. There are

various ways in which binary integer programming approaches can

be implemented. Such approaches use a zero-one variable to

indicate if an activity is to occur in a specified period

14

(15:450). Each possible assignment is represented by a zero-one

variable. If a given zero-one variable is set to one in the

final solution, the activity with its corresponding assigned

resources should be scheduled. For example, consider the zero-

one variable, Xiit.

Where: i represents the activity of interest
j represents a specific resource
t represents the time period

If Xijt equals one, then activity i is to be completed using

resource j during time period t. Constraints are added to

represent problem characteristics such as precedence

relationships between activities and resource levels for each

period. Formulating the problem as a BIP problem is relatively

easy (15:450); however, the number of zero-one variables needed

can increase drastically given only linear increases in the

number of activities, resource types, and time periods of a given

problem. As a result, RCS problems of only moderate size

typically result in having an impractical number of zero-one

variables (14:1203).

2.4 Solution Methods for RCS Problems

Since LP problems can be solved relatively efficiently, it

would seem that solving a BIP problem should be just as easy.

After all, with a bounded feasible region, a BIP problem is

guaranteed to have a finite number of feasible solutions

(10:486). Unfortunately, there are two primary reasons why

integer programming problems are much more difficult to solve.

15

First, even though a bounded feasible region guarantees a finite

number of feasible solutions, finite numbers can often be very

large. For example, consider a BIP problem with only 20

variables. Such a problem would have 220 = 1,048,576 possible

solutions. Although some of these solutions would be eliminated

because they are not feasible, the resulting feasible solution

set could still be quite large. Secondly, the simplex method

solves LP problems efficiently based on the guarantee that the

optimal solution occurs at an extreme point of the feasible

region (an intersection of constraints). Unless the optimal

extreme point turns out to be inteae-,, tne simplex method cannot

guarantee an optimal integez solution. As a result, LP problems

are generally much easikr to s- lve than integer linear

programming problems.

A common approach used in solving integer programming

problems is LP-relaxation (10:486). This approach relaxes the

integer requirement and solves the problem using an LP-solution

approach such as the simplex method. The solution values to the

LP-relaxation problem are then rounded to the nearest integral

values. Unfortunately, such an approach has two flaws: 1) the

resulting integer solution may not be feasible, and 2) it is not

guaranteed to be the optimal integer solution. In order to avoid

these pitfalls, various techniques have been developed for

solving integer programming problems. The next few paragraphs

discuss solution approaches that can be applied to BIP problems.

16

Because of the large number of possible solutions for even a

relatively small BIP problem, exhaustive enumeration is not

practical in most cases (13:7). Implicit enumeration and branch-

and-bound algorithms search through the possible solutions using

upper and lower bounds on the objective value to eliminate large

numbers of possible solutions without explicitly evaluating them.

Assuming a maximization problem, if the solution to the given LP-

relaxation sub-problem is less than the lower bound, all

solutions expanding out of that sub-problem can be eliminated.

Possible solutions can also be eliminated if the solution to the

LP-relaxation of a sub-problem is either all integer or

infeasible. The efficiency of such approaches can be improved

further by incorporating branching selections that are efficient

for a particular problem. For example, a depth-first approach

usually obtains tight upper and lower bounds more quickly,

resulting in more possible solutions being fathomed (eliminated)

in fewer computations (13). Lagrangian relaxation is another

frequently used technique to develop bounds on the optimal

solution (10:498). Lagrangian relaxation restructures the

original problem formulation by placing a portion of the

problem's constraint set in the objective function. The

constraints which make the problem difficult to solve are placed

in the objective function with corresponding Lagrangian

multipliers such that they act together as a penalty function if

constraints are violated. If the Lagrangian multipliers

associated with the constraints are chosen well, the solution

17

will yield a reasonably tight bound on the original problem

(10:498).

Cutting plane algorithms are solution approaches that relax

the integer constraints but iteratively add constraints that

reduce the feasible region of the original problem such that the

extreme points of the feasible region become integer. Cutting

plane algorithms are careful not to cut off any feasible integer

solutions. Given that all the extreme points are integer, the

simplex method guarantees optimality.

Additionally, specialized algorithms designed specifically

for BIP problems can often be applied. These algorithms obtain

their efficiency by exploiting special characteristics (such as

angular block structures in the underlying constraint matrix of

the problem) that are present in many BIP problems (13).

Unfortunately, these techniques can only be applied if the needed

characteristics (such as specific types of constraint sets) are

present.

In conclusion, although solution procedures for BIP problems

exist, they have proved to be unsuccessful in dealing with many

problems of practical size due to their computational complexity

(14:1203). The computational work required in solving BIP

problems is often highly sensitive to both increases in the

number of constraints as well as the number of variables

(12:570). A BIP approach to solving general RCS problems has

been successful for small problems of marginal practical value

18

but cannot be relied upon for solving large RCS problems which

usually result in application.

2.5 Complexity Theory

Mathematical programming problems are often classified based

on their complexity. The worst-case time complexity of a

solution algorithm describes the maximum number of basic computer

operations that would be required to solve a particular problem

type (7:140). "The class NP is essentially the set of all

problems for which solution algorithms with exponential time

complexity have been found" (7:145). Therefore, for problems in

the class NP, the number of operations needed to solve the

problem can increase exponentially in relation to a linear

increase in the problem size. The term NP-complete further

classifies a problem as being among the most difficult to solve

within the class NP (7:148). Scheduling problems which contain

both precedence constraints and resource constraints are

categorized as NP-complete problems (14:1204).

For problems that are NP-complete, which includes
most arising in scheduling, there are at present
no easy solutions. Furthermore, if informed
mathematical opinion is correct, there never will
be any easy solutions. The only methods
available are those of implicit (or explicit)
enumeration, which may take a prohibitive amount
of computation. Certainly, large NP-complete
scheduling problems are for all practical
purposes insoluble (7:155).

Since RCS problems are placed in the class of NP-complete

problems, heuristic methods are the most practical approach to

solving real-size resource scheduling problems (14:1204). It

19

should be noted, the classification of a problem as NP-complete

is not sufficient reason to resort to heuristic methods. The

problem must also be large enough that enumerative methods are

unmanageable and/or computationally impractical (7:156).

2.6 Heuristic Methods for Solving RCS Problems

In order to obtain a feasible and possibly optimal schedule,

heuristic methods are often employed in solving RCS problems.

Heuristic methods use fairly simple scheduling rules with the

objective of producing reasonably good suboptimal schedules in a

reasonable amount of time (1:279). Heuristic methods achieve

their efficiency at the expense of not being able to guarantee

schedule optimality (or even feasibility in some cases).

In general, heuristic methods apply knowledge of and

experience with a particular type of problem to obtain a

solution. Therefore, heuristic approaches for solving RCS

problems are as numerous as RCS problems. In the literature, the

majority of heuristic methods used in solving RCS problems

involve two primary steps. The first step is to find an initial

feasible solution (12:564; 14:1211). Just finding a feasible

solution for a given set of constraints can often be a very

difficult problem. The second step applies a solution-improving

heuristic that takes a feasible solution and systematically

attempts to obtain a better-quality solution while maintaining

feasibility (12:564). In reference to the TPS weekly flight

20

schedule, two aspects of feasibility must be maintained; 1) the

precedence of activities, and 2) the availability of resources.

Since the best schedules for RCS problems are usually

related to the most efficient use of resources, a commonly used

heuristic approach gives priority to those activities requiring

the most limited resources. The heuristic then incorporates

priority rule methods in which the higher priority activities

have precedence over the other activities which also need to be

completed (14:1207). Using this type of an approach, activities

requiring the most limited resources would be scheduled first,

and lower priority activities would be scheduled around the high-

priority activities.

Heuristic methods must also take into consideration the

scheduling performance measure to be optimized. In the case of

the TPS weekly flight schedule, priority may be given to those

activities (flights) that are close to violating a quality of

training requirement. A heuristic could also incorporate a

combination of priorities based on different criteria. For

instance, a possible heuristic algorithm may incorporate a

modification of a scheduling algorithm which minimizes the number

of late jobs with an algorithm which seeks to level the

utilization of the various resources. With regard to the TPS

weekly flight schedule, such an algorithm would minimize the

number of violations to the quality of training requirements and

at the same time level the workload for instructors.

21

A two-criteria heuristic algorithm for scheduling resource-

constrained activities was developed by Norbis and Smith

(14:1208). Their heuristic algorithm combined critical path and

resource utilization criteria into a two-level priority scheme

which applied each criterion at different steps in the algorithm.

The critical path criterion of their heuristic algorithm is based

on activity ready dates and processing times. Due dates are only

indirectly taken into account. The criteria are used to

determine a priority level for each activity. Activities are

iteratively scheduled based on their assigned priority until all

activities have been scheduled. The resulting schedule is

reviewed for the tardiness of each activity. Those activities

with the large tardiness values are reset with a higher priority

and the schedule is re-done. This heuristic algorithm by Norbis

and Smith could possibly be modified for application to the TPS

weekly flight scheduling problem.

To determine the efficiency of different heuristic

approaches, heuristic approaches are often compared and evaluated

on many different levels using a wide variety of different

criteria (19:413). Most heuristic algorithms are rated based on

computational efficiency and analytic effectiveness.

Computational efficiency relates to the amount of computing

resources required to attain specific results. Analytic

effectiveness refers to how near a heuristic's solution is to the

optimal solution (12:571). If a heuristic is to be used, the

goal is to use a heuristic which is within the computational

22

resource limits of the user ad adequately satisfies the

performance goals of the given problem.

23

3. Problem Formulation

The focus of this chapter is to formulate the TPS weekly

flight scheduling problem as a binary integer programming (BIP)

problem. A BIP approach was chosen over a network formulation

primarily because binary integer programming formulations are

usually more straight-forward. Hence, the manner in which the

TPS weekly flight scheduling problem is represented by binary

variables and their corresponding constraint sets is easier to

characterize, discuss, and understand. In addition, a small

example problem is formulated and solved.

3.1 Model Formulation

The BIP formulation used in this section is representative

of the traditional method in which each possible scheduling

assignment is represented by a zero-one (binary) variable. In

this problem, activities (or jobs) are training missions that

must be flown by student test pilots, engineers, and navigators.

The sequence in which the training missions are flown is

dependent on many factors. For instance, the availability of

instructor pilots, students, and aircraft greatly impact the

order in which the training missions can be scheduled.

Furthermore, this RCS problem is further complicated by the

24

inclusion of precedence constraints -- those which specify

certain missions be flown before others.

The formulation in this chapter is based on a typical flight

week during the period of the TPS program when two classes are

present which is the most difficult scheduling period. In

application, if the TPS weekly flight scheduling problem was

formulated as a BIP, the formulation would vary from week to week

due to fluctuating resource levels and mission requirements. In

addition, some mission constraints (such as precedence and

academic test days) may or may not apply for some flight weeks.

When two classes are present, on the average, 75 student

training missions are flown per week. The overall resource types

and numbers ot a typical TPS flight week are:

1) 50 students (2 classes of 25)
2) 25 instructor pilots
3) 12 aircraft types.

The availability of the resources depends on many factors. For

instance, the availability of individual students and instructor

pilots varies based on such events as leave, TDY, and illness.

The availability of aircraft types varies based on the number of

each aircraft type requested and the ability of the 6510th Test

Group to support the such requests.

Only student flight missions are scheduled in this

formulation (instructor proficiency missions and instructor chase

support missions are not included). Students fly only in the

first two flight periods of the day. Some exceptions exist for

special mission requirements or daily TPS agenda; however, such

25

exceptions are rare and are excluded from the formulation.

Hence, given a five-day flight week, there are ten possible

flight periods per week in which students fly their missions (two

flight periods per day).

As discussed earlier, the flight period in which a given

mission can be flown depends on the availability of the student,

instructor pilot, and aircraft type needed by the mission. There

may be several flight periods within the flight week in which all

the required resources are available; however, each mission is to

be flown (scheduled) only once. In addition, some missions may

often not be flown unLil later in the flight week due to academic

prerequisites. T -ademic prerequisites pertaining to a given

mission type must be completed prior to the mission being flown.

Each given mission requires a specific student, an

4nstructor pilot with a specific qualification, and a specific

aircraft type. Instructor pilots are qualified in different

aircraft types as well as different flight techniques within an

aircraft type. Therefore, a mission can be satisfied with any

instructor pilot and aircraft type that meet the requirement and

qualification needs of the mission. When zero-one variables are

defined, only feasible combinations of mission types, students,

instructor pilots, and aircraft types are included. Hence, the

number of zero-one variables needed to represent each mission is

the product of the number of different instructor pilots that are

qualified to fly the mission and the number of flight periods in

the week.

26

3.1.1 Decision Variable Set. Each mission assignment is

represented by a binary variable. If a given binary variable is

set to one, the activity (mission) and its corresponding time

period and resources represented by the given variable should be

scheduled. Consider the zero-one variable, Xmtsia

where: m represents the mission type
t represents the flight period
s represents the student
i represents the instructor pilot
a represents the aircraft type.

Based on the characteristics of the TPS resources and operational

environment, the subscripts have the following corresponding

ranges:

m = 1, ... , # of missions types (for given flight week)
t = 1, ... , 10
s = 1, ... , 50
i = 1, ... , 25
a = 1, ... , 12.

If it were assumed that all combinations of stulents,

instructors, and aircraft satisfied the needs of a given mission

type, the number of zero-one variables needed to formulate this

problem would be 150,000 times the number of mission types (10

flight periods * 50 students * 25 insti lctors * 12 aircraft

types). If ten mission types were scheduled to be flown during a

given week, 1.5 million zero-one variables would be needed to

formulate the problem. However, by preprocessing the data to

include only feasible combinations of mission types, instructors,

students, and aircraft, the number of zero-one variables needed

is drastically reduced. On the average (based on TPS mission

descriptions, instructor qualifications, and individual student

27

curriculum), the requirements of each mission type can be

satisfied by five different instructor pilots and one aircraft

type. Furthermore, approximately ten different mission types are

scheduled to be flown each week, and each mission type is usually

flown by eight different students. Therefore, on the average,

approximately 4000 zero-one variables (10 mission types * 5

qualified instructors * 8 students * 1 aircraft type * 10 flight

periods) would be needed to formulate the weekly flight

scheduling problem as a BIP. Although such a reduction in the

problem size is significant, the resulting BIP problem is still

very large.

3.1.2 Objective Function. As discussed in section 2.1.2,

since the TPS program duration is fixed, the objective in solving

the TPS weekly flight scheduling problem is not to minimize the

time needed to complete all flights. Rather, the goal of the

weekly flight scheduling problem is to maintain the pace of the

integrated academics and operations schedule, which identifies

missions planned to be flown each week of the TPS program. In

order to maintain the pace of the integrated academics and

operations schedule, the flight scheduling goal should be to

schedule as many of the planned missions as possible, given the

availability of resources (aircraft, instructor, and student)

during the corresponding flight week. Such an objective function

would be:

28

MAX 7 1 0 Xmtsja V feasible combinations of m, s, i, a

Using this objective function, the BIP model would maximize the

number of missions flown during the week, subject to the

following constraint sets.

3.1.3 Constraint Sets. The following constraint sets

represent the resource limitations and standard flight operations

that exist at the TPS. In the listed constraints, only feasible

combinations of missions (m), instructor pilots (i), students

(s), and aircraft types (a) are considered.

Instructor Pilot Availability: A given instructor pilot can

only fly one mission per flight period, assuming the instructor

pilot is available. Therefore, a set of constraints must be

formulated to represent the availability of each instructor pilot

(i) during each of the ten flight periods (t). This can be

represented by the constraints

Xmts i a bti V feasible m, s, a; given t, i

(1 if instructor i available in period t
where: bt =10 if instructor i not available in period t.

Since there are 25 instructors and 10 flight periods, this set

consists of 250 constraints.

Student Availability: As in the case of the instructor

pilot, a student can only fly one mission per flight period,

29

assuming the student is available. Therefore, a set of

constraints must also be formulated to represent the availability

of each studeat (s) during each of the ten flight periods (t).

This can be represented by the constraints

Xmtsia : bts V feasible m, i, a; given t, s

w if student s available in period t
0 if student s not available in period t.

Since there are 50 students and 10 flight periods, this set

consists of 500 constraints.

Aircraft Availability: Aircraft are typically the most

schedule-restricting resource in the TPS flight scheduling

problem. Therefore, a set of constraints must be formulated to

represent the availability of each aircraft type (a) during each

of the ten flight periods (t). This can be represented by the

constraints

Xmsia : bta V feasible m, s, i; given t, a

where: bta = the number of aircraft type a available in period t.

Since there are 12 aircraft types and 10 flight periods, this set

consists of 120 cons, ints.

Fly Missions Only Once: Each mission is to be flown only

once; therefore, there must be a set of constraints which

30

precludes the scheduling of each mission more than once. A

mission is defined as the combination of a mission type (m) and

specific student (s). Such constraints are represented by

E Xmtsia 1 V feasible i, a; given m, s.

The number of constraints in this set depends on the number of

students required to fly a given mission type and the number of

different mission types. Assuming that, on the average, ten

different mission types are planned to be flown in a given week,

and that each mission type is typically flown by eight different

students, this set would consist of 80 constraints (on the

average).

Mission Precedence: Frequently, it is required that one

mission be flown by a student before a more advanced mission can

be flown by the same student. For cases such as this, a set of

const-aints must be formulated in order to enforce this

restriction (if required given the planned missions). Assuming

mission mx must be flown by student s before mission my is flown

by the same student s, a constraint must be repeated for each

student s. This can be represented by the constraints

11 t*Xmxtsja - 5i -1 V feasible i, a; given m., my, s.

The number of constraints in this set depends on the number of

mission types that have a mission precedence requirement, and the

31

number of students required to fly such mission types. For

example, assuming two different precedence mission sets are

planned to be flown in a given week, and that each mission type

is flown by eight different students, this set would consist of

16 constraints.

Academic Test Day: On academic test days, students are only

allowed to fly one mission. Therefore, a set of constraints must

be formulated in order to enforce this restriction (if an

academic test is planned for the given week). Assuming the

academic test day is represented by k, and the corresponding

first flight period of this test day is represented by tk, the

following single constraint must be repeated for each student s

within the class having the academic test. This can be

represented by the constraints

E Xtksia + E Xmtk ,sia 1 V feasible m, i, a; given s.

Since students are divided into two classes, the number of

constrains in this set depends on the number of students in each

class. If a test is planned for only one class, this set

contains up to 25 constraints (one constraint for each of the 25

students per class). If a test is planned for both classes, this

set contains up to 50 constraints.

Mission Ready Dates: Missions cannot be flown until after

academic prerequisites have been completed for the given mission

32

type. Therefore, a set of constraints must be formulated to

ensure that missions are not scheduled to be flown before their

corresponding academic prerequisites are completed. Assuming the

academic prerequisite is to be completed at the end of day c, and

the corresponding second flight period of this day is represented

by t,, the following constraint must be repeated for each

combination of student that has not completed the academic

prerequisite for the given mission type. This can be represented

by the constraints

Xmtsia 0 V feasible i, a; given m, s.

The number of constraints in this set depends on the number of

students that have not completed their academic prerequisites for

a given mission type, and the number of different mission types

for which such a situation exists.

In summary, based on a typical flight week, a BIP

formulation of the flight scheduling problem at the TPS consists

of approximately 4000 binary variables and 1000 constraints. The

complete formulation is:

33

Objective Function:

MAX E0 Xmsia V feasible combinations of m, s, i, and a

Subject to:

Instructor Pilot Availability:

E Xmtsi a < bti V feasible m, s, a; given t, i

Student Availability:

EXmtsi a _ bts V feasible m, i, a; given t, s

Aircraft Availability:

E Xmtsia : bta V feasible m, s, i; given t, a

Fly Missions Only Once:

EXmsi a < 1 V feasible i, a; given m, s

Mission Precedence:
Et* 1 tXmXtsia - ,Lt 1 t*Xmytsia -1 V feasible i, a; given m_, m., s

Academic Test Day:

F XMtksia + F Xmtksa < 1 V feasible m, i, a; given s

Mission Ready Dates:

t't. Xmtsia 0 V feasible i, a; given m, s

Variable Type Restrictions:

Xmtsia E B n

3.1.4 Workload Leveling. The preceding formulation may be

enhanced so as to incorporate a sub-objective of leveling the

workload of the different instructor pilots. To accomplish this,

34

continuous variables are added to the formulation. The objective

function is altered and a constraint set is added to the

formulation in such a manner that the value of the objective

function decreases if the workload of any given instructor

pilot(s) exceeds the given target (or goal) instructor pilot

mission workload level. The objective function becomes

MAX E. Xmtsia - * p*Y V feasible m, s, i, and a

the the number of missions instructor i is scheduled towhere: Yi = fly in excess of the workload goal number of missions.

This objective function assumes a benefit (or cost coefficient)

of one for missions scheduled, X4 tsia, and a penalty of p for

excess workloads, Yi. These values represent the importance of

scheduling missions versus leveling instructor pilot workloads.

If the TPS is willing to schedule instructor pilots to fly more

missions than desired in order to fly more student training

missions, then O<p<l. On the other hand, if instructors are not

to be overworked, then p>l.

In addition to altering the objective function, anothur

constraint set would have to be added to the formulation in order

to control the values of the Yi in the objective function. As

shown, the value of a given Yi represents the amount that the

corresponding instructor pilot exceeds the goal workload level.

Therefore, a constraint must be added for each instructor pilot

35

(i) to represent this relationship. This can be represented by

the constraints

i0 Xtsia - Y j bwk V feasible m, s, a; given i

where: bwk = the goal instructor pilot mission workload.

In short, the addition of this sub-objective would add 25

ordinary continuous variables and their corresponding constraints

to the formulation. With the addition of these variables, the

problem formulation would no longer be a pure BIP. Furthermore,

although the Yi are continuous variables, their solution values

are always integer (assuming bWk is integer) because they are

dependent upon the sum of binary variables.

3.2 A Small Example Problem

The purpose of this example problem is to formulate and

solve a realistic, but small, flight scheduling problem. This

small example problem is formulated as a BIP and solved using the

SAS linear programming software package on a VAX 8550 mainframe

computer.

3.2.1 Example Problem Description. This problem addresses

the scheduling of 17 missions during a given flight week. The

primary objective is to determine a schedule which maximizes the

number of training missions flown during the week. A secondary

36

objective to level the workload of the instructor pilots is also

applied. The schedule must also be within the given operating

guidelines and resource constraints. There are seven different

students (s = 1, ..., 7) that need training missions. In

addition, there are seven different mission types (m = 1,

7). Three instructor pilots are available for use (i = 1, 2, 3),

and each instructor has the following different aircraft

qualifications:

Instructor Qualifications
1 C-23, T-38
2 C-23, T-38, F-4
3 T-38

In addition, the availability of instructors varies throughout

the week due to medical/dental appointments, TDY, leave, etc.

The availability of the three instructor pilots for this example

problem is shown in Table 3.1.

TABLE 3.1

EXAMPLE PROBLEM INSTRUCTOR PILOT AVAILABILITY

MONDAY TUESDAY JWEDNESDAY THURSDAY FRIDAYE]

1 1 1 1 1
PERIOD 1 2 2 2 2

3 3 3 3

1 1 1
PERIOD 2 2 2 2 2

1 3 3 3 3 3

The availability of students must also be considered;

however, for this example problem, it is assumed that all

students are available during every flight period throughout the

37

week. There are only two flight periods per day in which student

training missions can be flown (t = 1, ..., 10). Three different

aircraft types are flown (a = 1, ... , 3). Table 3.2 depicts the

expected aircraft availability for the week.

TABLE 3.2

EXAMPLE PROBLEM AIRCRAFT AVAILABILITY

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

2 T-38 1 T-38 1 T-38 2 T-38 1 T-38
PERIOD 1 1 C-23 1 C-23

1 F-4 1 F-4 1 F-4 1 F-4

1 T-38 1 T-38 1 T-38 1 T-38 1 T-38
PERIOD 2 1 C-23 1 C-23 1 C-23 1 C-23

1 1F-4 1F-4
(1=T-38, 2=C-23, 3=F-4)

Each of the missions and their corresponding requirements

are depicted in Table 3.3. Each mission is to be flown only

once. Furthermore, each of the missions has different

requirements regarding aircraft type, instructor and student. In

addition, certain missions must be flown before others. Check

flights for a given aircraft must be flown first. Also, for a

given flight topic (such as LS in the MISSION TYPE column of

Table 3.3) containing both demo and data flights, the demo

flights must be flown first. Data flights do not require an

instructor pilot.

38

TABLE 3.3

EXAMPLE PROBLEM MISSION LIST

STUDENT IP (i) AIRCRAFT TYPE MISSION TYPE (m)(S) REQUIRED (a) REQUIRED

1 1 or 2 C-23 (2) check flight (1)

2 1 or 2 C-23 (2) check flight (1)

1 1 or 2 C-23 (2) PERF demo (2)

2 1 or 2 C-23 (2) PERF demo (2)

3 2, 2, or 3 T-38 (2) LS demo (3)

4 1, 2, or 3 T-38 (1) LS demo (3)

5 1, 2, or 3 T-38 (1) LS demo (3)

3 N/A T-38 (1) LS data (4)

4 N/A T-38 (1) LS data (4)

5 N/A T-38 (1) LS data (4)

3 1, 2, or 3 T-38 (1) range demo (5)

4 1, 2, or 3 T-38 (1) range demo (5)

5 1, 2, or 3 T-38 (i) range demo (5)

6 2 F-4 (3) structures (6)

7 2 F-4 (3) structures (6)

6 2 F-4 (3) propulsion (7)

7 2 F-4 (3) propulsion (7)

3.2.2 Example Problem Formulation. Each candidate mission

must be described by a binary variable. Using the problem

description, the number of binary variables needed to represent

each mission (combination of mission type and specific student)

is the product of the number of different instructor pilots and

aircraft types that satisfy the requirements of the mission type,

39

and the number of flight periods in the week. For instance, the

number of variables needed to represent the first mission listed

is (2 instructors) * (1 aircraft type) * (10 flight periods) or

20. Applying this method to each mission, 330 binary variables

are needed to represent all of the possible feasible missions.

Consider the zero-one variable Xmti ,. For this given example

problem, the subscripts have the following corresponding ranges:

m = 1, ... , 7
t = 1, ... , 10
s = 1, ... , 7
i = 1, ... , 4 (i=4 if no instructor needed)
a=i, ... , 3

The variable, X1 3.1.2.2, represents a possible scheduling of the

first mission listed in Table 3.3. This variable specifically

represents the scheduling of the first mission type (m=1), in the

third flight period (t=3), with student #1 (s=1), and instructor

#2 (i=2), in a C-23 (a=2).

3.2.3 Example Problem Objective Function. The primary

objective is to determine a schedule which maximizes the number

of training missions Elown during the week. However, a secondary

goal of leveling the workloads of the instructor pilots is also

included in the objective function. To accomplish this, three

additional continuous variables, Yi (i = 1, 2, 3), representing

the excess workloads for each of the three instructor pilots is

added to the formulation. The objective function is

MAX 1'01 Xtsia - 0. 9 *y V feasible m, s, i, a.

40

This objective function assumes a benefit equal to one for

missions scheduled (Xmtsi) , and a workload penalty, p, equal to

0.9 for the amount the workload goal is exceeded (Y). Since

0<p<l, instructor pilots might exceed the workload goal in order

to fly more missions (the benefit of flying an additional mission

is greater than the cost of an instructor pilot flying one more

missions than desired). For this example problem, 14 missiens

Lequire an instructor pilot. Since there are only 3 instructor

pilots, the goal instructor pilot workload level, bwk, is set at

5 missions (approximately 14 missions / 3 instructors).

3.2.4 Example Problem Constraint Sets.

Instructor Pilot Availability:

SXmsi a bti V feasible m, s, a; given t, i

1 if instructor i available in period t
where: bt 1.0 if instructor i not available in period t

Since there are 3 instructor pilots and 10 flight periods, this

set consists of 30 constraints. The values of each of the bti

can be obtained using the instructor pilot availability data

contained in Table 3.1.

Student Availability:

Xmtjia : 1 V feasible m, i, a; given t, s

41

Since there are 7 students and 10 flight periods, this zet

consists of 70 constraints. In addition, since it was assumed

that every student is available every flight period of the week,

the right hand side, bt, of each of the constraints is always 1.

Aircraft Availability:

E Xmsia C ba V feasible m, s, i; given t, a

where: bta = the number of aircraft type a available in period t

Since there are 3 aircraft types and 10 flight periods, this set

consists of 30 constraints. The values of each of the bta can be

obtained from the aircraft availability data contained in Table

3.2.

Fly Missions Only Once:

E mtsia - 1 V feasible i, a; given m, s

Since there are 17 combinations of rission types (m) and students

(s), this set consists of 17 constraints.

Mission Precedence: In this example problem, certain mission

types must be flown before others. Before the C-23 PERF demo can

be flown by a student, that same student must first fly the C-23

check flight. A similar situation is true for students flying

the T-38. The T-38 LS demo flight must be flown before the T-38

42

LS data flight. The set of constraints below enforces these

precedence relationships.

C-23 flights (with students s = 1 anO 2):

1t - t*X2ts 2 * -i V feasible i
C.1 Xltsi 2 -E z *~.i --

T-38 LB flights (with students s = 3, 4, and 5):

=1 t*X~.il - Et. t*X-1i V feasible i

Two different precedence mission sets are planned to be flown,

and one mission set (C-23) is flown by two different students and

the other mission set (T-38) by three different students;

therefore, this set consists of 5 constraints.

Academic Test Day: An academic test is scheduled for Wednesday,

students can fly a maximum of one mission on Wednesday. Since

the test day is Wednesday, tk = 5 (the first flight period of the

test day). The following constraint set enforces this

restriction.

EXmsia + I X6sia 1 V feasible m, i, a; given s

Given that there are 7 students, and all are in the same class,

this set contains 7 constraints (one for each student).

43

A-

Instructor Pilot Workload:

10

iXmtsia - 5 V feasible m, s, a; given i

The goal instructor pilot workload level, bWk, is set at 5

missions (approximately 14 missions / 3 instructors). Since

there are only 3 instructor pilots, this set consists of 3

constraints.

Mission Ready Dates: For this example problem, mission type 7

cannot be flown until Thursday of the given flight week because

the academics for this mission type are not completed until

Wednesday. Hence, tc=6 and the resulting constraint set is the

following.

For students s = 6 and 7:

C=.X~tsia 0 V feasible i, a; given s

Given that there are only 2 students flying mission type 7, this

set consists of 2 constraints.

In summary, this relatively small example problem, when

formulated as a mixed integer programming problem (MIP), consists

of 330 binary variables, 3 continuous variables, and 164

constraints. The complete formulation is:

44

Objective Function:

MAX E t . Xmtsia - 0 .9* Yi V feasible m, s, i, a

Subject to:
Instructor Pilot Availability:

E Xmtsia < bti V feasible m, s, a; given t, i

Student Availability:

E Xmtsia < 1 V feasible m, i, a; given t, s

Aircraft Availability:

EXtsia < bta V feasible m, s, 1; given t, a

Fly Missions Only Once:

E Xtsia < 1 V feasible i, a; given m, s

Mission Precedence for C-23 flights with students s = 1, 2:
;1U t*Xltsi 2 - Et__ t*X2tsi 2 1 - V feasible i

and for T-38 LS flights with students s = 3, 4, and 5:

Et. t*X 3 tsil - E t*X 4 t~i :g -1- V feasible i

Academic Test Day:

E Xmssia + E Xm6 sia 1 5V feasible m, i, a; given s

Instructor Pilot Workload:

EIC Xmtsia - Yi 5 V feasible m, s, a; given i

Mission Ready Date for mission type m = 7 and students s = 6, 7:
E6 X 0 V feasible i, a; given s

and
t-1mtsia

ndXsia c B330 Y 4 0

45

3.2.5 Example Problem Solution. The formulation for the

small sample problem was solved using the SAS/OR integer program

solver (reference SAS/OR LP Manual) on a Digital Equipment

Corporation (DEC) VAX 8550 with 64 megabytes of main memory. The

problem required approximately 5 CPU minutes to obtain an optimal

solution. The objective function value was 17, with every

training mission successfully scheduled during the week and no

instructor pilot exceeding the workload goal. Table 3.4 depicts

the corresponding schedule. By a review of the schedule, it can

be seen that all the constraints have been satisfied.

TABLE 3.4

EXAMPLE PROBLEM SOLUTION SCHEDULE
(Mixed Integer Program Formulation)

SII MONDA I TUESDAY WEDNESDAY THURSDAY FRIDAY

sm a i sm a i sm a i sm a i s m a

4 5 T-38 i 2 1 C-23 1 3 5 T-38 3 3 3 T-38 3 4 3 T-38 3
PERIOD 1 5 4 T-38 4 7 7 F-4 2

6 7 F-4 2

5 5 T-38 2 2 2 C-23 1 5 3 T-38 3 1 1 C-23 1 1 2 C-23 1
PERIOD 2 7 6 F-4 2 6 6 F-4 2 3 4 T-38 4 4 4 T-38 4

(s = student, m = mission type, a = aircraft type, i = instructor pitot)

The solution method applied in this example was a branch and

bound approach with LP-relaxation and required 5 CPU minutes to

obtain the optimal solution. In addition, since resource-

constrained scheduling problems such as this are in the class of

NP-complete problems, all known solution algorithms require, in

46

the worst case, an amount of time which is an exponential

function of the size of the problem. Earlier in this chapter,

the problem size for a typical TPS flight week was shown to be

approximately 4000 variables and 1000 constraints, while the

example problem size was 333 variables and 162 constraints.

Consequently, since the actual TPS weekly flight scheduling

problem would be approximately 10 to 20 times larger than the

example problem, a polynomial-time heuristic approach is

warranted.

47

4. Heuristic Approach

This chapter presents a heuristic approach to solving the

TPS weekly flight scheduling problem. The heuristic approach

presented in this chapter exploits the characteristics of the TPS

weekly flight scheduling problem in order to obtain reasonable

schedules in a relatively small amount of time. A detailed

description of the heuristic is presented. In addition, to give

a comparison of scheduling approaches, a schedule for the small

example problem solved in Chapter 3 is developed using the

heuristic approach.

4.1 Heuristic Approach Background

As mentioned in Chapter 3, the major difficulty in obtaining

a weekly flight schedule for the TPS stems from the large size of

the problem when formulated as a mixed integer programming (MIP)

problem. Although a mixed integer programming formulation is a

legitimate approach to develop good flight schedules, good flight

schedules can also be obtained on a regular basis by exploiting

characteristics of the weekly flight scheduling problem and

applying a relatively simple heuristic algorithm. The heuristic

algorithm presented in this chapter is essentially a computerized

or automated replication of the procedures performed by the TPS

flight scheduler as performed on a daily basis. Such an approach

48

has not been used at the weekly level because a human scheduler

becomes overwhelmed with information when developing a flight

schedule for an entire week. By automating the procedures used

by the TPS flight scheduler, a schedule can be developed in

seconds. The algorithm exploits this speed by developing

multiple schedules in order to improve its ability to make good

schedules. Each time a schedule is developed, the algorithm

learns information (such as which missions require resources that

are the most limiting) about the given flight week scheduling

problem. After each schedule is developed, the best schedule

developed thus far is saved and the algorithm applies the

information learned to develop the next schedule. At each

schedule iteration, missions are re-prioritized in the scheduling

algorithm based on what has been learned. Missions that are more

difficult to schedule gain higher priority. After several

scheduling iterations, the best schedule developed is output.

4.1.1 Flight Scheduling Problem Characteristics. Although

formulating and solving the TPS weekly flight scheduling problem

as a MIP problem may be an impractical approach to solving this

problem, the MIP formulation did provide useful insights

regarding the characteristics of this specific resource-

constrained scheduling problem. In addition, further insights

were obtained by observing the TPS scheduler develop a daily

flight schedule.

49

The most significant characteristic of the TPS weekly flight

scheduling problem is that aircraft are the most schedule-

restricting resources. Typically, if a mission is not flown in a

given week, it is due to shortages in aircraft. If an aircraft

is available, it is almost always used by the TPS. What this

ineans in terms of the scheduling problem is that if every

available aircraft has been assigned to a mission, then the

maximum possible number of missions has been scheduled for that

flight week. A mission cannot be scheduled (flown) without an

aircraft. On the other hand, student and instructor pilots are

usually available. Obviously, their availability must be

checked, but usually there is enough flexibility in student and

instructor pilot availability to develop a schedule which also

levels instructor pilot workload.

Another important characteristic of the TPS weekly flight

scheduling problem is the number of missions eligible to be flown

in any given week. When a mission type is scheduled to be flown,

it must be flown by several students. There is usually a two-

week window within which a mission type must be flown. It is not

expected that every student required to fly a given mission type

completes that mission in the first flight week. If a mission

type is not flown by a particular student in the first week, it

is to be flown in the next. The integrated academics and

operations schedule structures the flights in this manner.

Consequently, unlike the case presented in the small example

problem where there were more aircraft available than missions to

50

fly them, usually more missions are eligible to be flown in a

given flight week than could possibly be flown, given limited

aircraft availability for the week. In other words, for most

weeks, the TPS weekly flight scheduling problem is mission rich,

meaning that there are significantly more missions eligible to be

flown than there are aircraft to support them. In addition,

several instructor pilots are usually qualified to fly each given

mission type; therefore, instructor pilot availability rarely

prohibits a given mission type from being flown. Also, since

several instructor pilots are usually qualified to fly any

particular mission type, instructor pilot workload can more

easily be leveled.

4.1.2 Flight Scheduling Algorithm Goals. Based on comments

from the TPS scheduling staff, a goal of this scheduling

algorithm should be to determine the schedule which utilizes

instructor pilots as evenly as possible in addition to maximizing

the number of missions flown during a given flight week. Since

aircraft are the most scheduling-restrictive resource and student

and instructor pilot availability typically allows for an

abundance of different scheduling assignments, multiple schedules

that maximize the number of missions flown (every aircraft

utilized) can usually be developed. Although, an algorithm that

develops such schedules could be performed by a human, it would

be very time consuming due to the large amounts of data that must

be evaluated at each step. Therefore, in order for an algorithm

51

to be useful it must be automated and the weekly flight

scheduling information must be contained in a database. By

manipulating the database in a logical, systematic manner, a

schedule can be developed which seeks to maximize the number of

sorties flown and level the workload of the instructor pilots.

Since the TPS weekly flight scheduling problem must be

solved each week, data entry must be kept to a minimum.

Therefore, the manner in which the data corresponding to a given

flight week is entered into the database is of primary concern.

The goal of this thesis is not just to develop a solution

approach to the weekly flight scheduling problem, but to also

present the TPS scheduling staff with a software package that

would reduce their workload in producing a weekly flight

schedule. The algorithm was designed to read data from external

data files which can be updated to represent a given flight

week's characteristics (resource availability, eligible missions,

etc.) in less than one hour.

4.2 Scheduling Algorithm Description

This section provides an overview of the primary steps

contained in the weekly flight scheduling algorithm. Flow charts

representing the algorithm flow are provided in Figures 4.1 and

4.2. Figure 4.1 represents an overview of the overall flow and

Figure 4.2 represents a more specific overview of the resource

allocation flow.

52

Pp lop' ITI ZE

MISSIONS BASED

ON

READY DATES

START THI

SCHEDULN

ITEPAT I ON

GRAB MISSION

BASED ON

PRIORITY I

FL ATPERO

WIHREQUIRED
NEPIRTZ ESOURCESAVINOTGM51t

ON, FLHEDLT ASIG

PDATE ~~ MISSNLS

FPDAHE PIPERLEVEL

REWIET RESOURCE

ORIG OINA VLI-E PSUP

MIS51OS BAAS

ON~A ATTEMPTIN

SCHEULE MISSIO

UPDATE

AS

I4NA ATTMP

~ A ARE AE ETo

SC"E SC LE EA!-

NIES

Figure. 4.1 Scheduling Algorithm Flow

53

Step . (Initialization): Once all flight information is

available, missions are ranked based on their ready dates, the

earlier a mission's ready date, the hither its ranking. Missions

which are bound by precedence constraints (that is, they require

a specific mission to be flown before they can be flown) are

ranked last.

Step 2 (Determine Resource Requirements): Once missions are

prioritized (or re-prioritized), the algorithm attempts to

schedule each mission based on its ranking. Once a specific

mission is selected for scheduling, the algorithm determines the

resources required for that mission to be flown. These resources

include the specific aircraft type and a list containing each

instructor pilot that is qualified to fly the specific mission

and aircraft type. Additionally, the algorithm checks if the

given mission type requires a specific mission to be flown before

it. If so, the required precedence mission must already be

scheduled in order for this mission to be scheduled. If the

precedence mission has been scheduled, the follow-on mission is

assigned a ready date for the day after the flight period in

which the precedence mission was scheduled.

Step 3 (Mission Scheduling): Once a mission's resource

requirements are determined, the algorithm attempts to schedule

the mission in the earliest flight period in which all of its

required resources are still available. Figure 4.2 provides an

overview of the flow for this step of the algorithm.

54

The first step (step 3a) is to determine the first flight

period after the given mission's ready date in which the required

aircraft type is available. If the required aircraft type is not

available in any of those flight periods, the mission cannot be

scheduled and the algorithm returns to step 2 to select the next

mission for scheduling. Since aircraft are the most restricting

resource, aircraft availability is checked first to minimize the

number of steps before it is determined that resources are not

available for the mission to be flown. If the aircraft type is

available, the earliest flight period in which the given aircraft

type is available is chosen.

Given this flight period, the next step (step 3b) is to

select an instructor pilot (if needed). Using the list of

qualified instructor pilots developed in step 2, the algorithm

selects the instructor pilot with the lowest workload who is

available in the given flight period. If no qualified instructor

pilots are available in this specific period, the mission's ready

date is shifted to one flight period later in the week and the

algorithm returns to step 3a.

Once an instructor pilot is assigned (or if an instructor

pilot is not needed for the given mission), the next step (step

3c) is to determine if the required student is available in the

given flight period. It may seem more logical to check to see if

the student is available first since the student is directly tied

to the mission. However, this is not the case for two reasons;

1) aircraft and instructor pilot availability drive the schedule,

55

SPECIFIC MISSION

is

U I
AIRCRAP TYPE NO TAG MISSION

AVAIL THIS AS NO GO j

EEK

<

W

ly

ES

FIND EARLIEST

FL MHT PERIOD

W I TH PECIM RED

AIRCRAFT TYPE

CONTINUE

YES

APE
IQUALIFIED REOI PEID

IPS AVAIL THIS NO AIRCRA T TYPE NO

AVAIL- ANOTHEP

PEP$ 0D > PERIOD
FLIGHT

-
Aw<

4>
"I'D

4 ES

SELECT iP

WITH LOWEST

WOPKLOAD

IS

PEOU(PED

5"OENT AVA NO

THIS FLIGHT

PERIOD

ES

L G"- PEP -- I['
M1, E M I SS I "I

A1715 1 -.rjED

SMUPCES

Figure 4.2 Resource Allocation Flow

56

and until a flight period is determined in which both aircraft

and instructor are available, the flight period in which to check

the student's availability is not known, and 2) students are

usually available. In addition, if the given flight period is on

an academic test day for the given student, the algorithm checks

to see if the student has already been scheduled to fly another

mission in the other flight period of that same day. If this is

the case, the mission cannot be scheduled this flight period

because on an academic test days, students are allowed to fly

only one mission. As in the case of step 3b, if the student is

not available in this specific period, the mission's ready date

is shifted to one flight period later in the week and the

algorithm returns to step 3a.

When a flight period in which all the required resources are

available is found, the next step (step 3d) is to adjust all the

resource levels to represent their usage in scheduling the

specific mission in the given flight period. The algorithm then

returns to step 2 to select the next mission for scheduling.

When a scheduling attempt has been made for every mission, the

algorithm goes to step 4.

Step 4 (Save the Best Schedule): At the completion of a

given iteration (an iteration is complete when an attempt has

been made to schedule every mission), the algorithm saves the

best schedule developed thus far. The criterion for selecting

the best schedule is based on 1) the number of missions scheduled

and 2) the variance of instructor pilot workloads. The schedule

57

that produces the maximum number of scheduled missions is always

saved. If two schedules result in having the same number of

missions scheduled, the schedule with the smallest variance in

instructor pilot workloads is saved. The variance of the

instructor pilot workloads is calculated using the standard

statistical formula for population variance.

Step 5 (Iteration Check): The entire process is repeated

until the maximum number of scheduling iterations has been

completed, or all the missions have been scheduled. Based on

multiple trials using full-size TPS weekly flight scheduling

scenarios, the algorithm rarely found a better schedule beyond

the fifth iteration. Currently, the coded algorithm is set to

perform a maximum of seven iterations. The algorithm does not

guarantee a better schedule after each iteration. During test

runs, better schedules were not always obtained from subsequent

scheduling iterations. Therefore, unless an iteration produces a

schedule in which all the missions are scheduled, the algorithm

always completes the maximum number of iterations, even if

subsequent iterations do not improve the schedule. Additional

iterations will not be accomplished solely to even out instructor

pilot workloads. Typically, since there are usually more

missions eligible to be scheduled than there are aircraft

available, all the missions cannot be scheduled, and therefore,

the algorithm usually performs the maximum number of iterations

before terminating.

58

Step 6 (Reset Original Resource Levels): If another

scheduling iteration is to be performed, resource levels are re-

initialized to their original levels.

Step 7 (Re-prioritization of Missions): After the resource

levels are re-initialized, the missions are re-ranked based on

information obtained from the previous developed schedules.

Missions are re-ranked based on three parameters; 1) original

mission ready dates, 2) number of qualified instructor pilots for

each specific mission, and 3) the number of times each mission is

not scheduled. The last two parameters are used to incorporate a

measure of scheduling difficulty into the ranking. Missions that

are more difficult to schedule due to limited flexibility in

their resource requirements are given priority. For example,

missions that have fewer qualified instructor pilots are likely

to be more difficult to schedule. Furthermore, after several

schedules have been developed, the number of times a specific

mission was not scheduled gives the algorithm a measure of how

difficult it is to schedule that particular rission. The

algorithm uses a counter to keep track of the number of times

each mission was not scheduled. Each time a mission is not

scheduled, its counter is incremented by one. Thus, a high

counter value represents a mission that is difficult to schedule.

For missions in which a precedence relationship exists, if a

follow-on mission was not scheduled for a given student, its

corresponding precedence mission has one added to its counter.

59

Missions are re-prioritized based on the following rules; 1)

missions not scheduled the most are given the highest priority,

2) if two missions are not scheduled the same number of times,

the mission with the earlier ready date has priority, and 3) if

there is still a tie, the mission with fewer qualified instructor

pilots has priority. Table 4.1 presents an example of how 10

missions would be ranked for scheduling based on their

corresponding parameter values. Once the missions have been re-

prioritized, the algorithm returns to step 2 and starts to

develop another schedule.

TABLE 4.1

EXAMPLE OF RE-PRIORITIZING MISSIONS

MISSION READY DATE NUMBER OF NUMBER OF MISSION
QUALIFIED TIMES RANKING
INSTRUCTOR MISSION NOT

PILOTS SCHEDULED

A 01/03/92 3 0 5

B 01/03/92 2 0 4

C 01/03/92 1 1 2

D 01/07/92 3 0 7

E 01/08/92 3 0 10

F 01/08/92 2 0 8*

G 01/08/92 2 1 3

H 01/07/92 1 2 1

I 01/08/92 2 0 9*

J 01/07/92 2 0 6
* When there is a prioritization tie between missions (such as with missions F and 1),
priority is given to the mission Listed first (F).

60

Figure 4.3 depicts an example of how the algorithm would

progress through a very small flight scheduling problem. In this

example, each of the three missions (each with a different

student who is always available) to be scheduled requires the

same aircraft type; however, their instructor pilot (IP)

requirements differ. There are only two flight periods in this

small example. In iteration 1, mission rankings are based only

on ready dates. As the scheduling process progresses and

missions are re-prioritized, the resources that are assigned to

each mission vary based on the mission's scheduling priority

(rank). As depicted in Figure 4.3, the second and third

scheduling iterations provide no improvement to the schedule.

However, on the fourth scheduling iteration, every mission is

scheduled and instructor pilot workloads are equalized. Notice,

that if the ready dates were all the same, the schedule that was

produced in the fourth iteration would have been produced in the

second iteration.

4.3 Coded Algorithm Development and Description

The heuristic scheduling algorithm was coded and compiled

using Microsoft FORTRAN 5.0. In developing a weekly flight

schedule, the program accesses 22 different external data files

which contain the flight scheduling information for the given

flight week. A further description of and operating instructions

for the coded algorithm are provided in Appendix C. The source

code for the heuristic algorithm is provided in Appendix D.

61

MISSION (MSN) INFORMATION PESOUPCE AVAILABILITY

MSN READY DATE REQUIRED IP .7 OL'AL IP PERIOD 1 PERIOD 2

A 01/01/92 1, 2, OR 3 3 IP 01 (ES NOEU

8 01/02/92 1 OR 2 2 IP 02 rES YES

.7 01/03/92 1 1 IP 113 NO YES

AiPCPAFT 1 2

I TEPAT ION V 1

0 TIMES SCHED ASSIGNED

MSN .UNSCHED PArJK PEP I CD IP

A 0 1 1 1 NMBEP OF MISSIONS SCHEDULED 2
VAPIANCE OF IP WPOKLOAD 0 47

S 0 2 j 2 I 2 SCHEDULE SAVED
o 0 3

! TEPAT '01 #2

T IMES SCHED ASSIGNED

MOC UI.HED PANI: PE P I CC I P

A U 2 2 2 NLI BEP OF MISSIONS SCHEDULED 2

VAPIANCE OF tP W(DKLOAD 0 47
0SCHEDULE k-IT SAVED

71 1 1 1 E

PT nA T I urI : -4

C TIMES ,CHEII ASS GP ED

A 7q 3 1 LIPMBEP C MISS IO S SCHEIDULED 2

VAP A CC OF IP WOPKLCAD 0 47
3 1 1 1

SCHEDULE rIDT SAVED

T TV/C " FC . A I C

7 , 3 v k I. SS -'
s

HE r, 3
,A.4,Al AiE O F C #[I AE 0 L

S, F CIF I r,- I

Figure 4.3 Example of Algorithm Progression

62

4.3.1 Algorithm Testing. The coded heuristic algorithm was

tested using both representative flight scheduling data and

operational TPS flight scheduling data. Approximately 20 tests

were conducted using flight scheduling data that was

representative of typical TPS flight weeks. To a large extent,

these initial tests were more developmental than operational,

meaning that they were used more to develop the algorithm to its

present state than test the effectiveness of the heuristic.

Results from these tests were used to adjust and refine the

heuristic algorithm in order to obtain better results

(schedules). These tests were also used to verify that the

computer code accurately performed the steps of the heuristic

algorithm. Listings of the flight scheduling data files and the

resulting flight schedule output file for a sample full-size TPS

weekly flight scheduling problem are provided in Appendix B.

Once the developmental tests were complete, the coded

heuristic algorithm was operationally tested at the TPS using

real flight scheduling data. The quality of the resulting weekly

flight schedule was judged good by the TPS scheduling staff;

however, the manner in which the flight scheduling data was

updated for use by the algorithm was considered cumbersome. This

deficiency has since been corrected by editing and exporting

files using the spreadsheet software QUATTRO PRO.

4.3.2 Testing Limitations. Although the quality of the

weekly flight schedule produced in the operational test was rated

63

good by the TPS staff, this test was limited for three primary

reasons. 1) Due to the limited availability of actual flight

scheduling data and scenarios, only one real world weekly flight

schedule was produced. 2) Flight schedules for an entire flight

week have never been developed at the TPS; therefore, there was

no historical data in which the weekly flight schedule produced

by the algorithm could be objectively compared against. 3) Full-

scale TPS weekly flight scheduling problems have never been

solved using techniques that guarantee optimal solutions.

Therefore, the ability of this heuristic algorithm to guarantee

schedules within a measure of optimality could not be determined.

To give a limited comparison of the scheduling effectiveness of

the heuristic algorithm, a schedule for the small example problem

solved in Chapter 3 using mixed integer programming is also

developed using the coded heuristic algorithm (reference section

4.3.4). Unfortunately, the same effectiveness as demonstrated in

the small scheduling example problem cannot be guaranteed in a

full-scale application. As a result of the three limitations

cite, above, the analytical effectiveness of the heuristic

algor-ithm was only subjectively rated.

4.3.2 Coded Algorithm Output. The output from the coded

algorithm provides a variety of information to the TPS scheduling

staff. Most important is the schedule itself. For each flight

period, a listing of each mission scheduled including mission

description, instructor pilot, student, aircraft type, and

64

students class is provided. In addition, at the request of the

TPS scheduling staff, aircraft and instructor pilot resources

that are still available in each flight period are also

displayed. Such information makes it easier to further

manipulate the schedule. The schedule produced by the algorithm

is just an initial schedule for the flight week. It may be

changed for reasons such as weather, illness, and aircraft in

maintenance. Aside from the actual schedule, the algorithm also

identifies missions not scheduled during the flight week and

missions that violated quality of training completion deadlines.

Missions that violate quality of training completion deadlines

may be scheduled; however, flagging such missions allows the TPS

scheduling staff to make the decision as to either waive the

completion deadline requirement or to schedule make-up training.

4.3.4 Example Problem Solution. A schedule for the small

example flight scheduling problem formulated and solved in

Chapter 3 was obtained using the coded heuristic algorithm

implemented on a 16 MHz 80286-based desktop computer with 1

megabyte of memory. To obtain a solution, the problem required

approximately 10 CPU seconds. In terms of the objective function

for the mixed integer programming scheduling approach presented

in Chapter 3, the schedule produced by the heuristic algorithm

was not optimal. Its corresponding objective function value

would have been only 16.1 (versus the optimal value of 17).

Although, every training mission was successfully scheduled

65

during the week, one instructor pilot (#2) exceeded the workload

goal by one work unit. Table 4.2 depicts the corresponding

schedule. Algorithm input and output files for this example

problem are provided in Appendix A. By a review of the schedule

presented in Table 4.2, it can be seen that all resource and

operational restrictions have been satisfied.

TABLE 4.2

EXAMPLE PROBLEM SOLUTION SCHEDULE
(Heuristic Algorithm Approach)

II l I~I TUESDAY [WEDNESDAY THURSDAY FRIDAY

sm 8 sm a i sm a i sm a i sm a

3 5 T-38 3 2 1 C-23 1 1 2 C-23 1 4 4 T-38 4 7 7 F-4 2
PERIOD 4 5 T-38 1 3 3 T-38 2 5 3 T-38 3 5 4 T-38 4

6 6 F-4 2 6 7 F-4 2

1 1 C-23 2 4 3 T-38 1 3 4 T-38 4 2 2 C-23 I
PERIOD 2 5 5 T-38 3 7 6 F-4 2

(s = student, m = mission type, a = aircraft type, i = instructor pilot)

4.4 Full-Scale Application

The most positive aspect of the heuristic algorithm approach

is its ability to produce acceptable weekly flight schedules in

relatively little time. The computerized algorithm has been used

to obtain schedules for multiple representative full-scale TPS

weekly flight scheduling problems. A full-scale problem is

defined as including 50 students, 25 instructor pilots, 10

aircraft types, and more than 60 missions. Based on the results

of these tests, on the average, good schedules were obtained in

66

approximately 2 minutes of CPU time on a 16 MHz 80286-based

desktop computer with 1 megabyte of memory. Estimating that it

takes slightly under one hour to update the scheduling data files

for a given flight week, good weekly flight schedules can be

obtained in approximately one hour, using the computerized

heuristic algorithm.

67

5. Conclusions and Suggestions

5.1 Conclusions

Due to the large quantities of scheduling data that must be

processed, flight schedules representing an entire flight week

cannot be developed at the USAF Test Pilot School (TPS) unless

the process is automated. Currently, the TPS manually develops

flight schedules on a daily basis. It usually requires the TPS

flight scheduler one to two hours to manually develop a daily

flight schedule. Although a daily flight scheduling approach is

more suitable for handling last minute changes due to unforeseen

events, its lack of foresight often leads to bottlenecks and

unbalanced resource utilization, both of which could have been

avoided if the entire flight week were scheduled in a single

process. The objective of this thesis was to investigate and

develop a technique to automate the flight scheduling process at

the TPS in order to improve the flow of missions scheduled

throughout the week and reduce the amount of TPS staff time

dedicated to flight scheduling. In addition, by posting a

tentative flight schedule for the entire week, communication

between the TPS scheduling staff and TPS personnel (students and

instructors) can be improved.

The application of the heuristic algorithm presented in this

thesis demonstrated that reasonable flight schedules representing

an entire flight week can be developed in a short amount of time.

68

Weekly flight schedules were developed for multiple flight

scheduling problems having the size and characteristics of a

typical TPS flight week. Tests using these different flight

scheduling scenarios were used to improve, verify, and validate

the heuristic algorithm.

In addition, an operational test of the heuristic algorithm

was conducted at the TPS using actual missions, mission resource

requirements, and weekly resource (student, instructor pilot, and

aircraft) availability. The quality of the schedule produced in

this sample was acceptable to the TPS scheduling staff.

Unfortunately, due to the limited availability of actual flight

scheduling data and scenarios, only one real-world TPS weekly

flight schedule was produced.

Based on the results of actual and representative weekly

flight scheduling scenarios, good weekly flight schedules can be

produced by the heuristic algorithm in less than ten minutes of

computer time. Estimating that it takes approximately one hour

to update the data files containing the scheduling information

for a given flight week, an acceptable flight schedule for an

entire week can be developed in about the same amount of time it

currently requires the TPS flight scheduler to manually develop a

daily flight schedule. Furthermore, once an initial weekly

flight schedule is obtained, it provides a good starting point in

which manual adjustments can be made by the flight scheduler in

reaction to unpredictable events (weather, aircraft maintenance,

illness, etc.).

69

Aside from the heuristic approach developed and implemented

in this thesis, a mixed integer programming (MIP) approach for

solving the TPS weekly flight scheduling problem was also

investigated. Although a MIP approach may have been able to

produce "better" weekly flight schedules, such an approach was

impractical due to the resulting large problem size.

5.2 Suggestions for Further Work

Even though the algorithm has demonstrated its ability to

produce good weekly flight schedules in a short period of time,

further investigation should be conducted to improve the

presented algorithm or to develop another algorithm in order to

further improve the quality of weekly flight schedules. One

possible enhancement might be an interchange scheme to improve

the current heuristic algorithm's ability to level workloads of

the instructor pilots. Such an enhancement would search through

the schedule to check if missions supported by over-worked

instructor pilots can be reassigned to under-worked instructor

pilots. In addition, an approach for handling special case

missions (such as missions that must be supported by a chase or

target aircraft) by the current scheduling algorithm should also

be developed. In a MIP approach, a requirement of this type can

easily be handled with the addition of a constraint; however, the

current scheduling approach requirps the flight scheduler to

manually handle special mission requirements.

70

Notwithstanding the above possible enhancements, the current

heuristic algorithm appears to be capable of producing reasonable

weekly flight schedules in a practical amount of time. The

current coded heuristic algorithm should be further tested by the

TPS scheduling staff to identify any additional desired

enhancements or possible limitations and to fully asspss its

potential in automating the flight scheduling process at the TPS.

71

Appendix A:

Heuristic Algorithm Applied to the Example Problem

Student Pilot Availability Data

MONi MCN2 TUEl TUE2 WED1 WED2 THR1 THR2 FRIl FR12
ST #1 Y Y Y Y Y Y Y Y Y Y
ST #2 Y Y Y Y Y Y Y Y Y Y
ST #3 Y Y Y Y Y Y Y Y Y Y
ST #4 Y Y Y Y Y Y Y Y Y Y
ST #5 Y Y Y Y Y Y Y Y Y Y
ST #6 Y Y Y Y Y Y Y Y Y Y
ST #7 Y Y Y Y Y y y y Y Y
END

Instructor Pilot Availability Data

MONi MON2 TUEl TUE2 WED1 WED2 THR1 THR2 FRIl FR12 WORK
IP #1 Y N Y Y Y N Y Y Y Y 0
IP #2 Y Y Y Y N Y Y Y Y N 0
IP #3 Y Y N Y Y Y Y Y Y Y 0
END

Aircraft Availability Data

MONi MON2 TUEl TUE2 WEDi WED2 THRi THR2 FRIl FR12
F-4 1 0 0 1 1 1 1 0 1 0
T-38 2 1 1 1 1 1 2 1 1 1
C-23 0 1 1 1 1 r 0 1 0 1
END

72

Training Mission Data Sets

C-23 CF C-23 PERF DEMO T-38 RANGE DEMO
ST #1 10191 -10191 0
ST #2 10191 -10191 0
ST #3 0 0 10191
ST #4 0 0 10191
ST #5 0 0 10191
ST #6 0 0 0
ST #7 0 0 0
END

F-4 STRUCTURES T-38 LS DEMO T-38 LCNG STAT DATA
ST #1 0 0 0
ST #2 0 0 0
ST #3 0 10191 -10191
ST #4 0 10191 -10191
ST #5 0 10191 -10191
ST #6 10191 0 0
ST #7 10191 0 0
END

F-4 PROPULSION EXTRA EXTRA
ST #1 0 0 0
ST #2 0 0 0
ST #3 0 0 0
ST #4 0 0 0
ST #5 0 0 0
ST #6 10491 0 0
ST #7 10491 0 0
END

73

Instructor Pilot Qualification Data Sets

T-38 IP TPS L/D CHSE TGT FE FCF SOF EXTRA
IP #l X X X X X X
IP #2 X X X X X X
IP #3 X X X X
END

F-4 IP TPS STRC PROP AS/S TGT FE FCF SOF
IP #2 X X X X X X
END

C-23 IP TPS FE FCF EXTRA EXTRA EXTRA EXTRA EXTRA
IP #1 X X X
IP #2 X X
END

MSNTYPE ACTYPE QUAL
T-38 LS DEMO T-38 TPS
T-38 LS DATA T-38 N/A
T-38 RANGE DEMO T-38 TPS
F-4 PROPULSION F-4 PROP
F-4 STRUCTURES F-4 STRC
C-23 CHEC' FLTCHT C-23 TPS
C-23 PERF DEMO C-23 TPS
END

74

Algorithm Output Schedule

MONDAY 1st Flight Period:
** ** **** ** ***********************************

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

T-38 RANGE DEMO T-38 IP #3 ST #3 B
T-38 RANGE DEMO T-38 IP #1 ST #4 B
F-4 STRUCTURES F-4 IP #2 ST #6 B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

MONDAY 2nd Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CuSS
** .******

C-23 CF C-23 IP #2 ST #1 B
T-38 RANGE DEMO T-38 IP #3 ST #5 B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

TUESDAY 1st Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

C-23 CF C-23 IP #1 ST #2 B
T-38 LS DEMO T-38 IP #2 ST #3 B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

75

TUESDAY 2nd Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

T-38 LS DEMO T-38 IP #1 ST #4 B
F-4 STRUCTURES F-4 IP #2 ST #7 B

AVAILABLE RESOURCES

INSTRUCTOR AIRCPAFT AMOUNT

IP #3 C-23 1

WEDNESDAY 1st Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

C-23 PERF DEMO C-23 IP #1 ST #1 B
T-38 LS DEMO T-38 IP #3 ST #5 B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

F-4 1

WEDNESDAY 2nd Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

T-38 LONG STAT DATA T-38 N/A ST #3 B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

IP #2 F-4 1
IP #3

76

THURSDAY ist Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

T-38 LONG STAT DATA T-38 N/A ST #4 B
T-38 LONG STAT DATA T-38 N/A ST #5 B
F-4 PROPULSION F-4 IP #2 ST #6 B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

IP #1
IP #3

THURSDAY 2nd Flight Period:
** *************** **** ************************************** ******************

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

C-23 PERF DEMO C-23 IP #1 ST #2 B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

IP #2 T-38 1
IP #3

FRIDAY 1st Flight Period:

******** **MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

F-4 PROPULSION F-4 IP #2 ST #7 B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

IP #1 T-39 1
IP #3

77

FRIDAY 2nd Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
k****************

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

IP #1 T-38 1
IP #3 C-23 1

MISSIONS NOT SCHEDULED THIS WEEK:
* ** *** ** ******** ******* ***** ** ***** ************ ******* *******************

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

MISSIONS THAT VIOLATE QOT DEADLINES:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

78

Appendix B:

Heuristic Algorithm Applied to a Full-Size Problem

Student Pilot Availability Data (Class A)

MONi MON2 TUEl TUE2 WEDI WED2 THRi THR2 FRIl FR12
BAKKEN Y Y Y Y Y Y Y Y Y Y
BALTRUSAIT Y Y Y Y Y Y N N N N
BLOOMFIELD Y Y N Y Y Y Y Y Y Y
CAREY Y Y Y Y Y Y Y Y Y Y
GRIFFITH Y Y Y Y Y Y Y Y Y Y
HUNNEL Y Y Y Y N Y Y Y Y Y
SHORT Y Y Y Y Y Y Y Y Y Y
SMITH Y Y N Y Y Y Y Y Y Y
STURKOW N Y Y Y Y Y Y Y Y Y
TRAVEN Y Y Y Y Y Y Y Y Y Y
DENOFRIO Y Y Y Y Y Y Y Y Y Y
DILLION y y y Y Y Y Y N Y Y
MURRAY Y Y N Y N Y Y Y Y Y
PAYNE Y Y Y Y Y Y Y Y Y Y
SHAW Y Y Y Y Y Y Y Y Y Y
STAPP Y Y Y Y Y Y Y Y Y Y
WILHEIM Y Y Y Y Y Y Y Y Y Y
END

Student Pilot Availability Data (Class B)

MONl MON2 TUEl TUE2 WED1 WED2 THR1 THR2 FRIl FR12
ASH Y Y Y Y Y N Y Y N Y
FAIRBAIRN Y Y Y Y Y Y Y Y Y Y
GRAY Y Y Y Y Y Y Y Y Y Y
HOWELL N Y Y Y Y N Y Y Y Y
LEE Y Y Y Y Y Y Y Y Y Y
LUND Y Y Y Y Y Y Y Y N Y
MELROY Y Y Y N Y Y Y Y Y Y
ROBINSON Y Y Y Y Y Y Y Y Y Y
STERNBERG Y Y Y Y Y Y Y Y Y Y
ZEHR Y Y Y Y Y Y Y Y Y Y
BARAK Y Y N Y Y Y Y Y Y Y
DURON N Y Y Y Y Y Y Y Y Y
KELLER Y Y Y Y Y Y Y Y N N
NICHOLS Y Y Y Y Y Y Y Y Y Y
SHANKAR Y Y Y Y Y N Y Y Y Y
STAMBAUGH Y Y Y Y Y Y Y Y Y Y
VERDERAkME Y Y Y Y Y Y Y Y Y Y
END

79

Instructor Pilot Availability Data

MONI MON2 TUEl TUE2 WED1 WED2 THR1 THR2 FRII FRI2 WORK
BENDORF N Y Y Y Y Y Y Y Y Y 0
BONASSO Y N Y N Y Y Y Y N N 0
BROWN Y Y Y Y Y Y Y Y Y Y 0
CARLSON Y Y Y Y Y Y Y Y Y Y 0
DENESIK Y Y Y Y Y N Y Y Y N 0
GOGAN Y Y Y Y N Y Y Y Y Y 0
GREEN Y Y N Y Y Y Y Y Y Y 0
GRUNNALD Y Y Y Y Y Y Y Y Y Y 0
GARDNER Y Y N Y N Y Y N Y Y 0
HORTON Y Y Y Y Y Y Y Y Y Y 0
HUNTER Y Y Y Y Y Y Y Y Y Y 0
IMIG Y Y Y Y N N N N N N 0
KANA Y Y Y Y Y Y Y Y Y Y 0
LUEDKE Y Y Y Y Y Y Y Y Y Y 0
LUTZ Y Y N N Y Y Y Y Y Y 0
MARKOVICH Y Y Y Y Y Y Y Y Y Y 0
MOSER N Y Y Y Y N Y Y Y Y 0
NELSON Y Y Y Y Y N Y Y Y Y 0
STOFFERAHN Y Y Y Y N Y Y Y Y Y 0
STONE Y Y N Y Y Y Y Y Y Y 0
E WILSON Y Y Y Y Y Y N Y N Y 0
R WILSON Y Y Y Y Y Y Y Y Y Y 0
WOOD Y Y Y Y Y Y Y Y Y Y 0
MARTIN N N N N N N N N N N 0
MOSS N N Y N N Y N N Y N 0
SMOLKA N Y N N N N N Y N Y 0
SOBCZAK N N N N N N N Y N N 0
END

Aircraft Availability Data

MONl MON2 TUEl TUE2 WED1 WED2 THR1 THR2 FRIl FRI2
A-7 1 1 0 1 0 1 1 1 1 0
F-4 1 0 1 1 1 0 1 0 0 1
T-38 3 5 3 3 3 5 2 3 4 2
C-23 0 1 0 1 1 0 2 1 0 0
F-16 0 0 0 0 2 1 0 1 1 0
KC-135 0 0 0 0 0 0 0 0 0 0
C-130 0 0 0 0 0 0 0 0 0 0
GLIDER 0 0 0 0 0 0 0 0 0 0
C-141 1 0 1 0 1 0 1 0 1 0
F-15 0 C 0 0 0 0 0 0 0 0
A-37 1 0 2 0 2 1 1 0 0 1
ASTTA 0 0 0 0 0 0 0 0 0 0
VSS 0 0 0 0 0 0 0 0 0 0
END

8o

Training Mission Data Sets (Class A)

T-38 CF F-4 CF T-38 LEVEL ACCEL DEM
BAKKEN 11691 0 -11691
BALTRUSAIT 11691 0 -11691
BLOOMFIELD 11691 0 -11691
CAREY 11691 0 -11691
GRIFFITH 11691 0 -11691
HUNNEL 11691 0 -11691
SHORT 11691 0 -11691
SMITH 0 11691 0
STURKOW 0 11691 0
TRAVEN 0 11691 0
DENOFRIO 0 11691 0
DILLION 11691 0 -11691
MURRAY 11691 0 -11691
PAYNE 11691 0 -11691
SHAW 11691 0 -11691
STAPP 0 11891 0
WILHEIM 0 11891 0
END

C-23 PERF DEMO C-141 MULTI ENG DEMO EXTRA
BAKKEN 0 0 0
BALTRUSAIT 0 0 0
BLOOMFIELD 0 0 0
CAREY 0 0 0
GRIFFITH 0 0 0
HUNNEL 0 0 0
SHORT 0 0 0
SMITH 10791 0 0
STURKOW 10791 0 0
TRAVEN 10891 0 0
DENOFRIO 10891 0 0
DILLION 0 0 0
MURRAY 0 0 0
PAYNE 0 0 0
SHAW 0 0 0
STAPP 0 11691 0
WILHEIM 0 11691 0
END

81

Training Mission Data Sets (Class B)

A-7 LAT DIR DATA T-38 LOW LIFT/DRAG T-38 MAN FLT DATA
ASH 0 11691 0
FAIRBAIRN 0 11691 10191
ROBINSON 0 11691 0
LEE 0 11691 10291
STERNBERG 0 11691 10191
HOWELL 0 11691 10391
LUND 11791 0 0
ZEHR 11791 0 0
MELROY 11791 0 0
GRAY 11891 0 0
SHANKAR 0 11791 0
DURON 0 11791 0
NICHOLS 0 11791 0
KELLER 0 11791 0
BARAK 0 11791 0
STAMBAUGH 0 11791 0
VERDERAME 0 11791 0
END

A-37 STALL DEMO F-16 FTT EXTRA
ASH 11791 0 0
FAI RBAI RN 0 0 0
ROBINSON 11791 0 0
LEE 11791 0 0
STERNBERG 11791 0 0
HOWELL 0 0 0
LUND 0 0 0
ZEHR 0 0 0
MELROY 0 0 0
GRAY 0 0 0
SHANKAR 0 11691 0
DURON 0 11691 0
NICHOLS 0 11691 0
KELLER 11791 11691 0
BARAK 11791 0 0
STAMBAUGH 11791 0 0
VERDERAME 0 0 0
END

82

Instructor Pilot Qualification Data Sets

A-7 IP TPS DEP TGT WPN FCF FE EXTRA EXTRA
BENJAMIN X X X
STONE X X X X X
E WILSON X X X
R WILSON X X X
END

C-23 IP TPS FE FCF EXTRA EXTRA EXTRA EXTRA EXTRA
BENDORF X X X
HUNTER X X
KANA X X X
MARKOVICH X X X
END

F-15 IP TPS FE FCF SOF EXTRA EXTRA EXTRA EXTRA
DENESIK X
HUNTER
I M IG
WOOD X X X
END

F-16 IP TPS TGT FE FCF SOF EXTRA EXTRA EXTRA
BONASSO X X X X X X
BROWN X X X X
HORTON X X X X
LUE DKE
NELSON X X X X
STOFFERAHN X
END

F-4 IP TPS STRC PROP AS/S TGT FE FCF SOF
BONASSO X X X X X X
BROWN X X X X X X X
MOSER X X X X X X
SOBCZAK X X X X X
STOFFERAHN X X X X X X X
E WILSON X X X X X
END

83

GLIDER MP IP SPIN F/Q TOW EXTRA EXTRA EXTRA EXTRA
ALDRICH X X X X
BENJAMIN X X X X
HUNTER X X X X
MARKOVICH X X X X
STONE X
R WILSON X X
WOOD X
END

T-38 IP TPS L/D CHSE TGT FE FCF SOF EXTRA
BENDORF X X X X X X
BENJAMIN X X X X X X
CARLSON X X X X
DENESIK X X
GARDNER X X X
GOGAN X X X X X X
GRUNWALD X X X X X X
IMIG X X X X X
KANA X X X X
LUTZ X X X X X X X
MARTIN X X X X X
SMOLKA X X X X X
STONE X X X X X X
WOOD X X X X X X
END

A-37 IP TPS SPIN TGT WPN BAL FE FCF SOF
CARLSON X X X
GREEN X
LUEDKE
MOSER X X X X
MOSS X X X
NELSON X
R WILSON X X X X X X
END

C-141 IP TPS FE FCF SOF EXTRA EXTRA EXTRA EXTRA
GRUNNALD X X
GREEN X X
END

84

Mission Requirement Data

MSNTYPE NC TYPE QUAL
T-38 CF T-38 IP
T-38 FTE/N FAM T-38 TPS
T-38 FTE/N PERF DEMO T-38 TPS
T-38 LEVEL ACCEL DEM T-38 TPS
T-38 LA/CC PRAC T-38 TPS
T-38 LEVEL ACCFL DAT T-38 N/A
T-38 PACE LEAD T-38 TPS
T-38 TFB/PACE T-38 TPS
T-38 TURN PRAC T-38 TPS
T-38 TURN DATA T-38 N/A
T-38 MID-PHASE PRAC T-38 TPS
T-38 CRUISE DATA T-38 N/A
T-38 CHECKCLIMB DATA T-38 N/A
T-38 RANGE DATA T-38 N/A
T-38 LOW LIFT/DRAG T-38 TPS
T-38 LS DEMO T-38 TPS
T-38 LONG STAT DATA T-38 N/A
T-38 MF/OPS HND T-38 TPS
T-38 FORM T-38 TPS
T-38 MAN FLT DATA T-38 N/A
T-38 LAT DIR DATA T-38 N/A
T-38 FTE/N FQ DEMO T-38 TPS
T-38 DYN DATA T-38 N/A
T-38 STALL DATA T-38 N/A
T-38 OPS HNDLING DAT T-38 N/A
T-38 TARGETS T-38 TGT
T-38 SPIN CHASE T-38 SPIN
T-38 FTE/N FQ CHECK T-38 TPS
T-38 TGT W/TACAN T-38 TPS
T-38 FTT T-38 TPS
F-4 FTE/N FAM F-4 TPS
F-4 CF F-4 IP
F-4 LA/CC PRAC F-4 TPS
F-4 LEVEL ACCEL DATA F-4 N/A
F-4 TFB/PACE F-4 TPS
F-4 TURN PRAC F-4 TPS
F-4 TURN DATA F-4 N/A
F-4 MID-PHASE CHECK F-4 TPS
F-4 CRUISE DATA F-4 N/A
F-4 CHECKCLIMB DATA F-4 N/A
F-4 RANGE DATA F-4 N/A
F-4 PROPULSION F-4 PROP
F-4 LONG STAT DATA F-4 N/A
F-4 MAN FLT DATA F-4 N/A
F-4 LAT DIR DATA F-4 N/A
F-4 DYN DATA F-4 N/A
F-4 STALL DATA F-4 N/A
F-4 OPS HNDLING DATA F-4 N/A
F-4 TARGETS F-4 TGT

85

F-4 PILOT FQ CHECK F-4 TPS
F-4 FTE/N FQ CHECK F-4 TPS
F-4 ASY STO/CAP COMP F-4 TPS
F-4 STRUCTURES F-4 STRC
F-4 FTT F-4 TPS
KC-135 CRUISE/CC DAT KC-135 N/A
KC-135 FAN KC-135 N/A
KC-135 LA/CC PRC/DAT KC-135 N/A
KC-135 RANGE/CC DATA KC-135 N/A
KC-135 FTT KC-135 N/A
C-23 FTE/N LA/TURN C-23 TPS
C-23 FTE/N FAN C-23 TPS
C-23 PERF DEMO C-23 TPS
C-23 FTE/N L-S DEMO C-23 TPS
C-23 MF/OPS HANDLING C-23 TPS
C-23 FTE/N LAT DIR C-23 TPS
C-23 CF C-23 IP
C-23 FTT C-23 TPS
A-7 CF A-7 IP
A-7 IP CHASE A-7 TPS
A-7 LONG STAT DATA A-7 N/A
A-7 MAN FLT DATA A-7 N/A
A-7 QUAL/FAM A-7 TPS
A-7 DEPARTURE A-7 TPS
A-7 LAT DIR DATA A-7 N/A
A-7 DYN DATA A-7 N/A
A-7 STALL DATA A-7 N/A
A-7 OPS HNDLING DATA A-7 N/A
A-7 TARGETS A-7 TGT
A-7 FTT A-7 TPS
A-7 SYSTEMS EVAL A-7 TPS
C-141 CF C-141 IP
C-141 LONG STAT DATA C-141 TPS
C-i41 MAN FLT DATA C-141 TPS
C-141 LAT DIR DATA C-141 TPS
C-141 MULTI ENG DEMO C-141 TPS
C-141 ENGINE OUT C-141 TPS
C-141 DYNAMICS DATA C-141 TPS
C-141 STALL DATA C-141 TPS
C-141 OPS HANDLING C-141 TPS
C-141 FQ CHECK C-141 TPS
C-141 FTT C-141 TPS
F-16 CF F-16 IP
F-16 CHECKCLIMB DEMO F-16 TPS
F-16 TURN DEMO F-16 TPS
F-16 FTT F-16 TPS
F-16 SYSTEMS EVAL F-16 TPS
HI LIFT/DRAG GLIDER GLIDER TPS
GLIDER FQ DEMO GLIDER TPS
GLIDER SPIN GLIDER SPIN
VSS 1 VSS N/A
VSS 2 VSS N/A

86

VSS FTE/N VSS N/A
VSS FCS PROJECT VSS N/A
VSS 3 VSS N/A
A-37 CF A-37 IP
A-37 LAT DIR DEMO A-37 TPS
A-37 STALL DEMO A-37 TPS
A-37 QUAL DEMO A-37 TPS
A-37 SPIN 1 A-37 SPIN
A-37 SPIN 2 A-37 SPIN
A-37 SPIN FTE/N A-37 SPIN
A-37 CONT WPN DEL A-37 WPN
A-37 BALLISTICS A-37 BAL
A-37 FTT A-37 TPS
ASTTA DAY ASTTA N/A
ASTTA NIGHT ASTTA N/A
SYSTEMS QUALS (A) NNN N/A
SYSTEMS QUALS (B) NNN N/A
QUAL PROJECT FLIGHTS NNN N/A
SL QUAL FLIGHTS NNN N/A
FTN SYSTEMS EVAL NNN N/A
FTN SYSTEMS EVAL TGT NNN N/A
TMP FLIGHTS NNN N/A
F-15 CF F-15 IP
F-15 DYN DEMO F-15 TPS
F-15 FTT F-15 TPS
C-130 PERF FINAL CHK C-130 N/A
END N/A N/A

87

Algorithm Output Schedule and Information

MONDAY 1st Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

F-4 CF F-4 BONASSO SMITH A
C-141 MULTI ENG DEMO C-141 GRUNNALD STAPP A
T-38 MAN FLT DATA T-38 N/A FAIRBAIRN B
T-38 MAN FLT DATA T-38 N/A LEE B
T-38 MAN FLT DATA T-38 N/A STERNBERG B
A-7 LAT DIR DATA A-7 N/A LUND B
A-37 STALL DEMO A-37 R WILSON ASH B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

BROWN
CARLSON
DENESIK
GOGAN
GREEN
GARDNER
HORTON
HUNTER
IMIG
KANA
LUEDKE
LUTZ
MARKOVICH
NELSON
STOFFERAHN
STONE
E WILSON
WOOD

MONDAY 2nd Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

T-38 CF T-38 CARLSON BAKKEN A
T-38 CF T-38 GARDNER BALTRUSAIT A
T-38 CF T-38 GOGAN BLOOMFIELD A
T-38 CF T-38 IMIG CAREY A
C-23 PERF DEMO C-23 BENDORF SMITH A
T-38 MAN FLT DATA T-38 N/A HOWELL B
A-7 LAT DIR DATA A-7 N/A ZEHR B

88

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

BROWN
DENESIK
GREEN
HORTON
HUNTER
KANA
LUEDKE
LUTZ
MARKOVICH
MOSER
NELSON
STOFFERAHN
STONE
E WILSON
R WILSON
WOOD
SMOLKA

TUESDAY ist Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

T-38 CF T-38 WOOD GRIFFITH A
T-38 CF T-38 BENDORF HUNNEL A
T-38 CF T-38 CARLSON SHORT A
F-4 CF F-4 BROWN STURKOW A
C-141 MULTI ENG DEMO C-141 GRUNNALD WILHEIM A
A-37 STALL DEMO A-37 MOSS ROBINSON B
A-37 STALL DEMO A-37 MOSER LEE B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

BONASSO
DENESIK
GOGAN
HORTON
HUNTER
IMIG
KANA
LUEDKE
MARKOVICH
NELSON
STOFFERAHN

89

TUESDAY 2nd Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

F-4 CF F-4 MOSER TRAVEN A
T-38 CF T-38 STONE DILLION A
T-38 CF T-38 GARDNER MURRAY A
T-38 CF T-38 GOGAN PAYNE A
C-23 PERF DEMO C-23 HUNTER STURKOW A
A-7 LAT DIR DATA A-7 N/A GRAY B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

BENDORF
BROWN
CARLSON
DENESIK
GREEN
HORTON
IMIG
KANA
LUEDKE
MARKOVI CH
NELSON
STOFFERAHN
E WILSON
R WILSON
WOOD

WEDNESDAY 1st Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
** *********

F-4 CF F-4 E WILSON DENOFRIO A
T-38 CF T-38 LUTZ SHAW A
C-23 PERF DEMO C-23 KANA TRAVEN A
T-38 LOW LIFT/DRAG T-38 DENESIK ASH B
T-38 LOW LIFT/DRAG T-38 STONE FAIRBAIRN B
A-37 STALL DEMO A-37 R WILSON STERNBERG B
F-16 FTT F-16 HORTON SHANKAR B
F-16 FTT F-16 NELSON DURON B
A-37 STALL DEMO A-37 MOSER KELLER B

90

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

BENDORF C-141 1
BONASSO
BROWN
CARLSON
GREEN
GRUNNALD
HUNTER
LUEDKE
MARKOVICH
WOOD

WEDNESDAY 2nd Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

T-38 LOW LIFT/DRAG T-38 KANA ROBINSON B
T-38 LOW LIFT/DRAG T-38 LUTZ LEE B
T-38 LOW LIFT/DRAG T-38 WOOD STERNBERG B
A-7 LAT DIR DATA A-7 N/A MELROY B
T-38 LOW LIFT/DRAG T-38 CARLSON DURON B
T-38 LOW LIFT/DRAG T-38 GARDNER KELLER B
F-16 FTT F-16 BONASSO NICHOLS B
A-37 STALL DEMO A-37 MOSS BARAK B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

BENDORF
BROWN
GOGAN
GREEN
GRUNNALD
HORTON
HUNTER
LUEDKE
MARKOVICH
STOFFERAHN
STONE
E WILSON
R WILSON

91

THURSDAY 1st Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

F-4 CF F-4 STOFFERAHN STAPP A
C-23 PERF DEMO C-23 MARKOVICH DENOFRIO A
T-38 LOW LIFT/DRAG T-38 DENESIK HOWELL B
T-38 LOW LIFT/DRAG T-38 BENDORF SHANKAR B
A-37 STALL DEMO A-37 R WILSON STAMBAUGH B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

BONASSO A-7 1
BROWN C-23 1
CARLSON C-141 1
GOGAN
GREEN
GRUNNALD
GARDNER
HORTON
HUNTER
KANA
LUEDKE
LUTZ
MOSER
NELSON
STONE
WOOD

THURSDAY 2nd Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

T-38 LOW LIFT/DRAG T-38 SMOLKA NICHOLS B
T-38 LOW LIFT/DRAG T-38 DENESIK BARAK B
T-38 LOW LIFT/DRAG T-38 GOGAN STAMBAUGH B
F-16 FTT F-16 BROWN KELLER B

92

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

BENDORF A-7 1
BONASSO C-23
CARLSON
GREEN
GRUNNALD
HORTON
HUNTER
KANA
LUEDKE
LUTZ
MARKOVICH
MOSER
NELSON
STOFFERAHN
STONE
E WILSON
R WILSON
WOOD
SOBCZAK

FRIDAY 1st Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

T-38 LEVEL ACCEL DEM T-38 LUTZ BAKKEN A
T-38 LEVEL ACCEL DEM T-38 STONE BLOOMFIELD A
T-38 LEVEL ACCEL DEM T-38 WOOD CAREY A
T-38 LOW LIFT/DRAG T-38 KANA VERDERAME B

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

BENDORF A-7 I
BROWN F-16 I
CARLSON C-141 1
DENESIK
GOGAN
GREEN
GRUNNALD
GARDNER
HORTON
HUNTER
LUEDKE
MARKOVICH
MOSER

93

FRIDAY 2nd Flight Period:

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS

T-38 LEVEL ACCEL DEM T-38 SMOLKA GRIFFITH A
T-38 LEVEL ACCEL DEM T-38 BENDORF HUNNEL A
F-4 CF F-4 STOFFERAHN WILHEIM A

AVAILABLE RESOURCES

INSTRUCTOR AIRCRAFT AMOUNT

BROWN A-37 1
CARLSON
GOGAN
GREEN
GRUNNALD
GARDNER
HORTON
HUNTER
KANA
LUEDKE
LUTZ
MARKOVICH
MOSER
NELSON
STONE
E WILSON
R WILSON
WOOD

MISSIONS NOT SCHEDULED THIS WEEK:

MISSION AIRCRAFT STUDENT CLASS

T-38 LEVEL ACCEL DEM T-38 BALTRUSAIT A
T-38 LEVEL ACCEL DEM T-38 SHORT A
T-38 LEVEL ACCEL DEM T-38 DILLION A
T-38 LEVEL ACCEL DEM T-38 MURRAY A
T-38 LEVEL ACCEL DEM T-38 PAYNE A
T-38 LEVEL ACCEL DEM T-38 SHAW A

MISSIONS THAT VIOLATE QOT DEADLINES:
* ** ** *** ** * *** ***************** *********************************

MISSION AIRCRAFT STUDENT CLASS

T-38 MAN FLT DATA T-38 FAIRBAIRN B
T-38 MAN FLT DATA T-38 LEE B
T-38 MAN FLT DATA T-38 STERNBERG B

94

Appendix C:

TPS Flight Scheduling Program Operating Instructions

Scheduling Program Background:
The program is written and compiled using Microsoft PC FORTRAN.

It is designed to be used on personal computers. The following
procedures should be used to run the model. The program accesses
22 different external data files. The information contained in
these data files describes the environment of the TPS flight
situation for any given week. The scheduling program uses this
information to develop the flight schedule for the corresponding
week.

Description of External Data Files:
Flight Mission Data Files: There are 8 different flight

mission files. They contain information pertaining to the
student missions that are eligible to be flown (scheduled) during
the given week. Information includes student name, mission
description, and the date at which the mission can first be flown
by the student. Each of the two student classes has four mission
data files dedicated to represent their missions. Furthermore,
each file can contain up to three different mission types.
Hence, up to 12 different mission types can be scheduled per
class. The eight mission files are the following.

MSN1A.DAT Class A student missions (1-3)
MSN2A.DAT Class A student missions (4-6)
MSN3A.DAT Class A student missions (7-9)
MSN4A.DAT Class A student missions (10-12)
MSN1B.DAT Class B student missions (1-3)
MSN2B.DAT Class B student missions (4-6)
MSN3B.DAT Class B student missions (7-9)
MSN4B.DAT Class B student missions (10-12)

NOTE: Precedence information forcing a certain mission (such as a
checkflight) to be flown before another mission by the same
student is also contained in these files. This is accomplished
by entering the negative of the ready date of the mission that
must be flown first in the place corresponding to the ready date
of the mission that can only be flown after the first mission.

95

Resource Availability Data Files: There are four different
data files that represent the availability of the three key
resources (aircraft, instructors, and students). Information
contained in these files includes student name, instructor name,
or aircraft type, and the corresponding availability status for
the two morning flight periods for each of the flight days. The
four availability data files are the following.

A_AVAIL.DAT Class A student availability data
B AVAIL.DAT Class B student availability data
IPAVAIL.DAT Instructor pilot availability data
ACAVAIL.DAT Aircraft availability data

Mission Requirements Data File: The information contained in
this file lists the aircraft type and instructor pilot
qualification required by each mission type. This data file is
named MSNREQMT.DAT.

Instructor Pilot Qualification (Letter of X's) Data Fiies:
There are nine data files of this type -- one for each aircraft
type in the TPS Letter of X's Notebook. Information contained in
these files includes instructor pilot name and qualifications
attained by that instructor in a given aircraft. The nine data
files are the following.

T-38_XS.DAT Instructor qualifications for T-38
A-37 XS.DAT Instructor qualifications for A-37
A-7_XS.DAT Instructor qualifications for A-7
C-23_XS.DAT Instructor qualifications for C-23
C-141 XS.DAT Instructor qualifications for C-141
F-4_XS.DAT Instructor qualifications for F-4
F-16_XS.DAT Instructor qualifications for F-16
F-15_XS.DAT Instructor qualifications for F-15
GLIDERXS.DAT Instructor qualifications for Glider

NOTE: The names of instructors, students, aircraft, mission
descriptions, and qualifications must be entered by the same name
in all data files. Otherwise, the scheduling program will not be
able to recognize and equate them.

96

TPS Scheduling Program Hard Disk Installation:
If the TPS scheduling program is installed on a hard disk, the

program and its associated files should have their own directory.
To create a directory and copy files into the created directory,
consult your DOS manual.

Updating External Data Files:
Each of the above external data files has a corresponding

QUATTRO PRO spreadsheet file with a .WK file extension instead of
the .DAT file extension. These spreadsheet files are formatted
such that the data file formats required by the TPS scheduling
program are maintained. Furthermore, the spreadsheet styl of
editing provided by QUATTRO PRO allows for quick and efficient
editing. NOTE: It is not necessary to use the QUATTRO PRO
spreadsheet files to update the .DAT files. The spreadsheet
files are provided for ease and efficiency. The .DAT files can
be updated in any manner desired by the user; however, their
formats must be maintained or the TPS scheduling program will not
be able to read them. To update the files using QUATTRO PRO, the
following steps must be accomplished (for a complete guide for
using QUATTRO PRO, consult your QUATTRO PRO marual).

1) Enter the directory containing the TPS scheduling program

files.

2) Enter the QUATTRO PRO program.

3) Load in the file to be updated. Type /FR and select the .WK
file corresponding to the .DAT to be updated.

4) Make desired changes.

5) Save the updated file as a .DAT file (ASCII). Type /PDF,
filename.DAT, select the REPLACE option, ensure the full file is
blocked by QUATTRO PRO by using the BLOCK option, and then select
the SPREADSHEET PRINT option.

6) The QUATTRO PRO spreadsheet file can also be save if
desired -- it is not necessary.

7) Repeat steps 3-6 for all files to be updated.

8) Exit QUATTRO PRO.

97

Running the TPS Scheduling Program:
To have the TPS scheduling program produce a schedule for the

flight week corresponding to the information contained in the
external data files, perform the following steps.

1) Enter the directory containing the TPS scheduling program

files.

2) Delete the old schedule. Type del SCHED.OUT <ENTER>

3) Run the program. Type TPS <ENTER>

4) The user will be prompted to enter Monday's date of the
flight week and (if applicable) the dates of the academic test
days for the student classes during the flight week. All dates
must be entered in the format MMDDYY.

5) When the program terminates, the resulting schedule and
related information will be provided in the file SCHED.OUT.

98

Appendix D:

TPS Flight Scheduling Program Source Code

CC SCHEDULE.FOR - TPS WEEKLY FLIGHT SCHEDULING PROGRAM *
CC *
CC References: MS THESIS, AFIT/ENS GOR 92M Capt Gary Foster *C********* *** * ******************* *********** *** ***** ********** ***

CC KEY VARIABLE LIST WITH DESCRIPTION: *
CC *
CC num A = number of students in class A *
CC num B = number of students in class B *
CC numIP = number of instructor pilots *
CC numAC = number of aircraft types *
CC numFTT = number of different mission types *
CC n msns = number of missions to be scheduled *
CC msn list(*) = mission description (type) *
CC msndat(*,l) = name of student to fly mission *
CC msndat(*,2) = class of student *
CC msndat(*,3) = name of instructor to fly mission *
CC msndat(*,4) = aircraft type scheduled for mission *
CC FTTneed(*,l) = mission type requirement data *
CC FTTneed(*,2) = required aircraft type for mission *
CC FTT need(*,3) = required instructor qualification for mission *
CC rdate(*,l) = mission ready date (adjustable) *
CC rdate(*,2) = flight period that mission is scheduled *
CC rdate(*,3) = scheduled flight period of best schedule *
CC rdate(*,4) = priority rank of mission *
CC rdate(*,5) = number of times mission not scheduled *
CC rdate(*,6) = mission ready date (fixed) *
CC rdate(*,7) = number of IPs qualified to fly given mission *

PROGRAM tps

CC ** common block variables ***
COMMON /TPS_CHAR/ msndat(150,4), FTT_need(140,3), A_list(30)
&,B-list(30), IP list(30), AC list(20), bestschd(150,4)
&,msn list(150), best_list(150)
COMMON /TPS_INT/ rdate(150,7), workload(30), numA, numB
&,nACper(20,10), n_msns, num AC, num FTT
&,A avail(30,10), B_avail(30,10), IPavail(30,10), numIP
&,bestAC(20,10), bestIP(30,10)
CHARACTER*20 msn list, FTT_need, best-list
CHARACTER*10 A_list, B list, IPlist, AClist, msndat
&,best schd
INTEGER rdate, workload, nAC_per, nmsns, A-avail

&,B avail, IP avail, numAC, numA, numB, numlIP, numFTT
&,best AC, bestIP

99

CC ** main variables ***
INTEGER i, j, ncapip, schdprd, nogo, startdate
INTEGER atest, b_test, counter, msn_num, rank
CHARACTER*20 msntype
CHARACTER*10 actype, ipcap_list(30), stdtname
&,ipname, qual need
CHARACTER class
LOGICAL found, test_day, avail

CC ** obtain date for the start day of the flight week to be scheduled **
13 WRITE (*,8000) ' Enter the flight week start date (MMDDYY):

READ (*,*) start-date
CC ** convert date into day of year

IF (startdate.GE.O.AND.start date.LE.123200) THEN
start_date = Nday(start_date)

ELSE
GOTO 13

END IF

CC ** obtain class test days for week **
11 WRITE (*,8000) ' Enter class A test date (MMDDYY or 0 if none):

READ (*,*) a test
IF (atest.GE.O.AND.atest.LE.123200) THEN

IF (a_test.NE.0) THEN
a test = Nday(atest)
a test = 2 * (atest - startdate) + 1

END IF
ELSE

GOTO 11
END IF

12 WRITE (*,8000) ' Enter class B test date (MMDDYY or 0 if none):
READ (*,*) b test
IF (btest.GE.O.AND.btest.LE.123200) THEN

IF (btest.NE.0) THEN
b_test = Nday(btest)
b test = 2 * (b-test - startdate) + 1

END IF
ELSE

GOTO 12
END IF

CC ** read in data (mission, resource, capability, etc) *
CC ** pertaining to flight week to be scheduled

PRINT*,'
PRINT*,'LOADING DATA FILES'
CALL getmsns
CALL ipcapblty
CALL res avail

100

CC ** initialize number of times mission not scheduled and attemvrs**
DO i = 1, nmsns

rdate(n-msns,5) = 0
END DO
counter = 1

CC ** initially rank missions according to ready dates ***
CALL msn rank
PRINT*, 'PRIORITIZE MISSIONS'

CC ** BEGIN SCHEDULING MISSIONS **
CC ** schedule missions based on rank and resource availability **
70 nogo = 0

PRINT*,'SCHEDULING MISSIONS. ITERATION # ',counter
PRINT*,'
DO 60 rank = 1, n msns

CC ** find mission (msnnum) with priority (rank) **
found = .FALSE.
msn num = 0
DO 75 WHILE(.NOT.found.AND.msnnum.LT.n-msns)

msn num = msn num + 1
IF (rdate(msn num,4).EQ.rank) THEN

found = .TRUE.
END IF

75 CONTINUE

CC ** reset/clear capable IP list, aircraft type, and mission
n capip = 0
DO j = 1, num IP

ip cap list(j) = 'temp'
END DO
msn_type = msnlist(msnnum)
stdt name = msndat(msn_num,l)
class = msndat(msnnum,2)
ac-type = I I

qual need = I I

CC ** find aircraft type and IP qualification needed for mission *
CALL acmatch(msn_type, actype, qualneed)
msndat(msn-num,4) = actype

CC ** make list of IPs capable of flying mission *
CALL ipqual(actype, qual_need, ncap ip, ipcaplist)
rdate(msnnum,7) = ncapip

CC ** check to see if required preceding mission scheduled **
CC ** if not, this mission cannot be scheduled **

IF (rdate(msn_num,l).LT.0) GOTO 60

101

CC ** determine first PERIOD that mission is eligible to be flown *
CC ** based on its ready date

schdprd = 2 * (rdate(msn-num,l) - start-date)

CC ** if ready date from previous week, set 1st period to 1 ***
IF (schdprd.LT.0) THEN

schdprd = 0
END IF

CC ** find period in which aircraft is available for mission **
90 CALL acperiod(actype, schdprd)

IF (schdprd.LT.0) THEN
CC ** if aircraft not avail, tag msn as infeasible, and get next msn **

nogo = no-go + 1
rdate(msnnum,2) = 0
GOTO 60

END IF

CC ** if sched period is on test day, check to see if student is **
CC ** already scheduled to fly a mission that day. (QOT requirement) **

test_day = .FALSE.
IF ((class.EQ.'A'.AND.atest.NE.0).OR.

& (class.EQ.'B'.AND.b_test.NE.0)) THEN
CALL checkday(schd_prd, stdtname, class, atest, btest

& ,test_day, rank)
END IF
IF (testday) GOTO 90

CC ** check IP availability and workload for that period and select IP *
IF (ipcaplist(l).EQ.'N/A') THEN

ip-name = 'N/A'
ELSE

ip-name = 'NONE'
CALL ipschd(schd_prd, ncapip, ipcaplist, ipname)

END IF

CC ** if no IP available, check aircraft availability for another period **
IF (ipname.EQ.'NONE') GOTO 90

CC ** check student availability *
avail = .TRUE.
CALL stdt check(schdprd, stdt name, class, avail)

CC ** if student not avail, check aircraft avail for another period **
IF (.NOT.avail) GOTO 90

CC ** schedule mission, adjust resource levels, check for precedence msn **
msndat(msnnum,3) = ipname
rdate(msn_num,2) = schd_prd
CALL res adjst(schd_prd, class, ipname, actype, stdtname)
CALL prec msn(msnnum, start_date)

102

CC ** schedule next mission ***
60 CONTINUE

CC ** if less than max number of iterations and
CC ** there are any unscheduled missions ***

IF (counter.LT.7.AND.no-go.GT.0) THEN
CC ** save best schedule, reset resource levels, and try again **

CALL savebest(counter)
CALL res avail
PRINT*,'RE-INITIALIZING RESOURCE LEVELS'
counter = counter + 1

CC ** reset mission ready dates to original values **
DO j = 1, n msns

rdate(j,l) = rdate(j,6)
END DO

CC ** re-rank missions based on ready dates and **
CC ** number of times not scheduled **

CALL msn rank
PRINT*,'RE-PRIORITIZING MISSIONS'
GOTO 70

ELSE
CC ** release flight schedule for the week **

CALL savebest(counter)
CALL schd out(startdate)
PRINT*,'
PRINT*,'SCHEDULING ALGORITHM COMPLETE.'
PRINT*,'OUTPUT IS CONTAINED IN THE FILE "SCHED.OUT"'

END IF

8000 FORMAT(// A \

STOP
END

103

SUBROUTINE get msns

CC **common block variables *

COMMON /TPS_CHAR, msndat(150,4), FTTneed(140,3), A,_list(30)
&,B-list(30), IP-list(30), AClist(20), best schd(150,4)
&,msn list(150), best_list(150)
COMMON /TPS_INT/ rdate(150,7), workload(30), num-A, numB

&,n ACyer(20,l0), nmsns, num -AC, num_-FTT
&,A avail(30,l0), B_avail(30,1O), IP-avail(30,l0), numIP
&,best AC(20,l0), bestIP(30,l0)
CHARACTER*20 msn-list, FTT-need, best-list
CHARACTER*10 A-list, B-list, IP-list, AC_list, msndat

&,best -schd
INTEGER rdate, workload, nACper, nmsns, A-avail

&,B_avail, IP -avail, numAC, numA, num-B, numIP, numFTT
&,bestAC, bestIP

CC This subroutines reads mission data from external data files
CC This mission data pertains to missions planned to be flown during
CC the given week. Information includes: mission description, student
CC name, and mission ready date.

INTEGER i, j, date(15,15), temp, unum
CHARACTER*20 msn type (150)
CHARACTER*10 astdnt(30), bstdnt(30)

OPEN(UNIT=l,FILE='msnla.dat' ,STATUS='OLD')
OPEN(UNIT=2,FILE='msn2a.dat' ,STATUS='OLD')
OPEN(UNIT=3,FILE='msn3a.dat' ,STATUS='OLD')
OPEN (UNIT=4,FILE='msn4a.dat' ,STATUS='OLD')
OPEN (UNIT=5, FILE=' msnlb.dat' ,STATUS=' OLD')
OPEN (UNIT=6, FILE=' msn2b.dat' ,STATUS='OLD')
OPEN (UNIT=7 ,FILE= 'msn3b.dat' ,STATUS='OLD')
OPEN(UNIT=8 ,FILE= 'msn4b.dat' ,STATUS= 'OLD')

n msns = 0
unum = 0

CC read in and echo weekly mission data for class A
DO unum = 1, 4

REAU(UNIT=unum,FMT=9100) (msntype(j), j =1, 3)
i 0

888 i i +lI
READ(UNIT=unum,FMT=9200) astdnt(i),(date(i,j), j 1, 3)
DO j = 1, 3

IF (date(i,j).NE.O) THEN
n-msns = n-msns + 1
msnlist(n -msns) = msn-type(j)
msndat(n -msns,l) = astdnt(i)
msndat(n-msns,2) = 'A'
msndat(n-msns,3) =
msndat(n-msns,4) =

104

temp = date(i,j)
rdate(n-msns,l) = Nday(temp)
rdate(nmsns,6) = rdate(n -msns,l)
rdate(n msns,4) = n -msns
rdate(n-msns,7) = 0

END IF
END DO

IF (astdnt(i).NE.'END'.AND.i.LT.30) GOTO 888
END DO

CC read in and echo weekly mission data for class B
r, unum = 5, 8

READ(UNIT=unum,FMT=9100) (msntype(j), j = 1, 3)
i=0

777 ii +l
READ(UNIT=unum,FMT=9200) bstdnt(i),(date(i,j), j =1, 3)
DO j = 1, 3

IF (date(i,j).NE.O) THEN
n-msns = n-msns + 1
msnlist(n-msns) = msn_type(j)
msndat(n-msns,l) = bstdnt(i)
msndat(n-msns,2) = 'B'
msndat(n-msns,3) =-
msndat(n -msns,4) - I'
temp = date(i,j)
rdate(n-msns,l) = Nday(temp)
rdate(n-msns,6) = rdate(n-msns,l)
rdate(n-msns,4) = n msns
rdate(n-msns,7) = 0

END IF
END DO

IF (bstdnt(i).NE.'END'.AND.i.LT.30) GOTO 777
END DO

CLOSE (UNIT=l)
CLOSE (UNIT=2)
CLOSE (UNIT=3)
CLOSE (UNIT=4)
CLOSE (UNIT=5)
CLOSE (UNIT=6)
CLOSE (UNIT=7)
CLOSE (UNIT=8)

9100 FORMAT(11X,3(2X,A20))
9200 FORMAT(lX,AlO,3(2X,120))
9250 FORMAT(1X,A20,2X,A8, 3X,A1, 3X,14)

RETURN
END

105

SUBROUTINE ipcapblty

CC **common block variables *
COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A_list(30)
&,Blist(30), IP-list(30), AClist(20), best schd(150,4)
&,msn -list(150), best_list(150)
COMMON /TPS_INT/ rdate(150,7), workload(30), num-A, numB
&,nACper(20,1O), n-msns, num-AC, numFTT
&,A -avail(30,lO), B_avail(30,lO), IP-avail(30,lO), numIP
&,best_-AC(20,lO), bestIP(30,1O)
CHARACTER*20 msn list, FTT_need, best-list
CHARACTER*10 A_list, B-list, IP-list, AC list, msndat

&,best 'schd
INTEGER rdate, workload, n_-ACyper, n-msns, A-avail

&,B avail, IP-avail, numAC, numA, numB, numIP, numFTT
&,bestAC, best_IP

CC This subroutines reads IP capability data from an external data file
CC This data pertains to IP qualifications to fly
CC a given FTT mission. Information includes: mission description,
CC aircraft type, and FTT mission qualification status.

INTEGER i
CHARACTER*20 headl
CHARACTER*10 head2, head3

OPEN(UNIT=13, FILE= 'msn reqmt.dat' ,STATUS= 'OLD')

READ(UNIT=13, FMT=9300) headl, head2, head3
i=0

222 i i + 1
READ(UNIT=13,FMT=9300) FTT need(i,l) ,FTTneed(i,2),

& FTT need(i, 3)
IF (FTT-need(i,l).NE.'END'.AND.i.LT.140) GOTO 222
numFTT = i - 1

CLOSE (UNIT= 13)

9300 FORMAT(1X,A20,4X,A1O,4X,A1O)

RETURN

END

106

SUBROUTINE res-avail

CC **common block variables *

COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A_list(30)
&,Blist(30), IP -list(30), AClist(20), best schd(150,4)
&,msn list(150), best_list(150)
COMM4ON /TPS_INT/ rdate(150,7), workload(30), num-A, numB

&,n ACyer(20,lo), n msns, num AC, numFTT
&,A-avail(30,l0), B~avail(30,l0), IP-avail(30,l0), numIP
&,best -AC(20,l0), best_IP(30,l0)
CHARACTER*20 msn-list, FTT_need, best-list
CHARACTER*10 A-list, B-list, IP-list, AC-list, msndat
&,best_schd
INTEGER rdate, workload, nACyper, n-msns, A-avail

&,B-avail, IP-avail, numAC, numA, numB, numIP, numFTT
&,best-AC, best_IP

CC This subroutines reads in resource availability data for the week
CC from external data files. This data pertains to each resources
CC (Aircraft, IPs, and students from both classes A and B) availability
CC for the week.

INTEGER i, j
CHARACTER*10 header, class, period(l0)
CHARACTER temp(l0)

OPEN(UNIT=9,FILE='ac-avail.dat' ,STATUS='OLD')
OPEN (UNIT=l0, FILE=' ip -avail .dat' ,STATUS= 'OLD')
OPEN(UNIT=ll,FILE='A -avail.dat' ,STATUS='OLD')
OPEN(UNIT=12,FILE='B avail.dat' ,STATUS='OLD')

CC **read in expected aircraft availability for given flight week
READ(UNIT=9,FMT=9400) (period(j), j = 1, 10)
i 0

lli =i +1
READ(UNIT=9,FMT=9500) AClist(i), (n-ACper(i,j), j = 1, 10)

IF (AC-list(i).NE.'END'.AND.i.LT.20) GOTO 111
numAC = i - 1

CC **read in IP availability for given flight week *

READ(UNIT=1O,FMT=9450) (period(j), j =1, 10), header
i=0

333 i i + 1
READ(UNIT=l0,FMT=9600) IP-list(i), (temp(j),j =1, 10)

&,workload(i)
DO j = 1, 10

IF (temp(j).EQ.'Y') THEN
IP avail(i,j) = 1

ELSE
IP avail(i,j) = 0

END IF

107

END DO
IF (IP-list(i).NE.'END'.AND.i.LT.30) GOTO 333
numIP = i - 1

CC **read in class A student availability for given flight week *

READ(UNIT=ll,FMT=9750) class, (period(j), j = 1, 10)
i=0

444 i= i + 1
READ(UNIT=1l,FMT=9700) Alist(i), (temp(j), j =1, 10)
DO j = 1, 10

IF (temp(j).EQ.'YI) THEN
A -avail(i,j) = 1

ELSE
A -avail(i,j) = 0

END IF
END DO

IF (A,.list(i).NE.'END'.AND.i.LT.30) GOTO 444
numA = i - 1

CC **read in class B student availability for given flight week *

READ(UNIT=12,FMT=9750) class, (period(j), j = 1, 10)
i= 0

555 i =i + I
READ(UNIT=12,FMT=9700) Blist(i), (temp(j), j =1, 10)
DO j = 1, 10

IF (temp(j).EQ.'Y') THEN
B -avail(i,j) = 1

ELSE
B -avail(i,j) = 0

END IF
END DO

IF (BlIist(i).NE.'END'.AND.i.LT.30) GOTO 555
numB = i - 1

CLOSE (UNIT=9)
CLOSE (UNIT=10)
CLOSE (UNIT=11)
CLOSE (UNIT= 12)

9400 FORMAT(BX,10A6)
9450 FORMAT(13X,l1A5)
9500 FORMAT(lX,A7,1016)
9600 FORMAT(lX,A1O,2X,l0(Al,4X) ,15)
9700 FORMAT(lX,AlO,2X,l0(Al,4X))
9750 FORMAT(lX,AlO,2X,10A5)

RETURN
END

108

INTEGER FUNCTION nday (ndate)
cc
CC Converts ready date into day of year
cc

INTEGER ndate, flag

CC *** IF DATE IS NEGATIVE (DEPENDENT ON ANOTHER MISSION), FLAG IT *

flag = 1
IF (ndate.LT.0) THEN

flag =-1

ndate =ndate * flag
END IF

CC **convert date into day of year ~*
IF (ndate.LT.20000) THEN

n day = INT((ndate - 10000)/100)
ELSE IF (ndate.LT.30000) THEN

n day = 31 + INT((ndate - 20000)/100)
ELSE IF (ndate.LT.40000) THEN

n day = 59 + INT((ndate - 30000)/100)
ELSE IF (ndate.LT.50000) THEN

n day = 90 + INT((ndate - 40000)/100)
ELSE IF (ndate.LT.60000) THEN

n day = 120 + INT((ndate - 50000)/100)
ELSE IF (ndate.LT.70000) THEN

n day = 151 + INT((ndate - 60000)/100)
ELSE IF (ndate.LT.80000) THEN

n day = 181 + INT((ndate - 70000)/100)
ELSE IF (ndate.LT.90000) THEN

n day = 212 + INT((ndate - 80000)/100)
ELSE IF (ndate.LT.100000) THEN

n day = 243 + INT((ndate - 90000)/100)
ELSE IF (ndate.LT.110000) THEN

n-day = 273 + INT((ndate - 100000)/100)
ELSE IF (ndate.LT.120000) THEN

n day = 304 + INT((ndate - 110000)/100)
ELSE

n day = 334 + INT((ndate - 120000)/100)
END IF
n_day = nday * flag

RETURN
END

109

SUBROUTINE msn rank

CC **common block variables *

COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A, list(30)
&,B-list(30), IP-list(30), AClist(20), best schd(150,4)
&,msn -list(150), best_list(150)
COMMON /TPS_INT/ rdate(150,7), workload(30), num-A, numB
&,nAC~per(20,lO), n-msns, numAC, numFTT
&,A avail(30,l0), B_avail(30,lO), IP-avail(30,lO), numIP
&,bestAC(20,lO), best_IP(30,lO)
CHARACTER*20 msn-list, FTT-need, best-list
CHARACTER*10 A-list, B list, IP-list, AC_list, msndat

&,best_schd
INTEGER rdate, workload, nACyper, n-msns, A-avail

&,B avail, IP-avail, num-AC, num-A, num-B, numIP, numFTT
&,bestAC, best_IP

CC **This subroutine ranks the missions in order of earliest *

CC **ready dates. Flights that cannot be flown prior to the completion
CC **of another flight are ranked last. Their ranking is updated once
CC **the required fight is completed. **

INTEGER i, dummy(150,4), temp(4), msn-num
LOGICAL found, sorted, ranked

CC **set up dummy arays *

DO i = 1, n msns
dummy(i,1) = rdate(i,6)
dummy(i,2) = i
dummy(i,3) = rdate(i,5)
dummy(i,4) = rdate(i,7)

END DO

CC **perform the sort until mission ranked by ready dates *

CC **and IPs qual to fly mission type *

sorted = .FALSE.
20 IF (.NOT.sorted) THEN

sorted = TRUE.
DO 10 i=1, n-msns-l

CC **IF MISSION HAS LATER READY DATE OR DEPENDENT READY DATE**
IF ((dummy(i,l).GT.dummy(i+l,l).AND.dummy(i+l,l).GT.O)

& .OR.(dummy(i+1,4).LT.dummy(i,4)
& .AND.dummy(i+1,1).EQ.dummy(i,l).AND.dummy(i+1,1).GE.0)
& .OR.(dummy(i,l).LT.O.AND.dummy(i+1,1).GE.0)) THEN

CC **EXCHANGE OUT OF RANK MISSION PRIORITIES***
temp(l) = dummy(i,l)
temp(2) = dummy(i,2)
temp(3) = dummy(i,3)
temp(4) = dummy(i,4)
dummy(i,l) = dummy(i+l,l)
dummy(i,2) = dummy(i+1,2)
dummy(i,3) = dummy(i+1,3)

110

duxnmy(i,4) = dummy(i+1,4)
duinmy(i+1,1) = temp(l)
dummy(i+l,2) = temp(2)
dummy(i+l,3) = temp(3)
dununy(i+l,4) =temp(4)
sorted = .false.

END IF
10 CONTINUE

GOTO 20
END IF

CC *** sort hased on number of times mission not scheduled *

ranked = .FALSE.
25 IF (.NOT.ranked) THEN

ranked = TRUE.
DO 15 i =1, n msns-1

CC **if mission not scheduled more than other mission
IF (dummy(i+l,3).GT.dummy(i,3).AND.dummy(i+l,l).GE.0) THEN

CC **EXCHANGE OUT OF RANK MISSIONS ***

temp(l) = dummy(i,l)
temp(2) = dummy(i,2)
temp(3) = dummy(i,3)
temp(4) =dummy(i,4)
dummy(i,1) = dummy(i+1,1)
dummy(i,2) = dummy(i+1,2;
dummy(i,3) = dummy(i+1,3)
dummy(i,4) = dummy(i+1,4)
dummy(i+1,1) = temp(l)
dummy(i+1,2) = temp(2)
dummy(i+1,3) =temp(3)
dummy(i+1,4) = temp(4)
ranked = .false.

END IF
15 CONTINUE

GOTO 25
END IF

CC **re-assign rank to real variables *

Do i = 1, n-msns
CC **find mission (msnnum) with priority (rank) *

found = .FALSE.
msn nun = 0
DO 77 WHILE(.NOT.found.AND.msn-num.LT.n-msns)

msn num = msn num + 1
IF (dummy(msn-nun,2).EQ.i) THEN

rdate(i,4) = msn num
found = .TRUE.

END IF
77 CONTINUE

END DO

8250 FORMA14 .X,A20,2X,A8,3X,A1,3X,4I4)

ill

RETURN
END

SUBROUTINE ac-match (msn type, ac_type, qual_need)

CC ** common block variables ***
COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A,.list(30)

&,B-list(30), IP-list(30), AC-list(20) , best schd(150,4)
&,msn -list(l50), best_list(150)
COMMON /TPS_INT/ rdate(150,7), workload(30), num-A, numB

&,n ACper(20,l0), n msns, num AC, numFTT
&,A-avail (30,10), B~avail(30,l0), IP-avail(30,l0), numIP
&,bestAC(20,l0), best_IP(30,10)
CHARACTER*20 msn list, FTT_need, best-list
CHARACTER*10 A,_list, B list, IP-list, AC list, msndat
&,best -schd
INTEGER rdate, workload, nACper, n-msns, A-avail

&,B_avail, IPavail, num-AC, numA, num_B, num_IP, numFTT
&,bestAC, best_IP

CC **This subroutine finds the aircraft type and IP
CC **qualification needed for a given FTT mission.

CHARACTER* 20 msn type
CHARACTER*10 actype, qual need

INTEGER row
LOGICAL found

CC **search aircraft type for match, tag row number of aircraft *

found = .FALSE.
-ow = 0
DO 55 WHILE(.NOT.found.AND.row.LT.num-FTT)

row = row + 1
IF (msn type. EQ. FTT need(row, 1)) THEN

found = .TRUE.
actype = FTT-need(row,2)
qual_need = FTT-need(row,3)

END IF
55 CONTINUE

IF (.NOT.found) THEN
PRINT*,'ERROR -- MISSION TYPE NOT FOUND IN SUB ac-match.'
PRINT*,'CHECK INPUT FILES FOR: ',msn type

END IF

RETURN
END

112

SUBROUTINE ipqual (ac type, qual need, n_capip, ipcap list)

CC ** common block variables ***
COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A,_list(3O)
&,Blist(30), IP-list(30), AClist(20), best schd(150,4)
&,msn -list(150), best_list(150)
COMMON /TPS_INT/ rdate(150,7), workload(30), num-A, numB

&,n ACper(20,1O), n-msns, num-Ao, numFTT
&,A -av-ail(30,lO), B_avail(30,lO), IP-avail(30,lO), nuinIP
&,bestAC(20,lO), best_IP(30,lO)
CHARACTER*20 msn list, FTT_need, best-list
CHARACTER*10 A,_list, B_list, IP-list, AC list, msndat

&,best schd
INTEGER rdate, workload, n -AC~er, n-msns, A-avail

&,B -avail, IP-avail, numAC, numA, num-B, numIP, numFTT
&,bestAC, best_IP

CC* This subroutine determines how many and which IPs
CC **are qualified to fly a given mission type.

INTEGER i, j, col, unum, n_capip
CHARACTER*10 actype, qual need, ipcaplist(30), space

&,quals(9), nameip

CC * originally assumes no IP required for mission *

unum = 0
n_cap ip 1
ipcaplist(l) = 'N/A'

IF (qual_need.NE.'N/A') THEN
CC **open file corresponding to required aircraft type *

IF (actype.EQ.'T-38') THEN
unum = 14
OPEN(UNIT=unum,FILE='T-38_-Xs.dat' ,STATUS='OLD')

ELSE IF (actype.EQ.'A-7') THEN
unum = 15
OPEN(UNIT=unum, FILE='A-7_Xs.dat' ,STATUS='OLD')

ELSE IF (actype.EQ.'A-37') THEN
unum = 16
OPEN(UNIT=unum,FILE='A-37_-Xs.dat' ,STATUS='OLD')

ELSE IF (actype.EQ.'F-4') THEN
unum = 17
OPEN (UNIT=unum, FILE=' F-4_-Xs.dat' ,STATfUS= 'OLD')

ELSE IF (actype.EQ.'C-23') THEN
ununi = 18
OPEN(UNIT=unun, FILE= 'C-23_Xs.dat' ,STATUS= 'OLD')

ELSE IF (actype.EQ.'GLIDER') THEN
unum = 19
OPEN (UNIT=unum, FILE= 'GLIDER -Xs.dat' ,STATUS='OLD')

ELSE IF (actype.EQ.'C-141') THEN
unum = 20
OPEN(UNIT=unum,FILE='C-141_Xs.dat' ,STATUS='OLD')

113

ELSE IF (actype.EQ.'F-16') THEN
unum = 21
OPEN(UNIT=unum,FILE='F-16_Xs.dat' ,STATUS='OLD')

ELSE IF (actype.EQ.'F-15') THEN
unum = 22
OPEN (UNIT=unum, FILE=' F-15_Xs.dat' ,STATUS= 'OLD')

END IF
END IF

CC **find column of required IP qualification
IF (unum.NE.0) THEN

READ(UNIT=unum,FMT=8800) space, (quals(j), j =1,9)

col =10

DO i=1, 9
IF (qualneed.EQ.quals(i)) THEN

col = i
END IF

END DO
IF (col.EQ.l0) THEN

PRINT*, 'IP QUALIFICATION NOT FOUND. AIRCRAFT =1 ,ac type
PRINT*,'1QUALIFICATION TYPE = 1,qual need
PRINT*,'CHECK INPUT FILES FOR INPUT ERROR.'

END IF

CC **make list of qualified IPs
n-capip = 0
ipcaplist(l) = 'tempt

767 READ(UNIT=unum,FMT=8800) name ip, (quals(j), j =1,9)

IF (quals(col).EQ.'X') THEN
n_cap ip =ncapip + 1
ipcaplist(ncapip) = name_ip

END IF
IF (name ip.NE.'END') GOTO 767
CLOSE (UNIT=unum)

END IF

8800 FORMAT(lX,A1O,2X,9A6)

RETURN

END

114

SUBROUTINE acperiod (ac type, schdprd)

CC **common block variables ***
COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A,.list(30)

&,B-list(30), IP-list(30), AC-list(20), best-schd(150,4)
&,msn list(150), best list(150)
COMMON /TPS_INT/ rdate(150,7), workload(30), numA, numB

&,n ACyer(20,l0), n msns, num AC, numFTT
&,,A avail(30,lO), B -aivail(30,l0), IP-avail(30,l0), numIP
&,bestAC(20,lO), best IP(30,lO)
CHARACTER*20 msn-list, FTT_need, best-list
CHARACTER*10 A-list, B list, IP-list, AC list, msndat

&,best-schd
INTEGER rdate, workload, n-ACper, n-msns, A,_avail

&,B avail, IP -avail, num-AC, numA, num-B, numIP, num-FTT
&,bestAC, bestIP

CC **This subroutine finds the earliest flight period in which
CC **the needed aircraft type is available for a mission

INTEGER schdprd, row, col
CHARACTER*10 actype
LOGICAL found

CC **search aircraft type for match, tag row number of aircraft *

found = .FALSE.
row = 0
DO 25 WHILE(.NOT.found.AND.row.LT.num AC)

row = row + 1
IF (actype.EQ.AC -list(row)) THEN

found = .TRUE.
END IF

25 CONTINUE
IF (.NOT.found) THEN

PRINT*,,'ERROR -- AIRCRAFT TYPE NOT FOUND in SUB AC-period.'
PRINT*,'CHECK INPUT FILES FOR: ',ac type

END IF
CC **search aircraft availability to find earliest period in which *

CC **needed aircraft is available after current period (schdprd) *

col = schdprd
found = .FALSE.
DO 30 WHILE(.NOT.found.AND.col.LT.lO)

col = col + 1
IF (nAper(row,col).GT.0) TE
found =.TRUE.
schdyprd = col

END IF
30 CONTINUE

IF (.NOT.found) THEN
schdyprd = -18

END IF
RETURN
END

115

SUBROUTINE check -day(schdprd, stdt_name, class, a test, b-test
&, test_day, rank)

CC **common block variables *

COMMON /TPS_CHAR! msndat(150,4), FTTneed(140,3), A list(30)
&,B-list(30), IP-list(30), AC-list(20), best schd(150,4)
&,msn list(150), best_list(150)
COMMO0N /TPS_INT/ rdate(150,7), workload(30), num-A, numB
&,n-ACper(20,1O), n msns, num AC, numFTT
&,A -avail(30,lO), B-avail(30,lO0), IP-avail(30,lO), numIP
&,bestAC(20,lO), bestIP(30,1O)
CHARACTER*20 msn-list, FTT_need, best-list
CHARACTER*10 A-list, B-list, IP-list, AC-list, msndat

&,best_schd
INTEGER rdate, workload, nACper, nmsns, A-avail

&,B-avail, IP-avail, num-AC, num-A, num-B, numIP, numFTT
&,best AC, best_IP

CC **This subroutine checks to see if the student has a test scheduled *

CC **on the same day as the candidate flight period. If so, it checks *

CC **to see if the student has already been scheduled for a mission *

CC **that day. QOT reqmts limit students to one mission on test days *

INTEGER schdprd, a_test, b_test, rank
CHARACTER*10 stdt-name
CHARACTER class
LOGICAL test-day

INTEGER i, msn tag
LOGICAL found

CC **period on test day of student's class *

IF (((schd~yrd.EQ.a_test.OR.schdprd.EQ.a_test+l).AND.
& class.EQ.'A').OR.
& ((schdprd.EQ.b_test.OR.schd~yrd.EQ.b_test+l) .AND.
& class.EQ.'B')) THEN

CC **search through missions scheduled so far in this iteration *

DO i = 1, rank-l
found = .FALSE.
msn tag = 0
DO 66 WHILE(.NOT.found.AND.msn-tag.LT.n-msns)

msn -tag = msn tag + 1
IF (rdate(msntag,4).EQ.i) THEN

found = .TRUE.
CC **if student name and class match of scheduled mission *

IF ((stdt_name.EQ.msndat(msn tag,l)) .AND.
& (class.EQ.msndat(msntag,2))) THEN

CC **and if mission scheduled in 2nd period of test day *

IF ((MOD(schdprd,2) .EQ.O) .AND.
& ((schdyprd.EQ.rdate(msntag,2)) .OR.
& (schdjprd.EQ.(rdate(msntag,2)+l)))) THEN

116

test-day = .TRUE.
CC ** else if mission scheduled in 1st period of test day **

ELSE IF ((MOD(schdprd,2).NE.0).AND.
& ((schd_prd.EQ.rdate(msntag,2)).OR.
& (schdprd.EQ.(rdate(msntag,2)-l)))) THEN

schd_prd = schdprd + 1
testday = .TRUE.

CC ** otherwise no conflict **
ELSE

test day = .FALSE.
END IF

END IF
END IF

66 CONTINUE
END DO

END IF

RETURN
END

117

SUBROUTINE ipschd(schdyprd, ncapip, ipcap list, ipname)

CC ** common block variables ***
COMMON /TPS_CHAR/ msndat(150,4), FTTneed(140,3), A list(30)
&,Blist(30), IP_list(30), AClist(20), best schd(150,4)
&,msn_list(150), best_list(150)
COMMON /TPS_INT/ rdate(150,7), workload(30), num-A, numB
&,nACjer(20,1O), nmsns, num_ AC, num_ FTT
&,Aavail(30,1O), Bavail(30,lO), IP-aVail(30,l0), numIP
&,best-AC(20,lO), best_IP(30,l0)
CHARACTER*20 msn_list, FTT_need, best-list
CHARACTER*10 A list, B_list, IPlist, AC list, msndat
&,best schd
INTEGER rdate, workload, nACper, n-msns, A_avail

&,B_avail, IP_avail, num_AC, num-A, num-B, num_IP, num_FTT
&,best_AC, bestIP

CC **This subroutine checks IP availability and workload for *

CC **the candidate flight period. If IP resources are available *

CC **it selects the IP with the lowest workload *

INTEGER schdprd, n_capip
CHARACTER*10 ipcaplist (30), ipname

INTEGER i, j, best

best = 0
DO i = 1, ncapip

DO j = 1, numIP
IF (ipcaplist(i).EQ.IP list(j)

& .AND.IP_avail(j,schdprd).EQ.1) THEN
CC **if IP both available and capable to instruct mission

IF (best.EQ.0.OR.workload(j) .LT.workload(best)) THEN
CC **select one with least workload *

best = j
ip Fname = IP~list (best)

END IF
END IF

END DO
END DO

RETURN
END

118

SUBROUTINE stdtcheck(schdyprd, stdt name, class, avail)

CC **common block variables ***
COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A list(30)
&,Blist(30), IP -list(30), AC -list(20), best schd(150,4)
&,msn list(150), best_list(150)
COMMON /TPS_INT/ rdate(150,7), workload(30), num-A, numB

&,n -AC~er(20,lO), nmsns, num -AC, num_-FTT
&,A -avail(30,lO), Bavail(30,lO), IP-avail(30,lO), numIP
&,bestAC(20,lO), bestIP(30,lO)
CHARACTER*20 msn list, FTT-need, best-list
CHARACTER*10 A-list, B-list, IP-list, AC list, msndat

&,best schd
INTEGER rdate, workload, n -AC~er, n-msns, A-avail

&,B avail, IP-avail, numAC, numA, numB, numIP, numFTT
&,bestAC, best_IP

CC **This subroutine checks to see if the student is available *

INTEGER schdprd
CHARACTER*10 stdt-name
CHARACTER class
LOGICAL avail

INTEGER row
LOGICAL found

found = .FALSE.
row = 0

CC * branch based on class A or class B**
IF (class.EQ.'A') THEN

CC **search class A student name for match
DO 42 WHILE(.NOT.found.AND.row.LT.numA)

row = row + 1
IF (stdt -name.EQ.A~list (row)) THEN

found = .TRUE.
END IF

42 CONTINUE
IF (.NOT.found) THEN

PRINT*,'ERROR -- STUDENT NAME NOT FOUND.'
PRINT*,'CHECK INPUT FILES FOR: ',stdt_name

CC **if student not avail, tag as none **
ELSE IF (Aavail(row,schdyrd).EQ.O) THEN

avail = .FALSE.
END IF

ELSE

119

CC ** search class B student name for match ***
DO 43 WHILE(.NOT.found.AND.row.LT.numB)

row = row + 1
IF (stdt -name.EQ.B~list (row)) THEN

found = .TRUE.
END IF

43 CONTINUE
IF (.NOT.found) THEN

PRINT*1'ERROR -- STUDENT NAME NOT FOUND.'
PRINT*,'CHECK INPUT FILES FOR: ',stdt_name

CC **if student not avail, tag as none **
ELSE IF (Bavail(row,schd~prd).EQ.O) THEN

avail = .FALSE.
END IF

END IF

RETURN
END

120

SUBROUTINE res-adjst(schdjprd, class, ipname, actype, stdt-name)

CC **common block variables ***
COMMON /TPS_CHAR/ msndat(150,4), FTTneed(140,3), A, list(30)

&,B-list(30), IP-list(30), AC-list(20), best schd(150,4)
&,msn - ist(150), best_list(150)
COMMON /TPS_INT/ rdate(150,7), workload(30), num-A, numB

&,n ACper(20,lO), n msns, num AC, numFTT
&,A-avail(30,lO), B-avail(30,lO0), IP-avail(30,lO), numIP
&,bestAC(20,lO), bestIP(30,lO)
CHARAC TER*20 msn list, FTT-need, best-list
CHARACTER*10 A-list, B-list, IP-list, AC-list, msndat

&,best_schd
INTEGER rdate, workload, nA ACyer, n-msns, A-avail

&,B avail, IP-avail, numAC, numA, numB, numIP, numFTT
&,bestAC, best_IP

CC **This subroutine adjusts the availability levels of the different
CC **resources once a mission is scheduled.

INTEGER schdprd
CHARACTER*10 ip_name, actype, stdt name
CHARACTER class

INTEGER row
LOGICAL found

found = .FALSE.
row = 0

CC **branch based on class A or class B and adjust student avail
IF (class.EQ.'AI) THEN

CC **search class A student name for match
DO 44 WHILE(.NOT.found.AND.row.LT.numA)

row = row + 1
IF (stdt -name.EQ.A_list(row)) THEN

found = .TRUE.
A -avail(row,schdyprd) = 0
IF (actype.EQ.'GLIDER'.OR.ac -type.EQ. 'C-141') THEN

A Yavail(row,schdprd+l) = 0
END IF

END IF
44 CONTINUE

ELSE
CC **search class B student name for match *

DO 45 WHILE(.NOT.found.AND.row.LT.numB)
row = row + 1
IF (stdtname.EQ.B_LIST(row)) THEN

found = .TRUE.
B -avail(row,schdprd) = 0
IF (actype.EQ.'GLIDER'.OR.ac -type.EQ.'C-141') THEN

B-avail(row,schdyprd+l) = 0

121

END IF
END IF

45 CONTINUE
END IF

CC ** search aircraft type for match, decrease number of aircraft *
found = .FALSE.
row = 0
DO 46 WHILE(.NOT.found.AND.row.LT.numAC)

row = row + 1
IF (actype.EQ.AC_list(row)) THEN

found = .TRUE.
n_AC_per(row,schd_prd) = nAC_per(row,schd_prd) - 1

END IF
46 CONTINUE

CC ** search IP list for match, set IP not avail ***
found = .FALSE.
row = 0
DO 47 WHILE(.NOT.found.AND.row.LT.numIP)

row = row + 1
IF (ip_name.EQ.IP list(row)) THEN

found = .TRUE.
IPavail(row,schd_prd) = 0
IF (actype.EQ.'GLIDER'.OR.actype.EQ.'C-141') THEN

IP avail(row,schdprd+l) = 0
END IF
workload(row) = workload(row) + 1

END IF
47 CONTINUE

RETURN
END

122

SUBROUTINE prec msn(msn tag, start_date)

CC **common block variables
COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A list(30)

&,B-list(30), IP-list(30), AC-list(20), best_schd(150,4)
&,msn -list(150), best_list(150)
COMMON /TPS_INT/ rdate(150,7), workload(30), num-A, num-B
&,n-ACper(20,lO), n-msns, num-AC, numFTT
&1A -avail(30,lO), Bavail(30,lO), IP-avail(30,1O), numIP
&,best-AC(20,1O), best_IP(30,lO)
CHARACTER*20 msn_list, FTT_need, best-list
CHARACTER*10 A-list, B-list, IP-list, AC list, msndat

&,best -schd
INTEGER rdate, workload, n_ACper, n-msns, A-avail

&,B -avail, IP-avail, numAC, num-A, numB, numIP, numFTT
&,bestAC, best_IP

CC **This subroutine checks to see if the mission just scheduled *

CC **is required to be flown before another mission to be scheduled *

CC **If it is, the ready date for the follow on mission is adjusted *

CC ** AW QOT guidelines to be scheduled *

INTEGER msn tag, start-date

INTEGER i

CC **search for follow on mission *

DO i = 1, n msns
IF (msndat(msntag,l) .EQ.msndat(i,l) .AND.

& msndat(msntag,2).EQ.msndat(i,2).AND.
& rdate(i,l).LT.O.AND.
& rdate(msntag,l).EQ.ABS(rdate(i,l))) THEN

CC **if found, set the ready date of the follow on mission to 1 day *

CC **after the required mission was scheduled to be flown *

rdate(i,l) = start-date+NINT((rdate(msntag,2)/2+.2))
RETURN

END IF
END DO

RETURN
END

123

SUBROUTINE savebest(iteration)

CC ** common block variables ***
COMMON /TPS_CHAR/ msndat(150,4), FTTneed(140,3), Alist(30)
&,Blist(30), IPlist(30), AClist(20), best schd(150,4)
&,msn list(150), bestlist(150)
COMMON /TPS_INT/ rdate(150,7), workload(30), numA, num_B

&,n_AC_per(20,10), nmsns, num AC, numFTT
&,Aavail(30,10), B_avail(30,lO), IP-avail(30,10), numIP
&,best_AC(20,10), best IP(30,10)
CHARACTER*20 msnlist, FTTneed, best list
CHARACTER*10 A_list, Blist, IPlist, AC_list, msndat

&,best schd
INTEGER rdate, workload, nACyper, nmsns, A avail
&,B_avail, IP_avail, num_AC, numA, num_B, numIP, num_FTT

&,bestAC, bestIP

CC *** This subroutine saves the schedule with fewest unscheduled missions
**

INTEGER i, j, k, bestmiss, cur_miss, iteration
REAL curworkvar, bestworkvar, meanwork, sum_sqrwork
&,sum work

CC ** total number of missed missions for each schedule
cur miss = 0
best miss 0
DO i = 1, nmsns

IF (rdate(i,2).EQ.O) THEN
cur miss = cur miss + 1

CC ** count the number of times this mission not scheduled **

IF (rdate(i,l).LT.0) THEN
CC ** if unsched msn is follow-on, search for precedent mission **

DO k = 1, nmsns
IF (msndat(k,l).EQ.msndat(i,l).AND.

& msndat(k,2).EQ.msndat(i,2).AND.
& rdate(k,l).EQ.ABS(rdate(i,l))) THEN

CC ** when found, add # of times not scheduled to precedent msn **
rdate(k,5) = rdate(k,5) + 1

END IF
END DO

ELSE
CC ** count # times not scheduled

rdate(i,5) = rdate(i,5) + 1
END IF

END IF
IF (rdate(i,3).EQ.0) THEN

best miss = best miss + 1
END IF

END DO

124

CC ** calculate the variance of IP workload for the current schedule **
sum work = 0
sum sqrwork = 0
DO i = 1, num IP

sumwork = sumwork + workload(i)
END DO
mean work = sum work / numIP
DO i = 1, num IP

sum sqrwork = sum sqr work + (workload(i) - meanwork)**2
END DO
curworkvar = sum sqr work / numIP

CC ** if current schedule has fewer missed missions or the same
CC ** number of missed missions with a more even workload, save it **

IF ((cur miss.LT.best_miss).OR.(iteration.EQ.l).OR.
& (cur miss.EQ.best miss.AND.cur work var.LT.bestworkvar)) THEN

best iter = iteration
best work var = cur work var
DO i = 1, n msns

rdate(i,3) = rdate(i,2)
best list(i) = msn_list(i)
DO j = 1, 4

bestschd(i,j) = msndat(i,j)
END DO

END DO
CC ** save the availability of aircraft and IPs of best schedule **

DO i = 1, 10
DO j = 1, numAC

bestAC(j,i) = n_AC_per(j,i)
END DO
DO j = 1, numIP

bestIP(j,i) = IP-avail(j,i)
END DO

END DO
END IF

RETURN
END

125

SUBROUTINE schd out(start-dats)

CC **common block variables ***
COMMON /TPS_CHAR/ msndat(150,4), FTTneed(140,3), A list(30)
&,Blist(30), IPlist(30), AClist(20), best schd(150,4)
&,msn~list (150), best_list(150)
COMMON /TPS_INT/ rdate(150,7), workload(30), num-A, num_B
&,nACper(20,l0), nmsns, num_AC, numFTT
&,A avail(30,lO), B~avail(30,l0), IPavail(30,l0), num_IP
&,best_AC(20,l0), best_IP(30,l0)
CHARACTER*20 msn_list, FTT_need, best -list
CHARACTER*10 A list, B list, IPlist, AC_list, msndat

&,best schd
INTEGER rdate, workload, nACyer, nmsns, A -avail

&,B avail, IP_avail, num-AC, num-A, numB, numlIP, num_FTT
&,bestAC, bestIP

CC **This subroutine saves the schedule which was determined to
CC **be the best in an external file for print out. *

INTEGER 1, j, start date, loop, avlIP, avlAC, ntemp(20)
CHARACTER*20 line, headl
CHARACTER*10 head2, head3, head4, head5, blank, head6
&,tempAC(20), tempIP(30)

OPEN(UNIT=25,FILE='sched.out' ,STATUS='NEW')

line =

headl = 'MISSION'
head2 = 'AIRCRAFT'
head3 = 'INSTRUCTOR'
head4 = 'STUDENT'
head5 = 'CLASS'
head6 = 'AMOUNT'
blank =I I
Do i = 1, 10

IF (i.EQ.l) THEN
WRITE(25,*) ' MONDAY 1st Flight Period:'

ELSE IF (i.EQ.2) THEN
WRITE(25,*) I MONDAY 2nd Flight Period:'

ELSE IF (i.EQ.3) THEN
WRITE(25,*) ' TUESDAY 1st Flight Period:'

ELSE IF (i.EQ.4) THEN
WRITE(25,*) ' TUESDAY 2nd Flight Period:'

ELSE IF (i.EQ.5) THEN
WRITE(25,*) ' WEDNESDAY 1st Flight Period:'

ELSE IF (i.EQ.6) THEN
WRITE(25,*) I WEDNESDAY 2nd Flight Period:'

ELSE IF (i.EQ.7) THEN
WRITE(25,*) ' THURSDAY st Flight Period:'

ELSE IF (i.EQ.8) THEN

126

WRITE(25,*) I THURSDAY 2nd Flight Period:'
ELSE IF (i.EQ.9) THEN

WRITE(25,*) 'FRIDAY 1st Flight Period:'
ELSE

WRITE(25,*) 'FRIDAY 2nd Flight Period:'
END IF
WRITE(25,7000) line,line,line,line
WRITE(25,7100) headl,head2,head3,head4,head5
WRITE(25,7000) line,line,lirie,line
Do j = 1, n msns

IF (rdate(j,3).EQ.i) THEN
WRITE(25,7100) best list(j), best schd(j,4)

& ,bestschd(j,3), b;est_schd(j,l), best schd(j,2)
END IF

END DO
WRITE(25, *)

CC * determine IPs and aircraft still available in this pe~riod *

avlIP = 0
avlAC = 0
DO j=1, numIP

tempIP(j) = I'
IF (bestIP(j,i) .EQ.l) THEN

avlIP = avlIP + 1
temp-IP(avl IP) = IP-list(j)

END IF
END DO
DO j = 1, num_ AC

temp__ AC (j) = I'
n_temp(j) = 0
IF (best -AC(j,i) .GE.l) THEN

avlAC = avlAC + 1
temp -AC(avl AC) =AC list(j)
n -temp(avl-AC) =bestAC(j,i)

END IF
END DO

CC **print out availability this period *

IF (avl_IP.GT.avlAC) THEN
loop = avlIP

ELSE
loop = avlAC

END IF
WRITE(25,*) I AVAILABLE RESOURCES'
WRITE(25,7000) line,line,line,line
WRITE(25,7200) head3,head2,head6
WRITE(25,7000) line,line,line,line
DO j = 1, loop

IF (j.GT.20.OR.n temp(j).EQ.O) THEN
WRITE(25,7300) tempIP(j)

ELSE
WRITE(25,7250) tempIP(j), temp_,AC(j), ntemp(j)

END IF
END DO

127

WRITE (25,*
WRITE(25, *)
WRITE(25, *)
WRITE(25, *)
WRITE(25, *)

END DO

CC **list unscheduled missions **

WRITE(25,*) 'MISSIONS NOT SCHEDULED THIS WEEK:'
WRITE(25,7000) line,line,line,line
WRITE(25,7100) headl,head2,blank,head4,head5
WRITE(25,7000) line,line,line,line
Do j = 1, n msns

IF (rdate(j,3).EQ.0) THEN
WRITE(25,7100) best_list(j), best_schd(j,4), blank

& ,best_schd(j,l), best_schd(j,2)
END IF

END DO

WRITE(25, *)
WRITE(25, *)
WRITE(25, *)
WRITE(25, *)
WRITE(25, *)

CC **list missions that violate QOT deadlines *

WRITE(25,*) 'MISSIONS THAT VIOLATE QOT DEADLINES:'
WRITE(25,7000) line,line,line,line
WRITE(25,7100) headl,head2,blank,head4,head5
WRITE(25,7000) line,line,line,line
Do j = 1, n msns

IF (rdate(j,3).EQ.0) THEN
day_schd = start-date + 7

ELSE
day_schd = start-date + INT(rdate(j,3)/2.2)

END IF
IF ((rdate(j,6).GE.O).AND.((dayschd-rdate(j,6)).GT.14)) THEN

WRITE(25,7100) best_list(j), best_schd(j,4), blank
& ,best_schd(j,l), best_schd(j,2)

END IF
END DO

CLOSE (UNIT=2 5)

7000 FORMAT(1X,4A19)
7100 FORMAT(lX,A20,4(4X,AlO))
7200 FORMAT(lX,A1O,15X,2(AIO,5X))
7250 FORMAT(lX,AlO,15X,A1O,5X,I2)
7300 FORMAT(lX,A1O)

RETURN
END

128

Bibliography

1. Baker, Bruce N. Introduction to Sequencing and Scheduling.
New York: John Wiley & Sons, 1974.

2. Chan, Yupo. Class Lecture in OPER 767, Networks and
Combinatorial Optimization. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH,
August 1991.

3. Department of the Air Force. Quality of Training
Guidelines. Edwards AFB: USAF Test Pilot School, January
1991.

4. Department of the Air Force. Scheduling Instruction Manual.
Edwards AFB: USAF Test Pilot School, January 1991.

5. Department of the Air Force. Scheduling Procedures for
Aircraft and Air/Ground Support. Air Force Flight Test
Center (AFFTC) Regulation 55-15. Edwards AFB: HQ AFFTC,
12 November 1986.

6. Department of the Air Force. USAF Test Pilot School
Curriculum. Edwards AFB: USAF Test Pilot School, January
1991.

7. French, Simon. Sequencing and Scheduling: An Introduction
to the Mathematics of the Job Shop. London: Ellis Harwood
Ltd, 1982.

8. Hassel, Captain Lisa M. Investigation of a Zero-One Integer
Programming Approach to Automating the Scheduling Process at
the USAF Test Pilot School. MS thesis, AFIT/GOR/ENS/91M-7.
School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1991.

9. Heald, Lt Col James R., Director, Student Training.
Personal interview. USAF Test Pilot School, Edwards AFB,
13 June 1991.

10. Hillier, Fredrick S. and Gerald J. Lieberman. Introduction
to Operations Research. Oakland, CA: Holden-Day, Inc.,
1980.

11. Jain, T. C. and A. M. Hardas. "Heuristic Algorithm for
Project Scheduling with Limited Resources," Journal of
Industrial Engineers of India, 65: 6-9 (July 1984).

12. Mazzola, Joseph B. and Alan W. Neebe. "Resource-Constrained
Assignment Scheduling," Operations Research, 34: 560-571
(July-August 1986).

129

13. Moore, James T. Class Notes in OPER 620, Integer
Programming. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, November 1991.

14. Norbis, Mario I. and J. MacGreggor Smith. "Two Level
Heuristic for the Resource Constrained Scheduling Problem,"
International Journal for Production Research, 24: 1203-1218
(September-October 1986).

15. Patterson, James H. and Glenn W. Roth. "Scheduling a
Project Under Multiple Resource Constraints: A Zero-One
Programming Approach," American Institute of Industrial
Engineers Transactions, 8: 449-455 (December 1976).

16. Plebani, Louis J., Jr. "A Heuristic for Multiple Resource
Constrained Scheduling," Production and Inventory
Management, 22: 65-80 (First Quarter, 1981).

17. SAS/OR Users Guide. Cary, NC: SAS Institute Inc., 1989.

18. Talbot, F. Brian and James H. Patterson. "An Efficient
Integer Programming Algorithm with Network Cuts for Solving
Resource-Constrained Scheduling Problems," Management
Science, 24: 1163-1174 (July 1978).

19. Thesen, Arne. "Heuristic Scheduling of Activities Under
Resource and Precedence Restrictions," Management Science,
23: 412-422 (December 1976).

20. Woolsey, E. D. Robert and Huntington S. Swanson. Operations
Research for Immediate Application: A Quick and Dirty
Manual. New York: Harper & Row, Publishers, 1975.

130

Vita

Captain Gary G. Foster was born July 11, 1964 in

Visalia, California. He graduated from Sierra Joint Union High

School in Tollhouse, California in 1982 and attended the U.S. Air

Force Academy, graduating with a Bachelor of Science in

Operations Research in May 1986. Upon graduation, he received a

regular commission in the USAF and served his first tour of duty

as a test analyst at Headquarters, Air Force Operational Test and

Evaluation Center, Kirtland AFB, New Mexico. There he was

responsible for directing and evaluating reliability and

maintainability aspects of evolving Air Force and DOD space and

aircraft systems. He entered the School of Engineering, Air

Force Institute of Technology, in August 1990.

Permanent Address: 25037 Auberry Rd
Clovis, CA 93612
c/o Mr Charles Foster

131

March 1992 Master's Thesis (final)

AUTOMATING THE FLIGHT SCHEDULING PROCESS AT
THE USAF TEST PILOT SCHOOL

Gary G. Foster, Capt, USAF

Air Force Institute of Technology AFIT/GOR/ENS/92M-10
Wright-Patterson AFB OH 45433

USAF/TPS/DOS
Edwards AFB CA 93523

Approved for public release; distribution
unlimited

This study investigated different scheduling solution approaches
that could be used to determine weekly flight schedules at the USAF
Test Pilot School (TPS). Currently, weekly flight schedules are
not developed due to the large quantity of flight scheduling data
that must be processed. A weekly flight scheduling approach would
reduce the occurrence of scheduling problems (such as unbalanced
resource utilization) and improve the communication between the TPS
scheduling staff and flight personnel. Since resource-constrained
scheduling problems are classified as NP-complete, heuristic
methods are usually the most practical approach to solving real-
size resource-constrained scheduling problems. This study details
a heuristic flight scheduling algorithm designed specifically for
the TPS. The computerized version of this heuristic algorithm has
demonstrated the capability of producing flight schedules in
minutes for weekly flight scheduling problems of realistic size.

resource-constrained scheduling, flight scheduling, 141
mixed integer programming

Unclassified Unclassified Unclassified UL

