RERRP w0

AUTOMATING THE WEEKLY FLIGHT

SCHEDULING PROCESS AT THE DTEC
USAF TEST PILOT SCHOOL

E{LFCTE
THESIS | MAR 3 1 1992
Gary G. Foster, Captain, USAF e B «

-

B ited DEPARTMENT OF THE AIR FORCE
RPP eiraso® AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

—————]

[T

I
l
!

92-08111

L

Wright-Patterson Air Force Base, Ohio

g2 2 31 052

AFIT/GOR/ENS/92M-10

AUTOMATING THE WEEKLY FLIGHT
SCHEDULING PROCESS AT THE
USAF TEST PILOT SCHOOL
THESIS

Gary G. Foster, Captain, USAF

Approved for public release; distribution unlimited

AFIT/GOR/ENS/92M-10

AUTOMATING THE WEEKLY FLIGHT SCHEDULING PROCESS

AT THE USAF TEST PILOT SCHOOL

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Operations Research

Accession For J
NTIS GRA&I =l

DTIC Ta® 0
Unannounced O

Juatfrzation

Gary G. Foster, B.S. By _. . _

Captai USAF Digtritatien/
a aln Wilachad I
P ' Avniiehility Co@ei

b -

[Ave 1l zndfer
PDist | Spoctial

March 1992 ﬂ" kl

]

~.

Approved for public release; distribution unlimited

THESIS APPROVAL

STUDENT: Captain Gary G. Foster CLASS: GOR-92M
THESIS TITLE: Automating the Weekly Flight Scheduling Process at

the USAF Test Pilot School

DEFENSE DATE: 3 March 1992

COMMITTEE: NAME/DEPARTMENT SIGNATURE

Advisor Captain John Borsi

(AFIT/ENS) C;Z//
Reader _Dr James Chrissis

(AFIT/ENS)

Preface

The objective of this study was to develop and automate a
solution technique for producing weekly flight schedules at the
USAF Test Pilot School. Currently, the flight scheduling process
at the Test Pilot School is performed manually. In addition, due
to the large quantity of data that must be processed to develop a
flight schedule for an entire week, flight schedules at the Test
Pilot School are developed on a daily basis. Such a shortsighted
approach can often lead to scheduling problems.

Stemming from earlier work accomplished in this area by
Captain Lisa Hassel, a mixed integer programming approach to
solving this problem was investigated. However, due to the large
size of the resulting mixed integer programming model, all known
solution techniques were impractical. Consequently, a heuristic
algorithm was developed. The heuristic algorithm presented in
this thesis demonstrated the capability to produce reasonable
weekly flight schedules in less than ten minutes of processing
time.

In developing the heuristic algorithm, as well as writing
this thesis, I have had a great deal of assistance from others.

I would like to express my appreciation to my faculty advisor,
Captain John Borsi, for his insight and direction. I would also
like to thank Dr. James Chrissis for his help and constructive
comments. Finally, T would especially like to thank my family,
for making "it" all worthwhile.

Gary G. Foster

ii

Preface

Table of Contents

List of Figures e e e e e e e e e e e e

List of Tables . . ¢ v v v ¢ o o = o « o &

Abstract . . ¢« ¢ ¢ ¢ ¢ e 4 e e o e e o o

1.

Introduction e e e e e e e e e e e e

1.1

Background ¢ « ¢ o ¢ o o @
TPS Curriculum

TPS Flight Scheduling Process
Description e s 4 e e s e e e e s

Quality of Training Requirements .
Research Objective

OVEeXrVIewWw . ¢ o +v o o o o o o o o

Literature Review e e e e e e e e e

2.1

Scheduling Theory Overview

2.1.1 Constraints

2.1.2 Scheduling Performance Measures

The Resource-Constrained Scheduling
Problem e e e s s s e s e o o =

Problem Formulation of RCS Problems
2.3.1 Network Approach e e e s e

2.3.2 Binary Integer Programming
Approach e e e e s s e e

Solution Methods for RCS Problems
Complexity Theory e e a4 e e e e e
Heuristic Methods for Solving

RCS Problens e e & o o o e e o o a

iii

Page
ii
vi

vii

viii

11

12
13

13

14
15

19

20

3. Problem Formulation

3.2.1 Example
3.2.2 Example
3.2.3 Example
3.2.4 Example
3.2.5 Example

4. Heuristic Approach

4.3.2 Testing

4.3.4 Example

5.1 Conclusions

3.1 Model Formulation e e e s e e s e e e
3.1.1 Decision Variable Set
3.1.2 Objective Function e« e e s s e .
3.1.3 Constraint Sets
3.1.4 Workload Leveling

3.2 A Small Example Problem s e e s e s e e

Problem Description . . .
Problem Formulation . . .
Problem Objective Function
Problem Constraint Sets .

Problem Solution

. 3 3 . L] . . L] .

4.1 Heuristic Approach Background e e e e .

4.1.1 Flight Scheduling Problem
Characteristics « ¢ . .

4.1.2 Flight Scheduling Algorithm Goals
4.2 Scheduling Algorithm Description

4.3 Coded Algorithm Development
and Description

. 3 3 .

4.3.1 Algorithm Testing

Limitations « . .

4.3.3 Coded Algorithm Output o e e s

Problem Solution . e e .

4.4 Full Scale Application

5. Conclusions and Suggestions

iv

24

24

27

28

29

34

36

36

39

40

41

46

48

48

49

51

52

61

63

63

64

65

66

68

68

5.2 Suggestions for Further Work 70

Appendix A. Heuristic Algorithm Applied
to the Example Problem e e 4 s s e e e 72

Appendix B. Heuristic Algorithm Applied a
Full-Size Problem « . « o o « o & 79

Appendix C. TPS Flight Scheduling Program
Operating Instructions e e e e e e e e 95

Appendix D. TPS Flight Scheduling Program

Source Code . . v 4 ¢ 4+ 2 o & o o o o & o 99
Bibliography . . .« ¢ ¢ ¢ ¢ ¢ ¢« 4 o o o o o o o o o o 129
Vita . L] L)] [- [] - - . - . L] L] - L] * L] L] . - L] . - . 131

List of Figures

Figure Page
1.1 TPS Flight Scheduling Time Line c e e e e e e . 4
4.1 Scheduling Algorithm Flow e e e e e e e e e e 53
4.2 Resource Allocation Flow« « « . . 56
4.3 Example of Algorithm Progression 62

vi

List of Tables

Example Problem Instructor Availability
Example Problem Aircraft Availability
Example Problem Mission List

Example Problem Solution Schedule
(Mixed Integer Programming Approach) .

Example of Re-Prioritizing Missions .

Example Problem Solution Schedule
(Heuristic Algorithm Approach)

vii

Page
37
38

39

46

60

66

Abstract

This study investigated different scheduling solution
approaches that could be automated and applied at the USAF Test
Pilot School (TPS). Currently at the TPS, flight schedules are
manually developed on a daily basis. Weekly flight schedules are
not developed due to the large quantity of data that must be
processed to develop a flight schedule for an entire week. A
weekly flight scheduling approach would reduce the occurrence of
scheduling problems and unbalanced resource utilization, both of
which are often the result of a daily flight scheduling approach.
In addition, posting a flight schedule for the entire week would
improve communication between the scheduling staff and affected
personnel.

A literature search revealed that the TPS flight scheduling
problem belongs to the class of resource-constrained scheduling
problems. Furthermore, since such problems are placed in the
class of NP-complete problems, heuristic methods are the most
practical approach to solving real-size resource-constrained
scheduling problems. A heuristic scheduling approach which is
capable of producing reasonable weekly flight schedules at the
TPS is detailed in this thesis and was incorporated into a
software package.-" The computerized heuristic has demonstrated
the capability of prdducing reasonable flight schedules in
minutes for weekly flight scheduling problems consisting of
multiple aircraft types, 25 instructor pilots, 50 students, and

up to 24 different mission types.

viii

AUTOMATING THE WEEKLY FLIGHT SCHEDULING PROCESS

AT THE USAF TEST PILOT SCHOOL

1. Introduction

1.1 Background

"In support of aircraft test and evaluation, the USAF Test
Pilot School (TPS), located at Edwards AFB, trains technically
competent test pilots, navigators, and engineers" (8:1). To
ensure quality training, the sequence of and time between
training events are crucial. Hence, the scheduling of training
events is a significant responsibility of the TPS staff --
unfortunately, it is also a time consuming responsibility.

Before each class of students enters the TPS program, major
training events (items such as flight techniques and classroom
academics) are formed into an overall integrated academics and
operations schedule (9). This schedule, although useful as a
planning guide for the flight scheduling process, cannot
represent or incorporate the inherently dynamic nature of flight
operations. The weekly flight schedule is dependent on many
variables {aircraft availability, weather, etc.) that cannot be
controlled or predicted by the TPS staff. Therefore, the TPS

staff is forced to perform flight scheduling on a weekly basis.

In developing the weekly TPS flight schedule, the scheduler
must ensure that enough flights are scheduled to maintain pace
with the integrated academics and operations schedule. At the
same time, the scheduler must also ensure that the students and
instructor pilots are not overworked with too many flights (4:3).
The scheduler must consider quality of training requirements
which govern the minimum and maximum number of days allowed
between specific types of student flights. The combhination of
the guidelines above, unforeseen circumstances (weather, illness,
et:), and resource constraints (aircraft, students, instructors,
etc) cause the development of a weekly flight schedule to be a
complex and time-consuming process.

An investigation into automating the scheduling process at
the TPS was conducted in late 1990. The emphasis of this
investigation focused on a zero-one (binary) integer programming
approach to automating the overall TPS schedule (8:vii). The
investigation indicated that a binary integer programming
approach is unsuitable for optimizing the overall TPS schedule
because the resulting number of variables makes the problem
computationally impractical (8:45). Consequently, the
investigation recommended the development of heuristic scheduling
methods for the TPS scheduling problem (8:46). Heuristic methods
are solution approaches that apply knowledge of and experience
with a particular problem in order to obtain a solution. They do
not guarantee optimal solutions. However, heuristic methods

often produce reasonable solutions. The investigation also

classified the TPS scheduling problem as a resource-constrained
scheduling problem -- a scheduling situation where resource
limitations affect the schedule (1:268). The weekly flight
schedule problem falls under this classification because its
solution is dependent on the levels of resources (students,
instructors, and aircraft) available throughout different periods

of the flight week.

1.2 TPS Curriculum

.ne USAF Test Pilot School provides training in two distinct
courses -- the Experimental Test Pilot Course and the Flight Test
Engineer/Navigator Course. Although they are separate, the two
courses are integrated to instill cooperation and understanding
among test team members. Each class consists of 25 students --
typically fifteen pilots, seven engineers, and three navigators.
All students attend the same academic courses (6:5). The program
duration is currently 44 weeks. TPS classes enter in both
January and July; therefore, there is approximately a six month
period when two classes are present (9).

The curriculum is divided into four phases; Performance,
Flying Qualities, Systems Test, and Test Management (6:5). All
four phases have integrated academic and flying programs.
Ideally, the Performance, Flying Qualities, and Systems Test
phases occur sequentially, and the Test Management phase spans
the entire program (9). Various topics are covered in each phase

by the following methods; 1) academic theory, 2) flight test

techniques (FTT), 3) flying, and 4) final reports (6:9-35).
Students are trained in various flight test techniques through
academic lessons, FTT demonstration flights, and FTT data
flights. In FTT demonstration missions, students receive hands

on training of flight test techniques from instructors.

1.3 TPS Flight Scheduling Process Description

Although flight schedules at the TPS are made on a daily
basis, aircraft requests are made for an entire week at a time.
The TPS scheduling officer must request resource support
(aircraft type, number, day of week, time of day, etc.) from the
6510th Test Wing (4:3). The deadline for this request is six

days prior to the start of a given flight week; however, the

2 WEEKS PRIOR 1 WEEK PRIOR FLIGHT WEEK TO
‘ BE SCHEDULED

T T 77

—]

EXPECTED INSTRUCTOR AND STUDENT

ATRCAAFT RECQUEST CEADLINE [TUUESDATY)
AVAILABILITY FOR WEEK

E«PECTED AYRCRAFT SUPPORT FROVIDED
Br THE 6510TH TEST WING (THURSDAY)
NEXT Dar S FLIGHT SCHEDULE PROBUCED

CURRENT TPS aIRCRAFT REQUEST DATE (THURSDAY) —m
8Y 1500 HRS ON PRECEDING FLIGHT DAT

Figure 1.1 TP8 Flight Scheduling Time Line

request is usually made on the Thursday two weeks _.rior to the
flight week of concern. Figure 1.1 depicts a t‘.ae line of the
TPS flight scheduling process. Aircraft requests are based on 1)
the integrated academics and operations schedule which contains a
list of expected flights that should be flown during a particular
week, 2) a database containing student flights that are currently
scheduled, and 3) flights needed for staff checkouts, upgrades,
and proficiency (4:3). On the Thursday before the flight week,
the scheduler receives a list of aircraft (type, number, day of
week, and time of day) that the 6510th Test Wing expects to be
able to support (4:5). Aircraft support is not considered firm
until 1500 hours the day prior to a given flight day. Prior to
this time, requests can be made for additional aircraft, as well
as cancellations of current projected aircraft support. There is
no guarantee that requests for additional aircraft will be
provided. When the projected aircraft support becomes available,
the availability of students and instructors must be obtained in
order to develop a complete flight schedule.

Because each scheduled flight has an aircraft type and
instruction requirement, and instructor pilots have different
aircraft qualifications, flights may require specific instructors
as well as specific aircraft. The expected daily availability of
students and instructors must also be considered. Student and
instructor availability throughout periods of a given week is
recorded on a non-availability form. It is the responsibility of

the individual students and instructors to ensure this form

accurately represents their availability status throughout the
week. There are three flight periods per day; however, students
fly only in the first two periods due to academics in the
afternoon. Once all information regarding flights and resource
availability is obtained, it is used to develop the flight
schedule. Within the flight week, non-mission capable aircraft,
weather, incomplete missions, and other factors may require that
some missions be changed. However, changes to the schedule are

kept to a minimum (5:6).

1.4 Quality of Training Requirements

Within the last year, the TPS incorporated additional
scheduling requirements in order to enhance the qualiity of
training (9). The purpose of these scheduling requirements
primarily concern workload and safety. Many of these
requirements address specific FTT missions. Yet, others are
common to all FTT missions. For instance, flight restrictions
regarding academic test days as well as restrictions on the
minimum and maximum number of days between FTT academics,
demonstration, and data flights apply to all FTT missions. A
complete list of the scheduling restrictions regarding quality
can be found in the Quality of Training Guidelines (3) at the

USAF Test Pilot School.

1.5 Research Objective

The primary objective of this research is to develop a
solution method which can be used to automate the TPS weekly
flight scheduling process in order to reduce the work required by
the TPS staff to produce a weekly flight schedule. The solution
method must take into consideration the major guidelines that
currently impact the present flight scheduling process. 1In
addition, the solution method must incorporate quality of
training requirements which are common to all flight test
techniques (3). Feasibility is obviously a goal of a weekly
flight schedule; however, the flight schedule must also 1)
maintain the pace of the integrated academics and operations
schedule, and 2) minimize the number of violations to the quality
of training requirements. The importance of student and
instructor workload versus quality of training is determined by
the TPS and must be reflected in the resulting scheduling method.
The automated scheduling method must produce an effective and
feasible flight schedule based on the expected availability of
resources (students, instructors, and aircraft) for each day of
the week. If unforeseen changes in the availability of resources
occur during the middle of a flight week, the flight schedule
should be adjusted manually in accordance with daily scheduling
procedures. The goal of the automated scheduling process is to
produce a reasonable initial weekly flight schedule for any given
flight week given the projected aircraft support and expected

availability of instructor pilots and students.

1.6 Overview

The remaining chapters provide a detailed description of
this thesis effort. Chapter 2 contains an overview of the
literature that relates to and contributed to the work
accomplished in this study. In Chapter 3, the TPS flight
scheduling problem is presented as a mathematical programming
model. Also in this chapter, a small sample problem is solved
based on the mathematical formulation. 1In Chapter 4, the
heuristic algorithm is presented. This chapter discribes the
development, flow, and performance of the heuristic algorithm.

Finally, conclusions and suggestions are presented in Chapter 5.

2. Literature Review

The focus of this chapter is to illustrate and summarize
current literature that contributes to the topic of resource-
constrained scheduling (RCS). This chapter first presents an
introduction to scheduling theory and typical goals of common
scheduling problems. A description of the RCS problem and its
characteristics is provided, including a short discussion of
complexity theory. Various approaches and techniques used for

solving RCS problems are also presented.

2.1 Scheduling Theory Overview

In general, scheduling problems are concerned with finding
the sequence of activities which is 1) compatible with all
constraints and 2) optimal with respect to some criterion of
performance (7:5). Activities refer to tasks (or jobs) which
must be scheduled for processing/completion. In this study,

activities are TPS flights.

2.1.1 cConstraints. The sequence in which activities are
processed often depends upon three primary types of constraints:
technological, precedence, and resource (7:5,48,197).

Technological constraints restrict the order in which the

operations that comprise a particular activity must be processed

(7:48). For example, if the activity is fixing a flat tire, the
operation of removing the lug nuts must be performed prior to
removing the flat tire. However, if the level of scheduling
detail in a given problem assumes that the activities consist of
only a single operation, technological constraints do not apply.
Because TPS flights (activities) are scheduled as single
operation activities, technological constraints do not apply in
this study.

Precedence constraints are similar to and often confused
with technological constraints. Precedence constraints limit the
choice of schedule by demanding that certain activities (rather
than operations within an activity) are accomplished before
others (7:48). For example, a valid TPS flight schedule must
ensure that students receive their demonstration flight(s) for a
given flight test technique prior to their data flight(s) on the
same technique.

Resource constraints are usually the most limiting
constraint type. Resource constraints limit the choice of
schedule based on limitations in resources needed for the
completion of activities (7:197). For instance, if a given
flight requires an F-4 aircraft, yet an F-4 is only available on
Tuesday morning, then the given flight must be flown Tuesday
morning. The remaining flights must be scheduled around this
resource limitation. In short, constraints are the driving force
in most scheduling problems. Once all constraints are satisfied

(if possible), schedule feasibility is obtained.

10

2.1.2 Scheduling Performance Measures. Given that a
feasible schedule is attainable, the goal is to find the schedule
which is optimal with respect to some criterion of performance.
Probably the most common scheduling goal is to minimize the time
duration of completing all activities (7:12). With regard to the
TPS, the program duration is fixed (44 weeks); therefore, a
scheduling goal of trying to minimize the time to complete every
TPS activity is not appropriate. Activities must be completed
within the duration of the program, but there is no incentive for
early completion.

Another common scheduling goal is to minimize the number of
late jobs (activities compl«ted after a requested due date)

(7:9). Scheduling algorithms that seek to minimize the number of
late jobs typically follow the same general pattern. They
initially sequence the activities in order of increasing due
dates (20:16). That is, the job with the earliest due date is
ordered first, and the job with the latest due date is ordered
last. Using the initial ordering of jobs, a search is made to
find the first late job. If no job is late, the sequence is
optimal. If a late job is found, the sub-sequence of jobs up to
and including the first late job is examined. The job in the
sub-sequence with the longest processing time is moved to the end
of the sequence. This process is repeated until the number of
late jobs cannot be reduced by re-sequencing the jobs.

With the introduction of resource limitations, an algorithm

that only considers processing times would have to be modified.

11

Given that the jobs require different resources, the sequence in
which they are processed also depends on the resource
availability over the time that the sequence spans. For example,
given that a job is late, moving it to the top of the sequence
would not yield any improvement if the resource required to
process that job is not available at that time. The scheduling
problem could also be expanded to include a sub-goal of producing
a schedule that utilizes resources (such as instructors) on a
near equal basis. Scheduling objectives may incorporate multiple
goals, ranked in order of importance (7:25). Scheduling
objectives are numerous, complex, and often conflicting;
therefore, it is often difficult to determine a specific
objective as being the most beneficial for a particular problem

(7:9).

2.2 The Resource-Constrained Scheduling Problem
Resource-constrained scheduling (RCS) problems are concerned
with the allocation of resources as well as the processing
sequence of the activities (1:5). In most RCS problems, the
general resource structure contains multiple units of several
different resource types (1:268). At the TPS, there are three
resource classes; aircraft, instructors, and students. The
manner in which resources are allocated is dependent on the
selected sequence of activities. At the same time, a sequence's
feasibility depends on the availability of the resources at

different time periods during the project duration.

12

Problem characteristics play a key role in how a given
scheduling problem is formulated and solved. The TPS weekly
flight scheduling problem has the following characteristics:

multiple resource types are present;

resource levels are integral;

resource levels vary by period, but are known:;

activities are of single operation:;

activity durations are known;

activities should not be interrupted;

precedence constraints exist.
Scheduling problems containing these elements can be classified
as resource-constrained scheduling problems (19:413). Methods of
problem formulation and solution techniques for RCS problems are

the topics of discussion in the following sections.

2.3 Problem Formulation of RCS Problems

RCS problems are most commonly formulated as assignment
problems with side constraints (12:560). The two primary methods
by which this formulation is accomplished are 1) networks with
side constraints to represent the resource limitations and other
constraints (1:268; 18:1163), and 2) zero-one (binary) integer

program (12:560; 14:1206; 15:449).

2.3.1 Network Approach. Since the 1960s, networks have
been a popular approach in solving scheduling problems (14:1206).
By the pure nature of their design, networks are ideal for
handling precedence constraints (7:193). Yet, although many
scheduling problems can be solved very efficiently with a network

formulation, some scheduling constraints cannot be handled

13

efficiently within a network structure. Moreover, unless the
underlying design matrix of the formulated network is totally
unimodular, an integral solution to the LP-relaxation is not
guaranteed (2). Non-integral solutions violate the assumption
that activities are not to be interrupted once started. For
example, in the TPS weekly flight schedule, it is unrealistic to
schedule the first half of a flight on Tuesday and the second
half ~f the flight on Friday. Consequently, a network approach
may require post-processing of the solution in order to obtain an
integral solution.

In addition, networks often obtained their efficiency in
obtaining a solution by inherently requiring preprocessing of the
problem in order to formulate the problem as a network.
Preprocessing refers to reducing the problem size by eliminating
solution options which are determined to b2 infeasible by a
review of the constraints or problem structure. Although
preprocessing is a beneficial process, it creates a trade-off
between the time needed to formulate the problem and the time
needed to solve the problem. Networks can be time-consuming and
difficult to build -- especially efficient networks which require

preprocessing the problem.

2.3.2 Binary Integer Programming Approach. There are
various ways in which binary integer programming approaches can
be implemented. Such approaches use a zero-one variable to

indicate if an activity is to occur in a specified period

14

(15:450) . Each possible assignment is represented by a zero-one
variable. If a given zero-one variable is set to one in the
final solution, the activity with its corresponding assigned
resources should be scheduled. For example, consider the zero-
one variable, X,;..
Where: i represents the activity of interest

j represents a specific resource

t represents the time period
If X;;, equals one, then activity i is to be complected using
resource j during time period t. Constraints are added to
represent problem characteristics such as precedence
relationships between activities and resource levels for each
period. Formulating the problem as a BIP problem is relatively
easy (15:450); however, the number of zero-one variables needed
can increase drastically given only linear increases in the
number of activities, resource types, and time periods of a given
problem. As a result, RCS problems of only moderate size

typically result in having an impractical number of zero-one

variables (14:1203).

2.4 Solution Methods for RCS Problems

Since LP problems can be solved relatively efficicntly, it
would seem that solving a BIP problem should be just as easy.
After all, with a bounded feasible region, a BIP problem is
guaranteed to have a finite number of feasible solutions
(10:486). Unfortunately, there are two primary reasons why

integer programming problems are much more difficult to solve.

15

First, even though a bounded feasible region guarantees a finite
number of feasible solutions, finite numbers can often be very
large. For example, consider a BIP problem with only 20
variables. Such a problem would have 2%?° = 1,048,576 possible
solutions. Although some of these solutions would be eliminated
because they are not feasible, the resulting feasible solution
set could still be quite large. Secondly, the simplex method
solves LP problems efficiently based on the guarantee that the
optimal solution occurs at an extreme point of the feasible
region (an intersection of constraints). Unless the optimal
extreme point turns out to be intece., the simplex method cannot
guarantee an optimal intege. solution. As a result, LP problems
are generally much easier to s»nlve than integer linear
programming problems.

A common approach used in solving integer programming
problems is LP-relaxation (10:486). This approach relaxes the
integer requirement and solves the problem using an LP-solution
approach such as the simplex method. The solution values to the
LP-relaxation problem are then rounded to the nearest integral
values. Unfortunately, such an approach has two flaws: 1) the
resulting integer solution may not be feasible, and 2) it is not
guaranteed to be the optimal integer solution. Iin order to avoid
these pitfalls, various techniques have been developed for
solving integer programming problems. The next few paragraphs

discuss solution approaches that can be applied to BIP problens.

16

Because of the large number of possible solutions for even a
relatively small BIP problem, exhaustive enumeration is not
practical in most cases (13:7). Implicit enumeration and branch-
and-bound algorithms search through the possible solutions using
upper and lower bounds on the objective value to eliminate large
numbers of possible solutions without explicitly evaluating them.
Assuming a maximization problem, if the solution to the given LP-
relaxation sub-problem is less than the lower bound, all
solutions expanding out of that sub-problem can be eliminated.
Possible solutions can also be eliminated if the solution to the
LP-relaxation of a sub-problem is either all integer or
infeasible. The efficiency of such approaches can be improved
further by incorporating branching selections that are efficient
for a particular problem. For example, a depth-first approach
usually obtains tight upper and lower bounds more quickly,
resulting in more possible solutions being fathomed (eliminated)
in fewer computations (13). Lagrangian relaxation is another
frequently used technique to develop bounds on the optimal
solution (10:498). Lagrangian relaxation restructures the
original problem formulation by placing a portion of the
problem's constraint set in the objective function. The
constraints which make the problem difficult to solve are placed
in the objective function with corresponding Lagrangian
multipliers such that they act together as a penalty function if
constraints are violated. If the Lagrangian multipliers

associated with the constraints are chosen well, the solution

17

will yield a reasonably tight bound on the original problem
(10:498) .

Cutting plane algorithms are solution approaches that relax
the integer constraints but iteratively add constraints that
reduce the feasible region of the original problem such that the
extreme points of the feasible region become integer. Cutting
plane algorithms are careful not to cut off any feasible integer
solutions. Given that all the extreme points are integer, the
simplex method guarantees optimality.

Additionally, specialized algorithms designed specifically
for BIP problems can often be applied. These algorithms obtain
their efficiency by exploiting special characteristics (such as
angular block structures in the underlying constraint matrix of
the problem) that are present in many BIP problems (13).
Unfortunately, these techniques can only be applied if the needed
characteristics (such as specific types of constraint sets) are
present.

In conclusion, although solution procedures for BIP problems
exist, they have proved to be unsuccessful in dealing with many
problems of practical size due to their computational complexity
(14:1203). The computational work required in solving BIP
problems is often highly sensitive to both increases in the
number of constraints as well as the number of variables
(12:570). A BIP approach to solving general RCS problems has

been successful for small problems of marginal practical value

18

but cannot be relied upon for solving large RCS problems which

usually result in application.

2.5 Complexity Theory
Mathematical programming problems are often classified based

on their complexity. The worst-case time complexity of a
solution algorithm describes the maximum number of basic computer
operations that would be required to solve a particular problem
type (7:140). "The class NP is essentially the set of all
problems for which solution algorithms with exponential time
complexity have been found" (7:145). Therefore, for problems in
the class NP, the number of operations needed to solve the
problem can increase exponentially in relation to a linear
increase in the problem size. The term NP-complete further
classifies a problem as being among the most difficult to solve
within the class NP (7:148). Scheduling problems which contain
both precedence constraints and resource constraints are
categorized as NP-complete problems (14:1204).

For problems that are NP-complete, which includes

most arising in scheduling, there are at present

no easy solutions. Furthermore, if informed

mathematical opinion is correct, there never will

be any easy solutions. The only methods

available are those of implicit (or explicit)

enumeration, which may take a prohibitive amount

of computation. Certainly, large NP-complete

scheduling problems are for all practical

purposes insoluble (7:155).
Since RCS problems are placed in the class of NP-complete
problems, heuristic methods are the most practical approach to

solving real-size resource scheduling problems (14:1204). It

19

should be noted, the classification of a problem as NP-complete
is not sufficient reason to resort to heuristic methods. The
problem must also be large enough that enumerative methods are

unmanageable and/or computationally impractical (7:156).

2.6 Heuristic Methods for Solving RCS Problems

In order to obtain a feasible and possibly optimal schedule,
heuristic methods are often employed in solving RCS problems.
Heuristic methods use fairly simple scheduling rules with the
objective of producing reasonably good suboptimal schedules in a
reasonable amount of time (1:279). Heuristic methods achieve
their efficiency at the expense of not being able to guarantee
schedule optimality (or even feasibility in some cases).

In general, heuristic methods apply knowledge of and
experience with a particular type of problem to obtain a
solution. Therefore, heuristic approaches for solving RCS
problems are as numerous as RCS problems. In the literature, the
majority of heuristic methods used in solving RCS problems
involve two primary steps. The first step is to find an initial
feasible solution (12:564; 14:1211). Just finding a feasible
solution for a given set of constraints can often be a very
difficult problem. The second step applies a soclution-improving
heuristic that takes a feasible solution and systematically
attempts to obtain a better-quality solution while maintaining

feasibility (12:564). 1In reference to the TPS weekly flight

20

schedule, two aspects of feasibility must be maintained; 1) the
precedence of activities, and 2) the availability of resources.

Since the best schedules for RCS problems are usually
related to the most efficient use of resources, a commonly used
heuristic approach gives priority to those activities requiring
the most limited resources. The heuristic then incorporates
priority rule methods in which the higher priority activities
have precedence over the other activities which also need to be
completed (14:1207). Using this type of an approach, activities
requiring the most limited resources would be scheduled first,
and lower priority activities would be scheduled around the high-
priority activities.

Heuristic methods must also take into consideration the
scheduling performance measure to be optimized. 1In the case of
the TPS weekly flight schedule, priority may be given to those
activities (flights) that are close to violating a quality of
training requirement. A heuristic could also incorporate a
combination of priorities based on different criteria. For
instance, a possible heuristic algorithm may incorporate a
modification of a scheduling algorithm which minimizes the number
of late jobs with an algoxithm which seeks to level the
utilization of the various resources. With regard to the TPS
weekly flight schedule, such an algorithm would minimize the
number of violations to the quality of training requirements and

at the same time level the workload for instructors.

21

A two-criteria heuristic algorithm for scheduling resource-
constrained activities was developed by Norbis and Smith
(14:1208). Their heuristic algorithm combined critical path and
resource utilization criteria into a two-level priority scheme
which applied each criterion at different steps in the algorithm.
The critical path criterion of their heuristic algorithm is based
on activity ready dates and processing times. Due dates are only
indirectly taken into account. The criteria are used to
determine a priority level for each activity. Activities are
iteratively scheduled based on their assigned priority until all
activities have been scheduled. The resulting schedule is
reviewed for the tardiness of each activity. Those activities
with the large tardiness values are reset with a higher priority
and the schedule is re-done. This heuristic algorithm by Norbis
and Smith could possibly be modified for application to the TPS
weekly flight scheduling problem.

To determine the efficiency of different heuristic
approaches, heuristic approaches are often compared and evaluated
on many different levels using a wide variety of different
criteria (19:413). Most heuristic algorithms are rated based on
computational efficiency and analytic effectiveness.
Computational efficiency relates to the amount of computing
resources required to attain specific results. Analytic
effectiveness refers to how near a heuristic's solution is to the
optimal solution (12:571). If a heuristic is to be used, the

goal is to use a heuristic which is within the computational

22

resource limits of the user and adequately satisfies the

performance goals of the given problem.

23

3. Problem Formulation

The focus of this chapter is to formulate the TPS weekly
flight scheduling problem as a binary integer programming (BIP)
problem. A BIP approach was chosen over a network formulation
primarily because binary integer programming formulations are
usually more straight-forward. Hence, the manner in which the
TPS weekly flight scheduling problem is represented by binary
variables and their corresponding constraint sets is easier to
characterize, discuss, and understand. In addition, a small

example problem is formulated and solved.

3.1 Model Formulation

The BIP formulation used in this section is representative
of the traditional method in which each possible scheduling
assignment is represented by a zero-one (binary) variable. 1In
this problem, activities (or jobs) are training missions that
must be flown by student test pilots, engineers, and navigators.
The sequence in which the training missions are flown is
dependent on many factors. For instance, the availability of
instructor pilots, students, and aircraft greatly impact the
order in which the training missions can be scheduled.

Furthermore, this RCS problem is further complicated by the

24

inclusion of precedence constraints -- those which specify

certain missions be flown before others.

The formulation in this chapter is based on a typical flight
week during the period of the TPS program when two classes are
present which is the most difficult scheduling period. 1In
application, if the TPS weekly flight scheduling problem was
formulated as a BIP, the formulation would vary from week to week
due to fluctuating resource levels and mission requirements. 1In
addition, some mission constraints (such as precedence and
academic test days) may or may not apply for some flight weeks.

When two classes are present, on the average, 75 student
training missions are flown per week. The overall resource types
and numbers ot a typical TPS flight week are:

1) 50 students (2 classes of 25)

2) 25 instructor pilots

3) 12 aircraft types.

The availability of the resources depends on many factors. For
instance, the availability of individual students and instructor
pilots varies based on such events as leave, TDY, and illness.
The availability of aircraft types varies based on the number of
each aircraft type requested and the ability of the 6510th Test
Group to support the such requests.

Only student flight missions are scheduled in this
formulation (instructor proficiency missions and instructor chase
support missions are not included). Students fly only in the

first two flight periods of the day. Some exceptions exist for

special mission requirements or daily TPS agenda; however, such

25

exceptions are rare and are excluded from the formulation.

Hence, given a five-day flight week, there are ten possible
flight periods per week in which students fly their missions (two
flight periods per day).

As discussed earlier, the flight period in which a given
mission can be flown depends on the availability of the student,
instructor pilot, and aircraft type needed by the mission. There
may be several flight periods within the flight week in which all
the required resources are available; however, each mission is to
be flown (scheduled) only once. In addition, some missions may
often not be flown uritil later in the flight week due to academic
prerequisites. * -ademic prerequisites pertaining to a given
mission type must be completed prior to the mission being flown.

Each given mission requires a specific student, an
instructor pilot with a specific qualification, and a specific
aircraft type. Instructor pilots are qualified in different
aircraft types as well as different flight techniques within an
aircraft type. Therefore, a mission can be satisfied with any
instructor pilot and aircraft type that meet the requirement and
qualification needs of the mission. When zero-one variables are
defined, only feasible combinations of mission types, students,
instructor pilots, and aircraft types are included. Hence, the
number of zero-one variables needed to represent each mission is
the product of the number of different instructor pilots that are
qualified to fly the mission and the number of flight periods in

the week.

26

3.1.1 Decision Variable Set. Each mission assignment is
represented by a binary variable. If a given binary variable is
set to one, the activity (mission) and its corresponding time
period and resources represented by the given variable should be
scheduled. Consider the zero-one variable, X,.,.

where: represents the mission type

represents the flight period
represents the student
represents the instructor pilot
represents the aircraft type.

(VISR W

Based on the characteristics of the TPS resources and operational

environment, the subscripts have the following corresponding

ranges:
m=1l, ..., # of missions types (for given flight week)
t=1, ..., 10
s=1, ..., 50
i=1, ..., 25
a=1, ..., 12.

If it were assumed that all combinations of stulents,
instructors, and aircraft satisfied the needs of a given mission
type, the number of zero-one variables needed to formulate this
problem would be 150,000 times the number of mission types (10
flight periods * 50 students * 25 insti 'ctors * 12 aircraft
types). If ten mission types were scheduled to be flown during a
given week, 1.5 million zero-one variables would be needed to
formulate the problem. However, by preprocessing the data to
include only feasible combinations of mission types, instructors,
students, and aircraft, the number of zero-one variables needed
is drastically reduced. On the average (based on TPS mission

descriptions, instructor qualifications, and individual student

27

curriculum), the requirements of each mission type can be
satisfied by five different instructor pilots and one aircraft
type. Furthermore, approximately ten different mission types are
scheduled to be flown each week, and each mission type is usually
flown by eight different students. Therefore, on the average,
approximately 4000 zero-one variables (10 mission types * 5
qualified instructors * 8 students * 1 aircraft type * 10 flight
periods) would be needed to formulate the weekly flight
scheduling problem as a BIP. Although such a reduction in the
problem size is significant, the resulting BIP problem is still

very large.

3.1.2 Objective Function. As discussed in section 2.1.2,
since the TPS program duration is fixed, the objective in solving
the TPS weekly flight scheduling problem is not to minimize the
time needed to complete all flights. Rather, the goal of the
weekly flight scheduling problem is to maintain the pace of the
integrated academics and operations schedule, which identifies
missions planned to be flown each week of the TPS program. In
order to maintain the pace of the integrated academics and
operations schedule, the flight scheduling goal should be to
schedule as many of the planned missions as possible, given the
availability of resources (ajrcraft, instructor, and student)
during the corresponding flight week. Such an objective function

would be:

28

10 . . . - .
MAX Y7 Xnesia V feasible combinations of m, s, i, a

Using this objective function, the BIP model would maximize the
number of missions flown during the week, subject to the

following constraint sets.

3.1.3 Constraint Sets. The following constraint sets
represent the resource limitations and standard flight operations
that exist at the TPS. 1In the listed constraints, only feasible
combinations of missions (m), instructor pilots (i), students
(s), and aircraft types (a) are considered.

Instructor Pilot Availability: A given instructor pilot can
only fly one mission per flight period, assuming the instructor
pilot is available. Therefore, a set of constraints must be
formulated to represent the availability of each instructor pilot
(i) during each of the ten flight periods (t). This can be

represented by the constraints

Y Xpioia < bey V feasible m, s, a; given t, i

where: b,; =

1

1 if instructor i available in period t
o] if instructor i not available in period t.

Since there are 25 instructors and 10 flight periods, this set
consists of 250 constraints.

Student Availability: As in the case of the instructor
pilot, a student can only fly one mission per flight period,

29

assuming the student is available. Therefore, a set of
constraints must also be formulated to represent the availability
of each studeut (s) during each of the ten flight periods (t).

This can be represented by the constraints

Y X,isia S beo V feasiblem, i, a; given t, s

where: s

b {1 if student s available in period t
t -

0 if student s not available in period t.

Since there are 50 students and 10 flight periods, this set
consists of 500 constraints.

Aircraft Availability: Aircraft are typically the most
schedule-restricting resource in the TPS flight scheduling
problem. Therefore, a set of constraints must be formulated to
represent the availability of each aircraft type (a) during each
of the ten flight periods (t). This can be represented by the

constraints

Y X,.i. < b, V feasiblem, s, i; givent, a

where: b,, = the number of aircraft type a available in period t.

a

Since there are 12 aircraft types and 10 flight periods, this set
consists of 120 cons: aints.

Fly Missions Only Once: Each mission is to be flown only
once; therefore, there must be a set of constraints which

30

precludes the scheduling of each mission more than once. A
mission is defined as the combination of a mission type (m) and

specific student (s). Such constraints are represented by

Y Xppeia <1 V feasible i, a; givenm, s.

The number of constraints in this set depends on the number of
students required to fly a given mission type and the number of
different mission types. Assuming that, on the average, ten
different mission types are planned to be flown in a given week,
and that each mission type is typically flown by eight different
students, this set would consist of 80 constraints (on the
average).

Mission Precedence: Frequently, it is required that one
mission be flown by a student before a more advanced mission can
be flown by the same student. For cases such as this, a set of
const-aints must be formulated in order to enforce this
restriction (if required given the planned missions). Assuming
mission m, must be flown by student s before mission m, is flown
by the same student s, a constraint must be repeated for each

student s. This can be represented by the constraints

10 10 . . .
Yoo E*nesia = Dpey E¥Xn roia S 71 V feasible i, a; givenm,, m, S.

The number of constraints in this set depends on the number of

mission types that have a mission precedence requirement, and the

31

number of students required to fly such mission types. For
example, assuming two different precedence mission sets are
planned to be flown in a given week, and that each mission type
is flown by eight different students, this set would consist of
16 constraints.

Academic Test Day: On academic test days, students are only
allowed to fly one mission. Therefore, a set of constraints must
be formulated in order to enforce this restriction (if an
academic test is planned for the given week). Assuming the
academic test day is represented by k, and the corresponding
first flight period of this test day is represented by t,, the
following single constraint must be repeated for each student s
within the class having the academic test. This can be

represented by the constraints

Y Xuesia * Y Xue,.sia S 1 V feasiblem, i, a; given s.

Since students are divided into two classes, the number of
constrains in this set depends on the number of students in each
class. If a test is planned for only one class, this set
contains up to 25 constraints (one constraint for each of the 25
students per class). If a test is planned for both classes, this
set contains up to 50 constraints.

Mission Ready Dates: Missions cannot be flown until after

academic prerequisites have been completed for the given mission

type. Therefore, a set of constraints must be formulated to
ensure that missions are not scheduled to be flown before their
corresponding academic prerequisites are completed. Assuming the
academic prerequisite is to be completed at the end of day ¢, and
the corresponding second flight period of this day is represented
by t., the following constraint must be repeated for each
combination of student that has not completed the academic

prerequisite for the given mission type. This can be represented

by the constraints

t . . .
Y., Xnesia S O V feasible i, a; givenm, s.

The number of constraints in this set depends on the number of
students that have not completed their academic prerequisites for
a given mission type, and the number of different mission types
for which such a situation exists.

In summary, based on a typical flight week, a BIP
formulation of the flight scheduling problem at the TPS consists
of approximately 4000 binary variables and 1000 constraints. The

complete formulation is:

33

Objective Function:
MAX E Xptsia V feasible combinations of m, s, i, and a

Subject to:

Instructor Pilot Availability:
Y Xpeoia S by V feasiblem, s, a; givent, i

Student Availability'
Y Xooia V feasiblem, i, a; givent, s

Aircraft Availability:
E mtsia S Dra VY feasiblem, s, i; given t, a

Fly Missions Only Once:
E mtsia V feasible i, a; givenm, s

Mission Precedence:
10 1 . . N
E t*X Ztil < -1 V feasible i, a; givenm,, m, S

t=1 mytsia m tsia

Academic Test Day:
Y Xoesia * Y, Xuc,.sia V feasiblem, i, a; given s

Mission Ready Dates:

t . . .
Y ., Xnesia S O V feasible i, a; givenm, s

Variable Type Restrictions:
X

mtsia

€ B*?

3.1.4 Workload Leveling. The preceding formulation may be
enhanced so as to incorporate a sub-objective of leveling the

workload of the different instructor pilots. To accomplish this,

34

continuous variables are added to the formulation. The objective

function is altered and a constraint set is added to the
formulation in such a manner that the value of the objective
function decreases if the workload of any given instructor
pilot(s) exceeds the given target (or goal) instructor pilot

mission workload level. The objective function becomes

MAX Y0 Xpegia = Yooy D*Y; V feasiblem, s, i, and a
where: y. = the the number of missions instructor i is scheduled to
: i~ fly in excess of the workload goal number of missions.

This objective function assumes a benefit (or cost coefficient)
of one for missions scheduled, X,.,, and a penalty of p for
excess workloads, Y,. These values represent the importance of
scheduling missions versus leveling instructor pilot workloads.
If the TPS is willing to schedule instructor pilots to fly more
missions than desired in order to fly more student training
missions, then 0<p<l. On the other hand, if instructors are not
to be overworked, then p>1.

In addition to altering the objective function, another
constraint set would have to be added to the formulation in order
to control the values of the Y; in the objective function. As
shown, the value of a given Y, represents the amount that the
corresponding instructor pilot exceeds the goal workload level.

Therefore, a constraint must be added for each instructor pilot

35

(i) to represent this relationship. This can be represented by

the constraints

10X

req Xmtsia = Yi S by V feasible m, s, a; given i

where: b, = the goal instructor pilot mission workload.

In short, the addition of this sub-objective would add 25
ordinary continuous variables and their corresponding constraints
to the formulation. With the addition of these variables, the
problem formulation would no longer be a pure BIP. Furthermore,
although the Y, are continuous variables, their solution values
are always integer (assuming b, is integer) because they are

dependent upon the sum of binary variables.

3.2 A Small Example Problem

The purpose of this example problem is to formulate and
solve a realistic, but small, flight scheduling problem. This
small example problem is formulated as a BIP and solved using the
SAS linear programming software package on a VAX 8550 mainframe

computer.

3.2.1 Example Problem Description. This problem addresses
the scheduling of 17 missions dvring a given flight week. The
primary objective is to determine a schedule which maximizes the

number of training missions flown during the week. A secondary

36

objective to level the workload of the instructor pilots is also
applied. The schedule must also be within the given operating
guidelines and resource constraints. There are seven different
students (s =1, ..., 7) that need training missions. 1In
addition, there are seven different mission types (m = 1, ...,
7). Three instructor pilots are available for use (i = 1, 2, 3),
and each instructor has the following different aircraft

qualifications:

Instructor Qualifications

b § c-23, T-38
2 c-23, T-38, F-4
3 T-38

In addition, the availability of instructors varies throughout
the week due to medical/dental appointments, TDY, leave, etc.
The availability of the three instructor pilots for this example

problem is shown in Table 3.1.

TABLE 3.1

EXAMPLE PROBLEM INSTRUCTOR PILOT AVAILABILITY

Il u MONDAY | TUESDAY IWEDNESDAYI THURSDAY I FRIDAY ‘
1 1 1

1 1
PERIOD 1 2 2 2 2
3 3 3 3
1 1 1

PERIOD 2 2 2 2 2
3 3 3 3 3

The availability of students must also be considered;
however, for this example problem, it is assumed that all

students are available during every flight period throughout the

37

week. There are only two flight periods per day in which student
training missions can be flown (t =1, ..., 10). Three different
aircraft types are flown (a =1, ..., 3). Table 3.2 depicts the

expected aircraft availability for the week.

TABLE 3.2

EXAMPLE PROBLEM AIRCRAFT AVAILABILITY

| MONDAY TUESDAY WEDNESDAY | THURSDAY FRIDAY |

PERIOD 1

PERIOD 2

(1=T-38, 2=C-23, 3=F-4)

Each of the missions and their corresponding requirements
are depicted in Table 3.3. Each mission is to be flown only
once. Furthermore, each of the missions has different
requirements regarding aircraft type, instructor and student. 1In
addition, certain missions must be flown before others. Check
flights for a given aircraft must be flown first. Also, for a
given flight topic (such as LS in the MISSION TYPE column of
Table 3.3) containing both demo and data flights, the demo
flights must be flown first. Data flights do not require an

instructor pilot.

38

TABLE 3.3

EXAMPLE PROBLEM MISSION LIST

| STUDENT IP (i) ATRCRAFT TYPE MISSION TYPE (m)
(s) REQUIRED (a) REQUIRED

1 1 or 2 C-23 (2) check flight (1)
2 1 or 2 C-23 (2) check flight (1)
1 1l or 2 C-23 (2) PERF demo (2)
2 1 or 2 C-23 (2) PERF demo (2)
3 1, 2, or 3 T-38 (1) LS demo (3)
4 1, 2, or 3 T-38 (1) LS demo (3)
5 1, 2, or 3 T-38 (1) LS demo (3)
3 N/A T-38 (1) LS data (4)
4 N/A T-38 (1) LS data (4)
5 N/A T-38 (1) LS data (4)
3 1, 2, or 3 T-38 (1) range demo (5)
4 1, 2, or 3 T-38%8 (1) range demo (5)
5 1, 2, or 3 T-38 (1) range demo (5)
6 2 F-1 (3) structures (6)
7 2 F-4 (3) structures (6)
6 2 F-4 (3) propulsion (7)
7 2 F-4 (3) propulsion (7)

3.2.2 Example Problem Formulation. Each candidate mission
must be described by a binary variable. Using the problem
description, the number of binary variables needed to represent
each mission (combination of mission type and specific student)
is the product of the number of different instructor pilots and

aircraft types that satisfy the requirements of the mission type,

39

and the number of flight periods in the week. For instance, the
number of variables needed to represent the first mission listed
is (2 instructors) * (1 aircraft type) * (10 flight periods) or
20. Applying this method to each mission, 330 binary variables
are needed to represent all of the possible feasible missions.
Consider the zero-one variable X..,,. For this given example

problem, the subscripts have the following corresponding ranges:

LRI)

0

e o o,

e o o g

(i=4 if no instructor needed)

D0t S
Hunuuo
ol o
Wb

[

[

;) eees
’

y ey
The variable, X, ;,.,, represents a possible scheduling of the
first mission listed in Table 3.3. This variable specifically
represents the scheduling of the first mission type (m=1), in the
third flight period (t=3), with student #1 (s=1), and instructor

#2 (i=2), in a C-23 (a=2).

3.2.3 Example Problem Objective Function. The primary
objective is to determine a schedule which maximizes the number
of training missions flown during the week. However, a secondary
goal of leveling the workloads of the instructor pilots is also
included in the objective function. To accomplish this, three
additional continuous variables, Y, (i = 1, 2, 3), representing
the excess workloads for each of the three instructor pilots is

added to the formulation. The objective function is

10 3 . :
MAX 30 Xpegia = 3., 0:9*Y; V feasiblem, s, i, a.

40

This objective function assumes a benefit equal to one for
missions scheduled (X,.;,), and a workload penalty, p, equal to
0.9 for the amount the workload goal is exceeded (Y;). Since
0<p<1l, instructor pilots might exceed the workload goal in order
to fly more missions (the benefit of flying an additional mission
is greater than the cost of an instructor pilot flying one more
missions than desired). For this example problem, 14 missicns
require an instructor pilot. Since there are only 3 instructor
pilots, the goal instructor pilot workload level, b,, is set at

5 missions (approximately 14 missions / 3 instructors).

3.2.4 Example Problem Constraint Sets.

Instructor Pilot Availability:
Y X,0a < by V feasiblem, s, a; given t, i

where: i

b {1 if instructor 1 available in period t
C =

0 if instructor 1 not available in period t

Since there are 3 instructor pilots and 10 flight periods, this
set consists of 30 constraints. The values of each of the b,;
can be obtained using the instructor pilot availability data

contained in Table 3.1.

Student Availability:

Y Xpreia s 1 V feasiblem, i, a; givent, s

41

Since there are 7 students and 10 flight periods, this cet
consists of 70 constraints. In addition, since it was assumed
that every student is available every flight period of the week,

the right hand side, b,,, of each of the constraints is always 1.

Aircraft Availability:

Exmcaia < bta V feasiblem, s, i; given t, a

where: b, = the number of alircraft type a avallable in period t

ta

Since there are 3 aircraft types and 10 flight periods, this set
consists of 30 constraints. The values of each of the b,, can be
obtained from the aircraft availability data contained in Table

3.2.

Fly Missions Only Once:

Y Xpeia <1 V feasible i, a; givenm, s

Since there are 17 combinations of mission types (m) and students

(s), this set consists of 17 constraints.

Mission Precedence: In this example problem, certain mission
types must be flown before others. Before the C-23 PERF demo can
be flown by a student, that same student must first fly the C-23
check flight. A similar situation is true for students flying

the T-38. The T-38 LS demo flight must be flown before the T-38

42

LS data flight. The set of constraints below enforces these

precedence relationships.

C-23 flights (with students s = 1 an® 2):

10 10 . .
Ec=1 t*X, 0iz2 Ec=1 t*X,,0;, S -1 V feasible i

T-38 L8 flights (with students s = 3, 4, and 5):

10 10 . .
)INIR LI ST S L5 SRS V feasible i

Two different precedence mission sets are planned to be flown,
and one mission set (C-23) is flown by two different students and
the other mission set (T-38) by three different students;

therefore, this set consists of 5 constraints.

Academic Test Day: An academic test is scheduled for Wednesday,
students can fly a maximum of one mission on Wednesday. Since

the test day is Wednesday, t, = 5 (the first flight period of the
test day). The following constraint set enforces this

restriction.

Y Xpssia * Y, Xmeeia S 1 V feasiblem, i, a; given s

Given that there are 7 students, and all are in the same class,

this set contains 7 constraints (one for each student).

43

Instructor Pilot Workload:

10 . , .
Y o Xnesia ~ Y; S5 V feasible m, s, a; given i

The goal instructor pilot workload level, b,, is set at 5
missions (approximately 14 missions / 3 instructors). Since
there are only 3 instructor pilots, this set consists of 3

constraints.

Mission Ready Dates: For this example problem, mission type 7
cannot be flown until Thursday of the given flight week because
the academics for this mission type are not completed until
Wednesday. Hence, t.,=6 and the resulting constraint set is the

following.

For students s = 6 and 7:

E:G X <0 V feasible i, a; given s

c=1 “*7tsia

Given that there are only 2 students flying mission type 7, this
set consists of 2 constraints.

In summary, this relatively small example problem, when
formulated as a mixed integer programming problem (MIP), consists
of 330 binary variables, 3 continuous variables, and 164

constraints. The complete formulation is:

44

Objective Function:
MAX 3" Xppoia = 3,., 0-9%Y; V feasiblem, s, i, a

Subject to:
Instructor Pilot Availability:

Z mesia S Dri Y feasiblem, s, a; given t, 1

Student Availability'
2: mtsia V feasiblem, i, a; given t, s

Aircraft Availability'
Z mtsia V feasiblem, s, 1; given t, a

Fly Missions Only Once:
E mtsia V feasible i, a; givenm, s

Mission Precedence for C-23 flights with students s = 1, 2:

Y X - Yoo, E*Xp, S -1V feasible i

and for T-38 LS flights with students s = 3, 4, and 5:

10 10 . .
Yo, t*Xseeis = 3. t*¥Xygy; S -1V feasible i

Academic Test Day:
Y Xpsoia * Y Xngsia V feasiblem, i, a; given s

Instructor Pilot Workload:
IUX

reg Xmesia = Yi S5 V feasiblem, s, a; given i

Mission Ready Date for mission type m = 7 and students s =
s Xrtsia S 0 V feasible i, a; given s
and
X e B*3° Y; 20

mtsia

45

3.2.5 Example Problem Solution. The formulation for the

small sample problem was solved using the SAS/OR integer program
solver (reference SAS/OR LP Manual) on a Digital Equipment
Corporation (DEC) VAX 8550 with 64 megabytes of main memory. The
problem required approximately 5 CPU minutes to obtain an optimal
solution. The objective function value was 17, with every
training mission successfully scheduled during the week and no
instructor pilot exceeding the workload goal. Table 3.4 depicts
the corresponding schedule. By a review of the schedule, it can

be seen that all the constraints have been satisfied.

TABLE 3.4

EXAMPLE PROBLEM SOLUTION SCHEDULE
(Mixed Integer Program Formulation)

“ l MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
s m a i s m a i s m a i a i s m a

S m
4 5 T-38 i 2 1 c-23 1 3 5 1-38 3 3 3 1-38 3 4 3 71-38 3
PERIOD 1 5 4 T-38 4 7 7 F-4 2
6 7 F-4 2
5 5 1-38 2 2 2 €23 1 5 3 1-38 3 * 1 ¢c-233 1 1 2 €23 1
PERIOD 2 7 6 F-4 2 6 6 F-4 2 3 T-38 4 4 4 T-38 4
(s = student,.km = mission type, a = aircraft type, i = instructor pilot)

The solution method applied in this example was a branch and
bound approach with LP-relaxation and required 5 CPU minutes to
obtain the optimal solution. In addition, since resource-
constrained scheduling problems such as this are in the class of

NP-complete problems, all known solution algorithms require, in

46

the worst case, an amount of time which is an exponential
function of the size of the problem. Earlier in this chapter,
the problem size for a typical TPS flight week was shown to be
approximately 4000 variables and 1000 constraints, while the
example problem size was 333 variables and 162 constraints.
Consequently, since the actual TPS weekly flight scheduling
problem would be approximately 10 to 20 times larger than the
example problem, a polynomial-time heuristic approach is

warranted.

47

4. Heuristic Approach

This chapter presents a heuristic approach to solving the
TPS weekly flight scheduling problem. The heuristic approach
presented in this chapter exploits the characteristics of the TPS
weekly flight scheduling problem in order to obtain reasonable
schedules in a relatively small amount of time. A detailed
description of the heuristic is presented. In addition, to give
a comparison of scheduling approaches, a schedule for the small
example problem solved in Chapter 3 is developed using the

heuristic approach.

4.1 Heuristic Approach Background

As mentioned in Chapter 3, the major difficulty in obtaining
a weekly flight schedule for the TPS stems from the large size of
the problem when formulated as a mixed integer programming (MIP)
problem. Although a mixed integer programming formulation is a
legitimate approach to develop good flight schedules, good flight
schedules can also be obtained on a regular basis by exploiting
characteristics of the weekly flight scheduling problem and
applying a relatively simple heuristic algorithm. The heuristic
algorithm presented in this chapter is essentially a computerized
or automated replication of the procedures performed by the TPS

flight scheduler as performed on a daily basis. Such an approach

48

has not been used at the weekly level because a human scheduler
becomes overwhelmed with information when developing a flight
schedule for an entire week. By automating the procedures used
by the TPS flight scheduler, a schedule can be developed in
seconds. The algorithm exploits this speed by developing
multiple schedules in order to improve its ability to make good
schedules. Each time a schedule is developed, the algorithm
learns information (such as which missions require resources that
are the most limiting) about the given flight week scheduling
problem. After each schedule is developed, the best schedule
developed thus far is saved and the algorithm applies the
information learned to develop the next schedule. At each
schedule iteration, missions are re-prioritized in the scheduling
algorithm based on what has been learned. Missions that are more
difficult to schedule gain higher priority. After several

scheduling iterations, the best schedule developed is output.

4.1.1 Flight Scheduling Problem Characteristics. Although
formulating and solving the TPS weekly flight scheduling problem
as a MIP problem may be an impractical approach to solving this
problem, the MIP formulation did provide useful insights
regarding the characteristics of this specific resource-
constrained scheduling problem. In addition, further insights
were obtained by observing the TPS scheduler develop a daily

flight schedule.

49

The most significant characteristic of the TPS weekly flight
scheduling problem is that aircraft are the most schedule-
restricting resources. Typically, if a mission is not flown in a
given week, it is due to shortages in aircraft. If an aircraft
is available, it is almost always used by the TPS. What this
means in terms of the scheduling problem is that if every
available aircraft has been assigned to a mission, then the
maximum possible number of missions has been scheduled for that
flight week. A mission cannot be scheduled (flown) without an
aircraft. On the other hand, student and instructor pilots are
usually available. Obviously, their availability must be
checked, but usually there is enough flexibility in student and
instructor pilot availability to develop a schedule which also
levels instructor pilot workload.

Another important characteristic of the TPS weekly flight
scheduling problem is the number of missions eligible to be flown
in any given week. When a mission type is scheduled to be flown,
it must be flown by several students. There is usually a two-
weck window within which a mission type must be flown. It is not
expected that every student required to fly a given mission type
completes that mission in the first flight week. If a mission
type is not flown by a particular student in the first week, it
is to be flown in the next. The integrated academics and
operations schedule structures the flights in this manner.
Consequently, unlike the case presented in the small example

problem where there were more aircraft available than missions to

50

fly them, usually more missions are eligible to be flown in a
given flight week than could possibly be flown, given limited
aircraft availability for the week. In other words, for most
weeks, the TPS weekly flight scheduling problem is mission rich,
meaning that there are significantly more missions eligible to be
flown than there are aircraft to support them. In addition,
several instructor pilots are usually qualified to fly each given
mission type; therefore, instructor pilot availability rarely
prohibits a given mission type from being flown. Also, since
several instructor pilots are usually qualified to fly any
particular mission type, instructor pilot workload can more

easily be leveled.

4.1.2 Flight Scheduling Algorithm Goals. Based on comments
from the TPS scheduling staff, a goal of this scheduling
algorithm should be to determine the schedule which utilizes
instructor pilots as evenly as possible in addition to maximizing
the number of missions flown during a given flight week. Since
aircraft are the most scheduling-restrictive resource and student
and instructor pilot availability typically allows for an
abundance of different scheduling assignments, multiple schedules
that maximize the number of missions flown (every aircraft
utilized) can usually be developed. Although, an algorithm that
develops such schedules could be performed by a human, it would
be very time consuming due to the large amounts of data that must

be evaluated at each step. Therefore, in order for an algorithm

51

to be useful it must be automated and the weekly flight
scheduling information must be contained in a database. By
manipulating the database in a logical, systematic manner, a
schedule can be developed which seeks to maximize the number of
sorties flown and level the workload of the instructor pilots.
Since the TPS weekly flight scheduling problem must be
solved each week, data entry must be kept to a minimum.
Therefore, the manner in which the data corresponding to a given
flight week is entered into the database is of primary concern.
The goal of this thesis is not just to develop a solution
approach to the weekly flight scheduling problem, but to also
present the TPS scheduling staff with a software package that
would reduce their workload in producing a weekly flight
schedule. The algorithm was designed to read data from external
data files which can be updated to represent a given flight
week's characteristics (resource availability, eligible missions,

etc.) in less than one hour.

4.2 Scheduling Algorithm Description

This section provides an overview of the primary steps
contained in the weekly flight scheduling algorithm. Flow charts
representing the algorithm flow are provided in Figures 4.1 and
4.2. Figure 4.1 represents an overview of the overall flow and
Figure 4.2 represents a more specific overview of the resource

allocation flow.

52

PRIORITIZE
MISSIONS BASED
ON
READY DATES

START THIS

RE-PRIORITIZE

MISSIONS BASED

ON SCHEDUL 1 NG
DIFFICULTY

[

RESET RESDURCE
LEVELS TO
ORIGINAL VALUES

SUME M SSDNS

LINSTRED

- SCHEDUL ING
I TERATION

GRAB M| SSION
P BASED ON
PRIORITY

ARE
REQU IRED
RESOURCES AVAIL
ANY FL IGHT
PERIOD
2

FIND EARLIEST
FLIGHT PERIOD
WIThH REQUIRED

RESOUACES
[SCHECULE MISS 10N]
|
(ﬁupoATE MISSION LIST I
[UPDATE RESOURCE LEVELS l

HAS
AN ATTEMPT
BEEN MADE TO

TAG MISSI0H
AS THO GO

SCHEDUILE EACH
MISS 0N

SAVE BEST
SCHEDULE

Figure 4.1 8Scheduling Algorithm Flow

53

8tep 1 (Initialization): Once all flight information is
available, missions are ranked based on their ready dates, the
earlier a mission's ready date, the hidher its ranking. Missions
which are bound by precedence constraints (that is, they require
a specific mission to be flown before they can be flown) are
ranked last.

Step 2 (Determine Resource Requirements): Once missions are
prioritized (or re-prioritized), the algorithm attempts to
schedule each mission based on its ranking. Once a specific
mission is selected for scheduling, the algorithm determines the
resources required for that mission to be flown. These resources
include the specific aircraft type and a list containing each
instructor pilot that is qualified to fly the specific mission
and aircraft type. Additionally, the algorithm checks if the
given mission type requires a specific mission to be flown before
it. If so, the required precedence mission must already be
scheduled in order for this mission to be scheduled. If the
precedence mission has been scheduled, the follow-on mission is
assigned a ready date for the day after the flight period in
which the precedence mission was scheduled.

Step 3 (Mission S8cheduling): Once a mission's resource
requirements are determined, the algorithm attempts to schedule
the mission in the earliest flight period in which all of its
required resources are still available. Figure 4.2 provides an

overview of the flow for this step of the algorithm.

54

The first step (step 3a) is to determine the first flight
period after the given mission's ready date in which the required
aircraft type is available. If the required aircraft type is not
available in any of those flight periods, the mission cannot be
scheduled and the algorithm returns to step 2 to select the next
mission for scheduling. Since aircraft are the most restricting
resource, aircraft availability is checked first to minimize the
number of steps before it is determined that resources are not
available for the mission to be flown. If the aircraft type is
available, the earliest flight period in which the given aircraft
type is available is chosen.

Given this flight period, the next step (step 3b) is to
select an instructor pilot (if needed). Using the list of
qualified instructor pilots developed in step 2, the algorithm
selects the instructor pilot with the lowest workload who is
available in the given flight period. If no qualified instructor
pilots are available in this specific period, the mission's ready
date is shifted to one flight period later in the week and the
algorithm returns to step 3a.

Once an instructor pilot is assigned (or if an instructor
pilot is not needed for the given mission), the next step (step
3c) is to determine if the required student is available in the
given flight period. It may seem more logical to check to see if
the student is available first since the student is directly tied
to the mission. However, this is not the case for two reasons:

1) aircraft and instructor pilot availability drive the schedule,

55

[7 SPECIFIC MiISSION

'S
REQU I RED
AIRCRAFT TYPRE

TAG MISSION

AS "NO GO

AVALIL THIS
WEEK
=]

}YES

FIND EARLIEST
FLIGHT PERIOD

WITH REQUIRED
AIRCRAFT TYPE

l CONT | NUE

Iy

s
REQU | RED
AITRCRAFT TYPE
AVA il ANOTHER
PERIOD
2

ARE
QUAL I FIED
IPs AVAIL THIS
FLIGHT
PER QO

NQ

SELECT P
WITH LOWEST
WORKLOAD

1S
REQUTRED
STUDENT AVA L
TH!IS FL1GHT
PER DD

SUHEDLL E MISSOH
THIS FLoGHT PERS DD
NI T= ASSLHED
DELDURCES

Figure 4.2 Resource Allocation Flow

56

and until a flight period is determined in which both aircraft
and instructor are available, the flight period in which to check
the student's availability is not known, and 2) students are
usually available. In addition, if the given flight period is on
an academic test day for the given student, the algorithm checks
to see if the student has already been scheduled to fly another
mission in the other flight period of that same day. If this is
the case, the mission cannot be scheduled this flight period
because on an academic test days, students are allowed to fly
only one mission. As in the case of step 3b, if the student is
not available in this specific period, the mission's ready date
is shifted to one flight period later in the week and the
algorithm returns to step 3a.

When a flight period in which all the required resources are
available is found, the next step (step 3d) is to adjust all the
resource levels to represent their usage in scheduling the
specific mission in the given flight period. The algorithm then
returns to step 2 to select the next mission for scheduling.

When a scheduling attempt has been made for every mission, the
algorithm goes to step 4.

Step 4 (Bave the Best Schedule): At the completion of a
given iteration (an iteration is complete when an attempt has
been made to schedule every mission), the algorithm saves the
best schedule developed thus far. The criterion for selecting
the best schedule is based on 1) the number of missions scheduled

and 2) the variance of instructor pilot workloads. The schedule

57

that produces the maximum number of scheduled missions is always
saved. If two schedules result in having the same number of
missions scheduled, the schedule with the smallest variance in
instructor pilot workloads is saved. The variance of the
instructor pilot workloads is calculated using the standard
statistical formula for population variance.

8tep 5 (Iteration Check): The entire process is repeated
until the maximum number of scheduling iterations has been
completed, or all the missions have been scheduled. Based on
multiple trials using full-size TPS weekly flight scheduling
scenarios, the algorithm rarely found a better schedule beyond
the fifth iteration. Currently, the coded algorithm is set to
perform a maximum of seven iterations. The algorithm does not
guarantee a better schedule after each iteration. During test
runs, better schedules were not always obtained from subsequent
scheduling iterations. Therefore, unless an iteration produces a
schedule in which all the missions are scheduled, the algorithm
always completes the maximum number of iterations, even if
subsequent iterations do not improve the schedule. Additional
iterations will not be accomplished solely to even out instructor
pilot workloads. Typically, since there are usually more
missions eligible to be scheduled than there are aircraft
available, all the missions cannot be scheduled, and therefore,
the algorithm usually performs the maximum number of iterations

before terminating.

58

S8tep 6 (Reset Original Resource Levels): If another
scheduling iteration is to be performed, resource levels are re-
initialized to their original levels.

8tep 7 (Re-prioritization of Missions): After the resource
levels are re-initialized, the missions are re-ranked based on
information obtained from the previous developed schedules.
Missions are re-ranked based on three parameters; 1) original
mission ready dates, 2) number of qualified instructor pilots for
each specific mission, and 3) the number of times each mission is
not scheduled. The last two parameters are used to incorporate a
measure of scheduling difficulty into the ranking. Missions that
are more difficult to schedule due to limited flexibility in
their resource requirements are given priority. For example,
missions that have fewer qualified instructor pilots are likely
to be more difficult to schedule. Furthermore, after several
schedules have been developed, the number of times a specific
mission was not scheduled gives the algorithm a measure of how
difficult it is to schedule that particular rission. The
algorithm uses a counter to keep track of the number of times
each mission was not scheduled. Each time a mission is not
scheduled, its counter is incremented by one. Thus, a high
counter value represents a mission that is difficult to schedule.
For missions in which a precedence relationship exists, if a
follow-on mission was not scheduled for a given student, its

corresponding precedence mission has one added to its counter.

59

Missions are re-prioritized based on the following rules; 1)

missions not scheduled the most are given the highest priority,
2) if two missions are not scheduled the same number of times,
the mission with the earlier ready date has priority, and 3) if
there is still a tie, the mission with fewer qualified instructor
pilots has priority. Table 4.1 presents an example of how 10
missions would be ranked for scheduling based on their
corresponding parameter values. Once the missions have been re-
prioritized, the algorithm returns to step 2 and starts to

develop another schedule.

TABLE 4.1

EXAMPLE OF RE-PRIORITIZING MISSIONS

MISSION || READY DATE | NUMBER OF NUMBER OF MISSION
QUALIFIED TIMES RANKING
INSTRUCTOR | MISSION NOT
. PILOTS SCHEDULED
A 01/03/92 3 0 5
B 01/03/92 2 0 4
C 01/03/92 1 1 2
D 01/07/92 3 0 7
E 01/08/92 3 0 10
F 01/08/92 2 0 8"
G 01/08/92 2 1 3
H 01/07/92 1 2 1
I 01/08/92 2 0 9"
J 01/07/92 2 0 6

* When there is a prioritization tie between missions (such as with missions f and 1),
priority is given to the mission listed first (F).

60

Figure 4.3 depicts an example of how the algorithm would
progress through a very small flight scheduling problem. 1In this
example, each of the three missions (each with a different
student who is always available) to be scheduled requires the
same aircraft type; however, their instructor pilot (IP)
requirements differ. There are only two flight periods in this
small example. 1In iteration 1, mission rankings are based only
on ready dates. As the scheduling process progresses and
missions are re-prioritized, the resources that are assigned to
each mission vary based on the mission's scheduling priority
(rank). As depicted in Figure 4.3, the second and third
scheduling iterations provide no improvement to the schedule.
However, on the fourth scheduling iteration, every mission is
scheduled and instructor pilot workloads are equalized. Notice,
that if the ready dates were all the same, the schedule that was
produced in the fourth iteration would have been produced in the

second iteration.

4.3 Coded Algorithm Development and Description

The heuristic scheduling algorithm was coded and compiled
using Microsoft FORTRAN 5.0. 1In developing a weekly flight
schedule, the program accesses 22 different external data files
which contain the flight scheduling information for the given
flight week. A further description of and operating instructions
for the coded algorithm are provided in Appendix C. The source

code for the heuristic algorithm is provided in Appendix D.

61

M1 SSION (MSN) INFORMAT ION

RESOURCE AVAILABIL!ITY

MSN READY DATE REGUIRED IP # QUAL P PERIOD 1 PERICD 2
A 010192 1, 2, OR 3 3 =2 TES NO
B 01/02s92 1 OR 2 2 1P &2 TES TES
< g1/03/82 1 1 1P 23 NO YES
AIRCRAFT 1 2
I TERAT 1ON #1
TIMES SLHED ASSIGNED
MSHN UNSCHED RAMK PER OO 1P
A 8] 1 1 1 NUMBER OF MISSIONS SCHEDULED 2
5 3 B > VARIANCE OF 1P WORKLOAD g 47
¢ “SCHEDULE SAVED
C O 3 - -
ITERAT 1O B2
TIMES SCHED ASSIGNED
MS UNSCHED FANK PERIQD e
0 2 2 2 NLMBER OF MISSiONS SCHEDULED 2
VARIANCE COF tP WORKLOAD 0 a7
B 9 3 - “SCHEDULE MNOT SAVED
o 1 1 1 1
ITERAT IO 23
7 TIMES SCHED ASSHGMNED
SN LIMSITHED CAtY PER1OD e
A n 3 > o HUMBER OF MISSIONS SCHEDULED 2
] VARIANCE COF 1P WORKLIJAD g 47
& 1 1
8 ! SCHEDULE NOT SAVED
s 1 2 -
TEAAT DN gl
7 T ASSTGHED
NSty (ghe] Sang e
A 0 3 o) MUMBER TF MISSIONS SUMEDUED 3
VARTANCE OF (R WO DAD o Q
SUHETOLE SAVED
- ; N
. Al TR TR DB E
Figure 4.3 Example of Algorithm Progression

62

4.3.1 Algorithm Testing. The coded heuristic algorithm was
tested using both representative flight scheduling data and
operational TPS flight scheduling data. Approximately 20 tests
were conducted using flight scheduling data that was
representative of typical TPS flight weeks. To a large extent,
these initial tests were more developmental than operational,
meaning that they were used more to develop the algorithm to its
present state than test the effectiveness of the heuristic.
Results from these tests were used to adjust and refine the
heuristic algorithm in order to obtain better results
(schedules). These tests were also used to verify that the
computer code accurately performed the steps of the heuristic
algorithm. Listings of the flight scheduling data files and the
resulting flight schedule output file for a sample full-size TPS
weekly flight scheduling problem are provided in Appendix B.

Once the developmental tests were complete, the coded
heuristic algorithm was operationally tested at the TPS using
real flight scheduling data. The quality of the resulting weekly
flight schedule was judged good by the TPS scheduling staff;
however, the manner in which the flight scheduling data was
updated for use by the algorithm was considered cumbersome. This
deficiency has since been corrected by editing and exporting

files using the spreadsheet software QUATTRO PRO.

4.3.2 Testing Limitations. Although the quality of the

weekly flight schedule produced in the operational test was rated

63

good by the TPS staff, this test was limited for three primary
reasons. 1) Due to the limited availability of actual flight
scheduling data and scenarios, only one real world weekly flight
schedule was produced. 2) Flight schedules for an entire flight
week have never been developed at the TPS; therefore, there was
no historical data in which the weekly flight schedule produced
by the algorithm could be objectively compared against. 3) Full-
scale TPS weekly flight scheduling problems have never been
solved using techniques that guarantee optimal solutions.
Therefore, the ability of this heuristic algorithm to guarantee
schedules within a measure of optimality could not be determined.
To give a limited comparison of the scheduling effectiveness of
the hauristic algorithm, a schedule for the small example problem
solved in Chapter 3 using mixed integer programming is also
developed using the coded heuristic algorithm (reference section
4.3.4). Unfortunately, the same effectiveness as demonstrated in
the small scheduling example problem cannot be guaranteed in a
full-scale application. As a result of the three limitations
cite.. above, the analytical effectiveness of the heuristic

algorithm was only subjectively rated.

4.3.2 Coded Algorithm Output. The output from the coded
algorithm provides a variety of information to the TPS scheduling
staff. Most important is the schedule itself. For each flight
period, a listing of each mission scheduled including mission

description, instructor pilot, student, aircraft type, and

64

students class is provided. 1In addition, at the request of the
TPS scheduling staff, aircraft and instructor pilot resources
that are still available in each flight period are also
displayed. Such information makes it easier to further
manipulate the schedule. The schedule produced by the algorithm
is just an initial schedule for the flight week. It may be
changed for reasons such as weather, illness, and aircraft in
maintenance. Aside from the actual schedule, the algorithm also
identifies missions not scheduled during the flight week and
missions that violated quality of training completion deadlines.
Missions that violate quality of training completion deadlines
may be scheduled; however, flagging such missions allows the TPS
scheduling staff to make the decision as to either waive the

completion deadline requirement or to schedule make-up training.

4.3.4 Example Problem Solution. A schedule for the small
example flight scheduling problem formulated and solved in
Chapter 3 was obtained using the coded heuristic algorithm
implemented on a 16 MHz 80286-based desktop computer with 1
megabyte of memory. To obtain a solution, the problem required
approximately 10 CPU seconds. In terms of the objective function
for the mixed integer programming scheduling approach presented
in Chapter 3, the schedule produced by the heuristic algorithm
was not optimal. 1Its corresponding objective function value
would have been only 16.1 (versus the optimal value of 17).

Although, every training mission was successfully scheduled

65

during the week, one instructor pilot (#2) exceeded the workload
goal by one work unit. Table 4.2 depicts the corresponding
schedule. Algorithm input and output files for this example
problem are provided in Appendix A. By a review of the schedule
presented in Table 4.2, it can be seen that all resource and

operational restrictions have been satisfied.

TABLE 4.2

EXAMPLE PROBLEM SOLUTION SCHEDULE
(Heuristic Algorithm Approach)

|| | MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

PERIOD 1
1 1 ¢c-23 4 3 1-38 1 3 4 T1-38 4 c-23 1
PERIOD 2 7-38 7 6 F-4 2
(s = student, m = mission type, a = aircraft type, i = instructor pilot)

4.4 Full-Scale Application

The most positive aspect of the heuristic algorithm approach
is its ability to produce acceptable weekly flight schedules in
relatively little time. The computerized algorithm has been used
to obtain schedules for multiple representative full-scale TPS
weekly flight scheduling problems. A full-scale problem is
defined as including 50 students, 25 instructor pilots, 10
aircraft types, and more than 60 missions. Based on the results

of these tests, on the average, good schedules were obtained in

66

approximately 2 minutes of CPU time on a 16 MHz 80286-based
desktop computer with 1 megabyte of memory. Estimating that it
takes slightly under one hour to update the scheduling data files
for a given flight week, good weekly flight schedules can be
obtained in approximately one hour, using the computerized

heuristic algorithm.

67

5. Conclusions and Suggestions

5.1 Conclusions

Due to the large quantities of scheduling data that must be
processed, flight schedules representing an entire flight week
cannot be developed at the USAF Test Pilot School (TPS) unless
the process is automated. Currently, the TPS manually develops
flight schedules on a daily basis. It usually requires the TPS
flight scheduler one to two hours to manually develop a daily
flight schedule. Although a daily flight scheduling approach is
more suitable for handling last minute changes due to unforeseen
events, its lack of foresight often leads to bottlenecks and
unbalanced resource utilization, both of which could have been
avoided if the entire flight week were scheduled in a single
process. The objective of this thesis was to investigate and
develop a technique to automate the flight scheduling process at
the TPS in order to improve the flow of missions scheduled
throughout the week and reduce the amount of TPS staff time
dedicated to flight scheduling. In addition, by posting a
tentative flight schedule for the entire week, communication
between the TPS scheduling staff and TPS personnel (students and
instructors) can be improved.

The application of the heuristic algorithm presented in this
thesis demonstrated that reasonable flight schedules representing
an entire flight week can be developed in a short amount of time.

68

Weekly flight schedules were developed for multiple flight
scheduling problems having the size and characteristics of a
typical TPS flight week. Tests using these different flight
scheduling scenarios were used to improve, verify, and validate
the heuristic algorithm.

In addition, an operational test of the heuristic algorithm
was conducted at the TPS using actual missions, mission resource
requirements, and weekly resource (student, instructor pilot, and
aircraft) availability. The quality of the schedule produced in
this sample was acceptable to the TPS scheduling staff.
Unfortunately, due to the limited availability of actual flight
scheduling data and scenarios, only one real-world TPS weekly
flight schedule was produced.

Based on the results of actual and representative weekly
flight scheduling scenarios, good weekly flight schedules can be
produced by the heuristic algorithm in less than ten minutes of
computer time. Estimating that it takes approximately one hour
to update the data files containing the scheduling information
for a given flight week, an acceptable flight schedule for an
entire week can be developed in about the same amount of time it
currently requires the TPS flight scheduler to manually develop a
daily flight schedule. Furthermore, once an initial weekly
flight schedule is obtained, it provides a good starting point in
which manual adjustments can be made by the flight scheduler in
reaction to unpredictable events (weather, aircraft maintenance,

illness, etc.).

69

Aside from the heuristic approach developed and implemented
in this thesis, a mixed integer programming (MIP) approach for
solving the TPS weekly flight scheduling problem was also
investigated. Although a MIP approach may have been able to
produce "better" weekly flight schedules, such an approach was

impractical due to the resulting large problem size.

5.2 Suggestions for Further Work

Even though the algorithm has demonstrated its ability to
produce good weekly flight schedules in a short period of time,
further investigation should be conducted to improve the
presented algorithm or to develop another algorithm in order to
further improve the quality of weekly flight schedules. One
possible enhancement might be an interchange scheme to improve
the current heuristic algorithm's ability to level worklocads of
the instructor pilots. Such an enhancement would search through
the schedule to check if missions supported by over-worked
instructor pilots can be reassigned to under-worked instructor
pilots. 1In addition, an approach for handling special case
missions (such as missions that must be supported by a chase or
target aircraft) by the current scheduling algorithm should also
be developed. 1In a MIP approach, a requirement of this type can
easily be handled with the addition of a constraint; however, the
current scheduling approach regquires the flight scheduler to

manually handle special mission requirements.

70

Notwithstanding the above possible enhancements, the current
heuristic algorithm appears to be capable of producing reasonable
weekly flight schedules in a practical amount of time. The
current coded heuristic algorithm should be further tested by the
TPS scheduling staff to identify any additional desired
enhancements or possible limitations and to fully assess its

potential in automating the flight scheduling process at the TPS.

71

Appendix A:

Heuristic Algorithm Applied to the Example Problem

Student Pilot Availability Data

MON1 MCN2 TUE1l TUE2 WED1 WED2 THR1 THR2 FRI1 FRI2
ST #1 Y Y Y Y Y Y Y Y Y Y
ST #2 Y Y Y Y Y Y Y Y Y Y
ST #3 Y Y Y Y Y Y Y b4 Y Y
ST #4 Y Y Y Y Y Y Y Y Y Y
ST #5 Y Y Y Y Y Y Y Y Y Y
ST #6 Y Y Y Y Y Y Y Y Y Y
ST #7 Y Y Y Y Y Y Y Y Y Y
END
Instructor Pilot Availability Data
MON1 MON2 TUE1l TUEZ2 WED1 WED2 THR1 TER2 FRI1 FRIZ WORK
IP #1 Y N Y Y Y N Y v Y Y 0
IP #2 Y Y Y Y N Y Y Y Y N 0
IP #3 Y Y N Y Y Y Y Y Y Y 0
END
Aircraft Availability Data
MON1 MON2 TUEl TUE2 WED1 WED2 THR1 THR2 FRI1 FRI2
F~-4 1 0 0 1 1 1 1 0 1 0
T-38 2 1 1 1 1 1 2 1 1 1
C-23 0 1l 1 1 1 r 0 1 0 1
END

72

ST
ST
ST
ST
ST
ST
ST
END

#1
#2
#3
#4
#5
#6
#7

ST
ST
ST
ST
ST
ST
ST
END

Training Mission Data Sets

C-23 CF C-23 PERF DEMO
10191 -10191
10191 -10191
0 0
0 0]
0 0
0 0
o 0]
F-4 STRUCTURES T-38 LS DEMO
0 0
0 0
0 10191
0 10191
0 10191
10191 0
10191 0
F-4 PROPULSION EXTRA
0
0
0
0
0
10491
10491

[eNeNeoNoNeNoNe

73

T

38

RANGE DEMO

10191
10191
10191

T-38 LCHG STAT DATA

0
0
-10191
-10191
-10191
0
0

EXTRA

[eNeNoNeNoNoNe)

T-38 IP
IP #1 X

IP #2 X

IP #3 X

END

F-4 IP
IP #2 X

END

C-23 IP
IP #1 X

IP #2 X

END

MSN_TYPE

T-38 LS DEMO
T-38 LS DATA
T-38 RANGE DEMO
F~4 PROPULSION
F-4 STRUCTURES

Instructor Pilot Qualification

TPS

TPS

TPS

C~23 CHECY FLTIGIT

C-~23 PERF DEMO
END

L/D CHSE
X X

X X

X X
STRC PROP
X X

FE FCF
X

AC_TYPE
T-38

T-38

T-38

F-4

F-4

c-23

c-23

TGT FE

X

X

AS/S TGT
X

Data Sets
FCF SOF
X
X
FE FCF

EXTRA

SOF

EXTRA EXTRA EXTRA EXTRA EXTRA

QUAL
TPS
N/A
TPS
PROP
STRC
TPS
TPS

74

Algorithm Output Schedule

MONDAY 1st Flight Period:
J d de K do kK d de K ek kK d gk ok gk ok Kk ok Kk ok ok kg g Kk kK gk k ok gk ok de & Kk gk kg e v de kg ke ok ke ke ok ek de ke ok ek ke e ke de ke ok Kk koK ok ok k

MISSION ATRCRAFT INSTRUCTOR STUDENT CLASS
kkhkhkhkhkhkhhhkhkhkhkhkhhhhhkkkhkkhhhhhkkkkkkhhkhhkkdhhhkhhhhhkhkkkkkkkkkkhhhkhkhkkhk
T-38 RANGE DEMO T-38 IP #3 ST #3 B

T-38 RANGE DEMO T-38 IP #1 ST #4 B

F-4 STRUCTURES F-4 IP #2 ST #6 B

AVAILABLE RESOURCES
hkhkhkhkhkddhkhkhhhkhkkhkhhkhhhkdkhhkhhhhkhkkhkhkhhkrhhhkhkhkhkhkhhhkhkdhhhkkhkrhhkhhkhkhhhhkhkhkhkhkhkkkkkk

INSTRUCTOR AIRCRAFT AMOUNT
Fkkhkkdkdkhhkdhhkhkdhhkdhkhkhkdkdkdhhhhhdhhkhhhkhkhkhhkhkhhkhhkhkhdkdkkhhhhhhhkhhkkhkhhkhkhkrkhkhkkkhkkhk

MONDAY 2nd Flight Period:
L T L T T L Y I I T 2T I I E s s

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
kkkkhkhkhhkdkhhkhkhkhhkkkhhkkhkhkhkhhkhhhkkhkkhkkhkhkkkhkhhhhhkkdkkkkkkhkhkhkhkhkhhrhhkkhkk kkkkk
C-23 CF Cc-23 IP #2 ST #1 B

T-38 RANGE DEMO T-38 IP #3 ST #5 B

AVAILABLE RESOURCES
Fkkhkdkhkhkhkhhhhhkhhrhhhkhkhkhkhhhhhhhhhhhhkhhhhkhhhkhkhhkhkhkhhhhkkkkhhhkhkkhhkkkhhkhkkkhkkkkkkkxk

INSTRUCTOR AIRCRAFT AMOUNT
kkhkhkkhkhkhkhRkhhhkhhhkhkhhhhhhhkhhhhhhkkkhhhhkhhkkkkhkkhhkhkhhhhhhkkkkkhhkkhhhhhhkkkhkkd

TUESDAY 1st Flight Period:
Ahkhkkhkhkhkhkhkdhhkhkhhkhkhkhkhkhkhkhkhkhhhkhhhhkhkhkhkhkkhkhhkhhkkhkhkhkhkkkkkkhkhkhkkkkkhkkkkkkkkhkhkkkkhkkkkkk

MISSION ATRCRAFT INSTRUCTOR STUDENT CLASS
L L R R iR R Ry g L T T T e
C-23 CF C-23 IP #1 ST #2 B

T-38 LS DEMO T~38 IP #2 ST #3 B

AVAILABLE RESOURCES
Akhkkhkkkkhkhhhhkhhkkhhhhkhhhhdkhhhhkkkkhhkhkhhhkhkhhhhkhhhkhkhhhhkhkkhkkdkhhxdhhhkhkhkhhkhkkkk

INSTRUCTOR AIRCRAFT AMOUNT
Tkkhkdkhhdhhhkhhkhkhhhkhkhhhkdkhkhhhhhhhhhhhhkhhhhkhhhkhkhhhhhhhhkhhkhkhkhkhkkhhkkhkkkkkhhkkk

TUESDAY 2nd Flight Period:
khkhhkkhkhkhkhkhkhkhhkhhkhkhkkhkkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkdkkhkhkkhkhhkhkhkhkhkhkhkkhhkkhhkhkhkkhkkkkk

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
hkhkhkkhk kAR hk kAR Ahhkkkk kAR hhhhhkkkkrhkhhhhkhkkrkkhkhkhhhhhkhhkhkkkhhkhhhhhhhkk
T-38 LS DEMO T-38 IP #1 ST #4 B

F-4 STRUCTURES F-4 IP #2 ST #7 B

AVAILABLE RESOURCES
dkkhkkhkkkhhkkhkhhhhhkkhhkkkkhkkhhhhkkkkrkhkhhkkkhkhhkhhhhkhkkhkkhkhkkhkhkhhhhhhkhhk

INSTRUCTOR AIRCPAFT AMOUNT
kkkkhkhkkhhkhhkkhkhkkkkkhkhkhhhkhhhhhkhhkkkkkhhkhkkhkhkkhhhhkkkkhkhhkkkhkhkhhhhkhkhkkhk
IP #3 Cc-23 1

WEDNESDAY 1st Flight Period:
hhkhhkhkhkhkhkhkhkhhkhkhkhkhkhhkkkhkhkhkkhkhkhkhkkkhkhhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhhkhkhkkkkhkhkkkhkkkkkkhkkkkkkkkk

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
hkhkhkhkhkkhhdhhkhhhkhkhkhkhkdhhkkhhhhhhhkhhhkhkhkhkhhkdkkkkhhhkhhhkhkhkhkkkkhrhhhrkkhrkhkkkhkk
C-23 PERF DEMO C-23 IP #1 ST #1 B

T-38 LS DEMO T-38 IP #3 ST #5 B

AVAILABLE RESOURCES
khkhkkkhkhhhkhhhhkhhhhkhhhkhkhhkhkhkhhkhkhhkhhhhkhkhhkdhhhhdkhkhkhkkhkkhhhhhhkkkkkkhkhkkkkkkkkkk

INSTRUCTOR ATRCRAFT AMOUNT
dkhhkdkkhhkdhhhkdhhhkhhhhkhkhkhhkdkhhkdhhkhkhkhkhhkhkhkhkhhhkhhkhkkhhkhkhhhkkhkhhkkkhkkkkkkkhkkdx
F-4 1

WEDNESDAY 2nd Flight Period:
Akhkhkkhhkhhhkhhkdkkhkhhhkkkhkkhhhkhhhhhhhhkhhkhkhkhkhkhhkkhhhhhhhhkkkkkkhhkhkkkhkhkkkdkkkk

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
dkhkhkhkkhkhkhhkkkhkhkhkkhkhkhhhkhkhhhhhhkhkhkhkhkdkkhkdhkhhhkhhkhrhkkkhhhhhhhkhkkkkhhhkhdk®
T-38 LONG STAT DATA T-38 N/A ST #3 B

AVAILABLE RESOURCES
kR R kR hh ARk kR Rk hh kAR kA ARk ke kA kA hhhhhkhhhkhkhkhhhhhhdhhhhkkkhkkhkkAkkkkkk

INSTRUCTOR AIRCRAFT AMOUNT

R R T sy I eSS s
IP #2 F-4 1

IP #3

76

THURSDAY 1st Flight Period:
khkkhkhhkhkkhhkhhkhkhhhhhhkhkhkhkhhhkhkhhkhhkkhhkhhkhhhkkkrhkhkhkhhhkhhhhhkhkkkhkkkkkkhkhkhhkhk

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
hkkkhkhhkhhhhhhkhhhhhkhhhhkkhhrkrhhhkhkhkkkhhkhhhhkkkkkhkkhkhhkhkhhhkhkkkkhkkhhhhhkkkk
T-38 LONG STAT DATA T-38 N/A ST #4 B

T-38 LONG STAT DATA T-38 N/A ST #5 B

F-4 PROPULSION F-4 IP #2 ST #6 B

AVAILABLE RESOURCES
dkhkhkkhhkhhkhdhkhhhkhkhhkhkdkhhhhhhhhhkhhhkhkdkhkhkhkdkhhhhhhhhhhhhhkhhkkhhhhhhkhkhkhkhkhhkhkkhkkk

INSTRUCTOR AIRCRAFT AMOUNT
hkkkkhkhkkhkhkhkhhkhhhkhkhhhhdhdkhkhkhkhkkhddhkhkdkkkhhhkhhhkkhrhkkkhhkhhhkkkkkkkkkkkhhkkkkkk
IP #1

IP #3

THURSDAY 2nd Flight Period:
%k Kk % de dode g de dede de g g de Ktk ke de ke ke kK ok kK de e de ok ok gk ek ke de de e ke ke ek de e e ke vk ke v ok %k d ok e gk de ok gk ke ok ke ok ok

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
kkhkhkkhhkhhhkhhkkhhhhkkkhhkhkhhhhkkhkhkhkkhhkhhkhhhkhhkrhhhhhhhhhdhkhkkkkhkkhhkhhhkkhk
C-23 PERF DEMO C-23 IP #1 ST #2 B

AVAILABLE RESOURCES
khkkhhhkhhhhhhhhhhhhhkhhkhkrrkhhhhhkkkkhkhkhhhkhhhkrrhhhhhhhhkkkhkkkhhhhhhdrhkhhkk

INSTRUCTOR AIRCRAFT AMOUNT
hkhkhkhkhhhhhkhhkhhhhhhhhkhkkhhhhhhkhhkkkhkhkhhhhkhhhhhhhhhhhkkhhkhkkhhkhhhkkktkhrhkk
IP #2 T-38 1

IP #3

FRIDAY 1st Flight Period:
hhkhkhdkhkhhdhhhkhkhhkhkhkhhhkhhkhhkhkhhkhhhkhkhkhkhkhkhhkhkhkhkhkhkhkkhkkhkkhkhkhkhkkhkhhhthhkhhhkkhkhkhkhkhkkhkhkhhkhkhkik

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
kkdkhhkhkhhhhkRhkhkhhhhkkkhkhkhkhhhhhkhhkkkkhhhkkkhkhkhhhhkhhkhhkhkhhkhkhhhkkkkkkkhhkkkk
F-4 PROPULSION F-4 IP #2 ST #7 B

AVAILABLE RESOURCES
Ahkhhhhhhhhrhhhhhhhhhhhhhhhhkhkhkhhhhkkhkhkhkhhhhhhhkhhkkhhkkhkhhhhhhkdkhhkhhhhhkhkkhhhkhk

INSTRUCTOR AIRCRAFT AMOUNT
AhRRRRRRARRRIARRRR R A I IRk R AR AR Rk kkkkhhhhhhhhkhhhkkhhkhhkhhhhhhhkkhkhkhkhhkhkkk
IP #1 T-38 1

IP #3

FRIDAY 2nd Flight Period:
hkhkhkhhkhhdhkdhhkhhkhkhhkhkhhkhkkhdkhkhkhikhkkhkkkkhhkkhkkhhkkhkkkhkkkhkkhkkhhkhkhkkhkhkhkhkhkkhkkkkkkk

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
hkkhkhkhhkhkkhkhhkhhhhRhhkkhkhhhkkhhkkkhkkhkhhhdktdhdhhrhhkhhhhs khkkhkkhkhhkhhkhhhk

AVAILABLE RESOURCES
hkkhhkhhhkhhhhhkdhhhkhhkkhhhhhhhhhkhkhkhhhhkhhhkhkkdhkhkhhhhkkkkhkhhhkkhkhkhkhhhhkkkhrhd

INSTRUCTOR AIRCRAFT AMOUNT
kkkhhhhhkhhhkhkhkhhhhhkkkhkhhhhhhhhhhkhhhhhkhkkhkkhkkkhhhkkkkkkkkhkrkkhkhkhkhkhkhrkkkhkhkkr
IP #1 T-38 1

IP #3 C-23 1

MISSIONS NOT SCHEDULED THIS WEEK:
Ahkkhkhkhkhkhkhhhkhkhhkdhhkhkkkkhhkrhhkhkhhkkkhhhkkkkhhkhhhkkkkkkkkkhhkhkkhhhhhhkkhhkhhhkk

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
khkhkhkhhkhkhkhhkhhhkhdkhhhhhkkhhhhhhhhkhkhhkhhkkhkhhkhkhhhkkkkkkkkkhkhkkkhhhhkkkrhkkkk

MISSIONS THAT VIOLATE QOT DEADLINES:
kkdkhhkhhhhhhhhhhhhhhhhkhkhhkhhhhhhhhhhhhhhkhkhkhhkhkhhkhhkhhhhkhhkhkkkkhkhkkrhkkkhrhkkkk

MISSION ATRCRAFT INSTRUCTOR STUDENT CLASS
khkhhkhhhhkhhkhhhhhhhhhhhhhhhkhhhhhhkhkhkhkhkhkrkhkhkhhkhkhkhkkkhhhkhkhhhkkkkhkkkhkhkhkhhhhkk

78

Appendix B:

Heuristic Algorithm Applied to a Full-Size Problem

Student Pilot Availability Data (Class A)

MON1 MON2 TUE1l TUE2 WED1 WED2 THR1 THR2 FRI1 FRI2
BAKKEN
BALTRUSAIT
BLOOMFIELD
CAREY
GRIFFITH
HUNNEL
SHORT
SMITH
STURKOW
TRAVEN
DENOFRIO
DILLION
MURRAY
PAYNE
SHAW
STAPP
WILHEIM
END

KKK KKK Z KKK KK
TS R i L S S L L LSS Y
KKK KZRKKKKZK KKK Z KK
B S S < R L L S S]
KGR Z R R 2 R
o o BT L i
KKK KR KKK KKK KK Z
KRR R G Z R G KGR 2
o Sl A S T TR S L A
KRR R R G RS G GRS RS R G GG 2

Student Pilot Availability Data (Class B)

MON1 MON2 TUE1l TUEZ2 WED1 WED2 THR1 THR2 FRI1 FRI2
ASH
FAIRBAIRN
GRAY
HOWELL
LEE
LUND
MELROY
ROBINSON
STERNBERG
ZEHR
BARAK
DURON
KELLER
NICHOLS
SHANKAR
STAMBAUGH
VERDERAME
END

T L Aol B S S - A]
QS R S G S R S G G S R RS G
Bl L A S L
ORGSR R R RS G S G GG
KR KKK KR R R
K Z R R R RS G G 2
sl T S S S ST I S L S S
KRR R KRG R R R
KRG G Z GG G G 2 G G G G2
KRR 2 KRG R R RS R G R G RS RS

79

Instructor Pilot Availability Data

MON1 MONZ2 TUE1l TUE2 WED1 WED2 THR1 THR2 FRI1 FRI2 WORK

[eNeNoNojoNoRoNoleNoloNolNoNoRoleNeoNoNe)

D D D D D D D D D Z D D D D D D

DA D D D D D D D D D D D D D D D

DD D D D D D D D D D D D D D D

D D D D D D D D D D Z D D D D D D

DD D D Z DDA DDA DD DD DD EZ A

DD D DD Z D D DD Z D DD DD D

DD DA D D D D D D DD D D 2 D D D D

D4 DA D D D D D Z D D D DD D D D

DU D D D D D D D D D D D D D D D D

DA D DA D D D D D D D D D D D D DA D
z
o o] oo
(o] @] M

2, O Z - X -
K OMH €z K > Zur
wswwSMNNNOE =4 OXO R
< 5] wuNnum.TnuA"anwnEmmv.
N“Nnvm“Nﬁuwun,MnKqu NGNS O
wuw“x KO ME an"M RGO ME
m MOALLLUL X H % i | E2ZW0V

o

>

4

>

>

>

STONE

Y

E WILSON
R WILSON

WOOD

(eNeNoNeNoNe

M2 ZDZ

HHZ N Z A

S ZZ D

HHZZZZ

M Z A

HHZZZZ

HHZZ 2R

HHZHZZ

HHZZ A

HNHZZZZ

SOBCZAK
END

MOSS
SMOLKA

MARTIN

Aircraft Availability Data

MON2 TUEl1 TUE2 WED1 WED2 THR1 THR2 FRI1 FRI2

MON1

0

[eNoNoNe]

QO ~4O0

(oo N eNe)

[oNeN_Ne

el e NeNo]

(ool _Ne

[oNeNoNe)

OO0OAO

(ol N oNb]

OO ~O0

GLIDER
C-141
F-15
A-37

OO

©C OO

e eNo]

- OO

~ OO

N OO

OO

NO O

~ OO

ASTTA
VSS
END

80

Training Mission Data Sets (Class A)

T-38 CF F-4 CF T~38 LEVEL ACCEL DEM
BAKKEN 11691 0] -11691
BALTRUSAIT 11691 0 -11691
BLOOMFIELD 11691 0 -11691
CAREY 11691 0] -11691
GRIFFITH 11691 0 -11691
HUNNEL 11691 0 -11691
SHORT 11691 o -11691
SMITH 0 11691 0
STURKOW 0] 11691 0
TRAVEN 0 11691 0
DENOFRIO 0 11691 0
DILLION 11691 0 -11691
MURRAY 11691 0 -11691
PAYNE 11691 0 ~-11691
SHAW 11691 0 -11691
STAPP 0 11891 0
WILHEIM 0 11891 0
END

C-23 PERF DEMO C-141 MULTI ENG DEMO EXTRA
BAKKEN 0 0 0
BALTRUSAIT o 0 0
BLOOMFIELD 0 0 0
CAREY 0 0 o
GRIFFITH 0 0 0
HUNNEL 0 0 0
SHORT 0 0 0
SMITH 10791 0 0
STURKOW 10791 0 0
TRAVEN 10891 0 0
DENOFRIO 10891 0 0
DILLION o) 0 0
MURRAY 0 0] 0
PAYNE 0 o 0
SHAW 0 (0] 0
STAPP 0] 11691 o
WILHEIM 0 11691 0
END

81

Training Mission Data Sets (Class B)

A-7 LAT DIR DATA T-38 LOW LIFT/DRAG T-38 MAN FLT DATA
ASH (0] 11691 0
FAIRBAIRN 0] 11691 10191
ROBINSON 0 11691 0
LEE 0 11691 10291
STERNBERG 0 11691 10191
HOWELL 0 11691 10391
LUND 11791 0 0
ZEHR 11791 0 0
MELROY 11791 0 0
GRAY 11891 0 0
SHANKAR 0] 11791 0
DURON 0 11791 o
NICHOLS 0 11791 0
KELLER 0 11791 0
BARAK 0 11791 0
STAMBAUGH 0 11791 0
VERDERAME ¢] 11791 0
END

A-37 STALL DEMO F-16 FTT EXTRA
ASH 11791 0 0
FATIRBAIRN 0 0 0
ROBINSON 11791 0 o
LEE 11791 0 0
STERNBERG 11791 0 (0]
HOWELL 0 0 0
LUND 0 o 0
ZEHR 0 0] 0
MELROY 0 0 o
GRAY 0 0 0
SHANKAR 0 11691 0
DURON o 11691 0
NICHOLS 0 11691 0
KELLER 11791 11691 0
BARAK 11791 0 0]
STAMBAUGH 11791 0 0]
VERDERAME 0 0)
END

82

A-7
BENJAMIN
STONE

E WILSON
R WILSON
END

Cc-23
BENDORF
HUNTER
KANA
MARKOVICH
END

F-15
DENESIK
HUNTER
IMIG
WOOD
END

F-16
BONASSO
BROWN
HORTON
LUEDKE
NELSON
STOFFERAHN
END

F-4
BONASSO
BROWN
MOSER
SOBCZAK
STOFFERAHN
E WILSON
END

Instructor Pilot Qualification Data Sets

IP TPS
X X

X X

X X

X X
IP TPS
X X

X X

X X

X X
IP TPS
X

IP TPS
X X

X X

X X

X X
IP TPS
X X

X X

X X

X X

X X

X X

DEP

-

X X

FE

TGT

STRC

b

b i

TGT WPN

X

FCF

X

FE EXTRA EXTRA

FCF EXTRA EXTRA EXTRA EXTRA EXTRA

FCF SOF
X
X
FE FCF
X X
X
X
PROP AS/S
X
X X
X X
X X
X X
X

83

EXTRA EXTRA EXTRA EXTRA

TGT

EXTRA EXTRA EXTRA

FE FCF SOF
X
X X
X
X X
X

GLIDER
ALDRICH
BENJAMIN
HUNTER
MARKOVICH
STONE

R WILSON
WOQD

END

T-~38
BENDORF
BENJAMIN
CARLSON
DENESIK
GARDNER
GOGAN
GRUNWALD
IMIG
KANA
LUTZ
MARTIN
SMOLKA
STONE
WOOD

END

A-37
CARLSON
GREEN
LUEDKE
MOSER
MOSS
NELSON

R WILSON
END

C-141
GRUNNALD
GREEN
END

el

- E i i - 4

XX X H

E IR T T i - i

MK H

>
el
w0

L - i e R

TPS

SPIN

XXX

L/D

PR HIKHHKHXX XXX XXX

SPiIN

FE

F/Q

L -

CHSE

>

ol T

TGT

FCF

P

TOW

TGT

> X

WPN

SOF

84

EXTRA EXTRA EXTRA EXTRA

FE FCF SOF EXTRA
X
X
X
X X
X
X
X X
X
X
BAL FE FCF SOF
X
X
X
X X

EXTRA EXTRA EXTRA EXTRA

MSN_TYPE

T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38

mmwmmmmmm*?mmmmmmmwm
I N N T R R T S N

CF
FTE/N FAM
FTE/N PERF DEMO
LEVEL ACCEL DEM
LA/CC PRAC
LEVEL ACCI'L DAT
PACE LEAD
TFB/PACE
TURN PRAC
TURN DAT2
MID-PHASE PRAC
CRUISE DATA
CHECKCLIMB DATA
RANGE DATA
LOW LIFT/DRAG
LS DEMO
LONG STAT DATA
MF/OPS HND
FORM
MAN FLT DATA
LAT DIR DATA
FTE/N FQ DEMO
DYN DATA
STALL DATA
OPS HNDLING DAT
TARGETS
SPIN CHASE
FTE/N FQ CHECK
TGT W/TACAN
FTT
FTE/N FAM
CF
LA/CC PRAC
LEVEL ACCEL DATA
TFB/PACE
TURN PRAC
TURN DATA
MID-PHASE CHECK
CRUISE DATA
CHECKCLIMB DATA
RANGE DATA
PROPULSION
LONG STAT DATA
MAN FLT DATA
LAT DIR DATA
DYN DATA
STALL DATA
OPS HNDLING DATA
TARGETS

‘Mission Requirement Data

AC_TYPE
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38
T-38

'ﬂ’ﬂ’d’ﬂ’ﬂ’ﬂ"]’ﬁ"ﬂ’?”l"’l”!"l’ﬂ"]'ﬂ'ﬂ'ﬂ
L R T R R R R

QUAL
IP
TPS
TPS
TPS
TPS
N/A
TPS
TPS
TPS
N/A
TPS
N/A
N/A
N/A
TPS
TPS
N/A
TPS
TPS
N/A
N/A
TPS
N/A
N/A
N/A
TGT
SPIN
TPS
TPS
TPS
TPS
1P
TPS
N/A
TPS
TPS
N/A
TPS
N/A
N/A
N/A
PROP
N/A
N/A
N/A
N/A
N/A
N/A
TGT

85

F-4

KC-1
KC-1
KC-1

PILOT FQ CHECK
FTE/N FQ CHECK
ASY STO/CAP COMP
STRUCTURES

FTT

35 CRUISE/CC DAT
35 FAM

35 LA/CC PRC/DAT

KC-135 RANGE/CC DATA

KC-1
Cc-23
C-23
Cc-23
C-23
C-23
C-23
c-23
Cc-23
A-7
A=7
A-7
A-17
A-7
A-7
A-7
A-7
A-7
A-7
A-7
A-7
A-7
C-14

35 FTT
FTE/N LA/TURN
FTE/N FAM
PERF DEMO
FTE/N L-S DEMO
MF/OPS HANDLING
FTE/N LAT DIR
CF
FTT
CF
IP CHASE
LONG STAT DATA
MAN FLT DATA
QUAL/FAM
DEPARTURE
LAT DIR DATA
DYN DATA
STALL DATA
OPS HNDLING DATA
TARGETS
FTT
SYSTEMS EVAL
1 CF

C-141 LONG STAT DATA

C-14
C-14
C-14
C-14
C-14
C-14
C-14
C-14
C-14

1 MAN FLT DATA

1 LAT DIR DATA

1 MULTI ENG DEMO
1 ENGINE OUT

1 DYNAMICS DATA
1 STALL DATA

1 OPS HANDLING

1 FQ CHECK

1 FTT

F-16 CF

F-16 CHECKCLIMB DEMO
F-16 TURN DEMO

F-16 FTT

F-16 SYSTEMS EVAL

HI LIFT/DRAG GLIDER
GLIDER FQ DEMO
GLIDER SPIN

VSS
VSSs

1
2

C-141
C-141
C-141
C-141
C-141
C-141
C-141
F-16
F-16
F-16
F-16
F-16
GLIDER
GLIDER
GLIDER
VSS
VSS

TPS
TPS
TPS
STRC
TPS
N/A
N/A
N/A
N/A
N/A
TPS
TPS
TPS
TPS
TPS
TPS
IP
TPS
Ip
TPS
N/A
N/A
TPS
TPS
N/A
N/A
N/A
N/A
TGT
TPS
TPS
1P
TPS
TPS
TPS
TPS
TPS
TPS
TPS
TPS
TPS
TPS
IP
TPS
TPS
TPS
TPS
TPS
TPS
SPIN
N/A
N/A

VSS FTE/N

VSS FCS PROJECT

vss 3

A-37 CF

A-37 LAT DIR DEMO
A-37 STALL DEMO

A-37 QUAL DEMO

A-37 SPIN 1

A-37 SPIN 2

A-37 SPIN FTE/N

A-37 CONT WPN DEL
2A-37 BALLISTICS

A-37 FTT

ASTTA DAY

ASTTA NIGHT

SYSTEMS QUALS (A)
SYSTEMS QUALS (B)
QUAL PROJECT FLIGHTS
SL QUAL FLIGHTS

FTN SYSTEMS EVAL

FTN SYSTEMS EVAL TGT
TMP FLIGHTS

F-15 CF

F-15 DYN DEMO

F-15 FTT

C-130 PERF FINAL CHK
END

vVSs
Vss
VSS
aA-37
A-37
A-37
A-37
A-37
A-37
A-37
A-37
A-37
A-37
ASTTA
ASTTA
NNN
NNN
NNN
NNN
NNN
NNN
NNN
F-15
F-15
F-15
Cc-130
N/A

N/A
N/A
N/A
IP
TPS
TPS
TPS
SPIN
SPIN
SPIN
WPN
BAL
TPS
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
IP
TPS
TPS
N/A
N/A

87

Algorithm Output Schedule and Information

MONDAY 1st Flight Period:
hhkhkkhhhkhhhhhdhhhhhhhhhhhhhhhhhkhkhkhhhhhhhhkhhhhhhhhkhkhhhhhhkhhkhkhrhhkhhhhrkhk

MISSION ATIRCRAFT INSTRUCTOR STUDENT CLASS
dhkdkdhhkdkdkhhkdhdkhhhkhkdkhhhkhkhhhhkhhhkhkdhkhdkhkhhhkhdhdhhkhkhhdhkhkkdkkhhhhhhkhkhkkkkkhkhkkkk
F-4 CF F-4 BONASSO SMITH A

C-141 MULTI ENG DEMO C-141 GRUNNALD STAPP A

T-38 MAN FLT DATA T-38 N/A FAIRBAIRN B

T-38 MAN FLT DATA T-38 N/A LEE B

T-38 MAN FLT DATA T-38 N/A STERNBERG B

A-7 LAT DIR DATA A-7 N/A LUND B

A-37 STALL DEMO A-37 R WILSON ASH B

AVAILABLE RESOURCES
hkhhkhkhkhhhhkhkkhhhkhkhhhhhhkhkhkhhhrkhhkhkhkhkhkhkhhkhhhhkhkhkhhhhhhhkkhkhkdkhkhkhkhkhkhkkhkhkkkkkkhk

INSTRUCTOR AIRCRAFT AMOUNT
Tkdkdkdkhkkhkhhhhhhhhhrkdhhkhhhkhhhhhkhhhkhhkhhkhhhkhhhhhhkhkhhkkhkhhhhhkrhhhkhhhdkhkhk
BROWN

CARLSON

DENESIK

GOGAN

GREEN

GARDNER

HORTON

HUNTER

IMIG

KANA

LUEDKE

LUTZ

MARKOVICH

NELSON

STOFFERAHN

STONE

E WILSON

WOOD

MONDAY 2nd Flight Period:
khkhkhkhhhkhhhhhhkhhkhkhkhkhkhkhrhhkhkrrthkhhkkhkhkhbrtrtdhhhdhdhhhkhhrhhhkhkhhbhkhhhkkhkhkhkhkhkhkhhkhhkkkk

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
R L I R I L e e e s s eI s Ly
T-38 CF T-38 CARLSON BAKKEN A

T-38 CF T-38 GARDNER BALTRUSAIT A

T-38 CF T-38 GOGAN BLOOMFIELD A

T-38 CF T-38 IMIG CAREY A

C-23 PERF DEMO c-23 BENDORF SMITH A

T-38 MAN FLT DATA T-38 N/A HOWELL B

A-7 LAT DIR DATA A-7 N/A ZEHR B

AVAILABLE RESOURCES
hhkkhkhhkhhhhhhhhhhkhhhhhhhhhhhhhhhhkhhhhhhkhhhkhhkkhkhkhkhhkkhhhkkkhkhhhkhhhkhhx

INSTRUCTOR AIRCRAFT AMOUNT
hhkhkhkhkhkhkhkhhkhkkhhhhkhhhhhhhhhhhhhhhhhhhhhhhhkhkkhhkhkhkhkkkkhkkhhhkkkhhhkhhhkhhkk
BROWN

DENESIK

GREEN

HORTON

HUNTER

KANA

LUEDKE

LUTZ

MARKOVICH

MOSER

NELSON

STOFFERAHN

STONE

E WILSON

R WILSON

WOOD

SMOLKA

TUESDAY 1st Flight Period:
hhkdkkdkhkhhkhhkhthkhkkhhkhkhkhkhkhhkhhkkhkkhhkkhkhkkhkhkhkhkkkkkhkhkhkhkhhkhkkkhkhhkhkhkhhkdhkhkhkkkkkhhxikdkkk

MISSION ATIRCRAFT INSTRUCTOR STUDENT CLASS
dedede ke kg ok koK dk ok ok ok gk ded kg ok gk kK kdkdkkkkkk kil ok kk kg dkdkkkkkdkddkdkkkkkdkdkkdkkdkkkkkkkkdkkkkkkkkk
T-38 CF T-38 WOOD GRIFFITH A
T-38 CF T-38 BENDORF HUNNEL A
T-38 CF T-38 CARLSON SHORT A
F-4 CF F-4 BROWN STURKOW A
C-141 MULTI ENG DEMO c-141 GRUNNALD WILHEIM A
A-37 STALL DEMO A-37 MOSS ROBINSON B
A-37 STALL DEMO A-37 MOSER LEE B

AVAILABLE RESOURCES
AARRARR AR AR T A I Ik Ak ek hhkhkhkhhkhkhkkkhhhhhhhhhhhhhkhhhhkhhhkhkhkhhhkhkhhkhhkkhhhkkhkk

INSTRUCTOR AIRCRAFT AMOUNT
Khkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhhkhhhkhkhhhhhkhhhhhkhhhhhhhhhhhhhhhik
BONASSO

DENESIK

GOGAN

HORTON

HUNTER

IMIG

KANA

LUEDKE

MARKOVICH

NELSON

STOFFERAHN

89

TUESDAY 2nd Flight Period:
hhkhkhkhhkhkkkhhhkhkhkkhkhkhkhkkdhkhkhkhkhkkhhkhkkhkkhkhkkhhkkhkhkhkdkkkhkkhkhkhkhkkhkkhkhkhkkkhkhkkkhkkkkkkkk

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
hkdkkkkhdkhhhhhhhhkhkhhkhhkhkhkhkhhhhhhkhhhkhkhhhkhhhhhkhhhdhkhkhhhhkhhhhhhkhhhhhkhkhkhkk
F-4 CF F-4 MOSER TRAVEN A

T-38 CF T-38 STONE DILLION A

T-38 CF T-38 GARDNER MURRAY A

T-38 CF T-38 GOGAN PAYNE A

C-23 PERF DEMO Cc-23 HUNTER STURKOW A

A-7 LAT DIR DATA A=7 N/A GRAY B

AVAILABLE RESOURCES
hhkhkkhkkkhkhkhhkkhhkhkhhkhhhhhkhhkhhhhkhkhkkkhkhkhhkhkhkhkhhhhhhhhhhhhhkkhhhkkkhhhkhkhhhkhk

INSTRUCTOR AIRCRAFT AMOUNT
hkkkhkkhhkkhhhhhhkhhhhkhkhhhbhkhkhhhkhhhhhhhhhkhdhkhhhhhhhhhhkhhhhhhhhkrhrhhhhkk
BENDORF

BROWN

CARLSON

DENESIK

GREEN

HORTON

IMIG

KANA

LUEDKE

MARKOVICH

NELSON

STOFFERAHN

E WILSON

R WILSON

WOOD

WEDNESDAY 1st Flight Period:
kkhkhhhkhkhhhkhhkkhhhhhkkhkhkhkrhhkhkhhhkkhkhkhhhhhhkhhhhhhhhhkkkkhhkkkhkkhrhhhhkhkhkhhhd

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
khkkkhkhhhhhhhkhhhkhhkhdkdhhhhhhhhhhhkhhkhhhkdhkhkdhhhhkhhhhihkhkhkhkhkkhhhhhhkhkkkakkhhkhhkd
F-4 CF F-4 E WILSON DENOFRIO A
T-38 CF T-38 LUTZ SHAW A
C-23 PERF DEMO C-23 KANA TRAVEN A
T-38 LOW LIFT/DRAG T-38 DENESIK ASH B
T-38 LOW LIFT/DRAG T-38 STONE FAIRBAIRN B
A-37 STALL DEMO A-37 R WILSON STERNBERG B
F-16 FTT F-16 HORTON SHANKAR B
F-16 FTT F-16 NELSON DURON B
A-37 STALL DEMO A-37 MOSER KELLER B

90

AVAILABLE RESOURCES
Rhkkhhhhkkkkkhkhhkhhkhhhkhhkhkhkkhkkhhhkhhhhhkhhhkhhhhhhhhhhhhhkhkhkhhhhkhkhkhhkd

INSTRUCTOR AIRCRAFT AMOUNT
Ahkhhhkhhhhhhhdhhhhhhhhhhkhhhhhhhhhhhhhhhkkhkhkhrkhkkhkkhkkkrhkkhhhhhkhkkkkhkhkkdkhkdkk
BENDORF C-141 1
BONASSO

BROWN

CARLSON

GREEN

GRUNNALD

HUNTER

LUEDKE

MARKOVICH

WOOoD

WEDNESDAY 2nd Flight Period:
% de Je e ode de de g de e ok de de de ke de e e de gk de K g de de de de de e de e K de ok de e K ke de de g K K ke Jo de d de g g K e Je e de de g g de K K Kk K ke de g g ok kK de ke kK

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
Akhkhkdkhkhhkhhhhhhhhhhhhhhhhhhkhhhkhkhhkhhkhkhhhkkhhhhkhhkhkhkhkhkkkkkkhkhkkhkhdk
T-38 LOW LIFT/DRAG T-38 KANA ROBINSON B

T-38 LOW LIFT/DRAG T-38 LUTZ LEE B

T-38 LOW LIFT/DRAG T-38 WOOD STERNBERG B

A-7 LAT DIR DATA A-7 N/A MELROY B

T-38 LOW LIFT/DRAG T-38 CARLSON DURON B

T-38 LOW LIFT/DRAG T-38 GARDNER KELLER B

F-16 FIT F-16 BONASSO NICHOLS B

A-37 STALL DEMO A-37 MOSS BARAK B

AVAILABLE RESOURCES
Ahkdkhkhhkkkhhhhkhhhhhhhhhkhhhhkhhhhkhkkkhkhhhhhhhhhhhhhhhhkhhhhhkhkhhhhkhhhhhhhkhkdk

INSTRUCTOR AIRCRAFT AMOUNT
hhkhkhkhdkdkhhkhhhkhhhhhhkhhhkhhhdhhhkhhhhhhhkhhhkhhkhkdkhkhhkdhhhhkhhhkhhkhkhhkhhhkhkhkk
BENDORF

BROWN

GOGAN

GREEN

GRUNNALD

HORTON

HUNTER

LUEDKE

MARKOVICH

STOFFERAHN

STONE

E WILSON

R WILSON

91

THURSDAY 1st Flight Period:
hhkdhhkhkhkhhhhhkhkhhhhhhhhhhkkhhkhkhhhhhhkhkhkhhhhhhkkkkhhkhkhhhhhhhhhhhhkkhkhkhkhhkhhhhkhk

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
hdkdkkhkdkddkhdhhhkhhkhhkhhkhhhhkhhhkkhhhhkhhhhhhhhkhhhkhhhkhhkhhhhkhkhkhkhkhkhkhkhhdkihkk
F-4 CF F-4 STOFFERAHN STAPP A

C-23 PERF DEMO c-23 MARKOVICH DENOFRIO A

T-38 LOW LIFT/DRAG T-38 DENESIK HOWELL B

T-38 LOW LIFT/DRAG T-38 BENDORF SHANKAR B

A-37 STALL DEMO A-37 R WILSON STAMBAUGH B

AVAILABLE RESOURCES
khkkkhhhkhkhhkhhhhhhkhhhkhkhhhhhhhhhkhhkhkhkhkhhhhhhhhkhkhhkhkhhkhkhkhhkhhkhkkhkkhkkhhkkk

INSTRUCTOR ATRCRAFT AMOUNT
hkkkhkhhkhhhkhhhhhkhkhkhhhhhhhkkhhhhhkhhhkhkkhhhhhhkkkhkhkhhhhhkhkkkkhkkkkkhhkhhhhkkhhk
BONASSO A-7 1
BROWN C-23 1
CARLSON C-141 1
GOGAN

GREEN

GRUNNALD

GARDNER

HORTON

HUNTER

KANA

LUEDKE

LoTZ

MOSER

NELSON

STONE

WOOD

THURSDAY 2nd Flight Period:
IR RIRRIRAKRRKEARKRRARRA AR IR KRR I AR AR IR AR RARR Rk Rk hkhkkhkhkkhkhdkhdk

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
Akkk Rk kR R Ak hhkhhhkkrhkkhhkkhhhkhhhkkhkkhhhhkhhhkkhkhhhhkhkrhhhhkhhkkhhhhhkhhhhrkh
T-38 LOW LIFT/DRAG T-38 SMOLKA NICHOLS B

T-38 LOW LIFT/DRAG T-38 DENESIK BARAK B

T-38 LOW LIFT/DRAG T-38 GOGAN STAMBAUGH B

F-16 FTIT F-16 BROWN KELLER B

92

AVAILABLE RESOURCES
Ahkhkhhhhkhhhhhhdkhhhhhhkhhkhhhhhhhhkhhhhhkhhkhkhhhkhkkhkdkhkkhkhkhhhhkhhhkhhkhhkkkhkhkkhkhik

INSTRUCTOR AIRCRAFT AMOUNT
hkkhkhdkhkkkhhhhhhhhhhhhhkhhhhhkhhhhhkhhhkrhhhkhhhhhhhhhhkhkhrhkhkhhkhkhkhkhrkk
BENDORF A-7 1
BONASSO c-23 1
CARLSON

GREEN

GRUNNALD

HORTON

HUNTER

KANA

LUEDKE

LuTZ

MARKOVICH

MOSER

NELSON

STOFFERAHN

STONE

E WILSON

R WILSON

WOOD

SOBCZAK

FRIDAY 1st Flight Period:
khhhhhkhkhhkhkhkhkdhhhkhhkhhhhkdhkkkhhdkhkhkhkhhhkhkhkhhhhhkhhkhhdhhhkhkhhhhkhkhkkhkhkhkhhhhkhhkhkhhkhkhkk

MISSION AIRCRAFT INSTRUCTOR STUDENT CLASS
hhkdkhhkhkhkhkhkhhhhhhhhhrhhhhhhhhhhhhhhkhhhhhkhhhkhkhhkdkhhkhhkdhhdhkhkhkhhkkihkhkhkrrikk
T-38 LEVEL ACCEL DEM T-38 LUTZ BAKKEN A

T-38 LEVEL ACCEL DEM T-38 STONE BLOOMFIELD A

T-38 LEVEL ACCEL DEM T-38 WOOD CAREY A

T-38 LOW LIFT/DRAG T-38 KANA VERDERAME B

AVAILABLE RESOURCES
Sdhkkhhhhhhkhhkhhhhhhhhkhkhhkhhhhhhhhkhkhkhkhhhhhdhhhhhhhhkdkkkhkhkkhhhkrkhhkhkkhkkrhdx

INSTRUCTOR AIRCRAFT AMOUNT
Ahhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhrhkhxhhkkhhkkhhkhhhkkkakhkhkhhkhkhrhrdhkhkhrrkk
BENDORF A=7 1
BROWN F-16 1
CARLSON Cc-141 1
DENESIK

GOGAN

GREEN

GRUNNALD

GARDNER

HORTON

HUNTER

LUEDKE

MARKOVICH

MOSER

93

FRIDAY 2nd Flight Period:
khhhkhkkkhhhkhkhhkhkhkhkhhkhhkhkkdkdhkhkhhkhhkhkhkhkdkhkhhkhkhkhkkhkhhkhkhkhkkhkhkhkhkhkhkkhkhkkhkhkkhkhhkkkhhkkk

MISSION ATRCRAFT INSTRUCTOR STUDENT CLASS
hhkkhkkhkhkhhhkhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhkhhhkhhhkkhkhkhhhhhhhhhkhkkkhkhkhkhhkhkkhkhkhk
T-38 LEVEL ACCEL DEM T-38 SMOLKA GRIFFITH A

T-38 LEVEL ACCEL DEM T-38 BENDORF HUNNEL A

F-4 CF F-4 STOFFERAHN WILHEIM A

AVAILABLE RESOURCES
kkhhhkhkkkhkhkkhkhhhkhkhkkkhhkhhhhhkkhhkhhkhhhhhkhkhkhhhkkhhhkhkkkhkhkhkhkhhkhkhkhkkkkhkkrk

INSTRUCTOR AIRCRAFT AMOUNT
kkkhkhkkkhkhhhhhhhhhhhhhkhkkhhkkhhhkhkkhhkhhhkhhhkhhhkkhkhhhhkkkkhkkkkkkhrrhhkhkhkhkhk
BROWN A-37 1
CARLSON

GOGAN

GREEN

GRUNNALD

GARDNER

HORTON

HUNTER

KANA

LUEDKE

LUTZ

MARKOVICH

MOSER

NELSON

STONE

E WILSON

R WILSON

WOOD

MISSIONS NOT SCHEDULED THIS WEEK:
hhhkkhkhhkhhhhhhhhhhhhkhhhkhhhhhhhhkhkhhhhhhkhhhkhhhhhhhkkhkkhkhkhkhkhkhhkhhkhkhkkhkkkx

MISSION AIRCRAFT STUDENT CLASS
Ahhhhhhhhhhhhhhhhkhhhdhhhhhhhhhhhhhkhhhhkhkhkhkkhkhhkhhkhhhkhkhkhkkhhhhkrhhhhkhhkk
T-38 LEVEL ACCEL DEM T-38 BALTRUSAIT A

T-38 LEVEL ACCEL DEM T-38 SHORT A

T-38 LEVEL ACCEL DEM T-38 DILLION A

T-38 LEVEL ACCEL DEM T-38 MURRAY A

T-38 LEVEL ACCEL DEM T-38 PAYNE A

T-38 LEVEL ACCEL DEM T-38 SHAW A

MISSIONS THAT VIOLATE QOT DEADLINES:
dkhhkhdhhhhhhdhhhhhhhhhhhkhkhhkhhhhhhhhhkrhhhhkkhhhkkhkhhhkhkhkhhkkhkhkhkhhkhhhhhkkhkkkk

MISSION AIRCRAFT STUDENT CLASS
Akhhkhhhhhhhhhhhhhhhhhhhhhhhkhhhhhkhkhkhhkhhhhkhkhkhhhhhhhhhkhkhhkkhhhhkhhhhkkhrhkd
T-38 MAN FLT DATA T-38 FAIRBAIRN B

T-38 MAN FLT DATA T-38 LEE B

T-38 MAN FLT DATA T-38 STERNBERG B

94

Appendix C:

TPS Flight Scheduling Program Operating Instructions

Scheduling Program Background:
The program is written and compiled using Microsoft PC FORTRAN.

It is designed to be used on personal computers.
procedures should be used to run the model.
22 different external data files.

The following

The program accesses
The information contained in

these data files describes the environment of the TPS flight

situation for any given week.

The scheduling program uses this

information to develop the flight schedule for the corresponding

week.

Description of External Data Files:
Flight Mission Data Files:

mission files.

the given week.

They contain

There are 8 different flight
information pertaining to the
student missions that are eligible to be flown (scheduled) during

Information includes student name, mission

description, and the date at which the mission can first be flown

by the student.

data files dedicated to represent their missions.

Each of the two student classes has four mission

Furthermore,

each file can contain up to three different mission types.
Hence, up to 12 different mission types can be scheduled per

class.

MSN1A.DAT
MSN2A.DAT
MSN3A.DAT
MSN4A.DAT
MSN1B.DAT
MSN2B.DAT
MSN3B.DAT
MSN4B.DAT

Class
Class
Class
Class
Class
Class
Class
Class

Wwww

student
student
student
student
student
student
student
student

missions
missions
missions
missions
missions
missions
missions
missions

The eight mission files are the following.

(1-3)
(4-6)
(7-9)
(10-12)
(1-3)
(4-6)
(7-9)
(10-12)

NOTE: Precedence information forcing a certain mission {(such as a
checkflight) to be flown before another mission by the same

student is also contained in these files.

This is accomplished

by entering the negative of the ready date of the mission that
must be flown first in the place corresponding to the ready date
of the mission that can only be flown after the first mission.

95

Resource Availability Data Files: There are four different
data files that represent the availability of the three key
resources (aircraft, instructors, and students). Information
contained in these files includes student name, instructor name,
or aircraft type, and the corresponding availability status for
the two morning flight periods for each of the flight days. The
four availability data files are the following.

A_AVAIL.DAT Class A student availability data
B_AVAIL.DAT Class B student availability data
IP_AVAIL.DAT Instructor pilot availability data
AC_AVAIL.DAT Aircraft availability data

Mission Requirements Data File: The information contained in
this file lists the aircraft type and instructor pilot
qualification required by each mission type. This data file is
named MSN_REQMT.DAT.

Instructor Pilot Qualification (Letter of X's) Data Fiies:
There are nine data files of this type -- one for each aircraft
type in the TPS Letter of X's Notebook. Information contained in
these files includes instructor pilot name and qualifications
attained by that instructor in a given aircraft. The nine data
files are the following.

T-38_XS.DAT Instructor qualifications for T-38
A-37_XS.DAT Instructor qualifications for A-37
A-7_XS.DAT Instructor qualifications for A-7
C-23_XS.DAT Instructor qualifications for C-23
C-141_ XS.DAT Instructor qualifications for C-141
F-4_ XS.DAT Instructor qualifications for F-4

F-16_XS.DAT Instructor qualifications for F-16
F-15_XS.DAT Instructor qualifications for F-15
GLIDER_XS.DAT Instructor qualifications for Glider

NOTE: The names of instructors, students, aircraft, mission
descriptions, and qualifications must be entered by the same name
in all data files. Otherwise, the scheduling program will not be
able to recognize and equate them.

96

TP8 Scheduling Program Hard Disk Installation:

If the TPS scheduling program is installed on a hard disk, the
program and its associated files should have their own directory.
To create a directory and copy files into the created directory,
consult your DOS manual.

Updating External Data Files:

Each of the above external data files has a corresponding
QUATTRO PRO spreadsheet file with a .WK file extension instead of
the .DAT file extension. These spreadsheet files are formatted
such that the data file formats required by the TPS scheduling
program are maintained. Furthermore, the spreadsheet styl of
editing provided by QUATTRO PRO allows for quick and efficient
editing. NOTE: It is not necessary to use the QUATTRO PRO
spreadsheet files to update the .DAT files. The spreadsheet
files are provided for ease and efficiency. The .DAT files can
be updated in any manner desired by the user; however, their
formats must be maintained or the TPS scheduling program will not
be able to read them. To update the files using QUATTRO PRO, the
following steps must be accomplished (for a complete guide for
using QUATTRO PRO, consult your QUATTRO PRO marual).

1) Enter the directory containing the TPS scheduling program
files.

2) Enter the QUATTRO PRO program.

3) Load in the file to be updated. Type /FR and select the .WK
file corresponding to the .DAT to be updated.

4) Make desired changes.

5) Save the updated file as a .DAT file (ASCII). Type /PDF,
filename.DAT, select the REPLACE option, ensure the full file is
blocked by QUATTRO PRO by using the BLOCK option, and then select
the SPREADSHEET PRINT option.

6) The QUATTRO PRO spreadsheet file can also be save if
desired -- it is not necessary.

7) Repeat steps 3-6 for all files to be updated.

8) Exit QUATTRO PRO.

Running the TPS Scheduling Program:

To have the TPS scheduling program produce a schedule for the
flight week corresponding to the information contained in the
external data files, perform the following steps.

1) Enter the directory containing the TPS scheduling program
files.

2) Delete the o0ld schedule. Type del SCHED.OUT <ENTER>

3) Run the program. Type TPS <ENTER>

4) The user will be prompted to enter Monday's date of the
flight week and (if applicable) the dates of the academic test

days for the student classes during the flight week. All dates
must be entered in the format MMDDYY.

5) When the program terminates, the resulting schedule and
related information will be provided in the file SCHED.OUT.

S8

Appendix D:

TPS Flight Scheduling Program Source Code

CChhhkkhkhhhhkhkhkhhkhkkhhkhkddkhkhkkhkhkhhkdkkhkhkhkhkhkhkhkhkhkkkkhkkkhkhkhkhkhkhkhkkkhkkkkkkkhkkk

CC SCHEDULE.FOR - TPS WEEKLY FLIGHT SCHEDULING PROGRAM *
cC *
CC References: MS THESIS, AFIT/ENS GOR 92M Capt Gary Foster *

CChkhkhkhkkkkhhhhkdkhhkkhkhkhkhkhkhhhkkkhkhkkkhkhkhkhkhkkhkhkhhkkkhkkhkhkhkhkhkhkhhhhkkkkkhkkkkkikk
CChhkhkkhkhhhkhkhhkhkhkhkhkhkhdkhhhhhhkhkhkhkhkhkhkhkhhkhhkhhkhkhkhhkkhkhkhkhkhkkhhkhkhkkhkhkhkhkhkkkkhkkkhhkkk

CC KEY VARIABLE LIST WITH DESCRIPTION:

cC

CC num_A number of students in class A
CC num_B number of students in class B
CC num_IP number of instructor pilots
CC num_AC number of aircraft types

CC num_FTT

CC n_nsns

CC msn_list(*)
CC msndat(*,1)
CC msndat(*,2)
CC msndat(*,3)
CC msndat(*,4)
CC FTT _need(*,1)
CC FTT_need(*,2)
CC FTT _need(*,3)
CC rdate(*,1)

CC rdate(*,2)

CC rdate(*,3)

CC rdate(*,4)

CC rdate(*,5)

%*
*
%
%
*
%*
number of different mission types *
number of missions to be scheduled *
mission description (type) *
name of student to fly mission *
class of student *
name of instructor to fly mission *
aircraft type scheduled for mission *
mission type requirement data *
required aircraft type for mission *
required instructor qualification for mission *
mission ready date (adjustable) *
flight period that mission is scheduled *
scheduled flight period of best schedule *
priority rank of mission *
number of times mission not scheduled *
CC rdate(*,6) mission ready date (fixed) *

*

*

CC rdate(*,7) number of IPs qualified to fly given mission
CChkkkkhkkdkkkdkkkdkdkkkkkkkkkkkkkdkdkkkkkkkkikkikkkkkikkkkkkkkkdkdk kkk ko kkddkhkdk

1 | | | (| | (I (| (| Y 1 |

PROGRAM tps

CC ** common block variables *#*x*

COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A_list(30)
&,B_list(30), IP_list(30), AC_list(20), best_schd(150,4)
&,msn_list(150), best 1ist(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num_B
&,n_AC_per(20,10), n_msns, num_AC, num_FTT
&,A_avail(30,10), B_avail(30,10), IP avail(30,10), num_IP
&,best _AC(20,10), best IP(30,10)

CHARACTER*20 msn_list, FTT_need, best list

CHARACTER*10 A_list, B_list, IP list, AC_list, msndat
&,best_schd

INTEGER rdate, workload, n_AC_per, n_msns, A _avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num_FTT
&, best AC, best IP

99

CC ** main variables ***

CC ** obtain date for the start day of the flight week to be scheduled #*#*

13

CC ** convert date into day of year

CC ** obtain class test days for week **

11 WRITE (*,8000) ' Enter class A test date (MMDDYY or O if none): !
READ (*,*) a_test
IF (a_test.GE.O.AND.a_test.LE.123200) THEN
IF (a_test.NE.O) THEN
a_test = N_day(a_test)
a_test = 2 * (a_test - start_date) + 1
END IF
ELSE
GOTO 11
END IF
12 WRITE (*,8000) ' Enter class B test date (MMDDYY or O if none): '
READ (*,*) b _test
IF (b_test.GE.O0.AND.b_test.LE.123200) THEN
IF (b_test.NE.O) THEN
b_test = N_day(b_test)
b _test = 2 * (b_test - start_date) + 1
END IF
ELSE
GOTO 12
END IF
CC ** read in data (mission, resource, capability, etc) #***
CC ** pertaining to flight week to be scheduled * k%
PRINT*, ' !

&,ip_name, qual_need

INTEGER i, j, n_cap_ip, schd_prd, no_go, start_date
INTEGER a_test, b_test, counter, msn_num, rank
CHARACTER*20 msn_type

CHARACTER*10 ac_type, ip_cap_list(30), stdt_name

CHARACTER class
LOGICAL found, test_day, avail

WRITE (*,8000) ' Enter the flight week start date (MMDDYY): '
READ (*,*) start_date

IF (start_date.GE.O0.AND.start_date.LE.123200) THEN
start_date = N_day(start_date)

ELSE
GOTO 13

END IF

PRINT*, 'LOADING DATA FILES'
CALL get_msns

CALL ip_capblty

CALL res_avail

100

CC ** jnitialize number of times mission not scheduled and attemr*s**
DO i = 1, n_msns
rdate(n_msns,5) = 0
END DO
counter = 1

CC ** initially rank missions according to ready dates #**x*
CALL msn_rank
PRINT#, 'PRIORITIZE MISSIONS'

CC ** BEGIN SCHEDULING MISSIONS **
CC ** gschedule missions based on rank and resource availability #*=*
70 no_go = 0

PRINT*, 'SCHEDULING MISSIONS. ITERATION # ',6 counter

PRINT*, " '

DO 60 rank = 1, n_msns

CC ** find mission (msn_num) with priority (rank) *=*
found = .FALSE.
msn_num = 0
DO 75 WHILE(.NOT. found.AND.msn_num.LT.n_msns)
msn_num = msn_num + 1
IF (rdate(msn_num,4).EQ.rank) THEN
found = .TRUE.
END IF
75 CONTINUE

CC ** reset/clear capable IP list, aircraft type, and mission
n_cap_ip = 0
DO j = 1, num_IP
ip cap_list(j) = 'temp'
END DO
msn_type = msn_list(msn_num)
stdt_name = msndat(msn_num,1)
class = msndat(msn_num,2)
ac_type = ' !
qual_need = ' !

CC ** find aircraft type and IP qualification needed for mission *#*%*
CALL ac_match(msn_type, ac_type, qual_need)
msndat (msn_num,4) = ac_type

CC ** make list of IPs capable of flying mission * %
CALL ip_qual(ac_type, qual_need, n_cap_ip, ip_cap_list)
rdate(msn_num,7) = n_cap_ip

CC ** check to see if required preceding mission scheduled **

CC ** if not, this mission cannot be scheduled *k
IF (rdate(msn_num,1).LT.0) GOTO 60

101

CC **
CC *%*%

CC **

CC %%

90

CC **

CC **
CC *%

CC **

CC **

CC **

CC **

determine first PERIOD that mission is eligible to be flown #*#*
based on its ready date *kk
schd_prd = 2 * (rdate(msn_num,1) - start_date)

if ready date from previous week, set 1st period to 1 #*#*
IF (schd_prd.LT.0) THEN
schd_prd = 0
END IF

find period in which aircraft is available for mission #*x*
CALL ac_period(ac_type, schd_prd)

IF (schd_prd.LT.0) THEN
if aircraft not avail, tag msn as infeasible, and get next msn *#*
no_go = no_go + 1
rdate(msn_num,2) = 0
GOTO 60
END IF

if sched period is on test day, check to see if student is #**
already scheduled to fly a mission that day. (QOT requirement) *%*
test_day = .FALSE.
IF ((class.EQ.'A'.AND.a_test.NE.O).OR.
(class.EQ.'B'.AND.b_test.NE.0)) THEN
CALL check_day(schd_prd, stdt_name, class, a_test, b_test
test_day, rank)
END IF
IF (test_day) GOTO 90

check IP availability and workload for that period and select IP ***
IF (ip_cap_list(1).EQ.'N/A') THEN

ip_name = 'N/A'
ELSE
ip_name = 'NONE’

CALL ip schd(schd_prd, n_cap_ip, ip_cap_list, ip_ name)
END IF

if no IP available, check aircraft availability for another period #**
IF (ip_name.EQ.'NONE') GOTO 90

check student availability *#*%*
avail = .TRUE.
CALL stdt_check(schd_prd, stdt_name, class, avail)

if student not avail, check aircraft avail for another period **
IF (.NOT.avail) GOTO 90

schedule mission, adjust resource levels, check for precedence msn *#*
msndat (msn_num,3) = ip_name
rdate(msn_num,2) = schd_prd
CALL res_adjst(schd_prd, class, ip name, ac_type, stdt_name)
CALL prec_msn(msn_num, start date)

102

CC ** gchedule next mission **%*
60 CONTINUE

CC ** if less than max number of iterations and
CC ** there are any unscheduled missions ***
IF (counter.LT.7.AND.no_go.GT.0) THEN
CC ** save best schedule, reset resource levels, and try again **
CALL save_best (counter)
CALL res_avail
PRINT*, 'RE-INITIALIZING RESOURCE LEVELS'
counter = counter + 1
CC ** reset mission ready dates to original values **
DO j = 1, n_msns
rdate(j,1) = rdate(j,6)
END DO
CC ** re-rank missions based on ready dates and **
CC ** number of times not scheduled **
CALL msn_rank
PRINT#*, 'RE-PRIORITIZING MISSIONS'
GOTO 70
ELSE
CC ** release flight schedule for the week **
CALL save_best (counter)
CALL schd_out(start_date)
PRINT*, ' !
PRINT#*, 'SCHEDULING ALGORITHM COMPLETE.'
PRINT*, 'OUTPUT IS CONTAINED IN THE FILE "“SCHED.OUT"'
END IF

8000 FORMAT(// A \)

STOP
END

103

SUBROUTINE get_msns

CC ** common block variables **x*

COMMON /TPS_CHAR/ msndat(150,4), FTT _need(140,3), A_list(30)
&,B_list(30), IP_list(30), AC_list(20), best_schd(150,4)
&,msn_list(150), best_1list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num_B
&,n_AC_per(20,10), n_msns, num_AC, num_FTT
&,A_avail(30,10), B_avail(30,10), IP_avail(30,10), num_IP
&,best_AC(20,10), best_IP(30,10)

CHARACTER*20 msn_list, FTT need, best_list

CHARACTER*10 A list, B_list, IP_list, AC_list, msndat
&,best_schd

INTEGER rdate, workload, n_AC_per, n_msns, A_avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num FTT
&,best AC, best_IP

CC This subroutines reads mission data from external data files

CC This mission data pertains to missions planned to be flown during
CC the given week. Information includes: mission description, student
CC name, and mission ready date.

INTEGER 1, j, date(15,15), temp, unum
CHARACTER*20 msn_type(150)
CHARACTER*10 astdnt(30), bstdnt(30)

OPEN (UNIT=1,FILE='msnla.dat',STATUS='OLD')
OPEN (UNIT=2,FILE='msn2a.dat',6STATUS='0OLD')
OPEN (UNIT=3,FILE='msn3a.dat',6 STATUS='0OLD')
OPEN(UNIT=4,FILE='msn4a.dat',STATUS='0OLD')
OPEN(UNIT=5,FILE="msnlb.dat',K STATUS='OLD')
OPEN(UNIT=6,FILE="msn2b.dat',6STATUS='0OLD')
OPEN (UNIT=7,FILE="msn3b.dat',STATUS='OLD')
OPEN(UNIT=8,FILE='msn4b.dat',6KSTATUS='0OLD')

n_msns = 0
unum = 0
CC read in and echo weekly mission data for class A
DO unum = 1, 4
REAU (UNIT=unum, FMT=9100) (msn_type(j), j = 1, 3)
i=0
888 i=1i+1
READ (UNIT=unum, FMT=9200) astdnt(i), (date(i,j), j = 1, 3)
DO j =1, 3
IF (date(i,j).NE.O) THEN
n_msns = n_msns + 1
msn_list (n_msns)
msndat (n_msns, 1)
msndat (n_msns, 2)
msndat (n_msns, 3)
msndat (n_msns, 4)

msn_type(j)
astdnt (i)
lAl

o wnn

104

temp = date(i,]j)
rdate(n_msns, 1)
rdate(n_msns, 6)

N_day(temp)
rdate(n_msns, 1)

o mwn

rdate(n_msns, 4) n_msns
rdate(n_msns,7) 0
END IF
END DO
IF (astdnt(i).NE.'END'.AND.i.LT.30) GOTO 888

END DO

CC read in and echo weekly mission data for class B
D' unum = 5, 8
READ (UNIT=unum, FMT=9100) (msn_type(j), j = 1, 3)

i=0
777 i=1i+1
READ (UNIT=unum, FMT=9200) bstdnt(i), (date(i,j), 7 = 1, 3)
Do j =1, 3
IF (date(i,j).NE.O) THEN
n_msns = n_msns + 1
msn_list(n_msns) = msn_type(3])
msndat(n_msns,1) = bstdnt(i)
msndat (n_msns,2) = 'B'
msndat(n_msns,3) = ' !
msndat(n_msns,4) = ' !
temp = date(i,j)
rdate(n_msns,1l) = N_day(temp)
rdate(n_msns,6) = rdate(n_msns,1)
rdate(n_msns,4) = n_msns
rdate(n_msns,7) = 0
END IF
END DO
IF (bstdnt(i).NE.'END'.AND.i.LT.30) GOTO 777
END DO

CLOSE (UNIT=2)
CLOSE (UNIT=3)
CLOSE (UNIT=4)
CLOSE (UNIT=5)
CLOSE (UNIT=6)
CLOSE (UNIT=7)
CLOSE (UNIT=8)

9100 FORMAT (11X, 3(2X,A20))

9200 FORMAT(1X,A10,3(2X,I20))

9250 FORMAT{1X,A20,2X,A8,3X,Al,3X,I4)
RETURN
END

|
|
CLOSE (UNIT=1)

105 |

SUBROUTINE ip_capblty

CC ** common block variables ***

COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A_list(30)
&,B_list(30), IP_list(30), AC_list(20), best_schd(150,4)
&,msn_list(150), best_list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num B
&,n_AC_per(20,10), n_msns, num_AC, num_FTT
&,A_avail(30,10), B_avail(30,10), IP_avail(30,10), num_IP
&,best_AC(20,10), best IP(30,10)

CHARACTER*20 msn_list, FTT_need, best_list

CHARACTER*10 A_list, B_list, IP list, AC_list, msndat
&,best_schd

INTEGER rdate, workload, n_AC_per, n_msns, A_avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num_FTT
&,best_AC, best_ IP

CC This subroutines reads IP capability data from an external data file
CC This data pertains to IP qualifications to fly

CC a given FTT mission. Information includes: mission description,

CC aircraft type, and FTT mission qualification status.

INTEGER i

CHARACTER*20 headl

CHARACTER*10 head2, head3
OPEN(UNIT=13,FILE='msn_regmt.dat',6K STATUS='OLD')

READ (UNIT=13,FMT=9300) headl, head2, head3

i=o0
222 i=141i+1
READ(UNIT=13,FMT=9300) FTT need(i,1),FTT need(i,2),
& FTT need(i,3)

IF (FTT need(i,1).NE.'END'.AND.i.LT.140) GOTO 222
num_FTT = i - 1

CLOSE (UNIT=13)

9300 FORMAT(1X,A20,4X,A10,4X,A10)

RETURN
END

106

SUBROUTINE res_avail

CC ** common block variables ***

COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A_list(30)
&,B_list(30), IP_list(30), AC_list(20), best_schd(150,4)
&,msn_list(150), best_list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num_B
&, n_AC_per(20,10), n_msns, num_AC, num_FTT
&,A_avail(30,10), B_avail(30,10), IP_avail(30,10), num_IP
&,best_AC(20,10), best_IP(30,10)

CHARACTER*20 msn_list, FTT_need, best_list

CHARACTER*10 A_list, B_list, IP_list, AC_list, msndat
&,best_schd

INTEGER rdate, workload, n_AC_per, n_msns, A avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num_FTT
&,best_AC, best_IP

CC This subroutines reads in resource availability data for the week

CC from external data files. This data pertains to each resources

CC (Aircraft, IPs, and students from both classes A and B) availability
CC for the week.

INTEGER i, j
CHARACTER*10 header, class, period(10)
CHARACTER temp (10)

OPEN (UNIT=9,FILE='ac_avail.dat',STATUS='OLD')
OPEN (UNIT=10,FILE='ip_avail.dat',6STATUS='OLD')
OPEN(UNIT=11,FILE='A_avail.dat',6K STATUS='OLD')
OPEN (UNIT=12,FILE='B_avail.dat',6K STATUS='OLD')

CC ** read in expected aircraft availability for given flight week #**%*
READ (UNIT=9,FMT=9400) (period(j), 3 = 1, 10)
i=o0
111 i =1+ 1
READ (UNIT=9,FMT=9500) AC_list(i), (n_AC _per(i,j), j = 1, 10)
IF (AC_list(i).NE.'END'.AND.i.LT.20) GOTO 111
num_ AC = i -1

CC ** read in IP availability for given flight week **
READ(UNIT=10,FMT=9450) (period(j), j = 1, 10), header
i=o0

333 i =1i+1
READ (UNIT=10,FMT=9600) IP list(i), (temp(j),j = 1, 10)
&,workload (i)
DO j =1, 10
IF (temp(j).EQ.'Y') THEN
IP avail(i,j) =1
ELSE
IP_avail(i,j) = 0
END IF

107

END DO
IF (IP_list(i).NE.'END'.AND.1.LT.30) GOTO 333
num_IP =i - 1

CC ** read in class A student availability for given flight week *#*
READ (UNIT=11,FMT=9750) class, (period(j), j = 1, 10)
i=o0

444 i =1+ 1
READ (UNIT=11,FMT=9700) A_list(i), (temp(j), j = 1, 10)
DO j =1, 10
IF (temp(j).EQ.'Y') THEN
A_avail(i,j) =1
ELSE
A_avail(i,j) =0
END IF
END DO
IF (A_list(i).NE.'END'.AND.i.LT.30) GOTO 444
num A =i -1

CC ** read in class B student availability for given flight week #**

READ (UNIT=12,FMT=9750) class, (period(j), j = 1, 10)
i 0
555 i i+
READ (UNIT=12,FMT=9700) B_list(i), (temp(j), j = 1, 10)
DO j =1, 10
IF (temp(j).EQ.'Y') THEN
B_avail(i,j) =1
ELSE
B_avail(i,])
END IF
END DO
IF (B_list(i).NE.'END'.AND.i.LT.30) GOTO 555
num B =i -1

0]

CLOSE (UNIT=9)

CLOSE (UNIT=10)
CLOSE (UNIT=11)
CLOSE (UNIT=12)

9400 FORMAT (8X, 10A6)

9450 FORMAT (13X, 11A5)

9500 FORMAT (1X,A7,1016)

9600 FORMAT(1X,A10,2X,10(Al,4X),I5)
9700 FORMAT(1X,A10,2X,10(Al,4X))
9750 FORMAT (1X,A10,2X,10A5)

RETURN
END

108

CcC
CcC
CcC

ccC

cC

INTEGER FUNCTION n_day (ndate)

Converts ready date into day of year

*** TF DATE IS NEGATIVE (DEPENDENT ON ANOTHER MISSION), FLAG IT **

* %

INTEGER ndate, flag

flag = 1
IF (ndate.LT.0) THEN
flag = -1
ndate = ndate * flag
END IF

convert date into day of year **#*x
IF (ndate.LT.20000) THEN

n_day = INT((ndate - 10000)/100)
ELSE IF (ndate.LT.30000) THEN

n_day = 31 + INT((ndate - 20000)/100)
ELSE IF (ndate.LT.40000) THEN

n_day = 59 + INT((ndate - 30000)/100)
ELSE IF (ndate.LT.50000) THEN

n_day = 90 + INT((ndate - 40000)/100)
ELSE IF {ndate.LT.60000) THEN

n_day = 120 + INT((ndate - 50000)/100)
ELSE IF (ndate.LT.70000) THEN

n_day = 151 + INT((ndate - 60000)/100)
ELSE IF (ndate.LT.80000) THEN

n_day = 181 + INT((ndate - 70000)/100)
ELSE IF (ndate.LT.90000) THEN

n_day = 212 + INT((ndate - 80000)/100)
ELSE IF (ndate.LT.100000) THEN

n_day = 243 + INT((ndate - 90000)/100)
ELSE IF (ndate.LT.110000) THEN

n_day = 273 + INT((ndate - 100000)/100)
ELSE IF (ndate.LT.120000) THEN

n_day = 304 + INT((ndate - 110000)/100)
ELSE

n_day = 334 + INT((ndate - 120000)/100)
END IF
n_day = n_day * flag

RETURN
END

109

SUBROUTINE msn_rank

CC ** common block variables #**%*

COMMON /TPS_CHAR/ msndat(150,4), FTT_need(140,3), A _list(30)
&,B_list(30), IP_list(30), AC_list(20), best schd(150,4)
&,msn_list(150), best_1list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num_B
&,n_AC per(20,10), n_msns, num_AC, num_FTT
&,A_avail(30,10), B_avail(30,10), IP_avail(30,10), num_IP
&,best_AC(20,10), best_IP(30,10)

CHARACTER*20 msn_list, FTT need, best_list

CHARACTER*10 A_list, B _list, IP_list, AC_list, msndat
&,best_schd

INTEGER rdate, workload, n_AC per, n_msns, A_avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num_FTT
&,best_AC, best_IP

CC *** This subroutine ranks the missions in order of earliest *#*x*

CC *** ready dates. Flights that cannot be flown prior to the completion
CC *** of another flight are ranked last. Their ranking is updated once
CC *** the required fight is completed. *kkk

INTEGER i, dummy(150,4), temp(4), msn_num
LOGICAL found, sorted, ranked

CC ** set up dummy arays **
DO i = 1, n_msns

dummy (i,1l) = rdate(i,6)

dummy(i,2) = i

dummy (i, 3) = rdate(i,5)

dummy (i, 4) = rdate(i,7)
END DO

CC *** perform the sort until mission ranked by ready dates ***
CC *** and IPs qual to fly mission type #**%*
sorted = .FALSE.
20 IF (.NOT.sorted) THEN
sorted = .TRUE.
DO 10 i = 1, n_msns-1
CC *** TF MISSION HAS LATER READY DATE OR DEPENDENT READY DATE *#*%*
IF ((dummy(i,1).GT.dummy(i+1,1).AND.dummy(i+1,1).GT.0)
& .OR. (dummy (i+1,4) .LT.dummy (i, 4)
& .AND.dummy (i+1,1) .EQ.dummy (i, 1) .AND.dummy(i+1,1) .GE.0)
& .OR. (dummy (i, 1) .LT.0.AND.dummy (i+1,1) .GE.0)) THEN
*

CC *=* EXCHANGE OUT OF RANK MISSION PRIORITIES *k&%%
temp(1l) = dummy (i, 1)
temp(2) = dummy(i,2)
temp(3) = dummy(i,3)
temp(4) = dummy (i, 4)
dumny(i,1) = dummy(i+1,1)
dummy (i, 2) = dummy(i+1,2)
dummy (i, 3) = dummy(i+1,3)

110

dummy (i, 4) = dummy(i+1,4)
dumnmy (i+1,1) =
dummy (i+1,2) = temp(2)
dummy (i+1,3) =

dummy (i+1,4) = temp(4)
sorted = ,false.

END IF
10 CONTINUE
GOTO 20
END IF

CC *** sort hased on number of times mission not scheduled ***
ranked = .FALSE.

25 IF (.NOT.ranked) THEN

ranked = .TRUE.

DO 15 i = 1, n_msns-1
CC *** jif mission not scheduled more than other mission *%x*

IF (dummy(i+1,3).GT.dummy(i,3).AND.dummy(i+1,1).GE.0) THEN

CC *** EXCHANGE OUT OF RANK MISSIONS *%%x%*

temp(1l) = dummy(i,1)
temp(2) = dummy (i, 2)
temp(3) = dummy(i,3)
temp(4) = dummy (i, 4)
dummy (i, 1) = dummy(i+1,1)
dummy (i,2) = dummy(i+1,2)
dummy (i,3) = dummy(i+1,3)

dummy (i, 4) dummy (i+1,4)
dumny (i+1,1) = temp(1l)
dummy (i+1,2) = temp(2)
dummy (i+1,3) =
dummy (i+1,4) = temp(4)
ranked = .false.
END IF
15 CONTINUE
GOTO 25
END IF

CC ** re-assign rank to real variables **
DO i = 1, n_msns
CC ** find mission (msn_num) with priority (rank) *#*
found = .FALSE.
msn_num = 0
DO 77 WHILE(.NOT.found.AND.msn_num.LT.n_msns)
msSn_num = msn_num + 1
IF (dummy(msn_num,2).EQ.i) THEN
rdate(i,4) = msn_num
found = .TRUE.
END IF
77 CONTINUE
END DO

8250 FORMAT: :iX,A20,2X,A8,3X,Al1,3X,414)

111

RETURN
END

SUBROUTINE ac_match (msn_type, ac_type, qual_need)

CC ** common block variables ***

COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A_list(30)
&,B_list(30), IP list(30), AC_list(20), best _schd(150,4)
&,msn_list(150), best_list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num_B
&,n_AC _per(20,10), n_msns, num_AC, num_ FTT
&,A_avail(30,10), B_avail(30,10), IP_avail(30,10), num_IP
&,best AC(20,10), best_IP(30,10)

CHARACTER*20 msn_list, FTT_need, best_list

CHARACTER*10 A list, B list, IP_list, AC_list, msndat
& ,best_schd

INTEGER rdate, workload, n_AC_per, n_msns, A _avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num_FTT
&,best_AC, best_ IP

CC ** This subroutine finds the aircraft type and IP *kkk
CC ** qualification needed for a given FTT mission. * %

CHARACTER*20 msn_type
CHARACTER*10 ac_type, qual_need

INTEGER row
LOGICAL found

CC ** search aircraft type for match, tag row number of aircraft #***
found = .FALSE.
row = 0
DO 55 WHILE(.NOT.found.AND.row.LT.num_ FTT)
row = row + 1
IF (msn_type.EQ.FTT need(row,1)) THEN
found = .TRUE.
ac_type = FTT_need(row,2)
qual_need = FTT_need(row, 3)
END IF
55 CONTINUE
IF (.NOT.found) THEN
PRINT*, 'ERROR -- MISSION TYPE NOT FOUND IN SUB ac_match.'
PRINT*, 'CHECK INPUT FILES FOR: ', msn_type
END IF

RETURN
END

112

SUBROUTINE ip_qual (ac_type, qual need, n_cap_ip, ip_cap_list)

CC ** common block variables *#**%

COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A_list(30)
&,B_list(30), IP_list(30), AC_list(20), best_schd(150,4)
&,msn_list(150), best_1list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num_B
&,n_AC per(20,10), n_msns, num_AC, num_FTT
&,A_avail(30,10), B_avail(30,10), IP_avail(30,10), num_IP
&,best_AC(20,10), best IP(30,10)

CHARACTER*20 msn_list, FTT_need, best_list

CHARACTER#10 A_list, B_list, IP_list, AC_list, msndat
& ,best_schd

INTEGER rdate, workload, n_AC_per, n_msns, A_avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num FTT
& ,best_AC, best_IP

CC ** This subroutine determines how many and which IPs * &k ok
CC ** are qualified to fly a given mission type. *kk

INTEGER i, j, col, unum, n_cap_ip
CHARACTER*10 ac_type, qual_need, ip_cap list(30), space
&,quals(9), name_ip

CC ** originally assumes no IP required for mission **=*

unum = 0
n_cap_ip = 1
ip_cap_list(1) = 'N/A!

IF (qual_need.NE.'N/A') THEN
CC ** open file corresponding to required aircraft type **

IF (ac_type.EQ.'T-38') THEN

unum = 14

OPEN (UNIT=unum, FILE='T-38 Xs.dat',KSTATUS='OLD')
ELSE IF (ac_type.EQ.'A-7') THEN

unum = 15

OPEN (UNIT=unum,FILE='A-7_Xs.dat',K STATUS='OLD')
ELSE IF (ac_type.EQ.'A-37') THEN

unum = 16

OPEN (UNIT=unum,FILE='A-37_Xs.dat',6KSTATUS='OLD')
ELSE IF (ac_type.EQ.'F-4') THEN

unum = 17

OPEN (UNIT=unum,FILE='F-4_Xs.dat',6K STATUS='0OLD')
ELSE IF (ac_type.EQ.'C-23') THEN

unum = 18

OPEN (UNIT=unum, FILE='C-23_ Xs.dat',6KSTATUS='OLD')
ELSE IF (ac_type.EQ.'GLIDER') THEN

unum = 19

OPEN (UNIT=unum, FILE='GLIDER_Xs.dat',K STATUS='OLD')
ELSE IF (ac_type.EQ.'C-141') THEN

unum = 20

OPEN (UNIT=unum, FILE='C-141 Xs.dat',K STATUS='OLD')

113

ELSE IF (ac_type.EQ.'F-16') THEN

unum = 21

OPEN (UNIT=unum, FILE='F-16_Xs.dat',K STATUS='OLD')
ELSE IF (ac_type.EQ.'F-15') THEN

unum = 22

OPEN (UNIT=unum, FILE='F-15 Xs.dat',6K STATUS='OLD')
END IF

END IF

CC ** find column of required IP qualification ****
IF (unum.NE.O) THEN
READ (UNIT=unum, FMT=8800) space, (quals(j), j = 1,9)

col = 10
DO i =1, 9

IF (qual_need.EQ.quals(i)) THEN

col =1

END IF
END DO
IF (col.EQ.10) THEN

PRINT*, 'IP QUALIFICATION NOT FOUND. AIRCRAFT =',ac_type

PRINT*, 'QUALIFICATION TYPE = ', qual_need
PRINT*, 'CHECK INPUT FILES FOR INPUT ERROR.'
END IF

CC ** make list of qualified IPs ***
n_cap_ip = 0
| ip_cap_list(1) = 'temp'
767 READ (UNIT=unum, FMT=8800) name_ip, (quals(j), J = 1,9)

IF (quals(col).EQ.'X') THEN

| n_cap_ip = n_cap_ip + 1

ip_cap_list(n_cap_ip) = name_ ip

END IF

| IF (name_ip.NE.'END') GOTO 767

| CLOSE (UNIT=unum)

; END IF

| 8800 FORMAT (1X,A10,2X,9A6)

RETURN
END

114

SUBROUTINE ac_period (ac_type, schd_prd)

CC ** common block variables #***

cC
CcC

COMMON /TPS_CHAR/ msndat(150,4), FTT_need(140,3), A_list(30)
&,B_list(30), IP_list(30), AC_list(20), best_schd(150,4)
&,msn_list (150), best_1list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num_B
&,n_AC_per(20,10), n_msns, num_AC, num_FTT
&,A_avail(30,10), B_avail(30,10), IP_avail(30,10), num_IP
&,best_AC(20,10), best_IP(30,10)

CHARACTER*20 msn_list, FTT_need, best_list

CHARACTER*10 A_list, B_list, IP list, AC_list, msndat
&,best_schd

INTEGER rdate, workload, n_AC per, n_msns, A_avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num_FTT
&,best_AC, best_IP

** This subroutine finds the earliest flight period in which *#*x*
** the needed aircraft type is available for a mission *%*
INTEGER schd_prd, row, col
CHARACTER*10 ac_type
LOGICAL found

CC ** search aircraft type for match, tag row number of aircraft #**=*

25

found = .FALSE.
row = 0
DO 25 WHILE(.NOT.found.AND.row.LT.num_AC)
row = row + 1
IF (ac_type.EQ.AC_list(row)) THEN
found = .TRUE.
END IF
CONTINUE
IF (.NOT.found) THEN
PRINT*, 'ERROR -- AIRCRAFT TYPE NOT FOUND in SUB AC_period.'
PRINT#*, 'CHECK INPUT FILES FOR: ',ac_type
END IF

CC ** search aircraft availability to find earliest period in which **
CC ** needed aircraft is available after current period (schd_prd) =*#*

30

col = schd_prd
found = .FALSE.
DO 30 WHILE(.NOT.found.AND.col.LT.10)
col = col + 1
IF (n_AC_per(row,col).GT.0) THEN
found = .TRUE.
schd_prd = col
END IF
CONTINUE
IF (.NOT.found) THEN
schd_prd = -18
END IF
RETURN
END

115

SUBROUTINE check_day(schd_prd, stdt name, class, a_test, b _test
&, test_day, rank)

CC ** common block variables ***

COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A_list(30)
&,B_list(30), IP_list(30), AC_list(20), best_schd(150,4)
&,msn_list(150), best_list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num_B
&,n AC per(20,10), n_msns, num_AC, num_FTT
&,A_avail(30,10), B_avail(30,10), IP_avail(30,10), num IP
&,best_AC(20,10), best IP(30,10)

CHARACTER*20 msn_list, FTT_need, best_list

CHARACTER*10 A_list, B_list, IP_list, AC_list, msndat
& ,best_schd

INTEGER rdate, workload, n_AC per, n_msns, A_avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num_FTT
& ,best_AC, best_IP

CC ** This subroutine checks to see if the student has a test scheduled **
CC ** on the same day as the candidate flight period. If so, it checks **
CC ** to see if the student has already been scheduled for a mission * %
CC ** that day. QOT regmts limit students to one mission on test days **

INTEGER schd_prd, a_test, b_test, rank
CHARACTER*10 stdt_name

CHARACTER class

LOGICAL test_day

INTEGER i, msn_tag
LOGICAL found

CC ** period on test day of student's class **
IF (((schd_prd.EQ.a_test.OR.schd_prd.EQ.a_test+1) .AND.
& class.EQ.'A').OR.
& ((schd_prd.EQ.b_test.OR.schd prd.EQ.b_test+1) .AND.
& class.EQ.'B')) THEN
CC ** search through missions scheduled so far in this iteration **
DO i = 1, rank-1
found = .FALSE.
msn_tag = 0
DO 66 WHILE(.NOT.found.AND.msn_tag.LT.n_msns)
msn_tag = msn_tag + 1
IF (rdate(msn_tag,4).EQ.i) THEN
found = .TRUE.
CC ** if student name and class match of scheduled mission *#*
IF ((stdt_name.EQ.msndat (msn_tag,1)) .AND.
& (class.EQ.msndat (msn_tag,2))) THEN
CC ** and if mission scheduled in 2nd period of test day **
IF ((MOD(schd_prd,2).EQ.0).AND.
& ((schd_prd.EQ.rdate(msn_tag,2)) .0OR.
& (schd_prd.EQ. (rdate(msn_tag,2)+1)))) THEN

116

test_day = .TRUE.
CC ** else if mission scheduled in 1st period of test day **
ELSE IF ((MOD(schd prd,2).NE.O).AND.

& ((schd_prd.EQ.rdate(msn_tag,2)) .OR.
& (schd_prd.EQ. (rdate(msn_tag,2)-1)))) THEN
schd_prd = schd_prd + 1
test_day = .TRUE.
CC ** otherwise no conflict **
ELSE
test_day = .FALSE.
END IF
END IF
END IF
66 CONTINUE
END DO
END IF
RETURN
END

117

SUBROUTINE ip_schd(schd_prd, n_cap_ip, ip_cap_list, ip name)

CC ** common block variables **%*

COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A_list(30)
&,B_list(30), IP_list(30), AC_list(20), best_schd(150,4)
&,msn_list(150), best_list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num B
&,n_AC _per(20,10), n_msns, num_AC, num_ FTT
&,A_avail(30,10), B_avail(30,10), IP_avail(30,10), num_IP
&,best_AC(20,10), best IP(30,10)

CHARACTER#20 msn_list, FTT need, best_list

CHARACTER*10 A_list, B_list, IP_list, AC_list, msndat
&,best_schd

INTEGER rdate, workload, n_AC_per, n_msns, A_avail
&,B_avail, IP_avail, num_AC, num_A, num_ B, num_IP, num_ FTT
& ,best_AC, best_IP

CC ** This subroutine checks IP availability and workload for *#**
CC ** the candidate flight period. If IP resources are available *%*
CC ** it selects the IP with the lowest workload **%*

INTEGER schd_prd, n_cap_ip
CHARACTER*10 ip_cap_list(30), ip_name

INTEGER i, j, best

best 0
DO i 1, n_cap_ip
DO j = 1, num_IP
IF (ip_cap_list(i).EQ.IP_list(j)
& .AND.IP_avail(j,schd_prd) .EQ.1) THEN
CC ** if IP both available and capable to instruct mission #**x*
IF (best.EQ.0.0R.workload(j).LT.workload(best)) THEN
CC ** select one with least workload **
best = j
ip_name = IP_list(best)
END IF
END IF
END DO
END DO

RETURN
END

118

SUBROUTINE stdt_check(schd_prd, stdt_name, class, avail)

CC ** common block variables ***

COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A_list(30)
&,B_list(30), IP_list(30), AC_list(20), best_schd(150,4)
&,msn_list(150), best_1list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num_B
&,n_AC per(20,10), n_msns, num_AC, num_FTT
&,A_avail(30,10), B_avail(30,10), IP_avail(30,10), num_IP
&,best AC(20,10), best IP(30,10)

CHARACTER*20 msn_list, FTT_need, best_list

CHARACTER*10 A_list, B_list, IP_list, AC_list, msndat
&,best_schd

INTEGER rdate, workload, n_AC _per, n_msns, A_avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num_FTT
&,best_AC, best_IP

CC ** This subroutine checks to see if the student is available **

INTEGER schd_prd
CHARACTER*10 stdt_ name
CHARACTER class
LOGICAL avail

INTEGER row
LOGICAL found

found = .FALSE.
row = 0
CC ** branch based on class A or class B ***
IF (class.EQ.'A') THEN
CC ** gearch class A student name for match *#**
DO 42 WHILE(.NOT.found.AND.row.LT.num_A)
row = row + 1
IF (stdt_name.EQ.A_list(row)) THEN
found = .TRUE.
END IF
42 CONTINUE
IF (.NOT.found) THEN
PRINT#*, 'ERROR -- STUDENT NAME NOT FOUND.'
PRINT*, 'CHECK INPUT FILES FOR: ',6stdt_name
CC ** if student not avail, tag as none **
ELSE IF (A_avail(row,schd_prd).EQ.0) THEN
avail = .FALSE.
END IF

ELSE

CC ** search class B student name for match ***
DO 43 WHILE(.NOT.found.AND.row.LT.num_B)
row = row + 1
IF (stdt_name.EQ.B_list(row)) THEN
found = .TRUE.
END IF
43 CONTINUE
IF (.NOT.found) THEN
PRINT#*, 'ERROR =-- STUDENT NAME NOT FOUND.'!
PRINT#*, 'CHECK INPUT FILES FOR: ',6stdt_ name
cC ** if student not avail, tag as none #**
ELSE IF (B_avail(row,schd_prd).EQ.0) THEN
avail = .FALSE.
END IF
END IF

RETURN
END

120

SUBROUTINE res_adjst(schd_prd, class, ip name, ac_type, stdt name)

CC ** common block variables **x*

COMMON /TPS_CHAR/ msndat(150,4), FTT_need(140,3), A_list(30)
&,B_list(30), IP_list(30), AC_list(20), best_schd(150,4)
&,msn_list(150), best_list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num_B
&,n_AC_per(20,10), n_msns, num_AC, num_FTT
&,A_avail(30,10), B_avail(30,10), IP_avail(30,10), num_IP
&,best_AC(20,10), best 1IP(30,10)

CHARACTER*20 msn_list, FTT_need, best_list

CHARACTER*10 A _list, B_list, IP_list, AC_list, msndat
&,best_schd

INTEGER rdate, workload, n_AC_per, n_msns, A_avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num_FTT
&,best_AC, best_ IP

CC ** This subroutine adjusts the availability levels of the different ***
CC ** resources once a mission is scheduled. * %k %k

INTEGER schd_prd
CHARACTER*10 ip name, ac_type, stdt_name
CHARACTER class

INTEGER row
LOGICAL found

found = .FALSE.
row = 0
CC ** branch based on class A or class B and adjust student avail **%*
IF (class.EQ.'A') THEN
CC ** search class A student name for match *#*%*
DO 44 WHILE(.NOT.found.AND.row.LT.num_A)
row = row + 1
IF (stdt_name.EQ.A list(row)) THEN
found = .TRUE.
A_avail(row,schd_prd) = 0
IF (ac_type.EQ.'GLIDER'.OR.ac_type.EQ.'C-141') THEN
A_avail(row,schd_prd+l) = 0
END IF
END IF
44 CONTINUE
ELSE
CC ** gsearch class B student name for match ***
DO 45 WHILE(.NOT. found.AND.row.LT.num_B)
row = row + 1
IF (stdt_name.EQ.B_LIST(row)) THEN
found = .TRUE.
B_avail(row,schd_prd) = 0
IF (ac_type.EQ.'GLIDER'.OR.ac_type.EQ.'C-141') THEN
B_avail (row,schd_prd+l) = 0

121

45

CC **%

46

CC **

47

END IF
END IF
CONTINUE
END IF

search aircraft type for match, decrease number of aircraft ***
found = .FALSE.
row = 0
DO 46 WHILE(.NOT.found.AND.row.LT.num_AC)
Yow = row + 1
IF (ac_type.EQ.AC_list(row)) THEN
found = .TRUE.
n_AC _per(row,schd_prd) = n_AC_per(row,schd prd) - 1
END IF
CONTINUE

search IP list for match, set IP not avail **%*
found = .FALSE.
row = 0
DO 47 WHILE(.NOT.found.AND.row.LT.num_IP)
row = row + 1
IF (ip_name.EQ.IP_list(row)) THEN
found = .TRUE.
IP_avail(row,schd prd) = 0
IF (ac_type.EQ.'GLIDER'.OR.ac_type.EQ.'C-141"') THEN
IP_avail (row,schd prd+l) = 0
END IF
workload(row) = workload(row) + 1
END IF
CONTINUE

RETURN
END

122

SUBROUTINE prec_msn(msn_tag, start_date)

CC ** common block variables *#%*

CccC
cc
ccC
cc

ccC

* %k
Xk
* %
* %

* %

COMMON /TPS_CHAR/ msndat(150,4), FTT_need(140,3), A _1list(30)
&,B_list(30), IP_list(30), AC_list(20), best schd(150,4)
&,msn_list(150), best_list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num_B
&,n_AC per(20,10), n_msns, num_AC, num_FTT
&,A_avail(30,10), B_avail(30,10), IP_avail(30,10), num IP
&, best_AC(20,10), best_IP(30,10)

CHARACTER*20 msn_list, FTT need, best_ list

CHARACTER*10 A_list, B_list, IP_list, AC list, msndat
&,best_schd

INTEGER rdate, workload, n_AC_per, n_msns, A avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num_FTT
&,best_AC, best IP

This subroutine checks to see if the mission just scheduled **

is required to be flown before another mission to be scheduled **
If it is, the ready date for the follow on mission is adjusted *x*
IAW QOT guidelines to be scheduled * %

INTEGER msn_tag, start_date
INTEGER i
search for follow on mission **

DO i = 1, n_msns
IF (msndat(msn_tag,1l).EQ.msndat (i, 1) .AND.

& msndat (msn_tag, 2) .EQ.msndat (i, 2) .AND.
& rdate(i,1).LT.0.AND.
& rdate(msn_taqg,1) .EQ.ABS(rdate(i,1l))) THEN
cCc ** if found, set the ready date of the follow on mission to 1 day **
CC ** after the required mission was scheduled to be flown * %
rdate(i,1) = start_date+NINT((rdate(msn_tag,2)/2+.2))
RETURN
END IF
END DO
RETURN

END

123

CccC

cc
* %

CcC

cc

cC

ccC

ccC

SUBROUTINE save_best(iteration)

** common block variables ***

COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A list(30)
&,B_list(30), IP_list(30), AC_list(20), best schd(150,4)
&,msn_list(150), best 1list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_ A, num_B
&,n_AC_per(20,10), n_msns, num_AC, num_FTT
&,A_avail(30,10), B_avail(30,10), IP_avail(30,10), num_IP
&,best_AC(20,10), best IP(30,10)

CHARACTER*20 msn_list, FTT need, best list

CHARACTER*10 A_list, B_list, IP_list, AC_list, msndat
&,best_schd

INTEGER rdate, workload, n_AC_per, n_msns, A_avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num_FTT

&,best_AC, best IP

***% This subroutine saves the schedule with fewest unscheduled missions
INTEGER 1, j, k, best_miss, cur_miss, iteration
REAL cur_work_var, best work_var, mean_work, sum_sqr_work
&,sum_work
** total number of missed missions for each schedule * % %
cur_miss = 0
best_miss = 0
DO i = 1, n_msns
IF (rdate(i,2).EQ.0) THEN
cur_miss = cur_miss + 1
** count the number of times this mission not scheduled **

IF (rdate(i,1).LT.0) THEN
** if unsched msn is follow-on, search for precedent mission #**
DO k = 1, n_msns
IF (msndat(k,1l).EQ.msndat(i, 1) .AND.

& msndat (k,2) .EQ.msndat (i,2) .AND.
& rdate(k,1) .EQ.ABS(rdate(i,1))) THEN
** when found, add # of times not scheduled to precedent msn **
rdate(k,5) = rdate(k,5) + 1
END IF
END DO
ELSE

** count # times not scheduled
rdate(i,5) = rdate(i,5) + 1

END IF

END IF

IF (rdate(i,3).EQ.0) THEN
best_miss = best_miss + 1

END IF

END DO

124

CC **%

CC **
CC **%

CC *x%

calculate the variance of IP workload for the current schedule **
sum_work = 0
sum_sqr_work = 0
DO i = 1, num_IP
sum_work = sum_work + workload(i)
END DO
mean_work = sum_work / num_IP
DO i = 1, num_IP
sum_sqr_work = sum_sqr_work + (workload(i) - mean_work) *#*2
END DO
cur_work_var = sum_sqr_work / num_IP

if current schedule has fewer missed missions or the same
number of missed missions with a more even workload, save it **
IF ((cur_miss.LT.best miss).OR. (iteration.EQ.1).0OR.
(cur_miss.EQ.best_miss.AND.cur_work_var.LT.best_work_var)) THEN
best_iter = iteration
best work_var = cur_work_var
DO i = 1, n_msns
rdate(i,3) = rdate(i,2)
best_list(i) = msn_list(i)
DO j = 1, 4
best schd(i,j) = msndat(i,3j)
END DO
END DO
save the availability of aircraft and IPs of best schedule **
DO i =1, 10
DO j = 1, num_AC
best AC(j,1i) = n_AC_per(j,i)
END DO
DO j = 1, num_IP
best IP(j,1i) = IP_avail(j,i)
END DO
END DO
END IF

RETURN
END

125

SUBROUTINE schd_out (start_date)

CC ** common block variables #**x*

COMMON /TPS_CHAR/ msndat(150,4), FTT need(140,3), A _list(30)
&,B_list(30), IP_1list(30), AC_list(20), best_schd(150,4)
&,msn_list(150), best_list(150)

COMMON /TPS_INT/ rdate(150,7), workload(30), num_A, num_B
&,n_AC _per(20,10), n_msns, num_AC, num_FTT
&,A avail(30,10), B_avail(30,10), IP_avail(30,10), num_IP
&,best_AC(20,10), best IP(30,10)

CHARACTER*20 msn_list, FTT_need, best_list

CHARACTER*10 A_list, B list, IP_list, AC_list, msndat
&,best schd

INTEGER rdate, workload, n_AC_per, n_msns, A_avail
&,B_avail, IP_avail, num_AC, num_A, num_B, num_IP, num_FTT
&,best_AC, best IP

CC *** This subroutine saves the schedule which was determined to **x*
CC *** be the best in an external file for print out. * %

INTEGER i, j, start_date, loop, avl_IP, avl_AC, n_temp(20)
CHARACTER*20 line, headl

CHARACTER*10 head2, head3, head4, head5, blank, headé
&,temp_AC(20), temp IP(30)

OPEN (UNIT=25,FILE="'sched.out',STATUS='NEW')

line = Vhkkkkkkkkhhkkhkkkhkkkk!
headl = 'MISSION'

head2 = 'AIRCRAFT'

head3 = 'INSTRUCTOR'

head4 = 'STUDENT'

head5 = 'CLASS'

headé6 = 'AMOUNT'

blank = ! !

DO i =1, 10

IF (i.EQ.1) THEN

WRITE(25,*) ' MONDAY 1st Flight Period:'
ELSE IF (i.EQ.2) THEN

WRITE(25,*) ' MONDAY 2nd Flight Period:'
ELSE IF (i.EQ.3) THEN

WRITE(25,*) ' TUESDAY 1st Flight Period:'
ELSE IF (i.EQ.4) THEN

WRITE(25,*) ' TUESDAY 2nd Flight Period:'
ELSE IF (i.EQ.5) THEN

WRITE(25,*) ' WEDNESDAY 1st Flight Period:'
ELSE IF (i.EQ.6) THEN

WRITE(25,*) ' WEDNESDAY 2nd Flight Period:'
ELSE IF (i.EQ.7) THEN

WRITE(25,*) ' THURSDAY .st Flight Period:'
ELSE IF (i.EQ.8) THEN

126

WRITE(25,*) ' THURSDAY 2nd Flight Period:'
ELSE IF (i.EQ.9) THEN
WRITE(25,*) ' FRIDAY 1st Flight Period:'
ELSE
WRITE(25,*) ' FRIDAY 2nd Flight Period:'
END IF
WRITE(25,7000) line,line,line,line
WRITE (25,7100) headl,head2,head3, head4,head5
WRITE (25,7000) line,line,line,line
DO j = 1, n_msns
IF (rdate(j,3).EQ.i) THEN
WRITE(25,7100) best_list(j), best_schd(j,4)
& ,pbest _schd(j,3), best_schd(j,1), best_schd(j,2)
END IF
END DO
WRITE (25, *)
CC ** determine IPs and aircraft still available in this period **
avl_IP 0
avl_AC 0
DO j = 1, num_IP
temp IP(3) = ' !
IF (best IP(j,i).EQ.1) THEN
avl_IP = avl_IP + 1
temp_IP(avl_IP) = IP_list(j)
END IF
END DO
DO j = 1, num_AC
temp_AC(j) = ' !
n_temp(j) = 0
IF (best_AC(j,i).GE.1) THEN
avl_AC = avl_AC + 1
temp_AC(avl_AC) = AC_list(j)
n_temp(avl AC) = best AC(j,1i)
END IF
END DO
CC ** print out availability this period **
IF (avl_IP.GT.avl AC) THEN
loop = avl_IP
ELSE
loop = avl_AC
END IF
WRITE(25,*) ' AVAILABLE RESOURCES'
WRITE(25,7000) line,line,line,line
WRITE(25,7200) head3,head2,headé
WRITE(25,7000) line,line,line,line
DO j = 1, loop
IF (j.GT.20.0R.n_temp(j).EQ.0) THEN
WRITE(25,7300) temp IP(Jj)
ELSE
WRITE(25,7250) temp IP(j), temp_AC(j), n_temp(j)
END IF
END DO

127

CC **

CC **

7000
7100
7200
7250
7300

WRITE (25, *)

WRITE (25, *)

WRITE (25, *)

WRITE (25, *)

WRITE (25, *)
END DO

list unscheduled missions ***%%*
WRITE(25,%*) 'MISSIONS NOT SCHEDULED THIS WEEK:'
WRITE(25,7000) line,line,line,line
WRITE(25,7100) headl,head2,blank,head4,head5
WRITE(25,7000) line,line,line,line
DO j = 1, n_msns
IF (rdate(j,3).EQ.0) THEN
WRITE(25,7100) best_list(j), best_schd(j,4), blank
,best_schd(j,1), best_schd(j,2)
END IF
END DO

WRITE (25, *)
WRITE (25, *)
WRITE (25, *)
WRITE (25, *)
WRITE (25, *)

list missions that violate QOT deadlines *=*
WRITE(25,*) 'MISSIONS THAT VIOLATE QOT DEADLINES:'
WRITE(25,7000) line,line,line,line
WRITE(25,7100) headl,head2,blank,head4,head5
WRITE(25,7000) line,line,line,line
DO j = 1, n_msns
IF (rdate(j,3).EQ.0) THEN
day_schd = start_date + 7
ELSE
day_schd = start_date + INT(rdate(j,3)/2.2)
END IF

IF ((rdate(j,6).GE.0).AND. ((day_schd-rdate(j,6)).GT.14)) THEN

WRITE(25,7100) best_list(j), best_schd(j,4), blank
,best_schd(j,1), best_schd(j,2)
END IF
END DO

CLOSE (UNIT=25)

FORMAT (1X,4A19)
FORMAT (1X,A20,4 (4X,A10))
FORMAT (1X,A10,15X,2 (A10,5X))
FORMAT (1X,A10,15X,A10,5X,12)
FORMAT (1X,A10)

RETURN
END

128

10.

11.

12.

Bibliography

Baker, Bruce N. Introduction to Sequencing and Scheduling.
New York: John Wiley & Sons, 1974.

Chan, Yupo. Class Lecture in OPER 767, Networks and
Combinatorial Optimization. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH,
August 1991.

Department of the Air Force. Quality of Training
Guidelines. Edwards AFB: USAF Test Pilot School, January
1991.

Department of the Air Force. Scheduling Instruction Manual.
Edwards AFB: USAF Test Pilot School, January 1991.

Department of the Air Force. Scheduling Procedures for
Aircraft and Air/Ground Support. Air Force Flight Test
Center (AFFTC) Regulation 55-15. Edwards AFB: HQ AFFTC,
12 November 1986.

Department of the Air Force. USAF Test Pilot School
Curriculum. Edwards AFB: USAF Test Pilot School, January
1991.

French, Simon. Sequencing and Scheduling: An Introduction
to the Mathematics of the Job Shop. London: Ellis Harwood
Ltd, 1982.

Hassel, Captain Lisa M. Investigation of a Zero-One Integer
Programming Approach to Automating the Scheduling Process at
the USAF Test Pilot School. MS thesis, AFIT/GOR/ENS/91M-7.
School of Engineering, Air Force Institute of Technology
(AU) , Wright-Patterson AFB OH, March 1991.

Heald, Lt Col James R., Director, Student Training.
Personal interview. USAF Test Pilot School, Edwards AFB,
13 June 1991.

Hillier, Fredrick S. and Gerald J. Lieberman. Introduction
to Operations Research. Oakland, CA: Holden-Day, Inc.,
1980.

Jain, T. €. and A. M. Hardas. "Heuristic Algorithm for
Project Scheduling with Limited Resources," Journal of
Industrial Engineers of India, 65: 6-9 (July 1984).

Mazzola, Joseph B. and Alan W. Neebe. "Resource-Constrained
Assignment Scheduling," Operations Research, 34: 560-571
(July-August 1986).

129

13.

14.

15.

16.

17.

18.

19.

20.

Moore, James T. Class Notes in OPER 620, Integer
Programming. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, November 1991.

Norbis, Mario I. and J. MacGreggor Smith. "Two Level
Heuristic for the Resource Constrained Scheduling Problem,"
International Journal for Production Research, 24: 1203-1218
(September-October 1986).

Patterson, James H. and Glenn W. Roth. "Scheduling a
Project Under Multiple Resource Constraints: A Zero-One
Programming Approach," American Institute of Industrial
Engineers Transactions, 8: 449-455 (December 1976).

Plebani, Louis J., Jr. "A Heuristic for Multiple Resource
Constrained Scheduling," Production and Inventory
Management, 22: 65-80 (First Quarter, 1981).

SAS/OR Users Guide. Cary, NC: SAS Institute Inc., 1989.

Talbot, F. Brian and James H. Patterson. "An Efficient
Integer Programming Algorithm with Network Cuts for Solving
Resource-Constrained Scheduling Problems," Management
Science, 24: 1163-1174 (July 1978).

Thesen, Arne. "Heuristic Scheduling of Activities Under
Resource and Precedence Restrictions," Management Science,
23: 412-422 (December 1976).

Woolsey, E. D. Robert and Huntington S. Swanson. Operations

Research for Immediate Application: A Quick and Dirty
Manual. New York: Harper & Row, Publishers, 1975.

130

Vita

Captain Gary G. Foster was born July 11, 1964 in
Visalia, California. He graduated from Sierra Joint Union High
School in Tollhouse, California in 1982 and attended the U.S. Air
Force Academy, graduating with a Bachelor of Science in
Operations Research in May 1986. Upon graduation, he received a
regular commission in the USAF and served his first tour of duty
as a test analyst at Headquarters, Air Force Operational Test and
Evaluation Center, Kirtland AFB, New Mexico. There he was
responsible for directing and evaluating reliability and
maintainability aspects of evolving Air Force and DOD space and
aircraft systems. He entered the School of Engineering, Air

Force Institute of Technology, in August 1990.

Permanent Address: 25037 Auberry Rd
Clovis, CA 93612
c/o Mr Charles Foster

131

March 1992 Master's Thesis (final)

AUTOMATING THE FLIGHT SCHEDULING PROCESS AT
THE USAF TEST PILOT SCHOOL

Gary G. Foster, Capt, USAF

Air Force Institute of Technology AFIT/GOR/ENS/92M-10
Wright-Patterson AFB OH 45433

USAF/TPS/DOS
Edwards AFB CA 93523

Approved for public release; distribution
unlimited

This study investigated different scheduling solution approaches
that could be used to determine weekly flight schedules at the USAF
Test Pilot School (TPS). Currently, weekly flight schedules are
not developed due to the large quantity of flight scheduling data
that must be processed. A weekly flight scheduling approach would
reduce the occurrence of scheduling problems (such as unbalanced
resource utilization) and improve the communication between the TPS
scheduling staff and flight personnel. Since resource-constrained
scheduling problems are classified as NP-complete, heuristic
methods are usually the most practical approach to solving real-
size resource-constrained scheduling problems. This study details
a heuristic flight scheduling algorithm designed specifically for
the TPS. The computerized version of this heuristic algorithm has
demonstrated the capability of producing flight schedules in
minutes for weekly flight scheduling problems of realistic size.

resource-constrained scheduling, flight scheduling, 141
mixed integer programming

Unclassified Unclassified Unclassified UL

