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-The purpose of this study was to investigate the effectiveness of using

fractional order time derivatives of position feedback signals in the active

control of vibration. To that end, circuitry was built and evaluated that finds

the half order derivative of an input signal. The magnitude response of the

fractional derivative circuits is very good, but there are large phase shifts

present that may degrade the performance of the controllers. Two methods

of incorporating the fractional derivative signals into the controller were

examined. One method involved developing a similarity transformation that

transforms an integer order state controller into an equivalent controller

using fractional or mixed fractional and integer order signals. The second

method was a form of traditional pole placement techniques that allowed the

direct design of a controller using fractional and integer order feedback

signals. Designs were tested on an inverted cantilever beam with control

provided by a shaker, and compared to theoretical predictions and to

traditional integer order controllers. There is a discrepancy in the modeling

that manifests itself as a large offset in magnitude, particularly at very low

frequencies. However, controllers utilizing fractional order feedback

provided nearly identical control authority to the traditional integer order

designs.-

ix



Eierimental Feedback of Fractional Order States

of a Lightly Damped Structure

1. Introduction

The increasing size of current and proposed space platforms has created

new problems in the control of unwanted vibrations. Because of the weight

penalties on putting a platform in orbit, structures are made as light-weight

as is possible. This combination of increasing size and minimal weight

construction inevitably leads to problems with large amplitude, low

frequency vibrations. This trend runs contrary to the increasingly stringent

stability requirements needed for proposed missions. The Hubble Space

Telescope experienced unwanted vibrations from thermal stresses that

interfered with its mission. The proposed NASA space station needs to

remain stable for docking manuevers with the shuttle. The Strategic Defense

Initiative in particular requires very precise pointing maneuvers and rapid

settling time after retargeting.

All of these situations have led to an increasing interest in the active

control of vibration. Passive systems provide an effective means of

controlling higher frequency vibration, but are of limited effectiveness in
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controlling the low frequency modes with their potentially large

displacements. The most likely solutions will involve whatever combination

of passive and active damping most effectively fulfill specific mission

requirements. This thesis will focus exclusively on the area of active control

of vibration. Extensive research has taken place in this area (See especially

(8) and (17) which survey research in the field), but many problems remain

to be solved.

The current research effort grew out of an interest in controlling

viscoelastically damped structures more precisely. Fractional derivatives of

stress and strain are effective in modelling viscoelastic behavior (3-7, 28),

and more amenable to an analytical treatment than an arbitrary curve-fit of

a damping material's stress-strain curve. Klonoski (14) first tested direct

anaJ,- feedback of fractional derivatives of position. Yang (30) developed a

method of transforming traditional LQR gains to allow for the possibility of

feeding back fractional derivatives of position and velocity in a

mathematically optimal fashion. The main objective of this thesis is to

demonstrate that Yang's work on active damping of a structure utilizing

fractional derivative feedback is viable in an experimental situation. An

alternative approach using pole-placement techniques (15) will be examined

as well.

To that end, circuitry to obtain the required fractional derivative

feedback was built and tested, the experimental structure and apparatus

was modeled and verified, and control of the structure was attempted for

both integer and fractional state feedback.
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II. Overview of Fractional Derivatives

Fractional calculus is a little known cousin of the classical calculus, and
dv [f(x)]

is nearly as old. All scientists and engineers will readily recognize
dtv

as the derivative with respect to time of a function f(x), but very few have

considered what would happen if v is not an integer. The history of fractional

calculus begins in 1695 with L'Hospital asking this question of Leibnitz.

Leibnitz said in his reply that it would lead to a paradox, but that "Some day

it would lead to useful consequences" (23). Euler, Laplace, and Fourier all

considered the problem at various times, but it was the contributions of

Liouville, Abel, Heaviside and Riemann (23) that finally formalized the

theory of fractional order derivatives.

A fractional derivative is a linear operator that generalizes the concept

of order of differentiation from integer powers only to fractional values. The

extended Riemann-Liouville fractional derivative operator is defined (2) as:

Dv [w(t)] - I w(T) di 0v l (1)Dv [w t f M ~ -W)t-i) v  ,

0

where r is the Gamma function given by

CO

r(x) - I e-t tx- I dt (2)
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This definition is consistent with the rules that we expect of a derivative

operator. It is a linear operator and the composition rule is valid (2: 8-10),

Dv [w(t) + v(t)I - Dv [w(t)l + Dv Iv(t0 (3)

and

DV[DRt [w(t)I] = Dv+" Iw(t)I (4)

It is in the Laplace and Fourier transform domains that fractional

derivatives are the easiest to work with. In the Laplace transform domain

the fractional derivative operator with zero initial conditions has the

property

L[DV [x(t)1 - sv L[x(t)] (5)

where L is the Laplace transform operator

CO

L[x(t)] = ix(t)e-Stdt (6)
0

Similarly, in the Fourier transform domain.

F[DVfx(t)i - (iw) v Fix(t)] (7)

where F is the Fourier transform operator

4



00

FIx(t)] - Jx(t)e-i"dt (8)
0

To gain some insight into how the fractional derivative relates to the

traditional derivative, consider a sinusoidal signal,

w(t) - sin(W) (9)

The first-order derivative of this is simply

D1Iw(t) I - w cos(ot) - o sin(Nt + n) (10)

So, the derivative causes a change in magnitude (o and a phase shift (

radians or 90') from the initial signal. The fractional derivative, in this case

the half order derivative, displays a similar behavior (asymptotically) as t

approaches infinity and with zero initial conditions

I

lim D2 Iw(t)] - sTw ( t + (1 01)

The restriction of t approaching infinity (steady-state motion) occurs because

of transients introduced with the fractional derivative. The half order

derivative seems, in a certain sense, to lie "between* the signal and its first-

order derivative (See Figure 1). Its phase shift is 45', midway between the

unshifted original signal and the 90 phase shift of the first-order derivative.
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Its magnitude is scaled by "(O , compared with o for the first-order

derivative. It looks as if the half-order derivative could almost be

interpolated between these two signals. Heuristically this is comforting, since

it demonstrates that the behavior of the fractional derivative bears some

relation to the more familiar mathematics of integer order calculus. This is

not a completely arbitrary example since by using a Fourier series

expansion, many piecewise continuous periodic functions can be written as a

sum of sinusoids.

I w(t)

/-D Iw(t)

w(t) - sin(wt)
=.w(0) •0

Figure 1. Comparison of Fractional And Integer Order Differentiation
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II. Development of Fractional Differentiating Circuits

Overview

In order to implement the fractional calculus control scheme, it was

necessary to build some type of circuit that was capable of fractional

differentiation or integration. Because of problems with low-frequency drift

present in integration circuits, it was decided to concentrate on building

differentiators.

Two circuit designs were selected from the open literature, and both

types were built and tested to see which had better performance. The

minimal criteria for success were chosen to be a phase shift of 45 ° ± 5', and a

slope of 10 t 0.5 dB/decade on a log-magnitude plot, within a frequency

range of I to 100 hertz.

Since accelerometers were chosen as the sensors in this experiment, it

was necessary to first integrate the acceleration signal twice to obtain

position and velocity measurements of the response. Integer order

integrators with good low frequency response were available from a

previous experiment (9), so this was not a problem. The D2 1z(t)I and D2 Iz(t)]

signals were obtained by passing the position and velocity signals,

respectively, through half-order differentiation circuits.

7



Oldham-Zoski Circuit

The first circuit that was examined was developed by Oldham and Zoski

(21) for use in electrochemical analysis. The basic component of the circuit is

the domino ladder network, which consists of interconnected chains of

resistors and capacitors (See Figure 2).

R-n R1-n R2-n Rj RN

L-1--4 .."... IJ....... ii i
C-n C-n C2-n Cj CN

Figure 2. Domino Ladder Circuit

The magnitude of the potential, Ej(t), generated across the jth pair of

components, Cj and Rj, when a current, i(t), is passed through the entire

network is given by

i~E,(t) d
i(t) - + Cj= dEj(t) (12)
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Eq (12) may be solved to find

t

Ej(t) - - fi(t-i) exp -"}di (13)

0

where r is an variable of integration. Since the current, i, is common to all

pairs of components, it follows that the potential across the entire network is

Ej(t) - t-T) exp & (14)

At this point, adjacent resistors and capacitors are taken to differ in value by

respective factors, g-J and G-i. The values of the resistors and capacitors form

respective geometric progressions.

Rj- g-JR0  (15)

and

Ci- G-JC0  (16)

Here g and G are the geometric factors, both of which are taken to be greater

than unity. Eq (14) may be restated (21: 29) as

9



t

Q-V ~TV RC

0

where v is defined as

InG
v [ (- ) (18)

This definition limits v to less than unity. In the limit as n and N both

approach infinity and g and G both approach unity, Eq (17) may be written

as (21: 29)

t

E(t) - n csc(vJ) R !!L) di
r(l-v) In(Gg) cQ-v v

0

n csc(vit) R0 dv - I
" o(g)C~ -v dt - i ( t ) =- Eid(t) (19)

ln(Gg) C01-V dtV- 1

where the second equality is a consequence of the Riemann-Liouville

definition of the fractional integral (21: 48). The ideal output voltage, Eid, is

seen to be proportional to the (v- I) differintegral of the input current. From

the principle of continuity, the input current equals the output current, so if

10



a resistor is connected in series with this circuit, the voltage across the

resistor, ER(t), is related to the input voltage E(t) by (10)

ER(t) = i(t) R = ln(Gg) Col-v dVE(t) (20)
n csc(v) ROv dtv

Because of the limit on v, the order of differentiation is limited to between 0

and 1. The exact order of the derivative is determined by the relationship

between G and g, which do not necessarily approach unity at the same rate.

N and n were stipulated to be infinite in the derivation of Eq (19). but

this requires using an infinite number of resistors and capacitors, which is

not a realistic requirement when physically constructing a circuit. The

requirement that g and G approach unity for each resistor-capacitor pair also

results in an infinite number of components (21: 31). So that a circuit may be

constructed, n and N are chosen to be much less than infinity, specifically

n-N-2 for the case of v - 0.5, g - G - 2.57 (21: 32).These approximations

result in upper and lower frequency bounds on the circuit, and cause some

minor distortions within the bandpass of the circuit. However, within the

bandpass the circuit still provides a reasonable approximation of a fractional

order derivative.

The actual design of the circuit is somewhat complicated by the addition

of an extra resistor-capacitor pair at each end of the circuit. These are added

to help compensate for the infinite number of components that were

truncated when finite n and N were selected, and much improve the

performance of the circuit. For complete details, consult (21). Detailed

information on the construction of the circuits is contained in Appendix A.
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Oldfield-Burd-Doe Circuit

The second circuit examined was developed by Oldfield, Burd and Doe

(19) for use in experimental heat transfer work. It is conceptually very

similar to the Oldham-Zoski design, but has the advantage of considering real

world component characteristics. Specifically, since it is much more difficult

and expensive to obtain high-precision capacitors than resistors, this design

makes allowances for capacitors that are only of minimal precision. The

Oldfield-Burd-Doe (henceforth called OBD) design was done specifically to

solve for the heat transfer rate in shock tube experiments. Specifically, the

equations

at

and
aT

I- -k -- (22)
ax

are solved for cI in terms of T (in the Laplace domain) to yield

I I

4(s) - (pck) 2 T(s) S2 (23)

where the 4(s) and T(s) are Laplace transformed variables. From the

discussion in section II, it is obvious that this equation has a solution

containing a half order derivative. Since the designers of this circuit were

12



only interested in this one specific problem, the original development did not

contain a param.eter to allow for the design of an arbitrary order fractional

derivative. Since this experiment chose a priori to use half order derivatives,

this did not present a problem.

Whereas Oldham and Zoski allowed the progression of the resistors and

capacitors in their design to vary independently, Oldfield, Burd and Doe

designed a circuit where both progressions varied at the same rate, so g - G

in this development. In exactly the same manner as Eq ( 8) this limits the

order of the derivative to

In g In g 1
= ;(g 2 ) 2 In g 2 (24)

The OBD circuit begins with the same assumption as before, that is, an

infinite number of components continuously varying in resistance and

capacitance. The basic circuit is arranged somewhat differently (Figure 3),

but the result is the same.

VINc T T ..... T T .... Tr

Figure 3. OBD "T-Section" Ladder

The complex impedance across such an infinite network is given by (19: 237)

13



Z(s) S 2 (25)

Once again, the assumptions necessary for this result are relaxed to

allow a finite number of components. Rather than a choosing an arbitrary

geometric progression as Oldham and Zoski do, Oldfield chooses a progression

for the capacitors so as to match commercially available components. One of

the standard series of capacitors commercially available is ( 1.0, 2.2, 4.7, 10.0,
1

22.0, ...). By choosing the correct value for g (103), this progression can be

approximated closely.

The Oldfield paper (19) showed experimentally that precise

approximation of the infinite analog was not essential, as long as the correct

relationship was maintained between adjacent resistor/capacitor pairs. Thus,

rather than selecting a specific capacitance and trying to match it with

various combinations of relatively inaccurate capacitors (21), they

recommend selecting a single capacitor that is in the vicinity of the desired

value, and then calculating the desired resistance to match it. Since resistors

of five percent and even one percent accuracy are available commercially at

relatively low cost, this is much easier and more inexpensive than tr/ing to

match both resistors and capacitors to predetermined values as the Oldham-

Zoski circuit requires.

The OBD circuit requires some active components because the output of

the network is the half order derivative of the output current rather than

the output voltage as desired. From Ohm's law and Eq (23) it can follows that

the output current of the circuit is related to the input voltage by

14



I(s) = E(s) s-2  (26)

A simple operational amplifier circuit known as a current-to-voltage

converter (26: 439) transforms this into the desired voltage signal.

The current-to-voltage converter has an inverting configuration and

causes the signal to be 1800 out of phase. Also, the gain of the circuit is not as

large as is desired. To match the theoretical fractional differentiator, the

circuit should have a unity gain for an input signal with an angular

frequency of one radian per second. Placing an inverting amplifier (26: 436)

as the final component of the circuit corrects the phase shift and amplifies

the output so that the circuit has the desired gain characteristics. The final

configuration of the OBD circuit is shown in Figure 4. Details of the OBD

construction can be found in Appendix B.

15
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Vi
IN

Figure 4. Schematic of OBD Fracti ial Differentiator

Characterization of Circuits

In order to decide which of these two circuit designs was superior, it

was necessary to experimentally test the fabricated circuits and compare

them to the ideal half-order differentiator. The ideal half-order

differentiator has a 45 phase shift and 10 dB/decade slope on a Bode plot.

To obtain a transfer function for each circuit, they were measured by a B&K

2032 Signal Analyzer with a band-limited pseudorandom noise input.

Typical Bode plots for the half order Oldham-Zoski and OBD circuits are

shown in Figures 5 and 6. Using similar components and care in construction,

the OBD circuit was found to be more accurate than the Oldham-Zoski circuit,

16



and accurate over a wider frequency range. All further fractional

differentiators were constructed according the OBD method.

17
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IV. Characterization of Experimental Eguipment

Overview

The structure studied in this experiment is a modification of the

Advanced Beam Experiment originally developed by the Structural

Dynamics branch of Wright Laboratory to study some of the problems

associated with large space structures (13). It has low frequency, lightly

damped modes of vibration that are closely spaced. In its original

configuration, all components were selected with an eye towards eventually

being implemented in a space environment, so proof-mass actuators were

used to control the structure. Because of the numerous technical difficulties

involved with these, they were replaced in this experiment by an

electrodynamic shaker, which displayed much more regular behavior. Since

the point of this particular research was to examine the effectiveness of

fractional order feedback, and not to attempt to solve all the problems

inherent in the control of large space structures, this was not a grave

liability.

Strtureut

The structure used in this experiment is simply a six foot inverted

cantilever beam with a I" x 3/4" rectangular cross section. For this study the

circular disc originally mounted at the base of the cantilever beam has been

20



removed. The structure is instrumented with two piezoresistive

accelerometers and controlled by a single electrodynamic shaker. The beam

is arranged as shown in Figure 7. The physical characteristics of the beam

are shown in Table 1.

Table 1. Structure Physical Properties

Property Description Value Units

Beam Length (L) 70.75 in

Y Cross-Section Width (a) 1.01 in

Z Cross-Section Width (b) 0.758 in

Cross-Section Area (A) 0.7656 in2

Young's Modulus (E) 10.8 x 106 lbf/in2

Shear Modulus (G) 4.1 I 104 lbf/in2

Beam Density (p) 2.591 x 10 -4 lbf-sec2/in 4

Beam Mass (Mb) 1.403 x 10-2 lbf-sec2/in

Y Moment of Inertia (ly) 3.667 x 10-2 in4

Z Moment of Inertia (1.) 6.508 x 10- 2 in 4

21
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4 Accelerometer
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11
yx

Figure 18. Diagram of Experimental Structure
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Accelerometers

Because of the low frequencies of interest for this structure,

piezoresistive accelerometers were chosen to measure the response of the

beam. Piezoelectric accelerometers are more commonly used in vibration

studies, but are not as effective at such low frequencies. The specific

accelerometers used in this experiment were Endevco Model 2262

piezoresistive accelerometers with Endevco Model 4423 signal conditioners.

These provide good low frequency response, and can actually make static

(D) measurements. The signal conditioners provide a zero adjustment so

that the output of the accelerometers can be nulled before testing. For more

details see ( 10) and ( I I).

Force Sensor

Force measurements were made with a B&K Model 8200 force gauge.

Force measurements were used in the experimental modal analysis

procedure, and taken off of an impact hammer used to excite the structure.

When using an actuator to control a system it is common practice to measure

the output of the actuator directly and feed that information back into the

controller. This is done because many actuators display some sort of

nonlinear behavior at some point in their response, and there may be a

substantial difference between the commanded input and the input the

actuator actually applies to the system. In order to best control the system, it

23



is necessary to know precisely what forces are acting on the system to effect

its reponse. Because we have only one force sensor available for this

experiment, the actuator was calibrated with the force sensor, but run open-

loop in the tests. The actuator used is very nearly linear in the frequency

bandwidth of interest so this did not prove to be a problem for this

experiment.

Actuation

The only actuator used in this experiment is an APS Model 113-LA

Structural Dynamics Shaker, driven by an APS Model 114 dual mode power

amplifier. This shaker is ideal for work in low frequency vibration studies

because of its long stroke limit of six inches and its light weight armature,

which minimizes its influence on lightweight structures. The shaker's force

output is linear in the frequency range of this system (Figure 8), so it was

possible to run it open-loop, with no force measurement fed back from the

attachment point. For more details, see (1) and (2).

Digital Controller

The controller for this experiment is the PC- 1000 Systolic Array

Processor, which is a sixteen channel digital controller. It has internal

analog-to-digital (A-D) and digital-to-analog (D-A) converters, and allows

input and output gains to be set for each channel. It has a maximum

sampling rate of 2000 Hz, which was the rate chosen for this experiment.
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The controller is programmed via a GPIB connection to a PC. For more

details see (27).

One of the fundamental difficulties in designing any control system is

developing a mathematical model that adequately represents the physical

system to be controlled, and this problem proved to be no exception. For the

purposes of this experiment only bending motion in one axis was studied,

and it was assumed to be uncoupled to bending motion in the other axis or to

torsional motion. Tr,, original intention was to use a 22 degree-of-freedom

finite elemen, - .,del that had been previously developed for the structure

by Yang (30). This model looked at displacements and rotations at eleven

point3 on the beam, with point masses representing the accelerometers and

the shaker armature. The model was iteratively tuned by varying a linear

and torsional spring constant at its base until it produced good agreement for

the experimentally measured natural frequencies of the first two modes.

Details of the model are shown in Appendix F. However, controllers that

were designed using this model had very poor performance when actually

tested on the structure.

A closer comparison between the model and experimental data showed

that the model was only accurate for the first two modes, and of varying

accuracy for the other twenty modes. In this case the LQ regulator (designed

in spatial variables) weighted all modes equally when looking for a solution.

The resulting controllers had a very wide bandwidth, which tends to make a

system very susceptible to any noise present in the feedback.
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Since only the first two bending modes were to be controlled, it was

decided to reduce the model to reflect this. This model would only look at

the two positions where accelerometers were present. The original stiffness

matrix, ko, taken from the finite-element model, was reduced by first

inverting it to find the compliance matrix, then picking out the four terms

that affected the 15 and xI positions. This 2 by 2 matrix was then inverted to

find the reduced stiffness matrix, k.

k 263.87 -54.82 1
k = [54.82 17.35 J(b/inch) (27)

To produce a better representation of the actual behavior of the

structure, it was decided to calculate a reduced mass matrix, m, and a

reduced damping matrix, c, using the first two mode shapes, the natural

frequencies, and the resonant response determined experimentally. The

mode shapes are calculated from the imaginary portion of the transfer

function (12: 195-198). Details are shown in Appendix F.

To begin with, it is necessary to show the relationship between the

displacement formulation and the modal formulation of the problem. The

displacement formulation is based on a physically measurable displacement

vector, Z. For a damped N degree-of-freedom system, the motion is described

by

mL+ cj + kL - Du (28)
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For this problem, u. the force input to the structure, is a scalar quantity. D

shows at which coordinate the control force is being applied.

DT Il 0 1 (29)

There is an equivalent formulation written in modal coordinates, which

are related to the physical displacements by

z- Oil (30)

where t is the vector of modal displacements and 0 is the modal matrix

composed of the eigenvectors of the open loop system. The equivalent

description is written as

It +12;,w.1iY+ (w. 2111 - *TDu (31)

where [2 fwf] and [w1 2] are diagonal matrices containing the associated

values for each mode. This formulation presupposes that the modal matrix,

0, has been scaled so that

W m = I (32)

Comparing Eq (28) and Eq (31) shows that k must be equal to

9T k 9 - Iw021 (33)
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So having determined 9 and [w.21 experimentally, and with the k calculated

in Eq (27) it becomes possible to scale the * so that Eq (33) is approximately

true. There are only two parameters to vary, the scaling factors for each

mode shape, so it is in general not possible to force the diagonal terms to

zero in Eq (33). It is possible to scale 9 such that the diagonal terms are met

exactly. By rearranging Eq (32) it is now possible to calculate an m that

satisfies the experimentally measured data.

(M )- 9.28 1'3]X1-3(=S (34)
1.83 2.74 ]x 1 (b

Similarly, it is possible to calculate a damping matrix, c, using the scaled 9

and the diagonal matrix [2 fwr.!

C -(O)- 1tawl Ir 3.46 1.69]10- ( lfs)(5
( 1.69 1.66 ix -  b 1

In order to use the tools available from modern control theory, it is

necessary to put Eq (28) into the standard state space form of

i - Ax + Bu (36)

where I is defined as the state vector composed of j and z. and A and B have

the form
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0 0 1 0

F (3730L-. -rM-k -m-Ic -37300 8240 -8.22 0.606 (37

L 44800 -11800 3.56 -5.95

BT_ [0 0 m-DI -1 0 0 124 -82.7 1 (38)

The product -m-lk was calculated from the definitions of m and k in

Eqs (32) and (33).

-M-Ik - - ((OT)-I W1)-I- (qT)-I [Wn2J -lwn2 I - [wn2I P1  (39)

To verify the accuracy of the model, the open-loop transfer function

computed from this model is plotted against the experimentally determined

open-loop transfer function in Figure 9. All transfer functions derived from

the experimental structure shown in this work will be accelerances 1- i/s)

with the force measurement taking place at the midpoint of the beam where

the actuator is located (X5), and the acceleration measurement taking place at

the tip accelerometer (xl I). The models show reasonable agreement in terms

of the both the frequencies and dampings for both modes, but the

magnitudes are off by a significant amount.

The most likely source of the magnitude error is the poor accuracy of

the measurement technique at low frequency. The structure has bending

modes in the other lateral direction and torsional modes as well, all within

the bandwidth of inte. st. The frame supporting the structure has modes

occuring in that frequency range as well. The theoretical model
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displays the expected behavior of a two degree of freedom system, with the

slope approaching 40dB/decade at low frequencies and the measurement

has been checked thoroughly. The logical conclusion is that the structure's

response is not well represented by a second order mass and stiffness model.

To better represent the behavior of the structure within the desired

frequency range, higher order models should be examined.
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V. Measurement Channels

Overview

A major source of difficulty in performing this experiment was the

construction and troubleshooting of the measurement channels. The signal

from the beam is acquired as an acceleration, then it is variously integrated,

differentiated, and filtered to obtain the requisite position, velocity, and

fractional derivative feedback signals. A diagram of the entire process is

shown in Figure 10.

Integration Circuits

The integration circuits used in this experiment were originally built by

Jacques (1 3) for his thesis work, based on a design provided by the

Structural Dynamics Branch, Wright Laboratory (shown in Figure 11). This

design provides good performance for integration above I Hz, and attenuates

inputs below 0. 1 Hz, where the pole of the integrator is located.

High-Pass Filters

To obtain the position measurements required for full-state feedback,

the output of the accelerometers had to be passed through two successive

integration processes. Theoretically there is no reason why this should

present a problem, nevertheless, when non-ideal components were used
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Figure 11. Integration Circuit Diagram

there was a complication. Real integrators are normally constructed with a

IItransfer function of the form I ,---{ as opposed to that of the ideal

integrator, which is -" When two integrators were cascaded (the output of

one fed into the other), the transfer function for the system is of the form

I
G(s) s2 + 2bs + b

From the theory developed to study second-order systems, this corresponds

to
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G(s) -2 + 2wns + (41)

Comparing these two expressions reveals that b is equal to the natural

frequency (w.) of the system and that the system is critically damped

(t- 1). The settling time for such a system, T., is defined as the time

required for the system to settle within a certain percentage of the

amplitude of an input step function. For a 2% settling time this is

approximately (18: 236-237)

4 4
T= = ()(.l) = 40 seconds (42)

Since the fastest mode of vibration of interest in this structure is 35 Hz, this

is much too long a settling time for the position measurement taken to be of

any possible use. In fact, the inherent damping present in the beam would

cause it to settle before an initial measurement of its motion would!

The solution to this problem lay in a closer examination of the

phenomena involved. The resonance in the first integrator is feeding directly

into the second integrator and causing a "ringing" in the circuit. To avoid this,

a high-pass filter is placed between the first integrator and the second to

filter out the response in the vicinity of 0. 1 Hz.

Because of the rapid roll-off (the rate of attenuation of a signal with a

frequency outside of the pass band) required of the filter, it was not

practical to build a passive filter for this experiment. There are many

possible choices of active filter designs available, including elliptic, parabolic,
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Bessel, Papoulis, Gaussian, and Butterworth filters (24), all of which were

considered at one time or another.

Unfortunately, the filter creates another problem. Active electronic

components do not function well as their inputs approach direct current

(0 Hz). Also, in order to minimize the phase distortion of the input signals the

corner frequency of the filter must be placed approximately two decades

below the lowest frequency of interest. As initially configured, the structure

had a first mode bending frequency of 2.1 Hz, and it proved impossible to

build a filter that did not distort the phase of the first mode signals by an

unacceptable amount. To work around this, the structure was physically

modified by removing a plate that had been attached to the bottom of the

beam. This raised the first mode frequency to 6.3 Hz, and filters were able to

be constructed that better preserved the phase information at that

frequency.

To improve the roll-off of a filter, one would normally build a higher

order filter (add more poles to the filter). However, because of the extremely

low frequencies involved, this strategy did not work. In fact, when the filter

order was changed from second to third order (or higher) the performance

actually deteriorated. Since optimal performance seemed to occur with the

second order filters, it was necessary to choose a filter design that had the

highest inherent roll-off. Chebyshev filters (24) have a higher roll-off than

the other filter designs considered, but cause a small ripple in the magnitude

of the pass band. This was deemed to be an acceptable design trade-off.

A Chebyshev filter has a transfer function based on a Chebyshev

polynomial appearing in the denominator of the transfer function. A Bode
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plot of one of the filters used is shown in Figure 12. A circuit diagram of a

second order Chebyshev filter is shown ia Figure 13. Specific details of the

construction are included in Appendix C.

Low-Pass Filters

When the fractional state inputs were first fed back from the structure

and the controller was turned on, the system was found to be only

marginally stable, with audible high frequency resonances occuring. When

these where characterized, it was found that the structure was resonating at

harmonics of the sampling frequency of the digital controller. The problem

was finally traced to the high frequency behavior of the fractional
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differentiator circuits, which did not roll-off until approximately 15 KHz. (See

Figure 14.) The differentiators amplify any high frequency noise by the

square root of its frequency. Any small amount of high frequency noise

entering the fractional differentiators had its magnitude amplified greatly,

and this dominated the sample taken at every period.

The solution to this probem was to low-pass filter the fractional state

channels just prior to entering the PC- 1000 so that there was at least 20 dB

of roll-off at 1000 Hz. Once again, there is a design trade-off between

preserving the phase information at the frequencies of interest and still

getting the necessary roll-off. For this problem, second order Butterworth

(20) low-pass filters were chosen and built. These filters are similar to the

Chebyshev high-pass filters discussed earlier, with only a few minor

differences.

The Butterworth filters are constructed so the transfer function matches

a Butterworth polynomial. The circuit diagram is identical to Figure 13,

except that the resistors and capacitors are interchanged. Finally, the

Butterworth filter has a flat pass-band, so there is none of the ripple present

associated with Chebyshev filters. A Bode plot of one of the filters used is

shown in Figure 15. Details of construction are presented in Appendix D.

Final Measurement Channels

To maximize the accuracy of the feedback signals, it was desirable to

amplify the signals at several points to counteract attenuation caused by the

integration process. The PC- 1000 has an internal analog-to-digital converter,

and it was necessary to ensure that the input signals at that point be near
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the minimum full scale range. To avoid saturating the integrators and

clipping the signals, it was nocessary to provide amplificati.l in several

stages. To avoid the sampling probems discussed above for the velocity and

position feedback, the low-pass filters built into the a. <piers for those

channels were set to I KHz.

Since there were a variety of components cascaded together in each

channel, it was decided to calibrate the entire feedback channel at once.

Block diagrams for the four different signals ar . shown in Figure 10. The

circuits were calibrated from the point where the signal from the

accelerometers leaves the signal conditioners to the where the signal was

finally input to the PC-1000.

The calibration was performed by using the B&K 2032 and its random

signal generator to generate the plots of the frequency response for each

channel. The theoretical magnitude of each channel can be calculated at a
1

frequency by Gth - - , where v is the order of integration of the channel.wv

This theoretical value was calculated for an average frequency of the system

bandwidth. This number was divided by the measured value at the same

frequency, and multiplied by the accelerometer calibration constants to

obtain the final gain for each channel. The calibrated gains for each channel

are listed in Table 2.

The final frequency response plots of each of the types of measurement

channel are shown in Figures 16-19. The high pass filter before the second

integrator is responsible for the low frequency phase distortion present in
I

the x and D2(x) channels. The phase distortion at higher frequencies in the

fractional order channels caused by the low pass filters is also particularly

43



noticeable. However, the magnitude plots all exhibit near ideal behavior in

the frequency interval of interest.

Table 2. Measurement Channel Gains.

Channel Number Signal Gain Units

I DI (x 1) 7.67 in sec-I V-1

2 D' (x2) 7.19 in sec-' V-1

3 x .288 in V-1

4 X2 .277 in V-1
I _1

5 D 2 (x1 ) 1.289 in sec 2 V-I
I I

6 D2 (x2) 2.915 in sec-2 V-1

3 3
7 D2(xI) 11.6 inse7 2 V-1

3 3
8 D 2 (1 2) 31.95 in sec 2 V-1
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V I. L0R Control Method

Overview

The original intent of this thesis was to experimentally prove the

validity of the work done by Yang(30). He showed that it is theoretically

possible to transform the integer-order (position and velocity) controller

calculated by the Linear Quadratic Regulator (LQR) problem into an

equivalent controller containing the desired fractional order terms. This

method was approached using both the 22 degree-of-freedom finite element

model and the reduced two degree-of-freedom model.

Review of Ootimal Control Theory

A frequently applied form of optimal control theory is the Linear

Quadratic Regulator. A regulator is defined as "a feedback controller

designed to keep a stationary system within an acceptable deviation from a

reference condition using acceptable amounts of control." (9: 167) An LQ

regulator provides the optimal solution to a linear system of equations (such

as the state space model developed previously) evaluated on a quadratic

performance index, J. J is written as

- J[IT(t)QI(t) +mT(t)Ru(t)Idt (43)
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where Q is a positive-semidefinite or positive-definite matrix weighting the

states, and R is a positive-definite matrix weighting the control input.

Because there is only a single actuator, in this problem u(t) and R are both

scalar. For structural dynamics, a convenient choice of Q is

[k l
Q 0 [ ] (44)

which minimizes the kinetic and potential energy in the beam. R is chosen

according to how much control authority is available in the actuators and

how much control is desired over the structure. When R is made smaller, the

amount of control force is increased which intuitively seems like it should

improve performance. However, this also increases the bandwidth of the

controller, which increases the sensitivity of the system to any noise in the

measurements or errors in the system model.

The LQ regulator is chosen to minimize this performance index for a

particular system. It is calculated from the solution, S, of the matrix Riccati

equation

0 - ATS + SA - SBR-IBTS + Q (45)

The optimal gain for the LQ regulator is

u-- RIBTSI - -GL (46)
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The state model can now be rewritten as

i - Az + Bu I[A - BG]i, (47)

A caveat is necessary at this point; this solution is optimal only in a

mathematical sense and is only as good as the system model and

performance index chosen. It will only give what is asked for in the

performance index (with respect to a realistic criterion of optimality), and

makes no consideration of robustness issues with respect to noisy

measurements.

Fractional Order State Feedback Control Theory

Interest in fractional order state feedback control grew from interest in

examining the effect of feedback in controlling viscoelastically damped

structures. Bagley and Torvik (7) showed that fractional order state

equations can be developed where the state vector includes fractional order

time derivatives of a structure's motion. The fractional order state equations

can be written as

D y - Ay - BGy (48)

where y is the fractional state vector.

Yang (30) developed a method of calculating meaningful feedback gains

for such a fractional order formulation. This section summarizes his work. He
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developed a relation, 0, between the Integer order and fractional order state

vectors,

1 - gY (49)

where 9 is a state transformation matrix which can be determined from the

eigenstructure of the equations of motion posed in expanded form.

Looking at the N degree-of-freedom vibration problem described

described earlier, with damping set to zero,

az+ kz - DuL (28)

and applying the composition property of the fractional derivative operator,

Eq (28) can be transformed into

Da m[D2- ci + D2. o + D2-3a + ... + DO] z(t) (50)

-. [D2- a + D2 2 i + D2- +... + Do] z(t)
+ k DO z(t) - Du(t)

This equation represents the same system in (28), but expressed in terms of

fractional order derivatives. To ensure that velocity terms appear in the

fractional order state equations, x for this problem is chosen to be of the

form n where n is an integer. This allows initial value problems to be solvedn

where an initial velocity is given.
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In order to solve this system of equations, it is possible to expand these

N equations into a new system of 2-N-n equations of the form

D'M (t) + i(t) - FO(1

where

0 0...o0
oo0... 0

jg. (52)

0 0 0O
L a .o o o0

0 0 .. 0 -a 0-

K-. (53)

-0.0 0 0

2-ay(t)

(54)
DZ 2a,(t)

Da (t)

53



0

0

F(t) = (55)
0

0

=Du(t)

This augmented set of 2N-n equations is called the expanded equations

of motion of the system. M and K are known as the pseudo-mass and the

pseudo-stiffness matrices. Notice that the lowest partition of Eq (51 ) above

identical to the original equation, Eq (28).

Setting the right hand side of Eq (51) equal to zero, it is possible to solve

for the resulting homogeneous system's expanded eigenvalues and

eigenvectors. The eigenvalues will appear in complex conjugate pairs, X1 and

Ii. The eigenvectors (.t and .i associated with the conjugate eigenvaue

pairs) will be used to construct a state transformation matrix to the integer

order state equation.

From the expansion theorem of theoretical modal analysis it is known

that the system response can be written in terms of the normal modes of the

system multiplied by a set of time-dependent generalized coordinates,

.q(t) = *i1(t) (56)

where

.(t) - column vector of the generalized system response
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* - the modal matrix consisting of the modal vectors arranged

in a matrix

i(t) - a column vector of the modal coordinates of the system.

Applying this to the expanded equations of motion, it is possible to express

the system response as

r(t) = 9i*0t (57)

where

-% , I iC 12 1 iI... I 2N 1 (58)

1Ii(t)

i(t)

q12(t)

VO)=  2t (59)

qIN(t)

TN(t)

Using Eq (57) it is possible to extract the necessary information to

.nstruct the integer state vector and the fractional state vector for the

system. The stable roots of the expanded equations of motion have positive

real parts. To begin with select the column vectors (01) of Eq (58) that
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correspond to the eigenvectors in Eq (59) that have positive real

components. Define this matrix as %.

The integer state vector can be written as

I(t) - OA f(t) (60)

where x(t) is defined as

z(t) 1I(t) -DlIWOt] (61)

and

*A - matrix consisting of row vectors in 90 that are

associated with the states defined in Eq (6 1)

Similarly, the fractional state vector, y, can be written as

£(t) - 00 11(t) (62)

where
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Y1(t)

Y2(t)
Y3(t)

y()t) (63)

Y2N-I(t)

Y2N (t)

= matrix consisting of row vectors in Op that are

associated with the states defined in Eq (63)

The fractional state vector, y(t). is a nearly arbitrary subset of , (t) (the

state vector of the expanded equations of motion). It is of the same

dimension as the integer state vector, and may contain any combination of

fractional and integer order states from any combination of nodes.

From Eq (62) U may be defined as

1(t) - W-I (t) (64)

Which can be substituted into Eq (60)

1(t) - I*A %-'I Y(t) - 0Y(t) (65)

Which is the desired transformation from integer state vector to fractional

state vector.

Applying this result to the integer state optimal control law in Eq (47)
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Q (t) - IA - BG 1y(t) (66)

Which can be rewritten as

k(t) - [A* - B*G*I Y(t) (67)

where

A* - 0-1 A* •(68)

B* - W1 B (69)

G* - G P (70)

This is the desired result of a set of fractional order state equations with

optimal LQR feedback control.

Results

There were several problems observed when the LQR method was

implemented. The finite element model used was not suitable for use with

LQR, and the classical integer order controllers generated with it were not

very effective. As mentioned before, the finite Mement model was only

accurate for the first two modes, and had fifty percent error in frequency for
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mode three, with higher order modes being progressively more poorly

represented. Since LQR weights all modes equally when formulated in

position variables, the poor information dominated the correct information

for the first two modes. The LQR method did indeed give an optimum

solution, but it was for a structure that did not exist. Because of all the

control force required to control all twenty-two modes of the model, the

actuator reached its force limits before modes one and two had reached even

five percent critical damping.

The reduced order, two degree-of-freedom model gave much better

performance. The integer order LQR gains were meaningful, and produced

the desired damping levels in the structure, but when the fractional order

state vector was calculated, the gains on the fractional derivative terms were

nearly ignored. For example, solving the LQR problem using PC-Matlab (22)

for R = 0.1 yielded integer order gains of

G - 17.90 -0.960 -0.471 0.09691 (71)

for a state vector composed of

[ z( t) 1
I(t)- D izt )1 (72)

For a state vector composed of
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3
D72 Iz(t)I
D' [z,(t)]

Y(t) = (73)

D2 [z1(t)

z1(t)

the state transformation matrix, . , was calculated to be-0 0 0 11
09F -0.00360 -0.05351 0.331 3.500 1 0 0 (74)

L 0.331 -10.2 115 -4511

Using this transformation a new set of gains is calculated, G*, is found to be

G- [ 0.0286 -0.470 10.9 -39.2 1 (75)

Although this result is taken from measurements at only the midpoint, it

should theoretically provide the same control authority as the controller

using position and velocity measurements from both points.
3

Another possibility is feeding back the velocity and D2 terms from both

sensors. This would eliminate the need for the second integration process

and the consequent phase distortion caused by the high-pass filter. The

transformation matrix for this term will be denoted by ** and was found to

be equal to
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[ -0.00166 -0.000973 0.00935 0.00380

-0.00530 -0.00467 0.0207 0.0211

0 0 0 0 (76)

L 0 0 0 I

and the associated gain, G*, is

G' = [ -0.00802 -0.00321 0.525 0.107 1 (77)

where the associated state vector is

Y(t)= D2 [Z(01 (78)
DI Iz(t)]

The numerical results are shown below in Table 3, while the closed loop

frequency response is shown in Figure 20.

Table 3. Results of LQR Method (Percentage of Critical Damping)

Mode Predicted G Gs G*

1 21.1% 22.3% 18.5% 18.6%

2 10.9% 8.5% 1.8% 7.5%
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The results shown are promising but certainly not conclusive. As in the

open loop case, there is a large discrepancy between the predicted and

measured closed loop response. The shape of the predicted response

corresponds well to the experimentally measured ones, but there is a large

offset in magnitude that needs to be resolved at some point.

Comparing the integer order case, G, to the cases with fractional order

feedback (G+ and G#) still yields some useful information, however. The case

where all measurements have been taken from a single point (collocated

with the actuator), G#, is only marginally stable, with audible high frequency

resonances occuring. The performance is degraded for the first mode, but

still provides a reasonable amount of damping. Performance at the second

mode is abysmal, and even destabilizes the system somewhat. (The friction

in the armature of the actuator provides 2.2% damping for mode 2 when the

actuator is attached but unpowered, so the performance would actually be

improved at this frequency by turning the system off.)

The case where signals are taken from both sensors, G*, is much more

promising. The closed loop response is very similar to that of the integer

order case, although there is still some degradation in the performance of the

system. Because of the known errors in the system (modelling errors and

phase shifts in the measurements), it is not possible to say conclusively that

fractional order feedback is equivalent to integer order feedback. However,

it possible to say that the method of transforming integer order gains into an

equivalent system containing mixed fractional and integer order gains does

seem to be successful. The fact that control remains stable in the face of such

large phase shifts in the measurements even indicates reasonably large

phase margins, and some degree of robustness.
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VII Pole Placement Control Method

Qverview

An alternative approach to introducing fractional order feedback into

structural control was discovered by Leonard ( 5). He found an interesting

result that seemed to allow a large amount of flexibility when selecting pole

placement gains if fractional order feedback signals were available. The

theory presented here summarizes much of Leonard's work. Briefly, it

caiculates a set of equality and inequality constraints between the fractional

and integer order terms that is necessary for equivalent response to be

obtained. Once again, the primary goal of this research was proof of concept,

shxowing that fractional derivative feedback would work in a real system.

]-heory

Assuming an nth order linear dynamic system of the form

i(t) - Ax(t) + BuYt) (79)

where x contains integer order feedback terms (position and velocity) and

there exists state feedback

I_(t) - -Gx(t) (80)
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where

So that the system can be written

x(t) - [A - BGiL(t) (82)

Let a(s) be an equation with the desired pole structure of the system

i
a(s) - I(s - pi)- 0 (83)

1

In order for the gain matrix to move the poles of the system to the desired

locations, the ch.racteristic equation of the closed-loop system must equal

detisl - A + BGJ - a(s) = 0 (84)

In other words, the coefficients of the characteristic equation must equal the

coefficients of a(s).

Now suppose that the equations of the system were posed in fractional

state form.

D2 IXF(t)] - AxF(t)+ BO(t) (85)

where IF(t) now includes the half order fractional states
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x(t)

D2 [x(t)]
-(t)= DI Ix(t)] (86)

3
D2 Ix(t)1

Examining the pole placement problem in this case requires a little more

work. Consider the transformation

0(87)

The eigenvalue problem for the fractional state case is posed as

det I 3I - A + BGJ -0 (88)

The fractional state system has twice as many poles as the integer state

system in the 4is or 0 plane. This function is not unique, and a discontinuity

must exist somewhere in the space. Poles in the 0 plane with phases of

greater than 90" or less than -90' cross a branch cut, and will map to

another Riemann sheet when they are brought back into the s-plane (See

Figure 21). The stability criterion in the [ plane is that the phase of a pole

must lie in the ranges of

45" < 90" (89)
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So now each real pole, pi, may be factored into two poles in the P plane.

There are n pairs of poles and 2n gains so it appears that the expanded

problem has left you in a similar situation to where you began, except that

the order of the system has doubled. If this were true, this would be a

remarkably useless result; however, it is only necessary to control hail of

these poles. To retain similar control authority to the integer state problem,

it is only necessary to place n poles in the right half plane. The other n poles

merely need to be kept in the left half 0 plane off of the principal Riemann

sheet to ensure stability.
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To take advantage of this, first compute the square roots of the desired

pole locations:

pi - V pj (91)

Form

n
fl(j) flq( - (92)

i-I

Form the characteristic equation of the system in the 0 plane

Z(O) - det 10 1 - A - BGJ - 0 (93)

Since Z is of order 2n and n is only of order n, synthetic division is possible.

Performing synthetic division on Z(O) with 0() yields IF(p) and R(P), the

remainder.

Z(P) -I p)+R(P) (4O(P 0(0) (

'T(O) is a polynomial of order n. For O(P) divide evenly in to Z(O), and be

equal to its roots, the coefficients of R(P) must be equal to zero. This creates

n equality constraints on the system.

,F(p) contains the n poles that are not mapped into the s plane, so they

must lie in the left hand P plane. To ensure their stability, it is possible to
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use Routh-Hurwitz criterion to create inequality constraints that provide

bounds on stability.

The Routh-Hurwitz criterion (18: 363-365) states that for an equation of

the form

a0sm + als m-l + a2 sm2  +...-Is + a. - 0 (95)

to be stable, all coefficients ai must be of the same sign and not equal to zero,

and, the coefficients of the first column of the Routh array must also have

the same sign.

These inequality constraints define a region in the controller space, and

any solution lying in this region should provide a stable solution. This means

that the problem has an infinite number of non-unique solutions, all of

which satisfy stability requirements. From a control system design

viewpoint, this is a very interesting result.

At this point, there are no guidelines as to how best use this design

flexibility. However, since any set of gains that satisfy these constraints

should work, and the object of this thesis was merely to prove that

fractional derivative feedback is possible, this method was acceptable, if

somewhat awkward.

Results

Because of the synthetic division in this method, there is not yet a

constructive solution to this problem. Rather than solving a series of high

order determinants and a lengthy synthetic division by hand, the symbolic
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capabilities of Mathematica(29) were brought to bear on the problem. The

script used to calculate the equality and inequality constraints and the

constraints themselves are shown in Appendix G.

Arbitrarily choosing damping ratios of twenty percent for mode I and

ten percent on mode 2, the desired pole locations were calculated using

pi= (-tiwi ± - t,2 wi) (96)

Using the system model developed in Eqs (37) and (38) the following integer

order gains were calculated from Eq (85)

GP 1 -3.16 2.34 0.566 0.1151 (97)

Using this solution as a starting point, the integer order gains were reduced

in magnitude while the four dependent fractional gains were calculated

using the equality constraints. The resulting set of gains was checked versus

the inequality constraints to ensure that the closed loop system would still

be stable. The first controller developed contained all eight feedback states
3 I

(two each of position, velocity, D2, and D2 terms), arranged as in Eq (86).

GI - 11.5 -2 1.08 0.886 0.4 0.02 0.0138 0.00743 (98)

The second controller was calculated by zeroing the position and D2 terms,
3

with only velocity and D2 terms being fed back. The equality constraints

provided the necessary information to calculate the other four gains. It was
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thought that this might prove to be a useful special case because of the

difficulty with performing the second integration discussed in Chapter 3.

G2 - 1 0.591 0.176 -0.00730 -0.00776 1 (99)

These three controllers were tested and the resulting closed loop transfer

functions plotted versus the theoretical closed loop transfer function for the

system in Fiqure 22. The results are listed in Table 4.

Table 4. Results of Pole Placement Method

Predicted Gp GI G2

Mode 1 20% 21.6% 19.3% 20.1%

Mode 2 10% 10.1% 10.6% 8.6%

The results agree fairly well with the predicted values. The shape of the

predicted response again corresponds well to the experimentally measured

ones, but there is the same large offset in magnitude as was present in the

previous case.

However, the most important comparison to be made here is that

between the integer order controller, Gp, and the controllers using fractional

states, GI and G2. The point of this work was to show that control using

fractional order feedback was equivalent to schemes using the more

thoroughly studied integer order feedback. Since these controllers were
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calcul'ated from the same model, whatever its inaccuracies, the results

should be very similar. These numbers show that this is indeed true.

Comparing the integer order feedback, Gp, to the Gi and G2

controllers, GI displays an error of I I% and 5% for modes one and two

respectively, while G2 shows an error of 6.9% and 15% respectively. These

results are encouraging, particularly in light of the known errors in the

circuitry. Because of the large phase shifts present in the fractional

derivative feedback due to the final low pass filtering process, it was

anticipated that some loss of control authority would occur. In fact, it is
encouraginig that these controllers are robust enough to still produce stable

control in the presence of such a large phase lag.

A final result is the force history in the time domain of the system with

the various controllers in the loop. It was a prior concern that there might be

some undesirable transients in the force response because of the effects of

the poles off of the principal Riemann sheet. Those poles that are close to the

branch cut can "bleed over" and influence the system behavior. However,

those worries seem to be unfounded, and the force histories of the different

controllers are qualitatively similar. They are shown in Figure 23.
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Comparison of the Two Methods

Because of the equality constraints of the pole placement method, any

case with just four non-zero gains should be unique (if a solution exists),

since the problem reduces to four linear equations in four unknowns. If that

is so, the question is, is there any correspondence between results calculated

by the LQR method and the pole placement method? In this chapter, gains

were calculated for both the integer order case (position and velocity only)
3

and the case where velocity and the D2 signals were fed back from both

sensors. In the last chapter, a relationship between those two gains was

calculated in Eq (76), so it is possible to compare the two results.

Using the results of Eq (97) and Eq (76),

GsT-Gp V - 0.585 0.152 -0.00715 -0.00784] (100)

which compares well with the result from Eq (99)

G2 - 0.591 0.176 -0.00730 -0.00776] (101)

Since the pole placement method keeps track of the poles that lie off of the

principal Riemann sheet, it is probably the more accurate of the two

techniques. Additionally, it is the more general of the two techniques, since it

allows all 2"n gains to be assigned while the state transformation technique

of the last chapter only allows the use of a subset containing n of the gains.
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VIII. Conclusions and Recommendations

The theoretical predictions made by Yang (30) and Leonard (1 5) both

performed as expected within the bounds of the experiment's error.

Fractional derivative feedback may in fact prove workable in a real world

setting in the future. Based on the results of this work, it at least merits

further consideration and research.

There are several topics that need to be addressed before any more

positive recommendations can be made. The first is, what can fractional

derivative feedback accomplish that integer order feedback cannot? Feeding

back twice as many inputs to get the same control authority is not an idea

that is going to be of much use to designers. On the other hand, if those extra

inputs can be used to improve system performance, particularly to increase

system robustness, it becomes more attractive and potentially useful.

Second, developing a mass-stiffness model for a real structure is

somewhat unwieldy, a modal model is in general easier to generate. To do

this, a modal estimator for fractional derivatives needs to be developed.

Eventually a stochastic estimator (a Kalman filter) would be desirable to

have available. Accelerometers tend to be accurate but not precise, and if the

measurement noise statistics are available, a Kalman filter can greatly

improve system performance. Also, since modeling large space structures in

a gravity field is so difficult, building adaptive abilities into a control system

is frequently desirable, and many adaptive control systems begin with the

Kalman filter as a building block.
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The next step for this particular laboratory setup should be the

construction or purchase of better filters for the fractional derivative

channels. The phase shifts on those channels are unacceptably large, and

may well be degrading the performance of the controllers using fractional

derivative feedback. Theoretically four fractional derivative feedbacks

should provide the same damping as four position and velocity feedbacks do.

Currently they do not, there is some degradation of the performance. It

should be established whether or not this is the nature of the fractional

derivative feedback, or is merely the result of poor filters.

Of equal or greater importance is the resolution of the errors in

modeling this system. The unmodelled dynamics are significant in the

bandwidth of the system, and a higher order model should be examined.

Once the a better model is in hand, this work needs to be repeated,

particularly the case where all feedback signals are generated from a signal

colocated sensor at the actuator. This is potentially the most useful case and

it needs to be conclusively established whether the fractional order feedback

is effective.

The pole placement technique used in Chapter 7 is not a design method

per se, and it becomes very complex computationally as system order

increases. Performing the synthetic division while carrying 2'n gain

variables requires a program capable of symbolic mathematical operations

(such as Mathematica or MACSYMA) for n greater than four. If it is to be

used on more complex systems, a better method needs to be found of

calculating the controller gains. Algorithms exist that constructively find the

solution to the integer order pole placement problem, and they should be

examined to see if an extensica to the fractional order case is possible.
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Aogendix A: Oldham-Zoski Circuit Design

The construction of the Oldham-Zoski circuit closely follows that of the

author's in their paper(2 1). The design values are those given for the v I

design. For more discussion of this design, see also (14). Table A. I lists the

design and experimental values for the test circuit built.

Table A. I Design and Experimental Values of Oldham-Zoski Components

Resistors (in Mn) Capacitors (in pF)

Resistor Design Measured Capacitor Design Measured

R0 25.4 25.4 Co 10.0 10.03

RI 9.88 9.86 C1  3.891 3.89

R2 3.84 3.83 C2  1.514 1.511

R3 1.501 1.494 C3  0.589 0.587

R4  0.5816 0.5821 C4  0.2292 0.2297

R5 0.2262 0.2265 C5  0.0892 0.0876

R6 0.08798 0.08792 C6  0.0347 0.0351

R-7 0.00172 0.00172 C7  0.0270 0.02707

R8 0.00364 0.00364
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Appendix B: Oldfield-Burd-Doe Circuit Desiin

The OBD circuit was designed with a series of six resistors and

capacitors for this experiment. The capacitances are measured and then

suitable resistances are calculated, so their are no design values for the

capacitors per se. Again, this is a straightforward application of the method

put forth in (19). Design and experimental values are shown in Table B. 1.

Table B. 1. Design and Experimental Values of OBD Circuit Components

Resistors (in kfl) Capacitors(F)

Design Measured Measured

RI 3.695 3.711 CI 0.0997

R2 14.00 14.00 C2 0.2262

R3 30.64 30.58 C3  0.475

R4 64.79 64.79 C4  1.012

R5  142.4 142.1 C5  2.296

R6  305.3 306.1 C6  4.655
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Aooendix C: Chebyshev High-Pass Filter Design

The high-pass filters that were eventually built for this experiment

were the product of as much trial and error as actual design. Active

electronic components (such as op-amps) do not function well at extremely

low frequencies, and their performance becomes erratic. The filter that

provided the best performance when actually built, was a second order

Chebyshev filter as shown in Figure 9. The operational amplifier used was an

LM-747j, which is a general purpose dual op-amp. The component values

that were found to work best were:

C - 0.40 RLF

R I - 447.6 kn

R2 - 1.172 Mn
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A Doendix D: Butterworth Low-Pass Filter Design

In order to eliminate the resonances caused by high frequency noise

entering the sampling process of the A-D board on the PC-1000 in the

fractional derivative feedback, it was necessary to construct four

Butterworth low-pass filters for the experiment. The circuit diagram is

shown in Figure D. I. Once again, LM-747j operational amplifiers were used,

and the component values were:

R - 11.8 kfO

Cl - 190 nF

C2 - 95 nF

1 1 " M

C2

Figure D. I Circuit Diagram of Butterworth Low-Pass Filter
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Appendix E: Finite-Element Model

The finite-element model for this structure is drawn directly from Yang

(30:77-'18) and models the beam as an undamped 22 degree-of-freedom

system. It models the beam's behavior by looking at lateral motion and

rotation at eleven points. It also assumes that both lateral bending in the

other direction and torsional motion are completely uncoupled from bending

in the z direction. The mass and stiffness matrices are constructed from

elemental matrices, Kel and Mel, which are given by

E 12 6Le -12Le 6Le=

__ EF 6Le 4Le2  -6Le 2Le2

Kel -e3  -12Le -6 Le 12 -6Le (F.I)

L 6Le 2Le 2 -6Le 4LeJ

and

___F156 22Le 54 -13Le1
pALe 22Le 4Le 2  3Le -3Le 2

Mel 420 54 3Le 156 -22Le (F.2)

L -13Le -3Le 2 -22Le 4Le2

where E, I, p, and A are given in Table 1. and Le is the length of the beam

element and is equal to 7.075 in. These elements are summed along the main

diagonal to form the 22 DOF mass and stiffness matrices. The mass matrix is

further modified to include the mass of the accelerometers at positions x5
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and x11 (0.0000343 lb sec2 in-I ) and the mass of the shaker armature at

position x5 (0.00185 lb secZ in-I ). The model is tuned to match the

experimentally determined natural frequencies of the structure by

iteratively changing the linear and torsional spring elements connecting the

structure to its support.
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Aooendix F: Experimental Modal Analysis

The modal data of the structure was obtained by performing an

experimental modal analysis using a calibrated impact hammer. The

procedure has three major steps: Calibration, Data Acquisition, and Data

Analysis. The resulting data was used to construct the model of the system,

which in turn was used to calculate the controller gains.

Calibration

Two types of sensors are used to acquire data for this test,

accelerometers and a force gauge. The accelerometers used are of the

piezoresistive type, and can be calibrated versus local gravity by nulling the

sensor when its placed in a vertical orientation, then turning it 180' and

measuring the resulting voltage. The voltage is proportional to a 2g

acceleration and a calibration constant may thus be calculated. Results are

shown in Table G.1. These numbers are compared to the manufacturer's

specifications as a reality check.

Table G. 1. Accelerometer Calibration Data

Accel. Accel. Signal 2g Meas. Exp. Cal. Spec. Cal.

Position Serial # Conditioner (V) Constant Constant

Gain (V/g) (V/g)

x5 AH72 50 1.764 0.882 0.8865

BA26 50 1.996 0.998 0.9915
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These numbers compare well, with both being less than one percent off of

manufacturer's specifications. For this problem, acceleration is being

expressed in({) so these constants are converted to those units. These are

sown in Table G.2.

Table G.2. Final Accelerometer Calibration Constants

Accelerometer Serial # Calibration Constant (mV/in/s 2)

AH 72 2.28

BA 26 2.58

The calibration procedure for the force gauge used is somewhat more

complex, although the idea behind it is very simple. The problem is only

complicated slightly because it is necessary to test the force gauge as it is to

be used on the impact hammer. There are two major reasons why this must

be so:

1) The impact hammer has a soft tip attached in order to better excite

the low frequency modes that are of interest. This soft tip has nonlinear

characteristics that must be accounted for that are difficult to predict

analytically.
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2) The impact hammer behaves differently depending on the way

different users strike the test specimen with it. This is due to factors

such as the length and mass of the user's arm, among other things.

To calibrate the force gauge, an accelerometer is attached to a small

object of known mass, suspended as a pendulum. The accelerometer is

mounted on one side of the mass so that its sensitive axis is aligned with the

pendular motion. The mass is struck on the other side with the impactz(s)
hammer, and a transfer function of acceleration to force, H(s) - i--) is

computed. From Newton's Second Law it known that this quantity should

equal the reciprocal of the known mass (including the mass of the

accelerometer). If the same force gauge and accelerometer are to be used to

perform the experimental modal analysis, they may be calibrated

simultaneously this way with a single calibration constant calculated for the

problem. For this test, all measurements will be made relative to the AH72

accelerometer, so the force gauge will be calibrated with respect to that.

The response varies slightly with frequency, and an average value is

calculated for the frequency range of interest. The final values are shown in

Table G.3.

Table G.3. Calibration Constant for Force Gauge

H(s) Calibration Constant

(V/in/s 2) (V/lb)

0.002425 114.6 0.278
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Data Acguisition

Now that the system is calibrated it is possible to measure transfer

functions for several points along the beam. After acquiring the data on the

B&K 2032, it is transfered to the StarModal package for further processing.

This package curve fits the data and estimates the modal parameters of each

measurement. All measurements are taken with the actuator attached but

unpowered. All measurements are taken by striking the impact hammer at

the point where the actuator is attached, x3. The results of this for

measurements taken at the two points of interest are shown in Table G.4.

Table G.4. Modal Data From Experimental Measurements

Meas. Pt x5 X5 I III

Mode 1 2 1 2

Magnitude 3.98 121.9 18.95 144.83

Phase (Deg) 19.1 0.363 0.597 190.6

Damping (W) 6.44 2.04 6.66 2.03

fn (Hz) 6.24 34.7 6.25 34.7

DataAn~ysii
The final task remaining is to extract the mode shapes from the modal

data found above. The mode shapes are related to modal data by the

following relation (12: 195-198),
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I r rTJ lk - I Gjk(i wd)I 2%r (G.)

where

r is the rth mode shape of the structure

w is the natural frequency of the rth mode

r is the damping coefficient of the rth mode

Gjk is the magnitude of the transfer function at wr, measured

at point k, and excited at point j (sign is determined from phase

information)

The resulting normalized mode shapes are

S .203] 12 [ -0.839]

As a check on the reasonableness of this result, these numbers compare

favorably with those found from the 22 DOF finite-element model.

f [0.233] 2f
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Agoendix G: Mathematica Scri~t

Gainab _]:
Block[ (shat,rc,rcljrpljrp

2 )i
afem-IMO,0,1,0,0,O,O,OI' {O,0,0,1,0,0,O..01,

(4483.2,-11815,0,0,0,0,0,0});
'-fem-f 0,0,0,0,0,0,124 .6,-93.0411;
K-fk1,k2,k3,k4,k5,k6,k7,k8};
wn- 140. 046, 218. 7:3)
poles- {(-a+Sqrt[l-a a] I)*wn([]J,

(-a-Sqrt[l-a a] I)*wfl([l]],
(-b+,Sqrt[l-b b] I)*wflU2]],
(-b-Sqrt(1-b b] I)*wn((211.1;

shat-poles .5;
omega-(beta-shat[[l]J) (beta-shatU[2]J) (beta-shat[t3]]) (beta-shat[[4J]);

aipha-Det [beta IdentityMatrix [8]-afem+outer[Tilmes,bfem,kH);
alpha-Collect (alpha,beta];
omega-Collect [omega,beta];
quot-PolynomialQuotienfltIalpha, omega, beta);

quot-Collect[quot,beta],
rem-PolynomialRelaiflder [alpha, omega,beta];
rein-Collect (rem, beta];
rc-CoefficieiltList [quot,beta];
rpl-rcl [4]] rc[[3fl-rc[(5J] rc[(2]];
rp2-rpl (rcU[2]]hrc[t4J] rc[Cl]]);
rd-=Append [rc, rpl];
rc2-Append (rcl,rp2II;
remout=CoefficiefltList [rem,beta);
equal-Solve[Uremout--[0,0,0,O)l),(13,k4,k7,kBIJ;
equality-Simplify [equal];
equal2-Solve((remout--(0,0,Oil,(kS,k6,k7,k8)J;
equality2-Simplify (equal2J;

,red-(0,0, 121. 61,-79. 026 1;
Jred-(Kl,K2,K3,K4};
roots-Det [s IdentityMatrix (4] -ared+Outer [Times, bred, kred]];
sroots-Simplify [roots];
listroots-Coeffic1CfltList[SrootS, sI;
Expoles-(s-poles[[l]]) (s-poles([2]]) (s-polesf[3]]) (s-polesU[4]]);

ExpPoles-Coef ficientList [Expoles, s];

Solution-SolveE tlistroots--ExpPolesI , [Kl,K2,K3 ,K4 1]]
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