
A- -A248 007-

I-- C-

alllalglll....pall,'-..

"-. f D Tlr
cI

PROCEEDINGS OF THE TENTH ANUAL NATIONAL
CONFERENCE ON ADA TECM OLOGY

;" " " FEBRUARY 24-28,1992
: . " ";Sponsored By

,. ANCOST, INC.

With Participaion By.UNI-1-TED) STATES ARMY -

. " UNITED STATES NAVY

UNITED STATES AIR FORCEir
.. UNITED STATES MARINE CORPS

FEDERAL AVIATION ADMINISTRATION C)
O9 DEFENSE INFORMATION SYSTEMS AGENCY

ADA JOINT PROGRAM OFFICENATIONAL AERONAUTICS & SPACE ADMINISTRATIONA

Academic Host
MOREHOUSE COLLEGE

PROEEDINGSOF TNANUAL
NATIONAL CONFERENCE ON

ADA TECHNOLOGY

Web By: ~ 1f!: o-,uibZ't c"
AT COST INC.

With PWAaliipon B~yAel i1tyCs

UNITED STATES ARMY
UNITED STATES NAVY Ps toa

UNITED STATES MARINE CORPS A

UNITED STATES AIR FORCE i -
FEDERAL AVIATION ADMINISTRATION

DEFENSE INFORMATION SYSTEMS AGENCY
ADA JOINT PROGRAM OFFICE

NATIONAL AERONAUTICS & SPACE ADMINISTRATION

Academic Host:
MOREHOUSE COLLEGE

HYAT17 REGENCY-CRYSTAL CITY ARLINGTON, VA

February 24-28, 1992

Approved for Public Release: Distribution Unlimited

lI01h AWWAI. NAONAL CO 0EBIEON-ADA1 TECNOLOGY
CONFRENE CO rEE1990-1"91

tii Ce.. Chir ftkids Pmciedurn & BrLis Tedui Pog a ir- 1MI JAGK DAILS
MSVDEEIILG- _'IE 'o~ MfI DONILEHOGKIG- USAIMS

~Car AFWM CS Ft.B**a. VA 2XI60459
Ss~a* -CAUS667 DR R1Il1ARD KINEZ Adaf GA 33200

TusmcW Long Bu ch N 07764 us. C 1WELiRAWN US Air VbrcatDISua SMAN K GTE FW"~S~im- Fed tiuuwh.NJ07703-
TRW, "iNo~ Ciia Chuiy. VA2Z1-3851
FiabivVA 2 MS. IAM ITH

-. Ra IMI MIGUELA- CABRID. JR. DJhdSW O1
SucuBtheu Aa MA 0 U X 17 MU '.igAJPO

.MI STEVE ILAZAAIICH SkMd.a VA 22102-850 1Washii(. DC;20310

R~~ A 200MFL SIEVE LAZEROWICH MS.1LUANA CLEVER MR. CARRIGTON STEWART
Alsys Fbi~ hkouse cdTwhilongy NASA

huu~.PasIChi~Reskn. VA 290Miiboume. FL 32901 Houskon TX 77058
DR. M.SUSA1N RIIUN
Tb. P*Yqjbsmii 4misy ~ EM~o oCu DR. VERLY11)A DOBBS MS-. AXTOIINETE STUART

HMR.bu M ICHEL SA4PENTER Tdasoi orati~ri US Navy
-A"~wn _PA157 Telo stem"ws Goi Shrwstbay, N.1 07702 Washington. DC 20734-5072

Cordrembi Char afO 30 DR. GENEVIEVE M_ K(NIGHT MAJ. DAVID THOMPSON
MS.. JDITH It-GIES Exhibiion Co-Chaic Gopipin Stat oing. US Marine Corps

hilnunissM GLENN HUGHES Bihinmore. MID)2126 Wahgton.x DC 203800001
Ca*~MA 02138 Raiou

Bethesda. MD)20817-1007 CONFERENCE DIRECTOR-. US- KAY TREZZA
Acadeiriicoutfeach: MARJORIE Y. RISINGER CUP HO. CECOM. CSE
DR.ARTJONES Panels Char Rosenberg & Risiriger, Ic. Ft- Monmouth. NJ 07703-5000
Morehe6USeing DRL CHARLES I IJI Culme City. CA 9023
AlkirdaGA 30314 SAIC DR- GEORGE W. WAIS

McLean. VA 22102 ADVISORYIIMERS HO. CECO*J, CSE
Budget Comm~iee, Chaff- Fl. Monmouth. NJ 07703-5000

* MR. DONALD C. FUHR Tutorials ChairM TOM CROAK
Tuskegee Universily DRL M. SUSAN RICHMAN US Air Force MS. ALICE WONG
Tuiskeigee. AL 36088 The Pennsylvania Universky at Washington. DC 20330-5190 FAA

Harrisburg Washington. DC 20024
Middletown. PA 17057

PANELS AND TECHNICAL SESSIONS
Tuesday, February 25,1992 Thursday, February 27,1992

8:30 AM Opening Session 8:30 AM Reuse: Architecture
10:15 AMI Acquisition Panel 8:30 AM Real-Time
2:00 PM Reuse: Domain Analysis 8:30 AM Ada Applications in Aeronautics & Space Systems
2:00 PM Education Development at NASA Panel
2:00 PM Development Methods 10:30AM Ada 9X Panel
2.;00 PM Object Oriented 10:30 AM Reuse: General
4:00 PM DISA's Roles in the Center of Information Management 10:30 AM Artificial Intelligence

2:00 PM Futures Panel
Wednesday, February 26,1992

8:30 AM Opening Session Papers
9:00 AM CIM Panel

10:45 AM Reuse: Abstract Data Types The papers in this volume were printed directly from unedited
10:45 AM Management of Software Development reproducible copies prepared by the authors. Responsibility for
10:45 AM Development Methods 11 contents rests upon the author, and not the symposium committee
10:45 AM Student Papers or its members. After the symposium, all publication rights of each
2:15 PM Reuse: Reverse Engineering paper are reserved by their authors, and requests for republication
2:15 PM Metics of a paper should be addressed to the appropriate author. Abstract-
2:15 PM Software Process Improvement Panel ing is permitted, and it would be appreciated if the symposium is
4:00 PM Preparing Students for Industry Panel credited when abstracts or papers are republished. Requests for
4 00 PM Software Reuse Panel individual copies of papers should be addressed to the authors.
7:00 PM Reuse Business Issues Birds of a Feather

PROCEEDINGS
TENTH ANMAL NATIONAL COWERENC ON ADA TENOLOGY

Bou-m'd& Fot MIdmnosib

2nW Anuai Naboal Conlere on Ada TechNy. 1984--(No Ai Ailable)
3rd Annual iona Conference on Ada Tedology. 1985-$10.00
41h Annual Na§onal Coence on Ada Technobogy, 1986&-(Not Availale)
51h Anual Nlianal Coderence on Ada Technology. 1987--(Not Avaia*d)
61h Annal Nalional Corference on Ada Technoloy,. 1988-$20.00
71h Annual National Comrence on Ada Technology. 1989--$20.00
81h Annual National Conference on Ada Tecitlogy. 1990-$25.00
9W. Annual National Conderence on Ada Technology, 1991-$25.00
10th Annual National Conference on Ada Technology, 1992-$25-00

Extra Copies: 1-3 $25 each; next 7 $20 each; 11 & more $15 each.

Make check or bank draft payable in U.S. dollars to ANCOST and foward requests to:

Annual National Conference on Ada Technology
U.S. Anmy Communications-Electronics Command
ATTN: AMSEL-RD-SE-CRM (Ms. Kay Trezza)
Fort Monmouth, NJ 07703-5000

Telephone inquiries may be directed to Ms. Kay Trezza at 908/532-1 898.

Photocopies--Avalable at Depaitrent of Commerce. Information on prices and shipping charges should be requested from:

U.S. Department of Commerce
National Technical Information Service
Springfield, VA 22151
USA

Include title, year, and AD number

2nd Annual National Conference on Ada Technology, 1984-AD A142403
3rd Annual National Conference on Ada Technology, 1985-AD Al 64338
4th Annual National Conference on Ada Technology, 1986-AD Al 67802
5th Annual National Conference on Ada Technology, 1987-AD Al 78690
6th Annual National Conference on Ada Technology, 1988-AD Al 90936
7th Annual National Conference on Ada Technology, 1989-AD A217979
8th Annual National Conference on Ada Technology, 1990-AD A219777
9th Annual National Conference on Ada Technology, 1991-AD A233469

iii

WASHINGTON
HILTON & TOWERS
WASHINGTON, DC

1991 Ada Conference

j. t r

Hitt

A Conference
Highlightsur

Z7I

%

El~J

5:4-

ui ii

Jr

'I

x
ft - 'A

P £(~v
~ f1i

/ -~

~

~ *~

AjiSStJ

9th ANNUAL NATIONAL CONFERENCE ON ADA TECHNOLOGY

Leadership Awards

L4S
...... 1A

Than Io

MESSAGE FROM THE CONFERENCE CHAIRPERSON

On behalf of the participating
government agencies, the Conference
Committee, and Morehouse College,
welcome to the 10th Annual National
Conference on Ada Technology.
Committee members and their
supporting organizations are listed in
the proceedings and will be
recognized during the conference.
Morehouse College is this year's host
college -- a fitting role since they
helped found the conference.

This year's program takes a close look at initiatives and technologies impacting
software acquisition and development. Senior officers will discuss current
acquisition policies and procedures. Paul Strassmann, the services, and DISA
will offer their perspectives on the Corporate Information Management (CIM)
iaitiative. Software reuse, software process improvement, and the current status
of Ada9X will be explored. Representatives from Government, industry, and
academia will describe frankly what it takes to remain competitive. In addition,
there will be technical papers on a wide range of lessons learned and state of
technology topics and issues. Finally, an Exhibitors Showcase will give you a
chance to see first-hand what is being discussed in the sessions.

Education is vital to the conference. Tutorials are scheduled for managers,
implementors, and trainers. A major goal of this conference, however, is to help
academic institutions, particularly the Historically Black Colleges and
Universities (HBCUs), prepare software engineers and scientists for this nation's
work force. You will note many students in attendance and a special session for
student papers. Please take the time to introduce yourself to these special guests,
discuss your organization and the role you play, and help them any way you can.

In honor of the conference's 10th anniversary, the Founders Award will be
presented during the Opening Session. In addition, we welcome back guest
speakers whose on-going support typifies the services' commitment to this forum.
Finally, throughout the conference, we will pay special tribute to those individuals
and organizations who got it started and were instrumental in keeping it going.

The conference's success depends on continued support from many individual
companies, government agencies, and participating colleges. The Conference
Committee welcomes your comments and suggestions for improvements. Also,
we invite you to speak with a committee member or someone at the registration
desk if you would like to become more actively involved.

We are pleased you chose to attend and hope you will join us again next year. The
11th Annual Conference on Ada Technology (1993) will be held here at the Hyatt
Regency - Crystal City, Arlington, Virginia. The dates are 8-12 March 1993.

./ v- -

Dee Graumann

Iv

ANNUAL NATIONAL CONFERENCE ON ADA TECHNOLOGY

I A HISTORY OF SUCCESS|
This conference grew out of Equal Employment Opportunities (EEO) initiatives in the
United States Army's Center for Tactical Computer Systems (CENTACS) at Ft.
Monmouth, New Jersey. In the early 1980s, there simply were not enough technically
qualified minority applicants available to meet CENTACS' Affirmative Action
performance initiatives. CENTACS looked to academia and industry to help it grow
such capability. The goal was to develop a means of educating minority students to
become computer scientists and software engineers. Regional institutions that
participated in the Army's Summer Professors Program and Historically Black
Colleges and Universities (HBCUs) were contacted and encouraged to adapt their
curricula to these requirements. Also, industry was encouraged to enhance the schools'
capability to respond by donating equipment and tools or providing them at cost. At
the same time, the Communications-Electronics Command (CECOM) at Ft. Monmouth
was deeply involved with establishing Ada as the Army's standard software
development language. These two needs merged in 1982 when CECOM, SofTech, Inc.,
Morehouse College, and Hampton TTniversity agreed to co-sponsor the Southeastern
Ada Tutorial Conference in Atlanta, Georgia. The conference focused on training and
educating academia on the Ada language and software development requirements.
The results heartened all planners. Organizations and institutions other than the
HBCUs participated. Industry arrived with exhibits and resources to support the
institutions. Other government organizations participated fully in the proceedings.
Attendees from the software development community seemed eager for any
information they could get to accelerate their own understanding and ability to
respond to Ada requirements. An on-going conference was established to promote
software technology education. Ada was to be the focus until the language matured or
a new software-related technology priority was established. The following table traces
the conference's history:

I YEAR aT ACADEMIC HOST
1 1983 Atlanta, GA Morehbose College, Hampton University
2 1984 Hampton, VA Hampton University
3 1985 Houston, TX Prairie View A&M
4 1986 Atlanta, GA Atlanta University
5 1987 Arlington, VA Howard University
6 1988 Arlington, VA Norfolk State University, University of Maryland
7 1989 Atlantic City, NJ Monmouth College, Jersey State College, Cheyney University,

Penn State/ Harrisburg, Stockton State College
8 1990 Atlanta, GA Georgia Institute of Technology,

Morehouse College, Tuskegee University
9 1991 Washington, DC Coppin State College

10 1992 Arlington, VA Morehouse College

Today the conference is planned and executed by ANCOST, Inc., a board comprised of
thirty-one individuals from volunteering government, academia, and industry
organizations. Government participants include the U.S. Army, U.S. Air Force, U.S.
Navy, U.S. Marine Corps, DISA, NASA, and FAA. Ada is still an underlying concern,
but primarily as an enabling technology. Today's focus is on software acquisition and
development in an environment where priorities and expectations have changed
enormously since the early 1980s. In addition to maintaining the conference, the board
administers a program to involve students in the conference and supply software
development tools to academic institutions in need at little or no cost. We thank you
for, and encourage, your continuing participation and support in this endeavor.

V

ANNUAL NATIONAL CONFERENCE ON ADA TECHNOLOGY

I FOUNDERS DA Y RECOGNITION I
The Annual National Conference on Ada Technology has grown out of an Ada
Education Initiative for Historically Black Colleges and Universities to become a
major forum for software acquisition and development issues, policies, and
procedures and Ada education. Many people helped make this happen during the
past decade. This conference, however, pays special tribute to those who grew the
concept and were instrumental in making this annual conference, as well as the
special programs for colleges and universities, an on-going reality. Those people, as
well as the organizations that committed to sponsoring their participation at the
time, are listed below. We will be asking any who are in attendance to stand and be
recognized throughout the conference. If you were overlooked, piease accept our
apologizes and do stand and accept our recognition as well.

NAME ORGANIZATION
Christine Braun* SotTech, Inc.
Miguel Carrio* CENTACS
Mike Danko RCA
Don Fuhr* Tuskegee University
David Haratz CENTACS
Charlene Hayden GTE
Hugh Gloster Morehouse College
Art Jones * Morehouse College
Joe Kernan CENTACS
Genevieve Knight* Hampton University
Kurth Krause Intermetrics
Nico Lomuto SofTech, Inc.
Benjamin Martin Atlanta University
Edith W. Martin DOD(USDR&E)
Isabel Muennichow TRW
Mac Murray General Dynamics
Emmett Paige, Jr. U.S. Army
Robert Rechter TRW
Susan Richman* Penn State
John Roberts BDM
Jorge Rodriguez SofTech, Inc.
Ruth Rudolph CSC
Alan Salisbury U.S. Army
Jim Schell CENTACS
Lawrence Straw RCA
Ken Taormina Teledyne
Putnam Texel SofTech, Inc.
Dennis Turner CENTACS
Thomas Wheeler CENTACS
Bronel Whelchel** CENTACS
Martin Wolfe CENTACS
Paul Wolfgang CSC

• Currently members of ANCOST, Inc. board.
•* Deceased

vi

TABLE OF CONTENTS

Tuesday, February 25, 1992 2 =*DffPrr
EAhMi Homs 3M3 - 71)Opn

a.3 AmsAds =eni cratle) - L.L 1 ea* 0- A&l
Opeuinig Sm51M 0-30 - 10--= Cdemat and L P. Tam. Hxrfssd Uk8ue=.

wasp r2. cc-f

caeTOius Laca yel Fatfraf. Betecr U9
Acqisition Panel: 10.158= - 12 to 1

Moderator Wk .John KL Sletr Mecr Szcaze Eingwisg. US5 A.=Il~ Sr
CECOM.. FL Mnmoek, Ii 'A 74

Paneksts: MG Mlred . Iaetle. C=rurw GenerA. Lk~ild States 4.k3 Cke= C=4;& ame C~ea Cdes5zn in Aea - E- V~ Berr&
ArmyComxxica~mz-Ee~cks Cc~a:L cel c==tk erad Scaare Enr)eft -Tr G~-e .r UD

Mr. Amiael Perke Advanced Auto PRog=~nUa FAA Presentalionz 4-00 - 5:3"p

Washingtn. DC .---- e3SSXs bes fr. --- Ceuter fee hUra~ ae~er

Lunicheon: 12 Noon - 1:30pm _____________________

Speaker MajGen Albert X. Edmvonds, Deputy Drco for W ednesday, February 26, 1992
Defertse-Wde C4Sysfm,JoioStff.......6 Eh m :20 .O

Reuse: Domain Analysis: 2:00 - 3:30pm
Chairperson: Mr. Daniel Hocking. AIRLICS. A!tza. GA Opening Session: 8:30 - 9.00m

1.1 Validating the RAPID Center Devekqimeat LWietorcogy - E Keynote Speaker Mr, Paul A. Strassmann, Director of Dellense
Wright. USAISSDC, Fort Be~voir. VA- . 1 1 Information. OASD (C31)

1.2 Creating oni Organon: Intelligent Reuse of Soltware Assets and Corporate Information Management (CIM Panel: 00-I:0m...8
Domain Knowledge - J. Solderitsch. Valley Forge Laboratories. Voer2!or Dr. C Fischer. OASD-C31
UNISYS Defense Systems, Inc. Paoi. PA..................15 i

Reuse: Abstract Data Types: 10:45amn - 12:15pm
1.3 Organizing Software Around the Threads of Control. J. Cannella Chir~son. Dr. Verlynda Dobbs. Telois Corp.. Shiewszzy. NJ

P.P. Texel & Company, Ealontown. NJ 24
5.1 Engineering *Unibounded' Reusable Ada Components - J.

Education: 2:00 - 3:30pm HoliNgsworth and B. W. Weide. Ohio State Univers f
Chairperson: Mr. Donald C. Fuhr. Tuskegee Universi.ty. Tuskegee. (>j-inbus. OH .. 82

AL
5.2 Intelligent Abstract Data Types.- R- A. WVillis, Jr.. and L Morell,

2.1 Teaching Ada: Lessons Learned -D. Nailditch. Hughes Radar Hampton Unvhersity. Hampton. VA-.............................. 98
Systems Group. Los Angeles. CA 28

5.3 A Reusable Ada Mode! for Interprocess Communication -Mi. J.
2.2 An Issue to be Considered When Revising DOD.STD-2617A-R. O*Connor. Teledyne Brown Engineering, Huntsville, AL; and J.

Abbott, California State University. Los Angeles. W. Hooper. Marshall University. Huntington. W............. 110
CA..34

Management of Software Development; 10:45am - 12:15pm
2.3 Mathematics Placement Testing: A Student Project -D. S. Chairperson: Dr. George Watts. US Army CECOM. SED. Fort

Martin, University of Scranton. Scranton. PA.................... 42 Monmouth. NJ

Development Methods 1: 2-00 - 3:30pm 6.1 In the Trenches with Ada.- P. D. Bates. USAISSDCL- Fort Lee.
Chairperson: Ms. Susan Markel, TRW. Fairfax. VA VA; and B. Jeffcoat. Computer Sciences Corp. Prince George.

VA 116
3.1 Maintaining Transparency of Database Objects over Networks

in Ada Applications - E. Vasilescu, S. Salih, and J. Skinner, 6.2 Small Business Efforts to be Ada Competitive - How can the
Grumman Data Systems, Woodbury, NY 46 Little Guy get in the Game? - J. P. Hoolihan and L J. Corbett,

J, G Van Dyke and Associates. Columbia. MD............... 125

i

63 AapniI= tff 0e e cap=w aid maciva d eue Iwro ss sf d a Vc u 7o30- 11-lll
RW=V50 amtoi &ftxa' srjse - i st'asik UJ$

11MN010 11 11A50--:150 Thursday, February 27, 1992
7.2 ARtwm=r0.S =ee arm~ ne Vd eme. F~!F - ;L Uca eue Ackid ao1In~t

=6 L Heetm us A=: Cs-4CU S~fta.e Eci-ei .;F*

fWdet. VA

7a-u Rit liesa~ flto Ada. II.f Tf~ W all An lot~r cm a Genedoz UWc&*_=s Aodfte~e fmi
vef~g - a_ w. ff N.f47 A6e~b C~a ar-d Cccvcf SWste=r - K_ A. Va-4fisf a- P. L.

SkaimtPapws 10a-112:19-0 --- IS ASIM2kcf~e- . ~awn

ILsinche~m 12:30-2C L LZacs. IIt-.si; d LtaMe Ctr==i. LV E 47

Speker LTG Emseu P*-W Jr- US Amrwy 1RCI), Presiiderr, i.-3 a~~iSsa-e= Aef~aliori en Cie:e =cfmed~r~

GDCOeparafim -K Gro;. Saftae Ccp;Cms Lttel~c~xe 6eah R-2..J3

Rase Reverse Erximmirig 2:15 - 3:45ps Ada App~caftic in Aeronautics & Space Systems in Developuiert at

clhairscr Lf& Cnstme B&zxk Cone Ter-5=y Ceoaier. KASA Parea. SM0- 10. _____

Chrtpzlj. VA L fc .lS5..

&I C=1I TrasN~ Cid Code: ae=e. Rerorw and Ccr-evt it fAda P eal 7une 8S) - 10:00am
.1. LScan& .~a ~ eSsJabt~P.17 ~ 5tL Ls Leg==2 C~ertr. Floceda lrz.c c TCdZZ4=Y.

a.2 The Ec==r=~ cd Tratsta~r Spame S=e HJS R4 yF,- ~van% iA&_-F tdxDr~r
SotmaretoAdafor Reusl nSz*Ohd' yt I~ ~ as C c ~ a-A e~c.Drir
I EndgarAi ItervWrics. inc.. V-i--,o Sea-nk CA =1oddhleu Gerin

Rtthie.Rcc~v bZenatmm. caoey C -- - -- 74 11.2 1-aind~rg Priority lrnveis=o Prcoterns Araisrg Dunnii Elaboraio
a3 Ada Transitio Researen Project (A Seftware LMixlerniza=o in Acda Prorams -for ReaS-Tirre AppS=atis - L C. Lander a-d

S_ Mtra. Thomas: . V12tso School of Ernwerng - pe
Effort) - a. E Racice and RL Vxbbs. A1RLtVCS. C-ecra=Sinc n e coySae nes ofc Ne Ycdc.d
Aiarda. GA. and FL Wassrnuci. Fort Grem, GA..-__192 Se~ r ocjcg l~ rir-yo e cK

Metrics: 2:15 - 3:45pmn13 AaTsigOamz!a sus-A otClsNc 1 n
Chazrpersorn M. Carrington Stewast NASA. Lyndon B. Johnson 11 t Bder UaSln Aptrmyalo CEsue - .Fot t ots Nec NJ a..29

Space Center. Houston. TX IBde.UAryCC .SD.FiL'not N- 4

9.1 Design Metrics through a DIANA Based Tool - W. Zar- an D. Ada9X Panel: 10:30am -12 Noon ----------------------_2.............. 04

Zage. Ball Stae University. Munace. IN. and D. Gaurner and M.. Moderator Christine Anderson. U.S. DoD., Elgin AFB. FL
Meier. Magnavox Government and Industrial Elec.. Co.. Fort Rueilerl 03a -1:DNo

Wayn. IN................................C..a..p....o _ ... s...Jud..th..Gi2lCai.prsoneMs.etricGils. Inc.mtriCamInridge.ide.MA

9.2~ ~ ~ ~ ~ ~~ ~~EO Sysntn es ytm o Tcia optems Go-vroup. 12 1 A Reusable Ada Package for Scientific Dimensional Integrity - G.
Fowler. P. .ohnson, and B. Herleth. VIO ytmsGop Macpherson, Coiorado Springs. CO_..............305
Fort Sill. OK .. _.....__....203

9.3 So Much to Leasure - So Little Time to Measuredi. The Need 122 Ada Software Reuse in Support of Operation Desert Storm - R.

for Resource - Constrained Management Metrics Programs. -S. Brown. J_ Morgan. and J. Labhart, Plano. TX................ 319

Joier. ULS. resbur. NJ.........ot... 123 Development of Cost Estimation Prototypes - J. 0. Jenkins and
Joier.TEOS.Shewsur. N __.... 20A. J. C. Cowderoy. City University. Northampton Square.

Software Process Improvement Panel: 2:15 - 3:45pm 230 London.U.K........ __ -_.............. 323
Moderator Don O*Neill. Consultant Artificial Intelligence: 10:30am - 12:00 Noon......................... 331

Preparing Students for Industry Panel: 4:00 - 5:30pm............ 231 Chairperson- Dr- Richard Kuntz, Monmouth College. W. Long
Moderator: Dr. Genevieve Knight. Coppin State College Branch. NJ

Softwre Ruse Pnel:4:00 5:3pm 13..1..The. Development.. 2and31Applicationnt ndofplanai Adao ExpertExeSysteme
Sofetwar r Panel: 4:. Jonr :30pm.................23 Shell -V S Dobbs and C A Burnham. TELOS Systems Group,

Modraor. Dr HrryF.Joner TlosFeerl SstmsShrewsbury, NJ............... 332

vii

232 So1~~e O A Omterz UUW~w Pr S

Lee. ~g~ra PC502Ata Serm IA&"-ee .91-

Fa S*o*aA=tom= tbFrx Vdddie IVI - x. .L

Lunctom 12 3E.:m - I3u

Spaerc T rq Ste V~e, rffw* & Gm~ vwmn. Ger~cai

FUKSPAfei 2:00 -

Friday, February 28, 1992

ASET Woikshopw &-3a - 12 Moen~

Ada Tasking

Ada Generics

Ix

Founders' Award

...

James E. Schell II
Managing Director

The HiBisCUn Corporation

James E Schell, II is a Retired US Army Acquisition and Management of Weapon
Civilian and was Director of the Center for Systems, Wright-Patterson AFB, OH; and
Software Engineering, CECOM at Fort Federal Executive Institute, Management,
Monmouth, N.J. He also served as Director, Arlington, VA;
Center for Tactical Computer Systems,
CECOM, and program Manager, marine Mr. Schell has received numerous honors
Integrated Fire and Air Support System, throughout his distinguished career. These
Norden Systems, Inc., to name a few of his include, honorary Doctor of Laws degree
many responsibilities. His military from Morehouse College in 1984; Secretary
experience included 2 years in the US Army of the Army Award for Most Outstaring
Signal Corps. Mr. Schell was instrumental in Achievement in Equal Opportunity, 1984-85;
the founding of the Ada Technology Decorations for Meritorious Civilian Service,
Conference and has given his support since Dept. of the Army, 1986, 1988;
it inception. Commander's Award US Army Materiel

Command, for Outstanding Achievement in
Since his retirement as a U.S. Army Civilian, EEO, 1986; and Humanitarian Award,
Jim has served as President of SOPHSYS, National Association of Negro Business and
Inc. and is now Managing Director of The Professional Women's Clubs, Inc. 1986.
HiBisCUn Corp.

Mr. Schell is a member of Monmouth
James Schell received his BA in College Technology Advisory Council,
Math/Physics/French from Morehouse American Defense Preparedness Assn,
College, attended the MBA Program at Armed Forces Communications-Electronics
California State University Northridge, CA; Assn., Atlanta University Science Research
the Executive Development Center of Institute Advisory Board, American
Management, UC Berkeley; Brookings Association for the Advancement of Science
Institution, Executive Development; and the and the Planetary Society.
University of Southern California, Executive
Program. He attended the US Air Force He is married to the former Doris Elizabeth
School of Electronics, Keesler AFB, MS, Hunter and they have five adult children.
Radar; Ft. Monmouth Engineering Education
Center, Computer Engineering; Defense
Weapon Systems Management Center,

10th Annual Nahonal Conference on ADA Technology 1992

Keynote Speaker

Grady Booch
Director of Object-Oriented Products

Rational

Grady Booch has been with Rational, a C++, CLOS,and Ada. He has also published
company that provides advanced software more than 50 technical articles on object-
engineering solutions, since its foundation in oriented design and software engineering.
1980. Booch has lectured on these topics at

numerous conferences and workshops in the
Booch has pioneered the application of United States, Europe. and the Pacific Rim.
object-oriented design methods, applicable to
a variety of object-based and object-oriented Booch is a Distinguished Graduate of the
programming languages. His work centers United States Air Force Academy, where he
primarily around very complex software received his B. S. in Computer Science in
systems. In particular, his design methods 1977. While in the Air Force, Booch was
are being applied on systems as varied as assigned for three years at Vandenberg Air
the U.S. and European Space Station Force Base as a project director for various
projects, the FAA Advanced Automation computer systems in support of the Shuttle
System, and several large command and and MX programs, and then assigned for two
control systems in the U.S., Europe, and years on the faculty of the Computer Science
Japan. He has also been actively involved Department of the U.S. Air Force Academy.
in Ada research, environment He received an M.S.E.E. in Computer
implementation, and education since 1979. Engineering from the University of California
In 1983, Booch was given an award for at Santa Barbara in 1979.
distinguished service to the Ada program by
the Under Secretary of Defense. Booch has Booch is a member of the American
served as a Distinguished Reviewer for the Association for Artificial Intelligence, the
Ada 9X program. Association for Computing Machinery, the

Institute of Electrical and Electronic
Booch is the author of three books published Engineers, Computer Professionals for
by Benjamin/Cummings, including Software Social Responsibility, and the Classification
Engineering with Ada and Software Society of North America.
Components with Ada. As a derivative work
to his second book, Booch has developed
class libraries in Ada and C++, each
consisting of approximately 150,000 lines of
source code, which are currently in
production use in over 250 companies
worldwide. His third book, titled Object-
Oriented Design, describes his notation and
process of object-oriented design, together
with case studies in Smalltalk, Object Pascal,

S 10th Annual National Conference on ADA Technology 1992

Moderator
DoD Acquisition PanelpA

John H. Sintic
Director

Life Cycle Software Engineering Center
U.S. Army Communications-Electronics Command

Fort Monmouth, New Jersey

John H. Sintic assumed his current position Tactical Command and Control Systems
as Director, CECOM's Life Cycle Software (JITF/JINTCCS) from 1978 to 1983. In this
Engineering Center on 1 April, 1988. The position, he directed engineers and computer
CECOM LCSEC is the single CECOM focal scientists (military and civilian) in the
point for providing software life cycle Research Development and Engineering for
management, software engineering and Joint Service Communications Systems. He
software support to 189 Mission Critical served as project manager for the
Defense Systems (MCDSs) used in strategic development of the Joint Interface Test
and tactical Battlefield Functional Areas System(JITS)- the world's largest distributed
(BFAs) supported by CECOM. The CECOM command deployed to eleven Joint
LCSEC is also the Army/Army Materiel Service//Agency test sites.
Command focal point for Computer
Resource Management, Software Mr. Sintic was the recipient of the DA
Technology, Ada Technology, Joint/Army Achievement medal for Civilian Service in
Interoperability Testing and Software Quality 1989 as well as the AMC Commander's
and Productivity. Award for the 10 Outstanding AMC

personnel of the Year in 1990.
Mr. Sintic has been with the Center since Mr. Sintic has a Bachelor of Science Degree
December 1983. Prior to his present in Computer Science. He is involved in
assignment, he served as Deputy Director of many civic functions and is currently in his
the Center. He also served as Associate seventh year on the Ocean Township Board
Director, Computer Resource Management of Education. He is also a member of the
and Software Engineering Support, CECOM Monmouth College High Technology
CSE. Mr. Sintic has over 27 years of Advisory Board.
experience in the field of software and
computer technology. Mr. Sintic and his wife, Trudy, have four

sons - John, Drake, Todd and Jimmy. They
Before joining the Center, Mr. Sintic was reside in Oakhurst New Jersey.
chief of the Engineering Division Joint
Interface Test Force/Joint Interoperability

10th Annual National Conference on ADA Technology 1992 3

DoD Acquisition Panelq- U

MG Alfred J. Mallette
Commanding General

US Army Communications-Electronics Command
Ft. Monmouth, New Jersey

Major General Al Mallette was born in Green Major General Mallette served in a variety of
Bay, Wisconsin. Upon completion of the important career building assignments
Reserve Officers Training Corps curriculum preparatory to his most recent duties. He
at St. Norbert in 1961, he was commissioned was Chief, Program Section, Information
a second lieutenant and awarded Bachelor Systems Division, Allied Forces Central
of Science degrees in Physics and Europe, Brunssum, the Netherlands; he was
Mathematics. He also holds a Master of the S-3 and later Executive Officer, 121st
Science in Operations and Research Signal Battalion, 1st Infantry Division, Fort
Analysis from Ohio State University. His Riley; and served as Chief, Plans and
military education includes completion of the Policies Development Division, U.S. Army
Signal Officer Basic Course, the Infantry Support Command, as well as serving in the
Advanced Course, the U.S. Army Command Office of the Deputy Chief of Staff for
and General Staff College and the Industrial Logistics/Criminal Investigation Division, U.S.
College of the Armed Forces. Military Assistance Command, Vietnam.

Major General Mallette has held a variey of Awards and decorations which Major
important command and staff positions, General Mallette has received include the
culminating in his current assignment as Legion of Merit (with two Oak Leaf Clusters);
Commander, U.S. Army Communications- the Bronze Star Medal (with Oak Leaf
Electronics Command, Ft. Monmouth. Other Cluster); the Meritorious Service Medal (with
key assignments held recently include: Oak Leaf Cluster). Major General Mallette is
Commanding General, 5th Signal also authorized to wear the Senior
Command/Deputy Chief of Staff, Information Parachutist Badge.
Management, USAREUR; Deputy Director,
Plans, Programs and Systems Directorate Major General Mallette and his wife, Nancy,
(DISC4), Office of the Secretary of the Army, have three children: Scott, Randy and
Washington, DC; Deputy Commanding Nicole.
General, U.S. Army Signal School, Fort
Gordon; Commander, 93rd Signal Brigade,
USAREUR; and Commader 8th Signal
Battalion, USAREUR.

4 10th Annual National Conference on ADA Technology 1992

DoD Acquisition Panel

Michael Perie
Advanced Automation Program Manager

FAA

Mike Perie is currently the Program Manager for
the Advanced Automation System, Federal
Aviation Administration, Washington, DC. The
Advanced Automation System is a $4.5 billion
program which will be the world's largest real-
time air traffic control automation system ever
developed with a system life of 20-30 years.
AAS will upgrade the nation's air traffic control
and air navigation system. The AAS will
enhance flight safety and increase flight
efficiency by providing more direct and conflict-
free routes which will reduce congestion and
delays. The AAS represents a significant step
to the future.

Mr. Perie has a Bachelor of Science Degree in
Electronic Engineering from the University of
Cincinnati. He is also a member of the Senior
Executive Service. Mr. Perie has received a
number of awards and citations for his
outstanding leadership and dedication to the
AAS program.

Mr. Perie was born in Hillsboro, Ohio. He is
married and has two children - a son and
daughter.

10th Annual National Conference on ADA Technology 1992 5

Luncheon Speaker

MajGen Albert J. Edmonds
Deputy Director for Defense-Wide C4 Systems

U.S. Air Forc:e
Washington D.C.

General Edmonds received a Bachelor of General Edmonds then was assigned to
Science degree in chemistry from Morris Brown Headquarters Tactical Air Commanid, Langley Air
College and a Master of Arts degree in Force Base, as Assistant Deputy Chief of Staff
counseling psychology from Hampton Institute. for Communications and Electronics, and Vice
He entered the Air Force in 1964 and was Commander, Tactical Communications Division.
commissioned upon graduation from Officer In January 1985 he became Deputy Chief of Staff
Training School, Lackland Air Force Base, Texas for Communications-Computer Systems, Tactical
and graduated from Air War College as a Air Command Headquarters, and Commander,
distinguished graduate. He completed the Tactica! Communications Division, Air Force
National Security Program for senior officials at Communications Command, Langley, In July
Harvard University in 1987. 1988 he became Director of Command and

Control, Communications and Computer Systems
The General was assigned to Air Force Directorate, U.S. Central Command, MacDill Air
Headquarters in May 1973. As an Action Officer Force Base, FL. The command was responsible
in the Directorate of Command, Control and for U.S. military and security interests in a 19
Communications, he was responsible for country area in the Persian Gulf, Horn of Africa
managing Air Communications programs in the and Southwest Asia. From May 1989 until
Continental United States, Alaska, Canada, South October 1990 he was Assistant Chief of Staff,
America, Greenland and Iceland. In June of Systems for Command, Control, Communications
1975 the General was assigned to the Defense and Computers, Air Force headquarters. He
Communications Agency and headed the assumed his present position in November 1990.
Commercial Communications Policy Office. His military awards and decorations include the
General Edmonds was assigned to Andersen Air Defense Distinguished Service Medal, Legion of
Force Base, Guam in 1977, as Director of Merit, Meritorious Service Medal with two oak leaf
Communications-Electronice for Strategic Air clusters, and Air Force Commendation Medal
Command's 3rd Air Division and as commander with three oak leaf clusters.
of the 27th communications Squadron.

The general was named in Outstanding Young
After completing Air War college in June 1980, Men of America in 1973. He is a member of
he returned to Air Force headquarter2 as Chief of Kappa Delta Pi Honor Society and is a life
the Joint Matters Group, Directorate of member of the Armed Forces Communications
Command, Control and Telecommunications, and Electronics Association. In May 1990 he
Office of the Deputy Chief of Staff Plans and received an honorary doctor of science degree
Operations. From June 1, 1983 to June 14, 1983 from Morris Brown College.
he served as Director of Plans and Programs for
the Assistant Chief of Staff for Information General Edmonds is married to the former
Systems. Jacquelyn Y. McDaniel of Biloxi, Miss. They

have three daughters: Gia, Sheri and Alicia.

6 10th Annual National Conference on ADA Tecnnology 1992

Keynote Speaker

Paul A. Strassmann
Director of Defense Information

OASD (C31)

Paul A. Strassmann's career includes service as businesses. Prior to joining Xerox, Strassmann
chief information systems executive and vice- held the job of Corporate Information Officer for
president of strategic planning. Since his the General Foods Corporation and afterwards
retirement in 1985 he was an author, lecturer, for the Kraft Corporation from 1960 through 1969.
consultant and university professor until his His involvement with computers dates to 1954
appointment in March 1991 to the position of when he designed a method for scheduling toll
Director of Defense Information, as a Principal collection personnel on the basis of punch card
Deputy Assistant Secretary of Defense toll receipts. He earned an engineering degreee
(Comrnand,Control,Communications and from the Cooper Union, New York, and a
Intelligence). He has responsibility for managing master's degree in industrial management from
the the corporate information management (CIM) MIT in Cambridge, MA. He is author of over 80
program across the Departmerc of Defense. articles on information management and

information worker productivity. His 1985 book
He was President of Strassmann, Inc., a Information Payoff-The Transformation of Work in
management consulting firm. An author and the Electronic Age has attracted worldwide
lecturer, he was also professor of management of attention and is appearing in Japanese, Russian,
information technology at the Imperial College, Italian and Brazilian translations. His most recent
London, a member of the faculty of the Electronic book, The Business Value of Computers, shows
University, The International School of the results ot his research on the relation
Information Management, and professor at the between information technology and profitability
Graduate School of Business, University of of firms.
Connecticut.

Strassmann was chairman of the committee on
Strassmann joined Xerox in 1969 as director of information workers for the White House
administration and information systems with conference on productivity and served on the
worldwide responsibility for all internal Xerox Department of Defense Federal Advisory Board
computer activities. From 1972 to 1976 he for Information Management. He is a life
served as general manager of operations, member of the Data Processing Management
telecommunications networks, administrative Association, fellow of the British Computer
services, software development and management Society, and senior member of he IEEE. He
c,nsulting services. From 1976 to 1977 he was authored the code of conduct and of professional
-orpc:ate director responsible ;or worldwide practices for the certificate in data processing.
comp ,tor telecommunications an.1 administrative
fun .*ons. Afterwards he served as vice Strassmann was a member of a guerilla
pr,.siuent o', strategic plannin- for the commando group of the Czechoslavak Army
Informati-,.i Products Group, 'Nith responsibility engaged in eight months of combat ending in
for strategic investments and product plans March 1945.
involving the corporat;on's worldwide electronic

10th Annual National Conference on ADA Technology 1992 7

Luncheon Speaker

LTG Emmett Paige, Jr.
U.S. Army (RET)

Lieutenant General Emmett Paige Jr. retired In 1981 he assumed command of the U.S.
from the U.S. Army on August 1, 1988 after Army Electronics R and D Command, at the
almost 41 years of active service. He Harry Diamond laboratory, Adelphi,
enlisted in the Army in August 1947 as a Maryland. In 1984 he was promoted to
Private at the age of 16, dropping out of high Lieutenant General and assumed command
school to do so. of the U.S. Army Information Systems

Command where he served until his
Throughout his military career, he was in the retirement in 1988.
Communications-Electronics business after
completion of basic training. He completed General Paige is a graduate of the U.S.Army
Signal Corps Officers Candidate School in War College. He has been honored as a
July 1952 receiving his commission as a 2nd "Distinguished Alumnus" of both the
Lieutenant. University of Maryland, University College,

where he obtained his Bachelors degree,
One of his most notable assignments was and Penn State where he received his
Project Manager for the Integrated Wideband Masters degree. He was awarded an
Communications System, Southeast Asia honorary Doctor of Law from Tougaloo
during the Vietnam conflict. It was the College, Tougaloo, MS.
largest communications system ever installed
in a combat theater covering all of South He is the holder of the Army Commendation
Vietnam and Thailand. He later commanded Medal, the Meritorious Service Medal, the
the 361st Signal Battalion in Vietnam. He Bronze Star for Meritorious Service in
served two tours with the Defense Vietnam, the legion of Merit with two oak leaf
Communications Agency. clusters (3 awards), and the Distinguished

Service Medal with one oak leaf cluster (2
As a Colonel he commanded the 11th Signal awards). All of these are awards for
Group at Fort Huachuca, Arizona. In 1976 outstanding service. He was selected as the
he was selected for promotion to Brigadier Chief Information Officer of the Year in 1987
General and Command of the U.S. Army by Information Week Magazine. He was
Communications-Electronics Engineering and selected as the coveted Distinguished
Installation Agency at Fort Huachuca, AZ Information Sciences Award (DISA) winner
and concurrently the U.S. Army by DPMA in 1988 for outstanding service to
Communications Systems Agency at Fort advancements in the field of Information
Monmouth, New Jersey. Sciences.

In 1979 he was promoted to Major General LTG Paige is now the President and COO of
and assumed command of the U.S. Army OAO Corporation, an Aerospace and
Communications Research and development Information Services company, with
Command at Fort Monmouth, New Jersey. Headquarters at Greenbelt, Maryland.

8 10th Annual National Conference on ADA Technology 1992

Keynote Speaker

Dr. Terry A. Straeter
Corporate Vice President and General Manager

General Dynamics Electronics Division

Dr. Straeter has been with General Before joining General Dynamics, Dr.
Dynamics since March of 1979. He Straeter held a series of positions at
began as Director of Technical Software NASA Langley Research Center where
and was responsible for defining the his responsibilities included optimization,
General Dynamics software technology air traffic control, digital flight controls
program. He then became Vice and avionics, embedded software
President and Director at General development, software technology,
Dynamics Data Systems Division, software and general management.
Western Center where he was
responsible for all data processing and Dr. Straeter received his PhD in Applied
computer support for 4 General Math from North Carolina State
Dynamics Divisions. He then moved to University in 1971, his M.A. in Math from
the Electronics Division where he was William & Mary and his A.B. in Math from
Vice President and Programs Director, William Jewell College.
Tactical Systems from June 1983 until
January 1987, Division Vice President He is a member of AIAA and served on
and Assistant General Manager from the technical committee on computer
January 1987 until February 1991. In Systems from 1977 until 1980. He is also
February 1991 he assumed the position a member of IEEE, where he was
he now holds. This division designs, General Chair of the International
develops and manufacturers military Conference on Software Engineering in
electronic systems to support tactical and 1984. He has produced more than 30
strategic weapons fielded by domestic publications in technical journals, and
and international customers. The major has refereed conferences.
products are comprised of avionics
automated test systems, digital imagery
workstations and secure communications
equipment. These systems supported
the highly successful Desert Storm
activities.

10th Annual National Conference on ADA Technology 1992 9

DoD AQUISITION PANEL

Moderator: Mr. John H. Sintic, Director, Software Engineering, US Army
CECOM

Panelists: MG Alfred J. Mallette, Commanding General, United States
Army Communications-Electronics Command
Mr. Michael Perie, Advanced Auto Program Manager, FAA

10 10th Annual National Conference on ADA Technology 1992

VALIDATING THE ARMY REUSE CENTER DEVELOPMENT METHODOLOGY

Elena Wright

U.S. Army Information Systems Software Development Center - Washington
Attention: ASQB-IWS-R (STOP H-4)
Fort Belvoir, Virginia 22060-5456

DSN 356-9071 Commercial (703) 285-9071

components into the Reuse Center
ABSTRACT Library (RCL); operating the RCL

tool with facilities for
This paper presents a brief classifying, storing, retrieving,
description of the mission, and maintaining reusable components;
functions, and services of the Army populating the RCL with high-quality
Reuse Center, and a specific example components needed for software
of how one service product of the systems (design, implementation,
center was applied to a specific etc.); training all user levels from
system. This system was recreated executive to programmer in the
using an underlying discipline of efficient use of the RCL; preparing
the Army Reuse Center domain and gathering reuse metrics;
analysis, the object oriented providing telephonic customer
analysis and design methodologies, information services; and training,
These methodologies were validated performing, and advising on domain
in a COBOL system redesigned and analysis and utilizing reusable
implemented in Ada. The system products. The Army Reuse Center at
chosen for this project was the Software Development Center -
Army's Retired Army personnel System Washington (SDC-W) is the designated
(RAPS). Defense Information System Agency

(DISA) Corporate Information
INTRODUCTION Management (CIM) site for reuse

support for all Army software
The mission of the Army Reuse Center developments.
conforms to the Department of
Defense (DoD) objectives for the use DOMAIN ANALYSIS, AS WELL AS OBJECT-
of the Ada programming language and ORIENTED SYSTEM ANALYSIS AND DESIGN
the development of adaptable,
reusable, reliable, maintainable, Domain analysis, as well as object
high quality, and cost-effective oriented system analysis and design
systems. The center facilitates methods, expedites the
these objectives by administering identification of reuse
and providing an operational opportunities early in the software
comprehensive reuse program focused development life cycle. The Army
on the needs of Army Management Reuse Center object oriented systems
Information Systems (MIS) but whose analysis methodology combines the
tenets can be applied to all best of multiple methods and
domains, essentially consists of three

phases; gathering system's
Center services include implementing information, systems analysis,
policies and procedures to acquire, product/model/analysis and
prepare, and certify reusable knowledge/taxonomy generation.
components to Army Reuse Center
standards in order to install these

10th Annual Nafional Conference on ADA Technology 1992 11

METHODOLGY PHASES batch and potentially interactive
report generator system that

Based on the information gathered, provides the name, grade, address,
the domain is defined with the and other basic personnel data on
domain boundaries, and the all retired Amy personnel residing
interfaces and scope (baiting within an installation's
conditions), identified. During the geographical area of responsibility.
analysis phase, domain-specific Other personnel information includes
information is gathered by examining data on the widovs/vidovers and
written material and interviewing dts of deceased retired
domain experts. Object personnel, and vidows/vidowers and
decomposition identifies objects the dependents of individuals who died
system needs in order to perform its while on active duty who wre
responsibilities. Object eligible for retirement. The
characteristics and functionalities reports generated by RAPS are in the
are defined within each object, form of mailing labels or rosters.
Subsequently, the objects are The report and personnel selection
identified as either classes or criteria are based on control cards
subclasses. The classes define the read in batch mode.
common features of the objects; the
subclasses define features specific TASK REQUIRJMENTS
to that object. The relationship
between objects may be represented R m ts for the RAPS redesign
as both generalization- included building for reuse at the
specialization and whole-part system and component levels,
structures. The interactions identifying and using available
between objects are represented with reuse components, taking advantage
messages between the objects. The of the reuse and object oriented
domain model and taxonomy summarizes capabilities offered by the Ada
the information acquired from the programming language, and
above analysis. This stage demonstrating portability of a
culminates in codifying the system developed on a VAX/VMS
knowledge gained in the analysis environment targeting to a
phase, e. g., identified and UNIX/Sperry environment. Personnel
documented data sources, data sinks, assigned to support this task
and data transformation processes. included one RAPS systems analyst
The product generation phases and one Army Reuse Center software
produces the domain model, reusable engineer.
product encapsulations (i.e.,
recurring domain abstractions), TASK IMPLEMENTATION
recommended classification scheme
terms, and a list of recommended The new Ada system was developed
candidate reusable components which with a combination of four newly
are all part of the Object Oriented developed independent, self-
Analysis product. contained components plus the

system's driver adhering to Army
CONCEPTS VALIDATION WITH THE RETIRED Reuse Center standards and four
ARMY PERSONNEL SYSTEM (RAPS) Reuse Center Reusable Software

Components (RSC) extracted from the
The Army Reuse Center tested the Reuse Center Library (RCL) and
validity of its domain analysis, integrated into the system design
object oriented analysis, and design implementation. A portable test
methods on the Army's Retired Army suite for each of the four
Personnel System (RAPS). RAPS is a components was also developed to

12 10th Annual Nofionol Conference on ADA Technology 1992

validate the system under different and unit testing phases required
enviroments. the resulting system only 22 days instead of the 57.06
is a successfully ported, highly days that would have been needed
odular, 10,000 lines of Ada program without reuse. The integration and
(including coments and blank lines) system testing phase required 15
that can be reused as a complete days. From a percentile viewpoint,
system or as individual components. 48.70 of total design time was
Other products of this effort are: saved; 63.9% of total coding time
(1) An object-oriented analysis was saved; and 59.8 of total unit
document which included: an overview testing time was saved. Overall,
of the domain analysis, information considering all the development
on how requirements analysis was phases (analysis, design, coding,
perfoNed, descriptions of the. unit testing and system testing),
analysis model, objects, and reuse the total time saved was 37.4%.
potential within the system, and a This saving is a direct result of
system specification; (2) A generic not having to design and code the
object-oriented analysis model; (3) four components extracted from the
A design model based on Buhr library. System integration was
notation; (4) Reuse metrics to simplified because the extracted
reflect time savings; and (5) a components were developed with reuse
mapping between analysis and system in mind and had minimal and
requirements. identified environmental

dependencies.
VALIDATED CONCEPTS

CONCLUSIONS
The metrics collected throughout the
life-cycle proved both the validity The time saved from reuse and using
of the methodology and the time the Army Reuse Center domain
saved from reusing certified analysis, object oriented analysis,
components. The two analysts and design methodologies is only the
working on the project were beginning. The Ada RAPS system, as
instructed to track and assign each a whole, as well as the four newly
work-hour to the appropriate life- developed components, have completed
cycle phase. The largest savings the Army Reuse Center certification
were found in the object-oriented process and are installed in the
design phase and the Ada library. This system and its
implementation and unit testing components are available for all
phase because of the reuse of design Army Reuse Center customers now. As
and implementation components and each part is reused in new
test suites. generations of software, in multiple

systems, savings will multiply.
Since RAPS is a small sub-domain of Through reuse, software system
a Management Information System development in DoD is following the
(MIS) personnel system domain, the lead of American manufacturing. We
scope of the domain analysis was have left the age of planned
restricted from the start. The obsolescence and can now produce the
domain analysis required nine days building blocks needed for aell-
and the object oriented analysis built, high quality, reusable
phase required 33 days. The object systems amenable to the open systems
oriented design phase consumed 36.25 environment and serving the nation
days in comparison with the 70 days well into the next century.
that would have been required
without access to good reusable
components. The Ada implementation

10th Annual Notional Conference on ADA Technology 1992 13

F1

Vitaletti, Willian and Ernesto
Guerieri, Ph.D. Domain Analysis
Within the ISEC RAPID Center.
Proceedings of the Eighth Annual
National Conference on Ada
Technology: 1990.

ABOVE THE AUTHOR

Elena Wright is Chief , Domain
Engineering Branch, Army Reuse
Center. She holds a BA from the
University of the State of New York
and a MS from Strayer College. Ms.
Wright is a 1985 graduate of the
U.S. Army's computer programmer
intern program. She has a special
interest in the practical
application of computer science
theory to real-world problems.
Other interests include Western
philosophy, religion, and amateur
art.

14 10th Annual National Conference on ADA Technology 1992

Creating an Organon -
Intelligent Reuse of Software Assets and Domain Knowledge*

James Solderitsch
Paramax Systems Corporation

Paoli, PA 19 3 01-0517 t

Abstract application domains can provide a vital basis for tech-
nology to support reuse. Such domain models them-

This paper briefly sketches the state-of-practice in the selves require their own enabling technology so that

production of large complex systems. Methods and they can effectively infuse the application development

techniques to produce large systems can be viewed on process. Paramax believes that a knowledge-based

a continuum ranging from pure manual construction approach to the creation of domain models can pro-

with no tool based support to a highly evolved envi- vide a successful strategy for moving the engineering

ronment that greatly aids in the engineering of these of software systems further along an important matu-

systems. An organon represents one view of such an rity scale or continuum.

environment. The paper describes work underway at Techniques for the engineering of software systems can
Paramax Systems Corporation, a Unisys Company, be viewed on a continuum ranging from the produc-
partially supported by the DARPA/SISTO STARS tion of a system via ad hoc custom design and hand-
Program, to advance the state-of-practice on the path written code to the automatic generation of a system
to such an organon. from a high-level specification in a domain-specific lan-

guage. In the past, knowledge gained from system de-
velopment and deployment has been left in the heads

1 Introduction of expert software developers, and has not been ex-

tracted and collected for corporate reuse. Thus there
Paramax and its affiliates participating in the STARS' has been little movement on the maturity continuum.
(Software Technology for Adaptable, Reliable Sys- The development and application of domain models
tems) program are keenly interested in understanding, can accelerate this movement and thereby boost sys-
developing (or acquiring) and applying technology to tem quality and system development productivity.
support the development of complex software systems
based on a reuse perspective. The word reuse is often
interpreted too strictly to mean the reuse of code com- 2 A Domain-Specific Approach
ponents, whether informally through ad hoc reuse by
a programmer remembering and reusing a previously
composed code fragment, or more formally by finding At Paramax, we believe that the key to dramatic im-

and retrieving code from a code library. provements in productivity rests in effective reuse of
application domain knowledge and not just the reuse

In the remainder of this paper, reuse should be under- of code and other artifacts of system development. In
stood in a larger context to mean the reuse of knowl- this context, a domain is comprised of a set of ex-

edge about the complex application areas (or domains) istingtand a nticipated software appications that pro-

to be served by software systems for these areas. En- vide a common function or similar capability. Domains

gineering m odels that capture knowledge about these canebe further fsub-divided intolhorizontaliand vertica
can be further sub-divided into horizontal and vertical

*Parts of this paper are adapted from a position paper ac- domains. A horizontal domain is one (e.g. common
cepted for the Workshop on Domain Modeling for Software En- data structure definitions and operations) whose con-
gineering held at ICSE-13, Austin TX, 13.May-1991 tents intersect with vertical domains oriented around

tE-mail: jjs@prc.unisys.com, or by phone at 215-648.2831
1Paramax is supported in STARS under contract number: a company's line-of-business (LOB) or specialized ap-

F19628-88-D.0031. plications area.

I Oth Annual National Corference on ADA Technology 1992 15

History has shown that many of the past success sto- the structure of this life-cycle is still being debated, its
ries for reuse have come within certain well-defined do- characteristics are more cyclical (or spiral) rather than
mains (e.g. mathematics routines). Paramax believes linear (such as the typical waterfall life-cycle model).
that the impact and successful application of a reuse-
based approach to software design and production will
be greatest for (vertical) domain-specific libraries. For
example, a greater proportion of a typical application Domains that possess a high degree of cohesiveness
can be built from parts withdrawn from such a library and controlled variability can be served by a soft-
There is also a higher expectation that systems built ware generation approach whereby new application
from such parts will have a clcser functional fit and software can be generated from high-level specifica-
be more efficient. The capability exists for reusable tions written in specially constructed domain-specificsub-systems to be created via part selection and con- languages. Alternatively, these specifications can be
igumtion, obtained from the manipulation of a graphical repre-sentation of domain-specific artifacts. Such systems

There are real costs in establishing such a library and as User Interface Management Systems (UIMS) are a
not every domain is mature and stable enough to sup- case in point.
port such an intensive reuse-based approach. Domain
analysis [PD87] to support such libraries can be hard,
and is certainly expensive and time-consuming. How-
ever, domain analysis is a fundamental prerequisite for Domains which are less amenable to software gener-
a reuse environment to support the extended life-cycle ation can be supported through a "knowledge base".
of an application domain. Such support is analogous to A knowledge base captures important facets and pro-
the way that some software engineering environments cesses that characterize software systems previously
support the traditional waterfall life-cycle. The goal developed for the domain. Such knowledge bases can
of domain analysis is to provide fundamental support be created and evolved while such systems are main-
for the organized growth and development of software tained or reverse-engineered as a system undergoes
applications for the domain, both from the consuming more radical changes. If the domain model is suffi-
side and producing side of the software equation. ciently mature so that it takes the form of a generic

system architecture, it may be possible to support the
To achieve this level of support, system/software de- (semi-)automated construction of systems via a guided
velopment techniques and support environments must walk-through of the modeled architecture. Selecting
be re-oriented to directly support the creation, evolu- parameter values during the walk-through can special-
tion and usage of domain knowledge. System develop- ize system components or templates which are stored
ers must work from a common model of the applica- in relation to the architecture. In a less mature do-
tion domain so that specific project requirements can main, the human designer would need to operate more
be tailored based on generic knowledge gained from autonomously, relying on the availability of compo-
similar programs in the domain. We recognize that nents and their hand-taiorability.
distinct activities within the system development pro-
cess need to establish application domain models and
reusable components. Examples of such activities in-
clude: A crucial component of a model based approach to

" requirements elicitation, refinement and verifica- software engineering is providing a machine readable
tion and processable representation of the model that is ca-

pable of keeping up with the dynamic nature of the
* automated program generation software systems whose construction the models must

" reverse engineering ultimately support. To have maximal effect, the model
and a family of tools that are empowered to process

The modeling process can serve to identify not just and interpret the model should be blended together
potential reusable components but also opportunities into a domain specific environment that serves to in-
for application-specific common interfaces or proto- tegrate and amplify the support and services provided
cols, and application parts generators. In fact, the by the model and tools. Moreover, the model, the
interplay between domain analysis/modeling and sys- representation of the model and any tools which oper-
tem development defines a synergistic relationship that ate on the model must all be tailored to support the
extends across an extended domain life-cycle. While operational goals implicit in the environment.

16 10th Annual Nafional Conference on ADA Technology 1992

3 The Organon Concept 3.1 The Constructive Approach

Paramax, through its Reusability Library Framework 2 In its current form, the RLF promotes the use of a

(RLF [MC891) project and related efforts, is work- visible domain model in the creation and operation

ing toward the development of an organon. An of reuse libraries for particular application domains.

organon[Sim88] is the culmination of RLF and related As such, the RLF explicitly addresses the construc-

technologies evolved and applied to support the ef- tion point-of-view. The domain model, captured by
ficient, cost-effective production of software systems. the RLF in terms of its semantic network and infer-

Rom the dictionary, an organon is defined to be encing subsystems, becomes a palpable part of the in-
terface to the library system and can educate novice

an instrument for acquiring knowledge; library users and accelerate the productivity of expert
specifically, a body of methodological doc- users. The library, through its dynamic representa-
trine comprising principles for scientific and tion of knowledge about the domain, becomes much
philosophical procedure and investigation more than a static collection of components. RLF fea-

tures and capabilities are being enhanced over time to
An organon will support library content evolution (e.g., replace fam-

" be an interactive and evolving public storehouse ily of part variants with a suitable generator); auto-
of expertise and componentry serving particular matic maintenance of library content and persistent
ofp tise adom enty suser models; and, automatic solicitation for new coin-
application doma-ins; ponents to cover gaps in library coverage.

" effectively support wide-sp, trum reuse including Moreover, the RLF is able to provide support for the
requirements, design and test cases; computer-aided construction of software systems from

" support a number of different points-of-view on parts present in the library. Such parts may be Ada
system engineering including those of construc- source files, source template files, test cases, design di-
tion and generation; and, agrams or even requirements. Inferencing techniques

" be a central repository of domain expertise that can be applied to help decide which parts are needed
effectively combines people, plus emerging and for a system under construction and to determine how
maturing methods, plus supporting technology, the parts should be tailored or adapted. If the kind

of adaptation is parameterizable, final part configu-

A fully-realized organon lies at the end of the contin- rations can be generated from templates or specifica-

uum described earlier. Paramax is currently working tions.

to lay a foundation to move the state-of-practice fur- The RLF supports a constructive approach to domain
ther along the model-based maturity scale. Paramax is specific software architectures (so-called DSSAs). In
acquiring and producing a technology base to provide the paper [D'189], D'Ippolito expands on the notion of
a machine readable and processable representation of modeis for the description of different domain specific
domain models in a form wiiich domain-specific tools software architectures. He discusses methods for stor-
may directly utilize and manipulate. The RLF is a ing and retrieving domain models and uses the familiar
set of Ada knowledge-based tools (semantic network description of a system in terms of its parts as well as
and rule-based systems that can be used in concert) the specialization of certuin parts as kinds of other
to support the definition and manipulation of domain parts. The AdaKNET semantic network subsystem of
models. The RLF has been used to develop several the RLF was expressly designed to represent this sort
reuse libraries [SWT89] as well as a model-based tool of information in a form that lends itself to graphical
utilization assistant (TUA) for the domain of docu- presentation and interactive examination.
ment preparation. An early version of the RLF was
used to produce an Ada Unit Test Assistant (Gadfly)
[WSS+88] which contained a model of test heuristics 3.2 The Generative Approach
and generated test plans based on parsing of Ada units
and interaction with a human test engineer. The generative approach is reflected in the Paramax

IR&D work within the Program Generation Tech-
2 The development of the RLF began as a STARS Founda- ique work and t on Ge Languages

lions project, contract number N00014.88-C-2052, administered niques (PGT) Application Specific
by the Naval Research Laboratory and is now supported under (ASL) projects. PGT produced Ada-based meta-
the aforementioned STARS contract. generation technology [PKP+82] that enables the cost-

1 Qth Annual National Conference on ADA Technology 1992 17

effective and efficient production of software systems e no explicit support for supporting different user
from domain specific specifications of their essential communities (e.g. managers and programmers)
properties. and different user abilities

ASLs are particular realizations of the power of the o lack of a graphical view of the underlying domain
PGT generation system. Perhaps the best represen- model.
tative of the potential of the ASL approach is seen
in the Message Format Processing Language (MFPL) The knowledge-based approach taken in the RLF pro-
[PSL87I. The construction of the MFPL processor, vides a set of capabilities that include virtually all of
and the creation of a specification of a single mill- those provided by a faceted classification system. The
tary message format in MFPL, was no more expen- RLF permits a library organization to evolve along
sive than custom-building the message processing soft- with the components being kept in the library and
ware for the single format by hand. However, once is better able to support software collections as they
the MFPL translator was built, new or modified mes- change both in size and maturity. An adaptable li-
sage formats could be processed by software generated brary organization is better able to serve the needs of
through MFPL. Specifications can be created or mod- focused application domains. Important semantic at-
fied in days (or even hours) contrary to manual con- tributes of software assets are often dependent on the
struction or modification of source code which often domains to which that they belong. As such, library
took months. support software must be semantically tailorable to

The MFPL work is related to work performed at the represent and use such attributes.

SEI [PL89]. In particular, the paper by Plinta and Lee The RLF seeks to overcome some of the weaknesses
addresses message formatting and uses an approach apparent in other classification-based reuse support
based on the notion of typecasters which provide a systems. One important aspect is the accessibility of
model for the message formatting domain. Whereas the classification scheme itself and the relative ease
this approach ultimately requires a human program- by which the classification data base can be tailored
mer to tailor and produce code based on templates, and extended. Moreover, the RLF provides the user
the use of generation provides an effective means by with guidance on the use of the classification system
which productivity, accuracy and ultimately quality so that the user is not forced to become an expert in
can be increased beyond that achieved directly from the classification scheme to use it effectively.
the typecaster model. A variant of MFPL could pro- Inspiration for the RLF was provided by the KL-ONE
vide the enabling technology to enhance this model system of Ron Brachman BS85] and a Prolog descen-
based approach. dent developed at Paramax [Mat87]. The RLF is also

related to a number of other on-going research projects
including LaSSIE [DBSB91] and AIRS [OH87]. The

4 The RLF System RLF is based on three key components. The first is a

semantic network formalism which supports both mul-
The essential feature of an organon is its role in captur- tiple inheritance (classes having multiple parents) and
ing relevant knowledge about families of related sys- multiple individuation (individuals belonging to mul-
tems, and making this information available to help tiple classes). The second is a rule-based inferencing
the development of new or enhanced systems. The capability which is integrated with the semantic net-
RLF project, despite its origins in the support of soft- work. Inference bases are localized at concepts which
ware library systems (and despite its name), is vitally lie in the network and an inferencing session can span
concerned with this feature. multiple inference bases within the network. The third

Many current reuse library systems are built on the component is association of additional information as

faceted classification scheme [PD91]. There are a num- state attached to concepts within the network. Such

ber of limitations with the implementations of this ap- state information is not inherited but has proven use-

proach. Among them are ful in providing richer domain representations. Possi-

* reliance on a query specification and refinement ble state values include text files and graphical design

approach to discover the contents of the underly- data.

ing software catalog Broad objectives of the RLF project include:

" lack of changeability of the underlying classifica- • develop knowledge-based interfaces to asset li-
tion scheme as the domain evolves brary (object) management systems;

18 10th Annual National Conference on ADA Technology 1992

" investigate the mapping between application AdaKNET is a semantic network system useful for
domain and reuse technology (part selection, capturing static information describing the basic state
part composition, part generation, including of some enterprise or subject area. For example, our
computer-assisted versions of each of these ap- two initial uses of AdaKNET were to capture some
proaches); basic Ada semantics regarding Ada compilation unit

" go beyond supporting retrieval of static parts to structure and portions of the Ada type lattice for use

include program generation, system/software con- by Gadfly, an Ada unit test plan generator; and, to

figuration, system/software testing and even sys- represent some basic relationships among Ada bench-

tern/software design and requirements analysis; mark programs for use in an Ada benchmark program
library system. An important part of our work con-

" support the basic integration of reuse tech- cerns how to combine the representational power of
nologies (knowledge-based and generation tech- AdaKNET with other systems, including other KRSs.
niques); and,

" perform some applied research in domain analysis. AdaTAU is a rule base system that can be used as a
stand-alone system or in conjunction with other knowl-
edge representation systems such as AdaKNET. Rules

4.1 Major RLF Subsystems collected into rule bases are used to infer new facts
from a collection of initial facts. New knowledge is
added to a system employing the facilities of AdaTAU

Figure 1 illustrates the basic composition of the RLF's so t a s acting ie aiexpestem hat

major subsystems. All components of this system were enhances the capabilities of the original system. When

developed from an Ada perspective using basic princi- used together with a system like AdaKNET, AdaTAU

ples ofdataabstraction, information hiding and strong becomes part of a hybrid KRS where the role of
typing. AdaTAU is to facilitate the capture and use of dynamic

information that is normally outside the realm of the

RLF other cooperating KRS. For example, the benchmark
FREB SNOL librarian rules are used to advise librarian users of

operational information regarding benchmark compo-
nents that are not easily discernible within the bench-

AdaTAU AdaKNET w mark taxonomy provided through AdaKNET.
Hybrid Knowledge
Representation Syste A careful separation of the content of knowledge bases

Rfrom their basic organization and available operations
is provided through the use of two specification lan-
guages developed explicitly for the RLF (cf. [SWT89]).
RBDL (Rule Base Description Language) and SNDL

Ad" (Semantic Network Description Language) are used to
t Gafly brian specify rule and fact base descriptions for AdaTAU and

R i semantic network descriptions for AdaKNET respec-
ser tively. Individual knowledge base definitions are trans-

lated automatically to an Ada compilation unit that,
when executed, produces a machine readable version
of the original specifications. The design and imple-
mentation of these specification languages was accom-
plished through the use of the meta-generation systemAbstract data types were produced after analyzing the cited earlier in conjunction with MFPL.

structure of proven Knowkdge Representation Sys-

tems (KRSs), first by focusing on the operations pro- The end user typically works directly with an applica-
vided by these systems, and only later considering tion built on top of AdaKNET, AdaTAU or a hybrid
possible internal representations of knowledge held of both of them. In addition, an application makes
within the system. No attempt was made to naively use of its own data structures. For example, in us-
import features native to AI programming language ing the Gadfly application, knowledge about an Ada
paradigms such as pattern matching or theorem prov- unit under test is assembled and stored within a hy-
ing. brid knowledge base. From this knowledge gained by

10th Annual National Conference on ADA Technology 1992 19

examining the Ada unit directly and as a result of a another window with the graphical browser automati-
dialogue conducted with the user, suggested test case cally scrolling to other portions of the model as a result
plans are generated for the user. For the librarian user, of user interactions with the inferencer.
a collection of Ada modules is available for direct ex-
amination. Alternatively, the user can browse, or be
"expertly" guided through, an information web that
captures essential information about the contents of 5 Advanced Knowledge-Based
the library. A library user offering a new component Library System
for the library can be guided to the right insertion
point and, using an integrated form of Gadfly, be ad-
vised of necessary quality control measures to be taken Paramax believes that the RLF, or technology derived
before the component can be officially installed, or analogous to it, can form the basis for a next gen-

eration library system. Figure 3 shows a view of such
a system. A library system with the properties indi-

4.2 RLF Graphical Browser cated in the figure represents another step along the
software engineering continuum.

Recently, an X11R3-based graphical browser interface

was developed for librarian applications built on top As shown in the figure, there are multiple means to ac-
of the RLF. Figure 2 is a screen dump of a browser cess the library system which is shown as an intercon-
session in progress. There are several things to note nected series of distributed domain-specific libraries.
about this image. The user can pose queries, manually browse the system

Boxes indicate AdaKNET concepts. Thin lines show through a graphical browser, or be guided by an intel-

the specialization hierarchy provided in the model. ligent library assistant. Each physically distributed

Thus all of the boxes derived from process are kinds library may be equipped with its own library domain

of processes. The model shown in the larger graphical model. In addition, an umbrella library model will be

display is a partial view of an AdaKNET representa- accessible to the user at her workstation to present a

tion of a domain-specific, reused-based process model seamless view into the distributed system. Additional

which was prototyped recently. In addition to the pre- library support services provide detailed user models

viously mentioned applications of the RLF, there has that capture and retain information about user classes

been some work on using the hybrid knowledge repre- and user usage histories.

sentation capabilities to provide process model repre- Current effort within the RLF project is directed to ac-
entation and enaction. complishing this advanced library system. For exam-

Only the specialization (IS-A) structure is shown pie, activities are underway to employ the Andrew File
graphically. The small subwindow in the lower right System (AFS) [SK89] to provide truly distributed li-
is a list of the AdaKNET roles (or attributes) of the braries. Experiments are being conducted in the areas
model.domain concept. This window is drawn in re- of library asset interchange so that assets may be freely
sponse to a menu choice that is offered to the user distributed among cooperating libraries. The RLF al-
when she presses the mouse button on a concept in the ready supports all three of the interaction paradigms
full-size window. For example, every individual type shown in the figure.
model-domain can have a number of agents, exactly
one parent process, a number of preconditions, etc.
The elongated window on the right shows a reduced
view of the model displayed in the larger window. The 6 Conclusion
scroll bars are used to pan around within either review.
Any motion within one window causes the correspond- This extended abstract sketches an approach to mov-
ing motion to be made in the other window. ing the state-of-practice of producing software systems
There are also a number of choices provided to the further along a maturity scale which has been dubbed
user through a menu bar at the top of the window. the software engineering continuum. The end of this
Additional work on graphical browsers for RLF mod- spectrum has been termed an organon wherein there
els is currently underway. Recently, a version of the is a full environment of tools to support the system
RLF graphical browser has been produced which al- engineer in her task of producing complex software
lows AdaTAU inferencer interactions to take place in systems. There is still a wide gap between the cr:ent

20 10th Annual National Conference on ADA Technology 1992

9 Browser View
L~ilt-ervRU Generic~ Concepts and In~dividuals

develop-.nodel

adapt-softuare

customize

tigdevelop-s:oftuwr d"lop.jnteurface

devlop.neu.conponefts

process etn

do,,ain.specific.rouse

lbrarysLorage

link AtMtributes of model-domain

I gentt 1 .. InfinitU) of agent
nadi.du~jnparent(I 1) of processpostcondktion(1 *.Infinity) of condition
L."preconditilon(1 .. Infinitq) of condition
Obtin~oman-eperis ub.process(2 .. nflnity) of process

Figure 2: RLF Browser

state of practice and the organon goal. The RLF3 economical systems.
project and others like it (e.g. LaSSIE) are providing
opportunities for reduce this gap. By actually building
and maintaining application systems using such envi- 7 References
ronments, we will be able to identify shortcomings in
individual approaches and merge related ones. The [BS85] Ronald J. Brachman and J. Schmolze. An
key to success is provided by taking knowledge-based overview of the KL-ONE knowledge rep-
techniques and applying them in novel and useful ways resentation system. Cognitive Science,
to the construction and generation of high quality and 9(2):171-216, 1985.

3RLF version 2.2 is currently approved for general pub. DS9]PekmrDvabRnl .Bah
lic release and is available via anonymous FTP at the inter. [BB1 rmua eabRnl .Bah
net address stars.rosslyn.unisys.com, or by tape from Para. man, Peter G. Selfridge, and Bruce W. Bal-
max/STARSCenter, Reston, VA lard. Lassie: A knowledge-based software

10th Annual Notional Conference on ADA Technology 1992 21

Distrbuted
User~ Moe Domain-SpecificUser Model Urre

Libraries
all users

managers r Usr
\ programers station oavl 2

Domain Model

J eac0

Figure 3: Advanced Library System

information system. Communications of [PD91] Ruben Prieto-Diaz. Implementing faceted
the ACM, 34(5):34-49, 1991. classification for software reuse. Commu-

[D'189] R. D'Ippolito. Using Models in Software nicaions of the ACM, 34(5):88-97, 1991.

Engineering. In Proceedings: TRIAda '89. [PKP+ 82] Teri F. Payton, S. E. Keller, John A.
ACM, October 1989. Perkins, S. Rowan, and Susan P. Mardinly.

[Mat871 D. L. Matuszek. K-Pack: A Programmer's SSAGS: A Syntax and Semantics AnalysisMat8] D L.Matsze. K-ack A rogammr'sand Generation System. In Proceedings of
Interface to KNET, October 1987. Logic- Cn A '8a . IeE 1982.

Based Systems Technical Memo 61. COMPSAC '82. IEEE, 1982.

[MC89] R. McDowell and K. Cassell. The [PL89] C. Plinta and K. Lee. A Model Solution for

RLF Librarian: A Reusability Librarian the CI Domain. In Proceedings: TRI-Ada

Based on Cooperating Knowledge-Based '89. ACM, October 1989.
Systems. In Proceedings of RADC 4th An- [PSL87] R Pollack, J. Solderitsch, and W. Loftus.
nual Knowledge-Based Software Assistant A Generative Approach to Message Format
Conference, September 1989. Processing. In Proceedings: Unisys Soft-

[OH87] E. Ostertag and J. A. Hendler. AIRS: An ware Engineering Symposium, September
Al-based Ada reuse system, 1987. Tech. 1987.
Rep. CS-TR 2197, University of Maryland. [Sim88] M. Simos. The Growing of an Organon: A

[PD87] R. Prieto-Diaz. Domain Analysis for Hybrid Knowledge-based Technology and
Reusability. In Proceedings of COMPSAC Metholodogy for Software Reuse. In Pro-
87, October 1987. ceedings of the National Conference on

22 10th Annual National Conference on ADA Technology 1992

Software Reusability, April 1988.

[SK89] A. Z. Spector and M. L. Kazar. Uniting
File Systems. Unit Review, 7(3), March
1989.

(SWT89] J. Solderitsch, K. Wallnau, and J. Thal-
hamer. Constructing Domain-Specific Ada
Reuse Libraries. In Proceedings, 7th An-
nual National Conference on Ada Technol.
ogy, March 1989. pages 419-433.

[WSS+88] K. Wallnau, J. Solderitsch, M. Simos,
R. McDowell, K. Cassell, and D. Campbell.
Construction of Knowledge-Based Compo-
nents and Applications in Ada. In Pro-
ceedings of AIDA-88, Fourth Annual Con-
ference on Artificial Intelligence 6 Ada.
George Mason Univ., November 1988.

Biography

James Solderitsch was first employed by Paramax in
1986 after having been an Assistant Professor in the
Mathematical Sciences Department of Villanova Uni-
versity. Since coming to Paramax, he has worked on
the design and development of Application-Specific
Languages (ASLs) using compiler-compiler technol-
ogy and currently is serving as technical lead for the
STARS-sponsored task concentrating on reuse within
Valley Forge Laboratories. His active research inter-
ests include software reuse, domain analysis, knowl-
edge representation issues arising from domain anal-
ysis and developing and maintaining domain specific
software architectures. He received his Ph. D. in
Mathematics from Lehigh University in 1977. He may
be reached at the address Paramax Systems Corpora-
tion, 70 E. Swedesford Road, Paoli, PA 19301-0517.
His telephone number is 215-648-2831 and his elec-
tronic mail address is jjs(prc.unisys.com.

10th Annual Naional Conference on ADA Technology 1992 23

ORGANIZING SOFTWARE AROUND THREADS OF CONTROL

John K. Cannella
P.P. Texel & Company, Inc.

Eatontown, N.J. 07724

Abstract DOD-STD-2167A., specifically Sections 3 of DID-MCCR-
80012A (the Data Item Description (DID) for the Software

During the past few years, ever since DOD-S'h-2167A was Design Document (SDD)), is written with a bias toward the
adopted, them have been many debates over the proper defi- dynamic representation (the process oriented representa-
nitions ofComputer Software Components (CSCs) and Corn- don) of the design. Choosing a CSC definition that does not
puter Software Units (CSUs). 2167A was written with a bias fit into a process-orientation is like fitting a square peg into
toward a process-oriented definition of a CSC. This paper a round hole; it is difficult and frustrating work.
provides a CSC definition that is process.oriented and justi-
fies the definition in terms of 2167A. It will also show how
this process-oriented definition does not preclude using o- Problems with Commonly used Definitions
ject-oriented methodologies.

Many projects rationalize liberal interpretations of the re-
btroduction quirements in the SDD DID to make their definitions fit.

Software Preliminary Design is the identification of the mod- However, they forget that how CSCs are defined effects
Wes in a software system and the identification of the inter- more than the SDD. The definition effects other parts of the
faces between thes modules. One widely accep ted desir software development life cycle and other software func-
metolg is mObj e Oriene ideny eted esigions (e.g. CSC Integration and Test, Software Configura-methodology is Object Oriented Design (OOD). tion Management). The CSC definition must provide

OOD with Ada provides a method of decomposing a software consistency across all pans of development.
system into Ada packages. Each Ada package represents an
object. These objects have relationships between them. For example, many projects define a CSC to be an Ada
These relationships transform into dependencies between the package. An Ada package is a collection of resources, is
Ada packages. not executable and therefore has no process-orientation

associated with it. This definition has to be forced to fit the
Once each of theobjects is defined, the operations performed documentation requirements of the SDD DID. Following
by orperfonned upon each object are identified and allocated are some liberal interpretations od some Section 3 require-
tothe Adapackages. The Ada packages give these operations ments based on a package being a CSC:
a "home". This is where the operations will reside within the
software system.

1. Paragraph 3JJ of the SDD (CSCI Architec-
Using Ada along with a graphical representation is the best ture) describes the internal organization of the
way. I think, to describe the static part of the preliminary CSC. This description includes a description of
design of a software system. However, a representation the relationships among the CSCs by identfing
based sictly on packages and their dependencies does not and stating the purpose of each CSC-to-CSC inter-
account for all aspects of the software. face. This interface has to summarize the data

transmitted via the interface. An interpretation
A software system, no manor how it is decomposed, is still used for the CSC-to-CSC interface is the depen-
either a single sequential flow of control or multiple sequen- dency between packages. This is a very liberal
ial flows of control between the operations. This is the interpretation because dependency does not pro-
dynamic part of the preliminary design. The understanding vide for data being passed and never will. A pro-
of these flow(s) of control is essential to the review process cess oriented definition ofa CSC is beter suited to
and maintenance process. fit the requirements of this paragraph.

24 10th Annual National Conference on ADA Technology 1992

2. Paragraph 3.1.3 documents the memory andpro- Figure 1 portrays an example of the derivation of a thread
cessing time allocation of each CSC. An interpre. from requirements in a requirements specification. The
tation often used is to allocate memory anct figure shows that the thread, numbered 109 and named New
processing time to each executable resource in the Hostile Track, is derived from two software requirements
package and assign the sum of the individual allo- and receives input from and provides output to the external
cations as the allocation for the package. This lib- interfaces. The stimuli for the thread is put in the left
eral interpretation yields meaningless data, rectangle and the responses for the tread are put in the right
especially for packages that are a product of object- rectangle. The requirement numbers from which the thread
oriented design. Irn an object-oriented design, each is derived are listed below the graphical representation of
of the operations in a package are not meant to be the thread. 2

executed in sequence, might not be part of the same
CSCI or might not be called at all in this software
system. To reviewers and maintainers of the CSCI
this data is useless.

3. Paragraph 3.2X(b) asks for the preliminary de-
sign ofthis CSC to be described in terms of execution
control and data flow. An interpretation that has
been used on a real project to fulfill the requirements ,- .
of this paragraph is to describe the parameters of '£

each subprogram (or task entry) in the package and
describe the conditions under which each are called. '•. -
Again, this is a liberal interpretation of the DID
requirements that provides a disjoint flow. The DID -

is asking for something that is more process ori.
ented, something flows from one part of the CSC to
another. Figure 1. Thread Derivation

Those interpretations are forcing a package to be something The entire software requirements specification can be rep-
it is not. If this definition is allowed to be used and these resented by a setof threads (see figure 1) which are logically
interpretations are accepted as fulfilling the documentation connected to each other by arrows which denote sequence.
requirements then other software development activities are Quite often a conditional qualifier associated with the input
rendered meaningless. For example, Integration and Test of event of a thread is the successful completion of the function
a CSC means composing the CSC from its component parts represented by the previous thread in the sequence.1
and verifying that the CSC works as a whole. The parts
(subprograms?) of a package that was designed using an Using the Pronosed Definition
object-oriented methodology are not meant to work in concert
with each other. There is nothing to integrate. The meaning- So, the preliminary design phase can be summarized by the
lessness is a direct result of a faulty CSC definition, following steps (this assumes an object-oriented methodol-

ogy):
An Alternative Definition

1. Derive the threads (stimulus/response elements)
A definition of a CSC that is process oriented, that fits well from the software requirements specification.
with 2167A's documentation requirements and software test- This is the dynamic model of the preliminary de-
ing requirements and provides a consistency across the devel- sign. Graphically represent the sequential flow of
opment process is a thread of control. the threads.

A thread of control is defined as the execution path that begins 2. Keeping the threads in mind, use object-oriented
with a stimulus and ends with a response to that stimulus. A design to decompose the software system into ob-
stimulus consists of one or more inputs plus any conditional jects. Graphically represent the Ada preliminary
qualifiers; a response consists of one or more outputs plus design using a graphical notation such as Booch,
conditional qualifiers generated as result of the input event. Buhr or Texel's methodology. Transform the
An entire software system may be decomposed into a set of graphical representation into compilable Ada.
stimulus/response elements.1 This is the static model of the preliminary design.

10th Annual National Conference on ADA Technology 1992 25

of Mpea TtzSDDftzaMi~odof usi n be es s. SNtLm-
Sol Model of h e el isiL :fis U-7!1 L e= exs d fw Mz= ;f wL(-b a
iaatify te s r rimthes -s WbM Str,.lZea

4. Do cume n in Se cdon 3 of ft SD b ed-)-n - amfiry 9 c to tEb- CSC kwd is g 'y
model (the ds ad tb iem fad. W is. A -doca- %te = idl5e d wo fng ft
mentation siadd be dw: in terms of te q rIE - Mg*== spEfi2a6M kS SEZ es te re-
modules definied in the sud: modeJL Txlrdl t 0=6m Wk=a~ta W a Iha is fi=d: fthftre-
gzaphical npmatm 2s; refer=ce Doc m VCES6=21 2eifca=wa i & re z scmbe
de static model in Sec a 8 . era of fte SDD. 21 f=s6M'
2.dud P both fth desc2l representmemon and td
Ad& ofeahC2= Alahn fCoaaT d pridoa

f be gz omagot fninpa CSC as adaeaof -f c
Following is how to wiixSe os 3.1.A.3.1 -anof -2yX(b) Tcw wr.
oftheSDDu bepposeddea"iwo ofaCSC Ner sn
using a CSC definiti o that is process c . s Lfa CSC isdobanA da (ecmost
sec unsm meaninglf of A&csigy) anbma cange to Seo 3 of

t SDD will be needed duri g de cld des . I
L Paragraph 3.1.1 describes the interal orgn in- is iepossiie to define e fiiy A nda padge dring
tion of theCSCI partly in sof the CSC-m-CSC prdmnazy design. Each patdat aoded dsg twee
interfcs For each itefac, te data trsined detailed design phase: must be docamewned in Sec-
via this inra is identified. ith the pin d uio 3. A rea e of the in acies of many CSCs is
deflretion ft graphical oresenThon of the dy- inevitabMe Defing a CSC as a thread of contir
nainic model dispLays each interface bemv=e the: rcAnsb--1kvo vfc agestsctonsof te
threads as a data flow. The data nasmurald via 12s SDDthaveareraybs cpred Threadsre
interface can then be determined from the static iified from the requimentm s specification and
model. should all beknor n duing preliminary desig m

2. Paragraph 3.1-3 describes the memory and pro- 2. Ths proposed definition enhances the maning-
cessingtimeallocationofeach s . Allof athread, ftul of CSC Integraton and Test and prom ides
from beginning to end, will be executed at some smoo trnsition int thaphaaeof hsofy relife,
poini ntrhesystem softwam An allocationof em- cycle The way CSC In tegration and Test is de-
ory and processing time (eith worst case ordiffeo- scried in 2167A, the only meaningful definition of
ent allocations for various paths) that represents a a CSC is a process-oriented one. Thee component

sedenial flow of processing can be made to each parts of the tread (its CSUs), which e already
thread. Ihes allocations, along with the graphical tested in the-previous phase of thelife: cycle,can now
representation of the dynamic model, can be used to be verified as an entity (th entire thread). As d-
provide timingandsizing estimates when Acuing scribed earier, a package definition does not work
the software under varying conditions, well.

3. Paragraph 3.2X(b) describes the CSC in terms of 3. Threads of control as a CSC fits naturally with the
execution control and data flow. The process-ori- idea of builds. Many real-time systems verify their
cried characteristics of a thread fits naturally with software through builds. Builds are composed of
what 2167A is looking for in this section. The entire teads and incrementally de-monsuatea significant
thread can easily be described in terms of execution partial functional capability of the system. I As
control and data flow because that is basically the CSCs composing a build are inegated and tested
definition of a thread. Also, becase the static the build can be integrated by composing the
model was also produced, and the threads mapped threads. The idea of buids would suffer if aCSC
to it, the execution control and data flow can be was defined as an Ada packagr. Many more CSCs,
describd in terms of thereal names of subprogramns, many with parts which would not be applicable to a
task entries and data in the static mode. The option build, would need to pass CSC Integration and Test
of defining sub-level CSCs also fits with the pro- just to get the correct furnctionality of the build.
posed definition of aCSC. If afthread is too large,
itmay be decomposed intochildren threadsandeach

26 10Oth Annual National Conference on ADA Technology 1992

Didn i ofthe E d Definition attmx~s-ctbeus andc tbd o n edyunmic
modd ML 1 &nmmnly v-ih tereqirememof2l67A

Mxe dkd=g= of deiiog a CSC 2s a udread of-rai W- a Sm~ UZisiic Into ha Wswar deelop-
a c b ea ,esi.i. Tnebdxe, a CSC should be deed to be a

trad of cocuoL
L be 9 6CE C -d on =oe BiM M2p &- : y 10

_q=~ireop HWz-rm thW~'JIis definitioni does I3otptclude f sobject-soft-z in A ditis e r to dsaibe t Item sl d lg be staticrmode can be reprsened
9 atwam s==idAdaa am m oi- , Ada tm is te direc t resul of an 001). This model
as descrbed pImw-k y, m~e si model of the sould aLsobedocmemed in theSDD, butinfrmay in the
desIn ism Adaand thEs ca bedocaened ntes
as b in Seif n 8 of the SDD (Notes).

2. Usig t prposeddefinizi ofa CSC, Sectio
3oftheSDDdoes nmexhidtany Adaritecum 1dm K. Cannella, PP. Texel & Company, Victria Plaza,
Setw3 woaukldo~memm tde mmmode e Bulmg4,Suize9.615 HopeRd.,EanzmwnN N07724. Mr.design. Mxe sm= model (t Ada anhmtcue) is Cannela is the Dieco of Software Deveopmenmt at Texel.
ma immta r part of the documentaion and should W. C as a consultant, has been technical lead on
be d "This d pti m mF in nummaos DOD-STD-2167 and DOD-STD-2167A software
coimrawfona, would be inch*4 in Sction 8of developmen efforts. These efforts include the Small ICBM
the SDD. Terminal Controller. the MV-2 Operational Fight Trainer

onciion and the Radar System Improvement Program.

The preliminary design of a software system has two parts. a
static model and a dynamic model- Both of these models are
mmo=tato thereviewand mainmenance ofasoftwa=sysem

The dynamic model, however, is te only one . Deutsch Michael S-i Software Verification and Valida-
nammIly with the requirements of DOD-STD-2167A. Then on. Pretice Hal, InX., 1982
dynamic model is the one ihat should be documented in
Section 3 of the SDD. 2. Carey. Robert and Bendic, Mark, "The Control of a

SoftwareTestProcess," Proceedings Computer Software and
The dynamic model is process-oriented. Therefore, a CSC Applications Conference 1977 (New York. IEEE), IEEE
should be defined to be process-oriented. Threads of control Catalog No. 77CH1291-4C.

10th Annual Natonal Conference on ADA Technology 1992 27

TEACHING ADA: LESSONS LEARNED

David Naiditch
Hughes, Radar Systems Group

Los Angeles, Cafomia

Abstract - This paper is based on lessons I've engineering principles that the Ada language so
learned from teaching Ada programming courses effectively supports. This approach seemed
over a period of 4 years at Hughes; at the University
of California, Los Angeles (UCLA) extension; and at reasonable to me because it was embraced by many
various Ada seminars. The courses have ranged Ada books and appeared to stress what wa* most
from brief, half-day overviews to 20-week training important about Ada. However, I soon discovered
sessions. The students in these courses had
varying backgrounds: some were well versed in that students were not learning the details of Ada
many high-level languages and programming well enough to write programs without clutching their
principles; at the other extreme, some were learning worn-out Ada manuals. Questions asked in class
Ada as theirfirst high-level language. often arose from the frustration students felt in

Index Terms - Ada, education, training, software dealing with the many subtle and complex nuances
engineering principles, exercises, textbooks, of Ada. For example, students would ask why one
preconceptions about Ada

cannot write for loops such as
1. INTRODUCTION for INDEX In -1 .. 10 loop ...

This paper is targeted for Ada educators, or why array aggregates sometimes need to be
especially those who teach introductory Ada qualified, or why record discriminants cannot be
courses. The teaching techniques I present in this used in an expression, or why anonymous arrays
paper have been successfully used in many Ada within the same declaration are type incompatible, or
courses that I have taught over the years. How well why a procedure cannot read its own out
a teaching technique works depends to some extent parameters, or why type conversion must be applied
on the instructor's style and temperament. I, to the product of two fixed point numbers, and on
therefore, realize that some techniques that work and on. As I pontificated about the virtues of
well for me might not be useful to others. I hope, adhering to proper software engineering principles,
however, that educators will find some of my ideas students would nod in agreement and urge me to
useful and worth pursuing. finish so that they could get back to the practical

2. INSTRUCTION METHODS THAT DON'T WORK matter of getting their code to compile and then

execute without raising the dreaded

When I first starting teaching Ada about 4 years ConstraintError.
ago, my courses were rather abstract. I left out Part of the problem with not covering the details
many details of Ada syntax and semantics, hoping of Ada was the lack of Ada books that were simple
that students would learn them on their own, and and complete enough for students to learn the

concentrated instead on the grand software details of Ada on their own. Books were either too

28 10th Annual National Conference on ADA Technology 1992

advanced or too superficial for beginning students. support or enforce that principle. For example, I
Furthermore, books stressing software engineering don't spend too much time discussing information
principles didn't provide enough information about hiding until students know the "Pascal subset" of Ada
the Ada language itself. Such books frustrated many and are prepared to tackle packages. With this
students by illustrating software principles with code teaching approach, not only do software engineering
examples that students could not yet fully principles become easier to put into practice, but the
understand. And in almost all cases, the books were details of Ada appear less complex and arbitrary. In
poorly written. The complexity of the Ada language other words, teaching Ada In the light of proper
remained obscured by the complexity of the English software engineering principles simplifies Ada by
language used to write the book. As a result, too uniting seemingly unrelated rules and by providing a
much class time was taken up with my explanations rationale for many Ada features that may otherwise
of what the authors were attempting to say. seem arbitrary.

Another problem with my original teaching 3.2 Use a Self-Explanato ly and Comprehensive
approach was that students didn't fully absorb what I AdaIextoo
was saying. When presented in abstract terms,
software engineering principles come off like In order not to get too bogged down explaining
motherhood and apple pie. Everyone supports all the gory details of Ada syntax and semantics, I
them, but so whatl Students thought that wanted an Ada book that covers such details clearly
programmers using common sense follow software enough for students to learn on their own. I was
engineering principles as a matter of course. When hoping that using such a book would free me to
reviewing student programs, however, I realized that spend time on higher-level issues. When I began
many of these principles did not get put to practice. teaching 4 years ago, I could not find such a
Package specifications contained information that textbook and in frustration wrote my own,
should have been hidden in package bodies. Types Rendezvous with Ada: A Programmer's Introduction,
that should have been private or limited private were which John Wiley & Sons published in 1989. Today,
often public. Global variables were often used however, there are a number of good books to
without justification. Literals were frequently choose from, mine, of course, being the best.
employed instead of constants or attributes. 3.3 i±u r

3. INSTRUCTION METHODS THAT WORK
Another teaching technique that I have found

3.1 B very helpful is the use of humor. Humor can make
dry material more palatable. Here is an example of

I found that the coding style of students an If statement. (All examples are taken from my
dramatically improved when I made my lectures less Ada book.)
abstract. Instead of Ignoring many of the details of
Ada, I now present them in a methodical and If ART - ABSTRACT or ART = NONOBJECTIVE
organized manner. Instead of discussing software then
engineering principles in abstract terms, I give them PUT-LINE ("Whine and complain");
concrete form in numerous code examples and PUT-LINE ("Leave room");
exercises. In addition, I discuss a software else
engineering principle in detail only when students PUT-LINE ("Stay and enjoy");
are ready to learn about the Ada constructs that end If;

10th Annual Notional Conference on ADA Technology 1992 29

Or consider this case statement that would PUT_LINE (WISDOM, "Time flies like an arrow,"

please any member of the Audubon Society. & "but fruit flies like bananas");
PUTLINE (WISDOM, "Every bird can build a"

case FLOCKOFBIRDS is &" nest, but not everyone can lay an egg");

when LARKS => PUT_LINE PUTLINE (WISDOM, "When there's a will,"
("An exultation of larks"); & "there's a won'");

when PEACOCKS => PUTLINE
("An ostentation of peacocks"); As a final example of humor in code, here are

when CROWS -> PUTLINE some entertaining ways to illustrate string
("A murder of crows"); declarations:

when GEESE => PUTLINE
("A gaggle of geese"); MYCAT: STRING (1..13) := "Meow Tse-tung";

MYBOA: STRING (1..15) := "Julius Squeezer";
when SPARROWS => PUTLINE MYCOBRA: STRING (1 ..11) :."Herman Hiss";

("A host of sparrows"); MYNEWT: STRING (1 ..16) := "Sir Isaac Newton";

when MAGPIES => PUTLINE
("A tiding of magpies"); Examples such these make learning more fun

when PHEASANTS => PUTLINE without being too distractive. Many students have

("A bouquet of pheasants"); thanked me for adding humor to my courses.

when OWLS => PUTLINE Students who don't find my code amusing never

("A parliament of owls"); seem to be bothered (at least, not visibly so).

when STARLINGS => PUTLINE 3.4 Use Interesting Examples
("A murmuration of starlings");

when PARTRIDGES W> PUTLINE In addition to humor, material can be made more
("A covey of partridges"); palatable by using interesting examples. For

when NIGHTINGALES -> PUTLINE Instance, I often ask students to write an Ada
("A watch of nightingales"); program that illustrates the "twin paradox" that is a

when WOODPECKERS => PUTLINE consequence of Einstein's Theory of Special
("A descent of woodpeckers"); Relativity. Consider two twins, where one gets into a

when others => PUTLINE spaceship and travels near the speed of light, while

("No special name"); the other stays on Earth. Upon returning to Earth,

end case; the traveler will be younger than the twin who stayed
behind. This program is based on the simple

If you need a coding example where text is formula:
written to a file, resist the easy way out: stuffing the

file with boring information such as a person's name A := T * SQUAREROOT (1.0 - (P/100.0) ** 2);

and address. Instead, dare to be silly and, for
instance, fill the file with words of wisdom we all where
hope to find in our fortune cookies. A is the number of years that the traveler will age

PUT_LINE (WISDOM, "Don' let your karma run" P is the percent of the speed of light that the

& "over your dogma"); traveler will be traveling
PUT_LINE (WISDOM, "You can lead a horse to"

& "water, but a pencil must be lead"); T is number of earth years that the trip takes

30 10th Annual National Conference on ADA Technology 1992

After writing this program, students enjoy 20 years or more might say "Ada schmada, it's just
plugging in different values for T and P to determine another programming language, and I already know
how little the traveler will age compared to the time how to program." Another preconception is that Ada
that has elapsed on Earth. is too inefficient for real-time programming. And

Or consider an example of a while loop that then there Is my favorite preconception--that Ada is
Illustrates Ullam's conjecture: too paternalistic. Most of the other preconceptions

go away as the class progresses, but not this one.
- N is a positive integer This preconception is by far the most difficult to
- EVEN is a Boolean function overcome because it is tied to one's political
- that determines if N Is even philosophy. Just as libertarian-minded motorcyclists
whIle N (N loop resent being forced to use safety helmets, so do

If EVEN (N) then libertarian-minded programmers resent being forced
N:- N ume2; to use safe programming practices. Typically, I hear,

elN -- odd number "Why won' Ada let me do this?" Such programmers
N :- 3 N + 1; want the freedom to take risks. They don't want the

end if; language to restrict them from writing code that is
PUT (ITEM -> N, WIDTH ,> 6); error prone, unreliable, or difficult to understand.

end loop, Such libertarian sentiments are frequently expressed

This while loop generates a series of numbers by C programmers who enjoy hacking.

that terminates with 1. For examplo, if N is 7, then I find that the best way to deal with this last

the following series is generated: preconception is to explain the programming domain
for which Ada was designed. I discuss how Ada was

22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 developed in response tothe software crisis. I point
out that Ada's emphasis on reliability andComputers have worked this problem with many maintainability Is especially relevant to large

different positive numbers. Without exception, the p a sta a el og i ediand reqe nt odifie
numbr 1is eentall reahed Hoever noone programs that are long lived and frequently modified.

number 11is eventually reached. However, no one I show code that illustrates how Ada's restrictions
has yet been able to prove mathematically that the effectively support reliability and maintainability. I
number 1 will always be reached. (By the way, admit, however, that such emphasis is less relevant
some large numbers, like 341, require only 11 steps for small, short-lived programs that do not need to be
to reach 1, whereas some small numbers, like 27, very reliable--programs developed by home
require 111 steps.) hobbyists, for example.

3.5 Overcome Negative Preconceptions about
Ada3.6 Have Students Modify Large Proram

Students sometimes enter my class harboring When learning a new language, it is important to

negative preconceptions about Ada. The negative write at least one large program. This is especially

preconceptions take different forms. Some students important with Ada since Ada is tailored to large

fear that Ada is such a large and comp!ex language program development. A major problem with

that they have to be a language lawyer to use it teaching Ada is that not enough time is usually given

correctly. On the opposite end of the spectrum, for students to learn all of Ada's features, much less

those who have been FORTRAN programmers for to develop even one large program. I'm typically

10th Annual Natonal Conference on ADA Technology 1992 31

asked to teach classes lasting under 40 hours. To surprised when others in the class cannot
write large programs, students need to know about understand their code.
such features as scalar and composite types,
subtypes and derived types, attributes, control 3.8 Give Classroom Exercises

structures, subprograms, packages, and program Another teaching technique I have found
structure. By the time this material is adequately effective is to break up long lectures with classroom
covered, the course could be halt over. In the exercises and problems. Even If Ada compilers are
remaining half of the course, there isn' enough time not available in the lecture room, exercises are
for students to write large Ada programs while also nevertheless effective in reinforcing concepts after
leaming about Ada's more advanced features, such they have been presented. Exercises might Include
as generics, exception handling, and tasking, critiquing code fragments, finding coding errors, and

Despite such time constraints, because large figuring out what a code segment will output.
program development is important, some Instructors
still require a large program to be written. Not 3.9 Provide Hands-On Training
surprisingly, the resulting program is usually terribly
written. Writing bad programs may be worse than Learning to effectively program in Ada requires a
not writing them at all; it may only instill bad habits lot of hands-on experience. Ideally, the training
that are later difficult to unlearn, should be tailored to the kind of programming that

As an altemative to having students write large students are expected to do. For example, students
programs, I sometimes have students modify large who program for embedded real-time systems need
programs that are already written. These large to learn a lot about the low-level features of Ada that
programs should be well written and well allow programmers to get down to the "bare silicon"
documented. I ask students to make modifications of the machine. In addition, real-time programmers
that require them to carefully study the program. must be aware of the trade-offs between
Instead of reinforcing bad coding techniques, performance and memory. For example, when
students will be examining code that exemplifies should pragma inline be used? If a compiler offers
good coding techniques. the choice, should generics use code expansion or

So how can instructors find large Ada programs code sharing? Real-time programmers must also be
that are well written and well documented? If you aware of trade-offs between code understandability
don' have such programs on hand, try going through and performance. For example, should the Ada
the public Ada repositories. Coding gems can rendezvous- be used to make code more
sometimes be found lurking among all the understandable or is there too great of a
mediocrity, performance hit. Similarly, what about using

functions that return an unconstrained array type?
3What about using unconstrained discriminated

Students often lack objectivity when evaluating records? And then there is the issue of whether

their own code. They often have an easier time runtime checking should be suppressed. If it should

seeing problems with other people's code. I be suppressed, should it be globally suppressed or

sometimes have students develop a program that only suppressed within a given scope or for certain

they consider well written. Everyone in the class kinds of checking? Furthermore, does the use of

then exchanges programs. Students are often allocators or other features that require dynamic
memory allocation need to be restricted because of

32 10th Annual National Conference on ADA Technology 1992

limited heap space? easier to learn. I successfully overcome some
These issues are very important for resource- negative preconceptions about Ada that many

critical projects such as real-time embedded students harbor. Finally, I give students
applications. Other sorts of applications, however, assignments that I have found to be particularly
may have very different concerns, beneficial. These assignments include modifying

4. SUMMARY large programs, participating in code exchanges,
working on classroom exercises, and engaging in

When I first started teaching Ada about 4 years hands-on training geared to particular applications.

ago, my lectures were too abstract. Instead of
covering the details of Ada syntax and semantics, I
concentrated on teaching about the sound software
engineering principles that Ada supports. I hoped
that students could learn about the details of Ada
from reading their Ada textbooks. Unfortunately, I
could not find beginning Ada textbooks that were
well written and comprehensive enough to free me
from having to spend time explaining the subtle and
complex features of Ada syntax and semantics.

Another problem with my original teaching
approach was that students didn' understand my
discussion of software engineering principles well
enough to put the principles into practice. Their David Naiditch has been working at Hughes for over
code was often written as if software engineering 9 years, where he is currently an Ada project
principles were never mentioned. engineer. Mr. Naiditch has over 15 years'

I now get much better teaching results by being experience in the Instruction of high-level
less abstract. Instead of ignoring many of the details programming languages. For over 4 years, he has
of Ada, I present them in a methodical and organized been teaching a wide variety of Ada courses at
manner. Instead of teaching software engineering Hughes; at the University of California, Los Angeles
principles in abstract terms, I give them concrete (UCLA) extension; and at seminars across the
form In numerous code examples and exercises. country. Mr. Naiditch is the author of the book
Furthermore, I delay discussing a software Rendezvous with Ada: A Programmer's Introduction,
engineering principle in detail until students are published by John Wiley & Sons in 1989.
ready to learn about the Ada constructs that support
the principle. Finally, by tying software engineering
principles to particular Ada features, Ada appears Mailing address: Hughes, David Naiditch (Bldg. R1,
less complex, more unified, and hence easier to MS 6A27), Project Engineer, Processor Division,
learn. Radar Systems Group, P. 0. Box 92426, Los

Over the years of teaching Ada, I have Angeles, CA 90009.
Incorporated other useful teaching techniques. I use
humorous and interesting code examples to help
make material more entertaining and therefore

10th Annual National Conference on ADA Technology 1992 33

AN ISSUE TO BE CONSIDERED
WHEN REVISING DOD-STD-2167A

Russell J. Abbott
Department of Mathematics and Computer Science

California State University, Los Angeles

Abstract. This note discusses a problem that tern in operation). In fact, in much of software
needs to be addressed when considering revi- engineering it has been implicitly assumed that
sions to DOD-STD-2167A. Although the prob- these structures are identical.
lem is understood most easily when software is In object-oriented software, the distinction be-
considered from an object-oriented perspective, tween these two structures is striking. Consider a
it applies to software of all kinds. The problem system that includes two queues that play dis-
derives from the fact that software has two dis- tinct roles in an operational system. For exam-tinct structures:titroeinaoprtoasye.Fream

ple, one queue may hold messages to be pro-
* a static structure, the structure of the source cessed and the other jobs to be done.

code; In an object-oriented implementation, these two
* a dynamic structure, the structure of the soft- queues would be distinct objects which are in-

ware in operation. stantiated from a single queue object descrip-

These structures are frequently quite different, tion.

and it is important that they each be specified * Both operational queues would appear in a
and documented carefully. description of the functional design of the

As written, DOD-STD-2167A does not recog- system, and their two distinct roles in that
nize that these structures are distinct. It forces in- design would be discussed.
formation about both structures to be interwoven 0 Since there is only one queue object de-
in a way that leads to complications and difficul- scription, it would appear only once in the
ties that would not exist were the two structures system's source code. It would also appear
considered separately, once in the list of work assignments.

1.__ introductionIn object-oriented software, the software prod-
1. Introduction uct, i.e., the source code, consists almost entirely

of object descriptions. The operational elements,

In much of traditional software engineering, lit- the objects, do not exist until the system is put
tie or ro effort is made to distinguish between into operation. This leads to a very sharp distinc-
the structure of software as source code (i.e.,
how the software source code is organized) and * We use the term object description instead of class
the structure of the operational elements derived since object description is not tied to any particular pro-

from the software (i.e., the structure of the sys- gramming language.

34 10th Annual National Conference on ADA Technology 1992

Abbott: An Issue to be Considered When Revising DOD-STD-2167A

don between an object-oriented system's opera- may be a separate tracking object for each satel-
tional structure (the interrelationships among the lite being tracked.
objects) and the structure of its source code.

Section 2 explains very briefly how this distinction 2.1 The Objects are not Delivered
arose. Sections 3 and 4 discuss paragraphs within
DOD-STD-2167A 3 and DI-MCCR-80012A 4 for In object-oriented software, the objects are the
which this distinction is relevant. Section 5 con- operational elements, i.e., the elements that do
tains a summary and conclusions, the work when the software operates. An object-

oriented system in operation generally consists
of (nothing but) a (usually large) collection of

2. Objects and objects interacting with each other and with the
Object Descriptions outside world. Thus it is the objects that do

whatever work the software does as it operates.

Object-oriented programming grew out of work on The design of the system is expressed in terms of

data types (and especially abstract data types) in objects and their interactions.

programming languages. The notion of object de- Yet objects do not exist prior to system opera-
scription in object-oriented systems is an exten- tion. An object is instantiated (i.e., comes into
sion of the notion of (abstract) data type in tradi- existence) when storage is allocated to it. Fur-
tional systems. Just as a data value in a traditional thermore, most objects do not persist during the
programming language is an instance of a data entire time the system is in operation. They
type, an object in an object-oriented system is an come into existence and pass from existence as
instance of an object description. the system operates. An object passes from exist-

The primary difference between object-oriented ence when its storage is deallocated. The collec-

systems and traditional abstract data type systems tion of objects in existence at any particular time

is that in object-oriented systems, the objects (i.e., is generally quite dynamic.

the values) are not static and passive. Instead they There are a number of corollaries to this distinc-
have a built-in ability to perform the operations don between objects and object descriptions.
that in a traditional language would be defined as
the abstract data type operations. The design of a software system, i.e., the de-scription of how the system works, is best
For example, in an object-oriented system there understood in terms of its objects, not its ob-
may be an object description that plays the same ject descriptions.
role that the type counter plays in traditional sys-
tems. During operation, there may be a counter The components that make up the system,
object that contains a 3. When presented with a re- i.e., the object, and the system itself will not
quest to increment itself, such an object will re- have been created and are not delivered
spond by adding 1 to its internal value making it a when the software developers finish their
4. In simplest terms, then, an object is a data ele- work. This is very different from most sys-
ment that is capable of accepting and responding tem acquisitions in which the system is de-
to requests that it perform operations. livered by the developer.

It is important to realize that objects may be major An object-oriented software developer pro-
system elements as well as minor components like duces and delivers only the object descrip-
counters and queues. An object-oriented system tions from which the system components,
for communicating with satellites, for example, i.e., the objects, will be instantiated while the
may include objects that track the satellites. There system is in operation.

10th Annual Natlonal Conference on ADA Technology 1992 35

Abbott: An Issue to be Considered When Revising DOD-STD-2167A

The task of producing the object descriptions, has the ability to respond to requests that it per-
i.e., the software deliverables, is organized pri- form operations.
marily in terms of the object descriptions, not There is, however, an Ada construct that is quite
the objects. So the organization of develop- object-like in the object-oriented sense. Ada task
ment tasks does not necessarily parallel the or- types are very similar to object descriptions in
ganization of the system being developed, object-oriented languages, and tasks instantiated

" Objects cannot be placed under configuration from task types are quite similar to objects.
control; only object descriptions and system * Both objects and instantiated tasks have stor-
design documents can be placed under config- age allocated to them for internal use.
uration control.

Both objects and instantiated tasks have
It should be clear from the preceding discussion means to respond to requests that they per-
(and it will become even clearer as we proceed) form operations.
that the system's operational structure (rather than
the structure of its source code) is the one and only Both objects and instantiated tasks come into
structure that determines whether a software sys- exsten an ot of exist w efthe
tem will operate as desired. A system's design is a system is in operation. Neither exists before
description of and rationale for its operational the system is put into operation.
structure. The fundamental issues are: * There may be many more objects and instan-

1. how a system's operational structure will be dated tasks than objects descriptions and task

identified; types.

2. how a system's operational structure will be * The design of a system that uses objects and
system's source instantiated tasks is better understood inrelated to the structure of the terms of the relationship among those objects

code. and tasks than in terms of the relationship

among the tasks types and object descrip-
2.2 Objects and Object Descriptions in tions.

Non-Object.Oriented Software Other than the task type, however, Ada is not an

object-oriented language. In Ada, as in most of
The distinction between objects and object de- the programming languages from which it was
scriptions applies to software that was not written derived, the distinction between objects and ob-
in an object-oriented programming language as ject descriptions is not made precise. In some
well as it does to software that was written in ob- cases, there is very little difference.
ject-oriented languages. The most relevant exam- Tple is Ada2. This is most easily seen in the earliest program-

ming languages. In languages such as assembly
Although Ada has object-oriented features, it is language and Fortran, the structure of the source
not an object-oriented programming language in code, is identical to the structure of the opera-
the sense discussed above. No general means are tional system. In these languages, each software
provided to instantiate objects that have operation module is tied to some fixed locations in storage.
definitions built into them. A single module of software source code cannot

In Ada, the term object refers to a unit of storage give rise to multipl.- objects.

that may hold values. As indicated above, this def- The distinction between objects and object de-
inition is subsumed by the object-oriented defini- scriptions first arose with re-entrant subprograms
tion of object which adds to it that an object also and the use of a stack for storing local data. Once

36 10th Annual National Conference on ADA Technology 1992

Abbott: An Issue to be Considered When Revising DOD-STD-2167A

the data used by a software component could be The primary focus of most object oriented lan-
separated from the component's code, components guages is on specifying object descriptions. Oth-
could have many distinct incarnations. Each in- er than the actual code that causes objects to be
stance of the local storage for such a component instantiated (which is typically sequential and at
corresponds to what in object-oriented terminolo- a very low operational level), very little effort, if
gy is now called an object, and the subprogram any, is given to specifying how objects, once in-
code corresponds to what we are calling an object stantiated, will be organized. In particular, ob-
description. ject-oriented programming languages generally
However, such early objects were instantiated in provide no declarative means for describing ob-

lock step with the call and return of the subpro- ject structures and interactions.

grams for which they provided local storage. Con- Ada's somewhat old-fashioned, non-object-ori-
sequently, subprogram object descriptions could ented nature is an advantage here. The Ada
not give rise to multiple objects that existed simul- package construct is truly a system architecture
taneously. The objects instantiated from a subpro- construct. An Ada package is an object, not an
gram object description came into existence and object description. As such, a package dannot
went out of existence in strict sequence. So even be instantiated multiple times; it already is in-
though the so called fan-in problem of utility rou- stantiated. The nesting of package source code
tines has been creating conceptual software orga- components defines a system architecture.
nizational difficulties for years, it has been possi-
ble to ignore the problem without grave damage. Yet even the package construct is not a pure

system architecture mechanism. A package may
Now, however, with the increasingly widespread be declared within a subprogram or a task type.
use of parallel and distributed processing and with Each call to such a subprogram and each instan-
true object-oriented programming languages, there tiation of such a task type will lead to a new in-

is virtually no choice but to understand large soft- stantiation of the embedded package. In this

ware systems in terms of interacting processes and sentha ckag is nh t a p e In the

objects. As a result, the distinction between the soure coe package a e tojmtile

structure of the source code and the structure of package instances.

the operational system can no longer be ignored.

Even in programming languages in which object-
like constructs are not directly available, program- 3. DOD-STD-2167A
mers find themselves forced build comparable Software Development
structures. They do so either through the use of op-
erating system services such as interacting pro-
cesses or by implementing mini-object-oriented This section discusses paragraphs in the current
systems in global common storage. DOD-STD-2167A for which the distinction be-

tween objects and object descriptions is relevant.
2.3 Object-Oriented Languages Pro- It is divided into subsections that discuss respec-

vide No Way to Specify System Ar. tively sections 3, 4, and 5 of DOD-STD-2167A.
chitecture 3.1 Section 3. Definitions

Although object-oriented languages now provide
means to specify objects, a significant weakness of Section 3 of DOD-STD-2167A is a list of defini-
most such languages is that they provide no way to dons. The two definitions of interest to us are the
specify system architectures. definitions of CSC and CSU.

10th Annual Naonal Conference on ADA Technology 1992 37

Abbott: An Issue to be Considered When Revising DOD-STD-2167A

Paragraph 3.8 Computer Software Component which the object is to be instantiated. From here
(CSC) and 3.11 Computer Software Unit on, no further mention will be made of problems
(CSU). DOD-STD-2167A defines Computer Soft- that can be resolved by simple terminological
ware Component (CSC) and Computer Software conventions.
Unit (CSU). Paragraph 4.2.5 Computer software organi-

The primary intent of these definitions is presum- zation. This paragraph requires the contractor to
ably to provide a framework for software testing decompose and partition each CSCI into CSCs
and integration. The CSUs are intended to be test- and CSUs. The associated Figure 3 illustrates a
able atomic elements; the CSCs are intended to be possible decomposition.
testable aggregated elements. The problem here is that there are a number of

The problem is that the terms CSC and CSU are ways to decompose a system, and the paragraph
used to refer both to the structure of the source is not specific about which one is desired.
code as well as to the structure of the operational Functional. A functional decomposition is
system. In some places , CSCs and CSUs are un- oneta shows oa ecomposedof
derstood to be work products, i.e., softwar- source on e nt s ho se is com
code; in others, they are understood to system sblmnswoefntos hncmcomponents, bined, achieve the system objectives. A func-tional decomposition of an object-oriented
As work products, CSCs and CSUs are object de- system would show what the objects are and
scriptions and collections of object descriptions. how they interact. A functional decomposi-
As system components, CSCs and CSUs are ob- tion would tend to illustrate dynamic interac-
jects and collections of objects. As we indicated tions. (See Abbott for a discussion of how
above, both kinds of structures are important. The functional decomposition, properly under-
problem is that they are distinct and need to be stood, is quite compatible with object-ori-
dealt with separately. ented software.)

To avoid confusion we will not use the terms CSU Parts List. A parts list decomposition is one
and CSC except when referring to the text in the that shows the component parts for each
standard. Instead, we will continue to use the component. A parts list decomposition is a
terms object and object description, tree structured, hierarchical decomposition

of a system down to its atomic elements.
3.2 Section 4. General Requirements Such a decomposition includes every opera-

tional component that may exist during the
This section discusses requirements imposed by life of the system without regard to the time
Section 4 General Requirements. during which the components exist.

Paragraph 4.1.1. Software Development Pro. Work Breakdown. A work breakdown de-
cess. This paragraph requires the software devel- composition is one that shows how the sys-
oper to code and test Computer Software Units tem is to be developed in terms of the re-
(CSUs). An immediate terminological problem quired work tasks and the deliverables.
arises because object descriptions are coded, but
objects are tested. To understand the differences among these three

Terminological problems are usually easy to fix. kinds of decompositions, consider again a sys-

Testing an object description can be understood to ter with two queues.

mean testing objects instantiated from that object In a functional decomposition both queues
description and coding an object can be under- would appear in the decomposition, their dif-
stood to mean coding the object description from ferent roles would be identified, and their in-

38 10th Annual Nafional Conference on ADA Technology 1992

Abbott: An Issue to be Considered When Revising DOD-STD-2167A

teractions would be illustrated as in a dataflow since they exist only within the computer and
diagram. only when the system is in operation.

" In a parts list decomposition, both queues 3.3 Section 5. Detailed Requirements
would be shown in the decomposition, but
there would be no indication of whether or not
they interact. This section discusses paragraphs from section 5

of DOD-STD-2167A.
* In a work breakdown decomposition, only thesingle queue object description would appear, Paragraphs 5.3.2 and 5.4.2 Software Engi-

and it would appear ony once, neering (within 5.3 and 5.4 Preliminary andDetailed Design respectively). In sections
All three kinds of decomposition are useful, but it 5.3.2.1 and 5.4.2.1 the developer is required to
is important to recognize the differences among establish design requirements for each CSC and
them. Both functional and parts list decomposi- CSU.
tions identify system objects. In addition, a func- Objects and higher level components have de-
tional decomposition shows the dynamic interrela- s an d ecpons hv de-
tionships among the objects. Although a parts list sign requirements. Object descriptions do not
decomposition includes each operational element, have design requirements; they are designs wince
unlike a functional decomposition, it does not in- they describe how the objects they describe will
dicate (a) whether pairs of components interact, operate.
(b) how interactions occur, or even (c) whether
components exist simultaneously. In fact, in many 4. DI-MCCR-80012A
large systems, pairs of components do not operate
simultaneously. For example, in a satellite system, Software Design Document
a launch subsystem and a payload data analysis
subsystem may not exist simultaneously. Yet both DI-MCCR-80012A specifies the form and con-
would appear in the operational decomposition. tent of a Software Design Document (SDD). Ac-
In contrast, a work breakdown decomposition cording to DI-MCCR-80012A, an SDD should

does not identify the system objects at all. Instead, describe a CSCI as composed of CSCs and

it shows the interrelationships among the object CSUs. It should also describe the functions of

descriptions, the CSCs and CSUs and the relationships among
them.

Rather than try to divine which kind of decompo- Again, the problem is here is that the existence
sition is intended by the current standard, it would of two distinct structures is not recognized. De-
seem more sensible to realize that one will proba-bly antallthre kids f dcomositon t vri- pending on one s perspective, a CSCI is either
bly want all three kinds of decomposition at vari- (or both) source code and an operational system.
ous times during system development. When one is concerned about how a CSCI will

Paragraph 4.5.1 Configuration identification. operate and whether it will produce the desired
The contractor is required to identify each CSC results, one is concerned with its operational
and CSU and the version of each CSC and CSU to structure. When one is concerned about how the
which the corresponding software documentation source code is organized and how the work re-
applies. quired to produce that code is broken down, one

Both (a) the designs of objects and higher level is concerned with the organization of the object

components and (b) object descriptions can be descriptions.
kept under configuration control. The actual ob- Paragraph 10.1.5 Preliminary Design. This
jects cannot be kept under configuration control section and its subsidiary paragraphs requires the

10th Annual National Conference on ADA Technology 1992 39

Abbon An lue oo be Cosdaed When Revising DOD-STD-2167A

conmaor o descbe the archiecuof d sys- Docmenion of an objec descuiption is
tem. Te paragraph is labelled Prei y De- & euatu of a sm e code lihay de-
siga, k would be better to change the label to Sys- meat independently of the system within
tsmeArecave.) whc it is to unctimL

Pisuably the intent of an SDD is o describe the of = object s documnta-
operational design of a CSCI (rather than the ton of an possibly in the cotet of
structue of its souce code). That is, an SDD is in- the syasm in which it operas.
tended to describe how a CSCI is intended to In many cases, these two appraches to docu-
work Thus this section Fesmably requires the wmgm will yield the same esulL But in some
developer to describe the object structure rather caes o want to document the paricular role
than d CSC s object desenpo structure, a tht an obje plays in a sysem and the iter-

actions it has with othr objects of t paticular
Yet the should also be a u that the de- system. Such do tanon is not possible at
veloper describe the oraizto of the object de- th obec denm lee ic tta ee n
scriptions. In most cases (and whether or not an i documenting source code that may be used in
object-oriented programming language is used) a number of difeent places in possibly many
the object descriptions will be organized as a li- aiffer systei b
brary. The structure of that library deserve ade-
quate cm tation, Multiple operations. This paragraph poses a

separate but impMtant problem for object-orient-
Paragraph 10.1.6 Detailed design. The subpara- ed software. There is an unstated implication
graphs within this paragraph require that the de- that each object performs only one opration. In
sign of each operational system component be de- object-oriented software, objects may be able to
scribed. In particular, 10.1.6.1 requires that each perform many different operations. The details
higher level operational component be described of each operation should be described in terms of
in terms of the objects within it. the relevant design properties [(a) through Mk)J

Paragraph 10.1.6.1.2.2 (CSU name) Design. listed in this paragraph.

This paragraph requires that the design of a CSU Data elements. Portions of this paragraph refer
be described. to data elements. In a pure object-oriented sys-

tem, there are no such things as data elements
Since the focus of this paragraph is on objects, it that are distinct from objects. Data is carried by
makes sense to argue that this paragraph should be objects.
about objects and not about object descriptions. Objects may, however, have internal variables to
Under that interpretation, this paragraph should re- which other objects may be bound. The objects
quire a discussion of the design of the object under expected to be bound to these local variables
discussion. It should also require a discussion of should be described.
how the object description from which that objectis instantiated implements that design. In describing objects to be bound to local vari-

ables it is important to specify the engineering-

On the other hand, one may want to require that specific information, e.g., units of measure, ir-
the object description library be documented. In its, etc., specified in paragraph 10.1.7. It is also
that case one is not documenting objects for a par- important to specify for each such object either
ticular system; one is documenting object descrip- (a) the type of the object, i.e., object description
tions. In some ways this illustrates the problem from which the object is to be derived or (if the
that underlies many the issues that we are discuss- system supports polymorphism) (b) the opera-
ing. tions that this object is expected to be able to

40 101h Annual Naflioncl Conference on ADA Technology 1992

AIbout An Isue, o be Congd d When Revising DOD-SD-2167A

peform. This infomation should replace the in- 2. United States Department of Defense. DOD-
foation on data type and r t required STD-4815A Ada Programming Language.
by the p=wagaL DepaItment of Defense, January, 1983.

Paragraph 10.1.7 CSCI data. This section re- 3. United States Department of Defense. DOD-
qum e ta global data elements be described. As STD-2167A Defense System Software Devel-
jnst indialed, in pure object-oriented systems, opment Department of Defense, June, 1985.
daa wenouse not distinct from objects. There- 4. United States Department of Defense. DI-
fee this section b not apply. On the other hand, MCCR-80012A: Software Design Document.
there probaby wil! be global objects that should Dprmt of Defense, February, 1988.
be described as part of the CSCI architecture.

5. Summary and Author Information

Recommendations Russell J. Abbott is a Professor of Computer Sci-
ence in the Department of Mathematics and

We have argued that software systems have two Computer Science at California State University,
smuctures and that both of them are important. We Los Angeles, Ca. 90032. He is interested in vari-
have found that DOD-STD-2167A requires infor- ous aspects of Computer Science including soft-
mation about both suuctures but that it does so in a ware and system organization. He can be
way that does not recognize that the two structures reached by email at rabbott@neptune.calstate-
are distinct. We therefore recommend that recogni- la.edu.
tion of the two structure be included in the upcom-
ing revision to the standard.

Acknowledgments and Disclaimers

Marv Lubofsky originally suggested the need for
this investigation, and discussions with him helped
to clarify many of the issues. Suellen Eslinger, Pe-
ter Homeier, and Larry Jordan also provided help-
ful comments.

The positions, analyses, and recommendations
presented here are strictly those of the author and
do not necessarily represent those of any institu-
tion with which the author is associated or of any
of the individuals who read and commented on
drafts of this paper.

References

1. Abbott, Russell J. Configuration Management,
Functional Decomposition, and Object-Orient-
ed Software. Draft (1991).

10th Annual Naonal Conference on ADA Technology 1992 41

MATHEMATICS PLACEMENT TESTING: A STUDENT PROJECT

Dr. Dennis S. Martin
Department of Computing Sciences

University of Scranton, Scranton, PA 18510-4664

Abstract --This paper describes a Backqround
programming project designed for The project is derived from
junior year students which an existing software system.
emphasizes an object orientation Several years ago, we noted that
and software engineering con- some of our computing sciences
cerns. It uses Ada features in a students were being placed in
meaningful manner to support Calculus when they needed Pre-
these considerations. Calculus. The use of aptitude

test scores and high school
keywords: student project, soft- records was not working. With
ware engineering education the mathematics faculty, we

devised a multiple-choice place-
Introduction ment examination with a compu-

One of the problems facing terized interpretation of scor-
instructors of computer science ing. The mathematics faculty
is the creation of meaningful used this successfully in all
student projects. The project beginning mathematics courses and
described here is a class-tested, the University now conducts math-
effective project which requires ematics placement testing for all
an interplay between top-down and incoming freshmen during a two-
object-oriented design and which day pre-orientation in the sum-
utilizes many Ada features and mer.
software engineering considera- A three-part process is
tions. This is a major project involved. First, information
which takes over one-half of the about the students is extracted
semester for students to perform. from the University database and
It is a reasonable project for this file is incorporated into a
junior or senior year students. testing database. Two mathemat-
We use this type of project as ics examinations are given on the
one of two projects in a Program- first day the students are on
ming Languages course stressing campus. Students are assigned to
software engineering concerns, an examination based on their
The second project is a smaller choice of major and what mathema-
version of the project in C. A tics it requires. The tests are
more appropriate usage would as optically scanned and the resul-
the project in a software engi- ting test data file is incorpor-
neering course, possibly using a ated into the testing database.
team approach. Next year, we Reports are then produced the day
will introduce such a course and of the test and used by advisors
we will modify our approach to to place students into proper
the Programming Language course. mathematics courses.

42 1Oth Annual Nahonal Conference on ADA Technology 1992

This process is repeated at to the student database must be
five different times during the specified.
Summer. Additional reports based 3. The bodies of the major
on all the students tested are procedures with the design filled
generated in the Fall in various in. A pseudocode of the mainline
formats for the use of mathemat- of the procedure is the recom-
ics instructors, advisors, major mended method. A dummy stub
departments, and administrative allows compilation.
personnel. 4. The specification of the

student database package as an
The Student Project abstract data type. This con-

The project simulates a sists of open and close opera-
single test form, a single test tions and the access procedures,
administration, and fewer reports with parameters, needed for the
but otherwise is faithful to the rest of the program. The testing
original system. We use disguis- database is the object that pro-
ed actual student data to test vides logical access to all. the
the students' programs. information.

The project is given to the The use of separate com-
students within the first two pilation units is mandatory. The
weeks of the semester in a des- work above involves only a small
criptive form such as we have amount of code and the students
done above. The students have cannot develop the entire project
used Modula-2 as the principle to hand in the design. This is
language of instruction for four intentional as most of the stu-
semesters and are learning Ada at dents have never produced a de-
this time. Since we use a Lan- sign without using the expected
guage Sensitive Editor, the Ada body of code to guide it. We are
instruction concentrates on con- trying to force design to precede
cept rather than syntax. code with this project.

We use two criteria to grade
DesiQn the design. The clarity of the

The students have two weeks documentation is as important as
to prepare and submit their de- how well the database provides
sign in the form of successfully the access needed for the main
compiled listing files. The de- units. Adherence to departmental
sign consists of documentation standards is re-
1. The mainline which is a menu quired (the Language Sensitive
selection for the major proced- Editor facilitates this). Stu-
ures. It must be able to be run dents are encouraged to discuss
more than once as the two files ideas for design with each other.
are not available at the same They have trouble with the de-
time and reports need to be gen- sign, especially the role of the
erated on demand. Full system database. Many spend much time
documentation is required. developing details of the imple-
2. The specifications for the mentation of the database instead
major procedures. Each mainline of its specification. The design
procedure describes a functional- grade is awarded when the design
ity of the system. A careful is returned and is twenty percent
English description of each unit of the total grade. After the
is required. These must be fully designs are graded and returned,
commented. In each, the access we review top-down and object-

10th Annual Notional Conference on ADA Technology 1992 43

oriented design for this example exception that will be handled
and develop a correct design in back in the mainline procedure.
class and students whose design The program must test for
are unsatisfactory must switch to and recover from all possible
this new design. data mistakes. The user and the

program must "save" as much data
Implementation as possible by cross-checking or

The students now start by prompting for extra informa-
developing the bodies of the tion from the terminal. What can
various sections. At this point be done effectively by code and
specific Ada constructs are what is best done interactively
explicitly required. In class, is a good discussion topic.
we show Ada code using many of I Some reports required mean
these constructs. Students were and standard deviation of scores.
free to discuss any problems This required work with float
together but code had to be variables and the mathematics
original with each student. They library.
could ask any Ada questions in We further require that
class or in my office. there must be only one procedure

The storage mechanism we use which will open all text files
is an instantiation of Direct IO, whether for reading or for wri-
a direct access file indexed by ting and this procedure must
record numbers. The program must recover from an incorrect file
be reasonably efficient as it is name. The purpose of this re-
run for about 1000 students. quirement is to reinforce the
Access considerations require corresponding Ada features.
direct access by student ID and
sequential access alphabetically Results
by name. They must write a The grading is based on
generic sort (on an array of key project demonstration and the
field-record number pairs) which quality of the code submitted.
is instantiated twice. This project has been assigned

Of course, there are errors twice (with a year's gap in
in the data. The files down- between) to a total of thirty
loaded from the University data- students. Last year's students
base are clean but are generated had actually taken the placement
prior to the test date. Some test as incoming students. There
students tested were admitted are clearly demarcated partial
after the file was generated and projects that a student can re-
were not in the file. The test ceive credit for. Eight students
data file has errors caused by have done excellent work, produc-
the students as they fill out the ing fully working systems. An
answer sheet. The student ID additional twelve have done sig-
number may not be correct and the nificant work but did not totally
name may not literally match the finish the project. The most
student's name in the University common problem was the inability
database. When a student ID is to correct a wrong student ID or
not found by the database code it to add a new student. The
must be reported to the mainline minimal project that could obtain
procedure that asked the database credit was to read the original
for the service. In Ada, the file into the database and then
natural mechanism is to raise an print it out in any manner. This

44 10th AnnIal Natonal Conference on ADA Technology 1992

was sufficient to allow a passing solve the problem in an efficient
grade in the course if the second and reliable way.
project and the tests were good. 3. This project gave me prac-
Since the major reason for doing tice to go over some implementa-
poorly was waiting until the last tion decisions (storing, sorting
minute to start the work, the and searching large amounts of
smaller and easier second project data) that required taking into
was usually done well. consideration what I had learned

All students find this in previous courses.
project to be a major challenge. 4. This is a very long project
The best students enjoy the and I got to appreciate the im-
challenge and are proud of their portance of dividing and organi-
accomplishments. It is not zing the job into distinct and
expected that all students will approachable parts that can be
finish this project and that fact implemented and tested separate-
is constantly repeated. The stu- ly.
dents who do significant work but This project works well for
not the whole project are good our students. We feel that you
students and it is essential that will find a variation customized
they also have a feeling of pride for your needs similarly useful
in their accomplishments. Since in your program.
our classes are small, I can work
individually with these students
and help and encourage them as Dr. Dennis S. Martin, Department
they progress. I am proud of of Computing Sciences, University
what they are accomplishing and I of Scranton, Scranton, PA, 18510
believe that they are also. The martin@jaguar.uofs.edu, is an
students who are having problems Associate Professor who teachs a
and who do not come to see me variety of courses and writes
even when I constantly ask them papers on effective presentation
are the problem. Some know that of topics in computer science.
the grading policy allows them to
do minimal work on this project
but still pass the course.

We find that the project is
an excellent preparation for the
individual computer projects that
our students must undertake in
the following semester as sen-
iors. When asked to anonymously
comment on the project, one stu-
dent made the following points:
1. This project is a very
realistic practice of the type of
problem a computer programmer
will experience in his/her pro-
fessional life.
2. While I was working on this
project I got to appreciate the
importance of taking time to find
and understand the correct speci-
fications and requirements to

10th Annual Nafional Conference on ADA Technology 1992 45

MAINTAINING TRANSPARENCY OF DATABASE OBJECTS
OVER NETWORKS IN ADA APPLICATIONS

Eugen N. Vasilescu
Sabah Salih

John Skinner

Grumman Data Systems
1000 Woodbury Road
Woodbury NY 11797

MS D12-237

Abstract -- Seamless integration of applications in Despite the easy establishment of a common file system
existing MIS environments is difficult because of specific by NFS, problems can arise when programs try to access

differences in hardware and software characteristics. We and utilize data residing on different server platforms

investigate the problem of accessing databases and the due to differences in internal data representation

transparent transfer of complex objects between Ada formats.
programs across several hardware platforms utilizing
multi-vendor DBMS products. We focus on integrating Another problem is encountered when data needs to be
related data and data manipulation services that often transferred between databases, possibly maintained by
must reside on different platforms, but generally are different DBMS products. DBMS vendors often provide

easily interconnected via off-the-shelf offerings such as utilities for loading and transferring data (eg. Oracle

NFS (Network File System) and RPC (Remote SOL*Loader) [21, but these products can be somewhat
Procedure Calls). We present a uniform Ada-based complicated to use and may not produce formats that
methodology that supports these services, and the are compatible between products from different vendors.

associated implementation challenges. In a multiple client environment, the problem of data

Keywords - Ada, DBMS, Remote Procedure Call transfer may be further complicated by the need for

(RPC), High-level Schema, Network File System (NFS), data communications between application programs

Transparent Database Objects, Complex Objects. running on different client machines. In this case, a
transparent method for communicating potentially

1. INTRODUCTION complex data types is highly desirable.

RPC helps in solving the above problems because itThe establishment of an environment in which several enables communication across a network between

client and server machines may operate is a critical step programs written in a variety of high-levl languages,

in permitting communications between different and can be used to communicate between processes on

machines. NFS is a de-facto standard when sharing of the same or different machines. The net effect of

files is needed in a heterogeneous environment of programming with RPC is that programs are designed

machines, operating systems and networks. It is the tor wiin a cis etwork modeigneI
domiantfaciityuse by NIXandit i wiely to Tun within a clent/server network model ill. In

dominant facility used by UNIX and it is widely particular Database, Management Systems operating in
supported by non-UNIX operating systems such as acin/evrevrnetcnuiietesrie

DOS, OS/2, NetWare. NFS allows a client program to provided by RPC to transparently make their services

access files on any server on a remote system that available to processes on different machines.

supports the NFS protocols and access methods as

specified in Ill.

46 10th Annual National Conference on ADA Technology 1992

RPC can be used to address the problem of data Graph nodes are represented by record types, while
transfer between databases that can reside on different graph edges are represented by discriminant values or
platforms. For exmple, a client application program record components of access type. Careful rules must be
could use RPC to retrieve data on a server running a observed to avoid the creation of unintended cycles that
DBMS. This datA could then be inserted into the client's translate into endless loops at run-time. These rules
database or into a database residing on a different (outlined in [3]), are obeyed by the PARTS SCHEMA
server. RPC would automatically make the data package listed in the Appendix. Associated high-level
conversions necessary for the data transfer. In a similar primitive for database applications include operations
fashion, RPC could be used to directly transfer such as INSERT, RETRIEVE, DELETE.
potentially complex data types between application
programs running on different platforms. From the user perspective, the methodology requires

first that a collection of cardidate scalar types be
The benefits of the RPC mechanism come with some defined in a separate package. These are the types used
associated obstacles in its use due chiefly to the tedious in the building of desired complex objects. A good
manual process of developing the required support code. source of scalars to be used by the RPC and/or DBMS
RPC itself is an extension of XDR (External Data facilities can be found in data dictionaries or
Representation) language, with a bias towards the C repositories, and their casting into Ada type definitions
Language, and represents an added layer of complexity is usually straightforward. An example of such a
for the application programmer to contend with. As package is PARTS-TYPES listed in the Appendix.
more complicated data structures are supported, the
RPC code becomes exceedingly complex and error Next the collection of supported types is assembled in a
prone. separate package. For database applications this

collection of types (found in the PARTS SCHEMA
We present an Ada-based methodology that package) describes a schema. This means that any object
automatically generates DBMS and RPC support code declared in the application program whose type is listed
for complex objects. This methodology, first described in in PARTS SCHEMA can be used as an actual
[3J for databases, is extended to RPC in a seamless parameter in calls invoking RETRIEVE, DELETE,
manner. When using this methodology, an application INSERT.
programmer places in a specialized package the types
requiring RPC and/or database support. These types When invoked, RETRIEVE will actually assemble all
appear as parameters of predefined and semantically required components, list of suppliers, etc. consistent
well-defined high-level calls available to the application with schema description, from the persistent storage
program. Every object declaration of the supported under the control of DBMS and place this information
types in the application program may use the predefined in memory under the control of the application program.
DBMS and/or RPC calls in a transparent manner. The RPC support means that the user may transparently

access servers on dirferent platforms.
This methodology is now implemented in a prototype
running ORACLE on SUN 4 and INFORMIX on SCO In this case, for instance, the application invoking a
UNIX. The application can run on either platform and RETRIEVE 'may run on an INTEL 486, while the
either DBMS can be used as a server. accessed DBMS might be running on a SUN

Sparcstation. The user actually has the option of naming
the server ("retrieve this bike from the SUN server") or

2. METHODOLOGY OVERVIEW ignoring server names ("retrieve this bike - I do not
know or I am not interested what server has to assemble

At a conceptual level the methodology requires this information"). Or an application program can
capabilities for modeling classes of complex objects and retrieve objects from one DBMS and insert them into
associated high-level operations in Ada. It seems (as another.
shown in [4]) that for a range of database models,
(hierarchical, network, relational, semantic, object- The RPC support is not tied to DBMS support. One can
oriented) what is needed is the capability of describing have several application programs running on different
DAGs (Directed Acyclic Graphs) in Ada. This is platforms exchanging directly complex objects without
accomplished by defining record types with discriminants any database interaction. As depicted in Figure 1, there
and the use, under certain restrictions, of access types. are quite a few options in deciding the desired

10th Annual National Conference on ADA Technology 1992 47

combination and interconnection of servers and clients. This methodology is independent of any particular
DBMS model, and the extension to RPC is done in an
orthogonal manner. The prototype implementation uses
Relational DBMS, but other models can be targetted as

SCO/UNIX I SUN SPARCSTATION well because of the complexity of the data structures
supported. One may choose to have schemas spanning
several packages, each package specialized in accessing
a particular DBMS or file system.

INFORMIX ORACLE
FMRThe methodology offers the application level

programmer all the required semantics for writing fully
0O portable, all-Ada code. There is no difference in Ada

R>P source code between the application running on
M DBM S M SCO/UNIX and the one running on the SUN platform.

ADA ADA
APPLICATION, R I APPLICATION
PROGRAM PROGRAM

ADA/DBMS PROGRAM

VIRTUAL
IrINTERFACE

GENERATOR

Figure 1IOPIE XDR C I
CO I

This methodology is heavily biased towards ease of use. I
The user needs to know a few rules for consistent I

definition of Ada record and access types making up the 4JOINDER/ DBMS/RPC
complex objects, and have a good understanding of the ILINKER

high-level primitives. The real burden is on the I I

implementor who must generate on-the-fly support code
for navigating databases and using RPC. The
implementor needs a tool that, at a minimum, is able to Figure 2
perform static semantic analysis of Ada source code. By
analyzing the application program and the types making
up complex objects, the tool must generate a "virtual
interface' capable of mapping complex objects onto 3. PROTOTYPE IMPLEMENTATION
simpler ones (required by databases), and also to map ISSUES
the same complex objects onto equivalent RPC ones (an
example in the Appendix lists the RPC code generated The task of transparently transferring complex objects
from the PARTS-SCHEMA package.) between Ada programs across several hardware

platforms utilizing multi-vendor DBMS products
It should be noted that the 'virtual interface* generation encompasses two parts. First, one must be able to
(see figure 2) is different from the working of a successfully move data between platforms transparently
preprocessor in that the application source code is not to the user. Secondly, access to databases and data
modified (except for the addition of a few representation manipulation services residing on different platforms
clauses), rather the bodies of some "withed" packages must be presented to the user in a uniform fashion that
are filled out. This can be likened to a "pre-compile time is independent of the specific DBMS's. Our
polymorphism" concept, and accounts for the methodology applied to these to tasks has resulted in a
scamlessness of the methgdology. system that allows for the definition and manipulation of

48 10th Annual National Conference on ADA Technology 1992

complex objects in Ada programs utilizing multi-vendor This phase ran pretty much concurrently with
DBMS products that may reside on different machines. the previous one. The issue was to choose a

target data structure that closely follows its Ada
Differences in internal data representation formats counterpart (especially when variant records are
result in major problems when binary data is transferred involved), both for ease in generating
between different machines. This becomes apparent automatically RPC support, and for the ability
when one understands that the most significant bit for to provide easy visual checks. An example is
binary integers on INTEL 486 becomes the least provided in the Appendix which lists the
significant bit on the Sun SPARCstation. A sequence of PARTS SCHEMA package and its RPC
bytes storing a certain value on the INTEL 486, will translation.
represent a different integer value when copied on the
Sun platform. C. Pass complex Ada record structures from an

Ada client to an Ada server and back.
This is easily demonstrated by using Ada I/O facilities
provided by the DIRECT 1O package to write a When mapping Ada records from an Ada client
complex Ada record to a file, and then attempting to to an Ada server the record components cross
reconstruct the original record by using several address spaces, including a thin C layer,
DIRECT IO.READ to retrieve the data from the file. and the Ada record layout does not necessarily
When these operations are performed on the same conform to the record layout of the external
machine, the original record can be successfully read environment. Some of the extra gaps between
back. However, if the data file is moved to another Ada record components were handled with
platform and then read by DIRECT JO.READ, the "pragma PACK".
original record cannot to be reconstructed.

Using a representation clause to control the
RPC is designed to address this data transfer problem Ada record layout seemed like another option
by automatically making the data conversions necessary in this case, but here one has to pay attention
for the data transfer. However, RPC is typically used to to the alignment conventions for record
transfer data between C programs on different components used by the Ada compiler and the
platforms. Using RPC to implement data environment. For instance, our Ada compiler
communications between Ada programs on different started record components in locations divisible
machines presents additional challenges. The goal of by four relative to the start of the record (word
providing these services transparently to the user further boundary alignment), and this might force the
complicates the issue. introduction of slack bytes when strings whose

length is not divisible by four are used in
The implementation of the prototype covered the records.
following phases, each one with its specific challenges.

Ada variant record maps naturally on the XDR
A. Establish communication between Ada discriminated union, which in turn gets
programs on different machines and pass translated into C unions together with
simple pieces of data such as integers or strings, enumeration values that select the proper arm

of the union. Again, problems arise here
The only available RPC support was for the C because the Ada compiler chooses the storage
language, so the low-level calls were made to C. size for the enumeration type of the
A problem encountered in this phase was due discriminant based on its range of enumeration
to the Ada compiler propensity to generate values.
three bytes for integers when the type definition
required less than 24 bits for representation. In PARTS SCHEMA package, PART C
The outside environment had either two or four record type has two discriminant choices, and
byte integers. The solution was to use a length the Ada compiler chose 8 bits of storage for the
clause to allocate 32 bits. enumeration type. However, the C compiler

uses 32 bit integers for its enumeration types.
B. Establish a canonical mapping from Ada At first, the solution seemed to be to place the
record type definition to RPC equivalent data discriminant value in the first 8 bits of the Ada
structures. record, but allocate a total of 32 bits to match

10th Annual National Conference on ADA Technology 1992 49

the size of the C enumeration type. The The resulting prototype successfully supports both RPC
solution to this problem is to use a length and database calls. Before the Ada source code reaches
clause for the Ada enumeration type that is an Ada compiler, our tool will augment the type
used for the discriminant type and force the package (PARTS TYPES package) with necessary
size to 32 bits. In the Ada variant record, the length clauses and the schema package
representation clause now places the (PARTS SCHEMA) with representation clauses. The
discriminant value in the first 32 bits of the same tool will supply missing Ada code in subprogram
record and continues to allocate 32 bits of space bodies for database and RPC support, and additionally,
for the discriminant component. will generate a small layer of RPC and C code. The

resulting code is compiled (by Ada, RPC and C
D. Mechanize translation of Ada record type compilers) and linked without user intervention.
into RPC equivalent data structures.

This phase took advantage of the tool developed 4. CONCLUSIONS
for databases [3] which already performs the
required semantic analysis of the Ada source There are Ada compiler vendors that offer RPC
code and is able to manipulate the graph-fike support, but the support offered is for elementary types
structures for complex objects. Given the such as integers, float, strings. They do not offer any
availability of the required information in a automatic support when dealing with the complex
convenient form, it was a fairly trivial matter to objects involving records with discriminants and pointer
target for translation the RPC language. semantics.

E. Integrate RPC and DBMS support. Similarly, some DBMS vendors offer Ada interfaces to
their products (usually following an "embedded

According to [31, the user supplies subprogram approach" of placing database language calls in the Ada
specifications for any necessary data source code) that are vendor specific and offer limited
manipulation, and the interface generator will portability.
supply the necessary bodies for database
navigational code. The DBMS-specific packages In contrast, our methodology offers an all-Ada approach
that interface to the database exist at a lower that provides a uniform and transparent user-oriented
level not visible to the user. The same holds for strategy for dealing with a variety of DBMS and
the RPC components, and this allows us to complex objects residing on different platforms.
incorporate the RPC support without user
intervention. This methodology is independent of existing commercial

offerings, thus enabling portability of user applications.
A significant problem in the integration of This, in fact, was convincingly demonstrated by our
DBMS and RPC was caused by the fact that prototype implementation.
pragma INTERFACE is insensitive to the
formal parameter profile. While the methodology assumes the use of a proprietary

tool, the interfaces between the user code and tool are
For instance, the database calls use the same supposed well understood. This is due to the public
RETRIEVE subprogram name, but each nature of the rules for defining complex objects and the
RETRIEVE has a unique parameter profile general acceptance of the high-level call semantics.
because different query terms correspond to
different formal parameter types. Pragma
INTERFACE was required for low-level REFERENCES
bundling and unbundling of parameters on the
client and the server side and it cannot overload 1. "Network Programming Guide", SUN Microsystems,
subprogram names. The chosen solution was to Mountain View, California, 1990.
embed the required pragma one level deeper in
the body of the RETRIEVE subprograms, in 2. "Oracle RDBMS Utilities Users Guide", Oracle
effect circumventing the overload resolution by Corporation, Belmont, California, 1989.
using lower-level scopes.

50 10th Annual National Conference on ADA Technology 1992

3. Vasilescu, E., "Using Ada for Rapid Prototyping of for MASS TYPE'SIZE use 32;
Database Applications", Proceedings of the Eighth for NO TYPE'SIZE use 32;
Washington Ada Symposium, pp 40-49.(1991). for COST TYPE'SIZE use 32;

for HOW MANY TYPE'SIZE use 32;
4. Zicari, R., "Primitives for Schema Updates in an for PART CLASSFSIZE use 32;
Object-Oriented Database Sys tem: A Proposal",
Proceedings of the Object-Oriented Database Task end ADA-SQL;
Group Workshop, E. Fong, Ed., NISTIR 4488, January
1991. end PARTS-TYPES;

with PARTS-TYPES; use PARTS-TYPES;
APPENDIX package PARTS-SCHEMA is

package PARTS-TYPES is use PARTSJTYPESADASQL;

package ADA SQL is type MADEFROMC;
type ACCESS MADE FROM C is

type OCOUNT TYPE is range -10000..10000; access KIADE J-ROMC;
type PART CHAR is new CHARACTER;
type PART INDEX is range 1..10; 1 type SUPPLIERS C;
type SUPPLIER CHAR is new CHARACTER; type ACCESS SUPPLIERS C is
type SUPPLIER-INDEX is range 1..10; access SUPPLIERS.C;
type CITYTYPE is (PARISLONDON); --PART C is your only root
type C TYPE is range 400 .. 500;
type MASS TYPE is range -1 000 000.1 000 000;
type NO TYPE is range 0.. 99999 type PART (PARTKIND: PARTCLASS
type COST TYPE is range 1 .. 1000; : BASE.PART) is

type PART NAME TYPE is array record
(PART INDEX range < >) of PART CHAR; NO REF

type SUPPLIER NAME TYPE is array E NOTYPE;
(SUPPLIER INDEX range < >) of NAME : PARTNAMEJTYPE(..10);

SUPPLIERCHAR;
type HOW MANY-TYPE is range 1.. 99; case PARTKIND is

type PART CLASS IS when BASEPART = >
(BASE PART,COMPOSITEPART); COST : COSTTYPE;

subtype BASE PART CLASS is PART CLASS MASS : MASS TYPE;
range BASE PART.. BASE PART; SUPPLIED-BY: ACCESS-SUPPLIERS-C;

subtype COMPOSITE PART CLASS is
PART CLASS range when COMPOSITEPART =>
COM17OSITE PART .. COMPOSITEPART; ASSEMBLY COST

: C(ST TYPE;
-- These length clauses are added by our tool MASS INCREMENT
-- based on the compiler and environment knowledge : MASSTYPE;

MADE FROM :
ACCESS MADE FROM C;

for O COUNT TYPE'SIZE use 32; end case;
for PART INDEX'SIZE use 32;
for SUPPLIER INDEX'SIZE use 32;
for CITY TYPE'SIZE use 32; end record;
for C TY-PE'SIZE use 32;

- type ACCESS PART C is access PARTC;

10th Annual National Conference on ADA Technology 1992 51

type MADE FROM C is
record -- This is RPC code is automatically generated from the

PARTS SCHEMA package
HOW MANY : HOW MANY TYPE;
COMPONENT : ACCESSPART-C; --

NEXT MADE FROM C:
ACCESS MADE FROM C; typedef struct made from c *access made from-c;

end record; struct made-from c(
int how-many,

type SUPPLIERS C is struct partc *component;
record access made.from c next made from c;

NAME REF
SUPPLIER NAME TYPE(1..10);

NEXT SUPPLIER C- ACCESS..SUPPLIERSC;
typedef struct suppliers c *access suppliers-c;

end record;
struct suppliers-c{

char name-req10];
These representation clauses are added by our access suppliers c next-supplier c;

- tool based on the
- compiler and environment knowledge

enum partclass {
BASE PART = 0,

for PART C use COMPOSITE PART = 1,
record END = 2);

PART KIND at 0 range 0..31;
NO R-EF at 4 range 0..31; struct basejpart{
NAME at 8 range 0..79; int no ref;
COST at 20 range 0..31; char name[10];
MASS at 24 range 0.31; int cost;
SUPPLIED BY at 28 range 0..31; int mass;
ASSEMBLY COST at 20 range 0..31; access suppliers c supplied by;
MASS INCIREMENT at 24 range 0..31;
MADE FROM at 28 range 0.31;

end record; struct compositepart{
int noref;

for MADE FROMC use char name[10];
record int assembly-cost;

HOW MANY at 0 range 0..31; int mass increment;
COMPONENT at 4 range 0..31; access made from c made-from;
NEXT MADE FROM C at 8 range 0..31; };

end record; -
union part c switch

(enum part class part-class) {
for SUPPLIERS C use
record case BASE PART:

NAME REF at 0 range 0..79; struct base.part basepart;
NEXT SUPPLIER C at 12 range 0.31;

end record; case COMPOSITE PART:
struct compositejpart compositepart;

end PARTS-SCHEMA; default:

52 10th Annual National Conference on ADA Technology 1992

void; with ADA SQL SUPPORT; use
1; AD)A SQL SUPPORT;

with RETRIE VE-PKG; use RETRIEVE-PKG;
typedef struct part-c *access~yart-c; with PARTS-VARIABLES; use PARTS3'ARIABLES;

with INSERT PKG; use INSERT PKG;
struct part c basepartjoin {with PARTS UTILITIES;

struct partcjoin *partcjoin; with SER VER-PACK; use SERVER-PACK;
struct part c part c-elem;:

procedure PARTS is

struct part c-cornposite _partjoin {use PARTS TYPESADA SQL;
struct part cjoin *partcjon;
struct part c part c-elem; SERVERNAME: SERVERS:= sol;

THE-RESULT LIST: ACCESS PART C JOIN;
union part cjoin switch
(enum part-class part-Class) {THE-PART: PARTSC;

THE-PART2: PART C(COMPOSITE-PART);
case BASE-PART:

struct part c-basepartjoin begin
part-cbasepartjoin;

PARTS UTILITIES.CONSTRUCT BIKE;
case COMPOSITE-PART: PUT LINE("INSERT THE BIKE");

struct part c-composite-partjoin INSERT(PARTS UTILITIES.PC3,sol);
part ccompositepartjoin; PUT-LINE ('RETRIEVE (T-PART," &

default:- "RkA 1(THE PART.NAME = BIKE)); (BIKE)");
void; THE-RESULT LIST: =

RETR IEVE (THEPART,
RA(THE PART.NAME

typedef struct part cjoin *access part cjoin; "bike "),Sol);
-CHECK WHAT WE GET BACK

program PARTSPROG {,
version PARTSVERS {while THE RESULT LIS'/ = null

void loop
INSERT1I(partc) = 1; /subprogram number =1 /PARTS UTILITIES.DISPLAY
part cjoin (THE RESULT LIST.PART-C ELEM);
RETRIEVE- 1(void) = 2; /*subprogram number = 2 THE-RESUDLT LIST-

THE RESULT LIST.PARTCJOIN;
void end loop;
DELETE 1(void) = 3; /*subprogram number = 3/

) 1; /*version number = I */ DELETE(THE-PART,sol);
)=0031234567; /*program number=

0x3l234567; */ end PARTS;

jipplication program
Biographical Sketches

with PARTS DDL;
with DATABASE, PARTS-TYPES, Eugen Vasilescu holds a Ph.D. in Game Theory from

PARTS-SCHEMA; the University of Illinois (1975) and a MS in Computer
use DATABASE, PARTS TYPES, PARTSSCHEMA; Science from the University of Bucharest (1969). He is
with PARTS JOIN TYPES; the Manager of Ada Lab at Grumman Data Systems
use PARTSJOINJTYPES; where he initiated and currently directs R&D work on
with TEXT-1O; use TEXT 10;

10th Annual Nolionol Conference on ADA Technology 1992 53

Ada ivmmacs to COTS amd DBMS. He c amd
csvlted~idedvin twca ofAda se in 5-He s ibe
ma i odi first fous on Ada cualS.

Sabah Saft holds a MS in Compact Scnce fieot
Noath Dakoa Stae Univrir (IM3). He is currently a

SenorPrgrammerAaalys in the Ada bab of Grumman
Data Systems woking om desigu amd inpkamiom of
Ada interfaces to DBMS.

John bklds a MS in Cmpu er Science frow
Rodiwsir Jnsd:utc of Teehnology (M9). He is
currently a Programmer Analt in the Ada lab of
Grummian Data Systems woriking a design and
impemcniaziom of Ada interfacs to DBMS.

54 10th Annual National Conference on ADA Technology 1992

SInMhSIS OF DESI(K IWMODOLOGE FOR Ada

Hiiary J. Allers
TRW, Inc.

One Federal Systems Park Drive
Fairfax, VA 22033

Major Charles R. Petrie
U. S. Army

PM Awls
Fort Belvoir, VA 22060

Astract can be formally qualified.This paper describes work Design methodologies can provideperformed on the Ar-mv WWMCCS procedures, tools, heuristics andInformation System (AWIS) program examples which purportedlyin integrating Functional increase the likelihood that theDecomposition, Object-Oriented resulting software design willDesign and Model-Based Design. support the software goals.
The resulting methodology allows
engineers to define two Functional Decomposition was oneabstractions for the same set of of the first formalized software
software modules: one which design methodologies [13]. Asdescribes the implementation of the discipline of Softwarefunctions, and one which Engineering has matured, a numberdescribes the implementation of of later software designobject classes. These two views methodologies have emerged whichof a single system are documented claim to provide better supportin a tailored version of the DOD- to a larger number of standardSTD-2167A Software Design software goals. TheseDocument. methodologies include variations

of Functional Decomposition,
variations of Object-Oriented

1. Introduction Design [5], and a relatively newThe purpose of a software design methodology, Model-Based Design
methodology is to provide [6].
guidance to engineers in making
the transition from an abstract Functional Decomposition,
representation of requirements to Object-Oriented Design (OOD) anda software structure which will Model-Based Design are typicallysupport the project's software thought of as mutually-exclusive
goals. Such goals may include alternatives which could not bethe performance characteristics undertaken on the same software
of the software, quality configuration item at the sameattributes s u c h a s point in its life cycle. Severalmaintainability and portability, "linkage" methodologies haveand manaerial concerns such as arisen from this belief whichthe ease with which the software attempt to provide (most

10th Annual Natonal Conference on ADA Technology 1992 55

commonly) a transition from diagrams showing the increasingly
Functionally-Decomposed detailed breakdown of higher
Requirements Analysis to level tasks into subtasks were
Object-Oriented Design. More used to formalize this
recently, attempts have been made description. The idiom of a
to extend OOD into other life hierarchical decomposition of
cycle phases, such as processing was particularly
Object-Oriented Requirements natural to users already
Analysis (OORA). performing the process to be

automated ("First I locate the
This paper does not attempt to Accounts Receivable file for the
analyze the strengths and customer, then I look at the last
weaknesses of either transition invoice to determine the amount
methodologies or OORA. Instead, due...", etc.). However, the
we will describe a software prescribed software model for the
design approach for Ada which implementation of hierarchical
synthesizes Functional processes was nested subprograms,
Decomposition, Object-Oriented which did little to address
Design and Model-Based Design in software engineering concerns
order to simultaneously derive such as information hiding and
the unique benefits of each modularity.
methodology. Our methodology has
been applied to the design of Nevertheless, the concept of
multiple CSCIs within the Army describing a system in terms of
WWMCCS Information System (AWIS) the hierarchical functions
program for PM Strategic Army supported is still useful from
Command and Control Software both an end-user and a functional
(SACCS). This paper will begin test perspective. The
by presenting an overview of each description of the software
design methodology including the control and data flow which takes
benefits and deficiencies place to complete a single high-
associated with using each level function allows users to
methodology in isolation. We determine that all required
will then describe our processing has been implemented,
synthesized approach using a and allows testers to define test
design example from the domain of cases which validate the
Management Information Systems interfaces and paths within the
(MIS). The paper will conclude system. It would be desirable to
with a brief discussion of issues describe the functional
related to mapping our approach decomposition of the software
to DOD-STD-2167A. without being required to

organize the software along
purely functional lines.

2. Comparison of Design
Methodologies

2.2 Object-Oriented DesiQn
2.1 Functional Decomposition Object-Oriented Design attempts
Functional Decomposition was to organize both the data and the
originally used to describe the processing of a system into
automation of existing manual relatively independent modules
processes [13]. Process which represent objects in the
decomposition ("data-flow") real-world problem space [4)1.

56 10th Annual Nabonal Conference on ADA Technology 1992

This design methodology problems" or paradigms in a
encourages engineers to system and produce a model
distinguish between the interface solution that will be applicable
(processing and data accessible to all instances of the paradigm.
to other modules) and the private For these reasons, we have found
(non-accessible) portions of a Model-Based Design to be
module. As such, OOD provides particularly conducive to
better support for information- Software Reuse.
hiding than its precursors.

Although Model-Based Design is,
We have f ound that like OOD, dependent upon
Object-Oriented Design generally subjective valuations of elegant
improves modularity and decreases construction, it has the
component coupling. However, OOD advantage of being inherently an
has not provided a universally iterative approach. As such,
successful, "cookbook" style Model-Based Design allows for the
implementation guide as was evaluation and refinement of a
present with Functional design prior to its large-scale
Decomposition. The process of implementation. Because Model-
determining the level of Based Design is focused on
abstraction in the problem space achieving reuse, the resulting
at which objects will be modeled, software modules often ressemble
the identification of objects, software "tools" rather than
the determination of object either real-world objects or
hierarchies, and the hierarchical processes.
identification of the set of
operations for each object is a
subjective and iterative process. 2.4 Summary of Comparisons
Furthermore, in cases where The advantages of each design
requirements definition has been methodology can be summarized as
accomplished using a Functional follows : Functional
Decomposition apprbach, the Decomposition provides a natural
allocation of requirements to O0D medium for describing the system
modules may be indirect, to non-Software Engineers, O0D
confusing, and difficult to test. enhances modularity and
For example, the fact that portability, and Model-Based
functions may be distributed Design enhances reuse. We have
across operations on multiple created a synthesized approach to
objects means that many software design with Ada which
requirements will be partially allows us to benefit from the
satisfied by all (or most) of the strengths of each of these
modules in the system. separate methodologies.

2.3 Model-Based DasiQn 3. Synthesis Approach
Model-Based Design was developed Our design approach includes both
at the Software Engineering a methodology for producing the
Institute (SEI) as part of a software design, and a means of
project in Domain-Specific expressing the design in
Software Architectures (DSSAs) documentation. Fundamental to
[10). Model-Based Design our methodology is the concept
attempts to identify "recurring that design entities can be

10th Annual Naionol Conference on ADA Technology 1992 57

represented as abstract (non- additionally used by the Rational
executing) collections of Design Facility to generate the
software modules. For instance, Software Design Document (SDD).
a Computer Software Component Because design entities are
(CSC) is an abstract collection abstract collections of objects,
of Ada compilation units - rather we can simultaneously create
than being an actual functioning multiple abstractions which
portion of the system in and of partition the system in different
itself. This interpretation of a ways. For instance, we can
CSC is consistent with ACM and create one partition which
Government direction for mapping represents the class families
DOD-STD-2167A to Ada [1,8]. We within a system in an OOD sense,
represent such abstract and another partition which
collections using "placeholder" represent functional threads
Ada packages. These packages within a system in a Functional
contain no declarations or Decomposition sense. This two-
executable statements. They are dimensional view of a single
used to hold design information system is depicted in figure 3-2.
in the form of structured Our methodology relies on
comments, including decomposition maintaining two such abstractions
information, requirements simultaneously throughout the
allocation, etc. An example of a design process: one abstraction
placeholder Ada package for a CSC to represent the functions
is given in figure 3-1. On AWIS, implemented in the system, and
these placeholder packages are one abstraction to represent the

_I ICWCUT X=
-- ! I

-- I QORzGZN
-- I Internal Development

-- ! I *nI'oRs
-T !. Roth

-t *mzvszow-as~oa
-- I [Date] [ie) [SCa.] [eson]
-- I U'SU r'T

-- I (Mobilization, Database)

-- @ IDESCRIPTION
-- I The Database CSC pzovides all database interface processing
-- I necessary for the Mob/ODU CSCI.

-- I OPURPOSE
-- I The Database CSC contains all application processing
-- I and data declarations which intezact with the database through
-- i Data Manager and DNIr Support Software. The Database CSC is
-- I divided into two sublevel CSCs: Viewdefs, which contains all
-- I Viewdef packages for the threads: and Viewdef Maps, which
-- I contain all Viewdef Map packages for the threads.
-0 I
-- I *DZCCOSITIZN
-- (Viewdefs, Viewdef Maps)
-- I
package Database is
end Database;

58 1t r'W N:i; S C Con.r.e.holder Package58 10th Annual Nafional Conference on Zxrfe enno ogy ,,z

object classes and/or models in Management Information Systems.
the system. Our example is a system for

determining staffing requirements
To aid in explaining our for a school system, and for
methodology, we present an tracking staffing levels against
example taken from the domain of these requirements over time.

Partition A

-~ ~ -- -- --- ---

Partition B

figure 3-2. Different Partitions of the same Ada Nodules

I 0th Annual Notional Conference on ADA Technology 1992 59

Figure 3-3 presents an A low-level CSFT will ultimately
abbreviated description of the be composed of all Ada elements
(Functionally-Decomposed) which are executed to complete a
requirements for this system. given function. These Ada
Our methodology begins by elements which make up a CSFT may
creating a software abstraction be library units, or sub-elements
to represent the software within a library unit, including
requirements. We call this subprograms, tasks, or single
abstraction the "djnamic" (as task entries. However, when the
opposed to "static") structure of CSFT is first created, the
the software design. The dynamic underlying software structure
structure is represented by which will imp2ement the function
placeholder Ada packages, similar has not been determined.
to CSCs, which we name Computer Initially, the lowest level CSFTs
Software Functional Threads have no decomposition; They
(CSFTs). A CSFT is simply a include only design commentary on
software representation of a the purpose of the Functional
single function. It contains Thread, and the requirements
commentary information about the which are allocated to the
function, and may be decomposed thread. This design information
into the lower-level software will later be augmented with
elements which are sub-functions. descriptions of control flow,

1. Determine Staffing Requirements

1.1 Accept User Input on expected number of students by grade by year
for the next 10 years

1.2 Accept User Input on expected curriculum area registrations by
student by year for the next 10 years

1.3 Compute Staffing Requirements by curriculum area by year for the
next 10 years

2. Track Staffing Levels to Requirements

2.1 Accept User Input of teacher attrition, new hires
2.2 Display Summary Report showing shortfalls, over-staffing by

curriculum area by year for the next 10 years

figure 3-3 Functional Requirements

60 10th Annual Naonal Conference on ADA Technology 1992

data flow and algorithms solutions to these recurring
implemented by the components of problems are prototyped to
the CSFT. Low-level CSFTs can be provide performance data and to
combined to form more complex test design assumptions. The
functions, or higher-level CSFTs. result of the modeling phase is a
Figure 3-4 shows an initial CSFT graphical representation of a
structure for our example School standarrd solution (with possible
Staffing M.IS problem. The CSFTs variations) to the recurring
provide input to a Model-Based problems. This graphical
analysis as the next step in our representation has a
design process. CSFT corresponding structure in
descriptions are analyzed to prototype Ada components. The
identify recurring problems in prototype components are
the system. Alternative frequently re-engineered into

Staffing
System

Determine Track
Require- Levels
ments

Update Update Compute Update Produce
Enrollment Curriculum Require- Staff Summary

Estimates Projections ments Levels Report

figure J-4: Initial CSFT Hierarchy

1Oth Annual Notional Conference on ADA Technology 1992 61

generic units, templates or code database, display the results to
generators to enhance the the user, and (optionally) allow
reusability of the model the user to update these results.
solution. The model solution is This functionality can be used to
depicted using a Model Diagram build all of the user update and
[10], as illustrated in Figure 3- report functions for our school
5. The components shown in staffing system. The component
Figure 3-5 represent actual MIS building blocks of the model
components developed as part of solution - form the top-level
the AWIS program to implement a Computer Software Components
Command and Control MIS system. (CSCs) of the static structure,
They represent reusable tools to as shown in figure 3-6.
build applications which accept a
user query, retrieve the The decomposition of each CSC is
requested records from a next defined using a traditional

Query
Mlgr. DB

USER Criteria

Handier

Data Manager

figure 3-5 Plodel Diagram for HIS Components

62 10th Annual Naional Conference on ADA lechnology 1992

OOD approach. During this phase, CSC may be decomposed into
lower-level CSCs and CSUs which objects representing real-world
will implement all threads in the entities such as Students,
system are identified. (AWIS Teachers, and Courses. The
uses a mapping of DOD-STD-2167A information on the correct syntax
to Ada which defines CSUs as Ada for Display and Database
library units.) These representations of attributes of
lower-level CSCs and CSUs these objects (Student Name,
implement the object classes and Course Title, etc.) are
object instances of the system. encapsulated within each object
For instance, our Data Validation package. Operations on these

MI

DataMangerData Validation

figure 3-6 tIlS Static Structure

I0th Annual National Conference on ADA Technology 1992 63

objects are provided to validate model. We use our abstract CSFT
the syntax of user- or database- packages to provide the mapping
provided attribute fields. As of system functions inot our non-
the CSUs are built, the Functionally-Decomposed design.
components of each CSU which Because both CSCs and CSFTs
contribute to the execution of contain design commentary, we can
each CSFT are identified. All document design information in
CSFT placeholder packages can the abstract entity where it is
then be completed, including most appropriate. For instance,
decomposition, and descriptions Control Flow, Data Flow, and
of control flow, data flow, etc. Performance requirements are most
The description of CSFTs are meaningful in the context of a
enhanced using Thread diagrams, Functional Thread. This
such as the one shown in figure information is therefore included
3-7. The actual software design in CSFT descriptions. However,
is therefore based primarily on information such as Error-
Model-Based Design, with an OOD Handling rules, Reusability, and
view toward completing each Component Interfaces are more

NAIN I -Initialize USER 0114 2: Dra
I I/ 3: Calbc Display/

figure 3-7 C Proces 7: Draw

64 CALLS A u gC SPECIFIC
IVALIDA-I 1 5. upoatedJ UTILS

Ir-"m'I' '-- 10. Petrieva%

6 Vaidti Request 13 eut
Flagdto 5l Crtei 7 Ct 13. Result

Flag / 5. Criteria -

\ ~ Criteriai
TYPE- Q UERY IDISPLAY
CASTERS N ANAGER N ANAGER

, ,, 8. Validation

Fla 1.ATI Select StatementZ
2. Results

__J DB
I/F

figure 3-7 CSFT Processing Diagram
64 10th Annual National Conference on ADA Technology 1992

appropriately discussed in the literature [1]. Previous mapping
context of the static structure, descriptions have struggled with
or CSCs. Requirements may be the dilemma of merging a document
allocated to either CSFTs, CSCs framework based on Functional
or CSUs. In the case of Decomposition with an Object-
Functional Requirements, these Oriented programming style. This
are generally mapped one-to-one dilemma is derived from language
with a single CSFT. Likewise, in the standard requiring, among
integration test cases are others, that CSCs "execute", have
typically documented at the CSFT control flow, and implement
level, functions. Our methodology

creates abstract CSFTs, whose
The SDD is produced incrementally sub-elements execute and whose
during the entire design process descriptions can logically
to reflect thread information, contain all of the function-
architectural information through related documentation required by
models, and model instantiation DOD-STD-2167A. However, since
as objects and classes. The SDD CSFTs are only one partition of
is composed of three principal the software, the foundation
sections: Architecture, Design software modules may be organized
Overview, and Detailed Design. to support OOD and Model-Based
We have tailored the content of Design.
the Architecture section to
contain descriptions and diagrams
of all models established for the 5. Sumar
system and a listing of all CSFTs We have found that the synthesis
and CSCs which compose the of Functional Decomposition, OOD,
system. We have also tailored and Model-Based Design provides a
the Design Overview section to structure which allows designers
include both a Dynamic Design to concentrate on different
subsection which describes each aspects of the design with a
CSFT, and a Static Design unique set of goals at each
subsection which describes each phase. Furthermore, by providing
CSC. Inter-CSC interfaces, CSFT the multiple viewpoints of each
hierarchies, and the mapping methodology within a single
between CSCs and CSFTs are also Design Document, we have
included in the Design Overview. increased the amount of useful
The Detailed Design section of informnation about the system in
the SDD contains descriptions of the document, and organized that
all CSUs, and is basically information so that readers in
unchanged from the 2167A DID. differing roles (coders, testers,

evaluators, maintainers) can
readily identify those sections
most applicable to their own

4. 2167A Implications needs. The size of the document
Although our methodology is not substantially increased,
represents a substantial 1as the changes apply only to
tailoring of DOD-STD-2167A, we section 3, a design overview
believe that it actually improves section. We believe that each
compliance to the spirit of the methodology functions as a tool
standard over other mapping with a specific purpose, role,
strategies described in the and benefit, and that each

10th Annual Natonal Conference on ADA Technology 1992 65

L

methodology contributes to both 8. MIL-HDBK-287, A Tailorina
the preparation and the Guide for DOD-STD-2167A, Defense
communication of the software System Software Development, U.
design. S. Department of Defense, 11

August 1989.

References 9. Mills, H. D., Linger R. C.,
Hevner, A. R., Principles of

I. Association for Computing Information Systems Analysis and
Machinery (ACM) Special Interest Design, Academic Press, Inc.,
Group on Ada (SIGAda) Software Orlando, FL, 1986.
Development Standards and Ada
Working Group (SDSAWG), 10. Plinta, C. and Lee, K., "A
Implementing the DOD-STD-2167A Model Solution for the C31
Software Organization Structure Domain", Proceedings, Tri-Ada
in Ada, ACM, New York, NY, '89, The Association for
August, 1990. Computing Machinery, Inc. New

York, NY, October 1989.
2. Anderson, J. A., Sheffler, J.
D., Ward, E. S., "Manageable 11. Prieto-Diaz, R., "Domain
Object-Oriented Development: Analysis: An Introduction",
Abstraction, Decomposition, and Software EngineerinQ Notes, Vol.
Modeling", Proceedings, Tri-Ada 15, No. 2, April 1990.
'91, ACM, New York, NY 1991.

12. Drake, R., Ett, W., "Reuse:
3. Bailin, S. C., Bewtra, M., The Two Concurrent Life Cycles
Moore, J. M., "Combining Object- Paradigm", Proceedings, Tri-Ada
Oriented and Functional Paradigms '90.
in a Design Methodology for Ada",
Proceedings, Tri-Ada '90, ACM, 13. Yourdan, E. and Constantine,
New York, NY, Dec. 1990. L., Structured Design :

Fundamentals of a Discipline of
4. Booch, G. Object-Oriented Computer Program and System
Design with Applications, Design, Yourdan Press, New York,
Benjamin/Cummings Publishing NY 1978.
Company, Inc., Redwood City, CA,
1991.

Authors
5. Booch, G. Software Engineering
with Ada, Benjamin/Cummings, Hilary 7. Allers is a Senior
Menlo Park, CA 1987. Member of the Technical Staff

with TRW, Inc. in Fairfax, VA.

6. D'Ippolito, R., "Using Models Ms. Allers received a Bachelor of
in Software Engineering", Science degree in Computer
Proceedings, Tri-Ada '89, ACM, Science from the University of
New York, NY, October, 1989. Maryland in 1985. She is

currently pursuing a Master's
7. DOD-STD-2167A, Defense System degree in Computer Science from
Software Development , U. S. the Johns Hopkins University.
Department of Defense, 29 Ms. Allers is the Principal
February 1988. Investigator on a TRW Internal

Research and Development Project,

66 10th Annual Naional Conference on ADA Technology 1992

and is an Ada software developer
on the AWIS project.

Major Charles R. Petrie, U. S.
Army Acquisition Corps, has been
a Software Product Line Manager
for PM AWIS since 1988. Major
Petrie received a Bachelor ofScience degree in Engineering
from the United States Military
Academy, West Point, NY in 1979.
He received a Master's degree in
Electrical Engineering with a
concentration in Computer
Engineering from Pennsylvania
State University in 1987. He is
also a graduate of the
Telecommunications Officers
Course given by the Air Force
Institutue of Technology, Wright
Patterson Air Force Base.

10th Annual Nahonal Conference on ADA Technology 1992 67

An Ada ExpeuMe on the ted Hypacbe

Roma& . Lean

DOW M. CCeam

L-Pig Tan

Dqwrrm of Systems & Cmirscienc
Schd of Engiueering

Horad Univesit
WWnguon- DC 2DD59

ABSTRACT Process called the iuer process In prActice, the
This reseac is concerned with N-version pro- indepen vessioIs of the algorithm will com-
granmming in a paralel computing environment. muncage the results of certain inemediate
The Ada language is especially well suited to be copuionsto the voier process and the voier
usad in N-version programming sinc a JNDCCS5 prc will determine the "comac state- of the
the clean mdeling of indepeadent coacurremy sysem by using a majority voge. Therefore a
running processes by means of tasks, the coin- sWCtateren that the program is in a "correct state'

uication zWn chroization btee tak is actually a statement that the program is in a
by means of the rendzvou mechanism, and a "conisistent stae", wifich simply means that a
smocOt method of exception detetio an b consensus has bven obtained by the voer. Thbe
duing, most accessible reference for N-version pro-

Lq tis ntev dscrbe te rsult of graming is [11, although the basic papers. usu-

porting our research to the Intel hypercube. ally by hvz s ar au tolerneista
Efficiency and fault-tolerance of the N-versionAnteaprchofultlrneisht
programming s' stem on the Intel hypercube are of RandelI [61 in which the programn is rolled
discussed. Suitability of extens~ons of the Ada back to a previous slate of execution at which
language for a distnibutci memory pamliel the program is assumed to have been correct.
c.vironment is also discussed. We alodsrb These methods are different from the Ada
some of the problems that are to be expected methods for handing and detecting exceptions
wher. porting the N-version technique tosae ([5j, 18)). For a discussion of the differences
memory parallel computers such as the Alliant. between these methods for improving fault-

tolerance and the ramifications of incorporating
them into Ada, see [41.

In a previous paper [21. we described the
1. INTRODUCTION results of an experiment iii N-version pro~gram-

ming tha was performed cn two sequential
The concept of N-version programming .zomputers: an AT&T 3B2 and a SUN 3/60.

was developed by A. Avizienis as a method of Both of the-z computers implement tasking by
increasing the fault-tolerance of software by allowing interleaving of the cpu cycles; this is
increasing the level of redundancy. The basic not true concurrent execution. This is not quite
prinuiple of N-version programming is that an ideal environment since each separate ver-
indep,,ndeinly created versions of an algorithmrr sion of an algorithm does not have complete
are run and the results produced by the Yarious access to a cpu. It is clearly better to have an
versions are to be compared by an independent trtly concurrent environment in whicl, the indi-

68 10t AnnLul Nalional Confenefce on ADA Technology 1992

," aMsiN me 4 '1-e nm & "ith A jpical symx o am Ada hagalge
Cmh e so ba* is oa me to a cps wiarie ID am "a comnd to OW a mes-

adi o iDw thtm ,usi0R ,io ' 6- sap looks iE
ag my cps cydem Such an ma*umm s

tai he dimS ImS 1yput F camNODEO MTPE. ro'address. misire 18.

b this mwmp, e com er Ac pwtu -of 0. NODE"LPfaJ);
de imiew v the ld iPSCI2 =M corn.-
po. UhS comow am the luam 0386 (do se a me sawd 70W(to a process
CCOW iB ach Of smai kkDial mdes We tha is nmgn m wde 0 and whos luUCi s id
w ian de mm node mid "procesm W - is NODE0_PIDL
- ly . "ge mAde t ve aimi of 7e tyical symx of - /2 command
tml Om is nD share memoy. to zueive a messae is

b syem, d e aegk modes. each
of w coni low ucgoes of mfmry. crecv(HOSTTYPE. wsl'adkess. gl'size8):
Te ividoal nodes nt oeating system
caled A2. which is simlar to a stripd4s-n (this afloWS the hos to reCeive a message whose
,ruem of UNIX. The NXI2 cyamg system n is "migl).

uI, - 1 appwoimately cue half megaby of he designs of the system calls awe based
uma~xy s each ode. Tie nil oi thememory ion each node. s s r t of re n facilit available in UNIX and have a C-
memory o each node is spamaed imo a reion liee sytax. See MT for more infonmn in about
for es g the syntax of U.IX messagesing syte to have message buffer. On our teyna Ulnsae.

system, each node has 634 message buffers that In spite of the name h)Tercube. the

art red to bold system messages and appica- ind l nodes of the hade iPSCf2 hypercube

tin messages showter than 1(K bytes. The are logically connected by a mesh topology and

lvgcr messages must shae th remaining physi- can communicate wth any other node (am just
cal memory on the nodes. the nearest neighbor) and with the front end

The Intel hypecube is a distributed COMI I calldthe host.

memory parallel computer system this means The Ada implementation on the Intel
that each node has its own local menrory and hypercube is a hybrid system. Ada tasks can be

that processes ruming on different nodes can run on the host computer and on any node.

only communicate via messages. The message Multiple tasks can be run on the same node or
passing softwae is pan of the operating system host and tasks running on the same cpu can

for the hypercube and can be accessed from any communicate with one another using the rendez-

language by means of special system calls (pro- vous mechanism. Tasks running on different

vided that the language has the right bindings to processors can communicate using the UNIX
the operating system). message passing system call or its NXI2 analog.

The only form of communication allowed The hybrid nature of the Ada implementa-
in this system is the passing of messages from a tion on the Intel hypercube causes some unusual
process running on one node to another process problems and provides several opportunities for
running on the same or on a different node. research. Natural questions concern the

Messages can be of different sizes and of efficiency of N-version programming, the fault-

different types. The type of a message is user- tolerance of the message passing and Ada ren-
defined and is used as a way of indicating the dezvous communications, ease of programming,

sender of the message. The host computer, scalability, etc.
which is the front end of the hypercube, runs
the UNIX operating system. Communication
from nodes to other nodes and between nodes
and the host is handled by the NX12 operating 2. Efficiency of Parallel N-version Program-
system. This is in contrast to the AT&T 3B2 ming
and SUN environments in which all communi-
cation 'vtween Ada tasks is done using the Ada There are several questions to ask con-
rendezvou mechanism. ceming the efficiency of N-version programming

10th AnnLal Noflonol Conference on ADA Technology 1992 69

in this pallel ecutoaL As is tpical in conext switch, te anative omread of Ada
parAd computatio we deine the efiiency of tkg is smaer tin thati o con-
pwael compution as te ratio crntm Pogning in a l suc as C in

wich UNIX i F41 s mus t more comext
siths These efciency issues for Ada and C

Efkiecy = T(OW(M) ations a S e mironat
were ti~~in 12J and 13J-

whe T(1) is te time for die peformae of a a paaulel computing emironment, the
te cmpuaaboa using the bet seqUM a r- time need for th ec ion of the *-uious
imn o oce mocares and T(N) is the time for vessim can be shorened since the versions ae
die prformanc of de saw compuaon using pm to be oi ing in paallel with oe
N poces lbe Vw.eV is defined as the anodir and with the voter. The c g

times for the versions ate not added together as
in the Case Of a suenti2l machinC iad

Speedup = EffikencyN they we bounded by the longest time for a ver-
sion io provide a result. Note that the comput-
ing time for the voter to determine :he corrct

or stam of the system can also be ignored since the
voter can proceed while the versions are per-

N* T(I) forming their next computations. The times for
Speedp =NT(N) context switches are also not needed.

It is dear that, because the versions can

The efficiency of the parallel computation execute simultaneously, some of the time

must be compared with the overhead of N- needed for N-version programming disappears in

version programming. The overhead of N- a parallel environmenL However. the efficiency

version programning in any environment, paral- may not be close to I and the speedup may nrt
becoeto the nmber of processors available

lei or not, includes the time to perform the com- because of the time needed for communication

putaaons of the individual versions of the

software, to communicate the results of the between versions and the voter, which are run-

intermediate computations to the voter, to have ning on different pocessors. This communic-
the voter make the decision about the correct tion time is often several orders of magnitude

state of the computation, and for the voter to longer than the times for operations on a single

take appropriate action if one of the versions processor.

consistently produces results that the voter It is unlikely that any implementation of
deems to be correct in the sense that the results N-version programming with a high level of
of the versions are consistenL The voter also communication between the versions and the
must take action if one of the versions aborts or voter will ever have an efficiency much greater
hangs up. than 0.5. The only way to get a more efficient

In a sequential computing environment, N-version programming system is to reduce the

the time for the execution of the various ver- number of communications.

sions can be quite long since the versions, and We ran our experiment on the same 12
the voter, must share the cpu with one another. files reported in [3] and found relatively low
There is also the additional overhead of many efficiencies. There are some unresolved ques-
context switches which must occur when a pro- tions about whether to count the time for load-
cess becomes active (gets the cpu) and another ing Ada code on nodes as part of the execution
is suspended. The cost of a context switch is time (by analogy with the time for dynamic
quite high in a UNIX environment since the instantiation of an Ada task) or ignoring it; we
process being switched out has to have its inter- expect to return to these topici in future work.
mediate state stored, including the contents of
the system stack and the program counter.
Since most UNIX implementations of Ada
include all tasks within a single UNIX process
and the switching of tasks does not require a

70 10th Annual Notional Conference on ADA Technology 1992

3. Fa 14IraI of Wmeage g ad 4. Ease of Prgramming ia a Paraid
Mhe Ado Resdezvve Enwkeemmt

Tk Ada rendcev meanisn prmides a The inpememmai of N-version pro-
high lVel of syckwaizaniom between tasks. .a .5ng in a single prcessor enmiroannt
When incoporated with t Ada eepon isrvobue Several acia
detection and handling fm~u , a programmer c m veons by
has a sidnale amount of ability to prevent dffamJ peo%
the custrapluc Wore of a sysm. h is fairly fite iuskn which were
si ie to design de voter ak so dm it can
contow to fnmcdoi in the evem ofa facky ver- it Mb
sin ad ca y an= a new uk to ux in imsk
the place o die faulty v inn. e Ada creation o de Vour
langage powds a high level f control over reatin of the main program,
faiures mad a highly falt-olerant system can inclding craon of tasks for the
be desigd, vesions and voter and making deci-

Te message passing system of the el sions about what constitutes a
hypcube is less faut-tolernt than the Ada failure and wWa actions are needed
mecims indicaed above. The message pass- in the case o a failure.
ing sdwbse is based in large put on the rues- arraigements for I/O. including file
sage passing facilities available in UNIX. This access
subsystem and the underlying hardware are
themselves quite reliable. Howevr, it reupires Other activities may also be neded in special
the use of a fued number of buffers of various Oileal
sizes and its performance can be somewhat
problematical if many large messages arrive and Some of these activities are not necessary
the nodes have small memory capacity. (Recall in a parallel environment. For example, since
that there were a maximum of 634 buffers avil- the versions will probably be running on their
able for messages of 100 bytes or less.) own processor, we don't need to form the ver-

sions into tasks. Thus the individual versionsA more serious problem with the message can be used as is. The main program does not

passing is the lack of control via Ada language need to create task m instead it needs to send

features. A failure of a message to be received ne ed eetale ies fteesons
can be communicated to the sender by noting pre-coinpiled executable files for the versions
canhe cofancanoledtoeendH ver , ntg and the voter to the various processors. This is
the lack of an acknowledgementL However, the smwa ipe hni h eunilvrin

communication of this failure to an exception somewhat simpler than in the sequential version.

detection is not smooth because of the This simplicity is evident in the size of
differences between the message-based NX/2 the source code needed for the various versions.
operating system and the Ada language. In par- The entire system grew from a seqential
ticular, we must do a considerable amour, of machine N-version programming system (with a
testing of the propagation of message passing maximum of 6 versions) of 8517 lines to a
errors to the sender or receiver tasks before we hypercube N-version programming system (also
can be certain of the ability to detect faults, with a maximum of 6 versions) of 10221 lines,

with the voter decreasing from 613 to 379 lines.In addition, the detection of hardware Many of the new lines were comments so that
faults by Ada programs in this environment is raty fe new lines o re coe needed

stil an pen eserch ueston.relatively few new lines of source code needed
still an open research question, to be added. Although we did not choose to do

We have not yet made a formal study of so because we already had formed the versions
the nature of the propagation of exceptional into tasks, the versions could have ben run as
behavior between tasks on a single node and sequential programs on the nodes directly. If
propagation of exceptions across other nodes of we had done so, the parallel N-version program-
the hypercube. This is a major research direc- ming system would have had fewer lines of
tion for us. code than the system on the sequential

machines.

10th Annual National Conference on ADA Technology 1992 71

Me creation of a main pbogram is vey an efficient Ada rendezvous mechanism in this
amile; k only needs to load executable files case.
mo the varios nodes

The proramin coplxitei
by only one asect: we need so sync nize the 6. C
vter so get nonses. This is moe difficult in
this hybid system than it is on a pure Ada sys- The use of a pwald system for N-varsion
tem in which the rendezvos mechanism is progranung allows a considemble reduction in
available- the time for executn of multiple versions but

The faclities for /0 ame somewhat corn- retains the ovebead of having m .atg
pkx in am most 1/) dk1eaes a inhe y mulip processes. While the efficiency, at

sequemial devices and do not support multiuple least as measured by the standard definitions of
access. The Intel hypercube allows th use of parallel programming, is low, there is an oppor-
what is called the Concwrent File Sysem, tuity for improved performance.
which is a software orguuization of the atached The use of parallel computations also
disk that allows the use of multiple file pointers allows the direct use of separately coded ver-
in a manner that is transpare to the user. sions rather than reforming them into Ada tasks.
More advanced (and expensive) hypercubes This is a simpler environment for N-version
available from Intel (and others) allow the use programming.
of dedicated "IA) nodes7, which are processors The hypercube implementation of Ada
that are able to perform disk I/O rapidly and of causes some problems, however. The unvaila-
course conc tdy. Without the use of these bility of a rendezvous between software execut-
concurrent I/0 facilities, the file is accessed ing on different processors makes synchroniza-
from the host node and communication to the tion more complex and rasises some issues
other nodes is done by messages. about the fault-tolerance of such a system.

Also, the relatively lorg time needed for com-
munication between nodes suggests that N-
version programming will be efficient only if

5. Ada and N-version Programming on there are few breakpoints for communication to
Other Parallel Systems the voter.

Most parallel computers fall into one of References
three categories: distributed memory, such as 1. Avizienis, A. N-Version Approach to Fault-
the Intel hypercube; shared memory, such as the Tolerant Software, IEEE Trans. Software
Alliant; and systems that have fairly large distri- Engr. SE-11 (1985), 1491-1501.buted memory and a small amount of EnrhS-ar185,141151memory. 2. Coleman, Don M., and Ronald J. Leach,"Performance Issues in C Language

Ada implementations on other distributed Fault-Tolerant Software", Computer
memory parallel computers will generally have Languages, vol 14, No. 1 (1989), 1-9.
the same advantages and disadvantages as on
the Intel hypercube. This is due to the 3. Leach, R. J., and D. M. Coleman, N-version
difficulties expected in allowing a rendezvous Programming Using the Aia Taskingbetween Adia code running on different nodes. Model, Proceedings of the Ninth Annual

betwen da cde unnig o diferet noes.National Conference on Ada Technology,
Thus our results will hold for most other sys- N al Cnrc on D cog
tems of this type. In particular, the ease of hay- March 4-7, 1991, Washington, C, 135-
ing versions run without having to be made into 141.
tasks and the lack of a rendezvous between 4. Leach, R. J. Ada Exceptions and Fault-
tasks running on different processors will occur. Tolerance, Proceedings of the Eighth

The situation is more complex for shared Annual National Conference on Ada Tech-

memory parallel computers, however. It is nology, March, 1990, Atlanta, GA, 338-
much easier to have communication between 343.
different tasks if they can share a common 5. Luckham. D. C., and W. Polak. ADA
memory. It is not clear what is needed to have EXCEPTIONS: Specification and Proof

72 10th Annual National Conference on ADA Technology 1992

Techniques Advanced Research Projects gramming. He has been the Principal liwestiga-
Agency of the Depatemnent of Defense tor on may resech projects current
under Contac MDA 903 - 8D - C -0159 projects in faul-tlerace program translation,
and Rome Air Development C erunder and transitioning wo Ada.
Contraa F30602-80-C-0022. Lu P. Tan is a graduate of Howard

6. Randell, B., System Structure for Software University. where he was awarded the MS
Fault Tolerance, IEEE Trans. Soware dte in both Computer Science and Mehani-
Engr. SE-I (1975),220-232. cal Engineering. He has worked at Howard

7. Rochbd. M. ., Adwced UNIX Program- Univerty on two research projects and has
ring, Prtice-Hall Englewood Ciffs, been a consutant on a contract to IBM and

Nkw Jersey, 1985. NST

8. United States Department of Defense, Refer-
ence Manual For The Ada Programming
laguage ANSJjMIL-STD 1815A. Secre-
tary of Defense, Research and Engineer-
ing, Washington, D.C. 1983.

Acknowledgements

Research of Ronald J. Leach was partially
supported by the U.S. Army Research Office
under grant number DAAL03-89-G-100 and by
Wright Laboratories under contract number
F33615-91-C-1758.

Research of Don. M. Coleman was par-
tially supported by Wright Laboratories under
contract number F33615-91-C-1758.

About the Authors

Ronald J. Leach is a Professor in the
Department of Systems & Computer Science at
Howard University. His research interests
include concurrent and parallel programming,
especially in Ada; software engineering; operat-
ing systems; and fault-tolerant, real-time pro-
gramming. He is a former Program Committee
Chair for this conference. He is the author or
co-author of more than 35 research papers. He
has a PhD in Mathematics frm the University
of Maryland at College park and a MS degree
in Computer Science form Johns Hopkins
University.

Don M. Coleman is Professor and Head of
the Department of Systems & Computer Science
at Howard University. Hi. research interests
include concurrent and parallel programming,
especially in Ada, software engineering; systems
engineering; and fault-tolerant, real-time pro-

10th Annual Natonal Conference on ADA Technology 1992 73

Arabic OOD Methodology for use of Ada in the Arab World

by

Jagdish C. Agrawal and Abdullah M. AI-Dhelaan'
Computer Science Department

King Saud University
P. 0. Box 5117
Riyadh-11543

Kingdom of Saudi Arabia

ABSTRACT

In the literature, it has successfully been demonstrated that the principles of
software engineering can be practiced successfully while using OOD methodology
for developing systems for implementation in Ada. OOD methodology proposed
by Abbott [1] and Booch [2, 3] begins with a natural language, i.e., English, which
makes the transition from requirements expressed in the natural language English
to specifications and design using Abbott and Booch's OOD methodology.
However, in the non-English speaking world, such a transition requires a front end
transition for requirements from one's native language to English.

Translation of requirements from one natural language to another can be additional
cause of errors in the requirements for several reasons. First, the ambiguities
contributed by a natural language will probably about double. Second, the
inexactness of translation because of lack of one-to-one mapping from one natural
language to another is likely to contribute additional errors. We felt that if one
could develop a methodology similar to that of Abbott and Booch which begins
with the natural language Arabic, it will have several benefits. First, the
requirements from Arabic could directly be mapped to specifications expressed in
Ada using such a methodology. Second, it will stimulate building of automated
tools for Arabic version of OOD methodology. It will make Ada more attractive to
the Arabic speaking world. This paper proposes just such a methodology.

'Currently: Deputy Director General, National Information Center Ministry of Interior, Kingdom

of Saudi Arabia

74 1Oth Annual National Conference on ADA Technology 1992

1.0 INTRODUCTION the practice of software engineering,
OOD methodology provides strong

Object Oriented Design (OOD) engineering support for the use of that
tool in application system

methodology lets an application system

designer use the strong software development.

engineering support of Ada 2.0001) - English Description to
programming language. Wih such a

methodology, a system designer need Design

not map the problem domain into OOD methodology proposed by Abbott
predefined data and control structures

presnt n th imlenintaion [1] and Booch [2, 3] makes a strongpresent in the imiplemientation
case that OOD begins with a naturallanguage. Using QOD methodology,
language, i.e., English. By usingthe developer can create his own
several design problems, Booch hasfunctional abstractions as well as

abstract data types more suited to the successfully demonstrated that the

problem, mapping the real world principles of software engineering [4]

can be practiced successfully whileproblem into more natural solution
using such OOD methodology for

space that has virtually unlimited range ding syt o mplmetaio

of abstractions and abstract data types. d a. e s Sor i eein

Also OO metodoogy trogly in Ada. EVB Software Engineering,
Also OO metodoogy trogly Inc. [5] further refined the work of

helps in the implementation of four of
Abbott and Booch, evolving a step by

the software engineering principles --

abstraction, localization, information step method for O0. However it

hiding, modularity -- through strongly depends on the use of English

encapsulation of data objects and their language for three important steps in
this OOD methodology:

methods in Ada units called packages.

While Ada provides a strong tool for

10th Annual Natonal Conference on ADA Technology 1992 75

(1) The definition of the problem, sovereign nrtions where the national

(2) Description of an informal strategy language is much different from the

for software solution of the real world language on which the methods

problem, and depend, creates much challenge for the

(3) Identification of the objects, their trainers of the method! The technology

attributes and the operations applicable transfer becomes easier if necessary

to these objects. modifications to the method are made

so that it can be expressed in the

3.0 Technology Transfer needs of preferred language of the nations where

the Arab World such methods and tools are sold.

While some research efforts in the area

Preceding section has described an of multilingual computer systems have

excellent news for the Ada customers taken place [e.g., 6, 7, 8, 9], little work

who prefer the English language for the has appeared in the literature on

expression of the requirements of their modifications to software development

problem. However, for other methods to make them easily usable by

customers in the world who like the the customers in the non-English

strong software engineering support of speaking world. Heavy dependence of

Ada for their future systems, but prefer OOD methodology is an area where

to express the requirements of their such modifications are possible. In this

problem in a language other than paper, we are demonstrating necessary

English, the above mentioned OOD modifications to OOD, to adapt it to

methodology is of little use. the entire Arabic speaking world, most

of which were strong allies and

Technology transfer of methods that supporters of the leader country that

are heavily dependent on a particular produced Ada. We feel, therefore, that

language (i.e., English) to the this paper is within full spirit and

76 10th Annual Nabonal Conference on ADA Technology 1992

theme of the 10th ANCOAT: "Ada in (3) Identification of "Issm" (nouns)

Context: Economy, Geopolitics and and "Dhamir" (pronouns).

Technology."

Certain "Issm" are not likely to be

The Arab world has already built realized in the software solution

bilingual microcomputer systems [6]. because they are from environment

We are proposing to extend the OOD external to the software. "Sofat"

methodology so that it begins with (adjectives) corresponding to the

customer's requirements expressed in Issm/Dhamir are searched for possible

Arabic. This paper describes the attributes. Context semantics is used to

theoretical aspects of our OOD determine the noun categories. The

methodology that begins with the category of common noun is used to

requirements expressed in Arabic. The identify classes of objects, and the

paper will demonstrate our category of proper nouns is used to

methodology with examples. identify instances of classes previously

identified. This work is used to

4.0 Introduction to Arabic OOD prepare an object table. The table lists

Methodology Issm/Dhamir, and whether each one

falls within the software space of

Our Arabic OOD methodology accepts external to it.

requirements expressed in Arabic,

analyzes them and prepares: (4) Identification of "Amal" (actions or

operations) that change the "halab"

(1) Problem definition. (state) of the Issm. This step helps in

describing the "Tabakah" (classes).

(2) Informal strategy for software This is done by identifying "Fiel"

realization of the problem. (verbs) and "Zarf' (adverbs) along with

10th Annual National Conference on ADA Technology 1992 77

their relationship to the objects in the The methodology we present in this

object table. paper can be adapted to other natural

languages that have syntax closer to

The natural language used for all the that of Arabic. Specific application of

steps above is Arabic. Steps (3) and our methodology with specific

(4) require the designer to parse the examples falls in the category of

informal strategy prepared from the proprietory information and intellectual

requirements and determine which property of authors, which we would

Issm/Dhamir (noun/pronoun) changes like to protect from becoming part of

the Tabakah (state) by the action of the the public domain, hence it is omitted

Fiel (verb). Identification of the states in the paper.

of an object, and actions that cause the REFERENCES

changes in the state assist the designer 1. Abbott, R., "Program Design by

in converting his objects into finite Informal English Descriptions,"

state machines and encapsulating the Communications of the ACM, 1983.

objects and methods/procedures within

the class of such objects. Ada provides 2. Booch, G., "Object-Oriented

a fine mechanism of program units Development," IEEE Transactions on

called package specification and Software Engineering, March 1986.

package body. Steps 2, 3, and 4 are

refined and repeated, lowering the level 3. Booch, G., Software Engineering

of abstraction, each time providing with Ada, The Benjamin / Cummings

more and more implementation detail, Publishing Company, Inc., Menlo Park,

until the software solution is ready for CA, 1986.

ready implementation in Ada.

4. Ross, D.T., Goodenough, J.B.,

Irvine, C.A., "Software Engineering:

78 10th Annual Naional Conference on ADA Technology 1992

Process, Principles, and Goals," IEEE

Computer, May 1975.

5. Object Oriented Design Handbook,

EVB Software Engineering, Inc.,

Rockville, MD, 1986.

6. Tayli, M., and Al-Salamah, A.,

"Building Bilingual Microcomputer

Systems," Communications of the

ACM, volume 33, no. 5, May 1990.

7. Sibley, E.H., "Alphabets and

Languages," Communications of the

ACM, volume 33, No. 5, May 1990,

pp. 488-489.

8. Jinan Qiao et al, "Six Digit Coding

Method," Communications of the

ACM, volume 33, no. 5, May 1990,

pp. 491-494.

9. Raman, S., and Alwar, N., "An

Al-Based Approach to Machine

Translation In Indian Languages,"

Communications of the ACM, vol. 33,

no. 5, May 1990, pp. 521-527.

1Oth Annual National Conference on ADA Technology 1992 79

DISA'S ROLE IN THE CENTER FOR
INFORMATION MANAGEMENT

Presenter: Mr. Peter M. Fonash, Center for Information Management

80 10th Annual National Conference on ADA Technology 1992

CORPORATE INFORMATION
MANAGEMENT (CIM) PANEL

Moderator: Dr. Kurt Fischer, OASD-C31
Panelists: LtCol Ralph H Anzelmo, US Marine Corps

COL James Voeltz, USAISSC
Col Fred Mellor, US Air Force
CAPT Kathleen Laughten, US Navy

10th Annual Natonal Conference on ADA Technology 1992 81

ENGINEERING VNBOUNDEI REUSABLE ADA GENERICS

Joseph K HoflingsworTh
Bruce W. Weide

Department of Computer and Information Science
The Ohio State University

2036 Nel Avenue Mall
Columbus, Ohio 43210-1277

hollycis.ohio-stateedu, (614) 292-5813
weidecis.ohio-stateedu, (614) 22-1517

hkstzaiL Problem 1. Currently the implementer of
an ADT has no sure way of regaining con-

Most curmt programming languages (includ- trol over dynamically allocated storage.
ing Ada) provide some means of allowing the However, as noted in the Ada 9X Require-
programmer to dynamically allocate and deal- mentsl, p. 19: "...the programmer should
locate heap storage. This permits construction of be able to gain control whenever storage is
'unbounded' abstract data types, e.g., stacks, allocated and whenever a scope is deacti-
queues, one-way lists, etc. Unfortunately, the vatedc"
addition of dynamically allocated storage to the
implementation of abstract data types is a com- Problem 2. There is a proliferation of
plicated business. Unless special care is taken, unbounded ADTs providing the same func-
it can lead to problems of storage leaks, dangling tionality, differing only in their storage
references, unwanted aliasing, and unexpected management scheme. The need for differ-
lengthy execution times (due to storage alloca- ent schemes is also recognized in the Ada
tion and reclamation), among others. We pro- 9X Requirementsl, p. 19: "...the ability to
pose a specific discipline for avoiding these provide specialized storage management
problems. a-gorithms is often essential when tuning

an application's performance." This is al-
ready happening in practice. Booch 4 typi-

I- 1mduction cally provides two versions for each
unbounded type, e.g., StackSequern-

Section 42 of the Ada 9X Requirements1 recog- tiai._UnboundedManaged._Noniterator
nizes the following storage management prob- and StackSequential-UnboundedUn-
lems associated with abstract data types (ADTs) managed.Noniterator. These differ only
implemented using dynamically ailecated data in their storage management scheme.
structures (unboanded' ADTs):

Problem 3. The client of an unbounded
ADT typically has little control over the a]-
location and reclamation process, but

This material is based upon work supported by needs this control. Again, this point is

the National Science Foundation Grant No. made in the Ada 9X Requirementsl, pp. 19-

CCR-9111892. 20: "For time-critical applications, storage

82 IONh An-rv , Nafloro Conference on ADA Technology 1992

allocation ad reclnnation actions must The individual engineering principles are:
occor at predictable times and must be ac-
oapbl ed in a bounded amount of time." o Principle L A generic package must export

an initialize and a finalize operation for
This paper offers a discipline for designing un- each exported type, to be called by the client
bounded ADTs based on a coherent set of engi- on each variable of that type upon entry to
ne principles. By adhering to this disci- and exit from its scope, respectivel.
pline, an Ads software designer can develop a
large dss of unbounded ADrs that do not suffer e Principle 2. A geueric package must export
from the storage management prob.m listed only limited private types. A data move-
above. ment operation that properly enforces the

abstraction must be provided for variables
One ofthe principles presented in this paper is re- of each exported type (eg., Copy or Swap 7).
lated to work by Booch 4 and Musser and
Stepanov1 3 in that it involves an encapsulation * Principle 3. A generic package must export
for storage management. It is different from package initialize and finalize operations
their work in that the encapsu!ation imposes to be used by the client for each instance of
stricter control over the clients use of the allo- the package upon entry to and exit from its
cated storage. Through this strict encapsulation, scope, respectively.
problems 2 and 3 can be addressed. Rosen 15 pro-
poses an abstraction with stricter control than o Principle 4. Storage management must be
Booch or Musser and Stepanov, but this encapsu- encapsulated in its own generic package.
lation is not used to build linked structures, as is This abstraction must enforce strict control
done here. Work by Sherman16 , Muralidha- over access to allocated storage, and must
ran12 . and Baker 3 also addresses Problem L admit a variety of possible implementa-

tions.
The paper is organized as follows. Section 2 in-
troduces a discipline for designing unbounded Principle 5. A generic package must im-
ADTs with acyclic linked representations. Sec- port storage management operations
tion 3 introduces Nilpotent-Template, a package through generic parameters. These opera-
that encapsulates storage management for such tions should be those provided by the
ADTs. Section 4 demonstrates the use of Nilpo- generic package described in Principle 4.
tentTemplate by two different clients, and Sec-
tion 5 discusses alternative implementations for Principle I is not new (see Sherman 16), but it is
NilpotentTemplate. Section 6 extends the necessary because the finalize operation is the
NilpotentTemplate concept to deal with tree and only way in which the unbounded generic pack-
DAG structures, and Section 7 presents our con- age can regain control of the storage allocated to
clusions. variables of any type exported by the package.

Principle 1 aadresses problem 1.

2. Discipline for Designing Unbounded ADTs Exporting each type as limited private, required
by Principle 2, has been suggested by many, e.g.,

Henceforth, when we discuss "generic pack- Hibbard 8, Booch 4 , and Edwards5. A data move-
ages," we mean Ada generic packages that export ment operation that properly enforces the abstrac-
unbounded ADTs and operations to manipulate tion does so without creating an alias; this is re-
them. The main objective of this paper is to pre- quired for modular verification of Ada generics
sent a formally-based design discipline for such (see Ernst 6). For efficiency reasons 7 we choose
generic packages that is based on five engineer- the Swap operation in our designs, but the tradi-
ing principles. The point is to show why the tional Copy operation would also suffice.
whole is greater than the sum of the parts (i.e., the
engineering principles standing sepzrately). Principle 3 requires a package finalization op-

eration so that storage allocated to package-level

10th Annual Nahonal Conference on ADA Technology 1992 83

variables can be reclimed prior to the deactiva-
tion of the package Cie., prior to leaving the scpe
in which the package was instantiated). Al- 3. An Abstraction for Atvelic Pointer Structures
though there is a syntactic slot provided by Ada
for optional package initialization, an explicit In this section we introduce NilpotentTemplate,
procedure is required of all packages by our dis- an abstraction for acyelic pointer structures.
cipline. This produces symmetric, consistent Understanding this abstraction is paramount for
and uniform interfaces. Principle 3 also ad- understanding the discipline. Why is this ab-
dresses problem L straction so important? It allows us to get

pointers right once and for all, eliminating the
Principle 4 is followed in part both by Booch4 and troublesome details associated with using
by Musse" and Stepanovl 3, but their encapsu- programming language pointers when i-_pie-
lation is not strict enough. In general, what is menting acyclic linked structures. Further-
meant by "strict" is that there is no uncontrolled more, if a generic package is parameterized by
aliasing of the allocated storage, ie., all copies NilpotentTemplate, its performance can be
of pointers are made by operations provided by tuned by the client with respect to storage
the abstraction. This strict control allows the management. The generic package stays the
implementation to use alternatives for s-orage same, while the client simply selects and
reclamation that otherwise would not be avail- instantiates an alternative implementation of
able (see Section 5). These alternatives address NilpotentTemplate (see Section 5 for a dis-
problems 2 and 3 in that the implementation of cussion of alternative implementations).
the abstract storage management package can be
"tuned" to the cients needs without changes to Experience shows that the abstraction may be dif-
the client (except in the package instantiation). ficult to understand, so we begin with a simple

example, working up from there. Suppose one is
Principle 5 attacks the proliferation of different developing a program that requires a singly
versions of functionally similar unbounded linked list for storing a character string. There
ADTs by making them parametric in the storage is one problem: the programming language be-
management scheme. Also, it gives the client ing used does not support pointers. What can be
control over major performance factors (storage done? Simulate the pointers using an array for
allocation and reclamation), which is crucial if storing the characters while maintaining a par-
a high level of ADT reuse is to be achieved, espe- allel array for storing the simulated pointer link
cially in real-time systems 2. Principle 5 ad- to the next character. This is common in FOR-
dresses problems 2 and 3. TRAN programs, and is taught in some intrG-

ductory data structures courses and standard
To understand the details of the discipline, it is texts (see HorowitzlO). For example, suppose we
necessary to work at five different levels, or have the list (a, x, r). An implementation using
layers, of software. Principle 4, encapsulating simulated pointers and parallel arrays might
storage management, is concerned with the look like the following:
lowest two levels, the storage management
abstraction (see Section 3) and its head tail
implementation (Section 5). Principles 1, 2, 3,
and 5 are concerned with the next two higher lev- F9 M
els, a generic package exporting an unbounded label a x r o,.
ADT and its implementation, which is based on
the storage management abstraction (Section 4). target 2 3 0 0 1
At the highest level is the client of this generic 1 2 3 4

package, whose use of the generic package is dis-
cussed in Principles 1, 2, and 3 (Section 4). This Figure 1 - Simulated pointers using
view of the discipline follows the 3C (concept, parallel arrays.
content, and context) model of software structure
(see Latour 1 l).

84 10th Annual National Conference on ADA Technology 1992

To acces the first item in the list, a, use the explanations as an aid to understanding the
value stored in the variable bead to index into the speaication. Then move on to the example
label array. To find the next item in the list, client mogram found in the next section, refer-
simply index into the target array and use the ring back to the specification when necessary.
value stored there as the index into the label
amy. The end of the list is reached when the We have some experience introducing Nilpo-
value in the tage array is zero. tent-Template to programmers in the class-

room*. The students' first encounter with Nilpo-
Abstacting from this implementation leads to a tentTemplate was difficult- However, with
spcification for the desired generic abstract data some explanation of the specs along with an
typ- There are actually two mappings at work example similar to the one found in the next sec-
in this example, a mapping from integers to tion, the students became comfortable with the
characters, and a mapping from integers to inte- abstraction and easily were able to use it to im-
gers These mappings can be viewed as mathe- plement two different linked structure packages
matical functions, label and target, having the (queue and one-way list).
following mathematical form:

label: integer -+ Item 4. A Client of the Nilnotent Temp]ate
target: integer -+ integer

This section demonstrates the use of the Nilpo-
By definition label and target are both total func- tentTemplate introduced in the last section by
tions that form part of a complete mathematical providing two clients: an Ada procedure that in-
model of the simulated pointer structure. To stantiates NilpotentTemplate and an Ada
remain within the page limit, in examples we generic package parameterized by Nilpo-
show only ordered pairs for which the domain tent-Template.
value is of interest. For the above example, the
functions have the following values:

A Procedure to Create a Simple List
label = ((1, a), (2, x), (3, r))

target= ((1, 2), (2, 3), (3, 0)) The procedure of Figure 3 creates the example
list, (a, x, r), from Section 3. The reader should
refer to the remainder of Figure 3 for three

The Abstraction in the Form of an Ada different views of the program's execution. Fig-
Generic Packa e ure 3 has nine rows and four columns. The nine

rows correspond with the nine lines in the
The abstraction Nilpotent-Template presented program tagged with the comment "-- #."
below (see Figure 2) is based on the two functions Column one contains the line number; column
label and target. It exports a program type called two contains an illustration of the abstract state;
Position (modeled by the integers used as the column three illustrates a simulated pointer rep-
domains of the functions), and it exports resentation; column four shows a standard rep-
operations for manipulating the functions (i.e., resentation using pointers and nodes with "next"
for evaluating and changing them). The pack- fields.
age is parameterized by the type Item. The
specification has three parts: Ada code;
mathematical specifications (in Ada comments
beginning with --!); and English explanation
(in Ada comments beginning with only --). The
mathematical specifications are similar to those
found in Pittel1 4 , with modifications to facilitate •
the presentation and to correspond with the Ada Eighteen graduate and upper-divisionundergraduate students, in a class called
implementation. Upon first reading, think of the "Software Components Using Ada" (seeabove example and use the associated Hollingsworth 9).

10th Annual Nalional Conference on ADA Technology 1992 85

-,mmpt NlpotantrTlate

-c conceptual context

generic
--, conceptual parameters

-D type Item
type Item is limited private;
with procedure Initialize (x: in out Item);
with procedure Finalize (x: in out Item);
with procedure Swap (xl: in out Item; x2: in out Item);

--, mathematIca
--" math warlables

--" used: Integer
--! label: function from integer to math [Item)
--' target: function from integ*r to integer
-- Conceptually NilpotentTemplate maintains these three internal ustate" variables. The exported

- operations manipulate these variables as well as their actual parameters. Nilpotent_Te=plate's
-- implementation (package body) is not obligated to represent these variables explicitly,
-- as they are mathematical abstractions, not Ada variables.

-- Initially "used - 0 and
--! for all i: integer (Item.aldt (label (i)) and (target (i) - 0))"
- Conceptually Nilpotent Template dispenses unused positions beginning at integer number one.
- Positions are dispensed to the client via the operation AttachLabel (see below). Each time
-- a position is dispensed, the math variable used is incremented by one. There is no danger of
- eventual overflow because used is a mathematical integer, not an Ada integer.

package NilpotentTemplate is
interface

procedure InitializePackage;
procedure FinalizePackage;

type Position Is modeled by integer
exemplar p

-. constraint "p >- 0"
initially "p - 0 and used - #used and

--' label - #label and target - #target"
finally "used - #used and label - #label and target I ftarget"

type Position is limited private;
procedure Initialize (p: in out Position);
procedure Finalize (p: in out Position);
procedure Swap (pl: in out Position; p2: in out Position);

-- Conceptually the type Position is modeled by a mathematical integer. Every variable p of type
-- Position is initially 0. The Initialize operation for a Position variable p does not have
-- an effect on the NilpotentTemplate's internal mathematical variables used, label and target,
- nor does the Finalize operation.
- In the post-condition (ensures clause) of an oparation, the 4' preceding a variable
- indicates the value of the variable at the beginning of the operation. A variable without the
- 'f' stands for the value of the variable at the end of the operation. The '4' is not used in a
- pre-condition (requires clause).

procedure AttachLabel
p: in out Position; -- ' produces
x: in out Item -- ' consumes

86 101h Annual National Conference on ADA Technology 1992

ensure) "Used - fused + I and p Iused and
-! for all i: integer (i /- p Iplies label (i) - #label (i)) and
-" label (p) - fx and
--! target - #target"
- ~nceptually this operation allocates the next unused integer to be used as a Position value.
- It alters the label function, mapping the new Position p to the Item x. The new Position's
- target is 0 because target initially naps every integer to 0. The operation also consm
-- x; i.e., x is changed to an initial value for the type Item.

procedure Swap !abel (
p: in out Position; -- , preserves
x: in out Item -- a mlters

requires "p /- 0"
-! ensure* "used - fused and
-'n for all i: integer (i I- p implies label (i) - #label (i)) and
-- label (p) - fx and x -#label (p) and
-, targe - #target"
- Conceptually this operation allows a client to change the label function at Position p and
- simultaneously to obtain the former label at Position p, by swapping. Neither used nor target
- is changed.

procedure ApplyTarget (
p: in out Position --. alters

-- !1 requires "p /- 0"
--! ensures "p m target (#p) and
--' used - fused and label - label ad target - #target"
- Conceptually this operation applies the target function to p and sets p to the value
- produced by the application.

procedure Change_Target
pl: in out Position; -- " preserves
p2: in out Position -- ! preserves

requires "p1l /- 0 and pl /- p2 and
there does not exist k :integer, (k Z 0 and (taret^k(p2) = pl))

ensures "used - #used and label - #label and
--! for all i: integer (i /- p iqplIes target (i) - ftarget (i)) and

target (pl) - p2"
- Conceptually this operation allows a client tc alter the target function by changing target (p1),
- i.e., pl now maps to p2 under the target function. Neither used nor label is c,anged.
- Note: The notation target^k(p2) denotes the iterated application of target Vo p2, k times. For
- exanple, target^2 (p2) - target (target (p2)). The requires clause must be met so that no
- circular structures will be created! In other words, target is a nilpotent function; hence
- the name of the package.

procedure Copy
pl: in out Position; -- ' preserves
p2: in out Position -- ' produces

ensures "p2 - pl and used - #ed and label - #label ane target - #target'
Conceptually this operation allows a client to create a copy of a position pl. None of the

- internal mathematical variables are changed. Note: This is similar to aliasing if pointers
- were being used. However this is the only way in which a client can create an alias.
- Assignment is not available for limited private types. Implementations of NilpotentTemplate
- can take advantage of this situation so that dangling references and storage leaks are
- never created.

procedure Test If Equal
pl: in Out Position; -- ' preserves

10th Annual Noional Conference on ADA Technology 1992 87

p2: in out Position; -- , preserves
equal: in out Boolean --, produces

ensures "(equal Iff pl - p2) and
used - fused and label - flabel and target - ftarget"

-- Conceptually this operation sets equal to True if and only if pl and p2 are the same integer.

private
type Position-Rep;
type Position is access PositionRep;

end Nilpotent_Template;
-: u d Nilpotent_Twplate

Figure 2 - NilpotentTemplate Specification

with NilpotentTemplate, Initialize (tail);
Built In Types; Initialize (newtail);

use Built In Types; Initialize (c); -- 1
-- ?ackage Built InTypes provides Initialize, c := a';
-- Finalize and Swap operations for the built Attach Label (head, c); -- 2
-- in Ada types Boolean, Character, Integer Copy (head, tail); -- 3
-- and Float. C := 1x';

Attach Label (new-tail, c); -- 4
procedure Example_List k ChangeiTarget (tail, newtail); 5
package Character ListFacility is ApplyTarget (tail); -- 6
new Nilpotent Template (c := 'r';
Character, AttachLabel (newtail, c); -- 7
Initialize, ChangeTarget (tail, newtail); -- 8
Finalize, ApplyTarget (tail); -- 9
Swap); Finalize (c)

use CharacterListFacility; Finalize (new tail);
head, tail, new tail: Position; Finalize (tail);
c: Character; Finalize (head);

begin end Example List;
Tnitialize (head);

Line Abstract Simulated Pointer Standard Pointer
State Representation Representation

lhead=O "ail= 0 new_ tai I head tail new_tail head tail newtail

[E]_F9IED Z Z ZI s = 0 label ,I ,

label: (1 target 0 01i 0 0 1
target: 1 2 3 4

head tail new tail head tail new_tail

2 head= I tail=O0 new tail=0 Ff1 E M Z
2 used = 1 bl:a 0

target: (1))target 0 0 0 0 ..selabel: { (1,a)) lae} 1 1 -__ _ _ _ _

Figure 3 - Three views of the example program's execution (continued to next page).

88 IM, AnnuNgl No'"onol Conference on ADA Technology 1992

Shead tail newtail head tail new-tail

,!3 d= 1abell a 0*0
labeh: [(I.a))

(taEc (1,0)) target 0 0 0 0 oo .

head tail new_tail head tail new_tail4 ead=1 tail=1 newatal=2 x [J M

used2 abl x00
label: (1, a), (2, x) I II I
target (1,0),(2,0)} target 0 0 0 0

head tail newtail head tail newtail

5 used =2 lae ao

label: ((1, a), (2, x) label a
target: (I,2),(2,0)) target 21 00 .0 1

head tail newtail head tail newtali

6 head= I tai: =2 new_tail=2 M R2j~
6 used=2 label a x

label: {(1, a), (2, x), l
target: (1,2),(2,0) target 2 o

head tail new tail head tail new tail
head=l tail = 2 new_tail =3 M71 17usd7 label a X T •
label: (1, a), (2, x), (3, r) l_ _

target ((1,2),(2,0),(3,0)) target 12 0 0 I 0O 000 1 a••

head tail new_tail head tail newtail
head=l tail=2 new_tail=3 [7][1[

8 used=3 label a x r 0•.
label: {(1, a), (2, x), (3, r))
target: (l,2),(2,3),(3,O) target 2 3 0 0 a

head tail newtail head tail newtail
head=1 tail=3 new tail=3 M IR3 Mr-
use = 3 label a x r••
label: (1, a), (2, x), (3, r)) __ _ _ V
target: (1,2),(2,3),(3,0)) target 2 a[r ,

Figure 3 - Three views of the example program's execution.

The example program demonstrates how a client now able reason about linked structures at an
of the NilpotentTemplate can construct linked abstract level, as opposed to reasoning at the con-
structures without directly using the program- crete or implementation level. Column three of
ming language's pointer types. Additionally, Figure 3 demonstrates how a programmer rea-
this example illustrates that the programmer is sons about linked structures in a language with-

10th Annual National Conference on ADA Technology 1992 89

oat pointers (e.g., FORTRAN); column four of StackTemplate's specification follows the same
Figure 3 demonstrates how a programmer work- format used for NilpotentTemplate, with formal
ing with a language that provides pointers rea- mathematical specifications mixed with the Ada
sons about linked structures (e.g., C, Pascal, or generic package specification. It has been :ngi-
Ada). Column two, however, is how pro- neered according to the principles outlined in
grammers should be reasoning about linked Section 2. Conceptually, the type Stack is mod-
structures - at an abstract level. eled as a mathematical string of Items (type Item

is a parameter). Stack operations are specified
in terms of mathematical string theory opera-

Ada Generic Package Parameterized by tions (e.g., concatenation). Close examination
Nilnotent Temnlate of the specification shows that the operations Ini-

tialize and Finalize satisfy Principle 1; Princi-
It is time to examine the discipline's next three pie 2 is satisfied by the program type Stack being
levels: a generic package (Figure 4), its imple- limited private, and by the Swap operation; Ini-
mentation based on NilpotentTemplate (Figure tializePackage and Finalize-Package satisfy
5), and a client of the generic package (following Principle 3; Principle 4 is satisfied by Nilpo-
Figure 5). For simplicity of presentation we have tentTemplate itself. NilpotentTemplate's type
chosen stack. Abstractions such as queue, one- and operations are generic parameters, satisfy-
way list, and map illustrate the same points. ing Principle 5.

-- c concept Stack Template
--! conceptual context

uses
-- M SRING_THEORY_2TWIATE

generic
-- I. conceptual parameters

type Item
type Item is limited private;
with procedure Initialize (x: in out Item);
with procedure Finalize (x: in out Item);
with procedure Swap (xl: in out Item; x2: in out Item);

-- ' mathematics
math facilities

-! STRING_THEORY Is STRINGTHEORY_TELATE (math[Item])

realization context
-! realization parameters

-! facility Nilpotent Facility Is NilpotentTemplate (Item)
type Position is limited private;
with procedure Initialize(p: in out Position);
with procedure Finalize(p: in out Position);
with procedure Swap(pl, p2: in out Position);
with procedure AttachLabel(p: in out Position;

x: in out Item);
with procedure SwapLabel(p: in out Position;

x: in out Item);
with procedure ApplyTarget(p: in out Position);
with procedure ChangeTarget(pl, p2: in out Position);
with procedure Copy(pl, p2: in out Position);
with procedure TestIfEqual(pl, p2: in out Position;

equal: in out Boolean);

90 10th Annual National Conference on ADA Technology 1992

package StackTemplate is
Interface

procedure initialize Package;
procedure Finalize-Package;

type Stack Is modeled by STRING
exemplar s

--! initially " F - FTY"

type Stack is limited private;
procedure Initialize (s: in out Stack);
procedure Finalize (s: in out Stack);
procedure Swap (sl: in out Stack; s2: in out Stack);

procedure Push (
s: in out Stack; --! alter&
x: in out Item -- , consume#

ensures "s - #a 0 #x"

procedure Pop (
s: in out Stack; alters
x: in out Item -- ' produces

requires "a /- EMPTY"
-- ! ensure& "#s - s 0 X"

procedure TestIf Empty
s: in out Stack; -- , preserve$
empty: in out Boolean -- ' produces

ensures "empty Iff s - EIPTY"

private
type Stack is new Position;

end StackTemplate;
-- end Stack Template

Figure 4 - Generic Stack Specification

packa.re body StackTemplate is

EMPTY STACKREP: Position;

procedure InitializePackage is
begin

Initialize (EMPTYSTACKREP);
end InitializePackage;

procedure Finalize-Package is
begin

Finalize (EMPTY STACKREP);
end FinalizePackage;

10th Annual Noional Conference on ADA Technology 1992 91

proceduze Initialize (s: in out Stack) is
begin

Initialize (Position (s));
end Initialize;

proceduze Finalize (s: in out Stack) is
begin

Finalize (Position %s));
end Finalize;

procedumr Swap (al: in out Stack; s2: in out Stack) is
begin

Swap (Position (sl), Position (s2));
end Swap;

procedurm Push (s: in out Stack; x: in out Item) is
new top: Position;

begin
Initialize (new-top) ;
AttachLabel (new top, x);
Chc~qeTarget (new top, Position (s));
Swap (newtop, Position (s));
Finailize (new-top);

end Push;

proceduze Pop (s: in out Stack; x: in out Item) is
begin

Swap_Label (Position (s), x);
ApplyTarget (Position (s));

end Pop;

procedurm Test_IfEmpty (s: in out Stack; empty: in out Boolean) is
begin

TestIf Equal (Position (s), EMPTYSTACKREP, empty);
end Test IfEmpty;

end StackTemplate;

Figure 5 - StackTemplate Implementation

Below is a simple Stack-Client that is faithful to Character,
Principles 1, 3, and 5 of the discipline, by initial- Initialize,
izing and inalizing both the program variables Finalize,
and inst inated packages. Swap);

with BuiltIn_Types, package StackFacility
ilothB t nTempae, Stackis new Stack Template
Nilpotemt_Template, StackTemplate; Character,

use Built In Types; Initialize,
Finalize,

procedue StackClient is Swap,

package Nilpotent Facility Nilpotent_Facility. Position,
Nilpotent Facility. Initialize,

is Nilpotent_Template Nilpotent-Facility.Finalize,

92 101, Phnuai National Conference on ADA Technology 1992

NilpotentFacility.Swap, storage. At this time, the allocated storage may
NilpotentFacility.AttachLabel, be reclaimed. Because of its interface,
NilpotentFacility.SwapLabel, NilpotentfTemplate has complete control over
NilpotentFacility.ApplyTarget, aliasing of allocated storage. If it did not, then
NilpotentFacility.Change_Target, the reference count system would break down.
NilpotentFacility.Copy,
NilpotentFacility.Test_IfEqual); This is also why circular linked structures are

use StackFacility; not allowed by the NilpotentTemplate as it
stands. If they are allowed (by removing the

sl: Stack; requires clause of ChangeTarget), it is possible
c: Character; to build a structure where each piece of allocated

storage has a reference count equal to one, but no
begin position has access to the structure. To detect this

NilpotentFacility. Initialize Package; situation, the implementation has to follow the
StackFacility.InitializePackage; target chain of a position whenever a reference
Initialize (sl); count is decremented; otherwise storage leaks
Initialize (c); might occur. Following the target chain is
C :- 'a'; potentially inefficient.
Push (si, c);
c :- Wb;Push (sl, c); The NilpotentTemplate abstraction without the

Finalize (c); non-circulatrity constraint is useful for con-
Finalize (sl); structing circular structures, but does not admit
StackFacility.FinalizePackage; an especially efficient implementation. On the
NilpotentFacility.FinalizePackage; other hand, it is no less efficient than using

end Stack_Client; language-supplied primitives to allocate and
deallocate storage, and it still supports abstract

5. Nilotent Template Implementation reasoning about client program behavior.

Here are four possible alternative strategies for
Before discussing alternative implementations storage reclamation:
fo- NilpotentTemplate, we note the fundamen-
tal properties shared by all alternatives. Re- 1) Use the underlying run time system's
member that NilpotentTemplate has been de- garbage collector.
signed for building acyclic linked structures.
Consequently, the precondition for ChangeTar- 2) Use UNCHECKED DEALLOCATION.
get requires that no circularity be introduced into
the linked structure that is under construction 3) Maintain an internal free list of individ-
(see Figure 2). This requirement allows ual pieces of storage allocated by At-
implementations to maintain reference counts tachLabel, as shown:
for all dynamically allocated storage (see
Weidel 7, Rosenl 5).

freejist
For example, when the client invokes
Attach-Label, storage is allocated for a new
position, and its reference count is set to one. The
counts are updated by all operations of the
NilpotentTemplate that change the values of
Position variables or the target function. When
the count reaches zero (note that the count can be
decremented by a call to Finalize, AttachLabel, 4) Maintain an internal free list of freed
ChangeTarget, Apply-Target, or Copy) there linked structures. These structures have
are no positions that have access to the allocated

10th Annual Naional Conference on ADA Technology 1992 93

been constructed using Athjebei and stUC-.-e, whM sh.out a! d ta S x-r.t.e t f-
ChangeTarget, and have then been freed: nalized?

free-lis By follow~ing t)-.- tico11a Ptnd in this pa.
per., p& acar 1w iple. end =-
ing -ny of be aettn b eWhst. more.
wha. Zen cec WkCaet -e desigiu aem rdang
wo fae dingplrn, thes zso be inhatirAsetr wah
any in-p ntaS&*- 'f Te~and
wgy eerormy wel, whnueidn pug £apati ilit
sa Aly, ihen ients :f. e S o- earp e-ti-
fufey adere to 6.ee n etit.izefinaize require-
ments of the izciokUc no s,,mge leaks cr dan -

essling
-i erenN.

hs
cBn be teat-s

The first two strategies are straightforward, not E..pab= ti ., , be nt Tknzmrat -
warranting further discussion. The third strat- hSZOe
egy performs well when individual pieces of
storage are freed (eg., whie a stack is popped), WH- t.e a software egi-
but suers when an entire linked structure is ncer =r design and reeson at ait astrat r ev-
freed. For example, if a client finalizes a stack wupt rinegy lanked sir..actures, but nt tv. and
of size N, this alternatives performance is nec- pmu!ftil linkd struttures such as hinamy trees.
essarily linear in N. Why? Because it has to To 4,tppet multipldv inked dtuxtus,
take each piece of storage off the stack and place itee- patz naw. be extended to suprt mult-
it onto the free list. This might lead one to believe pe target fanctions. The Following ezample
that the Finalize operation for a linked strudure demonstrates a bimry tree and it-,ecomespond-
is inherently a linear-time operation, but it i ing representti.-er using si iated pointers and
not. The fourth strategy accommodates a con- parllel aranyz:
stant time Finalize operation for inled
structures of length N (see Weizenbatyri1 3 ,
Weide 17). As stated above, this implemcrntatin
maintains a free list of freed linked *!ructures
rather than a free list f individual),%, ellocatcd
pieces of storage. The Finalize op at-jon sily
adds the entire size N linked structure ta the fre
list, in constant time. With this stwnige ma.i-
agement strategy, all Nilpoter.Template opera-
tions take constant time.

It is wor.4h mentioning other factoi, st-at are rele-
vant when the storage reclamation strategy
maintaino a free list. Unfortunately a iffl' tr a-
tise on these factors would require anoter parer. root
For example, there might be a need to place an
upper bound on the size of the free list; it migh.t he
to a client's advantage to populate the ii'eelabel r ;a XT~
prior to the client requesting storag?;ar d f!M ir
a question as to when is the best time to fir.elize larget 1 4 0 ..
the Items in the data structure being reclained.
That is, when the storage being receivied cort- t.2 . 0 0 *..
tains the only reference to sonie other large dta

94 10th Annual National Confeece on ADA Tt,', .z-.v t .99

rhe t etf bactian now 1-6s the *Z- Lzwiag -math-
ea-tical frm: The discipline, when properly appled, actually

goes fa.rther. It guarantees that. no storage Teaks
target btager X integer --I intege or dangling references can be created; un-

bounded generics are plug compatible with re-
The targetfwirtion for the abmqe ezuaiee is: spect to storage management (giving the clit
target XL((I 1). 2), ((1,2), (, ((1,3i, 4), ((L,4X, 0), control at instantiation time over the storage

(C,). 3). ((2,2). 0), (CA 331, 0), ((24), 0))i management scheme employed); the storage
manager can be implemented so that all of its op-.

?i..WyM~ipc_*entTemp!iate has an additional erations execute in constant time, including the
genti.. pv&w*&ter y which the client, specfles Finalize operation for linked structures of size
tbe nomber of targets. A6 it turns out, Nilpe- N; the interface of unbounded generics is
tt.ffemaplate is a special case of uniform and consistent (permitting composi-
KNV~y..NivotenzTemF~ate (obtained by set- tions such as stacks of one-way lists through
*jm the nuber of targets to one). In practice we generic instantiation).
have implementedWay.YNilpotent,_Tem-
plate, and izxaniatvd it with one target fanction Straightforward, comprehensible solutioxis to
to build ibgly liiked stmaetumes and with two problems such as storage management, client
targo. f unSvrs to build binary trees- control over performance, plug compatibility,

uniformity, consistenicy and composability are
not easy to find. One cannot take a half-hearted

7. Sirrmnr and Co'n'-isie' approach to solving these problems, i-e., one
cannot adopt principles 1, 3, and 5, for example,

We have introduced an engineering discipline and hope to gain much. Only when we examine
for the constraction of Ada gezeric packages that the entire picture and are willing to take a differ-
export 'unbounded" ADTs, and their clients. etnt approach at all levels, do we come up with a
The ahcipline addresses three problems: comprehensive discipline for solving these prob-

Pl) -regaining can.Tol over dyniamically a!- lains.
lomed storage;

M2 the pnriferation of unbotinded ADTs dif-
fering on-3y in their storage managemnent Akn.wkdgments
scheme; and

P3no cl*--.t control over ar, unbounded We are pleased to thank the members of the
ADTs storage management scheme. Reusable Software Research Group at The Ohio

State University for their comments and many
-Ttic disciplint, requires: helpful discussions on the content of this paper.

1)a taklly eacapsu~a-,ed storage manage-

1)generic packages parameterized by aridl Regan
implemented with the storage manage-
ment odl;1. Ada 9X Project Report: Ada 9X Require-

F-2) total encapsulfation of all typas, including meonts, Office of the Under Secretary of De-
a data movement Qperation that prcopeely fense fx- Acquisition, Washington, D.C.,
enforces Che abstraction; Dec. 1990.

'F.4) initialization andi finalization opera.-
tions for 21! tYpe:; End DaCkazges; 2. Alier., D., et 6l., eds., "Catalog of Interface

RFY) faithful use of initializwe/6nAizc opera- Features and Optioins for the Ada Rurntime
t-ions by till clipnts. Environment," Ada Letters, Vol. ii, No. 8,

Fall 1991, 11-2.
?rWrI111 is addressed by requireniints 113. R4

and R5. Problems P2 and F3 aire addrefsed 1-. 111 3. Baker, H., "Structured Programming with
and R2. Limited P-.ivate Types in Ada: Nesting is

10ht Annual Natonol Conference on ADA Technology 11992 95

for the Soaring Eages," Ado Letters, VoL 9, Packages, Springer-Verlag, New York,
No. 5, u .n 191,7 ,9-90. 1069.

4. Boo*h, G., Softcware Componeas with Ada, 14. Pittel, T-., Pointers in RESOLVE: Specifi-
enjaImin mmings, Menlo Park, CA, 1987. cation and Implmentation, M.S. Thesis,

Department of Computer and Information
5. Edwad, S., An Approach for Constructing Science, The Ohio State University, Colum-

Reusable Software Components in Ada,* bs, Ohio, June 1990.
Institute for Defense Analyses, Alexandria,
VA, IDA Paper P-2378, 1990. 15. Rosen, S.M., "Controling Dynamic Objects

in Larg Ads Systems," Ada Letters, Vol- 7,
6. Ernst, G.W., Hookway, R.J., Menegay, No.5, SeptJOcL 1987,79-92.

JA., and Ogden, WY., "Modular Verifica-
tion of Ada Generics," Comp. Lang., VoL 16, 16. Sherman, M., Hisgen, A., and Rosenberg,
No. 39.1991, 259-280. J., "A Methodology for Programming Ab-

stract Data Types in Ada," Proceedings of
7. Harms, D.E., and Weide, B.W., 'Copying the AdaTEC 82 Conference on Ada, ACM,

and Swapping: Influences on the Design of Arlington, VA, Oct. 1982.
Reusable Software Components," IEEE
Trans. on Software Eng., Vol. 17, No. 5, 17. Weide, B.W., "A New ADT and Its Applica-
May 1991, 424-435. tions in Implementing 'Linked' Structures,"

Technical report, Department of Computer
8. Hibbard, P., Hisgen, A-, Rosenberg, J., and Information Science, The Ohio State

Shaw, M., and Sherman, M., Studies in Ada University, Columbus, Ohio, OSU-CISRC-
Style, Springer-Verlag, New York, 1983. TR-86-3, Jan. 1986.

9. Hollingsworth, J.E., Weide, B.W., and 18. Weizenbaum, J., "Symmetric List Proces-
Zweben, S.H, "Confessions of Some Used- sor," CACM, Vol. 6, No. 9, Sept. 1963, 524 -
Program Clients," Proceedings 4th Annual 544.
Workshop on Software Reuse, Herndon, VA,
Nov. 1991.

Joe Hollingsworth holds an undergraduate de-
10. Horowitz, E., and Sahni, S., Fundamentals gree from Indiana University and a master's

of Data Structures, Computer Science Press, degree from Purdue University. Before return-
Inc., Rockville, Maryland, 1976. ing to school as a Ph.D. candidate at The Ohio

State University, he worked at Texas Instru-
11. Latour, L., Wheeler, T., and Frakes, W., ments. He has also consulted for Battelle Memo-

"Descriptive and Predictive Aspects of the rial Institute on issues of software design in
3Cs Model: SETAl Working Group Sum- Ada. In his recent research at OSU he has devel-
mary," Third Annual Workshop: Methods oped a compiler, linker, and run-time system for
and Tools for Reuse, Syracuse Univ. CASE RESOLVE, and has worked on a set of engineer-
Center, Syracuse, NY, June 1990. ing principles that can be used to develop generic

reusable software components in Ada. His In-
12. Muralidharan, S., and Weide, B.W., ternet address is holly@cis.ohio-state.edu, and

"Should Data Abstraction Be Violated to En- his postal address is Department of Computer
hance Software Reuse?," Proceedings 8th and Information Science, 2036 Neil Avenue
Annual National Conference on Ada Tech- Mall, Columbus, Ohio 43210.
nology, ANCOST, Inc., Atlanta, GA, Mar.
1990,515-524. Bruce W. Weide is Associate Professor of Com-

puter and Information Science at The Ohio State
13. Musser, D., and Stepanov, A., The Ada University. He received his B.S.E.E. degree

Generic Library: Linear List Processing from the University of Toledo in 1974 and the

96 10th Annual National Conference on ADA Technology 1992

Ph.D. in Computer Science from Carnegie Mel-
Ion University in 1978. He has been at Ohio State
since 1978. His research interests include vari-
ous a-spects of ,v-asable software components and
software engineering in general: software de-
sign-for-reuse, formal specification and verifi-
cation, data structures and algorithms, and pro-
gramming language issues. He has also pub-
lished recently in the area of software support for
real-time and embedded systems. His Internet
address is weide@cis.ohio-state.edu, and his
postal address is the same as shown above.

10th Annual Natonal Conference on ADA Technology 1992 97

Intefligent Abstract Data Types

Robert A. Willis Jr.
Larry Morell

Department of Computer Science
Hampton University
Hampton, VA 23668

Internet Addresses
willis@unixvax.hamptonu.edu
morell@unixvax.hamptonu.edu

98 10th Annual Nolionol Conference on ADA Technology 1992

Introduction ports object oriented design (OOD) quite well.Ada's encapsulation features allows develop-
This paper discusses the concept and imple- er's of IADT's to provide truly transparent ser-
mentation of Intelligent Abstract Data Types vice to using programs.
(IADT's). An IADT is an Abstract Data Type
(ADT) that runs concurrently with its clients. The Concept of IADT's
An ADT is an encapsulated data type or object
with an internal representation and set of oper- The basic premise is that in a programming lan-
ations which manipulate it. The rationale for gage, such as Ada, which supports concurren-
extending the concept of an ADT is two-fold: cy and true encapsulation, it is feasible to create

" a concurrently executing IADT al- independent or intelligent ADT's which exe-
lows many "client" tasks to share cute concurrently with other tasks. This is a
a resource in real-time, non-traditional approach in that programs

* the IADT can perform internal which utilize data types such as linked lists,
functions when its clients do not queues, trees, sets, and graphs are typically •

require its services, conceived and written as sequential programs.
IADT's free the programmer to utilize concur-

IADT's can be viewed as objects which can be rent algorithms when appropriate. Advantages
"inherited" and embellished upon. This paper still accrue if an IADT is used in a program
will detail an example which incorporates two whose body contains sequential instructions.
low-level IADT's (different list implementa- Appropriate intelligence can be given to the
tions) into a high -level List IADT. IADT which will allow it to perform a variety

of internal functions, modify its behavior, or
Using Ada even change its internal structure if necessary.

Of all the non-experimental languages we have One example is the binary tree. Typical tree op-
examined, only Ada provides the features re- erations are Insert, Delete, Find, and Modify.
quired to fully implement IADT's. Ada is one These operations are most efficient when the
of the few languages which has safe and gener- tree is relatively balanced. An IADT tree main-
al concurrent features. These features are not tains information regarding its state and will
experimental; they conform to the same consis- balance itself when necessary and it is not ser-
tent philosophy of blck-structuring, strong vicing its clients. A more intelligent IAD T tree
typing, and sound software design principles could perform other internal functions as well.
found throughout Ada, and they are unambigu-
ously specified. These are not features which Another IADT could be a List. This List would
were grafted onto a programming language, but have the intelligence to monitor its use and dy-
rather designed as an integral part of Ada. namically change its internal structure as re-
Therefore, their syntax and usage is regular and quired. If usage were light and not many
consistent with all other features found in the searches were prevalent, the internal structure
language. Since Ada is a general purpose pro- could change to a linked list, or a hash table if
gramming language, it is quite easy to integrate necessary; each internal structure would be a
concurrent and sequential processing into a lower level IADT itself.These changes would
program allowing one to develop programs take place concurrently with the normal opera-
with a rational balance of concurrency as need- tions of the using program and would also be
ed. Ada is particularly well adapted to concur- transparent to it.
rent program design and development because
the modularity of its tasking mechanism sup-

10th Annual National Conference on ADA Technology 1992 99

Architecture of an IADT The IM only delays the requestor long enough
to decide and report (a rendezvous is implied).

IADTs contain the following components: Completion of the request is performed concur-
- An external interface with which rently with the requestor.

to communicate. The IM is also responsible for maintaining the

* An internal "intelligent module",. internal state of the data type. Various heuris-

* Internal operations. tics can be applied to ensure that the internal

TIM External Interlace state is consistent with established criteria.

FIGURE 2. Architecture of an IADT:
Theexternal interface provides communication "Intelligent" Module
with using programs. All access to the data
structure is through its interface. Figure I de- Rlequest Processor

picts possible operations available for a List
IADT. acp D-liteilst do.

begin - Can we delete? -

FIGURE 1. Architecture of an IADT: External PresentoLst.DeletcList; Yes
Interfee excepion - No

when EmptyListLException =>

raise;when Moved.PastLEnd =>
~raise;

end;
end Delete-List;

Isr

Internal state
maintenance

i lf ListInUse = ArrayType and then
PercentageOfUse < MinimumLevel then

endtListSwitch_To_LfnkedList;
end If;

Figure 2 gives a partial view of the typical types
of decisions which an IM must make. The re-
quest processor receives a request to delete the
item at the present relative position in the list. It

The "Intelligent" Module queries a low-level list IADT to determine if
the task can be performed. If it can, no message

The"Intelligent" module (IM) does the follow- is passed and the rendezvous is terminated. If it
ing: can't, the appropriate exception is reraised and

• Receives the request, propagated to the requestor.
Determines whether the request When not servicing a client the IM is free to ap-
can be complied with. ply various heuristics to maintain a desired

° Notifies the requestor of its deci- state. In figure 2 the IM checks to see if it is us-
sion. ing an array to store data objects if it is and the

° Performs the task if possible. number of items is very low then there is a
switch to a linked list representation.

100 1O1hAnnual National Conference on ADA Technology 1992

Internal Operations requiring no change in client code using a con-
ventional ADT. The only restriction is that all

The internal operations of an IADT are the operations must assume the form of procedure
same as the internal operations of any ADT. calls, a minor restriction considering the poten-
They are implemented as procedures and/or tial advantages.
functions in the package body of the IADT. Dyna~mic reconfiguration

IADT's In-depth The primary intelligence in IADT's is found in

As stated earlier, two advantages of IADT's are their ability to adjust their representation or be-
havior according to their run-time history. Ad-

Increased parallelism: justments may be desirable to improve space
The ability to continue the utilization or to decrease execution time. Pro-
execution of the caller while grams frequently proceed through phases, in
the IADT performs its opera- which different representations would be bet-
tion, and ter. For example, while creating a database of

• Dynamic reconfiguration: student records it may be advantageous to use a

* The ability of the IADT to linked representation to minimize the amount
perform bookkeeping opera- of time necessary for insertions and deletions.
tions off-line, with minimal Once the student population has stabilized and
impact to the client pro- retrievals dominate the executed operations, it
grams. In this section we de- may be advantageous to switch to a sorted array
scribe the mechanisms of representation to save time and space.
Ada that we used to achieve Since our IADT's are implemented via tasking,
the above advantages, they can handily accomplish the above scenar-

Increased parallelism ios. Each task body consists of a loop that first
handles accepts and then performs necessary

The ability to have increased parallelism is in- bookkeeping. The bookkeeping can include ac-
herent in the scheme we have established. All tions such as determining whether or not to
interaction with an IADT is conducted via ren- switch representations or whether or not to per-
dezvous with a task we call the task manager. form different cleanup activities. In the text be-
Upon accepting a rendezvous, the manager ver- low we discuss the style and intent of the
ifies the precondition of the requested opera- "intelligence" that can be incorporated into
tion. If the precondition is met, the client is IADT's. By factoring such actions to a central
released to continue execution, while the task location we improve the maintainability of our
performs the required operation in parallel. If modules.
another client request occurs before the previ- It should be noted that the principle of infornia-
ous request is finished, the tasking semantics tion hiding dictates clear division of labor be-
ensure that the second request is blocked, pend- tween client and IADT when it comes to
ing completion of all prior requests. This is be- improving efficiency. Information hiding pre-
cause each client request is completely vents the IADT from making assumptions
processed before another rendezvous becomes about the client and the client module from
possible. (Section Future Work of this paper making assumptions about the IADT, beyond
suggests how this mode can be extended for in- that which is documented in the interface. In
creased parallelism.) The tasking implementa- particular the client should not try to optimize
tion is hidden from the client program,

1th Annual Naional Conference on ADA Technology 1992 101

its performance based upon speculations of the occurrence of certain events. For our list ex-
how the module is implemented. Neither ample an event is exceeding a node threshold,
should the IADT presume to know the space/ exc, eding the size of the bounded representa-
time trade-off desired by the client. For exam- tion, and producing a particular mix of opera-
pie, it would be counterproductive for an IADT tions. Our starting state is one in which the list
to optimize for space, when time is crucial. is stored using a pointer. When we reach a state

in which the size of the list exceeds the size ofInformation hiding encourages the use of as- aryby1pecnwsithersnaio

sumptions over presumptions. It is therefore array by 10 percent, we switch representation

impotantto an array. When the array is filled, we switch

ciency into the interface and document them back to the linked representation. We keep
proery, trnttinteme ino aumons. te track of whether or not the list is sorted, updat-
properly, turing them into assumptions. We ing this information at every insert. As long as
have therefore included as part of our interface it is sorted, we use the more efficient algo-

an operation for the client to indicate the kinds ithis fortsearching the list infechenta-

of optimization that would be desirable. A call to switching t li seach eteslit
to Lst-ffiieny (Dsir.) illallo th clent tion, switching to linear search when the list

to LisEfficiency (Desire) will allow the client becomes unsorted. Finally ifTimeOverSpace is
to specify Desire to be SpaceOverTime or Tim- spcfewsithotearyimeen-

e~ve~pae. rocesin ths rques wil cuse specified, we switch to the array implementa-eOverSpace. Processing this request will cause tion as soon as the proportion of inserts and de-

the module to optimize in the desired direction lete as alls below 10%.

if possible.

How such optimization occurs is up to the FIGURE 3. Efficiency Transition Diagram

IADT. In some situations the IADT can decide
for itself on a particular matter of efficiency. List unstable
For example suppose two representations of
lists could be used, a linked (unbounded) repre-
sentation and a array-based (bounded) repre- Linked Linked > Array rray
sentation. Suppose we wish to optimize for
space. A linked representation is more efficient List stabilized
up to some threshold, beyond which the array- O of
based implementation is more efficient. After order oe
crossing the threshold it is reasonable to switch insert Sort insert
representations. Similarly, if for a specified pe- Sort % P
riod of time the interaction has stabilized in
such a way that a linked representation would Array exceeded

be more efficient in time (say, when there are
many insert/delete operaticas) it is perhaps ap- Linked Linked > Array Array
propriate to switch a linked implementation to Sorted List stabilized Sorted
an array-based implementation.

The key to the initelligence lies in the analysis
of when a change of representation or algo-
rithm is necessary. In our preliminary version Future work
of IADT's we have specified these changes as The key to maximizing concurrency is to allo\
finite state machines in which the states denote the concurrent execution of IADT operation if
a particular configuration of algorithms and t co ssiblen ou ti al versio operation sdatastrcturs, nd atrasitin i effcte by at all possible. In our initial version operations
data structures, and a transition is effected by for a single IADT must be run sequentially

102 10th Annual Noional Conference on ADA Technology 1992

since a second request to an IADT operation a subsequent get might have to be delayed.
will be blocked until the prior one finishes. The above discipline assumes there is but one
Such a blockage is not always required, howev- client accessing the list. In the case of multiple
er. For instance, in our list example, it is per- clients, the situation is considerably more com -
fectly reasonable to allow certain combinations plicated by the IADT concurrency. Client im-
of operations to proceed simultaneously (e.g. plementors should not have to worry about
GetL.Lst and ListLength). concurrency of IADT's, focussing otherwise

To solve this problem within the constraints of on ensuring that their sequences of calls to the
information hiding, we propose to implement IADT are issued in the required order. Thus, it
some of the operations themselves as tasks and is necessary for the IADT to ensure that se-
to augment the preconditions of each operation quence of issuance is the same as the execution
to check for the validity of the call under the sequence. To do so it may be necessary to use a
constraints of the currently executing operation priority queue with priority determined 'y the
tasks. If this augmented precondition is satis- time stamp of the operation request.
fled, then the proposed operation can be exe-
cuted concurrently with the other executing Conclusions
operations. Violation of the precondition
means that processing is still progressing We have introduced the concepts of intelligent
whose completion is essential before the re- abstract data types. An IADT offers the poten-
quested operation can be performed. tial for increased concurrency and improved

space/time trade-off management. we have dis-These blockage preconditions are frequently cussed the features of Ada used to implement
dependent upon the particular implementation an initial version of this concept to provide lirn-
strategy, hence they can be dependent upon ited concurrency and dynamic reconfiguration
lower-level IADT's. The parent IADT can then of the underlying representation. Possible ex-
determine its actions based upon the status of tensions of this concept for improved concur-
the lower level IADT's. -rency and efficiency have been proposed.
It is thus necessary not only for an IADT to de-
termine its ability to progress, but also to enable
any caller to determine its current ability.

One proposal then is to require every IADT de-
signer to predetermine what operations can ex-
ecute concurrently, and to provide a public
boolean variable (for each operation) to indi-
cate whether or not the operation is currently
executable. Information hiding is preserved be-
cause how this determination is made is private
to the IADT; the fact that it has been made is
rublic. By inspecting these statow variables of
lowe, -level IADT's, a higher-Ievel IADT can
dete: mine its ability to progress, and queue a
rft.v, st for Nervice or delay the client, depend-
ing on the nature of the opel ation. For example,
a sequence of inserts, moves, and deletes can be
qweued fora list without delaying the client, but

10th Annual National Conference on ADA Technology 1992 103

Intelligent Abstract Data Types

Robert A. Willis Jr.
Larry Morell

Department of Computer Science
Hampton University
Hampton, VA 23668

Internet Addresses
wils@unixvax.hamptonu.edu
morell@unixvax.ha.ptonu.edu

104 101h Annual Naional Conference on ADA Technology 1992

Introduction ports object oriented design (OOD) quite well.
Ada's encapsulation features allows develop-

This paper discusses the concept and imple- er's of IADT's to provide truly transparent ser-
mentation of Intelligent Abstract Data Types vice to using programs.
(IADT's). An IADT is an Abstract Data Type
(ADT) that runs concurrently with its clients. The Concept of IADT's
An ADT is an encapsulated data type or object
with an internal representation and set of oper- The basic premise is that in a programming lan-
ations which manipulate it. The rationale for guage, such as Ada, which supports concurren-
extending the concept of an ADT is two-fold: cy and true encapsulation, it is feasible to create

* a concurrently executing IADT al- independenf or intelligent ADT's which exe-
lows many "client" tasks to share cute concurrently with other tasks. This is a
a resource in real-time, non-traditional approach in that programs

" the IADT can perform internal which utilize data types such as linked lists,

functions when its clients do not queues, trees, sets, and graphs are typically
require its services, conceived and written as sequential programs.

IADT's free the programmer to utilize concur-
IADT's can be viewed as objects which can be rent algorithms when appropriate. Advantages
"inherited" and embellished upon. This paper still accrue if an IADT is used in a program
will detail an example which incorporates two whose body contains sequential instructions.
low-level IADT's (different list implementa- Appropriate intelligence can be given to the
tions) into a high -level List IADT. IADT which will allow it to perform a variety

of internal functions, modify its behavior, or
Using Ada even change its internal structure if necessary.

Of all the non-experimental languages we have One example is the binary tree. Typical tree op-
examined, only Ada provides the features re- erations are Insert, Delete, Find, and Modify.
quired to fully implement IADT's. Ada is one These operations are most efficient when the
of the few languages which has safe and gener- tree is relatively balanced. An IADT tree main-
al concurrent features. These features are not tains information regarding its state and will
experimental; they conform to the same consis- balance itself when necessary and it is not ser-
tent philosophy of block-structuring, strong vicing its clients. A more intelligent IADT tree
typing, and sound software design principles could perform other internal functions as well.
found throughout Ada, and they are unambigu-
ously specified. These are not features which Another IADT could be a List. This List would
were grafted onto a programming language, but have the intelligence to monitor its use and dy-
rather designed as an integral part of Ada. namically change its internal structure as re-
Therefore, their syntax and usage is regular and quired. If usage were light and not many
consistent with all other features found in the searches were prevalent, the internal structure
language. Since Ada is a general purpose pro- could change to a linked list, or a hash table if
gramming language, it is quite easy to integrate necessary; each internal structure would be a
concurrent and sequential processing into a lower level IADT itself.These changes would
program allowing one to develop programs take place concurrently with the normal opera-
with a rational balance of concurrency as need- tions of the using program and would also be
ed. Ada is particularly well adapted to concur- transparent to it.
rent program design and development because
the modularity of its tasking mechanism sup-

I 0th Annual National Conference on ADA Technology 1992 105

Architecture of an IADT The IM only delays the requestor long enough
to decide and report (a rendezvous is implied).

IADT's contain the following components: Completion of the request is performed concur-
. An external interface with which rently with the requestor.

to communicate. The IM is also responsible for maintaining the
* An internal "intelligent module". internal state of the data type. Various heuris-
• Internal operations. tics can be applied to ensure that the internal

state is consistent with established criteria.The External Interface
FIGURE 2. Architecture of an IADT:

The external interface provides communication "Intelligent" Module
with using program.,. All access to the data
structure is through its interface. Figure 1 de- Request Processor

picts possible operations available for a List
IADT. accept Delete-List do

begin - Can we delete? !
FIGURE 1. Architecture of an IADT: External PresentList.DeleteList; --Yes 00

Interface exception - Nowhen EmptyList-Exception =>
raise; O

when Move_PaslEnd =>

raise;
end;-

end Delete-List;

Intemal state 0
D t maintenance

I I__ _ _ _ _ _ _ _ _ _ I fSIf ListInUse a Array-Type and then 0

Perccntage_Of_Use < Minimum_Level then
Switch_To_LLnked_List; 11

end i;

Figure 2 gives a partial view of the typical types
of decisions which an IM must make. The re-
quest processor receives a request to delete the
item at the present relative position in the list. It

The "Intelligent" Module queries a low-level list IADT to determine if
the task can be performed. If it can, no message

The "Intelligent" module (IM) does the follow- is passed and the rendezvous is terminated. If it
ing: can't, the appropriate exception is reraised and

* Receives the request. propagated to the requestor.
* Determines whether the request When not servicing a client the IM is free to ap-

can be complied with. ply various heuristics to maintain a desired
* Notifies the requestor of its deci- state. In figure 2 the IM checks to see if it is us-

sion. ing an array to store data objects if it is and the

* Performs the task if possible. number of items is very low then there is a
switch to a linked list representation.

106 10th Annual National Conference on ADA Technology 1992

Internal Operations requiring no change in client code using a con-
ventional ADT. The only restriction is that all

The internal operations of an IADT are the operations must assume the form of procedure
same as the internal operations of any ADT. calls, a minor restriction considering the poten-
They are implemented as procedures and/or tial advantages.
functions in the package body of the IADT. Dynamic reconfiguration

IADT's In-depth The primary intelligence in IADT's is found in

As stated earlier, two advantages of IADT9 s are their ability to adjust their representation or be-
havior according to their run-time history. Ad-

Increased parallelism: justments may be desirable to improve space
The ability to continue the utilization or to decrease execution time. Pro-
execution of the caller while grams frequently proceed through phases, in
the IADT performs its opera- which different representations would be bet-
tion, and ter. For example, while creating a database of

" Dynamic reconfiguration: student records it may be advantageous to use a

* The ability of the IADT to linked representation to minimize the amount
perform bookkeeping opera- of time necessary for insertions and deletions.
tions off-line, with minimal Once the student population has stabilized and
impact to the client pro- retrievals dominate the executed operations, it
grams. In this section we de- may be advantageous to switch to a sorted array
scribe the mechanisms of representation to save time and space.
Ada that we used to achieve Since our IADT's are implemented via tasking,
the above advantages. they can handily accomplish the above scenar-

Increased parallelism ios. Each task body consists of a loop that first
handles accepts and then performs necessary

The ability to have increased parallelism is in- bookkeeping. The bookkeeping can include ac-
herent in the scheme we have established. All tions such as determining whether or not to
interaction with an IADT is conducted via ren- switch representations or whether or not to per-
dezvous with a task we call the task manager. form different cleanup activities. In the text be-
Upon accepting a rendezvous, the manager ver- low we discuss the style and intent of the
ifies the precondition of the requested opera- "intelligence" that can be incorporated into
tion. If the precondition is met, the client is IADT's. By factoring such actions to a central
released to continue execution, while the task location we improve the maintainability of our
performs the required operation in parallel. If modules.
another client request occurs before the previ- It should be noted that the principle of informa-
ous request is finished, the tasking semantics tion hiding dictates clear division of labor bc.
ensure that the second request is blocked, pend- tween client and IADT when it comes to
ing completion of all prior requests. This is be- improving efficiency. Information hiding pre-
cause each client request is completely vents the IADT from making assumptions
processed before another rendezvous becomes about the iDt a client module from
possible. (Section Future Work of this paper making assumptions about the IADT, beyond
suggests how this mode can be extended for in- that which is documented in the interface. In
creased parallelism.) The tasking implementa- particular the client should not try to optimize
tion is hidden from the client program,

1 0tt) Annual National Conference on ADA Technology 1992 107

R6s PesMRNWic based upon speculations of th e occa af of certain 2 e'ents. Fbr ci! list ex -
km the module is imlmne.Neithe wele = event is exccedipg a node thresh3md.
go&d te IA]DT presme to know the spacel e=Mmdig fte size of the bomW e x s-e-sa-
titm trade-off desired by the clent. For mxm- too. mud producng s paricula 1191 of Opera-
pke it would be c- t-prduteforai IADT dions. Our stating state Is o-M in Which the !i2
to optimiize for spur, when time is cmuciai is stored using apx~ner. When wec reach a stare

I 'mnao idingecuaethusofa- M iw Kch the sine OfM ias excleds te Size o!
~~ ~ karray by 10 percen, we switch represwcation

il~ tt mov pe i-aote- t a-a.2.wWhen te armay is filled. wz switch
cicucy into the interface and dcument them linke ofwa r w tt I- i of Wed uepdt
properly, turning them into assumjon We ing t4ifmi vr nMA oea
have therefore included as pan of our interface ,

ao~pr~ton cr he cien toindcatethel~fd5 itiam. for searching the list in each representa-
of optimization that would be desizaie. A =a11 tion, swirciiing to lineai- search when te list
toListEfflciency (Desire) will allow the client bcnsusre.Fal f1m~e~aei
to specify Desire to be Space~verTime or Tim. secfedmes usitdh Fin all ay im e epa-i

coveS~ae* rocesin ths rques Wil C!;W tion as soon as the proportion ofi iscits and de-
tbr, module to optimize in the desired dizct:~i letes falls below 10%.
if possible.

How such optimization occurs is up to t- FIGURE 3. Fficiency Trsiion Diagram
IADT. In some situations the IADT can decide
foritself on a particubr matter of efficiency. Lsusal
For example suppose two representations of
lists could be used, a linlred (unbounded) repre-
senation and a array-based (b~ounded) repre- Linked Linked > Array Arra.
scotation. Suppose we wish to optimize for U.alw Lis stab'.Iized Unsortd
space. A linked representation is more efficient
up to some threshold, beyond which the array- Ou of Out of
based implementation is more efficient. After order order
cnssing the threshold it is reasonable to switch insert Sor insert
representations. Similarly, if for a specified pe-
riod of time the interaction has stabilized in
such a way that a linked representation would Array exceeded
be more efficient in time (say, when there are
nmy insert/delete operations) it is perhaps ap- Linked Linked > Array Array
prcipriate to switch a linked implementation to Liste Stabtizd
an array-based implementation.Litsalze

The key to the intelligence lies in the analysis
of when a change of representation or algo-
ifhm is necessary. In our preliminary version Future work
of IADT's we have specified these changes as The key to maximizing concurrency is to al lo%.
finite state machines in which the states denote the concurrent execution of IADT operation if
a particular configuration of algorithms and atalpsi. Inoriiilvrinoeain
data structures, and a transition is effected by atr a psile In ousntia ersn ose atin)

108 101h Annual Nalionol Conference on ADA Technology 1992

since a s, e d request to an JADT c gmatio'i a subsequea get might have to be &layzd.
wil be blocked until the prior -e jiniss. T abm i
Such a bIo&*gc is not alwaysireqwred, h client accessing the ist In the c is of m. ipeer. Fbr instance in ow list examlqe, it is !CV- cin ces tgfs.I h o u!,l
fectly reaso i :o allow xai combaions clients, tbe situation is consiierably more con-
of Wey sons to oce C smucMwmfa" my (e.g. plicamd by the !ADT cancurrency. ACent im-
GoetUst and tca.,ygeh), e. pmnos should not have to wa'y abou:

concuffen-yof LADT's, foJocsng otherwise

Tc ,s-ov this problem within the tonstraints of on cawing that their sequeces of calls to the
infonan bding, we propaoe to implement iADT are iisscd in the required order. Thus, it
some offt optrations themselves zs tasks and is necessary for the IADT to ensure that se-
to augnmt the preconditions of each operation quence ofissuance is the same as t&;. execution
to check for the validity of the call under the sequence. To do so it may be necessary to use a
constraints ofthe -endyexecutiag operatien priority queue with priori.y determined by the
tasks. If s augmented pcndition is sais- time stamp of the operation reques.
fled, then the proposed operation can be exe-
cuzed conur.ently with .he other executing Conclusions
operations. Violation of the precondition
nans that processing is still progressing We have introduced the concepts of intelligent
whose completion is essential before the re- abstract caa types. An IADT offers the pc!en-
quested operation can be performed. tial for increased concurrency and improved
These blockage preconditions are frequently space/time trade-off management. we have dis-
Tee . pont partionslare frpeqentyion cussed the features of Ada used to implement
dependen: upon the particular implementation an initial version of this concept to provide lim-
strategy, hence they can be dependent upon ited concurrency and dynamic reconfiguration
lower-level IADT's. The parent IADT can then of the underlying representation. Possible ex-
determine its actions based upon the status of tensions of this concept for improved concur-
the lower level IADT's. rency and efficiency have been proposed.
It is thus necessary not only for an IADT to de-
termine its ability to progress, but also to enable
any caller to determine its current ability.

One proposal then is to require every IADT de-
signer to predetermine what operations can ex-
ecute concurrently, and to provide a public
boolean variable (for each operation) to indi-
cate whether or not the operation is currently
executable. Information hiding is preserved be-
cause how this determination is made is private
to the IADT; the fact that it has been made is
public. By inspecting these status variables of
lower-level IADT's, a higher-level IADT can
determine its ability to progress, and queue a
request for service or delay the client, depend-
ing on the nature of the operation. For example,
a sequence of inserts, moves, and deletes can be
queued for a list without delaying the client, but

10th Annual Noional Conference on ADA Technology 1992 109

A REUSABLE Ada MODEL FOR INTERPROCESS COMMUNICATION

Michael J. O'Connor
Teledyne Brown Engineering, Huntsville, Alabama

James W. Hooper
Marshall University, Huntington, West Virginia

and
University of Alabama in Huntsville, Huntsville, Alabama

assumptions are made about the behavior
of processes:

Abstract 0 Processes are independent of each
The purpose of this work was to other; that is, one process can not

develop an interprocess communication directly affect the state of another
model that could be used in many types of process.
software development projects. The a Processes are scheduled
interprocess Message Model is the result. independently and the scheduling is
By providing a high level abstraction for a not controlled by the processes.
function that is generally both complicated • Each process has its own memory
and machine dependent, the IPMM frees space.
the application developer to concentrate Many large computer software
on solving his problem systems are divided into multiple

processes to make the solution to the
problem more understandable and to

This paper discusses the support parallelism. For multiple
This M r sessage Modeltwihe processes to work together, they must beInterprocess Message Model (IPMM) which able to share information. The concept of

is designed to support communications information sharing is fundamental to all

between distributed processes. The IPMM comter sstems Probay t s l

constitutes a versatile process interface, computer systems. Probably the simplest

based on Ada, embracing modern software way for processes to share information is

enginerng Ad racis.The IPMM is not for one process to write the data to a file to
engineenng practices. Thitecturs or be read by other processes. While thistied to a specific computer architecture or solution is simple, it is very slow. Databaseoperating system.

To begin with, what is a process? In systems are used to allow many processesto access and store information in a central
the context of this paper, a process is a repository. The problem of processes

logically related set of executable code that sharitor is much o processes

performs a high-level function in a sharing information is much too large to be

computer system. For purposes of covered in any one discussion. The

discussion, processes will be treated as problem discussed here is limited to the

though they were independent tasks at the needs of real-time and near real-time

operating system level. The following systems to pass messages among multiple

processes.

110 10th Annual National Conference on ADA Technology 1992

Traditionally, the problem of process sees. By restricting the developer to the
commnication in a distributed system has interface only, the abstraction of the
been solved on a case-by-case basis. This communications model is the only part
is paticularly true of real-time systems visible. This abstraction provides only the
which are required to respond properly to level of detail that the developer needs.
"evenls as they occur (where an event is The IPMM was designed using the
the arrival of a unit of information to a concepts of Object-Oriented Design
process, thereby affecting the state of the [COA91].
real-tine system). Because of the need for The IPMM provides the ability to
rapid processing, other concerns such as make processes independent of each
flexibility to change have often been other. Designing a system with
neglected. Real-time processing is independent processes greatly simplifies
generally required in military systems, air the developer's job by allowing the
traffic control systems, nuclear power processes to be developed independently.
generation systems, and other time-critical The developer's primary concern is the
processes. Because of the similarity of information received by the process.- The
near real-time systems to real-time processes that use the IPMM should be
systems, similar methods have been used event driven, where an event is
to implement them. Event processing in represented by the receipt of a message.
near real-time systems is similar to that of This concept of an event should not be
real-time systems; however the timing is confused with an event in a discrete event
not as critical. Traditional implementations simulator, in which events are actions
of near real-time systems were designed which are scheduled to occur at a specific
for specific hardware and operating time. With the IPMM, messages are
systems and are therefore not applicable to produced when a sending process needs
the general problem. to pass information to a receiving process.

In real-time systems, the order of events
may not be known beforehand. Event

Aproach driven processes must be designed to
The purpose of the IPMM is to process an event and then to wait for the

provide an interface that is general enough next event to arrive. While there are
to be used for a wide range of systems several possible ways to implement an
without limiting the implementation to a event driven process, the Main Event Loop
single hardware/operating system set. The is the approach used by the IPMM.
IPMM does not make any assumptions

-about the operating system or hardware it
runs on. While the actual implementation Implementation
will require the use of system dependent The Main Event Loop is the template
functions, such functions are not reflected for all processes using the IPMM. Ideas of
in the model interface. The IPMM thus the Main Event Loop in the IPMM were
presents a consistent view and behavior as drawn from several sources. One of the
seen by applications using the model. best examples of the Main Event Loop can

The goal of the Interprocess be found in Inside Macintosh, Volume I, by
Message Model (IPMM) is to simplify the Caroline Rose [ROS85]. This text is the
application developer's job. To the guide that is used by developers of
application developer, the interface is the applications for the Apple Macintosh. The
most important part of the IPMM because model used by X-window process is also
this interface is the only part that he or she similar [SMI91].

10th Annual Naional Conference on ADA Technology 1Q92 111

The Main Event Loop shields the the message passing to work correctly,
process from changes in other processes. each process must use the same definition.
As long as the data the process receives A second problem is that by defining the
and the actions on the data do not change, message record in two or more processes,
modifications in other processes do not the message loses its identity as an object.
affect it. Changing the timing or the order Therefore it is desirable to declare the
of the messages would not necessarily message record only once. This can be
change the process. done by placing the record definition in a

The actual template for the IPMM package that is "WITHed" by both
Main Event Loop is shown in Figure 1. The processes. This can be referred to as the
template, through its use of the Main Event message definition package. Figure 1
Loop, provides the interface for the IPMM. shows "WITHing" of a message definition
This interface is a very clean one. An package named MSGDEF.
integrated circuit is a very good concrete
example of a clean interface to a set of with MESSAGEPKG;
services. A designer is only concerned use MESSAGEPKG;

about what outputs will be generated by a with TEXT_10; use TEXT_10;

given set of inputs. The exact with MSGDEF;
use MSGDEF;transformation of the input to the output is procedure PROCESS NAME is

hidden. This is analogous to information -- An instance of the message
hiding in software. The IPMM provides a -- defined in the

clean interface on the input side by only -- MessageDefinitionPackage

responding to a defined set of messages. MESSAGE
will MessageRecordDefinition;The set of messages that the process will MSG ID : MessageId;

respond to is visible in the Main Event begin
Loop. The Message Identifiers (Ids) that loop
are accepted are listed on the "WHEN" MSG ID :- MSG WAIT;

clauses of the case statement. The action case MSGID is
taken in response to a message should be when Messagidentifier >

contained in a procedure that is defined MSGGTE MESSAGE (MESSAGE

elsewhere. By removing the details of the -- Add when statements for
action from the Main Event Loop, the -- each message to be

overall processing becomes more evident. -- handled.

If the convention is that all MSGPUTs are when Exit-Message->If te cnvetionis hatall EGU~sareexit;
also done at the level of the Main Event when others

Loop, then the output of the process is also PUT LINE ("Unknown"
easily determined. &"message received");

The process template establishes a end case;
pattern for processes using the IPMM. It is end loop;

also important to have a standard template end PROCESSNAME;

for defining messages. All messages in a
system using the IPMM are visible to at Figure 1 Process Template
least two independent processes. Each
process could conceivably define its own The message object is actually
copy of the message. This, however, can composed of a triple, consisting of the
lead to several problems. The first is that message record, the message identifier,
each process could declare the record, to and the instantiation of the generic
be used as the message, differently. For message package. These components

112 10th Annual Naional Conference on ADA Technology 1992

have been individually discussed in the does not poll, but rather 'sleeps" until a
previous sections. However, it is only message arrives.
when they are combined that a message is The Interprocess Message Model
fully defined. The three components of the (IPMM) concept is independent of both the
message are encapsulated into a message host hardware and the host operating
definition package. Figure 2 provides an system, as has been discussed in the
example of a message definition package. previous sections. This independence is
The "renames" statements are used to possible because Ada allows most of the
make the MSGPUT and MSGGET actual implementation of the model to be
routines directly visible to the process achieved without regard to the hardware or
template. operating system. Only a small part of the

actual code is dependent on the target
with MESSAGEPKG; use MESSAGEPKG; environment, and this small part is hidden
package STATE VECTORMSG is from the user of the model's services.

Detailed discusses the IPMM's

constant Intege-r :- 1; implementation in for both VMS and Unix
are provided in [OCO91].

type StateVectorMsg_Rec is
recozd
VELOCITY : array (1 .3) of
Float; The purpose of this work was to

ACCELERATION : arra.y (1..3) develop a model that could be used in
of Float; many types of software development

end recorAd; projects. The Interprocess Message Model

is the result. By providing a high level
package STATEVECTOR_MSG_10 abstraction for a function that is generally
is new MSG.I both complicated and machine dependent,
(StateVectorMsgRec) the IPMM frees the application developer

MSG PUT (MessageId, to concentrate on solving his problem.
StateVectorMsgRec) renames Two primary conclusions can be drawn
STATEVECTOR_MSG_IO.MSGPUT from this work: (a) the IPMM can be used to

solve the general problem of interprocessMSGGET (State_.Vector_MsgRec communication; and (b) it is possible to
renames create a high-level abstraction that can be
STATE_VECTOR_MSG_0.MSGGET; reused.

end STATEVECTORMSG; Mary Shaw states that "Engineering
relies on codifying scientific knowledgeFigure 2 Message Definition Package about a technological problem domain in a

A very important feature of the IPMM form that is directly useful to the
is how a process determines the arrival of practitioner, thereby providing answers for
data to be processed. In many systems, a questions that commonly occur in practice"
process polls a flag or data store to [SHW90]. The idea is that a solution to a
determine if new data is ready. This common problem can be applied over and
reduces the flexibility of the processes and over to the same type of problem. The
increases the coupling between IPMM is a general solution to the problem
processes. Polling can also waste of interprocess communication in multi-
valuable CPU time. In the IPMM, a process process systems. While the IPMM cannot

10th Annual Naonal Conference on ADA Technology 1992 113

be used in all multi-process systems, it can component that provides a clear
be used in many. abstraction of the underlying problem, the

When software developers have benefit to a project using it should be great.
been presented with the IPMM as a basis The general nature of both the problem
for their software development activity, they and the solution makes the IPMM
have been generally resistive. Developers applicable to a large number of systems.
can generally find many reasons for not The use of the IPMM should be
using the IPMM, with the most common considered when a system is designed
being: "it will be too slow", *it is too difficult and implemented. To use the IPMM, the
to understand', Oit will not work', and the developer must follow the IPMM model in
ever present "I don't like it.' The IPMM is design and implementation. In other
subject to the same problem as all engineering disciplines, solving a problem
reusable components, the "Not Invented by using a standard model is the norm. An
Here" syndrome. A model similar to the engineer attempting to apply a non-
IPMM is essential to the development of standard solution to a common problem
large real-time systems. However, given would have to provide extensive
their choice, many software developers justification and proof that the method
would prefer an ad hoc solution to would work. A civil engineer charged with
interprocess communication. building a bridge over a small river would

Some developers find using the consult existing books on the subject and
Main Event Loop distasteful. They resent select an appropriate approach. The
having to structure their code by a pattern engineer would not have to resolve the
supplied by someone else. This is the problems of statics or strengths of
view that software development is based materials. This is an example of Shaw's
on individual creativity or artistic ability. concept of an ordinary practitioner
However, most developers have felt applying existing knowledge to common
positively about the IPMM after using it. problem [SHW90]. The civil engineer
The primary reason for the change in would not feel that his creative abilities
opinion has been that the developers were being stifled by using a standard
realized the model was useful, and that it model. It is unfortu',ate that software
allowed them to concentrate on solving developers often feel constrained when
their problem. using standard models. Large-scale reuse

The reuse of software components will only be possible when many models
is discussed at great length in the current based on high levels of abstraction are
literature. Software Reuse : Guidelines developed.
and Methods by J. W. Hooper and R. 0.
Chester discusses the current state of
software reuse [HOO91]. Reuse of ib.LLo~g~r.g
components on the level of Booch's Ada [BIG89] Biggerstaff, Ted J. and Alan J.
components prevents commonly-used Peris, Software Reusability Volume /
routines from needing to be rewritten by Concepts and Models, ACM Press
every developer on a project [BOO87]. Addison-Wesley Publishing Company,
Biggerstaff and Perils state that the larger Reading, Massachusetts, 1989.
the reusable component the larger the
savings to a project that uses it [BIG89]. [BOO87] Booch, Grady,Software
However, they caution that large Components with Ada, The
components are much more difficult to Benjamin/Cummings Publishing
reuse. Because the IPMM is a large

114 10th Annual Naional Conference on ADA Technology 1992

Company, Inc., Menlo Park, California, JAMES W. HOOPER currently serves as
1987. Weisberg Professor of Software

Engineering at Marshall University
[COA91] Coad, Peter and Edward Huntington, West Virginia, on leave-of-

Yourdon, Object-Oriented Design, absence from the position of Professor of
Yourdon Press, Englewood Cliffs, New Computer Science at The University of
Jersey, 1991. Alabama in Huntsville (UAH). He

emphasizes software engineering and
[HOO91] Hooper, James W. and Rowena programming languages in teaching and
0. Chester, Software Reuse: Guidelines research. He holds B.S. and M.S. degrees
and Methods, Plenum Press, New York, in Mathematics, and M.S. and Ph.D.
1990. degrees in Computer Science. Prior to

joining UAH in 1980, he was employed by
[OC091J O'Connor, Michael J., "An Ada NASA Marshall Space Flight Center,

Based Model for Interprocess where he conducted research in simulation
Communication", M.S. Thesis, The approaches for NASA missions.
University of Alabama in Huntsville,
1991.

[ROS85] Rose, Caroline, Inside
Macintosh, Volume I, Addison-Wesley
Publishing Company, Inc., Reading,
Massachusetts, 1985.

[SHW90] Shaw, Mary, "Prospects for an
Engineering Discipline of Software,"
IEEE Software, Vol 7, November 1990.

[SMI91] Smith, Jerry D., Object-Oriented
Programming with the X Window System
ToolKits, John Wiley & Sons, Inc., New
York, 1991.

MICHAEL J. O'Connor is currently
employed as an engineer for Teledyne
Brown Engineering in Huntsville, Alabama.
He serves as technical lead for
applications on a !arge software
development effort. He holds a Bachelors
of Computer Engineerirg from Auburn
University and a M.S. in Computer Science
from The University of Alabama in
Huntsville. He spec-alizes in the
development of large distributed real-time
systems in Ada for defense applications.

10th Annual National Conference on ADA Technology 1992 115

USFII55DEL
In The Trenches With Rd.

LTC PRUL 0. BRTE5 BART JEFFEORT
US RRMY COMPUTER sciEnlE CORPORRTiDI1

WRACT: ehancemens to user requiretnents dictated the total
The Wkled States Aryinforatio Sysems redesign of SAAS-1/3. Tepoject Is scheduled for

Sbftware Development Center-Lee(S1SDL is fieldn in M 1992. The hardware pltom for the
responsible for &A"loin managemment iformation SAASI/3 redesigi Project is theUniy 5000/95

tem thaot support automated Army lgtis nooperreferred to as a Corps Theater Automated
rgi*ementL In 4n effort to reduce sot= r Seoc etr (CTASC-I) The CTASC-I is a 32 bit

dveopment and mainteance costs, LSAISSDC has masotie with 2 oena processing units, fourtee 1.0
iwstgted the applcability of da &Wd Ada/SQL binding 0B hard drivoes, ed 65M fsystemn memory The

midMfor logistics management information sys1tm opeatng system is UM4D 5.3 . The fielded system wi
06. This Pape fou a n the lessons learned during duiz Unisys Desk Top 1 m -cr -ocmptr as ternals.
ift redesign of the Standard Army knunnition Sytem Software development is= be = opee in Ada
L~u% 1/3 (SAASI/3). Lessons learned wre prsetd In amll~ a ommeroial reaonl atas product,
fte areas of training team mpoiin Ads Extene Database 0(08). The database is accessed

I'rammlng Support Environment (ASE,1Ada vesus truhAda/SQL binding modules that wre ANSI compliant
deeomn aohdlm rosaiiy and ndaecompled as anm other Ada program.

=ftwreachitctue. he SAS13proecthasbeen
Very succesful. The use of Ada implemented trough a TRAI34
standard architecture in a large M4 development actIj One of the first major decisions coincerned the twe
=a lead to significant reductions in softae=ult and quantity of training required in Ada, relatioa

development schedules database deig and the UIW operating system. Although
the SAA1/ toam was wel motivated and very

IfiRODUTO experienced in COBOL, the team had Ett* experienot in
The Uinited States ArySoftware Developmnent dsgigrelational database system inplemenfing the

Center-Lee WAISSDCU loate at For Lee, Viginia is AdaS"OL binding modules and programming in Ada. Wit
responsible for desigreg, developing, fielding and the support and encouragement of management the
muintaining Standard Army Manammen t information floigtrang prga wa salse o nt*#
30ptemsTAMlS) that support teUied States Army's =AS13 Te pogaawsn:ke frt
Msomated lgsis requirements. USAMSOC is

usirisd F approximately 760 military, 6Avi service COURE DURATION
and contractor spotpersonnel. The command is Database DesgnSQL 1wk
responsible for thrytwo different logistic STAMIS. Ada Concepts IVA
For systems are in the concept phase, eleven are in the Ada Programming/methodoogies 3wks
develomen - has and seventeen wre in the maintenance Advance Ada Programming 4wks
ohme of th If. cyle USAISSD)CL has systms Uniix lwk
asnating worldwide at over 1000 locations The system In addtion, mini in-depth treeing classes were
oweate on fifteen different platform and are written established throughout the poject to addr'ess specific
6 nine different languages. In order to reduce technical issues with AdXBadU0 . The trak4in

dm~omenta softare maintenance costs and progam was intentionll designed to teach the ski
proid fo mre leMNof erorv UMSSCLis necesary to taeavnaeof the ent*# Ada
kwesigaing he ppk ft o Ad an a sandrd environiment, ntjsthfeursofthne vao

*iat access arelational database for al new conducted over a nine month perod Eveyone
Meeopment and major redesig projects. The redesign (maagemnent and team members) held the perception

of the Stanidard Army Anton System LeOe 1/3 that an extensiv Ada trainin program would produce
SWI/M was seleced to be the target project to Ada experts. However, this proved not to be the case. In

dererrnine the xalcability of Ada and the Ada/SQL most oases a ston COBOL programmer became a
bidng modLie aciecture for logistic STA141S . After a strong Ada programmner and a weak~ COBOL programmner
*aiot background the remainder of this Pape wN focus became a weak Ad& programmer. There were some
an our lessons learned from being "in the trenches with instancs where good COBOL prgammers had a difficult

"ttime aceting the structure andmodularNt of Ada. Due
to delays in the delivery of hardware and software there

CKGROUND: was a three to twelve month time Wa between Ada
SAASI/3 was oriinll feled in 1973. It Is the trairq and acttual system design and development. This

second and third tier of a three tier system that csdanticeable xmat on productivit Ada Is Ike
provides: visUty to National inventory Control Poits of any other ski, if you don't use It, you lose it.
in estimated ftybillion dollars of conventional
ammuntin lsy Is maintaied by condit!on code, Lessons Learned (Trabing
serial number, lot mnber, component anid cuaty it Is - Ada trainln Is much more than Just learr.n a
currently operating at 13 locations wordide. The new prog'ammirn languag
Procurement of a new hardware platform and significant - everyone doesn't become an Ada enrt by going

116 10th Annual National Conference on ADA Technology 1992

truhaexesvtriigprogram- pl to the ont*# rang of project reqirements
t~uhe aenef fN tnrui ile lost if not (dat& acoess, oomMwIioain anODIS md technical

nme teytzed after trkyingflets
- execta six month learin curve before most -sprtreuse

PrO&TI S bMI=I n uingA"The architecture desiae to reach these objectives is
ANA PROWWN44 SU.PORT EtMONENT (APSE) skple but robust. It is Ilstrated in chart 1. The

The APSE lital consisted of an Ada onMle and a database is used to store application and rebe
very ited reuseabi, cmoet lirary developed with package data. For example, the use interface required
in-house personnel. This was primarly because the screen tites, form oontrol nmbers aid classifications,
CTASC-I1 is a nonjidu standard. ConIneolal Off the repr geneatio ex I4GM headings, classifications and
sheoflf software wsdifficult to find. A koled MPS reort cotol nuband Job contrl, processing
consisting of a debugger, formatter, optimizer and expected process (itrol runbers, parameter aid
profier was Pieced togethe nine monthis Into the transaction 1114 nam', execut status flags , ae. Al
project. Rlesource kiiatlon dr~ove the decision to of these are contained on tables withi the database. In
develop an automated lirary tool. KMn sight tells us it addition, ad interaction with the database Is acpishewoud av ben eterto prcure a coninleroiall product. through the module compller. SMASI/3 decde to use
Nine months of senior programer effort was maet the Ada-SW.. module comp--er to pocethe bindingV

developing~, ouMuoae a~o.Cnnercia interface excusv67.1hi architcture enforced
prdcsgeneraly sell in the 7kraoe.. The standlardization of the dlatabase interface anid omly

requirment to have a robust automated tab Tool can trained staff nmmbers how to develo interfaces to a
requiemnts (1), there should be support for large scale were usin a onM that closely followed ANISQL

devemnet i & orm f lbraiestha conaingm ' tandrdsandmettherecommnended SLAaMdl
de'ntosand separately translated units. This equates Exte sion (SAME) methodology SAS 1/3 kept the modkie

support along with a configuration ImnagMent changing database vendors. SAAS 1/3 has the freeo to
phiosophv, It Is easy to develop &W maintain lbay switch to other vendor database products that support
versions without harming the project's Poutvy. the SAWE recommenmdations ii m~m of effort.
Medium lrg scale Ada projects must have Much has been written about the pros and cons of
automated suppoimqrt. A manager with a using a G essAaurrent evidence suggests that
oonflqtration maaeet tool can kee proecs from Ada is more ef ficient fur medum to Lang size systems
comntting developmental siid and save the project (2). Ada has many benefits over 4(sfor SAMIS
considerabl tkme by eliminating the need to reduplicate sym s. From the SAAS/3 perspective, Ada when
work. During the development of SAASI/3, numerous IMmetd utizing a mature neusable M cmoet
upgades to the operating system and database had to Urary out perform 4QLs, Once our reuse lirary was
be asimlaed. Without an automated liraryj tool anid amer oulJethr odle a
persone wh thra~ uderstand ho orpo i, m o n Z7wswlet ed, Gt t,,mod*d n
the SAS 1/3 project would not have maintaine nropetr. W found It easier to teach
established schedules For example, an upgrd to the programmers how to cmieAda pakgsotof the
Ada-SOL binding interface may not omple with reuse lirary than to teaoh the sefcsof a 40L
previously complied and execut versions. In this Twelve months into the project four additional
situation the project cannot stop until a resolution is programmes were assigned. These were Pascal
found and the switch must be made back to the workin Programmers with no Ada trakinig. These progratmmes
version. An automated library tool makes this switch became productive after only a few days of orientaton

psil.Library1 support takes on additional signficance os
whe aproec isii amaintenance phase. Any sli in the LsosLearned (Software ArohitectureY

configuration management schema could cause the entire - Aa systems do not have to be built around
system's destruction. It is precisely this reao proprietary software
cofration management must be understood - Ada out performs 401s when used with a mature

comleel bymaagment and WsnK ncontrol of reuse library
this tool. 'th oter side Isthat configuration
managemen t competently exercised can and wi provide TEAM COMPOSIT)0N

smohanost painlss transitions to modification of Prior to the start of the redesign, the SAAS 1/3 team
project affected code. was organized around a team leader who supervised five

programmers. Nh assistance of a technical
Lessons Learned (AmSD writer/editor was avallable on an as needed basis. The

-Ada development requres more than a omi~lier. team had worked together for many years and had
As a minimum a debugger, optimizer, accoss to deveoed numerous unwritten procedures that defined
reuseable liraries and an automated tray too, work procedures and identified the Portion of the
must be on hand sysem each person was responsible for maintainig.

-the lirarian requires an in-depth understanding Each team member knew how to test their part of t*e
of Ada concepts rssem with well established bench mark test files. The

although the cost seews hi6h pocuring an Team Leader was the technical oxvert on the team
established, well desined automated Ex'ary tool irs Librarian duties were weformed as an extra duty by
well worth the effort one prograver. The team had an excellent reptftation

for delivering tknely Qualty software change pwags.
SOFR AR 4C1TECTURE: in preparation for the redesign effort, the decision was

The objectives for the SAAS1/3 architecture were made to increase the size of the team to nineteen
simple. We wanted an architecture that wouKi Includn the team leader. This decision was made in

-limit ouvnitment to vendor speifc software order to schedule all training at one time to bemone
-pcrtto aSTMS fcient in the Ada language before beigsubjected to

- be understandable and useabe by aM pressures of development tirrve to kle. Althoug
programmers user requiremnents were not cwpTlefe~y defined for the

1 Om Annual Nobonal Ccnferc-nce on) A,A Technoiogy 1992 117

redei project, wor yer ealinates were determined techndsx error hanw 0to, Development of the
based upon ogn fuinotio Fre of the additional raise interfaoe packages oontributed greatly to a
thirteen team mabumrs were contractors. Ntough the reduction of development time, enforced adrenoe to
contractor staff had ther own slervsor that reprrted standards, and provided expllt examples of sound
to the team leader for assirints, the contractors software enweehg p l Most rojects, SAAS1/3
participated in al team pln~~TeOriginal team inkdd r ekd to iplement numnerous
oncept for the red pi ojeo was to have a core of the rmy standards that have been

Sof p rammers that supported a lead designr captured in text documwnt These standards must be
Pw~k'tdinOmImtion with the team leader on the inerpreted by the rgammer during developmient.

tedwical aspects of the project. Each programmer Exanples of these toes of standards are soreen
would sill be responsbl for wit level testing. Early in layouts and report formats, Ada's strong structure aid
the program It became clear this concept was or Abmt o standards to be knolemented through
Inadequate. Over the period of several months, team eseale-packages. This integration of standards into
robs changed substatal to acoomodate the scope of reuseable pacaes prevent independent interpretation.
the redes project and the requiements of structured h addition, chages to standards can be Wiplemented by
dein mthodog rleetng Ada. Chne did not merelyg a database table or recomping and
oome easy and the team experienced traditional growing liking the reuse irary. In the ft.ure, standards must
pais. The outent Team Cwfration and roles are: be integrated into reuseable packages and not be left upto inerpretaton.
Team Leader: no longer the technical exert,
establuhes/monitors schedules, plans future actions, Lessons Learned (Reuseabity
coordi atus wth users and uper management - designing for reusablity is the key to a successful

LeadDesgne: Aa tehniian enorce stndadsAda development
Load en. As technicir enforees standards, ruse takes all the guess work out of interpreting
conducts reviews standardr, the standards are incorporated into the

reuse modules
Librarian: monitors opliance th standards, maintains - time spent searohing for reusea omx nts
and/or develops Confuation M ment (C) tois Pays big diviends

Database Administrator: establishes and maintains data DEVELOPMENT METHODOLOGY:
dotionar/sdma, maintains the different databases SAAS1/3 did not use an automated integrated
necessary for development development methodology such as those provided with

several vendor CASE tools. As a result, a software
Tester. coordinates and conducts incremental testing engineern guide had to be developed, A modified object
maintains problem report logs oriented development methodology was oreated by the

team as a result of an Employ Involvemen eam
Trainer: full-time dedicated trainer (Ada proficient), itiative. The met centered around incremental
provides technical assistance to team members on an development and incremental testing as shown in chart 2.
as needed basis, allows the lead designer to focus his It is based on sound software engiering practices and
energies on design and global issues guides contained in the NSA Ada Stye Guide, ML-STD

73, and ML-STD 2167. The team's methodology
Systems Administrator. maintains system performance required the production of a software engineering
and other traditional duties notebook (SEW which replaced the traditional

maintenance manual and system specification. As
Communication/Security Sub Team: designs and develops depicted in chart 3, SENs are process oriented and
the data securty and data commijation aspects of therefore do not require a completed functional
the system specification. A SEN was created for each process in the

stem. In addition, a developers gide was produced.
Lessons Learned (Team Composition. Every team member actively participated in the

-Ada development requres a wel structured team develo pm t of these two documents and, as a result,
with clearly defined roles felt strong ownership and commitment to see the
- the identification of a team trainer increases methodology imlemeted. The SEN and developers guide
pouctMty providing assistance on ?n as needed were strmental in instructing the less experwieed

" personnel in acceptable techniques and allowed the more
- team roles wi change as the project matures, plan experienced personnel to concentrate on critical tasks.
for it Table A depicts the contents of the developers guide.

Table B ilustrates the contents of the SAAS 1/3 SEN.
REUSEABLiTY:

1 carefully engineered collection of reuseable DEVELOPERS GI CONTENTS
software components can reduce the cost of software
development, inprove the quality of software products, nalysis and Design steps
and accelerate software production'13). The search for Ada Coding Guidelines
reuseable software co nents is a vital p of an Ada-SQL Coding Guidelines
successful project. SAAS1/3 found numerous Forms Standards
rt pacages from vendors, the Ada Software Mep StandardsRepository, the Rea" Ada Products; for Information Reir Standards
Systemns Dek Center, in addition to developing Module Naming Standards
several sophisticated Packages in house. in order to Testing Standards
Increase standardization, reduce repetitious oci and Documentation Standards
decrease complexft experienced programers were Types of Messages and Uses
tasked to develop reuseable interface packages that Processing Methods
encaosulated several software components. An Tecnical Notes
excellent exminle of this techniqe is the screen
input/output interfacw moD&s develoed by the team. TABLE A
The interface modules enforced standardization of
windows, menus, forms, messaes scroen n and selection

10thOU Annual Nobonol Confer ence on ADA Technology 1992

SEN CONTNTS (4) lotfbih Barns% Firlt, WodgrNoeyuN
Ass1986), Rationale for the De 'nof the Ada

Functional Definition frgamt Langage.
Reouirements Outlie IIWFWN
Component Anilysis Checkis XDS is a regist ered trademark of XDEL
Wakttwough Results LNSYS is a registered trademark of UIIYS
Job Control Interface Classification ULM is a registered trademark of AT&T Bel

Prcssb~atEstim~ate Laboratories
Procss nw~emetation Description

Reqim ents linpiementation Matrix
livut and Output Formats BIBLJO6RAW:

Test Condtion Reqikements LTC Paul Da Bates i the Chief of the Coimbat Systems
TABLE B Support Division at USAISSOC, Ft. I.m, Va. He has a
TALEBMasters of informan System iom Georgia State

Lessons earned pment kwesfty LTC Bates is an avid supporter of Ada and
Lesos eane (ewomwt etimilgy:has been instnunental in developnqadilentn

-It is dffi0Iit to "fid" a methodolog that exactly software development methodologies that suppor
fits your organizations needs. Modify one that concurrent engineering and incremental dvlpet
supports your organization

a haWn a eepent methodology tha Is Maig Addressr
do 4etd uniderstood and supported by everyone

an the projet Is more Important than tryingto use LTC Pad D. Bates LTC Pad D.Bates USAISSC
the methdlg currently in vogue 144 10 Creek Stone Dr. ATTN: ASQB-LA-C

-be creative, Ada supports a wide rang of Chesterfield, VA 23832 STOP L-96
methodologies Fort Lee, Va 23801-6065

PHI (AW 687-1425
DOCUM.ENTATMN (COWN (804) 734-1425

Proces documentation was a key consideration in the
SAASI/3 project. SAAS1/3 does not hav an automated Bart Jeffooat is a senir member of the technical
dociumentation tool. Howeve, strict standards were staff for the Computer Sciences Corporation at Ft. Lee,
enforced i order to dmnh technica program Va& He has a BA. from Augusta Coleg and is pursuing a
documentaton. To the extent possible, the project M.&. from Virginia Commonwealt Univrsity. W. Jeff coat
standards required programnmers to take advantag of is a former instructor for the LLS. Army Computer
Ada's inherent documentation features(4) and poce Science School and was a technical team leader on the
we! documented soe code. Experenc has shown us Standard Army Financial System Redesign project
that in a maintenance environment the first plac a responsible for Ada CASE tools including code generators,
progammer turns to Is usuAl the code not the design and ontrol repositories and library support.
maintenance manul This type of program devopmet
takes a little more tim but is we! worth the effort. The Maing Address:
end results are program which wre self explanatoy
standard and understandabl. In additon the abity to Sart Jeffcoat
oonduct thorough reviews and walkthroughs is greatly P.O. Box 1412
increased. Hpeel, VL23860

(CO (84)734- 1897
Lesson Learned (Dooumentatio).

-efforts spent documenting programs o*enac
maintenanoe productivity

CONCLUSON
Ada has shown Ws applicability and effectiveness in

the MIS world. Ada can limit depiendence on proprietary
software, is portable to different platforms, can simplify
docuimentation and enhance standardization. Coupled
with a stanidard architecture the use of Ada does
reduc software development "im. Chart 4 shows t
SAAS1/3 project broken out into specific areas of
system data. Chart 5 shows the interaction between
Ada and the SQL bixiing interface. The next project that
uses this software architecture and reuseable library
shoui be able to shorten their development schedule by
15-20%. This estimate Is based on the time traditonall
spent on design and impemetation of an application
architecture. Pr, ieration of the SAAS1/3 architecture
has been start*&. The use of Ada at LW~SSDCL Is a
success story.. The ultinate success 31 Ada is up to D0D
and its commitment to standling software
dekvopment.

References

(1) Requirements for ftlgi OrderPoramg Lni~e
STEELM'l, Department of Defens, Jn193
(2) "Software Science and Coffolexityvlsis of Ada and
a 460.., Defense Systems Managerrent College Feb 191.
(3) Booch &. 13B7. Software Components with Ada,
preface.

10m Anrxjoi NoItona' Conterence on ADA Tec-hnology 1992 119

SAAS 1/ 3
SOFTWARE ARCHITECTURE

SQL
-~APPLICATION BNIG DATABASE

Ada Code

120 loth Annual Noional Conterence on ADA lecrnnology 1992

SAAS 1/3
PROCESS DEVELOPMENT

REVISE ADDITIONAL
AS, DETAILS

NECESSARY

$ToP I STEP 2 STEP 3 8EP 4 STEP 6 STEP a STEP 7

IENTIFY PRESENT WRITE EC ALH I CA 1 TESTING

RAES, 1. , TA"'" ETAILED ANALYSI S DESI ON PROGRAMING..LVL -

o UELINE F jt MINj

t0t Annual N oa Cneme onIZV I Thnog RE 1I1
UU DOW Uw kr mi~~~~
ZVO DiPA~r BMrDs TV=E Wu m 2Th ~ow

mrzWACI ROUS MVTS mT= DmVL? TV1U
cox/B2WL'fl P)I DATA ZLUiXfr

10th Annual Natonal Conference on ADA Technology 1992 121

SAAS 1/3
INCREMENTAL DOCUMENTATION

F ,

SEN NM M

Process B N I N N

A D
AL S N 1

' RSEN PC L. N
Process C E M

E C

n NT

122 1th Annual Nahional Conference on ADA Technoogy 1992

SAAS 1/3
QUANTITATIVE SYSTEM DATA

Projected'

I Lines of Ada Code *140,000

Lines of SQL Code *14,000

Functional Reuse **15,000

Lines of Local Reuse 6,000

Programs 45

Local Reuseable Modules! 83

Main Database Tables 40

*LOC = NON BLANK/NON COMMENT LINES

**LINES OF FUNCTIONAL REUSE ARE INCLUDED
IN FUNCTIONAL Ada/'SQL CODE.

10th Annual Notonal Conference on ADA Technology 1992 123

SAAS 1/3
Ada/SQL Percentages

Ada 11%
89% (4% Reuseable)

(17% Reuseable)

124 loth~ Annual Naoboncil Conference on ADA Technology 1992

SMALL BUSINESS EFFORTS TO BECOME ADA COMPETITIVE

HOW CAN THE LITTLE GUY GET INTO THE GAME?

Joseph P. Hoolihan and Lindon J. Corbett

3.G. Van Dyke and Associates

Annapolis Junction, MD 20701

Summary Ada was quite expensive in the beginning.

Compilers were scarce, and high priced, trainers were

The Ada world is rapidly expanding as investors few and far between, and Ada experienced people were

in the Ada vision reap the harvest cf their efforts. Some rare. The major players in this market were of necessity

of these early investors have sizable resources and are able larger companies that had the resources and time to build

to invest without the threat of financial ruin. Newcomers an Ada organization from the ground up. And, as the big

to this arena find both excitement and challenge as they companies won contracts, they were in a better position

adjust their resources to get on board. Small businesses to win further Ada contracts (since now they had the

find this adventure most challenging and almost experience). This cycle continues today. How can a

insurmountable as they discover the uniqueness of using small business compete with these giants, and enter the

Ada. This paper attempts to define the elements that Ada arena?

create this challenge to the small business and present

some possible avenues by which the small business may One obvious way is to team with a big player as

be able to gain a part in the Ada vision without risking a subcontractor, and gain the experience in that way.

resources it does not have. However, since most of these giants don't particularly
want to spend their profit dollars training someone else's

Ada. It's the LAW! So proclaims a tee-shirt personnel, it becomes imperative for a small business to

seen at Tri-Ada '90. With the DoD budget of FY 91, have some basis to be Ada competitive.

this is the case. However, the language itself has been

around now for over ten years. There are now 286 Challenges to Small Businesses

compilers available on a wide variety of platforms, and

the contracts are out there, waiting for bidders. Management Indifference

But, Wait! Are you ready to bid? Are your Many managers have adopted either a 'wait and

people trained? Do you understand the market, what it see' attitude towards Ada, or have focused on what

means to 'do Ada'? brings in revenue NOW, and do not have a good
understanding of what the Ada market is all about.

A common response to these questions is 'Quick!

Call in the trainers! Shell out the bucks! Buy hardware, High Cost of Doing Ada

buy software! Hire new people!'
The financial investment can be high. Most

Unfortunately, doing things this way is VERY compilers are in the several thousand dollar range, and

costly. tools and support software can range into the tens of

thousands. Ada training is also costly, and there

continues to be a shortage of Ada trained personnel.

10th Annual Nabhonal Conference on ADA Technology 1992 125

that had anything to do with Ada were called, to get on
Lack of a Compatible Engineering Policy their mailing lists. Numerous publications were scanned

for Ada related articles, and a file kept on Ada related
Most companies have become steeped in the articles. As the Ada industry matured, more and more

waterfall life cycle model of development, and have Ada specific advertisements and articles appeared. The
tailored design and development strategies to fit each new authors endeavored to keep abreast of all of them, even
project. Ada lends itself to standardizing development asking colleagues to bring such matters to their attention.
strategies, but managers are reluctant to learn (and try) a
different way of building software. In 1984, Mr. Hoolihan attended the Second

Annual Conference on Ada Technology, held in Hampton
Small Businesses can't Do Ada Roads, VA. As with the ACM conference, the company

paid salary and attendance fees, and he paid travel and
There is a general perception that a small lodging expenses. At this conference, it was made

business just doesn't have what it takes to do Ada apparent how committed were the proponents of Ada.
development. Also, it was a good introduction to Jean Ichbiah, the

father of Ada.

Historical Perspective
More conferences followed in '85, '87, '88, '89,

To illustrate how a small business can do this and '90. At each one, the tutorial day at the start of the
without going bankrupt, it will be necessary to digress, conference was attended. First Introduction to Ada, then
and give a personal historical account of bow J.G. Van Advanced Ada, Ada for Managers, Tasking and Generics,
Dyke and Associates went about it. Object oriented design, and others.

The cuthors have been with the company for over As the company name became available on
9 years, having joined in 1982. In the Fall of 1983, Mr. various attendee lists (and from SIGAda), Ada
Hoolihan attended the Annual ACM conference in New information began pouring in. A separate Ada filing
York. At that conference, he heard Jean Sammet give her cabinet was established, which grew from a few files in
now famous talk on 'How Ada is not Just another 1983, to four full drawers today. Various file topics such
Programming Language'. He also attended three separate as compilers, tools, conferences, newsletters, and CASE,
seminars on the Ada language, and signed the petition to all Ada related, began to grow.
make AdaTec a full fledged SIG. From that point on, he
became an Ada proponent. In June of 1986, Mr. Hoolihan purchased the

pre-validation release of Meridian Ada, version 1.0. At
Upon returning from the conference, an last, we could do some Ada programming! We also began

enthusiastic trip report was written, full of glowing words building up our personal Ada library; some books were
on this new and powerful language. It was met with a purchased by the authors, others were bought by the
great deal of indifference. After speaking with our company. The compiler was upgraded, and in 1989, the
company president (an advantage of being a small company agreed to pay for the annual maintenance fee,
business), he stated that 'He'd wait and see. After all, thus ensuring continued upgrades.
COBOL was designed by the Government, and look
where it is today.' After the release of DoD directive 3405.1 and .2,

upper management began to take a closer look at this
Somewhat deflated, but undaunted, the authors 'new' language. We began to receive calls from proposal

began to look around at what COULD be done, alone, or writers, looking for Ada verbiage to add to the effort.
with minimal aid from the company. All the companies Our company has submitted seeral proposals under 'he

126 10th Annual National Conference on ADA Technology 1992

Small Business Innovative Research program, for various proceedings, usually available a few months after the
Ada related concerns. Our General Manager has attended conference. Sometimes you can purchase proceedings of
tie *Ada for Managers' seminar, and we have Technical previous conferences at a current one. While some
Writers trained in DoD-STD-2167A. information may be dated, a great deal of it remains

germane. We have accessed copies back to 1984 to find
Today, we still haven't landed an Ada contract, information on a particular topic.

but it figures prominently in a good number of the
proposals we write. We continue to attend conferences, 4. Join ACM SIGAda, and a Local SIG. Not only does
md have given 'orientation' briefings to management and this get you on mailing lists, but it is an excellent way to
development personnel, in order to increase awareness, keep in the mainstream of information. Also, the

bimonthly SIGAda Letters contains great quantities of
Also, we have developed a Corporate Software Ada information, including specific Ada problems (Doug

Development Plan, designed to standardize procedures Bryans Dear Ada column), upcoming seminars, and of
zmid policies, yet be flexible enough to be tailored to course, numerous technical papers. SIGAda also has a
qecific projects. This gives us an additional tool not number of Working groups, such as the Standards WG
otly during design, but is a plus in proposals as well. (DoD 2167A et al), the Reuse WG, RunTime

Environment WG, Performance Issues WG,
Useful Sugestions Object-Oriented WG, and Commercial Ada Users WG.

Most of these groups put out periodic newsletters and
So, what suggestions can be gotten from this little tale? reports, which provide up to date information on Ada
Several come to mind. activities.

1. Get on mailing lists. This sometimes happens 5. Read. Buy a book on Ada, and read it, cover to
automatically (if you visited any booth at the exhibits, for cover. You won't catch all the information the first time,
instance), or can be done directly. We have found but you will get exposed to an overview of Ada. Also,
vendors to be more than glad to add your company to there are numerous free publications that contain Ada
their lists. We usually tell vendors what our situation is; related information. Sign up and READ. Get your
we're 'information gatherers', not 'ready to buy' associates to bring Ada articles to your attention.
persons. This has not caused any grief with any vendors.

6. Establish an Ada information repository for the
2. Buy a compiler, and use it. You have to start company. When Van Dyke and Associates first became
somewhere, and there are a number of low cost PC interested, the repository was a small stack of compiler
compilers available. Begin by doing in Ada the little companies' information brochures in one comer of one
routines you might a, in other languages. Our first Ada bookshelf. Today, we have managed to fill a large,
program calculated gas mileage. Become familiar with four-drawer file cabinet, and start on a second one.
the language. By doing smaller programs, you can ease Company personnel can access and obtain information for
into the large body (pun intended) of knowledge that is use in proposals and client presentations.
Ada, and be that much closer to fluency.

7. Take advantage of any training opportunities that
3. Attend conferences where possible. Our agreement become available. While most commercial training
with our company is that they pay salary and conference seminars are quite costly (up to $800 per person per day
fees, and we pay all travel and lodging expenses. Thus, of training), there are frequently lower priced training
local conferences are best, but those farther away can be opportunities. The tutorials given at the beginning of this
attended, if your personal budget can stand it. If you conference are a good example. Local SIGs frequently
cannot attend, then by all means purchase the conference

10th Annual Nanonal Conference on ADA Technology 1992 127

have one day sessions, as do the local ACM and IEEE year the DoD issues a Document, listing RFPs for small
chapters. businesses. These cover the various DoD components, as

well as NASA, FAA, and others. The program is
8. Become an Affiliate of the Software Engineering designed to operate in three levels. The first is a flat
Institute. This is a program run by SEI at Carnegie $50,000, six-month effort, usually to prove the concept.
Mellon University to facilitate the dissemination of The second level is a $250,000, six-month effort, to
information of new technologies and methods. Various attain a certain level of capability from the concept. The
publications are available from the SEI to affiliate third level entails full proposal efforts, with a full blown
members. Seminars and Symposia are also available; development contract, and major funding. Each level
members are kept informed of schedules, depends on the previous one, and a company must

complete each level in order to bid on the next.
9. Develop a Corporate Software Development Plan.
DoD 2167A gives instructions on format and content. Ada topics in the past have ranged from
Formalize the information that will be consistent from one feasibility studies, to compiler evaluation, code
project to the next, and delineate which sections are to be conversion, and embedded applications. Many of the
customized on a per project basis. This not only puts you proposals listed in this document fail to get funded; the
ahead during design, but will help the company focus its sponsoring agency may not get any bidders, or the
attention on the process. Familiarity with DoD 2167A, bidders may all fall short in the sponsoring agency's
2168, and Mil Handbook 287 (2167A Tailoring Guide) opinion. Still, it is an excellent way for a small business
will also be useful in both proposal writing and in being to start on the Ada road. To obtain a copy of the SBIR
better prepared to begin development efforts, solicitation contact:

10. Talk to your Management about Ada. Repeatedly. Mr. Bob Wrenn
Once you are well versed in what Ada is about, you can SBIR Coordinator
converse intelligently with Management as to its features, OSD/SADBU
special considerations, and points of interest unique to U.S. Department of Defense
Ada. This process can be lengthy, and sometimes The Pentagon - Room 2A340
frustrating. You may feel like the 'lone voice crying in Washington, DC 20301-3061
the wilderness', but persevere. At the very least, you are tele: 703/697-1481
making yourself more knowledgeable in Ada, and at best,
you will become a valued asset when the company is Teaming (Subcontracting)
finally hit with the reality that 'It's the LAW!'

One way that small businesses have approached
Business Opportunities for Small Businesses Ada contracts is by teaming with the big guys. A number

of Ada contracts have small business set-asides,
Small Business Innovative Research(SBIR) Program specifically to spread the Ada involvement to more

companies. The question arises, however, h'w does one
The definition of a small business is not more convince a larger company to let a smaller, NON-ada

than 500 employees, and annual revenue not in excess of smart company, team with them? One answer is to push
$12.5 million. This definition comes from several your strengths. There is a decided difference between
articles in the Code of Federal Regulations, and is used by Ada Work, and Working in Ada. Very few companies do
various Government Agencies to determine eligibility for Ada Work, i.e. their primary language is Ada, and the
Small Business programs. The primary one of interest to actual application is secondary. Most have a particular
those in the Ada community is the Small Business area of expertise, and do that application in Ada. For
Innovative Research program, or SBIR. Several times a example, Van Dyke and Associates does a great deal of

128 10th Annual National Conference on ADA Technology 1992

Networking business, with some work in Data Bases. AdaIC - Ada INFORMATION Clearing House
We also have done some work in software conversion
between platforms. Our thrust has been that we can This one source is perhaps the most inclusive of
understand the environment and the problem to be solved, information resources. The AdaIC is a resource of
and can build the solution in Ada. resources. It is operated by the IIT Research Institute for

the Ada Joint Program Office (AJPO). The AdaIC
Implement Part of a Project in Ada information can be obtained in hardcopy or electronically

from the AdaIC BBS or the AJPO host on the Defense
If possible, do parts of a larger project in Ada. Data Network(DDN). The information is available to

Yes, this is risky, but if discrete parts of a project are ANYONE. They publish information on the Ada
clearly defined, the benefits of doing part in Ada can community's events, working groups, research,
outweigh the risks. This works only if you have the Ada publications, and concerns, including z quarterly
trained people and environment to handle multiple newsletter. There is no charge for the subscription.
languages. Subscribe or request information by writing to:

Know the Market Ada Information Clearinghouse
c/o lIT Research Institute

Keep up with the market. Most of the 4600 Forbes Boulevard
periodicals listed below announce pending Ada contracts, Lanbam, MD 20706-4320
as well as those awarded. It is possible to get 'a piece of or
the action' on a large contract. Attendance at conferences tele: 800/AdaiC- II or
and symposia also provide information on 'who's doing 703/685-1477.
what' in Ada.

Books
Develop a Product

AdaIC has a significant book list. A few popular
Develop your own product. There are a number books found in many bookstores and often used as a text

of companies today who started small, and went on to in academia include:
greater endeavors. Often a company has specific
knowledge of a problem area, and can build useful Programming in Ada
software. This can lead not only to sales, but to other J.G.P. Barnes
areas of working in Ada. Addison Wesley

Sources of Information Softivare Engineering with Ada
Grady Booch

The following are some resources available to Benjamin/Cummings
anyone for little or no cost. The resource that cannot be
reduced is time, although there are training aids that can Ada for Programmers
help improve the training effort. It will be necessary to Eric W. Olsen, Stephen B. Whitehill
spend sufficient time to learn why Ada is different and Reston
how to use it. The resource list is by no means all
inclusive. The inclusion of a vendor name or product Managing Ada Projects Using Software
does not imply endorsement. Engineering

Jag Sodhi
Tb Books Inc.

1 Oth Annual National Conference on ADA Technology 1992 129

Developing Software to Government Standards DTIC (for Defense or Defense Contractors)
William H. Roetzheim Cameron Station
Prmtice Hall Alexandria, VA 22314

or
The above mentioned books are only a small tele: 703/274-7633

subset of available texts. The limited list is only provided AV: 284-7633
as a sample. The authors recommend a search of all
available books such as those listed in the AdaiC book Periodicals
list.

Ada information is spread out among a variety of
Government produced text resources periodicals. Some charge a subscription fee, but others

can be obtained free of charge. Some examples follow.
The Ada Language Reference Manual (Ada

LRM), the ANSI/MIL-STD-1815A, is published by the
AJPO and can be obtained for very little cost. It is Defense Electronics (no cost)
'THEO Ada manual by which all compilers are judged. Government Computer News (no cost)
It can be olained from Federal Computer Week (no cost)

Embedded Systems (no cost)
Naval Publications and Forms Center The Software Productivity Consortium
5801 Tabor Avenue Quarterly (no cost)
Philadelphia, PA 19120-5099 ACM SIGAda Ada Letters
215-697-2000 Computer Language

Journal of Pascal, Ada, & Modula2
Another DoD produced manual is Communications of ACM

DoD-STD-2167A. It spells out all the documentation IEEE Computer
and software engineering elements that must be IEEE Software
considered when developing for government contracts. It
can be obtained from the above address as well. Training

The Federal Government sponsors research on a The myriad of training possibilities range from
wide range of topics. Published reports of these activities self imposed textbook study to commercial training
are available to the general public through the National compaunies. Reasonable and effective training can be
Technical Information Service (NTIS) and to Defense obtained somewhere in between. While most commercial
Departmem activities and Defense contractors through the training companies charge a significant amount, local
Defense Technical Information Center (DTIC). New SIGs and users groups give reasonable priced tutorials.
reports available are often published in the AdaIC Introductory courses are available at conferences and
newsletter. For information on reports or regis:ration symposiums. Academic courses are available at many
contact: colleges and universities and often your employer will

reimburse you for the tuition.

NTIS (for general public)
U.S. Commerce Department A popular and low cost option is a self paced
Springfield, VA 22161 tutorial called ADA-TUTR. ADA-TUTR is a shareware

or product developed by John J. Herro, Ph.D., of Software
tele: 703/487-4650

130 101h Annual Notional Conference on ADA Technology 1992

Innovations Technology. It is a thorough interactive Ada Information Clearinghouse(AdaIC) BBS
instruction with *homework* assignments. An Ada
compiler is helpful but not required. It runs on PC's, 300, 1200, or 2400 baud, 8 data bits, 1 stop bit,
minis, or mainframes. There are several different no parity
methods to obtain a copy. An original license and Data: 703-614-0215 or 301-459-3865
documentation from the author is about $30. You may
find it on a local BBS, try it out, and license your copy Professional Organizations

for $25 or you can obtain a trial copy for $10 from the
author. Company licenses are also available. You can Association for Computing Machinery (ACM)

contact the author at: SIGAda. SIG membership is available to ACM members

and non-ACM members. You can find a membership
Software Innovations Technology application in the monthly ACM Communications
1083 Mandarin Drive NE magazine or contact ACM by writing to:
Palm Bay, FL 32905-4706

or ACM
tele: 407/951-0233 P.O. Box 12114

Church Street Station
Electronic Bulletin Boards New York, NY 10257

AdaNET 'IEEE Computer Society. IEEE Computer

Magazine is published monthly, a subscription is included
Sponsored by NASA, no charge for an account, as part of membership dues. Non-member subscriptions

For information, contact: are also available. For membership information contact

IEEE Computer Society at:
AdaNET c/o MountainNet

Eastgate Plaza, 2nd Floor IEEE Computer Society
P.O. Box 370 1730 Massachusetts Ave NW
Dellslow, WV 26531-0370 Washington DC 20036-1903

or

Tele: 304/296-1458 For subscription information, tele: 714/821-8380

or
800/444-1458 Software Engineering Institute (SET). A

professional organization fostering quality software

Ada Technical Support BBS engineering principles. They have specific requirements

that must be met to be granted affiliate status. For
Navy Computer and Telecommunications information on requirements and services, contact:

Command
2400 baud, 8 bits, 1 stop bit, no parity SEI

Data: 804/444-7841 Mark E. Coticchia
Tele: 804/445-4481 or DSN: 565-4481 Manager of Affiliate Relations
SysOp: Dave Parker Carnegie Mellon University

Pittsburgh, PA 15213-3890

tele: 412/268-5758

10th Annual Nolional Conference on ADA Technology 1992 131

Software Technology Support Center (STSC). Ada Software Engineering Education and
The U.S. Air Force Logistic Center (AFLC) has Training (ASEET) Team. Sponsored by the ASEET
implemented the Software Technology Support Center Team, periodic symposia address the issues faced by
(STSC) in supporting activities to assist in improving the academia, industry, and government in providing Ada
quality of software. A principle component of this effort software engineering education and training. The contact
Is the ToolBox/PC, a database of various tools from for the most recent ASEET symposium is:
various sources. The data base information is
disseminated via floppy diskette to requesting Catherine W. McDonald
organizations. Any interested participant can contribute Annual ASEET Symposium
to the data base or obtain a floppy containing information Institute for Defense Analysis
from it. Also, the STSC publishes various reports on 1801 N. Beauregard Street
tools and software. The reports contain evaluations of Alexandria, VA 22311-1772
tools in the data base. To contact the STSC, telephone: or

tele: 703/845-6626
Dawn Timberlake
STSC Customer Service Compilers
Commercial: 801/777-7703 or DSN 458-7703
Fax commercial: 801/777-8069 or DSN To quote the AdalC Newsletter, as of August 1,

458-8069 1991 there were 193 validated compilers available with an
additional 93 compilers derived from base

Conferences implementations (validated by registration). The targeted
platforms range from the PC to the large mainframes.

The Annual National Conference on Ada The AdaIC newsletter contains a current list of validated
Technology, Ten years strong, 1992 is the Tenth annual compilers and the target platforms. Although not
conference. The conference director/manager is necessarily inexpensive, the PC compilers are the least
Rosenburg & Risinger. You can contact them at: expensive and are quite capable, excellent for training

and/or project development. If formal training is chosen
ANCOST as an avenue, some vendors will include a PC based
Rosenburg & Risinger compiler with their training course. Also, some vendors
11287 W. Washington Blvd. give a student discount when enrolled in a academic
Culver City, California 90230 course.

or
tele: 213/397-6338. Representative vendors of compilers in the $100

- $700 rangt, include AETech, Alsys, Meridian, and RR
Tri-Ada. Sponsored by ACM SIGAda, it is the Software. A full list is available through the AdalC.

largest of Ada conferences/conventions and like other
conferences, it melds Academia, Industry, and Tools
Government. The current director/manager is:

CASE tools are gaining popularity as a means to
Danieli & O'Keefe Associates. Inc. more rapidly develop and document ideas. Many CASE
Conference Management tools exist ranging from limited capabilities to very
490 Boston Post Road complex and versatile software. Most are expensive for
Sudbury MA. 01776 the small business unless provided under contract.

Representative vendors include Meridian and Evergreen
CASE for CASE tools, and Logicon for DoD 2167A

132 10th Annual NaTional Conference on ADA Technology 1992

document preparation. The AdaIC has a CASE tools

database available, both through the BBS and via mail.

Conclusion

Yes, the Ada market is there.
Yes, it requires an investment.

No, you do not have to be rich to get into it.

Authors' Biographies

Joseph P. Hoolihan has been a computerist for
twenty years, and holds a B.A. in Math from State

University of New York at Binghamton, and an M.S. in

Computer Science from Johns Hopkins University. He
has been active in Ada since 1983, and has served on
several standards and review committees. He is the

Manager for Ada Programs for J.G. Van Dyke and
Associates.

Lindon J. Corbett has twenty years of computer

related experience in both hardware and software

domains. He has been employed with J. G. Van Dyke

& Associates for 9 years. He has a Bachelor of Science
in Electronic Technology from Brigham Young University

and developed an interest in Ada while completing his

Masters in Computer Science from Johns Hopkins
University. His current position is Senior Ada Systems

Engineer.

Authors' Address:

J.G. Van Dyke and Associates

141 National Business Parkway

Suite 210
Annapolis Junction, MD 20701
301-596-7510 or 410-381-7970

IlOrn Annual NaTional Conference on ADA Technology 1992 133

Acquisition Model for the Capture and Management of
Requirements for Battlefield Software Systems

Harlan Black, US Army Communications - Electronics Command; Research,
Development, and Engineering Center; Software Engineering Directorate

Abstract - This paper describes a model for the utilized within this process, but the model, itself is not
acquisition of software intensive tactical systems. It a technology.
emphasizes Requirements Engineering and was
designed to meet the needs of new and The 'ntended use of this model is the Army Project
unprecedented systems that are large and complex. Manager (PM), the one responsible for providing a
When applied propery, it should reduce the cost, system to the soldier in the field, as specified by the
schedule, and quality risks that have been associated soldier's representative.
with these types of procurements.

The primary focus of this model Is placed upon
1. INTRODUCTION system requirements. "In every software project

which fails to meet performance and cost goals,
requirements inadequacies play a major and

The following problems have traditionally affected expensive role In project failure'." Project impact from
cost, schedule, and quality of large-scale ada-based requirements related problems increases drastically
acquisitions: Solir,.ation and award of a Full Scale with the time of detection. Figure One illustrates the
Development (FSD) contract with incomplete and/or elusive nature of apriori requirements specification.
ambiguous requirements; delayed requirements This model stresses the importance of carefully
definition and documentation; the appearance of engineered system requirements. It has long been
contractual relationships that encourage observed that the delineation of requirements is often
requirements to increase; and dynamic operational Incomplete, inconsistent, and frequently specified at
environments where requirements continue to varying degrees of detail, all of which significantly
change. contribute to the risk of the development. FSD

contracts have been awarded with incomplete,
The US Army Communications - Electronics erroneous, inconsistent, and ambiguous
Command (CECOM) Research, Development, and requirements, as the time and effort needed to
Engineering Center's Software Engineering improve upon requirements definition are frequently
Directorate (SED) is responsible for the post- underestimated. These errors are frequently not
deployment software support for all communications discovered until much later in the development and
related systems, Including command and control. In acquisition process, resulting in cost and schedule
early 1991, SED proposed an acquisition model growth. In addition, there have been systems for
which, when applied properly, should reduce the risks which the specification of user interface and
associated with these types of procurements. interaction detail was delayed until the critical design
Subsequent to this research, additional insight review, making changes and improvements very
provided a motivation to refine this model. This paper costly in dollars and schedule.
describes the revised model.

The model is proposed within the context of DOD-
The term 'acquisition model' denotes a management STD-2167A and can be tailored to apply to a wide
process It is a process of obtaining (acquiring) range of acquisitions. The intent of this model is to
technology. Appropriate technologies would be characterize process model strategies for

134 10th Annual National Conference on ADA Technology 1992

Requirements Engineering, not to fully specify every This model recognizes the need for Requirements
detail for its implementation. Engineering for every phase and every type of

system. It is based upon a realization that it is
Finally, the model is organized and defined in terms of unrealistic to expect full requirements definition prior
six risk reduction strategies. These strategies have the solicitation of the typical non-precedented large-
been recommended by numerous studies and scale software system. Organizations, technologies,
workshops (reference 2 through 5). interface requirements, and threats are in a constant

state of change, greatly impacting the ability for the
While this model should reduce the quantity and requirements to be clearly state up front, prior to the
severity of requirements related problems, it Is not acquisition. Frequently, the requirements are so
envisioned that they will or can be eliminated. We will complex and interrelated that it is not humanly
always have valid needs to change requirements, possible to specify them prior to the solicitation.
from such reasons as advances in technology,
changes In enemy tactics and capabilities, changes to For the pre-solicitation requirements, the PM must
external systems which must be Interfaced with, and either specify a system with features to be determined
insight gained during the system Implementation. or the PM must devote significant resources to

capture requirements detail and reduce acquisition

2. REQUIREMENTS ENGINEERING risk.

The former approach has worked well for the US
It is not sufficient to write requirements. Requirements Army's European tactical command and control
must be engInegred and managed. This model systems . This effort "combines rapid prototyping
strongly suggests ihe early designation of a team or based upon minimum, or thin, specifications with
effort that Is responsible for engineering the system's frequent operational deliveries to the field 6. The
requirements, the Requirements Engineer (RE). project's philosophy is to "build a little, test a little, use
Requirements Engineering is the process of applying a little 6.* However, this approach appears to be only
engineering disciplines to requirements definition and feasible for quick fielded systems. For delayed fielded
management. systems, this model suggests that the RE be given

significant resources to engineer the pre-solicitation
For the purpose of this paper, there are two modes of requirements to get them to at least the level of the
requirements development and evolution: pre and System Segment Specification (SSS).
post solicitation. Pre-solicitation requirements define
what will be acquired. Post-solicitation requirements For post-solicitation requirements refinement, either
reflect changing project needs and maintain fielded- the RE or the FSD can work with the user or user
product relevance, representative. There is an advantage in having the

FSD contractor fulfill this role. It gives contractor
Also, for the purpose of this paper, there are two types personnel the opportunity to come up to speed and
of initial system fieldings: quick fielded and delayed keep on top of the evolving requirements with first
fielded. Assuming rapid and robust prototype hand experience with the user's problem. A
development capabilities, quick fielded systems have disadvantage is the risk of the appearance of a
minimum delays for hardware development. An conflict of interest, as requirements development can
example of a quick fielded system Is a Command and have a positive impact on future business for the
Control system for maneuver control, whose contractor. Either way, the RE must, at a minimum,
incremental versions can readily run on commercially keep track and manage the requirements and their
available hardware. Delayed fielded systems require Impact to the project.
extensive hardware development prior to the initial
fielded version. An example of a delayed fielded This model recommends that the RE be involved with
system is the operator interface for a yet to be requirements related issues throughout the lifetime of
developed tank. While prototypes can be simulated, it the project, not just during its early stages. During
takes years for the hardware to be developed, the system development, the RE should interact with the
software integrated, and system fielded use for end user or user's representative regarding proposed
user feedback. chzinges to the baseline. The RE should interact with

1tt) Annual Notional Conference on ADA Technology 1992 135

end users ater ail system fekWng lo independcenty may be appropae for the projects system enginee
gain ffrr4eedbaSL Relevant activities include: nsk to be assignled the lead rimponsiiy. The wok must
and feasiby analysis; trade-of shm:es; begin no later than the nial drafts of the user
requiremn change impact analysi. tracing reqirermenft docu ets. earty on in the project and
requirements between doa.mens; mai tainig ft before comnimers by Govenment and contractors
consistency of requirements documents; verification are made.
that requiements are being met by the developer
and suppoit the PM during reviews and audits. The RE must wear many hats. To the PM, the RE is a

consutan on requirementsand their impact If the RE
STHE ACQUISITN MODEL is responsble for specifyin post-soitation

requirements, the RE is the system developer to the
user. exporing the feasibiW and impact of user

This acqition model stresses Requkements requirerts and suggesting options, when there are
Engineeft emphasizing techniques for trade-offs.
requireinetts definition and change management.

Staffing the RE team is a non-tivia and crilical task.
The model is dfined in terms of the folowing six It is most advantageous' or the Government to have
strategies for risk reduction: its own personnel perform this function directly, not

through a contractor. The Government, itself, must be
Designate a Requirements Engineering effort the one who is the most aware of what it needs, the

which applies Requirements Engineering techniques system requirements. However, this may not always
from the early project phases and on. be feasible due to personnel constraints. It may

therefore require contractual support.
* Plan to develop systems in an incremental,
evolutionary manner. The PM must carefully assess the requirements for

the Requirements Engineering effort andthen monior
If the Requirements Engineer is a contractor, it carefully. Just as with the FSD effort, the risk of

contractu decouple the RE effort from the FSD requirements proliferation exists during
effort- Requirements Engineering. Unlike the FSD effort

though, this eftort is on a much smaller scale,
* When applicable, establish a Functional Baseline reducing risk and impact.
(FBL) with an approved SSS prior to the solicitation
and make the SSS a part of the solicitation package. 3.2 Plan to develop systems in an incremental,

0 Document the user interface and interaction in evolutionary manner.

SSS, together with system testing information. Our battlefield systems are often too dynamic andfor

a Provide structure for the relationship and complex to field successfully in a single release. It is,
interaction betweenthe user andthe FSDcontractor therefore, very difficult to plan for a system's

inteacton etwen te uer ad te FD cotrator development in one release or block.
for all requirements related matters.

The following subsections elaborate upon these Plans for the development should call for incremental

strategies- releases of the system. It is recommended that users
prioritize their requirements, listing and rating them by
need and by certainty. Requirements that are certain,

3.1 Desionate a Requirements Enaineerina effort well understood and that are critical to user/system
which aMlpies Requirements Engineering techniques furcionality should be met in the initial release. This
from the early Proiect Phases and on. initial system must be useful to the user, providing

es.endial capabilities, albeit it is not everything that is
One can view the RE as having a role that is similar to needed.
an architect of a building project7. The RE must be
under the control and direction of the PM. As this Requirements for subsequent releases can become
function is highly technical and syst3m oriented, it separate options on the FSD contract or they can be

136 10th Annual Natonal Conference on ADA Technology 1992

separae procurements, deperding on the system's systems, this model recommends that this be done by
acqs n approach- the RE prior to the solicitation.

References for examples of successful evo;-Dknary It souid be noted that section 4.0 of the SSS deals
system develpmert are provided 6.8,9 with provisions for -quarity assurance. Test case

requirement coverage and general system test

.3.3 ff the Reauirements Enoineer is a contractor, philosophy should be specified by the RE in this

colractal decougile the RE from the FSD effort. section. Additionally, the RE may be asked to specify
the system requirements test plan and cases in

Requirements are a rnajor determinant in acquisition separate-documents. For some developments, it may

cost and schedule. They should therefore be be appropriate for the RE to support or actually

engineered by an independent agent. A RE perform the testing.

contractor should be precluded from the FSD 3.6 Provide structure for the relationship and
CoMpetitn and subcontracting. interaction between the user and the full-scale

development contractor for all reguirements related
3.4 When aDoficable, establish a FBL with an matters.
alroved SSS prior to the solicitation and make the
SSS a Dart of the solicitation packaae. As mentioned previously, the relationship between

the FSD contractor and the user can unknowingly
For delayed release systems, this model contribute to requirements growth. This model
recommends that the RE write the SSS and conduct recommends that the user/ FSD interaction be
the System Requirements Review prior to the restricted to the point where there is no risk of the
solicitation. The approved and validated SSS would appearance of a conflict of interest. For example,
then come under Government configuration control when the RE is responsible for specifying post-
and become part of the FBL. The SSS should become solicitation requirements, the contractor should be
a part of the solicitation package. By doing so, we will restricted from picking up the phone and suggesting
know what we are buying and bidders will know what new requirements directly with the user. Rather, the
we really want. user and the contractor should interact with the PM

and RE.
This approach does not eliminate the possibility of
changing the requirements during the solicitation In any case, the user representative should be an
period and during the develcpment with controlled active participant in the system's formal reviews.
revisions of the SSS. However, it does reduce some These reviews provide a formal and controlled
of the opportunities for changes with serious impact to environment for user-developer interaction.
occur. Understandably, interactions such as end user

evaluation at the contractor site should not be
Requirements for subsequent releases must also be precluded.
documented in the SSS. They can be stated in
separate appendices At this point they do not need 4. CONCLUSION
the great detail of the initial release's requirements

The acquisition model presented in this paper
3.5 Document the user interface and interaction in the proposes a small change to the current acquisition
SSS, toaether with system testing information, process. Current policies, regulations, and standards

do not preclude the implementation of this model, but
Cost and schedule can be significantly compromised they do not encourage it, either.
when user interface and interaction details are not
agreed upon in a timely manner. Section 3.2.3 of the A step-by-step approach is planned to gain
SSS format describes the interfaces with external recognition and acceptance of the strategies in this
systems. This is an ideal place to provide detail on the model. Our near term goal is for the model to be
man-machine interface and interaction from the user- implemented and validated on a CECOM pilot project.
perspective of the system. For delayed release

10th Annual National Conference on ADA Technology 1992 137

REFERENCES Technology," Air Force Studies Board, 1989.

1. Afford, M. W. and Lawson, J. T., "Software 5. Hess, J. A. et al, "Report of the AMC Software
Requirements Engineering Methodology Task Force,", US Army Materiel Command,
(Development),", USAF Technical Report February 1989.
RADC-TR-79-168.

6. Giordano, F., Wong, B., and McCollum, L, "Rapid
2. Beam, W. R. et al, "Adapting Software Development Speeds Path for Command

Development Policies to Modem System" Signal Magazine, April 1991.
Technology," Washington,DC:National
Academy Press, 1989. 7. S,,"rall, G. E., "Requirements Engineering and

-.da," Proceedings of the 6th National
3. Black, H. et al, "be Technical Cooperation Panel Conference on Ada Technology, March 1988.

(TCP) Requirements Engineering and
Rapid Prototyping Workshop Proceedings," 8. Bersoff, E., Davis A., "Impacts of Life Cycle
US Army CECOM Center for Software Models on Software Configuration
Engineering Technical Report C- Management," Communications of the ACM
0103400000100, May 1990. 34, 8 (August 1991), 104 - 117.

4. Beam, W. R. et al, "Adapting Software 9. Davis, A., "Operational Prototyping: The POST
Development Policies to Modem Story," Submitted to IEEE Software, 1991.

Figure One

Error
Introduced

X 50%Error
vObserved

40 ErrorE 40% Observed

0

> -nawuced30%

< 20%Ero
20% Introduced

10%

Requirements Design Construction Acceptance
& Functional & System Dev Testing &

Analysis Test Operation

Source: "Software Engineering,", Ramamoorthy, et al., IEEE Computer, 10/84

138 10th Annual Natonal Conference on ADA Technology 1992

Alternative Documentation and Review Practices

Raymond J. Menell and Lisa A. Heidelberg

U.S. Army CECOM Software Engineering Directorate

Fort Monmouth, New Jersey 07703

Abstract: This paper provides ideas and Furthermore, the software documents required
guidance for implementing practices for by the standards are not the best medium for
tailoring the DOD-STD-2167A (2167A) adapting to change or performing traceability.
Software Development Process in order to: 1) The reason is that the customer's requirements
reduce excessive documentation and reviews
thereby reducing cost; 2) increase visibility and are being repeatedly modified and/or new
control of the product; and 3) shorten life cycle requirements are being added that impact the
development time. The information in this paper design, code, and test documentation. Also,
has been developed by the Fort Monmouth U.S. design is typically not a straightforward top-
Army Communications-Electronics Command d own ap p ch. Design stra igtfs a d tons
(CECOM) Software Engineering Directorate down approach. Design trade-offs and decisions
(SED) as an outgrowth of CECOM/Industry by a developer are continuously being made
Documentation Task Force (DTF) findings. In during development causing changes to software
general, these findings have pointed to an designs and documents. Furthermore, modem
overreliance on the part of CECOM on plain design and uen Furtherore moer
language documents and formal reviews. The design methods used by a developer require that
principal recommendation is to place more multiple iterations of design be performed before
emphasis on the technical staff reviewing either the preliminary or detailed designs become
projects and less emphasis on the stabilized.
documentation.

The alternative practices being implemented at
CECOM involve the use of a Software Review

Current documentation and review practices are Team (SRT). The team uses software
inefficient and costly as they require the development information rather than
developer to continually translate their internal docuinentation to evaluate the completeness and
representations of software to documents and adequacy of the system. The team is composed
formal viewgraph presentations that are highly of software engineers from CECOM and/or
structured, formatted, and text-based. support contractors who have the ability to read

1Oth Annual National Conference on ADA Technology 1992 139

and understand the developer's software SoftCon 89. The result was a report that defined

process, method, design representation, and Ada problems and recommended improved practices.
implementation. An SRT does not need to rely The second source was primarily on-going

on text-based, plain language documents, and interactions with CECOM PEOs and PMs. These

formal reviews. Therefore, it is possible to interactions include implementation of the DTF

eliminate the Software Design Documents approach in actual Procurement Data Packages

(SDDs) and the Interface Design Documents and "experiments" to help understand how to
(IDDs) during the development stages. The team implement these practices. The experiments are

uses the developer's Software Development Plan partial implementation of the practices.
(SDP) to understand the developer's plans and

process, method, and procedures for developing

the system. Additionally, the SRT uses the The CECOM-sponsored SoftCon 89
developer's Computer Aided Software Conference, held on 24, 25, and 26 January

Engineering tools to facilitate the review of 1989, produced numerous papers, which

requirements and design representations. Also, collectively made the following assertions:

the SRT accesses the developer's configuration

management facility to trace requirements a. An excessive volume of documentation is

through design, code, and test. The SRT called for by the Government.

performs its reviews at the contractor's facility b. Excessive time, effort, and money are spent

during technical interchange meetings. for software documentation preparation, review,
However, the ideal situation for the CECOM and maintenance.

SRT would be to perform routine reviews at

their own worksite. c. Excessive cost of documentation is incurred
by the contractor and the Government.

The benefits of implementing these practices

include: 1) the cost for documentation and d. The utility of the produced documentation is

reviews would be reduced; 2) CECOM CSE questioned by system users and maintainers.

woulO be able to provide timely and accurate
infomatin t PE~ orP~s;and3) CCOMThe Documentation Task Force in response to

the SoftCon 89 Conference showed that the
CSE would have a resource of people who can

provde ranitioal upprt ad PSS.numerous changes in requirements and design
were at the root cause of these problems. Since

2. Background requirements are inevitably being modified or
new ones are being added, changes are needed to

The insight into the problems and solutions arose as sae deig and t es dc ents. eAlo

fix~ tw sorce. Te fist as romthe associated design and test documents. Also,
from two sources. The first was from the design trade-offs and decisions are continually

CECOM/Industry Documentation Task Force being made. In particular, during the developer's
(DTF), which was initiated by CECOM at design activity, the software design may require

140 10th Annual Natonal Conference on ADA Technology 1992

numerous iterations of redesign before the design software design if they are not trained in software

becomes stabilized. Therefore, design change design?" and "What value are nonsoftware
causes documentation to be expensive because individuals adding to the software development
the developers or contractors need to transform effort?" However, there is a high level of design
their abstraction of a design to a "plain language that may be needed by nonsoftware type people.
documentation"; in other words, documentation For example, logistics and training professionals
that is formatted and text-based. Plain language may need an abstraction of the overall design.
documents do not adapt to change very well. The Therefore, these professionals should be
change also impacts the traceability of presented with this level of information. This will
requirements to design. be discussed in Section 4.3 of this paper.

Some contractors have special organizations that The tailoring of DOD-STD-2167A
write and review documentation and spend documentation appears to be another problem.
numerous hours presenting the information to Software Engineers at CECOM currently are
CECOM at formal reviews. This is very costly using the LOGICON's Tailor/2167A tool and/or
and inefficient. Often a plethora of MIL-HDBK-287, 2167A Tailoring Guide. The
documentation arrives a week or two before the tool and Tailoring Guide both are useful. The
formal review due to the documentation being LOGICON tool automatically manages what the
changed. This gives CECOM reviewers very software engineer tailors from the Data Item
little time to read documentation prior to formal Descriptions (DIDs). The Tailoring Guide
reviews. Often, by the time CECOM has provides insight into other process models
reviewed the documents, the design changes. (besides the waterfall model) and its appendixes
One of the by-products is that the documentation have examples of how the software engineer can
production cycle may create adversarial apply the DIDs for three modes of development:
relationships between the contractor and 1) Concept Demonstration; 2) Full Scale
CECOM. Development; and 3) Production Systems.

However, neither the tool nor the Tailoring
anotpro blem withath he G reviewers havenot n Guide provides the Software Engineer with the
approach is that some reviewers have not been triigoinghnesaytomk te

traied n mdem softaredevlopent training or: insight necessary to make the
trained in modern so tware development software engineering decisions that are useful to
practices. Oftentimes reviewers do not rdc xes i h otat Dt

reduce excess in the Contract Data
understand the developers design representation Requirements List. Software Engineers at
and require that the design representation be CECOM complained about how little of the
transformed into a plain language design documentation was reduced when they applied
documentation. Consequently, developers the Tailoring Guide's recommendations to Full
usually question the reviewer's comments on the Scale Development. For example, when
design. Some developers have commented: guidance from the Tailoring Guide was used in
"Why are nonsoftware people commenting on

10th Annual Notional Conference on ADA Technology 1992 141

the tailoring of SDDs, the result was the SDDs in rationale to the user.
almost their entirety. Current tailoring guidance
does not solve the real problems of tailoring the
SDDs because: 1) the level of information Guidance:
requested by Government for the SDDs is too
detailed and/or premature and; 2) design * Establish an SRT in order to be less

information is volatile and difficult to keep dependent on documents and formal reviews. To

updated during development. In other words, do so, develop a charter or sponsoring agreement

there is very little understanding of the timing with the CECOM Project Manager and SRT that

and behavior of software development defines the responsibilities and the resources

information and how to implement it within the required for the SRT to perform its duties. The

CDRLs to minimize documentation. Also, the SRT may be chartered directly by the PM or

2167A paper documentation is not conducive to PEO. The SRT may also be formed by a

understanding the design. sponsoring agreement within a chartered group,
such as the Computer Resources Working Group

The following guidelines are an attempt to (CRWG).
overcome these problems.

0 Define the relationship between the SRT and
4. Guidelines to Implement the Alternative developer in the SOW.

Documentation and Review Practices
9 Have the developer provide training to the

Specific guidance sections are provided SRT on the use of their development software
regarding how to implement the following engineering environment and processes.
alternative practices:

Discussion:
" Establish a Software Review Team (SRT)

An SRT is composed of Software Engineers from
* Tailor the 2167A Documentation CECOM and their support contractors who have

the ability to read and understand a developer's
Document (HLSDD) software process, method, design representation,

and Ada language implementation. Some
* Reformulate PDRs and CDRs members of the SRT also understand the specific
* Adopt a Content- Specific SDF application domain. Members of an SRT are able

to use the developer's Software Development

* Incorporate Electronic Methods of Plan (SDP) to understand the process, methods,

Review. practices, and tools. The SDP also provides the
SRT with the developer's schedules; therefore,

Following each guidance section is a discussion the SRT is able to determine when the developer
section to promote understanding and provide plans to complete life-cycle objects during the

142 10th Annual National Conference on ADA Technology 1992

development in order to review them. The SRT, is very important. A CECOM SRT evaluates and
being technically competent, can use the analyzes information from Technical
developer's CASE tools to access, understand, Interchange Meetings (TIMs), SDFs, and CASE-
and trace requirements, design representations, tool generated representations of the design.
Ada code, and tests. Also, the SRT is able to Once the software development information is
utilize information located in the developer's evaluated and analyzed by the SRT, it is
SDFs. Metrics may be used by the SRT to assist transferred as information to the Project Manager
in focusing in on problem areas. Specific training through briefings, reports, and memos.
in the developer's software engineering
environment, processes, and/or in the application A benefit of using an SRT during development is
domain may be required for the SRT. Many thtC OM pronl ae bcmgdevelopers already have training courses for their knowledgeable of the software and are better ablenewveploes anread Save members ca ther to provide support for transition and PDSS.new employees and SRT members can take the

same courses. One concern that has surfaced regarding the use

of an SRT is whether or not the developer willThe team members perform analysis at the
technical interchange allow an SRT to come on-site. The relationship

contacto s fciliy duingbetween the developer and the SRT and the
meetings. However, an alternative approach is

for the CECOM SRT to perform reviews on-line responsibilities of the developer must be defined

through electronic communication methods. in the Statement of Work (SOW). One of the
major findings of the Documentation Task Force

The SRT can be dynamic and may need to utilize was that the developers in the group said they
additional resources (,r special skills as required. would open their software development files and
For example, if Ada run time kernel issues need environments to individuals if they were trained
to be addressed, an appropriately knowledgable in software engineering and Ada. They would
individual should be employed. However, it is prefer this to generating plain language
recommended that a group of core people remain documentation and interacting with people who
on the project during development, do not understand the software development

Members of the SRT should be part of the representations. In order to insure the SRT is
successful, the developer must be contractually

proposal evaluation team that would determine if bundtsup the rt b

a proposal satisfies the needs of the SRT. As part

of the proposal evaluation it is very important 4.2 Tailor the 2167A Documentation
that the potential developer define their approach
and facilities to develop and test the software Guidance:

system. • In the SOW, eliminate the delivery of the

The transition of information from the developer, SDIs and IDDs during development, and

through the software review team, and to the PM stipulate that the SDFs be delivered

1 Otn Annual National Conference on ADA Technology 1992 143

incrementally with specified contents. For Also, CASE tools working with SDFs stored in
additional information on SDFs, please see an on-line database is a highly recommended

Section 4.5 of this paper. practice for usage on a project that implements

this practice. The tools are needed to construct,* Specify in the SOW that either the "as built" mitiadacs h eoioyo okn

Software Product Specification (SPS) documents m entain nforatito pri t

or the contents of the SDFs be deliverable. If the trcetationshine ong the
SP~sarespecfie as elierabesthenthe traceability relationships needed among the life-

SPSs are specified as deliverables, then the

detailed design portion of the SDDs can be cycle objects (requirements, design, source code,
test cases, etc.); and to generate the formal

deleted in many cases, documentation needed at the conclusion of the

* Specify that requirements traceability tables software development. Automated support is

be provided by the contractor in electronic media. also needed to present working documentation in

a usable form for use by the developers and the
Discussion: SRT.

The SRT reviews the software development 4.3 Use a High-Level Software Design
information utilizing the contractors CASE tools Document (HLSDD)

and SDFs instead of 2167A docum,.;nts. Once the
design is stabilized, the design representation can Guidance:

be put into a plain language "as built "documents, 9 Have the preliminary design activity be at the
if desired. The "as built" documents can be used total software system level via the HLSDD rather

for PDSS in the form of Software Product than at multiple CSCI levels. Please see Section

Specifications (SPSs) along with the IDDs. Also, 4.4 of this paper on reviewing the HLSDD.
it may not be necessary to include the detailed

design section of the SDD in the SPS since the Discussion:
Ada code would provide the level of detail toAda odewoud povie th leel f dtai to The level of detail called for in ",he SDD and IDD
understand and maintain the design. However, if th e level of da called forthe eveope's D~s re pecfie as at Preliminary Design Review (PDR) is called for
delieveloeres may b e ef d s too early in the systems life cycle. Information

such as memory and processing time allocation,

Electronic generation of traceability tables is control and data flow, local Computer Software

recommended. Traceability is required between Component (CSC) data, timing and sequencing,

requirements and design, between the and error handing are often not available.
requirements and test procedures, and between Therefore, why force a contractor to produce (or

design and source code. When working fake) this information in formal documentation
documentation changes, the traceability between and reviews if it is going to change or needs to
tables must change to reflect the current system. change in order to generate a quality system? Part

of the problem is that design is not a complete

144 10th Annual Naonal Conference on ADA Technology 1992

top-level process but also requires a bottom-up or electronic communications. Another
thought process. In modem design methods, it is implementation of this guidance is to split the
difficult to identify objects at the early stages of CDRs into TIMs and a Management Sessions.
the design process. Sometimes a developer Discussion:
requires numerous iterations to establish a
satisfactory design object. Under 2167A, a The traditional PDRs and CDRs, according to
developer would be required to redo the design, MIL-STD-1521, are replaced in part by the
planning, and traceability documentation for evaluation of "Working Documentation" via
each design iteration. TIMs between the developer and the CECOM

There is need for a level of information or design SRT. Working Documentation resides in the

that may be useful to individuals who are not developer's Software Engineering Environment

trained in software engineering and Ada. (SEE) and SDFs and is a dynamic electronic

However, even for the technical person a high- representation of the status of the software

level type of document is necessary because the development.

total software design sometimes gets lost within 4.5 Adopt a Content-Specific SDF
the Computer Software Configuration Item
(CSCI) parts. Therefore, a high-level design Guidance:

review and document may be needed to help see * Specify the content of the SDFs to supplant
the whole software design and to give those 2167A documentation and accept the SDFs "as
without a software background insight into the built" in incremental deliveries.
design.

Discussion:
4.4 Reformulate Preliminary Design Reviews
and Critical Design Reviews The SDFs serve as living documents during a

2167A development. It is the contractor's

Working Documentation that is called for by the

* Hold a single PDR based on the HLSDD that DTF report. This means that the requirements

addresses the entire software system down design and test information it offers is the most

through CSCI identification and functionality. current available from any documentation
sources within the project. While this guidebook

• Specify that design reviews become a calls for tailoring 2167A practices, the usage of
progressive series of reviews carried out by SDFs (which is a 2167A practice) is an excellent
trained and qualified software review team on form of documenting and reviewing the software
the developer's working documentation (e.g development.
SDFs).The reviews are performed during
Technical Interchange Meetings or more ideally Further, by specifying the contents of the SDF in

at CECOM through the use of CASE tools and/ the areas of requirements traceability, interface

10th Annual NoTlional Conference on ADA Technology 1992 145

design, and test, the SDFs will then prove to be a provides more timely information on the status
superior replacement for such 2167A and risk areas of projects.
documentation as SDDs, IDDs, and SPSs. 5. Afterword

4.6 Incorporate Electronic Methods of
Review The guidance given in this paper arises from the

collective minds of Fort Monmouth CECOM
Guidance: and Industry concerning Ada software

acquisitions. Nevertheless, partial* Incorporate into the SOW provisions implementations of the guidance have occurred

allowing for electronic methods of access from a onleentathouh the ractial re

remote site and on-site at the contractor's facility this guidance are proving to be very effective, it

on a read only basis to a specific directory area is hop e at wit furt er epeie in
of te cotrator' sotwar enineeing is hoped that with further experience in

of the contractor's software engineering implementing these approaches and studying

environment. These provisions should allow for theirmconsequenes e approach o t is
reviw ofthe olloing:their consequences, the approach of this

review of the following: Guidebook might be improved and refined.

Ada Design Language Raymond Menell is a Software Engineer with
Requirements traceability the U.S. Army, CECOM Software Engineering
CASE design representations Directorate, Software Technology Division, Fort
Ada source code Monmouth N.J. He is currently involved in
Ada test cases/results improvements in the use of software methods

Discussion: and tools by CECOM for software review and
Post Deployment Software Support. He received

Travel to and from contractor's site for review of a BS and MSCS from Monmouth College, N.J.
developmental status is costly both in time and and is currently completing his studies for an
money. Meanwhile, when SRT members MS in Software Engineering at Monmouth
representing the PM are on site there are College.
problems associated with reviewing current
stages in the product under development. Lisa Heidelberg is a Software Engineer with the

Electronic methods of review allow for cost U.S. Army, CECOM Software Engineering

effective access to critical information Directorate, Tactical Communications Branch,

associated with the products development. Fort Monmouth N.J. She is currently involved in
the acquisition, and system and software design

For example, most contractors use requirements of a Mission Critical Defense System. She
traceability tools, Ada Design Language, Ada received her BS in Computer Science from
Language, and Ada test procedures, all of which Trenton State College, N.J. and her MS in
are available in the host computer development Software Engineering from Monmouth College,
environment. Electronic methods of review N.J.

146 10th Annual National Conference on ADA Technology 1992

USING PETRI NET REDUCTION TECHNIQUES TO DETECT
ADA STATIC DEADLOCKS

P. Rondogiannis M. H. M. Cheng

Department of Computer Science
University of Victoria, Victoria, B.C., Canada V8W 3P6

Abstract: Recent research in static analysis of the Ada nets can be significantly eased if the
Ada programs is based on the proper manipulaion nets are simplified using reduction techniques from
of the Petri net representation of the programs us- Petri net theory. The proposed approach is based
ing techniques from Petri net theory. We present on the observation that Ada nets carry redundant
an algorithm for detecting static deadlocks in Ada information which is useless during deadlock de-
programs, which is based on Petri net reduction tection.
techniques. The proposed approach has been in- The rest of this paper is organized as follows:
fluenced by current research in Process Algebras, Section 2 gives a basic introduction to Petri nets.
and has, for this reason, a clearer theoretical basis Section 3 describes the reduction techniques we
than other existing techniques. are going to use. Section 4 contains a number of

theoretical results that extend the proposed re-
Index Terms: Ada, Deadlock, Petri Nets, Re- ductions so that they can be applied for the de-
duction Techniques, Ada Nets, Static Program tection of deadlocks in Ada programs. Section
Analysis. 5 presents the deadlock detection algorithm, and

section 6 illustrates the algorithm by an example.

1. Introduction Finally, section 7 presents the main results of the
paper as well as related work.

Over the past few years, a number of techniques
have been proposed for the detection of deadlocks
in Ada programs. These techniques are based on 2. Definitions
static analysis, that is, analysis that is performed
on a model of the program without requiring test Petri nets are a tool for the study of systems.
executions. Taylor i , proposed a general-purpose Petri net theory allows a system to be modelled
algorithm for the analysis of Ada programs that by a Petri net, a matematical representation of
is based on the generation of the so called concur- the system. Analysis of the Petri net can then,
rency histories of the program As this method is hopefully, reveal important information about the
in fact based on state enumeration, it is inherently structure and dynamic behaviour of the modelled
inefficient. More recent work 2'3, is based on the system. In the literature, several different ver-
representation of the program by a Petri net (ci sions of Petri nets have been proposed, depend-
Ad net). The objective of such a representaticn ing on the level of detail at which one wishes to
is to apply techniques from Petri net theory in describe a specific system. The notation adopted
order to reduce the complexity of the state enu- here has turned out to be very useful in relat-
meration approach. ing Petri nets with concurrent programming lan-

In this paper, we suggest that the analysis of guages.

10th Annual Nabonal Conference on ADA Techno,.gy 1992 147

Definition 1 A Petri net (or simply net) is a A marking that can be reached by successive ex-
structure R -= (Pl, T, Mo) where: ecutions of transitions is called a reachable mark-

1. P1 is a possibly infinite set of places. ing. Formally:

Definition 4 A reachable marking is a marking
2. T £ A(PI) x A(PI) is a set of transitions. M for which there exist intermediate markings

3. Mo E A(Pl) is the initial marking. Ml,..., M, and transitions tl,...,t, with M0 14

Here A(Pl) denotes the set of all non-empty, fi- M, M" M.

nite subsets of Pl. For a transition t = (1,0), Definition 5 A net R is safe if and only if in
its preset or input is given by pre(t) = I and every reachable marking, the number of tokens
its postset or output is post(t) = 0. Similarly, per place is either zero or one.
for p E P1, pre(p) denotes the set of transitions
that have p in their postset and post(p) is the set The reachability graph is a tool that has been used
of transitions that have p in their preset. Petri for the analysis of Petri nets. Intuitively, a node of
nets are usually represented graphically in the fol- the reachability graph corresponds to a reachable
lowing way: places p E PI are represented as marking of the Petri net, and an edge between two
circles 0 with their name p outside, and tran- nodes corresponds to a transition execution which
sitions t = ({pl,.. .,Pn),{Pn+i,... ,Pn+ml) are transforms one marking into another. Formally:
represented as bars I carrying the label t outside
and connected via directed arcs to the places in Definition 6 The reachability graph of a Petri
pre(t) and post(t). The initial marking M0 is rep. net R = (PI, T, Mo), is a graph RG = (V, E)

resented by putting a dot * (or token) into the cir- where V = {M : M is reachable from MO} and
cle of each place in Mo. The dynamic behaviour E = {(M 1,M 2) : M1,M 2 E V A 3t E T, M1 4
of a Petri net, is accomplished through the execu- M2).

tion of transitions. Although in the initial mark-
ing of a Petri net only single tokens are allowed The reachability graph of a safe Petri net can be

for each p E M0 (i.e Mo is a set), the execution of used to detect deadlock markings of the net, i.e.,
transitions may result in places having more than states where no further transition can execute.
one tokens. To describe this situation, the notion The following two theorems suggest how:
of a multiset is used, i.e., a set where multiple Theorem 1 The reachability graph of a safe
occurrences of elements are allowed. The... Petri net is finite.

Definition 2 A marking M of a Petri net R =
(Pl, T, Mo) is a multiset over Pl. Theorem 2 A node of the reachability graph of

a Petri net that has no outgoing edges (sinknode),
Let C, U and - denote multiset inclusion, union indicates a deadlock marking of the Petri net
and difference respectively. Then the execution of
a transition is defined as follows: We can now outline the proposed deadlock de-

tection technique: Given an Ada program P, we
Definition 3 Let R = (PI,T, Mo) be a net, t= initially construct the corresponding Ada net R.
(1,0) a transition of R and M be a marking of The straightforward approach would be to con-
R. Then: sider the reachability graph of R, and search for

1. Transition t is enabled at M if I M M. sink nodes that would indicate deadlock states of
the program. However, such an approach is equiv-

2. If enabled at M, the ezecutionof t transforms alent to exhaustive state enumeration. Instead,
M into a new marking M, of R, and M1 = we use reduction techniques on R in order to get

(M - I) U 0. In symbols: M -t M1. a simpler net R' which has a smaller reachability

148 10th Annual Natonal Conference on ADA Technology 1992

graph. The crucial property of the reductions we 3. There exists a transition in F that has at
use is that they preserve the deadlock informa- least one output place.
tion of the initial net. The proposed reductions (3f E F, Ipost(f)l > 0)
are presented i. the next section. 4. Place p is not an input of h.

3. Reduction Techniques (p 0 pre(h))

5. Place p is an output of h.
In order to ease the analysis of Petri nets, a (p E post(h))
number of transformations have been proposed
in the literature4,5,6 which simplify the net while 6. Except for h and the transitions belonging to

preserving some of its important properties. In F, no other transition is connected to p.

general, different transformations preserve differ- (Vt E (T-({h}uF)), p V pre(t)Ap V post(t))

ent properties of the initial Petri net, and aim
at different goals. The transformations we have 7. Place p holds no token initially.
adopted preserve safeness and deadlock freedom (P V Mo)

and allow, as we are going to show, an elegant
treatment of deadlock detection in Ada programs. Whenever the above conditions hold, the Petri
More specifically, we use post-fusion and pre- ne tn e moe coding to the Petoi
fusion of transitions, as well as elimination of re- ntinb
dundant places. definition:

Before giving formal definitions, we discuss the Definition 8 Let R = (P,T,Mo) be a Petri
intuition behind the transformations. Elimina- net, and let F C T, h E T and p E P1 satisfy
tion of redundant places consists of the removal the conditions of Definition 7. Then, the sys-
of places whose marking is always sufficient to al- tenrsting by tefpotion of han h s

low executions of transitions connected to them. R' = (P', T', M o), with.

This kind of transformation does not cause any

modification to the behaviour of the net. On the 1. Pl' = P1 - {p}
other hand, fusions of transitions itave been de-
fined in order to make indivisible some transition 2. T' = (T - {h) - F) U F' with F' defined as:

sequences representing actions which may occur
more or less at the same time. They are based on {h f, : f = E F and
the fact that it is not mandatory for a transition pre(hf,) = pre(h),
to execute as soon as it can execute. Although the post(h I,) = (post(h) - {p}) U post(f,)}
formal definitions of the transformations that are
given below seem complicated, their intuition can where hf, denotes the concatenation of h with f,.
be easily understood by the accompanying figures. Definition 8 is illustrated in Figure 1(a) for the

Definition 7 Let R = (PI, T, Mo) be a Petri net. case F = If) and in Figure 1(b) for the case

A non-empty subset F of T is post-fusable with F = {f, f2).

h E T if and only if there exists a place p E PIsuch that the following conditions are satisfied: Definition 9 Let 1? = (Pt, T, Mo) be a Petri net.
A non-empty subset F of T is pre-fusable with

1. The only input of every f E F is p. h E T if and only if there exists a place p E PI
(Vf E F, pre(f) = {p)) such that the following conditions are satisfied:

2. Place p is not an output of any f E F. 1. The only output of h is p.
(Vf E F, p 9 post(f)) (post(h) = {p})

10tt Annual Nabonal Conference on ADA Technology 1992 149

2. Place p is not an input of h. 1. The only input of p iz to-
(p0 pre(h)) (p7 0p) = Ito))

3. Transition h has at least one input. 2. The only output of p is t,.
(pre(h)l > 0) (post.p) = {t})

4. Every transition of F has p in its input. 3- The only input of each pi is ti.

(V E F, p E pre(f)) (pe(p) = {td, i = 0,..,a- 1)

5. No transition of F has p in its output. 4. The only output of each pi is 4-+,.
(Vf E F, p € post(f)) 0 o'5(p) = ft +1}, i =0.,n -I)

6. Except for h and the transitions belonging to
F, no other transition is connected to p. Definition 12 Let R = (FL Jo) be a Petri

(Vt f ({h U F),p 0 pre(t) A p ipost(t)) net, and let Ppo,-..,p,._1 E P1 and to, ...It. E T
satisfy the conditions of Definition 11. Then. the

7. Place p holds no token initially, net resulting from the elimination of p is R' =

(p _ Mo) (Pf', T'. M0). with:

8. Transition h does not share its input. I. PI' = P- {p}
(Vq E pre(h), Vt I h. q . pre(t))

Whenever the above conditions hold, the Petri 2. T' (T- Ito tQ)u {4,tQ where

net can be modified according to the following to = (pre(o),act(to)pot(o)- {p})

definition: = (pre(t,,) - {p},act(t,,),post(i,,)

Definition 10 Let R = (PI,T, Mo) be a Petri
net, and let F C T, h E T and p E PI satisfy Figures 3(a) and 3(b) illustrate the above defini-
the conditions of Definitior "L . the system tions for n = 1 and n = 2 correspondingly. The
resulting by the pre-fusion ai.a h is R' = above transformations preserve the safeness and
(Pl', T',Mo), with: deadlock freedom of a Petri net s . Formally:

I. P"= PI- {p} Theorem 3 Let R = (Pl, T, Mo) be a Petri net

2. T' = (T - {h} - F) U F' with F' defined as: and R' = (Pl', T', Mo) be the net resulting from a
sequence of the above transformations. Then, R'

{hf1 : f1 E F and is deadlock-free (safe) if and only if R is deadlock-
pre(h f ,) = (pre(f1,) - {p}) Upre(h) free (safe).

post(hf 1) = post(f,)}

where hfi denotes the concatenation of h with f,. 4. Theoretical Extensions

Definition 10 is illustrated in Figure 2(a) for the In this section, we extend the theory of reductions
case F = { f} and in Figure 2(b) for the case in order to get an algorithm for detecting static

The lat c r o. rdeadlocks in Ada programs. More specifically, we
Tha stcatgo of redu c ins, ntrduce belo- consider sequences of reductions, not just single

reductions. As we aim at detecting all the dead-
Defirition 11 Let R = (Pl,T,Mo) be a Petri locks of a program, we need a stronger version
net. A place p E P1 is called redundant if and of Theorem 3 which will ensure that no deadlock
only if there exist transitions t0,-.., t, and places is lost or added during the reductions. On the
Po0 ... ,Pn-i such that the following conditions are other hand, we do not just need to detect that a
satisfied: deadlock exists: we are interested in finding out

150 10th Annual Notbonal Conference on ADA Technology 1992

what sequences of transitions (or steps in the pro- Ro to deadlock, where w,,,, m = 0, - 1, is ei-
gram) have led to deadlock. This is very impor- ther equal to hm or empty.
tant for the designer of a system, because it can
help him identify the flaws in his design and cor-rect them. In the following we formalize th stored during the reductions, one can later re-

ideas. Let 1?o = (Po, T _,11o) denote the initial store the sequences that lead to deadlock in R0 ,

Ada net and R.. = (Pli, T,, Moj) be the resulting by properly extending the sequences that lead to

net after a sequence of i reductions on Ro. In the deadlock in R,.

following, we assume that Ro is a safe Petri net. Finally, if a sequence of redundant place elimi-

and by Theorem 3. Ri is also safe. The detailed nations is applied on the initial Ada net, then the

proofs of our results are not given here-', deadlock sequences of the reduced net also lead

We first examine the case of post-fusions of to deadlock in the initial one. Formally:

transitions. The intuition behind the following Theorem 7 Let Ri be the Petri net resulting
theorem is that whenever an Ada net is reduced from R0 after a sequence of eliminations of re-
using oily the post-fusion rule. and we know a dundant places. Then if a leads Ri to deadlock.
sequence of transitions that leads to deadlock in it also leads R 0 to deadlock.
the reduced net. it is guaranteed that this same
sequence leads to deadlock in the initidl net. For- All the results presented until now. can be used

mallv: to construct an algorithm for efficient deadlock
detection in Ada programs. However. we need

Theorem 4 Let R, be the Petri net resulting one more result. %%hich ensures that no deadlock
from Ro after a sequence of post-fusions of transi- is lost during the reduction procedure:
tions and let a be a sequence of transitions leading
R, to a deadlock marking M'. Then a also leads Theorem 8 Let R, be the Petri net resulting

Ro to a deadlock marking M. and M = -i'. from Ro after a sequence of reductions. Let 6o
and 6, be the number of deadlock markings in R0However things are not as straightforward when, and R, correspondingly. Then. 60 = 6.

the pre-fusion rule is used. Intuitively. in the case
of pre-fusion. a sequence of transitions that leads 5. The Algorithm
to deadlock in the reduced Ada net, does not al- -. _TheAlgorithm

ways lead to deadlock in the initial one. hlow- In this section. the proposed approach for dead-
ever. it leads very close' to deadlock. This means lock detection in Ada programs is presented. An
that after applying this sequence to the initial iet. informal description of the algorithm is given be-
only a bounded number of further transition exe-

cutins my ocur. ormaly:low:
cutions may occur. Formally: The input of the algorithm - an Ada program

Theorem 5 Let R 1 be the Petri net re.,ultijig - is initially transformed into its corresponding

from R0 after a pre-fusion of transitions F with Ada net. In order to reduce the number of states

transition h and let a be a sequence of transi- that have to be searched for deadlock, a sequence

tionsleading R 1 toadeadiock marking 3'. Theii. of transformations is applied on the net. Initially.

either a leads R0 to the same deadlock mark- redundant places are removed. From Figure 3,

ing M', or ah leads Ro to the deadlock marking it is obvious that the elimination of redundant

(M' - pre(h)) u {p}. places reduces in general the number of inputs
and outputs of transitions. This fact increases

Theorem 6 Let R, be the Petri net resultifig the probability that the new net will contain pre-
from R 0 after a sequence of pre-futions of tralii- fusable or post-fusable transitions. The net is
tions, and let a be a sequence of trajiiitioi, led- theni searched for fusable transitions. When the
ing R, to deadlock. Th(.. au,_ Izi,-2. ii leatd, final irieducible net is obtained, its reachabilit

1Oth Annual National Conference on ADA Technology 1992 151

graph is computed, the possible deadlocks are IF hj can fire in Ro THEN
identified and paths leading to those deadlocks p,, := p, o h,;
are detected. However, this is not enough. We END;
are interested in the paths that lead to deadlock Output pn;
in the initial Ada net, not the reduced one. Such END;
information would allow the designer of a system Before illustrating the algorithm by an example,
to identify the deadlocks, and modify the system
in order to avoid them. Thus, we use the the- sm omnsaencsaywasorder deavoed en. Theu iuse sen to- First, the algorithm always terminates. This is
ory that wdue to the fact that each time one of the proposed
extend the paths that have been found, getting transformations is applied, the size of the net is
in this way the paths that lead to deadlock in the reduced: each place elimination removes one place
initial Ada net. The algorithm is described below: and each fusion of transitions reduces the number

Input: An Ada program P. of transitions by one and also removes one place.

Output: Paths leading to deadlocks As we have a finite initial net, the reductions ter-

in the corresponding Ada net. minate in a finite number of steps.
Second, the reductions can be performed very

Transform P into the corresponding efficiently. In the case of a fusion of transitions.

Ada net Ro = (Plo. To, Moo): one must consider a place of the net and check
if the transitions in its preset and postset satisfy

Eliminate Redundant Places; the required conditions. However, the number of

WHILE 3 post-fusable F and h,, DO transitions in the preset and the postset ofaplace,

Apply post-fusion rule; is very small in practice, and of cource bounded by

END; the number of transitions in the whole net. There-

Initialize H to empty; fore, fusions can be performed very efficiently. On

WHILE 3 pre-fusable F,,, and hm DO the other hand, detecting a redundant place con-
Apply pre-fusion rule; sists in finding a place with only one input tran-

H := hm o H; sition to and only one output transition t,, such

END: that to and t,, satisfy the properties of Definition

Let H be h,_ 1 o h,_ .o... o ho, where 11. These properties can be easily validated by a

i is the number of pre-fusions of transitions depth first search algorithm that starts from to.

that have occured. During the depth first search, all the places vis-
ited. are examined to ensure that they have just

Obtain the reachability graph of the reduced one input and one output. Clearly. redundant

Petri net; places can be detected efficiently as well.
Concluding. we should point out that the Ada

For each sink node n of the graph, find a path net representation of an Ada program is usually

Pn which starts from the root of the graph and very small compared to the size of the correspond-

leads to n; ing reachability graph. In this sense, it is worth
performing the reductions on the net. than try-

IF pre-fusion rule has not been used THEN ing to find techniques that would operate on the

Output the set of paths found; reachability graph directly.

ELSE
FOR each path p, DO 6. An Example

Follow the path in the initial net R0:
Let the path lead to a marking MI: In the following we give a complete example of the
FOR j = - 1 TO 0 DO applicability of the proposed algorithm. We use

152 1th Annual Natonal Conference on ADA Technology 1992

a producer-consumer program3 , which contains a 7. Conclusions
deadlock. The corresponding Ada net is given in
Figure 4. The algorithm first locates the redun- An efficient algorithm for detecting static dead-

dant places, which are indicated with a shaded cir- locks in Ada programs has been presented. The

cle in Figure 4. After the removal of these places, algorithm uses Petri net reduction techniques in

we have a sequence of 8 post-fusions of transitions order to reduce the overhead of the state enumer-

and 2 pre-fusions. The pairs of post-fused transi- ation approach. The reductions used, have the

tions are: important property of retaining the deadlock in-

t13 t4 formation of the initial Ada net.
Clearly, the proposed approach is superior to

t42 t73 t4 the state enumeration algorithms1'2 . Moreover, it
07 t16 is simpler and has given better results than the

t9 io approach based on Petri net invariants3. More
t9tl0 tlO recent and independent work s, also uses Petri net
tls ti reduction techniques in order to achieve the same
tl 8 t19 t20 goals as ours. However, our approach has a bet-

ter theoretical basis as it was first used on process

The pairs of pre-fused transitions are: algebras 7 such as Milner's CCS9. Moreover, in
our approach we propose a specific algorithm for

t17 tl11020 applying the reductions, something that is miss-
t8ing from. inally, our technique for finding the
18 19110t11 deadlock marking in the initial Ada net gives the

chance to the designer of the system to recon-
The reduced net is shown in Figure 5. According struct the sequences of transitions that have led
to the algorithm, the hm's are stored during the to deadlock. This is very important if the goal is
pre-fusion reductions, and we have H = t17o08. In not only to detect hidden deadlocks in the design,
the reduced net, we represent with u,, i = 1, ...,4. but also to correct them.
composite transitions that result from the fusions.
More specifically: References

U1 = t12t13t4 [1] R. N. Taylor. A general-purpose algorithm for

U2 = t6t7t16 analyzing concurrent programs. Comrnunica-

U13 = 18911011 tions of the ACM, 26(5):362-376, Sept. 1983.

U4 = t17t18s19120 [2] S. M. Shatz and W. K. Cheng. A Petri net

framework for automated static analysis of

The reachability graph of the reduced Petri net is Ada tasking behavior. The Journal of Sys-
then obtained, a deadlock state is detected, and tems and Software, 8:343-359, Dec. 1988.
the path p1 = W1511213 that leads to this state [3] B. Shenker T. Murata and S. M. Shatz. Detec-
is reported. Following P, in the initial net, we tion of Ada static deadlocks using Petri net in-
get the marking P2,P5, P8, P12,P15,P9P27). Ac- variants. IEEE Transactions on Software En-
cording to the algorithm, the only two transitions gneering, 15(3):314-326, Mar. 1989.
that may fire are t17 and t8. This is really the
case, and after their execution the initial Ada unet [4] G. Roucairol G. Berthelot and R. Valk. Re-
becomes deadlocked. We should note here that duction of nets and parallel programs. In
the initial reachabilit. graph had 82 nodes, 'uhile V. Brauer, editor, Net Theory and Appbca-
the reduced one has only 15 nodes. tons. volume 84 of Lecture Notes in Computer

10th Annual National Conference on ADA Technology 1992 153

Science., pages 277-290. New York: Springer- and 1984 respectively, and the Ph.D. in Computer
Verlag, 1980. Science from the University of Waterloo in 1988.

He is currently an assistant professor at the Uni-
[5 g .Brhsfomt.iChecIng. ro ertis oedtr, uversity of Victoria. His research interests include
ing transformations. In G. Rozenberg, editor, logic programming, operating and real-time sys-

Advances in Petri Nets, volume 222 of Lecture tems a tor y of o rrenc His re t mai-
Note inCompterScincepags 1940.New tens and theory of concurrency. His current mail-

Notes inompteriene, pags 9ing address is: Department of Computer Science,
University of Victoria, Victoria, B.C., Canada,

[6] G. Berthelot. Transformations and decom- V8W 3P6.
positions of nets. In W. Reisig W. Brauer
and G. Rozenberg, editors, Petri Nets: Cen-
tral Models and their Properties, volume 254
of Lecture Notes in Computer Science, pages
359-376. Springer-Verlag, 1987.

[71 P. Rondogiannis. Detecting deadlocks in CCS
agents using Petri net reduction techniques.
Master's thesis, Department of Computer Sci-
ence, University of Victoria, 1991.

[8] S. M. Shatz S. Tu and T. Murata. Applying
Petri net reduction to support Ada-tasking
deadlock detection. In The lOth Interna-
tional Conference on Distributed Computing
systems, 1990.

[9] R. Milner. Communication and Concurrency.
Prentice-Hall, 1989.

Panagiotis Rondogiannis received the Ptihion
in Computer Engineering and Informatics from
the University of Patras. Greece, in 1989. He is
presently completing his M.Sc. degree in Com-
puter Science, at the University of Victoria, B.C.,
Canada. His research interests include theory of
concurrency and distributed systems. He cur-
rently holds a University of Victoria Graduate
Fellowship, and has been awarded several Scholar-
ships from the Greek Institute of Fellowships since
1984. His current mailing address is: Department
of Computer Science, University of Victoria. Vic-
toria, B.C., Canada, V8W 3P6.

Mantis Cheng received the B.Math. and
M.Math. from the University of Waterloo in 19,2

154 10th Annual National Corteence on ADA Technolog, 1992

(Z2

(b)

Figure 1: Example of Post-fusable Transitions.

h

ff

(a)

f I f hfI hf1 2
1 2

Ib)

Figure 2: Example of Pre-fusable Transitions.

10th Annual National Conference on ADA Technology 1992 155

(b)

13P1

P2t
2

..

Figre : Iital da et

156 0thAnnul Ntionl Cnfeenceon DA Tchnlog 12

t

p P14

Fiur 5: Reuet Aant

lpbAna ainlCneeceo D ehooy~9 5

Ada in the Soviet Union

by Peter Wolcott
Department of MIS

University of Arizona
Tucson, AZ 85721

(602) 626-8682

keywords: Ada, Soviet Union, technology transfer

[abstract] Over the last decade and a half, the Ada programming language has aroused more
financial, technical, political, and emotional forces than any other programming language. Be-
cause the language is a product of more than just technical factors, its progress is heavily influ-
enced by the surrounding social, economic, and political environment. Judging by the technical
characteristics of the language and the goals for its use, one would expect that Ada would be the
subject of intense development by the USSR, as well as by the USA. In practice, the Ada expe-
riences in these countries differ considerably. We examine the state of Ada in the Soviet Union
from four perspectives: the development of Ada technologies, training and educational efforts,
technology transfer within the Soviet Union and from the West, and the levels of interest and
support among practitioners, managers, users, and policy makers.

Following the 19/9 publication of the Ada Language Requirements Manual, Ada attracted con-
siderable attention in the Soviet Union. A Russian language version was published in 1980, and
a high-level Ada working group under the State Committee on Science and Technology was
established in 1982 with a mandate to examine the capabilities of Ada, coordinate Ada develop-
ments, and determine the need for the language in the Soviet context. By 1987 several tens of
Soviet groups were working on implementations. As in the West, the early practitioners serious
underestimated the difficulty of implementing the language. There are today only three to five
strong Ada groups and a few dozen less serious projects.

Few organizations have developed full compilers. In the absence of policies mandating uniform
implementations and a controlling body analogous to the AJPO, subsets proliferate. The leading
work has been done at the Computer Center of Leningrad State University, the Novosibirsk
Subsidiary of the Institute of Precision Mechanics and Computer Technology, and the Scientific
Research Center for Electronic Computer Technology in Moscow in cooperations with a group
of Hungarian organizations. The environments for their compilers typically provide basic sets
of tools such as debuggers, linkers, some code management support tools, and testing and diag-
nostics utilities.

The growth of Ada training facilities corresponds to the growth in activity in compiler develop-
ment. By 1987, thirty high-education institutions were offering courses in Ada.

Formal and informal transfer of know-how between practitioners has played an important role
in the development of the language in the West. While such interaction between Soviet practi-
tioners takes place, it appears to be at a more moderate level than in the West. The Soviet Ada
community has had very little direct contact with the West. Although the reforms in the Soviet

158 1Oth Annual National Conference on ADA Technology 1992

Union have made it easier for Soviets to attend western conferences, a lack of necessary hard-
currency has proved a major obstacle. Western journals do reach the Soviets, but irregularly,
and usually with great delay. The New York University Ada interpreter, and a copy of a DEC
Ada compiler have been installed at a number of locations. A few validation suites, from 1984
and 1986 or 1987, have also appeared in the Soviet Union.

A basic characteristic of the Ada experience in the Soviet Union is that, in strong contrast to the
US experience, relatively more of the initiative has come from the bottom up. This initiative has
not been accompanied by corresponding funding of development, however. A dominant reason
is the software development culture of policy makers and managers which places much greater
emphasis on efficiency of execution rather than efficiency of development and maintenance.
Alternative sources of funding such as venture capital are virtually non-existent.

For a strong Soviet Ada community to develop, there must be strong indigenous demand for,
and support of the language, economic incentives which reward developers, adequate tools, and
exchange of technology, know-how, and experience within the Ada community and with the
West, and a solid educational base. The perestroika-related reforms have created the potential
for each of these components to improve. The reforms are requiring that organizations pay
much greater attention to life-cycle costs, and new organizational forms such as cooperatives,
joint ventures, and small enterprises now allow much higher levels of compensation for work
performed. As the borders of the Soviet Union open, it is likely that contacts between the east-
ern and western Ada communities will increase.

1 0th Annual Nafional Conference on ADA Technology 1992 159

IMPACTS OF CASE TOOLS ON THE WORKING
PROCESS OF SYSTEM DEVELOPMENT CREW

Violeta Buic

241 Hugo Street
San Francisco, Ca 94122

(415) 358-5655 (W)
vbulc%ssf-sys.com.dhl.com.@uunet.uu.net

ABSTRACT demands for a high quality and performance of the corn-
CASE (Computer Aided Software/System Engineering) petitive market, the companies need a new approach to
tools are a subject of contradictory opinions among people systems development. A new technology should be able to
involved in development of information systems. Devel- overcome the potential difficulties, and ensure streamlined
opers of CASE and a majority of information systems systems development, maintenance and control.
gurus state that CASE tools are urgently needed for a suc-
cessful information systems development. System ana- In the response to problems in system development life
lysts, designers, and programmers seem to look at CASE cycle (SDLC), computer-aided software/system engineer-
more suspiciously. In order to clarify the impact that ing (CASE) tools have been welcome as a possible solu-
CASE tools have on the working environment of a "sys- tion. A CASE tool is defined as "an interlocking set of
tem development crew" analysis of literature and a survey formal techniques in which enterprise, data, and process
among information systems professionals using CASE models are built up in a comprehensive knowledge base
tool have been performed. and are used to create and maintain data processing." [6]

CASE links data modeling, business modeling, informa-
OVERCOMING THE SYSTEMS DEVELOPMENT CRISIS tion strategy planning, and code generators. It also encour-
Modem corporations are becoming increasingly depen- ages 'igh involvement of end users in design and
dent on data concentrated on a different hardware plat- prototyping of the system, as well as the involvement of
forms and organized by diverse database structures. Yet, top management in setting priorities and defining informa-
their ability to organize that data efficiently is reaching the tion needs. Yet, the tool's implementation affects the tasks,
limits of the existing systems and tools available. The con- structures and human subsystems within an organization.
sequence is that organizations are loosing control over sys- CASE requires changes in working habits of employees
tems development and maintenance. It seems that and their way of thinking.
hardware can not be blamed for such a situation.[2] In fact,
computers are becoming faster and more powerful every Strengths Of CASE Tools
day. The problem lies very likely in the capacity and com- CASE implementation has some important strengths.
plexity of software applications, and in the organization of First, it supports system development in the contexi of the
information systems development.[1,4] According to the company's overall business strategy and plans. This is
research done by Paul Attwell, professor at the State Uni- accomplished by the storage of system specifications in a
versity of New York at Stony BrookJ4] the investment central information repository. An information repository
that has been made by corporations in information tech- documents the business information, their resources, logi-
nology gave almost no increase in productivity. Further- cal models that support those resources, and information
more, new technology generates more work for the end about their relationships. Second, CASE facilitates easier
users and adds an additional layer of administrative over- system prototyping through the capability to change speci-
head to manage new systems. Therefore, to satisfy the fications and determine the impacts of alternative features

on the performance of the system. Third, it enforces the
use of corporate standards for all phases of the SDLC
within the company. Fourth, due to embedded iteration of
required system development phases, it enforces easy
tracking and upkeep of development steps through the sys-
tem development life cycle, e.g., easier system control and
documentation. Finally, it encourages the use of simplified
command interfaces, the elimination of the alien syntax,
and the extensive use of graphics screens.

160 10th Annual National Conference on ADA Technology 1992

Weaknesses Of Case Tools 6. Due to lack of experience with and confused expecta-
The weaknesses of CASE tools are strong enough to have ions about the capabilities of CASE tools, resistance from
a negative impact on their use. First, many of them rely on users of CASE is to be expected.
a particular system development methodology. Therefore,
system developers who used different development meth- 7. In order for planned changes to be successful, the fol-
odology before the CASE implementation, may have lowing key elements are needed:
problems overcoming the changes caused by a new meth-
odology. Second, no standards for CASE tool have been a well-defined organizational framework
introduced yet. Thus, decision makers have to be careful in n extensive training
selecting a tool. Third, a CASE tool needs skilled develop- * company-wide commitment
ers who can unleash its features and make them functional a team interaction
for the company. The time spent for training may cost a user's participation
three times as much as the tool itself [8] and if the com- a methods for measuring the productivity and quality of
pany adds the cost of unproductive time of employees work done by using a CASE tool
while in a training program, the overall initial cost of
CASE tools can be very high. In addition, CASE packages THE RESEARCH
are still facing technical difficulties, e.g., the lack of inte- The purpose of the research was to gain insights into the
gration, user-friendly features, and poor presentation capa- work experiences of the "system development crew" using
bilities. a CASE tool and to recognize the tool's impacts. A variety

of techniques could be used for a successful inquiry about
Impacts Of The CASE On System Development the subject, e.g., interviews, questionnaire, study of the
While the number of companies buying CASE tools is existing documentation. To avoid spending too much
increasing, the tools equate to a culture shock for system developers' time and still achieve a reliable level of diag-
developers. System analysts and programmers, who usu- nosis, a questionnaire was chosen as the most suitable one.
ally advocate changes, resist the implementation of CASE The questionnaire was designed to be short and simple to
tools which directly affect their job domain. The imple- encourage a fast and high response rate. It was distributed
mentation of a CASE tool requires the introduction of among 40 system developers and managers at a major
organizational changes and the re-education of all partici- company in San Francisco. Twenty one were returned for
pants in system development. The users need to under- a response rate 52.5%.
stand that a CASE tool will not "think" for them but just
help them to be more efficient, faster and better organized. The participants of the survey were identified by the man-
The managers need to realize that it is not enough to ager of the Infomiation Systems department as representa-
choose the tool and calculate the expenses; the human fac- tives of diverse points of view. They were asked to
tor must also be considered. Mastering the behavioral evaluate the following items:
problems might be even a greater challenge than the deci-
sion about the tool itself. a organizational changes and management support

w communication links
Case Tools Today w education
Review of the relevant literature leads to the following a documentation
conclusions: a productivity and quality of work

a the CASE features
1. CASE tools are a new technology that need time to be

fully understood. The use of CASE tool is a strategic deci- To understand the results of the survey conrectly few addi-
sion that requires a. iong term company commitment. tional facts have to be stated:

2 CASE tools have a significant impact on the systems w the company had at the end of 1990, two hundred and
development. Developers spent moie time in the early two (202) application developers out of three hundred
stages of the system development life cycle, e.g., prelimi- and seventy (370) total MIS employees
nary investigation and analysis, and less for programming a the CASE tool has been made by a leading CASE tool
and maintenance of the systems. vendor and evaluated by an independent survey as the

best overall fit for the customer requirements with
3. CASE implementation affects the tasks, structumes, and some limited customizability
people within the company. Lack of visible benefits when n most of the developers had only one year of expenen,.e
starting to use CASE causes frustration and dissatisfaction in using the CASE tool
among its users. a mos! of the participants never used any other CASE

tool
5. CASE implementation causes high training expenses w none of the lrojexts had gune through all of the ph.ses
which are usually three time6 higher than the price of the of the SDLC using the CASE tool at the time of the
tool itself. interview

10th Annual Novional Conference on ADA ,echnology 1992 161

The idea for the elements that were studied in the research except one also believed that the CASE tool strategy was
came from the schema of organizational relationships and supported by upper management, which was actively
their correlations described by professor Miran Mihelcic, involved in its use and the training program provided.
University of Ljubljana, Yugoslavia. [7] Professor Mihel-
cic defined five basic types of organizational relationships A cooperation between management and system develop-
that exist between members of a company: technical, per- ers might be a significant contributor to the success of sys-
sonnel, co-odinative, communicational, and motivational tern development projects. One comment was that the
type of organizational relationships. He showed that in the upper managers' "commitment [to CASE] is more verbal
company business results depend on the quality of these than real." The same respondent also added that the man-
organizational relationships; it also means that if the per- agement pushed a lot toward fast installation of the sys-
fonnance of such relationships is poor the team or a com- tems to meet perceived short-term business needs rather
pany is very likely to experience some serious business than make a commitment to a long-term process. Some of
problems. Business related effects were the main reason the respondents doubted that the upper management was
why the study of CASE impacts on some of the instances aware of the resources and time requirements needed to
of the basic organizational relationships were considered. effectively implement the systems developed using the

CASE tool.
Organizatinal Changes
In its early stages, development of information systems Education
was understood mostly as a programming task. A pro- The on-going changes in information technology cause
grammer was responsible for the applications from the problems to people actively involved in information sys-
beginning to the end, e.g., from its logical design to its tems (IS) development and maintenance. To be a partici-
implementation. The approach to application development pant in such a dynamic field, IS professionals are forced to
was informal, almost artistic. In the last 10 years informa- learn new packages on an ongoing basis. These packages
tion systems professionals have been leaning toward more are not only new products but, in most cases, they intro-
organized, structured system development techniques. duce new logic and a unique way of thinking, e.g., rela-
However, convincing system developers to adopt a formal tional databases, CASE tools, expert systems, object-
approach to software design is not an easy task. The pro- oriented languages. A lot of information system profes-
cess of transformation starts with retraining programs for sionals cannot handle fast changes without resistance and
the MIS employees, new definitions of jobs, and formation frustration. However, a well-structured education system
of new departments. In such a situation, programmers usu- may prepare people for the changes, e.g., future directions
ally complain that they are losing their privacy and that the in information science. Unfortunately, many employees
new jobs are less creative. They think that with CASE involved in information systems development and mainte-
everyone's work looks the same. Yet, they are probably nance merged into that profession from other areas. The
aware that through the use of CASE tools the knowledge reasons for such a move were usually a better salary and a
that used to be a privilege of a few is now available to future with a lot of opportunities. In many cases that
everyone. The use of CASE requires more effort to be means spending several years of studying and using only a
expended in the early stages of the SDLC. This effort pays particular type of application or system, and any change in
off in less complex and to some extent easier work for the job description may discredit the employee's experi-
developers later in the life cycle. That means that when ence. One of the common reasons for the failure of the
CASE tools are employed, software development activi- CASE are the employees wLo do not understand the meth-
ties shift fron the coding and maintenance (back-end) to odology. [8] The employees might know how to handle
the planning, design, and analysis (front-end). the tool, but that does not guarantee that the system model

will be well defined.
In the survey, twelve respondents agreed that CASE
caused organizational changes in their company; seven of Training. Well-structured training has an important role in
them did not think so, two did not answer the question. a successful implementation and the use of a CASE tool.
The implementation of CASE resulted in the establish- Organizations have to approach to the training program
ment of a new information engineering (IE) department seriously, matching the course material with the develop-
and several new jobs. The IE department formalizes pro- ment phase that the system is currently in. Managers need
cess and data modeling, and administration of' system to understand that the initial training usually causes overall
development Among the new jobs that have been created confusion, i.e., new terminology, methodology, theoretical
due to the CASE implementation are: information engi- approach and fast r.,,erview of CASE features. With an
neering consultant and application architect. New user- insufficient futm : training program users might not be
liaison support groups were also organized. Six partici- confident enough to transfer the new methods to the exist-
pants stressed that the tool enforced new standards that ing processes and models.
they believed were necessary for successful development
of a large systems All the respondents except two agree In the surve), all except to respondents ansvered posi-
that usage of a CASE tool was a correct management deci- u,,el) to the question of % betler they had enough training
sion, however, its benefits were difficult to recognize in the or not. However, the onmuents Lh.t folloed ,ere cnuw.al
early stages of system development All respondents and ,aluable. One of the dissennug respondents stated thit

162 'Otn Annual Natonal Conference on ADA Technology 1992

there had not been enough training because there had not better overall morale and acceptance of a new tool, and
been a need for it up to that time. The other dissenting par- need to be available to users in time.
ticipant described the training as superficial, concentrating
only on the direct use of CASE. The rest of the users agree Documentation
that the training was well organized and helpful. However, Traditionally, the most tedious work in the system devel-
one respondent complained that in spite of organized train- opment process is the development of system documenta-
ing additional self-teaching had to be done; such a traiing zion. System developers are asked to produce
was difficult due to late and insufficient manuals. In addi- documentation for the existing system and after that (or at
tion, two of the users mentioned that the training was the same time) documentation for the proposed informa-
sometimes offered too early. One user found the schedul- tion system. Documentation is important for future system
ing of the training right before it was needed as a very developmenti.e., upgrading and maintenance, and facili-
important strategy. Due to the diversity of the participants tales the understanding, evaluation and communication of
in the survey, the contradictory answers described above all system components and people involved in the project
were expected. One noticeable statements came from a It usually consists of narratives and different diagrams
user who described the training process for the CASE as a which graphically represent a set of data present in the sys-
"shallow" mechanical aspect, "the bigger training is learn- tem. and their relationships. When done manually, docu-
ing how to incorporate the goals and concepts into [the mentation is usually poorly maintained and difficult to
CASE tool], which nobody teaches." access by all members of the team. Furthermore, such doc-

umentation may contains errors and inconsistencies that
Learning Curve. A long learning curve is supposed to be might be difficult to detect. CASE tools were made to
one of the biggest barriers in the use of CASE tools. One overcome the problems of the manual documenting.
of the studies shows that the time spent individually learn-
ing a CASE tool even exceeds the time spent in structured Almost one hundred percent of the respondents in the sur-
courses or seminars. "The learning curve was much more vey indicated that project documentation using CASE was
difficult than we thought it would be." said George better than before, adding that mostly because previously
Schackelford, director of management information sys- they had not had any. They agree that the CASE tool
tems for SCI. "The training was expensive, the package enforces standardization of system documentation, which
was expensive and then we found we had to spend several makes it easier to read and follow. Other beneficial fea-
months to become proficient in it". [8] Another study pre- tures mentioned were centralized sources and structures
sents that majority of CASE users complain, but they seem for capturing information in the central repository, which
to just accept the fact that learning CASE takes a long time support simplified centralized reporting. One of the
and significant effort. The reason for such comments respondents pointed out that "there is so much of it [docu-
might be a lack of experienced people in the CASE envi- mentation] that it is hard to be effective." However, sev-
ronment. That will probably change when skilled profes- eral technical difficulties were mentioned by respondents
sionals for CASE technology become more common. Some of them are: poor searching capabilities of the tool,

limitations in editing, lack of copy function, bad CASE
Alternatively, all except two participants described the tool documentation, bad integration of supported func-
learning process as an easy one, stressing, however, that tions, e.g., no carryover between the analysis and design
the manuals were bad and not user-friendly at all. One of documentation, and poor presentation functions, which
the respondents said that the learning curve was about the means that many documents that need to be presented
same as the learning curve for the any other new technol- have to be downloaded and put into an acceptable form by
ogy. The one that had some previous experience in using other software packages.
CASE tools added that it was fairly trivial to adapt to the
tool if you had data modeling background. One of the According to other sources, most managers, however, are
managers said that the CASE "automates a common-sense rewarded for developing software and not for developing
approach to system development." Yet, the user who dis- documentation. Therefore, the tendency is not to waste too
agreed with the majority said that as an old main frame much time on writing system documentation, e.g., to cre-
user he had to learn PC operations and other software ate the minimum possible. Thus, system developers often
products which made hIs leamning curve much longer, resent keeping the specifications up to date as they main-
When asked about the duration of the learning period for tain the system Because of that, there is a fear that specifi-
the CASE tool, 41% of the respondents agreed that it was cations will have little to do with a real system.
longer than the training period for other software products,
59% thought that it was the same. Communication Lines

Implementation of new techniques in large organizations
An important conclusion that nught be made based on the requires adequate communiation mthanIsms for diffus
survey responses is that even though the training is well ing the knowledge and sharing techniques CASE tools
organized it can miss its purpose if it is not adjusted to the with a central repository ph)sicall) utilize suwh an idea
users' current needs. CASE tools require a vanet) of Howeer, the participanits' comments in the surne) related
knowledge, so diverse types of L.ourses are advisable for to the impacts of the CASE tool on .ummuniu.,un lines
CASE users. Additionally, quality manuals contnbutc tv %ere diverse and cnuA-l Users were asked to evaluate

10rn Annuol Nononal Conference on ADA Technology 1992 163

tlee differem r-pes ofc niai betwee technical mance- The -ten nolo"g prLem can be elimit"ed by
MIS persoctel and managers, among technical MIS per- the rsers throgh the e-ty-day exposue to the use of the
SOnCd0, an between tedmical pemsmel and end-users. tool. The technical pitfalls have to be overcome by the

CASE vendos. When evan.ing the quality of communi-
Comrvnmwio Between Tecimca) Employees And Man- canan between people ther is one concern that might not
agers. This type of communication Fine was the subject of be so obvious, however, imipotanu a too! can not replace
several critiques. Only six of the partcipats agreed that human interactions. People need to communicate and
the efficieny of this type of communication was better exchange information verbally. In :hat regard, the corn-
than before the use of the CASE, one thought that it was mert madle by one of the respondem, was applicable, say-
worse, ad the rest of them that it was the same. When ing that "the quality and productivity of communication
askcd about the quality of communication, eight added lines among people should not be qualified by the evalua-
that it was at least better than before, and the rest of them tion of the tool's impacts." However, a quality tool for
believed that it was the same. Several iespondents storing and retrieving information might be a valuable
believed that the communication would improve in the support for more effective and efficiet meetings and con-
future. One of the zomments said that the communication versations.
was worse due to a new rnmencature introduced by the
inf',rmation eni-ineering techniques. Another critique Productivity
pointed out h -ck of user-friendly presentation features Recent CASE advertisements suggest that users can
of tbi CASE. Because of that, the information needed for increase their productivity by 30 - 300%. However. there
managemew reports had to be moved from the CASE tool are few empirical studies done to investigate CASE
to a dawing program or word-processing packages, impacts on productivity. Reasons for that might be that it

is, first of all, difficult to measure productivity. Next, the
If the C.SE domentaL .m itself does not have a practical tools for measurement of CASE productivity have become
value for the managers. te managers might not be moi- available and reliable very receraly. Finally, a lot of corn-
vated to use CASE on their own. That is contrMay to one of panies have no historical productivity results to compare
the goals CASE tools want t-. accomplish, to support man- to, e.g., they did not measure productivity before the use
agf.s with current information needed for making deci- of a CASE tool.
sions, intriacavely. One resmondent added that the reason
!or the insrficient communication between the developers One of the rare empirical studies regarding CASE produc-
and managers were_ not the CASE features but poor mana- tivity was done by Norman and Nunamaker for Excelera-
gerial skills that znld not be overcome just by purchasing tor. [10] The authors believe that the results apply to

tooL CASE users in general. Their study shows that through
software engineers' perceptions, their productivity

Communictic . Among Tochnical MIS Personnel. The par- improved. Tht productivity improvements also contrib-
ticip!-ts agreed that the highest improvement had been uted !o a faster development of the system development
made in commuuicati'n amnig t.,zlnical personnel. All standards. The authors found that significant since most
e-cept five thougbt that the communicaton lines had large enterprises must enforce a rigorous system develop-
improved in efficiency and all except two in quality. They mert methodology and associated standards.
agreed that the jobs' ty bndaries were not so strict any-
more. They hat; to wc/i zs an integrated team to perform The cnmpany where the survey was performed did not use
successfully and effectively. any technique for measuring CASE productivity, at the

time of the survey. Thus, the respondents did not have any
Communicaion Between Tachnical Employees And End- numeric data available to answer the questions about pro-
Users. The majority of the participants agreed that CASE ductivity Even though, fifteen users believed that CASE
improved the relationships between the technical MIS per- would increase productivity, four of them disagreed with
sonnel and eoo-users. The main reason for the improve- that, and two of the user were not sure. The reasons why
meots the respondents saw in a stronger user involvemen" users believed in increased producdvity are the following.
in the system development Two of the resj-ondents sa
that the comn.nications were worse due to the terminol- z integrated systems mean less redundant data and func-
ogy of CASE, which formed a new level of separation. tions
Another pa-'icipant added that it was hard for the end-user v reusable system design saves time for the front-end
to understand some of the terms, i.c., business functions, system development in the future
functional decomposition, and mini specifications. w CASE keeps the information in an organized structure

• repeti,'ons and duplications are eliminated to ,he
, 'tLt geer, it seeins that CASE tools offer a well- defined degree possible
platform for efficient ani improved commut.cdtion lines m better control and managern.nt of information s5stem
among the participants of system development. Technical development
limitations that vary from tool to tool, and lack of under-
standing of CASE termio'og,, however, might be an Almost all of the users beheed that they ,ould gain 3ome
undesired drawback in the overall developneut perfor- productivi, impro,,emcnt in future One respondent

164 ith, ',uol Nafiopil Conference on ADA Technolog 1992

stressed the technical pitfalls of CASE, saying that "cur- came additional problems. Software must not only work,
ntly the CASE tool does not work as it should". It was it has to work welL Procedures must be well defined and

said to be even less efficient than the development tools documented, which is not characteristic of the present
that were in use before the CASE implerenation tools.

The best productivity evaluation got the project documen- To overcome the initial problems that might occur in the
taion in the information strategic planning and business companies deciding on the use of CASE tools, the manag-
area analysis .hase. Communication lines between the es may consider the following actions as necessary. Fst,
technical MIS persomel and mraagers got the worst pro- clarify if the tool is really needed- The decision makers
ductivity evaluation. An explzation for such an i-alua- may expect more that can be achieved by a CASE tool.
tion is that most of the participants have used the CASE Thus, before the managers can make informed decisions
tool so far, only for the information strategic planning and about adopting a CASE tool, it is advisable to translate the
business area analysis phases. ad rantages of that tool into measurable benefits, e.g., to

see if the tool meets the company's requirements. Equally
Q lIty impotant, the disadvantages of the tool must be assessed.
The quality of work done by CASE tools and the quality Second, choose the vendor carefully. The vendor has to be
of the tools themselves is another area that has been poorly able to deliver the product on time, adjust the tool to the
analyzed by CASE users and developers. However, company's needs, and provide an in-house training. Third,
according to Earl Hoskins from AT&T Consumer Corn- understand the nature of CASE tools. It is important for
munication Service in the U.S., maintenance requests have executives to realize that the real benefit of CASE tool is
declined 97% compared to the number of requests that recognized in the maintenance phase of the system life
would have been estimated for a project without CASE. cycle; for big projects valuable results might not be seen
[3] His experience illustrated one of the few occasions for one, two, or even three years. Consequently training
where a quality metric has been explicitly measured before for managers about CASE tools is advisable. Finally, pre-
and after the introduction of CASE. The results are vzu- pare employees for the organizational changes in the corn-
able and show the potentials of great savings in the main- pany. Some technical skills that were important before the
tenance phase of SDLC, and higher quality of the systems CASE implementation may loose their weight. This can
developed by CASE. cause confusion and opposition among experienced team

members. One way to minimize such reactions is to select
In the survey the highest number of respondents find sig- a high quality CASE package and provide the employees-
nificant quality improvements in the system documenta- with well-structured and high- quality training.
tion. Only a few agree that some improvements have been
made in the quality of system control. No argumented To intioduce the stated information as a general truth,
comments have been stated to support such an opinion, additional studies with a larger number of participants
The reason for that might be a misunderstanding of the from diverse working environments will need to be per-
term "system control" that was not specially defined. In formed. For now, something is dear: CASE tools are here
spite of several complaints about the technical chara eris- to stay. The onus is on the CASE gurus, managers, ai
tics of the tool, 51% of the respondents thought that the users to overcome the initial barriers and through an orga-
quality of the CASE tool itself when compared with other nized training make CASE just another valuable engineer-
software packages ii use was at least better. ing tool.

CONCLUSION Violeta BuIc is a network analyst with DHL Systems, Inc.
At this time CASE tools still need a lot of improvements.- in San Mateo, California. The material in this paper
However, the importance and need for CASE tools has resulted from the author's research for her MS thesis. The
been recognized by systems professionals and the tools' opinions expressed in this article are those of the author.
features have unleashed forever the forces of computer- Her current interests include information technology trans-
ized software engineering upon MIS professionals and fer, and the use of object-oriented application for netork
others inmolved in system development. Probably the most analysis. She is actively involved in research of the impact
;aluable contrbution of CASE tools is the availability of of modern technology on organiztional behavior, at Uni-

large integrated-systems development which was versity of Ljubljana. Ms. BuIc received a BS from Univer-
extremely difficult to achieve for large systems before sity of Ljubljana, Department of Electro Engineering and
their introduction. System developers have become more Computer Science and an MS at Golden Gate Umversit,
organized and effective. Some of the benefits, however, School of Management. She is a member of ACM and
cannot be recognized in the earlier stages of SDLC. In Data Admnistration Management Association.
areas such as system documentation, commurucation lines,
and system performance the impacts have been positive in REFERENCES
most cases, though, not as high as expected. The CASE
has some significant impacts on the developer's behzvior 1. Aranov,, Eric. "Is CASE Too Immature for Real Inte-
It affects developer's job domain and v, orking habits. As gration?", Sofmare Magazine Ma 1990. 89--.
the survey shows J technical weaknesses of the CASE

I Qtr Annual Ncfionol Conference on ADA Technology 1992 165

2. Henessy, Join and David A. Petterson Computer 7. Mibelcic, Miran. Measurement of an Organization's
Archiecure a Quantarie Approach. Morgan Kauf- Dimensions as a Support of Decision-Making Sys-
mnnm Publisher Inc.: San Mateo, 1990. terns for (Governing) and Managing of Companies,

paper, Proceeding of International Conference on
3. &um Julian Where Is CASE Headed?", Database Organization and Information systems, Bled, Sloven-

Progmming and Design October 1990:41-43. ija, Yugoslavia, Sep. 13-15, 1990.

4. Keyes, Jessica. "Gather a Baseline to Access Case 8- Nelson, Ryan R., and Marcus Lob "Raping CASE
Imp~a' Software Magazine August 1990: 30-43. Harves" Datamantion 1 July 1989: 31-4.

5- Martin, James. "Cbnging Technology Calls for New 9- Norman, Ronald J., Gail F Corbitt, Mark C. Butler,
Infomrnioa Strategies.'" PC Week 25 June 1990: 73.- and Donna D. McElroy. "CASE Technology Transfer

a Case Study of Unsuccessful Change." Journal of
6- Martin, James, and E.A. Hershey Ill. Information System Management May 1989: 33-8.

Engineering: A Management White Paper. Knowl-
edgeWare 1 10. Norman, Ronald J., and Jay F Nunamaker, JE "CASE

Productivity Perception of Software Engineering Pro-
fessionals", Communication of the ACM September
1989:1102-8.

11. Palmer, John F. "The Good, the Bad, and the Ugly."
Database Programming and Design October 1990:
30-8.

12. QED Information Sciences, Inc. CASE The Potentials
and the Pitfalls. Wellesle': 1. Cbantico, 1989.

166 10th Ann,.l Natowal Conference cn ADA Technology 1992

DON'T TRASH OLD CODE: RECYCLE, RENEW AND CONVERT IT TO ADA

Joseph M. Scandura, Ph.D.

University of Pennsylvania and

Scandura Intelligent Systems

1249 Greentree, Narberth PA, 19072

Abstract -- This paper reviews the current status of implemented, either reengineering or redevelopment
the re-engineering industry and then proposes a new
cognitive approach to system maintenance which can add a measure of efficiency previously
can both dramatically improve systems and minimizeAd eea oss hscgitv prah impossible -- and cost recovery can often be! Ada renewal costs. This cognitive approach

involves modeling and testing the structural and accomplished over a reasonable period of time.
functional essence of a system at a high level of The initial costs involved in such renewal, on the
abstraction, with increasing specificity until contact is
made with available data and computational other hand, are often prohibitive.
resources. The process is essentially the same
whether structural analysis (i.e., the cognitive Faced with this dilemma, what are decision makers
technology) is used to design and develop new
systems or to re-engineer old ones. In the former to do? In my talk, I will review the current status of
case, the to-be-developed system exists only in the
mind of the analyst, designer and/or end user. In the
latter case, one begins with a fully functioning cognitive approach to system maintenance which
system. In both cases, heavy use is made of can both dramatically improve systems and minimize
reusable routines (with new systems) and/or of code
salvaged as a result of re-engineering. Ada renewal costs.

Index Terms -- Design, Re-Engineering, Translation, 1. RE-ENGINEERING: CURRENT STATUS
COBOL-Ada, FORTRAN-Ada, reusability.

Several classes of re-engineering tools have evolvedSaddled with obsolete but essential COBOL or
over the past few years which appear to offer anFortran, DoD contractors and DoD agencies are

faced with a series of unpalatable choices. One array of choices. Indeed, re-engineering today is

option is to simply continue with the same old one of the 'hottest' topics in software engineering.

software, patching it where possible to meet the There is a good deal of confusion, however, as to

most pressing needs. just what re-engineering involves, and even more so

as to benefits of the kinds of re-engineering tools

Given recent DoD directives, old systems in COBOL, that are currently available. In this paper, I shall

Fortran and other languages requiring significant review analysis, design recapture and system

change must be rewritten in Ada. Properly done and redesign tools, along with the major

10th Annual National Conference on ADA Technology 1992 167

contents from a book. That is. one looks for
strengths and limitaions of each type. Several tools headings and similar kinds of information and

are mentioned where appropriate. extracs that information from the body. It is widely

Code Analysis - One class of tools involves the recognized that most MIS/DP expense goes into

analysis of code. Analysis tools are used to maintaining existing software. Consequently, an

determine the complexity of existing systems, and to increasing number of vendors have begun to

provide calling hierarchies, cross reference fists and introduce tools designed to recapture calling

other information concerning the organization of hierarchies - typically from old COBOL

code (or the lack thereof)- Restructuring tools and Extracting overall relationships within a system and

pretty-printers fall in the same general category. representing them in a visual environment (where

They either gather infcrmation about existing they can more easily be modified) is clearly worth

systems and/or simply represent that information in doing. Unfortunately, one cannot rely on overall

better form. In each case, the results are referenced structure in making changes to code, especially

by programmers in modifying code. where the existing code is poorly designed. As any

Clearly, analysis yields positive benefits. Tools in programmer knows, the "devil hides in the details."

this category, however, have a major limitation. Consequently, some re-engineering tools provide

Information about a system and the corresponding limited access to module code. They may eventually

code are essentia.fly separate in analysis tools. One also p:ovide direct access to editing tools with which

can gain insights or information from the analyses. one can modify such code. This approach, if and

but programmers still have to find the source of when it is actually realized, will still leave the biggest

those problems and ways to fix them. Other tools, problem -- understanding details in order to know
how to modify actual code. The kinds of

(e.g., editors) are needed for this purpose.
representations (e.g., "bubble charts") used to

Design Recapture - A second, somewhat newer represent high level designs do not lend themselves

class of tools is concerned with "design recapture" -- well to this task

analyzing source code to determine and visually

represent relationships between source code Module Visualization -- Solving this problem requires

modules. Typically, the information obtained is an interactive, visual environment for representing
not only overall relationships, such as structured

represented in some type of structure chart , or

module calling hierarchy. The basic technology charts, but the structure of individual code modules

generally involves simple parsing techniques in themselves. This, in turn, requires better ways to

which modules are identified and attendant visualize code. The purpose of such visualization is

relationships captured for later visual representation. to aid human comprehension both by representing

The process is not unlike extracting a table of structure visually and by eliminating irrelevant detail.

168 10th Annul National Conference on ADA Technology 1992

Action c agrams (e.g., Martin 1988; Scandura 1990) windows. FLOWforms avoid this problem by

help to organize code structure. They only bracket allowing "explosion' directly in context. Lower level

code, however, leaving the human to distinguish detail is automatically displayed within the element

different types of structures and to separate relevant which contains it. Thus. FLOWform rectangles may

from irrelevant detail. Moreover, they are applicable be expanded without in any way affecting the context

only to low level code. FLOWforms (Scandura 1987, above or below that in which they exist. This makes

1990), on the other hand, provide visualization at it possible to see more detail without losing the

both levels - overall relationships and individual general picture. This is not possible using graphic

modules. In Scandura Intelligent Systems' re/NuSys elements, such as boxes or circles, connected by

Workbench7", existing code is reverse engineered lines. Attempting to open a visual element in this

automatically into pseudocode FLOWforms, where type of representation would simply change the

the pseudocode can be edited, documented, overall scale. Consequently, the original context

restructured, customized to support multiple would quickly extend beyond the bounds of the

environments and used to regenerate full source monitor screen.

code. Analyzing existing source code and

representing it visually in this manner requires much Customization -- The ability to switch between

more sophisticated parsing techniques than simply overall relationships and module detail, and to make

recapturing designs (i.e., relationships between modifications at all levels of abstraction, has obvious

modules). advantages as regards maintainability.

Nevertheless, no one type of relationship will be

Contextual vs. Separate Windowing -- The ability to sufficient in all cases. Calling hierarchies, for

represent system information visually at these two example, usually include references to

quite different levels, switching quickly between them corresponding parameters. But what about global

as desired, makes it possible to maintain complete variables? Or, routines exported from one file or

systems in one uniform visual environment. In this compilation unit to another?

coniexi, FLOVVforms have an aavantage over otner

notations. Although switching between different What is needed in this case is a way to determine

types of representations (e.g., modules and overall the kinds of relationships to be captured. It would be

relationships) is best done in separate windows, the desirable if the user could cost-effectively create

use of separate windows is not always desirable. customized representations of his own. The

When working either at different leve!s of a calling re/NuSys Workbenchm's checking, simulation and

hierarchy, or when working at different abstraction high level design generation capabilities provide one

levels within an individual module, separate windows such solution. Reverse engineered modules can be

make it difficult to remember which windows (i.e., checked interactively to more precisely categorize

expansion.s) go with which elements in other identifiers and their definitions and/or declarations.

10tl Annual National Conference on ADA Technology 1992 169

Then, higher order routines can be constructed that containing pseudocode in one language, for

operate on lower order FLOWform routines and build example, might be converted into pseudocode

new FLOWforms more precisely representing the FLOWforms containing another language. In

desired relationships, particular, the re/NuSys Workbenchm supports

translations from popular older languages to most
Multiple Environments.- Another type of newer languages: COBOL or Fortran to Pascal, C,
customization involves the ability to support multiple or Ada; Pascal to C or Ada, or C to Ada. From 90 to

environments in one set of files. Tools from 99% of the code is converted automatically. Higher

NETRONCAP and Scandura intelligent Systems level designs are preserved in the process.

support multiple environments in this sense. The

NETRONCAP tool is designed for use with COBOL, System Redesign.-- While each of the above

whereas Scandura's re/NuSys Workbench"N capabilities contributes to overall maintainability, all

supports C, Pascal, Ada and Fortran as well as are based on a common assumption -- name;y, that

COBOL. In FLOWforms this is accomplished by the design of the original system is worth

simply labeling structures which are unique to a recapturing. This raises the following questions:

given platform or operating system. These labels Given a poorly designed system: 'Why would one

are referenced during code and/or report generation. want to capture the design?' Or, if the code is bad,

"Why would one want to translate it?'
Conversion Between Languages.- In moving to a

new environment (e.g., from MVS to DOS or Unix), it Many situations call for creating an entirely new or

is often desirable to convert from an existing renewed design. Rather than having to build an

programming language into a more modern one. entirely new system, however, it is possible in some

One approach involves the use of source to source cases to salvage code from the original source by

translators. These tools take source code in one reverse engineering. To be a candidate for reuse,

language and convert it directly into source code in the code may be either highly specific or relatively

T.^ s epresaR , a rzas.nab ,apo a ;I uumpiiipiieiisive. in mosi cases, nowever, it should

no further maintenance on the code is desired. In be highly modular. Perhaps the major advantage of

thip context, however, one might reasonably ask: reusing code from an existing system to build a

'Why translate the code to begin with?" The better system for the same or a similar purpose is

purpose of translating from one language to another that large high level modules can often be reused in

usually is because the software can be better implementing renewed designs. Experience

maintained in the new language than in the old. suggests that, at a minimum, 50 to 60% of existing

Consequently, it would be best if the conversion code, and usually much more -- to over 99%, is

were done in an interactive, visual environment -- for reusable in redesigned systems.

the reasons detailed above. Visual FLOWforrns

170 10th Annual Nationa Conference on ADA Technology 1992

of the problem. Another involves the interface

Most front end CASE tools support new design. between high level designs and reverse engineered,

Some also support simu!ating display and input or otherwise reusable code. One solution would be

screens, largely to insure user satisfaction. Both of to convert high level designs to the target language

these factors (i.e., design and displaying user and to create an interface between converted

screens interactively) play an important role in designs and the reusable code. To my knowledge,

system design or redesign. However, they are not the re/NuSys Workbench"m is the first and, to date,

sufficient. Confidence in a new, high level design the only CASE and re-engineering solution that

comes only from testing (and debugging) the explicitly supports the entire process. High level

underlying logic. Such testing can be done only designs are first translated automatically into

where both data and process are represented in the pseudocode FLOWforms in the target language.

design, at the same level of abstraction. The design (Source code can be generated from such

methodologies commonly used in traditional CASE FLOWforms as desired.) In turn, built in checking

tools favor either data analysis (e.g., information processes provide an interactive, semi-automatic

engineering) or process analysis (e.g., structured way to create links between converted designs and

analysis). Lacking a balanced approach to data and the data/process resources referenced in those

process, they do not lend themselves to debugging designs.

designs.

2. COGNITIVE APPROACH TO SYSTEM
The inability to test the logic underlying high level RENEWAL

system designs prior to implementation is a major

limitation. As Scandura (1990) demonstrated, the This cognitive approach involves modeling and

number of tests required goes up exponentially with testing the structural and functional essence of a

complexity if all testing is done after implementation, system at a high level of abstraction, with increasing

whereas the number of tests required only goes up specificity until contact is made wih available data
a. . na the top dovrn. cltu cumputaiiouai resources. Tne process is

essentially the same whether structural analysis (i.e.,
In the example cited, the number of empirical tests the cognitive technology) is used to design and

required in a rather simple system was on the order develop new systems or to re-engineer old ones. In

of 2100 if one waited until complete implementation the former case, the to-be-developed system exists

before testing. On the other hand, only about 300 only in the mind of the analyst, designer and/or end
tests were required where testing was done user. In the latter case, one begins with a fully
successively from the highest levels of abstraction. functioning system. In both cases, heavy use is

Interfacing Renewed Designs.- Creating a high made of reusable routines (with new systems) and/or

level design and testing it, of course, is only one part of code salvaged as a result of reengineering.

10tn Annual National Conference on ADA Technology 1992 171

Software Recycling: Renewal via
redesign, re-engineering and code reuse

1. rSpaghatti Code: Most software systems come to look like thMis as
result of on-going maintenance. Notice that most of the individual

modules are fine, and can be reused. The whole system, however. is
rather 'or zamd (Most new design ideas also start like this.)

2,A. Re-engineer Code: Reverse 2. Redesign Syste: Redesign

engineer code from the exisbng the desired system at a high level,
system into modular FLOWforrns. using PRODOCw's universal 4GL.
You easily understand module Test your design for logical errors,
structure and conveniently make simulating process and data. At
needed repairs. (This step is this point you should have a
unnecessary in developing new hierarchically structured system
systems.) (Step 28 is optional where the

onginal structure is acceptable)
3. Reuse Modules: Map reusable
modules from your old system into
the new high level system design
Finaly, use PRODOCrh" to design
and develop missing low level

, routnes. Expenence shows that
> . from 50% to as much as 95% of

existing modules are reusable.

In the present context, I shall show how an This cognitive approach is illustrated using the
,=,i;L1y ruIIt, u; ~.J-, Ly~= ,, I u.,',,, rr , re/NuSybvvuiuk,:.,r". ; .ub vviti .

redesigned in a neutral high level design language short case history describing application of the

and converted automatically to Ada, and how the old approach, and the results obtained therefrom.

COBOL and Fortran code can be reverse

engineered into a visual environment as Depending on the time available, I plan to
demonstrate the above capabilities interactivelypseudocode, restructured where necessary and

converted into Ada modules. Finally, I show how the during my talk.

high level Ada design can be linked to the Ada

modules.

172 ih Annual Nalonal Conference o.n ADA Technology 1992

References: 8. Scandura, J.M. 'Cognitive approach to systems

engineering and re-engineering. integrating new
1. Boehm, B.W. A spiral model of software designs with old systems," Software

development enhancement. IEEE Computer, maintenance: research and practice, 1990, 145-

1988, 21, 61-72. 156.

2. Martin, J.and McClure, C., Action diagrams: 9. Scanlon, D. Cognitive factors in the preference

clearly structured specification, programs and for structured flowcharts. NY: Yourdon Press

procedures. Englewood Cliffs, NJ: Prentice Hall, Authors Conference, 1987.

1988.

10. Voorhies D. J. & Scandura, J. M. Determination
3. Miller, G. A. The magic number seven, plus or of memory load in information processing. In J.

minus two: some limits on our capacity for M. Scandura . Problem solving: a

processing information. Psychological Review, structuralprocess approach. NY: Academic

1956, 63, 81-97. Press,1977. pp. 299-316.

4. Scandura, J. M., Dumin, J. H. and Wulfeck, W. 11. Yeh, R.T. An alternative paradigm for software

H. Ill Higher-order rule characterization of evolution. In P.A. Ng & R.T. Yeh (Eds.) Modern

heuristics for compass and straight-edge Software Engineenng. NY: Van Nostrand, 1990,

constructions in geometry. Artificial Intelligence. pp. 7-22.

1974, 5, 149-183.

5. Scandura, J. M. Structural (cognitive task)

analysis: a method for analyzing content. part

1: background and empirical research. Journal

of StructuralL earning 1982 7 101-114

6. Scandura, J. M. Structural analysis: part 2:

toward precision, objectivity and systematization.

Journal of Structural Learning, 1984, 8, 1-28.

7. Scandura, J. M. A cognitive approach to

software development: the PRODOC TM system

and associated methodology. Journal of Pascal,

Ada and Modula-2, 1987, 6 (Sept. -Oct.), 10-25.

1 Oth Annual National Conference on ADA Technology 1992 173

THE ECONOMICS OF TRANSLATING
SPACE SHUTLE HAL/S FLIGHT SOFTWARE TO ADA

FOR REUSE IN SHUTTLE DERIVED AVIONIC SYSTEMS

Jeffrey E. England
Aerospace Systems Group

Intermetrics, Inc.
Huntington Beach, CA

Roger S. Ritchie
Space Systems Division
Rockwell International

Downey, CA

ABSTRACT 1.0 INTRODUCTION

This paper describes a prototype HAL/S-to-Ada Significant cost of ownership issues and overall
translator developed to provide a sound basis for international competitiveness have renewed interest
determining the most cost effective approach to in developing alternative launch systems to the Space
developing Shuttle derived avionic software in Ada. Shuttle. Innovative and cost effective approaches to
The implementation of the translator and the developing software for alternative launch systems
economics associated with its use to develop Shuttle are becoming increasingly important as their funding
derived avionic systems in Ada are described. The will most certainly have to compete with other new
Space Shuttle Orbiter Primary and Backup avionic start programs such as Space Station Freedom and
systems are implemented in the HALS programming the Earth Observation System (EOS).
language. Several alternative launch systems have
been under consideration by both NASA and the The Space Shuttle Orbiter avionic systems, both
Department of Defense. New avionic software Primary and Backup, are implemented in the HAL/S
developed for these systems will, most probably, be programming language. Several new launch systems
implemented in Ada. A substantial investment has have been under consideration by both NASA and
been made in the development and verification of the the Department of Defense. New avionic software
mature, highly complex, man-rated Shuttle Orbiter developed for these systems will, most probably, be
HAL/S flight software. Under some circumstances implemented in Ada. A substantial investment has
considerable cost and schedule benefit could be been made in the development and verification of the
realized by deriving new Ada avionic systems from operational, mature, mufti-path, redundant, highly
the mature Shuttle HAL/S flight software through the reliable, man-rated Shuttle Orbiter HAL/S flght
use of automated translation. software. Under some circumstances considerable

cost and schedule benefit could be realized by
Index Terms -- Ada, avionic, derived, flight software, deriving new Ada avionic systems from the mature
HAUS, Orbiter, reuse, software economics, Space Shuttle HAL'S flight software through the use of
Shuttle, translation automated translation.

174 10th Anjnual Natonal Confefence on ADA Technology 1992

In the past, automated translation from one high 1. Reverse enqineering. Convert HAL/S
level language to another has not been a particularly intermediate language, HALMAT, to Ada
popular approach to upgrading large complex intermediate language, Diana. Use reverse
systems requiring high reliability. Code generated by engineering tools to convert the Diana to Ada.
automated translators seldom makes use of special This approach was rejected after determining
features of the target language and is generally that insufficient information about the original
inefficient and more complex than the original. Any source code was saved in the HALMAT by the
savings realized by translation may ultimately be HALS compiler. The base of HALS software
offset by higher maintenance costs in systems with to be translated is ioo small to warrant
long life cycles If the systems are subjected to modification of the compiler to save the
continuous change. The more dissimilar the source required information.
and target languages are, the higher the risk will be
of higher overall life cycle cost of the new system. 2. Build an Ada code generator for the HAWS
However, because of the potential savings in Compiler. This approach was rejected
development and life cycle costs that could accrue because the translation would be purely
through the translation and use of a mature, reliable generic (i.e., it would not enable developers to
software system in a stable environment, a project make use of their extensive knowledge of the
was initiated to examine and develop a translator Shuttle flight software to create a more "Ada-
from HAL/S to Ada. like" derivation.

There is no question that, given a sufficient 3. Build the translator from the ground up. This
quantity of the two scarcest of resources, xime and approach was selected because it could be
money, th3 technology exists to build a translator to implemented in an incremental manner, a
perform a 100% automated translation from any prototype could be created relatively quickly
source language to any target language. However, and inexpensively with the aid of Commercial-
the economic feasibility of build;ng such a translator Off-The-Shelf (COTS) tools, and it would
is a function of many factors: the size of the overall ultimately enable the developers to take full
base of software to be translated; the life expectancy advantage of their special knowledge of the
of the new software; similarities between the sour,e Shuttle flight soltware to tailor the output.
and target languages; and how closely requirements
and interfaces for the new system resemble those of The project was performed in two phases. During
the old system. phase one a study was conducted to survey the

current state of translator technology, iduntify tools
Under a research and development contract to and techniques to be used, measurements to be

Rockwell International, interrnetrics developed a made, and pitfalls to be avoided during
prototype HAL/S-to-Ada translator. The purpose of irnplementation of a prototype. In phase two the
the project was twofold: prototype was implemented and the results were

assessed.
1. Demonstrate the technical and economic

feasibility of an automated translation from
Shuttle HALS to Ada. 2.0 TRANSLATOR SURVEY RESULTS

2. Provide a sound basis for determining the Although it was already known that there were no
most cost effective approach to developing HAL/S to Ada translators in existence, the survey was
Shuttle derived avionic software in AdA, performed to gather information necessary to
whether it be 100% automated translation, establish reasonable expectations for what could be
100% manual translation, or some combination accomplished, pitfalls to be avoided, and to identify
of the two. COTS translation aids. The translator survey was not

exhaustive, but it was fairly extensive. Reference
Three alternative approaches to the translator were sources included Rockwell's Technical Information
examined: Center, the Intermetrics Technical Library, and the

libraries of the California State University at Long
Beach and the University of California at Irvine.

1Otn Annual National Conference on ADA Technology 1992 175

The results were pretty much as expected, compared to languages such as Jovial, FORTRAN,
although there were a few surprises. There were no COBOL, or Pascal is relatively small. The subset of
off-the-shelf HAL/S to Ada translators but there are HAL/S flight software that is a candidate for
many translation aids available. Two of these, a conversion to Ada for reuse in an avionic system for
lexical scanner generator and a parser generator, a Shuttle Derived Vehicle (SDV) is even smaller.
were used in the development of the prototype Furthermore, in-depth knowledge of the Shuttle
translator. Several Ada syntax directed tools were HAL/S flight software, the HAL/S software
also identified that would be very useful in manually development environment, and supporting Shuttle
translating HAL/S to Ada. flight software data bases enables a more intelligent

translation than is possible with a purely generic
The single most important issue identified was the language translator.

requiremert to perform a thorough source-to-source
comparison prior to making the decision to build or When describing a compiler, the term "production
not to build a translator. This analysis resulted in the quality" not only refers to the quality of the generated
determination that Jovial J73 and Ada have such a code, but also includes attributes of the compiler
wide variety of incompatibilities that a itself, such as speed, ease of use, quality of the
recommendation was made not to build a J73 to Ada documentation, and efficient use of resources.
translator3. Because the end product would be the translated

code rather than the translator itself, the translator did
All referenced authors agree that the most not have to be production quality. The aesthetics of

signifluant long-term cost likely to be Incurred is the translation process (i.e., translation speed,
reduced readability and maintainability of the resulting resources used, user interface, etc.) were not
code. Typical experience Is that, even where the Important. Correctness, efficiency and maintainability
performance of the generated code is acceptable, the of the translated code are the important issues.
code produced is not sufficiently idiomatic in its use
of the target language to make subsequent 3.1 HAL/S versus Ada
maintenance of the converted software economically
feasible. Conversely, Martin6 concluded that, "If HALS is a real-time, block structured, procedure
maintainability and transportability are the goals of oriented, high-order algorithmic language. Many of
the conversion, performance may be reduced." the features of Ada exist, in some form or another, in
Yellin 9 suggests preserving program structure during HALS. Most basic statements can be translated
translation to preserve the designer's computational directly. Most HAWS data types have direct Ada
model and, thereby, aid the maintenance programmer equivalents, although Ada often requires a type name
in understanding design decisions. in cases where HALS only requires a d(qition.

Many other features of the Ada language, .uch as
3.0 SHUTTLE HAL/S FLIGHT SOFTWARE dynamic memory allocation, data abstraction and

TRANSLATION ISSUES overloading, do not exist in HALS. However, the
major concern is HALS features that do not exist in

The primary objective was not to buitd a translator, Ada. Fortunately, the flexibility of the Ada language
but rather to determine the most cost effective facilitates implementation of most of the missing
approach to converting HAL/S applications to Ada, HALS features. Some of the more specialized
whether it be 100% automated translation, 100% features of HALS, however, such as synchronous
manual translation, or some combination of the two, scheduling and implicit type conversion, are difficult

to express with the generalized features provided by
A generic translator knows nothing about the the Ada language.

specific application being translated. Typically, when
constructing a translator the objective is to build a 3.2 Reusable HALS Software Size
generic translator that performs a 100% translation of
any syntactically and semantically correct source The HALS language was developed by
program. In the instance of Shuttle HALS, however, Intermetrics under a contract to NASA that began in
a 100% translation is neither economically feasible 1970. It has been in regular use by NASA and NASA
nor desirable The base of HAL'S applications, contractors since 1973. Eighteen different HAL/S

176 10th Annual National Conference on ADA Technology 1992

compilers have been developed to support a variety
of hosts and targets. Major applications that have
been developed in HAL/S include:

1) Shufle Primary Avionic Software System
(PASS)

2) Shuttle Backup Flight System (BFS)
3) Parts of the PASS and BFS Ground Support

Software
4) Onboard software for the European Space Lab
5) Attitude Articulation and Control System

(AACS) for the Galileo Jupiter probe
6) Parts of the onboard control software for the ALL SHUTL

Magellan Venus radar mapper

7) Parts of the Deep Space Network (DSN)

In addition, many thousands of lines of test cases
have been developed for these applications and for FIGURE 1. HAL/S SOFTWARE BASE
the HAL/S compiler itself. Nevertheless, compared to
other languages such as Jovial, Pascal, FORTRAN, experience with the Shuttle flight software that some
COBOL, and Ada the total base of HALS software is HAL/S constructs are used more than others, and
quite small. that some are not used at all. In order to ensure that

efforts were concentrated in those areas that would
The base of HAL/S software that would be result in the highest percentage of translation, a

reusable for a Shuttle derived avionic system is even comprehens,¢e profile of the software to be translated
smaller as shown in Figure 1. The baseline would was generated
probably be the PASS flight software. It is comprised
of a total of 215K Source Lines Of Code (SLOCs), of By using a recently baselined Operational
which 178K SLOCs is HAL'S. Without knowing the Increment (01) of the Shuttle PASS HAL/S flight
specific requirements for the SDV it is difficult to software (O1-8C), it was a simple matter to determine
estimate that portion of the software that would the exact subset of the language that is actually
actually be candidate for translation and reuse. If the used. An automated tool was developed to count
SDV is unmanned all the Crew Interface (CI) software occurrences of each HAL'S keyword, built-in function,
can be eliminated. If it is an expendable launch and statement type. A complete "profile" was
vehicle then such functions as deorbit and descent or performed of that portion of the Shuttle HAL'S flight
any of the abort modes such as Return To Launch software that researchers considered the most
Site (RTLS), Trans Atlantic Landing (TAL) abort, or probable candidate for reuse in an SDV. As
Abort To Orbit (ATO) will not be needed However, suspectea, many features of the HALS lanouage are
in a manned system such as a second generation not used at all; many others are used infrequently. A
Shuttle, or even a Personnel Launch System (PLS), summary of the HALS keyword and built-in function
most functions should have application, profile is presented in Table I. In the interest of

brevity the statement profile is not shown.
3.3 HAL'S Software Profile

Since the base of software that is candidate for 4.0 TRANSLATOR ARCHITECTURE
translation is relatively small, the cost of building the
translator must be quite small in order for the total life A translator is basically a compiler. It converts
cycle cost of the end product (i.e, the SDV flight code from a source language to a target language.
software) to be cost effective Researchers already The target is generally a lower level language than
knew from experience with the two langu(,ges that the source. ;n most cases it is assembler or machine
some HAL'S constructs can be directly translated into code native to a specific processor. In other cases,
one or more equivalent Ada constructs, and that the target may be a processor independent inter-
others have no Ada equivalent. It is also known from

1 Om Annual Nononal Confererce on ADA Technology 1992 177

mediate Language. such as ?P Code.0 kftemediate
TAK~scode is often crypic anct diicult to read and .s rarely

viewed by an appication developer-
AS S MAIX 13

4 ~The source ktnguage is nHAiu. The target

VAE 13547 larIiguag is Ada. Although the target may be viewed
AD9SMAIE 0 as an intermediate laguage in the overall scope of

I= 2L buiding a Shuttle deried avionic system, it is the
WMUJI Ada code tha mlust be moddied and maintained for
OcT is
cccr o years to come by the appkiations developers-

Off xa:Therefore. un addition te' correctness and efficiency,
AMAY 629 OR 2am mantiabiiy of the Ada code is also paramount.

Oil PAME 0XT =~ 0M.
pAT111 I Poffis 1f's Keepig inmind that the translator itself need not

Wr SAW CE Ml beprodiiction cqJalrty. as many COTS toois as
7.3 RAW'IMf possle were used to keep development costs of the

MI 2 RROo prototype translator down. Alhough the prototype
C*AM READ0

am 21READLL 0 would ofliy perform a partial translation, most of the
CTV11 57MNTV component~s of the translator had to be fully
C~Z4 REMAJOER 27

14R REPEAT so functional.
CRARAMER W07 REPMAE 7=33

CzlIC~24 RESET so
CLOE . RETMtw0 The translator was implemented on a Sun

COMUOI 40 I= 8 Workstation under UNIX. An overview of the
COSTO 6a6 R.VST 0 translator is presented in Figure 2. Its three basic

13s 3 ROOM4 12
GOSM 0 R114T3. 7 components are a lexical analyzer, a parser. anid a
DATE 0 SCALAR 5152 set of translation routines. Although it is not really
DIEC, 24M7 SCHEMUE 161
DECLARE 24=06 SED 12 par', of the translator, there is also a iairly large library

1IKO si 3 of support packages to provide an Ada equivalent of
DIET 0551111 the many functions built directly into the HAL/S
DO 13.517 SINA ' language- Finally, because the speed of the

1567M iWS&GM '1 translator was relatively unimportant, a preprocessor
WE4.6n7 SIM 141

END 'U.'1I SM a was used to prepare the HAL/S input, and a post-
EOUATE463 1.07Io

EDATE 46 SIZE processor was used to Vpretty print" the Ada output
ERN 0 lo after translation rather than build these capabilities

EVENT 77 STATIC 0 into the translator itself. Each of these components
E'VfRY 80 STRUCTURE 1.152 is discussed in more detail below.
EXCLUSIVE 15 .STALCJCTIJRE 10073
ExiT 67 SUFEBIT 061
EXP 31 SLAA 0
EXTERNAL. 423 SYSTEM 0
FALSE 474 TM. 0

FILE 0 TAN 22
FLOOR 148 TAP*4 0

FR1231 TASK 0 I§

GO 0 TEHJrWAMTE 0 TASLE1
HEX 13.560 THEN 11C.493
IF iC.493 TO 35413 wc AI
IGNORE '7 TRACE 2 MNWW d
IN 3 TRA54SPOSE 22 fA:

IDAI TRIM 0 r 5!' It'o io
IITIAL 26 AM TRUE 447 uto opea

INTEGER 7f.f36 TAU)NCIATE 121
M~IEREE 0 WI~T 123i

LATCHED75 U4I 7.....
LENGTH 0UDT 4 o

LJ~sr 0 WAIT 192
IK0~ WHILE 99 FIGURE 2 WANSLAMlN PROCESS OVEIMEW

LOG 101 %RITE 0
[%I0ARMX 33 llXOR 236j

178 1 Oth Annual National Conference on ADA Technology 0992

4.1 Lexial Anayzer the translator was taken dectly from the HAL/S
compiler for the Shuttle Backup Flight System. The

A lexical anilyzer paritions an input stream of text YACC compier converts the input specification into C
inlo 1okens that match expressions suppled by the soure code that is subsequertly compiled and linked
user in the form of an input speciication. A token is with other components to create the executable
a basic element of the language such as a keyword, translator.
an identifer, or punctuation. A standard UNIX tool,
LEX, was used to generate the lexical scannerforthe The parser calls the lexical scanner to provide
translator. An overview of Whis process is presented input in the form of tokens. These tokens are
in Figure 3. organized according to the rules specified in the input

grammar definition. When a rule is recognized, a
s Hprogram fragment for that rule is executed. These

program fragments are called translation routines.

4.3 Translation Routines

A translation routine performs the specific
PGrE= 3. CREAMzS A LEW, LZER translation of a HAL/S construct into an Ada

construct. A translation template is a specification of
what a translation routine is to do. Since the

The LEX compiler uses an input specification translator is a prototype, translation templates were
provided by the user and generates C source code. only defined for a subset of the HAL/S language.
This C source code is subsequently compiled and Using the keyword and statement profile shown in
linked into an executable lexical analyzer that Table 1, an initial subset of the HAL/S language was
corresponds to the user's original input specification. identified for which translation templates would be
The input specification for the lexical analyzer was defined. A detailed comparison of the two languages
created by studying the HALS grammar to determine was then performed. A translation template
what lexical elements were needed. consisting of a semantically equivalent Ada statement

or construct was defined fcr each HAL/S statement or
4.2 Parser construct. The intent was to define the best

translation of the existing code, not to redesign it.
A parser organizes its input according to some The structure and design of the original HAL/S code

specified set of grammar rules. The parser for the was maintained. Consequently, ift the original HAL/S
translator was also generated with the aid of a code is not well designed, the translated Ada code
standard UNIX tool, YACC (Yet Another Compiler will not be well designed.
Compiler). An overview of this process is presented
in Figure 4. These translation templates became the heart of

the software requirements specification for the
YA.C VC Ctranslation routines. Two example templates are

Speu CP shown below. Example 1 presents a trivial translation
involving no semantic issues: an IF statement both
with and without an ELSE clause.

Paw Ou Example 1

C Translation Template

FIGURE 4 CREATING A PARMP C HAL/S IF statement with no ELSE clause

IF <condition> THEN
<statement>;

YACC accepts as input a modified Backus Naur
Form (BNF) definition of the grammar rules that C HAL/S IF statement with ELSE clause
define the structure of the language to be parsed.
The BNF definition of the HAL/S grammar used for IF <condition> THEN

10th Annual National Conference on ADA Technology 1992 179

<statement>; end INNERVARS;
ELSE end OUTER VARS;

<statement>;

_ with OUTERVARS;
procedure OUTER Is

- Ada Equivalent of use OUTERVARS;
- IF statement with no ELSE clause procedure INNER Is

use INNERVARS;II <Condition>, then begin

<statement>;
lendI end INNER;

begin

- IF statement with ELSE clause

end OUTER;
If <conediton> then

<statement>; A total of 355 translation templates was identified
else during development of the prototype. Researchers

<statement>; estimate this represents approximately 75% of the
end if; templates that would be required for a complete

translator. Translation routines were developed for
Example 2 presents the more difficult translation of 203, or about 43%, of the of the estimated 473

local variables. HAL/S local variables are static; they templates that would be required for the completed
retain their value between calls. Initialization of local translator.
variables happens only on the first call. Conve.rsely,
Ada local variables are dynamic; they do not retain An overview of the assembled translator with the
their value between calls. Initialization occurs each translation routines is presented in Figure 5.
time a program unit is called. In order to implement
the Ada equivalent of HAL/S local variables, their
declarations must be moved to local packages. aA, AtO .,I G10-01 SW

(A ZIIA Zo09" a

I y.1 - s ymfto o) IF coo TN re*e i
VO'Iot-.ol - 4owV@) I ho .0 _ESE) I

Example 2 " " WE ,

C Translation Template
C HAL/S Local Variables

LEXU (tYVMCOMc(Le, W c) upE

OUTER:
PROCEDURE; I D

DECLARE IVAR INTEGER INITIAL (0); ,no, , (V,0C)
INNER: i
PROCEDURE; ,,vo ,',

DECLARE SVAR SCALAR; .

CLOSE INNER; .o=w0

CLOSE OUTER;

- Ada Equivalent of FIURE 5 PUTIG THE TANSLOR TOGMER

- HAL/S Local Variables
4.4 Support Packaces

package OUTERVARS Is
WAR : INTEGER := 0; The HAL/S language was developed for NASA
package INNERVARS Is specifically for use in real-time man-rated spacecraft

SVAR :FLOATS; applications. It has many built-in functions and

180 10th Annual National Conference on ADA Technology 1992

capabites incorporated specifically to support such 4.6 Ada Post-Processor
things as mixed mode arithmetic, vectors and
matrices, math functions, and quatemia-s. AV.nic software developed for any launch system
Equivalent Ada capabilities were provided for the will be maintained for a rinimum of 10 years after
translator in the form of Ada support packages. deployment, probably 30 years orlonger. Therefore,
Some of these packages had already been maintainability of the resultant Ada code is
developed and placed into the public domain by Mr. paramount. Many factors contribute to software
Allan Kimpp of JPL4 . Although the packages are maintanability. One of these factors, and probably
available through NASA's COSMIC library, Mr. the most important, is the readability of the code.
Klumpp graciously sent copies of them for use with
the translator because of the short schedule. The The output of the translator is reformatted using an
template document provides specifications for other off-the-sheft tool to enhance readability. It is a
support packages that would be needed for a proprietary version of an Ada listing formatter
complete translator. These packages provide for originally developed by Intermetrics under contract to
such things as bit string operations, arithmetic the Naval Ocean Systems Center (NOSC). It
operations with arrayed operands, partitioning of provides substantial latitude and control over the
arrays, and a variety of type conversion routines, formatting parameters, such as indentation, use of

upper and lower case, alignment of colons, .use of
4.5 HALJS Preprocessor "white space," and placement of comments. For the

purposes of this project, formatting parameters were
The HAL/S compiler performs functions via set according to the style used in the Ada Language

compiler directives, which are the HAL/S equivalents Reference Manual. Additionally, the translation
of Ada Pragmas. They are not executable templates were designed to produce readable Ada
statements, but rather commands to the compiler that code.
affect how it interprets and uses the information it is
processing. Researchers found it simpler to use a
preprocessor to process certain of these directives 5.0 ECONOMICS OF AUTOMATED
prior to actual translation of the HAL/S source code TRANSLATION
into Ada.

A key objective of automated translation is to
The REPLACE directive provides HAL/S with a reduce software development costs when compared

capability similar to the macros of other languages. to the cost of developing the target software from
It instructs the compiler to substitute macro text for scratch. Another objective is to not exceed the
subsequent occurrences of a macro name. The development savings with increased life cycle,
preprocessor performs in-line expansion of these particularly maintenance, costs. Consequently, to
macros in the HAI'S source code. determine the most cost effective approach to

developing a Shuttle derived avionic software system
The INCLUDE directive provides HAL/S with a in Ada, it is necessary to examine the total life cycle

mechanism for executable code to be shared among cost, including maintenance, of each of the
separate compilation units8. Whenever a program, alternatives.' The three alternative approaches
comsub, or compool is compiled, an external block examined were the following:
template and Symbol Data File (SDF) is generated
that contains all the information necessary to 1. Translate existing HAL/S to Ada and upgrade
reference that block from within another compilation to new requirements
unit. It is similar to an Ada specification except that 2. Retain existing HAL/S and upgrade to new
it is generated automatically by the compiler. The requirements
preprocessor for the translator generates an 3. Develop the new software in Ada
equivalent symbol file necessary for the translator to
perform the INCLUDEs and resolve references to
HAL/S objects during the translation.

10th Annual National Conference on ADA Technology 1992 181

To determne the total software H;1e cycle cost for reusable software base versus 25% manual
alternative 1, automated translation, the following cost translation.
elements must be considered:

1. Developing the translator
2. Verification of the translator
3. Operating the translator
4. Manual completion of the translation process
5. Development of new software for the target

system
6. Integration and verification of the target

software 0
7. Maintenance of the target software

Each of these cost elements is examined below. oo of It 7samon

RGUJI 6. TRANSLATOR DE,'ELOPMENT COSS
5.1 Development of the translator

The cost of developing the translator includes bcth
fixed and variable components. Fixed development
costs are fairly indeperr.nt of both the source and
target languages. They are comprised of the cost of 5.2 Tradeoffs Between Manual Conversion And
those components that must be fully implemented, Automated Translation
including the pre-processor, lexical analyzer, parser,
and post-processor. Several tradeoffs need to be considered when

determining whether manual, fully automated, or
The largest cost component is the variable cost of semi-automated translation is the most economical

implementing the translation routines. When building means of translating the desired software. Some of
a fully automated generic translator, variable cost is these tradeoffs are discussed below.
driven entirely by the size, complexity, and similarities
between the source and target languages. However, The advantages of automated translation include
in the instance of a HAL/S to Ada translator, a 100% that it is consistent (i.e., repeatable) for a given input,
translation is neither required nor economically rapid (once the translator is developed), and non-
feasible. Specific translation routines are selectively labor intensive. A major disadvantage is the time and
implemented based on the frequency of occurrence cost required to develop the translator. Additionally
and complexity of each HAL/S construct to be automated translation transforms only the code. All
translated. The optimum mix of automated and other software products, such as documentation and
manual translation is determined through analysis. test cases, must still be manually converted.
This analysis takes into account the percentage of
automated translation achievable by each individual The advantages of manual translation include that
translation routine and the cost o manually it can be performed quickly and economically on a
completing the conversion process. small amount of code. It also enables restructuring

of the code to take advantage of special features of
The cost of developing a language translator is the target language, compiler, or other system

represented in Figure 6, Translator Development features, resulting in more efficient target code. The
Cost. For each project, the optimum mix of major disadvantages of manual translation include
automated and manual translation will vary. In the that it is labor intensive, error prone, generally
case of the HAL/S to Ada translator, using the PASS inconsistent, and less economical than automated
HAL/S flight software as a baseline for the translation for large amounts of software.
development of a highly Shuttle derived avionic
system, the optimum mix was determined to be Both manual and automated translation may be
automated translation of approximately 75% of the able to reuse, to some extent, high level black-box

182 10th Annual National Conference o ADA Technology 1992

integration tests. However, automatically translated 5.4 Ooeratinq The Translator
software may also be able to reuse some lower level
black-box and white-box tests. This is because The cost of operating the translator is negligible.
automated translation will result in a higher degree of It is expected to be a one-time, non-recurring cost.
trwceability to source software verification tests than Whether it requires an hour, a day, or a week the
will manual translation. The reason is that the design cost of operating the translator is trivial when
and structure of the crignal HAL/S code are compared to the overall cost of developing the
maintained, including- such things as object names completed system. Unde' some circumstances,
and data types. Manual translan will generally however, it may be necessary to run the translator
result in these characteristics being aftered more than more than once. For example. 4t may be desirable to
i the software is translated automatically, translate subsequent releases (if the source softare

to incorporate changes made after the initial
5.3 Verification Of The Translator translation. It may also be desirable to incorporate

optimizations or constraints into the translator for a
Verifying the translator ;5 similar to validating a specific target compiler, computer, or system. It is

compiler. No amount of testino ;an ensure that it will also possible that the translator may be used to
function correctly in all situations. The parser and derive different target systems, such as a different
lexical analyzer should not need to be verified if they SDV or another Space Lab. The decision whether to
are created with tools such as YACC and LEX re-run the translator or to use the target software
because the process used to generate them is generated by a previous translation as the starting
already proven'. However, the inputs to these tools pint for implementing changes must be considered
will need to be verified, probably by peer review, on a case by case basis.

The translation routines, which are based on the 5.5 Manual Completion Of The Translation
translation templates, are the most crucial component Process
of the translator. Verification of both the templates
and the routines will be necessary to ensure that the Manual completion of the translation process will
translation is both syntactically and semantically be necessary for the following reasons:
correct. The translation templates also form a source
of ready made tests for the translator. Once a 1. Some constructs in the source
translation template has been verified, it may be also language may not be directly
used to create the test cases for.the corresponding translatable into the target language
translation routine. Both valid and erroneous inputs (e.g., HALS process timing information
should be tested. Processing of language constructs into Ada tasking)
c-rresponding to unimplemented translation
templates should also be performed to ensure they 2. Some constructs ar. so rarely used in
are properly handled and flagged in the output. the source software that t is more

economical to manually translate their
in the case of the HAL/S to Ada translator, the few occurrences than to automate their

objective is not to build a reusable translator but translation
rather to translate a relatively small base of reusable
HAL/S software. The translator itself is essentially a 3. There may be some need to re.tructure
throw-away. It is of no value once the automated the target software to account for or
portion of the translation process has been take advantage of target language
completed. Thus, if a translation error is detected for features, or to take into accour.
a source software construct that has been used hardware or system differences
relatively infrequently, it may be more economical to between the source software system
manually correct the error in the target software and the target software system, (e.g.,
rather than to correct the translation routine. The I/O, memory structure, et-.)
erroneous translation routine may simply be modified
to flag the location in the target software and print a Manual completion may also include enhancing
listing of the statements requiring manual intervention the overall quality of the target software. Quality
to correct. enhancements may include such things as the use of

10th Annual N,:flonal Conference on ADA Technology 1992 183

different data structures, control flows, or sources of errors that need to be accounted for due
modularkzation. The specific mix of automated and to translation include:
manual translation requires a cost-benefit analysis for
each target system. A summary of the major 1. Insufficient run-time efficiency; the translated
software cost trades for a highly Shuttle derived software will generally be larger, both in !erms
avionic system is presented in Table 2. of SLOC and memory utilization, an the

source software;

2. translation errors resulting from semantic
TABLE 2. MOR SOFTWARE COST TRADES differences between the source and target

languages; and
Translated to AiafoScratch 3. integration of translated software with softwareAda Scratch developed from scratch in the target language.

Aviic Incrased Increased H/W
Arcitbcture H/W changes changes do not Some of these errors may be mitigated by:
Effed on S/W that are ron- significantly
Costs transparent affect outcome

decreases (med.) 1. Use of a faster processor for the target system
S/W than is used for the source system. This is
rasiatable often possible due to advances in processor

(low to high) technology since the source system was

Requirements Morn stictly Less deployed.
Development Shuttle constrained to
Costs derived-lower Shuttle-higher 2. Detailed source-to-source analysis to identify

Code Lower Higher and account for semantic differences between
Development the source and target languages.
Costs

Maintenance Higher Lower 3. Use of the verified translation templates to
also create translator test cases.

4. Use of loosely coupled external packages to
implement features of the source language not
directly translatable into the target language,

5.6 Development Of New Software For The Target such as built-in functions, mixed mode
System arithmetic, or unsupported data types.

It is expected that an avionic system for any In the case of the prototype HALS to Ada
alternative launch vehicle, even one that is highly translator, many translator specific verification
Shuttle derived, will differ substantially from the problems were solved by the above steps.
present Shuttle avionic system. The more dissimilar Researchers conservatively estimated that the
the SDV avionic system is from the Shuttle avionic processor for the target system would result in at
system, the more new software will have to be least a 50% increase in processing power over the
developed to complete it. source AP-101/S (1.2 MIPS) processor. The detailed

source-to-source analysis involved experts familiar
5.7 Integration And Verification Of The Target with both Ada and HAL/S. The prototype translator

(Ada) Software was tested with both translation test cases and a
representative subset of the PASS flight software.

Verification of a system developed using Utility packages used to implement HAL/S built-in
automated translation will most probably be less functions, such as math packages, were very loosely
difficult than verification of a system developed coupled with the code generated by the translator,
entirely from scratch due to the possible reuse of enabling them to be separately verified.
source software verification tests. Some additional

184 10thAnnui National Conference on ADA Technology 1992

The verification philosophy will depend on the size maintained. On the other hand, maintenance costs
and crilicality of the target system and on the may also be affected positively by automated
expected frequency of use of the translator. If the translation. This is because manual translation is
system kivolves a small amount of software to be generally less consistent and more error prone than
translated and/or the translator is expected to be automated translation.
used only once, then verification efforts will be
focused almost entirely on the translated software. A The major component of maintenance cost will be
much smaller effort will be expended on verifying the due to the level of change traffic. Constraining or
translator itself. Conversely, if the Iase of software eliminating non-critical changes in the target system
to be translated is large andlor the translator is will reduce the overall software life cycle cost.
expected to be used many times, then a much larger
proportion of verf.ation efforts will be directed This project investigated the three different
toward the translator. software development approaches identified in

section 5.0. A thorough quantitative analysis of the
Depending on the level of confidence in the maintenance costs associated with each of these

translator and maturity of the source software, the development approaches was not possible. Figure 7,
verification of the target software may be Expected Maintenance Cost Curves, shows that the
concentrated on areas of semantic differences maintenance costs of the three development
between the two languages. A major benefit of approaches are expected to be different. It is for
translation should be a reduction in ovrall testing illustrative purposes only. Figure 7E shows the
and veri;ation costs due to maturity of source expected maintenance cost curve for a target system
software, ccnfidence in the translator, and possible with low change traffic, while Figure 7b shows the
reuse of sourcc software test procedures. expected maintenance cost curves for a target

system with relatively high change traffic. In both
The use of tools to automatically verify or assist in cases the translated software is considered initially to

the verification of the target software should be used be more mature than the software developed from
whenever possible, such as the Rockwell scratch.
Inremational proprietary Ada Test Program (ATP).
The ATP assists in white-box testing of Ada software. As can be seen in Figure 7, the amount of -,lange
The availability of a particular tool to aid in the traffic to the target system greatly affects when the
verification of specialized features of the target life cycle costs of the three development approaches
language may be factored into the evaluation of intersect.
alternative implementations of the translation
templates. 5.9 Cost Of Developing The Software Portion Of

An Avionic System For A HIGHLY Shuttle
5.8 Maintenance Of The Target Software Derived Vehicle

Maintenance of the target system is a recurring Following is an estimate of the costs associated
cost and must be carefully analyzed for each with developing a fully operational avionic software
alternative implementation. Some of the factors system for an SDV. As previously discussed, it is
affecting maintenance costs include its maturity, difficult to accurately estimate to cost of developing
complexity, size, and change traffic. an avionic system for an SDV without knowing the

specific requirements of the system. For the
For software of equal maturity, the maintenance purposes of this example, the following assumptions

cost of a target software system developed using have been made:
translation will generally be higher than if the software
is implen'e.nted in the target language from scratch. 1. The launch vehicle and avionic system are
Some of the reasons for the increased cost include highly Shuttle derived
not exploiting or inappropriately using the features of
the target language, and translation of the original 2. The launch vehicle is expendable
design rather than improving the design based on
experience with it. Therefore, translation will tend to 3. The launch vehicle is unmanned
result in more lines of code in the target system to be

10th Annual Naional Conference on ADA Techno'logy 1992 1859

Translate ew The effort necessary to develop the 26,500 SLOC
Hrequired for the translator was estimated using the

COnstructive COst MOdel (COCOMO)2. The basic
model was extended to include a rquirements
definition phase and brief "operation" phase, during

U which the automated portion of the flight software
translation will be performed. Maintenance of the
translator will not be necessary since it will not be
used after the operation phase has been completed.

TIME Finally, the 152 Hours Per Man-Month in the basic
TME HhCOCOMO model was adjusted to 168 Hours Per

a: High Chan9e TrafiC Man-Month. Table 4, Estimated Cost Of Translator,

presents the results of the cost analysis.

H TaaTABLE 4. ESTIMATED COST OF TRANSLATOR
Now

COCOMO RESULTS
TOTAL EST HOURS 16,000

0 TOTAL ELAPSED TIME (MONTHS) 12
AVERAGE LEVEL OF EFFORT (EP) 9

TIME
b: Low Change Traffic 5.9.2 SDV Avionic Flight Software Development

FIGURE 7. EXPECTED MAINTENANCE COST CURVES and Maintenance. In this section the costs
associated with developing a complete avionic
software system for an SDV are estimated. Two

5.9.1 Cost of Developing a Translator. To alternative approaches are examined:
estimate the cost of developing the translator, it is
first necessary to estimate its size. Table 3, presents 1. Retain HAL'S. This approach would modify
an overview of how the size of the translator has the existing Space Shuttle Orbiter HAL/S flight
been estimated. software for use with an SDV.

2. Translation. This approach would involve aTABLE 3. ESTIMATED SIZE OF TRANSLATORcobntnofaomed nd aulcombination of automated and manual

No. of trans templates identified 355 translation of all HAL'S flight software modules
Est. percentage of total required 75% that would be reused, in whole or in part, for
Est. total number of templates reqd 473 an SDV. The basic design and structure of

No. of trans. templates implemented 203 the existing Space Shuttle Orbiter flight
Est. percent complete (203/473) 43% software would be, retained.

Prototype SLOC (43% of total) 13,723 SDV flight software sizing estimates included are
Est. total trans. SLOC (rounded) 32,000 based on sizing estimates generated by this project.

Prototype reuse for translator Estimates of software life cycle costs are baseJ on
Est. percent of reuse 40% those sizing estimates and have been derived using
Total SLOG reused (40%1. x 13,723) 5,500 an extended COCOMO cost model. Table 5,
Est. SLOC to be developed 26,500 Allocation Of Cost By Life Cycle Phase, presents the

results of this derivation and an estimated schedule
for each of the life cycle phases for a "typical" real-
time embedded flight software system with
characteristics similar to those under analysis.

186 10th Annual National Conference on ADA Technology 1992

Table 7, Estimated Effort, presents the estimated

TABLE 5. ALLOCATION OF COST BY LIFE effort, in Man-Months (MM), for the "typical" model
CYCLE PHASE and for each of the two alternative software

development approaches. The amount of effort
SCHED (MO) required to complete each software life cycle phase

is computed as follows:
SW UFE CYCLE %COST START DUR
PHASE

REQUIREMENTS DEF 0.05 0 4 TABLE 7. ESTIMATED EFFORT (MM)
PREUM DESIGN 0.11 4 5
DETAILED DESIGN 0.15 9 7 SW UFE CYCLE TYP RETAIN TRANS
CODE & UNIT TEST 0.18 16 6 PHASE MODEL HAL/S
SOFTWRAE INTEG. 0.20 22 8 R Def. 103 58 58
SYSTEMINTEG. 0.03 30 13 Prelim Design 226 129 129
MAINTENANCE 0.28 43 Detailed Design 309 175 182

TOTAL 1.00 Code & Unit Test 370 210 259
Software Integ. 411 206 370
System Integ 62 46 . 59
Maintenance 576 864 691

TOTAL 2,057 1,689 1,748Under normal circumstances, the effort computed

using this model for a '"ypical" system with similar
characteristics might be used to estimate the total
development costs. However, for any Shuttle derived
avionic system, some of the effort required to develop (100% - % complete) (typical model effort)
the software Is already completed due to the ability to
reuse a portion of the original requirements, design, Table 8, Summary Of SW Dev & Maint Cost For
code, test cases, etc. Table 6, Estimated Portion Translation, summarizes the information presented for
Already Complete Due To Reuse, presents an "Translation." Table 9, Constants Used, presents the
estimate of that portion already completed, by life constants used in this analysis.
cycle phase, for each of the two alternative software
development approaches. The negative numbers TABLE 8.
specified for the maintenance phase indicate that SUMMARY OF S/W DEV. & MAINT. COSTS FOR
these phases will require a greater than normal effort TRANSLATION
to maintain the code (i.e., both the HAL/S and T
"translated" Ada code will be more difficult to maintain Sw LIFE CYC. ESTIM. % ESTIM
than "Ada from scratch"). PHASE EFFORT REUSE EFFORT

(MM) (MM)

Requirements De 103 0.43 58
Prelim. Design 226 0.43 129
Detailed Design 309 0.41 182

TABLE 6. ESTIMATED PORTION ALREADY Code & Unit Test 370 0.30 259
COMPLETE DUE TO REUSE S/W Integ. 411 0.10 370

System Integ. 62 0.05 59
SW LIFE CYCLE TYP RETAIN TRANS Sytm.n.......
PHASE HAL/S Total Dev. Cost 1,481 1,057

Requirements Def. 0.00 0.43 0.43 Maint. Thru Yr. 10 578 (0.20) 691
Prelim Design 0.00 0.43 0.43
Detailed Design 0.00 0.43 0.41 10 Yr L/C Cost 2,057 1,748
Code & Unit Test 0.00 0.43 0.30
Software Integ. 0.00 0.50 0.10
System Integ 0.00 0.25 0.05
Maintenance 0.00 (0.50) (0.20)

10th Annual National Conference on ADA Technology 1992 187

5. Use of Shuttle databases and expert
TABLE 9. CO)NSTANTS USED knowledge to improve the translation,

restructuring of the target software when
Est Total SLOC 119,000 compared to the source software, and placing
Est STS Rouse 64,500 limits on the target software data structures
Est. Complete (STS Reuse/Total and types.

SLOC) 0.54
% Translatable to Ada 0.75
HAL SW Integ. Adj. for STS Reuse 0.50 Information on all the above areas should be
HAL Sys Integ. Adj. for STS obtained before making a final decision on whether or

Reuse 0.25 not to translate.
Unit Test Portion of Code & Unit

Test 0.50
Ada Maint. Advantage over HAL/S 0.20
COCOMO Result- Basic (MM) 1,302 7.0 CONCLUSIONS
COCOMO Adjusted - Ada (MM) 2,057
HAL Maint. During Development 6.06 This project investigated the ibsues relevant to

software translation, developed a prototype HAL/S to
The cost analysis supports the premise that Ada translator, translated a representative subset of

automated translation may be a cos' effective Shuttle flight software, and provided a sound basis for
approach to developing an Ada avionic software evaluating the economic feasibility of developing a
system for an SDV. Although initial development Shuttle derived avionic system using a HAL/S to Ada
costs would be lower for a HAL/S system, higher translator.
maintenance costs for HAL/S may negate these
savings over the expected life of the software. It is For the prototype translator, the following quality
Important to note that issues related to the translation attributes were achieved:
of HAL/S software into Ada were identified during this
study. Some of these issues are still unresolved, and 1. The Ada software design is acceptable, but
require further investigation In order to accurately not optimal. The design is based on the
assess their implications with respect to the feasibility translation templates that consider translation
and cost of developing shuttle derived flight software on a construct by construct basis, rather than
via translation. a program, module, or expert knowledge

basis. Automatic translation does not attempt
to redesign the code. It maintains the original

6.0 FURTHER RESEARCH design and structure as much as possible.
Some of the translated code will look as

6.1 Further Research Of Economic Issues though it were originally implemented in Ada,
and some will look like HAL/S in Ada.

For translations to Ada, the primary economic area
of further research is maintenance cost. Little data is 2. The readability of the Ada software is good
available in this area. Due to the lack of data, the due to the use of an Ada pretty printer and
maintenance cost figures presented in this paper are deliberate design of the translation templates
primarily qualitative rather than quantitative, to support readability.

3. Although the translated code will be less
6.2 Further Research Of Technical Issues ,,fficient than code originally developed in Ada,

run-time efficiency is not considered to be an
In regard to the HAL/S to Ada translator, the issue due to use of faster processors than the

following areas need further research: current Shuttle AP-101/S.

1. Tasking/Process control 4. Maintainability of the Ada software is fair.
2. Real-time Maintenance effort increases due to the
3. System calls increased number of lines of code to be
4. Input/Output maintained.

188 10th Annual Naional Conference on ADA Technology 1992

7.1 Circumstances Under Which Translation Is software in Ada from scratch is approximately 800,
Economically Feasible 1200, and 2800 man-months, respectively.

Automatic translation is economically feasible As shown in Figure 7 the maintenance cost for
under the following conditions: HAL'S is expected to be the highest due in part to

the user (NASA) having to bear the entire cost of the
1. The Source and target languages are HAL'S infrastructure (i.e., compilers, etc.). The

sufficiently compatible. maintenance cost of Ada developed from scratch is
expected to be the lowest for the three alternative

2. The base of source software to be translated approaches. This is due in part to the exploitation of
Is large. Ada features when developing the software, and the

availability of a large base of low-cost commercial
3. There is a high degree of similarity between software tools for Ada The HAL/S to Ada translation

the source and target systems. maintenance cost is somewhere between the other
two approaches. For a highly derived system with a

4. There will be a low level of maintenance relatively short life cycle and a low level of change
changes to the target system. traffic, maintenance costs will not be a major factor.

However, for systems with a long life cycle "and a
5. The expected life cycle of the target system is high level of change traffic, increased maintenance

relatively short. costs for the target software may far exceed any
savings In development costs realized due to

Automatic translation will probably not be automated translation.
economically feasible when the above conditions are
not met. However, even If the systems are so
dissimilar as to preclude translating the bulk of the ACKNOWLEDGMENT
software, it may still be economically feasible to
translate part of the source software (e.g., guidance). The authors wish to thank the following individuals
If the target system is relatively large and simik-r for participation in the project on which this paper is
enough to the source system, development cost oi based and/or for reviewing drafts of this paper: Frank
the translator and increased maintenance cost of the Cauchon, Dan Dahlen, Don Dillehunt, Tom Healy,
target system may be warranted. Jack Jansen, John Jones, Dale Keim, Kurt Kohlhase,

C. Allen Lowry, John Mayer, Sandra Murray, Steve
7.2 Translation Cost For A Shuttle Derived Vehicle Rehagen, Gerald Rook, Deborah Terrien, Kent Tolley,

Kathleen Velick. The authors apologize for any
Significant software development cost savings can omissions to this list.

result from the translation of Shuttle software for a
HIGHLY Shuttle derived launch vehicle, such as
Shuttle-C. The following conclusions were reached: REFERENCES

1. Automatic translation is feasible. 1. Aho, A. and J. Ullman, Principles of Compiler
Design, Addison- Wesley, 1977

2. The Data Management System (DMS)
software would be approximately 119K SLOC. 2. Boehm, Barry W., Software Engineering

Economics, New Jersey, Prentice Hall, Inc. 1981.
3. Approximately 46% of the DMS software

would be developed from scratch. 3. Ehrenfried, Daniel H., "Feasibility Assessment of
Jovial to Ada Translation," Jovial Language

4. A minimum of 41% of the DMS software could Control Newsletter, Vol. 5, No. 1, January 1983
be translated from HAL'S.

4. Klumpp, Allan R., An Ada Linear Algebra
Software development costs for using the HALS, Package Modeled After HALS, JPL D-3729A,

translated HAL'S to Ada, and developing all the DMS Vol. I and II, March 1989

10th Annual Notional Conference on ADA Technology 1992 18

5. KlunW, Allan R., General Purpose Ada
Pac~kags JPL D-6279, Vol. I and 11, March 1989

6. Martn, Donald G., "Non-Ada to Ada Conversion:
Ada Letters Vol. VI No. 1, Jan/Feb 1986, pp.
vi.1-72 - vi 1-81

7. MIL-STD-1815A, Reference Manual for the Ada
Pro-gramming Lanquage United States
Department of Defense AJPO), March 1983

8. Ryer, Michael J., Programming in HAL/S,
Intermetrics, Inc., September 1978

9. Yellim, Daniel M., "Attribute Grammar Inversion
and Source-to-source Translation," Germany:
Springer-Verlag, 1988

190 10th Annual National Conference on ADA Technology 1992

BIOGRAPHIES

Roger S. Ritchie

Education: Was graduated in June 1985 Cum' 'ude

with a B.S. in Inlormation and Computer Srience
from the University Of Califomia at Irvine (UCi. Was
graduated in June 1987 with a Masters In Buseness
Adniistration (MBA) from UCI. Was graduated in
January 1989 with a M.S. in Computer Science from
the California State University, Fullerton.

Work Experience At Rockwell International (1985 to
present) Includes: Computer based simulations of the
Space Station Freedom. Project lead forthe Rockwell
Intemational proprietary tool: Ada Test Program
(ATP). The ATP assists in the white-box testing of
Ada software by determining the paths through each
module of the software and generating a graphical
representation of and a minimal set of tes cases to
test all oi those paths. Project lead for the Ada
Operating System (AOS) research project. This
project developed a portable, cyclic based real-time
executive written in Ada for embedded Ada
applications. Project lead for the Shuttle Derived
Launch Vehicle Software Options project. The project
on which the paper is based. Manager of the Space
Systems Software Analysis unit in the Software
Engineering Department.

Jeffrey E. England

Mr. England is Manager of Space Systems for the
Systems and Software Engineering Division of the
Aerospace Systems Group of Intermetrics, Inc.
:ocated in Huntington Beach, California. He received
a BA degree in Quantitative Methods from California
State University at Fullerton in 1974. Mr. England is
a principal architect of the Build, Integration, and
Mission Reconfiguration System for the Space Shuttle
Backup Flighl System and has substantial experience
in the development of testing and analysis tools for
the Ada language.

10Qth Annual Nohonal Conference on ADA Technology 1992 191

ADA TANSITION RESEAPCH PROJECT

(A SOFTWARE RE-ENGINEERLNG EFFORT)

Glenn E. Racine (AIRMICS) Reginald Hobbs (A1RMICS) Richard Wassmuth (SDC-A)

SUMMARY the-art technology, tools, and modem software engi-
neering principles into these old applications.

This paper describes a re-engineering effort recent-
ly conducted by the Army Institute for Research in
Management Information, Communications, and A number of objectives were key to this project. We
Computer Sciences (AIRMICS) and Software De- wanted to assess the use of CASE (Computer-
velopment Center - Atlanta (SDC-A), both compo- Aided Software Engineering) tools in the reverse en-
nents of the Army's Information Systems Engineer- gineering, design, and Ada implementation phases.
ing Command (ISEC). The project re-engineered Additionally, we wanted to compare Object-Ori-
a Management Information System (MIS) written in ented Design (OOD) versus structured design (also
COBOL to a new system written in Ada. The paper known as functional decomposition). Since the sys-
covers the following: background, project objec- tem was to be written in Ada, one of the objectives
tives, approach, brief description of the system that was to determine what the issues were in implement-
was re-engineered, reverse engineering, redesign ing Ada. Training would be a key factor because we
strategy, design process, implementation aspects, were using CASE, OOD, and Ada for the first time.
results, issues and current efforts, and conclusion. At the conclusion of the effort, we a!s' wanted to

compare the old system with the new, re-engineered
system.

BACK.GRUND APPROACH

The Army's Information Systems Command The first stepwas to select a STAMIS to re-engineer.
(USAISC) maintains over one hundred STAMIS The STAMIS had to be small, capable of being mo-
(Standard Army Management Information System) dified, and representative of most STAMIS. The
applications in the major functional areas of logis- next step was to reverse engineer the system to docu-
tics, personnel, finance, and communications. Most ment the functionality of the system. CASE tools
of these systems are written in COBOL are batch were used to help document the requirements, but
oriented, and some have been operational for more this was largely a manual task. The functional de-
than twenty years. With these systems, it is difficult scription was then reviewed with the Functional
to embrace and incorporate new technology. New Area Specialist and some corrections were made.
technology, in the form of Ada, has been mandated The team was divided into two groups, one to do
(by DOD) for all new system development. Addi- functional decomposition and the other to do the
tionally, current software development for new sys- OOD. The design teams used the same function de-
tems is lengthy and maintenance is expensive. In scription to define the functional requirements of
fact, some estimates state maintenance consumes the system. The designs were compared to deter-
sixty to eighty per cent of life cycle costs. Because mine the design for implementation. The program-
of the large investment in the sy -ms being main- mers were given eight weeks of Ada training and the
tained, it is desirable to leverage current state-of- design that was selected for implementation.

192 10th Annual National Conference on ADA Technology 1992

SYSTEM DESCRIIQON ture tends to degenerate and the supporting docu-
mentation no longer reflects the operational system.hie Installation Materiel Condition Status w Reverse engineering is largely a question of recog-

ihg System (IMCSRS) was selected. IMCSRS was

an application of manageable size with all the char- nizing design decisions in software and constructing
a representation of these decisions from which a re-acteristics of most of the STAMIS systems. It was

a 20 year old, batch oriented system, containing design can be performed. Constructing a high level

10,00 lines of COBOL code. The system ran at 40 representation (functional description) of existing

installations on a mainframe computer. The size of software facilitates the construction of a new and
more appropriate design. Our experience on thisthe system was limited so that the concentration moeapprtedsg.Orxeinconhs

the system waso the conectobjectivesrahetaon project points to reverse engineering as having two
would be on the project objectives, rather than sim- major levels of abstraction, a snapshot view and a
ply coding a large system. concept view. The snapshot view attempts to cap-

IMCSRS consolidates equipment status informa- ture the requirements and functionality inherent in
tion at each installation and extracts data needed to the current system. The snapshot results are then
help managers evaluate the status, readiness pos- reviewed with a functional area specialist to come up
ture, and condition of selected items of equipment. with a concept view of the system. These two-views
It automates the front side of a Department of Army are discussed next.
Form (DA Form 2406 - Materiel Condition Status Snapshotiew. Reverse engineering involves creat-
Report) and forwards the information, via AUTO- ing a higher level representation of source code. It
DIN (Automated Digital Network), to the Materiel is appropriate to select graphical design representa-
Readiness Support Activity (MRSA). MRSA loads tions to serve as media for expressing the results of
the information into the Readiness Integrated Data- the reverse engineering process. Four representa-
base. Consolidated information is sent via AUTO- tions were used in this effort and they differ in the
DIN to FORSCOM and TRADOC - two major level of abstraction described and the facet of the
Army commands. Printed reports on readiness pos- source code represented. They are:
ture and maintenance status of installation equip-
ment are produced at the installation/division level. 1. System Level - Context diagrams and English

text.
2. Cycle/Program Level - Data Flow Diagrams

REVERSE ENGINEERING (DFD).

[The reverse engineering process was conducted by 3. Program Level/File Structure - Jackson Dia-

a team from Georgia Tech. Detailed results of this grams.

process are discussed in 1. Information in this sec- 4. Program Level/Algorithmic Structure - The

tion has been extracted and summarized from that structure of the code is organized in terms of design

report.] decisions. (Design decisions convey the use of vari-
ous programming language features and coding

After selecting the STAMIS, the next step was to re- techniques. This facet attempts to divide the design
verse engineer the system. "Reverse Engineering is decisions into classes based on the type of abstrac-
the process of analyzing a subject system to identify tion they provide. The classes that are useful include
the system's components and their interrelation- composition/decomposition, encapsulation/inter-
ships and create representations of the system in leaving, generalization/specialization, representa-
another form or at a higher level of abstraction." 2 tion, data/procedure, and modality. A discussion of

Reverse engineering is a critical event in the re-engi- these classes is in 3.)

neering process. As systems are maintained over a These four steps also constitute the four major steps
number of years, the quality of the program struc- of the reverse engineering method. Step one data

10th Annual National Conference on ADA Technology 1992 193

should be derived primarily from information exter- REDESIGN STRATEGY
nal to the actual system code - system documenta- flcSign ksc One of the fundamental issues raised
tion and, possibly, interviews. Step two data should in the redesign effort is the question of program
be derived f;ta system documentation and verified structure. COBOL lends itself to a functional archi-
by code examination. CASE tools exist that can be tecture. Major system activities are assigned to
used to construct the DFDs. The purpose of the
Jackson Diagrams in step three is to describe the in- gram functions are broken down into paragraphs.
ternal file structure. Some CASE tools have editors grmfntosaebkndwnioprgah.In all cases, the unit of decomposition is an activity
to construct Jackson Diagrams. In some cases (doc- or process.
umentation not clear, code clarity is inadequate) a
more detailed level of the program is necessary. In The Ada approach is quite different. Ada allows for
these cases a line by line analysis may have to be per- the decomposition of programs into packages,
formed, as in step four. A technique to perform this where each package corresponds to a major system
analysis is called Synchronized Refinement. It is object. Ada, however, is not an 0-0 language.
driven by the detection of design decisions found in What we did was take 0-0 design and looked to
the code. The end result of Synchronized Refine- the language for constructs to support the 0-0 De-
ment is an annotated structural description of how sign concepts. A system can very easily be written
the program function is accomplished in the code. functionally in Ada. Translators also may exist to
This process was used in our effort and was mainly convert COBOL to Ada. However, design concepts
a manual process. Tool support, at present, is lim- are difficult to capture with translators and chang-
ited. Our experience on this project points for the ing systems to reflect 0-0 implementations is quite
need to have a functional specialist validate and different.
verify the output of this process. With this in mind, there are some guidelines that can

£oaccun Viw. This view is the highest level view of be suggested to facilitate the process.
the system. It is what the new functional description 1. Begin with the textual description produced by
is based on. One of the issues that arises is how sig- the reverse engineering process. Object-Oriented
nificant are the algorithms, cycles, and program- Design begins with the composition of a textual
ming decisions which were done on the system to be statement of system requirements, so it is natural to
redesigned. The concept view should target on what begin with the one already written.
the new system should do, and in what environment.The medium for this is ai System/User Chart and is 2. Use the input and output files and reports as ini-

The edim fr tis s aSystm/Uer har an is tial candidates for objects. Look for typical situa-
a high level graphical representation of what the new tian ndidaes forobects. Look forctial
(re-engineered) system should do. It is then refined tions nral an in COL b ndetil Baedonthi efot, t p- means such as READ/TRANSACT/WRITE. In-
to lower levels of dvert these by devising an object to hide the file struc-
pears this process is both top down and bottom up.
Top down in the sense that the concept view can be ture. Add operations to initialize the objectdeveloped through interaction with a functional (READ), to update its state (TRANSACT), and to

deveope thrughintracton itha fuctinal save its value (WRITE). The transaction file itself
area specialist while the bottom up view can be ac- sae vau e W r an acti
complished by creating the snapshot view. The diffi- may be a candidate for an object.
culty lies in combining the two views. One strategy NOTE: One risk of looking at old files and records
could be to require the output of the snapshot view is carrying old design decisions into the new design.
to be in a prescribed format, e.g., DOD- An alternative, or perhaps parallel activity, is to de-
STD-7935A. This is one area we plan to address in velop a chart (i.e., System/User Chart) that contains
the future. the real world objects that interface to the system.

194 10th Annual Naonal Conference on ADA Technology 1992

These objects are then compared to the functional Implementation Considerations. The Ada language
description. provides a variety of features that gowell beyond the

power of COBOL. Among those that should be con-
3. The approach described in the preceding para- sidered for use are the following:
graph may occasionally run into resource limita-
tions; i.e., it may not be possible to contain an entire 1 Subprograms. The IMCSRS STAMIS made no
file in memory at one time. In this case, the Jackson use of subprograms. PERFORM clauses were used
Diagram can be used to isolate repetitive batches in when decomposition was required, but the Ada
files (repeating groups of records). A new subsid- PROCEDURE and FUNCTION constructs should
iary object can be constructed to hide the batch defi- be taken advantage of.
nition. If batches can be processed sequentially, the 2. Packages. The primary structuring unit of Ada
file object can periodically request that the batch ob- is the PACKAGE. PACKAGES naturally corre-
ject "renew" itself (obtain a new batch). spond to objects in Object-Oriented Design.

4. The redesigner should also be on the lookout for 3. Exceptions. The Ada EXCEPTION mechanism
"second order factoring." This occurs when the ini- provides a way to remove the handling of unusual or
tial system decomposition leads to objects that unexpected situations from the main stream 6f the
share functionality and structure. For example, if source code without compromising thorough error
objects exist to hide the details of the various output checking. COBOL constructs such as the ON END
reports, many of them may need to perform their clause of the READ statement, the INVALID KEY
own pagination. This suggests that a new "page" clause of the WRITE statement, and the production
object be defined, responsible for taking in and of SYSOUTerror messages should be considered as
counting lines and periodically ejecting pages. The candidates for handling by the Ada EXCEPTION
page object can, in turn, be used by the report ob- mechanism.
jects as a resource. 4. Tasks. Ada provides a comprehensive tasking

mechanism. It has come under some criticism for5. Another observation relates to the overall execu- its difficulty in handling the response time needs of
tion structure of the STAMIS. The mainframe envi- embedded systems. However, it does provide a por-
ronment and the use of JCL lead themselves to table mechanism for dealing with a certain class of
structuring the system in terms of separate job steps problems. The question is, are those kinds of prob-
and lots of intermediate files. These are artifacts of lems likely to arise in STAMIS's. Probably not.
the environment and not system requirements (un- However, there are some situations where parallel-
less there are some no-functional operational con- ism is possible, and these may serve as candidates
straints that are not obvious from the documenta- for tasking. For example, several reports could be
tion). We suggest that the redesign proceed without produced simultaneously. If several files need to be

updated independently before being merged (as was
6. A related concern is the user interface. Although the case with several of the files in IMCSRS), these
there is a desire, for comparison purposes, to con- could be handled in separate tasks. For example,
struct a system with identical functionality, there are baches fnred ba i ghben dleds

some improvements that could be made concerning
how the system is controlled. For example, the selec- a separate task.

tion of the reports to be generated naturally suggests 5. Generics. Another interesting feature of Ada is
a menu interface. A direct manipulation user inter- the GENERIC. This allows a set of subprograms
face should be considered as an alternative to or PACKAGES to be described by a parameterized
the JCL approach. template. Multiple instances can be created possi-

10th Annual National Conference on ADA Technology 1992 195

bly differing by the data used, or the function han- designed IMCSRS using the object-oriented ap-
dled. For example, a generic QUEUE package proach and the other using Functional Decomposi-
could be defined and parameterized by the type of tion. Also of concern during the project, was
element being enqueued. QUEUE's of INTEGERS gauging the impact of automated tools on the design
and QUEUES of job requests could then be "instan- process. There was a need for defining criteria to
tiated." select appropriate tools that would assist the devel-

oper while minimizing the learning curve necessary
Generics can also serve as a method for reuse. That to make them effective. Assessing some of the es-
is, a generic PACKAGE, such z:,s the QUEUE pack- sential requirements for Ada training to prepare

age described above, can be used in many different progr men s for training sys-
sysems Itis uggste tat s te rdesgn/edee- programmers and developers for transitioning sys-

systems. It is suggested that as the redesignlredeve- tems was another objective of the project. Following
lopment process emerges, that an explicit effort be is a brief discussion of CASE tools, functional de-

made to recognize, characterize, develop, and composition, and object-oriented design.

employ reusable components.

There is one final suggestion to be made concerning CASE. CASE (Computer Aided Software Engi-

the use of Ada. Ada has been criticized as being neering) includes automated tools used within the
overly complex and, hence, unreliable.4 Ada certain- software development life cycle. In the beginning of
ly is a large language with many powerful and inter- the technology, CASE tools were primarily used to

esting features. One way of dealing with the com- assist in the generation of graphical representations

plexity is through the use of strict coding standards of a system. The underlying semantics and rules for

that limit the features used and the modes of expres- a particular method were being done for the most

sion. For example, many shops prevent the use of part by the developer. Current tools incorporate

the USE clause. Conventions should be agreed on features such as project management, requirements
before development begins and used rigorously. tracking, or code generation and employ software
One counter to the complexity argument is that ir - engineering methodologies such as structured anal-
plementation is easy if you have a good design. If ysis, structured design, and OOD. Although CASE
ptemntatto is esifd prolyou heflexit a g etools are still a maturing technology (the industry
the system is designed properly, the flexibility a pro- has been around for '15 years), there are many CASE

grammer needs is available, however, overall pro- pds on he m arke the e n C St
gram structure cannot be altered if the specifica- products on the market. The key in selection is to
tions are protected. determine at the beginning of the project what char-

acteristics are critical to the tasks to be accom-

DESIGN PROCESS plished. Once this is determined, the various tools
can be compared against these critical success fac-

One of the major issues explored during this project tors until the tool meeting most, if not all, factors is
was which method-object-oriented or functional selected.
decomposition-is the more appropriate for this re-
design. Redesigning the system using any structured The training of the developers who will use a particu-
method would produce a positive improvement in lar CASE tool in a design project of this type is a
the systems' functionality due to the maintenance major consideration in choosing the tool. While
problems cited earlier. OOD is a maturing technol- choosing a tool that applies and validates a particu-
ogy and lacks a wealth of empirical data that sup- lar method will help e-isure standardization and the
ports its use for STAMIS applications. Functional use of good software engineering techniques, there
decomposition is the more traditional and accepted are drawbacks. A vendor-sponsored training pro-
design method. To explore :his issue and gain in- gram will frequently focus on the mechanics of the
sight into the software development process, project CASE tool instead of teaching the underlying meth-
members were divided into two teams. One team re- od. Programmers who learn structured analysis in

196 10th Annual National Conference on ADA Technology 1992

the context of a particular CASE tool may have a Functional Decomposition. Redesigning
tendency to think of analysis as an operation to be IMCSRS using functional decomposition tech-
performed with that tool, rather than as an intellec- niques was one of the stated goals for this transi-
tual activity that the tool supports. It is very impor- tion effort. Functional decomposition, as the
tant that the developers go through some formal in- name implies, analyzes and designs systems from
struction in using software engineering techniques. a functional perspective. The procedural character-

istics are the primary focus; data is considered dur-life cycle views system development as a series of ing the later stages of development. Functionai de-steps, flowing downhill from requirements defini- composition can be divided into two distinct phases:tion, through analysis, design, coding, testing, imple- Structured Analysis and Structured Systems De-mentation, and maintenance. The problem with the sign. Structured Analysis involves determining awaterfall model is that it doesn't accurately describe structural model of an application and its corre-the way software is developed in the real world. Sys- sponding structural specifications to outline thetem construction is normally an iterative effort. In problem space ("What" we are attempting to do).the following diagram igure 1), is an interpretation Structured Design techniques map the problemof the impact of CASE tools on the traditional soft- space to a solution space, creating a new system con-ware development life cycle. One of the reasons that taining the same components and process relation-CASE tools can have a significant impact on pro- ships outlined during the analysis of the systemgrammer productivity and the creation of well de- ("How" we are to do it). The structured analysis ofsigned systems is the elimination of the iteration that a system precedes its design; the structural specifi-often occurs in completing the requirements defini- cations are direct input for the design phase. Thetion. By constructing a graphical representation of development of graphical structural specificationsthe system at a high-level of abstraction, the system produces a model of the system that is very concisecan be modeled in such a way that the user require- and easy to interpret. The main building block ofments are adequately depicted. Refining this model structured analysis is the Data Flow Diagramcan then be based on user input (along with informa- (DFD). A DFD depicts the active system processescan henbe bsedon uer npu (alng ith nfoma- and their interrelationships. A process is an event
tion from the functional requirements document) to an the intereation pa t
create a "real world" representation of the problem thin the tewr soranso at data
being solved. The use of prototyping tools at this lev- take ploTe drm is oreso th da
el further validates the accuracy of the CASE model, can be followed from process to process, which es-
For this transition project, no prototyping tools were tablishes how the processes communicate. A DFDused Th outut romthe ighlevl deigncan shows the source, destination, and location of theused. The output from the high-leve) design can dt.Ulk ovninlfocatD~ o'data. Unlike conventional flowcharts, DFDs don't
then be used to create a detailed design of the sys- show flow of control or procedure sequences. The
tem. Different CASE tools are used to implement
each stage of the life cycle. In order for tools to be temporal sequence of events within a system (i.e.

fully integrated, two actions need to be completed- which process happens first, second, etc.) are not

the creation of a common repository and the defini- described on a DFD. One of the most difficult tasks

tion of translation mechanisms for transitioning de- during the structured analysis phase is reducing sys-

sign representations through the different stages in tern activities to processes that transform data.

the life cycle. The development of Integrated CASE In the structured design portion of a system develop-
tools that support a repository and this type of ment, the structured specification generated in the
translation between representations will further analysis phase is used as a road map towards the
automate the life cycle process. new design. By using the structured specification as

10th Annual Nalonal Conference on ADA Technology 1992 197

TRADITIONAL. DEVELOPMENT RE-ENGINEERING DEVELOPMENT
USING CASE TOOLS

IPLANNING &7 R 2EQUIREMENTS
INTIALIZATIONE DEFINITION

PROTT=YPNNG HIGH-LEVEL
PRDET GDESIGN

REQUIREMENTS

DDELIVERY

l ijiure 11 1

IOD CODEE&ATEST

REVERSE ENGINEERING
DELIVERY

Figure I
Impact of CASE Tools in the Software Development Process

a well-defined statement of the problem, structured necessarily intuitive and requires many iterative
design allows the form of the problem to guide the steps of refinement. The beginning of the transform
solution. The design itself is not the final system but analysis process involves determining the portion of
a plan for implementing the new system. Structured a DFD that contains the essential functions of a sys-
design can also help outline a set of criteria for eva- tem. This central transform will outline tie basic
luating the proficiency of a design solution as it re- functions that must be accomplished within a sys-
lates to the original problem. Structured design tem and lead directly to the development of a struc-
derives a simplified, graphical representation of a ture chart. The lack of a seamless integration strate-
system by partitioning the functionality and organiz- gy between structured analysis and structured
ing hierarchical relationships Partitioning systems design is sometimes viewed as a major limitation of
modularizes function; effectively isolating functions using the method. Some software developers say
from updates and changes in different portions of that analysis and design should always remain sepa-
a system. The DFDs of the structured analysis rate; otherwise design considerations begin in-
phase are converted into structure charts in the de- fluencing analysis decisions before it is appropriate
sign phase through transform analysis. Transform to consider them.
analysis is a strategy for deriving a first-cut struc-
ture chart from the analysis of a system. At present Object-Oriented Design (OOD). OOD is a new ap-
there is no automated, heuristic process of moving proach to system modeling that evolved as a natural
from DFDs to structure charts. The process is not consequence to object-oriented programming. In

196 10th Annual National Conference on ADA Technology 1992

the object-oriented environment, data are primary, to other objects.
procedures are secondary, functions are associated 4. Establish the interface for each object.
with related data, and a bottom-up approach is used 5. Implement each object.
for development. This method is diametrically op- The objective of the design phase of the project was
posed to the way software development has been to produce a detailed design of the system which was
performed in the past where system characteristics ready for implementation in Ada. Using the newly
were defined from a functional perspective. Terms developed functional description as a baseline, the
such as information hiding, "black box" design, or system was redesigned by two separate teams; one
encapsulation are also used to describe QOD be- developed a Functional Design, the other an Object
cause information concerning detailed design or im- Oriented Design.
plementation need not be known by multiple devel-
opers constructing a system designed in this manner The two designs were compared and the Object Ori-
- only the interface specification need be known. ented Design was selected as the design for imple-
Perhaps the strongest features of OOD include in- mentation. The Object Oriented Design was se-
creased reusability, maintainability, understand- lected because it was simpler tc understand,
ability, and partitioning of the problem so that sev- appeared easier to implement and promised re-
eral programmers can implement the system duced maintenance effort during the life-cycle. Ob-
concurrently and with little communication if the in- ject Oriented Design models the real world. The ba-
terfaces have been well defined. An object is defined sis for the design method are real world objects.
as an entity (file, device, organizational unit, events, These objects are very stable creating a solid foun-
physical locations, or any abstract object) that is it- dation for the system. In this system, the objects
self defined by a set of common attributes and ser- were the Installation, Units, Reportable Equipment,
vices or operations associated with it (sort, retrieve, the DA Form 2406 and Reports. These objects are
read, write, etc). Identifying the objects is the most very modular and easily separated for implementa-
difficult step in the design ,nethod. Abstract ob- tion and maintenance.
jects, such as speed and time, are particularly hard Ada is perfectly able to support large functionally
to identify since they de not physically occur within designed systems. It is not the language that has a
the system. Each object has associated with it at- problem with functional design. In many cases, it
tributes that define the object. The attributes are has been structured design that was difficult to work
not graphically represented but are implemented as with on large systems. OOD was developed so no
fields in the defining data structure. Objects have one programmer must see the entire system to de-
operations, both active and passive, associated with sign it. You see only what one object sees at a time.
them. Active operations alter an object's state and The language was applied to the technique. Again,
the value of it's attributes. Passive operations do not Ada was not developed with OOD in mind.
alter an object but usually return the attribute values
to the calling procedure. The operations are created IMPLEMENTATION
either as visible operations which are accessible by The Object-Oriented Design was so easily under-
other objects or local operations that can only be stood that it was used as a basis for final validation
used within the object. The object-oriented design of the functional requirements by the proponent
process involves the following phases: agency (PA). After viewing the new system design,

the PA submitted an Engineering Change Proposal
1. Icentify the objects and the; attributes. (ECP) to implement the new design as a production
2. Iientify tht; operations actJ upon and required system, to replace the old mainframe version. Upon
ef .,ach obi!:ct, receipt of the PA 's request to move IMCSRS from
3 Establsh the visibility f each object in relation the mainframe to a desktop computer, it became a

10th Annual National Conference on ADA Technology 1992 199

production SIAMIS to be extended world-wide. Comments from three of the forty sites where the
New functionality was integrated into the functional new system is running point to the efficiency of the
description and current design. new system. Their comments were:

The CASE tool automatically generated Ada "What has taken us up to 2 1/2 weeks to do with the
specifications from the design. These specifications old system, we completed in 35 minutes."
served as the framework in which the programmers PANAMA
would implement the system.

"Our average time from start to finish was 1 1/2
Two programmers received 8 weeks of Ada training, weeks, on a monthly cycle. We completed it in 4
Four weeks of basic Ada training by Software hours. It took 2 1/2 weeks on a quarterly cycle. The
Development Center - Lee and four weeks of new system took 2 days. The new software
advanced training at Keesler, Air Force Base. drastically reduces effort." FORT McCLELLAN

Components from the Reusable Ada Packages for "We made 5 trips between 4-5 miles to the DOL and
Information Systems Development (RAPID) library DOIM and used 2-3 operators on the old system.
were received from Software Development Center - With the new system, we use one person for input
Washington. Software Development Center - and make one trip to the DOIM." FORT
Atlanta developed its own reusable components CAMPBELL
prior to coding the system.

ISSUES & CURRENT EFFORTS
The system was coded and tested by two newly
trained Ada programmers at Software Development One of the questions that arises is whether the suc-
Center - Atlanta in five months. Total work effort cess of this effort is repeatable. The MMCSRS
was seven man-months. (MACOM Materiel Condition Status and Reporting

System) is currently being re-engineered and the re-
An errorless software acceptance test (SAT) was sults will be compared against the IMCSRS effort.
conducted at Fort Stewart, GA. Several weeks later,
the system was extended by mail to 40 installations. AIRMICS is associated with a National Science

Foundation Research Center (Software Engineering
RESUTS Research Center co-located at Purdue University

and the University of Florida) that has a project 5
The resulting system is now running on existing PC's to develor a metrics approach for analyzing soft-
(personal computers) instead of a mainframe at a re- ware designs which helps designers engineer quality
gional data center. It is written in Ada, is interactive, into the design product. The design metrics project
and turnaround has drastically improved, has developed a design quality metric that analyzes

the external and internal design components. We
These benefits are primarily the result of the are applying these design metrics against the old
re-engineering. The change of business practice and new systems to serve as a basis of comparison.
was the real benefit. Processing costs have been
reduced through downsizing. Reliability has been Finally, we are performing a cost/benefit analysis
improved, and we expect that maintenance costs will study to determine the effectiveness of our approach
be dramatically reduced. But more "mportantly, we and also to use it as the basis for determining which
have improved the efficiency of users at each of forty applications should be selected for future re-engi-
sites. neering activities.

200 10th Annual Nalional Conference on ADA Technology 1992

CACKNOWLEDGEMENT
CASE tools are very helpful to the design process. The authors would like to thank Dan Hocking for his help
Training is extremely important. Training in CASE in editing the paper.
is probably no different than learning any new soft-
ware tool. Training in Ada requires not only training AUTHORS
in the syntax of the language but also requires an un- Glenn E. Racine, AIRMICS(Army Institute for Research
derstanding of software engineering principles as a in Management Information, Communications and Corn-
prerequisite. Understanding object-oriented con- puter Sciences), 115 O'Keefe Building, Georgia Institute
cepts requires somewhat of a mind set change and of Technology, Atlanta, GA 30332-0800. Mr. Racine re-
some experience to be able to maximize its use. 0-0 ceived a BA in mathematics from Western Kentucky U.
design is an effective and efficient way to design sys- in 1969, an MS in Business from Virginia Commonwealth
tems and appears to be workable for STAMIS-type U. in 1978, and an MS in Information and Computer Sci-
applications. We also expect significant efficiencies ence from Georgia Tech in 1985. He is currently the Chief
to be gained from the re-engineering process-spe- of the Computer and Information Systems Division at
cifically in maintenance and operations-because AIRMICS and his current areas of responsibility are
they automate what, in the past, has been, in most applied research activities in Software Engineering and
instances, a manual process. CASE allows for rapid Very Large Data Bases.
change in design (easy to try new ideas), promotes CPT Richard Wassmuth, SDC-A (Software Develop-
software engineering principles, enforces Ada con- ment Center - Atlanta), Fort Gilem, GA 30050-5000.
struction rules, and aids in standardizing the devel- Cpt Wassmuth graduated from West Point in 1982 with a
opment process. BS in Engineering. He received an MS in Computer &

Information Sciences from the University of Florida in
REFERENCES 1988. He has worked in the Strategic Communications
1. Rugaber, S., and Kamper, K., "Design Decision Area in Germany and is currently working as a Software
Analysis Research Project Final Report," Software Engineer/Teleprocessing Operations Officer at SDC-A.
Engineering Research Center and School of Infor- Reginald Hobbs is a Computer Scientist in the Computer
mation & Computer Science, Georgia Institute of and Information Systems Division at AIRMICS. He has
Technology, January 28, 1990. experience in Information Systems from HQ Air Force

2. Chikofsky, E.J., and Cross II, J.H., "Reverse Engi- Space Command, Cheyenne Mountain Complex, Colora-
neering and Design Recovery: A Taxonomy," IEEE do and as a Systems Administrator/Systems Programmer
Software vol. 7, no. 1, January 1990. at the Army Research Institute, Alexandria, Virginia. Mr.
3. Rugaber, S., Ornburn, S., and Leblanc, Jr., R., Hobbs has a B.S. in Electronics from Chapman College.
"Reengineering Design Decisions in Programs," He has research interests in the areas of software devel-
IEEE Software, vol. 7, no. 1, January 1990. opment methods, Computer-Aided Software Engineer-

4. Hoare, C.A.R., "The Emperor's Old Clothes," ing (CASE) tools, database management systems. and

Communications of the ACM, vol. 24, no. 21, pp. software metrics.

75-83, February 1981.
5. Zage, W, and Zage, D., "Relating Design Metrics
to Software Quality: Some Empirical Results,"
SERC-TR-71-P, May 1990.

10th Annual National Conference on ADA Technology 1992 201

DESIGN METRICS THROUGH A DIANA BASED TOOL

Wayne M. Zage and Dolores M. Zage
Computer Science Department

Ball State University, Muncie, IN 47306

Dale J. Gaumer and Michael J. Meier
Magnavox Electronic Systems Company

Fort Wayne, IN 46808

Abstract -- This paper discusses a metrics identify favorable and unfavorable design
approach for analyzing software designs which trends. This information could help managers
helps designers engineer quality into the design and software developers determine the better
product. These metrics gauge project quality design when alternative choices exist, as well
as well as design complexity at all times dur- as identify stress points which may lead to
ing the design phase.' The metrics are difficulty during coding and maintenance.
developed from primitive design metrics which It has been recognized that most of the
are predictive, objective and automatable. The important structural decisions have been made
architectural design metrics used are comprised irreversibly by the end of architectural design.2
of terms related to the amount of data flowing Researchers have sought a metric which would
through the module and the number of paths identify problematic components early in the
through the module. A detailed design metrics life cycle. Studies have shown that approxi-
component takes into account the structure and mately 20 percent of a software system is
complexity of a module. To automate the cal- responsible for 80 percent of the errors.' It is
culation of the design metrics in the Rational possible that such error-prone modules exhibit
environment, DIANA (Descriptive Intermediate some measurable attribute to identify them as
Attributed Notation for Ada) was utilized, design stress points. Locating these stress
Provided in the environment are packages points early will reduce the cost of develop-
allowing for the traversa and retrieval of the ment and ultimately lead to more reliable
DIANA structure. By combining the defined software.
packages with customized packages, an Ada The goal of this design metrics research is
design metrics analysis tool was developed. t he softis de velpmetri oes s
This paper will discuss our design metrics and to improve the software development process
their automation at Magnavox. Empirical by providing timely information about the
results will illustrate the metrics' success in design of a developing system in order to
identifying stress points in a software design guide the designer to a better software product.and demonstrate their relationship to the qual- Our objective is to develop for a design G a
ity of the resulting software, design quality metric D (G) comprised of aninternal and an external design quality com-
Index Terms - design metrics, development ponent. This composite metric will be used to
process, quality assessment, DIANA predict potential quality and complexity of the

system being developed.
Introduction Our Design Metrics and Related Findings

Software developers should be able to The Design Metrics Research Team at
infer more about the software they are Ball State University has developed a design
developing during the design process. By mete D (G) a desfgn
computing metrics at various times during the metric D (G)of the form
development of design, project personnel can D (G) k IDe + k2D1

202 10th Annual National Conference on ADA Technology 1992

where k1 and k 2 are constants. In this equa- status and complexity "early" in the life cycle.
tion, the external metric De is defined as In the next several subsections, we will show

the degree to which De, Di, and D (G) accom-
De = weighted inflows * weighted outflows plish this task.

+ number of possible paths The Design Metrics Test Bed

and the internal metric Di is defined as The design metrics test bed contains a

number of university-based projects written for
Di = W I(CC) + w2(DSM) + W3(l /0) industrial clients as well as software developed

where professionally. This paper will focus primarily

CC (Central Calls) are procedure or on the metrics results for the professionally

function invocations developed software. In 1986, the Standard
Finance System Redesign (SRD-II) contract

DSM (Data Structure Manipula- was awarded to the Computer Sciences Cor-
tions) are references to complex data poration (CSC) at Fort Benjamin Harrison in
types Indiana. SRD-II is part of the Standard' Army
1/0 (Input/Output) are external dev- Financial System Redesign (STANFINS-R,
ice accesses which we shall refer to simply as STANFINS)

software system. It contains approximately
and w 1, w2 and w3 are weighting factors. 532 programs, 3,000 packages and 2,500,000

The metrics De and Di are designed to lines of Ada. Our design metrics study was
offer useful information during two different completed on 21 programs (approximately
stages of software design. The calculation of 24,000 lines of code) which were selected by
De is based on information available during CSC development teams.
architectural design, whereas Di is calculated The design of STANFINS began approxi-
after detailed design is completed. (See Figure mately six years before this study. To verify
1.) In architectural design, information such as that the design was an exact representation of
hierarchical module diagrams, data flows, func- the Ada source code, the design was extracted
tional descriptions of modules and interface from the existing code instead of from the
descriptions are available. After completing design specifications. Tools were developed to
detailed design, all of the previous information collect the elements of the design needed to
plus the chosen algorithms, and in many cases calculate our design metrics. Information on
either pseudocode or a PDL representation for error occurrence was also collected. Another
each module, are available, program was written to execute a CMVC

After architectural design is completed, a (Change Management Version Control) history
software designer would calculate De values search on target packages to map the changes
for the modules (or named entities) in the sys- to the name of the modules in the abstracted
tern. Then, based on the outcome of these cal- design. These changes occurred as part of the
culations, the designer would either proceed to second phase of the software qualification test-
detailed design or revise the architectural ing cycle.
design of the software, and then recalculate the Table I includes a number of characteris-
De values. Once this iterative process is satis- tics of the STANFINS data. Thu first column
factorily completed, detailed design begins, displays the number of generations in the
after which D, values are computed. Based on development of the 21 programs. (False gen-
the outcome of these calculations, one either erations, such as a check-in after no changes.
proceeds to coding or revises the detailed were made, were ignored.) Also listed in the
design, or in extreme cases, goes back for table are the total source lines of code, the
further revision of the architectural design. number of errors found, and the errors per
The point of calculating De and Di at these KLOC. The number of modules and the
separate stages of design is to use the informa- number of modules with errors are also
tion currently available about the developing displayed.
system to provide an indication of project

1O Ot Annual National Conference on ADA Technology 1992 20,

Aicuiral Detailed

Design Caculate D, Design Calculate Di Code

Figure 1: The Calculation of De and Di in the Life Cycle

Table 1: STANFINS Data and Error Report

Gener- Errors/ Modules LOC De De
ations LOC Errors KLOC Modules w/Errors Avg Mean Std Dev

162 23732 3002 126 2384 314 34 202 372

Empirical Results tion available during architectural design.)
Overall, De correctly identified modules as

The goal of the design metrics calcula- error-prone 60% of the time.4

tions is to identify error-prone modules during
the design phase of software development. Table 2: De Performance on STANFINS Data
The method employed is to calculate the par-
ticular design metric for each module under Modules Highlighted 5%
consideration. Then outliers (or stress points) Highlighted Modules With Errors 60%
are identified as those modules whose metric Errors Found 37%
value is more than one standard deviation Error Modules Not Found 76%
above the mean for that metric over all of the Errorless Modules Highlighted 40%
modules considered. Later, when error reports
are available, we determine to what extent the We also compared the error versus error-
stress-point modules are identified as error- less modules with respect to their De values in
prone. this study. The results are contained in Table

We had earlier obtained excellent results 3. Note that the De mean for error-prone
on finding error-prone modules in relatively modules was more than six times the mean for
small university based projects (2,000 to errorless modules!
30,000 lines of code) by simply calculating the
De values. The 12% of the modules identified Table 3: Error vs. Errorless l ... ' ies
as stress points by De contained 53% of the
known errors over all the systems in our data- Error Errorless
base.3 We then needed to determine if these Modules Modules

results would hold as we tested our metrics on

large-scale, industrial-based software. Number of Mods 314 2070
De was also found to be an effective De Mean 355 54

predictor of error-prone modules in the STAN- De Std Dev 666 375
FINS software. As shown in Table 2, for all
modules considered, De identified 37% of the During our analysis, we have found that
errors while only highlighting 5% of the extreme outlier modules (with respect to D,,
modules. (Recall that De uses only informa- and D,) exist in large-scale software. For

204 10th Annual Noional Conference on ADA Technology 1992

example, on the STANFLNS data we found the Table 4: Di Performance on STANFINS Data
number of modules below the De mean was
more than five times the number of modules
above that mean (1991 vs. 393). Therefore, Modules Highlighted 10%
those modules above the mean had relatively Highlighted Modules With Errors 78%
extreme De values. These modules, with their Error Modules Not Found 69%
extreme metric values, adversely affect our Errorless Modules Highlighted 22%
stress point cut-off values. This led to our X-
less design metric algorithm in which we
remove X such modules from the calculation of The D (G) metric was very successful in
cut-off values to dramatically improve the detecting the STANFINS modules with errors,
results. For example, we found that if enough with false detection of very few error-free
extreme outliers are taken into account when modules. On this test bed, 74% of the errors
calculating De so that 33% of the modules are were detected for modules with 10 or less
identified as stress points, then 97% (2912) of errors, 82% of the errors were detected for
the errors in the STANFINS system were modules with 11 to 20 errors, and 100% of the
found.4 The trade-off is that the false positives errors were detected for modules with 21 or
have grown to 65% of the highlighted modules more errors.4 In other words, modules with
at this point. However, practitioners have high concentrations of errors were always
remarked that this is a small price to pay for identified as stress-points by D (G). These
the use of the simple design metric De, early results are summarized in the graph shown in
in design, to find such a high percentage of Figure 2.
errors while still only reviewing one-third of
the modules. Tool and Software Analyzer Development

Using the X-less algorithm, we once
again compared De's performance on the Tools must be available to successfully
STANFINS data to its performance on the integrate the use of software metrics into the
university database. As stated earlier, in the software development process. Tools insure
university study, De targeted 53% of the errors consistent measurements and nr 'imize the
while highlighting 12% of the modules. On interference with the existing work load.
the STANFINS data, De performed even better Many large projects which resided or
than on the university database by targeting could be ported to the Rational environment
67% of the known errors (2011) when identify- were offered as data for this research. To
ing 12% of the modules (using the X-less algo- make this analysis more efficient and complete,
rithm) as stress points.4 a Design Metric Analyzer was created. To

Di also performed well when applied to automate the calculation of design metrics in
the STANFINS project. (See Table 4.) In that the Rational environment, DIANA (Descnptive
study, Di alone identified 54% of the errors Intermediate Attributed Notation for Ada) was
while only highlighting 10% of the modules, utilized. DIANA is the standard intermediate
Note also that 54% of the errors were con- representation of Ada programs. DIANA was
tained in 31% of the modules containing developed to provide a common interface
errois, and thus high concentrations of errors between different phases of the Ada compiler.
were present in these modules. The false posi- The DIANA structure stores the syntactic and
tive rate for these data was 22%, meaning that semantic aspects of Ada designs and programs
for every five modules highlighted, approxi- in the Rational environment.
mately four contained errors. We also found
that if 20% of the modules are identified as
stress points (using the X-less algorithm), then
74% of the errors were found. Moreover, for
these data, we found that 27% of the variance
in errors was due to the DSM count.4

10th Annual National Conference on ADA Technology 1992 205

90-.=

80-

p 70

e
r 6 0 . 1 0 0o o f 1 0 O O
c 50 8%o errors errors

e74% of errorsdectdeetd
n 40 . errors detected
It edetected

30'

20

!0

1..10 Errors 11.20 Errors 21.45 Errors 46..84 Errors
(415 errors total) (352 errors total) (628 errors total) (611 errors total)

Errors per Module Groups

Figure 2: The Performance of D(G) on the STANFINS Test Bed

On the Rational, code can exist in three ture can be traversed via a DIANA interface
states; the Source, Installed and Coded states. package provided by Rational.
Ada library units are developed with a This structure and the interface packages
language and context sensitive editor in what is were used as a basis for the analysis of Ada
called the Source state. In the Source state, a programs. By combining the defined packageslibrary unit is in a simple text form and cannot with customized packages, an Ada design
be referenced from other library units. After a metrics analysis tool was developed. Our
library unit has been made syntactically and Design Metric Analyzer, or DMA, exploits
semantically correct (e.g., all references to Rational's DIANA interface package to deter-
external package elements are correct), it may mine several metrics which are fundamental to
be promoted to what is referred to as the the design metrics calculations, including:
Installed state. When promoted to the Installed * Number of calls to and from
state, a library unit is rendered into a DIANA superordinate or subordinate subpro-
representation. In the Installed stat,, a library grm
unit can be referenced from other library units grams
or analyzed via its DIANA representation. • Number of parameters passed to and
Most of the modules analyzed have been in the from a subprogram
Installed state. In order to be executed, a • Number of external variables refer-
library unit must be promoted again to the enced and modified by a subprogram
Coded state. The unit continues to be Number of calls to task entry points
represented with DIANA structures, but gains
other contextual information which is not • Number of complex data types
important to the design metrics tool. Units in (records, arrays, access types)
the Coded state may be analyzed, via their accessed
DIANA representation, exactly as in the 0 Number of central calls (subprogram
Installed state. The DIANA representations of and task entry calls)
the library units in a system are bound together
in a common structure which expresses the Generally, computation of data flow and
semantic structure of the system. This struc- fan-in and fan-out metrics is simply a matter of

206 10th Annual Nahonal Conference on ADA Technology 1992

traversing the DIANA structure and adding the To further support in the investigation of
reported counts. However, a few Ada con- design metrics and also to provide information
structs required some fine-tuning, about the code itself, DMA also performs an

" Generics and generic instantiations - analysis of the types of statements, declara-
Each reference to an instantiation of tions, other size measurements such as LOC,
a generic subprogram is counted as a number of logical statements, number of com-
reference to the underlying generic aents, number of embedded comments, and
subprogram. Metrics are then many other primitive metrics.
reported for the generic subprograms. The Practical Utility of D (G) and

* Tasks and task entries - Each entry Our Future Direction
call into a task is treated as if the
task is a subprogram being called
with the entry's parameter list. Each We believe that the results obtained for
of these calls adds to the data flow D (G) are very promising as one strives to
and fan-in metrics for the task itself analyze software designs. Once stress points
according to the parameter list of the are identified, the practitioner has the option of
task entry. Metrics are then reported redesigning the system and then recalculating
for the task. the metrics to check the redesign, or to leave

the design as it is. There may be cir-Separate subprograms - These sub- cumstances (such as the inherent complexity of
programs are treated as though they the application or management's rationale for a
are not separate. given structure) where redesign is not the best
Renamed subprograms and variables alternative. However, even in these cases,
- Metrics are applied to the original once the potential trouble spots have been
version of the subprogram or vari- identified, the designer at least has the option
able which was renamed, to assign these difficult components to the
External variables- References are most experienced developers or to simply
counted toward data-in and allow more testing time for the resulting code.
modifications are counted toward All weighting factors are currently set to
data-out. one. In our future work, these will be updated

Finally, the DMA calculates and reports after we have collected enough data to deter-
the design metrics for each subprogram and for mine their appropriate values. An effort is also
the system: underway to provide earlier support in the cal-

culation of design metrics and to perform these
* De is calculated for each module calculations on a variety of platforms.

from the data flow and fan-in and At this point, we see the need to evaluate
fan-out metrics. To avoid losing the effectiveness of D(G) as an indicator of
information in the calculation, the software quality on more large-scale softwareprimitive metrics are assumed to systems. We have now begun that task. Onlyhave a after sufficient evidence has been gathered will" Di is calculated for each module practitioners have confidence in using the
from the central call and complex design metric D (G) in systems development.
data structure counts. Currently,
input and output metrics are not References
included in the calculation due to the
difficulty in identifying non-standard 1. Boehm, B. and P. Papaccio, "Understanding
Ada I/O operations. (This count is and Controlling Software Costs", IEEE Tran-
added in other languages. such as C sactions on Software Engineering, Vol. SE-14,
and Pascal, where standard I/O is No. 10, pp. 1462-- 1477, October 1988.
easily recognized.)

* D (G) is calculated by summing De 2. Rombach, H.D., "Design Measurement:
and Di . Some Lessons Learned", IEEE Software, Vol.

7, No. 2, pp.17--25, March 1990.

10th Annual National Conference on ADA Technology 1992 207

AUTOMATING TEST SYSTEMS FOR TACTICAL COMPUTERS

by Joyce Fowler, Bill Herleth, and Patrice Johnson

TELOS Systems Group
111 C. Street, Lawton, OK 73505

Abstract interacts in real time with the Tactical
Equipment Under Test (TEUT).

TELOS has developed a method for
resolving a growing need of the Army tactical field computers have two
Department of Defense (DoD) to construct ways of transmitting and receiving data,
and maintain an automated test via the operator interface and through
environment for combat systems. This communication channels with other
paper focuses on some of the challenges computers. The tactical system usually
presented in the development of the Test consists of a keyboard, video display
Support System (TSS) software: creation terminal, and printer(s). TSS allows the
of a programming language dedicated to host computer (VAX 11/785 with DMF-32
automated testing, conversion from the and DHU-11 adapter boards), to transmit
original version of TSS in FORTRAN to data to the keyboard buffer, effectively
the current Ada version, porting the mimicking the operator input, and to
system between platforms, and selection receive data from the printer port (see
of applicable software metrics to test Figure 1). The same hardware connection
code reliability and portability, is also used to return printer data from

the TEUT to TSS for output and analysis,
Introduction and also to provide feedback on the

state of the TEUT to TSS. This feedback
The TSS was developed to provide an is used to synchronize the testing. The
automated testing environment for the feedback status information requires a
Fire Support System. When compared to small amount of additional software code
manual testing, automated testing in the TEUT. Aside from the operator
provides a more accurate, thorough, and interface, a tactical field computer
cost effective means to test tactical also receives and transmits data via its
system software, especially considering communications channels. The host
the requirement to perform regression computer for TSS can communicate with
testing when field system software is the field system via tactical modems
updated. The Test Support System has built by TELOS. TSS is capable of
two phases, the translation phase, where testing up to four tactical field
an input file is processed for use by computers simultaneously, utilizing from
the system, and the driver phase, one to seven communication channels.
where the Tactical System Driver (TSD)

MONITOR

___ __ __VAX 11/785

PnlDJSTAT

Figure 1. TSS Conzectioa to Field Syatem

208 10th Annual Nafional Conference on ADA Technology 1992

In order to facilitate the delivery of program-like "scripts" for controlling
keystroke and communication data to the the testing of a device. Table One
TEUT, as well as synchronize the testing lists some of the statements in the TSS
by having TSS wait for feedback from the language and provides a brief
TEUT, TSS uses a specially developed description of each.
language that allows testers to write

Table 1. Some Test Support System Commands

COMMAND PARAMETERS DESCRIPTION

&&PROC Procedure Name There is one &&PROC statement per
Classification scenario. It defines various options
MCAT Control used in the scenario both during
FCSVER Version translation and by the driver.
Baseband Channel
X.25 Channel

&&SUB Device Name There is one &&SUB record for each
Subscriber channel for each real or simulated device
Device Type in the scenario. It provides TSS with
Channel Number pertinent communication related
Address information for the device channel.
Unit Number
Net Access Delay
Version
TSS Type
Response

&&KPI Device Name Each real printer port used in the
Device Type scenario must have a &&KPI record. It
Version provides TSS with pertinent keyboard

related information on the device.

&&EDIT Device Name &&EDIT is used to send keystroke data to
Message Skeleton a TEUT in order to fill out a message

skeleton.

&&KEYS Device Name &&KEYS is used to send control keystroke
Keystrokes data to a device (normally used for

various "function" keys).

&&ENTE Device Name &&ENTE allows the user to specify only a
Skeleton Segments subset of the fields in a edit skeleton;

it is used to send keystroke data.

&&XMIT Source Device Name &&XMIT is used to send a prepackaged
Destination Name communications message to a device.
Message Skeleton

&&ENTX Source Device Name &&ENTX allows the user to specify only a
Destination Name subset of a skeleton's field for
Skeleton Segments transmission in a message.

&&FFM Source Device Name &&FFM is used to send a free-form message
Destination Name to a device.
Message Type

&&GDUI Device Name &&GDUI signals the existence of a Gun
Display Unit Interface (GDUI).

10th Annual Nafional Conference on ADA Technology 1992 209

COMMAND PARAMETERS DESCRIPTION

&&BCON Message Type Certain types of packets may be made of
multiple messages. BCON appends one
message to another so that multiple
message packets can be transmitted from
TSS to the TEUT.

&&RESP Device Name &&RESP changes the desired response of a
Status network subscriber to that specified by

status (acknowledge, negative
acknowledge, or no response).

&&WALL Time-out &&WALL instructs the driver to wait for
Device Name(s) all of the specified conditions prior to
Event(s) proceeding.

&&WANY Time-out &&WANY instructs the driver to wait for
Device Name(s) any of the specified conditions prior to
Event(s) proceeding.

&&INCL File Name &&INCL causes an external file to be
included in the translation of a
scenario.

&&"MACRO" PI,P2,...,P8 &&MACRO invokes a predefined macro.

&&TEXT Text String &&TEXT prints a text string to the driver
video screen and output file when this
record is processed by the driver.

&&STOP &&STOP is the last statement in the
scenario.

The first phase of TSS, translation, o The Department of Defense
consists of three programs (see Figure encourages, if not requires, the
2) and some file maintenance utilities, use of Ada as the programming
The Tactical Message Editor performs language for military-related
syntax checking of the input file, software.
expands macros, retrieves any included
files, and builds data structures used o Ease of portability using Ada.
in the translation process. Translator
One (TRI) converts keystroke data and o The moderate size of the programs
communication messages into the form made them suitable for conversion.
required by the TEUT. Translator Two
(TRN) converts the TSS statements into a
form quickly and easily processed by the
driver. The portability aspects - VAX to PC, are

expected to enable a reduction in costs
TSS was converted and redesigned in Ada and provide the capability for a larger
for the following reasons: and more varied testing environment.

210 10th Annual Naficnal Conference on ADA Technology 1992

DEC EDIT MACFB USFB

SOYRCEARIOS YAR .FL MASTEYETON DATA
AND INCLUDE FILES FILES FILE

.LIS FILE .ERL FILE .TME FILE .CPL FILE

ACTICAL
COMPUTER T TRI FILE

0DEC HOST

g DRI VER

Figure 2. TSS Data Flow

TACTICAL MESSAGE EDITOR (TME)

The Tactical Message Editor (TME) o Expansion of message skeletons,
performs many functions in the Test and &&INCL records, which are
Support System including: external files that contain other

TSS commands that will be included
o Syntax checking of the command in the scenario, and, also,

language. predefined "MACRO" commands, which
can be any TSS command, except an

o Processing of &&ENTE and &&ENTX &&INCL.
commands, which allow the
insertion of message information o A capability to create and edit
into predefined message skeletons. scenarios (logical constructs of

TSS commands).
o Building and ,7erifying the

subscriber tcble from &&SUB, o The creation of a translator file,
&&KPI, and &&GDUI records. which is the input file for (TRI).

10th Annual National Conference on ADA Technology 1992 211

An examiple of a scenario using the TSS commands would be as follows:

&&PROC 1.1 CLASS=UNC
&&SUB (CANNON,SB: / /C/AN/NON,N,1,N,,1,9,R,A)
&&SUB (DMD,SB: / / / /DMD,T,1,X,,1,9,S,N)
&&KPI (CANNON,N, 9)
&&EDIT (CANNON, N/SYS ;SETUP)
&&WALL (30,CANNON:EOS)
&&KEYS (CANNON) [ALARM ACK]
&&WALL (30,CANNON:EOS)
&&KEYS (CANNON) [RCVD MSG]
S&WALL (30,CANNON:EOS)
&&XMIT (DMD, CANNON, T/FRGRID)
&&WALL (30,CANNON:EOS)
&&KEYS (CANNON) [PRINT)
&&WALL (30,CANNON:EOS)
&&KEYS (CANNON) [EXEC]
&&WALL (30,CANNON:EOS)
&&KEYS (CANNON) [PREV SEG]
&&WALL (30,CANNON:EOS)
&&KEYS (CANNON) [PRINT]
&&WALL (30,CANNON:EOS)
&&STOP

For the records &&EDIT (CANNON,N/SYS;SETUP) and &&XMIT (DMD,CANNON,T/FRGRID),
TME will display the following CANNON format of the SYS;SETEJP skeleton and a FRGRID
message format and allow the user to edit it:

SYS;SETUP MESSAGE

SYS;SETUP;C: ;CALIBR; ;MODEL;
TIME: / / ;DATE: / / ;DRI: ;TGTNO: /
METUSE: ;METUPD: ;METDEL: ;MTOTMR;
ATP: ;MPOLL: ;PRINT: /;SCREEN: ;ATHFM; ;ATHDB;
CPHVTI: ;RPTAMO: / /// ;FSOXMIT:////
GDUPREAM: ;BEEP: ?

FRGRID MESSAGE

FRGRID: ;DIR: / ;CORD: / / ;GRID:
TYPE: / ;DOP: ;SIZE: / ;ATT: ;STR:
SHlELLFZ: ;CONTROL: ;ANGLE: ;PRI: ;MIS: ;OBS:;
TGT: ;VOL: ?

The edited messages will then be put into the output file of TME.

The prior example scenario could be run using macros if the following macros had been
defined.

&&BEGIN: P/E/PS
&&BEGIN :A/R &&KEYS (CANNON) [PRINT]
&&KEYS (CANNON) [ALARM ACKM &&WALL (30,CANNON:EOS)
&&WALL (30,CANNON:EOS) &&KEYS (CANNON) (EXEC)
&&KEYS (CANNON) [RCVD MSG] &&WALL (30,CANNON:EOS)
&&WALL (30,CANNON:EOS) &&KEYS (CANNON) (PREV SEGJ
&&END:A/R &&WALL (30,CANNON:EOS)

&&END: P/E/PS

212 10th Annual Nobional Conference on ADA Technology 1992

The scenario with macros would be entered as follows:

&&PROC 1.1 CLASS=UNC
&&SUB (CANNON,SB: / / /C/AN/NON,N,l,N,,9,R,A)
&&SUB (DMD,SB: / / / /DMD,T,l,X,,I,9,S,N)
&&KPI (CANNON,N,9)
&&EDIT (CANNON,N/SYS;SETUP)
&&WALL (30,CANNON:EOS)

&&XMIT (DMD,CANNON,T/FRGRID)
&&WALL (30,CANNON:EOS)
&&P/E/PS
&&KEYS (CANNON) [PRINT]
&&WALL (30,CANNON:EOS)
&&STOP

In the previous FORTRAN version of TME, while the process will be rescheduled
a scenario was scanned twice during the promptly upon finishing a disk operation
processing of a scenario. The first on a lightly loaded system.
pass expanded all &&INCL and "MACRO"
commands, if the MACRO option was Other design considerations for the
selected. For the conversion of TME in conversion of TME from FORTRAN to Ada
Ada, it was decided to have only one included: (1) Grouping FORTRAN modules
pass. When Ada TME encounters a &&INCL into logical Ada packages to reduce
or a "MACRO" command, it opens the package dependencies; (2) Reusability of
include file or macro, inserts all code by incorporating source from other
parameters for the macro, if any, and programs already written in Ada such as
processes each command inside the the Variable Format Message Editor
scenario file. Since the FORTRAN TME Device (VFMED), the Automated Ballistics
wrote the output of the first pass to an Testing Capability System (ABTCS), and
intermediate file prior to the second the Generic Target Acquisition Device
pass, by eliminating one pass of the (GTAD); and (3) Portability factors such
processing, the Ada TME reduces the as excluding System Library routines and
number of disk accesses required to the differences between the function
process a given scenario. The reduced keys on the VAX terminals and the PCs.
I/O used in the Ada TME allows it to
process scenarios faster than the The FORTRAN TME has 5100 lines of source
FORTRAN counterpart. As Figure 3 shows, code compared to 15,000 in the converted
this effect is amplified when the host Ada version. The additional Ada code
computer is heavily loaded, since an consists of enhanced capabilities and
I/O bound job with many other processes code reused from various projects,
competing for the CPU will wait to including the VFMED message editor.
regain access to the processor, even
after a disk operation is complete,

Some differences between FORTRAN and Ada that had to be considered were:

FORTRAN Ada

1. Global structures. 1. Parameter passing replaced
global structures.

2. In functions, there can be 2. There can only be one "out"
more than one parameter passed parameter.
to the function being called.

3. In equating two string variables, 3. Two variable strings must be
they do not have to be of the same of the same length or the
length. longer of the two string

variables must have a range that
equals the length of the smaller
string variable.

10th Annual Nofional Conference on ADA Technology 1992 213

Time CSeconds)
40

FORTRACLued)

01ThRAN(Noload)
30

Ad*CLtmd)

10 Y

65 20 o80 240 300 400 570 800 1000 2000

LOC (Lines of Code)
Figure 3. One Pass vs. Two Pass

Timing Comparisons

TRANSLATOR ONE Communication message compression in TRI
consists of identifying the message by

Translator One takes the output from TME the message name and type and then
and extracts keystroke data from edit converting each field in the message to
message skeletons and compresses its corresponding byte stream. The
communication messages into their &&XMIT command is used to generate a
transmission byte stream. TME checks communication message. Message data is
the scenario external to s:eletons for entered into skeletons that are much
syntax errors, TRI may find additional like &&EDIT skeletons except that there
errors in a scenario internal to a are no protected fields. The message
skeleton as it processes it for compression for a field may be as simple
compression. as copying the input data to the output

for transmission as ASCII information or
Keystroke processing in TRI consists of it may involve converting the input to a
extracting from a skeleton the actual binary form prior to transmission.
keystroke data to send to the field Often the data sent depends on input
equipment. While the keystroke from multiple fields. There are four
extraction is occurring, TRI makes types of messages that are compressed:
certain optimizations to the byte stream Bit-Oriented messages, fixed format
for a more efficient delivery of data. messages, variable format messages, and
These optimizations include substituting Launcher messages. Each of the types of
tabs for blank fields and down arrow messages have unique characteristics
keys for blank lines, that require them to be treated

separately.

214 71h Annual Naional Conference on ADA Technology 1992

The message compression part of TRI was ADAMAT
completely redesigned when the program
was converted from FORTRAN to Ada. The AdaMAT(Version 2.0), a code quality
FORTRAN version coded the specific analyzer tool developed by the Dynamics
details of the compression into the Research Corporation(DRC), was used to
software. Because the details of test the TSS code converted from FORTRAN
compression change with some regularity, (Version 5.6) to Ada (Version 2.2).
this meant recompiling the code each AdaMAT is a source code analyzer that
time a change was made. The new Ada reports on key Ada-sncific quality
version keeps as many of the compression metrics.
details as possible in various data
files. With the data in files instead By scanning Ada source code to count the
of in the code, it is possible to change occurrences of specific programming
many of the details of compressing a practices of the Ada language, such as
message without recompiling, types, exceptions, and labels, Adamat
Dynamically allocated data structures, produces a report (See Figure 4)
using records with discriminants, store indicating levels of quality and
the message compression details. possible problem areas.
Redesigning the message compression in
TRi to use tables has reduced the number It uses a metrics framework developed by
of lines of code in the program by a DRC for static analysis of compilable
factor of two. The processing times for source code. The AdaMAT metrics
the FORTRAN and Ada versions are about framework is a hierarchically organized
the same for all but the smallest set of quality metrics(See Figure 6)
scenarios, when the time required to that measure both adherence to
process the data files contributes recognized software quality principles
significantly to the overall run time of and the inherent complexity of software.
the program. An example of how AdaMAT tallies scores

of metrics is included in Figure 5.

DEV$COPS2:[TSS.NEW.SOLDOFF]UTILITYPACKAGE.REP;1
Score Good Total iLevel ------- Metric Name Module Source

0.36 526 1473 1 ------------- RELIABILITY over modules UTILITY
0.47 1145 2437 11 ----------- MAINTAINABILITY over modules UTILITY
0.86 4129 4811 1 ------------ PORTABILITY over modules UTILITY
0.74 5021 6819 1 ----------- ALL FACTORS over modules UTILITY
0.36 150 420 2 ----------- ANOMALY MANAGEMENT over modules UTILITY
0.37 70 187 3---------- PREVENTION over modules UTILITY
0.28 31 109 4 --------- APPLICATIVE DECLARAT over modules UTILITY

0 0 5 -------- APPLICATIVEDECL SPE over modules UTILITY
0.28 31 109 4 --------- APPLICATIVEDECLBOD over modules UTILITY
0.49 37 75 4 ---------DEFAULTINITIALIZATI over modules UTILITY

Figure 4. Example AdaMAT Report

EXAMPLE: user typesbody
NON-ADHERENCE to metric
package body baseconversions is

function base_10_to_2(number : in natural) return natural is

result : natural : 0;
begin

return result;
end base-conversions;

score(for the NON-ADHERENCE example above)user types body
0 good 1 bad 1 total

10th Annual Nafional Conference on ADA Technology 1992 215

ADHERENCE to metric
package base conversions is

type binary is private;
zero base_2 : constant binary;
type decimal is new natural;
function base_10_to_2 (number : in decimal) return binary;

private
max-bits : constant :- 16;
subtype binarybits is character rante 0 ... 1;
type binaryrange is range 0 .. max bits-i;
type binary is array(binaryorange) of binarybits;
zero base_2 : constant binary :- binary'(others => 0);

end baseconversions;

package body base conversions is
function base _ 1to 2(number : in decimal) return binary is
temp : string(i-.. 2);
copy : decimal :- number;
result : binary :- binary_zero;

begin
for i in binary range loop
temp :- decimal'image (copy mod 2);
result (i) :- temp (2);
exit when copy <- 1;
copy :- copy / 2;
end loop;

return result;
end base 10_to_2; score (for the ADHERENCE example) usertypes body

5 good 2 bad 7 total
end base-conversions;

Figure 5. AdaMAT Scores

A six step procedure was used in analyzing the converted TSS code:

o Ran TSS packages through AdaMAT using all metrics with the output report in
multiple package compare form.(See Figure 4 for AdaMAT report format example).
This established an initial baseline of scores.

o Removed a department-selected list of metrics from inclusion within the AdaMAT
analysis and ran the report at the package level again. These metrics were
considered inappropriate for application to the complex, multi-dependency
software necessary for dealing with tactical equipment testing.(See Table 2 for
a list of metrics that were removed). Note scores.

o Generated a run through at the package level to show only the packages with any
metrics below .25 (a very poor score suggesting a possible quality problem area).
Noted applicable packages for the following more specific run.

o Ran AdaMAT at the procedure/function level on the resultant packages that were
revealed in the previous run to show which particular modules might be causing
such poor quality. Fixed procedures/functions.

o Ran again at the package level without the .25 restriction to see if suitable
scores were obtained.

216 10th Annual Nafional Conference on ADA Technology 1992

Factors Criteria MetrIcs

Anomm I y

Manaeent
lRel labllity L

J ,mplfcity M

EExactness T

T

Whlntainabi IlI Clarity

ModulIar Ity J< C

S

Descript ivenes

Portablilty

Independence

Figure 6AdeVAT HIERARCHY

o Since the TSS project was slated to port the code from a VAX 8810 to a UNIX based
PC, a final run through AdaMAT at the procedure/function level was performed.
The factor, Portability, depends upon the Criteria - Modularity, Self-
Descriptiveness(Comments) and Independence(Machine/System Dependencies). The
factors Self-Descriptiveness and Modularity were removed. It was felt that the
major concern with porting the code was in Machine/System Dependencies. We noted
scores for all procedures to identify possible future problems in porting between
platforms.

Table 2. AdaMAT Non-applicable Deleted Metrics

CALLS TO PROCEDURES BRANCH CONSTRUCTS
SINGLE_EXIT_ SUBPROGRAM FOR_ LOOPS
LEVEL OF NESTING STRUCTURED BRANCH CONSTRUCT
NON BACK BRANCH CONSTRUCT DECISIONS
BRANCHAND_ NESTING NO_ WHILE LOOPS

AdaMAT proved to be a useful tool for the TSS project in several ways:

o Being able to predict at the procedure level, exactly which routines would need
to be changed in order to port code between platforms, allowing for more
comprehensive future planning and scheduling of manpower and resources.

10th Annual Nafional Conference on ADA Technology 1992 2

o By evaluating metric scores and making changes to improve them, progra= ers found
they were subconsciously retraining themselves into using better Ada coding
practices and, found that better scores and improved coding became almost routine
after working with AdaMAT.

o Having a tool that automatically reveals and measures potential code maintenance
problems, is expected to save future man-hours for the department when TSS needs
to be modified or errors corrected. Also, when certain levels of Ada!AT scores
are eventually required by the department, a minimum standard of uality will
be met.

As with any tool, careful consideration version of the Automated Ballistics Test
must be taken as to how to properly use Capability System (ABTCS) is under
AdaMAT. Human nature suggests that development which will create ballistics
everyone wants to attain 100% scores. scenarios from databases supplied by the
However, AdaMAT is a measuring tool that Ballistic Research Laboratory.
attempts to measure a very broad Generating and running ballistics
spectrum of data items. Not all items scenarios automatically reduces the time
are necessarily applicable to all types it takes to a small fraction of that
of software. Is it reasonable to use necessary to run the same tests
the same metrics to measure quality for manually. Another project under
database software as would be used to development will add the capability for
measure a very involved scientific the Fire Support Systems
application? When used properly, AdaMAT Interoperability Specifications (FSSIS)
can provide very helpful information and system to generate TSS scenarios.
even reasonable standards, however; if Generating scenarios directly from the
required numeric scores for various specifications may provide a more
metrics are mandated without proper complete test of the tactical field
study the resulting effort to attain computers than is presently done
these scores could be frustrating, time utilizing human generated scripts.
consuming and possibly produce less
suitable code for the specific The role of ADAMAT at TELOS is still
application, evolving. Final decisions have yet to

be made on what metrics to include when
CONCLUSION AND FUTURE WORK using the program and what scores are

necessary for software to be considered
Work is continuing on the TSS porting acceptable.
and conversion to Ada. TRN is scheduled
to be rewritten in Ada and "folded into" REFERENCES
TRI. The effort to port the TSD from
the VMS operating system to UNIX should 1. Dynamics Research Corporation, AdaMAT
be underway by the time of the Version 2.0, Product Overview, An
conference. Since the VMS driver Introduction To The Concepts and
utilizes asynchronous system traps and Principles Of The Ada Measurement And
other operating systems services in its Analysis Tool.
design, much of it will have to be
reworked for UNIX. 2. TELOS Systems Group, Agenda For The

Forward Entry Device Met/Survey/Radar
In addition to converting TSS to a new Software Specification Review, March
language, new capabilities are being 5, 1991.
added to the system. Work is underway
to add X.25 communications functionality 3. TELOS Systems Group, Computer Program
to the system. There are also plans to Development Specification For The
design into TSS the capability to Battery Computer Unit Operating
interact with computers having a System For the AN/GYK-29 Computer
graphical interface. System, March 1, 1991.

TELOS is working on various 4. TELOS Systems Group, Draft User's
"intelligent" front ends to TSS that Manual For Test Support System For
will allow more complete and faster The Tactical Support System For The
testing of the software developed for Tactical Computer Systems, Suspense
tactical system computers. A new date: December 1, 1992.

218 10th Annual Nafional Conference on ADA Technology 1992

ABOUT THE AUTHORS

Joyce I. Fowler is a Systems Engineer at
Telos Federal Systems with over ten
years of experience in software
development and engineering research.
She has a diversified background which
includes hardware and software design-
She is currently in charge of a group
working on automated software testing
tools for army tactical equipment. Ms.
Fowler received her B.S. degrees in
Psychology and in Electrical Engineering
from Washington University in St. Louis
and is currently working on an MBA
degree. Ms. Fowler is a member of
SIGAda and DECUS.

Bill Herleth is a Software Engineer at
Telos Federal Systems in Lawton,
Oklahoma. He has a B.S. in Physics and
M.S. in Computer Science from the
University of Missouri-Columbia.

Patrice Johnson is a Software Programmer
for the Facilities Management Section at
Telos Federal Systems at Fort Sill,
Oklahoma. She has a B.S. degree in
Business Administration and a B.A.
degree in Mathematics from Cameron
University.

Ith Annual Nofional Conference on ADA Technology 1992 219

SO MUCH TO MEASURE -
SO LITTLE TIME TO MEASURE IT
The Need for Resource-Constrained

Management Metrics Programs

Stewart Fenick Dr. Harry F. Joiner
U.S. Army CECOM Telos Corporation
Fort Monmouth, NJ Shrewsbury, NJ

Abstract - Approaches to a resource-constrained manage- reduce the amount of data that is collected and
ment metrics program are described. They are based on the analyzed while minimizing the risk of undetected
principle that not all data must be collected and analyzed at problems. They are founded on an issue-driven,
all data points Resources can be conserved by utilizing an
issue-driven, optional metrics selection scheme. Strategies optional metrics selection scheme.
are suggested for reducing the amount of data collected and
analyzed. Criteria for decisions on which metrics to collect One of the most common complaints by manag-
and when to analyze additional data are based on identifi- ers, when it comes to applying measurements to
cation of the project objectives and primary risks to their their software projects, is the drain on resources
achievement. A "gating" scheme is explored that allows
the manager to look first at those metrics which are of high- required to carry out the metrics program. Initia-
est priority and then at only those additional metrics that tion of a metrics program normally requires:
address any identified problem areas. The gating scheme
and metrics hierarchy are described in terms of the initial * Additional training
set of executive management software metrics developed
by the Software Engineering Directorate of the U.S. Army
Communications-Electronics Command's Research, De- * Specialized manpower
velopment and Engineering Center. •Extended schedule and extra man-hours
Key words - Software metrics, project management

INTRODUCTION ° Added resources for tools and equipment

There are numerous alternative management A second complaint is that measurement pro-
metrics sets recommended for use on software grams are viewed as intrusive in nature. They re-
projects in order to control the cost, schedule and quire collection of sensitive data; raise integrity,
quality of those projects.1, 2, 3,4. 5, 6. 7 However, security and proprietary issues; and may provide
there are a variety of reasons for taking a re- a negative view of department or individual per-source-constrained approach to the collection formance. Many are concerned that a measure-
sourcensinedf apptwaromach e t cletio. ment program will interfere with the progress of
and analysis of software management metrics, the project through added resource requirements
Moderate sized projects, where management vis- and by negatively affecting how the work is per-ibility and control are more easily accomplished, formed. This last issue is a special problem that

and organizations that are initiating a software cone dealt ithe easuremthbe
management metrics program for the first time can only be dealt with when measurement be-are xamlestha suges nee fo a oreconer- comes, as it should be, a part of a softwareare examples that suggest need for a more con ser- prjc'inasutreInftm srmnts

vative approach. Large projects with established project's infrastructure. In fact, measurement is
metrics programs may also benefit from a re- necessary for achieving management control and
source-constrained strategy since it will not only process improvement.
reduce the man-hours required but may eliminate Resource-constrained management metrics pro-
confusion for the manager caused by extraneous grams are an attempt to alleviate both of these
information. Techniques are suggested that can complaints based on the premise that:

220 10th Annual Naflonal Conference on ADA Technology 1992

progress measures expand on cost and schedule
It is not necessary to look at everything issues by assessing technical progress of CSU de-

all the time. velopment, incremental releases, testing and pro-
gram size. The three product quality metrics

Extraneous or incorrect metric data can obscure focus on design structure, requirements and de-
the useful data and lead to "in-corrective" action, sign stability, fault profiles and fault densities
By collection, analysis and reporting of only and amount of rework.
those measures that are directly or indirectly rel-
evant to the "issues of the moment," measure- The CEMSM set was derived from careful eval-
ment activity at specific data points can be uation of the state of the practice and consists of
restricted to only that which provides the most the following:
meaningful information. Thus, waste is eliminat-
ed, redundancy is greatly reduced, the confusion 1. Cost/Schedule Performance
that can be caused by too much technical infor- 2. CSU Development Progress
maion is reduced, and results are presented in a 3. Design Structure
manner that is more efficient and useful to exec- 4. Host Computer Resource Utilization
utive managers. As a direct result, analyses need- 5. Incremental Release
ed at a particular data point are not only reduced 6. Requirements and Design Stability-
in scope, but also in complexity. In addition, by 7. Software Development Personnel
not requiring that a continuous and probing eval- 8. Software Fault Profile
uative process be applied, the fear and effects of 9. Software Size
intrusiveness are greatly alleviated. 10. Staff Experience

11. Target Computer Resource Utilization
Therefore, the foundation of a resource-con- 12. Test Progress
strained management metrics program is the
same as that of any meaningful measurement CEMSM are intended to be applied throughout
program in practice today: issue-driven activities the life cycle (see Figure 1). Data collection is
and decisions. At each data point, phase or activ- done at timely data points, followed by analysis,
ity, there is a relevant set of management metrics intermetric correlations, and reporting. The
and indicators to look at in order to get a "big pic- CEMSM results consist of status assessments,
ture" snapshot of status, trends and potential trend indicators, deviation identification, and
problems of the moment. In effect, a tailorable problem pointers. This quantitative information
set of measures is used for screening to determine is combined with qualitative information from
if and when additional data should be analyzed other sources (such as walk-throughs, inspec-
and corrective action taken. tions, and program reviews), as input to help

managers determine when and what corrective
CECOM EXECUTIVE MANAGEMENT actions are needed. Such an information-based

SOFTWARE METRICS decision process results in improved project
awareness and control, and leads to improved

Based on this approach, the Software Engineer- processes and products. Monitoring of corrective
ing Directorate (SED) of the U.S. Army Commu- action results leads not only to lessons learned for
nications-Electronics Command (CECOM) the current projects, but also to improved pro-
Research, Development and Engineering Center cesses for use on new projects.
has developed a set of high-level management
metrics that provide timely insight into the soft- The CEMSM set is designed to apply to a wide
ware development and support processes of variety of software development approaches.
large, complex, mission-critical software sys- However, for some software processes, the de-
tems. The CECOM Executive Management tails of the metrics should be adapted in order to
Software Metrics (CEMSM)1 includes 12 man- better fit the process and reflect its status. Fur-
agement metrics. The five resource metrics ad- thermore, some accommodation can be made to
dress the issues of cost, schedule, organizational the internal capabilities of the contractor for data
capabilities, and computer resources. The four collection and reporting. This adaptation should

10th Annual National Conference on ADA Technology 1992 221

Cost/Schedule
Performance - -:"" -

CSU Development
Progress

Design Structure . ._ - .

Host CRU . " ', ,'-, , .

Incremental- *vRelease. , .", , , ,,. . '. ' ,•

Requirements and . , , I ZZ E
Design Stability

Software FT1w
Development

Personnel

Software Fault
Profile

Software Size

Staff Experience .

Target C R U I I II.. I.
I i i , , i i iI. .. I I . .

Test P rogress -? I - - "_ _ " " I i "

Milestone Stan SRR SDR SSR PDR COR TF FCA PCA FOR

Phase Co=pt D.mons. t n Ful Scale Development Post Deployment
Explom n aid

V"n De oyment

Figure 1. CEMSM Life Cycle Applicability

make the data more useful and help to establish partitioning. This approach provides several op-
support from the contractor by using data in a fa- dons in a resource constrained environment.
miliar format. The details of tailoring the
CEMSM for object-oriented, spiral, evolution- CEMSM forms a reasonable approach to man-
ary, and other development approaches is beyond agement visibility and control for a large scale
the scope of this paper. Additional and/or substi- software development project. However, in a re-
tute data may be required under those circum- source-constrained environment or for smaller
stances. scale projects, there are several effective tech-

niques that can be used to reduce the cost and ef-
ADAPTATION TO CONSTRAINED RE- fort for collection and analysis of the metrics

SOURCES data. The following four approaches can be used
separately or combined:

The CEMSM approach emphasizes a goal/risk-
driven, flexible application strategy that allows 1. Some metrics may be collected in sum-
for implementation and tailoring based on system mary form, grouping information that
specific concerns, issues and priorities and ac- would otherwise be broken out in a more
commodates local measurement implementa- detailed report
dons regarding granularity, periodicity, and

222 10th Annual National Conference on ADA Technology 1992

2. Only portions of some measures may be • Planned and actual numbers of computer
collected, reported or analyzed personnel working on the project by ex-

perience level and major activity
3. Some metrics may be collected and/or re-

ported less frequently * Planned and actual personnel losses to
each major activity within the project by

4. Some metrics may not be collected unless experience level
indications of problems occur

Using the first approach in a constrained environ-
As an example of how these techniques can be ment, the monthly reports might contain only the
applied, consider the metrics related to the area of following summaries (see Figure 3):
staffing and level of effort. For a large project,
these metrics would include collecting, reporting, * Planned and actual totals of computer
and analyzing the following data on a monthly personnel on the project
basis (for example, see the illustrative data in
Figure 2): • Total actual losses of computer personnel

from the project
KEY PERSCNNEL

ACTIVITY A ACTIVITY B ACTIVITY C ACTIVITY D TOTAL
PLANNED ACTUAL LOSS PLANNED ACTUAL LOSS PLANNED ACTUAL LOSS PLANNED ACTUAL LOSS PLANNED ACTUAL LOSS

PERIO0

2 2 0 4 3 0 2 1 0 4 5 0 12 11 0 1
3 3 0 4 3 0 3 1 0 4 5 0 14 12 0 2
3 4 1 4 4 0 3 2 0 4 4 2 14 14 3 3
4 4 0 5 4 1 4 2 0 6 6 0 19 16 1 4
4 4 0 5 4 0 4 2 0 6 7 0 19 17 0 5
5 5 0 5 3 1 6 4 0 7 a 0 23 20 1 6
6 5 1 5 3 0 6 3 1 8 9 0 25 20 2 7
7 6 0 6 4 1 7 4 0 8 9 0 28 23 1 8
7 6 7 8 28 9
7 6 7 7 27 10
a 5 6 7 26 11

OTHER PERSONNEL
ACTIVITY A ACTIVITY B ACTIVITY C ACTIVITY D TOTAL

PLANNED ACTUAL LOSS PLANNED ACTUAL LOSS PLANNED ACTUAL LOSS PLN04ED ACTUAL LOSS PLANNED ACTUAL LOSS
PERI

2 2 0 9 11 0 5 7 1 8 9 0 24 20 1 1
4 3 1 9 11 0 6 8 0 8 10 0 27 32 1 2
5 5 1 10 12 0 6 6 2 8 10 1 29 33 4 3
5 5 0 10 12 1 7 a 0 9 8 2 31 33 3 4
6 6 0 10 13 0 7 9 0 12 10 0 35 38 0 5
6 6 1 11 13 0 8 9 0 12 14 0 37 42 1 6
7 8 1 11 14 1 6 9 0 13 15 1 39 46 3 7
9 to 0 11 13 1 9 7 2 13 15 1 42 45 4 8
10 11 10 13 44 9
10 9 10 12 41 10
10 9 9 12 40 11
10 9 9 12 40 12

TOTAL PEPSONNEL
ACTIVITY A ACTIVITY B ACTIVITY C ACTIVITY D TOTAL

PLANED ACTUAL LOSS PLANED ACTUAL LOSS PLANNED ACTUAL LOSS PLANNED ACTUAL LOSS PLANNED ACTUAL LOSS
PERCO

4 4 0 13 14 0 7 8 1 12 14 0 36 40 1 1
7 6 1 13 14 0 9 9 0 12 15 0 41 44 1 2
8 9 2 14 16 0 9 8 2 12 14 3 43 47 7 3
9 9 0 15 16 2 11 10 0 15 14 2 50 49 4 4

10 10 0 15 17 0 11 11 0 18 15 0 54 53 0 5
II 11 1 16 16 1 14 13 0 19 20 0 60 60 2 6
13 13 2 16 17 1 14 12 1 21 23 1 64 65 5 7
16 16 0 17 17 2 16 11 2 21 23 1 70 67 5 8
17 17 17 21 72 9
17 15 17 19 68 10
18 14 15 19 66 I1
18 14 15 19 66 12

Figure 2. Full-Scale Software Development Personnel Example

10th Annual National Conference on ADA Technology 1992 223

%PLNANNED

60

60 ACTUAL - ' °

TOTAL DEVELOPMENT
40 PERSONNEL

LOSSES DURING

-10

EACH PERIOD

1 3 5 7 9 11

REPORT PERIODS

Figure 3. Software Development Total Personnel Example

The second approach might include reporting The gating scheme discussed later is based on the
and analyzing only the planned and actual per- third approach. The reports may be complete (for
sonnel losses to each major activity within the instance with monthly data points), but delivered
project by experience level or grade or only less frequently (perhaps quarterly). For some
tracking the key personnel (see Figure 4). projects or metrics, it is appropriate to stretch the

time between data points to quarterly or longer
periods of time.

30

PL.ANNE

20 L,,°.

...

KEY PERSONNEL

10
1 3 5 7 9 11

REPORT PERIODS

Figure 4. Software Development Key Personnel Example

224 10th Annual Nalionol Conference on ADA Technology 1992

The fourth approach was used by the Advanced Managers should address the project from an or-
Field Artillery Tactical Data System (AFATDS) ganizational standpoint with a high-level per-
Concept Evaluation project to track the level of spective of the metrics information. On larger
effort on, and completion of, Software Develop- projects, they will normally be presented with a
ment Folders (SDF). This reporting and analysis summary of the pertinent data and back-up infor-
effort was initiated in order to monitor a particu- mation as requested. The software engineers and
lar concern: completing the SDFs for delivery at line supervisors will be expected to participate in
the end of the contract. See Figure 58. the collection and authentication of the data as

part of their role in the metrics program. Their
There are a variety of audiences involved in the view is from an operational or day to day per-
use of metrics on a software project, and success spective, frequently addressing only a limited
of the metrics program depends upon their effec- portion of the data. The third audience, the met-
tive communication and efficient cooperation. rics analyst, must serve as a bridge and synthesiz-

AFATDS Segment Development Folder Status
20 176 112 CPCIs; With SDFa All Submitted

ItM! . ". IM

, CS

CIICI iC

SOFsReleased 10 CPCIs to Complete on Schedule

Af , Vay 31 ,6 " FSX

so '' CPCh; Behind Schedule
5 0.

CF to complete in February.is! i F . _,,,.,sP to copet i,, January.

June July Autgust September October November December

Cumulative Total of SDFs Released By Month (Planned and Actual)

Planned

Actual
4500 *.. '

4042

3500 "" ,-

3e061aieii* , 'lI

2500 J .4,, o_

1500 1461

June July, August September October November Oecembsr

SDF Monthly Efforl In Manhours (Budgeted and Actual)

] '~'Budgeted a July Date For Lat Three Week$ of Montlh

Actual (1116-0 6 A64 iga 11 . Nwft 2S)

Figure 5. Example of the use of more detailed metrics information in order
to monitor the level of effort on the completien of SDFs for AFATDS.

10th Annual National Conference on ADA Technology 1992 225

er in order to collect, analyze and present the data goals are being achieved and to pinpoint
in a form that is most meaningful to each of the potential causes of risk
other two audiences. The analyst views the data
as a whole, but with attention to the details that 3. Define appropriate measures to answer
will generally be summarized for management the questions posed in the second step
review. In areas where potential problems lie or
issues are being tracked, the manager will review 4. Collect and analyze the metrics data de-
the detailed information in order to fully under- fined in step 3.
stand the current status and trends. Particularly
on smaller projects, there may be overlapping of The process may need to be repeated several
these three roles in the same individual. Howev- times as the project moves from phase to phase
er, it is necessary to understand the different data and the conditions change. There are two guid-
requirements, training objectives, and perspec- ing principles that must be understood and used:
tives of the three audiences as part of the metrics
tailoring process. The critical program objectives

must be measured.
DECISION CRITERIA

Metrics analysis must address
The choice of metrics should be based on analy- he primaiy causes of risk
sis of the project objectives, the program risks, to achieving those objectives.
and the need for communication and control.

In deciding which metrics to acquire and which
One of the early decisions to make is how much to reduce or omit, the first step is to identify the
data to collect. Each of the approaches saves on project goals, followed immediately by identifi-
the total effort required by reducing the quantity cation of the most likely sources of risk to the
of data to be analyzed whether the full set of data program. For many years, cost and schedule
is collected or not. If the collection process is au- (project goals) have been monitored without be-
tomated, the cost of gathering the data should be ing able to control them. The successful projects
minimal and the data reports could be expanded have been able to identify, track and adjust for the
later if needed for further analysis. However, likely causes of risk to the project, such as inade-
when the data collection process itself is expen- quate personnel, late delivery of needed equip-
sive, it may be important to reduce the amount of ment, etc. The CEMSM set addresses the most
data collected. The principal disadvantage of re- commonly encountered risk areas, but each
ducing the amount of data collected is that it is project should determine which measures are
not possible to do a more thorough analysis of the critical, based on an assessinent of the risk areas
historical data from the early periods. The deci- for that project and its circumstances. For in-
sion regarding collection should be made on a stance, if a contractor has very limited experience
case by case, metric by metric basis. with the Ada language or the application area,

then it may be important to monitor both their
The decision of which metrics to include in a re- training program and the availability of their cnt-
source-constrained program should be based on a ical experienced personnel. However, for con-
complete understanding of the program objec- tractors experienced in both the technology and
tives and potential risks. This approach extends application area, training and the availability of
the Basili-Rombach Goal-Question-Metric experienced personnel may be of little real con-
(GQM) paradigm 9 and consists of the following cern to the project manager.
steps: In assessing how many resources to apply to the

1. Establish the goals - identify the critical measuremeat process, it is also important to re-
project objectives member that risk avoidance can represent very

large d"vidends. The current emphasis on early
2. Develop questions that need to be an- problem identification is as important in project

swered in order to determine how well the management as it is for software design issues.

226 10th Annual National Conference on ADA Technology 1992

Preventing a three month slip in the delivery date strategy. It is the failure to take immediate, ap-
by early detection of inadequate host computer propriate corrective action in the past that has so
resources, could save tens of thousands of dollars often proven fatal to success. The CEMSM set
on a small project and millions on a larger one. Is provides lower level metrics that can be used to
it worth the price of a focused metrics program? help identify the reasons for such a slippage, such
The answer is definitely yes. as requirements changes, inadequate personnel

levels, lack of tools, etc., and to monitor the re-
MANAGEMENT INDICATOR GATES sults of corrective action. A more appropriate

level for most projects is to use some of the
Gates, or thresholds, can be used to trigger sup- CEMSM set (CSU Development Progress, Incre-
plementary actions, including the collection and/ mental Release, Software Fault Profile, and Soft-
or analysis of additional data. The gates should ware Size) to track progress on the project
be based on the project objectives and historical through the development phases. As these mea-
data. The gating scheme is based on the relation- sures vary from the planned values indicating a
ship between different program areas and the re- slippage in either schedule or functionality, addi-
sulting correlation between their respective tional data can be collected that will identify the
metrics. The metrics that measure successful cause of the slippage and indicate appropriate
completion of high level project goals include corrective actions. The results of the adjustments
Cost/Schedule Performance, Software Size, Test in the project should be tracked as long as the
Progress and, perhaps, Design Structure and Tar- causes present a risk to the program objectives,
get CRU (as quality measures). The second level i.e., if requirements stability is forcing a slip in
measures address the causes of risk more directly the design program, then the Requirements Sta-
than do the high level metrics and include such bility measure should be monitored for several
metrics as CSU Development Progress, Incre- months after the requirements appear to have sta-
mental Release, Requirements and Design Sta- bilized.
bility, and Software Fault Profile. The remaining
measures address specific, though common, The second strategy is similar to the first, but uses
problem areas, such as Host CRU, Software De- "back-up" or lower level metrics analyzed less
velopment Personnel, and Staff Experience. Ad- frequently as a consistency check or early warn-
ditional metrics can be introduced to address ing indicator. In other words, lower level metrics
system-specific concerns, such as Ada issues, re- would be collected and reported, albeit less fre-
use, productivity, etc. The hierarchy described quently, even if the top-level metrics did not in-
here is intended to be flexible and is certainly not dicate a deviation or potential problem. Since
all inclusive. However, it does illustrate the dis- most problems are reflected in a trend analysis
tinctions between the goal oriented measures and lasting over several months, it is unlikely that the
their associated risk/cause oriented metrics, metrics reflecting a problem area would surge to

a critical level so quickly as to cause a crisis with-
There are two strategies to a resource-con- out an earlier indication. Furthermore, informa-
strained gating scheme. The first involves the tion from other sources, such as walk-throughs or
use of top level metrics at frequent intervals in or- discussions, will augment the early warning sys-
der to determine the overall status of the project. tem by indicating any significant changes in sta-
These metrics address the major concerns and tus. Once early warnings are observed then the
priorities of the specific system. The manager appropriate metrics can be analyzed more fre-
can then determine when, if, and which addition- quently, additional measures can be collected and
al measurements should be taken and/or ana- reported, or both. This strategy is a trade-off be-
lyzed. This strategy is based on a hierarchy of tween risk taking and resource saving. Any high
metrics that provides increased visibility into the risk areas should be measured with adequate fre-
project operations. quency while the areas of low risk are monitored

on a less frequent basis. The previous example
Tracking cost, schedule and test results (the high- would be modified under this approach by col-
est level goal metrics) until they show a slippage lecting and reviewing the lower level metrics
from planned levels is predicated on this first (such as, CSU Development Progress, Incremen-

I Oth Annual Nafional Conference on ADA Technology 1992 227

tal Release, Software Fault Profile, and Software 6. STEP Metrics Initiatives Report, U.S.
Size) on a quarterly or semi-annual basis rather Army Software Test and Evaluation Pan-
than monthly. There is far less risk when the el, 25 March 1991
lower level data is monitored periodically, even if 7. John H. Sintic and Harry F. Joiner, "Man-
only infrequently, than when the process is only aging Software Quality" Journal of Elec-
triggered after indications of a problem. tronic Defense, Vol. 12, No. 5, May 1989.

Some gates in the reporting process may be auto- 8. Harry F. Joiner and Stanley H. Levine,
mated on larger programs where significant "Management Control through Software
amounts of data are collected and reported. Re- Metrics on a Large Ada Development
lying on fixed gate thresholds must be done with Project - AFATDS" AFCEA Military/
care. There is a trade-off between reducing the Government Computing Conference,
human resources devoted to the metrics analysis January 1990.
effort and losing the judgment that they repre- 9. V.R. Basili and H.D. Rombach, "The
sents. If the thresholds are used to trigger the col- TAME Project: Toward Improvement-
lection or reporting of additional data, then a Oriented Software Environments" IEEE
periodic check of the omitted data can reduce the Transactions on Software Engineering,
risk that important information will not be con- June 1988.
sidered in time to take appropriate action. In any
case, it is generally preferable to collect and/or
review more data rather than not enough.

REFERENCES

1. James N. McGhan and Peter B. Dyson,
ECOM Executive Management Soft-

ware Metrics (CEMSM) Guidebook, 31
October 1991.

2. Revised Imvlementation Guidelines for
Software Management and Quality Indi-
cators for AFATDS, Advanced Field Ar-
tillery Tactical Data Systems (AFATDS),
July 1989.

3. Software Management Indicators. Man-
agement nsigbi, original U.S. Air Force
Systems Command Pamphlet 800-43,
January 1986, republished by Army Ma-
terial Command, U.S. Department of the
Army, AMC P 70-13, 1987.

4. Software Management Indicators. Man-
agement Quality Insight, original U.S.
Air Force Systems Command Pamphlet
800-14, January 1987, republished by
Army Material Command, U.S. Depart-
ment of the Army, AMC P 70-14, 1987.

5. Software Management Indicators, U.S.
Air Force Systems Command Pamphlet
800-43, August 1990.

228 10th Annual Notionol Conference on ADA Technology 1992

About the Authors:

Stewart Fenick Harry F. Joiner
US Army, HQ CECOM Telos Systems Group
RDEC Sw Eng Directorate 55 N. Gilbert Street
AMSEL-RD-SE-ST-SE (Fenick) Shrewsbury, NJ 07702
Fort Monmouth, NJ 07703 Dr. Joiner is currently a Software Engineering
Mr. Fenick serves as project leader of the CE- Supervisor in charge of software metrics and re-
COM Software Process Metrics Program. He has use activities at Telos Systems Group Fort Mon-
participated on various defense industry software mouth Operations. His research interests include
metrics panels and working groups: DOD Soft- source code quality analysis, project manage-
ware Technology for Reliable Systems (STARS) ment metrics, and software reuse as part of the
initiative; DOD SEI Metrics Initiative; RADC engineering process. He is Vice Chair of the Re-
Software Quality Issues Working Group; The use Working Group of the ACM Special Interest
Technology Cooperative Program; and US Army Group on Ada. Dr. Joiner received his BA from
Software Test and Evaluation Panel. He is cur- Texas Christian University and MS and PhD
rently Chairman of the CECOM Software Met- from Florida State University.
rics Working Group. Mr. Fenick received a BEE
from City College of New York.

10th Annual National Conference on ADA Technology 1992 229

SOFTWARE PROCESS
IMPROVEMENT PANEL

Moderator: Don O'Neill, Consultant
Panelists: Jonathon D. Addelston, PRC

James Dobbins, Defense Systems Management College
Stan Rifkin, Master Systems
Joan Weszka, IBM

230 10th Annual National Conference on ADA Technology 1992

PREPARING STUDENTS FOR
INDUSTRY PANEL

Moderator: Dr. Genvieve Knight, Coppin State College
Panelists: Gary Ford, SEI

Dr. Joan S. Langdon, Bowie State University
Phyllis Villani, TRW Systems Division

1 oth Annual National Conference on ADA Technology 1992 23

SOFTWARE REUSE PANEL

Moderator: Dr. Harry F. Joiner, Telos Federal Systems
Panelists: Mr. William E. Carlson, Intermetrics

Dr. Kurt Fischer, OASD-C31
Stanley H. Levine, US Army
Dr. Charles Lillie, SAIC

232 10th Annual National Conference on ADA Technology 1992

An Implementation of a Generic Workstation Architecture
for Command and Control Systems

by
Kirstan A. Vandersluis

SofTech, Inc.

and

Paul M. Richards
SofTech, Inc.

Abstract - This paper reports on the software Information System Engineering Command has
development of a Generic Workstation procured a software repository system called
Architecture, developed in Ada. and its Reusable Ada Packages for Information Systems
applicability to developing future command
and control systems. A typical comnmand and Development (RAPID), which has recently been
control system addressed by this architecture embraced by the DoD Corporate Information
Is a strategic missile or atmospheric warning Management program of the Defense
command center system in which real-world Information Systems Agency [1]. The Air Force
situation information is managed by human has procured the Central Archive for Reusable
operators. Generic architectures, in general.
provide a portable and flexible framework for Defense Software (CARDS) system. The Air
developing a system within a particular Force has also begun a program to implement
application domain. A Generic Workstation generic architectures for all facets of Air Force
Architecture provides such a framework for the command centers. This program is called
user interface component of a command and Portable, Reusable, Integrated Software
control system. This paper identifies the need
for a Generic Workstation Architecture, and Modules (PRISM) [2]. These programs
states the goals for this implementation that exemplify the commitment of the DoD to
address the need. Highlights of the capitalize on software reuse to reduce the cost
development effort including domain analysis, of both developing new systems and upgrading
requirements analysis, design, and current existing systems.
implementation are discussed. Finally, the
resulting system is evaluated against the
stated goals, and future enhancement The concept of developing generic
possibilities are presented. The use of Ada architectures for specific application areas is
during the design and Implementation is not new. Building on ideas from Dijkstra [3],
discussed where appropriate throughout the Parnas [41, and others, Brown and Quanrud [5]
paper. have defined and discussed generic

architectures. In their paper on "The Generic
Index Terms -- Generic Architecture, Architecture Approach to Reuseable Software",
Command and Control, Workstation, User they define a generic architecture as providing
Interface, Display. a design together with a set of reuseable

components. The design supports implementing
1.0INTRODUCTION the requirements of all applications in the

chosen application domain. Brown and Quanrud
1.1 B conclude that generic architectures provide a

There has been recent movement in the high level of reuse among applications within a
Department of Defense (DoD) towards domain, which can lead to substantially lower
establishing software reuse as the means for development and maintenance costs than can be
reducing future software system lifecycle costs. expected with other development approaches.
While these activities are not new, the current
level of effort indicates a high degree of
commitment riot seen in the past. The Army

10th Annual National Conference on ADA Technology 1992 233

1.2 .Qy.iy _ architecture provides the resources to manage
This paper describes the development of a both data that is eventually transformed into

Generic Workstation Architecture (GWA) which visual form, and requests from the user to
provides a reuseable user interface component control the workstation environment. A system
for modern command and control (C2) systems. developer integrates the GWA into a system by
Figure 1 shows a simplified architecture for a interfacing to the GWA and extending the set of
typical command and control system addressed reusable components to suit the specific needs
by this paper. Sensors, other command of the application. In this paper, we discuss the
centers, and external users exchange goals of the GWA project, Its development, and
Information with a command center. current Implementation.
Information flows from external sources into
the communications component within the , Ieneric Workstation Architecture Goals
command center. The information is Several goals were defined for the GWA to
transferred to a mission processing component address the need for a flexible, portable user
for application-specific processing. Processed Interface environment. The goals are to achieve
Information is then relayed to the user a high degree of software reuse In future C2
interface component for display to operators. development efforts; to provide a rapid
Operators also enter data into the user interface prototyping facility to aid in requirements
component for possible processing and definition; to provide an extensible workstation
transmittal to external users. It is this last framework; to facilitate portation to multiple
component, the user interface, that the GWA platforms; and to provide operational quality
addresses. performance. The following paragraphs discuss

these goals in detail. An evaluation of how well
the GWA implementation satisfied these goals is
provided in the Results section.

U-.

Command Center 1.3.1 Software euse. Command and control
system development is currently a multi-year,
multi-million dollar activity due to the
complexity of the problem and the difficulty of
managing a large system development process.
The DoD budget is apparently contracting
yearly, without a corresponding decrease in
need for software systems. One viable method
for meeting software requirements within a
reduced budget is to construct new systems
using existing building blocks, rather than
developing the entire system anew. Will Tracz
notes increasing industry emphasis on reuse,
quoting Barry Boehm, the director of the
Software and Intelligence Systems Technology
Office of the Defense Advanced Research

SgueComa Actro Projects Agency (DARPA) [6]. Boehm has
System Architecture issued the "Megaprogramming Challenge" to

researchers, encouraging the development of
The GWNA implements the user interface technology that allows software to be developed

component as an architecture, or software "one component at a time rather than one line of
"platform", plus an extensible set of reuseable code at a time". The butlding block approach

software components. The architecture is seen reduces overall complexity by hiding many

as an executable framework that provides the impleenaonetal ithing sale

necessary software support for two and three implementation details within large scale

dimensional interactive graphics. The components.

234 1:n Annual National Conference on ADA Technology 1992

Using the GWA for developing new systems One method for accelerating convergence on a
or upgrading existing systems is expected to system's desired behavior is to use a rapid
significantly reduce the cost of development prototyping technique. Both users and
compared to developing a user interface developers increase their knowledge about the
component using other approaches. It is not true requirements by implementing a subset of
expected that all requirements within the the requirements, then operating the system
command and control application area can be composed of this subset. Prototyping the user
Implemented in a single system. Rather, the interface, in contrast to other components, is
software architecture Itself must define a particularly effective, since the user becomes
mechanism for extensibility. The GWA must be familiar with his/her interactions with the
tailorable by expanding or modifying existing system.
classes of capabilities, or by adding new classes.
In both cases, the GWA must provide the Rapid display prototyping allows users to
framework or high level design for new evaluate and refine the static characteristics of
capabilities. displays early in the development process.

Users can specify attributes, such as the
In order for the GWA to be reusable, general composition of display entities, with

interfaces to the surrounding environment must greater confidence that the finished system will
be well-defined. This environment includes the match their requirements. The addition of a
mission application, the database system, simulation capability provides a view of the
existing display software, and existing displays under dynamic conditions, yielding a
programs. The GWA must be structured to realistic operational simulation within which
allow easy Integration into a system. If an the users can evaluate and refine requirements.
organization has existing display software,
there should be a method to reuse this software 1.3.3 Extensiity.. Some systems we have
in the GWA. If an organization has existing analyzed express requirements to modify the
programs that satisfy system requirements, system in the operational environment. In
there should again be a method to integrate these these systems, it is desirable to combine
programs into the GWA. information that exists in the system in new

ways dependent on current operational needs.
1.3.2 Rapid Prototyping. Often, a user has The operator is given the capability to create
difficulty accurately expressing requirements and modify displays based on an existing set of
until well into the development cycle. Grady displayable data. This capability is typically
Booch notes that requirements evolve during the called "user defined displays". This type of
development process as both users and flexibility in the deployed system could be
developers gain a better understanding of the highly desirable in situations where
desired behavior of the system 171. While unanticipated "hot spots" develop in the real
users come to understand what the system is world, and existing displays do not provide the
able to do, developers gain insight into the required graphical information. Rather than
problem domain and ask better questions. This having to expend extensive resources for new
leads to a gradual convergence on the true displays in development, testing, and
desired behavior. Unfortunately, this process redeployment, a more flexible system would
does not stop prior to intensive development allow the user to create displays specific to the
work, but continues through the development current situation. For example, if an
cycle and throughout the life of the system. As a unfriendly third world country developed a
result, a deployed system often does not meet threatening ballistic missile capability, a
the users' true requirements. This malady is missile warning system user might create a
particularly acute in the DoD environment regional display of that country to allow close
where personnel change positions frequently, monitoring of missile launches.
especially in the context of a multi-year
development effort. 1.3.4 Portbiliy. It is highly desirable for the

user interface implementation to be portable to

1Oth Annual Natonal Conference on ADA Technology 1992 235

multiple workstation environments. This can 2.0 THE WA DIVELOPMENTEFFORT
be facilitated by basing the implementation on
standard software tools. The use of Ada, the X 2.1 Domain Analysi
Window system, PHIGS, and other standards The requirements specification phase
will ease porting to other platforms. employed a form of domain analysis to bound
Environment specific features which do not the scope of the GWA. The objective for the GWA
adhere to standards must be isolated to specific was to build a flexible architecture general
software components, so that these components enough to support the entire command and
can be modified for new environments, control application area. In order to achieve

this goal, specifications for a number of Air
1.3.5 fPedg.anget. The generic nature of the Force strategic command and control systems
GWA should not be permitted to significantly were examined. The system specifications
degrade the performance of the user Interface analyzed Included MCCS/MSS [8], Granite
component. The architecture and reuseable Sentry [91, ASAT/BM/C3 [10], JSIC [11],
components must be operational quality, to AMHS [12] and CCA [13].
allow Integration with a high level of confidence
in reliability and performance. Domain analysis was performed to establish

the relevance and type of each requirement
1.4 Agoroa£i contained in the various system specifications.

The development of the GWA consisted of a Since the GWA focuses solely on the
DoD-Standard-2167A compliant software workstation processing, domain analysis
development lifecycle consisting of Domain concentrated primarily on the user interface
Analysis, Requirements Analysis, Design, requirements. However, system wide
Implementation, and Testing. The Requirements requirements such as data management,
Phase was a two-step process of requirements communications, message handling and security
specification and requirements analysis. were also considered.
Requirements were specified in a document
similar to a System/Segment Specification Each requirement was extracted and
(SSS). Requirements analysis was performed categorized into one of three basic domains:
to develop software requirements documented in core requirements, representative
the Software Requirements Specification (SRS). requirements and system specific

requirements. Core requirements are the
Requirements from several C2 System common requirements found in most or all of

Specifications were examined as the basis for the system specifications that would
our GWA requirements. An architecture was conceivably be needed by any command and
built to support these, and other anticipated control system. Representative requirements
requirements. Our hope was that by were those found in multiple systems that are
empirically identifying and supporting user typical of operations desired for command and
interface requirements from a number of control systems, but might not be needed to
systems, the architecture would support a support any particular C2 system. System
broad scope of C2 systems. specific requirements are the esoteric

requirements specific to a single system that
The architecture was designed, implemented are atypical of command and control systems.

and tested using the Ada programming language. Figure 2 shows how the three categories are
Ada was used as both a program design language related.
and the implementation language. Its use has
facilitated maintenance also, since we have a
rich pool of personnel trained in Ada software
development.

236 10th Annual Notional Conference on ADA Technology 1992

o Ease of interfacing to the mission
processing component, and

o Ease of Interfacing to the database
System system.

These items were defined as system
Requirements Common constraints to be addressed during the design.

2.2 Requirements Analysis
During the Requirements analysis activity,the system level requirements defined In the

System, 2SSSI were modeled In the Integrated Computer
SAided Manufacturing (ICAM) Cafinition

language (IDEF) to specify the operational
requirements for the software. The IDEF
language leads to an engineering model that

Figure 2. Requirements Catagories presents all of the system requirements as
operations with the data that is Input or output

We captured the system level requirements from each operation and the important controls
in a document called the System/Segment and mechanisms guiding each operation.
Specification Insert (SSSI). This document
follows the DoD.Standard-2167A SSS format The specification of requirements in this
and facilitates inclusion in the specification of a form facilitates identification of derived
command center which incorporates the GWA requirements, such as recovery, that must be
for workstation processing. This Is consistent specified for a complete system. The
with the goal of packaging the GWA for reuse; specification of requirements in the IDEF model
the documentation should be as reusable ais the also provides an easily understood set of
software. A system developer can extract requirements that allows the designers to
appropriate portions from the SSSI for smoothly transition to a software design.
integration into his/her system level
specification. The software requirements were documented

in an SRS which consisted largely of the IDEF
In addition to identifying actual command and model. The SRS also included several

control system requirements, we recognized Quantitative Performance Requirements
the need to address the needs of future system (QPRs), or constraints, that are typical of
developers. Based on our experience with command and control systems, such as the time
command and control system development, we it would take to render a display after a user
projected ourselves as system developers for request.
future systems, and identified important
features we would want to see in a reusable user 2.3 Dsgn
interface component. These were: This section discusses the design of the GWA,

briefly examining first the design approach,
o Reliability, then the design itself. We emphasize those
o Performance, features in the design that promote the flexible
o Portability, and reusable nature of the GWA.
o Flexibility to add and delete

capabilities, 2.3.1 Design Approach. The design of the GWA
o Ease of integrating existing software followed a methodology derived from other

components, projects at SofTech. The design was carried
o Ease of integrating existing forward in two major phases: a process model

programs definition phase and an object oriented phase.
The two phases were somewhat interrelated;

10th Annual National Conference on ADA Technology 1992 237

although they proceeded sequentially, some The final activity of the design phase was to
iteration and refinement was required. combine the process model and object oriented

model into a compilable Ada system. Integrating
Before proceeding with the top level design the models at this point served to verify the

we continued the domain analysis started in the interfaces between components (by compiling
requirements specification phase. Each of the these Interfaces), and provided a baseline from
SRS requirements was categorized as affecting which to start the coding phase.
one of two design elements: architectural
considerations or reusable software The development of the GWA proceeded with
components. The goal was to design an an iterative build approach. The software
architecture, or software "platform", that could requirements were partitioned into sets that
support all of the requirements by allowing could be scheduled for sequential
components to be developed and "plugged-in" to implementation. The benefit of this approach is
the platform. The process model definition that it allows for the analysis, testing, and
phase addressed the architectural revision of the design at defined milestones (at
requirements, while the object oriented phase the end of each build). At the same time, an
emphasized the reusable component initial operational capability was defined to
requirements. include important features to make the GWA a

viable, ready to Integrate user interface
In the process model definition phase, the component. The capabilities Included in this

functional activities defined in the initial operational capability build are
requirements model were allocated to described later in this paper in the section
processes, and the interfaces between the entitled Implementation.
processes were defined. These processes were
later mapped to operating system processes. 2.3.2 Desion Features. In this section, we
Issues such as performance, reliability, ease of discuss important features in the design that
integration with COTS products, and others promote flexibility and reusability of the GWA.
were analyzed to assist in the definition of We first discuss the nature of a display within
processes. The result of the process model the GWA, then the interfaces to other
phase was a set of programs defined using Ada as components within a command and control
a program design language (PDL), and Ada system.
packages representing the Interfaces between
the programs. The interface packages 2.3.2.1 Display. The object oriented design
encapsulated the data passed between programs activity led to the important recognition that C2
as Ada type definitions, and provided operations displays are generally a composition of lower
to send and receive the data. level display elements. This Is not a new

revelation, as graphics languages and systems
In the object oriented phase, major object have evolved towards a hierarchical, object-

classes were defined for the software system. oriented approach in implementing graphical
Object classes were defined based on entities representations. Features such as display
extracted from the requirements model, and structures in GKS and PHIGS, and widgets and
also based on the experience of the engineers on their counterparts in windowing systema such
what abstractions were useful on previous as Motif, DECwindows, Macintosh, and others,
projects. The result of the object oriented all follow the theme of defining elemental
phase was a set of software objects representing display objects from which to build higher level
either real-world or implementation-required graphical entities. In the GWA, we have built a
entities, and the possible operations on these higher level of abstraction that can be viewed as
entities. The software objects were a toolkit for C2 user interfaces. In the GWA,
implemented using Ada to define the required these display str-tures are called display
data types and operations for the entities. elements.

238 10th Annual Notional Conference on ADA Technology 1992

A display element Is any graphical entity change for the life of the display. An example of
that can be displayed on the active region of the this would be a background for a display
workstation screen. This generally excludes the showing a fixed area on the globe. Dynamic
static banner area consisting of the title display elements, on the other hand, rely on
section, classification, date-time field, and Information outside the scope of the GWA to
menu area, although the GWA supports these specify their appearance and/or location on the
elements as well. Display elements are display. An example of a dynamic display
classified in such a way as to group graphical element is an icon whose location and other
entities with similar attributes. Examples of attributes (color for example) are derived
display element classes include: from data received from the mission application

section of the C2 system. Dynamic display
Icon - graphical entity representing a elements are much more complex since the GWA
real-world entity. must map the data received from the application

to the correct display element, and set the
Table - matrix of information, display element attributes prior to rendering.
arranged In rows and columns. Cells Correlating a data element to a display element
typically contain alpha-numeric data. Involves mapping a tag from the received data to

a tag in the display element. Establishing the
Alarm - graphical and/or audible attributes for a display element involves
entity intended to capture the attention transforming the application data into graphical
of the operator. form. For example, the application may define

the orientation of an aircraft - whether the
Form - grouping of Information, aircraft Is friendly or hostile. This orientation
usually formatted to enhance can then be translated to an icon color, possibly
understandability, and often used as a red for a hostile aircraft icon, and blue for one
template for the user to enter that Is friendly. The mapping of data values to
Information, display attributes is isolated at the lowest level

in the display element hierarchy. It is at the
Overlay - logical grouping of other point where the display element is actually
display elements that is identified by rendered that we map the data to visual
name, and that can be referenced and attributes.
included i. a display as a complete set.

It Is often necessary for a display system to
Background - graphical diagram upon perform some action as a result of a user
which other display elements are operation. To implement this requirement, we
displayed. This is usually a type of map. defined the general capability to assign an action

to a display element. A typical action might be
Text String - a character string, to display a table of detailed information in

response to the user clicking the mouse pointer
Within each display element class, any on an icon.

number of display element types can be defined.
For example, within the Icon class, we have We then defined a display in terms of its
defined ships, submarines, missiles, aircraft, elemental characteristics. A display is defined
satellites, and others. It is expected that most as a group of display parameters (display title,
C2 display requirements will fit into these menu option string, type of display - X or
classes. However, the GWA does not limit either PHIGS, others), a list of static display
the number of classes or the number of display elements, a list of dynamic or data driven
element types within a class, display elements, and a list of actions. Taking

this a step further, the information can be
Two categories of display elements are specified in a parameter file and loaded

defined: static and dynamic. Static display dynamically through a GWA menu option. The
elements are those whose appearance does not

10th Annual Notbonal Conference on ADA Technology 1992 239

parameter file Is called a Display Description receives a draw command for a missile, for
File (DDF). example, It scans its Internal display list and

finds that this display has specified a missile
The concept of displays was extended to icon. The display engine renders the missile

include the definition of stand-alone according to the data provided with the draw
applications. Existing applications can be command, and stores the missile data for later
Integrated into the GWA by creating a special use. If the user activates a missile icon by
kind of DDF. The DDF specifies the name of the selecting it (clicking the mouse pointer on it),
program, the name of the menu, and the menu the display engine correlates the selected icon
command string that starts the application. The with the action defined for it, extracts the data
application Is run in a window within the GWA previously received from the mission processor
environment. and performs the action. In this case, a table

providing detailed missile Information would be
The essential graphics processing capability displayed.

of the GWA was implemented as a software
component called a 'display engine". This
component is a virtual processing machine that
accepts drawing commands and data for the DmwCommn
supported display elements and performs the Diplmy Dipe I I
drawing operation, as shown in figure 3. The Elmene
display engine loads the DDF into an internal
data structure, usually at system initialization Sacrkground
time. When the display engine receives a draw USA•-ottw, Info

command with associated data from the mission - t,,into

processor, It scans the Lt of display orInfo

structures, searching for a display element that ... otr InfoActon

matches the received command. The display Mlsslle.>Table
element is drawn on all displays that have %_o -oftr into

Displayspecified it.Ospo
Description File

Figure 4. Display Engine Example

2.3.2.2 InLfia i. The interface to the
Da co Displa mission processing segment is the most critical
Elemnt Engine < v external interface for the GWA, since it is the

source for all displayable data, and the
yDisplay N destination for most user generated

Oesceipipon information. The primary concern for
Fes I Uu N designing this interface was reliability of

transferring the data. The mechanism used to
ensure reliability of the interface was the

Figure 3. Display Engine strong typing provided by the Ada compiler.
Interfaces were defined using Ada type
definitions within a package that also defined the

Figure 4 shows a simplified example. The send and receive operations to be used by the
DDF specifies a map background of the United mission processor and GWA. The interface
States, a missile icon, a nuclear detonation icon, package encapsulated the interface, and allowed
and an action that will display a table when the the Ada compiler to verify the data passed on the
missile icon is activated by the user. The DDF interface.
is loaded into a memory-resident structure at
initialization time. When the display engine

240 10th Annual National Conference on ADA Technology 1992

The GWA uses a database capability to store processor), and restart independent software
data received from the mission application tasks that have failed without impact to the rest
segment, and forward it to the software of the system.
component that will render it. The GWA
currently uses shared memory to store this Each DDF defines all parameters associated
information for performance reasons. The with a display. These include the desired
software components that Implement the shared background, a set of display elements, and
memory database can be replaced with actions associated with the display elements.
components utilizing other data storage The display engine processes the DDF at
methods. initialization, by loading the Information into

an internal data structure. The display engine
2.4 Implementaion then renders the display elements on the screen

This section describes the current as defined by the DDFs. A display can be
implementation of the GWA, including specific modified by modifying its DDF. A new display is
display elements, architectural features, and created by creating a new DDF. A list of
support tools that have been developed as of this displays associated with the GWA is maintained
writing, as a separate file.

The current implementation of the GWA A special type of DDF, called an application
concentrates on a flexible software platform DDF, allows a developer to specify an
that is integrated with a basic set of display application program that executes on the target
components. Many of the core requirements, hardware as an integrated element of the GWA.
some of the representative requirements and a This allows users of the GWA to incorporate
few of the specific requirements are existing software programs into the GWA
implemented. In addition, tools have been system.
produced that allow a developer to rapidly
construct, modify, and test displays without 2.4.2 Display Elements. The display element
code modifications, classes and types currently defined include:

2.4.1 Software Architecture. The software Icons:
architecture, or platform, is the executable Aircraft
framework that supports the basic processing Missile
capabilities of the system. This includes Submarine
interfacing with external components such as Ship
the mission processor, receiving, translating, Satellite
and storing display data, processing user Nuclear Detonation
interface requests, and self-contained system Radar
monitoring. Each of these types of processing
are isolated In the implementation so that they Tables:
can be easily modified, upgraded, or replaced. Missile Summary
For example, a data management component is Nuclear Detonation Summary
provided to store and retrieve dynamic display Missile
data. The data management component currently Aircraft
uses shared memory for faster performance, Satellite
but could easily be replaced with a commercial
Database Management System (DBMS) or other Overlays:
data storage mechanism. Arbitrary grouping of icons

The GWA includes monitoring functions to Backgrounds:achieve the goal of reliability. The monitor is Arbitrary view of the globe

able to gather status information, report status *Encapsulated Displays
(in the form of a message to the mission

10th Annual Notional Conference on ADA Technology 1992 241

* Encapsulated displays are existing display available during execution of the GWA. This
software encapsulated as a software component, feature allows a user of a command and control
and integrated with the GWA as a complete system developed with the GWA to dynamically
display. This allows Integration of displays that create and modify displays within the
are already completely implemented. operational environment.

2.4.3 Other Reusable Components. In addition The Simulator is a tool that Interfaces with
to the reusable components provided to the GWA and behaves as a mission processor.
Implement the display elements, the GWA The Simulator allows a user to Input Individual
provides a set of reusable software components data items or scenario files Into the GWA, which
as part of the GWA toolkit. Unlike display are received, processed, and rendered by the
elements, these components are integrated into display engine. The Simulator can also inject
the GWA system as compiled library units. random sequences of data into the GWA. As with
These Include components to satisfy several the case of the Display Builder, the Simulator
common needs of C2 systems. These components can be integrated into the GWA by means of an
include alarm rendering capabilities for both a application DDF. This is the typical
panel of multiple alarms (Audio, Visual, or configuration during display prototyping.
both), or pop-up alarms (Audio, Visual, or
both), menu processing, and a static banner 3.0 REU.1 T
component which includes a system title,
display title, data labels, and a clock. Each of This section discusses the results of the GWA
these components can be replaced or tailored to development project. Some general
meet the needs of a specific C2 system. observations are offered, a subjective

evaluation of how well the stated goals were
In the future, these commonly used satisfied is presented, then an overview of how

components will be integrated with the display the GWA would be used in the development of a
engine as additional display elements. This will command and control system is provided.
allow a developer to specify the component in a
manner similar to display elements, reducing 3.1 .enral
the need for code changes for workstation The use of a file-based display definition
modifications. design greatly increases the flexibility for

defining displays, not only for the developer,
2.4.4 Tgol. Two important tools were created but as an interactive user capability as well. It
to help developers implement a command and is intuitive that the parsing and processing of
control system: the Display Builder and the display files and data structures adds to the
Simulator. The Display Builder is a tool that overhead of the display rendering as compared
allows a developer to interactively create a new to a hardcoded approach. However, the rapid
display or modify an existing display advancements in workstation hardware
interactively. The Display Builder allows the processing capabilities dwarfs the relative
developer to select the background, static overhead (primarily at display initialization
display elements and dynamic display elements time) of the GWA design approach. The GWA
along with associated actions. It also allows the also supports the development of displays that
developer to specify other parameters for the can be initialized at system start-up or as the
display, such as the display title, parent menu, display is requested by the user, allowing
and option that activates the display. The designers to tune the system for faster response
Display Builder stores the appropriate to critical displays.
information in a DDF and optionally adds the
new display to the display list so the display The availability of development software and
remains in the GWA configuration. tools provides an easy method for rapid

prototyping with several benefits. First, the
The Display Builder is integrated with the displays can be rapidly constructed with the

GWA as an application, and is therefore tools currently provided to stabilize the

242 10th Annual Nafional Conference or ADA Technology 1992

requirements for a system under development, higher level of reuse than can typically be
Secondly, the development phase for the expected from a reusable component library.
graphics software is nearly completed once the
prototype is completed, since displays are One major issue affecting the possible reuse
completely defined by the DDF constructed of the GWA is the definition of its external
during the prototyping activity. Third, the interfaces. Matching the interfaces of the GWA
prototypes are identical to the developed to the other components in a command and
software in look-and-feel, which is not always control system is a fairly time-consuming task.
the case with special prototyping tools. Finally, Fortunately, data passing between the mission
the prototype can be used as a simulation tool to. application and the GWA is defined by Ada type
ascertain the behavior and performance of the definitions which are isolated to a small number
workstation software. of packages. Though establishing this interface

potentially involves defining a large number of
One current limitation of the GWA is the Ada types, the approach provides a reliable

mixing and matching of display elements with interface mechanism since the Ada compiler
one another. For example, some elements mix verifies the data types flowing across the
well (icons on backgrounds, tables on interface. The interface into the database
backgrounds), while others do not (X system is also isolated to a small number of Ada
background with PHIGS foreground). This packages. Using a different database system
problem can be mitigated with the involves replacing these packages.
incorporation of additional display components
such as map backgrounds developed in X for 3.2.2 Rapid ProtoWDina. The GWA can be used
compatibility with other X display components. to rapidly construct displays to assist users in
Another approach is to convert to a single analyzing and evaluating displays. Also, display
graphics environment such as X. Although this elements that may be required for a new display
may involve more effort in the development of can be developed and integrated into the GWA.
reusable components (since X has no built-in 3 Locations for new display elements are
dimensional features), it provides for a more identified in the software, reducing the need for
easily integrated, homogeneous system. It is an extensive software re-design effort.
likely that some system developers using the
GWA will choose not to use PHIGS display 3.2.3 Extnibility.. The GWA is extensible
elements because of performance. This does without coding changes in that displays can be
not, however, make the PHIGS display element created and modified within the parameters of
features of the GWA less attractive. In fact, we the existing display element set. These changes
see the ability to choose between single and can be made without modifying the source code.
multiple graphical systems as a benefit not The display element set itself can be extended by
found in other systems. integrating new display element code to the

GWA. Again, the locations for adding new
3.2 Evalation display element code are already defined, so

The following paragraphs offer an only a small'amount of design work is required.
evaluation of goals stated in section 1.2 of this Once new display elements are defined, they can
paper. The evaluations are subjective for the be used in virtue.y any combination with other
most part. A thorough, accurate, and display elements.
quantitative evaluation can only be conducted
after actually using the GWA in a development 3.2.4 Portability. The GWA is currently
effort. implemented in Ada on a VAX/VMS system, using

PHIGS, X, and DECwindows. Ada, PHIGS, and X
3.2.1 Sfware Reuse. The GWA supports reuse are easily ported to other platforms. Both VMS
ii, the extent that the GWA can be used as the and DECwindows are non-portable, so every
basis for the entire user interface for a effort was taken to isolate these interfaces to
command and control system. This is a much specific software components. In this way,

when the system is ported, only these software

10th Annual Natonal Conference on ADA Technology 1992 243

components need to be modified. Our current hardware and better system tuning may
plan is to port the system to a fully standards increase PHIGS performance.
based implementation. This implementation
would use Ada, POSIX, X, and Open Software 3.3 ingite WA
Foundation's Motif. This will ensure easy A system developer useo the GWA as the basis
portation to any environment that supports for developing the user interface component of a
these standards. These environments include command and control system. The following list
workstations from Sun, Hewlett-Packard, IBM, summarizes the tasks a system developer would
and Digital Equipment Corporation. perform to Integrate the GWA into a system.

3.2.5 Pfo.mance, Preliminary performance o Use the existing GWA as a rapid
evaluation indicates that the GWA provides prototyping tool to help define display
adequate performance. Two major types of requirements.
displays were tested: three dimensional PHIGS
displays and two dimensional X displays. PHIGS o Determine which system requirements
display performance was marginal, providing are already met by the GWA and which
display switching speeds of just under 1 second must be developed.
on a VAXstation 3100 Model 76 with 32
megabytes of memory. The following tables o Merge GWA documentation (currently
provide timing information for sample GWA SSSI and SRS) into the developer's
operations under a medium workload. The times documentation set.
were taken with a stopwatch. More
comprehensive measurements will be taken in o Revise the GWA software platform, if
the future by timestamping the operations in necessary. We anticipate oniy minor
the software and varying the workload. Times modifications in the platform.
listed as "< 0.2" were operations that completed
too quickly to measure the duration accurately. o Revise the GWA external interfaces to
These operations appeared to provide match the !arget mission application and
immediate response" from the user's database system.

perspective.
o Extend the display elec.aent set to

Display Switch Times satisfy the system's display
To PHIGS Display 1.0 sec. requirements.
To X Display < 0.2 sec. o Build any displays for the system that

Display Update Times were not already built in the
To PHIGS Display 3.8 sec. prototyping phase.
To X Display < 0.2 sec.
Alarms < 0.2 sec. 4.0 FUTURE ENHANCEMENTS

Perform Display Element Action Initial enhancements planned for the GWA
Render Pop-up Table < 0.2 sec. naturally include refinements to the platform

architecture (incorporate unimplemented
The slow PHIGS display switch time appears requirements such as multi-level security

to be attributed mainly to the large amount of features), the enhancement of existing reusable
processing within PHIGS itself, and is not a software components and the addition of many
symptom of the generic nature of the design. other components. The goal of rapidly
PHIGS display update times are high because the developing a command and control system
current implementation allows updates no more requires a near- complete architecture and a
often than every 3 seconds to avoid continuous, wealthy library of components. Additional
sequential, full display updates. Faster components might include various two

dimensional map projections, status displays,

244 10th Annual Natonal Conference on ADA Technology 1992

manual entry data forms, bar graphs, and other 6.0 ACKNOWI'rEMENTS
common display objects.

We would like to thank the entire team that
The next step in the evolution of the GWA helped develop the GWA concepts and current

concept is to extend the Graphic Engine and implementation. Without the hard work and
Display 3uilder concepts to related development dedication of these engineers, this program
areas outside of the workstation realm. This would not have been possible. For all of us, this
includes the message processing and data was essentially a part time effort, with some
management areas that are relegated to the periods of full time work. Thanks to Darren
mission processing segment which Interfaces to Stautz and Craig Baxter for their many
the GWA. We believe that the techniques applied' Important contributions as members of both the
In the analysis, design and implementation of design team and Implementation team. Thanks
the user interface can be applied to the message to Jordie Harrell for his contributions during
and data management design to provide a the requirements analysis activitly. Thanks to
platform architecture and reusable components the other members of the Implementation team
for the development of an entire command and (in alphabetical order): Charulata Kearney,
control center system. The Interfaces between Patrick Martin, Karri McCarthy, and Steve
these three major areas must be well specified Statham. Thanks are due to Patrick also as a
and the components must be well-integrated to key member of the integration team. Thanks to
allow the development of tools (like Display George Macpherson for his thoughtful review of
Builder) for an effective and consistent this paper. Thanks also to Marti Devine for her
command center design. tireless support in preparing our technical

documentation. Special thanks are due to Bill
5.0 SUMMARY St. John for his overall vision and work in

securing corporate support. We also thank
The Generic Workstation Architecture is a Digital Equipment Corporation's Frank Backes

system that provides a flexible user Interface and Stephen Schrelfer for their assistance and
environment for Integration Into a strategic or contribution in establishing an adequate
tactical command and control system. By development environment for this project.
defining a command and control display as a
composition of lower level display elements, we 7.0 REFBENICE
are able to dynamically create and modify
displays by manipulating parameter files that 1. Brewin, B., "CIM." Federal Computing Week
define the displays. This approach leads to an (CIM) September, 1991.
Important method for developing user
interfaces. The GWA is used first as a rapid 2. Portable, Reusable, Integrated Software
prototyping tool to define and evaluate displays. Module (PRISM) Draft Request for Proposal.
Next, the displays defined during the rapid Solicitation Number F19628-91-D-0016.
prototyping activity are used in the operational Issued by ESD/AVK, Hanscom AFB, MA, April
system. Finally, display capabilities can be 30, 1991.
extended by creating and modifying displays
dynamically in the operational environment. 3. Dijkstra, E., "Structured Programming."

Software Engineering Techniques, Report on a
We anticipate that significant resources can Conference Sponsored by the NATO Science

be conserved by reusing a workstation Committee, p. 84, October, 1969.
environment during C2 system development as
an alternative to developing the entire user 4. Parnas, D. L., "On the Design and
interface component anew. Further, the GWA Development of Program Families." IEEE
design provides flexibility and extensibility we Transactions on Software Engineering, vol SE-
have not seen in other environments. 2, no. 1, p. 1, March, 1976.

10th Annual National Conference on ADA Technology 1992 24

5. Brown, Gerald R., and Quanrud, Richard B., Paul Richards is a Senior Software Engineer at
"The Generic Architecture Approach to Softech, Inc. in Colorado Springs, Colorado. He
Reuseable Software." Proceedings from the is a lead designer and chairman of the Display
Sixth National Conference on Ada Technology, Working Group for the Mobile Command and
1988. Control System / Mission Support Segment

(MCCS/MSS) project for USSPACECOM. He
6. Tracz, W., Contribution to "The Open received a BA. degree in Computer Science from
Channel." Computer, VoL 24, No. 10, October Dartmouth College and M.S. degree in Computer
1991. Science from Chapman College. His

professional interests include software
7. Booch, Grady., Object Oriented Design with- engineering, software reusability and
Applications. Benjamin/Cummings Publishing graphical user interfaces.
Co., Inc., Redwood, CA, 1991.

Readers may contact either author at SofTech,
8. System Specification for the Mobile Inc., 1330 Inverness Drive, Suite 315,
Command and Control System Program. August, Colorado Springs, CO 80910, phone number
1989. (719) 570-9400.

9. System Specification for the Granite Sentry
Program, Phase II, Revision A. March 1, 1989.

10. System Specification for the Anti-Satellite
Program. September 20, 1990.

11. System Specification for the Joint Space
Intelligence Center Program. January 20,
1989.

12. System Slecificea;- f. the Automatic
Message Handling Sys'-- Projam. February
28, 1989.

13. Command Center Architecture (Draft).
February, 1989.

The Authors:
Kirstan Vandersluis is a Senior Software
Engineer at Softech, Inc. in Colorado Springs,
Colorado. He received a B.S. degree in Computer
and Communication Sciences at the University
of Michigan, Ann Arbor, and an M.S. degree in
Computer Science from the University of
Colorado, Colorado Springz. His professional
interests include software engineering process
improvements for both Ada and C development
environments, generic architectures, and
software portabilty. He presently serves as
Software Development Manager for a
commercial program to develop user interface
and simulation tools for a digital image
processing application.

246 10th Annual Natonal Conference on ADA Technology 1992

A Schema for Extensible Generic Architectures

Curtis Meadow and Larry Latour
University of Maine

Department of Computer Science
Orono, Maine, 04469

meadow(amaine.maine.edu, larry@gandalf.umcs.nmaine.edu

Abstract are concept, content, and context. The key to the
model is the separation of contextual dependencies

Attention has recently focused on the desig-, and con- from both the component specification (its concept)
struction of generic architectures, templates that can and its implementation (content). Separation of spec-
be instantiated with contextual infornition to pro- ification and implementation is already well-knaiwn
duce working systems. Such architectures are use- and widely practiced. However, the isolation of con-
fnl for constructing collections of integrated reusable textual dependencies has not been well-explored, nor
components within a particular domain. Our ap- has it been subjected to a formal analysis.
proach allows for the systematic construction of n We contend that careful isolation of contextual de-
layered generic architecture (LGA) as well as the ad- pendencies in the modular structure of a generic sub-
dition of components to the architecture. Such an system can produce a system that is not only capable
architecture is thus extensible, and also adaptable, in of being instantiated to a large number of actual con-
that it can easily be modified to fit changing end-user ponents, but can be easily extended by "plugging in"
contexts. We define a schema for such architectures, newly constructed modules embodying different con-
allowing us to isolate and deal with a number of or- textual information. This approach has to an extent
thogonal architectural issues. been explored in the Common Ada Missile Packages

[CAMP 85] and by David Musser and Alex Stepanov
in The Ada Generic Library [Muss 8'].

1 Introduction The modules in an extensible layered generic ar-
chitecture (an LGA) are divided into several classes,

A good deal of work has recently been done in the based on the 3C model. Each class serves a distinct
design and construction of generic architectures, i.e., purpose within the architecture. These classes are as
system or subsystem templates that can be instan- low-level abstractions, abstract algorithms, base nb-
tinted with contextual information to produce work- stractions, and view abstractions, described in more
ing systems [Cohe 90, CAMP 85, Muss 871. Such ar- detail in the following sections.
chiteetures are useful for constructing collections of
integrated reusable components within a particular
domain. Our approach allow- for the systematic ad- 2 A Mef hodology for LGA De-
dition of components to the arehitectu|re. Such an sign
architecthre is thus extensible, and is also adaptable,
in that it can easily he modified to fit changing end- The goal of this paper is to outline a methodology for
user contexts We define a schema for such architec- engineering collections of reusable components Such
tures, allowing us to isolate and deal with a number of a methodology is not a strict set of rules, but rather
orthogonal architectural issues within the structured a set of guidelines for design. Here we are concerned
framework not only with the design of single components, but

As a starting point, we draw on the 3C model of with the design of collections of components.
component structure JEdwn 90, Edwa 90b, FLW 90, Engineering a collection for reuse implies that the
Lato 89, Trac 901. The 3C model is a basic reference collection should be more than an ad hoc group-
model for the decomposition of a single component ing of components. Several domain-specific coiec-
into several "subcomponents " These subcomponents tions of components have been introduced and are

10th Annual Notonal Conference on ADA Technology 1992 247

in widespread use. The X-Windows system and model is a view of a component as the composition
the Unix operating system are examples of domain- of three parts: concept, content and context. The
specific reusable component collections. The success concept of a component is an abstraction of "what"
of these collections ofcomponents suggests that a gen- the component does; the content is "how" it does it;
eral methodology can be applied to any domain in and the context is both "where" it is done and "what
order to produce a structured collection. The struc- it is done to."
ture or taxonomy of a collection reflects two bodies The concept of a component is the abstract model
of knowledge: that the component represents, i.e., the abstract spec-

ification of the component. Concept is partially em-
I. the knowledge base of a domain is embodied in bodied in an Ada module in the specification of a

the structure, so that a user or designer who is package; however, the concept is not the package
familiar with the domain finds a readily compre- specification. The representation of a concept in an
hensible structure; Ada specification is incomplete-the concept properly

includes the full semantic specification of an abstrac-
2. sound software engineering practices are also em- tion.

bodied in the structure of a collection, indepen- Concepts represent abstract machines in the same

dent of the knowledge base of the domain.
way that built-in concepts in a language are represen-

Engineering for reuse is the application of a spe- tations of abstract machines [Pam 72J. For example,

cific methodology (or set of rules) to the design of a the array types built into many languages provide
The design methodology is applied to the an abstract machine, with indexing, assignment, and

knowledge base of the doin to produce n struc- possibly slicing operations. The actual representation

tured collection of components. Unix utilities exem- of an array is hidden from the user.

plify this process on a small scale. A utility can be The c6ntent of a component is the algorithmic ab-

integrated into a Unix system if it follows certain rules straction of its implementation-how the component

about the treatment of input and output (reading and does what it is supposed to do Concept and context
tg sdetermine the content of a module. Content effec-writing standard input and output, treating files as ieyrfr nyt ariua mlmnain n

streams of characters, and so on) and uses established tively refers only to a particular implementation, and

protocols for system calls. a given concept may be implemented with many dif-
p tolo bferent "contents." Concept and context are a prioriThe methodology being proposed here is not a

for system design, but for the design of attributes of a module; while content is an a posteri-methoologyor attribute.
reusable component collections. The design of a con- Te rinceo

ponent collection may be orthogonl to the design of is aready own, and pntene

a system, in that one of the goals of component collec- is already well-known, and is incorporated in the de-

tions is to produce '%lack-box" components that can sign principles of encapsulation and information hid-

be plugged into a system. The particular structure ing By separating the content from the concept,

of the collection itself is irrelevant to a system using other modules cnn rely on the concept (the specifi-
one of the components contained in or generated by cation) without being iffected by changes in the con-
the collection e tent (the implementation). However, the separation

of context from concept and content libs not been
well-explored.

2.1 The 3C Model of Component The purpose of separating the context of a compo-

Structure nent from its other aspects is to increase the gener-

A design methodology provides a structured frame- icity of the component The context of a componeit
can be defined as the environment in which the com-

work for thinking about desig. As such, the designer ponent is to function, or that which completes the
must have a clear mental image of the framework; i.e., definition of a concept within a given environment.
the methodology should provide the designer with a The context of a component is iulti-dimensional, and
model for thinking about design. For example, the it is necessary to classify several types of context in
top-down design methodology for complex systems order to understand it fully. Three types of context
provides the designer with a model of a system as a nbedsigshd

hierarchical structure of problems and subproblems. can be distinguished:

The layered generic architectures methodology uses 1. Specification context: the set of bindings in an
the 3C model of component structure as the basic environment that serve to narrow a generic con-
reference model of component decomposition. The ponent to a specific component

248 10th Annual Notional Conference on ADA Technology 1992

2. Implementation context: the set of bindings in the third module map the algorithms for sequences
the body of a component that satisfy or imple- to a set of algorithms for queues. Only the queue
ment a set of constraints generated by the spe- operations module is designed for the end-user; the
cific environment within which the component other modules are internal parts of the architecture.
functions. In an LGA, a fourth module may be needed to bind

the other three modules into a usable abstraction.
3. Representation context: the set of bindings to an

environment that serves as a representation for
the module, or the characteristics of the repre- 2.3 An LGA Schema
sentation. The following is a four-part schema describing the

A simple example of the three types of context function of each layer within a layered generic

is a generic stack package, intended for use in the architecture. It is in part derived from the

presence of multiple threads of control, in which the Musser/Stepanov classification scheme [Muss 87].

stack is represented by a linked list. The specifica- Low-Level Data Abstractions and Context: In-
tion context is supplied by the generic parameters terface to the abstract machine of the language,
that specify the type of objects stored in the stack. erra e iple entat in ontet
The representation context can be supplied by "with- encapsulates implementation context
ing" a list package to provide a representation for the Abstract Algorithms: Abstract, representation-
stack, while implementation context can be supplied independent algorithms
by a semaphore or monitor package. Using conven-
tional programming techniques tlhe implementation * Base Abstractions: Canonical abstractions of the
and representation context are usually hard-coded domain; the central abstractions of the architec-
into the stack package, either by "withing" appropri- tur-
ate modules or by actually hard-coding the linked-
list and semaphore abstractions into the body of the 9 Views. Mappings from base abstractions to new
stack. abstractions

2.2 Layered Generic Architectures Table An LGA Schema

The essence of our methodology is to build a collec- Low-level data abstractions are the primitive data
tion of reusable components within a layered generic types of a layered generic architecture, just as inte-
architecture (LGA), a layered collection of generic or gers, characters, floating-point numbers, and fixed-
highly parameterized modulc. The structure of the point numbers are the primitive data types of many
collection is provided by the decomposition of "tar- programmiing lnnguages. Low-level data abstractions
get" module- into several modules, each servinig a dis- capture the commonality inherent in the entire ar-
tinct fiction within the architecture, hi an LGA, chitecture, In a sense, low-level data abstractions
not all modules are "created equal " For example, a are the lowest common denominator of an LGA. In
queue can be decomposed into three modules the Ada Generic Library [Muss 87] the primitive data

cypes are simple lists that incorporate the operations
1. n low-level abstraction of a sequence (context); common to moat sequential data structures. In the
2. a set of generic operations on sequence-, (Con- CAMP modules, the Data Types and Structures layer

tent); incorporates the operations and types needed to de-

scribe the state of every type of missile system that
3. a set of specific queue operations implemented can be generated from the packages.

using the modules above (concept). Low-level data abstractions directly provide the
representation context for the LGA. Variations in ima-

The low-level abstraction is an interface to the vir- plementation context can be (but need not be) imple-
tual machine provided by the programming language mented at this level. For example, storage manage-
and is used to provide a representation for the queue. ment is directly implemented at this level by Musser
The low-level abstraction incorporates the context of and Stepanov, although storage management could
tle final, fully instantiated module The generic oper- be provided (also as a low-level abstraction) through
ations in the second module incorporate the algorith- the services of a Storage Manager module (or family
mic content of the queue. The queue operations in of modules).

10th Annual Nohonal Conference on ADA Technology 1992 249

Abstract algorithms are the nucleus of an LGA. example of the design process, illustrating the difFer-
Abstract algorithms centralize the algorithmic con- ences between the traditional approach (as exempli-
tent of the component domain in representation- fled by Booch) and the layered generic approach.
independent modules. Abstract algorithms are The process of constructing an LGA is basically
representation-independent because they are ex- the process of decomposing end-user modules into the
pressed in terms of a generic type whose semantics 3W's of concept, content, and context. In general,
are precisely defined at the interface by a set of op- the process of decomposition transforms one module
erations on that type. One of the functions of a into several modules, as the concept, context and con-
base abstraction is to map the low-level data types tent of the target module are mapped onto individual
to the type required by abstract algorithm modules, modules within the LGA.
In the Ada Generic Library, abstract algorithms are At first glance the decomposition process would
incorporated in the Linked List Algorithms package, seem to produce more code and more modules rather
a set of thirty-one operations on linked structures. In than less code and fewer modules. However, the re-
the CAMP modules, abstract algorithms are incorpo- suit of decomposing one hard-coded abstraction (for
rated in the Basic Operations Layer. example a stack, graph, or symbol table) should be

The terms "base abstraction" and "view" derive virtually identical to the result of decomposing any
from the base relations and views of a relational other hard-coded abstraction of the same class. The
database. The base abstractions are a minimal resulting collection of modules is capable of produc-
set of abstractions from which other abstractions ing many members of the target class of abstractions.
in the domain can be derived by mapping opera- The module at the starting point of the decomposi-
tions. Base abstractions are the canonical abstrac- tion process is a focal point for capturing the variety
tions of the domain. In the Ada Generic Library, of design decisions that are associated with a class of
the Singly Linked Lists package is a base abstraction, components.
By mapping operations, many other linked structures The following outline presents the broad steps of
can be derived, such as stacks, queues, deques, strings the design process. Each step will be discussed in
and so on. These abstractions are called "views" be- detail in the sections following. The guidelines sug-
cause they map the operations of the base abstraction gested here are heuristic in nature; hard and fast rules
into a different view of the data structure, can only be stated for narrow domains.

There is in general a choice of several low-level data
abstractions for any given base abstraction. A base 1. Domain Analysis: determine the extent and
abstraction is usually "hard-wired" to a group of ab- breadth of the family of components to be gener-
stract algorithms, since the algorithmic content of the ated by the LGA. This is the "top" layer of the
domain tends to be invariant Any number of views LGA. This step determines tlhe end-products of
may be built on top of a base abstraction. the LGA; the base and view abstractions, and

A generic subsystem embodies two types of con- determines the variations in specification context
tent: algorithmic and structural. Algorithmic con- thrit might be expected.
tent is progranuming in the small; an implementation
of a single algorithm or families of algorithms. Struc- 2. Examine one or more "representative" members
tural content is programming in the large; it refers to of the fami-ly of components, and perform a mod-
the scaffolding or architecture of a subsystem, and is ulor decomposition, using the 3C model. This
implemented by a particular modular decomposition. decomposition should serve as a "trial" architec-
Generic architectures incorporate the structural con- ture, -uggesting possible representation context
tent of a domain in the structure of the architecture (low-level data Otnrctures) and implementation
and isolate the algorithmic content of the domain in context (constraints generated by the environ-
abstract algorithms. ment).

3. Using the results of (2), isolate and expand the
3 Design Methodology algorithmic content of the LGA.

The LGA design process is primarily a process of 4. Specify and implement the low-level data struc-
analysis; once the architecture has been established, tures.
coding the packages is ahuost trivial, except for the
algorithmic abstractions. The graph packages from 5. Specify and implement the algorithmic abstrac-
the Boodi components [Booc 871 will be used as an tions.

250 101h Annual Naional Conference on ADA Technology 1992

6. Integrate the base abstractions, using the low- parents of a family of variations. They represent
level abstractions and algorithmic abstractions the commonality of the family. Note that some
developed in the previous steps. base abstractions may be layered on other base

abstractions.
7. View abstractions follow straightforwardly once

the base abstractions have been fixed.
3.2 Modular Decomposition

Although the methodology above is presented as a
sequential set of steps, in practice the design process Modular decomposition should be performed on the
involves looping and recursion. The first attempts are abstractions determined by the domain analysis to
seldom satisfactory. Note also that the methodology be the base abstractions of the domain. The goal of
varies slightly when "re-engineering" existing com- the decomposition is to produce a tripartite division

ponents. The methodology presented is a top-down based on the 30 model. This decomposition should

methodology; re-engineering existing components re- serve as a "trial" architecture, fixing variations in ini-
quires some elements of a bottom-up methodology. plementation context, suggesting possible representa-

tion context (low-level data structures) and algorith-
3.1 Domain Analysis mic abstractions. After this process has been satisfac-

torily completed, the remaining base abstractions can
The first step in designing a layered generic archi- be decomposed using the first attempts as a model.
tecture is to examine the domain of the components This stage of the decomposition is directed towards
to be represented by the LGA. The purpose of the (1) actual implementation of the base abstractions,
domain analysis is threefold: and (2) final isolation of algorithmic content in one

or more packages of abstract algorithms. Some of the
1. to determine the extent and breadth of the end questions to be asked during the modular decompo-

products of the LGA; sition are the following:

2. to determine the variations in specification con-
text that can be expected within the domain of What are the possible variations in implmen-applicability; tation context? Some major issues include

storage management, concurrency control, im-
3. to determine which top-level abstractions should port/export of objects from/to secondary stor-

be implemented as base abstractions, and which age, and efficiency considerations.
should be implemented as view abstractions.

9 At what level should the variations in implenien-
Domain analysis typically starts with the exami- tation context be implemented? Some consid-

nation of a known component or abstraction. When erations associated with the nmjor issues listed
examining a representative component, the following above are as follows:
quiestions call be asked: Storage management variations are usually as-

& What common variations of this component ex- sociated with the low-level data structures, be-
ist? What are the variations of concept? cause the actual representation is being man-

aged. Nlncurrency control mechanisms vary.
* Which variations represent structurally distinct When a non-shareable component is constructed

abstractions, and which are simply variations in on top of a shareable component, (e.g., a stack
interface specification? on top of a list) concurrency control must be im-

* Given the results of the last two questions, what plemented at the level of the base or view ah-

variations in the specification context can be ex- straction. When the low-level components are

pected? Which parameters should be left generic not inherently shareable, (e.g., a table) then con-

to be instantiated by the user, and which param- currency control can be implemented as part of

eters should be partially instantiated within the low-level data structure. For persistent objects,

architecture? the save/retrieve operations may need to be im-
plemented either at the top or the bottom levels,

Which abstractions are base abstractions and or at both levels. Efficiency considerations in
which are views of base abstractions? One a layered generic architecture should be deter-
heuristic is that in general base abstractions are mined without regard to inefficiencies resulting
"key" modules to the LGA; that is, they are the from layering and from abstracting away context.

10th Annual Nofional Conference on ADA Technology 1992 251

9 What are the low-level data abstractions associ- (no known abstraction matches the set) sug-
ated with the abstractions? The general tech- gests that the representation may need re-
niqupe is as follows: vising or a new abstraction may need to be

defined. If the set of subprograms matches
I. Investigate commonly used representations the specification of the base abstraction,

to determine the possible choices available, then there might be some way to generalize

2. Investigate the effect of the representation the specification of the base or view abstrac-
choices on efficiency of various operations tion.
as a criterion for suitability. 9 If the set of subprograms is a subset of some

3. Look for a representation which has an asso- known and available abstraction then is the
ciated algorithmic abstraction-this will of- set a subset of more than one known ab-
fer the greatest flexibility and the least con- straction? Do the abstract algorithms need
plexity. to divided into several packages?

3.3 Testing the Modular Decomposi- 3.4 Abstract Algorithms
t-*on Using the results of the modular decomposition, iso-

Once a tentative modular decomposition has been de- late and expand the algorithmic content of the LGA.
cided upon, it should be tested for suitability. The The purpose of the abstract algorithms packages are
purpose of the testing is to establish whether suitable to isolate and concentrate the algorithmic content of
base abstractions, low-level abstractions and abstract the domain. Many of the algorithms that belong in
algorithms have been chosen. Ideally, these three ab- these packages will be obvious; others may not be so
stractions will be different facets of a common con- obvious.
cept. Something that should always be considered is the

Testing for a suitable decomposition can be accom- use of higher-order generic subprograms. For exam-
plished by coding the body of a base abstraction in ple, the designer of a Set package will typically in-
terms of the low-level or base abstractions and ab- cude operations such as Intersection, Union, Differ-
stract algorithms, using calls to the as-yet nonexis- ence, and Member. Another level of reuse can be
tent abstract algorithms. This process helps to iso- accomplished with operations such as Select, which
late algorithmic abstractions. Some heuristics for the returns a subset satisfying a given criterion, or De-
process of isolating abstract algorithms are the fol- tect, which returns an arbitrary element satisfying a
lowing: criterion:

1. All subprograms in the base abstraction should generic
be short and concise. Long subprograms can in- with function Test (E : Element) return Boolean;
dicate an unsuitable specification, the need for function Select (S : Set) return Set;
an abstract algorithm, or an unsuitable repre-
sentation. generic

2. The representation chosen for the baee abstrnc- with function Test (E : Element) return Boolenn;
tion will involve a set of -ubprogrnm invocations function Detect (S : Set) return Element;
in the body of the abstraction. The set of subpro-
grams invoked represents the algorithmic content
of the domain. Examine this set of subprograms 3.5 Bottom-Up Design Techniques
and ask the following questions:

When re-engineering existing abstractions, some ad-
* Does the set of subprograms required sug- ditional heuristics need to be applied during the do-

gest a different representation? Some main analysis. Part of the danger of re-engineering
heuristics are as follows- If a very small set existing specifications is that existing specifications
of subprograms is required, then the repre- tend to be context-dependent. Several criteria must
sentation and algorithmic content may be be applied to determine the "suitability" of a specifi-
imported directly as a low-level abstraction cation for a generic module:
directly through parameters in the specifi-
cation. An incoherent set of subprograms 1. Genericity

252 10th Annual National Conference on ADA Technology 1992

" Is the module as "generic" as possible? 3.6.1 Domain Analysis

" How much context is hard-coded? Can any Several variations of graphs are commonly used.
of the context be moved out into the speci- Graphs can be simple graphs (only one edge allowed
fication in the form of parameters? between any two vertices) or multigraphs (multiple

* Will the module serve as an "end-point" of edges allowed between pairs of vertices; loops con-
the library (a view abstraction) or will it be necting a vertex to itself are allowed). Edges in ei-
a base abstraction? ther case can be directed or undirected. Note that

" Cin the specification be broadened to al- it is possible in simple, directed graphs to have two

low variants of the abstraction to be imple- edges between any pair of vertices as long as the direc-

mented by parameterization? tions differ. In any graph, edges can be weighted or
unweighted. Graphs can also be finite or infinite. Lifi-

2. Breadth nite graphs present special problems of computability
and can in general be handled only with lazy evalua-

* Does the specification supply sufficient op- tion: they will be ignored in the following discussion.
erations for all purposes? Many other types of graphs have been described;

however, most of these are mathematical restrictions
* Do the semantics of the operations unnec- of the basic types described above. Some of these

essarily restrict the breadth of the generic types are bipartite graphs, connected graphs, bicon-
module (reduce its genericity)? nected graphs, acyclic graphs, planar graphs, Eule-

3. Higher-Level Operations (Generic procedures) rian graphs, circuit graphs, and so on. These types of
graphs can be implemented as views rather than base

9 Can the specification be broadened by the abstractions because they are subsets of the more gen-

inclusion of generic procedures and func- eral classes of graphs. Note that although trees are
tions with procedure and function param- a type c-1 graph, trees are used for an entirely differ-

eters? ent class of problems than graphs, and should not be
considered at all as base abstraction in an architec-

4. Base and View Abstractions ture of graphs. Therefore the basic forms (variations
of concept) of a graph are {Weighted. Unweighted},

Does the module represent the parent of a {Simple - Multi), and {Directed - Undirected).
family of variations? If so, it is a candi- Note that simple graphs are a subset of multi-
date for a base abstraction. Is there a good graphs, and that a simple graph can be layered on
reason to hard-code the representation or a multigraph simply by including a test to see if an
should it moved out into the specification edge is already present whenever an edge is added to
as a set of parameters? a graph. A generic template can use a Boolean pa-

rameter to allow both simple graphs and multigraphs

3.0 Example: Graphs to be instantiated from the same package. Note, how-
ever, that many graph problems are expressed only in

The following discussion uses the general class of terms of simple graphs, and many graph algorithms
graph abstractions to illustrate the beginning steps only work with simple graphs. This suggests that a
of the design process. We first examine the basic separate package of simple graph algorithms will be
concept of the abstraction and possible variations of needed.
that concept. A graph is pair (V,E) where V is a Note that weighted graphs can be implemented as
set of vertices and E is a set of edges. A vertex is a view of urweighted graphs, by implementing the
a labelled (named) object, usually (in computer ap- weight as an attribute of an edge. Unweighted graphs
plications) with some associated data (referred to be- can also be implemented as a view of weighted graphs,
low as the attributes). An edge is a pair (vI, v2) by simply ignoring the weight associated with eadi
where vl and v2 are members of V; in other words, edge. The first approach, implementing weighted
an edge connects a pair of vertices Vertices are often graphs as a view of unweighted graphs, seems to be
referred to as nodes, and edges as arcs. In the follow- preferable. Weighted and unweighted graphs are used
ing discussion these terms will be considered to be for different types of problems, and therefore should
synonymous Edges may or may not have some data both be considered for base abstractions.
associated with them (edge attributes), and they may Note that neither directed nor undirected graphs
or may not be labelled. can be easily implemented as a view of the other. The

10th Annual National Conference on ADA Technology 1992 253

two abstractions require fundamentally different rep- the appropriate interaction model and placing it
resentations in order to be reasonably efficient. How- under the control of the user, rather than the

ever, if connectivity is the only edge attribute of in- component.
terest, then undirected graphs can be implemented
using a directed representation by adding pairs of di- 3. Persistent graphs have two forms: a persistent
rected edges for each undirected edge. This approach, form for secondary storage and a transient formalthough technically feasible, results in undue corn- for primary storage. Since the architecture will
plexity. provide a wide variety of transient forms, per-plexity.sistent graphs can be implemented by building

The preceding discussion suggests that the directed Sisen grs ne pe ntd b bidng
and undirected multigraphs may be a suitable set of Save and Retrieve operations on top of a stan-
base abstractions for the architecture. Simple and d ap s in ,oded t hat the peweigtedgrahs re esil imlemntedas iew oftent graph is intended to exist wholly in one placew eighted graphs are easily im plem ented as view s ofor t e th .P rs t nt g a st at re xp c dthe two basic forms, although they are also canonical or the other. Persistent graphs that are expected
abstractions of the class of graphs, to remain in secondary storage while isolated ver-abstraetfors dstinglished by Bchs. atices and edges are retrieved for various opera-The orm ditingishd b Booh ae sme-tions must be implemented at the lowest level of
what different: he distinguishes Directed-Undirected, tin musteimem
Bounded- Unbounded, and Unmanaged-Managed- the architecture.
Controlled forms. Boundedness and storage manage- 4. Bounded graphs can be offered as a feature of
ment are part of the implementation context, and the architecture, using particularly efficient rep-
should be supplied as contextual parameters rather resentationf. Boundedness is almost always a re-
than conceptual distinctions. Likewise, concurrency striction imposed by resource usage constraints
control and persistency (neither were considered at rather than n feature of the abstraction itself.
all by Boorh) can be supplied by parameterization. While there are indeed applications for graphs
Both of these will also require the layering of addi- with a fixed or maximum number of vertices or
tional operations at the top level: concurrency con- edges, the limits on vertices and edges do not re-
trol will requir, the usual semaphore or monitor op- quire a particular representation. Boundedness
erations and persistent graphs will require Save and as a consequence of the implementation context
Retrieve operations. must be implemented at a low level; bounded-

ness as a variation in conceptual context can be
S.6.2 Modular Decomposition implemented at the highest level (a view abstrac-

Taking the undirected multigraph as a typical base tion).

abstraction, we need to examine possihle variations 5. The type of data associated with a vertex or an
in implementation context. Areas of possible vari- edge is best left as specification context. How-
ation are persistency, concurrency control, storage ever, many graph applications use labelled ver-
management, boundedness, and types of associated tice and/or edges. Therefore the user should
data. Ench has unique implications for the final ar- be able to supply both a label type and a da-
chitecture. turn type, and in the case of weighted graphs,

a weight type. Note that base abstractions can
1. Storage management for non-persistent graphs export operations to set and retrieve attributes

is ftindamentally associated with the representa- without knowing just what the attributes are.
tion of the graph, and may also be associated A weighted graph can be implemented on top
with houndedness. Storage management should of the base abstraction by providing operations
be implemented at the lowest level, to manipulate weights, which are then bundled

with the edge attributes. Therefore the edge or
2. Inasmuch as graphs are shareable objects, con- vertex attributes can be partially instantiated in

currency control cannot be reliably implemented layers of the architecture to provide various ab-
at the lowest (representation) level, but rather stractions at the tc~p level.
has to be implemented at the topmost level (view
or base) level. Furthermore, correct behavior 3.6.3 Graph Representations
cannot be guaranteed by the component, and
therefore is the responsibility of the user of the Graphs present an interesting issue of structural shanr-
component Therefore concurrency control can ing. If an arc is represented simply as a pair of ver-
only be reasonably implemented by exporting tices, then it is possible to construct arcs that connect

two different graph objects. Booch considers this to many relation. It is easy to determine the desti-
be a violation of the graph abstraction. However, nation vertex of an edge but hard to determine
consider a graph containing two disconnected con- the source vertex.
ponents. Bach may be referred to independently (for 3. Adjacency-matrix representations. Vertices
example, by an algorithm that constructs spanning agai ae store eset on s erepres
forests). The operation of adding an arc that con- seanted as entries in an adjacency matrix. This
nects the two components can be viewed from two spnoed as ente in fn dja ce ai This
differing perspectives. From one perspective, an arc apprah s ia e botriete an d n
is being added to an existing graph, connecting two rected graphs, as edge attributes can be stored in
different components. the matrix. Note that for undirected graphs, the

From another perspective, two disconnected graphs edge attributes are associated only with the up-

are being connected into one. Therefore, why not al- per diagonal of the matrix. This representation

low users to connect graphs that were created inde- is suitable for simple graphs, because it is easy
to associate attributes with an edge. This rep-

pendently? The problem is that many graph rep-

resentations are based on a set or list of vertices. resentation can also be used for multiple graphs,

Adding an edge between nodes in different giaphs provided that no attributes are associated with

may result in a structure whose contents can only an edge. The entries in the adjacency matrix of
be dscoeredby onstuctng spanin forstre-a multigraph are integers indicating the degreebe discovered by constructing a spanning forest, re- of connectivity between the two vertices. Adja-

sulting in highly inefficient operations (such as test-
ing vertex membership). This design decision then cency matrices offer very efficient representations
d d ofor certain algorithms. Note that adjacency ma-
depends nn efciency considerations, which in turn trices need not necessarily be bounded in size-
depends on the graph representation. Some possible it is pos3ible to implement dynamic matrices in
representations ae the following: a separate package. Furthermore, for particular

1. Set representations. Graphs can be represented applications, sparse-matrix representations may

in a way that is close to their mathematical def- be highly effi-cient.

inition by a pair of sets representing the vertices The above discussion of representations has re-
and edges. The vertex set has no references to vealed a distinction that was not apparent in the first
incident edges. Edges are represented as pairs of attempt at domain analysis: the choice of represen-
vertices, together with associated data. The ef- tation depends partially on the attributes associated
ficiency of this implementation can be improved with an edge. If the edges are important only insofar
if vertex labels are required to be partially or- as they connect vertices, then some representations
dered (not an unreasonable constraint), so that (for example, adjacency matrices) are available that
both the vertex-set and the edge.set can be rep- could not otherwise be used. Therefore the set of base
resented by ordered sets. An ordered-set repre- abstractions should inchude graphs with and without
sentation can be used for both directed and nndi- edge-attributes.
rected graphs, depending on whether the order Other representations are possible, but the three
of an edge's vertex-pair is assumed to significant. above are probably used more often than others.
Note also that it is possible to maintain edge-sets Having defined three possible low-level abstractions,
ordered both by source and destination vertex, the next task is to define a common low-level inter-
allowing for very efficient operations that require face. By providing a standard interface for a low-level
knowledge of the source-vertices of a set of edges. graph, the architecture will remain flexible for future
This representation is equally well-suited for ei- additioms.
ther simple graphs or multi-grnphs.

$.6,4 Low-Level Interface
2. Adjacency-list representations. Vertices are

stored as a set. Each vertex has an associated The low-level abstractions in an architecture should
adjacency list, listing all adjacent vertices. Edges have identical, or nearly identical interfaces, so that
have no explicit represent ation, because they can they can easily be plugged into the base abstractions.
be deduced from the list of adjacent vertices. Note that a graph is itself a system of comprised of
Edge attributes can be associated with the ad- three abstractions: sets, vertices and edges. This sug-
jacency list. This approach is well suited for gests that the low-level components will themselves
directed graphs, but not for undirected graphs, be layered systems. The discussion of graphs repre-
because an adjacency list is essentially a one-to- sentations shows that vertices and edges cannot be

254 10th Annual National Conference on ADA Technology 1992

considered independently; however, all three of the do not have this restriction on generic subprograms
representations require some form of a set to store and may then allow a wider choice of iterators. The
vertices. Therefore the low-level abstractions of the disadvantage of active iterators is that state infor-
architecture should themselves be parameterized by mation must maintained in the object, adding some
a set type. further complexity to the representation and compli-

A low-level abstraction needs to supply only the cating some of the problems of concurrency control.
most primitive operations, in order to keep the in- Note also the design decision to provide iteration
terface to the base abstractions simple and to isolate over the vertices of the graph and iteration over the
the algorithmic content. The Booch interface to a edges of both the graph and individual vertices. Some
graph abstraction can be used as a starting point to graph algorithms (such as constructing a minimal
construct interfaces for both base abstractions and spanning tree) require iteration through the edges
low-level abstractions. For a low-level abstraction, of the entire graph while other algorithms (such as
the following operations can be selected: breadth-first search) require iteration through the

edges of a only single vertex. While it is possible to
Add: Graph, Vertex -- Graph provide only iteration over the vertices of the graph
Remove: Graph, Vertex --+ Graph and over the edges of a vertex in the low-level ab-

straction, this approach can lead to highly inefficient
Set Item: Vertex, Item Vertex iterations over the edges of the entire graph. Thi.s is
Create: Arc, Attribute, Vertex, Vertex, Graph -- Graph particularly evident in the adjacency-list representa-
Destroy: Are, Graph --, Graph tion, where iteration over the edges of the graph is
Set Attribute: Arc, Attribute -4 Arc very efficient but iteration over the edges of a single

vertex is rather inefficient.
First Vertex: Graph - Vertex
Next Vertex: Graph -- Vertex 3.6.5 Abstract Algorithms
First Arc: Vertex - Arc
Next Arc: Vertex -4 Arc A rich variety of algorithms are associated with
First Arc: Graph -4 Arc graphs. Many of these algorithms are specific to one
Next.Arc: Graph -+ Arc type of graph. Some examples of graph problems for

, .c efficient algorithms are known are depth-first
Item Of: Vertex -4 Item search, breadth-first search, the single-source short-
Attributes Of: Arc -4 Attribute est path problem, the all-pairs shortest path prob-
Source Of: Arc -- Vertex lem, computing the transitive closure of a graph,
Destination Of: Arc - Vertex computing the strongly-connected components of a

graph, testing a graph for acyclicity, topological sort
of an acyclic graph, computing minimal equivalent

One of the major problems with this interface is directed graphs, finding the minimal spanning tree
the design of a suitable iterator for vertices and arcs. for a weighted graph, computing network flows, and
Many graph algorithms require iteration through the so on. Another class of graph algorithms are heuris-
vertices of a graph, the edges of a graph, or the edges tic algorithms that arrive at near-optimal solutions
of a vertex. Iterators can only be fine-tuned to a par- to some of the NP-complete graph problems, such as
ticular representation; in other words, maximally effi- the traveling salesman problem.
cieit representation-independent iterators for graphs In any case the point is that collections of graph
are simply not possible. This is an example of a de- algorithms can be constructed for each of the base
sign inefficiency to be dealt with in the transition abstractions and for some of the view abstractions in
from a prototype component in a layered generic ar- the architecture. Algorithmic abstractions are con-
chitecture to a production component in a live sys- structed in a bottom-up manner by isolating the set
tein. of operations needed to access a representation.

The choice of an active iterator (First and Next)
is dictated in this case by the syntactic restriction of
Ada that uninstantiated generic subprograms cannot 4 Re-Engineering for Use
be used as actual parameters. Since the objective
of low-level interface design is to arrive at a set of The graph example shows that completely abstract-
parameters to plug into a base abstraction, passive ing a problem from its context can lead to a number
generic iterators cannot be used Other languages of inefficiencies, spanning the entire software life cycle

10th Annual National Conference on ADA Technology 1992 255

from design to implementation to runtime operation coupled to base abstractions. Low-level abstractions
to maintenance. The methodology of engineering for are coupled by parameterization to base abstractions.
reuse must necessarily encompass a methodology of Coupling by parameterization shares some character-
"re-engineering for use." istics of both vertical and horizontal coupling.

The problem of inefficiency in reusable software is In general the modular structure of a system will
a complex problem. Several types of inefficiency can be a directed graph. The nodes of the graph are the
be characterized. Some types are more amenable to modules of system and the arcs represent the depen-
correction than are others. dencies of the system. Whenever the in-degree of a

node is equal to one, only one package depends on
1. Procedure call overhead: any procedure or func- that node. Therefore the package represented by that

tion call involves a certnain amount of overhead, node can be collapsed or merged with the coupling
often a significant amount compared to inline package-the resulting graph is homeomorphic to the
code. graph of the original system. Extending this observa-

tion to subgraphs, whenever a subgraph is a tree the
2. Parameter passing overhead: it may be signifi- tree can be collapsed into a single node.

cantly more efficient to reference global objects

than to pass parameters.

3. Modulnr decomposition inefficiencies: the mod- 6 Conclusions
ular design of a system may result in inefficiency In general, the layered generic approach seems to be
because modules are "too small." better tailored to research and development, design,

4. Excessive generalization: the example above suI- and prototyping while the traditional approach seems

fices, to be better for a production shop. This is not to
say that improvements could not be made on either

5. Abstraction mismatches: often it may be conve- approach.
nient to "violate" an abstraction for the sake of The relationship between generic programnming and
efficiency. the design stage of a more conventional software de-

velopment approach needs to be investigated. Musser
6. Ad hoc inefficiencies: not really inefficiencies, ad Stepanov consider that the library of generic al-

but within the context of a particular problem gorithms is in some sense a library of "executable de-
a much more efficient way to accomplish some- signs." Their comments appear to be consistent with
thing exists. the observations above that heavily layered generic

architectures may be more valuable during the design

5 Collapsing Layered Generic phase of project than during the production phase.
Of course the design phase has a strong influence on

Architectures the mnintenance phase of the software life cycle S.
Edward; has observed that the benefits of software

Layered generic architectures can be used effectively reuse only pay off well if they extend into the main-
as prototyping tools and caii store souirce code and tenance phase of the life cycle (Edwn 90].
design decisions in a "normalized" form, eliminat-
ing redundant source code and centralizing changes
to a system. However, the compi!ed products of n References
LGA may not be suitable for production ne because
of inefficiencies associated with the highly modular- ABooc 87) G Booch. Sofa are Components ,th
ized design. An LGA used to prototype a system can Ada, Benlamin/Cummlings Publishing
be moved into production use by collapsing the lay- Co., Menlo Park, California, 1987.
ersinto i smaller modular structure, thus eliminating [CAMP 851 Common Ada Missile Packages (3 Vol-
inefficiencies associated with procedure call overhead umes), McDonnell Douglas Astronatuics
and modular decomposition. The techniques used to Company, St. Louis, Missouri, 1985.
collapse layers depend on whether modules are hori.
zontally or vertically coupled, or coupled by param- (Cohe 90] S. Cohen,"Designing for Software Reuse
eterization i the archetypical LGA schema base in Ada.", Proceedings of the Third Annual
abstractions are vertically coupled to the abstract al- Workshop: Methods and Tools for Reuse,
gorithms package. View abstractions are horizontally Case Center Technical Report No. 9014,

256 10th Annual National Confefence on ADA Technology 1992

Syracuse University, Syracuse, New York, object oriented software dev.elopment, programming
1990. languages and compilers, functional programming,

and software reuse. His thesis examined aspects of
[Edwa 40] S. Edwards. An Approach for Developing layered generic architectures discussed in this paper.

Reusable Software Components in Ada, Larry Latour received his Ph.D. degree in Corn-
IDA Tech Report P-2378, Institute for puter Science from Stevens Institue of Technology
Defense Analyses, Alexandria, Virginia, in 1985. He is an Associate Professor of Computer
1990. Science at the University of Maine, Orono, Me. His

[Edwa 90b] S. Edwards. "The 3C Model of Reusable research interests include database transaction sys-

Software Components.", Proceedings of tems, software engineering environments, and soft-

the Third Annual Workshop: Methods ware reuse. He developed a hypertext-based sys-

and Tools for Reuse, Case Center Techni- ten, SEER, for describing the many views of a soft-

cal Report No. 9014, Syracuse University, ware component (usage, specification, and implemen-

Syracuse, New York, 1990. tation), and he is currently interested in implementa-
tion architectures and their relation to the output of

[FLW 90] B. FRakes, L. Latour, and T. Wheeler. domain analyses.
"Descriptive and Predictive Aspects of
the 3C's Model: SETA1 Working Group
Summary.", Proceedings of the Third An-
nual Workshop: Methods and Tools for
Reuse, Case Center Technical Report No.
9014, Syracuse University, Syracuse, New
York, 1990.

(Lato 89] L. Latour. "A Methodology for the De-
sign of Reuse Engineered Ada Compo-
nents", First Int'l Symposium on Envi-
ronments and Tools for Ada, Redondo
Beach, CA, May, 1990.

IMuss 87] D.R. Musser and A.A. Stepanov. " Li-
brary of Generic Algorithms in Ada.",
Proceedings of the 1987 SIGAda Inter-
national Conference, Boston, December
1987.

(Parn 721 D.L. Parnns. " Technique for Software
Module Specification with Examples",
Communications of the ACM, 15(5):330-
336, May !972.

[Trac 90] W. Tracz. "The Three Cons of Software
Reuse", Proceedings of the Third Annual
Workshop: Methods and Tools for Reuse,
Case Center Technical Report No. 9014,
Syracuse University, Syracuse, New York,
1990.

7 About the Authors

Curtis Meadow received his M.S. degree in Computer
Science from the University of Maine in 1990, and
is currently a lecturer in the Computer Science De-
partment at Maine. His research interests include

10th Annual Notional Conference on ADA Technology 1992 257

NOTES

IXMACT OF SYSTEM ADAPTATION ON
GENERIC SOFTU4RE A CHITECTARES

Kathleen Gilroy
Software Compositions
3135 S. AM, Suite 14

Melbourne Beach, FL 32951

Abstract the application-specific requirements of the
system.

Some Afrrent approaches to software reuse
advocate the development of standard domain- Generic architecture approaches are promoted
specific arci-Itectures (also called generic because development productivity can be enhanced
architectures). This paper identifies problems through the reuse oi such architectures. Pre-
with current approaches involving generic existing components are guaranteed to work within
architectures, a.d describes our research into the architecture and can be reused directly, and
techniques for developing more adaptable new or modified components have a well-defined
architectures. It addresses kinds of adaptation context for development [Quanrud 88]. However, in
requirements, analysis and specification order to achieve the desired productivity
techniques accopmiodating adaptation, and initial improvements, the architecture which defines the
results in identifying the impacts of change on component context must remain intact. Adaptations
different architectural models. to meet specific system requirements are typically

restricted in terms of modifying, extending or
replacing individual reusable components.

1 Problem Statement
This imposes limitations on the evolution of

A generic architecture is a system-level systems using the generic architecture (i.e.,
design for a family of related applications. The accommodating the changes which are an inevitable
principal aliments of a generic architecture are part of the system life cycle). When presented
reusable software components (many diffe. ent types with new system requirements that cannot be
sf components aie possible depending on the reuse satisfied using the existing architecture, either
method). An application belonging to the family the requirements must be modified (or deferred) to
is created by adopting the generic architecture, accommodate the architecture, or the architecture
and then adapting the reusable components to meet must be modified until it can meet the new

requirements. The first solution maximizes reuse
at the cost of system capability. The second
solution severely reduces the amount of software

This work was s9orted by the Center for Software Enineering (It. which can be reused.
GerT!d R. Bm) under the auspices of the U.S. Army Research
Office Scientific Services Program ainistered by Battelle Both solutions are counter to achieving
(Delivery Order 2614, Coutract No. DKL03-86--OO1). overall cost-effectiveness goals. The impact is

Lasured not only with respect to _,e development
The vim, opiniom, and/or findings contAined in this report are of new systems in the family, but also to the
those of the author(s) and should not be construed as an official maintenance of existing systems employing the
Departaent of the Army position, policy, or decision, unless so architecture (with maintenance consuming the major
designated by other domntation. portion of software expenditures). We contend

258 10th Annuo! Nobonal Conference on ADA Technology 992

that adaptability is more important than analysis. it also discusses i-3ues in applying
development productivity foT providing overall the classification.
cost-effectiveness over the life cycle of a system
family. Another objective of our research is to

identify system/software analysis and
specification techniques appropriate for dealing

2 Goals and Objectives with adaptation requirements. Generally,the
techniques in popular use today do not directly

The ultimate goal of our research is to define support adaptation, such as by providing
techniques for developing lore adaptable generic parameterization mechanisms, or mechanisms for
architectures. An adaptable architecture should representing selection from among alternative
mximize support for changing system requirements elements. A related problem is that multiple
without minimizing the reuse of its constituent techniques and representations must be used to
components. A generic architecture will be completely model a system. Section 4 of this
adaptable to the degree that: paper discusses current techniques for domain

modeling, and possible modificatiots to
a. The differences among current and future accommodate the specification of adaptation

requirements for systems in the domain requirements.
are identified and well-understood

One of our goals is to define a generalized
b. Techniques for analysis, specification approach to architecture adaptability, as opposed

and V&V of the adaptation requirements to a set of ad hoc techniques for adapting
associated with those differences exist specific system instances. Also, the approach
and are appropriately used must focus on system-level architectural modeling,

as opposed to implementation-level (program)
c. Mechanisms for accommodating those architectures. However, very little supporting

requirements in design and subsequent work has been done to date in formalizing
reuse of the architecture exist and are architectural abstractions at the system level.
appropriately used Section 5 of this paper describes a possible

classification of architectural models. it also
d. The potential technical and cost/benefit discusses how various architectural models might

tradeoffs are identified and well- be impacted by changes resulting from new system
understood requirements.

A derived objective of our research is Adaptation mechanisms are the specific
therefore to identify the kinds of system techniques used to accommodate differences among
differences which might occur. The differences instances of the system family. We are currently
among systems in a given application domain are looking at approaches used by system/software
identified through a process called adaptation designers to reduce the impacts of anticipated
analysis, which is part of an overall domain change, and strategies for designing system-level
analysis. These differences are then expressed in 'workarounds' (mechanisms for adapting to new
terms of adaptation requirements, which are part system requirements having minimal impact on
of an overall domain requirements model. The existing subsystems). Section 6 of this paper
domain requirements model is important because it presents some of our preliminary results.
serves as the basis for the derivation and
validation of a generic architecture. Section 3 We expect that highly adaptable architectures
of this paper provides a classification of will be harder to develop and reuse than more
adaptation requirements which could be used by application-specific architectures. A key risk of
domain analysts to ensure that all of the kinds of this approach is that the extra costs involved may
future changes which the system may be required to outweigh the potential benefits. Potential
accommodate are considered during the domain cost/benefit implications of the approach are

discussed in Section 7.

10th Annual National Conference on ADA Technology 1992 259

Table I

Kinds of adaptation requirements

SYSTEM CAPABILITIES - what the system does

Mission adaptation Accommodates changes in the purpose(s) of the system.
Examples: handle new threats, comply with new tax laws.

operational adaptation Accommodates changes in the functionality and behavior
of the system. Examples: automate a manually generated
report, provide greater throughput.

OPERATING ENVIRONMENT - where the system does it

Environment/site adaptation Accommodates changes in the environment in which the
system is deployed. Examples: redistribute tasks and/or
information among nodes, enforce a new security policy.

User adaptation Accommodates changes in the number and characteristics
of system users. Examples: support additional kinds and
abilities of users, change menu options by user role.

IMPLEMENTATION TECHNOLOGY - how the system does it

Domain-oriented adaptation Accommodates changes in the technologies used to
implement systems in a given domain. Examples: replace
modeling algorithms, convert to new database format.

Platform adaptation Accommodates changes in the hardware and software on
which the system runs. Examples: add another storage
device, replace graphics software with hardware.

Methodology adaptation Accommodates changes in the way the system is developed,
maintained and/or reused. Examples: reimplement
upgrades in Ada, replace design documentation standard.

3 Adaptation Requirements adaptation analysis) is critical to developing a
generic architecture which can adapt to meet the

Domain analysis approaches focussing only on needs of future systems (Gilroy 89].
identifying the similarities of existing systems
in a domain (called a commonality analysis) Many different kinds of adaptation must be
[McNicholl 86], are expected to result in considered by the domain analyst. We have
architectures which are more vulnerable to organized them into seven major categories as
requirements changes. An analysis of the indicated in Table I above. Aspects which differ
differences among systems in a domain (called an among existing systems or which may change for

260 10th Annual Nolional Conference on ADA Technology 1992

S I I'
SITES OTHER TECHNOLOGY-INDEPENDENT

OPERATIONAL/ENVI RON MENTAL
MISSION USERS ALTERNATIVES OR PARAMETERS

_ NPSYSTEM SYSTEM CAPABILITIES SYSTEM
INPUTSD

PLATFORM DOMAIN OTHER TECH NOLOGY-DEPEN DENT
TECHNOLOGY ENVIRONMENTAL/IMPLEMENTATION

METHODS RESOURCES OR CONSTRAINTS
I I I

Figure 1
Another view of adaptation requirements

future systems are the source of the adaptation graphics workstation. Other aspects of the design
requirements (tradeoff analyses may later were also probably influenced. For example, the
eliminate some of the potential alternatives), information model may be oriented toward data

types and groupings which can be displayed on an
We recommend that the analyses of these ASCTI terminal (i.e., 24 lines of text). This

requirements be performed largely in the order even further limits the ability of the
shown (from top to bottom). This is because architecture to accommodate change. (Note:
decisions made at a given level will constrain the although the user interface and data management
alternatives available at other levels, and also components are typlcally separated from the rest
limit the kinds of changes which could be of the system in modern software architectures,
supported by the resulting architecture. this is not sufficient protection against change.)
Specifying requirements from the lower levels
early in the development process is typical (in Hatley's approach for evolving requirements to
particular, selection of hardware), and may be a architecture recommends an ordering of decisions,
primary cause of premature architecture but distinguishes only between technology-
obsolescence. independent and technology-dependent factors

[Hatley 87). Figure 1 above illustrates a split
To illustrate, suppose an ASCII terminal and of the adaptation requirements along these lines,

keyboard are selected as the user input/output using an SADT-like representation. The basic
devices for a system prior to ar analysis of the system consists of its inputs, capabilities, and
requirements and alternatives at other levels, outputs. Kinds of adaptation which are primarily
This (platform) decision severely limits the kinds technology-independent factors are shown as
of (operational) information which can be context or parameters to the system, and kinds of
displayed, and the (domain-oriented) methods for adaptation which are primarily technology-
user interaction which can be supported. The dependent are shown as resources or constraints on
resulting software architecture will probably not the system.
be capable of supporting a change to a more modern

10th Annuai Noonal Conference on ADA Technology 1992 261

The relationships which are identified between bubble P in the system's DFD must be partitioned
the requireenLs at the various levels should be into bubbles PAl and PA2, and if alternative B is
included in the domain model for the system family selected, then P must be partitioned into PB1, PB2
(some techniques for dealing with adaptation and P83. Two diagrams are required to represent
requirements are addressed in the next section). each of the unique partitionings for a given
The importance of ordering development decisions alternative. Another example is if there were
and documenting their interrelationships is also differences in the relationships and attributes of
emphasized by the feature-oriented domain analysis an entity E depending on which alternative was
(FODA) approach [Kang 90]. selected. In addition to two ERA diagrams showing

the specific attributes and relationships
associated with each alternative, a third diagram

4 Specifying Adaptation showing all of the possible attributes and
Requirements relationships of E would be useful. Separate

documentation would be needed to express
There are at least three strategies for information related to the adaptation requirement,

expressing adaptation requirements using current such as to bind each diagram to its associated
specification techniques: alternative, or to describe constraints on other

portions of the system that must interface with P
o ultiple specifications - this is the or E.

most typical approach, and involves
creating a new specification for each A specification strategy involving annotations
different alternative being addressed could be used to document information related to

adaptation requirements that cannot be expressed
o Annotated specifications - this approach graphically. Annotations could range from English

involves annotating the elements of a prose (such as to document a description of the
specification with possible alternatives alternative partitionings for process P) to formal
(usually with text prose) languages (such as to document assertions

governing the existence of the attributes and
o Parameterized specifications - with this relationships of entity E). In some cases,

approach, alternative or parameterized annotations could eliminate the need for multiple
elements are an integrated aspect of the diagrams. For example, annotations on process P
specification would not eliminate the need for multiple lower-

level DFDs, but existence constraints on the
The most commonly used techniques for attributes of entity E would eliminate the need

representing requirements are data flow diagrams for multiple ERA diagrams.
(DFD), entity-relationship-attribute (ERA)
diagrams, finite state machines (FSM), object- Parameterized specifications generally refer
oriented analysis (OOA) models, decision tables to any representation that directly supports some
and trees, and Petri nets. With most .,f these mechanism for expressing system alternatives. A
representations, only the results of a particular powerful technique for distinguishing and
analysis decision can be expressed, so multiple organizing system alternatives is inheritance.
specifications must be used to represent any The differences between generalized and
differences among system instances (note: we specialized elements, and between alternate
distinguish this use of 'multiple specifications' specialized elements can be used to define
using a single representation from the need to required adaptations for the system. The modeling
express different views of a system using several technique must also support the concept of
representations), aggregation, such that alternative compositions of

elements can be expressed.
For example, suppose a system requirement for

a processing capability P specifies adaptability One graphical representation which directly
to accommodate either of two alternatives, A and supports the specification of options and
B. If alternative A is selected, then process alternatives is the 'feature diagram,' developed

262 10th Annual Natonal Conference on ADA Technology 1992

System element S

Mandatory feature M Mandatory feature N Optional feature 0

Compo:ition rule: option 0 require: feature A

Altemative feature A Alternative feature B

RPationale: alternative A has better throughputf

Figure 2
Example FODA feature diagram

for use with the FODA method [Kang 90). A feature FODA method recommends Chen's entity-relationship

diagram illustrates the mandatory: alternative and modeling method augmented with generalization and

optional characteristics of a system as viewed by aggregation concepts. [CTA 88) also recommends

the end user. The selection or combination of ERA modeling, but with annotations on entities

features may be further constrained using text which describe the external and internal functions

annotations defining the composition rules. provided by the entity, making this model closer

Annotations are also used to provide rationale to an OOA model. [Gilroy 89) describes the use of

used in decision-making. Figure 2 illustrates the object-oriented modeling method which incorporates

constructs provided by a feature diagram. a rich set of semantic relationships. However,
the relationships are not explicitly discussed as

Currently, FODA feature diagrams can only a method for documenting potential adaptations of

express a limited number of relationships, lack a system. Instead, the adaptation requirements

mechanisms for managing diagram complexity, and are documented as textual annotations on each

have incomplete automated support for the model's object in the model. We recommend an object-

semantics. The results of the FODA work also oriented modeling method such as defined in

indicate that increasing the adaptability of (Gilroy 89), but with explicit consideration of

systems will significantly increase the complexity interobject relationships as a mechanism for

of associated requirements analysis processes and illustrating system differences.

products. Analysis and specification of even the
smallest systems will require the support of Functional and behavioral aspects of a domain

sophisticated automated tools. Despite these model are often described using data flow and

problems, we recommend feature analysis in state transition modeling approaches. Under the

addition to the more traditional modeling FODA method, these aspects are parameterized by

approaches. In particular, its support for feature for different systems, and also by

composition provides a unique mechanism for issues/decisions associated with the selection of

expressing potential system adaptations. particular domain technologies. The specific
representations used to accomplish this are

Several domain analysis approaches recommend Statemate activity and state charts, with system

the use of object-oriented or entity-relationship differences parameterized using Statemate

modeling methods to derive a domain model. The conditions. One problem with the Statemate

10th Annual Naional Conference on ADA Technology 1992 263

PROCESS2A

(F - ALTERNATIVE A)

(ATA B1

DATA 62
PROCESS 26

Figure 3

Parameterization of system functional specification

approach is an inability to distinguish conditions characteristics, and for evaluating the impact of

associated with adaptation parameters from other other adaptation requirements on system

conditions relevant to the system operation. performance will require a significant amount of

Also, generalization relationships cannot be further research, and are deferred for now.

represented graphically with this model, so

textual annotations must be used.
(F_ A ectural .Models.

The object-oriented modeling approach defined

by [Gilroy 89) addresses behavior in terms of A concept critical to this research is that of

stimuli/responses and data flows, but does not an 'architecture." An architecture, as used in

address the parameterization of those flows. We this paper, refers to a representation of the

recommend use of an object-oriented model for design of the system software. It defines the

expressing system functionality and behavior
r individual software elements of a system, their

consistency with other ' ews of the system, but reltionships to each other, and their

augmented with a notation for expressing potential
relationships to external elements comprising

the

functional adaptations. A technique similar to rest of the system

that illustrated by the parameterized DFD of

Figure 3 could be applied.
The development of an architecture, as used

in

this paper, begins during systems analysis, when

Performance characteristics (e.g., timing and
the allocation of requirements to hardware vs.

sizing) and resource management are key software vs. manual is made. The highest level

considerations for real-time applications, but software architecture results from this

most specification approaches are very weak in allocation. The representation of a high level

their treatment of such requirements, software architecture illustrates the major

Identification of techniques for specifying functional, performance, information and interface

adaptation requirements dealing with such elements to be provided. The lowest level

24 10hAnnual Noional Conference on ADAbTechnology 1992

software architecture identifies the specific
program elements which will implement the. system.
Such an architecture is typically the result of
detailed software design. The focus of this
research is on software architectures at higher
levels of abstraction (i.e., system-level
architectures rather than program-level
architectures). Figure 4

Monolith abstraction
It is recognized that there are no clear

boundaries between system design and software
design (for example, with 'software first'
approaches), between programming and software
design (for example, with 'Ada-based' design
approaches), and between requirements and design
(practitioners frequently cite the difficulty of
avoiding designing while specifying requirements).
However, assuming arbitrary boundaries can be Figure 5
applied, this research is considering the Chain abstraction
evolution of system architecture to program
architecture, mappings of requirements to design
to program (in particular, adaptation
requirements), and the impacts of change to all
three.

As noted earlier, a generalized approach to
adaptable architectures requires an understanding
of the kinds of architectural elements used and
ways in which they may be composed into subsystems Figure 6
and systems. Unfortunately, a commonly recognized Star abstraction
set of architectural abstractions has yet to be
defined.

[Shaw 90aJ was used as a starting point in
defining a baseline set of abstractions with which
to proceed. Our comparison of Shaw's taxonomy
with a variety of published architectural
descriptions and modeling methods prompted some
modifications and the addition of new Figure 7
architectural categories. Table II describes the Bus abstraction
resulting classification of architectural models,
and Figures 9 to 15 illustrate some examples of
each model (see following pages). We have also
derived a classification of architectural
component kinds and composition mechanisms
synthesized from (Shaw 90b) and [Merlet 90), but
these will not be described in this paper.

We further abstracted the architectural models
to yield the structural patterns shown in Figures Figure 8
4 through 8 (shown on this page). We believe all Net abstraction
software system architectures probably

10th Annual Nafional Conference on ADA Technology 1992 265

Table II
Kinds of architectural models

Object-oriented Independent components provide operations and maintain state.
Components communicate via message passing. A major variant of
this model incorporates inheritance. Figure 9 illustrates an
example of this model.

Transform- Independent components process an input stream and produce an
centered output stream. Components are serially executed. Figure 10

illustrates an example of this model, commonly called a pipe.

Layered Hierarchically organized components provide services to higher
layers and use the services of lower layers. Figure 11 illustrates
an example of this model.

Sliced Distributed components provide specialized processing. Components
communicate via a common bus. Figure 12 illustrates an example of
this model.

Transaction- Independent components operate on shared data. Execution of
centered components is based on an input transaction stream. Figure 13

illustrates an example of this model.

State-based Independent components operate on shared data. Implicit execution
of components is based on the current state of data. Figure 14
illustrates an example of this model, also called a blackboard.

Interpreted Interpreter processes inputs and produces outputs based on
rules/facts. Figure 15 illustrates an example of this model. Not
sure this is an 'architecture.'

Hybrids and Combinations of any of the above. For example: layered
combinations blackboards, object-oriented slices, and piped layers.

predominantly exhibit one of these structural operations) and data access (the database is a
patterns. The chain architecture corresponds to centralized repository accessed by all the
the basic transform-centered and layered operations). In their purest form, components of
architectures, with data streams being the state-based architectures only communicate via the
composition mechanism in the former case, and shared data. Often, an execution engine is also
service calls being the composition mechanism in included with the data manager, which handles
the latter case. The star architecture execution sequencing of the components based on
encompasses the basic transaction-centered and the state of the system.
state-based architectures. Transaction-centered
architectures can be classified as a star from two Object-oriented architectures are classic
perspectives: process control (the transaction examples of arbitrary networks. Sliced
center is a master governing execution of slave architectures epitomize the bus abstraction.

266 10th Annual Nofional Conference on ADA Technology 1992

NFN

Figure 9
Example object-oriented architecture

CURRENT RECEIVE AOCUM ANALYZE REDUCED REPORT RFOMArrED
- SENSOR 1PSEN SOM -SENSO SENSOR SENSOR OSENSOR SENSOR

DATDAT A DATA DATA DATA DATA DATA

Figure 10
Example transform-centered architecture

AInterpreted systems are allocated to the
monolith category because no separate application-
oriented components can be readily identified (the
application 'components' consist of an unordered

DEAN set of relatively small-grained rules/facts). A
similar issue is raised for applications
consisting of a formal grammar. In all the other
models, components represented relatively large-
grained elements of the application system
(appli cat ion-independent components like
'execution engines' are usually only implied).

aFurther analysis and refinement of this model
is on-going. Issues currently being addressed

Figure 11 include: control-oriented vs. data-oriented
Example layered architecture components and composition mechanisms, implicit

10th Annual Naflionl Conference on ADA Technology 1992 267

MACHINE MACHINE MACHINE TOOL O LOAD UNLOAD
SO ATI STATION

-Figure 12
Example sliced architecture

DATA AO JNT - NRAT

DATA

Figure 13
Example transaction-centered architecture

SCHEDUUNO PARTS
DR 4 RT

FACTORY

DATA

ROUTING MACHINES
EPERT "MIESRT

Figure 14
Example state-based architecture

vs. explicit components and composition mechanisms mechanisms (for example, object-oriented models
(for example, piped architectures merely imply a employing inheritance).
controller to accomplish the serial execution of
components), and generalization and aggregation One interesting issue is that architectures
relationships between components and composition can sometimes be reclassified under different

268 10th Annual National Conference on ADA Technology 1992

$IULATION
- SMAINWORKING KOWLEDGEMiORY BS

.. l IMAUTION, flmRPMATON

Figure 15
Example interpreted architecture

models by regrouping lower-level elements into (providing the changes are additive). A
different higher-level elements. This usually requirement for change in the processing performed
happens when critical aspects of the architecture by a component might be handled by modifying or
are implicitly defined (e.g., employs an replacing just that component (provided the
unspecified control mechanism), or components are content and semantics of the data streams are not
poorly defined (e.g., has components or uses affected). A requirement to increase system
composition mechanisms that exhibit throughput could affect all the processing
characteristics of more than one kind). It might components in the pipe. However, the analyses are
also be an indication that the models are simplified by the knowledge that the components
incorrect, or that there is a potential for execute sequentially.
merging the models into a smaller core set of
architectures. However, no conclusion can be As another example, consider the layered
drawn simply from the identification of structural architecture model. In evolving such an
patterns when there are so many other architecture, it is important that the chain
characteristics of software architectures which structure be maintained. Suppose layer A uses the
must be considered. services of layer B, which uses the services of

layer C. And suppose a change requirement is
Another aspect of this research is to introduced for layer A which requires some service

investigate the kinds of changes that can be which is provided by layer C, but not by layer B.
accommodated by the different architectural The 'quick-and-dirty' approach would be to modify
models. For example, consider the pipe layer A to directly access the services of C.
architecture. A requirement for change which Howaver, implement several such quick-and-dirty
impacts the data streams processed by the system changes, and the original architecture is soon
will minimally impact those components which have destroyed. The 'correct' approach would be to
that stream as an input or output. Additional modify layer B to 'pass through the required
components might be impacted if there are derived services from layer C, or possibly to 'move' the
requirements which affect other data streams in service from layer C to layer B.
the system. Alternatively, a new filter could be
developed to convert the new data stream to the Other examples of adaptation considerations
formats expected by components already existing in influencing architectural design are that object-
the system. Yet another possibility is that a oriented architectures are more amenable to
second filter could be added to handle input or changes in data structures (since they are hidden
output of just the new aspects of the data stream from users of the object), but can result in the

10th Annual Naional Conference on ADA Technology 1992 269

Table III
Initial classification of adaptation mechanisms

Parameters Adapted by passing parameters internally.

Data-driven Adapted from an external data source.

Language-driven Adapted using a-table or grammar (requires an interpreter).

Templates Adapted by replacing general-purpose elements with application-
specific elements.

Variant selection Adapted by selecting from a predefined set of alternatives.

Specialization Adapted by adding capability to a more general version. (Note:
generalization is the opposite, abstracting away from a more
specific version.)

Generation An adapted version is created by a tool or well-defined manual
process (could include support'for any of the above).

Custom rewrite An adapted version is manually created.

proliferation of components to manage similar but adaptationrequirements, architectural models, and
not equivalent data structures [Oskarsson 89). adaptation mechanisms will provide a general-
Models supporting processing components as purpose framework within which system requirements
parameters are more amenable to changes involving changes can be planned for, analyzed and
environments and services than models which do not implemented.
(also [Oskarsson 89)). However, if the selected
implementation technology cannot support
processing components as parameters (e.g., Ada), 6 Adaptato..Mechc isms.
then the architecture may be difficult to
implement or modify. Adaptation mechanisms are the specific

techniques used to accommodate differences among
It is important to note that for the examples each system instance. A classification of

given in the paragraphs above, the requirement for adaptation mechanisms is described in Table III
a system change has already been analyzed to the above. This classification was based on an
point where the specific kinds of architectural earlier analysis of mechanisms in use for adapting
elements which are affected have been identified Ada programs (Gilroy 89). One obvious issue is
(e.g., the need for layer A to access the services whether the mechanisms are appropriate for or can
of layer C may have been derived from an original 'scale up' to system-level architectures. Our
change requirement like "add CPU usage information initial analysis indicates that they are
to report X'). It would be impossible to appropriate and scalable to the kinds of
identify, much less analyze, all the possible architecture models described earlier.
permutations of change combinations which might be
encountered by system change requests. However, However, the research also yielded folklore on
it is hoped that our work on classifying strategies for implementing system-level

270 10th Annual National Conference on ADA Technolonv 1992

LVER 3 LAER 3TL

Figure 16 Figure 17
Filter workaround Shell workaround

Figure 18 Figure 19
Add-on extension workaround Bridge workaround

workarounds" (mechanisms for adapting to new Binding time decisions can diectly impact the
system requirements with minimal impact on software architecture and vice versa. For
existing subsystems) which do NOT seem to fall example, if a set of configuration parameters
within these categories. Four examples needs to be established on each execution of the
illustrating some of these strategies are shown in system, then data-driven adaptation mechdnisms
Figures 16 to 19 above, like data files or interactive queries must be

incorporated into the architecture. If the
Just as the timing of decision-making in configuration parameters need only be defined once

selecting adaptation requirements is important per site and never changed, then static mechanisms
(see section 3), so also is the timing of like variant selection can also be considered (and
decision-making in selecting adaptation might be selected over more adaptable alternatives
mechanisms. A key issue in component composition for performance reasons). A software architecture
is abinding' time. Table IV (next page) provides which hides design decisions is also likely to
a classification of binding times. The defer decisions relating to binding time.
classifications are also applicable to Ada program Deferring binding time provides much greater
architectures, basically corresponding to compile- flexibility to the developer in selecting an
time, link-time, elaboration-time and run-time appropriate approach, and to the maintainer who
bindings of Ada components, may have to replace that aspect of the design.

10th Annual National Conference on ADA Technology 1992 2'

Table IV
Classification of component binding times

Static/fixed A particular set of design elements is selected at the time of
system creation.

Static/changeable Alternative configurations of design elements may be selected
when a particular -system build is formed.

Dynamic/fixed Design elements are bound during system initialization. Once
bound, they are not changed.

Dynaic/changeable Design elements are bound at run-time. Elements may be added,
deleted or replaced during execution of the system.

7 Cost/Benefit Implications However, the potential need to change the
architecture to accommodate a particular system's

ifajor cost/benefit categories to be considered requirements is reduced if more applications can
by future research tasks are costs (or benefits) be addressed by the architecture as illustrated in
associated with: Figure 21. Our research must therefore address

the concept of an ideal level of parameterization
o Developing the architecture of a generic architecture to achieve the expected

cost savings.
o Adapting and reusing the architecture

o Haintaining and evolving the architecture Interface]
complexity i

A key hypothesis of this research is that & cost

adaptability is more important than development
productivity in providing cost-effectiveness '1.r
the life cycle of systems in the domain. Th. - is
based on the assumption that development Number of applications

productivity is higher when architectures are more Figure 20
application-specific, and maintenance and reuse Interface complexity vs. number of applications
productivity are higher when architectures are
more adaptable.

However, there is a risk with adaptable Potential
architectures that less savings will result from change:
use of this approach over more application- &co:t
specific architectures, since they are narder to
devolop and can be harder to reuse. They ca-. be
harder to reuse, for example, when the number and
types of paraMeters is very large. This can Application similarity
happen as the rchitecture is made more Figure 21
parameterized to accommodate a greater number of Potential changes vs. application similarity
application systems, as illustrated in Figure 20.

272 10th AnnuaI Natcnol Conference on ADA fechnology 1992

determined, a more formalized understanding of
8 Summary possible architectural models, their coponents,

component composition mectanisms, and architecture
Generic architecture approaches are promoted adaptation mechanisms mist be developed. V.ry

because they are believed to provide cost- little external work .as been done in these areas.
effectiveness over the life of systems developed Initial classifications in each of these areas has
using the architecture. However, current been developed, but the results are very
approaches to generic architectures tend to preliminary and much more work is eded. A
emphasize development productivity .d fail to critical issue is whether *program architecture'
consider evolution of the archite '.ure during models and mechanisms can scale tp for treatment
maintenance. It is the author's contention that as "system software architecture' models and
adaptability of generic architectures is a more mechanisms. Initial results indicate that there
important characteristic in terms of providing are similarities, but also significant
life cycle cost-effectiveness. An approach to differences.
developing more adaptable generic architectures
must address: We have not yet done much research in the area

of cost/benefit tradeoffs associated with the
o Identification of differences among adaptable architecture approach. This paper

systems in the domain described a few of the considerations, but such
more work remains to be done.

o Techniques for analysis, specification
and V&V of adaptation requirements
associated with those differences References

o Mechanisms for accommodating those [CTA 88] Anonymous. Domin Analysis for Control
requirements in the design and subsequent Center Software, Computer Technology Associates,
reuse of an architecture September 1988.

o Associated technical and cost/benefit [Gilroy 89] Gilroy, K., et. al. Impact of Domain
tradeoffs Analysis on Reuse Methods, Software Productivity

Solutions, CECOM CIN C04-087LD-001-00, November
Uork done to date to support the 1989.

identification of system differences includes a
classification of adaptation requirements which [Hatley 87) Hatley, D. and Pirbhai, I.
could be used to guide a domain analysis. It was Strategies for Real-Time System Specification,
determined that the various classes of adaptation Dorset House Publishing, 1987.
requirements should ideally be adzaeised in a
particular order. Additional research is needed (Kang 90] .Kang, K., et. al. Feature-Oriented
to further refine the classification and ordering Domain Analysis (FODA) Feasibility Study, Software
considerations. Engineering Institute, CMU/SEI-90-TR-21, November

1990.
An analysis of popular requirements

.-rcification approaches found that they generally [McNicholl 86] McNicholl, D., et. al. Common Ada

fail to support adaptation. Some strategies for Missile Packages (CAMP) Volume I: Overview and
adapting the techniques to address adaptation Commonality Study Results, McDonnell Douglas
parameters and alternatives were identified. More Astronautics Co., Technical report AFATL-TR-85-93,
work remains to be done to develop recommendations May 1986.
with regard to selection and enhancement of
specific techniques. [Merlet 90] Merlet, P., et. al. Reuse Tools to

Support Ada Instantiation Construction, Software
Before specific architectural alternatives or Productivity Solutions, CECOM CIN: C02087KV00100,

other adaptations of architectures can be June 1990.

10th Annual Notional Conference on ADA Technology 1992 273

[Os$k&sson 891 Oskarssor., 0. "Reusability of
Modles with Strictly Local Data and Devices - A
CaSe StUdy," Software Reusabiiity, Volue -Ii:
Applications and Experience, Biggerstaff anl
Peris (eds.), ACI Press, 19M.

[Ouacrud 881 Quanrud, R. Generic Architecture
Study, SofTech, lic., Report 3451-4-14/2, Jarnuary
1988.

[Shaw 90a] Shaw, M. 'Larger Scale System
RequireHigher-Level Abstractions,* Proceedings of
Fifth Interrationai Morkshop on Software
Specification and Design, IEEE Comuter Society,
1989.

[Shaw 901] Shaw, K. 'Elements of a Design
Language for Software Architecture,* Carnegie
Mellon University, Hay 1990.

About the Author

Kathleen Gilroy is the president of Software
Compositions, a small company in Melbourne Beach,
Florida focussing on Ada and software reuse. In
addition to her work on adaptable architectures,
Ms. Gilroy is currently investigating the
application of preventive maintenance tools and
techniques to Ada software reuse. Over the last
10 years, she has participated in many Ada
application and tool development projects, and has
been a member of several Working groups dedicated
to evolving Ada and reuse technology.

274 10th Annual Notional Conference on ADA Technology 1992

I. • m = • = m =w • • m

Ada APPLICATIONS 1N AERONAUTICS
& SPACE SYSTEMS DEVELOPMENT AT

NASA PANEL

Moderator: Carrington H. Stewgirt, NASA JSC
Panelists: Anastaclo M. Baez, NASA Lewis

Royal G. Bivins, NASA Headquarters
Stephen Gorman, NASA JSC
Robert Kudlinski, NASA Langley
Gary K. Raines, NASA JSC
Robert D. Steele, JPL

1Oth Annual National Conference on ADA lechnology 1992 275

DYNAMIC CONFIGURATION WITH Ada

R. Gerlich

Space Electronics Division
Domier GmbH P.O. Box 1420

D-7990 Friedrichshafen Germany

Abstract During its operational phase software- is Domier's solution 0
- solving this problem - consists of

subject of changes due to 9 a configuration strategy for procedures /
" meiunme• functions and data allowing on-line changes

in order to adapt a system to new or in real-time,
changed requirements, to change memory
structure due to hardware errors, or to o a software engineering strategy
improve existing software, guiding an engineer how to produce Ada

" software reconfiguration source code which is ready for Dynamic
either - on one processor - by changing the Conf'uration,
set of executable procedures, programs and * a toolset supporting implementation of the
accessable data or by migrating programs stratogy.
between several processors. It is

For time-cltical systems on-line changes of software designed for use in a preemptive hard
are required. i.e. the capability for Dynamic realtime environment,
Configuration supporting:

1. update of a running program from version o it is compliant with Ada's checking and
N to N+1, and verification capabilites, and

2. fast and synchronised transition from * is supporting existing Ada source code.
Mode A to Mode B in a continuously Transition from a software configuration to another one
running task by logical instantiation of takes a few microseconds (about 3 pIs for an Intel 80386,

20 MHz). The overhead per procedure call / data access
amounts 2.. 3 ps,

However, Ada does not support Dynamic
Configuration. Therefore use of Ada is excluded in Index Terms: Dynamic Configuration, Ada, Real-Time
such application areas. Processing, Run-Time-Linking, On-Line Software

Updates, Mode Transition, Embedded Systems

1. Introduction
The intention of this paper is to describe the technical Configuratino fw
capabilities of the concept for Dynamic Configuration with _____________ ofSoftware
Ada and to demonstrate its feasibility. For the solution
only useful features from object-oriented Dynamic Maintenance Reconfiguration
Binding are introduced. it is not intended to make Ada a
fully dynamica! language. Only those features are Version 1 Mode A
provided which are needed to reduce complexity of
technical real-time systems by Dynamic Configuration, Version 2 Mode B
and which are compliant with Ada's philosophy. Version 3 Mode C
1.1. Issues for Dynamic Configuration
In technical systems, especially in embedded systems, ...
software is the 'heart' of the system. If software is
stopped, the system is "dead*, control over the system is
lost. In case of time.critical applications, e.g. tele- Figure 1-1: Cases of Program Configuration
communication networks, air- and spacecraft control,
nuclear power plants, air traffic control, ..., the gap in
control must not exceed a very limited time. For configuration purposes (Fig. 1-1) usually software

must be shut down due to the need of program

276 10th Annual National Conference on ADA Technology 1992

rooding. Howve. this taes an un- ,:ab amount 2. P blem Analysis
of time. In case of Dynamic Configuatlon, software
can contlnwJsly execute, no real gap in comiol
apears. 2.1. RelIabIlity Considerations

In case of a wconvnter program the links are
1.- Principlo Conicept determined at compilation- and link-time and they remain
Oornlers concopf allows complete verification of the fixed ad run-time. The iont, 'h possblity to update or
updated software before it is inciaded into the running reconfigure existing software s to load a new program
program. It ensree that a program, which is updated under control of an operating system.
on-line, remains contct, even in a preemptive real-time Fixed links, which have been verifigd by the compiler and
environment, linker, are a sufficient conditioi to ensure that only
The mechanism used for on-line cartfiguration provides validated addresses are used at run-time. But it is not
the capability to switch between different loglcal the only condition guaranteeing a pgram's integrity. In
programs instaintaed out of one physical Ada program. case of dynamic linking integrity can ln be guaranteed
Out of a aet of procedures /functions and data the logical provided that
program can be instantiated using Run-Tme-lnklng. e all addresses used for proceduras, functions
On-line switch to anothr logical program just means to or data access are compktely validated
change the links between p.",cedures and data. In case when used and
of a switch, the executing progr m is removed and the * management of these addresses is
next one is instantiated, but on a logical level only. sufficiently protected against inadvertent
Therefore no time delay occurs. The physical exchange user access.
of software is mapped onto a logical level.

System dynamics is decreased b~ecause system In this context we have to keep in mind that compilers
resources are alklccated by the overall Ada program only may have faults as well. But we consider them as

at program's saert. They have not to be allocated during sufficiently reliable, because compilers have been
operation like in case of load and exchange of different eatensively tested, especially in case of Ada by well-
physical programsH . Furthermore, the same (overall) known test procedures.
program can be used as task hooy for all tasks. Usually, As the algorithms needed to implement Dynamic
for each combination of modes and tasks an own body Configuration are simple, validation of related software
has to be provided and it has to be loaded / activated and can also be done with sufficient reliability.
deactivated / removed each time code update or mode
switch occurs. Furthermore, we have to take into account that the

reliability at a program does not only dcpend on the
Basically, the strategy and concept of 'Dynamic reliability of a compiler. It depends - at most - on the
Configuration with Ada intended to support time-critical reliability of the application program. This is the mos
on-line applications. But it turned out, that it will simplify unreliable part.
from an operational point of view non-time-critical
applications as well, which need mode transitions. And we know, that the less complex algorithms the

higher is reliability of their im.plementation in software.
1.3. Intended Conceptual Limitations By Dynamic Configuration the complexity of operationalprocedures to update and reconfigure a system become
In order to increase reliability, it is not the intention to less complex due to the ccntnuously running program:

provide all the capabilities usually understood by Run-

'Time-Linking or Dynamic Linking in sense of Object- • no status data are lost
Oriented Paradigm. To do this may really be dangerous * no checkpointing of data are neede
in view of reliability. Therefore only management ofdnmclnsis supported by tho concept. This . no start / stop of a program or task is needed
dynamic links ifor reconfiguration
includes protection against Inadvertent user access
and prevents use of non-validated addresses. e total number of tasks and task bodies is

reduced

9 coordination of activities during a mode
transition becomes simpler.

Therefore the total reliability (and availability) Increases
if Dynamic Configuration is used.

'called DC*Ada ©
All rigM8 runrvod by Domer GmbH, 1990, for application of t 2.2. Update and Reconflguratlon of Software
concept with Ada or ohe programming languages Update of ftware means to remove and/or to add

'Dynamic resource allocation by a program at runtime - foreseen by software for maintenance reasons, i.e. the memory
the programmer - should be avoided, in general, as far as possible from a
software engineering point of wew. structure of a program is changed.

Rsconflguratlon of software means activation I

10th Annual National Conference on ADA Technology 1992 277

deactiviation of software units (proceduras. functions. By step 1, Ada source m4 is analysed and the
data) within a program. i.e. changirg links to procedures modifications, needed for activation e. Run-Time-Linking,
,und data, but without structural changes of memory are identififed. The relevant infornation is stored into
structure. Add-On-files, from which it is retriwod by Dynamic

Configuration Tools. These tools prepare Ad. source
Therefore software reconfiguration is simpler to support code for Dynamic Configuration (Stop 2). By St-p 3
than software update. In case of software update we modified Ada source code is compiled and linked
have to ensure in addition, that fixed links, i.e. links which together with additional packages for support of Dynan';-
are not dynamically established, are not affected by Configuration.
structural changes in memory.

Step I is presently done manually, it will be automated in

3. The Softwan; Engineering Strategy - future. Step 2 is already fully automated. Support
packages for step 3 are available.

3.1. Principles of the Strategy Ada specific features are not affected like

Two principle decisions were made: For provision of * omitting of default parameters !n

Dynamic Configuration procedure calls,

1. no compiler/APSE modification should be * overloading of procedures.
needed and

2. existing Ada source code should not be Other advantages of pre-processing of source code are:

excluded. a a software engineer needs not to care about
the mechanism of Dynamic Configuration, it
is completely hidden - if desired,

These two demznds directly lead to pro-processing of
Ada source code prior to compilation. Of course, that * if Dynamic Configuration is not used directly

does not exclude that the pre-processor can be (see section 3.3 below), software can be
tested and verified in the usual manner, i.e.

Integrated into an APSE. if desired, it is very easy. using conventional linking, before Dynamic

Support packages provide the functionality needed for Configuration is activated,

Run-Time-Linking, export/import of updated code and *the decision whether to use Run-Time-
address verification. Linking or not can be postponed to the end

of an implementation phase.
In Fig. 3-1 the principle steps of the strategy are shown.

Step I Step 2 Step 3

orceCode Ada Soirce CosI Add-on Ada Source Code Support Package

Source Files Ready for for
Dynamic Configuration Dynamic Configuration

Source Code Source Code
Analyls Ification APSE

Tool Tools

AddOn Ads Source Code Configul l

Sourcn Files Ready for Executable
oDynamic Cnnflgur'toni la Proram

Figure 3-1: Principle Steps of Zhe Strategy

278 1Oth Annuol National Conference on ADA Technology 1992

3.2. Implementation of Run-Time-Linkling be translated into calls of procedures A, B and C. and

The addresses of the items (procedures, functions, data) data set 2 into calls of D, A and E. A specific capability is,
are stored into Address Tables, Le. arrays of addresses that via different indices (2 and 5) the same procedure

(se Fig. 3-2). Each Address Table is describing a can be called.

certain configuration. The index, by which a certain Selecor of a data set may be status driven, e.g. it may
address is retrieved from an Address Table, is depend on task-id, mode-id and status of a mode. The
representing the Ink-specification (of procedure / corresponding logical program is instantiated according
function / data) all over the life-time or run-time of a to the skeleton defined by the selected data set. This
program, an address is representing the link-target feature allows to instantiate a logical program out of a set
(actual procedure /function body or memory allocated to of -generic- reusable procedures and data including
data). references to specific procedures and data. It is

possible to instantiate a procedure hierarchy including
In the upper loft corner of Fig. 3-2 the process of on-line specific procedure calls and data access depending on
update from version N to N+1 is shcwn. Addresses of Instantlation parameters. The higher modularlsation of
procedure ProcB and data DataD are replaced by software is, the more code is shared and reused
addresses of PNewB and DNewD. Before and after between tasks and modes by instantiation of logical
update access is still controled by the fixed indices 2 and programs.
4. The corresponency between a fixed Index and a fixed
Reconfiguration by overloadIng is shown in upper right address allows to use "conventional linking" and "Run-
cotner. For each mode Address Tables are provided Time-Linking" in parallel during development.
each con.1.ining mode-specific procedures and data. On-
line switcli from Address Table I to Address Table 2 Furthermore, the Dornier specific implementation o run-
allows on-line r1,ode transition. ime-Linking guarantees full integrity of a program atrun-time

The capability to ca! procedures via Indices, i.e. to use a in a pre-emptive real-time environment, and
data and to diroctly cail procedures accordingly (without
using a CASE-statement) is shown in the lower part of c in case of multiple, Interdependent
Fig. 3-2. Data Set 1, representing a logical program can

Address Address Address Addres
Table Table Table Table

Vers. Reconfiguratlon Mode 2
11 P-rocA 1 ProcA I Ml PA 1eofgrto M21PA'
2 Proce Update 2 P 2 MI PS by 2 M2PB'
3 DataC of 3 DataC 3 Ml DC Procedurse & Data 3 M2DC'
4 DataD Procedures & Data 4 4 Ml DD Overloading 4 M2DD'
s - (ProcB & DataD) 5 5 Model -Mode 2 -

B - 6- 6- 6-

Address
Index

Address
Logical Data Set 1 Call of

Program rocdures

I ProcAABC
6 ProcE -*Program- 5 rcrocedures

2 Data Set 2 L6 r c ,D, A, E

Using Data Sets for Reconfiguratlon and Procedure Calls

Figure 3-2: Management of Dynamic Links

10th Annual Naiomal Conference on ADA Technology 1992 279

3.3. Poslblilities to Use Dynamic Conflguration

Dynamic Configuration can be used twofold: directly and 3.4.1. Operational Scenario for Code Update
Indirectly. Two principle environments exist in case of code update

Direct use of Dynamic Configuration, e.g. for temporary, due to software maintenance: a Development
logical instantiation of a task body, means expliche use of Environment and a Target Environment. Software
access via Address Tables, i.e. it implies direct use of the updates or new software are developed on ':,e
entries (indices) into an Address Table. In this case no Development Environment and then loaded onto Target

equivalent conventional Ada source code exists, steps Environment to become operational.
and 2 in Fig. 3-1 are not needed for generation of We can classify the updated program into two parts: one
executable code. However, for verification purposes part, which is not modified, and another part which is
step I and 2 are still needed. completely new or is updated. Now, the basic idea (see

Indirect use of Dynamic Configuration means Fig. 3-3) for on-line update is, to keep during on-linemodification of existing source code in order to get the update the old program version running in that part,desired dynamic capability. This allows to develop which is not affected by the update, and to exchange justdesirams in the ususal manner. those parts which are to be modified or which have to beadded or removed.

3.4. Reallsation of Reconfiguration and Code Update
In case of on-line update two executing programs exist: Enauring that the new executable code, which is

the old and the new version (previous and next version), imported from Development Environment, fits with the

running on two different processors simultaneously: the address structure of the (executing) program on Target

task of on-lin. code update Is to adapt the executing old, Environment, the imported code can be activated

previous version to the new, next version without without recompilation and relinking of the (executing)

disturbing and corrupting the executing parts. This program on Target Environment.

requires careful consideration of the program Of course, spare memory for imported code and data
environments. have to be reserved cn the Target Environment.

In case of on-line reconfiguration onlo one program is
executing, and its logical structure is modified via Run- Run-Time-Linking provides the means to activate
Time-Linking. software which was not known at link-time of the running

program and allows to reallocate code and data at run-
time. Memory management procedures support
allocation of spare memory and release of inactive
memory areas.

Development Environment Target Environment

Memory Structure Memory Structure Memory Sructure
Version N+1 Version N Version N+1

Fixed Jnks Fixed Links Fixed Unks

Dynamic Links Dynamic Links _ Dynamic Unks
' Delta On-Une Switch

New Code - - N Remaning Spare N - N+1 New Code

Remaining Spare Memory Remaining Spare
Memory Version N Memory

Version N+1 Version N+1

Verification Export/import

and of On-Line Update
Elaboration vie Data File

Figure 3-3: Operational Scenario for On-Line Update

280 10th Annual National Conference on ADA Technology 1992

The essential point for software update is to ensure parameter.
compatiblllty between the executable code of
Development and of Target Environment, after having Third, the additional activation / deactivation steps can
changed the program on Development Environment. easily be added to the operational steps, although two
Automated procedures will be provided to ensure the different (logical) programs are executed Immediately
needed compatibility, one after the other: before mode switch the old mode in

status *operational', the new mode in status 'activation",
Compatibility does not mean that symbol addresses on after mode switch the new mode in status "operational"
both environments must be exactly the same. Only those and the old mode in status *deactivation'. Dynamic
addresses must be identical, which are not accessed via Configuration allows to separate logically the activities of
Run-Time-Linking. All other addresses may be different. both modes, but to execute them immediately one after

the other according to a predefined (simple) scheduling
The software engineering strategy and associated tools scheme including synchronisation for all task
must guarentee the needed compatibility of addresses. frequencies.
These tools may be considered as compiler Add-On's.

The logical switch from one Address Table to another is
3.4.2. Operational Scenario 'or ReconflguratIon just equivalent to a physical switch from one memory

Reconfiguation means InstantlatIon of another logical bank to another, each containing the relevant program.

program either by (see Fig. 3-2) 3.5. Dynmlic Configuration and Ada Language
1. exchange of addresses for a certain entry Some aspects concerning Ada language are discussed

in an Address Table, now in order to make clear that the concept is compliant

2. activation of another Address Table, with Ada philosophy.
providing another address for the same 3.5.1. nterfce Verification
entry, or In case of procedure / function calls assembler routines

3. using another data set specifying the establish the dynamic link. Usually, verification checks
desired logical program. are suppressed for a transition Ada - assembler.

However, Dornier's concept for Dynamic Configuration
As reconfiguration affects one program only, provides the capability for interface verification at this
compatibility of addresses must not be considered. transition. This is an option, which can be suppressed -
A mode transition is a specific case of reconfiguration. like the checking capabilites of an Ada compiler- in order

During a mode transition to got better performance.

the (old) operational mode has still to be
executed until mode switch is performed, 3.5.2. Elaboration

" the next mode has to be prepared by Importing executable code into a running program

additional activities, in parallel to the requires that it has already been elaborated.

operational step sequence, This Ada rule is completely fulfilled, because all code Is

" a switch has to be performed when the new elaborated on the Development Environment before it is
mode can be entered: the new mode imported into Target Environment. As the programs on
becomes operational, the Development Environment and on the Target

Environment are compatible, it makes no difference* the previous (old) mode has to bewhrcoeielbatd

deactivated by additional activities, executed
in parallel to the (new) operational step 3.5.3. Visibility Rules
sequence. Although global Address Tables are used, Information

hIdIng is provided like in pure Ada: only procedures,
Using Dynamic Configuration, the operational procedures functions and data ca be accessed, which are known
for a mode transition become very simple.i' according to the WITH-Hierarchy.

First, one program can be used for all tasks. Therefore a
mode switch can be (synchronized) by this program only 3.5.4. Feture= Needed from Chapter 13
as it holds all relevant information. From an APSE following non-standard Ada features are

needed:
Second, switch from one configuration to another one e package System
can be done Immediately within a few microseconds,
just the time needed to change a configuration * interface to assembler, i.e.

- package machine-code,

- capability to lFnk assembler object files
with Ada code or

6For the fllowing ownsidefaton it is assumed, that several (at least

one) cyclic tasks with different cycle periods are running and that the task * other equivalent capabilities,
bodies are mod-dependenL.

1Oth Annual National Conference on ADA Technology 1992 281

capability to affect memory allocation in b. using different logical names but to
order to get a compatible memory structure. access the same physical data area

in memory.

4. Capabilities All capabilities are available by a demo implementation.

4.1. Real-Time Capabilities 5. Experience
The concept is tailored for preemptive real-time
environments. The switch to another logical program, 5.1. Activities In the Pal
procedure, function, data area is sufficiently simple and Activities on this subject of Dynamic Configuration were
therefore can easily be protected against preemption. started In 1986, when the Technical Center (ESTEC) of

An essential feature for real-time processing is the European Space Agency (ESA) requested a concept for
capability to immediately instantiate a logical program. on-line update of code in view of time-critical and/or
The consequence is that the same program can bg used autonomous space missions. A first Idea was borne and
for all tas'a and all modes. Therefore tasks have only implemented in C. Then it was investigated (in 1989) if
to be created for each frequency, - using the ame Ada the concept could be ported to Ada, as Ada is the
program - but not for each combination of tasks and programming language for future space missions.
modes. To demonstrate the feasibility of the concept with Ada,

Dornier defined the needed software engineering
4.2. Overloading Capabilities strategy and implemented a demo. This demo was
Beside on-line reconfiguration and program update other presented on the EUROSPACE Symposium in
features are provided: Barcelona' in December 1990 and demonstrated on-line

1. Overloading of procedures /functions: reconfiguration and update capabilities on a PC using
In Ada overloading for procedures / Meridiao Ada compiler.
functions Is supported, If procedures of
same name have different parameter lists. Then the demo was enhanced to demonstrate fully the
By Dynamic Configuration overloading is capabilities of the concept for task management and
possible for procedures/functions which mode transitions. These featurss were presented on
have Identical parameter lists. This is a ESA's First International Conference on Spacecraft
feature which is used for mode Guidance, Navigation and Control in June 1991 2
management. E.g. the activities for a
control-law-processing task can be The next goal was to demonstrate the portability of the
characterised by concept. The Alays compiler was selected for this step,

* read sensor data as it is foreseen as target compiler for the European
space projects COLUMBUS and Ariane V and for

a perform control-law-calculation NASA's space station FREEDOM.

send actuator commands Tools already exist to make Ada source code ready for

* update state matrix. Dynamic Configuration. The toolset will be completed in
near future in order to fully automate the preparation

in this sequence, steps are identical for procedure. Support packages for Run-Time-Linking and
each mode from a logical point of view, but management of code import/export are also available.
- of course - the body of each step is
different. It is very easy to perform a Since its first implementation in 1990 the concept itself
mode transition using Dynamic was improved and constraints - initially existing - could be
Configuration in this case. What has to be removed. Performance test programs were used in order
done is just to use the same logical to analyse performance of each compiler and to
sequonce and to exchange the mode- investigate th hest algorithms for Dynamic Configuration
dependent procedure bodies by on-line
reconfiguration (see upper right comer of on each APSE.
Fig. 3-2). Dynamic Configuration with Ada was implemented on top

2. Overloading of data: of APSE's without needing compiler-internal details from
Overloading of data is not supported by vendors. Furthermore, it was possible to achieve
Ada. However, Dynamic Configuration compatibility of memory allocation between Development
allows two principle kinds of data and Target Environment on a PC-DOS environment,
overloading: which basically does not support user-controlled memory

a. using the same logical name but to allocation at all.
access different physical data areas
(of same structure, of course) at
different times.

282 10th Annual National Conference on ADA Technology 1992

5.2. The Demo e the assembler routines and
The demo is presently available for a PC-DOS- e the memory allocation strategy interfacing
environment for Meridian (V 4.01) and Alsys (V 4.4.1) with an APSE.
compiler. It provides multi-tasking and mode switching
capability together with other features specific for Run- The Software Engineering Concept is fully portable,
Time-Linking (described in section 4.2). because it is based on standard Ada. Modification

towards Dynamic Configuration is supported by tools on
It supports priority-based, quasl-preemption iv of tasks source code level, so that it is easy to port an
under DOS using only the DOS-clock and no interrupts, implementation.
'Quasi-preemption, means that tasks can be preempted The assembler routines and memory allocation
at predefined logical breakpoints, but not at arbitrary strategy for on-line update Is not portable, in general.
times 2: the next logical step is executed only, if there is However, this is not a real problem of the user, because
sufficient time to finish it before the next task of higher the needed support will be provided for each APSE.
priority Is started.

Activation and deactivation of modes in *parallel' to
execution of the actual operational mode is implemented. 6. PerfornnEse
By parameters, the additional workload during a mode
transition, caused by activation/deactivation steps, can
be adjusted by the user. Of course, Immediate,
unconditional mode switch is possible. 6.1. Performance Analysis

Priorities can arbitrarily be assigned to tasks - Implementation of the demo was the first step to
Independently from their execution rate - and can be demonstrate the feasibility of Dornier's concept. The
changed on-line during execution - if desired. next step was to improve performance.

The demo application consists of three tasks: We found that performance of certain algorithms
1. the command interpreter, depends on the compiler. A certain implementation can

give optimum performance on one APSE, but worse
2. a task to export/import updated code, and performance on another APSE. E.g. on the first APSE
3. a task for control-law processing. we changed our initial implementation and could increase

timing performance by about a factor of 10. On the next
The control-law-processing tas:' is used to demonstrate APSE the second approach was slightly worse than the
on-line reconfiguration / mode transition and code initial one, but both about a factor of 10 faster.
update. By consequent performance analysis and improvement

The application program is available in a version on we have achieved now a mature implementation for both
Development Environment (*on-ground') and on Target APSE's.
Environment (*on-board'). The on-ground version 6.2. Results
contains the new code and data and exports it via a
data-file (see Fig. 3-3). The on-board version Imports Figure 6-1 gives some figures for Meridian and Alsys
the data file and stores its contents into a predefined compiler for procedure and data access and two other
spare area. Of course, new code and data are not examples for comparison. Obviously, no significant
available in the on-board version before the update-file is difference in timing performance occurs for procedure
imported. The update-file can be modified by a debugger calls and data access, because the figures are derived
and after modification directly imported into the executing from the optimum implementation on each APSE: the
program to demonstrate that new code is really implemented algorithms are slightly different.
imported. The impact of a file-change is immediately The figures for "procedure call' are related to a call of a
visible, e.g. RETF can be inserted in the data file at the dummy procedure with two parameters, containing no
beginning of a procedure resulting a 'NOP'. When the data declarations and no executable code. The
relevant procedure is executed, no output is generated overhead of 2 .. 3 Igs has to be compared with time
on screen due the immediate RETURN in the procedure. needed for execution of code In a procedure like a mix of

assign statements consisting of boolean (100/), character
5.3. Portability (10%), byte (10%), integer (10%), long_integer (4 bytes)
When talking about portability of the concept and the (20%) and float (8 bytes) (40%) operations - given for
implementation, we have to consider different parts which comparison.
are subject of portability: For a procedure call about 8 bytes have to be pushed on

e the Software Engineering Concept the stack in addition. Inside a procedure, for each data
structure accessed via Run-Time-Linking, about 4 bytes
are needed on stack plus code for initialisation of the link.

'This is an outcome of ie concept, but not a preconditoen to use it

1Oth Annual National Conference on ADA Technology 1992 283

Acdft ahcks Off chedOn

caweaalRTL Cnv etmkni RL

PnWdwo Cd 80..~od@s IScydes 12D cdes 160.1.80vides
4..Sps Bps Sps 8-9p&

DIAm m - 60D.0 n- 1
3A ps 4ps

Fr-. COmpwdon:

Ptaemdure: 14600 cydes 148004i Iyl S 1500cyle 15400 cydes
apesa-on nui 734a ~ 730ps 770p 70Ps

wbeLo40ads40 cyces 40 cycles; 40ocyces
2ith'nur 2ps 211s 2ps 2ps

PC-386, 20 MHz

0 wait states, 80387 co-processor

Meridian AdaVantage V 4.01 and Alsys V 44.1

Figure 6-1: Timing Performance

7. Conclusions REFERENCES

It has been pointed out that the concept for Dynamic 1. R Gerlich 1990. On-Lne Replacement &
Configuration with Ads Reconfiguration of Ada Real-Time Software, First

" is compliant with Ada's software engineering EUROSPACE Symposium on "Ada in Aerospace".
philosophy, Barcelona, Spain, 254-273

" increases reliability of a system due to the
possibility to use simpler procedures for 2. R. Gerlich 1991, Mode Management and Run-Time-
reconfiguration / management of mode Linking with Ada in Real-Time, First ESA International
transitions and code update, Conference on "Spacecraft Guidance, Navigation and

" is sufficiently portable among hardware and Control", Noordwijk, The Netherlands, to be issued
software platforms.

" is user-friendly by provision of guidelines
and automated procedures, Author's address: Rainer Gerlich, Domier GmbH,

" has sufficient performance, Space Electronics Division, Dept. TED, P.O.Box 1420,

" is designed for use in a preemptive real-time D-7990 Friedrichshafen, Germany (W), Phone

environment. +49/7545/8-2124, Fax +497545/8-4411

The concept is now mature for safety and time-criticalsystems either for now projects or fo: improvement of About the author: Rainer Gerlich is senior engineer of
existing software. software engineering for space systems. His researchinterests have included database software, image

processing, and formula manipulation in Al. His current
research interests include architecture of real-time
systems, software methodologies and CASE,
standardisation and reuse of software, adaptive systems.

284 10th Annual National Conference on ADA Technology 1992

HANDLING PRIORITY INVERSION PROBLEMS ARISING DURING ELABORATION
IN ADA PROGRAMS FOR REAL-TIME APPLICATIONS

Lelie C. Lander and Siadeep Mrs
Department e Cc oputer Science

The Thomas J. Watson School o'Engineering, Applied Science and Technology
State University of New York, Binghamton, NY 13902600

Abstract-Piority inveruon is a recognized and serious concurretly with the statements of the enclosing unit.
problem for real-time systems. One form of priority Consequently, tasks that occur immediately within
isiontp fis observned mong Ada tasks at porer library packages begin to execute concurrently with the
"start-up timeand arises due to the dabomuton ordff (of

the pwages constituting the Ada program) chosen by execution of the initialization statements of these

the compiler. This paper reports on how such priority packages (viz., the sequence of statements that occur
inversion can give rise to errors in otherwise sound Ada after the reserved word begin following the declarative
programs; errors that are highly unlikely to be foreseen
by the programmer and whose cause may be difficult to part of the package body). Now note that, in the case of
diagnose. The impact on the Ada implementation a library package, the initialization statements execute

template for Ratr-Monotonic Scheduling is presented as at elaboration time. Therefore, the order of execution of
an example. Perceived deficiencies in Ada semantics with these statement sequences is the order in which the
respect to priority inversion during elaboration are l paces are elaborated. Prom the above
discussed and various viable solutions are presented. observations, it is evident that tasks enclosed by library

Keywords: elaboration order, priority ceiling protocol, packages commence execution in an order which will
priority inversion, rate monotonic scheduling differ across various Ada compilers, since the rules

Introduction determining the order in which program units must be
elaborated are very loose (LIM, Section 10.5). Besides,

Priority inversion has been defined 7 ,14 as any situation assigned priorities of such enclosed tasks have no

where low priority tasks are served before higher priority influence on the elaboration order, since the LRM makes
tasWhee pers tass wrel servd beferencerport no mention of the role of priorities of such tasks in

determining elaboration order. The potential for PIDE is
various forms of priority inversion that may repeatedly thus very definitely extant in current Ada, and we have

occur during the execution of an Ada program due to the obseved defini era l c rt at we haveobserved it occurring in several compilers that we have
FIFO nature of entry queues and the scheduling of studied. As a simple example, consider the package

selective wait options. Priority inversion duringelaboration (PIDE), occurring during the elaboration specifications shown in Figure 1. The main procedure
elabraton PME) ocurrng drin th elaoraion and package bodies are not included for the sake of

phase of a program (thus, at "start.up time") has been

reported in detail in previous papers. 10' 12 The reason for clarity.

the existence of such priority inversion can be found in

the LR 1 Sec. 9.3, where it is stated that a task object If the body of package P2 is elaborated before the body

not created by an allocator must begin activation after o pak P en th i n whic the

the elaboration of the declarative part within which the tasks begin t or ie is evident.

task object occurs immediately. Thus, in effect, task P1.T2prl, Pt1.tlpr4.* Priority inversion is evident.

activation is required to commence just after passing the Though, as we stated earlier, such priority inversion
reserved word begin following the declarative part, and
assuming an implicit begin if none exists. As reported * We assume that the maio program has the lowest prioity available.
assuminge an6,impcitass n bFor the Ada systems we have tested, the behaviors reported and

the coding practice suggested are valid only if such is the case.

10th Annual Natonal Conference on ADA Technology 1992 285

os only at'start-up iime, failure toecoVgze that it high priority tasks can preempt lower priority tasks,

may ocur can pre-nt an offerwise correct program PCI does not allow a task to enter its critical region

from even beginning to execute. The impact of PIDE 2n unlecs its own priority is higher than the ceilings of all

the implementautai, using Ada tasks, of a real-time semaphores currently locked by other tasks. Thus, a low

system pradigm is described in detail in the following priority task TL,. can block a high priority task Th,

medin. The peradig that we have used is the Ada with priority p, when the situation is such that Th is

implmentatio teaplate of Rate Monotomc (RM) trying to enter its critical region and TZ currently holds

Scbedulirieudi gthe Priity Cg Protocol (PCP, the lock on e semaphore S that Thig, or some other task

recommended by Sha and Goodenough 17 and by Borger, with priority greater than or equal to p, uses. This is the

Klein and Veltre! only way in which a low priority task can block a higher

priority task. Also, PCP ensures that any task T will not

package Pl is be allowed to enter its critical region unless it will not
task Tl_pr4 is request tolock any semaphore that is currently locked by

nd;pragma prioriy (4); any other preempted task T' and hence a deadlock

task 2prl O is between T and T cannot occur.

pragma priority (10);
end; Sha and Goodenough and Borger et al., suggest an Ada

end P1; implementation template, with appropriate design

package P2 is approaches and coding practices in Ada to adequately

task Tl_prl is implement RM Scheduling with PCP. The basic idea of
pragma priority (1); their template is to implement the semaphores, which

task T2epn 2 is are the sole means through which other "client"

pragma priority (2); (periodic) tasks communicate, by using "monitor" Ada

end; tasks. When a client wishes to enter a critical region, it
end P2; makes a task entry call to an entry of the $.;ropriate

monitor task. The principal code structure in a monitor
inersion due to elaboration order. task is a selective wait, enclosing the accept statements

corresponding to all its entries. Each client of the
monitor calls its own entry, and no others. When a call

Impact of PIDE on a Real-Time Implementation from a client task is accepted by the monitor, the code

executed during the rendezvous (by the monitor) is
Consider the implementation, using Ada tasks in a actually the critical region of the client task being

uniprocessor environment, of theRM Scheduling theory, executed by the monitor on behalf of the client. Borger et

including the PCP, as described by She and al., present .four models for the implementation of
Goodenough. 917'1 s We summarize briefly the salient periodic tasks in Ada, some of which are the Delay

features of RM and PCP below. The tasking model model, Task Dispatcher model and Delayjntil model.

consists of periodic tasks communicating through binary An example of this implementation template, using the

semaphores. The period of each task is fixed, and let us Delamoe is pro e ain gur e h i spe

assue tat t alo idictes he eadine f te tsk. Delay model, is provided in Figure 2, which is supposed
assume that it also indicates the deadline of the task. to actually implement the following behavior:

The execution of each iteration of the main body of the

task must complete before its deadline. Each iteration Consider two periodic tasks Ti and T2. In

becomes ready-to-run at the start of the period. RM addition, there are two binary semaphores S1

theory states that the lower the period of the task, the and S2, used by both tasks. Suppose Ti locks

higher its priority. PCP assigns a ceiling to each the semaphores in the order S1, S2, while T2
locks them in reverse order. Further, assume T1semaphore, which is the highest task pr" .ity amongst has a higher priority than T2. Thus,

all tasks that use the semaphore. Despite the fact that

286 10th Annual National Conference on ADA Technology 1992

TI: (.P(Si)..P(S2).-V(S2)._V(Sl).-) With the above assumptions about the elaboration order
T2: (-.P(S2)-.P(SI)._V(SI)._V(S2).-) and choice of selective wait, the blocks of code labeled in

this example are first executed as follows:
According to PCP, since both semaphores are used by TI
and 1 , neither task will be allowed to enter any critical P1.T(A), P2.T(A), P3.Sem(C), P4.Sem(C), DEADLOCK
region if the other holds the lock on a semaphore. Thus,
deadlocks will be prevented. The Ada code skeleton in When P3.Sem and P4.Sem accept their entries labeled
Figure 2 is expected to model this behavior;, P1.T El, they execute within the accept blocks the critical
correspondstoT1, P2.TtoT2, P3.Sem to Sl and P4.Sern regions on behalf of P1.T and P2.T respectively. Each
to S2. Sha and Goodenough have reported that, in order accept block contains a nested entry call. If the higher
to correctly implement PCP, it is necessary to eliminate, priority tasks P3.Sem and P4.Sem began to execute
amongst Ada tasks in the above template, priority earlier, as expected, then deadlocks would be precluded
inversion that arises on account of FIFO entry queues as shown for such templates.17 However, P1.T and P2.T
and selective waits. To achieve this effect using program are activated and begin to execute earlier, as a result of
structure rather than a modified run-time support (RTS), the assumed elaboration order. Note that it is assumed
they have suggested that monitor tasks be given a that the first delay statement in the body of P1.T and
priority one level higher than the maximum priority of P2.T does not block these tasks for long enough to
all their clients. Also, they have stated that monitor prevent their execution from proceeding before P3 and
tasks should not be suspended during rendezvous. Thus, P4 bodies are elaborated; such may well be the case if
a monitor task is always ready to rendezvous with any elaboration times are long enough (e.g., due to a very
of its clients. Note that in Figure 2 the monitor tasks long initialization procedure). Both P1.T and P2.T are
have been given a priority higher than their clients and blocked when first trying to enter their critical region
our Ada RTS is such that they are not suspended during though such blocking is not sanctioned by PCP and is the
rendezvous, result of P3.Sem and P4.Sem having not begun to

execute despite their higher priorities. When P3.Sem
A particular Ada compiler may use the context clauses to becomes ready to run upon activation and executes, there
determine the following elaboration order of package is an entry call waiting and when P4.Sem executes it
bodies: P1, P2, P3, P4. Note that this order may not be also has entry calls pending; in fact, it has two. A
unique and different compilers may compute different deadlock occurs now because P4.Sem accepts the call to
orders; the behavior that we describe below is therefore entry El, by the first-entry assumption above, resulting
also not unique and may vary over compilers, thus in a nested entry call to P3.Sem which is blocked on an
leading us to note that there is a certain unpredictability entry call to P4.Sem. Note that the deadlock occurs
introduced into program behavior as a result of varying despite the priority profile of the participating tasks,
elaboration orders. Programs become non-portable as a which is expected to model the behavior of the PCP, and
result-the correct behavior observed after having therefore should preclude tasks waiting at one or more
carried out testing using a certain compiler may not be different entries.
repeated in another.

The sole reason for the abnormal behavior above arising
First.entry assumption: we require that a fixed choice be in the template despite giving monitor tasks higher
made by the Ada RTS when a selective wait is executed priority is that the effect of higher priority is nullified by
for the first time in a task during program execution. We PIDE. As a result client tasks begin to perform "useful
shall assume that, during the first execution cycle, the work" earlier than the monitor tasks they call. The
entry which is being called and which appears earliest activation rules for Ada tasks are such that, in a
lexically in the task specification, is necessarily accepted. uniprocessor environment, the assigned priorities may be
The Ada compilers we have used do make some arbitrary respected in the order of activation only if the concerned

choice of this kind.

10th Annual National Conference on ADA Technology 1992 287

package P1 is -context clauses..
task T is package body P3 is

pragma priority(2); task body Semn is
end T; begin

amd Pi; loop
sewec

package P2 is accept El do
taskT is ... blod of code (C)

pragma priority(1); P4.Sem.E2;
and T; ...block of code (D)

end P2; end El;
or

package P3 is accept E2 do
task Semn is ...block of code (E)

entry El; end E2;
entry E2; and select;
pragma PRIORITY (3); end loop;

and; end Sem;
end P3; end P3;

package P4 is - context clauses..
task Semn is package body P4 is

entry El; task body Semn is
entry E2; begin
pragma PRIORITY (3); loop

end; select
end P4; accept El do

... block of code (C)
- context clauses .. P3.Sem.E2;
package body Pi is ... block of code (D)
task body T is end El;
begin or

delay (Task-Start-Time -Calendar.Clock); accept E2 do
loop ...block of code (E)

...block of code (A) end E2;
P3.Sem.El; end select;
... block of code (B) end loop;

end loop; end Sem;
end T; end P4;

nd Pl; -context clauses ..
- context clauses .. procedure Main-Pgmn is
package body P2 is..
task body T is begin
begin..

delay (Task Start Time - Calendar.Clock); end Main-Pgm;
loop

... block of code (A)
P4.Sem.El;
... block of code (B)

end loop;
end T;
end P2;

Figure 2. An implementation template of the Priority Ceiling Protocol.

288 loth Annual National Conference on ADA Technology 1992

tasks are in the same enclosing compilation unit. Thus, commences when the value of the absolute time is zero,
an obvious solution to the problem would be to require the absolute value of the starting time for each client
all tasks to be enclosed in the same unit. However, this task must be computed in such a manner so as to ensure
is too restrictive and more viable options are discussed in that the task begins to perform "useful work" only after
a later section. In this context, note that using the Task all packages enclosing the monitor tasks called by the
Dispatcher model, suggested by Borger et al,5 (also used client task have been elaborated. Otherwise, the client
by Vestal 1) is also over-centralized and restrictive. This task may request a reniezvo-s with a monitor that has
approach supposes a central Dispatcher task that makes not yet begun to execute, resulting in a deadlock as
all clients ready to perform "useful work." Also, a described above. Accurate computation of the start time
TIMERINTERRUPTfrom a timer initialized by the main is therefore indispensable and in order to achieve this
program is used, assuming that the main program begins goal, real-time Ada compilers would be required to
to execute after all package bodies are elaborated and provide precise estimates of cumulative elaboration times
that all library tasks have begun execution. This model of certain sets of packages. Firstly, on account of the
serves the purpose that all monitor tasks will be ready absence of a unique elaboration order, this may well be
to rendezvous whenever they are called, thus nullifying different for different implementations. Secondly, it may
the adverse effects of PIDE for this template. Its also be impossible to obtain accurate estimates of the
restrictive nature is illustrated by the fact that the total elaboration time, as the initialization procedures
Dispatcher must know the identities of all client tasks, may ase input data. The use of optional optimizations
each of which must be given an entry DISPATCH for the may also have an effect.

Dispatcher to call. This structure prevents client tasks
from being entirely declared inside library package Although we have used the well-known RM Scheduling
bodies. Besides, this model requires the user to explicitly Theory to illustrate the problem of PIDE, it came to our
manage the scheduling of tasks; ideally, this function attention through its impact on our other research. 15 We
should be abstracted out of the application program.5 are working on the development of a methodology to

automatically map specifications drawn up using a state-
Using the pragma ELABORATE to force earlier oriented, real-time formal technique (SAN) 16 into Ada
elaboration of package bodies enclosing monitor tasks is implementation code. Proper mapping of the semantics
also not always a workable option, for the dependencies of SAN systems requires extensive initialization of many
amongst initialization procedures may require the Ada objects generated by the mapping algorithm, thus
pragma to be used on certain program units. Such rendering the total elaboration time significant with
placement of the pragma may well be inconsistent with respect to the execution times.
the needs of the early elaboration of the packages
containing monitor tasks. Additional deficiencies of In subsequent sections, we suggest a coding practice, a
pragma ELABORATE 3 are beyond the scope of this pragma, and a change to the language standard, any of
paper. which eliminates the problem of PIDE for any Ada

program with prioritized tasks.

Other models for the implementation of periodic (client)
tasks provided by Borger et al., are also not adequate to Classification and Activation Rules for Tasks
counter the effects of PIDE occurring in the above
template. These models are the Delay model, which uses As mentioned in the introduction, PIDE arises due to the
the Ada delay statement as illustrated in Figure 2 and activation rules for tasks. PIDE can be considered true
the Delay-Until model, which assumes the existence of to Ada semantics if the affected high priority tasks can
a delayuntil(AbsoluteTaskStanTime) statement. Both be considered ineligible for execution (LRM, paragraph
these approaches require the user to specify an absolute 9.8(4)) as the enclosing package body has not yet been
start time for the client tasks, which may not be the elaborated. Cohen 6 states that a task is "ready to
same for all such tasks. Assuming that system execution executC' if it is not completed, it is not blocked, and

10th Annual Nabonal Conference on ADA Technoiogy 1992 289

there are sufficient computing resources available. It is amongst a set of non-pervasive tasks (e.g., tasks declared
not evident, however, that a task object whose within subpackages in the same procedure body) under
specification has been elaborated, but which has not yet the current activation rules and such priority inversion

been activated, cannot be considered ready to run. We can be prevented by our recommendations below. For
have already seen that the activation rules for library anomalous tasks the current activation rules may also be

tasks result in the commencement of their execution considered appropriate for it is assumed that such tasks

duringtheelaboration phase ofthe program. These tasks will be created only in the event that we do not know
are however not required to terminate. The rationale how many tasks we shall eventually need, or if we need
behind this asymmetry is stated in the revision issue RI. to exchange task identities at some point during

2016:3 the automatic termination of library tasks when elaboration. As an aside, note that we may, however
the main program completes is fundamentally at odds create an anomalous task that is not terminated though
with the paradigm, frequently used in real-time systems, the entity that created it has completed its execution and
which uses a "vacated" main program and does all the no communication is possible with this task because the
work in hrary tasks. It seems evident that the scope of its identifying object has been exited. Such tasks

possibility of having the library tasks constitute the set may well prove to be potential sources for deadlock.
of all actors in a real-time system was intentionally

included by the language designers. The ill-structured We now define a rule that should eliminate PIDE
way in which tasks are activated during elaboration may amongst pervasive tasks. We assert that pervasive tasks

prevent this set of actors from starting to execute should be activated after the elaboration of the
properly and we now suggest a model to rectify these declarative part of the main program and just after the

problems. reserved word begin. If such is the case, then the Ada

RTS will ensure that no priority inversion takes place
We propose a classification strategy for tasks based on when pervasive tasks start to execute. This will in fact
the method of creation and the nature of the direct be required by current Ada rules that state that the

masters of tasks. activation of tasks proceeds "in parallel" (LRM 9.3). The

consequences of this new rule are discussed in Lander et

1. A task that is not created by an allocator and whose a l.13 Barnes 4 discusses the structure summary and

direct master is a library package is classified as a main program of a typical Ada system, and states that a
pervasive task. model of the "complete" program can be understood in

terms of one where the package STANDARD is declared
2. A task that is not created by an allocator and whose inside a block statement that appears in the body of an

direct master is a task, block statement or environment task, and all library packages and package

subprogram is classified as a non-pervasive task. bodies can be considered to be declared as subpackages

immediately within the package body STANDARD. These
3. A task created by an allocator is classified as an library packages and package bodies appear in an order

anomalous task, as such a task depends directly on consistent with the context clauses and the pragma
the unit that elaborates the corresponding access ELABORATE. The main program is called as one of the
definition and not on the entity whose execution "initialization" statements of package body STANDARD.
creates the task. Barnes states that this model captures the fact that

tasks that depend on a libra-y package (and are not
Since non-pervasive tasks exist only in the execution designated by an access value) are started at the cnd of
lifetime of the ephemeral entity (subprograms, block the declarative part of STANDARD and before the main
statements and tasks, all of which can complete program is called. If this were true, then PIDE would
execution and/or terminate), the current activation and certainly, according to current Ada rules, be precluded.
termination rules are somewhat appropriate for them. However, we have observed that this is not the case in

However, it may be noted here that PIDE may well occur several Ada compilers, primarily due to the activation

290 loth Annual Nolional Conference on ADA Technology 1992

rules which, by stating that activation begins after the Worst-case analysis of RM Scheduling and the compile

elaboration of the declarative part within which the task time scheduling of an Ads subset 8 require all tasks to

object =curs immediately, appear to be making start at the same time. The current activation rules may

activation determined by the enclosing lexical entity and hinder such modelling.

not the master of the task. As we have stated earlier in

this paper, many authors of Ada textbooks state that, Avoidance of PIDE

after activation, the initial task execution commences
concurrently with the enclosing entity, though this is rot The modifications to the Ada language standard,

explicitly stated in the LRM. If the task under discussed above, are a possible meams of avoiding PIDE.

consideration is a non-pervasive or anomalous task, this However, within the framework of the current standard

rule, as we have seen, makes some sense, but not for and even the Ada 9X proposals, the following two

pervasive tasks that are not required to terminate (since methods are entirely satisfactory.

library packages do not really "complete their execution
and get exited from or terminate" but simply complete Coding practice.

initialization--a one-time event). Therefore, Barnes'
perception about the starting point for the execution of We assume that in current Ada programs, irrespective of

pervasive tasks is appropriate though not universally the order of activation, it would sufficiently satisfy the

implemented. The lack of explicit instructions in the user's needs if all pervasive tasks began to perform

LRM on commencement of execution and non- useful work in the order of their assigned priorities. To

orthogonality in Ada, whereby the termination, but not achieve this effect, require all pervasive tasks to make
the activation, of a task is related to its master, i3 the an entry call to a common task as their first executable

root cause of this problem. instruction in the sequence of statements that appears

after the reserved word begin in their bodies. The

Through our classification strategy and suggested common task is in a package which has the specification:
activation rule, we are making a case for the activation

of a task to be related to its master, and also suggesting package Startinggate is
a new definition of master for pervasive tasks. Barnes task T is
states that a package is merely a passive scope wall and entry gate (lowestpriority.. highestpriority - 1);

has no dynamic life. This reinforces our argument that entry start;
the execution of the initialization statements in a pragma priority (highestpriorty);

package body is qualitatively different from the execution end T;
of a task, subprogram or block statement. Pervasive end Startinggate;

tasks should therefore depend on the environment task

and not the enclosing package, and this should be made All compilation units that contain tasks request visibility

clear in the Ada 9X LRM. In the Ada 9X Mapping to this package via a context clause. The rain procedure

Document,2 no mention is made about any modification calls the entry Starting_.Gate.T.start which is accepted as
to the activation/termination rules for tasks and the the first executable instruction in the sequence of

definition of the master of a task. A serious consequence statements that appears in the body of task

of changing the activation rules is the increased Starting Gate.T (after the reserved word begin). This call

possibility of "elaboration-time deadlock." A discussion on to Starting.Gate.T.start in the main program must not

this form of deadlock is presented in Lander et al.1 3 occur before all peivasive tasks have begun execution; in

the Ada systems we have tested, this can be ensured by
It would also be advisable at this point to note that as a giving the main procedure the lowest priority. The

result of current activation rules pervasive tasks activate sequence of statements of StartingGate.T then consists

and begin to execute in an ill-structured manner, viz., of a series of loops. Each loop has a selective wait with

they do not all become ready to run at the same time. an else option. The entry index for the accept statement

1Otn Annual National Conference on ADA Technology 1992 291

in a selective wait evaluates to a priority value and the by library packages. Identification of all tasks requiring
loops are placed in decrearing order of priority, e.g. the pragma is certainly much simpler than, for example,

the cemrutations of the task start time which is needed
task body T is in t1e Lelay and Delay-Until models, or even the
begin introduction of pragna ELABORATE ta force the early

accept start; elaboration of packages enclosing monitor tasks. A task

containing pragma PERVASIVE should not be called from
loop a package initializaton part.13

select accept gate (Priority_Value;

else exit; Conclusions
end select;

end loop; Despite the success of RM schiduling and PCP, and the
•... general correctness of the existing implementation

end T; template where semaphores are implemented using high

priority monitor tasks, there remains the problem that
Every other pervasive task calls entry gate(p) of task activation order may be able to destroy the proper
Starting_Gate.T, where p is the priority of the calling functioning of the implemented model during the first
task. Each loop accepts an entry call from a pervasive execution cycle. The activation order is determined by
task in the program, and the sequence of loops and point the elaboration order, which differs between different
of initiation of task Starting_.Gate.T ensure Ada compilers and is somewhat hard to predict even in
synchronization in order of priority. An obvious a single compiler. More consideration of task activation
limitation of this scheme .s that the highest priority rules is appropriate by Ada 9X teams. Current
provided by the implerntation cannot be used by a application programs using the Ada.83 language may be
"client" task. Also, the priority range is implementation- rendered safer by applying the coding practices outlined
dependent and so the package Starting.gate may need to above.
be rewritten for different implementations. However, the
need for modification is localized in this case, unlike in Acknowledgements
the Delay or the Delay_Until model, for example.
Moreover, the priority range provided for an We thank IBM Owego for support of the State-Oriented
implementation is easily available, whilst the algorithm System and Software Engineering Project, under which
used by the compiler to determine elaboration order (one this paper was developed.
of the items needed to appropriately determine the start
times in a task set implemented according to the Delay Bibliography

or the Delay-Until model) is not.

1. Ada Programming Language Reference Manual
Pragma PERVASIVE (LRM), ANSI/MIL.STD 1815 A, U.S. Government,

Ada Joint Program Office, 1983.

It wuuld not be hard for the implemeptor of a compiler 2. Ada 9X Project Report, Draft Mapping Document,
to introduce a pragma that allows the identification of February 1991, Ada 9X Project Office.
pervasive tasks. Such tasks will then begin eheir initial
execution as proposed in the preceding seLtion for 3. Ada 9X Project o R i esApril 1990, Ada 9X Project Office.
pervasive tasks. For many real-time systems it should be
a simple matter to identify the tasks that require 4. J.G.P. Barnes, Programming in Ada, 3rd Ed.,
pragma PERVASIVE to preclude PIDE. For example, if Addison-Wesley, 1989.
RM scheduling with PCP is used, this pragma should

appear in all client and monitor tasks that are enclosed

292 10th Annual National Conference on ADA Technology 1992

5. M.W. Borger, MM-. Klein and R.A. Veltre, 'Real-time Protocol Systems,' Computer Networks (6), pp. 397-
software engineering in Ada: Observations and 418, 1982.
guidelines,' Software Engineering Institute,
Carnegie-Mellon University, Tech. Rep. No. 17. L. Sha and J. B. Goodenough, 'Real-time scheduling
CMU/SEI-89-TR-22, 1989. theory and Ada,' IEEE Computer, vol. 23, no. 4, pp.

63-62, 1990.
6. N.H. Cohen, Ada as a second language, McGraw-Hill,

1986. 18. L. Sha, R. Rajkumar and J.P. Lehoczky, Priority
inheritance protocols: An approach to real-time

7. D. Cornibll, 'Session summary: tasking,' Proc. 1st Int, synchronization,' Computer Science Dept., Carnegie-
Workshop on Real.Time Ada Issues, Ada Letters WI, Mellon University, Tech. Rep. No. CMU-CS-87-181,
no. 6, pp. 29-32, 1987. 1987.

8. E.W. Giering and T.P. Baker, 'Compile time 19. S. Vestal, 'On the accuracy of predicting rate-
scheduling of an Ada subset,'Proa 7th Washington monotonic scheduling performance,' Proc. Tri-Ada
Ada Symp., June 1990, pp. 143-55. '90, Dec. 1990, pp. 244-253.

9. J.B. Goodenough and L. Sha, The priority ceiling 20. DA. Watt, B.A. Wichmann and W.Findlay, Ada
protocol: A method for minimizing the blocking of Language and Methodology, Prentice-Hall, 1987.
high priority Ada tasks,' Proc. 2nd Int. Workshop on
Real.Time Ada Issues, Ada Letters VIII, no. 7, pp.
20-31, 1988. Leslie C. Lander--obtained his B.A. (1967) from

Cambridge, U.K. and his Ph.D. (1973) from Liverpool,
10. L.C. Lander, S. Mitra, and T.F. Piatkowski, 'Priority U.K. in Mathematics. He has taught in England,

inversion in Ada programs during elaboration,' Proc. Germany, Perd and Venezuela. He has been at SUNY-
7th Washington Ada Symp., June 1990, pp. 13341. Binghamton since 1984. His interests include

programming languages, formal aspects of software
11. L.C. Lander, S. Mitra, and T.F. Piatkowski, engineering, and expert systems. He is a member of

'Deterministic priority inversion in Ada selective ACM and an associate member of IEEE.
waits, ACM Ada Letters, vol. 10,, no. 7, pp. 55-62,
1990. Sandeep Mitra-graduated from the Indian Institute of

Technology, Bombay, India, with a B.Tech (1985) and
12. L.C. Lander, S. Mitra, N. Singhvi and T.F. M.Tech. (1987) in Computer Science. From January 1988

Piatkowski, The elaboration order problem of Ada,' until August 1991 he was a Research Assistant in the
Dept. of Computer Science, SUNY-Binghamton, Department of Computer Science at SUNY-Binghamton,
Tech. Rep. No. CS-TR-90-57, 1991. working for his Ph.D. in the area of formal specification

techniques in software engineering for real-time systems.
13. L.C. Lander and S. Mitra, 'Detection and avoidance He is currently a Dissertation Year Fellow of the

of elaboration-time problems for multi-unit real-time University. He is a student member of ACM and IEEE.
Ada applications,' Dept. of Computer Science,
StINY-Binghamton, Tech. Rep. No. CS-TR-90-58, Mailing address:
1991. Department of Computer Science

The Thomas J. Watson School of Engineering,
14. D. Locke, L. Sha, R. Rajkumar, J. Lehoczky and G. Applied Science and Technology

Burns, 'Priority inversion and its control: an State University of New York,
experimental investigation,'Proc. 2ndlnt. Workshop Binghamton, NY 13902-6000
on Real.Time Ada Issues, Ada Letters VIII, no. 7, pp.
39-42, 1988. E-mail:

Bitnet: lander@bingvmb
15. S. Mitra, Report on the)iSAN to Ada Mapping Internet: lander@bingvaxu.cc.binghamton.edu,

Aigorithm,' Technical Report undzr Oontract No.
'140-6 40F, Department of Com :puter Science,
SUNV.Binghamton and IBM-Owego, 1991.

I. T. F. P.atkowski, Lap-Kin Ip and Dayun He, 'State
Architectme, Notation and Sir,:ulation: A Formal
technique for the Specificatwn and Testing of

10th Annual Natonal Conference on ADA Technology 1992 293

Ada TASKING OPTIMIZATIONS

Arvind Goel Mary E. Bender
Unixpros Inc. and U.S. Army CECOM
16 Birch Lane Software Engineering Directorate

Colts Neck, NJ 07722 Ft. Monmouth, NJ 07703

ABSTRACT 2.0 Ada TASKING OPTIMIZATION ISSUES

This paper describes the results of implementing Efficient implementation of the Ada tasking
Ada tasking optimization techniques in an existing Ada mechanism is very critical for real-time embedded
Runtime System. These tasking optimizations include a) systems. The semantics of Ada tasking as defined in the
Habermann-Nassi's optimization of letting the client Ada Language Reference Manual (LRM) are complex
execute the rendezvous, b) Stevenson's optimization of and its use is typically expensive, both in terms of space
letting the last task to arrive execute the rendezvous, and and time.'This expense can be reduced if the compiler
c) Frenkel's optimization of accept statements without recognizes frequently occurring idiomatic uses of
bodies. Experiments were performed to determine the tasking for which special purpose, less expensive
performance improvements resulting from these implementations are possible. As described in [1], Ada
optimizations. It also draws conclusions and rendezvous timing is the most important part of Ada
recommendationsfor Ada tasking optimization methods tasking to consider when one is concerned with
based on the result of the experiments, overhead, because it can happen many times during the

execution of a program, as opposed to task creation,
which occurs only a relatively small number of times.

1.0 INTRODUCTION The primary overhead events of rendezvous are context
switches and the execution of the select statement. A

Real-time computer applications are characterized state switch is a change of control between two program
by interaction with real-world (physical) events, over units. It requires saving and restoring machine status and
whose timing they have little or no control. It is therefore registers, parameter transmission, and the saving and
a requirement of the software that it control its own formation of a referencing environment. State switches
execution timing so as to synchronize with the real are required for procedure calls. A context switch is a
world. If the timing of the software does not meet certain state switch plus. actions for transfer to a different thread
constraints, the entire system of which the software is a of control. Typically, at least two to three context
part may fail. Hence, for most real-time systems, the switches are required to perform rendezvous.
most important requirements are related to meeting The major effort in this task is to implement
timing constraints. optimizations that reduce the number of context switches

The performance of a real-time system can be required to perform a rendezvous and optimize the
affected adversely if the tasking implementation of a Ada select/accept statements. Such optimizations include
compiler is inefficient. Introducing Ada tasks in a system those proposed by Habemann-Nassi [2], Stevenson [3],
incurs a certain amount of runtime overhead. This Freakel [4], and Shauer [5]. These proposals address the
overhead includes task activation and termination, task need for fewer context switches and/or optimization of
scheduling and dispatching, context switching, the select/accept statement by proposing different
propagation of exceptions, selection of an open entry in techniques.
a selective wait statement, queuing management of entry
calls, and allocation of task control blocks. Hence, 2.1 Ada Rendezvous
efficient implementation of the Ada tasking mechanism
is very important in order for real-time systems to meet Multitasking in Ada consists of a set of inter-
their timing requirements. dependent language constructs built around the concept

294 10th Annual National Conference on ADA Technology 1992

of a rendezvous. An accept statement names an entry and mechanism is based on technical papers by T. P. Baker
associates the entry name with a body of code. and G. P. Riccardi on Ada tasking [61, [7] [8].
Additionally, there can be list of formal parameters In the Janus Ada RTS implementation, a Supervisor
associated with the entry. Intertask communication is task is responsible for implementing Ada tasking
accomplished by "calling" an entry in another task. The semantics. It is important to understand the functions of
task executing the accept statement and the task calling the Supervisor, because most of the tasking
the entry meet in a rendezvous and stay locked in time optimizations implemented in this project involve
until the body of code associated with the accept modifications to the RTS Supervisor functionality. The
statement completes its execution, at which point both Supervisor is implemented as a separate task that is
the client task and the server task continue created during the initialization of an Ada program. This
asynchronously. task is not created if the Ada program does not use

Based on the above description, two scenarios are tasking constructs. The code generation phase of the
possible. The client task can issue the call first, or the Janus Ada compiler inserts calls to the tasking
task owning the entry arrives at the accept for that entry Supervisor when support for Ada tasking semantics is
first, needed. The tasking Supervisor is responsible for the

A normal rendezvous implementation works as appropriate context switching and flag setting, and then
follows: it calls runtime routines to perform the needed tasking

a. Entry Call precedes accept. functionality.
A task calls the entry in the other task and blocks.

When the server task executes an accept for this entry, it 2.3 Constraints During Implementation Of Tasking
associates the actual parameters with the formals of the Optimizations
entry and executes the body textually associated with this
accept. When the body completes, the client task is made As stated earlier, the optimizations implemented in
ready to execute and the scheduler is entered to select a this effort are based exclusively on modification to the
task to execute next. The server task continues to be Ada Runtime System. Th4 lack of access to source code
available for scheduling, of other parts of the Ada compiler (syntax and semantic

b. Accept precedes entry call. analyzer, optimizer, and code generator) inhibited this
The task owning the entry arrives at the accept project in the following vays:

statement for the entry and blocks. A task issues an entry - In some cases, it was impossible to recognize when
call and blocks. Then the task that is blocked on an a certain optimization could be applied since Pragmas or
accept starts executing, it executes the body, and other mechanisms could not be used to indicate certain
continues as described in case 1. optimizations so that the code generator could produce
Based on the above analysis, two context switches may code to implement them.
be required if the task that made the entry call arrives first - Also, in certain cases, the code generator produced
at the rendezvous, and three may be required if the task inline code that made it impossible to implement certain
containing the accept statement precedes the entry call. optimizations, e.g. the code generator allocates space for
At each scheduling point, there is the potential of a task task stacks making it impossible to implement
context switch, in which the state of the task must be optimizations that remove a task completely.
saved, and the context of another task restored and made
ready to run. 3.0 HABERMANN-NASSI'S TASKING

OPTIMIZATION
2.2 Janus Ada Compiler System

Habermann and Nassi in a paper published in 1980
The Janus Ada Runtime System has been used in this [2], outlined two methods for reducing the speed of the

effort to implement several tasking optimizations, the rendezvous:
majority of which attempt to reduce the number of a. Letting the accept body run as part of the client's
context switches in order to speed up the rendezvous, thread of control.
The Janus Ada Compiler (Release 2.1.3) is self-hosted b. Conversion of a server to a monitor. Habc.-mann-
on a 386 computer (with 4 Mb RAM, 25 Mhz clock) Nassi's second proposal is very similar to that of
running VENIX [2] Version 3.2.2, a real-time Unix by Shauer's proposal. Hence, its implementation is
VenturCom Inc. discussed along with Shauer's proposal in a later section.

The Janus Ada RTS is written primarily in Ada with The first proposal by Habermann-Nassi is an
about 20 percent of the RTS written in Intel 80386 implementation method for simple rendezvous. The idea
assembly language. The implementation of the tasking is simply to attempt to reduce the number of context

10th Annual Notional Conference on ADA Technology 1992 295

switches required for a rendezvous by letting the client terminated, callable, abnormal, need to raise exception)
task execute the accept statement. The client task - rendezvous status, status of various entries, entry
executes the statements in the accept body, thus reducing queue status
the number of context switches by one. In the discussions - task priority, etc.
that follow, a client task is one that makes the entry call, During the implementation of the Habermann-Nassi
and the server task is one that accepts the entry call. It is optimization, mutually exclusive access to the server
assumed that the client task is of a higher priority than the task was needed. This was done to ensure that another
server task, task could not conceivably rendezvous with the server

There are two scenarios that have to be examined in task, while the client is executing the body of the accept.
order to determine the savings that result from this To implement mutual exclusion, the TCB was modified
optimization. to include the following variables:

a. Client Arrives at the Rendezvous First. If the client a. TCBREC.mutex - A semaphore used to control
arrives at the rendezvous first, it is blocked. A context the critical sections which regulate rendezvous initiation
switch is made to the server, which then executes down and termination.
to the accept statement. Then a ontext switch is made to b. TCBREC.tasksem -A semaphore used to control
the client, who executes the code in the rendezvous and a task when it calls another task and has to wait for
continues execution. This optimization still results in two completion of the entry call.
context switches and does not result in any savings. To implement the semaphore mechanism, the 'wait

b. Server Arrives at the Rendezvous First. If the and signal routines were implemented as part of the
server arrives at the rendezvous first, it is blocked and a Supervisor code. The semaphore mechanism is
context switch is made to the client. The client executes implemented as an assembly language routine that uses
the rendezvous and continues execution. This the Intel 80386 bts (bit test and set) instruction for the
rendezvous results in a single context switch, as opposed wait mechanism and the btr (bit test and reset) instruction
to three context switches if this optimization is not for clearing the bit once the process issuing the wait
applied, operation has completed. The initialization code for each

There is some additional overhead involved in letting task's TCB and any associated entry variables is
the client execute the rendezvous. Semaphores are generated when the task is initiated. The mutex
needed in order to ensure mutually exclusive access to semaphore is set to true and the tasksem semaphores are
the server task. Also, machine status and registers have set to false, and each entry's waiting list is set to empty.
to be saved during the execution of the rendezvous.
Furthermore, the existing environment (scope) of the 3.2 Implementation Of Habermann-Nassi's
client is saved, and is temporarily replaced with that of Optimization
the server. When the rendezvous is complete, the client's
environment is reestablished. In essence, this In the explanation below, Task A's priority (client) is
implementation replaces two context switches, from the higher than that of task B (server). The case where the
client to the server and back, with two state switches. client (task A) arrives first at the rendezvous is not

The next few sections describe the changes that were discussed as two context switches are still required,
made to the Janus Ada Runtime System for resulting in no savings in rendezvous time.
implementing the Habermann-Nassi optimization of
letting the client execute the rendezvous (server arrives Case 1: Simple Rendezvous with No Select.
first at the rendezvous). The case where the client arrives When task B arrives first at the accept, it is suspended
first at the rendezvous is not discussed as two context as task A has not yet issued an entry call. Task A starts
switches are still required, resulting in no savings in executing and when it reaches the statement B.X, an
rendezvous time. entry call is made. This results in a call to the Supervisor

from task A. The call made is to perform the "entry call"
3.1 Modifications To Tasking Data Structures functionality which requires a context switch. The

tasking Supervisor first checks if the functionality being
Each task in a Ada program has a task control block requested is to perform an "entry call". If this is true,

(TCB) associated with it. The TCB contains information then instead of first saving the context of task A, and then
about the task with which it is associated. This restoring its own context, the Supervisor checks if the
information includes: corresponding server entry is open and if the server is

- the master of this task master's dependents waiting on an accept. If this is true, then no context
- state of the task (being activated, activated, already switching is done, and the Supervisor calls the procedure

activated, passive, waiting for accept, complete, to begin rendezvous. It also sets task B's tasksem

296 10th Annual National Conference on ADA Technology 1992

-i •• •a •• =

semaphore to true so that other tasks can not rendezvous The select statement implements multi-way waiting
with task B. In the Janus RTS implementation, the in Ada, with optional timeouts (the delay alternative) and
"begin rendezvous" function is also responsible for a provision for proceeding if no entry call has be.n made
moving the entry call parameters from the client's stack (the else alternative). The transformation from single
to the server's stack. For the optimization, this step is not accept statements to select statements is straightforward
performed by the "begin rendezvous" function, which as described below. Once again, task A's priority (client)
simply returns to the Supervisor. is higher than that of task B (server).

The client task executes a portion of the server task, Task B executes down to the select statement and it
i.e. the accept body as part of its own thread of control., blocks. Task A starts executing and when it reaches the
However, the body of the accept may require access to statement B.X, an entry call is made. The
the state space local to the server task. Because of this, implementation is similar to that of case 1, until the point
and because the language requires that exceptions raised when B's referencing environment is restored. At this
during the rendezvous are propagated in both the client point, in case 1, transfer of execution is made to code
and server tasks, it is necessary to perform some inside the accept body. In the case of the select statement,
administration before execution of the accept body. since it is not known apriori which accept inside the

The Supervisor code is modified to save the select will be executed, task B is waiting to jump to the
referencing environment of the client (task A). The code inside the appropriate accept. This jump statement
information saved includes A's display registers, general is executed by task A so that transfer is made to the
purpose registers, and exception handling stack correct accept statement. Hence, for the select statement,
variables. Then the dynamic link (frame pointer) of the the difference is that the client also executes the jump
server task is obtained from its saved state. This is easily statement which transfers control to the accept body of
accessible, as the Supervisor has access to task B's task the appropriate entry.
control block. The client task's dynamic link is stored in
a reserved location in the stack frame. This frame is Case 3: Delay Alternative in a Select.
marked to indicate that, if an exception occurs, it must be In the examples above, the assumption is that there is
propagated past this frame along both dynamic links, no else or delay altemative. If there is a delay alternative
Then the server tasks's dynamic frame link is restored as in a select statement, then the implementation is the
the dynamic frame link of the client task. Other normal Janus implementation if no rendezvous occurs
information restored includes task B's display registers, within the specified time. If a task does become ready to
general purpose registers, and exception handling stack rendezvous during the specified time, then the
variables. This ensures that the exception handlers of B implementation is the same as described in case 2.
are in effect when the rendezvous is executed. After B's
referencing environment is restored, transfer of Case 4: Else Alternative in a Select.
execution is made to code inside the accept body. If there is an else alternative in the select statement,

During the rendezvous, reference to the entry call then the task containing the else alternative does not wait
parameters is made via the stack pointer and any changes at all. If rendezvous is not possible, then it continues
to B's variables are made on A's stack. After the code executing if it is the highest priority task that is ready to
inside the accept statement has been executed, a call is run. If rendezvous is possible, then implementation is
made to the Supervisor to execute "end rendezvous" similar to that of case 2.
functionality. In the Janus implementation, the "end
rendezvous" function is responsible for moving A's 3.3 RESULTS OF HABERMANN-NASSI'S
parameters from B's stack back to A. This code is not OPTIMIZATION
necessary as the rendezvous was performed on task A's
stack and no parameters had been moved from task A's The results obtained for the cas-. when Habermnn-
stack to task B's stack. Instead, the Supervisor code on Nassi optimization (letting the client execute the
return from "end rendezvous" function saves the rendezvous) is applied are:
registers of server task B, and restores client task A's Description Time (in microseconds)
registers as wel as A's dynamic link. Then it checks to Normal Rendezvous time (client arrives first 1900
see if a higher priority task is ready to run, otherwise the Normal Rendezvous time (client arrives last) 2100
execution of client task A is resumed. It also sets server Habermann-Nassi (client arrives last) 1789
task B's tasksem semaphore to false so that other tasks From these results, the Habermann-Nassi
can now rendezvous with task B. optimization results in about 15 percent reduction in

rendezvous timing. In Habermann-Nassi's optimization
Case 2: Simple Rendezvous with Select. of letting the client execute the rendezvous, three context

10th Annual Naional Conference on ADA Technology 1992 297

switches arereplaced by a single context switch and two true and the tasksem semaphores are set to false, and
state switches. Hence, it is reasonable to exet a 30 each eatry's waiting list is set to empty-
percent reduction in rendezvous timing as context
switches are the most time consuming part of a 4.2 Jmplementation Of Ste-enson's Optimization
rendezvou. The reduction in rendezvous timing is not
higher due to the following reasons: There are two scenarios: a) server arrives at the

-Overlmd due to semaphore ilementation endezvous first, and b) client arrives at the rendezvous
requiring mutually exclusive access to the server task first. When the sarver arrives at rendezvous first, this

-Overhead due to two context switches being optimization is similar to that of Habermann-Nassi's
replaced by two state switches. This involves saving the op.timiaon of letting the accept body run as part of the
existing referencing environment (scope) of the client, client's thread cf control. The client task's priority is
replacing it with that of the server and then when the either equal or greater than that of the server.
rendezvous is complete, restoring the client's Implementation details are the same as in Habermann-
environment. This implies that state switches for the Nassi.
Jam sAda RTS are quite expensive. When the client arrives at the rendezvous first

(assuming that both client and server have equal
4.0 STEVENSON'S TASKING OPTIMIZATION priorities), it executes down to the entry call statement,

and makes a call to the Supervisor to perform the "er'tr
Stevenson proposed a method called "order of call" functionality.

arrival" method, in which the last task to arrive at the When the client makes the entry call, the Supervisor
rendezvous executes the rendezvous. The basis for the knows the task on which the entry call has been made.
method is that the context switch at the begiming of a Now instead of first saving the context of client task A,
rendezvous can always be avoided by letting the last task and then restoring the context of the Supervisor, the
to arrive execute the rendezvous. Stevenson does not Supervisor checks if server B's entry is open and if the
specify whether control shifts to the client after the server is waiting on an accept. Since the server is not
completion of the rendezvous, although there is little waiting on an accept, the context of task A is saved and
justification for that. It makes more sense to leave control the context of task B is restored. This results in saving of
in the executing task as long as possible. the time required to restore and then later on save the

The result of this approach is that each rendezvous Supervisor's context, before task B's context is restored.
requires only a single context switch (assuming equal Then routines are called to transfer the parameters on
priorities). Hence, this method saves one context switch the stack of task B, and the code inside the accept body
per rendezvous, at the cost of an average of one state is executed. After the rendezvous is complete, a call is
switch per rendezvous. made to perform the "end rendezvous" functionality.

This does not cause a context switch and continues with
4.1 Modifications To Tasking Data Structures the execution of the server (if no exception is raised). If

an exception is raised, it is handled normally by the Janus
During the implementation of the Stevenson Ada Runtime System.

optimization, mutually exclusive access to the server
task was needed. This was done to ensure that another 4.3 Results of Stevenson's Optimization
task could not conceivably rendezvous with the server
task, while the client is executing the body of the accept. The results obtained when Stevenson's optimixation
To implement mutual exclusion, the TCB was modified (last task to arrive execute the rendezvous) is applie. ..
to include the following variables: Description Time (in microseconds)

a. TCBREC.mutex - A semaphore used to control Normal Rendezvous time (server arrives last) 1900
the critical sections which regulate rendezvous initiation Stevenson Proposal (server arrives last and continues
and termination, execution) 1605

b. TCBREC.tasksem -A semaphore used to control Normal Rendezvous time (client arrives last) 2100
a task when it calls another task and has to wait for Stevenson's Optimization (client arrives last and
completion of the entry call. continues execution) 1795

To implement the semaphore mechanism, the wait The case when the client arrives last is similar to the
and signal routines were implemented as part of the Habermann-Nassi optimization of letting the client
Supervisor code. I he initialization code for each task's execute the rendezvous. The case when the server arrives
TCB and any associated entry variables is generated last and continues execution after executing the
when the task is initiated. The mutex semaphore is set to rendezvous has a 20 percent reduction in rendezvous

298 10th Annual National Conference on ADA Technology 1992

timing as compared to the normal Janus iplementation. statement with no code statements inside the accept
Most of the saving results from avoiding the time body.
required to save and resto the Superviso context when Task A executes down to the entry call statement BJX
Supervisor calls are made during the rendezvous and makes a call to the Supervisor to perform "entry call"

In Stevenson's order of arrival method, a single functionality. When the client makes the entry call, the
context switch is required when server arrives last at Supervisor knows the task on which the entry call has
rendezvous. Hence, it is reasonable to expect a 40 been made. Now instead of first saving the context of
percent reduction in rendezvous timing as context task A, and then restoring the context of the Supervisor,
switches are the most time consuming part of a the Supervisor checks if server B's entry is open and if
rendezvos. The reduction in rendezvous timing is not the server is waiting on an accept. Since the server is not
higher, because of the overhead due to semaphore waiting on an accept, the context of task A is saved andimplementation requiring mutually exclusive access to the context of task B is restored. This results in saving of
the server task. the time required to restore and then later on save the

Supervisor's context, before task B's context is restored.
5.0 FRENKEL'S TASKING OPTIIZATION When task B executes the accept statement, the

normal Janus Ada implementation calls the Supervisor to
Fienkel proposed an optimization that can be applied perform "selective wait" functionality, which checks to

to accept statements without bodies. An accept statement see if there is a task waiting on the entry queue fof this
that has no body does not require a state switch at the entry. If there is a task waiting on this entry queue, then
point of the rendezvous. The rendezvous, in this case, is the functionality "begin rendezvous" is performed which
merely a signal from one task to another, stating that is responsible for moving the parameters from the stack
execution has reached the point of interest (as marked by of the client to that of the server.
the entry call in the client and the accept statement in the The "selective wait" functionality has been modified
server). Such accept statements require very little so that when it detects a task waiting on the entry queue,
implementation overhead. If the client arrives first, it is it simply returns a true value to the Supervisor. It also
blocked. When the server arrives, the client is moved to does not call the "begin rendezvous" routine so that
the ready queue. If the server arrives first, it is blocked, parameters are not moved from the client to the server
When the client arrives, the server must be moved to the stack.
ready queue. In the normal Janus implementation, after the code

This optimization is easy to implement, but difficult inside the accept statement has been executed, a call is
to detect. Due to lack of access to the code generator and made to the Supervisor to perform "end rendem ous"
other parts of the compiler, it cannot be detected easily if functionality, which is responsible for moving A's
there are no statements inside the accept. A compiler parameters from B's stack back to A. This code is not
dependent pragma could be used to indicate that there are necessary as no actual rendezvous was performed and no
no statements inside the accept. The code generator parameters had been moved from task A's stack to task
could use this information to avoid generating code to do B's stack. Instead, the Supervisor code is modified so
anything except the blocking and unblocking of the first that the "end rendezvous" functionality does not call any
task to arrive at such an accept. of the Ada RTS routines.

Instead, the Supervisor code saves the registers of
5.1 Implementation of Frenkel's Optimization server task B, restores task A's registers, checks to see if

a higher priority task is ready to run, otherwise it resumes
There are two scenarios: a) client arrives at the the execution of client task A.

rendezvous first, and b) server arrives at the rendezvous
first. In order to implement Frenkel's optimization, some 5.1.2. Server Arrives at the Rendezvous First
of the modifications made to implement Habermann-
Nassi and Stevenson optimizations have been reused. Task B executes down to the accept statement and is
But, in order to understand the implementation of blocked waiting for the client to arrive. When the client
Frenkel's optimization, a complete description has been makes the entry call, the Supervisor knows the task on
presented. which the entry call has been made. Now instead of first

saving the context of task A, and then restoring the

5.1.1 Client Arrives At the Rendezvous First context of the Supervisor, the Supervisor checks if server
B's entry is open and if the server is waiting on an accept.

In the description below, Task A's priority (client) is Since the server is waiting on an accept, task A is
higher than that of task B (server). Task B has an accept allowed to continue execution without restoring and

10th Annual National Conference on ADA Technology 1992 299

saving the Superviso's context This also results in number of processes that are actually executing in the
saving of the time required to restore and then later on final target code. Habermann-Nassi and Shauer have
save the Supervisor's context, suggested that one way of performing process removal,

When task A executes the entry call statement, the in Ada, is to move, whenever possible, to a monitor-like
normal Janus Ada implementation calls the Supervisor to representation of shared objects, for example, a shared
perform "entry call" finctionality, which checks to see if object on which all operations must be mutually
the task to whom the entry call is made is ready for exclusive. The normal representation of this object
rendezvous. If there is a task ready, then the "begin would include the following synchronizing task:
rendezvous" functionality is performed which is task SYNCHRONIZER is
responsible for moving the parameters from the stack of entry OPI(...);
the client to that of the server. The "perform entry call" entry OP2(...);
function has been modified so that when it detects a task
ready forrendezvous, it simply returns a true value to the end SYNCHRONIZER;
Supervisor. It also does not call the "begin rendezvous"
function so that parameters are not moved from the client task body SYNCHRONIZER is
to the server stack. begin

In the normal Janus implementation, after the code loop
inside the accept statement has been executed, a call is select
made to the Supervisor to perform "end rendezvous" ar -ept OPI (...)do

function, which is responsible for moving A's ...
parameters from B's stack back to A. This code is not end OPI;
necessary as no actual rendezvous was performed and no or
parameters had been moved from task A's stack to task accept OP2(...) do
B's stack. Instead, the Supervisor code is modified so ...
that the "end rendezvous" function does not call any end OP2;
other Ada RTS routines, or

Instead, the Supervisor code puts the server back in ...
the ready queue, no context switches are made and the end select;
client continues execution. end loop;

end SYNCHRONIZER;
52 Results of Frenkel's Optimization Mutually exclusive behavior of these operators is

guaranteed by the serial execution of accept statements
The results obtained when Frenkel's optimization is by the single synchronizing task. A compiler that
applied are: implements this optimization removes the synchronizing
Description Time (in microseconds) task altogether. Each accept statement is replaced by a

Normal Rendezvous time (server arrives last) 1900 procedure, and the client's entry calls are replaced by
Frenkel's Optimization (server arrives last) 831 ordinary procedure calls. Mutual exclusion is effected
Normal Rendezvous time (client arrives last) 2100 through semaphore operations provided in the RTS;
Frenkel's Optimization (server arrives last) 831 these operations are inserted before and after each
This optimization results in the rendezvous timing procedure call, or at the start and finish of each procedure

reduced by more than 50 percent. But this optimization body. The effect of this transformation is to remove the
can only be applied when the servers have accept context switches at the cost of performing primitive
statements without bodies. If an Ada application is operations on a semaphore.
designed such that accept statements are only used for
synchronization, then this optimization will result in at 6.1 Monitors and Ada Tasks
least 50 percent saving in rendezvous execution time.

Monitors were conceived by Brinch Hansen [9] and
6.0 HABERMANN-NASSI/SHAUER'S TASKING further developed by Hoare [10] as modules for

OPTIMIZATION managing mutually exclusive access to shared
concurrently accessible resources. A monitor has a user

The type of compiler optimizations proposed by interface that provides a set of procedures callable by
Habermann-Nassi and Shauer [5] are generally known as users, a mechanism for sequential scheduling of calls by
process removal optimizations. These are aimed at concurrently executing users, and an internal mechanism
reducing the number of context switches by reducing the for suspending and subsequently reawakening processes

300 loth Annual Naflonal Conference on ADA Technology 1992

initiated byusercalls. A monitor contains declarations of e. Replace each entry by the corresponding
local data, a set of procedures callable by users of the procedure call.
monitor, and some initializing statements. At most one f, Replace the task initialization by a call to the start
procedure of the monitor may be executing at any given procedure.
time. When a user calls a procedure of the monitor, and To implement this optimization, the compiler can
there is no other concurrently executing procedure, the recognize when this optimization is possible and
call can be executed immediately. If the monitor is generate code accordingly. Failing this, a compiler-
already executing, the calling procedure is placed on a dependent pragma can be supported that allows the
monitor queue from which called procedures are programmer to request that the associated task be
executed in the order of call. replaced by a monitor. Removal of a task not only

Both monitors and Ada tasks provide the user with a reduces the number of context switches required, but
set of callable resources (monitor procedures, task also reduces the general overhead of task management.
entries) that are serially reusable in the sense that only Both these implementation options require changes to
one procedure or task entry may be executing at a given the code generator portion and other parts of the Ada
time. However, the control mechanisms for scheduling compilation system. Due to lack of access to the source
monitor calls and task entries are very different. code for the syntax and semantic analyzer and code
Completion of the monitor call returns the monitor to an generator, it is impossible to recognize when this
"initial state" in which it may execute the next monitor optimization is possible in order to implement it.
procedure on its input queue. In contrast, completion of However, for comparison purposes and to determine
an accept statement in a called task is followed by the efficiency of this optimization, a monitor was
execution of the statements following the accept developed in Ada for controlling access to data common
statement until te task terminates or until another accept to a group of processes (consumer-producer scenario).
statement is encountered. Thus, an entry call can execute The data may be set by nne or more processes or used by
only if the task reaches a control point where the entry one or more processes. The monitor developed is used to
call is expected. One consequence of this difference is control the reading and writing of data. Read and write
that waiting entry calls for a task are placed on different operations are mutually exclusive and will not interfere
queues for each entry name while waiting procedure with one another.
calls on a monitor are all placed on the same queue. The monitor is written as a Ada package whose

This difference in program structure reflects the fact visible part contains subprogram declarations and some
that Ada tasks consist of sequentially executable type declarations. The package ReadWriteManager
statements while monitor procedures have no inherent provides two procedures Read and Write. Two possible
sequential order. Sequential execution of monitor implementations are considered for
procedures must be realized by explicit scheduling using ReadWrite-Manager, the first using semaphores and
a nonlocal variable or semaphore, while sequential the second using the Ada rendezvous mechanism.
execution in Ada is inherent in the control structure. The a. This is the implementation that results after the
monitor call mechanism is effectively a select statement server task has been converted to a monitor. The
with a common queue for all procedures. Operations of a semaphore mechanism is implemented as an assembly
monitor, like calls to subprograms contained in a language routine that uses the Intel 80386 bts (bit test and
package, cause the monitor to "wake up", to perform the set) instruction for the wait mechanism and the btr (bit
required operation, and to go back to sleep. test and reset) instruction for clearing the bit once the

process issuing the wait operation has completed.
6.2 Implementation of Habermann-Nassi/Shauer's b. This is the normal implementation when no

Tasking Optimization optimization is performed. This implementation of
ReadWrite.Manager uses the Ada rendezvous

The transformation of a server to a monitor is mechanism. The procedures read and write inside the
generalized by Shauer as follows: package ReadWriteManager call entries read and

a. Move all statements that are outside a rendezvous write in an Ada task contained inside the same package.
into the preceding rendezvous.

b. Restructure each accept statement as a procedure. 6.3 Results of Habermann-Nassi/Shauer's Tasking
c. Encapsulate in a "start procedure" all statements Optimization

that precede the first accept statement.
d. Replace each guard by a test, such that a closed The results obtained when this optimization is

guard results in a suspension on a semaphore (or similar applied are discussed below:
entity).

10th Annual National Conference on ADA Technology 1992 301

Case I: One Consumer task and one producer task only one block of an Ada task before the communication
present in the system. takes place. Hence, although monitors are very

The time measured was for the consumer to read a beneficial, this optimization is dependent on the
data item after the producer has done a write. In the table application.
below, the rendezvous read time is the time for a read
operation using the rendezvous implementation, and the 7.0 SUMMARY OF RESULTS,
monitor read time is the time taken for a read operation RECOMMENDATIONS AND CONCLUSIONS
using the monitor implementation.
Description Time (in microseconds) Proposals for increasing the speed of Ada

Rendezvous Read time 2050 rendezvous have been tailored in a Ada Runtime System.
Monitor Read Time 210 These include a) Habermann-Nassi's optimization of

letting the client execute the rendezvous, b) Stevenson's
Case 2: Five consumers and five producers present in the optimization of letting the last task to arrive execute the
system. rendezvous, and c) Frenkel's optimization of accept

The time is measured to perform a read when a high statements without bodies. Experiments were performed
degree of contention exists in the system - specifically to determine the performance improvements resulting
while one task is writing data and there are two from these optimizations.
consumers and two producers queued on calls to the Habermann-Nassi's optimization of letting the client
monitor. These tasks are blocked by the mutual execute the rendezvous resulted in a 15 percent reduction
exclusion mechanism. The timing measured are for a in rendezvous time over the normal implementation. The
consumer that has issued a read and is queued after four reduction in rendezvous timing was not more due to a)
read/write calls. In the rendezvous implementation overhead of semaphore implementation requiring
scenario, the producer performs a rendezvous with the mutually exclusive access to the server task and b)
write entry, while two producer and two consumer tasks overhead due to state switches - state switches for the
have issued entry calls and are waiting to rendezvous. Janus Ada RTS are quite expensive. Stevenson's
The time measured is for a fifth task (consumer) that has optimization resulted in a 20 percent reduction in
issued a read call to get the data. rendezvous time over the normal implementation. The
Description Time (in microseconds) reduction in rendezvous timing was not more due to

Rendezvous Read time 8023 overhead of semaphore implementation requiring
Monitor Read Time 5129 mutually exclusive access to the server task. Frenkel's

optimization resulted in a 50 percent improvement in
The results indicate that monitors are consistently rendezvous time, but this optimization can only be

more efficient than a server task implemented by a applied to accept statements without bodies.
normal Ada method. But as case 2 indicates, the benefits The transformation resulting from Habermann-
of the monitor are reduced in the presence of a high Nassi's and Shauer's optimization of converting a server
degree of contention. When contention is present for to a monitor was programmed and its efficiency
both producer and consumer tasks, the time taken for a compared with that of a normal Ada implementation.
single read or write increases. This is because the The results indicate that conversion of a server to a
monitor is blocking both clients sending and receiving monitor results in substantial reduction in rendezvous
data. For the normal rendezvous implementation, the time when the contention in the system is low, but this
time for a single read does not increase in proportion to time increases substantially when high contention is
the entry calls being made, as separate entry queues exist present in the system. Also, conversion of a server results
for each entry, and the select statement decides which in serialization of the software, as it forces all code to be
accept statement to execute in a nondeterministic executed as part of the monitor procedure call. Normally,
fashion. Hence, even though there are three consumers the code after the accept statement is executed
and two producers that are waiting on the entry queues, concurrently with the resumed client task. On uni-
the third consumer could execute the read entry call as processor systems, this has no effect but this can result in
early as the third rendezvous or as late as the fifth performance degradation on a distributed system. The
rendezvous. results of this effort show that tasking optimizations are

Another additional overhead of the monitor in beneficial and result in improved overall performance of
situations of contention is that client tasks are blocked a real-time application.
twice before the communication takes place, once at the The overall conclusion is that current Ada tasking
mutual exclusion mechanism and once if the shared data optimizations do improve Ada tasking performance. The
structure is empty o- full. On the other hand, there can be significance of these improvements is application

302 10th Annual National Conference on ADA Technology 1992

dependent. For real-time embedded systems, even a 20 8. G. P. Riccardi and T. P. Baker, "A Runtime Supervisor
percent improvement in rendezvous time could be the to Support Ada Tasking: Rendezvous and Delays,"
difference in meeting their timing constraints. When Proceedings of the Ada International Conference, 1985,
serialization is undesirable, the recommendation for Ada pp. 329-342.
compiler vendors is to apply, whenever possible,
Habermann-Nassi's optimization (letting the client 9. P. Brinch Hansen, Operating System Principles,
execute the rendezvous) and Stevenson's order-of- Englewood Cliffs, NJ: Prentice-Hall, 1973.
arrival method. For accept statements without accept
bodies, Ada compiler vendors should implement 10. C. A. R. Hoare, "Monitors: An operating system
Frenkel's optimization, as this will result in a substantial structuring concept", Communications of the ACM, 17,
improvement in rendezvous time. Conversion of a server pp. 549-557, Oct. 1974, pp. 34-46.
to a monitor is much harder, as it is extremely difficult to
detect situations where it could be done. Compiler
vendors could support a pragma that allows the
programmer to request that the associated task be
converted to a monitor. On uni-processor systems,
conversion of a server to monitor results in substantial
benefits in applications where contention is likely to be
low.

REFERENCES

1. CECOM Software Engineering Directorate Technical
Report C02 043NW 0001 00,"da Tasking Performance
Issues", prepared by LabTek Corp., 23 February, 1990.

2. Habermann, A.N. et. a., "Efficient Implementation of
Ada tasks", Carnegie-Mellon Univ., 1980.

3. Stevenson, D. R., "Algorithms for Translating Ada
Multitasking", ACM SIGPLAN Symposium on Ada, ABOUT THE AUTHORS
Boston, Nov. 1980, pp. 166-175.

4. Frenkel, G., "Improving Ada Tasking Performance", Arvind Goel is the founder and president of Unixpros
Proc. ACM International, Workshop on Real-time Ada Inc., a firm specializing in research and development of
Issues, Ada Letters, Vol. 8, No. 7, 1987. Ada real-time systems, speci.ically in issues relating to

Ada tasking, scheduling, Ada runtime system design
5. Shauer, J. Vereinfachung von prozess--Systemen using POSIX real-time extensions, etc. He has a MS
durch sequentialisievung, 30/82, Institut for Informatik, degree in Computer Science from the University of
Bericht. Delaware.

6. T. P. Baker and G. A. Riccardi, "Ada Tasking: From
Semantics to Efficient Implementation", IEEE Software,
Volume 2, Number 2, March 1985, Mrs. Mary E. Bender is a computer scientist with

the Software Engineering Directorate, U.S. Arm),
7. G. A. Riccardi and T.P. Baker, "A Runtime Supervisor Communications-Electronics Command, Ft. Monmouth,
to Support Ada Task Activation, Execution and NJ. She is the project leader for their technology pi 3gram
Termination", Proceedings of the IEEE Computer in Ada real-time applications and runtime environments.
Society 1984 Conference on Ada Applications and She received a B. A. degree in Computer Science from
Environments, October, 1984, pp. 14-22. Rutgers University, New Brunswick, NJ.

10th Annual National Conference on ADA Technology 1992 303

Ada 9X PROJECT PANEL

Moderator: Chris Anderson, Elgin AFB

304 10th Annual National Conference on ADA Technology 1992

A REUSABLE ADA PACKAGE
FOR

SCIENTIFIC DIMENSIONAL INTEGRITY

George W. Macpherson
SofTech, Inc.

1330 Inverness Drive, Suite 315
Colorado Springs, CO 80910-3755

Abstract -- Our recent ezperience In have made contributions In some applications,
operations Desert Shield and Desert Storm has but now the Ada language makes it very easy to
clearly demonstrated the criticality of software
reliability and that truly reliable software is incorporate into scientific software a classic
Indeed possible. One tool we can employ to technique which has been used to promote
enhance our software reliability is the classic computational reliability for centuries.
scientific computational reliability technique
of dimensional integrity, or units checking. 2.
The Ada programming language makes it easy
to implement units checking. A In computation in the physical sciences,
PHYSICAL QUANTITY type is declared which the convention is adopted that an algebraic
has entries for both the floating point nuneric symbol representing a physical quality, such as
value of a variable, and integer entries for F, P, or V, stands for both a numeric value and a
exponents of the fundamental physical units of
mass, length, and time. The Ada feature of unit. For example, F might represent a force of
"operator overloading" allows creation of 10 lbs., P a pressure of 14.7 lbs,/in2 , and V a
symbols to perform arithmetic and relational velocity of 32.2 ft/sec.
operations on these variables. For example, When we write !he classic formula for
the multiplication operation "" is overloaded hen e w c lassic formulatfor
so that the numeric values of the two operands motion under constant 2celeration:
are multiplied, and the exponents of their X=VT + 1/2 AT2 ,
fundamental units are added. An ASSIGN
function is then written to check that the units if X is in meters, then the terms VT and 1/2
computed in an expression are equal to the
units of the variable to which a new numeric A T2 must also be in meters. Suppose T is in
value is assigned. Further reliability Is added seconds. Then the units of V must be meters/sec
by "Information hiding" through type limited and those of A must be meters/sec 2 . (Of
private, and reusability and modifiability are
added by making the package generic. For course, the factor 1/2 is a pure number,
scientific software, this package is as reusable without units.) As a numeric example, let V =
as package standard. 10 meter/sec, A = 4 meters/sec 2 , T = 10 sec.

Then the above equation is written:
Index Terms -- Physical quantity, fundamental
physical units, strong typing, operator X - 10 meters x 10 sec +
overloading, information hiding, generic. sec

1. INTRODUCTION 1/2 x 4 meters x 100 sec 2
Many techniques have been employed sec2

over the last 20 years to measure software
quality and to predict the level of software The units are now treated like algebraic
reliability. These techniques include: formal The units ae n t e lire aeraic
specifications, mathematical proof of symbols. The sec's cancel in the first term and
correctness, software and quality metrics, and the sec2's in the second; thus
mathematical models baed on hardware
reliability techniques. All of these techniques X = 100 meters + 200 meters = 300 meters

10th Annual National Conference on ADA Technology 1992 305

From the example equation above, we
Recall also that the units of all physical could write

quantities can be expressed in terms of the
fundamental units of Length, Mass, and Time, V = 10 meters/sec = 10.0 meters1 sec-1

such as in our standard Meter-Kilogram-
Second or MKS system.* If Force = Mass x A - 4 meters/sec2 - 4.0 meters1 sec -2

Acceleration, then the units of force are Mass x
Length/Time 2 , and so on for torque, pressure, T = 10 sec - 10.0 sec1

energy, etc.

3. ADA IMPLEMENTATION X meters1

To Implement scientific dimensional To represent a physical quantity in
Integrity In Ada, a first and natural approach software, we can create a record which contains
would be to use derived types and employ the a floating point entry to represent the numeric
Ada strong compile time type checking. In the value, and three Integer entries which
example above, we could declare derived types represent the unit of the physical quantity in
for length, velocity, acceleration, and time. But terms of exponents of the fundamental units of
In developing a general technique applicable to Length, Mass, and Time. The scheme is
all scientific programming, a severe problem illustrated In Figure 1.
soon becomes apparent: We would need a
separate derived type declaration for every
conceivable kind of unit, such as pressure, NUMERICVALUE EXPONENTS OFUNITS
torque, momentum, etc. The even more severe
problem of derived types for Intermediate
results becomes apparent from the very simple Length Mass Time
example equation above. The equation contains
the factor T2 , time-squared. If we have a V 10.0 1 0 .1
derived type for time, we must also have a
derived type for time-squared. Further, to
compute the term AT2 , we must overload the A 4.0 0 2
multiplication operator to accept operands of
type acceleration and time-squared, and return
a value of type length. Thus, for even simple T 10.0
equations, the use of derived types becomes
burdensome; for complex equations, it becomes
impractical. Gehani5 addresses at length the X 1 0 0

Issue of "Units of measure versus derived - - -

types" and concludes that the units approach is Figure 1. Computer Representation
better. of Physical Quantities

A much simpler technique is to develop
an abstraction of all physical quantity types and
emulate the method we use for units checking in Certain features of the Ada language
manual calculations, that is, express the make this scheme very easy to implement.
problem only in terms of the fundamental units These features are:
of Length, Mass, and Time.

___________________a. Strong Typing
b. Record Descriptions

Of course, if we add the fundamental unit 0 for c. Operator Overloading
charge, we can express all electrical units such
as volts, Ohms, Webers, etc., in the MKSQ The features of strong typing and record
system. For simplicity, this paper deals only descriptions allow us to create a template for
with Mass, Length, and Time units.

306 10th Annual National Conference on ADA Technology 1992

physical quantities. To implement this in Ada, package UnitsPack is new
we should first realize there are many systems Units_Integrity
of fundamental units (Meter, Kilogram, Second, (UnitsType => MKS-Units,

Centimeter, Gram, Second, ... Foot, Slug, Numeric_Value => Float);
Second, ...), and further that the concept of use UnitsPack;
dimensions extends beyond physics problems (a X:PHYSICAL_QUANTITY:=
subject addressed later in this paper). To form Init (NumericalValue => 0.0
a record template for creating items of type Unit => (Meters => 1,
PHYSICALQUANTITY, we need to know the. Kilograms => 0,
system of units the user wishes to use and the Seconds =>0));
numeric precision to be employed. We can do V:PHYSICALQUANTITY:=
this through a package specification as follows: Init (Numerical_Value => 10.0,

Unit => (Meters => 1,
generic Kilograms => 0,

type UntsJype Is (< >); Seconds =>-1));
type NumericValue Is digits < >;

package Units_Integrity Is
U nltsException:exception; end Example;
type UniLArray is array

(UnitsJype) of Integer; and so on for A and T.
Z:UnitArray;
type PHYSICALQUANTITY Is limited Of course we need to provide the user

private; with a means to compute with these objects.
function Init The Ada feature of "operator overloading" allows

(NumericalValue:Numeric_Value; us to give new meanings to the arithmetic
Units:Unit Array) operators, +, -, ', /, **, In order to perform

return PHYSICAL_QUANTITY; arithmetic operations on these variables of type
PHYSICALQUANTITY.

For example, the multiplication
private operator "*" may be overloaded to operate on

type PHYSICALQUANTITY is PHYSICAL_QUANTITY types. In multiplication
record of PHYSICALQUANTITYs, we wish to multiply

Value:Numeric_- Value; the numeric values and add the exponents of
Unit:UnitArray; dimensions. To do this, we can write:

end record;
end UnitsIntegrity; function "*" (X,Y: PHYSICALQUANTITY)

return PHYSICAL_QUANTITY is
The reason for making begin

PHYSICALQUANTITY limited private is to for I in UnitArray 'range loop
enforce use of an Assign procedure. This issue Z (I):=X.Unit(I)+Y.Unlt(I);
will be discussed later. end loop;

Now having a type definition and an return (X.Value*Y.Value, Z);
initialization function, we can instantiate the end "*W;
Units-Integrity package, and create and
initialize objects for our equation of distance In this example, the operator '"" is
under uniform acceleration: extended to perform the operations we require

on variables of type PHYSICAL_QUANTITY.
with UnitsIntegrity;
procedure Example is

type MKS_Units is (Meters, Kilograms,
Seconds);

10th Annual National Conference on ADA Technology 1992 307

To incorporate an addition operator for
PHYSICAL_QUANTITY we can write: which would raise UnitsException.

function "+" (X, Y: PHYSICAL_.UANTITY) As noted above, type
return PHYSICAL_QUANTITY is PHYSICALQUANTITY Is limited private. Had we

begin made the type unlimited or even limited, the
if X.Units /. Y.Units then assign operator ":." would be available to the

raise Units_Exception; user with the risk that assignment could take
else place without units being checked.

return (X.Value + Y.Value, The complete package specification and
X.Unit); body of Units_lntegrity is listed in Appendix A.

end if; A sample program for computing motion under
end "+"; constant acceleration is shown in Appendix B.

In this case, we first check the units of 4. "'JLITIE.'
the operands to insure that we are not adding In creating software, we must address
apples to oranges, then add the numeric values certain "Bilities." Among these are:
of the operands. If the units of the two operands
are not equal, "+" raises the exception a. Reliability
UnitsException, and further operation is b. Portability
determined by a UnitsException exception c. Reusability
handler of the users choice. d. Modifiability

In Ada, we cannot overload the assign
operator ":-", but we can write a very simple Concerning reliability in this proposed
procedure which will provide assignment and do package, we will claim that the package itself is
what we really want to do - check for very short, very simple, and consists of very
dimensional Integrity. The Ada code for this Is: stereotyped code; therefore, should be quite

reliable. Concerning portability, the
procedure Assign package is written in full compliance with

(Source: outPHYSICALQUANTITY; ANSI/MIL-STD-1815-A, and contains no
Target: In out PHYSICALQUANTITY) is implementation-dependent features and,

begin therefore, should be portable.
if Source.Unit/=Target.Unit then Concerning reusability, the package is
raise UnitsException; applicable to any effort addressed to scientific

else computation. A further reusability feature of
Target:.Source; the Dimensional Integrity Package is that it is

end if; generic and the user has the option to specify
end Assign; the precision of the floating point value of a

PHYSICALQUANTITY variable, and to specify
To go back to our original equation example, we the fundamental units to be monitored, e.g.,
can write: Length, Mass, and Time, or Length, Mass, Time,

and Charge. But these are Ada implementation
Assign (Source -> V*T + 0.5 *A*T**2, details which are covered In the next section.

Target => X); Concerning modifiability, it is clear that
there is one major modification we may wish to

which will operate correctly. However, if we make once we have this package incorporated
had made a coding error and used an asterisk into an application. The Package for
instead of a plus sign in the addition of the two Dimensional Integrity requires more storage
terms, we would have: and more CPU time than existing methods, since

units exponents are tracked and manipulated.
Assign (Source => V*T * 0.5 "A*T**2, We read often in the literature today that since

Target => X); hardware is developing so rapidly, we don't

308 10th Annual National Conference on ADA Technology 1992

have to worry so much about storage space and fundamental unit for temperature, and a
CPU time. However, It has been the experience fundamental unit for light intensity, we could
of this author that In real-time applications, express the units of thermodynamics and optics.
storage and CPU resources are still a major The user of this package can select the
concern, and probably will be for some time to fundamental units through the generic
come. Therefore, the major modification we parameter, UnitsType, in line 3, and can
may wish to make Is to drop the units checking select precision through the generic parameter,
altogether. Once we have executed every line of type Numeric_Value, in line 4. l' our example
code In our program, all units checks have been (Appendix B), we have instantiated the package
performed and we may very well want to turn with six significant digits and the fundamental
off units checking. units of Slugs, Feet, Seconds on line 3-6 of the

If computational speed and memory applications program. It would be possible to
requirements dictate, applications software specify an absolute precision rather than a
developed with the Scientific Dimensional relative precision by using the reserved word,
Integrity Package can easily be reverted to "delta", Instead of "digits" on line 4, In the
performing only the numerical operations, with Dimensional Integrity Package.
units checking eliminated. This can be done by
compiling the applications software with a 5.2 Information Hiding
different package. This new package would One feature of the Ada language that
contain the declaration: greatly promotes reliability is "information

hiding." That Is, the structure of data
Subtype PHYSICAL-QUANTITY is representation Is kept private within a portion
NumericType; of a utility package and variables of the private

type may be manipulated by the applications
The arithmetic and relational operators would program only by using the functions and
not be overloaded, and the Assign procedure in procedures provided In the utility package
the new package would not perform units specification. Thus, In our example on lines
checking. Also, the Init function would not deal 10-11 of the applications program, when the
with units exponents. The applications software variable X has been created with the dimension
developed with the Dimensional Integrity of length, the units of X can not be changed by
Package can be reverted to a non-dimensional subsequent statements. Only a new call on the
checking mode by making no changes other than function Init, with X as a receiver, can give new
to reference the new package. Such a package, values to the units of X.
*Units_lntegrity_Retro", is listed in Appendix In this version of our package, we have

made PHYSICAL,_QUANTITY a limited private
type (line 8). This enforces use of the Assign

5. IMPLEMENTATION DETAILS procedure to assign new values to the numeric
Since Ada Is very powerful, it is part of X, and thus, units checking is performed

necessarily somewhat complicated. While the each time the variable is assigned a new
sections above present the major rational and numeric value. If PHYSICAL-QUANTITY were
Implementation concepts of the Dimensional only private Instead of limited private, the
Integrity Package, certain implementation standard operations of assignment, equality, and
details need to be addressed. inequality would be available to the applications

program, and units integrity could be
5.1 Generics compromised.

The version of the Dimensional Integrity
Package listed In Appendix A has. been made 5.3 Multiple Overloading
generic to provide for a user-defined system of In Section 3 we showed an example of
significant digits, and a user-defined system of overloading the "*" operator to multiply two
fundamental units. We mentioned earlier that if variables of type PHYSICALQUANTITY, but, of
we included a fundamental unit for charge, we course, we need to multiply a floating point
could express electrical units. If we included a times a PHYSICAL_QUANTITY, and to be user-

10th Annual National Conference on ADA Technology 1992 309

friendly, we may as well allow the reverse states, "In everyday life as well as in science,
order, a PHYSICALQUANTITY times a floating engineering, banking, sampling inspection, ... ,
point. Thus, three overloadings of "*" are etc., the Importance of specifying the units of
required, the specifications for which are the quantity or quantities is universally
shown on lines 14 through 18. Similar recognized ..." In a later paper, Gehani 5

considerations apply to the division operator discusses the merits of using derived types
*/" but for addition, subtraction, and the versus units of measure, concluding that the
relational operators, this version of the units of measure approach is better. House3

packages requires that both operands be of type gives a critique of Gehani's first paper and
PHYSICALQUANTITY. Also, since units proposes a compiler extension which would
checking is performed repeatedly, the perform a static check of units at compile time.
procedure Mix-Check has been Included in the He also addresses the problem of fractional
package body. powers of fundamental units, such as one would

get when taking the square root of speed. Karr6. otE aPPUtIoN c and Loveman 4 take a linear algebra approach to
As noted above, the concept of the problem and address the problem of unitdimensional analysis extends beyond problems conversions (feet, inches, meters, ...) with the

in physics. In the NORAD Tactical Decision Aid
TDA) program there Is a need to track the concept of "commensurate units." The most

amount of fuel remaining in an Interceptor, recent paper the author has read on the subject
given parameters such as initial fuel, fuel is by Hilflnger9 . He proposes representing a
consumption rate, interceptor speed, distance physical quantity by a record type having a
traveled, and time. A simplified overview of the single element to hold the numeric value, and
way the UnitsIntegrIty is employed in TDA is integer discriminates to hold the values of
shown in Appendix D. exponents of basic units. Hilfinger quotes a

The parameters of the problem are set remark by O'Keefe8 which prompted him to
by the Init function, the only means of publish his paper:
establishing unit dimensions without checking.
Time_Flown and the Fuel-Remaining are lam a e& idn mit da ISIC],
computed under the units scrutiny of the
arithmetic operators and the Assign procedure. iOcted

The Units_Integrity concept can be
applied to any situation involving clearly 8. .. QNST EFI
definable units. To apply the package to a It is certainly clear that the process of
payroll problem, the user could instantiate the units checking will increase costs at
package with: development time and we must project whether

type PayrollUnits Is (Employees, or not the benefits would justify the
types investment. An actual Cost/Benefit analysiv
Dollars, Hours); will be possible only after data has been

To address software estimates, the package could collected on projects using the concept, but here
be instantiated with: are three items we can keep in mind in making

our projection:

type SoftwareUnits is (Dollars, 8.1 Hardware Precedents
Linesof.Code, Days); To gain insight on why hardware

7. OTHER APPROACHES development has so greatly out-stripped
The concept of employing dimensional software development, the author has attended

analysis in software was proposed long before presentations by the hardware people. It seems
the advent of the Ada language. The earliest they are forever in a real estate battle. When
reference to the subject this author has read is you have a huge amount of functionality that has
the 1977 Gehani paper. 1 In this paper he to go on a one square inch chip, territorial

310 10th Annual Noional Conference on ADA Technology 1992

concerns become prime. Yet in the final result, presented here adequate for his own purposes,
It appears to me that they (at least today's and believes two ideas are present here which
survivors) have found it worthwhile to invest have not been published before:
the real estate, time, and money to Include self-
checking in the chip. Their decision is more 1. Conveying the kind and number of
whether to Include fault isolation along with units employed through a generic
fault detection, rather than "is fault checking enumeration type.
worthwhile."

2. Turning off units checking in a
8.2 Traditional Engineerina validated program with a retrograde

True today, as It has been long before package.
computers arrived, engineers perform a
dimensional analysis of the equations of any new The software engineer who wishas to
development project. The process is time employ true engineering in his/her code will
consuming and tedious, but long experience has select methods which best fit the application,
proved that It is extremely cost-effective, and in vigorously exercising these basic

principles, will no doubt discover techniques
8.3 Programming Language Philosophy The which would not be found by academic
philosophy of programming languages has speculation.
changed. Back in FORTRAN days, the thrust was
to make It as quick and easy as possible for the 10. ACKNQWLEDGEMENTS
programmer to get his program running. We I wish to thank Michael D. Colgate of
didn't even have to declare out variables - the Loral Command and Control Systems, who
compiler figured that out from context. But, we originated many of the ideas expressed here, and
discovered that maintenance, not initial the ANCOAT Technical Program Committee, who
development, was the major source of cost. made helpful recommendations. I also wish to
Now, In Ada, we not only have to declare our thank Darren Stautz, Kirstan Vandersluis, and
variables, but also declare their type, give Mike Winterbottom of SofTech, and Gordon
their binding mode when used as subprogram Girod of Pentastar Support Services, Inc., for
parameters, and perform other time- review and suggestions, and I thank Marti
consuming and expensive chores at development Devine of SofTech for technical preparation of
time. I submit this cost has been justified and this paper.
that we can reasonably expect that
incorporating the basic, fundamental
engineering principle of dimensional analysis
will also be justified.

9. QN
Like O'Keefe, this author is astounded

that the basic and fundamental engineering
principle of dimensional analysis has not
become a cardinal rule in software applications.
There are several ways to go about it, and none
are as tedious as the manual methods routinely
and religiously employed by physicists and
engineers. Compiler modification which would
perform units verification at compile time
would certainly be nice, although I'm not
holding my breath until this is incorporated in
ANSI/MIL-STD-1815, but great enhancement
of software reliability is possible with existing
compilers. The author has found the package

10th Annual National Conference on ADA Technology 1992 311

11. EFE S
1. Gehani, N. 'Units of Measure as a Data

Attribute." CompuL Lang. 2, 3 (1977).
93.111.

2. Hinfmger. P.N. "Abstraction Mechanisms and
Language DesigG.." MIT Press, Cambridge.
Mass., 1983.

3. House, R.T. "A Proposal for an Extended
Form of Type Checking of Expressions.
Comput J. 26, 4 (Nov 1983), 366-374.

4. Kar, M., and Loveman, D.B. III "Incorporation
of Units into Programming Languages."
Commun. ACM 21, 5 (May 1978) 385-391.

5. Gehani, N. "Ada's Derived Types and Units of
Measure." Softw. Pract. Exper. 15. 6 (Jun
1985), 555,569.

6. O'Keefe, R.A. 'Alternatives to Keyword
Parameters." ACM SIGPLAN Not. 20, 6
(Jun 1985), 26-32.

7. Zorn, B.G. "Experience with Ada Code
Generation." Tech. Rep. UCB/CSD
85/249, Computer Science Division, Univ.
of California, Berkeley, Jun 1985.

8. O'Keefe, R.A. "Alternatives to Keyword
Parameters." ACM SIGPLAN Not. 20, 6
(Jun 1985), 26-32.

9. Hilfinger, P.N. "An Ada Package for
Dimensional Analysis." ACM
Transactions on Programming Languages,
Vol 10, No. 2, (Apr 1988).

The Author:
George W. Macpherson received a B.S. degree in
Electrical Engineering from the USAF Institute
of Technology, Wright-Patterson AFB, Ohio, and
M.S. degrees in Electrical Engineering and
Mathematics from the University of Michigan,
Ann Arbor. He served four years on the
Computer Science faculty of the Air Force
Academy, where he wrote a textbook on the
ALGOL programming language. He has extensive
experience in C3 and scientific software, and has
originated and taught courses in the Ada
language. He presently serves as Chief Scientist
for SofTech Colorado Springs Operations, is
responsible for Ada training at the Colorado
Springs facility, and supports the NORAD
Granite Sentry Software Tools Group. Readers
may write to G.W. Macpherson at SofTech, Inc.,
1330 Inverness Drive, Suite 315, Colorado
Springs, CO 80910.

312 10th Annual Nalional Conference on ADA Technology 1992

APPENDIX A (1). UNITSINTEGRITY PACKAGE SPECIFICATION

I generic
2 -- An Ada package for Scientific Dimensional Integrity.
3 type Units Type is (<>); -- User specifies the system of units.
4 type Numertc Value is digits <>;-- User specifies significant digits.
5 package Units Integrity is
6 Units Exception:exception; -- Raised when units integrity is violated.
7 type Unit Array is array (Units type) of integer;
8 type PhysI al Qat

tye sica-Quantity is limited private;-- Enforces use of 'Assign'.

10 -- Arithmetic operators:
11 function "+" (X,Y:Physical Quantity) return Physical Quantity;
12 function "-"(X,Y:Physical--uantity) return Physical Quantity;
13 function "-"(X :Physical7Quantity) return Physical_Quantity;
14 function "*" (X,Y:Physical Quantity) return PhysicalQuantity;
15 function "*"(X:Physial Qantity;
16 Y:Numeric Value) return Physical_Quantity;
17 function "*" (X:NumericValue;
18 Y:Physical Quantity) return Physical Quantity;
19 function "/" (X,Y:Physical Quantity) return Physical-Quantity;
20 function "/" .X:Physical-QUantity;
21 Y:Numeric Value) return Physical-Quantity;
22 function "/" (X:Numeric-Value;
23 Y:PhysicaT Quantity) return Physical_Quantity;
24 function "**" (X:PhysicaTQuantity;
25 Y:Positive) return PhysicalQuantity;
26
27 -- Relational operators:
28 function ">" (X,Y:Physical Quantity) return boolean;
29 function "<" (X,Y:Physical Quantity) return boolean;
30 function ">-"(X,Y:Physical Quantity) return boolean;
31 function "<-"(X,Y:Physical Quantity) return boolean;
32 function "-" (X,Y:Physical-Quantity) return boolean;
33
34 -- To initialize numeric and dimensional values:
35 function Init(Numerical Value:in Numeric Value;
36 Units :in Unit Array) return PhysicalQuantity;
37
38 -- To perform the function of the assign operator ":="
39 procedure Assign (Source:in Physical Quantity;
40 Target:in out PhysicalQuantity);
41 -- To make Numeric Value visible:
42 function NumericPart (Object:Physical_Quantity) return Numeric-Value;
43
44 -- To Make Units visible:
45 function Units Part (Object:Physical_Quantity) return UnitArray;
46 private
47 type PhysicalQuantity is
48 record
49 Value:Numeric Value :m 0.0;
50 Unit :UnitAriay := (UnitArray'range -> 0);
51 end record;
52 end Units-Integrity;

10th Annual National Conference on ADA Technology 1992 313

APPENDIX A (2). UNITSINTEGRITY PACKAGE BODY

1 package body UnitsIntegrity is
2 Z:Unit Array;
3 procedure MixCheck(X,Y:in PhysicalQuantity)is
4 begin
5 if X.Unit/-Y.Unit then
6 raise Units-Exception;
7 end if;
8 end Mix Check;
9 function "+"(X,Y:PhysicalQuantity)return PhysicalQuantity is

10 begin
11 Mix Check(X,Y);
12 retu-rn (X.Value+Y.Value, X.Unit);
13 end "+";
14 function "-"(XY:Physical_Quantity)return Physical Quantity is
15 begin
16 return (-X.Value,X.Unit);
17 end "-";
18 function "-"(X :PhysicalQuantity)return Physical-Quantity is
19 begin
20 return (-X.Value, X.Unit);
21 end "-";
22 function "*"(X,Y:PhysicalQuantity) return PhysicalQuantity is
23 begin
24 for I in Unit Array'range loop
25 Z(I) :-X.UniE(I) +Y.Unit (I);
26 end loop;
27 return (X.Value*Y.Value,Z);
28 end "*";
29 function "*" (X:PhysicalQuantity;Y:Numeric value)
30 return PhysicalQuantity is
• 31 begin
32 return (X.Value*Y,X.Unit);
33 end "* " ;
34 function "*"(X:Numericvalue;Y:Physical_Quantity)
35 return Physical-Quantity is
36 begin
37 return (X*Y.Value,Y.Unit);
38 end "*";
39 function "/"(X,Y:PhysicalQuantity) return Physical_quantity is
40 begin
41 for I in Unit Array'range loop
42 Z(I) :-X.UniE(I) -Y.Unit (I);
43 end loop;
44 return (X.Value*Y.Value,Z);
45 end "/";
46 function "/" (X:Physical Quantity;Y:Numeric value)
47 return PhysicalQuantity is
48 begin
49 return (X.Value/Y,X.Unit);
50 end "/";
51 function "/" (X:Numeric value;Y:PhysicalQuantity)
52 return PhysicalQuantity is
53 begin
54 for I in Unit Array'range loop
55 Z (I) :--Y.UnTt (I);
56 end loop;
57 return (X/Y.Value,Z);
58 end "/";

314 1Oth Annual National Conference on ADA Technology 1992

APPENDIX A (3). UNITSINTEGRITY PACKAGE BODY (CONTINUED)

59 function "**" (X:PhysicalQuantity;Y:Positive)
60 return Physical_Quantity is
61 begin
62 for I in Unit Array'range loop
63 Z (I) :-X.UniE(I) *Y;
64 end loop;
65 return (X.Value**Y,Z);
66 end "**";
67 function ">" (X,Y:PhysicalQuantity)return boolean is
68 begin
69 Mix Check(XY);
70 return X.Value>Y.Value;
71 end ">";
72 function "<" (X,Y:PhysicalQuantity)return boolean is
73 begin
74 Mix Check(X,Y);
75 return X.Value<Y.Value;
76 end "<";
77 function ">-"(X,Y:PhysicalQuantity)return boolean is
78 begin
79 Mix Check(X,Y);
80 return X.Value>-Y.^Value;
81 end ">m";
82 function "<-" (X,Y:PhysicalQuantity) return boolean is
83 begin
84 Mix Check (X, Y);
85 retUrn X.Value<-Y.Value;
86 end "<1. ;
87 function "I" (X,Y:PhysicalQuantity)return boolean is
88 begin
89 Mix Check(XY);
90 return X.Value-Y.Value;
91 end ,it,;
92 function Init(Numerical Value:in Numeric Value;
93 Units - in Unit A-rray)
94 return PhysicalQuantity is
95 begin
96 return (Value -> NumericalValue,
97 Unit -> Units);
98 end Init;
99 procedure Assign (Source:in PhysicalQuantity;

100 Target:in out Physical Quantity) is
101 -- "in out" for Mix-Check
102 begin
103 Mix Check(Target,Source);
104 Target :-Source;
105 end Assign;
106 function NumericPart (Object:PhysicalQuantity)
107 return Numeric Value is
108 begin
109 return Object.Value;
110 end Numeric Part;
111 function UnitsPart (Object:PhysicalQuantity)
112 return Unit-Array is
113 begin
114 return Object.Unit;
115 end UnitsPart;
116
117 end Units-Integrity;

10th Annual National Conference on ADA Technology 1992 315

APPENDIX B. EXAMPLE PROGRAM

1 with Units Integrity;
2 procedure 'Example is
3 -- Compute X - V*T + 1/2 * A**T
4 type Units Type is (Slugs, Feet, Seconds)
5 package Un~itsPkg is new Units Integrity(Units Type -n>Units Type,
6 -NumerTcValue -> Float);
7 use Units Pkq;
8 X,V,A,T: FhysicalQuantity;
9 begin

10 X :-Init(NumericalValue -> 0.0, -- Named Notation
11 Units -> (Slugs -> 0, Feet -> 1, Seconds -> 0));
12 V :Init(Numerical Value -> 4.0,-- Named Notation
13 Units -> (Slugs -> 0, Feet -> 1, Seconds -> -1));
14 A :- it (4.0, (0,1,-2)) -Positional Notation
15 T :Init(10.0,(0,0,l); -Positional Notation
16 Assign(Source -> V*T+0.5*A*T**2, -- O.K.
17 Target -> X);
18 -- Assign(Source -> V*T+0.5*A*T*2, -- will not compile
19 A

20 -- Target -> X);
21 Assign(Source -> V*T*0.5*A*T**2, -- raises exception
22 .. A..

23 Target -> X)
24 end Example;

316 10Gth Annual Nolionol Conference on ADA Technology 1992

APPENDIX C. A UNITSINTEGRITY RETROGRADE PACKAGE

1 -- To turn off units checking after verification with package
2 -- Units Integrity, the applications software is recompiled
3 -- with the following package:
4 generic
5 type Units Type is (<>);
6 type NumerTc Value is digits <>;
7 package Units Integrity Retro is
8 Units Exception: exception;
9 type Unit Array is Array (Units Type) of Integer;

10 subtype Physical Quantity is Numeric Value;
11 procedure Assign (Target:in out PhysiCal Quantity;
12 Source:in Physical-Quantity);
13 function Init (Numerical Value:in Numeric Value;
14 Units :in Unit Array)
15 return Physical Quantity;
16 function Numeric Part (Object:Physical Quantity) return NumericValue;
17 function Units Part (Object:Physical-Quantity) return Unit-Array;
18 end Unit s_IntegrTtyRet ro;
19
20 package body Units Integrity Retro is
21 procedure AssignTTarget:in -out Physical Quantity;
22 Source:in PhysicalQuantity) is
23 begin
24 Target:- Source;
25 end Assign;
26 function Init (NumericalValue:in Numeric Value;
27 Units :in Unit Array)
28 return PhysicalQuantity is
29 begin
30 return NumericalValue;
31 end Init;
32 function Numeric Part (Object:Physical_Quantity)
33 return Numeric Vdlue is
34 begin
35 return Object;
36 end Numeric Part;
37 function UnTts Part (Object:PhysicalQuantity)
38 return Unit-Array is
39 Null Array: Unit-Array :- (others -> 999);
40 begin -
41 return Null Array;
42 end Units Part;
43 end Units_I~tegrity_Retro;

10th Annual Natonal Conference on ADA Technology 1992 317

APPENDIX D. FUEL CALCULATION WITH UNITSINTEGRITY

with Units-Integrity;
package body TDA Overview Pkg is
-- First, define-the basic units of the problem:
type FuelUnits is (Pounds Fuel,

Nautical_Miles,
Hours);

-- Then instantiate a copy of Units Integrity for the fuel problem:
package TDAUnitsIntegrity is ne7 UnitsIntegrity (Numeric Value -> Float,

Units Type->Fuel Units);
use TDA Units Integrity; -- to get this example on a single page.

-- The variable7 involving units are:
FuelOnBoard,
Fuel Rate,
Inte7rceptorSpeed,
Mission Duration,
Mission_-Distance : Physical_Quantity;

begin -- TDA Overview Pkg-- Lock in t~e exponents of the units of the variables:
FuelOnBoard :- Init (NumericalValue -> Initial Fuel,

Units -> (Pounds Fuel -> 1,
NauticilMiles -> 0,
Hours -> 0));

Fuel-Rate : Init (NumericalValue -> Known Fuel Rate,
Units -> (Pounds Fuel -> 1,

Nautical_Miles -> 0,
Hours -> -1));

InterceptorSpeed :- Init (Numerical Value -> Known Interceptor Speed,
Units -> (Pounds Fuel Z> 0,

Nauticil_Miles -> 1,
Hours -> -i));

Mission-Distance :- Init (NumericalValue -> 0.0,
Units -> (Pounds Fuel > ,

NauticalMiles -> 1,
Hours -> 0));

MissionDuration : Init (NumericalValue -> 0.0,
Units -> (Pounds Fuel -> 0,

Nautical_Miles -> 0,
Hours m> 1));

-- After the Mission-Distance has been computed, find the MissionDuration:

Assign (Source => Mission Distance / Interceptor-Speed,
Target -> Mission-Duration);

-- Then adjust the FuelOnBoard to predict FuelOnBoard when the mission is
-- completed:

Assign (Source -> Fuel On Board - Fuel-Rate * MissionDuration,
Target -> Fuel-On-Board);

end TDA OverviewPkg;

318 10th Annual National Conference on ADA Technology 1992

ADA SOFTWARE REUSE IN SUPPORT OF OPERATION DESERT STORM

Russell J. Brown and Judy L. Morgan

Merit Technology Incorporated
5068 West Piano Parkway

Piano, Texas 75093

smmx. the campaign, the elusive mobile launchers
continued to evade Coalition forces and carry out

During Operation Desert Storm, Merit missions against friendly nations. The need to
Technology participated in an effort led by analyze the Iraqi tactics and strategy of the SCUD
Lawrence Livermore National Laboratory to campaign as it was executed became apparent.
construct a ballistic missile early Studying the missile attacks and results as they
warning/analysis system. The effort was driven occurred would help Coalition forces anticipate
by a need to graphically display and reconstruct impending launches and retaliate in a timely
ballistic missile attacks carried out by Iraq to manner. The Strategic Defense Initiative Office
determine doctrine and assess effectiveness of the (SDIO) tasked the Lawrence Livermore National
Iraqi ballistic missile program. For the system to Laboratory (LLNL) at the University of
be constructed in the necessary time frame, California to quickly create a prototype of a
existing software had to be quickly combined and distributed, multi-user system to provide theater-
modified to create the application. Merit had level SCUD missile early warning and analysis
recently finished an air situation display for the functions. Construction of such a system would
government which combined a graphical user entail combining available data resources, both
interface with two-dimensional mapping space-based and terrestrial with the latest 2D and
capability on an advanced graphics workstation. 3D graphics display technology. The prototype
All of the software had been written in Ada. A system would be installed at Air Force Space
small development team combined COTS Command at Peterson Air Force Base in
software with software from the existing Colorado Springs, Colorado.
program to create a system to display ballistic
missile trajectory data in 2D and 3D in a matter of Available Resources
weeks. Approximately 90% of the estimated
30,000 lines of Ada code were reused. All who From their extensive involvement with SDIO
were involved with the effort, from industry and programs, LLNL had personnel with expertise in
government, proclaimed the system handling the data from the sources necessary for
overwhelmingly successful, and a testimony to the prototype system. They began seeking
the "ilities" of the Ada language. existing technology in the areas of advanced 2D

and 3D graphics, along with Man-Machine
Eroblem Interface expertise. Through reference material

provided by Silicon Graphics, Inc., the
When Operation Desert Shield erupted into manufacturer of the workstations to be utilized,
Operation Desert Storm in January of 1991, they discovered Merit Technology, Inc. In
Saddam Hussein of Iraq began a campaign of Dece,-.ber of 1989, Merit had successfully
terrorist warfare against the countries of Israel completed a project for Air Force Aeronautical
and Saudi Arabia. The principal terrorist weapon Systems Division (ASD) at Wright-Patterson Air
used was the Soviet-made SCUD short-range Force Base in Dayton, Ohio. The project
ballistic missile. Although many of the combined the display of air situation data on a
permanent missile silos were destroyed early in variety of map backgrounds with advanced MMI

10th Annual Natonal Conference on ADA Technology 1992 319

technology, all implemented in Ada. The task at paper map data (including Landsat and SPOT
hand was to quickly combine the available imagery) provide the map backgrounds, while
resources to produce a functional prototype in data such as the CIA World Data Bank II
time to contribute to the war effort. (borders and coastlines) and Digital Feature

Analysis Data (DFAD) served as overlay data on
Sra the map. The Man-Machine Interface (MMI)

object provided the system interface to the user.
In order to meet the imposed time constraints, The interface was completely defined in ASCII
commercially available hardware and data files allowing "look and feel" changes
commercial-off-the-shelf (COTS) software to the without code modifications.
maximum extent possible. The LLNL/Merit team
immediately met for an intensive requirements
analysis/design session. The Ada software from
the recently completed Air Force ASD project
was utilized to complete the Air Force Space
Command effort. The baseline software had to
be modified in some areas and extended in others DATA

to accommodate the identified requirements for
the prototype system.

Implementtilon LINK SITE TRACK Th OR

The baseline software consisted of approximately
30,000 lines of Ada software, developed over a
period of two years for the ASD project. Object-
Oriented requirements analysis and
design/development techniques had been
implemented during the life of the project. The
resulting Ada software was maintained in a
Revision Control System software repository.

The highest level object view of the baseline
software is diagrammed in Figure 1. The FIUR. EXSTNG SOFTWARE
COMMUNICATION object provided the vehicle ARCHITECTURE
to transmit and receive data across a local area
network. The DATA object provided the formats Due to the utilization of the concepts of
of the data messages to be received and OORA/OOD combined with the Ada
transmitted by the system. The SITE, TRACK, programming language, the existing software
and LINK objects were self-contained packages was easily modifiable to meet the task at hand.
which were driven by the incoming data. The The COMMUNICATION object was modified to
TEXT object was responsible for the accommodate the distributed network
manipulation and display of text embedded architecture. The DATA object was changed to
within the incoming messages. The OVERLAY handle the new missile trajectory messages
object provided an interactive graphical tool for passed to the system from external data sources.
the user to create, save, and modify "grease The SITE and LINK objects were simply
pencil" annotations on the display. The 21) MAP deleted, since they had no bearing on the new
object consisted of a proprietary COTS software type of data driving the system. The TRACK
package written in C and the required Ada package had to be changed from dealing with
bindings to these routines, providing 2D display aircraft data to dealing with SCUD ballistic
windows composed of Defense Mapping Agency missile data. The OVERLAY function was
(DMA) mapping data. Digital Terrain Elevation reused without modification. Since the MMI
Data (DTED) and Arc-second Raster Chart object was ASCII file-driven, the software was
Digitized Raster Graphic (ARCDRG) digitized used without modification. The only change

320 10th Annual Notional Conference on ADA Technology 1992

necessary was in the text files which defined the network. Incoming data is broadcast to each
functions available to the user. The existing display in the system. The workstations on the
system did not deal with 3-Dimensional data network have the capability to send and receive
displays. Integrating this capability consisted of messages among themselves, to avoid contention
plugging in a COTS software package and over incoming data. This also allows monitoring
writing 3D rendering functions for the new of each station's activity from a "master" station.
TRACK data. The resulting software To facilitate operator learning, the system was
architecture is illustrated in Figure 2. built to handle training and live mission modes.

Automatic switch to live mode occurs if actual
data is received at any time.

MBy displaying current and historical missile data
along with user-created overlays, a
comprehensive picture of the missile campaign
can now be drawn. Tactics can be analyzed in

Anew and different ways, with the 3D terrain
analysis providing valuable launch and escape
route information. The capability also exists to

OVE A.,. compare various trajectory prediction algorithms
and the reactions of the Allied forces against
known data and results.

According to DMA, another result of the system
20 ,MAP is the largest digitized map and multi-spectral

imagery database in existence. Forty gigabytes
of disk space was utilized to accommodate the

Mprocessed map data.
INTERFACE

Lessons Learned
UNCHANGED

MODIFIED The results achieved in this effort would not have
ADDED been possible just a few short years ago. The

FIGURE 2. REVISED SOFTWARE development of hardware and software has been
AR roECTURE revolutionized. The concepts of "open systems"

and "reusable software" were unheard of until
relatively recently. The growing use of the Ada

Additional effort involved processing every map programming language is a major factor in this
that the Defense Mapping Agency had for the revolution. If the software written for the ASD
theater of interest. Nine different scales of maps project had not been designed and implemented
were processed by either manual using modern tools such as Ada, achieving the
scanning/warping or by processing of CD success of this effort would have been extremely
ROM's provided by DMA. difficult. However, design and implementation

are only part of the battle. The best software in
Results the world cannot be reused if it is not

documented and archived in known repositories.
Combining the efforts of less than a dozen The more that government and commercial
engineers with commercially available hardware, bodies contribute to the area of software reuse,
engineesoftwh e r a vaexistilsoae hardwa, the less software development will cost in theCOTS software, and existing software from an fure

Ada software repository, the LLNL/Merit team future.
produced a working prototype of the required
system in a matter of six weeks. The system
includes six commercially available graphics
workstations linked on a distributed ethernet

10th Annual National Conference on ADA Technology 1992 321

Russell Brown received a Bachelor of Science degree in Computer Science from North
Texas State University in December of 1984. From 1985 to 1987 he served as a Software
Engineer at E-Systems Greenville Division designing, developing, testing and integrating
real-time software systems for airborne and ground-based intelligence collection/processing
systems. In 1987, he joined Electrospace Systems, Inc. as a programmer analyst,
designing and developing Ada software for the Strategic Air Command's National
Emergency Airborne Command Post. From 1989 until the present, he has been working in
the Intelligence and Space Systems Division of Merit Technology, Inc., serving as a
Member of Technical Staff. Duties have included preparation and presentation of Ada/OOD
in-house training seminars, Ada software system design and implementation, and more
recently, program management and marketing responsibilities.

Judy Morgan graduated from the University of Sciences and Arts of Oklahoma in April of
1985 with a Bachelors of science degree in Computer Science and Mathematics. From
1985 to 1987 she worked as a Software Engineer at Rockwell International on an
embedded real-time radio receiver in written Ada. From 1987 until the present she has
been a Member of the Technical staff in the Space Systems Division of Merit Technology,
Inc. Her responsibilities include software system design, implementation and integration.

322 10th Annual Naional Conference on ADA Technology 1992

Development of Cost locally defined metrics.
Estimation Prototypes Both Statistical and

Analogical Methods are used
A J C Cowderoy and J 0 to generate forecasts

Jenkins (estimates). A fundamental
School of Informatics, City tenet of the MERMAID

University approach is to avoid the use
London, EC1V OHB of estimates as the

United Kingdom independent variables in
statistical forecasting.

Abstract -- Many The first prototypes
organisations fail to reallse provided facilities for
the budgets and deadlines product sizing as well as
they have set for software effort
development projects, forecasting. The next major
Research has shown that the release due late in 1 992
accuracy of the predictions will, in addition, offer risk
made using the current assessment and resource
generation of cost modelling facilities. The
estimation methods Is low. latter Is of special note in

that the project Is
The ESPRIT project, Investigating a number of
MERMAID, addresses these novel approaches Including
issues. Its principal Systems Dynamic Modelling.
research objective Is to
Improve understanding of The paper will provide an
the relationships between architectural overview of
the measureable attributes the planned toolset as well
of software development as summarising the results
projects. In addition It of empirical research.
plans to deliver a series of
prototype cost estimation Index Terms -- Cost Model,
toolkits. To date two such Software Metrics, Risk
prototypes have been Assessment.
delivered.

1. INTRODUCTION
The MERMAID project began
in late 1988 and has The tendency for software
developed a new cost development project to be
estimation methodology, completed over schedule and
This is based on the use of over budget has been

I Oth Annual National Conference on ADA Technology 1992 323

documented extensively 1, 2.

Additionally many projects The Metrication and
are completed within Resource Modelling Aid
budgetary and schedule (MERMAID) project, partially
target only as a result of financed by the Commision
the customer agreeing to of the European
accept reduced Communities (CEC) as
functionality. Project 2086 began in
A particular area of October 1988 and its goals
research of relevance to are as follows:
this phenomenon is software
cost modelling. Many * Improvement of
researchers have attempted understanding of the
to model the relationships between
Interrelationships of a software development
project cost for Instance productivity and product and
Putnam 3. These parameters process metrics
are the Total Project Effort * To facilitate the
(in person time units). widespread technology
Elapsed time or schedule,T transfer from the
and the average staffing Consortium to the European
level M ttroughout the Software industry
project. It might be * To facilitate the
assumed that there was a widespread uptake of cost
simple relationship between estimation techniques by
the three viz: the provision of prototype

cost estimation tools.
E - T.M [I]

The applicability of the
In his classic book, The tools developed by the

Mythical Man Month, Fred Mermaid consortium is

Brooks 4 exposes the fallacy considered to encompass

that effort and schedule are bothiemed ssemsa
freey Inercangeble.Allboth embedded systems and

freely interchangeable. All Management Information

current cost models are

produced on the assumption Systems.

that there Is very limited
scope for schedule Mermaid has developed a
compression unless there Is family of methods for cost

a corresponding reduction In estimation, many which
delivered functionality, have had tools implemented

in the first two prototypes.
2. MERMAID These prototypes are best

324 10th Annual Nafionol Conference on ADA Technology 1992

considered as toolkits or completed project, similar
workbenches. Figure I gives to the one being planned.
an architectural overview of * Parametric Model, use of a
these prototypes. cost estimation tool based
The first prototype was on a number of existing
demonstrated In November models of the relationships
1990. It was developed on a between project cost
SUN 3/60 C Workstation paramenters and cost
using an objective oriented drivers. Models on which
extension of the C language, tools were based included
Objective C. Two versions SLIM3 , COCOMO 5, AND
exist, one running under the COPMO 6.
Portable Common Tool
Environment (PCTE) and the Tools based on these models
other Is a UNIX can be calibrated for a
Implementation. The second particular environment.
prototype was demonstrated However, research has
In November 1991, versions shown that despite
of which were developed on calibration, the accuracy of
an IBM PS/2 running either estimates produced by cost
WINDOWS 3 or OS/2 and estimation tools Is poor 7 .
Presentation Manager. There are several

contributing factors to this
3. MERMAID ESTIMATION inaccuracy. These include
METHODS the difficulty, if not

impossibility, of estimating
Before describing the the size of the product to be
functionality Implemented developed as early In the
In the prototypes, an lifecycle as the
explanation of the MERMAID Requirement Analysis Phase.
methodology is required. At Additionally calibration
the time of the start of the depends on the existence of
MERMAID project, October moderate quantities of past
1988, the commonly used project data collected In a
approaches to cost consistent manner,
estimation were as follows:

* Expert Judgement, ie The MERMAID approach is

informal guestimate of the based on the use of locally-
resources required based and user-defined
* Analogy, similar to the attributes and metrics.
above but influenced by the Furthermore wherever
identification of a similar possible actual measures as

10th Annual National Conference on ADA Technology 1992 325

against estimates are used estimation model for given
as Input to the estimating environment using a small
facilities Today's tools number of Independent
based on parametric models product and process
normally require the project attributes as the dependent
manager or estimator to variables In a multivariable
Input an estimate of the linear regression model.
size of the software product Such an approach differs
to be developed. This is from that found In the
either expressed in Lines of COCOMO 5 model where the
Code (LOC) or in the form of nominal estimate derived
a function-based metrics, from the standard
Function Point Count. This estimation model is
latter metric was developed adjusted by a multiplicative
within IBM by Alan adjustment factor. This
Albrecht 8 and purports to measures the combined
measure the size of an influence of a number of
application in terms of the cost or productivity drivers.
functionality to be Recent research' 0 has
delivered to the user. It has suggested that many these
the advantage over LOC in cost drivers are not
that it can be measured as Independent.
soon as an outline logical
design of the application Is An analysis by MERMAID'' of
available. The development a dataset from various
lifecycle model assumed by commercial MIS
MERMAID, Is that a project environments using
is regarded as a series of principal component
milestones separated by analysis of 21 supposed
phases.This view enables productivity factors
the estimator to model any indicated that 7 principal
organisations lifecycle.Care components accounted for
must be taken not to over 75% of the variability
confuse this use of the word of the data and that no other
phase with its use In thecopntacutefrWaterfall lifecycle model. component accounted for

more than 5% of the

4.DEVELOPMENT variability. The main
PRODUCTIVITY ANALYSIS source of the belief that

staff and environment
Bailey and Basili 9 suggested characteristics are
that it should be possible to significant factors in
develop a satisfactory determining development

326 10th Annual National Conference on ADA Technology 1992

productivity Is the have been completed, which
Importance placed on them address aspects of software
In most of the published development, management
cost models. A move of and metrics. Two
caution against reading too immediate predecessors of
much Into these analyses MERMAID in which some of
must be sounded. Any ideas were developed were
retrospective validation the ESPRIT projects IMPW12
using data from completed and REQUEST' 3. The former
projects projects is fraught developed an integrated
with methodological project management toolkit
difficulties, not the least which Included support for
being the uncertainty over cost estimation and latter
the accuracy of the was concerned with
measurements. Classical modelling aspects of
experimental design software quality and
involving the monitoring of reliability.
on-going projects is rarely
possible In this domain. ESPRIT has finally begun Its

third phase and today's
5. MERMAID AND ESPRIT projects have a clearer end

user requirement
The Commission of the orientation than those in
European Communities (CEC) the first phase which were
launched ESPRIT in 1983 largely technology push
largely as a consequence of projects. The change In
the realisation in Europe emphasis followed early
that Its Information evaluations of the
Technology industry was programme which showed a
becoming increasingly disappointing take-up of the
uncomparative particularly research output by industry

viz-a-viz Japan. ESPRIT even In cases where
projects cover both industry itself was the

hardware and software prime mover behind the

technologies and address project.Nevertheless,the
bthachol and offcess CEC's Court of Auditors have
both factory and office said*The industrial results
automation. Both software of the ESPRIT programmes
engineering and artificial have already achieved a
Intelligence are primary scale that is well
focuses. MERMAID is one of beyondthat of the other(CEC)
a number of projects, some research programmes"To
current and others which date over 800 organisations

10th Annual Natonal Conference on ADA Technology 1992 327

have participated in 480 on the Kunomaa
projectswhich had produced Resource(KURE) Model
over 300 significant results which takes a
by the start of this thermodynamic view of the
decade.Over $5 billion has software development
been allocated for ESPRIT process.An alternative to
funding between now and the this involves the use of
end of the decade.This will System Dynamics
be matched by an equal m,'delsl 4Superior
amount of industrial ..ensitivity analysis
funding. capability can be provided
6. THE IMMEDIATE FUTURE in this way provided an

adequate understanding of
The MERMAID consortium is the relationships between
putting the finishing schedule effort and
touches to the specification manpower level Is
of the tool functionality to established for the
be included in the Mark 2 development environment.No
prototype due for release decision as the final makeup
late in 1992. Considerable of the functionality of the
attention is being paid to Mark 2 prototype has been
developing a risk made at the time of writing
assessment capability of this paper.
which conforms to the LIST OF REFERENCES
MERMAID philosophy. Such a
risk assessment capability 1.de Marco T (1982)
will require access to a Controlling Software
knowledge base of previous Projects,Yourdon Press,New
projects. York.

and measures of risk to 2.Congress(1 989)Bugs in the

project budget and schedule Program:Problems in Federal
will be estimated using Government Computersimilar statistical and Software Development and
analogical techniques to Regulation.Staff Study for
those used for effort the House of
etosei n used fr oext Representatives Committee
estimation.in this context o cecpc n

the risk driver Is view ed T e nology .
similarly to a cost driver.In Technology.

3. Putnam L H (1987).A
addition the inclusion of a general empirical solution
facility to examine effort to the macro software
and schedule trade-off is sizing and estimation
planned.This will be based problem IEEE Trans.

328 10th Annual National Conference on ADA Technology 1992

Software Engineering SE-4 Kirakowski J (1991). 2nd
(4) Analysis of Mermaid Data.
4. Brooks F (1975) The Mermaid Project Delivarable
Mythical Man Month, D 3.3.B.
Addison-Wesley, London 12. Bosco M, Jenkins J and
5. Boehm, B W (1981) Verbruggen R
Software Engineering Integrated Management
Economics, Prentice Hall, Process Workbench (IMPW).
Englefield Cliffs, N J Advance Working Papers,lst
6. Conte S, Dunsmore H and International Workshop on
Shen V Y, (1986), Software CASE,Cambridge,Mass.
Engineering Metrics and 13.Linkman S J(1990)
Models, Benjamin- Quantative monitoring of
Cummings, Menlo Park CA. software development by
7. Kemerer C F (1987), An time-based and
empirical Validation of intercheckpoint
Software Cost Estimation monitoring.Software
Models, Comm. ACM Vol Engineering Journal Vo15(1)
30(5). 14 Harry,C M and Jenkins J
8. Albrecht A JMeasuring (1991) Mermaid Working
Application Development Paper TCU-5-0-D-500/1
Productivity Proceedings 15.Bell G and Jenkins J
Joint SHARE/GUIDE (1991),
Symposium,October Proceedings of the 7th
1979,pp83-92. International COCOMO Users
9 Bailey J W and Basili V Group MeetIng,SEI,Pittsburgh.
(1981) A Meta model for
software development
resource
expenditure.Proceedings of
the 5th International
Conference on Sofware
Engineering,pp 107-116.
10. Subramian G H and
Breslawski S (1989) A Case
for dimensionality reduction
In software development of
effort estimates. TR 89-02
Computer and Information
Science Department, Temple
University, Philadelphia PA
11. Kitchenham B and

10th Annual Naional Conference on ADA Technology 1992 329

FIGURE 1

Mermaid 1 architecture

Estimation base

Definitions Nonalogybsed

1 - ---Data Entry No
$ tatistic lE

effort

10 Current attributes forecastin

rResource
Historical project modelling

) - attributes

Current Project assessmentRer Estimates

Estimation Tools

330 10th Annual National Conference on ADA Technology 1992

ARTIFICIAL INTELLIGENCE PANEL

Chairperson: Dr. Richard Kuntz, Monmouth College

10th Annual Notional Conference on ADA Technology 1992 331

THE DEVELOPMENT AND APPLICATION
OF AN

ADA EXPERT SYSTEM SHELL

Dr. Verlynda S. Dobbs C. Alan Burnham

Telos Corporation
55 N. Gilbert Street

Shrewsbury, New Jersey 07702

ABSTRACT progress and many successes have been reported.

[12.9,14,1,8,131

This paper describes the development and verification

of an experimental Ada EXpert System Shell (AXS) and This paper describes the development and verification

its use to demonstrate the possibility of using an of an experimental Ada EXpert System Shell (AXS) and

Ada-based expert system for processing tactical mes- its use to demonstrate the possibility of using an

sage data. Keywords: artificial intelligence in Ada, Ada-based expert system for processing tactical mes-

expert systems, and metric evaluation, sage data.

INTRODUCTION AXS DEVELOPMENT

While software engineering with Ada has been evolving In the sections below are discussions of AXS design

to aid software developers and supporters, artificial goals, AXS components, AXS development environment,

intelligence (A!) technology has become increasingly and AXS design goals verification.

prevalent. Al offers tremendous potential in DOD

systems, especially in dealing with the information DESIGN GOALS

overload facing DOD systems operators. Expert system

technology offers the most advanced and most widely The use of Ada for system development encourages good

used A! technique to aid in sorting and interpreting software engineering practices. With this in mind,

the date presented to the operator. Expert systems design goals for AXS were chosen as: portability,

are developed to represent and apply factual knowledge modularity, maintainability, and flexibility. Success

in a specific domain (i.e. DOD systems). Unfortunate- in meeting these goals was verified through metric

ly, the use of expert systems by DO0 has been limited, analysis of the source code and demonstration.

This limitation has been partially due to the problems

of reliability and maintainability surrounding systems AXS COMPONENTS

implemented in traditional AI languages.

The basic components of AXS, described below, are the

Expert systems are commonly developed with the aid of knowledge base structuring mechanism, the inference

expert system shells - software tools used to aid the engine, the development interface, and the explanation

knowledge engineer in coding and executing knowledge. facility. The AXS components are shown in Figure 1.

Currently, most shells are developed in either Lisp or

C. Only a small amount of commercial effort has been The control of the system is incorporated into the

expended to create shells in Ada. Although Ada may knowledge base structure and the inference engine.

not be the ideal language for creating expert systems, The knowledge base contains the information needed by

Ada does offer extensive benefits, especially when the the inference engine to create the expert system. The

software is to be integrated and maintained with knowledge base is divided into frames that represent

embedded, real-time DOD dpplications. At annual objects and rules that indicate actions. The frames

conferences on Artificial Intelligence and Ada, much contain slots that store informtion about the object.

332 10th Annual Nobonal Conference on ADA Technology 1992

These slots have values and sets of rules (called de- - the current value of a slot, and
mons) attached to them. When the type of access to a - relationships of objects and attributes.

slot (value added, value needed, etc.) matches the

type of demon (if-added, if-needed, etc.) the rules The end-of-processing EF provides functions 1, 4 and 5

associated with that demon are fired, above in addition to displaying both the critical path

and the execution trace. For use in embedded systems,

the entire EF can easily be unplugged from the expert

AXS COMPONENTS system by simply commenting out 15 lines of code and
removing the EF package from the compilation order.

Develoment DEVELOPMENT ENVIRONMENT

Knowledge The object-oriented design for AXS[3] was implemented

Inference Iusing Verdix Ada in a Unix environment on a Sun work-
Engine .. 6station. In previous work, AXS was used to success-

fully implement a classification system that identi-
Explanation fied aircraft.[2] AXS is currently being enhanced for

Facility use at Wright Patterson Air Force Base (WPAFB); Day-

ton, Ohio.

Figure IVERIFICATION OF DESIGN GOALS

The inference engine provides both forward and back- Verification of the degree to which AXS met its design
ward Inferencing methods. To implement these methods, goals of portability, modularity, maintainability, and
each frame is classified as a start frame, an interme- flexibility, was accomplished by using a mix of metric

diate frame, or a goal frame. Pure forward inferenc- analysis and demonstration.

ing begins processing by trying to fill in all values

in the start frames and continuing the inferencing Each design goal, along with the method/methods used

until no more inferences can be made. Pure backward to evaluate it, is shown in Table 1.

inferencing begins by attempting to fill all the slots

in any goal frame by bactoard chaining of rules. Table 1
The development interface provides the means for an AXS DESIGN GOALS
expert system designer to construct a knowledge base
to be run by the inference engine.t4] First priority Portability
for the AXS development interface has been given to Metric Analysis

implementing as generic an interface as possible, one Build Expert Systems In Two Environments

that can be surnorted by any Ada compiler. A menu Modularity

system is used for inputting data from the keyboard. Metric Analysis
From the menu, the developer can choose to create Maintainability
frames, rules, or the end-user interface. The devel- Metric Analysis
opment interface relieves the developer of the detal Is Effort Required to Maintain/Upgrade
of the syntax of the knowledge base file. Flexibility

Develop Different Types of Expert Systems
The explanation facility (EF) serves as an explanation

of the expert system for users, a debugging tool for
developers, and as a teaching/tutorial tool for new The metric analysis was accomplished using AdaMAT
users.[11 The AXS EF provides both runtime explana- [6,7,10] to evaluate the AXS source code. AdaMAT is a
tions and end-of-processing explanations. The runtime commercially available metric tool developed by Dynam-
EF includes explaining: ics Research Corporation, that uses over 400 metrical

- the contents of a rule elements. These elements can be combined to form
- why information is being requested overall aggregate results and calculate metric values
- how the system arrived at a certain point for software characteristics such as: independence,

10th Annual National Conference on ADA Technology 1992 333

modularity, simplicity, system clarity, and maintain- AdaMAT Results
ability.

120

Definitions of these characteristics are shown below

along with typical ranges of scores from other 100

projects: 80 ,

Independence (or Portability) - Those attributes of 60
the software that determine its non-dependency on the

software environment (computing system, operating

system, utilities, Input/output routines, libraries). 20 ji "4

Typical scores are .85 to .99.

Anomaly Independence Modularity Simplicily Clarity Maintainability

Modularity - Those attributes of the software provid-

ing a structure of highly cohesive modules with opti- InTypicalLow AXS MTyplclHlgh

mu. coupling. Typical scores are .20 to .60. Figure 2

Simplicity - Those attributes of the software provid-

ing for the definition and implementation of the was demonstrated by the use of AXS to develop a clas-

functions of a module in the most non-complex and sification expert system to identify aircraft and to

understandable manner. Coding simplicity, design develop the expert system described in the following

simplicity, and flow simplicity are considered. sections.

Typical scores are .30 to .40.

System Clarity - Those attributes of programing style AXS APPLICATION - COMDES
providing for a clear and understandable description

of the program structure. Typical scores are .30 The Correlation of Hessage Data Expert System (COMDES)

to .80. COMDES is an experimental expert system that was

created to explore the possibility of using an Ada

Maintainability - A roll-up of the above four measures expert system shell to correlate tactical message

to provide an overall assessment of the ease with data. Developing COMOES also demonstrated the port-

which the code can be subdivided, understood, en- ability and flexibility of AXS. The sections below

hanced, and modified. Typical scores are .40 to .70. describe the CONDES problem domain, the knowledge

acquisition process, the knowledge base development,

The results of using AdaMAT to evaluate the AXS source and the results of executing the expert system.

code are: independence - .96, modularity - .65, sim-

plicity - .55, system clarity - .77, and mairtainabil- DOMAIN DESCRIPTION
ity - .75. These scores are shown in comparison with

the typical low and high scores in Figure 2. Today's semlautomated battlefield information systems

are essentially message exchange systems. They trans-

The AdaKAT scores for AXS all verified that AXS was fer data via structured message formats having both

successful in meeting Its design goals. The portabil- fixed coded message fields and free format ASCII text

ity of AXS was verified by the high value of the fields. During an engagement, battlefield Tactical

independence metric calculated by AdaMAT. Portability Operation Centers (TOCs) are essentially in informa-

was further demonstrated by using AXS to develop the tion overload. Expert system technology is currently

application described below. The AdaKAT modularity being investigated to aid operators in more efficient-

and maintainability scores for AXS exceeded the typi- ly processing these messages.

cal high scores, supporting the success of AXS in

meeting the goals of developing a highly modular, One area of heavy message traffic is that of fire

maintainable system. The maintainability goal was support. Because of the availability of information

additionally demonstrated by the ease with which and interest in this area, a set of reatistic tactical

various developers, over a three-year period, could artillery messages was selected as the basis for the

use, modify, and upgrade AXS. The flexibility goal domain for the creation of COMDES.

334 10th Annual Natonal Conference on ADA Technology 1992

KNOWLEDGE ACQUISITION be appropriate to interpret and correlate the ATI

message data. The two basic types of frames both

The process of knowledge acquisition for this project represented target data. One type dealt with generic

began with on-site discussions with the user at Ft. target correlation data, while the other type repre-

Silt, Oklahoma. In support of development work for sented specific targets extracted from the ATI mes-

the Advanced Field Artillery Te:tical Data System sages. Next the specific frames and their associated

(AFATDS), the Field Artillery Board at Ft. Sill pre- slots were identified and implemented. Then the

pared an extensive set of realistic tactical artillery appropriate demons and the rules were associated with

messages in TACFIRE format, based on specific Opera- each of the slots.

tion Orders for a given Force Structure. The set of

messages is referred to as a Time-Ordered Event List COMDES EXECUTION RESULTS

(TOEL) and consists of well over 2000 tactical mes-

sages. For this study a subset of messages between COMIOES was executed using the information from the

selected units for a 100 minute interval was extracted messages extracted from the TOEL. The ATI message

from the TOEL. To better focus this study only the processing expert system uses its frames and rule base

Artillery' Target Intelligence (ATI) messages were to compare target information from ATI messages to

used. The AT! messages were chosen because methods determine if potential targets can be combined, there-

for correlating the data contained in these messages by simplifying target correlation for the user. The

are fairly well understood and the message content is output, which is currently presented to the user in

similar to message data that may be exchanged between textual format, was successfully verified by compari-

other users, son with anticipated results.

ATI messages are messages that provide information COMES demonstrated that the AXS was, in fact, port-

(type, location, strength, time, etc.) about enemy able. COMOES was created on a HP 9000 system, and the

units. AT! messages are analyzed, then, based on only effort involved in porting from the Sun worksta-

certain criteria, combined for purposes of fire sup- tion to the HP system was to rename the Ada files to

port engagement. Whether or not targets are combined be compatible with the CHS and recompile the source

is a function of the type, location, and time of code. By using AXS to build COMOES, we were also able

observation, to demonstrate that AXS was sufficiently flexible to

allow the creation of other than classification expert

The general rules for the correlation and fusion of systems.

the target data were obtained from various Field

Artillery School manuals and discussions with users.

The subset of messages was manually decomposed and FUTURE EFFORTS
reformatted for ease of use and understanding.

There are several areas in which additional work could

As a result of the knowledge acquisition, three fac- be performed to complement the work accomplished so

tors for combining/correlating potential targets were far. One area is that of providing enhancements to

identified: type, distance and time. The type corre- the AXS user interface through the use of graphical

lation is the probability that two targets of differ- capabilities, possibly by the use of X Windows.

ent types would be combined if distance and time were Another area would be the enhancement of the function-

not a factor. The distance correlation is the maximum al capability of the AXS library, providing AXS with a

distance by which the targets can be separated and more robust shell that could be more readily adapted

still be considered for combining. The time correla- to other applications. A third area for improvement

tion is the maximum time that can elapse between tar- would be through optimization of the expert system

get sightings and still be considered for combining, through reuse of rules and use of Ada compiler options

to decrease memory requirements and execution time.

KNOWLEDGE BASE DEVELOPMENT
In addition to the above enhancements, a comparison of

After the knowledge acquisition phase was completed, AXS with other existing Ada expert system shells, in

the knowledge base had to be built to represent the terms of ease of use and functional capability, would

knowledge that was acquired from the user. The first provide increased insight into the current potential

action was to identify the types of frames that would for using Ada in developing expert systems for O0.

10th Annual Nafional Conference on ADA Technology 1992 335

ACKNOWLEDGEMENTS [10] S. Levine, J. Anderson, and J. Perkins. Experi-

ence using automated metric frameworks in the review

Portions of this effort were performed by Telos Corpo- of ada source for afatds. In Proceedings of the 8th
ration under Contract Number DAABO7-89-D-A050, for the Annual National Conference on Ada Technology, pages

U.S. Army Communications Electronics Command Center 597-612, 1990.

for C3 Systems: and by Wright State University as a

subcontractor to Telos Corporation. Portions of AXS [11) V. Saunders and V. Dobbs. Explanation generation

were developed by Wright State University as a subcon- in expert systems. In NAECON-90, 1990.

tractor to SAIC for WRDC/AAWA-1 of the U.S. Air Force,

WAFB, Ohio. [12] A. Wallen and S. Lubash. A high performance ada-

based real-time embedded expert system shell. In 6th
AdaMAT is a registered trademark of Dynamics Research Annual Conference on Artificial Intelligence and Ada,
Corporation. pages 21-32, 1990.

[13] K. et. al. Wallnau. Construction of knowledge-
REFERENCES based components and applications in ada. In 4th

Annual Conference on Artificial Intelligence and Ada,
(1] N. Adkins. Flexible data and control structures pages 3.1-3.21, 1988.

in ada. In 2nd Annual Conference on Artificial Intel-

ligence and Ada, pages 9.1-9.17, 1986 [14] P. Wright. Ada real-time inference engine. In

5th Annual Conference on Artificial Intelligence and
[2] J. Cardow. Toward an expert system shell for a Ada, pages 83-93, 1989.

common ada programing support environment. Master's

thesis, Wright State University, 1989.

AUTHORS
[3] J. Cardow and V. Dobbs. Toward an expert system

shell for a common ado programming support environ- Verlynda S. Dobbs is a senior computer scientist with
ment. In NAECON-89, pages 1042-1047, 1989. Telos at Ft. Monmouth, NJ. She is currently develop-

ing a Network Planning Tool for military communication
[4] J. Courte and V. Dobbs. A development interface systems. Dr. Dobbs was formerly on the faculty of the

for an expert system shell. In 8th Annual National Department of Computer Science and Engineering at

Conference on Ad& Technology, pages 623-632, 1990. Wright State University. Her research interests are

in the areas of software engineering, artificial
(5] V. Dobbs and C. A. Burnham. Correlation of target intelligence, and Ada tor artificial intelligence.

message data using an ada expert system shell. Tech- Dr. Dobbs received her PhD in computer science from

nical Report U.S. Army Contract Number DAAB7-89-D- the Ohio State University.

AO50o, Teios Corporation, 1990.

C. Alan Burnham is a senior systems engineer with
[6] Dynamics Research Corporation, Andover, NA. Telos at Ft. Monmouth, NJ. He has worked for over 20

AdNAT Reference Manual, 1988. years in the development and support of software-

intensive military systems. Mr. Burnham's recent

[7] S. Keller and J. Perkins. Ada measurement based experience has be-n primarily in developing specifica-

on software quality principles. In Washington Ada tions, defining requirements, evaluating design, and
S)oposlus, pages 195-203. 1985. testing software for mission-critical defense systems.

His earlier experience was in the development, valida-

[8] D. LaVallee. An Ada inference engine for expert tion, and application of large-scale, high-resolution

systems. In First International Conference on Ada combat simulations. Mr. Burnham received his BA in

Programing Language Applications for the NASA Space Mathematics from Augustana College.

Station, pages E.4.3.1-E.4.3.12, 1986.

!9] S. D. Lee. A distributed architecture for real-

time expert systems. In 6th Annual Conference on

Artificial Intelligence and Ada, pages 33-50, 1990.

336 10th Annual National Conference on ADA Technology 1992

BOILERMODEL: A QUALITATIVE MODEL-BASED REASONING SYSTEM
IMPLEMENTED IN ADA

James F. Stascavage and Yuh.jeng Lee

Department of Computer Science
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT ized steam plant simulator (the Propulsion Plant Trainer
Effective, inexpensive, and realistic on-going training (PPT) in Newport, R.I.) and one non-specific stationary

is required to keep all Naval personnel proficient in their hot plant (at Great Lakes Naval Station). "Hands-on"
fields. Nowhere is this more true than in steam propulsion training for prospective division officers and department
engineering plants. The complex systems of valves, pip- heads is conducted at one of these two facilities, or on-
ing, and components require continual refresher for board ships moored to a pier.
watchstanders to perform their jobs safely. BoilerModel is
a qualitative expert system designed using model-based S
reasoning principles and implemented in Ada. It accu- Three problems are evident with the status quo.
rately models a 1200 psi D-type boiler and its associated First, hands-on training focuses on proper (i.e., non-cat-
peripherals. The use of fundamental intra-component re- astrophic) operation of the plant. With the exception of
lationships ("first principles") and constraint propagation the PPT, it is too dangerous to both machinery and hu-
result in compact code because there is no need for the ex- man life to impose actual casualty situations on steam-
tensive rule base found in conventional expert systems. ing boilers. Therefore, most casualty control training is
Implementation in Ada permits the use of concurrent task- either learned in the classroom or is simulated. (Simu-
ing to simulate simultaneous valve propagation found in lated casualty control is like kissing one's own sister, it
real-world boiler systems. Additionally, Ada's portability isn't quite the same thing).
allows BoilerModel to be compiled and run on virtually The second problem is that training platforms are
any machine, thereby making it an affordable and attrac- expensive to maintain. Machinery at the hot plant and
Live complement to shipboard engineering training. onboard ships breaks. The PPT undergoes physical

changes to match real-world ship alterations, and these
changes often, require software updates. Additionally,

INTRODUCTION building a PPT for the West Coast (to fill the training
The technical nature of most U.S. Navy jobs requires gap) would be a multimillion dollar expenditure. Both

a substantial investment (in terms of man-hours lost, the hot plant and "scho2' ships" bum fuel while training.
equipment maintenance, materials, etc.) for initial training. This fuel could be better used getting the ships and their
On-going training is also required to sustain a satisfactory crews underway conducting at-sea operations (where
level of proficiency. There is, therefore, always a need for they should be in the first place).
effective, realistic, and inexpensive complements to con- The third problem is that plant line-up changes and
ventional schooling to maintain competency. Nowhere is casualty restoration is very time consuming. With the
this more true than for the training of steam propulsion en- exception of the PPT (where restoration is instanta-
gineering plant operators. The complex, almost Gordian neous), prospective engineering officers spend much of
knot of valves, piping, and components is overwhelming their time on the deckplates answering questions from
to the novice and requires continual refresher for qualified the instructors and not learning by doing. While this
watchstanders to perform their jobs effectively and safe- problem is non-existent in the PPT, there is only one
ly. However, the Navy currently has only one computer- PPT. The few steam ships stationed in Newport are vir-

10th Annual Natonal Conference on ADA Technology 1992 337

tually the only ones that can afford to send watch teams to real-world states simply by generating different system
the trainer, states, propagating these constraints through the first prin-

ciples, and comparing the generated sensor values with ac-
RESEARCH QUESTIONS tual observed values.

The problems with current on-going fleet steam engi- "The essence of [the] model-based expert system
neering training form the background for the following approach is to generate a model that acts as close to
questions posed by this paper. the real world as possible except when a measure-

ment or component fails. .. When the real world be-First, can an expert system be developed that effec- gins to act differently from the mod,1, we detect the
fively and efficiently models boiler operation? If so, can it discrepancy and diagnose the change using the mod-
be designed in such a manner that it can be expanded to el." 4model the entire steam plant? The heart of the model is constraint propagation.

Second, can such a model be constructed using quali- Propagation uses the relationships between components to
twive reasoning such that it is not limited by parameters establish a chain reaction when changes are made to the
and features specific to one platform? system. Propagation continues to occur until all valid rela-

Third, must a model-based expert system be written in tionships have been explored. For example, consider the
Lisp or one of the other traditional artificial intelligence simple valve and piping arrangement in Figurel and the
languages, or can it be written in a general purpose lan- corresponding valid set of steam pressure propagation re-
guage such as Ada? lationships in Table 1.

Fourth, can such a system be made inexpensively 2
enough to make it an attractive and affordable shipboard . I
tool? :SOURCE

BoilerModel was developed to answer the questions
posed. It is a fairly uncomplicated qualitative model- 3
based reasoning system whose domain is the naval propul-
sion boiler. It is implemented in Ada. The cause-effect
propagation of events in the model-based paradigm is ide-
ally suited for physical applications such as steam genera-
tion plants. Model-based systems are beneficial in
education and training because they can progress through
events causally in much the same manner as students 6
learn. They rely on how components work and how they STEAM STEAM
are interrelated. Thus, plant scenarios can be generated SINK
easily by students and abnormal conditions can be diag-
nosed confidently by watchstanders.

REASONING FROM MODELS
Model-based expert systems have been written in I

many languages and for many different architectures. Figure 1
Knowledge representation also differs from system to sys-
tem to suit the specifications of the designers and the
needs of the users. However, all of these systems have one Reasoning about what effect shutting VALVE 1,
thing in common: they reason from some sort of model of VALVE 3, and VALVE 7 has on the values of STEAM
the domain. While a rule-based system may reason exclu- SINK A and STEAM SINK B would simply be a ma Mer of
sively from observed values to facts or rules in its knowl- chan d te s NK B t o ld reeauattere-
edge base, model-based systems reason from "first changing the status ofthose valves and reevaluating the re-
principles," rules which describe the internal processes lationships.
and causal relationships between components in the do- Models themselves fall into two broad groups: quanti-
main. Since first principles are facts about objects and tative and qualitative. Quantitative models fall outside the
how they behave, they can reason from observed values to scope of this research.

338 10th Annual National Conference on ADA Technology 1992

monitoring applications."4 Reasons for this fall into three

IA InpNt general areas.

VAIVE ~iN NONE (if shut)PEEi ul2input i oVi s u!e Control personnel in real-world industrial systems
VALVE 3 input greater of (VALVE1 output,

VALVE 2 output) rely on information from sensors to formulate decisions or
VALVE 3 output = VALVE 3 Input (if open) perform diagnostics. A rule-based system would require aNONE (if shut)
VALVE 4 input - greater of (VALVE 2 output, set of rules mapping possible sensor readings to corre-

VALVE 3 output) sponding plant conditions. A problem arises in that sensor
VALVE 4 output. VALVE 4 input (if open) I indicators (such as thermometers, pressure gauges, etc.)NONE (if shut)
VALVE 5 Input a greater of (VALVE 1 output, can themselves fail on occasion. Up to 75% of a rule-

VALVE3 output) based system's knowledge base would consist of rules thatVALVE 5 output - VALVE 5 input (if open) /NONE (if shut) could ascertain for any sensor reading whether or not that
VALVE 6 input a VALVE 4 output data is correct.5
VALVE 6 output - VALVE 6 input (if open) /

NONE (if shut) Model-based systems, on the other hand, have only as
VALVE 7 input - greater of (VALVE 5 output,

VALVE 6 output) many component description and systems interrelation-
VALVE 7 output = VALVE 7 input (if open) I ships as are necessary to define the domain. Out-oi-limits

NONE (if shut)
VALVE 8 input a greater of (VALVE 5 output, sensor readings due to faulty sensors can be accurately di-

VALVE 7 output) agnosed in exactly the same manner as out-of-limits read-
VALE 8outut VALVES8 input(iopn/

VALVE S utp NONE (if shut ings due to plant malfunction: components upstream of
STEAM SINK A value a greater ol (VALVE 6 output, the sensor in the model are failed in various combinations

VALVE 7 output) until a match between model sensor values and real-worldSTEAM SINK B value • VALVE S output sensor values is obtained. If the only match(es) between
Table I model and actual system contain contradictory component

state information, then the sensor must be faulty (because
Qualitative models describe domain components "in it is assumed that the real-world system has been accurate-

terms of causal, compositional or subtypical relationships ly and completely modeled).
among objects and events."3 There are several variations
of qualitative models. Classification models categoriz Number of Rules
observed patterns to describe processes. The process de- The sheer number of rules needed to correctly predict
scriptions identify events which occur over time and in di- plant performance or diagnose faults in systems of even
verse locations. Diagnosing infectious diseases is one moderate size is enormous. This plethora of rules presents
example of the use of classification models. Simulation four problems which are resolved when model-based sys-
models start from a set of initial conditions and predict tems are used. First, as the number of rules/facts increas-
how the systems will change when the initial conditions es, the chances of implementing an exhaustive rule base
are changed. Functional models relate system behaviors decreases. Since the model-based approach is founded on
and states to functional goals.3 White and Frederiksen 12 first principles which describe component behavior and
discuss phenomenological and reductionist models. are essentially independem of expert experience, this

problem is obviated.MODEL-BASED vs. RULE.BASED SYSTEMS Second, in a large rule-base there may exist some
Rule-based systems are wholly dependent on facts rules which contradict each other, or in concert with each

and rules in their knowledge bases. They cannot, in and of other produce inaccurate results. There may also be rules
themselves, reason from cause to effect unless the cause which are just not correct. A model-based system's net-
and effect happen to be rules accessible to the inference work of behaviors, because it focuses first on component
engine. Model-based systems can because cause-effect re- or subcomponent behaviot and then on relationships, does
lationships are easily and naturally modeled as first princi- not grow increasingly more complex as the modeled sys-
pies. This is especially important in applications tern grows (although the number of components and inter-
involving physical systems such as steam generation component relationships that must be modeld does
plants and electrical distribution systems. "Rule-based ex- grow).
pert systems were never particularly suited to industrial

10th Annual National Conference on ADA Technology 1992 339

Third, a Imp rule base is expensive in emns of time the device. Predicion is based on propagating known val-
spent in develpincn Since such a system would reuir ues through the equations of the device, producing both a
exensive contact between design personnel and subject mat- logical caseleffect link and new facts. Once the inua-
fer expetS there would exist a lage period of time in which state behavior of the device has been determined, all possi-
the expert system was in production. Additionally, as the ble future stales of that device can be taken from a table
wal-world system changes, experts (who do not work for that is indexed by the values of state variables and con-
free) would have to be Consulted for modifications to the rule tains all legal states for that device.
base. Although some time lag between conception and im- Qualitative Process Theory (QP1) was developed in
plemenmion would also exist for a model-based system, 1982 by Fobus at Massachusetts institute of Technology 9

pcing the brains of expes for facts or rules to support all His Qualitaive Process Engine uses information about
Contingencies is unnecessary. Only when new components objects and proesses to reason about which processes will(which have not been previously modeled) are added willtwhchabe a bsttiltm modeled) areoccur, what they will affect in the system, and when they
then be a substaial tme dran. will stop 9 Physical systems are represented as objects

Fourth, the addition of new components in rude-based which have certain defined interrelationships and process-
systems increases exponentially the number of new rules es which are the sole means of changing state in the sys-
needed. Changes to a model-based system would be limited tern. Examples of processes in QPT are heat flow, boiling,
to information about the new component's input and output and evaporation.
and values to the components immediately upstream and Qualitative simulation (QSIM) was developed by
downstream of it (effectively re-linking the system). Kuipers in 1985.9 QSIM takes a device, functions that de-

scribe the behavior of that device, and initial state facts
1and produces future states into which the device may tran-

Model-based systems more closely simulate how human sition based on the given information. QSIM conducts a
experts diagnose faults or predict system behavior. When breadth-first generation of potential future states, filtering
there is incomplete or conflicting information available, hu- out those that are either redundant or inconsistent with the
mn experts rely on what data is available.ind formulate hy- given facts.
potheses upon which future actions , j . --k, casualty World Qualitative Modeling System (WQMS) was
control measuirs, etc.) are based.4 developed in 1990 by Gaglio, Giacomini, Ponassi, and

Model-based reasoning closely approximates the cause- Ruggiero.5 WQMS (1) models its domain using Forbus'
effact reasoning mechanism employed, in human learning. QPT principles, (2) provides an interface for the user to in-
The study of mathematics and science is fraught with facts put values and write results to a file, (3) provides a shell
and figures which are usA in problem solving (a cause-ef- from which various active system views are processed,
fect exercise). The non-quantitative world is also under- and (4) uses and Envision (ENV) simulator as well as
stood analytically. A foreigner unfamiliar with baseball will QSIM simulator to move through the network of possible
learn the game more quickly by watching (and doing) than system states. The difference between the two is that ENV
by just memorizing facts and rules. implements a depth-first search while QSIM uses a

breadth-first search. Thus, ENV sacrifices the thorough
RELATED WORK examination of successive states provided by QSIM, but

does not get bogged down computationally when used for

OUALITATIVE PHYSICS FOUNDATIONS complex systems. The user is given the option of choos-
ing between the two simulators at the beginning of a ses-

Qualitative model-based reasoning systems have their sion. WQMS was written in the production language
londations in the qualitative physics/commonsense reason- OPS5.
ing pioneered in the late 1970's and early 1980's by de Kleer,
Brown, and ForbusY MODEL-BASED REASONING IN EDUCATION AND

ENVISION was developed by de Kleer and Brown at TRAINI
the Xerox Palo Alto Research Center.9 It takes a device or A fundamental problem for students beginning the
component centered view of a system; the system as an enti- study of physics or advanced applied mathematics is a lack
ty consists as an integration of many thoroughly specified of conceptualization abilities and an unhealthy reliance on
and described component parts. Device behavior is divided formulaic solutions. Research by White and Frederiksen 12

into inter-state and intra-state behaviors and is predicted us- contends that since traditional teaching relies on the use of
ing the qualitative functions (equations) in the definition of

340 10th Annual National Conference on ADA Technology 1992

quantitave laws in problem solving, and algebraic rea- intelligent tutoring system. It is written in a variety of lan-
souing is substituted for underlying causal effects, there is guages: Franz Lisp, OPS5, PEARL (Package for Efficient
a lack of connection between a student's instinctive no- Access to Representations in Lisp) and Flavors. GTS cor-
tions of causality and the quantitative reasoning employed bines knowledge representation schemes used in heuristic
by textbooks and histructors. While and Freda=ksen em- (rule-based) systems and qualitative models to offer a
ploy the concept of an articulate microworld which corn- more robust training platform than traditional computer

hines qualitamv modeling of electrical circuit behavior aided instruction systems.
within the frmnework of an intelligent tutoring system. 12 It GTS is gener enough in principle to be used in a
is the primary veicle in solving probls w e twide variety of intelligent tutoring domains. Since it relies
dent is required to formulate mental models to understand heavily on model-based reasoning concepts, the domain
domain phenomena and to solve problems. Models of sys- should be one which is adaptive to those concepts. The
tem behavior progress from broadly qualitative and analo- power distribution prototype that developed as GTS devel-
gous to quantitative based on the student's progress and oped has been expanded into a Power Distribution Train-
success in mastering the concepts and system generated ing System currently in use at the Osaka Gas Training
test problems of lower level models. Center.

The STEAMER project was initiated in 1979 and de-
veloped through 1984 by Hollan in collaboration with MODEL-BASED REASONING IN DIAGNOSTICS
several others, principally Hutchins and Weitzman.Y e Ontological Diagnostic System (ODS), writen in
domain of STEAMER is a Navy steam propulsion plant LISP in 1989 by Gallanti, Stefanini, and Tomada6 relies
and its goal is to explore the use of artificial intelligence on knowledge of formal design principles and an under-
software and hardware in computer aided instruction standing of physical laws behind system operation to diag-

nose malfunctions. Like most model-based systems, the
Central to the development of STEAMER is the idea goal of ODS is to povide a deep knowledge network in-

of mental models, the models people use to think about stead of a shallow knowledge base found in rule-based ex-
complex systems. Graphical interface is very important pert systems. However, unlike other model-based
because the variations of how system interactions are pre- systems, ODS does not determine faults by failing likely
sented are also variations on the level and direction of in- components, allowing their new values to propagate
struction. STEAMER presents an interactive, inspectable through the model and then comparing the new model val-
simulation; the user is permitted and encouraged to ex- ues with the observed system values. Instead, ODS uses
plore and inspect how system functions perform. models of the faulty behavior of devices to determine

The Intelligent Maintenance Training System was de- faults. The claim of ODS designers is that using these

veloped by the Behavioral Technology Laboratories at the faulty models reduces the complexity of fault diagnosis,

University of Southern California, funded in part by the thereby making the whole process more effective and

Office of Naval Research.11 It is an interactive graphical practical.6 ODS typically performed fault diagnosis in

simulation that allows the user to build a system using a tenths of minutes on a Symbolics 3640 machine with 4

sort of graphical tool box. The user can then specify b- megabytes of main memory.6

havioral rules for each component in the new system. Hoist is a causal reasoning expert system based on
IMTS is implemented in Lisp. IMTS simulations are built qualitative physics. It was developed by Whitehead and
from generic objects contained in an object library. Scenes, Roach in 1990.13 Hoist's domain is fault diagnosis in the
which are screen-sized subsections of the simulation, are lower hoist of the Mark 45 Naval gun turret. It reasons
built from objects using the screen editor. When objects about machine failures from a functional model of the de-
are connected, basic rules regarding the interconnection vice, and is thus a model-based reasoning system. Hoist is
are automatically generated. Generic objects come pre- implemented in a language called WIF (What IF), which is
coded with behavioral rules indexed by the possible states based on counterfactual logic. WIF takes a "what if" in-
for the object. Each state has certain conditions which toduced by the user and assumes it will contradict known
must be true for the state to be true, and certain effects facts. The model then generates all known worlds (states)
which happen as a result of being in that state. which could exist if the counterfactual clause were true.

A Generic Training System (GTS) was developed by This is ideal for troubleshooting because instead of match-

Inui, Miyasaka, Kawamura, and Bourne.8 Its goal is to ef- ing symptoms to some set of rules, diagnosis starts by in-

fectively use artificial intelligence technology and qualita- troducing suspected fault conditions and ascertaining

tive reasoning techniques to build an individualized whether or not the fault state can be reached given the

10th Annual National Conference on ADA Technology 1992 341

"ruth" of the suspected fault. Hoist runs into combinatori- an open path to the Engineroom for main steam exists,
ally explosive situations when it is tasked to isolate multi- then the steam will be used in the Engineroom (even
pie faults. However, the designers claim that heuristic though, at present, there is no such end-user in the mod-
searches through the "fault space" can reduce the effect of el). Likewise, if there is an open piping path from the
the explosion. Fuel Oil Service Pump, then fuel will flow to the boiler

In the late 1980's, Lutcha and Zejda developed a fault regardless of the fire status of the furnace.

diagnosis system for chemical processing units based on Assumptions like these have their problems. For
mathematical models. 10 Lutcha and Zejda proposed that example, the Main Feed Pumps on a frigate are steam
all chemical processes, even the most complex, could be driven. However, since they have not been fully mod-
broken down into smaller, easier handled subsystems. eled here, they will still operate when steam flow from
Since each of the subsystems is described by only a few the boiler is secured. The "receive-ready" and "supply-
governing equations, Boolean logic can be used to deter- ready" assumptions should be viewed as temporarily
mine which sensor will fail given actual measurement val- undeveloped components in a larger propulsion plant
ues in the mathematical models. Problems arise when model. They currently serve as a test harness for the
measurement noise causes the diagnosis to fluctuate be- boiler.
tween two or more faults. Lutcha and Zejda's solution to The Automatic Boiler Control (ABC) systems were
this problem is to introduce a certain level of belief of fail- not included in this model; they are complex enough to
ure to each sensor for each discrete level of failure using comprise a separate project. Since they are measurable,
Shafer-Dempster probability mass distributions, interacting physical systems, they can also be imple-

mented in a model-based reasoning system to work with
AN ADA IMPLEMENTATION BoilerModel.

From its earliest conception, BoilerModel was meant Finally, a valve which does not exist on the real-
to be an Ada project. Several factors, including speed, world boiler was included in this model. The Virtual
maintainability, and portability contributed to this deci- Superheater Outlet was added so the user could observe
sion; however, the main consideration was the Department the effects of stopping all steam flow from the boiler. A
of Defense's embracement of Ada as a lingua franca for later version of BoilerModel should contain a more ver-
future programming applications. satile user interface which would allow the user to

change more than one valve status or characteristic per
SCOPE OF THE MODEL scenario. That versatility is currently lacking.

The original plan for BoilerModel was to write and
implement it on an IBM-type PC using Meridian Soft- ADA IN ARTIFICIAL INTELLIGENCE
ware's AdaZ (later OpenAda) compiler. An early version The typical benchmark in artificial intelligence
of BoilerModel was written and did run with AdaZ; how- technology is "adequacy"- does the system provide ac-
ever, the variable stack used by the compiler later proved ceptably correct answers or diagnoses in an acceptable
to be inadequate for the number of global variables (and amount of time or detail? Programs have generally been
the size of the data structures in which these variables prototyped in one of the standard Al languages, such as
were instantiated) in the current version of the model. LISP, and once developed, translated into a more effi-
With virtually no changes to existing code, the model was cient language (e.g., C or Pascal).'
transferred to a Sun SPARCstation and the Verdix Ada
compiler. The number and size of global variables did not Ada provides an alternate solution. Its rich data

adversely affect that compiler, types, capability for multitasking, and strong typing re-
quirements are some of the reasons Ada can and should

BoilerModel models a somewhat simplified 1200 psi be used from initial program development through im-
D-type boiler, along with valve and piping systems to and plementation of the final product.
from major loads and supporting auxiliary equipment. Al-
though all propulsion boilers operate the same in principle, event skirnr. In a steam generation plant, several
BoilerModel's architecture comes from the FF 1052/1078 events occur simultaneously. Steam flows through pip-
class platform. For the purpose of this implementation, ing systems at the same time as fuel is supplied to the
boiler steam loads are assumed to be "receive-ready" and boiler at the same time as feedwater is pumped into the

boiler auxiliaries are assumed to be "supply-ready." This steam drum. Ada tasks are outstanding tools for model-

simply means that if, for example, the boiler is on-line and ing the cause-effect relationships in such a system. For
example, when fires go out in a real-world boiler, steam

342 10th Annual National Conference on ADA Technology 1992

flow out of the generation tubes is immediately reduced. glish-like syntax (no car's or cdr's, thank you), minimal
Two tasks, one which concerns itself with boiler fires man- use of parentheses, and modular design certainly enhance
agement and another which monitors steam flow through its appeal. If the language is more readable, then it will
boiler tubes could run independently yet share a common probably be more maintainable.2 Of course, the bottom
variable: boiler fire status (changeable only by the fires line as far as readability goes will probably be personal
manager). Now, instead of having the disjointed nest of if preference. Ada supporters claim that an Ada program
and case statements and an unrealistic sequence of events can be understood easily and translated into other languag-
common in a sequential processing system, one can realis- es. 1 In fact, this claim is used to promote the general utility
ticaly model events which occur concurrently. of the language. Can Lisp supporters make such a claim?

Portability and Sped. A machine-dependent artificial
intelligence application is useful only as long as the partic- ADA vs. LISP - A CASE-BASED COMPARISON
ular machine is available, affordable, and multi-purpose. An early version of BoilerModel (hereafter referred to
Similarly, programs written in languages lacking a com- as ProtoBoiler to differentiate it from the final version)
mon standard are neither easily maintained nor readily in- that did not incorporate Ada's tasking constructs was com-
tegrated into other applications written in different dialects pared to the same program written in Lisp. It should be
of the same language. Lisp and C are languages in which noted here that the Lisp program was written as function-
portability can be a problem. C is generally portable, but ally as possible to ensure that the comparison fairly evalu-
libraries vary from implementation to implementation. ated an Ada program against a Lisp program as they are
Since C is a language of functions, this can be a difficult conventionally written. Tables 2, 3, and 4 synopsize the
problem to overcome.1 Lisp has traditionally been very results of the test. The Lisp code was written and run in
nonportable t , although efforts have been made to stan- the Allegro Common Lisp environment in both an uncom-
dardize Common Lisp. Ada is currently the most portable, piled and a compiled version. The difference in speed is at
"although at present this portability is limited by the avail- the expense of storage (16.2 K vice 36.7 K). Since memo-
ability of Ada compilers and support environments." ry is no longer a consideration for all practical purposes,
Since an Ada compiler may only be authorized for use in this trade-off is worthwhile. Additionally, both Lisp ver-
DoD applications if it conforms to the ANSI/MIL-STD- sions have time for "garbage collection" and "non-garbage
1815A requirements promulgated by the Department of collection" use of the CPU. Although garbage collection
Defense, it can be a time and money consuming proposi- does vary depending on system usage, it is a real time con-
tion to build a compiler. There are, however, several more sumer which must be taken into consideration. The Ada
on the market since Baker (1987),' and they are afford- compiler performs garbage collection only once, at corn-
able. Ada's portability was put to the test during the de- pile time. All comparisons were made at the same time of
velopment of BoilerModel. Code for an early version of day, with similar system loads.
the project that had compiled and was successfully run-
ning on an 80286 machine was transferred in ASCII for-
mat to a UNIX based Sun system. No changes to the code
were needed for it to compile and run on the new system.

Ada generates code which, while probably somewhat
slower than C code, is markedly faster than Lisp. This
comes as no surprise; Lisp programs are great consumers
of both machine time and memory. One of the design
considerations for Ada was real-time control (for use in
embedded systems). To that end, one of the three goals es-
tablished by the Ada language team was efficiency. "Any
language construct whose implementation was unclear or
required excessive machine resources was rejected." 2

Ada's speed would be of great advantage in real-time ex-
pert systems, such as autonomous vehicle control and ro-
bot sensor processing.

Readability and Maintainability. An argument can be
made that Ada code is easier to read than Lisp code for
most people raised on traditional programming.1 Its En-

10th Annual Nafional Conference on ADA Technology 1992 343

ADA

TIME (SEC) COMPILED LISP

V OAL NON-GC TIME GC TIMEVALVE TRACE USR SYSTEM T L(SEC) (SEC)r---I I I
FOCV y 0.3 1.3 1.6 VALVE TRACE USER SYS USER SYS TOTAL

FOCV N 0.0 0.1 0.1
FOCV Y 3.7 2.3 0.0 0.0 6.0FOCV N 0.2 0.1 0.0 0.0 0.3

ISS N 0.0 0.0 0.0 MSS Y 1.1 0.6 0.0 0.0 1.7

FEED STOP Y 0.0 0.3 0.3 MSS N 0.2 0.0 0.0 0.0 0.2
FEED STOP N 0.0 0.1 0.1 P Y 1.0 0.6 0.0 0.0 1.6
TEST1* Y 0.7 2.3 3.0 R N 0.2 0.1 0.0 0.0 0.3
TEST* N 0.0 0.2 0.2 TESTI* Y 7.5 4.1 0.0 0.0 11.6

TESTI* N 0.6 0.2 0.0 0.0 0.8

Storage: code 15799 bytes Storage: code 36710 bytesexecutable 229376 bytesStrg:od361bye

* TESTI closes FOCV, then DESUP-IN, then MSS [TEST1 closes FOCV, then DESUP-IN, then MSS

Table 2 Table 4

Four test cases were used in the comparison. The first
three propagated changes when one valve was closed

UNCOMPILED LISP (Fuel Oil Control Valve in case 1, Main Steam Stop in case
2, and Main Feed Stop in case 3). The fourth case closed
three valves (Fuel Oil Control Valve, Desuperheater Inlet,

NON.GC TIME GC TIME and then Main Steam Stop). The four cases represent the
(SEP (SEC) major systems integrated in ProtoBoiler. Each case was

F 1 F 7 run with "trace" on and "trace" off. "Trace" enables the
VALVE TRACE USER SYST USER SYST TOTAL user to watch the propagation of values as they occur.

With "trace" off, the user would only see the initial and fi-
FOCV Y 9.3 2.9 0.9 0.9 14.0 nal plant statuses.
FOCV N 1.0 0.8 0.0 0.0 1.8 The Ada program ran consistently faster than either
MSS Y 3.0 4.7 0.0 0.0 7.7 Lisp version. "TESTI," which closes multiple valves, ran
MRS N 0.8 0.7 0.0 0.0 1.5 almost nine times faster than uncompiled Lisp and almost

FEED Y 2.9 4.6 0.0 0.0 7.5 four times faster than the compiled Lisp version (all three
STOP with "trace" on). The Ada code required 15.8 K storage
FEED N 0.7 0.8 0.0 0.0 1.5 versus 16.2 K and 36.7 K for the uncompiled and com-
STOP
TESTI* Y 17.6 5.9 1.7 1.1 26.3 piled Lisp versions, respectively. The executable Ada pro-

gram (which runs independently in the UNIX shell)TESTI* N 1.7 0.6 0.0 0.0 2.3 required 229.4 K. The Lisp code requires the Allegro en-

vironment to run. Although, as previously asserted, mem-
Storage: code 16228 bytes ory is not a big concern in the test environment (Sun

[EST]_loses_____then_________thnMSSSPARCstation with UNIX operating system), the size of
the executable code or all systems required to run the pro-

Table 3 gram may be a consideration for other machines. PC'srunning MS-DOS or PC-DOS may be limited to execut-

able file., less than 640 kilobytes.

344 10th Annual Natonal Conference on ADA Technology 1992

The prominent data types used in BoilerModel are
simple enumeration types, arrays, and records. The main Wre MEASUREMENT_VALUE is (NONE. LOWALARM,
data structure used is the linked lisL BoilerModel's two LOW, NORM, tHGH. LIFISAFE_HI,
major records, VALVE and BOLER can be found in Fig- HIGH ALARM, FUEL.._.ONAGDECK,NOUEL_ON_.DECK,. ORANGE.
ures 2 and 3, respectively. Type MEASUREMENTVAL- BLACK, CLEAR, FOGGED, FANSHAPED,
UE defines the qualitative expressions of actual plant IRREGULAR, OPEN. SHUT).
parameters. It can be seen in Figure 4.

type VALVE is Figure 4
rewrd
VALVEJD: INDEX;
UPSTREAM: VALVEPFIARRAY;
DOWNSTREAM: VALVEPTRARRAY;
COUNTED: BOOLEAN:= FALSE Type VALVE is a record that contains all the informa-
NEXT: VALVEJR
PREVSTATUS: MEASUREMENT VALUE:= OPEN; tion and parameters necessary for valve operation in Boil-
STATUS: MEASUREMENTYALUE-- OPEN; erModel. Each valve in the system is an instantiation of an
PREV.jNPUT_PRESS: MEASUREMENTYALUE.= access type, VALVEFIR, which points to a valve'record.

NORMK
INPUTPRESSURE: MEASUREMENTYALUE:= The valves in BoilerModel are connected in a linked list

NORM; structure. Two important fields in type VALVE are UP-
PREVINPUT_FLOW: MEASUREMENTVALUE:= STREAM and DOWNSTREAM. UPSTREAM and

NORM;
PREVOUTPUT_FLOW: MEASUREMENTVALUE:= DOWNSTREAM are arrays of type VALVEPTR. They

NORM; contain pointers to the valves which are immediately up-
INPUTULOW: MEASUREMENT VALUE:= NORM; stream or downstream of each valve. Normally, there is

NORM : only one valve in each of these arrays; however, some

PREVOUTPUTPRESS: MEASUREMENTYALUE:= valves, such as MAINSTEAMSTOP, act as distributors
NORM; for several downstream systems or receivers from multiple

OUTPUTFLOW: MEASUREMENLVALUE= NORM;
SYSTEM: SYSTEM_ARRAYPT sources and thus require several valves in one of the two

and m~cord; arrays.

Type BORER is a record of other records. Its constit-
Figure 2 uent members consist of STEAMDRUM and WATER_-

DRUM (instances of type DRUM), SUPERHEATER,
DESUPERHEATER, and GENERATIONTUBES (in-
stances of type TUBE), and FURNACE (an instance of
type BOLER_FURNACE). The fields of the constituent
records contain the features and parameters observable in

vpe BOILER is a real-world boiler.
mw€ord

STEAMDRUM: DRUM; Four tasks drive BoilerModel: PROPAGATE,
WATERDRUM: DRUM; STEAM_DRUMMANAGER, FIRESMANAGER, and
SUPERHEATER: TUBE; TUBE.MANAGER. They are all actor tasks, each em-
DESUPERHEATER: TUBE;
GENERATIONTUBES: TUBE; bedded in a loop statement. Thus, once activated, they
FURNACE: BOILERFURNACE; continually perform updates and constraint propagation.

end reord; Since they are all of the same priority, they are scheduled

using an implementation-defined First-In, First-Out ready

Figure 3 queue.

It should be noted here that the main procedure of any
Ada program is an implicit task. Procedure MAIN in
BoilerModel is no different. It is assigned a higher priori-
ty than any other task so it can perform boiler and plant
initialization before propagation begins (unpredictable and
erroneous results occurred when MAIN was assigned a

10th Annual National Conference on ADA Technology 1992 345

priority equal to the other tasks). MAIN provides user in- fuel pressure of NONE to the boiler can result from task
terface by querying the user about what valve status or PROPAGATE, while a fire appearance of NONE and
characteristic to change and displaying boiler status when LOW steam drum pressure are effected by task FIRES-
a boiler parameter has been changed. MANAGER.

Task PROPAGATE takes a look at current and previ- Task TUBE._MANAGER controls the flow of water
ous status, pressure, and flow for each valve in the linked and steam through the boiler, from the Manual Check
list of plant valves. If a current and previous parameter of Valve output to the Main and Auxiliary Steam Stops. Fig-
a valve do not match, it must mean that some value was ure 5 is a schematic representation of boiler flow. TUBE_
propagated to that valve and must continue propagating MANAGER ensures connectivity by assigning values for
until it reaches a sink (user) or a dead end. component input flow based on the appropriate component

Task STEAMDRUMMANAGER regulates water output flow.

level in the boiler steam drum and controls safety valve Bo Boier
operation. If there is more flow into the boiler than flow Chea Stea s WSW
out, water level will increase first to a HIGH condition and Valve Drum
then to HIGHALARM (signalling a High Water casual- I
ty). If the flow out of the boiler is greater than the flow in,
water level drops to LOW, and then to LOWALARM (a Boiler Boiler
Low Water casualty). NORM water level is the equilibri- SUM- e Genertingur O~bl eater SaeyTubes
urn condition, svalves

Task FIRES_MANAGER controls steam drum pres- Main
sure by regulating firing rate based on fuel manifold output Stearn
pressure. In a real-world boiler, an Automatic Combus- StopAuxOutletsteam
tion Control (ACC) system regulates fuel and air pressure outlt Boiler Stop
(and therefore firing rate) to maintain normal steam drum Dsuper,.0
pressure. The ACC system is one part of the Automatic beater

Boiler Controls system which was not incorporated in Figure 5
BoilerModel. However, to mirror real-world boiler opera-
tions as closely as possible, boiler firing rate (more accu-
rately, Fuel Oil Control Valve output pressure) changes RESULTS
only when steam drum pressure varies from NORM.
When drum pressure is greater than NORM, firing rate de- The BoilerModel user interface permits the user to
creases; when steam drum pressure drops below NORM, choose between changing a valve characteristic or a valve
firing rate increases. When steam drum pressure reaches status. The characteristics that can be changed are input
NORM, fring rate becomes NORM. In a real-world flow and input pressure. Each can be changed to none,
steam generation system, NORM depends on the boiler low, norm, or high. Altering a characteristic allows user
loads (NORM is greater when the ship travels at higher control over what values will propagate and where propa-
speeds, for example). So, even though the boiler firing gation will start. A change in valve status more accurately
rate may not change quantitatively during the transition mirrors how an operator can effect changes to the plant:
from abnormal to normal steam drum pressure, it does by opening or closing a valve.
change qualitatively to reflect the new normal fuel and air In all test cases, the end results of propagation match
demand for the changed steam load. the expected results in a real-world boiler system. This is

The boiler furnace parameters are also controlled by a good thing, but could have been accomplished without
FIRES_MANAGER via a set of constraints. The con- difficulty using a rule-based expert system. The model-
straints constitute the necessary preconditions for furnace based nature of BoilerModel, however, permits the user to
values to be other than normal. For example, if there is a incrementally trace changes as they propagate through the
path for fuel into the boiler and the fuel is being supplied system. Moreover, at any point in time the plant status is
and fires happen to be extinguished, then the furnace deck relatively accurate; events occur and are displayed in cor-
will have fuel on it and the periscope will be fogged. How rect relation to other events. (e.g., propagation of low
the constraint values come to be is of no concern to steam pressure through the main steam system can occur
FIRES_MANAGER; only the cause-effect relationships only after the user can see that something happened to
across the furnace subcomponents is regulated. Hence, change steam drum pressure).

346 10th Annual National Conference on ADA Technology 1992

Consider the effects of closing the Feedwater Control drum water level starts to decrease (eventually to the alarm
Valve (FWCV) in Figure 6. (The actual runout for this test level).
can be found in the Figure 7 series). Note that the FWCV Steam flow is the normal cooling medium for boiler
is the sole entry point for water into the boiler. The first tubes. Since there is now no flow through the generating
things BoilerModel does is propagate a NONE value for tubes and boiler fires are still lit, a rupture to those tubes
output pressure and flow downstream of the FWCV. Since occurs. Also, steam drum pressure has gone down be-
there are no bran ches in the piping system upstream of the cause there is no more water coming into the boiler. This
valve and the prnp is assumed to still be running, a back- results in a propagation of LOW output pressure and
pressure is propagated upstream. NONE output flow to the Vihual Superheater Outlet

At this point the boiler status indicates that there is no (VSH) and on through the steam piping systems.
flow into the steam drum. The change in flow starts prop- The superheater also experiences a rupture from a
agating throughout the boiler tubing. Also, since there is a lack of cooling medium. The residual steam in the rup-
greater flow out of the boiler than there is into it, the steam

I Viul suetrOud
6 2 Main Seam Stop

3 Dzupeser Inle
4 Au liary Steam Stop
5 Enjumoorn Bulkhead Stop
6 Aux Machinery Rm Bulhead Stop

Main Feed 7 Main Feed Pump Steam Supply
P Bleeder

7 9 Forced Draft Blower Steam Supply
10 Augmtor
11 150psi Reducu'Supply
12 Prmuie Masker Supply
13 Main Feed Stop
14 Feedwster Control Valve

13]
15 Manual Cha Valve

16 Air Shutters
17 Air Registers
18 Fuel Oil ScrAic Pumfp Discharge
19 Fuel Oil Control Valve

Prime Masker Air 22 Fael Manifold
Compror 21 Fuel Recirc

22 Safeties

14 15N Valve open

N Valve shut

LN

4 5
20

Forced Drif Fuel Oil

Blower Ser ce Pump

Figure 6

10th Annual National Conference on ADA Technology 1992 347

CHANGE VALVE (C)HARACTERISTIC OR (V)ALVE STATUS?v

ENTER VALVE TO CHANGE: fwcv

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

FWCV SHUT NORM NORM NONE NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

FEED.STOP OPEN HIGH NORM HIGH NORM

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

FWCV SHUT HIGH NORM NONE NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

MAN-CHK OPEN NONE NONE NONE NONE

PLANT STATUS--BOILER

BOILER STEAM DRUM WATER LEVEL: NORM BOILER STEAM DRUM PRESSURE: NORM
BOILER STEAM DRUM FLOW IN: NONE BOILER STEAM DRUM FLOW OUT: NONE
BOILER STEAM DRUM TEMP: NORM

BOILER WATER DRUM FLOW IN: NONE BOILER WATER DRUM FLOW OUT: NONE

SUPERHEATER FLOW IN: NORM SUPERHEATER FLOW OUT: NORM
SUPERHEATER RUPTURE: FALSE SUPERHEATER TEMP: NORM

DESUPERHEATER FLOW IN: NORM DESUPERHEATER FLOW OUT: NORM
DESUPERHEATER RUPTURE: FALSE DESUPERHEATER TEMP: NORM

GENERATION TUBES FLOW IN: NONE GENERATION TUBES FLOW OUT: NONE
GENERATION TUBES RUPTURE: FALSE GENERATION TUBES TEMP: NORM

FURNACE DECK STATUS: NO_FUELON_DECK FIRING RATE: NORM
BOILER EXPLOSION: FALSE PERISCOPE: CLEAR
FIRES LIT: TRUE FIRE APPEARANCE: FAN SHAPED

Figure 7a

348 10th Annual Natonal Conference on ADA Technology 1992

PLANT STATUS-BOILER

BOILER STEAM DRUM WATER LEVEL: LOW BOILER STE.M DRUM PRESSURE: NORM
BOILER STEAM DRUM FLOW IN: NONE BOILER STEAM DRUM FLOW OUT: NONE
BOILER STEAM DRUM TEMP: NORM

BOILER WATER DRUM FLOW IN: NONE BOILER WATER DRUM FLOW OUT: NONE

SUPERHEATER FLOW IN: NORM SUPERHEATER FLOW OUT: NORM
SUPERHEATER RUPTURE: FALSE SUPERHEATER TEMP: NORM

DESUPERHEATER FLOW IN: NORM DESUPERHEATER FLOW OUT: NORM
DESUPERHEATER RUPTURE: FALSE DESUPERHEA.'ER TEMP: NORM

GENERATION TUBES FLOW IN: NONE GENERATION TUBES FLOW OUT: NONE
GENERATION TUBES RUPTURE: FALSE GENERATION TUBES TEMP: NORM

FURNACE DECK STATUS: N0.FUEL-ONDECK FIRING RATE: NORM
BOILER EXPLOSION: FALSE PERISCOPE: CLEAR
FIRES LIT: TRUE FIRE APPEARANCE: FANSHAPED

PLANT STATUS--BOILER

BOILER STEAM DRUM WATER LEVEL: LOW-ALARM BOILER STEAM DRUM PRESSURE: NORM
BOILER STEAM DRUM FLOW IN: NONE BOILER STEAM DRUM FLOW OUT: NONE
BOILER STEAM DRUM TEMP: NORM

BOILER WATER DRUM FLOW IN: NONE BOILER WATER DRUM FLOW OUT: NONE

SUPERHEATER FLOW IN: NORM SUPERHEATER FLOW OUT: NORM
SUPERHEATER RUPTURE: FALSE SUPERHEATER TEMP: NORM

DESUPERHEATER FLOW IN: NORM DESUPERHEATER FLOW OUT: NORM
DESUPERHEATER RUPTURE: FALSE DESUPERHEATER TEMP: NORM

GENERATION TUBES FLOW IN: NONE GENERATION TUBES FLOW OUT: NONE
GENERATION TUBES RUPTURE: FALSE GENERATION TUBES TEMP: NORM

FURNACE DECK STATUS: NO.FUELONDECK FIRING RATE: NORM
BOILER EXPLOSION: FALSE PERISCOPE: CLEAR
FIRES LIT: TRUE FIRE APPEARANCE: FANSHAPED

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
.... o...... •..........

SAFETIES SHUT LOW NONE NONE NONE

Figure 7b

10th Annual Notional Conference on ADA Technology 1992 349

PLANT STATUS-BOILER

BOILER STEAM DRUM WATER LEVEL: LOWALARM BOILER STEAM DRUM PRESSURE: LOW
BOILER STEAM DRUM FLOW IN: NONE BOILER STEAM DRUM FLOW OUT: NONE
BOILER STEAM DRUM TEMP: NORM

BOILER WATER DRUM FLOW IN: NONE BOILER WATER DRUM FLOW OUT: NONE

SUPERHEATER FLOW IN: NONE SUPERHEATER FLOW OUT: NONE
SUPERHEATER RUPTURE: FALSE SUPERHEATER TEMP: NORM

DESUPERHEATER FLOW IN: NORM DESUPERHEATER FLOW OUT: NORM
DESUPERHEATER RUPTURE: FALSE DESUPERHEATER TEMP: NORM

GENERATION TUBES FLOW IN: NONE GENERATION TUBES FLOW OUT: NONE
GENERATION TUBES RUPTURE: TRUE GENERATION TUBES TEMP: HIGH

FURNACE DECK STATUS: NO_FUELONDECK FIRING RATE: NORM
BOILER EXPLOSION: FALSE PERISCOPE: FOGGED
FIRES LIT: TRUE FIRE APPEARANCE: FANSHAPED

..

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW.........
VSH OPEN LOW NORM LOW NORM

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

MSS OPEN LOW NORM LOW NORM

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

DESUPIN OPEN LOW NORM LOW NORM

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
. °................

BLEED SHUT LOW NORM NONE NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

ERBLKHD
_STOP OPEN LOW NORM LOW NORM

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

AMRBLKHD
_STOP OPEN LOW NORM LOW NORM

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

MFP STM
SUP OPEN LOW NORM LOW NORM

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

ASS OPEN LOW NORM LOW NORM

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

AUG OPEN LOW NORM LOW NORM

Figure 7c

350 10th Annual Naional Conference on ADA Technology 1992

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

FDBJN OPEN LOW NORM LOW NORM

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

ONE FIFTY
-IN OPEN LOW NORM LOW NORM

PLANT STATUS--BOILER

BOILER STEAM DRUM WATER LEVEL: LOWALARM BOILER STEAM DRUM PRESSURE: LOW
BOILER STEAM DRUM FLOW IN: NONE BOILER STEAM DRUM FLOW OUT: NONE
BOILER STEAM DRUM TEMP: NORM

BOILER WATER DRUM FLOW IN: NONE BOILER WATER DRUM FLOW OUT: NONE

SUPERHEATER FLOW IN: NONE SUPERHEATER FLOW OUT: NONE
SUPERHEATER RUPTURE: TRUE SUPERHEATER TEMP: HIGH

DESUPERHEATER FLOW N: NONE DESUPERHEATER FLOW OUT: NONE
DESUPERHEATER RUPTURE: FALSE DESUPERHEATER TEMP: NORM

GENERATION TUBES FLOW IN: NONE GENERATION TUBES FLOW OUT: NONE
GENERATION TUBES RUPTURE: TRUE GENERATION TUBES TEMP: HIGH

FURNACE DECK STATUS: NOFUELONDECK FIRING RATE: NORM
BOILER EXPLOSION: FALSE PERISCOPE: FOGGED
FIRES LIT: TRUE FIRE APPEARANCE: FAN.SHAPED
...... o...• •°°o °°o. °................

IIIIII II//IIIII///I////
.... o... o°°o ..

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
.......... •............ •................

VSH OPEN LOW NONE LOW NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
......... o........... Io.............

MSS OPEN LOW NONE LOW NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
.......... °................

ASS OPEN LOW NONE LOW NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
.........

DESUPJNI OPEN LOW NONE LOW NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

BLEED SHUT LOW NONE NONE NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

AUG OPEN LOW NONE LOW NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
..........

FDB_IN OPEN LOW NONE LOW NONE

Figure 7d

10th Annual National Conference on ADA Technology 1992 351

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

ONE-FIFTY
IN OPEN LOW NONE LOW NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

ER.BLKHD
_STOP OPEN LOW NONE LOW NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

AMRBLKHD
-STOP OPEN LOW NONE LOW NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

MFP.STMo
SUP OPEN LOW NONE LOW NONE

PLANT STATUS--BOILER

BOILER STEAM DRUM WATER LEVEL: LOWALARM BOILER STEAM DRUM PRESSURE: NONE
BOILER STEAM DRUM FLOW IN: NONE BOILER STEAM DRUM FLOW OUT: NONE
BOILER STEAM DRUM TEMP: NORM

BOILER WATER DRUM FLOW IN: NONE BOILER WATER DRUM FLOW OUT: NONE

SUPERHEATER FLOW IN: NONE SUPERHEATER FLOW OUT: NONE
SUPERHEATER RUPTURE: TRUE SUPERHEATER TEMP: HIGH

DESUPERHEATER FLOW IN: NONE DESUPERHEATER FLOW OUT: NONE
DESUPERHEATER RUPTURE: FALSE DESUPERHEATER TEMP: NORM

GENERATION TUBES FLOW IN: NONE GENERATION TUBES FLOW OUT: NONE
GENERATION TUBES RUPTURE: TRUE GENERATION TUBES TEMP: HIGH

FURNACE DECK STATUS: NO_FUELONDECK FIRING RATE: NORM
BOILER EXPLOSION: FALSE PERISCOPE: FOGGED
FIRES LUT: TRUE FIRE APPEARANCE: FANSHAPED
. °..

....... °...

PLANT STATUS--BOILER

BOILER STEAM DRUM WATER LEVEL: LOWALARM BOILER STEAM DRUM PRESSURE: NONE
BOILER STEAM DRUM FLOW IN: NONE BOILER STEAM DRUM FLOW OUT: NONE
BOILER STEAM DRUM TEMP: NORM

BOILER WATER DRUM FLOW IN: NONE BOILER WATER DRUM FLOW OUT: NONE

SUPERHEATER FLOW IN: NONE SUPERHEATER FLOW OUT: NONE
SUPERHEATER RUPTURE: TRUE SUPERHEATER TEMP: HIGH

DESUPERHEATER FLOW IN: NONE DESUPERHEATER FLOW OUT: NONE
DESUPERHEATER RUPTURE: FALSE DESUPERH-EATER TEMP: HIGH

GENERATION TUBES FLOW IN: NONE GENERATION TUBES FLOW OUT: NONE
GENERATION TUBES RUPTURE: TRUE GENERATION TUBES TEMP: HIGH

Figure 7e

352 10th Annual National Conference on ADA Technology 1992

FURNACE DECK STATUS: NOFUEL ONDECK FIRING RATE: NORM
BOILER EXPLOSION: FALSE PERISCOPE: FOGGED
FIRES LIT: TRUE FIRE APPEARANCE: FANSHAPED

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

VSH OPEN NONE NONE NONE NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW

MSS OPEN NONE NONE NONE NONE

VALVE STATUS INPUT PRESS iPf FLOW OUTPUT PRESS OUTPUT FLOW

DESUPIN OPEN NONE NONE NONE NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
........ °° ° °.°...........

SAFETIES SHUT NONE NONE NONE NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
....... o ° °° °°... °......... .°°..... °°°..........

BLEED SHUT NONE NONE NONE NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
.......... ..°°.°°...... °...............° °..o.......°......

ERBLKHD
-STOP OPEN NONE NONE NONE NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
.......... ° .°.°....°. °......

AMRBLKHD
-STOP OPEN NONE NONE NONE NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
........ °°.........

MFPSTM
-SUP OPEN NONE NONE NONE NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
...°..°...°°............. °..... °. °........... °..........

ASS OPEN NONE NONE NONE NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
°...... °.....

AUG OPEN NONE NONE NONE NONE

VALVE STATUS INPUT RESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
.......... o

FDB.IN OPEN NONE NONE NONE NONE

VALVE STATUS INPUT PRESS INPUT FLOW OUTPUT PRESS OUTPUT FLOW
.........

ONEFITY
-IN OPEN NONE NONE NONE NONE

Figure 7f

10th Annual Naionoa Conference on ADA Technology 1992 353

reA tubes causes the boiler periscope to fog up. The des- tively as is by engineering personnel assigned to ships
uperncaer nver ruptures because it does not come into with different types of propulsion boilers and different
direct comimict with combustion gases and does not need plant configurations. The geeral sequence of events that
flow through it to maintain its integrity. occurs whe the feedwater inlet to the boiler is shut is the

same for all swun propulsion plants- only the parameters
CONCLUSIONS vay. Additionally, because of the component-oriented na-

Mod-based reasoning is aneffective and efficient ture of model-based systems in general and the modularity
med fr-lmentming gs m planttinginndringiaient of BoikeaModel in particular, the code ca be manipulated

meho Boer~ sccurateam represengeringl ain- to ad and remove components or to rearrange valves and
in d raodes accurately represents parisical co po- piping configurations with very little difficulty. So, al-
nents and ezecuntes concurret real-wordd activities. It though BorMd is based o a frigate's steam genera-

provides a unble output that shows how values are propa- tion sysBerm it can e modied o ah any other steam

gate through vaimus systems Answers to the questions tfm .

posed in the inroductim, to this paper will be examined,

along with other observations/poblems encountered. The second advantage a qualitative boiler model has
over a mathematical one is that the real-world users of the

QONS A~qWmodel are plant operators, not mechanical engineers. Al-
though both officer and enlisted watchstanders must know

Boiler and Steam Plant Modeling. Expert systems some plant-specific parameters, no one is required to know
can bt- developed to c.ficiently and effectively model a all of them. One reason is that there are many measurable
propulsion oiler systern. Rule-based systerns could con- parameters. Instead of requiring an operator to remember
ceivably be built to correctly diagnose all casualty situa- them all (and possibly forget some), engineering guide-
tions, but they have several shortcomings. First, they lines dictate the use of markers (such as red tape) on mea-
cnnot mason beyond the limits of their rule bases. They suring devices (gauges and thermometers) to indicate the
are, therefore, limited by the knowledge of subject matter maximum acceptable high or low values. A watchstander
experts. Second, the number of rules required for such a can then scan his or her gauge board and observe the rela-
system would be enormous because a great deal of them tionship of the actual value to the max (or min) for that
would be required ;o verify sensor accuracy. Moreover, sensor. In other words, the watchstander makes qualita-
the large number of rules would slow the expert system tive observations; values are low, high, or normal with re-
down (poAibly to the point of uselessness). Third, modifi- spect to the delimiting marker.
cations to the system (including expansion into a steam
plant-wide domain) could requirc substantial alterations to l.ila Ada proved to be a versatile mod-
-ie rule base. Such changes might result in redundant or eling tool. It provided fairly tight and very fast code. Itcontradictory rules, can be used procedurally or functionally, and is very porta-

ble. Lisp code, on the other hand, ran considerably slower
BoilerModel is a streamlined expert system that does than Ada code in the case-based comparison. Moreover,

not rely on a bank ox' rules to determine plant status. In- the Lisp code proved more difficult to troubleshoot be-
stead, it uses cause-effect relations and intra-component cause it produced run-time errors which, while traceable
behaVu-al rules to propagate values to their logical con- (using the Lisp "trace" function), were not nearly as easy
clusions. Since BoilerModel places all emphasis on com- to locate and 6orrect as compile-time errors in Ada.
ponents aid propagation along component connections, Lisp is one of the dominant expert system modeling
modification is simply a matter of modeling new devices lis So l i remin exper ys Lispand connecting them into the existing system. Theref languages. Should it remain s,? To answer yes, a Lisp
expanding BoilerModel into a larger steam plant mo .._- proponent must provide clear advantages for that languageonly as diffiult as modeling the additional components. over other contenders. This paper proposes Ada as a lan-guage for use in the full development of artificial intelli-

Qua1J:'atiytJ.dLing. Designing BoilerModel in the gence applications, from prototype to finished product.
qualitative paradigm posed no problems. In fact, it may The only thing Ada lacks is true inheritance in object-ori-
have been easier than doing so using actual FF 1052/1078 ented programming. That is only temporary; at least one
pant parameters because inexact state descriptions preprow ssor, Classic-Ada, allows full use of)bject-ori-
tEkGH, NORM, ec.) require no complicated mathemati- ented techniques. When tools such as this one are widely
cal formulae. Moreover, qualitative modeling of this available and become a defacto part of the DoD standard,
project carries two advantages over mathematical or nu- then Ada will truly be an all-purpose language.
merical modeling. First, BoilerModel can be used effec-

354 10th Annual Naional Confererce on ADA Technology 1992

Affaulabix Since BoilerModel was developed in tioned 'mistakes" typical of undertrained deckplate sail-
Ada, affordability for shipbord use is based on three con- ors.
sideratims. FMrst, the initial purchase of an Ada compiler D All ships must undergo two periodic en-
for the PC or Macintosh that can handle the large, numer- gineng inspections the prational Propulsion Plant
ous global vaiables inhermt in te model. Since Ada is E kOPPE) ad the Light-Off Examination
so potabe, verylittle modification to existing code would (LOE). Normally, sufficient underway time is allotted for
be required for a changeover from UNIX to MS/PC-DOS OPPE preparation; however, since pat of the exam is ma-
or the Macintosh operating system. Second, ships must be teriel readiness, a substantial amount of work at a repair
equipped with the hardware necessary to run the execut- facility is also required. Light-Off Exams are required af-
ae version of BoilerModeL Specifically PC's or Mac's ter extensive yard periods, during which the ship cannot
(preferably iqtop versions) need to be accessible to engi- get underway to conduct realistic training. A shipboard
neering personnel. Third, if this model is to grow any training complement like BoilerModel could constructive-
larger than it is, somone needs to make it happen. ly use the iport time to prepare watchstanders for these

The first two considerations involve minimal costs inspections.
that can easily be reconciled in any budget. The third con- Other ulsion Plants. Steam ships are fast becom-
sideation may involve man-hours (years) diverted toward ing an anomaly. With the decommissioning of the Knox
project development, although some costs can be defrayed class frigates, the Adams and FarragutCoontz class guid-
by using available research institutions (such as the Naval ed missile destroyers, and the battleships, the only steam
Postgraduate School). driven platforms left will be auxiliaries, cruisers, some

amphibious ships, and a handful of aircraft carriers. How-
OTHER OBSERVATIONS AND PROBLEMS ever, the concepts of model-based design employed in

Observations were made and problems encountered BoilerModel transcend propulsion type and can therefore
during the design and development of BoilerModel that by applied to both gas turbine and diesel plants.

were not directly tied to the research questions.

£ e I.PIroblem. As detailed earlier, BoilerMod- ABOUT THE AUTHORS

el's complement of global variables prevented the use of LT James F. Stascavage, USN, has served as Main
Meridian's standard sized Ada compiler for the PC. This Propulsion Assistant onboard USS AYLWIN (FF 1081)
proved to be only a temporary snag; Ada's portability re- and as an engineering instructor at the Navy's Steam En-
sulted in trouble free transfer to the Verdix Ada compiler gineering Ofjicer of the Watch course and the Propulsion
on the Suns (although the user-friendly Meridian editing Plant Trainer in Newport, RI. He received an M.S. in
environment was sorely missed). Computer Science from the Naval Postgraduate School in

Inomplete Model. The boiler is probably the single September 1991. He can be reached clo Rt. 2. Box 2602,

most complicated component to model in the steam plant. Mineola, TX 75773.

There are severai valves and subsystems that exist in real- Dr. Yuh-jeng Lee is currently Assistant Professor of
world boiler systems but have not been built into Boiler- Computer Science at the Naval Postgraduate School. His
Model. The reason for this lies with the goal to get a main research interests are in the areas of automatic pro-
working model in Ada corpleted first. The supporting gramming, automated reasoning, and intelligent systems.
boiler systems (most notably the Automatic Boiler Control He is a member of the Association for Computing Machin-
systems) car, be added later. To its credit, BoilerModel cry, IEEE Computer Society, and the American Associa-
provides a detailed representation of a propulsion boiler uion for Artificial Intelligence. He can be reached by
that accurately propagates value changes to their logical email: ylee@cs.nps.navy.mil.
conclusions.

Naval Reserve Training. Roughly twelve FF-1052
class frigates are scheduled for reclassification as "FT" or REFERENCES
Frigate Trainers. Their function will be to train Naval Re-
servists on their weekend drills in a non-adversarial envi- 1. Baker, L., "Ada and Al Join Forces," A/Expert, pp.
ronment. Since the typical reservist is not exposed to
more than roughly sixteen hours of shipboard duties per 2. Booch, G., Software Engineering with Ada, 2d ed.,
month, a portable, computerized trainer could maximize Benjamin/Cummings Publishing Co., 1978.
casualty control training while minimizing well-inten-

10th Annual Natonal Conference on ADA Technology 1992 355

3. ClI=, W., "Viewing Knowledge Bases As Qual-
itative Models" IEEE Eqpr, v. 4, pp. 9-23, Summer
1989.

4. Fulton, S. and Pepe, C., "An Introduction to Model-
Based Reaaming,"Al Eipen, pp. 48-55, January 1990.

5. Gagtio, S., Giacomini, M., Ponassi, A., and Ruggi-
ea, C., "An OPS5 Implementation of Qualitative Reason-
ing About Physical Systems," Applied Artificial
Inteiligence, v. 4, pp. 37-65, 1990.

6. G31llai, M., Stefanini, A., Tonada, L., "ODS: A
Diagnostic System Based on Qualitative Modeling Tech-
niques," 1989 IEEE Fifth Conference on Artificial Intelli-
gence Applications, pp. 141-149.

7. Hollan, I., Hutchins, E., and Weitzman, L.,
"STEAMER- An Interactive Inspectable Simulation-
Based Training System," The At Magazine, pp. 15-27,
Summer 1984.

8. lmui, M., Miyasaka, N., Kawamura, K., and
Bourne, J., "Development of a Model-Based Intelligent
Training System," Future Generation Compuer Systems,
v. 5, pp. 59-69, August 1989.

9. Iwasaki, Y., "Qualitative Physics." In The Hand-
book ofArtifcial Intelligence, Vol. IV, pp. 323-413. Edited
by A. Bar, P Cohen, and E. Feigenbaum, Addison-Wes-
ley, 1989.

10. Lutcha, J. and Zejda, J., "Knowledge Represented
by Mathematical Models for Fault Diagnosis in Chemical
Processing Units," Knowledge Based Systems, v. 3, pp. 32-
35, March 1990.

11. Towne, D., Munro, A., Pizzini, Q., Surmon, D.,
Coller, L., and Wogulis, J., "Model Building Tools for
Simulation-Based Training," Interactive Learning Envi-
ronments, v. 1, pp. 33-50, 1990.

12. White, B. and Frederiksen, J., "Causal Models As
Intelligent Learning Environments for Science and Engi-
neering Education," Applied Artificial Intelligence, v. 3,
pp. 83-106, 1989.

13. Whitehead, J. and Roach J., "Hoist: A Second-
Generation Expert System Based on Qualitative Physics,"
A/ Magazine, v. 11, pp. 108-119, Fall 1990.

356 10th Annual Naional Conference on ADA Technology 1992

Underwater Multi-dimensional Path Planning for the
Naval Postgraduate School Autonomous Underwater Vehicle II

Yuh-jeng Lee and . Bonsignore, Jr
Department of Computer Science

Naval Postgraduate School, Monterey, CA 93943
email ylee@cs.nps.navy.mil

Abstract be performed. If necessary, adjustment or
replanning must be conducted to insure successful

Traditionally, path planning software has mission completion or a decision to abort.
been developed in LISP or C. Since the recent
government mandate for the use of Ada, many
researchers are eiploring Adas use in a wide
variety of areas. This paper seeks to demonstrate Path Planning: The Tendril Search
the feasibility of using Ads for real-time path
replanning. Land vehicle path planning can be
accomplished with two horizontal components. For Ge-neral Description
autonomous underwater vehicles, however, the two
horizontal components and a vertical component The Tendril search is a wavefront, breadth-first
are required to represent three dimensional space. search. Path determination begins by finding the
Memory and computational speed restrictions legal moves that can be made from the starting
dictate that special processing of the search space point. These legal moves are saved in a linked list
be conducted to optimize the time-space trade-off. called WAVE and represent the first wave of the
in this iizearc., a four dimensional array of nodes propagation. WAVE is subsequently processed
(two horizontal components, one vertical one element at a time and generates the next wave
component nd one orientation component) is used in the search process (NEWWAVE). This
to represent the search space. By use of an process continues until the goal is reached or all
orientation component, the number of nodes that legal moves are processed without reaching the
can be legally moved to is limited, in effect goal2. Pseudo code for the DO-SEARCH
prunIag the search space. Search methods procedure is given:
implemented were the Tendril search and the
Real-time A* search. The Tendril search is a procedure DO-SEARCH is
wavefront, breadth-first search. The Real-time A*
search uses the Tendril search to a specified search begin
depth and then applies a heuristic to determine the read in the search space representation
best path to expand upon. from disk

while the WAVE list is not empty loop
FPATH --(Pseudo code listed below)

Introduction exit when the goal is found
end loop

Autonomous underwater vehicle (AUV) print the path
research continues to grow as more applications end DOSEARCH
are devised. From industry and scientific research
to military applications, AUV technology has
generated great interest. Currently, there are Search Space Representation
nearly 30 different organizations researching AUV
technology, of which 18 are government fundedl. Search space representation is achieved by the
This indicates the strong interest the government use of an array or lattice of nodes called
has in this technology. N ARRAY. In effect, this representation parses

Due to the AUV's nature, mission planning and the search space into a gridded map with each grid
execution are very complex problems to solve, unit approximately the size of the AUV (100" by
Accurate world models must be made and complex 20" by 10"). Implemented as a record structure,
path planning performed prior to mission each node contains the STATE, PARENT, and
execution. During task performance, continued TEND LEN attributes. These attribute values are
evaluation of the many aspects of the mission must determined and used during the planning process.

STATE is an integer (either 0 or 1) used to

10th Annual National Conference on ADA Technology 1992 357

represet either free or obstacle space. PARENT end loop
is an array representing the coordinates of the if the goal is found then
previous node in the search path. TEND LEN is return to the DO SEARCH procedure
the calculated path length at that specific node. end if
The TENDLEN at the goal is the shortest path WAVE:= NEW WAVE
length from the starting point to the goal. NEW WAVE :=null

Each node in a two dimensional path planning end FPATH
problem has eight neighbors that are legal
successors. As the search wave propagates through procedure FMOVES (NARRAY : in
the search space, each successive wave grows out NODEARRAY;
exponentially. Thus, the first wave will have eight ROOT : in out
legal moves and the second wave 64. Upon LIST PTR) is
expanding the search space to three dimensions, 76
legal moves are possible. As can be imagined, a HEADING : integer := the ROOT
combinatorial explosion results. To eliminate this nodes coordinates;
problem, a fourth dimension for orientation was
incorporated. Similar to the shield representation begin
of obstacles in the configuration space method, case HEADING is
each node is associated with a specific orientation3. when the heading is north =>
Since a forward moving vehicle cannot immediately CHECK UP N;
transition to a node at its rear, only nodes in the CHECKJUP NE;
forward direction were considered as legal CHECK UP-NW;
successors. This reduced the number of legal CHECK N;
moves from 26 to nine, and in effect pruned the CHECKNE;
search space to a manageable size. CHECKNW;

The use of only four orientations, at first, may CHECK DOWN N;
seem to be a severely limiting factor. This, CHECKDOWNN'E;
however, is not the case. Orientations at this level CHECK DOWNNW;
are used for planning purposes and not for the when the heading is east => ...
actual navigation of the AUV. A navigation when the heading is south = > ...
program is used to generate a mnore refined path when the heading is west = > ...
for the AUV to use during mission execution. The when others = >
orientations generated in the Tendril search null;
algorithm are not used in any manner by the end case;
navigation process. Instead, a very precise end FMOVES;
orientation component is calculated in the
navigation process.4 Thus, the use of only four The procedures called by the case statement (e.g.
orientations is not a limiting factor and provides CHECKFUPN) calculate the coordinates of the
adequate means for path generation. successor for that move ad determine the distance

from the ROOT to the successor. The
CK STATE and GROWTEND procedures are

Legg Moves used to evaluate the successor node. If it is an
obstacle, no further processing for that node is

The legal moves for the node (ROOT) being conducted and it is NOT assigned to the
processed is accomplished with a case statement. NEW WAVE list. However, if the successor node
Orientation of the node is used to determine the is free space and has not been previously
nine successors to be evaluated. Pseudo code for processed, its TEND LEN is calculated and the
the F PATH and F MOVES procedures is given node is assigned to the NEW-WAVE list. Also,
below, if the successor is free space but has been

previously processed, it may still be assigned to the
procedure F.PATH is NEWWAVE list if the new TEND LEN is less

then the previously calculated TEND LEN.
ROOT: LISTPTR:= WAVE Otherwise, no further processing is conducted in

this situation.
begin

while the ROOT is not empty loop
F MOVES
ROOT := ROOT.NEXT

358 10th Annual National Conference on ADA Technology 1992

PrmMn Termination The wave of nodes at the search depth is called the
frontier and the frontier node with the lowest cost

The program is concluded by printing the path is used for further expansion. All other possible
either to a file or to screen. Starting with the goal, path solutions to that frontier are discarded. By
its coordinates are printed. By using the expanding upon the least cost frontier node only,
coordinates in the PARENT attribute the goals computation time is reduced. The program
predecessor is printed next. This process continues pseudo-code is provided:
until the starting point is reached and printed.

procedure RTA is

begin
Path Revlanning:The Real-time A*Search GET DATA

DO-SEARCH
end RTA

Introduction
procedure DO-SEARCH is

A path replanner is a path planner with more
stringent time constraints. It is needed when an begin
AUV is required to circumnavigate an unexpected get the terrain data from file
obstacle to continue its mission. This replanner while the goal is not found loop
must, therefore, operate in real-time to facilitate an find the frontier nodes
efficient transition to an alternate path. pick the node with the estimated least

The various methods of path planning may not cost
be efficient enough for real-time path planning, end loop
As a possible solution, the Real-time A* method print the path
was investigated. Many aspects of path planning end DO-SEARCH
were considered as well as many questions: To determine the lowest cost frontier node a

1. What search method should be used to find heuristic is used. Based upon the sum of the
the frontier node? calculated tendril length and an estimate to the

goal, the node with the lowest cost is selected for
2. What should the search depth be? expansion. The estimate to the goal is determined

by examining the individual coordinates of the node
3. Would the old path be completed and comparing them to the components of the

disregarded or should a new goal. The difference between the individual
path try to return to the old path as soon as coordinate components is summed together and

soon as possible. added to the calculated tendril length. Although
not as accurate a method as it could be, it provides

4. Should this procedure handle the initial adequate estimates for the selection of the frontier
collision avoidance node to be expanded.

maneuver?

5. How "real" is real-time? Conclusions

These questions had to be properly answered to Even though valid paths are determined
produce an true real-time path replanner. Since using this implementation of the RTA*, the
this thesis predominantly examined the Tendril optimal path may not be found. This problem
search. increases as the obstacle density increases. In

missions where the obstacle density is very low, the
RTA* may be adequate for path replanning needs.

RTA* Algorithm Consideration should be given to
reestablishing the AUV on the previously planned

The Real-time A* (RTA*) algorithm presented path after an obstacle avoidance maneuver. In this
by Korf was modified to incorporate four situation the path replanner must take into account
dimensions5. The RTA* can use any search the previous path and plan a new path to avoid the
method for path planning, but does so to a obstacle yet rejoin the original pah as quickly as
specified search depth. In this research the Tendril possible.
search method was used in the RTA* algorithm. No actual experimental data on timing has

lOth 4nnual National Conference on ADA Technology 1992 359

been gathered. It is important to understand that
the process of recognizing an obstacle, and
updating the terrain database will also require
some time. The longer this process takes the
further out the search depth should be to allow
adequate replanning time. Increasing the search
depth, however, will require more computation
time by the RTA*. Thus, a balance must be found
between search depth and computation time.

References:

1. James G. Busby and Joseph R. Vadus,
'Autonomous Underwater Vehicle R & D Trends,"
Sea Technology, Vol. 31, no. 3, pp 66 - 73, May
1990.

2. R. E McGhee, 'Two Dimensional Tendril
Search," class notes presented at the Naval
Postgraduate School, Monterey, CA, 1990.

3. Tomas Lozano-Perez, 'Spatial Planning: A
Configuration Space Approach," IEEE, 1983, pp
109- 119, 1983.

4. Chris Magrino, Three Dimensional Guidance
for the NPS Autonomous Underwater Vehicle,
Master's Thesis, Naval Postgraduate School,
Monterey, CA, September 1991.

5. Richard E. Korf, "Real-Time Heuristic Search:
New Results*," Automated Reasoning, pp 149 -
154.

Dr. Yuh-jeng Lee received his doctorate from the
University of Illinois. He currently is a professor
of computer science at the Naval Postgraduate
School.

Major J. Bonsignore, Jr. received his MSCS from
the Naval Postgraduate School in September 1991.

360 10th Annual National Conference on ADA Technology 1992

FUTURE DIRECTIONS PANEL

Moderator: Miguel Carlo, MTM Engineering, Inc.
Panelists: Jean D. Ichbiah, Original Designer/Ada Language

Paul D. Levy, Rational
Dr. Robert Balzer, USC
John Solomond, Director AJPO

10th Annual National Conference on ADA Technology 1992 361

Object Coupling and Object Cohesion In reading about object coupling, one can get the
In Ada mistaken impression th u any object coupling, ander

any circumstances, is uidesirable. Therefore, we need
By Edward V. Berard to distinguish between two different categories of

Berard Software Engineering, Inc. object coupling: necessary and unnecessary. Most, if
not all, object-oriented applications may be viewed as

PROLOGUE systems of interacting objects. In such systems it is
required (i.e., necessary) that objects be coupled -I

In Ada, we can implement classes using the otherwise no interactions can take place. However,
following three mechanisms: when we design an individual object in isolation, we

must minimize the knowledge that this object has
" non-geneic packages that export a type, about, or requires of, any other object, i.e., the object

must be highly decoupled with respect to all other
" generic packages that export an object, and objects.

" task types. As a general guideline, the coupling of objects should
take place only on an application-by-application
basis. Further, even in these situations, care shouldWe can implement a parameterized class using a b ae omnmz h opigbtenojcs

generic package that exports a type, a generic package be taken to minimize the coupling between objects.
ghaenr aage thajext a a generic package Finally, we allow for the fact that highly useful
that exports an object, and a generic package that collections of interacting (coupled) objects can beexports a task type. Of course, in all of the above created and treated as coherent, cohesive, and useful
examples, we are assuming that the packages and the reabe nit ascmbeie).
task type are created so that they otherwise accurately reusable units (subassemblies).

reflect a class or parameterized class. Unnecessary (premature) coupling of objects should
be avoided because:

Ignoring language tricks (e.g., the inappropriate use
of derived types), we can implement inheritance in Unnecessary object coupling needlessly
Ada by hand, i.e., using layers of abstraction. For decreases the reusability of the coupled
example, suppose that we have a (generic or non- dects Spesaly the oe
generic) package that represents a class. If we wish to objects. Specifically, the larger and/or more
create a "subclass" of this class, we can create a new specialized an object (or system of objects)
package that "withs" the first package and uses the is, the lower will be the probability that that
first package as the basis for the creation of the new object (or system of objects) can be reused."subclass." Multiple inheritance can be simulated
with the "withing" of several different packages. hUnnecessary object coupling also increasesthe chances of system corruption when

OBJECT COUPLING changes are made to one or more of the
coupled objects. Since coupled objects make
assumptions about the objects to which they

"[C]oupling is the level to which one module in the y
system is dependent on other modules. Obviously the are coupled, changes in these objects can
greater the amount of coupling between modules, the change in ovealestem ncha ract e
more complex the design and therefore the harder it changes in overall system characteristics,
will be to understand and maintain." e.g., behavior.

[Wild, 1991] identifies two broad categories of object
- [Bla'r et a, 191 coupling: interface coupling and internal coupling.

Interface coupling occurs when one object refers
"Coupling with regard to modules is still applicable to another specific object, and the original object
to object-oriented development, but coupling with makes direct references to one or more items
regard to classes and objects is equally important. contained in the specific object's public interface. We
However, there is tension between the concepts of further stipulate that items other than operations
coupling and inheritance. On one hand, weakly (method selectors), e.g., constants, variables,
coupled classes are desirable; on the other hand, exportable definitions, and exceptions, may be foundinheritance - which tightly couples superclasses and intepbcitrfeofaojc.

their subclasses - helps us to exploit the in the public interface of an object.

commonality among abstractions."

- [Booch, 1991]

Object Coupling and
Object Cohesion

As examples of a fairly loose form of interface The conceptual problem involves the separation of
coupling, consider three unordered lists, i.e., a list of the concet of a list from the items contained in a
names, a list of phone numbers, and a list of specific list. Specifically, we would like to separate
addresses. We make the following observations the characteristics of a list from the characteristics
regarding these lists: that are specific to the items contained in the lisL In

effect, we would like to identify a set of
" Apart from the type of item stored in each characteristics that are common to all lists, or, at

list, the implementation of each individual least, common to lists of names, lists of phone
list should be highly consistent with the numbers, and lists of addresses in our example.
implementations of the other lists.

The ease of implementation problem has two
" To implement the method for adding an item dimensions:

to a list, we will require that we have access
to a method that will "copy" the value of an First, we would like a simple, automatic
item to another instance of the same item, means of creating new list objects. For
i.e., we will need to copy the value of an example, if we needed a list of computers,
item into a node in the list. For purposes of we should nit have to make a copy of an
this discussion, we are not interested in the existing list, and then physically edit that
details of how the copying occurs (e.g., by copy to accommodate the necessary changes.
passing a pointer or by actually reproducing
the values). This "copy method" could, of The second dimension is the specification* of
course, be used by other methods within the the assumptions that the list object makes
list. about its component objects. For example,

what specific operations/methods does the
In addition, for purposes of this discussion, list object require from its component
we will assume that the needed "copy objects, and what specific information do
method" is accessible via the public interface these operations/methods require?
of the items being placed in each respective
list. For example, the "list of names object" The solution to our problem is to have one object (in
will make use of a copy method encapsulated our example, the list) treat the other objects (in our
within the "name object," and made available examples, names, addresses, phone numbers, and
via a method selector in the public interface, computers) as abstractions. Specifically, we will

create a "generic list" object, that can, in turn, be
Over and above this "copy operation," we insantiated with the necessary information (i.e., the
will assume that the lists require no class of objects to be placed in the list, along with an
additional information about the items they appropriate "copy" operation) to create any desired
contain, lists, e.g., lists of names, addresses, phone numbers,

or computers. In Ada we accomplish this through the
As we have described it, each list object is coupled use of a generic package, and require that the class of
(very loosely) to tlte objects it contains, e.g., the list objects to be placed in the list, along with an
of names object is coupled to the name objects within appropriate "copy" operation be the instantiation
it. If, for example, the copy method or its parameters for the generic.
corresponding method selector were to be deleted from
the name object, then the list of names object could This solution is attractive for several reasons, i.e.:
no longer add name objects to itself. Other, more
subtle, changes could also cause problems, e.g., if the It clearly and cleanly separates concepts. In
name of the copy method selector changed, or if the our examnples, we can separate the concept of
number or ordering of parameters for the copy method a list from the concepts embodied by the
changed. items that can be contained in lists (e.g.,

names, addresses, phone numbers, and
With the exception of the requirement for an computers).
appropriate copy method, each of the list objects
makes no assumptions about the objects it contains. • It allows one object to explicitly state - via
You might even say that each list object treats its parameters - the assumptions that it makes
components as (almost perfectly) black boxes. Yet, as about other objects.
loose as this coupling appears to be, we still have
one conceptual problem and one ease of
implementation problem.

Object Coupling and
Object Cohesion

It simplifies the creation of new categories Any changes made to objects involved in the
of objects. Specifically, the instantiation of display method (other than to the counter
a template or generic object is usually easier, object itself) may make these objects
and far less error prone, than the physical incompatible with the counter object's
editing of an object. display method. The consequences of this

very severe. For example, imagine a system
We refer to this type of object decoupling, i.e., where where any change to any object may
the assumptions that one object makes about a adversely impact the overall system. This
category of other objects are isolated and used as means that any time that any object within
parameters to instantiate (a template or a generic the system is modified or deleted, the entire
version of) the original object, as object system (including the source code for all
abstraction decoupling, methods encapsulated in all system objects)

must be examined to determine the impact of
Now, consider a different example. Imagine a counter the change.
object, i.e., an object which is used to count things.
The public interface for the counter object contains A new system may require the counter
the following operations: zero (the valu.. of the object, but may not require that the values of
counter), increment (the current value of the counter), the counter be displayed. A software engineer
and display (the current value of the counter). The may elect to create an entirely new counter
first two operations, i.e., zero and increment, clearly object rather than modify the existing
involve only the counter object itself, counter object. if the specific output object

(or category of cutput objects) necessary for
The display operation, however, requires access to the display operation is not present in the
some form of "output object." In fact, depending on new application, reuse of the counter object
the complexity of the display operation, several other without changing or deleting the display
different objects may be involved in displaying the operation/method is risky.
current value of a counter. This operation tightly
couples the counter object with the output object, and When attempting to represent the value of
thus, presents a number of problems, i.e.: any object to those outside of the object, we

must consider the most appropriate form for
The assumptions that the counter object the representation. For example, will it be
makes about the output object (and any other textual or numeric, what style will be used
objects involved in the displaying process) (e.g., plain, bold, italic, or underlined), and
can only be determined by explicitly will the representation take advantage of the
examining the source code for the display media, e.g., one migM display information
method. These assumptions can include: differently depending on the output media -

paper, voice, screen, or some other media?
" the name of the output object, The display method must make many

assumptions about both the form of the
" the specific operations in the public output and the characteristics of the output

interface for the output object that the media. The value will very likely be

display method will use to display the "displayed" differently depending on the

value of the counter, choice of media. Even using the same media
(e.g., a color screen), there are many different

" the number and forms of the parameters ways to represent the information.

for these specific operations, Decoupling the counter object from the output object

" the intended behavior of these specific (and any other objects necessary for the display

operations, method) will not be as simple as decoupling the list
object and its components in our earlier examples.
The primary reason for this is that while the "add"* the use of any exceptions, constants, operation can be viewed as an intrinsic property of a

variables, and/or other non-operation list, the "display" operation is not an intrinsic
items contained in the public interface litth"dsayoprinisotnitisc
itemsfo ntainedrn the p c i e aproperty of counter objects. The.concept of a counter
for the output object, and can be sufficiently and completely defined without

ever mentioning the fact that the value of a counter
jwhat other objects (besides the output may be displayed. Another way of saying this is that

object and the counter object) may be while the zero and increment operations are "object-
involved in the displaying process, and specific," the display operation is "application-
the assumptions that are made about specific."
these objects.

Object Coupling and
Object Cohesion

Probably the simplest way to decouple the counter Next, consider a month object, i.e., an object that
object from the output object (and any other objects represents a month in a Gregorian date (e.g., January
involved in the display operation) is to replace the ... December). Suppose one of the operations in the
display operation/method with an operation that public interface for the month object is "get_month."
returns the current value of the counter, e.g., a When we ask the question "from where or what?", we
value.of operation/method. In this solution, the will probably find that the geLmonth operation
counter object is no longer vulnerable to changes in couples the month object with at least an "input
the output object. However, there is a much more object," and probably a variety of other objects. This
important advantage. Software engineers are now free object coupling suffers from all of the problems we
to design applications involving the counter where mentioned earlier for the display operation in the
any of an infinity of things can be done with the interface to the counter object.
counter's values, e.g., they may be used in
calculations, stored in databases, or used as As before, we will replace the composite
components of larger objects. operation/method (getmonth) with a primitive

operation. However, a selector operation will not be
What we have done specifically is to replace a appropriate. We will need a constructor operation.
composite operation/method such as display, with a Constructors are operations which can (and often
primitive operation, e.g., value..of. A primitive do) change the state of their encapsulating object to
operation/method is an operation/method that accomplish their function. We can think of
cannot be implemented simply, efficiently, and constructors as operations which "construct a new, or
reliably without knowledge of the underlying altered, version of an object." Constructors are
implementation of the object in which it is discussed in [Bauer and Wossner, 1982], [Booch,
encapsulated. A composite operation/method is 1986], and [Booch, 1987].
an operation/method constructed from two or more
primitive operations/methods - sometimes from In our example, we will replace the get-month
different objects. operation/method with a "from-string"

operation/method. The from-string operation/method
We can identify three broad categories of primitive is a constructor. (It will cause a month object to
operations, i.e., selectors, constructors, and iterators. come into existence whose initial value will be
The terms "selector" and "constrictor" to describe derived from a string value.) The fromstring
different categories of operations can be traced to the operation/method effectively decouples the month
work of Barbara Liskov (e.g., [Liskov and Zilles, object from the input object and any other objects
1975]). The concept of an "iterator" had its formal that might have been involved in the getmonth
origins in the programming language Alphard operation/method.
([Shaw, 1981)), and has been discussed frequently in
the literature, e.g., [Cameron, 1989], [Eckart, 1987], Replacing the get-month operation/method with a
[Lamb, 1990], [Ross, 1989]. and [Shaw et al, 1981]. from-string operation/method is an ex-mple of

constructor decoupling. Constructor decoupling
Selectors are encapsulated operations which return is the process of replacing an encapsulated composite
state information about their encapsulating object, operation/method with a primitive constructor
and cannot, by definition, alter the state of the object operation with the intended and actual result of
in which they are encapsulated. (Note that this is a decoupling the encapsulating object from other
general software engineering definition, and is not to objects.
be confused with the concept of a "method selector,"
e.g., as in Smalltalk.) Selectors are discussed in, e.g., At this point, someone might observe that the
[Bauer and Wossner, 1982), [Booch, 1986), [Booch, value-of operation/method in the counter object
1987], and [Booch, i991]. probably returns an integer object, and the

from-string operation/method in the month object
The "valueof" operation in the counter object is an requires a string object as input. Does this mean that
example of a selector operation. Replacing the display the counter object is coupled to an integer object and
operation/method with the value-of operation/method that the month object is coupled to a string object?
is an example of selector decoupling. Selector The answer is "no," and the reason is that both
decoupling is the process of replacing an integers and strings are primitive objects.
encapsulated composite operation/method with a
primitive selector operation with the intended and
actual result of decoupling the encapsulating object
from other objects.

Object Coupling and
Object Cohesion

Primitive objects are objects that are: A composite object is an object which is
conceptually composed of two, or more, other

defined in the standard for the objects. The objects which make up the composite
implementation language (note that the object are referred to as component objects. A
standard may encompass more than just the heterogeneous composite object is an object
syntax and semantics for the language, e.g., that is conceptually composed from objects which are
it may include standard libraries of objects not all conceptually the same. A homogeneous
and a standard environment), and composite object is a composite object that is

conceptually composed of component objects which
" globally known, i.e., these are objects that are all conceptually the same.

are known (and whose characteristics are
known) in any part of any application created If we are dealing with a homogeneous composite
using the implementation language. object, we can consider the inclusion of an iterator

capability in its interface. An iterator capability
Please note that primitive objects may be quite (often simply referred to as an iterator) allows its
complex in nature. We are using the word "primitive" users to systematically visit all the nodes in a
in the "basic building block" sense rather than in the homogeneous composite object and to perform some
"simplest of all forms" sense. user-supplied operation at each node. (There is a great

deal of technology associated with iterators. For
An object that refers only to itself and to primitive example see Chapter 7 of [Booch, 1987] for a
objects is considered, for all intents and purposes, discussion of active (open) iterators versus passive
totally decoupled from other objects. (closed) iterators.)

For our next example, consider a "list of names" Returning to our "list of names" object, if we replace
objec:. Suppose someone included a "display" the display operation/method with an iterator
operation in the public interface for this list of names capability, we will have decoupled the list of names
object. We would, of course, have all the problems object from the output object. Specifically, the list of
that we previously mentioned for the display names object will offer an iterator capability, and
operation in the interface for the counter object. those wishing to display the names on the list will
However, our problems would be compounded with "instantiate" the iterator capability with the
two additional problems, i.e.: operation(s) necessary to display the names contained

in the list. This is an example of iterator decoupling.
" The problems of representation form and Iterator decoupling is the process of replacing an

output media are more complex with objects encapsulated composite operation/method with an

having composite state than they are with iterator capability with the intended and actual result

objects having states that can be represented of decoupling the encapsulating object from other

using single monolithic values. For objects.
example, will there be multiple columns,
will all components be displayed in the same Interface coupling occurs when an object reft "nces
manner, will there be labels and headings, the items in the public interface of another obj.- , Up
and how will the output be ordered? to this point, our discussion has focused aim(st
Displaying a list of names is a much more exclusively on the coupling related to the operations
involved process than displaying an integer (method selectors) in the public interface. We must
representing the current value of a counter. also consider any stand-alone constants and variables

that may be in the interface. We will add the
* Suppose that, instead of displaying all the following items to our discussion:

names in the list, we wish to delete all the
names that begin with "N" or change each Even if our programming language allows
occurrence of "Hendricks" with "Hendrix"? for both data and objects, we should avoid
While each of these opereions/methods the use of data (in the form of either
requires that we iterate over (loop through) variables or constants) in the public interface
the object the specific tasks to be performed for an object. The concept of an object both
at each node in the list vary. It seems that protects others from changes in the
we should be able to "factor out" or separate underlying implementation for some
the iteration capability from the specific information, and embodies (via a set of
tasks we must accomplish, operations and their corresponding methods)

a set of rules regarding the examination and
manipulation of that information. Data
offers no such protection.

Object Coupling and
Object Cohesion

" Except in unusual circumstances, it is far Internal coupling is much tighter (i.e., much worse)
better to have constants ;n the public than is interface coupling. While there are indeed
interface for an object than it is to havt, some situations where internal object coupling could
variables. Attempting to determine who be justiied, these situations should be very rare.
changed globally available information, let
alone attempting to understand the overall All objects have state. (See, e.g., [Booch, 1991).)
application, is difficult at best. Further, Ltate information is often physically stored inside an
system components that communicate via object. We also allow that some state information can
global information are often difficult to b. derived when needed, i.e., it is derived from other
modify and to reuse. physically stored state information.

* Even if information is made available in the The internal algorithms (i.e., the methos) by which
form of constants in the public interface for an object accomplishes its operations must know
an object, it is far better that this something about this internally-stored information.
information be in the form of discrete scalar Specifically, they must know what information
items or homogeneous structures, i.e., not exists, and how to access (and possibly convert) the
in the form of a heterogeneous structure. information they need.
Objects that have access to these global
structures are sensitive to changes in the Suppose, for example, that the state information for a
structure. Further, they may also have access given object is stored in the form of a data structure
to information that they do not need. (e.g., an array or a record). All the internal methods
(Specifically, they may ned only part of the for that object can be, and probably are aware of this
information provided in a heterogeneous structure. If this data structure is modified, or if a new
item, however, nothing prevents them from data structure is added, the internal methods for the
accessing other information in the object may have to be modified to accommodate the
heterogeneous structure.) change.

We now shift our attention to internal coupling. Good software engineering dictates that we hide
Internal object coupling is present in two (isolate the details of) design/implementation
situations: decisions (e.g., [Pamas, 1972], [Parnas, 1979], and

[Parnas et al, 1983]). This idea is one of the
" Inside Internal object coupling is a cornerstones of an object-oriented approach, and it

normal by-product of object design, and need not be ignored simply because we are inside (as
occurs when: opposed to outside) of an object. For example,

[Wirfs-Brock and Wilkerson, 1989] and others have
* the methods for that object are coupled suggested that all access to state information by the

to the encapsulated state information for internal methods for an object be via "access
the object, and/or methods." This approach:

" the component objects that make up a , isolates the internal methods from changes
composite object are coupled with the in the form of the intemally-stored state
overall composite object. information, and

All objects will exhibit one or both of th:.e * makes the incre men tal
forms of inside internal object coupling, modification/extension of objects (e.g., the
However, there are varying degrees of subclassing of methods) easier.
tightness for this form of coupling, and
software engineers should strive to keep this
variety of coupling as loose as possible.

" Outside Internal object coupling
occurs if an object external to another object
has access to, or knowledge of, the
underlying implementation of the other
object, i.e., that part of an object that we
normally consider hidden to those outside of
the object.

Object Coupling and
Object Cohesion

Korsn and McGregor ([Korson and McGregor, "coupling from underneath" in which
1990J) cite the coupling of a composite obiect with an object that is a specialzation of anotier
ks compones. For example, suppose that we have a object (e-g., the object is a subclass, a
dat objec which is, in mm, composed ofa month, a derived class, or an extension of the other
day, and a ye objecL Further suppose that our object) has access to tht underlying
inteiiin is to have the date object act merely as "a impIe ntazion(s) of one or mor of its less
box inso which we place a momh, a day, and a year," specialized predecessors (e.g., its
i.e., the date object itself does no verification as to superclasses, ase classes orpratorypes).
the validity of any given dae. Even with this simple
form for a date object, we are already making ["From the side" and "from underneat" have their
assump6ons about the objects involved, e.g. we will origins in how object relationships are often shown
have mechanisms for copying the values of day graphically. Specifically, in a top-to-bottom
objects, month objects, and year objects into and out orientation, specializations are most often shown
ofdae objecs. underneah their corresponding g-meralizations. "Fom

the side" implies that an object gains access through
To minimi the coupling between date and its an interface other than the specialization interface,
compmn objects, and to more clearly specify the Le., from the side]assumptions that the date object makes about its
component objects, we can use object abstraction We refer to outside internal coupling as the tightest
decoupling in much the same way we did in our list form of coupling because it requires one object to
object example. The chief difference will be that know something about the underlying
instead of worrying abc st only one category of implementation of another object. This violates one
object, we will specify three categories of objects as of the most fundamental concepts of object-
abstractions, i.e., days, months, and years. orientation, i.e., information hiding. Normally, if a

software engineer modifies the underlying
Next, suppose that we were interested in a "smart implementation of an object, but does not alter that
date" object, i.e., one that would not permit date object's public interface, and preserves the object's
objects with invalid values, e.g., "February 31, outwardly observable characteristics, then other
1991." We could still use object abstraction objects will not have to take these changes into
decoupling, but we would have to specify more account. Unfortunately, if outside internal object
requirements. For example, we could require that each coupling is present, this is not true.
component object of a date object supply an operation
that would return an integer value representing the Let us first focus on "coupling from the side." In this
current value of that component, e.g., "5" for a form of outside internal coupling, the coupled objects
month whose value was "May." need not have any relationship with each other

- other than the fact that they are coupled - yet
Notice that this last example points to a conflict one object has direct access to the underlying
between coupling and the complexity of object implementation of the other. This type of coupling
implementation. To maintain loose coupling, and at usually occurs under one of the following conditions:
the same time create more complex composite
objects, requires that our templates (generics) become The implementation language does not
more complex. Further, more complex directly (syntactically and semantically)
interrelationships between a composite object and its support info:mation hiding with respect to
component objects may require such things as objects. This means that there is no effective
selector, constructor, or iterator decoupling as well. way to "erect a barrier" between all aspects

of the underlying implementation for an
Outside internal object coupling is the tightest object and the outside world. This problem
(worst) form of all object coupling. It has two major shows up when software engineers attempt
forms: to use more conventional (i.e., "non-object-

oriented") programming languages (e.g., C,
"coupling from the side" i which an Pascal, and assembly languages) to create
object that is rot a specialization of another object-oriented applications.
object has access to the underlying
implmentation of that other object (for
example, the first object is not a subclass, a
derived class, nor an extension of the other
object), aP4

Object Coupling and
Object Cohesion

We soud note. however, thatjustbecaea Programming language features that allowrogramming language is not considered objects that are not specializations of an
"truly object-omited," does cot dictate that object to access the underlying
we must have this problem. For example, implementation of that object should be
Ada's packages and pivat types ([Ammirati avoided.
and Gerhart 1990]. [ARM. 1983], [Bach,
1988], and [Cohn, 1986]) provide the Now let's shift our attention to "coupling from
elements necessay to encapsulate and hide underneath." Coupling from underneath is a fairly
th g implemenatio an object comle issue that is primarily tied to the syntax and

semantics of inheritance. Inheritance dire ly impacts
Information hiding for one or more objects the strength of the coupling both between an object
has been violated (uninr-mtionally or and its specializations, and between the objects in a
intentionally) by objects that are not specialization hierarchy and other objects.
specializatins of the objects. This violation
may even have occurred through the use of Ileritauce is the means by which an abject
"programming language tricks," i.e., little acquires characteristics from one or more other
known, little used, and hard-to-understand objects. In this context, we take "characteristics" to
aspects of the programming language. mean such things as operations/methods, state

infomation representation mechanisms (e.g, instance
The programming language is considered variables), exceptions, constants, variables, and any
"objec-oriented" but directly (syntactically othedr items that are "inheritable." Markku Sakkinen
and semantically) allows objects to access ([Sakkinen, 19891) has described two major varieties
fully or partially the underlying of inheritance, i.e.:
implementations of other objects. The
classic example of this is "friends" in C++. • "essential inheritance" which emphasizes the
(See, e.g., pages 161-163 in [Stroustrup, inheritance of behavior and other outwardly
1991].) observable characteristics of an object, and

We can provide some general guidelines regarding * "incidental inheritance" which emphasizes
coupling from the side, Le.: the inheritance of all or part of the

underlying implementation of the more
" Avoid the use of languages that do not general object.

directly support (syntactically and
semantically) information hiding with Essential inheritance is more commonly referred to as
respect to objects. Use programming "inheritance of specification," and incidental
languages that are at least "object-based," inheritance is more commonly referred to as
i.e., languages that support objects as a "inheritance of implementation."
language primitive. (See, e.g., [Wegner,
1990].) These two views of inheritance correspond to the two

most prevalent interpretations as to the purpose of
" Implement objects in a manner that inheritance:

maximizes and enforces inf(,. .irton hiding.
When using Ada, use both packages and Some people characterize inheritance as a
limited private types, or, at the least, private mechanism for mapping "real world"
types. specialization-generalization hierarchies into

software. For example, "vehicle" is a more
" Keep the details of the form and structure of generalized concept than either "automobile"

the underlying implementation of objects or "motorcycle," and "military aircraft" is a
hidden. Users should be able to query or more specialized concept than is "aircraft."
change the state of objects only through The way that this is accomplished in a given
encapsulated operations/methods. A change programming language is of secondary
in the form and/or structure of the underlying interest.
implementation for an object that does not
require a change in the public interface, nor a • Others view inheritance primarily as a "code
change in the outwardly observable sharing/code reusing" mechanism.
characteristics for that object, should not
necessitate a change in other objects in the
same system.

Object Coupling and
Object Cohesion

Subtypiig is a term that is often used inconsistently IWirfs-Brock and Wilkerson, 1989) discussed the
with regard to inheritance. For example, Pierre potential problems of allowing encapsulated methods
Ameica ([America, 19873) states that "inheritance is for an object to have direct accew s to the un&rlying
concerne with the implementation of the classes, impemetao of the encapsulated state information
while the subhypmng hierarchy is based on the for the same object. [Taenzer et al, 1989], went
behavkio- of the instances (as seen from the outside, furiher, commerilnting on the problems of inherited
by oer objects)" In other words, what Sakkinen and state information, i.e., "We have also adopted a
others refer to as "inheritance of specifwation," coding style of not directly using inherited instance
America calls "subtyping." On the other hand Alan variables, but instead using messaging !o access
Snyder ([Snyder. 1986]) describes subtyping as them."
something completely apart from inheritance, i.e.,
"[sullyping is] the rules by which objects of one type The concept of inheritance alone implies (at lease a
(class) are determined to be acceptable in contexts loose) coupling among the objects within a given
expeain:g another type (class)." In fact, [Snyder, inheritance hierarchy. However, the actual
1986] discusses the separation of the "inheritance implementation mechanisms for inheritance (i.e., the
Naerchy" fnxn the type hierarchy." semantics of inheritance) in most object-oriented

programming languages can introduce undesirable side
Anotlier dimension of inheritance is single inheritance effects
veasus multiple inheritance. In single inheritance
an objc can acquire characteristis directly from only The most obvious problem is the sensitivity to
one other object, e.g., its immediate superclass. In a change in the und&lying implementation (structure)
multiple inheritance scheme, an object can of inheritable state information. Suppose, for
inherit (acquire) characteristics directly from more example, that a specialization (e.g., subclass, derived
than one object. This sometimes leads to problems. class, or child) knows the structure an inherited
For example, what happens if an object attempts to instance variable, and takes advantage of (depends on)
inherit two or more different characteristics with the this structure. Changes in the generalization (e.g.,
same name, each provided by a different parent. All superclass, base class, or parent) that result in
situations that allow for multiple inheritance must changes in the structure of the inheritable instance
also provide some systematic means of resolving variable
such conflicts. As we shall see, multiple inheritance
significantly complicates the problems associated Alan Snyder, in [Snyder, 1986], cites a number of
with "coupling from underneath." other problems that can occur as a result of the

coupling between an object and the objects that
To fully understand "coupling from underneath," we inherit state information from that object, e.g.:
must realize that objects that are used as templates to
create other objects (e.g., classes) have two distinct If an inheriting object can only access
interfx es: inherited state information via

operations/methods, and a sufficient
* an "inheritance interface" that they present (minimum necessary) set of

only to their specializations (e.g., operations/methods for this access are not
subclasses, derived classes), and provided, then the designers of the inheriting

object must negotiate with the designers of
0 a "public interface" to which all other the object providing the inheritable

objects (including the specializations of the characteristics for the needed
object) have access. operations/methods.

(See, for example, the discussion in Section 3.3 of
[America, 1987].)

We can divide our discussion of coupling from
underneath into two areas: an internal form and an
external form. The internal form is based on how
specializations interact with inherited state
representation mechanisms (e.g., instance variables).
The external form is concerned with the visibility of
inheritance in the public interface of an object.
Specifically, we are interested in the degree to which
objects that are outside of the inheritance hierarchy for
a given object are sensitive to changes in that
inheritance hierarchy.

Object Coupling and
Object Cohesion

Some of the operations that make up a An inheriting object does not necessaily
sufficient (minimum necessary) set of need all possible inheritable state
operations/mefhods for the inheritable information. Just because an object can
information may not be appropriaie for those inheiit some information does not mean that
who are not specializations of the object it should inherit that information. Avoid
providing the inheritable information. In situations where you have no, or little,
other words, if access to inherited state control over what state information can be
information is only allowed via inherited. Said another way, inheritance
operations/methods, we would like the shuldbeseecgve.
option to provide some or all of these
operations/methods via the inheritance Up to this point, we have discussed "internal object
interface, and not via the public interface of coupling from underneath" from the viewpoint of
the object providing the inheritable internal state information representations. However,
information. Languages such as Trellis the coupling between an object and those objects that
([Kilian, 1990], [Moss and Kohler, 1987], inherit information from the object can also impact
[O'Brien et al, 19871, and [Schaffert et al, the outside (public interface) of the objects involved
19861) allow a software engineer to stipulate in an inheritance relationship. Alan Snyder ([Snyder,
that some specific operations/methods are 1986]) states the problem in the following manner.
only available to specializations of an
object, i.e., the objects that inherit the state "A deeper issue raised by inheritance is whether or not
information representation mechanisms. the use of inheritance itself should be part of the
(C++ also provides such a mechanism via external interface (of the class or the objects). In other
its "protected" members. See, e.g., section words, should the clients of a class (necessarily) be
6.6.1 of [Stroustrup, 1991].) able to tell whether or not a class is defined using

inheritance?"
We have just discussed one aspect of the coupling
between an object and those objects that inherit Suppose, for example, that we are working in an
characteristics from that object. Specifically, we have environment where inheritance is not selective. This
observed that knowledge of the underlying means that anything that has the possibility of being
implementation of, or sensitivity to changes in, inherited, will be inherited. Imagine that a particular
inheritable state information can result in undesirable object has 5 separate specializations (e.g., subclasses,
and/or unintended side effects. However, this does not derived classes, or child classes). Imagine further that
mean that we should not allow state information to 4 of these specializations require a specific
be inheritable, operation/message, but the fifth specialization has no

need of that specific operation/message. If we place
Grady Booch has observed ([Booch, 1991]) that "there this operation/message in the original object, then it
is tension between the concepts of coupling and can be inherited by all 5 of its specializations.
inheritance. On one hand, weakly coupled classes are
desirable; on the other hand, inheritance - which The concept of "types" is often confused with the
tightly couples superclasses and their subclasses - concept of "classes." A type is often defined as "a set
helps us to exploit the commonality among of values, and a set of operations applicable to those
abstractions." We know that there are a number of values." (See, e.g., [IEEE, 1983].) In modem
things that we can do to minimize the tightness of software engineering, types are usually used to dictate
this form of internal object coupling, i.e.: which items may participate in the same operation. If

we say that a language is strongly typed, we mean
" Whenever possible (and practical), allow that, with very few exceptions, only items of the

access to inherited state information only via same type may participate in the same operation. For
messages/operations. Specifically, objects example, we may not be allowed to divide an integer
that inherit state information should have by a floating point number until we first convert the
little, if any, knowledge of the underlying type of the integer value to the proper floating point
implementation of this state information, type, or until we convert the type of the floating

point value to the proper integer type. In weakly
" If one or more of the operations/methods typed (and untyped) languages items of different

allowing access to the inherited state types are allowed to participate in the same operation,
information is inconsistent with (does not even if the result will be nonsensical.
make sense in) the public interface of the
object providing the inheritable state
information, seek out mechanisms that will
restrict access to these operations/methods to
the objects inheriting the information.

Object Coupling and
Obiect Cohesion

In strongly typed programming languages we often Suppose that we are working with a system in which
allow software engineers to define types that the typing hierarchy is closely tied to the inheritance
encompass a subset of the values for a given type. hierarchy. Specifically, a situation in which a
We refer to such types as subtypes of the original specialization of a class is also a subtype of the
type. As a general rule, items of the subtype of a original class. Therefore, if A is a specialization of B,
specific type may participa in the same prations and B is a specialization of C, then, by induction, A
with items of the original type (i.e., the type from is also a subtype of C. Now, further suppose that we
which the subtype was derived). The type-subtype are in a somewhat strongly typed system, and that it
relationship is usually unbounded, i.e., any type, is important for A to be a subtype of C. If we decide
incluling subtypes, can have a subtype. Typed to redesign B so that it is no longer a specialization
languages (i.e., languages in which there are two or of C, then instances of A are no longer subtypes of
more types) define, and often allow software engineers C. This will make previously legal operations
to embellish upon, type hierarchies, i.e., involving A illegal. In a very real sense A is closely
relationships among types and their corresponding coupled with C, and is sensitive to changes in both B
subtypes- and C. (IMis example is closely based on one that

appears in [Snyder, 1986].)
Software engineers also use the terms "statically
typed languages" and "dynamically typed languages." One way to prevent such problems is to allow for a
In statically typed languages, the type of an clear separation of the inheritance hierarchy and the
item is determined early on (e.g., at compile or link type hierarchy. Unfortunately, the semantics of most
time) and does not change. This allows a software commonly used object-oriented programming
engineer (and, for that matter, the compiler) to languages (e.g., C++) do not easily allow for this, if
determine the legality of both an individual operation they allow for it at all.
and the overall program through a static analysis, i.e.,
without having to execute the program. Multiple inheritance both complicates the previously
Dynamically typed languages, on the other existing problems, and introduces a few new
hand, allow the type of some items to change during problems.
the execution of a program. The type of an item is
usually determined based on the context of the In a multiple inheritance scheme, an object that
operation in which it is participating. inherits from multiple parents is tightly coupled to

these parents. Depending on both the items being
Classes, on the other hand, define structures, e.g., inherited, and the conflict resolution mechanism,
operations/methods, internal state information changes to any of the parents can cause significant
representation, and exportable constants and changes to the object inheriting the characteristics.
exceptions, for objects. Specifically, it is possible to
have a programming language that supports classes, Multiple inheritance is a useful concept and can be
but not types, e.g., Smalltalk. It is also possible to used both to accurately reflect the "real world," and to
have an object-oriented programming language that reduce the total amount of source code required for a
supports both classes and types, e.g., C++. Eiffel is partcular application. However, as we have seen
an example of an object-oriented programming above, there can be problems (and these are not the
language that is strongly typed. only problems). When we are designing object-

oriented systems (e.g., libraries or applications) we
We can see that it is possible to have a programming should :ake care when using inheritance, single or
language that supports both an inheritance hierarchy multiple. (See, e.g., [Coggins, 1990].)
and a type hierarchy. Very often the type hierarchy is
tightly coupled to the inheritance hierarchy. This can Lastly, we should mention that there are a number of
lead to problems. (See, e.g., [Cook et a, 1989], metrics available to measure various aspects of object
[Madsen etal, 1990],and [Porter, 1992].) coupling, e.g., [Chidamber and Kemerer, 1991],

[Liberherr and Holland, 1989], [Liberherr and Riel,
1988a], [Liberherr and Riel, 1988b], [Liberherr and
Riel, 1989], and [Liberherr et al, 1988].

Object Coupling and
Object Cohesion

OBJECT COHESION Timothy Budd ([Budd, 19911) uses [Yourdon and
Constantine, 1979] as the basis for his discussion of

"Simply stated, cohesion measures the degree of object cohesion, but provides very few insights into
connectivity among the elements of a single module the topic. Peter Coad ([Coad and Yourdon, 1991])
(and for object-oriented design, a single class or stipulates that "services" kcraftons/methods) should
object)." be functionally cohesive, -hbre should be no extra

"services" or "attributes" (state information), all
-IBooch, 19911 "services" and "attributes" sAd be descriptive of the

object in which they arc- encapsulated, and
"Designs in which the mcdules (in the case of objct- specializations of general con:-pts should be true
oriented design, objects or classes) exhibit high specializations -not incoherent extensions.
cohesion are those in which the modules group
together parts of the system which are closely Korson and McGregor ([Korioni and McGregor,
alw" 1990]) suggest that encapsulated e'mutdons/methods

must query or modify state infonnation, inherited
-Blair etat 1991J characteristics should naturally blend with the

additional characteristics in the inheriting object, and
A good deal of the discuss:on regarding object that "the ultimate test of cohesion is met by the fact
coupling focuses on relationsiips among different that all these pieces are brought together to represent
objects. Object cohesion, on the other hand, is based one concept." [Taylor and Hecht, 1990] advise us
on the logical and physical relationships that bind an that, "Cohesion tells us to make sure all the member
individual object together. The more cohesive an variables and methods of a class make sense as part of
object is, the less susceptible it is to change, i.e., the the class." Finally, Grady Booch [Booch, 1991]
more stable the object is. The introduction of changes observes (borrowing terminology from structured
into any individual object usually results in design), "The most desirable form of cohesion is
undesirable "ripple effects" (i.e., the propagation of functional cohesion, in which the elements of a class
change requirements) in the systems that contain that or module all work together to provide some well-
object. Highly cohesive objects usually require very boutded behavior"
few, if any, changes. Because there is so little writtea down (as opposed to

Object cohesion is an externally discernible concept. known) about object cohesion, ihe discussion
Specifically, when we discuss the cohesion of an presented here will be based on my personal
object, we are not referring to its underlying experience ip guiding the development of overimplementation, but rather to the interface it presents 1,000,000 lines of object-oriented software,to the outside world. The underlying implementation experiences of my consulting clients (some of whomof a given object may indeed be chaotic or incoherent, have developed object-oriented software systems thatbut this does not affect our assessment of the exceed 2,000,000 lines of code), a basic knowledge ofcohesiveness of tha object. (There are other concepts software engineering, and hints provided by some ofand metrics for dealing with the acal underlying the previously mentioned authors. What I am aboutandlmetior of an object.) to present is more than an attempt to qualify andimplementation quantify object cohesion. It L; also an attempt to
Very little has been written about object cohesion. make the diagnosis and enhancement of object
Even the most detailed presentations do not offer cohesion a teachable, transferable, and repeatable

more than two to three pages of discussion on the prcess
topic. This is not because the topic is not important,
but rather because it is more difficult to describe and Why is cohesion in general a more difficult concept
quantify. For example, given a Gregorian date (i.e., a to grasp than coupling? The answer is fairly simple.
date composed of a month, a day, and a year) and an Since coupling requires some form of physical or
"electronic mail message header" (containing logical linkage between to items, once we have
information about the sender, the receiver, the passage identified that linkage, we have identified a form)(
of the message through the electronic mail system, coupling. Removing the linkage removes the
and the message itself), it might be "intuitively coupling, and avoiding the establishment of linkages
obvious" that the Gregorian date is more cohesive prevents the establishment of coupling.
than the "electronic mail message header," but why?

Object Coupling and
Object Cohesion

If one has a reading knowledge of the syntax and In a very real sense, understanding ol'hesion requires
wemantics of a given programming language, one can many of the same skills necessary to understand
iaeitify many types of linkages. This thinking carries reusability, i.e., to both assess the cohesveneqs of an
over to textual descriptions and graphical models as item, and to understand the reusability o ,that same
well. In fact, regardless of the representation item, we must have:
mechanism, if one understands the semantics of that
repe=tation mechanism, one can identify (at least • technical knowledge of the application
some forms of) coupling. domain(s) in which the item will be used,

ie difficult aspects of coupling are: at least some limited amount of experience
in constructing, modifying, maintaining,

" identifying some of the more subtle (less testing, and managing applications in the
blatant) forms of coupling, appropriate application domain(s),

" ranking (ordering) different forms of 0 technical knowledge and experience in the
coupling, types of items found, created, and modified

in the application domain(s), i.e., if we are
" unambiguously specifying the particular dealing with object-oriented items, we need

attributes of a particular form of coupling to know about, and have experience with,
(so as to both know when we have that form objects, and
of coupling, and to differentiate it from other
foans of coupling), * a good technical background in and

experience with reusability, and in particular,
" identifymng mechanisms to prevent coupling software reusability.

front occuring, and
Those involved with the creation of telephone

0 removing coupling once it is in place. switching systems will very likely need to know
about such items as "trunk groups" and "trouble

Cohesion, on the other hand, requires that we tickets" to assess the cohesiveness (or lack thereof) in
examine an item in isolation, i.e., apart from any these items. Software engineers developing banking
other item, and any application that might use the applications will be required to recognize that "annual
item. When we hear the phrase "logically-related percentage rates" and "loan amounts" are objects.
components," this implies that there is some Embedded systems builders will have to know that
mechanism for knowing which, if any, of the items such as switches, lamps, and ports are objects
components are logically related. In addition, we must that can be used across a wide variety of embedded
understand degrees of "logical relatedness," i.e., applications.
saying that one item is more cohesive than another
item implies that we have some means of assessing In assessing the cohesiveness of any object (or
how closely related the components of an item are to system of objects), we should be asking questions
each other. such as:

The earlier example of the Gregorian date and the Overall, des the object represent a complete
"electronic mail message header" gives us a clue. and coherent concept, or does it more closely
Most of us are muL-h more familiar with dates resemble a partial concept, or a random
composed of months, days, and years, than we are collection of information? (This will be
with "electronic mail message headers." If we think difficult without the skills mentioned
about it, knowing whether or not a specific type of above.)
"electronic mail message header" was cohesive
depends on our knowledge and experience with such Does the object directly correspond to a "real
things. While it would be extremely difficult to reach world entity," physical (e.g., a post office,
the age of even 6 years without encountering the phone number, or insurance policy) or
concept of a date, many people live their entire lives logical (e.g., a queue, a rule, or a unit of
without having to know about "electronic mail time)?
message headers:'

Object Coupling and
Object Cohesion

If the object is a composite object, do all of If the object (or system of objects) is
the component objects directly support the removed from the context of the immediate
concept of the composite object? For application, does the object, in isolation,
example, if you were to describe the still represent a coherent and complete
composite object, including a list of its object-oriented concept?
component objects, would a clear majority
of the people examining your description Before we go much further in our discussion, we need
agree that all the component objects were to eliminate'non-objects" (sometimes called "pseudo-
necessary components of the composite objects") from our discussion. Most object-oriented
object? (and object-based) programming languages supply a

physical encapsulation mechanism, e.g., classes in
" If the object is a composite object, are there C++ and Smalltalk, packages in Ada, and modules in

any unnecessary or highly-application- Modula-3. Sometimes these encapsulation
specific component objects? mechanisms are used to package non-object-oriented

concepts, i.e.:
" Is the "object" characterized in very non-

specific terms, e.g., as a collection of "data," an "object" containing only functions, i.e.,
"information," "statistics," or "metrics?" an "object" with no state information. Since

these items embody only behavior - and no
" Do each of the operations/methods in the state information, they are not objects. A

public interface for the object perform a common example of this is a "math object,"
single coherent function? an "object" that contains only matheritical

functions. This may be cohesive in a
* Do the operations/methods in the public functional sense, but it is not cohesive in an

intekace represent at least a minimally object-oriented sense.
sufficie,' set of operations/methods for this
object, i.e., can one accomplish all necessary an "object" containing only data, i.e., an
work with the object using only this set of "object" that allows direct access to its
operations/methods? if the answer to this encapsulated state information. Since these
question is "yes," will the answer still be items do not embody any behavior - only
"yes" across a wide variety of applications in directly accessible cons!,nts and variables,
which the object can be (re)used? they are not objects. A common example of

this is the "universal constants object"
* Are there any unnecessary, or highly- Again, these items may be cohesive in a

application-specific operntions? data-oriented sense, but they are not at all
cohesive in an object-oriented sense.

* If the object is really a "system of objects,"
does the overall system of objects truly Even though both of the above can be created using
represent an object-oriented concept, e.g., as the object-packaging mechanism of our chosen
opposed to a functional concept? implementation language, we do not consider either

of them to be objects, and, hence, they fall outside of
" If we are dealing with a system of objects, our discussion of object cohesion.

do all of the component objects directly
support, or directly contribute to the support We will divide our discussion of object cohesion into
of, the object-oriented concept that the two parts. One part will focus on individual objects,
system represents? the other part will be dedicated to systems of objects.

* If we are dealing with a system of objects, When we speak of "individual objects" we are
are there any missing objects? referring to objects as they are defind in most

common object-oriented programming languages,
" If a system of objects presents multiple e.g.:

interfaces to the outside world, do each of the
interfaces repi esent a complete and coherent • classes,
object-oriented concept, or a coherent,
object-oriented view of the system of * parameterized classes, and
objects?

* instances of the above.

Object Coupling and
Object Cohesion

Individual objects are definable using the syntax and Therefore, we often extend a sufficient set of
semantics of object-oriented (and object-based) primitive operations/methods for an object with
programming languages. We include language- additional primitive operations/methods. A
definable aggregations of objects (what we have been complete set of primitive
calling "composite objects") in our definition of operations/methods for a given object is that set
"individual objects." of primitive operations/methods that both allows us

to easily work with the object, and fully captures the
In our discussion of individual objects we will first abstraction represented by the object. Complete sets
tun our attention to the operations/methods in the of primitive operations/methods are at least equal in
public interfaces of these objects. (Virtually all of the size, and are almost always larger, than sufficient sets
arguments we will make apply equally well to of primitive operations/methods for the same object.
inheritance interfaces.)

If we examine the set of operations/methods in the
Earlier we said that a primitive operation/method is public interface for an object and find that the set of
an operation/method that cannot be implemented operations/methods in the object's public interface
smply, efficiently, and reliably without knowledge of contains:
the underlying implementation of the object in which
it is encapsulated. We also defined a composite 0 only primitive operations/methods, but does
operation/method as an operation/method constructed not represent at least a sufficient set of
from two or more primitive operations/methods - primitive operations/methods for the
sometimes from different objects. encapsulating object,

We now extend our discussion to include "sufficient 0 primitive operations/methods, but there is
sets of primitive operations/methods" and "complete not a sufficient set of primitive
sets of primitive operations/methods." For a given operations/methods, and there are also
object, a sufficient set of primitive composite operations/methods present,
operations/methods is a minimum set of
primitive operations/nethods necessary to accomplish • a sufficient set of primitive
all necessary work with the object in which they are operations/methods, but it also contains
encapsulated. Please note that this is not necessarily additional composite operations/methods, or
the set of all primitive operations/methods for the
given object, and that, for any given object, there is a no primitive operations/methods, i.e., all
usually more than one sufficient set of primitive operations/methods in the object's public
operations/methods. interface are composite operations/methods,

While a sufficient set of primitive operations/methods then the object is not as cohesive as it could be.
allows us to accomplish all necessary work for the Specifically, well-designed objects should contain
object in which they are encapsulated, such sets of only primitive operations/methods in their public
operations/methods often suffer from two major interface, and there should be at least a sufficient set
problems, i.e.: of primitive operations/methods- and preferably a

well-thought-out complete set of operations/methods.
* Attempting to accomplish some tasks with

only a sufficient set of primitive We sheuld keep the following items in mind:
operations/inethods may be awkward and/or
difficult. Objects that have at least a sufficient set of

primitive operations/methods in their public
" A sufficient set of primitive interfaces, but also some composite

operations/methods may not allow us to operations, are typically much more
fully capture the abstraction represented by cohesive than objects that do not contain at
the object. least a sufficient set of primitive

operations/methods in their public interfaces.

Object Coupling and
Object Cohesion

Primitive or composite, all two, or more, of the externally-discernible
operations/methods in the public interface component objects appear to have a logical,
for a given object must directly support the object-oriented relationship, but the
abstraction represented by the object. collection of externally-discernible
Further, the encapsulated operations/methods component objects, taken as a whole, does
must make sense even when we consider the not exhibit such a relationship,
object in isolation. Specifically, all
encapsulated operations/methods should be although the collection of externally-
application-independent. If the only reason discernible component objects, taken in
for including an operation/method (primitive isolation, does not represent a single stable
or composite) in the public interface for an object-oriented concept, the externally-
object is a specific application, then that discernible component objects are bound
operation/method should probably be together by how they are used in a particular
removed from the public interface for the application, or set of applications, e.g., they
object. are all part of the information displayed on a

single screen,
[There are many other issues that could be
discussed here. Most of them related to a definite majority of the externally-
software reusability, software reliability, and discernible component objects are necessary
efficiency.] to support a single, coherent, object-oriented

concept, but, when the composite object is
Our discussion of object cohesion in individual considered in isolation, there is at least one
objects now shifts to composite objects. A externally-discernible component object that
composite object is an object that is conceptually does not directly support the single,
composed of two, or more, other objects. (A coherent, object-oriented concept (there is an
composite object is said to be an aggregation of its excellent chance that these extraneous
component objects.) The objects that make up the externally-discernible component objects
composite object are referred to as component were included for a specific application or set
objects. In addition, the composition of a composite of applications),
object is externally discernible, i.e.:

all of the externaly-discernible component
" the (externally discernible) state of a objects are necessary to support a single

composite object is directly affected by the coherent object-oriented concept, but even
presence or absence of one, or more, though a definite majority of the necessary
component objects, and/or externally-discernible component objects are

present, there are one, or more, externally-
" those outside of the composite object can discernible component objects that are

directly query or change the states of the missing, and
component objects via the
operations/methods in the public interface of 0 all of the externally-discernible component
the composite object. objects necessary to support a single

coherent, application-independent, object-
Over and above an assessment of the cohesion of a oriented concept are present, and there are no
composite object based on the operations/methods in additional externally-discernible component
its public interface, we can judge the cohesion of a objects.
composite object based on its externally-discernible
component objects. A ranking of the cohesiveness of CONCLUSION
a composite object, based on its externally-discernible
component objects, and ordered roughly in terms of We have discussed and reviewed the foundations for
increasing goodness, is: coupling and cohesion, and examined each in an

object-oriented context. While many of the original
the externally-discernible component objects (non-object-oriented) concepts do carry over into
are not related to each other, and, taken as a object-oriented software engineering, some have to be
collection, do not support (or seem to enhanced, and new ones had to be generated.
support) a single coherent object-oriented
concept, i.e., there is no way to describe the
collection other than to list the externally-
discernible component objects,

Object Coupling and
Object Cohesion

It is unfortunate that there is much more written [Booch, 1991]. G. Booch, Object-Oriented Design
about object coupling than there is about object With Applications, Benjamin/Cummings, Menlo
cohesion, this is most probably because cohesion Park, California, 1991.
does not lend itself to easily identifiable
characteristics in the same manner as coupling. You [Borning, 1986]. A.H. Borning, "Class Versus
might say that coupling is more of a physical Prototypes in Object-Oriented Languages,"
phenomenon and cohesion is more of a logical Proceedings of the 1986 Fall Joint Computer
phenomenon. Conference, EE Catalog Number 86CH2345-7,

IEEE Computer Society Press, Washington,
Although we have presented a more detailed view of D.C., 1986, pp 36 - 40.
object cohesion than has previously been discussed,
much work remains to be done. For example, a [Budd, 1991]. T. Budd, An Introduction to Object-
nomenclature scheme needs to be developed for the Oriented Programming, Addison-Wesley,
varying types of object cohesion we have described Reading, Massachusetts, 1991.
above.

[Cameron, 1989]. R.D. Cameron, "Efficient High-
BIBLIOGRAPHY Level Iteration With Accumulators," A CM

Transactions on Programming Language
[Ammirati and Gerhardt, 1990]. J. Ammirati and M. Systems, Vol. 11, No. 2, April 1989, pp. 194 -

Gerhardt, "Using Object-Oriented Thinking to 211.
Teach Ada," Proceedings of the Sev- nth
Washington Ada Symposium, June 25-28, 1990, [Chidamber and Kemerer, 1991]. S.R. Chidamber and
pp. 277 - 300. C.F. Kemerer, "Towards a Metrics Suite for

Object-Oriented Design," OOPSLA '91
[America, 1987]. P. America, "Inheritance and Conference Proceedings, Special Issue of

Subtyping In a Parallel Object-Oriented SIGPLAN Notices, Vol. 26, No. 11, November
Language," ECOOP '87: Proceedings of the 1991, pp. 197 - 211.
European Conference on Object-Oriented
Programming, Lecture Notes on Computer [Coad and Yourdon, 1990]. P. Coad and E. Yourdon,
Science, Volume 276, Springer Verlag, New OOA - Object-Oriented Analysis, 2nd Edition,
York, New York, 1987. pp. 234 - 242. Prentice-Hall, Englewood Cliffs, New Jersey,

1990.
[ARM, 1983]. Reference Manual for the Ada

Programming Language, ANSIIMIL-STD 1815A [Coad and Yourdon, 1991]. P. Coad and E. Yourdon,
(1983) , United States Department of Defense, Object-Oriented Design, Prentice-Hall,
February 1983. Englewood Cliffs, New Jersey, 1991.

[Bach, 1988]. W.W. Bach, "Is Ada Really an Object- [Cohen, 1986]. N.H. Cohen, Ada As a Second
Oriented Programming Language," Proceedings Language, McGraw-Hill, New York, New York,
of Ada Expo 1988, Galaxy Productions, 1986.
Frederick, Maryland, 1988, 7 pages.

[Coggins, 1990]. J.M. Coggins, "Designing C++
[Bauer and Wossner, 1982]. F.L. Bauer and H. Class Libraries," Proceedings of the C++

Wossner, Algorithmic Language and Program Conference, San Francisco, California, April
Development, Springer-Verlag, New York, New 1990, USENIX Association, Berkeley,
York, 1982. California, 1990, pp. 25 - 35.

[Blair et al, 1991]. G. Blair, J. Gallagher, D. [Cook et al, 1989]. W. Cook, W. Hill, and P.
Hutchison, and D. Sheperd, Object-Oriented Canning, "Inheritance Is Not Subtyping," Report
Languages, Systems and Applications, Halsted STL-89-17 (Revision 1), Hewlett-Packard
Press, New York, New York, 1991. Laboratories, Palo Alto, California, 1989, 11

pages. Also in the Proceedings of the
[Booch, 1986]. G. Booch, "Object Oriented Seventeenth Symposium on Principles of

Development," IEEE Transactions on Software Programming Languages, January 1990, pp. 125
Engineering, Vol. SE-12, No. 2, February 1986, - 135.pp. 211 - 221.

[Courtois, 1985]. P.J. Courtois, "On Time and Space
[Booch, 1987]. G. Booch, Software Components Decomposition of Complex Structures,"

With Ada, Benjamin/Cummings, Menlo Park, Communications of the ACM, Vol. 28, No.
California, 1987. 6, June 1985, pp. 590 - 603.

Object Coupling and

[Eckart, 1987]. J.D. Eckart, "Iteration and Abstract [Liskov and Zilles, 1975]. B. Liskov and S.N. Zilles,
Data Types," SIGPLAN Notices, Vol. 22, No. "Specification Techniques for Data Abstraction,"
4, April 1987, pp. 103 - 110. IEEE Transactions on Software Engineering,

Vol. SE-1, No. 1, March 1975, pp. 7 - 19.
[Ejiogu, 1991]. L.O. Ejiogu, Software Engineering

With Formal Metrics, QED Technical [Liskov et al, 1977]. B.H. Liskov, A. Snyder, R.
Publishing Group, Boston, Massachusetts, 1991. Atkinson, and C. Schaffert, "Abstraction

Mechanisms in CLU," Communications of the
[IEEE, 1983]. IEEE, IEEE Standard Glossary of ACM, Vol. 20, No. 8, August 1977, pp. 564 -

Software Engineering Terminology, The Institute 576.
of Electrical and Electronic Engineers, New
York, New York, 1983. [Liskov et al, 1981]. B.H. Liskov, R. Atkinson, T.

Bloom, E. Moss, J. C. Schaffert, R. Scheifler,
[Kilian, 19901. M. Kilian, "Trellis: Turning Designs and A. Snyder, CLU Reference Manual,

Into Programs," Communications of the ACM, Springer-Verlag, New York, New York, 1981.
Vol. 33, No. 9, September 1990, pp. 65 - 67.

[Madsen et al, 1990]. O.L. Madsen, B. Magnusson,
[Korson and McGregor, 1990]. T. Korson and J.D. and B. Moller-Pedersen, "Strong Typing of

McGregor, "Understanding Object-Oriented: A Object-Oriented Languages Revisited,"
Unifying Paradigm," Communications of the OOPSLAIECOOP '90 Conference Proceedings,
ACM, Vol. 33, No. 9, September 1990, pp. 40 - Special Issue of SIGPLAN Notices, Vol. 25,
60. No. 10, October 1990, pp. 140 - 150.

[Lamb, 1990]. D.A. Lamb, "Specification of [Moss and Kohler, 1987]. J.E.B. Moss and W.H.
Iterators," IEEE Transactions on Software Kohler, "Concurrency Features for the
Engineering, Vol. 16, No. 12, December 1990, Trellis/Owl Language," Proceedings of the
pp. 1352- 1360. European Conference on Object-Oriented

Programming 1987, Paris, France, pp. 223 -
[Liberherr and Holland, 1989]. K.J. Liberherr and 232.

I.M. Holland, "Assuring Good Style for Object-
Oriented Programs," IEEE Software, Vol. 6, No. [O'Brien et al, 1987]. P.D. O'Brien, D.C. Halbert,
5, September 1989, pp. 38 - 48. and M.F. Kilian, "The Trellis Programming

Environment," OOPSLA '87 Conference
[Liberherr and Riel, 1988a]. K.J. Liberherr and A.J. Proceedings, Special Issue of SIGPLAN Notices,

Riel, "Demeter: A Case Study of Software Vol. 22, No. 12, December 1987, pp. 91 - 102.
Growth Through Parameterized Classes,"
Proceedings of the 10th International Conference [Parnas, 1972]. D.L. Parnas, "On the Criteria To Be
on Software Engineering, April 11-15, 1988, pp. Used in Decomposing Systems Into Modules,"
254 - 264. Communications of the ACM, Vol. 5, No. 12,

December 1972, pp. 1053-1058.
[Liberherr and Riel, 1988b]. K.J. Liberherr and A.J.

Riel, "Demeter: a CASE Study of Software [Parnas, 1979]. D.L. Parnas, "Designing Software for
Growth Through Parameterized Classes," Journal Ease of Use and Extension," IEEE Transactions
of Object-Oriented Programming, Vol. 1, No. 3, on Software Engineering, Vol. 5, No. 2, March
August/September 1988, pp. 8 - 22. 1979, pp. 128 - 157.

[Liberherr and Riel, 1989]. K.J. Liberherr and A.J. [Parnas et al, 1983]. D.L. Parnas, P.C. Clements,
Riel, "Contributions to Teaching Object-Oriented and D. M. Weiss, "Enhancing Reusability with
Design and Programming," OOPSLA '89 Information Hiding," 17T Proceedings of the
Conference Proceedings, Special Issue of Workshop on Reusability in Programming,
SIGPLAN Notices, Vol. 24, No. 10, October 1983, pp. 240 - 247.
1989, pp. 11 - 22.

[Porter, 1992]. H.H. Porter, III, "Separating the
[Liberherr et al, 1988). KJ. Liberherr, 1. Holland, and Subtype Hierarchy from the Inheritance

AJ. Riel, "Object-Oriented Programming: An Implementation," Journal of Object-Oriented
Objective Sense of Style," OOPSLA '88 Programming, Vol. 4, No. 9, February 1992,
Conference Proceedings, Special Issue of pp. 20 - 22, 24 - 29.
SIGPLAN Notices, Vol. 23, No. 11, November
1988, pp. 323 -334.

Object Coupling and
Object Cohesion

[Ross, 1989]. D. Ross, "The Form of a Passive [Taylor and Hecht, 1990]. D. Taylor and A. Hecht,
Iterator," Ada Letters, Vol. 9, No. 2, "Using CASE for Object-Orienied Design with
]=WWApril 1989,pp. 102- 105. C-+," Computer Language. VoL 7, No. 11,

November 1990, pp. 49 -57.

[Sakkinen, 19891. M. Sakkinen, "Disciplined

Meritace," ECOOP '89: Proceedings of the [Wegner, 19901. P. Wegner, "Concepts and
European Conference on Object-Oriented Paradigms of Object-Oriented Prgmming,"
Programming. British Computer Society OOPS Messenger, VoL 1, No. 1, August 1990,
Workshop Series, Cambridge University Press, pp. 7 -87.
Cambridge, United Kingdom, 1989, pp. 39 - 56.

[Wild, 1991]. F.H. Wild II, " Managing Class
[Schffet et al, 19861. C. Schaffert, T. Cooper, B. Coupling: Apply the Principles of Structured

Bullis, M. Killian, and C. Wilpolt, "An Design;o Object-Oriented Programming," UNIX
hooduction to Trellis/Owl," OOPSLA '86 Review, VoL 9, No. 10, October 1991, pp. 44 -
Conference Proceedings. Special Issue of 47.
SGPLAN Notices, Vol. 21, No. 11, November
1986, pp. 9 -16. [WirfsBrock and Wilkerson, 1989]. A. Wirfs-Brock

and B. Wilkerson, "Variables Limit Reusability,"
[Shaw. 1981]. M. Shaw, Editor, Alphard: Form and Journal of Object-Oriented Programming, Vol. 2,

Content. Springer-Verlag. New York, New York, No. 1, May/June 1989, pp. 34 - 40.
1981.

[Wirfs-Brock et al. 1990]. R. Wirfs-Brock, B.
[Shaw et al, 19811. M. Shaw, W.A. Wolf, and R. Wilkerson, and L. Wiener, Designing Object-

London, "Abstraction and Verification in Oriented Software. Prentice-Hall, Englevood
Alphard. Iteration and Generators," Alphard: Cliffs, New Jersey, 1990.
Form and Content, Springer-Verlag, New York,
New York, 1981, pp. 73 - 116. [Yourdon and Constantine, 1979]. E. Yourdon mid

L.L. Constantine, Structured Design:
[Snyder, 1986]. A. Snyder, "Encapsulation and Fundamentals of a Discipline of Computer

Inheritance in Object-Oriented Programming Program and Systems Design, Prentice-Hall,
Languages," OOPSLA '86 Conference Englewood Cliffs, New Jersey, 1979.
Proceedings, Special Issue of SIGPLAN Notices,
Vol. 21, No. 11, November 1986, pp. 38 -45.

[Snyder, 1987a]. A. Snyder, "Inheritance and the
Development of Encapsulated Software
Components," Proceedings of the Twentieth
Hawaii International Conference on System
Sciences, Kona, Hawaii, January 1987, pp. 227 -
233.

[Snyder, 1987b]. A. Snyder, "Inheritance and the
Development of Encapsulated Software
Components," Research Directions in Object-
Oriented Programming, The MIT Press,
Cambridge, Massachusetts, 1987, pp. 165 - 188.

[Str trup, 1991]. B. Stroustrup, The C++
Programming Language, Second Edition,
Addison-Wesley, Reading, Massachusetts, 1991.

[Taenzer et al, 1989]. D. Taenzer, M. Ganti, and S.
Podar, "Problems in Object-Oriented Software
Reuse," ECOOP '89: Proceedings of the
European Conference on Object-Oriented
Programming, British Computer Society
Workshop Series, Cambridge University Press,
Cambridge, United Kingdom, 1989, pp. 25 - 38.

Object Coupling and
Obiect Cohesion

AUTHORS INDEX

Name Page Name Page

Abbott, Russell J3 oiner, Harry220
Agrawal, Jagdish 74 LabhartJ .. 319
AI-Dhelaan, Abdullah 74 Lander, Leslie C 285
Allers. Hilary... 55 Latour, Larry 247
Bates, PaulD 116 Leach, Ronald J..................................... 68
Bender, Mary 294 Lee, Yuh-Jeng................................ 337,357
Berard, Edward V .. Macpherson, George W 305
Black, Harlan....................................... 134 Martin, Dennis S.................................... 42
Bontsignore, J. Jr................................... 357 Meadow, Curtis 247
Brown, Russ....................................... 319 Meier, M .. 202
Burnham, C. Alan.................................. 332 Menell, Ray .. 139
Cannella, John K.................................... 24 Mitra, Sandeep..................................... 285
Cheng, M....................................... .. 147 Morell, Larry... 98
Coleman, Don M 68 Morgan, Judy 319
Corbelt Lindon J................................... 125 Naiditch, David 28
Cowderoy, A J C................................... 323 O'Connor, Michael J 110
Dobbs, Verlynda 332 Racine, Glenn...................................... 192
England, Jeffrey E 174 Richards, P.M 233
Fenick, Stewart 220 Ritchie, Roger...................................... 174
Fowler, Joyce 208 Rondogiannis, P 147
Gaumer, Dale 202 Salih, Sabah .. 46
Gerlich, Rainer..................................... 276 Scandura, Joseph M............................... 167
Gilroy, Kathleen.................................... 258 Skinner, John.. 46
Goel, Arvind.. 294 Solderitsch, James.................................. 15
Heidelberg, L....................................... 139 Stascavage, James F.............................. 337
Herleth, Bill... 208 Tan, Lu-Ping .. 68
Hobbs,R R .. 192 Vandersluis, Kirstan 233
Hollingsworth, Joe................................... 82 Vasilescu, Eugen N 46
Hoolihan, Joseph P................................ 125 Weide, Bruce W..................................... 82
Hooper, James W 110 Willis, Robert A. Jr.................................. 98
Jeffcoat, Bart........l.............................. 116 Wright, Elena.. 11
Jenkins, J. 0....................................... 323 Zage, Wayne M.................................... 202
Johnson, Patrice................................... 208 Zage, Dolores M................................... 202

