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Abstract

This Final Technical Report describes completed research accomplishments and

ongoing activities that are focused on the evolution of boundary driven acoustic dis-

turbances in a low Macb number shear flow like that found in the chamber of a solid

rocket engine. The completed work (manuscripts in Appendices A and B) focuses on

the relatively complex wave systems that appear in a two-dimensional planar shear

flow following the refraction of very simple, initially planar axial disturbances. Work
in progress emphasizes; (1) the characteristics of acoustic disturbances driven by side-

wall mass addition in semi-confined channels and tubes, (2) the role of "strongly in-

jected" Stokes boundary layers in providing a transition from the acoustic flow to the

no-slip condition on the wall, and (3) mathematical methods required to deal with

nonlinear processes within an acoustically disturbed flow. The review of our work

emphasizes the importance of studying the evolution of boundary driven acoustic dis-

turbances, primarily to gain an understanding of how small burning rate transients

(modelled by unsteady wall injection) lead to large engine chamber responses observed

in unstable solid rockets.
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Chapter 1

Introduction

Burning rate transients of a combusting solid propellant produce gaseous products

that are "injected" into the rocket engine chamber as an unsteady flow. This type

of transient mass injection is known (Kassoy 1979) to be a source of mechanical and

thermodynamic disturbances that can be described in terms of acoustic phenomena.

Our research program is focused on relating the evolution of acoustic phenomena in

semi-confined low Mach number shear flows to specific types of boundary driving,

particularly that associated with mass addition normal to the surface of injection.

The ultimate objective of our studies is to demonstrate that the long-time (nonlinear)

evolution of initially small acoustic disturbances is intimately coupled to the specified

boundary forcing.

Traditional studies of acoustic phenomena in models of solid rocket engines (e.g.,

Culick 1990) are based on linear and weakly nonlinear stability theory. The results

of this work have been shown to describe many of the events observed in stable and

unstable engines. From the perspective of a modeler, the forrulation decouples the

evolution of acoustic amplitudes from the driving mechanisns associated with burning

rate transients. It is also notable that the normal mode expansions used to develop

the mathematical model are valid formally only for a totally closed chamber, so that
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the effect of the nozzle on chamber losses is not properly accounted for.

Our work emphasizes an initial-boundary value approach for modeling. An ini-

tially steady, low Mach number flow field is disturbed by specific boundary distur-

bances. Solutions describe the totality of wave systems generated by the disturbance

and their evolution. These complete solutions are in contrast to those based on the

quasi-steady assumption. In particular, we can describe resonant solutions with am-

plitude growth that are not part of the solution set arising from the quasi-steady

assumption. It is notable that our analyses predict the appearance of relatively com-

plex wave systems for a given, more elementary boundary disturbance.

The manuscripts in Appendices A and B describe refraction effects on the acous-

tic time scale in a planar channel. On this time scale only linear phenomena are

important in determining the wave pattern evolution, a conclusion verified by the

use of rational approximation methods for small Mach number shear flows. The

results demonstrate that prescribed axial disturbances are altered by refraction to

create higher order axial, oblique and even purely transverse modes. Hence refraction

provides a pathway for converting energy in one wave mode into others, depending

on geometrical and boundary forcing properties. For example, an axial boundary

disturbance in a semi-infinite shear flow (traveling waves) can, for resonance condi-

tions, produce a purely transverse wave of growing amplitude. This type of result

provides a source of understanding about the appearance of unexpected wave modes

in a semi-confined system. Such an insight could not be obtained from more tradi-

tional analyses based on the quasi-steady approximation or on formulations where

only one-dimensional (axial) processes are assumed to exist.

Work in progress is described in modest detail in Chapters 2-4. Acoustic modes

in a rectangle with one open end, generated by sizable wall injection transients, are

described in Chapter 2. In Chapter 3 we consider a steady injection-induced low
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Mach number flow in an open-ended tube and predict acoustic configurations arising

from endwall forcing and from sidewall injection transients. The former case includes

a discussion of the viscous accommodation layer that provides a smooth, but oscilla-

tory transition between the acoustic flow and the no-slip condition at the wall. An

analog problem is described in Chapter 4, where we investigate the impact of the

acoustic properties of one boundary of a slab when the other boundary exhibits small

amplitude harmonic motion. The eigenfunction properties are shown to be dependent

on the explicit conditions chosen and that is shown to have a profound effect on the

evolution of the entire flow in the semi-contained gas.

Engineering design of reliable solid rocket engines can benefit from an awareness

of the character of all wave systems present in the chamber. The primarily analytical

approach presented in this report provides a sound basis for prediction of wave system

behavior on the acoustic time scale of the engine chamber. Additionally, the results

provide a starting point for the consideration of longer time period nonlinear solutions

that describe the appearance of the relatively large amplitude response of low Mach

number chamber flows to smaller prescribed boundary disturbances. It is important

to recognize that typical computational solutions to model rocket engine problems

(e.g., Baum 1989) do not provide detailed information about acoustic wave structure,

but rather, give only point-wise time dependent responses. It would be valuable to

develop data analysis techniques that can be used to predict acoustic wave structure

from nodal point data.
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Chapter 2

Acoustic Wave Modes Generated
by Transient Sidewall Mass
Addition

2.1 Problem Statement

Sidewall mass addition is used to mimic the gasification of a burning solid propellant

in a model of a rocket engine chamber. Velocity injection along the sidewalls of an

open ended rectangle induces a low Mach number internal shear flow. A positive

transient component of the injected mass, superimposed on a steady distribution of

the same magnitude, is the source of initially transverse acoustic wave disturbances

in a basically steady, inviscid rotational background flow. These disturbances are

associated with an axial pressure gradient which acts as a source of axial acoustic

waves. Reflection processes alone in the semi-confined open ended rectangle create

distinct axial, oblique and transverse wave patterns. Explicit harmonic mass transient

frequencies are associated with rapid amplification of specific wave mode amplitudes,

due either to beat phenomena or actual resonance. The primary objectives of this

study are to show that complex, identifiable wave patterns are created by relatively

simple boundary disturbances, and that boundary driven disturbances can be the



source of large acoustic instabilities.

2.2 Mathematical Model

Rational perturbation methods are used to derive the limiting form of the mathemat-

ical model that describes acoustic phenomena in a low Mach number (M < 1), large

Reynolds number (Re > 1) flow:

p = pT, (2.1)

Pt + M [(pu)z + (pv)Y, = 0, (2.2)

1
P [ut + M(uu, + vuY)] = -- Mpz, (2.3)

62
P[vt+ M(UV+ vv)I= 7Mpy, (2.4)

pC. [T, + M(uT: + vTY)] = -(-y - 1)Mp(u, + vY), (2.5)

where transport effects are neglected because M/R, < 1. The axial velocity u is

nondimensionalized with respect to a mean induced speed U" = v'o6 where b = L'/D'

is the rectangle aspect ratio and v'o, the characteristic velocity of the injected fluid.

is used to nondimensionalize the transverse velocity component v. The parameters

M and R. are defined with respect to U'. The axial and transverse dimensions (z, y)

are referred to (L', D') and the time is nondimensionalized by the axial acoustic time

t L'/ where c; is the characteristic sound speed.

Mass addition on the sidewalls is described by

y = (0, 1) : v = (+, -) [vo(x) + V-(X, t)] (2.6)

where the steady and transient components are of the same magnitude, and are both

responsible for positive mass addition only.

The induced steady internal flow arising from vo(x) alone is described by (p, p, T) =
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1 + M2(P, R, 0), (u, v), the lowest order inviscid, rotational equation system,

UoX + 'y = 0, (2.7)

1uouo= + vouo P = - ox (2.S)
-Y
32

UOVOZ + LoVoY= -- Po, (2.9)
3'-1

00 Po, Ro = Po - 0o (2.10)

and (2.6), with a V = 0. Eqs. (2.10) show that isentropic conditions prevail. The

wall acts as a source of vorticity, so that the no-slip condition uo(x, y = 0, 1) = 0 can

be satisfied. Analytical solutions can be obtained easily for 6 > 1. However, the flow

and pressure fields have no direct effect on the first order acoustic waves, and are not

considered further.

2.3 Acoustic Disturbances

The steady flow described by (2.7)-(2.10) is disturbed by turning on the injection

transient Vw(z, t) in (2.6) at t = 0. The mechanical effect on the boundary creates

a velocity field (U, V) and thermodynamic disturbances defined by (p, p, T) = 1 +

M(P, R, 0). One may reduce the equations for the acoustic fields to the initial-

boundary value problem,

Po. = P0.. + b2PU, (2.11)

t =0; Po=Po = 0, (2.12)

x= 0; Po = 0, x = 1; P0 = 0, (2.13)

y =0,1; Pow, = -iX(+,-),,(xt). (2.14)

The downstream condition in (2.13) is chosen for simplicity. A more physically viable

condition might be Po0(1,t) = OPo,(1, t) where a may be thought of as an admittance
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function. The complete velocity field formula given by

(U, V) (uo(x, y), VO(x, y)) - f P 0s ) (2.15)

shows how the walU transient enhances the steady flow field described by (2.7)-(2.10).

Additionally 0o = (_Y- 1)RO = ((y - 1)/Y)Po.

Solutions to (2.11)-(2.14) are written for the case when

V(X, t) I [ - Cos (Wt) ] cos ()(2.16)
which describes an axially distributed non-negative injection velocity with a harmonic

time variation.

2.3.1 Nonamplified Solutions

For w :# ,o - ((ir/2)2 + (2mir6)2]l/ 2 ,rn = 0, 1,2,.,

0 = ( r 2 00 cos(2miry)l

Cos in 4 i~t62K 2 (MI)' - 2 v-'i (12 _ W2Jsiw)

4iw sin (2t) -4 wcos (2mry)sin (Qot) 1.(2.17)
m1 ~ fm(11 0 -W 2 ) J

The first complete term within the parentheses represents the quasi-steady response

of the gas to the injection transient. The second term can be written as a pair of

counter-propagating purely axial traveling waves. Finally, each of the components

of the series can be rewritten as a pair of oblique traveling waves. Clearly one will

find beats when w --+ mo and rapid amplitude amplification when w = Qn,, arising

from interaction between one of the quasi-steady modes and one of the eigenvalue

solutions. These possibilities are not captured in a traditional quasi-steady analysis.

This elemetary solution displays the rich complexity of wave types initiated by a

relatively simple boundary disturbance. Even more complexity will appear if the
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spatial distribution of the injection transient contains more axial eigenfunctions than

used in (2.16).

2.3.2 Amplified Solutions

When w = Q,0, m = 0, l, 2,..., (2.17) fails formally and one must seek a solution in

which discrete modes are amplified. For example, when w =r/2,

S=--tcos t cos xJ +.. (2.18)62K 7r (22

so that the amp!itude of the purely axial mode (pairs of axial traveling waves) grows

linearly with time. The remaining terms in the solution, represented by the dots,

describe bounded quasi-steady and oblique modes.

When the forcing frequency is larger, w = mo, m = 1, 2,..-, one of the higher

order oblique modes is amplified;

Po 2t
6Kcos(11,0ot) cos(2miry) cos X( 19

where the dots again refer to bounded modes. Given that p = 1 + MP, the amplified

solutions are of limited value on the time scale Mt = 0(1), which happens to be the

characteristic time of fluid to pass through the semi-confined container.

2.3.3 Discussion of Results

Table 2.1 (see p. 12) contains results for a system where t' = L'/c o' = 10's, and

6 = 5. so that dimensional frequencic, can be considered. When w' = 125 Hz the re-

sponse, shown in Fig. 2.1 (see pp. 13-16 for figures in this chapter) for PolK cos(irx/2)

is bounded and is composed almost entirely of the purely axial mode and the y-

independent part of the quasi-steady solution in (2.17). Beats are observed in Fig. 2.2

when ' 242 Hz, the response arising primarily from the same modes as in the pre-
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viously discussed case. Linear monotonic amplitude amplification is seen in Fig. 2.3

for the purely axial mode in (2.18) when .' : 250 Hz.

The bounded result in Fig. 2.4 for w' ; 2500 Hz at y = 0.1 is primarily due to the

purely axial mode in (2.15) but includes some small but important higher frequency

response arising from y-dependent parts of the quasi-steady part of the solution.

Quite elongated beats are seen in Fig. 2.5 for w' ; 4992 Hz, which arise from

an interaction of the first oblique mode with the second mode in the quasi-steady

solution. The modulation in the response is due to the purely axial wave.

Finally, when w' s 5000 Hz the amplified oblique mode in (2.19) is found in

Fig. 2.6 at y = 0.1.

The results demonstrate that relatively simple boundary driven disturbances can

produce a complex acoustic wave response in a semi-confined geometry. At or near

the resonant driving frequencies explicit modal amplification occurs. Even in the case

of beats, amplitudes can become large enough during the growth phase to render the

perturbation approximation invalid. Clearly one must resort to a weakly nonlinear

theory to describe acoustic evolution on a longer time.

Higher order linear acoustic theory shows that in addition to modal amplification

arising from boundary driving, other sources of instability include quadratic and

cubic acoustic wave interactions and refraction of the basic acoustics by the shear

flow. The latter effect creates yet more wave complexity of the type described by

Wang and Kassoy (1992a,b).

The results described here are limited by the simplified boundary condition at the

open end of the geometry in (2.13) and by the lack of feedback between the transient

wall injection and the pressure field, which could be described by a wall admittance

function of some type. The pressure node boundary condition is of some importance

because it implies that no work is done at the exit boundary. As a result the acoustic

10



energy evolution in the cavity depends only upon the work done on the injectlon

surfaces.

It is noted that the acoustic field does not satisfy the no-slip boundary conditions

on the sidewalls. However that deficiency can be easily overcome by describing a

weakly viscous boundary layer adjacent to the injection surfaces. This layer. resem-

bling an injected Stokes boundary layer, is significantly thicker than a traditional

acoustic boundary layer because the normal velocity arising from injection is "large"

given the magnitude of U,, (e.g., v' o > U,'/R'/2 ). Price and Flandro (1991) have de-

scribed limited aspects of this boundary layer structure. A related discussion occurs

in Chapter 3 of this report.

Each of the limitations noted here will be examined in future endeavors. In partic-

ular, it is necessary to focuse on a fully interactive formulation of the model problem

which includes a responsive thermally active boundary layer (Kassoy 1979) that mim-

ics the effects of the combustion of solid propellant.
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Table 2.1: Acoustic Response Properties for Several Forcing Frequencies

.U' (Hz) Properties Primary Response

7r/4 125 stable axial + y-independent quasi-steady
modes

7r/2 - 0.05 Aw' p 8 Hz beats (same)

7r/2 250 axial linear growth
amplification

57r z ::o/2 2500 stable axial + smaller high frequency
modes

Q10 - 0.05 Aw' - 8 Hz beats first oblique mode + quasi-steady
mode with axial wave modulation

Q10 5000 oblique linear growth of first oblique mode
amplification + axial wave modulation

12
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Chapter 3

Acoustic Response to Boundary
Disturbances in a Self-Induced
Low Mach Number Shear Flow in
a Cylinder

3.1 Problem Statement

Research has been conducted to study acoustic disturbances in a low Mach number

(1 < 1) internal flow within an open ended cylindrical chamber of length L' and

diameter D'. The mean flow is generated by prescribed side wall mass addition and

the disturbances are introduced by either end wall transients or side wall injection

transients. The objective of this initial-boundary value analysis is to find the com-

plete acoustic response arising from boundary forcing, including all possible resonant

modes.

3.2 Mathematical Model

Perturbation methods are used to derive the analytic form of the mathematical model.

The complete set of fluid mechanics equations is nondimensionalized with respect

to the characteristic scales of the variables describing the flow in the open ended
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cylindrical chamber with low Mach number (M < 1) and large Reynolds number

(Re >1 ).

O9p + Ml 1 o9(p,.,) + Io(pv) +o((pv,) 0
t D r Or r 00_ 5Z

p[t ML r -2 71 9' (3.2)

DV9 VV] _ (33

PDt+ ] (33)

9- = IM z' (3.4)

DT 1 (rV,) 10V 0V
= -Y - 1)MP [r + -- +  (3.5)

P = pT (3.6)

where
D +  V V1 a + -- a + V. a)

The transport terms are neglected since (L')2f < 1 for most of the situations. The

axial velocity component is nondimensionalized with respect to V'., = V,6 where

6 -r The azimuthal and radial velocities are nondimensionalized with respect to

V,, which is the characteristic side wall injection speed. Time t' is nondimensionalized

with respect to axial acoustic time t. F r where Co is the characteristic sound speed.

Parameters M and Re are defined with respect to V. The mathematical model can

describe a combination of an inviscid rotational steady flow with a similar size acoustic

flow. However, the description of viscous phenomena requires more general equation.

3.3 Steady State Flow

A steady state mean flow is generated by time independent mass addition at the side

wall that mimics propellant burning. In the parameter range of D' )2Re 1. and

Al < I, which means large side wall injection, all the variables are written in the

Is



following forms:

P, = 1 + M 2Po, V = Vo, i=1,2, 3, (3.7)

with P, representing pressure, density and temperature respectively and Vi represent-

ing radial, azimuthal and axial velocity components respectively. The leading order

equations and boundary conditions describe an inviscid rotational flow that satisfies

the no-slip boundary conditions on the side wall. Analytical solutions for the radial

and axial velocity, as well as the pressure distribution for -r > I are:

_ V (Z) r ,
Vo,- r sin(7r ), Vo,=lro V(r)drcs(rr2), (3.8)

P= r2 jjV() d-V(z) dz, (3.9)

where -V,(z) is the time-independent side wall injection distribution. Related solu-

tions can be found in Price and Flandro (1991). A similar analytic solution can be
LI

found for the case of constant side wall injection when y = 0(1). The flow field has

to be obtained numerically for any other form of the side wall injection.

3.4 Leading Order and Higher Order Acoustics

A study is made of two common disturbance sources which cause an unsteady flow;

1. The O(M) end wall disturbance for 1-r > 1.

2. Transient O(M) side wall injection for L' = 1.

The asymptotic expansions for all the variables are:

P, = 1 + M(Po + MPI1 ), V = Vo + MVI1 , i = 1,2,3, (3.10)

where P, represent thermodynamic variables and V represent the velocity components

in r. 0, z direction respectively.
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L!
3.4.1 End Wall Effects: 4> 1

Leading Order Solution

The unsteady part of the leading order equations can be combined into a planar wave

equation in terms of the axial velocity component:

a2r--- = za2 ; (3.11)

The corresponding initial and boundary conditions are given by

t =0, 0, -9"" = 0, (3.12)
at

z =0, V =sinwt; (3.13)

z= 0- (3.14)

It is assumed that the endwall boundary conditions are independent of r and 9.
LP

The simplicity of the equation can be attributed to the large Fr ratio. The pre-

scribed velocity at z = 0 has a magnitude similar to the mean axial flow velocity.

The boundary condition at the exit is derived from a condition of zero pressure per-

turbation there.

The general solution for V,o is

V20(z,t) = sinwt
2  

- bw sin(wt)Jsin(bnz)
----O,n$ n °  

b

- f (--) sin(b,.t) + tcos(b,..t) } sin(b,,.z), (3.15)

where b, = (n + 1)r, and the last term represents a resonant effect present only

when , = b,.. A careful look into the solution provides us with some insight into the

properties of the acoustical flow.
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* The first term itself and the second part of the nonresonant Fourier series repre-

sent quasi-steady mution oscillating at the driving frequency. The other Fourier

series terms can be decomposed into two counter-propagating planar travelling

waves.

* If the driving frequency w equals none of the natural frequencies b,, the solution

is bounded. If w is very close to one of those natural frequencies, then beat will

appear due to the interaction between the quasi-steady motion and one pair of

travelling waves.

* Resonance occurs if ,, is equal to one of the %, and the amplitude of one mode

grows linearly with time.

Discussion of Results

Table 3.1 contains results for a system where t A = L' = 10-3 s so that dimensional

frequencies can be considered. When w' ; 159 Hz, the response shown in Fig. 3.1

(see pp. 33-35 for figures in this chapter) for Vo is bounded, and the contributions

are mainly from the first harmonic term and the first few Fourier modes in (3.15).

Beats are observed in Fig. 3.2 where w' ; 238 Hz, due to the interaction between the

quasi-steady modes and the first axial mode. The period of the beat is approximately

90 s. The linear monotonic amplitude growth seen in Fig 3.3 is primarily due to the

resonant axial mode in (3.15) when Lo' = 250 Hz.
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Table 3.1: Acoustic Response Properties for Several Driving Frequencies

64) w'(Hz) Properties Primary Response

1 159 stable axial + quasi-steady modes

1.5 238 beats quasi-steady modes
with axial wave modulation

r/2 250 axial amplification linear growth

Boundary Layer Correction

The leading order core acoustic solution does not satisfy the no-slip boundary condi-

tion. A viscous layer adjacent to the walls with multiple scale structure is needed to

accom date the no-slip boundary condition at the side wall. Experimental data (Price

and Flandro 1991) implies that the viscous damping thickness is large compared to

the scale of spatial oscillation within the thin layer. A multiple scale perturbation

scheme based on the thickness of the boundary layer and the characteristic spatial

length of the oscillation inside the boundary layer is carried out. The acoustic solu-

tion in the core provides an outer boundary condition and the no-slip condition on

the side wall provides an inner boundary condition.

The leading order acoustic core solution shows that all the terms can be classified

into the following two forms: V(z)e n t with 11 = w or b, or -t cos(bt) sin(bz).

The viscous layer solution for the outer boundary condition VO = V(z)e 'ot is of

the following form:

VO(,l,z,t) = -(z) (1 e in ,  (316)

Iex LV() ((z))J j t (.6

where -V,(z) is the steady side wall injection velocity, i is the dimensionless viscosity.
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The variable m describing spatial oscillations within the visccus layer and n describing

viscous layer thickness are defined as:

= r, 1-= (3.17)
C, 3

where a =.1 and 3 = Re (Dr)M'. The solution corresponding to resonant outer

boundary condition V.0 = -tcc(b,t)sin(bz) is:

0( , q, z, t) = -tsin(b,,z)sin(b,,t)

+ {t sin(k ) sin(bt) + bt cos(k ) cos(b,,t)

A 7( cos(k ) + sin(k ) sin(b,t)
+ b,) 2k 2(1 + b,)

______ - 1 b ) (k )j
-o [2(1 +6 , ) 1cs(k) s b,1

cos(b,,t)} sin(b,,z)e -v-' s (3.18)

where k =

When = 7 = 0, the solutions satisfy the no-slip boundary condition on the wall.

On the other hand, when and 77 --+ o, the core solution is recovered in an oscillatory

manner since the amplitude of the exponential term goes to zero harmonically. The

effective thickness of the boundary layer depends strongly on Q1 and V. When Q gets

large, this thickness will become small. For Q = w, if w is small, the viscous effect will

penetrate deep into the core region; if w is large, the viscous effect will be confined

in a very thin layer near the side wall. The same effect can be expected for Q1 = b,.

Thus the boundary layer thickness is smaller for higher order modes. On the other

hand increasing the value of V,(z) enhances the overall boundary layer thickness.

The theory is valid only for Q > V 3 where 3 < 1. If 0 becomes as large as

of O(1) or Q is small, then a new multiple scale perturbation technique is needed to

find solutions where weak viscous effects fill the entire chamber. This is one of the

future research topics.
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Higher Order Acoustics

The O(M 2 ) equations can be rearranged in terms of V1,V 11 ,V,1 2 and P1 , where

V'r = Vjt(z,r.t), 1  V 11(z,t) + V i(z,r,t).

a = 1 (r z, t), (3.19)at
1 O(rKri)
r dr = g2 (r, z, t), (3.20)

I - + --az = A , (3.21)
1 apt OzV

- + f2 (z,t), (3.22)

P, = P,(z,t) (3.23)

where

0ye,
g (r, z,t) a z

- 10p2o 19 YV 1292(, ', t) 0 -vzSST-
2 at z 49z

fi(zt)= lap2 _ V,__o
2t az

f 2 (Z't) = -O A0o-+ f- a(v.+V21 O) + ~ 01/258-.+ z. -- (3.24)r o5F. 2 v az
The initial and boundary conditions are:

t = 0, Y., = 0; V., (z, r, t) = P,(z, t) = 0, (3.25)

r =1, V,= 0, (3.26)

z =0, V= 0, (3.27)

z =1, P, =0. (3.28)

In addition, VI,Vl are required to be finite at r = 0.

Unlike the previous lower order acoustic solutions, the radial and axial velocities

for this order depend on the radial variable as well as on z and t, the result of
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refraction of the leading order acoustic planar waves by the steady state mean shear

fiowi Wang and Kassoy 1992a). The driving functions g1(r,zt) and 92(r, z, t) include

the products of mean flow terms and acoustic terms, and quadratic acoustic wave

interaction terms. The latter provide a source for acoustic instabilities in addition

to boundary driving sources. This issue will be addressed and discussed in the later

part of the report.

Comments

This study of the acoustic response of an internal flow in a cylinder to O(M) simple

harmonic velocity oscillations at the end wall reveals that significant boundary forcing,

as large in magnitude as the basic internal flow will cause numerous travelling wave

modes as well as a quasi-steady flow motion. Although the quasi-steady motion is

predominant for many frequencies, the planar travelling waves can grow significantly

if the driving frequency is close enough to any of the natural frequencies. Beats can be

seen under those conditions. Resonance will occur in the limiting cases. Higher order

acoustic analyses show that in addition to the boundary forcing sources, interactions

between the steady mean flow and leading order acoustic waves, and interactions

between leading order acoustic modes provide other sources for acoustic instability.

When resonance occurs or beats appear for some cases, the linear study is no

longer valid. A weakly nonlinear formulation of the problem is needed because the

perturbations are not small for sufficiently long time. Detailed discussion is deferred

to later sections.
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3.4.2 Transient Side Wall Injection: A = 0(1)

Leading Order Solution

In this case, the end wall velocity is zero and an O(M) transient side wall injection is

superimposed on a similar magnitude steady state side wall injection. The induced

leading order acoustical flow field in the core is described by the following multi-

dimensional wave equation and initial boundary conditions

90 P 02PPO a 1 Po 02Po
0t 2 - +r + -- 1 

+ -  + (3.29)

t = 0, PO = Pot = 0, (3.30)

0 < 0 < 27r, Po(O) = Po(O + 2ir) (3.31)

r =0, IP < o, (3.32)

, = I 6f(z,Ot), (3.33)
2b' Or-

z =0, P =0, (3.34)

z= 1, PO =0. (3.35)

The solution for a general positive transient side wall injection distribution has the

following form:

Po(ri, 0, z, t) = rifl(z, 0, t)
00 00 0021-I1

+ Z., [An,,,,,(t)cosmO + B,,(t)sinmOJgm(w ,nr)cos(2-)rz, (3.36)
1=1 m----0 n= I

where W n satisfy mJ(a -) = 0 and r, = j. The time dependent coefficients Ai,(t)

and Blmn(t) are determined by the system:

d2 .4tmn(t)
d2 . + K2 nAmn(t) = Fmn, (3.37)dt2  

In( A mt = 0, Ailm = gAmn(0); Oat -g' n(0), (3-38)
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d2B (+ mBm(t) = G, (3.39)
dt2  I339

OBt _ mn,() (.0
t = 0, Bimn = gBimn(O); -tmn(0), (3.40)

where 2mn = ( 2-T7W + . , . Fmn, Gln, gAlmn(O), gt'4,n(0), gBl,,n(O) and g~lrn(0)

are quantities that are found from products of Fourier series expansions of each de-

pendent variable.

If f(z,t) = cos(!z)sin(wt) is chosen to describe an axial distributed positive

transient component of the side wall injection which is superimposed on the steady

distribution of the same magnitude, then the solutions are:

* Nonresonant case: w €- k, for all positive integer n,

PO r16+ A + 00 (kf ) Jo(wonri)] cos( z) sin(wt)

qua.si-steady modes

+ ( (M) 2 - W2) sin(r t) cos(r z)r2 (2 _v 2i

axial mode

+~ (Yn -k~)]sin(knt) cos(r1 z)Jo(wonri). (3.41)

oblique modes

The first term represents the quasi-steady response of the gas to the boundary

forcing; the second term can be rewritten as a pair of counter propagating purely

axial travelling waves; and finally, each of the oblique modes can be rewritten

as a pair of oblique travelling waves.

o Resonant case:

1. ~=~I (axial resonant modes),

_fl 7

Po = -- tcos( t)cos(z) +... (3.42)
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where the dots represent the remaining bounded quasi-steady and oblique

modes.

•2. k=, , =V ;2 + ;l

Po = -2tcs(wt)Jo(wo. ri) cos( .z) + (3.43)

with the dots representing the remaining bounded quasi-steady axial and

oblique modes.

Discussion of Results

Table 3.2 contains results for a system where tA = = 1 s 6 = 5 so that

dimensional frequencies can be considered. When w' - 159 Hz, the response shown

in Fig. 3.4 for V4o is bounded and the main contributions are from the first harmonic

oscillation term, the first few axial modes and quasi-steady solution in (3.41). Beats

are observed in Fig. 3.5 when w' ; 238 Hz. The period of the beat is about 90 s

due to the interaction between the quasi-steady modes and the axial mode. Linear

monotonic amplitude growth is seen in Fig. 3.6 for the first axial mode in (3.42) when

, = 250 Hz. Higher forcing frequencies will activate the oblique modes, and similar

phenomena as just discussed can be observed if certain range of forcing frequencies

are picked.

A more detailed discussion of related solutions for acoustics in an open ended

rectangle can be found in Chapter 2.
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Table 3.2: Acoustic Response Properties for Several Driving Frequencies

, f'(Hz) Properties Primary Response

159 stable axial + quasi-steady modes

1.5 238 beats quasi-steady modes
with axial wave modulation

7r/2 250 axial amplification linear growth

Higher Order Solutions

The higher order analysis is done to discover new sources of acoustic instability above

and beyond those arising from the boundary driving resonance just described. The

equation system for the higher order pressure is:

92P1  
2P1  1 OP1  1 02 P, 0 2 P1Ot- = + r,-- + r'- + - + F (r,0,z,t), (3.44)

at2 a Tl r 1 0 z

t = 0, Pi = Pit = 0, (3.45)

0: < 2r, P(0) = P,( + 2r), (3.46)

r= 0, IPiI < o, (3.47)

1 OP1 = W,(,z,t), (3.48)
r,= 2 6 ' Or1

z =0, P W2(r,,O,t, (3.49)

z =1, P, = 0. (3.50)

There are two nonzero boundary conditions at r, = and z = 0 respectively.
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The solution will have the same general form as the leading order acoustic solution:

P(r 1 ,O, z,t) = X(r1 ,O, z,t)

+E [Am,(t)cosmO + Bl,'(t)sinm O]J,(wmr) cos( -- )irz (3.51)
,'=I m=0 n=1

where

d2 All, (t) +
1(3.5)Bm )+K ,mn(t) = F,,(3.3dt2

=0, An = gItnO)(0), a" = g=1 (O); (3.53)

d2 B11,( t ). 2 KtB1,,,(t )2  = G',, (3.34)

dt2  +
0 , B;,,, n 0---7-), aBlm = 9 if,,,,(o); (3.55)

21 - 1 r)2 +W (3.56)K,,,,= 2 + ''

Ft, C,.,., gm,(O), gAjn(0), g,mn(O) and 9gIm,(O) are quantities that are found

from products of Fourier series expansions of each dependent variable.

The forcing functions F,., and G,n are the keys to the solution forms of .41,

or Bl ,n. Resonant growth will occur if F',, or GI,, contain any time dependent

harmonic functions which have the same frequencies as the natural frequencies. Beats

will occur if forcing frequencies are very close to the natural frequencies.

9 Nonresonant leading order w :/ Klmn.

The forcing functions Ft,, and G1,, contain (a) numerous terms that are prod-

ucts of steady mean flow terms and the leading order acoustic terms. The latter

consist of numerous nonresonant modes having the same frequencies as the nat-

ural frequencies; (b) quadratic products of the leading order acoustic terms and

terms which will cause O(t) growth for 1st order acoustic modes if the sum or

the difference of the two leading frequencies or the boundary driving frequency
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and the leading frequency are equal to one of the natural frequencies. This O(t)

growth is not from boundary forcing directly.

* Resonant leading order acoustics ; = K,,.

In this case, the leading order solution contains both resonant mode and non-

resonant modes. Sources for the time dependent growth of the first order modes

can be either refraction phenomena or quadratic modal interactions:

1. The highest growth rate for the amplitude of the first order acoustic mode

is O(t2 ) for refraction generated disturbances.

2. For quadratic modes the contribution to the largest possible growth rate

of the first order acoustics can be divided into two categories. The first is

from the product of one nonresonant mode and one resonant mode which

leads to O(t2 ) growth if the sum or the difference of the resonant frquency

and the nonresonant frequency are equal to any of the natural frequencies.

The second is from the product of two resonant acoustic modes. The con-

sequence is that the first order acoustic modes have at least 0(t2 ) growth

for many frequencies or even 0(t 3 ) growth if one of the natural frequencies

is twice any of the other natural frequencies.

The conclusion from the higher order analysis provides the important slow time scales

of different conditions so that weakly nonlinear analyses can be carried out properly

in the future research.

Comments

The analysis of the acoustic response of a low Mach number, injection induced flow

to large side wall mass transients has been done for the inviscid core region only. A
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viscous boundary layer is required to accommodate the no-slip boundary condition

on the side walls. The general procedure for studying the viscous layer is similar to

that used for end wall case.

A weakly nonlinear study of the acoustic core response is of the primary interest

because the results will predict the proper long time behavior of the disturbance

evolution and these nonlinear core results will provide the correct outer boundary

conditions needed for the viscous layer analysis on the longer time scale.
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Chapter 4

Effect of Boundary Properties on
Resonant Acoustic Oscillations

4.1 Motivation

Traditional studies of acoustic instability in solid rocket engines are based upon the

concept of normal mode expansion (e.g., Culick 1990; Price and Flandro 1991).

Acoustic wave systems are represented mathematically in terms of superpositcOns

of eigenfunctions for a closed chamber with rigid walls. Such a representation ig-

nores the effect of finite acoustic admittance of the burning propellant surface and

the sonic nozzle entrance on the acoustic mode shape. The applicability of normal

mode representation to rocket combustion chambers, where the velocity fluctuations

perpendicular to the bounding surfaces do not usually vanish, has not been carefully

examined.

On the other hand, there is an extensive literature on the classical problem of

piston-driven acoustic oscillations in a cylinder (e.g., Ochmann 1981; Wang and Kas-

soy 1990, Seymour and Mortell 1973a,b; Jimenez 1973). Results show that at res-

onance, the nonlinear limit cycle amplitude and wave shape are strongly dependent

upon the imposed boundary conditions on the other end of the cylinder. For periodic
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piston motions of maximum Mach number e (e K< 1) in a closed cylinder, shock for-

mation occurs, and the limit cycle amplitude is of 0(c11 2 ); in an ideally open cylinder

where an acoustic pressure node is present at the end, shock waves are less likely to

appear, and the limit cycle amplitude is much larger, of O(fI/ 3 ). The sharp contrast

suggests that boundary conditions have a profound impact on the behavior of an

acoustic system.

It is the purpose of this study to explore the effects of different boundary conditions

on gasdynamic wave motions in a confined region, and to develop effective mathe-

matical tools capable of handling this type of problems. A simple piston-cylinder

configuration is used as a paradigm for extracting the crucial physical pheuomena of

interest. Instead of the traditional quasi-steady approach, an initial-boundary value

approach is adopted to describe the time-evolution of the amplifying modes to limit

cycles under resonant boundary conditions.

4.2 Model Problem and Formulation

We consider the one-dimensional acoustic wave motion in a cylinder induced by an

oscillating piston at one end. The condition at the other end of the cylinder is specified

by an acoustic admittance function, or response function, that relates the disturbance

acoustic pressure" to the velocity. The piston displacement is assumed small relative

to the cylinder length, and the characteristic piston Mach number 6 < 1.

When the Reynolds number is large, the flow and thermodynamic properties of

the cylinder gas are governed by the the inviscid Euler equations and the isentropic

relations (Wang and Kassoy 1990):

pt + (Pu): = o, (4.1)

ut + uu = _-2 , (4.2')
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p = p T = p . (4.3)

The thermodynamic variables p, p, and T in (4.1)-(4.3) are nondimensionalized with

respect to their equilibrium values po, po and To; the velocity u is nondimensionalized

with respect to the equilibrium sound speed co . The characteristic length and time

scales used in the above equations are the cylinder length L' and the acoustic pessage

time t, = L'/4o, respectively.

The initial and boundary conditions are given by

t=0, p=p=T=1; u 0, (4.4)

x = - -cos(wot), u = e sin(wot); x = 1, u -( p-1), (4.5)fo a

where the dimensionless piston frequency w = w'L'/1o . In the second boundary

condition the acoustic admittance o is used to provide a general relationship between

the velocity fluctuation and the excess (acoustic) pressure on the outflow boundary.

For simplicity we assume that a is invariant to frequency and time. One notices that

= 0 and oo correspond to a rigid end and an ideally open end, respectively.

4.3 Linear Acoustic Theory

By applying the perturbation expansions

U = CUl + e2U2 + "", p =+ 7(EP1 + 2P2 +", (4.6)

to (4.1)-(4.5), the following describing system for the induced leading order acoustic

velocity can be derived:

ut - uizz = 0, (4.7)

u, 1(t =O) =ul(t = 0) = 0, (4.8)

ul(x= 0) = sin(wt); uit(X = 1) = -0ul.(x 1). (4.9)

38



This system is most easily solved by using the Laplace transformation technique, and

the solution can be split into a quasi-steady part and a transient part:

U1= u1 3 + ult,., (4.10)

{sin (w) sin [(1 - r)w] + a 2 cos (w) cos ((1 - x) ]} sin (L;t)
= sin' (W) + 02 cos 2 (W)

a sin (wx) cos (wt) (4.11)
sin' (W) + 0.2 cos2 (W)'

i= Z 2 sin (A,x) e' (4.12)

The quasi-steady solution (4.11) denotes gas oscillations at the piston driving fre-

quency, and is the long-time solution to the entire system provided that the denom-

inator does not vanish. The transient response P2t given by (4.12) is a summation

over all the eigenfunctions multipled by time-dependent coefficients. The eigenvalues

A,, are defined by the equation

tan(A ,) = ia.. (4.13)

They are complex quantities even for real values of o, due to the mixed derivatives

in the boundary condition (4.9). By writing A,, and o" as A,, = A,,,. + IA,; a = a, + i.i,

(4.12) can be put into a more illuminating form,

W -A (t O e i(An(t+X)-nI] w A0t ei[A n_(t-_ )-_,
-e - x+ ) ( - e- (4.14)

= 2A=- - W1 2 ,,=-o I A-wL2 1

where

Anr ==n -0, Ai=--ln -  . (4.15)
2 1+ao

The quantities O,, and , are both functions of a,. and o', whose explicit forms are

omitted here for brevity. Clearly, (4.14) represents infinite pairs of counterpropagating

waves, whose amplitudes attenuate exponentially if Ai is positive.

Several observations are made regarding the solutions (4.10)-(4.15). First, for real

values of acoustic admittance a, the imaginary terms of the solution cancel each other
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and the result is real. Secondly, special result for hard wall boundary (o, = 0), free

boundary (jai -- oc) and infinitely long cylinder (o = 1) can be recovered; in the

last case the solution reduces to a simple traveling wave of the form sin [W (t - x)].

Thirdly, it can be shown that the transient wave phenomena decays exponentially

with time if a, is positive and less than infinity. This implies that the acoustic energy

contained in the initial transients are rapidly radiated through the boundary, and only

the acoustic mode oscillating at the piston frequency is sustained by the continuous

mechanical energy imput through the piston.

Of particular interest are the conditions for the acoustic system to become res-

onant. This happens when the denominators in (4.11) and (4.12) are zero, i.e.,

A' - w2 = 0 or equivalently

sin2 (w) + a2 cos 2 (w) = 0. (4.16)

It can be shown that (4.16) has solutions only if (1) o = 0 (rigid wall); (2) Jai -- :,c

(perfectly open); and (3) a,. = 0 (a purely imaginary). When a takes other values.

there exist no "right" frequencies to make the system resonant.

When resonance occurs, the linear acoustic theory predicts 0(t) growth in the

leading order term and faster growth in higher order terms. The solution breaks

down after some time elapse and nonlinear theory has to be employed.

4.4 Weakly Nonlinear Solutions

A systematic perturbation procedure based on multiple-timescale expansions are em-

ployed to obtain the long-time solutions for resonant and nonresonant acoustic pro-

cesses in the cylinder. This work is currently in progress, and the following is a brief

discussion of the preliminary results.
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4.4.1 Resonance in a Closed Cylinder (o = 0)

The linear asymptotic solution at the resonant frequency w = vr (v = integer) reveals

that

u = -(t [sin( 'x) cos(wt)] + 6 2t 3 f 2 (x, t) + E3t 5 f 3 (x, t) + (4.17)

where f 2 and f3 are bounded functions. The asymptotic expansion breaks down when

t , -1/2' U 1 ' I 2 .

A two-timescale expansion based on the fast acoustic time t and the slow time

= E1/2t are employed to obtain a uniformly valid solution. In this procedure, the

time derivatives in the original equations are replaced by derivatives with respect to

both t and r,

= ( +E ( (4.18)

and u and p are expressed asymptotically as

U + u + .. , , 2( + + .-- ).(4.19)

Solutions for the leading order acoustic quantities ul and P. consist of summations of

standing wave modes with slowly varying amplitudes that are functions of r. These

amplitude functions have to be determined by eliminating resonant terms in the next

order solutions. Under null initial conditions and boundary conditions defined by

(4.5) where a = 0, we obtain

ut = E a,.(r)cos(nirt)sin(nrx), pi = -1 a,(r)sin(nrt)cos(nrx). (4.20)
n=1 n=l

The Fourier coefficients a,(r) are calculated from

.-T = - nir (2 a.kn+m - E a. n-m -v, (4.21)
Jr 16 __= /=

d= 0, (4.22)
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for n = 1,2, .-- The quantity 6,, is the Kronecker delta which ensures nontrivial

solutions. The above results agree with the solutions obtained by Ochmann (1985),

who used the method of averaging.

The infinite mode-coupling system (4.21) provides a mechanism for transfering

acoustic energy from the resonant mode v to other modes, especially the high fre-

quency modes. As a result, wavefronts steepen to form shock waves in the cylinder.

The internal dissipation of the shocks cause strong damping to the amplifying wave

field and eventually a limit cycle is approached. Numerical solutions can be obtained

by truncating the infinitely coupled equations (4.21) to a desired level of accuracy.

4.4.2 Resonance in an Open Cylinder (jai --+ cx)

The eigenvalues corresponding to an open cylinder are given by A,, = (n - 1/2)7r,

n = 1, 2,-... The tth mode becomes resonant if the driving frequency w = A,. In

this case, based on the behavior of the linear asymptotic solutions as t --+ c, the

correct slow timescale needed to carried out multiple-scale expansions for the weakly

nonlinear wave phenomena is r = E2/ 3t, and the limiting amplitude of the velocity

and acoustic pressure are of O(el/3). The larger amplitude arises because there is no

shock formation and therefore less energy dissipation prior to t _ 0( e2/ 3 ).

The proper asymptotic expansions for u and p on the time scale r are thus

I IU = f3u, + f3u2 + u + "",(4.23)

1 ap= 1 + y(E3pi +fCp 2 +m+ ... ). (4.24)

Analogously to the closed cylinder case, the leading order solutions have the form

ul = z: [a,,(r) cos(At) + 3, (r) sin(A, t)] sin(A,&r), (4.25)
n=1

Pi = [-a,(r) sin(At) + Z,(r) cos(Ant)] cos(Ax), (4.26)
n=1
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where it is required by the initial conditions that apO) = 3,(0) = 0.

The slowly varying amplitude functions a. and 3, are again to be determined from

higher order considerations. Unlike the usual two-scale expansion processes, where

the secular equations result from the elimination of resonant terms in the next order.

solutions to 0(E2/3) are found to be bounded and thus provide no clue in this respect.

Derivations have to be carried out to O(f). Eliminating the resonant terms at this

order then leads to the requirement that a,, and 3, satisfy an infinitely coupled system

of first order differential equations like (4.21). However, the mode coupling terms on

the right hand side are cubic rather than quadratic, because quadratic nonlinearity

is not cumulative when a pressure node is present at x = 1. The exact forms of the

amplitude equations are currently being developed.

4.4.3 Other Considerations

As discussed in Section 4.3, another type of acoustic resonance can occur when o, is

purely imaginary and finite. The wave amplification and nonlinearization processes

under this catagory possess new features that are also worth studying. This will be

undertaken in the future.

Also of interest is the nonlinearization of nonresonant acoustic wave systems.

One recognizes that the three types of resonance-prone boundary conditions men-

tioned earlier are only special cases. In a sense, it is more important to be concerned

with near-resonant (beats) and nonresonant situations as well. The crucial issue is to

identify the conditions under which shocks form, since the appearance of shock waves

introduces an additional damping mechanism-internal dissipation. To this end it is

imperative to use the correct eigenfunctions, given the boundary acoustic properties.

Multiple-timescale expansion techniques will again be used to describe the wave de-

formation process due to the nonlinear accumulation, which occurs on a longer time
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scale in comparison with the resonant cases.

4.5 Concluding Remarks

An initial-boundary value problem is formulated to study the linear and nonlinear

evolution of acoustic waves in a cylinder driven by a small-amplitude oscillatory pis-

ton. The study serves to illustrate the drastic influence of the acoustic properties at

the cylinder end upon the time-evolution and limiting amplitudes of the confined wave

system. The mathematical technique developed, based on the multiple-timescale per-

turbation expansion, can be employed in the future to investigate similar boundary

effects in more complicated geometries in solid rocket engines.

This study shows that the acoustic mode shape and characteristics are very sen-

sitive to the imposed boundary conditions. Due to the cummulative nature of the

quadratic nonlinearity, normal mode approximation always leads to the formation of

shock waves. In a shock free system this generates erroneous results and overpre-

dicts damping mechanisms. More exact representations of the system eigenfunctions

should be explored in the future, in order to develop reliable prediction capabilities

for rocket engine acoustic stability.

44



References

Baum. J.D. 1989 Investigation of How turning phenomena: effects cf frequency and

!)lowing rate. AIAA 27th Aerospace Sciences Meeting, AIAA-S9-0297.

('ulick, F.E.C. 1990 Some resent results for nonlinear acoustics in combustion cham-

bers. AIAA 13th Aeroacoustic Conference, AIAA-90-3927.

.Jimenez, J. 1973 Nonlinear gas oscillations in pipes. Part 1. Theory. J. Fluid .Mlech..

59, 23-46.

Kassov, D.R. 1979 The response of a confined gas to a thermal disturbance; I-Slow

transients. SIAM Appl. Math., 30, 624-634.

Ochmann, M. 1985 Nonlinear resonant oscillations in closed tubes-An application

of the averaging method. J. Acoust. Soc. Am. 77(1), 61-66.

Price, E.W. and Flandro, G.A. 1991 Combustion Instability in Solid Propellant Rock-

ets. book .manuscript in preparation.

Seymour, B.R. and Mortell, M.P. 1973a Resonant acoustic oscillations with damping:

small rate theory. J. Fluid Mech., 58, 353-373.

Seymour, B.R. and Mortell, M.P. 1973b Nonlinear resonant oscillations in open

tubes. J. Fluid Mech., 60, 733-749.

Wang, M. and Kassoy, D.R. 1990 Evolution of weakly nonlinear waves in a cylinder

with a movable piston. J. Fluid Mech., 221, 27-52.

\Vang. M. and Kassoy, D.R. 1992a Transient acoustic processes in a low Mach num-

ber shear flow. J. Fluid Vfech., in press.

4.5



Wang, M. and Kassov, D.R. 1992b Standing acoustic waves in a low Mach number

shear flow, AIAA Journal, to appear in July. 1992.

46



Personnel

I. Principal Investigator: David R. Kassoy, Professor of Mechanical Engineer-

ing and Interim Dean of the Graduate School, University of Colorado, Boulder.

2. Research Associate: Dr. Meng Wang, Department of Mechanical Engineer-

ing, University of Colorado, Boulder.

3. Research Assistant: Qing Zhao, Department of Mechanical Engineering, Uni-

versity of Colorado, Boulder.

47



Appendix A

Transient Acoustic Processes in a
Low Mach Number Shear Flow



To Appear in Journal of F!'i -

Transient Acoustic Processes in a Low Mach
Number Shear Flow

Meng Wang

D.R. Kassoy

Department of Mechanical Engineering
and

Center for Combustion Research
University of Colorado

Boulder, CO 80309

Abstract

A systematic perturbation procedure, based on small mean flow Mach num-

ber and large duct Reynolds number, is employed to formulate and solve an

initial-boundary value problem for acoustic processes in a shear flow contained

within a rigid-waled parallel duct. The results describe the general transient

evolution of acoustic waves driven by a plane source located at a given duct

cross-section. Forced bulk oscillations near the source and oblique wave gener-

ation are shown to result from refraction of the basic planar axial disturbance

by the shear flow. Refraction also causes the axial waves to exhibit higher order

amplitude variations in the transverse direction. As the source frequency ap-

proaches certain critical values, specific refraction induced oblique waves evolve

into amplifying purely transverse waves. As a result, the magnitude of the re-

fraction effect increases with time, and quasi-steady solutions do not exist. The

analysis is extended to the thin acoustic boundary layer adjacent to the solid

walls to examine the shear layer structure induced by the variety of acoustic

waves in the core flow. Nonlinear effects and acoustic streaming are shown to

be negligibly small on a scale measured by a few axial wavelengths.



1 Introduction

The effect of shear flow on acoustic wave propagation was first studied analytically

by Pridmore-Brown (1958), who derived the following linearized wave equation for

propagation in a fully-developed duct flow:

1 2M
"Pt= (1- .Xr2)pr + p& - -p + 2pocoMv, (1)co Co

where p and v are the acoustic pressure and normal velocity, respectively. The sound

speed of the mean state (po, p0, T0 ) is Co, and M = M(y) is the shear flow Mach

number. Earlier efforts have been focused on seeking quasi-steady solutions of the

type p = F(y)e'(-'). Cross-stream eigenfunctions F and eigenvalues ic are obtained

to describe the shear flow distortion of specific propagating acoustic wave modes.

Both asymptotic solutions (Pridmore-Brown 1958) and numerical solutions (Mungur

and Gladwell 1969) demonstrate that for a downstream propagating axial wave (the

fundamental mode), the acoustic pressure at the wall is significantly larger than the

value at the centerline. Calculations for upstream propagation (Hersh and Catton

1971) show a reversed trend of acoustic pressure distribution.

Quasi-steady theory is useful for describing only limited types of acoustic phenom-

ena due to the restrictive nature of the presumed solution form. For example, one

cannot use it to track the evolution of an initial disturbance toward the quasi-steady

waveform, if it exists. Solutions describing temporal amplitude growth (resonance)

are excluded entirely. Furthermore, the quasi-steady solution does not provide the ab-

solute magnitude of a propagating wave and its relation to a specific acoustic source,

nor does it include new waves that may be generated by refraction of the given wave.

It is also important to note that the solution as well as the formulation exclude the

acoustic boundary layer where the wave motion is damped by viscous effects to satisfy

no-slip conditions on the duct wall. These limitations can be overcome by develop-



ing an initial-boundary value solution for acoustic disturbances in a shear flow. In

addition to the acoustic analysis one must consider viscous boundary layer effects

adjacent to the duct walls.

Previous oscillatory boundary layer analyses are mostly for incompressible flows.

For example, Stokes (1851) studied the long-time quasi-steady response of a viscous

fluid to boundary oscillation; Sexi (1930) and Uchida (1956) investigated laminar pipe

flow due to oscillatory pressure gradient. The heat transfer process in the pulsating

pipe flow was examined by Romie (1956). These studies all demonstrate the velocity

overshoot at the edge of the viscous layer, commonly known as Richardson's annular

effect (Richardson and Tyler 1929). More recently, Barnett (1970, 1981) studied the

pulsating pipe flow process based on linearized turbulent Navier-Stokes equations.

Rott's (1980) investigation of acoustic oscillations in an infinite gas region parallel to

a flat plate is more closely related to the present study, because he uses a low Mach

number compressible gas model. The effect of mean temperature variation along the

direction of oscillation is included, but no mean flow is allowed.

In contrast to the traditional quasi-steady linear approach, Baum and Levine

(1987) developed numerical solutions to an initial-boundary value problem in order

to describe uni-directional acoustic propagation in an axisymmetric cylinder with a

coexisting mean shear flow. The code is based on Reynolds-averaged Navier-Stokes

equations for compressible flow, coupled with the k-E turbulence model. Acoustic dis-

turbances, gen-erated by a disk-shaped acoustic source of spatially uniform strength,

are studied over a few acoustic wavelengths. In this short-time calculation one cannot

expect to find the quasi-steady wave structure solution used to solve (1).

The present study is inspired by the limitations of the classical quasi-steady solu-

tions mentioned above, and the lack of long-time results in Baum and Levine's work.

The physical system under consideration involves a horizontal parallel duct contain-
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ing a fully developed low Mach number shear flow (Cf. Fig. 1), a two-dimensional

duct counterpart to the cylinder considered by Baum and Levine (1987). An initial-

boundary value problem is formulated for an acoustic disturbance propagating into

the imposed shear flow. The disturbance is initiated by a source located at a given

duct cross-section. Such an approach ensures the spontaneous appearance of all types

of acoustic waves, including non-axial waves, arising from the refraction of the basic

axial wave, and provides an explicit relationship between the driving acoustic source

and the evolving wave field.

The analysis is based on a laminar flow model for a viscous, heat conducting fluid.

By using a rational approximation procedure, in Section 2, transport effects are shown

in a formal manner to be limited to extremely thin acoustic boundary layers adjacent

to the duct wall. Perturbation methods, based on the small mean flow Mach number

parameter M, are employed to find solutions for both the transport-free core region

in Section 3 and the viscous layer in Section 4. The solution procedure is especially

simplified due to the low Mach number simplifications. Finally, in Section 5, the

results are discussed in comparison with the numerical solutions of Baum and Levine

(1987), and the major findings of the present work are summarized.

The results demonstrate that refraction, known to distort the pressure distribution

of the leading order axial wave, is also the source of new and dispersive acoustic

transients. When nonresonant conditions prevail, these transients evolve into oblique

propagating waves and a forced bulk response at the acoustic source frequency. The

former correspond to the selected higher modes of quasi-steady propagation in duct

acoustics, while the bulk response is composed of an infinite number of attenuated

modes that decay rapidly away from the plane acoustic source. The quasi-steady

axial wave solution agrees with those from the classical studies (Pridmore-Brown

19.58: Hersh and Catton 1971). Resonance occurs in one of the propagated modes if
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the duct width is some integer multiple of the driving acoustic wavelength. In this

case purely transverse waves with growing amplitude are found to exist that cause a

drastic increase in refraction effects.

In the viscous, heat-conducting acoustic boundary layers, a complex response

arises from the variety of acoustic waves in the core. The transverse velocity in the

acoustic boundary layer is much larger and more complicated than that predicted by

Rott (1980), because it must match with the core solution that contains refraction

effects. The refraction magnitude and the acoustic boundary layer thickness obtained

from the perturbation solutions are found to be comparable with those of Baum and

Levine (1987).

2 Mathematical Formulation

The complete dimensionless equations describing the compressible fluid motion in a

planar duct shown in Fig. 1 can be written in the form,

p = pT, (2)

Pt + M [(pu)z + (PV),] = 0, (3)
1 M 4 1

p [Ut + M(uU, + VUp)I = -iPC + - , V, + -4 '2UCX + n'V (4)
Vf 2 4 1 )

Py[V, + M(uv' + vv,)] = VXX+ flv=z+3 5, + iuz , (5)'V i f l i(s, + Q R , -)
p[T + M(uT. + vT,)] = -M( 7t - 1)p(u: + v. ) + fI-- (T + 1n2T.)

M3
+1)U +! p2)2 + 2Q' (UC + V2) - 1,(u, + V,)2] (6)

where for convenience the thermophysical properties are assumed constant. The

nondimensional variables are defined in terms of dimensional quantities by

(p,p,T) = (p, p', T') U = ' V = V

4



t= -,==-, y - (7)
t R'

Quantities p', p', and TO are thermodynamic properties of the gas at mean state, d'

is the width of the duct and U' the characteristic velocity of the mean flow. The

characteristic time scale is defined as the inverse of the circular frequency of the axial

acoustic wave, t' = 1/J, so that the wavelength gives the proper axial length scale

X' = c'/lw'. The characteristic transverse velocity v' = Mw'd'. The dimensionless

groups in (2)-(6) defined by

U'd' w'd'M U" Re = ---1- P, = -Ct=-,()
dt  U l' O1' C

are the maximum mean flow mach number, the mean flow Reynolds number, the

Prandtl number, and the normalized axial acoustic frequency, respectively. One no-

tices that 11 is the ratio of the transverse acoustic time in the duct to the wave period.

In the present study solutions to the above described system are sought in the

limit 1/Re --+ 0 and M --+ 0, where it is assumed that 1/Re < M. Additionally, one

assumes that the Prandtl numder is an order one quantity and 1Q < 0(1).

As in previous studies (Pridmore-Brown 1958; Mungur and Gladwell 1969; Hersh

and Catton 1971), the basic steady flow in the duct is assumed to be fully-developed.

It is driven by a pressure gradient which is inversely proportional to the Reynolds

number of the flow. One can easily derive from (2)-(5) that

u = U(y), v = 0. dp/dx = O(M 2/R,). (9)

Obviously, on the length scale z' the variation of p is negligibly small.

Since the Reynolds number is very large, it is observed from (2)-(6) that except

for the extremely thin acoustic boundary layers adjacent to the solid surfaces, which

will be d;scussed in detail in Section 4, the wave motion in the core region is basically



unaffected by transport effects. in this limiting case, the state, continuity and energy

equations (cf. (2), (3) and (6)) can be combined to give the familiar results,

p=P"- .O( ' T=p--' + 0 (10)

These isentropic relations, together with the inviscid version of (3)-(5), suffice to

describe the acoustic wave motion in the core.

When the fully developed duct flow is disturbed by an O(E) acoustic velocity,

U = U(y) + ef, V = 6, (11)

it can be shown that the thermodynamic corrections are always O(Me), in order to

balance the acoustic components in the governing equations (3)-(5). Accordingly, p,

p and T are put into the following form:

p= 1+ (M)'y, p = 1 + (MC), T = 1 + (Me)t. (12)

The continuity equation (3) can be rewritten in terms of acoustic variables as

,3 + tI! + y + MU(y)A, + (ME) [(f), + ( )] = 0. (13)

Similarly, the x and y momentum equations become

it + M[U(y)fi, + &iU'(y)] + (ME)(ifiii + ii) = (14+(Me)')
0, + MU(y)O, + (Me)(fiO + bt'y) =A (15)

Q2 [1 + (Me) F *

In (13)-(15) terms containing U(y) represent the shear flow interaction with the

acoustic field. They are O(M) quantities. The nonlinear product terms are of O(EM).

There are three interesting asymptotic limits that can be applied to (13)-(15) for low

.Mach number shear flows:

1) The parameters satisfy the inequality f < M CZ 1, and the asymptotic limit

-- 0, '4 fired is used. The nonlinear terms can be ignored since their magnitudes are
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small relative to .!. A combination of (13), (14) and (15) generates a leading order

acoustic equation equivalent to (1). This demonstrates that the previous quasi-steady

analyses by Pridmore-Brown (1958), Mungur and Gladwell (1969), and Hersh and

Catton (1971) are asymptotically accurate for extremely small amplitude acoustics

relative to the characteristic shear flow Mach number.

2) The parameters satisfy the inequality O(e) = M < 1, and the asymptotic limit

Al -- 0 is used. If O(M 2 ) terms in (13)-(15) are uniformly ignored relative to O(M)

terms in the asymptotic limit, their analogue to (1) contains no O(M 2 ) term. This

shows that the Pridmore-Brown results are formally valid to O(M) where M < 1.

Numerical studies by Baum and Levine (1987) are primarily concerned with this

regime.

3) The parameters satisfy the inequality M < e < 0(1), and the asymptotic

limit M -. 0, c fixed is used. An examination of (13)-(15) shows that the nonlinear

terms and the refraction producing terms containing U(y) are of the same magnitude,

O(M), in the limit. As a result, (1) which is purely linear cannot describe acoustic

phenomena when the pressure disturbance in (12) is O(M).

The following analysis is focused formally on Case 2 described above, although

the solutions for acoustic variables are equally valid for Case 1 since both cases yield

identical truncated versions of (13)-(15) to O(M). The initial state of the disturbance

quantities is described by

t=0, =v=p=0. (16)

Acoustic waves are excited at x = 0 by imposing a periodic horizontal disturbance

velocity

x = 0, fi = Asin(t), (17)

where the amplitude .4 is in general y-dependent, although the simpler case of con-



stant amplitude is emphasize here. The normal velocity component generated in the

viscous acoustic boundary layer is of much smaller magnitude relative to the core

flow magnitude, as will be shown later. Hence, so far as the acoustic core region is

concerned, the impermeable condition

y =0,1; u=0. (is)

can be applied directly to describe the acoustic behavior close to the duct walls.

3 Core Solution

3.1 Acoustic Transients due to Axial Wave Refraction

First, the acoustic quantities are expanded asymptotically in terms of M in the fol-

lowing manner:

= 'P, + M', 2 + 0(M 2 ), tP = (u,v,p,p,T). (19)

In order to account for the small changes in the absolute wave propagation speed due

to the O(M) mean flow, it is necessary to use a strained coordinate

+M + , (20)

where

U0 = j U(y)dy (21)

is the bulk shear flow velocity area-averaged across the duct. One finds from (13)-(15)

ordered sets of equations,

Pit + Ulf + Vvt = 0, (22)

ult + Pi2 = 0, (23)
1

V, + T-'ly = 0, (24)



and

P2t + U2 2 = -- '()yP1 ± - Couit 2.51

u2t + P2 = Pit- U(y)u - U'(y)u1 . 26)
I

V'2t + ?-P'y= -U(y)vit. 27)

Additionally, the isentropic relations (10) :mply that

Pi = Pi, P2 = P2. "2S)

Equations (22)-(24) are combined to generate the linear, homogeneous wave equa-

tion for pl,

Pitt - + = O. (29)

The leading order acoustic equation is seen to be unaffected by the mean shear flow,

except for the bulk convection effect incorporated into the variable ±. If the boundary

velocity oscillation has a constant amplitude, .4 = 1 in (17), the solution satisfying

(16)-(18) describes a wave train propagating axially into a quiescent gas,

p, = ul = sin(t - ±), L', = 0. (30)

Note that ahead of the wavefront, when t > t. all the acoustic quantities are zero.

In order to study the explicit effect of the shear flow velocity gradient on the

acoustic field, (25)-(27) are combined to give the second order analogue of (29),

(Piu--- f + 1- hYV = -21'op 1±± - 21'(y)p1t, + 2U'(y)vit. (31)

The forcing function, representing the interactions between the shear flow and the

leading order acoustics, are simplified for the case considered here, i.e., when the

boundary oscillation is y-independent. Upon inserting (30) into (31), the latter can

be rewritten as

T2I

9



for . < t. The initial and boundary conditions necessary to solve (32) are derived by

a proper combination of the preceding results in this section with (16)-(18). They

are given by

t =0, P2 = P2t = 0, (33)

= 0, Pif = [U(y) - U] cos(t); t --# 0o, p2 = finite, (34)

y= 0: 1. P = 0. (35)

The hyperbolic equation system (32)-(35) can be solved by a combination of

Laplace transform and Fourier series method, as outlined below. If Q and s are used

to denote the transformed variables of P2 and t, respectively, a Laplace transform of

(32)-(35) with respect to time t yields

Q", + 1 Q, - '92Q = 2 [U(y) - C;o] e-S (36)T2I+ 32"

= 0, Q = 1U(y) - C-1+1 ; 3-*o, Q = finite, (37)

y = o; 1, QV = 0. (38)

The homogeneous boundary condition (38) suggests that a Fourier series solution of

the form

Q = ao(i,s) + E an(±,s) cos(nry) (39)
n=1

is obtainable. Once the shear flow velocity U(y) is Fourier decomposed into

U(y) = Uo + 2 &, cos(nry), (40)

where the bulk part 0 is given by (21), and

0. ==21 U(y)cos(nry)dy, (41)

it becomes clear immediately from (36)-(38) that ao = 0. The nth Fourier coefficient,

for n = 1. 2..-., is governed by

a- (2 + q)a,, = + (42)
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where the parameter q, is defined as

n 7r
q.- . (43)

The solution to (42), which satisfies

2(0)+ (44)

and has a finite value as t - zo is obtained as

a,_=____1)_ 2Ue- (43)

Upon using (45) in (39), and taking the inverse Laplace transform by means of an

extended Laplace transform table (Oberhettinger and Badii 1973) and the convolution

theoremi, one finally obtains

P2 - sin(t - ) cos(k-,Ty)
k=1 q

+ Z U (4q- ) cos(t- )J0 q, ± dcos(n'ry). (46)

where Jo is the zeroth order Bessel function of the first kind.

The first term on the right side of (46) represents a quasi-steady, axial traveling

wave (fundamental duct mode), with y-dependent amplitude given by the summa-

tion. It is an 0(M) correction to the leading order axial wave (cf. (30)) and thus

describes the effect of shear flow induced refraction on the propagating axial wave. As

predicted by the classical theory, the axial wave acoustic pressure redistributes itself

nonuniformly across the duct. The y-dependent amplitude function grows rapidly

with driving acoustic frequency (cf. (46) and (43)) and varies with shear flow velocity

profile. It is, within a constant, equivalent to the result of Hersh and Catton's (1971)

perturbation study, if the latter is rewritten in Fourier decomposed form. However.
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here the amplitude is completely defined because the solution is obtained from an

initial-boundary value problem.

A second fundamental advantage of studying linear acoustic refraction phenomena

in terms of an initial-boundary value problem is that the transient (non quasi-steady)

evolution of the acoustic refraction and its absolute magnitude can be found explicitly.

a result not available from the classical studies (Pridmore-Brown 1958; Mungur and

Gladwell 1969; Hersh and Catton 1971). The complete second term in (46) represents

acoustic transients initiated by the passage of the leading order axial wave through

the shear flow, including dispersive effects. The transients evolve into oblique waves

(higher propagated modes) and forced bulk vibration consisting of infinite numbers

of attenuated modes, as wiU be shown soon.

The O(M) axial and transverse acoustic velocities can be obtained by integrating

(26) and (27), respectively. They are listed below:

U2 = -sin(t- )y(4-1Ukcos(k ry)+Z0,, ( )1 ±h,n(t, 2)cos(nry),

(47)

= C

fjtjC [sin(~ ~ -
(48)C

L211 - 1  cos(, - .)J 0q / )d2d¢ sinna y). (49)

The two terms in both u2 and V2 expressions again represent the quasi-steady axial

wave and other transient phenomena, corresponding to those in (46). For large t.

one can show from (48) that h, -- 0(2 - 1), so that u2 remains bounded despite the

explicit 2 proportionality.
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3.2 The Evolution to Quasi-steady Propagation

[nsightful results for the long-time properties of P2 can be obtained from the asymp-

totic properties of the integral

1,(t, ) cos(t - ) J0 q d. (50)

When q, # 1, (50) converges for large values of t such that

tlirn [, x/q.-t '
= int q V5

when 0 = (I) (Gradshteyn and Ryzhik 1980). It follows from (46) and (51) that

the nonresonant long-time solution for the refractive acoustic pressure can be written

as

Pm = -sin(t - )1k " cos(kry)
k=I qk

NV 2\ In(t - V1 -- q ±)

* : _1)__-q cos(nry)
n=o1t -- 1 2V~

(2cos(t) t cos(ny). (52)
nN+l nn

where N is defined such that qN < I < qN+i-

The second full term in (52) contains N Fourier modes, or higher propagated

modes in classical acoustics terms. Each mode can be rewritten as a pair of oblique

traveling waves. This is illustrated by rewriting the nth mode, denoted by Pn, as

Un (2-)
= ( [sin(t - z,,I) + sin(t - z,2)], (53)

where

-1= I-qn2 n7ry, Zn. = ,/- q + nry, (54)
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represent a pair of oblique paths for the traveling wavcs, shown in Fig. 2. The wave

reflects repeatedly from both duct walls as it travels along. Upon each reflection.

it switches from one path to the other. If the transverse coordinate is rescaled by

Y = iy, so that both Y and x are normalized using the same characteristic length

scale Z = &/.,', one easily finds that the phase speed of the nth mode along the

z,,,, z,,2 paths is unity, while the phase speed along the x-axis varies from 0 to 00.

depending on the angle of incidence 0,, = sin - ' (V/'-72. The latter is identical to

the angle of reflection because of the rigid-wall assumption. It is to be noted that when

q% is close to 1, one pair of large amplitude oblique waves become nearly transverse,

so that a form of wave trapping appears. This type of result, to be discussed in full

in Section 3.3, implies that a resonance occurs when q, -, 1- and amplitude growth

with time can be expected.

The oblique traveling waves exist only when qn < 1. In dimensional terms, this

implies that n < 2d'/A' (A' is the wavelength) must be satisfied in order for the waves

to propagate. The number of non-axial traveling wave modes is thus proportional

to the duct width and inversely proportional to the acoustic wavelength. This is

well known in quasi-steady duct acoustics (see, for example, Morse and Ingard 1968).

However, the present transient analysis demonstrates explicitly that refraction of a

basically axial wave is the direct source of the oblique propagating waves. These

oblique waves will also interact with the shear flow as they propagate along, to gen-

erate more complex refraction effects. The latter are not included in the p,2 solution

because they are O(M) smaller.

The 'ast term in (52) describes a bulk response of the gas, driven at the frequency

of the acoustic source. These so called attenuated modes (qn > 1) decay exponentially

along the 1-axis, and thus normally affect only a small region close to the surface of

the acoustic source. The penetration depth is proportional to (q2 - 1)- 1/2. Given
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(43), one finds that small mode number n and high frequency Q lead to deeper

penetration. Resonance can also be viewed as occurring in the limit qn - 1+ , so that

the first attenuated mode in (52) penetrates asymptotically far into the field, up to

the basic axial wavefront. In practical terms, only the first few attenuated modes

from the second infinite summation are needed, because of the rapid decay of the

Fourier coefficients with the mode number n.

The transition to the quasi-steady solution (52) can be illustrated by numerically

evaluating the second order acoustic pressure from the general formula (46). Since

the Fourier series converges fairly rapidly, only the first 20 terms are used in each

summation. A comparison of the results with those from summations of 40 or more

terms shows agreement to within three decimal places. The integral h, is computed by

calling the QDAG integration subroutine from the IMSL software library, which uses

a globally adaptive scheme based on Gauss-Kronrod rules. Representative examples

of results for various acoustic frequencies and different types of duct mean flows are

discussed below.

Figs. 3 and 4 show the acoustic refraction effect in a fully developed laminar duct

flow, described by U = 4y(I - y). In Figs. 3a and 4a, the time variations of p2.

evaluated from (46), are plotted for the cases of Q = 2 and 8 respectively, on a duct

cross-section located at x = 21r, one wavelength downstream from the plane acoustic

source. The solid lines represent the second order acoustic pressures at the wall.

while the dashed lines denote those at the center-plane of the duct. For comparison

the axial wave contribution to p2 (the first term in (46), henceforth denoted as p2)

corresponding to the cnnditions in Figs. 3a and 4a are depicted in Figs. 3b and 4b,

respectively. The mean flow Mach rumber employed in the calculation. is 0.1.

Since the mean flow is symmetric with respect to the duct center-plane, the Fourier

coefficient U,1 = 0 for n = odd (cf. (41)). Thus the first oblique wave pair for
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p7 corresponds to the n = 2 mode, whose cut-off frcquency (Q = 27r (A' = d' in

dimensional terms). The driving acoustic frequency is below the cut-off frequency for

the n = 2 mode in Figs. 3, so that only the propagating axial wave exists in the quasi-

steady state. The p. curves are thus similar to those for p2.. The small discrepency,

caused by the acoustic transients induced in the gas medium when the wavefront

first passes the given location, is seen to die out gradually as the solution converges

to the quasi-steady solution (52). The effect of attenuated modes is negligibly small

at x = 27r. Calculations conducted at other frequencies for which oblique waves are

absent show that the transient phenomenon is more prominent and disappears more

slowly for lower frequency cases than for higher frequency cases.

The situation depicted in Figs. 4 is quite different. Here Q) = 8, higher than the

cut-off frequency for the n = 2 mode. The second order acoustic pressure shown

in Fig. 4a is a superposition of both the axial wave and one oblique wave pair, in

addition to the small transient effect. As a result, it is dramatically different, both

in amplitude and phase, from the pure axial wave solution resented in Fig. 4b.

Fig. 5 depicts the time variation of p2 in a -turbulent" mean flow field emulated

by U = (1 - 12 y - 11)1/7. The other plotting conditions are identical to those used

in producing Fig. 3a, the laminar flow counterpart of Fig. 5. The refraction induced

acoustic pressure is observed to be much smaller in amplitude in the latter, because

the mean flow represented by the one-seventh power law has a relatively small velocity

gradient in most parts of the duct. The high velocity gradient regions, concentrated

near the two duct walls, are too narrow to promote acoustic refraction on a global

scale.

The bulk convection of the acoustic wave by the mean flow can also be observed

from Figs. 3-5. The wavefront emitted from the plane acoustic source arrives at

x = 27r after approximately 5.9 dimensionless time units, which is less than 2,x, the
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time required for a wave to travel the same distance in a static medium.

The pressure curves in Figs. 3 and .5 suggest that a simple relation exists for

quasi-steady acoustic refraction at relatively low driving frequency. If Q < 27r, so

that non-axial waves are absent from (52), and if one is sufficiently far away from

the plane acoustic source, where the effect of the attenuated modes is negligible, the

entire quasi-steady solution contains axial waves only (cf. (19), (30) and (52)). In

this case the total acoustic pressure normalized by its value at the duct center-plane

provides a quantitative measure of the global refraction effect:

+,1 [cos ( cos(kry) (55)
PSc k=I q2

where the subscripts s and c denote quasi-steady state and center-plane respectively.

Eqn. (5) is in fact the ratio of the amplitude functions for the fundamental mode,

equivalent to those found in earlier studies (Pridmore-Brown 1958; Mungur and Glad-

well 1969; Hersh and Catton 1971) in the low frequency range.

In Fig. 6 (55) is plotted for the case = ir and M = 0.1, for three types of

mean flow conditions: U = 1 - 12y - I, U = 4y(1 - y), and U = (1 - 12y - 1I)1/ r .

The familiar results are presented in decibels to follow convention. Obviously, the

acoustic energy of the downstream propagating axial wave train is channeled towards

the walls. The linear and parabolic mean flows cause acoustic refraction effects of

similar magnitudes, while the shear flow represented by the one seventh power law

generates the smallest refraction for the reason explained previously.

It must be emphasized that (55) or curves like those in F ig. 6 are accurate rep-

resentations of acoustic refraction phenomena in quasi-steady state, when the duct

-eometry oiuly allows purely axial wave propagation for the given driving acoustic

frequency. For Q > 21r, like the case depicted in Fig. 4, refraction of the planar axial

wave also generates oblique traveling waves. The ratio of local acoustic pressure to
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that at the center-plane is both t and x dependent. and is not a useful representation

of the transverse variation of the refraction effect.

3.3 Resonant Amplification of Refraction Phenomena

The above discussions have been focused on nonresonant situations. The refractive

pressure response is dramatically different if q,,. = 1, or in physical terms, d' = n'.,/2,

where n" denotes the resonant mode. The resonance occurs because the frequencies of

J0 ( ) and the harmonic function in (50) are nearly identical for > 1 when q,,. = 1.

As a result, the integral becomes unbounded when t --. oo, and no quasi-steady

solutions exist. When the time is large, t < 0(l), one can show that

1,.( >1't), 21Ct (i(56

In particular, at ± = 0 (50) can be evaluated exactly (Gradshteyn and Ryzhik 1980)

to give

I,,.(t,O) = cos(t - )Jo( )d = tUo(t), (57)

which agrees with (56) if the asymptotic property of Jo for large t is used. By using

(56) the resonant Fourier mode in (46) can be written asymptotically as

P,-.(t > 1, 2) U'.ii [Cos (t - - +Cos (t+ly- -'r)]. (58)

It shows clearly the pair of purely transverse waves trapped in the duct with growing

amplitudes.

Numerical evaluations of (50) for q,, = 1 are shown in Fig. 7, where the horizontal

coordinate is the characteristic coordinate t - 1 for easier comparison. As the 2 value

is increased, similar trends of growth with t are observed. However, the solutions at

t = 60 still exhibit strong x-dependence because the asymptotic results described by

(56) have yet to be reached.
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The effect of resonance on acoustic refraction is explicitly demonstrated in Fig. s.

where the variations of p2 on the duct wall y = 0. at three separate axial locations are

plotted against time. The shear flow profile is parabolic as used earlier. The driving

frequency Q = 2,, so that the n = 2 mode in the second term of (46) is resonant. All

the pressure curves show growth in amplitude after sufficient time elapses, when the

growing resonant mode embedded in the second summation dominates the system in

(46). For relatively short time, however, the resonant mode amplitude is not large

compared with that of the fundamental mode (the entire first term in (46)). The

amplitude of p2 may initially decrease with time, as in the cases for = 27r and 3,r,

due to destructive interference.

Calculations for Q values slightly below and above the resonant frequency 21r show

similar trends of growth for N. However, the amplitudes eventually approach large

but finite limiting values predicted by (52).

The resonant result illustrates a fascinating mechanism for exciting and amplifying

purely transverse waves in the duct through axial wave-shear flow interaction. This

shows yet another distinct advantage of the present analytical based initial-boundary

value study. Numerical investigations for traveling wave refraction (Baum and Levine

1987) are limited to a few wave cycles only. due to difficulties associated with non-

reflective outflow boundary conditions. The results in Fig. 8 show that short-time

solution behavior cannot be used to determine if resonant amplifications of refractive

pressure are occurring. The classical quasi-steady solutions (e.g. Pridmore-Brown

1958), on the other hand, cannot describe the resonant mode at all.

Due to the t 112 growth of the resonant or near-resonant mode .n p2, one concludes

that for such systems the perturbation expansion (19) breaks down as t - O(M-2 ).

A new derivation will be needed to predict its long-time behavior, which will contain

the resonance-enhanced refraction effects (the transverse waves) in the leading order.
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It should also be noted that the validity of the above developed perturbation

solutions depends on the value of fQ. In general, once the dimensionless frequency S1

becomes as large as O(M-1 /2 ), the magnitude of Mp2 becomes comparable with that

of P, (cf. (30), (46) and (43)), causing the breakdown of the asymptotic expansion

(19). The actual size of Mp 2 nevertheless also depends upon the magnitude of U,,.

For mean duct flows symmetric with respect to the center-plane y = 1/2, the largest

terms in the Fourier summations in (46) and (52) vanish because C, = 0 for n = odd.

As shown in the example calculations, N remains 0(1) when the value of fQ is as large

as 8.

In the high frequency limit fl > 1, when acoustic refraction effects are no longer

small correction terms of O(M), a new theory needs to be developed which includes

refraction in the leading order acoustics.

3.4 Acoustic Transients due to y-dependent Boundary Dis-

turbance

In this section non-axial acoustic transients generated by source oscillations with

y-dependent amplitude is discussed.

If the velocity oscillation at the source (i = 0) is given by i = A(y) sin(t), (29)

must be solved subject to the following conditions:

t =O, P, = Pt = O, (59)

i= 0, plt = -A(y)cos(t); t -. oc, Pi = finite, (60)

y= 0; , P1 = 0 . (61)

A solution procedure identical to that used to solve (32)-(35) can be employed to

obtain

p, = Ao sin(t - t) + A,,,,(t, )cos(nwy), I < t, (62)
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where 1,, is the same integral as defined in (50). The Fourier coefficients .-t and .-l.

are defined by

A(y) = .-o + Z --,cos(nry). (63)

Equation (62) consists of a propagating axial wave mode of constant amplitude .A0,

and an infinite number of dispersive higher modes. Note that unlike the O(M) higher

modes due to refraction considered earlier, here the higher modes, generated directly

by the acoustic source, are of the same order of magnitude as the fundamental mode.

After sufficient time elapses, in the absence of resonance, the solution may again be

expressed into the quasi-steady form,

Pi = Ao sin(t - t)+ q sin (t - 1-q2) cos(nry)

+cos(t) E " e 7V/- lcos(nry). (64)

As an example, the boundary disturbance 6(x = 0) = ysin(t) in a laminar mean

flow field with bulk velocity Uo = 2/3, is considered. This bulk velocity corresponds

to U = 4y( I -y), although the explicit form of U(y) is not needed for the leading order

calculation. The maximum mean flow Mach number is assumed to be 0.1. Figs. 9a-9d

exemplify the characteristic acoustic pressure signals at x = 21r (x' = A'), under four

different driving acoustic frequencies, as evaluated numerically from (62). In each

figure, the time variations of P, on both duct walls (y = 0, 1) and at the center-plane

(y = 1/2) are depicted. In Fig. 9a Q1 = 2, lower than the cut-off frequency for the

first oblique propagated mode in the duct. The resulting wave field is basically an

axial one. Thus the pressure signals at three different y-locations on the same duct

cross-section are almost the same, whose amplitudes are approximately 1/2 (.o in

(63)). The small deviations are again attributed to the initial transients that diminish

as time progresses. Fig. 9b corresponds to Q = ,r. the resonant frequency for the first
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acoustic mode (n = 1), which causes pi to grow witb time. The wave field is no

longer purely axial because of the appearance of the transverse waves associated with

the resonant mode. The results in Fig. 9c for 0l = 4 contain both the fundamental

mode and the first propagated oblique mode. The pressure curves vary with the

y-coordinate but are bounded. Finally, in Fig. 9d the driving acoustic frequency is

high enough to allow the third propagated oblique mode to appear in the duct, in

addition to the fundamental and the first modes (note that the even modes do not

appear because A(y) is an odd function of y). The acoustic pressure curves differ

dramatically from those in the previous three figures.

Additional numerical evaluations of p1 show that when the acoustic frequency is

varied within the range that allows a fixed number of propagated modes, the character

of the wave field remains similar though the results vary in a quantitative sense. How-

ever, whenever the cut-off frequency of a new mode is crossed, there is a qualitative

change in the wave phenomena.

The O(M) refraction effect of this more general acoustic 3ystem could be studied

by using the first order results in (31). This is deferred to a future endeavor.

4 Acoustic Boundary Layer Solution

4.1 Boundary Layer Formulation

In the acoustic boundary layer near the wall at y = 0, thermodynamic perturbations

must be of the same order of magnitude as those found at the edge of the core flow.

Therefore,

p= I+M 2 y, p= - + 2 O T=I+M t, (65)
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where the tilded variables denote acoustic quantities superimposed on the mean state.

A stretched boundary layer coordinate pointing away from the wall,
y

/= , (66)

is needed in order to describe the structure of the extremely slender acoustic boundary

layer. A balance between diffusion and other important physical mechanisms in the

general governing equations (2)-(6) can be obtained if
1

6 -- ) (67)

which provides the scale of the acoustic boundary layer thickness. In dimensional

terms, one finds the well known result S' , (v'/)'/2 , indicating explicitly the depen-

dence of boundary layer thickness upon the fluid viscosity and the frequency of the

traveling acoustic waves. The proper scaling for fluid velocities in the layer, obtained

by examining the asymptotic behavior of (11) when y 0 for c = M, are given by

U = *f 6 + 677U'(0) + -" v = (Ms)3. (68)

The 0(6) contribution to u arises from the Taylor series expansion for U(y) in the

boundary layer, which is much smaller in magnitude than the horizontal acoustic

velocity A fi. given the assumption made in Section 2 that M > 1/R,. Consequently.

the independent variable x, rather than t, is an appropriate horizontal coordinate.

If the new dependent and independent variables defined in (65)-(68) are used.

,2)-(6) can be transformed into

-i - - T = Ml at, (69)

-& r a+ -, A = P [(4-)z ± (3),t + O(Af6), (70)

U 1 _ ti,, + P: = f2()fi, _ tff, + Vfs,) + 0(Mt 4 ) + 0(M6), 711

0W)72
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t~t t"+(y 1)(a.~J~ + -)[' (,

+ dt + + 0(.1) +O(jf6). (73)

The above equations are accurate representations of (2)-(6) in the acoustic boundary

laver up to O(A). The orders of magnitude of terms not written explicitly are

indicated in each equation. It is interesting to notice that nonlinear product terms.

which are responsible for acoustic streaming phenomena (Rott 1964), again turn out

to be of O(M 2 ) relative to leading order acoustics. Terms of 0(A1b) result from

the residue mean flow velocity in the boundary layer (cf. (68)). These are higher-

order small quantities, of comparable size with O(M 4) terms under flow conditions

described by, for example, M = 0.1 and R, = 106.

In the following solution development correction terms of O(M 2 ) and smaller

in (69)-(73) are ignored. For convenience the same variable names (with an implicit

zero subscript) will be used to describe the basic acoustic variations in the asymptotic

series. Notice that although O(M) terms do not appear in (69)-(73), the results are

valid to O(M). and are matched with the core solutions to the same order. The

general matching conditions are expressed mathematically as

P .(z, t, 77 - o0) .- ,, , o,(x,ty -. 0), '1 = (u,u,p,p,T). (74)

On the duct wall the no-slip condition and the appropriate thermal conditions must

be imposed.

4.2 Transient Solutions

The acoustic pressure is seen from (72) to be basically uniform across the boundary

layer, equal to that at the edge of the layer. Thus

= (t. Y - 0). (75)
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When the small correction terms on the right side of (71) are truncated, the resulting

equation, which describes the transient diffusion process of the horizontal velocity

perturbation driven by the acoustic pressure, is seen to be decoupled from the others.

It must be solved subject to the no-slip condition at qt = 0. At t = 0, d must

vanish because there is no acoustic motion in the core. Following a standard Laplace

transform procedure, the solution is obtained in integral form:

- er 27 ) . (76)

Eqns. (30), (46) and (62) can be used in (75) an- (76) to evaluate the corresponding

boundary layer velocity.

It is also of interest to study the transverse acoustic velocity and other thermody-

namic variables in the acoustic boundary layer. To this end (69), (70) and (73) are

combined to find

t, - 1 Tnn = (-Y- O)i,, (7;)

which is a diffusion equation with a compressibility forcing function, valid to O(M).

An appropriate thermal condition needs to be specified at the duct wall, to obtain

solutions for t as well as and 6. For simplicity two idealized types of thermal

conditions, i.e., the adiabatic condition and the isothermal condition, are considered.

with the understanding that practical situations usually lie in-between.

1) Adiabatic Wall (t,( = 0) = 0). A formal solution to (77) subject to zero

initial condition and the adiabatic wall condition yields the isentropic relations

t 7 p, = P (78)

if (69) is used. This indicates that no thermal diffusion exists, and all the thermody-

namic quantities are uniform across the acoustic boundary layer. Eqn. (70) can be
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integrated to 0(M) by using (76) and S) to give

e [rf )dd (79)

which is zero on the wall surface. By employing integration by parts for the error

function, the above result is rewritten as

I + M1 erf r + erf2 d

+-I + Ar 2V,-,,T - i) +- ,
+ e 2 - 2TV

I + A O-

(80)

where the factor 1/(1 + MUo) arises from d±/dx. Eqn. (80) is arranged according

to terms that grow with q/ and those that remain 0(1) as q --+ oo. The former are

driven by the refraction induced transverse velocity in the core, and can be shown

to match with the asymptotic behavior of the corresponding core solution, given the

coordinate transformation (66).

2) Isothermal Wall (T(r = 0) = 0). The mathematical system for T is analogeous

to that for fi. The solution can immediately be written down as

where

li--P. (52)qlr = rV P, = .-- 82

is the vertical coordinate for the temperature boundary layer, of thickness character-

ized by 6 T = (M/(fZPR,))1. Eqn. (81) can be transformed into a more meaningful

form by integrating the right side by parts, and defining

r= S3)
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to give

T(~- ) ~(t~ ± e-Cd (84)

The second term in the square brackets in (84), arising from conduction effects.

describe the deviation in temperature from the isentropic condition represented by

,(t, ±). One notices that at 2 = t, the instantaneous location of the acoustic wavefront

in the core, both and T are zero to match those quantities in the undisturbed flow

field. The acoustic density and transverse velocity for the present case can be derived

from (69) and (70), respectively. They are omitted here for brevity.

4.3 Quasi-steady Solutions

As shown previously, core solutions for a non-resonant acoustic system as t-2 becomes

large consist of quasi-steady modes only. The corresponding boundary layer solutions

are more easily derived by using the complex notation. The acoustic pressure is

written as a summation of complex Fourier series,

=V/ --q ae2t ) (85)
n=O

Given (75), a comparison of (85) with the core pressure expressions shows that

'0 2 Uao= M -. 2 1
k=

a, = n= 1,2,. (86)
q2 /F7n

for the axial wave refraction case (cf. (30) and (52)), and

a0  A ' 0 ,
.4,,

a, = n = 1,2,... (87)

for the non-axial wave case examined in Section 3.3 (cf. (64)), without considering

the refraction effect.
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The velocities in the acoustic boundary layer are dependent upon the boundary

Coordinate 77. One can assume that the quasi-steady solution for each horizontal

velocity mode is of the form ,, b,( 1 )e{t-i'T'.). If this expression is substitited

into(71) with (83), and the conditions a ,,(r= 0) = 0; i,,(r- ) = 0(1) are nvoked.

then the desired solution is

= n =V q2 (88)n=o 1 + Mo =o

where a,. is given by (86) or (87), depending on the core acoustic solutions. Eqn. (88)

can be rewritten in terms of its real part, which is, for the refraction case,

If E 2.vr {( Z )sin(t e*sin t 2 )]-

U1 k=1 q/ Lv \ 2  1

6r,~(4~i eV~~ [sn~t) -* sin (t- )] }. (89)

As the value of 17 increases, the l1-dependent terms in (89) diminish exponentially.

and the result is that of the inviscid core evaluated at y = 0.

The first term inside the curly braces in (89) is associated with the fundamental

propagated mode in the core. It is the axial traveling wave counterpart of the classical

Stokes solution (Stokes 1851). Thus the characteristic behavior of the Stokes solu-

tion. including velocity overshoot (Richardson's annular effect) near the edge of the

layer, and strong viscous damping near the wall will be observed (cf. Figs. 10). The

amplitude of the fundamental mode deviates by 0(M) from unity, due to the acoustic

refraction effect (the infinite summation in the parentheses) and the bulk convection

(adte) caused by the mean shear flow in the core. In the case of downstream propa-

gation the former effect augments the axial wave amplitude, while the latter damps

it. For upstream wave propagation the reversed trend is obtained. Eqn. (89) also
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shows that the N higher propagated modes behave in the same way as the funda-

mental mode, except for decreased amplitude and increased phase speed as the mode

number n increases. Each mode exhibits Rihardson's annular effect, followed by

smooth transition to no-slip velocity on the wall. Like the core solution, the effect of

attenuated modes are limited to a region close to the acoustic source.

The result given by (89) is illustrated graphically in Figs. 10a and 10b, which

depict horizontal velocity profiles across the acoustic boundary layer when Q = 2

and 7 respectively, for 7r/4 intervals over one acoustic period, at a location one and

half wavelengths (z = 3-) downstream the plane acoustic source. This location

is sufficiently far from the acoustic source so that the effects of stationary modes

(last summation term in (89)) are virtually non-existent. The solid lines denote the

horizontal velocity t6 when , mean flow field, described by U = 21y(l-,) and M = 0.1,

is present in the core region. The velocity distributions for the case of no mean flow

(M = 0), which corresponds to the Stokes solution, are also plotted as dashed lines for

comparison. It is observed that when Q = 2. the analogous solid and dashed curves

differ only by a constant multiplication factor (cf. (89)), because the only propagated

mode in the duct is purely axial. The velocity amplitude is smaller than that of

the Stokes solution due to the bulk convection, whose damping effect exceeds the

amplifying effect of refraction at this low frequency. It should be pointed out that

the pairs of solid and dashed curves in Figs. 10 are plotted at the same re',,tive phase

within a cycle begining at their respective maximum velocity. The two solutions are

out of phase in the absolute sense because the acoustic wave carried by the mean flow

arrives at the given position sooner than that in the static field.

As the driving acoustic frequency becomes higher, the increased refraction ampli-

fies the velocity oscillation. When Q - 6, the refraction effect rough.,, balances bulk

convectin effect, and the velocity curves are found to coincide with those derived
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from Stokes solution. The acoustic system remains dominated by the single funda-

mental mode until £1 > 2,T, when the second mode (n = 2) appears. Fig. 10b depicts

such a case where Q7 = 7. Here the amplitude of the acoustic velocity is larger tthan

that of the Stokes velocity. The velocity profiles can no longer be obtained by multi-

plying the corresponding Stokes velocity profiles by a constant, because the addition

of the second propagated mode alters the phase of the velocity at each time instant.

Additionally, this mode makes the magnitudes of the velocity as well as pressure x-

dependent because the oblique waves strike the boundary layer nonuniforinly along

its course of propagation (cf. Fig. 2).

On the acoustic source plane, z = 0, it can be shown that (89) takes the form

i(t = 0) = sin(t) - e-* sin (t - -L (90)

All the O(M) terms disappear because acoustic convection and refraction take place

only away from the acoustic source. However, (90) does not satisfy the boundary

condition (17) because nonzero i3 is allowed at x = 0. A boundary-layer type of

treatment which eliminates the slip velocity along the acoustic source plane will be

necessary in order for the extra term in (90) to vanish.

The acoustic temperature and transverse velocity in the quasi-steady state de-

pends on the thermal boundary condition along the duct wall. If the wall is adiabatic.

the thermodynamic properties of the boundary layer gas again obey the isentropic

relation (78), and the transverse acoustic velocity is integrated from (70) to give

E [, 17 + -q 1-'O [(i + MOO) 1] (+ If 00)2 v'

xe (91)

Figs. I la and lib display the transverse velocity profiles, cal.,ated from (91), under

conditions identical to those employed in Figs. 10a and 10b respectively. The trans-

30



verse boundary layer motion for Q = 7 is quite different from that for Q = 2. owing

to the existence of the oblique acoustic waves in the core in the former case. As r

becomes large, both cases exhibit growth in velocity amplitude with rl to match with

that in the core, in contrast to the transverse velocity in a Stokes boundary layer

whose amplitude approaches a constant as the edge of the layer is approached.

If the wall is kept at constant temperature, the solution for t and t can be derived

from (77) and (70) in the same manner. They are expressed below in the complex

form:

I Y - I) a,, 1 - e I (92)

oqo , +)
u = a,..{[1 2 i77 + ( C2.. . e -V

+ V-tlvi2 • - 1 " - I)}e' . (93)

The similar forms of (92) and (88) suggest that in the thermal boundary layer

adjacent to an isothermal wall, the temperature diffuses in the same way as the

horizonal velocity does in the viscous boundary layer. The first two terms in the

curly braces of (93) are identical to those in (91), representing the effect of momentum

diffusion driven by the acoustic waves in the core. In addition, thermal expansion of

the gas due to nonuniform temperature distribution across the layer also contributes

to the transverse fluid motion. This effect is represented by the last term in the curly

braces of (93).

The fundamental mode in (92)-(93) can be shown to agree with the results ob-

tained by Rott (1980) where the effect of the mean shear flow is removed. An impor-

tant contribution of the mean shear flow is to generate a variety of acoustk, waves that

all contribute to the larger transverse velocity, represented in the acoustic boundary

layer by the term proportional to Y7 in (91) and (93). In the limit 77 oo, the mag-
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nitude of this term exceeds that of all the others, thus (91) and (93) have the same

asymptotic behavior which can be shown to match with that of the core solution.

5 Discussion and Conclusions

In this study a systematic analysis has been developed to discover the effect of a

low Mach number shear flow on acoustic wave propagation in a planar duct. Two

distinct flow regions are considered: the inviscid, non-heat conducting core region and

the thin acoustic boundary layer near the wall of the duct. The mathematical analysis

is carried out in the limit M --+ 0 for R, > 0(1/M), when the axial wavelength is

longer than or comparable in the order of magnitude sense with the duct width.

Solutions for the acoustic pressure and velocity describe both short-time auustic

transients and long-time evolution for both nonresonant and resonant cases. This

study bridges the recent transient numerical study of Baum and Levine (1987) and

earlier quasi-steady studies (Pridmore-Brown 1958, for example) and, more impor-

tantly, provides new results not available in those investigations. More physical in-

sights into the refraction mechanism are obtained by demonstrating explicitly the

interactions between the mean flow and the various types of acoustic waves repre-

sented by Fourier modes whose summation describes the global variations in acoustic

quantities.

It is of interest to compare the present perturbation results with the numerical

solutions of Baum and Levine (1987), to shed light on a number of issues raised in

their initial-boundary value numerical study valid over a few acoustic periods.

1) Acoustic Refraction Magnitude. The following examples are used to demon-

strate that the present linear analysis yields refraction magnitudes comparable with

those from numerical solutions to the Navier-Stokes equations (Baum and Levine
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1987). In a duct of width d' = 0.1 m. with a symmetric mean flow described

by the one-seventh power law, a center-plane Mach number If = 0.1 and sound

speed c' = 340 m/s, the dimensionless frequency corresponding to f' = 3000 Hz is

Q 2.772, less than the cut-off frequency for the first oblique wave. The quasi-steady

axial wave solution is thus representative of the acoustic refraction phenomena since

the transient effects are relatively small. The pressure amplitude near the wall, as cal-

culated from (55), is 4.5% larger than that at the center-plane. This result compares

well with the numerical result of 6.4% by Baum and Levine (1987), who employed

the same conditions except that d' is the diameter of an infinite cylinder. When the

acoustic frequency is changed to 1000 Hz (f1 = 0.924), the linear asymptotic solution

and nonlinear numerical solution yield near-wall acoustic pressure increases of 0.50%

and 0.55% respectively, relative to the centerline pressures. They are again in good

agreement. The above comparisons should of course be interpreted in the qualitative

sense, in view of the different geometries (parallel duct vs. circular cylinder) and flow

models (laminar vs. turbulent k-f model) used in the two studies. Nonetheless they

demonstrate that linear studies can predict refraction effects accurately, and that the

two types of solutions are in qualitative agreement if comparisons are made in the

same parameter range. In the light of these conclusions, it is likely that the differences

between linear and nonlinear results noted by Baum and Levine (1987) result from

comparisons in inappropriate parameter regimes.

2) Acoustic Boundary Layer Thickness and Structure. The boundary layer struc-

ture described in the perturbation solution, including the Richardson's annular effect

and the substantial viscous damping, also agrees qualitatively with that found by

Baum and Levine (1987). In particular, it is of interest to compare the boundary

layer thickness predicted by the analysis with that from the numerical work.

The effective thickness of the velocity boundary layer, as defined by Lighthill
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(1978), is given by .56 = 5(.,/(fQR,))i 2. According to Figs. 10, this corresponds to

the distance away from the solid wall for which the amplitude of i, after the over-

shoot, approaches its asymptote of constant value to within approximately 2.7%. For

acoustic waves of frequency 1000 Hz traveling in air contained within a duct of width

0.1 m, under standard conditions (one atmospheric pressure and room temperature),

the calculated boundary layer thickness is approximately 0.25% the width of the duct.

This result should also hold for wave motion in a circular cylinder of diameter equal

to the duct width, because the curvature effect is negligible in the extremely thin

layer. If the same criterion of 2.7% deviation is applied to Fig. 14 of Baum and

Levine (1987), one finds a boundary layer thickness of approximately 0.35% of the

diameter of the cylinder. This result is actually larger than, but agrees well in the

order of magnitude sense with, the linear perturbation prediction. Similar agreement

is observed in terms of the maximum velocity overshoots and the locations where

they occur. Thus we do not agree with the conclusion of Baum and Levine (1987)

that linear theory significantly overpredicts the boundary layer thickness.

3) Nonlinear Effect and Acoustic Streaming. In the present work, through a sys-

temmatic rational approximation and perturbation procedure, it has been demon-

strated in (13)-(15) that the convective nonlinear terms are O(M) smaller than those

responsible for acoustic refraction when z = 0(1). Although the former can have

an accumulative effect which eventually leads to waveform deformation and weak

shock formation, the nonlinearization process becomes prominent only after the wave

travels a distance of z = O(M - 2 ) (Kevorkian and Cole 1981; Wang and Kassoy

1990). Nonlinearity cannot have a profound influence on either the acoustic or the

overall flow quantities, on the 0(1) time and length scales considered by Baum and

Levine (1987). In the acoustic boundary layer the nonlinear terms are again shown

to be O(M 2 ), relative to the basic variations occurring there (cf. (69)-(73)). Acoustic
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streaming associated with the nonlinear convective terrms is thus insignificant relative

to the amplitude of refraction effects. The relatively good agreements between the

present fundamentally linear solutions and the fully nonlinear numerical soultions in

terms of refraction size and acoustic boundary layer structure, discussed above, also

attest to the insignificance of the nonlinear phenomena.

The major findings of the present study can be summarized as follows: When a

plane acoustic source of uniform strength is placed across a duct containing an undis-

turbanced shear flow, it induces leading order purely axial and quasi-steady acoustic

waves propagating at a speed which is modified by O(M) due to bulk convection.

Second order acoustic quantities, including y-dependent axial and oblique propagat-

ing waves, as well as bulk forced oscillations that affect only a narrow region near the

plane acoustic source, are generated as a result of leading order axial wave refraction

by the mean flow velocity gradient. The propagated and attenuated wave modes ex-

hibit transient phenomena initially, and evolve gradually, in the absence of resonance.

into their respective quasi-steady state long after the passage of the axial wavefront.

Resonance occurs when the duct width is an integer multiple of the the driving

acoustic wavelength. Then, the refraction of the axial wave induces an amplifying

purely transverse wave. In general, the refraction effect increases with the driving

frequency as well as the mean flow Macb number, and decreases with the wave ampli-

tude. The refraction induced O(M) wave phenomena become increasingly complex

as the number of propagated modes, which is proportional to the driving frequency

for given duct geometry, increases. At low frequency, when the driving acoustic wave-

length is greater than the duct width, the only propagating waves are axial, and the

net effect of acoustic refraction is to distort the pressure distribution across the wave

by O(M). The quasi-steady solutions agree with the classical axial wave solutions.

In the thin acoustic boundary layer, typically with thickness of less than 1% of
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the duct width, the acoustic pressure is basically uniform across the laver. equal to

that at the outer edge of the layer. The boundary layer responds to all the acoustic

modes existing in the core region. generating complex velocity and temperacture re-

sponses. Quasi-steady solutions again exist when resonance is absent, after an initial

transient period. The horizontal velocity component for each acoustic mode exhibits

Richardson's annular effect, followed by smooth transition to no-slip boundary con-

dition on the wall. The total horizontal velocity deviates by O(M) from the Stokes

solution, because of the acoustic refraction and convection effects generated in the

core. The transverse velocity grows with tl'e transverse boundary layer coordinate.

and is matched by the core solution outside the layer.
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and the acoustic frequency fQ = -r.

7. Numerical values of the integral (50) when q,, = 1. at three different I-locations.
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frequencies are (a) fl = 2; (b) fQ = 7r; (c) Q = 4; and (d) Q = 10.
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Abstract

Acoustic-shear flow interactions are studied in a rectangular cavity bounded
by impermeabte duct walls parallel to the flow direction and special perpendic-
ular acoustic reflectors that permit the passage of a fully-developed, low Mach
number shear flow. Fourier series-based asymptotic solutions are constructed
to provide an explicit description of the evolution of an initially imposed axial
standing wave disturbance. The bulk convective motion of the shear flow is
shown to be responsible for periodic axial waveform deformations. Addition-
ally, transverse and oblique standing acoustic waves as well as single frequency
bulk oscillations arise from the refraction of the imposed axial acoustic distur-
bance by the mean flow velocity gradient. Combinations of these disturbances
give rise to irregular acoustic pressure signals in the duct. Certain refraction
induced transverse and oblique acoustic modes are amplified under resonant
conditions. It is shown that, in the parameter ranges of solid rocket engines,
the refraction and bulk convection effects are small in general.
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1 Introduction

This work describes the spontaneous evolution of a spatially distributed small initial

disturbance imposed on a low Mach number shear flow in a duct. An initial-boundary

value formulation is used to predict the complete spectrum of standing wave modes (or

equivalently, combinations of traveling waves) generated by the interaction between

the initial disturbance and the shear flow in a finite rectangular region. The primary

objectives of this study are to demonstrate that; (1) refraction of an axial wave arising

from the relaxation of the initial disturbance is the source of a myriad of higher order

(smaller) transverse and oblique acoustic waves; and (2) resonant conditions promote

the amplification of a small subset of refraction induced transverse and oblique wave

modes.

Traditional studies of acoustic-shear flow interaction [1, 2, 31 examine the quasi-

steady properties of a sound wave, of the form p = F(y)ei(t - , propagating in fully-

developed shear flows above a flat surface or in a planar duct. Linearization techniques

are used to derive the fundamental equation governing the cross-stream eigenfunction

F and the propagation constant ic. Asymptotic solutions [1, 3] and numerical solutions

'2. 3] predict significant distortion of specific propagating wave modes as a result of

acoustic refraction. When the wave is purely axial (the fundamental mode), the

refraction effect is reflected in the variation of F(y) across the shear flow field.

In contrast to the quasi-steady linear approach used in Refs. (1, 2. 31, Baum and

Levine [41 used numerical methods to solve an initial-boundary value problem based

on the Reynolds-averaged Navier-Stokes equations and the k-f turbulence model.

Their work is aimed at understanding mechanisms for energy exchange between the

acoustic and mean flow fields in solid propellant rocket engines. In the model problem

discussed in Ref. [4], an initially steady shear flow field in a rigid walled axisymmetric
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cylinder is disturbed continuously at an inlet or outlet plane to generate unidirectional

traveling acoustic waves. The waves move only a few acoustic wavelengths before

computations are terminated, so that the quasi-steady solution in Refs. [1. 2. 31 is

not attained on the short time scale involved.

More recently, Wang and Kassoy [5] used an initial-boundary value approach to

consider the two-dimensional planar duct counterpart of the refraction problem stud-

ied in Ref. [4]. A systematic perturbation procedure based on the small mean flow

Mach number M is used to demonstrate that nonlinear effects are O(M) smaller

than the refractive contribution to the total acoustic pressure. The Fourier series-

based solution in Ref. [5] describes short-time acoustic transients arising from axial

wave interaction with the shear flow, as well as their evolution into long-time quasi-

steady forms. In the nonresonant case the solution includes not only the usual axial

propagating mode, but also a finite number of oblique propagating modes, and an in-

finite number of non-propagating bulk modes that decay rapidly away from the plane

acoustic source. When resonance is present, a pair of amplified, trapped transverse

waves also appear. These distinct modes have not been extracted from the numerical

computations in Ref. [4].

It is of interest to extend the aforementioned traveling wave models of acoustic-

shear flow interaction to axially confined geometries in which multiple wave reflections

occur. This is done in the present work by considering standing waves trapped be-

tween two wave reflectors separated by a finite axial distance in the duct examined in

Ref. [5]. The idealized model is used as a paradigm to demonstrate the surprisingly

complex response of an initially steady shear flow to an imposed axial velocity dis-

turbance in the confined region, and to infer the acoustic convection and refraction

magnitudes in solid rocket engine chambers. The inclusion of axial wave reflection

effects in this study provides improved relevance to rocket engine acoustics, in cor-
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parison with the previous traveling wave studies.

Fourier series-based analytical solutions give explicit modal response that may

not be easily extracted from numerical data. The initial disturbance generates a

leading order acoustic field which is purely axial. It interacts with the shear flow to

generate O(M) acoustic disturbances consisting of purely axial standing waves, tran-

verse standing waves, oblique standing waves, and bulk fluid oscillations (Helmholtz

modes). The linear combination of these disturbances gives surprisingly irregular

O(M) pressure signals at a given location that could be mistakenly identified as a

chaotic or turbulent response. The ratio of initial disturbance wavelength to duct

width and the relationship between the disturbance and resonant frequencies are

found to be important factors affecting the refraction magnitude, which is in general

small except under resonant conditions. When resonance is present, amplifying modes

exist, which can be represented as pairs of transverse and/or oblique traveling waves

with growing amplitudes. The results of the present analysis are employed to show

that, in the parameter ranges of typical solid rocket engine gasdynamics, refraction

effects can produce only 0(10%) variations in acoustic pressure.

2 Mathematical Formulation

The conceptual model of the present acoustic-shear flow interaction study is schemat-

ically illustrated in Fig. 1. A fully-developed shear flow sweeps through a parallel duct

region of length L', confined by rigid, impermeable side walls at y' = ±d'. The ther-

modynamic state of the steady flow field is defined by (ps, p', To), and the equilibrium

speed of sound c0 = / , where R is the gas constant and -y the ratio of the specific

heats.

An axially distributed, y'-independent initial disturbance to the steady flow field

3



evolves into transient acoustic oscillations on the acoustic time scale t' = L'/c. which

is much shorter than the mean flow passage time because the maximum mean flow

Mach number. M = ' is assumed to be small. Axial velocity components on

the left and right boundaries of the flow configuration are assumed to be strictly equal

to the shear flow velocity U'(y'). In other words, x' = 0 and x' = L' represent fixed

nodal surfaces for the axial acoustic velocity. This configuration is highly idealized,

but provides an opportunity to develop an analytical investigation of trapped acoustic

signals in a shear flow, when multiple wave reflections occur on the axial boundaries.

The dimensionless equations for the compressible, viscous, and heat-conducting

fluid motion in the duct are similar to those in Ref. [5],

p = p, (1)

Pt + M [(pu). + (pv)Y] = 0, (2)

p[ut + M(Uu + vu,)] = -. + y + + , (3)

IV 4 1Np.[ht + M(Uv + vvY)] P + h2vz + VYV + (3 (4)
= _. V~h2Pv hRe ( -3)

p TE + M(uT, + vTy)] = -r(y - l)p(u, + t')

+ M eY (i'y, + h2T ,,) + (5) 0h hR, P, "h,.

where the thermophysical properties have been assumed constant for convenience.

Subscripts t, x, and y denote partial derivatives. R, = U,.,d'/v' is the mean flow

Reynolds number, h = d'/L' the aspect ratio of the duct, P, the Prandtl number.

and P the nondimensional dissipation function. Other nondimensional variables are

defined in terms of dimensional quantities by

,p T ) (p . p' . T ') U1 V1

po, po, To') U'.o h " ax

' I ti
=t = -t (6)

4
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The subsequent analysis is performed in the parameter ranges relevant to How

conditions in solid rocket engine chambers (excluding the exit nozzle). where the

values of A and R. are of 0(10-1) and 0(106). respectively '61. Accordingly, it s

reasonable to define the perturbation limit as 1/R - 0: .l - 0: and 1/R < -1. In

addition, one assumes that the aspect ratio h < 0(1).

Given the steady, fully-developed shear flow velocities u - U(y) and v = 0. one

observes from (1)-(5) that the basic pressure distribution is independent of the y

direction. and that dp/dx = 0(.V[2 /hR,), negligible compared to the O(.M/2) acoustic

pressure to be considered. The high Reynolds number limit implies that viscous and

thermal diffusion exerts little influence on the fluid motion, except in the thin acoustic

boundary layers adjacent to solid surfaces, typically of thickness less than 1% of the

duct width [5]. In this respect, the isentropic relations,

together with the transport-free version of (2)-(4) (the Euler equations) adequately

describe the fundamental physical phenomena in the core flow region.

The traveling wave study in Ref. [5] is based on acoustic velocity disturbances

of O(M) relative to the shear flow velocity U(y). The corresponding acoustic ther-

modynamic disturbances must be O(M 2 ), a magnitude frequently encountered in

stable solid rocket motors, where an absolute pressure oscillation of 1 to 2% is often

observed. When acoustic perturbations of the type

u = U(y) + M, v = Mi, ()

p = I + M 2-y, p = I + MI2 , T = 1 + A 2 t, (9)

are used in the transport-free version of (2)-(4), the following equations are obtained

for the acoustic variables:

, + a+ , + + .,,f [( i)+ + (A )V] = 0, (10)



at~ + _w [[U(Y)&-, + c)

t't + .jU(y)&' + . 1 2 (a- _ =_ C C, [2)

h 2 ~I+ . 12 3

Eqns. (10)-( 12) show that the mean flow U(y) affects only the 0(M) acoustic phe-

nomena ia the duct. The quadratic convective terms, representing the nonlinear effect

in the wave system, are even smaller, of O(M 2 ).

The wave field evolves from an initial axially distributed velocity disturbance:

t = 0, ? = Asin(kirx), b = = 0. (3)

Since the left and right boundaries are fixed nodal surfaces for 71,

= = 0, t; a = 0. (14)

The normal velocity component vanishes on the impermeable duct sidewalls. For

mean flow U(y) symmetric with respect to the center-plane (y = 0), the problem

is symmetric and can be solved in the region 0 < y 1 only. The appropriate y

boundary conditions are

y = 0,1: = 0. (15)

3 Solution Development

The solution to the lowest order approximation to the equations in (10)-(15) can be

written as

pi = -Asin(k-,rt)cos(krx), (16)

at = Acos(kirt)sin(kirz), (17)

Ut = 0, (t3)

where Pl, u, and vi are defined by the asymptotic expansions

'=1 + M'1 + O(M 2 ), = (u,v,p,p,T). (19)

6
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It follows from the isentropic relations , 7). !9) and 1 19) that

PiPt. P2 P2. (20)

The leading order solution in (16)-1 1) describes an axial mode with a harmon-

ically time-varying amplitude, independent of the mean flow. In order to obtain

information about how the shear flow affects the acoustic modes through convection

and refraction effects, the next order solutions must be constructed.

The O(M) acoustic equations derived from (10)-(12) and (19) take the form

P 2 t + u2Z + t".y = -U(y)PI, (21)

U2t + P2X = -U(y)uI- - VIU'(y), (22)

1
? 2t + TP2y = -U(y)vIx, (23)

where density has been replaced by pressure according to (20). Eqns. (16)-(18) can

be combined with (21)-(23) to find the nonhomogeneous wave equation for P2,

P2tt - (P2z + v) -2Ak 2 2 U(y) cos(k-rt) sin(k7.x). (21)

The forcing function on the right side is y-dependent and excites fully two-dimensional

0(M) acoustic motion. The initial conditions for P2 are simply (cf. (13), (19) and

(21))

P(t = 0) = p~t(t = ) 0-. (25)

The appropriate boundary conditions are derived by applying the results in (16)-(23)

to t14)-(15), which gives

p2,(x = 0) = -AkrL'(y)cos(k rt),

p2.(z = 1) = -(-1) . rU(y) cos(kirt), (26)

and

P2V(y = 0) = P. :y = 1) = 0. (27)



Eqns. (24)-(27) constitute a well-defined elementary two-dimensional hyperbolic sys-

tem with a distributed source and axial boundary excitations. One notices that

boundary conditions (26) are not compatible with (25) at t = 0. As a result. a pair

of propagating discontinuities in p2, or weak discontinuities as described by Landau

and Lifshitz [71, are introduced at x = 0 and 1 at t = 0.

The solution to (24)-(27) can be written as

P2 _ cos(kirt) sin(kirx) , cos(nry)

+ Z j ,,nn1,m,(k,t) cos(mrz) cos(nry), (2S)
,nO(rn;k) n=O

where S, and e, are the Neumann's number whose value equals 1 if the subscript is

zero and 2 if it is a positive integer. The coefficients U, and Fr,, are defined by

On = 2j U(y ) cos(niry)dy, (29)

rm _ - ( l +k ] k)(, 2- 2k 2 - iP cos(k-t) - cos (,/kM2-+ ,1 .t),

21r (in 2 + Vt - k2) (in 2 - k 2) mn2 + k2

(3 0)

where f = n/h. If m 2 + fi2 = 2 F,t should be evaluated by taking the limit

in2 + fi2  V - 0 in (30), which yields 0(t) amplification in p2. It can be verified

that (28) satisfies equation (24) as well as all the initial and boundary conditions.

A more concise form of the solution is derived by combining the two terms in (28),

which yields

P2 00,., .t,,te,,,,(k,t)cos(m r')cos(nry), (31)

r,=O(m#k) n(o

where

(In -r n+2iJ(n-k 21) {cos( k~rt) - cos (-,/m2+iP rt)j m'2 + Mt V k

4(M,2- t sin(kirt), m2 + f 2 = k2.
(32)



In the derivation of (31), sin(kirx) in i2S) is expressed in terms of its Fourier cosine

series whose derivative converges to zero instead of its true values at x = 0 and 1.

As a result the boundary conditions (26) are not satisfied by (31). However, (31)

gives correct x-derivatives elsewhere including the immediate neighborhood of x = 0

and 1. The values of p2 are not affected at all because the series given by (31) is

uniformly convergent throughout the entire domain. Thus one can justifiably use

(31) to evaluate p2 everywhere, and its first derivatives everywhere except at x = 0.

I and at the locations of weak discontinuities where these derivatives are not defined.

The Fourier coefficients of the double series in (31) are proportional to [, which

represents the shear flow effects, and vary with k and t. One observes from (32) that

for each nonresonant Fourier mode, the coefficient contains two harmonic functions of

time with different frequencies. The first function, cos(krt), has a frequency equal to

that of the distributed forcing function in (24), or that of the imposed leading order

acoustic pressure. It describes the time dependence of the Helmholtz mode of bulk

oscillation with x and y-dependent amplitudes.

The second cosine function in (32) is associated with wave phenomena. For each

pair of m and fi, the product

Pnn = cos (V'ml T + ,2 7rt) cos(mrz)cos(nry) (33)

represents a two-dimensional oblique mode, which can be decomposed into four plane

traveling waves:

foo [eVa. + ii,-.r (t1 [Z -)I
+Cos [V7--2 n.i (t - Z-+)] + Cos [-/m+ l7 (t - z--;)} (34)

where

mX + '- = -rn+y

9



Z- _-mx 4- ny -- - ny

are the paths taken by the traveling waves reflecting from duct walls and the axial

acoustic reflectors. The wave paths are oblique in general. However, when either

m = 0 or n = 0, the traveling waves are either transverse or axial, respectively,

and the number of traveling waves reduces to two. Since (31) contains an infinite

number of Fourier modes, one concludes that p2 consists of infinite numbers of axial.

transverse and oblique standing waves, in addition to the bulk oscillation mentioned

earlier. This is in sharp contrast to the results of the traveling wave study [.5] where

only a limited number of wave mcdes can propagate along a long duct. The multiple

reflections of acoustic signals on the inserted acoustic reflectors create a more complex

acoustic-shear flow interaction response.

Although the asymptotic solution given by (16), (19) and (31)-(32) is derived

primarily for processes occurring on the acoustic time scale of the duct, it is seen to

be uniformly valid on the mean flow passage time scale t - O(M-1) as well, except for

the resonant cases. Resonance occurs when the frequency of a transverse or oblique

standing acoustic wave equals to that of the forced vibration. It causes O(t) amplitude

growth (cf. (32)) and invalidates the asymptotic expansion (19) as t - O(M-').

Comparing to the O(tP/2 ) resonant growth found for refraction induced traveling

waves [5], it is concluded that a trapped wave system produces faster growth rate fcr

the resonant mode, owing to the effect of multiple axial reflections. In general, the

asymptotic solution remains valid until t - O(M-2 ), the time required for the small

nonlinear effects to accumulate, which leads to significant deformation of the leading

order waveform and possible formation of a weak shock in the confined geometry [8].

A complete solution should include the thin acoustic bounadry layers adjacent

to the duct walls. An approach identical to that used in Ref. [51 can be applied to

10



reveal the structure of the transport-dominated lavers. A preliminary analysis shows

a basically uniform acoustic pressure distribution across the laver, whose thickness is

proportional to the ratio of the fluid kinematic viscosity to the mode number k) of the

basic core pressure disturbance. A multitude of velocity standing modes induced by

the core acoustic flow are strongly damped by viscous and thermal diffusion to satisfy

no-slip and appropriate thermal boundary conditions [5, 9]. Since no fundamentally

new discoveries are expected from a detailed analysis, it is not pursued here.

4 Example Calculations and Discussion

4.1 Acoustic convection and refraction

The effect of a sheared mean flow on acoustic pro- . car. be more clearly elucidated

by rewriting (31) as P2 = P2c + P2R wv:iere
1o

P2c = A0 0  r - ,xmZ), (36)
m0(m~k)

P2R = 2.4 F T' Emn(kt)cos(mr)cos(nzy). (37)
mr=O(m:k) n=1

The first component of P2, P2c, contains all the n = 0 Fourier modes. It is directly

proportional to the shear flow velocity averaged across the duct (I1o/2) (cf. (29)), and

is the correction to the basic acoustic pressure (16) that would arise in a pure slug

flow. This effect, henceforth referred to as the bulk convection effect, is accountable

for the axial standing wave disturbances and the y-independent part of the bulk

oscillations in p2. The magnitude of bulk convection increases with the average shear

flow velocity and the mode number (k) of the basic acoustic disturbance, as can be

shown from (32). When A1 p2c is superimposed on the basic acoustic pressure pi,

the total acoustic pressure remains one-dimensional, although its waveform is slightly

distorted in the axial direction by a time-dependent periodic fuiiction.
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The quantity P2R in (37) arises from convection of the basic axial acoustic dis

turbance at the local differential velocity U(y) - U o/2. Thus, P2R is associated with

refraction of the axially distributed solution pi in (16) by the shear flow. It is seen

to be intricately related to the specific shear flow velocity profile through the Fourier

coefficients 0. Both transverse and oblique standing acoustic waves are present. and

amplitude amplification of certain modes is possible as a result of resonance phenom-

ena. The p2R solution also includes bulk oscillations with y-dependent amplitudes as

mentioned in Section 3.

The general features of the acoustic field described by (16) and (31)-(32) can be

revealed graphically by evaluating these expressions numerically. In the subsequent

calculations, each Fourier summation is carried out up to the 50th term, with a

truncation error of less than 10- 1 based on comparisons of the results with those

from summations of 100 or more terms. Three types of shear flows U(y), as well as

different combinations of mode number k and duct aspect ratio h, are employed to

generate representative results. The amplitude of the initial disturbance A is kept at

unity since both pi and p2 exhibit the same simple proportionality to it. Results are

presented in terms of P2c and P2R, mentioned above, for easier physical interpretation.

Figs 2a-2c display the time-variations of the three acoustic pressure components

on the duct wall (y = 1), at axial locations z = 0, 1/4, and 1/2, respectively. The

wave field is generated by the relaxation of the initial velocity disturbance ti = sin(7rx)

(k = 1) in a fully developed laminar flow field described by U = 1 - y2 . The duct

section considered has equal length and width, so that h = 1/2. In each figure,

the solid line denotes the basic acoustic pressure pi as calculated from (16). The

amplitude of its oscillation is seen to decrease from maximum at the antinode X = 0

(cf. Fig. 2a) to zero at the nodal plane x = 1/2 (cf. Fig. 2c). The long and short dashed

lines represent the bulk convective correction p2c and the refractive correction p2R,
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calculated from (36) and (37) respectively. The former is a y-independent, periodic

function of time whose amplitude and structure vary with logitudinal position x.

as observed from the figures. The time response of P2R depends on both spatial

coordinates and exhibits non-periodic, irregular oscillatory behavior, as a result of

the superposition of signals with noncommensurate frequencies arising from transverse

and oblique standing modes as well as the bulk modes. The slope discontinuities on

both P2c and p2Rq curves denote the passage of the weak discontinuities created by

the initial jump in p7, (cf. (26)). The curves in Figs. 2a-2c are plotted up to t = 10.

at which the mean flow completes one passage through the duct section if M = 0.1,

and an axial acoustic signal is reflected 10 times on the left and right boundaries.

Longer-time calculations produce similar irregular patterns for P2R while pi and P2c

continue their periodic variations. It is particularly interesting to notice in Fig. 2c

that, although the basic acoustic pressure pi vanishes, the total acoustic pressure

= PI + M(p2c + P2R) is nonzero because a mean flow field with shear is present.

The two-dimensional structure of the acoustic pressure due to refraction (PTR)

is illustrated in Figs. 3a and 3b, which depict p2R distributions in the duct for an

acoustic-shear flow system characterized by k = 3, h = 1/6, and U = 1 - y2 , at

t = 5/8 and 7, respectively. The two snapshots are more tha 6 acoustic time units

apart, and thus do not reflect the waveform evolution process, which occurs on a much

shorter time scale. The lines of sharp slope changes associated with the propagating

weak discontinuities are obvious on the P2R surfaces. The absolute magnitude of the

refraction effect is small because p2R must be multiplied by M.

4.2 Effect of mean flow type

Figs. 4a and 4b illustrate the time history of p, /hc and pR at z = 0, y = I undei

the same conditions as in Fig. 2a, except for different shear flow velocity types. In
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Fig. 4a, U = 1 - y. corresponding to a fully-developed Couette flow in the half

duct considered. The profile U = (1 - y)' 1 is used to find the results shown in

Fig. 4b. It is easily observed from Figs. 2a, 4a and 4b that the shear flow described

by the one-seventh power law generates the largest bulk convection effect p2c because

it has the largest average velocity. Analogously the parabolic flow creates a larger

bulk convection effect than the linear flow. The refraction effects for the linear and

parabolic flow types are of comparable magnitude. The one-seventh power law flow

generates the smallest acoustic refraction because the velocity gradient is relatively

small in most of the core flow region. The large velocity gradient is concentrated

within a thin layer near the wall which is too narrow to promote acoustic refraction

on a global scale in the core.

The refraction induced acoustic pressure fluctuations at specified locations are

plotted alone in Figs. 5a and 5b for the parabolic and one seventh power mean flow

types, under conditions k = 1 and h = 1/2. The solid and dashed lines, representing

P2R at an axial position z = 1/2 on the center-plane (y = 0) and duct wall (y = 1)

respectively, resemble each other but are completely out of phase, implying the relative

importance of refraction in the duct. It is strikingly noteworthy that superpositions of

various linear wave structures resulting from shear flow interactions with a simple axial

distanbance can produce fairly irregular pressure signals, which might be mistakenly

attributed to nonlinear phenomena had the data been collected from numerical or

experimental investigations. The shear velocity described by the one-seventh power

law is again shown to generate smaller P2R than the other two cases.

4.3 Effect of mode number and duct aspect ratio

The earlier traveling wave study [5] suggests that the magnitude of acoustic refraction

phenomena is controlled by, among other parameters, the ratio of the wavelength to
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the duct width. For a duct of fixed width, higher frequency waves induce larger

refraction effect. in the present analysis, due to the finite axial length of the How

geometry, the relationship between P2R and the parameters k and h is more complex

(cf. (37) and (32)) Nonetheless, numerical evaluations show that when k is away from

resonant frequencies of the duct the same trend is apparent.

The nonresonant P2R curves in Figs 6a and 6b are plotted at x = 0, y = 0

and 1 using the same shear flow velocity U = 1 - y2 . The k and h values are

selected such that while k increases from 1 in Fig. 6a to 3 in Fig. 6b, the aspect

ratio h decreases in proportion so that the wavelength to duct-width ratio remains

constant. As expected, the refraction induced pressure fluctuations in the two figures

are comparable in magnitude, and the frequency of fluctuation increases with k. The

P2R signals are all fairly irregular. The location x = 0 is chosen in Figs. 6a and 6b

because it corresponds to the anti-node for pl, where the P2R curves are of typical

magnitude for both cases. At other x-positions P2R fluctuates in a similar manner

with different rates and amplitudes (see, for example, Fig. 5a).

Fig. 7 shows a near resonant case that results in a long period beat pattern. Here

k = 4, h = 1/4, so that for m = I and n = 1, rn2 + i2 = 17 while k2 = 16.

The P2R curves are plotted at z = 1/8, y = 0 and 1, for U = 1 - y2 . Beats of

even longer periods and larger maximum amplitudes can occur at suitable parameter

combinations. If the numerical evaluation of the solution had been limited to times

less than half the beat period, the result could have been erroneously interpreted as

an amplified mode.

Fully resonant solution behavior is shown in Figs. 8a and 8b, where P2R on the

duct wall is depicted at z = 1/10 and x = 1/2, respectively, for U = 1 -Y 2 . In Fig. Sa

k = 5. h = 1/5. so that the transverse mode (m = 0, n = 1) is amplified. Fig. Sb

corresponds to the condition k = 5 and h I/v/72T, which promotes the amplification
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of an oblique mode (m = 2, n = 1). One may observe beat patterns superimposed

on the long-time growth arising from the interference by near-resonant modes.

The considerable enhancement of the refractive acoustic pressure by resonance

requires a new asymptotic solution on the flow time scale t - O(M-') to accomondate

refraction phenomena in the leading order acoustics. Likewise, when certain modes

oscillate at near-resonant frequencies of the system, or when the mode number k

becomes large and the aspect ratio h small, so that Alp 2 - O(pl), a new theory needs

to be developed.

4.4 Inferences about solid rocket engine acoustics

Solid rocket combustion chamber dimensions are usually associated with radius to

length ratios less than or equal to 0(1). Experimental observations suggest that the

first few acoustic modes, especially the k = 1 mode, are most frequently encountered

in rocket chambers. Based on the above analysis, the convection and refraction in-

duced acoustic pressure correction terms are at most O(M) relative to the leading

order acoustic pressure, or O(M 3 ) relative to the overall pressure. Although reso-

nance in P2R significantly magnifies the acoustic refraction, it occurs rarely for low

k modes. In fact the resonant condition m2 + (n/h)2 = k2 indicates that there can

be no resonant modes if kh < 1, which is likely to be the case given the sizes of k

and h mentioned above. Thus, a mean flow with Ml = 0.1 causes at most 0(10-1)

changes in acoustic pressure, or 0(10-') changes in total pressure. The nonlinear

effects, represented by quadratic terms in the convective operators and responsible

for acoustic streaming, are 0(10 - ') smaller. They are of no importance on the time

scale considered here and accumulate only on the longer time scale t - 0(102).

The resonant phenomenon discussed above appears in second order acoustic quan-

tities only, and is excited by interactions with a sheared mean flow. It should be
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distirguished from the more powerful resonance of leading order acoustic pressure in

a rocket engine con figurations. often associated with excitations arising from chemical

heat release. which is beyond the scope of this paper.

5 Summary

In this paper a mathematical model is established to study the interaction between

a low Mach numbeL parallel shear flow and an axially distributed acoustic distur-

bance trapped in a section of a planar duct. The solution development is based on

asymptotic expansions defined for the small mean flow Mach number limit (A! -- 0).

The Fourier series-based analytical solution in terms of standing modes gives explicit

modal response of the acoustic-shear flow interactions. The major conclusions are:

* Bulk (slug flow) convection induces purely axial standing acoustic waves and

y--independent bulk oscillations at the frequency of the imposed initial distur-

bance. The magnitude of the bulk convection effect increases with the average

shear flow velocity and the mode number (k) of the leading order acoustic pres-

sure.

" Refraction generates purely transverse and oblique standing waves as well as

bulk oscillations with both x- and y-dependent amplitudes. The magnitude

of refraction increases with the shear flow velocity gradient, the duct-width to

length ratio (h), and the mode number of the leading order acoustic pressure

Sk). The refraction size also increases if the frequencies of the induced acoustic

modes become close to the resonant frequency.

" Combination of the above efferts gives irregular pressure signals at given po-

sitions in the duct. They are of 0(0) relative to the imposed leading order

acoustic pressure.
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a Axial wave reflections cause faster resonant growth of acoustic refraction. Res-

onance does not occur for hk < 1.

a Refraction effects are very small in both traveling and standing wave model

studies, in the parameter ranges of solid rocket engines.

The primary point is that quite elementary disturbances can evolve into surpris-

ingly complex wave structures as a result of refraction effects, although these effects

are small in the parameter ranges of solid rocket engines. This simplified analysis

gives insight into the acoustic modal interactions with the shear flow, which have not

been extracted from computational data in past studies. In fact there appears to be

a specific need to develop data analysis tools that are capable of using grid point flow

data to determine the propagating wave patterns present in an acoustically excited

shear flow.
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List of Figures

Figure

1. Schematic of a parallel shear flow through a planar duct section containing

acoustic disturbances.

2. Time variations of pl, p2c and P2R, as calculated from (16), (.36) and (37)

respectively, on the duct wall y = I at three axial locations: (a) x = 0; (b)

x = 1/4; (c) x: = 1/2. The acoustic field is generated by the relaxation of an

initial disturbance 5(t = 0) = sin(,rx) in a laminar duct flow U = 1 - y2. The

duct aspect ratio h = 1/2.

3. Distribution of second order acoustic pressure due to refraction (P2R) in the

duct section at (a) t = 5/8; (b) t = 7, as calculated from (37). The refraction

effects are generated as the initial acoustic disturbance 6(t = 0) - sin(37rx)

relaxes in the shear flow field U = 1 - y2 . The duct aspect ratio h = 1/6.

4. Time variations of pi, Thc and p2R at x = 0, y = 1, generated by the relaxation

of the initial disturbance ti(t = 0) = sin(-rz) in shear flow fields described by

(a) U = 1 - y; (b) u = (1 - y) 1/7 . The duct aspect ratio h = 1/2.

5. Time variations of refractive acoustic pressure P2R as calculated from (37), at

locations z = 1/2, y = 0 and 1. The refraction effects are generated by the

relaxation of the initial acoustic disturbance fs(t = 0) = sin(mrz) in shear flows

(a) U = 1 - y2; (b) U = (1 - y)'/'. The duct aspect ratio h = 1/2.

6. Time variations of refractive acoustic pressure p2R at locations x = 0, y = 0

and 1, generated as the initial acoustic disturbance ? (t = 0) sin(krxr) relaxes

in the shear flow field U = i - y2. (a) k = 1, h = 1/2; (b) k 3. h = 1/6.
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7. Year-resonant variations of refractive acoustic pressure P2R with time at oca-

tions xr = 1,'8, y = 0 and 1. as the initial acoustic disturbance Lilt = 0) =

sin(4,rx) relaxes in the shear flow field U = 1 - y2 . The duct aspect ratio

h = 14.

S. Resonant amplifications of refractive acoustic pressure P2R on the duct wal

(y = 1), at specified axial locations, as the initial acoustic disturbance f(t =

0) = sin(kirx) relaxes in the shear flow field U = I - y'. (a) k = .5, h = 1/5,

x = 1/10: (b) k = 5, h = 1/v7T, x = 1/2.
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