
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations Thesis and Dissertation Collection

1992-03

Design and implementation of a data model

for the NPS ARGOS project

Westman, Stefan A.H.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/25825

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGN AND IMPLEMENTATION
OF A DATA MODEL

FOR THE NPS ARGOS PROJECT

by

Stefan A. H. Westman

March 1992

Thesis Advisor:

Co advisor

Dr. Thomas Wu
CDRB.B. Giannotti

Approved for public release: distribution is unlimited.

T254599

1ECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
B. REPoRt SECURITY cLAs£IFIcATI6N UNCLASSIFIED 1b RESTRICTIVE MARKINGS

2a sEcURIfY CLASSIFICATION AUTHORITY 3. blsTRlBUTIGKI/AVAILABlLITY 6F REP6RT

Approved for public release;

distribution is unlimited
2b bE"cLAssiricATI6N/C>6WNG&AC>ING SCHEDULE

I PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6e NAME OF PERFORMING ORGANIZATION
Computer Science Dcpt.

Naval Postgraduate School

6b. OFFICE SYMBOL
(if applicable)

cs

7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School

6c ADDRESS (City. State, and ZIP Code)

Monterey, CA 93943-5000

7b. ADDRESS (City. State, and ZIP Code)

Monterey, CA 93943-5000

Pa NAME OF fUNuINg/spoNsoRIMg
ORGANIZATION

8b OFFICE SYMBOL
(if applicable)

9. PR6CUREMENT INSTRUMENT IbENfIfIcATIoN NUMBER

8c ADDRESS (City. State, and ZIP Cede) 10. s6URcE 6f" fUNLSINg NUMbeRs
program
element no.

PROJECT
NO.

TAsk
NO

WORK UNIT
ACCESSION n

11. TITLE (Include Security Classification)

DESIGN AND IMPLEMENTATION OF A DATA MODEL FOR THE NPS ARGOS PROJECT

SSTW^Si
m tVp£oF REpoRt
Master s Thesis

TaE TIMEc6VEREC)

from 04/90 to 03/92
1 4. DATE OF REPORT (Year. Month, Day)

1992, March
TTTAGTToTJNT

76
16. supplement ary notatiom jjie v iews expressed in this thesis are those of the author and do not reflect the officii

policy or position of the Department of Defense or the United States Government.

COSATI CODES

SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Logistic, US Navy, Relational database, RDBMS,
Cals, SNAP, Oracle, HyperCard, Macintosh.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The ARGOS project is a design and an implementation or a prototype multimedia database system developed as both

Battle Group Commander's assessment tool and a shipboard data management tool. The original prototype was developed usii

llic HyperCard/Macintosh technology, taking advantage of its object-oriented properties and its user-friendly graphic

interface. The major problem with the current implementation is that all information is located in a relatively slow and inefficie

database. Updates of information have to be hard-coded and access to other databases in or outside the current workir

:nvirotunent is not supported.

This thesis proposes an enhanced system taking advantage of relational database management technique. The propose

system is based on the idea that all information, including images, button locations, and other system variables, shall be access(

from the relational database management system. This approach makes it possible to separate the user interface from the store

lain thus providing a platform independent environment. The enhanced system is developed using Oracle as the relation

lalahase management svstem. The user interface is built in Hvpercard on the Macintosh. All data retrieval is based on AN!
SQL.

J0. UIS1RIBU1 ION/AVAILABILITY OF ABSTRACT

U UNCLASSIFIED/UNLIMITED [J SAME AS RPT. [J DTIC USERS
21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
>2o NAME OF FIESPONSIBLE INDIVIDUAL
Dr. I homos Wu 22b. TELEPHONEj/nc/ude Area Code)

(408)646-2174
22CvPJFICE SYMBOL

CS/Wq

'DFORM 1473.84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Approved for public release; distribution is unlimited

DESIGN AND IMPLEMENTATION
OF A DATA MODEL

FOR THE NPS ARGOS PROJECT

by

Stefan A. H. Westman
Major, Swedish Army

MS Civil Engineering, Swedish Defence Staff and War Collage, 1986

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

ABSTRACT

The ARGOS project is a design and an implementation of a prototype multimedia

database system developed as both a Battle Group Commander's assessment tool and a

shipboard data management tool. The original prototype was developed using the

HyperCard/Macintosh technology, taking advantage of its object-oriented properties and

its user-friendly graphical interface. The major problem with the current implementation is

that all information is located in a relatively slow and inefficient database. Updates of

infonnation have to be hard-coded and access to other databases in or outside the current

working environment is not supported.

This thesis proposes an enhanced system taking advantage of relational database man-

agement technique. The proposed system is based on the idea that all information, includ-

ing images, button locations, and other system variables, shall be accessed from the rela-

tional database management system. This approach makes it possible to separate the user

interface from the stored data thus providing a platform independent environment. The en-

hanced system is developed using Oracle as the relational database management system.

The user interface is built in HyperCard on the Macintosh. All data retrieval is based on

ANSI SQL.

a
TABLE OF CONTENTS

I. THESIS OBJECTIVES AND OUTLINE 1

A. PREVIOUS WORK 1

B. THESIS OBJECTIVES 3

C. THESIS OUTLINE 5

II. BASICS FOR BUILDING THE SYSTEM 6

A. GENERAL 6

B. INTERFACE 7

C. RELATIONAL DATABASE MANAGEMENT SYSTEM 8

D. DISTRB3UTED SYSTEMS 8

E. OBJECT ORIENTED APPROACH 12

F. OTHER APPROACHES 14

III. USER REQUIREMENT 15

A. GENERAL 15

B. SNAPH 15

C. REQUIREMENTS FOR A LOGISTIC SUPPORT ANALYSIS RECORD 18

D. CALS CONCEPT 18

E ARGOS CONCEPT, THE PAPERLESS SHIP 20

IV. RELATIONS, TABLES, AND PROCEDURES IN THE ENHANCED SYSTEM 25

A. GENERAL 25

B. RELATIONAL SCHEMES 26

C. TABLES 37

D. PROCEDURES 39

V. IMPLEMENTATION 44

A. GENERAL 44

B. DISTRIBUTED SYSTEM ONBOARD 47

C. DISTRIBUTED SYSTEM WITH RESPECT TO OTHER UNITS 49

VI. TEST SYSTEM 51

A. REQUIREMENTS FOR THE TEST SYSTEM 51

B. SELECTED TOOLS 52

C. TABLES USED FOR THE TEST SYSTEM 52

D. TECHNIQUES USED IN PROCEDURES 54

E. SHORT USER MANUAL 55

VII. FUTURE WORK 57

A. GENERAL WORK 57

B. MULTIPLE PLATFORMS 57

C. DISTRIBUTED SYSTEMS 57

APPENDIX 58

LIST OF REFERENCES 69

BIBLIOGRAPHY 70

INITIAL DISTRIBUTION LIST 71

I. THESIS OBJECTIVES AND OUTLINE

This chapter briefly describes previous related work made in the "Paperless Ship"

concept at Naval Postgraduate School. It also gives the objectives and the outline of the

thesis.

A. PREVIOUS WORK

I. The ARGOS project

The ARGOS project [GIAN 89] is a design and an implementation of a prototype

multimedia database system developed as both a Battle Group Commander's assessment

tool and a shipboard data management tool. It is part of the feasibility exploration of the

"Paperless Ship"' concept. The original prototype was developed using the HyperCard/

Macintosh technology, taking advantage of its object-oriented properties and its user-

friendly graphical interface. The ARGOS multimedia database is capable of handling

images (graphics), signals (sound) and text.

The major problem with the current implementation is that all information is located on a

relatively slow and inefficient database. Updates of information have to be hard-coded in

the system. The system does not support access to other databases in or outside the current

working environment. HyperCard is an event-driven, object-oriented programming

environment based on the sending of messages from one object to the other. The top level

is the HyperCard level which defines all the procedures and functions that are accessible

by lower level objects. The next level of objects is the stack level. A stack can hold both

processes and data. The data can be any combination of text, graphics and sound. A stack

is a collection of cards which incorporate backgrounds, fields and buttons. Each of these

are objects and can therefore send and receive messages. Objects can have a procedural

execution sequence attached to them, and can have their visible representation set either on

or off. Data associations can be obtained by using either static or dynamic linking. Links

may be established between cards in different stacks, regardless of the card's relative stack

position. Bi-directional links can be programmed as well. These links are based on a unique

ID. which is independent of data content and enables creating relations between data

elements.

2. The SNAP H SFM subsystem environment

The Shipboard Nontactical Advanced Data Processing Program (SNAP II)

facilitates development of computer support for the SNAP fleet. The existing logistic

system, Supply and Financial Management (SFM) is an interactive SNAP II subsystem

which supports requirements processing, inventory management, financial management,

supply control, and Integrated Logistic Management (ILM) onboard SNAP II ships. It is a

terminal -oriented system built on approximately 35 different permanent database files and

about 120 different working areas (records). Each working area reads values from one or

more files and updates one or more database files. The system is based on menus. Menus

are hierarchical with tasks usually executed on the leaf level. Usually, during execution of

a task, a corresponding working area is created and information is retrieved and displayed.

When the task is finished, new or changed information in the working area is written back

to the corresponding file(s). The SFM system provides the following basic functions (See

figure 1):

• Supports requirements processing

• Inventory management

• Financial management

• Supply control

- Integrated logistics management

The SFM has two types of subsystem functions:

• User functions

• Service functions

User functions are directly generated by the user by selecting a menu on the

screen or by pressing a key to perform an action. Service functions are those that are

performed indirectly by other modules either inside or outside the SFM subsystem. The

user can have access to either the Supply Menu or the Supply Customer Menu. The Supply

Customer Menu provides access to a subset of the Supply Menu and is therefore not

f

MAIN MENU

~~\

(1)

(2)

(3)

(4)

(5)

Requirements
Inventory
Financial
Supply Control
Integrated Logistic Management

\ _J

Figure 1 : Building blocks of SNAP II SFM subsystem

discussed further.

SNAP IT is written in COBOL and requires compilation for each change in the

environment. SNAP II is running on 366 out of 540 required sites (as of July 1991.)

B. THESIS OBJECTIVES

A proposed system usually has a basic idea from which it originated. The general idea

behind this proposed system is a mixture of the existing SNAP B SFM subsystem

requirements document and the general need for a more enhanced version making use of

relational database management systems and easy to use features like a mouse, buttons and

pull down menus. The original enhanced version (ARGOS) was developed on a Macintosh

using HyperCard as a development tool [GIAN 89]. HyperCard provides an easy to use,

object oriented, way of programming the Macintosh. HyperCard is an interpreted language

with the abilities to store information as a combination of pictures, buttons, menus and table

related plain ASCII text. A summary of the SNAP II SFM Subsystem specification is

included in this thesis to provide general guidelines for the enhanced version. The SNAP II

SFM system is written in a third generation language. Each change in a file structure, a

record structure or the menu system requires a new compilation of all affected modules.

The working area/file system model helps make the system modular and facilitates

changes. Ad hoc queries are only possible in predefined working areas. New views cannot

be created without recompiling the system.

The enhancement of the system is based on two general ideas:

* Use of a relational model

• Separation of the user interface from the storage of data

This idea implies that all information including information about images, buttons,

menus and functions are stored in the relational model. The proposed enhanced system uses

a commercially available Relational Database Management System (RDBMS). All

interfaces between the user interface module and the RDBMS use ANSI/SQL, when not

explicitly expressed otherwise. This idea gives us the possibility to develop the user

interface on a number of different platfonns. Regardless of the user interface platfomi, the

database information can reside on different machines in a distributed environment, on one

machine accessed by all the user interface tools, or duplicated, on individual machines

giving each user interface tool a separate database to work with.

1 . Not predicted queries.

C. THESIS OUTLINE

This thesis starts with a discussion about different possible approaches to enhance the

existing system. It gives the reasons for selecting a relational database management system

approach. SNAP II SFM subsystem and the current ARGOS system guides as user

requirements for the enhanced system. In addition to this CALS concept and MIL-STD-

1388-2B*s impact on development are discussed. An enhanced system based on relational

database technics are proposed. Tables and procedures are developed for the enhanced

system. Problems with a distributed implementation are discussed and a method for

developing a distributed system is introduced. Finally a test system is developed and

presented.

n. BASICS FOR BUILDING THE SYSTEM

This chapter describes the overall considerations taken for the enhancement of the

existing system. It gives the reasons for selecting a relational database approach.

A. GENERAL

It is not possible to develop a system without looking into the tools available for

implementation very early during the development process. Techniques for developing the

system also have to be selected. Two possible basic approaches follow.

Use the state-of-the-art approach. While this is a hazardous approach, it has the benefit

of giving you the latest available techniques. You can usually develop the system with less

coding and with a shorter time to delivery. It will also give faster and more complex run

time versions of the final product. However, there is a significant chance of ending up at a

dead end. The developer has to be a visionary. If the selected approach turns out to be too

sophisticated then it may never be possible to implement the system. Important decisions

taken during the development could be based on the availability of products that never will

reach the market It can also turn out that you are the only buyer of the tools and supporting

the system becomes unreasonably expensive.

The other approach is to use well-known techniques and products. The path to a

working system will be well-known and very few surprises will slow development. The

final system will not be state of the art but it will be reliable and working. Other users have

tested the development tools before you and it is likely that these tools will stay on the

market The system may not give competitive advantage but it will be better than no system

at all.

Small companies make small mistakes and large companies make giant mistakes.

Bank of America tried to develop a state-of-the-art system and had to. after spending

hundreds of millions of dollars, lower theii."expectations on the new bonking system. The

U.S. Navy is an even larger organization. The possible customer to a new enhanced SNAP

II system will be over 500 sites. By carefully selecting tools and techniques based on

existing (de facto) standards and well tested technics, we can assure that our system will

work, that it will be possible to enhance and improve, and that we will be able to interact

with other systems. The Navy and other government agencies are filled with non-

intractable systems.

B. INTERFACE

In most existing systems the user interface is built as an integrated part of the system.

Changing the user interface usually involves so much effort that it is not worth changing

without also talcing the opportunity to change the rest of the system as well. Different

people accessing the same information require different user interfaces. A low frequency

user will need more 'user friendly' features like menu choices, point and click options and

intuitive access to information. A frequent user is usually more concerned with speed and

direct access to information. A person working with the system on a daily basis does not

want to have to go through a hierarchy of menu choices each time he accesses information.

He would prefer to use a few keystrokes to take a lot of action on the stored information.

By completely separating the user interface from the stored information it is possible to

develop a system that:

• Can have different user interfaces accessing the same information.

• Can enhance and change the user interface separate from the stored infoimation.

• Is platform independent both with respect to the stored information and the user

interface.

Separating the user interface from the stored information requires a well defined set

of tools available to interact between the two. The only widely used language to access

information on database management systems today is SQL . By selecting SQL as the

J . Structured Query Language, language developed by IBM for accessing database information, pro-

nounced 'sequel.'

interfacing language the system will, at least in the near future, have to be based on a

relational database management technique. There will probably be products available in the

future that give access to other types of information storing systems using SQL.

Every transaction between the user interface and the stored information must be a SQL

query in one direction and the result of the query in the other direction and nothing else.

C. RELATIONAL DATABASE MANAGEMENT SYSTEM

Relational database technique is today a well defined science with a number of

available tools for managing the infomiation. It has a defined algebra for calculating the

result of accessing information and a query language to communicate with the database

management system. Available tools have been on the market for a number of years and

are therefore well tested and debugged.

The relational database should be perceived [ORCE 88] by its users as a collection of

tables (see figure 2). Tables consist of rows and columns. The intersection between a row

and a column is called a field. A field contains a value. Other requirements for a Relational

Database Managements System are:

• Existence of a high-level language.

- Full relational processing capability.

- Maintainable as a system.

• Integrated data dictionary.

The relational database technique is widely used today and some of its most well-known

developers include ORACLE, INGRES and INFORMIX.

D. DISTRIBUTED SYSTEMS

There are both advantages and disadvantages to using a Distributed Database

Management System (DDBMS) compared with a Centralized DBMS(CDBMS). A typical

distributed system is shown in figure 3. Some of the most important advantages are:

• Improved reliability. If the information is stored in different locations it is more likely

Column

PERSONAL INFO!

NAME SSN

John

Paul

9394456543$

939445632 f

.34567.S«,7.3,.J,

Anna 543765987 | IBM

COMPANY

Apple

IBM

A.on.'e...

7

±

Field

Company_INFO

NAME PHONE_NR LOCATION

Apple 4086265432 CA

IBM 4089876543 CA

Sun 4045432345 CA

DEC 2025438765 DC

Row

Figure 2: Tables, the building block of a relational database

that the information is available when it is needed. If one site goes down, most of the

sites will still be able to run the system.

Expandability. It is easier to expand a database locally without changing the other

sites.

Improved performance. With information stored on different sites, there will be

occasions when processing can be performed in parallel. I/O processes will be

executed in different locations. This will be a trade off with the cost of communication

between the sites.

Local autonomy. Locally stored and shared information could be handled locally

without affecting the rest of the database.

Some of the disadvantages are:

Lack of experience. There are very few running examples of truely distributed

databases.

Complexity. All complexity in a distributed system is inherited from the centralized

system. In addition to that we have to add the complexity of distributing the

information.

• Security. By having a centralized database we can much more easily control access to

the data stored in the database. In a distributed system we have a more complex

network and storage schema.

• Cost. Having databases stored on different sites multiplies the cost of managing the

database on each site.

1. Special problem areas

There are some special problems with the DDBMS that are not yet solved, but

where research is ongoing:

• Distributed database design. Partitioned data, replicated data or partially replicated

data are some of the design issues that have to be considered for the DDBMS. There

are a lot of mathematical problems that have to be solved in order to minimize the cost

of storage and communication. There are not yet any design methods that help a

developer in doing this.

• Distributed query processing. Algorithms that execute a query in the most efficient

way must be written. The objective is to distribute the query to achieve as much
parallelism as possible and at the same time limit the network use. Usually those kinds

of problems are NP-complete problems.

• Distributed concurrence control. This is the most studied part of DDBMS problems.

It involves questions like: How to maintain consistency in the database?

The highest level of interaction could be described as the Distributed DBMS.

This level of infonnation interaction is not even close to standardization. So many unsolved

questions still remain that it is unlikely that a standard for a fully distributed system will be

developed during the next 10 years.

Some examples: SQLnet, for the Macintosh, from ORACLE supports access to only one

server at the time. Access to different servers is not transparent to the user. There are server-

server connections that exists for both INGRESS and ORACLE but those can only be

accessed from a client, with the same restrictions as mentioned above. So why can DBMS

vendors claim that their product is a DDBMS? And why can they claim that then databases

10

in a distributed system are transparent to the user? Well, they are assuming that no

fragmentation and no duplication of information is made without the user writing all of the

code necessary to do this. If the user wants to have the information duplicated and/or

fragmented, all of the necessary procedures to do this, like the two phase commit protocol
,

have to be written by the customer. There are vendors(SYBASE) that claim that they have

implemented two phase commit (2FC). But there is no standardization of the protocol for

2FC. So even if two DDBMS's have 2FC implemented that does not necessarily imply that

the implementation is compatible with other vendors' 2FC protocol. ANSI SQL has not yet

' Application \ DDBMS SERVER

'
\

Communication

Server
Local DBMS server

1

(NETWORK :*)

1 1 1

Communication

Server

Communication
Server

Communication
Server

1 1

DBMS SERVER DBMS SERVER DBMS SERVER

Figure 3: The distributed system

defined any syntax for manipulating information among different sites.

SQL Access Group SAG [SAG 91] was founded 1989. SAG is a non profit group

of vendors that ore working together to create an SQL standard beyond what ANSI/SQL

provides. A group of companies including Ask/Ingres, Tandem Computer, Sun

1

.

The user perceive the distributed database, as one database residing on his own machine

2. Protocol that guarantees consistency in the database among sites.

Microsystems. Digital Equipment Corp and Hewlett-Packard started meeting informally to

discuss how to make it possible to interact between different DBMSs.

The SQL Access Specification is based on existing standards like ISO/RDA and ISO/

SQL and from guidelines like X/Open Company Ltd. The SQL Access specification is

included in the 1991 edition of the X/Open Portability guide. SAG has concentrated on:

• Association Management Statements.

- Standardized System Catalog Names.

• New Catalog Tables.

• Diagnostic Messages.

• Conformance Levels for SQL Implementations.

SAG had an interoperability demonstration on July 16 1991. A number of Client and

Server applications where working together over a network. All running applications were

built on the technical specifications in order to test and verify them. If SAG succeeds with

it's mission, user applications can be developed independently from the DBMS server. A

client can access any DBMS or gateway that follows the SQL Access Specifications. This

is a very promising future, creating a lot of new aspects of accessing information on DBMS.

In the ARGOS project this will imply that the user interface, written according to the SAG

specifications, will run together with all DBMS systems using the SAG specifications. The

above problems restrict the use of a distributed system. This enhanced system uses an

expanded SQL. This expanded SQL does comply with the naming conventions used by

SAG.

E. OBJECT ORIENTED APPROACH

A fairly new idea for implementing the data base system is using an object oriented

approach. The following description compares differences, advantages and disadvantages

between using an object oriented approach for implementation and a traditional relational

12

database approach [TARI 92]. It also describes some of the most important concepts behind

object oriented implementation. This includes:

• Encapsulation

• Classification

• Inheritance

• Aggregation

• Polymorphism

As implied by the name, the foundation for an object oriented view is the object.

Objects includes both information (data) and behavior (code). This is in contrast to a

relational database where the corresponding foundation is the field in the table which can

only hold information (value).

Encapsulation. The view of the object always includes both information and behavior.

An object can change state without changing the information in the object. A message can

be passed to an object causing a change of state. A message can be passed back as a result

of the change of state.

Classification. By grouping objects which share some attributes a class is created. This

implies that an object is an instance of an class. Classes are organized hierarchically. In a

relational database system the table can be viewed as a class.

Inheritance. Classes inherit all attributes and behaviors from their ancestors. Class

inheritance comes from both direct and indirect ancestors. If a class inherits attributes from

a single direct parent it is called single inheritance. Multiple inheritance implies that the

class can have multiple direct ancestors. Inheritance does not exist in relational database

systems.

Aggregation. Attributes of an object can form aggregation of other objects. These can

be simple or complex objects. Simple objects are of type integer, string etc. Complex

objects can include attributes that form aggregation as well. Aggregation is a way to

describe the sharing of data and behaviors. In some application it is possible to change

13

aggregation dynamically.

Relational database systems can not handle aggregation. Changing attributes is not

normally considered possible. Though, creating a view could be in some sense like

aggregating data.

Polymorphism. This term is used to describe the concept that objects from different

classes can invoke the same method. This implies that when an object receives a message

it can take many different forms. This is important in the context of reusing software.

Polymorhism does not exist in a relational database system.

An object oriented approach introduces many nice features that do not exist in a

relational database management system. A state of the art system, created with object

oriented methods would probably be more efficient than a traditional relational system.

A major difficulty with introducing object oriented systems is that no defined standard yet

exists. It is possible to end up at a dead-end.

F. OTHER APPROACHES

A federated approach. Postgres. the successor of Ingres, is an example of a relational

system with object oriented components. Information in the database can have attributes

fonning behaviors. The concept of class and inheritance is also under development. This is

an even more state of the art approach than the true object oriented approach.

Efficiency, or rather lack of efficiency, could be a reason for leaving the relational

database management system approach. If distributed technics combined with a compiling

relational database management system is not fast enough, then a move to a traditional

compiling language maybe the only solution to the problem. This could be an initial

development on a relational system. It would take advantage of early prototyping

capabilities and. when the system is almost developed move over to a third generation

language.

14

HI. USER REQUIREMENT

This chapter describes the user requirements that are used as a guideline for the

enhanced system.

A. GENERAL

User requirements are based on existing systems (SNAP II) and proposed standards

(MIL-STD-1388-2B). When this is not applicable, requirements are based on general

reasoning.

B. SNAPD

The user requirements description is based on the existing SNAP II SFM subsystem

[SNAP -S6J. It serves as a guideline for the enhanced system. The following description is

based on the first menu in the SFM subsystem.

1. Requirement processing

By selecting the Requirements Menu from the Supply Menu the user gains access

to a number of functions for managing single line items. This includes input, issue,

ordering, status tracking, material receipt and requisitioning. All actions center around a

single line item An item can be identified by its stock number, part number/FSCM or by

Money Value Only data. Basically, all actions from the discovery of a need for a new item,

throughout the whole life time of that item could be monitored. These include:

• Material request.

• Approve/reject request.

• Forward request.

• Material transfers (tum-in and issue).

• Issuing of reversal.

All transactions that are necessary for the item's history are recorded. By doing

this it is possible in the SFM system to monitor the status of a requisition. The request can

1?

be partially changed or rejected before it gets approved. Once the request is approved it

stays in the system. Approved requests that are not performed cannot be deleted. If an item

is changed between the time it is requested and it is received, necessary changes can be

made. A wide variety of reports can be accessed through the requirements menu:

• Print all 1250 request documents.

• Print all requests.

- Print all not approved requests.

• Print all completed requisition.

• Print all outstanding requisitions.

Tt is usually possible to restrict the listings by certain keys including workcenter,

dates and status.

2. Inventory

The Inventory Menu, selectable from the Supply Menu, enables the user to

monitor the number of items in stock. The system provides the user automatic reorder

processing. Reorder suggestions are based on high and low allowances in stock and can be

changed by the user. Each reorder has to be approved before it goes into action. Reorders

can be made on items individually or by groups. The inventory system handles both

Coordinated Shipboard Allowance List (COSAL) items and demand based items.

3. Financial management

The Financial Management Menu provides the user with functions for

Operational Training and Readiness (OPTAR) funds management and issuance of financial

reports. The user can make obligations and grants adjustments and produce various reports.

The system also handles reversing obligations. If an obligation is reversed the appropriate

values in the financial files are changed. Obligations are identified by their request or

requisition number. Obligation adjustments can be made by changing the fund code and/or

amount. If the request does not exists an A! H)L may be processed. The AUOL screen gives

16

the user access to enter information such as Requisition Number, Cosal Type. Fund Code,

Document Identifier, Priority Code, Unit of Issue, Quantity, Extended Money Value and

Requisition Completion Date. Producing a new budget and periodic updates are not

provided by this menu. Reports include:

• Summary Fund Code Difference.

• Budget OPTAR and Summary.

• Financial Transmittal.

4. Supply control

This menu is the Supply Officer's tool. By accessing this menu the Supply

Officer can manage new users. He can change the access level on users and create history

files, update COSAL types and handle repair parts management. When adding a new user

the Supply Officer has to provide the access level for the user including:

• Authority level.

• Deleting capability.

- Menu depth.

• Work center.

• Division.

- Department.

The access level for each user is stored and menus are displayed in accordance

with the specific level of access. The supply officer can also perform limited actions on the

Budget Record

5. Integrated Logistic Management(ILM)

This is the highest level of access. It is given to the Subsystem Manager. Some

of the menus under this menu can be assigned to different subordinates. New configurations

are created through this menu. Initiation of the new budget year, adding new accounts,

changing General Access Levels, and Technical Documentation Management are all

performed in this menu Defining a new Inventory Section includes both defining the

section and defining the items belonging to that section. This action implies that the user

must be able to change the existing sections as well. When inventories are relocated

appropriate reports are printed. No records for previous locations are maintained. A very

wide variety of reports including calculations are accessible from the Integrated Logistic

Management(ILM) level:

- Inventor)' Reports.

- Inventoiy Work sheets.

• Shortage Calculation Reports.

• Single Item Release Document.

- Material Receipt List.

Other important functions are:

• Add/delete Allowance Parts Lists(APL) to/from critical Equipment list.

• Security management of subordinates for accessing different ILM menus.

• Double Clerk inventory management.

- Establish ship in Integrated Logistic Operational(ILO) report.

C. REQUIREMENTS EOR A LOGISTIC SUPPORT ANALYSIS RECORD

MIL-STD-J 388-2B [MILS 91] describes Data Element Definitions (DED), data field

lengths, and formats for Logistic Support Analysis (LSA) record (LSAR) data. DOD

contractors are required to use this standard to provide physical and logical breakdowns of

delivered system and subsystems. The standard is described and discussed further in

l.Existing relations in MIL-STD-1388-2B on page 26.

D. CALS CONCEPT

CALS stands for Computer-aided Acquisition & Logistic Support. CALS is a

Department of Defense initiative that addresses the need to transition from the paper

intensive handling of information to handling based on digital data [MOLI 91]. The idea

covers the entire life cycle of a weapon system from design, through use and disposal.

18

CALS goal is to lower the overall weapon systems cost. Some of the most important issues

are:

- Increasing productivity in design, thereby decreasing lead time.

• Lowering costs of program management through streamlined processes.

• Improve quality of weapon systems, including increased reliability.

What CALS is trying to achieve is the same as what corporate America is trying to

achieve, exchanging information in digital form to increase efficiency and lower cost. The

CALS initiative involves not only the DOD but also a number of large and small companies

involved in military development and production. CALS does not invent new standards but

rather uses well-known and well tested existing standards. The most important CALS

accepted standards today involve definitions for storing and interchanging images and

standards for writing technical manuals including a mark-up language. By complying with

a parent standard all child standards must be used as well (see figure 4).

Since the CALS concept involves all logistic information related to the lifetime of a weapon

system it also addresses storing information in relational form in databases. No standard for

storing information in databases is agreed upon yet but it is most likely that the MIL-STD-

1388-2B will be accepted by CALS.

The CALS standards that affect the proposed system in this thesis are:

• MIL-D-28000 - IGES vector data.

• M1L-R-28002A - Group 4 raster data.

- MJL-D-2800? - CGM vector data.

These standards define the format for storing images. All of them are graphics

standards and provide definitions for storing images in raster format or as vector objects.

Vector objects are not useful for identifying real objects like components, implying that we

can only use these standards as image storing fonnats and not for storing relations between

components and subcomponents.

19

M1L-STD-1840A
Automated Interchange of

technical Info

MIL-HDBK-59
CALS Implementation
Guide

M1L-D-28001
IGES

MIL-M-28001A
SGML

ANSI
Y14.26M
IGES

MIL-R-28002
Raster

MIL-D-28003
CGM

ISO 8879
SGML

NPS SPO 424
Hershey's

Fonts

FTPS 150
CGM

Figure 4: Some of CALS standards

E. ARGOS CONCEPT, THE PAPERLESS SHIP

1. User interface

The user interface should work in the same manner as the existing system. The

top level screen displays silhouettes of the ships that form the battle group (fig 5). At this

stage the user selects a ship by pointing to it with the mouse and clicking.

To retrieve information concerning an item related to the selected ship, the user

has to navigate through the ship's structure until he finds the item he is searching for. For

example, if he is interested in the ship's engine he would navigate through the ship's

structure (ship -> engine room -> engine (figure 5) until the engine is displayed. If he

desires to go deeper in the search he can select the engine and an exploded view of the

engine will be displayed (figure 6).

20

Figure 5: Initial screen

At this point the user has the option to retrieve Allowance Parts Lists (APL,

COSAL and/or Equipment Identification Code(EIC) information about that item (the Gas

Turbine Engine). If he wants to order this item he clicks on the order button and an order

form will be displayed. If he wants to order a subpart (High Pressure Turbine Nozzle) he

has to select the item, resulting in a detailed image of the item being displayed. Thereafter

he can order that specific subpart.

When the order form is displayed the system will fill in all the fields that have

corresponding values in the database (figure 7).

21

Figure 6: The user has found the item he is searching for

The implementation of other modes of operation of the system is handled in a similar

manner.

2. Functional specification

The following specifications shall apply:

• The user shall be able to insert a new item in the model and link that item to the ship.

If there exists corresponding APL.COSAL or EIC information the system shall be able

to create, given the link data from the user (i.e. the corresponding APL Key, etc.), a

link to that infomiation.

• The user shall be able to delete an item from the model. When deleting an item the

system shall delete all links that are associated with that item. Only the specified item

is deleted, leaving all sub items intact. The user shall also be able to delete a link to an

item, leaving the item in the model untouched.

22

Navsup Form 1250-1

1 Req Date 2 Dept No l . Urgy 4 .RDD 5 Location 6. SIM
NON-SIM

|7.lfsue Date A.Reqn Qty B. Reqn No

1

8, Noun Nam* / Ref Sym 9 FPR 10. APL/AEL/CID 1 1 . Inv Qty 12. NIS

N/
C. Obi Amt D. Posted

: Reqr. 0/s[_

Optar Log|

Issue

Job Control Number
17. UIC Id „-T 15 JSN

16. EIC 1 7. Equip Cosal Suppt'd

,- I 1 1

E.

URG
MARTYES |_ NO |_

1 8 SC 1 •?
. COO 20. MC Stock Number

" 21.FSC 22. NUN 23.SMIC
24. 23.

U/l QTY
26. 27
Unit Price Extended Prioe Fund

1 1

2?. Remarks 30. APPROVED BY

31 RECEIVED BY

N 1 T
DOC

IDENT

RTG
IDENT

I 1 ' UIC Jul Date Serial I-

E

C

Supp

Address

S Fund Dist

G

Pro.l F

P

1

F:

D

D

A

D

ill

e) o d> ge ^
^%3 r—n AV (

RLim)(RP PROU i ra
t- *

| f

Figure 7: Form for ordering an item

The user shall be able to change an item. This could be performed by changing links,

changing images, changing buttons or changing fields.

The user shall be able to navigate through the ship's structure.

Buttons will be displayed only if the execution implied by selecting them is

meaningful/possible at that level.

From each display the user shall be able to retrieve the corresponding APL, COSAL
and EIC information, if such information exists.

From each display the user shall be able to change the corresponding APL, COSAL
and EIC information, if such infonnation exists.

From each display the user shall be able to delete the corresponding APL, COSAL and

EIC information, if such information exists.

The user shall be able to insert new APL. COSAL and EIC information.

2?

3. System requirements/constraints

The following requirements and constraints apply:

The system shall operate in the current user environment (i.e. no organizational

changes will be needed).

The system shall not propose any changes to the current structure of the APL, COSAL
or EIC databases.

From the point of view of the user, the APL, COSAL and EIC databases will continue

to exist as separate databases.

Buttons, fields and image pointers should be stored as a part of the local changes to

the APL, COSAL and EIC databases.

The system shall support storing APL.COSAL. EIC and images on a permanent media

(CD-ROM).

The system shall support storing local changes without changing the original data.

The system shall support accessing SQL databases outside the working environment.

The system shall be defined so that it is possible to develop the user interface on

different computers.

24

IV. RELATIONS, TABLES, AND PROCEDURES IN THE
ENHANCED SYSTEM

This chapter describes the relationships between the stored images, buttons and

procedures and the existing stored information. It also describes procedures (pseudo code)

necessary to manipulate the information.

A. GENERAL

It is important to keep the logical relation in the existing systems, regardless of

whether that system is the existing SNAP II SFM subsystem or a future system complying

with CALS specifications. DOD MIL-STD-1388-2B is assumed to be the relational

structure for database information. SNAP II is not in compliance with SLAR standards so

relationships, in the proposed system, are described both with respect to SLAR and to

SNAP II. Relations to this information are described in the relational tables below. For

consistency reasons the SLAR definitions for items are used.

Assembly: A number of parts or subassemblies, or any combination thereof, joined

together to perform a specific function.

Attaching part: An item used to attach assemblies or parts to each other or to the equipment.

Component: An assembly or any combination of parts, subassemblies capable of

independent operation in a variety of situations.

End article/Product: A component, assembly or subassembly being procured as the top item

of the contract.

End item: A final combination of end products which is ready for it's intended use.

Some extended definitions are introduced.

Individual is defined as something that for one or more of the following properties is true.

* Its parent is an item (works recursively).

* Its child is an item (works recursively).

* It can be displayed.

25

• It can be ordered.

• It has a price.

• It can be counted.

• It is an inventory.

This implies that the set of objects in the MIL-STD-1388-2B are a subset of

individuals. All objects in the MIL-STD-1388-2B are individuals but not vice versa. An

individuals^ only reason for existence can be to relate objects in the standard to each other.

B. RELATIONAL SCHEMES

I. Existing relations in MIL-STD-1388-2B

The existing standard is based on the idea of storing one structure of a system. It

is created for the purpose of storing the structure in a digitized media. The standard has the

flexibility to add information about new and alternative versions of components. It provides

relations to attach additional general information to components. This information includes

stock number, prices and similar information. There are also tables to store statistic

information about the system and its components The relation between a parent component

and a child component is hidden in the Logistic Support Analysis Control Number(LCN)

(figure 8). The upper limit of numbers of alphanumeric characters in the LCN field is

18.The numbers define the relations. In figure 9 the A in the LCN code stands for the

overall system, the TRUCK. As the system is broken down further the number of used

alphanumerics in the LCN field increases. By looking at the value in the LCN field it is

possible to see the parents and grandparents all the way up to the root of the system. The

Alternate LCN Code (ALC) gives the ability to store alternative designs. For example two

different engine alternatives. Usable on code (UOC) are used if specific items are used in

more than one place. This does not apply if the items are the same but require different

maintenance or differ in other important aspects. There is a possibility to create both

physical and logical system break-downy in the MIL-STD-1388-2B. see figure 10. An

26

A

End Item

1 1 1 1

A01

AIRFRAME

A02

POWER PLANT

A03

ELECTRICAL
SYSTEM

A04

PECULIOR
EQUIPMENT

1 1

AtHOR

FORWARD
SECTION

AIM 09

AFT
SECTION

AOl 10

ENGINE

A01WA

TAIL ROTOR
A0109B

GEAR BOX
A0109C

DOOR

Figure 8: Classic LCN assignment method

antenna has the physical location on the turret, but logically it belongs to the

communication system. In that case the item related information is stored only once.

The standard also provides a guideline for developers, who have the responsibility to create

and provide the relational data together with the product.

One drawback of the MIL-STD-1388-2B is that it does not provide relations for identifying

unique objects. Assume, for example, that we want to identify a system and attach a history

to a component. Every time something happens to the system or a component in the system,

we want to log that event and attach it to the correct component. Nothing in this standard

supports this concept. Another questionable construction of the standard is the way

relations are described. All relations are based on the numbers in the LCN and ALC fields.

This restricts the number of levels that could be used to describe the system. It also makes

it difficult to change relations by insetting, or deleting levels. Two parent relations are

27

LCN
LEGEND ALC

A203 03 "*"

FUEL PUMP

-ABC RN4
uoc

REFERENCE
NUMBER

Figure 9: Item key fields in the MIL-STD-1388-2B

possible only when creating two different breakdowns. The standard does not directly

support storing images together with the text information in the fields.

At this point it is clear that some improvement have to be made in order to support the

requirements. Possible enhancements are discussed in the next paragraph.

2. Basic building blocks for the enhanced standard

The small system in figure 1 1 is used as an example for describing the enhanced

system. This example is a simplified entertainment system onboard a Navy ship. It consists

of a broadcast unit, two small room units, one large screen room unit and attaching wires.

The attaching wires, both in the room units and between the room units, together with the

TV's (but not the VCR's) and a Commanding Officer (CO) broadcast unit are a part of the

entertainment system as well as part of the CO broadcast system. AH the wires are also a

28

PHYSICAL LOGICAL

A

HOWITZER
A

HOWITZER

i

AOl

BODY
A02

POWER
PACK

A03

COMMUNI-
CATION

i

AW

TURRET
A02

POWER
PACK

A03

CAB

1 1

AOIOI

ANTENNA
A0102

PERISCOPE
A(>?01

RADIO

A0302

LOADER
ASSIST

1

A0301

RADIO

A03O2

ANTENNA

Figure 10: Physical and logical breakdown

part of the wiring system, so there is actually an almost unlimited number of systems that

can use the components in our system.

The most important part for the functionality of the system is how the relation

between a parent and a child is described. Since this thesis is using the relational database

technique as a preselected technique for storing information, other tecliniques like

hierarchic, network and object oriented are not discussed. Relations between a parent item

and a child item can be described only in one way if the system is to take advantage of the

flexibility of the relational database management system. There are two different columns

(figure 12), one called parent and one called child. New relations can be added by adding

a new line in the table. Relations can be deleted by deleting a line in the relational table.

Only the available storage on the system limits thp number of relations that can be

29

Note: All VCR's has subparts listed

STTRPART fJimPART H *»<r

ENTERTAIN-
MENT
SYSTEM

1 1

ENLISTED
MESS

ENLISTED
MESS

BROADCAST
ROOM

WIRES

1n
VCR TV CONNECTING

WIRES

1

VCR TV CONNECTING
WIRES

1

SITBPART_A SUBPARTJ3 CAMERA VCR

1

Figure 1 1: Structure used to describe the enhanced system

described. One table could be used for all systems (this could be restricted for other

reasons). The techniques used in MIL-STD-1388-2B, using the LCN code, are lacking the

flexibility that the parent-child relation provides.

Some of the most important requirements affecting the building of the system are:

* Flexible relations.

- Multiple parents and cross relations.

• Possibility to identify individuals or default to basic type information.

- Possibility to relate images.

The first two requirements in the bullet list are solved by using the child-parent

relation. The third one is more difficult.

30

PARENT-CHILD

PARENT CHILD

Entsyst Enl_mess_l

Entsyst EnJ_mess_2

Entsyst Broad_cast

Entsyst Wireset_l

En!_mess_1 VCR_1

Enl_mess_l TV_j

VCR_2 Subpart_F

Figure 12: Parent-cliild relation in a relation table

Assume the initial system is described in our tables as a basic system without individuals.

This implies that our VCRs are only stored once. The parent-child relation from the two

rooms containing the VCRs relates to the same object (see figure 13). The task now is to

create additional relations so that the VCR's become individuals that can have attached

information. Since the rooms where the items are stored are not individuals they must

become individuals as well. This principle applies all the way up to the root of the system.

Creating an individual from a VCR does not make sense without having defined the ship,

the system and the rooms the VCR's are in. If the VCR becomes an individual it does not

imply that it's sub components have to be individuals as well. Every individual in the

database has to be defined as a relation to its parents. This is also necessary for other

reasons like counting the number of items <>f a particular identity. What about different

31

ENTERTAIN-
MENT
SYSTEM

ENLISTED
MESS 1

ENLISTED
MESS 2

BROADCAST
ROOM

TV CONNECTING
WIRES

CAMERA

Figure 13: Different parents pointing to the same child,

thus beeing different individuals.

parent systems? Do they have to be individualized as well? Let's look at an example. As

shown in figure J 4, a TV stored in the Entertainment System is stored as two individuals in

the CO Broadcast system. This indicates an inconsistency since we are referring to the same

object even if it is stored as different objects. If we would like to change TVT to an

individual it has to be done on both the CO Broadcast system and the Entertainment system.

This is not satisfactory.

A better approach is to reflect reality in the initial relational table, letting each object be an

individual. The overhead for doing this is minimal compared with the complexity of

changing the objects each time an individual is created. A conceptual view of this example

system is in figure 13. The biggest advantages of this system are:

* Reflects reality.

32

Identical rooms
Separate entities

ENTERTAIN-
MENT
SYSTEM

CO
BROADCAST
UNIT

1 1

ENLISTED
MESS 1

ENLISTED
MESS 2

CAMERA WIRES

VCR TV CONNECTING
WIRES

^^^^
>.

Identical VCR and TV's
the same entity

Figure 14: Inconsistencies in multiple parent systems.

- Intuitive.

- Less run time changes of relations when creating individuals.

Can this idea handle changes and describe alternative designs? Since the basic

idea of the system is to reflect the real existing system a change of a subcomponent will be

reflected by changing the relation. This thesis is not explicitly addressing alternative

designs. One direct method of doing this is to create a different relational table for an

alternative design. The problem with this method is that with many alternative designs

there will be a "lot of" tables. A better method is to store alternative designs in the original

relation. This requires an additional column in the parent-child relation showing which

alternative design is being used. This must also be reflected in the display so that the user

can select the desired design. Relational diagrams and Tables for this system are shown

later in this chapter.

33

ENTERTAIN-
MENT
SYSTEM

Note: All VCR's has subparts listed

SUBPART_C,SUBPART_D etc.

ENLISTED
MESS I

ENLISTED
MESS 2

VCR 1 TV 1

BROADCAST
ROOM

I

WIRES

CONNECTING
WIRES 1

VCR TV CONNECTING
WIRES 2

SUBPART A SUBPART B CAMERA VCR 3

Figure 15: Conceptual view of the final system

The forth and last requirement on the list is to include images in the system. The

system shall be able to handle images showing the different components in the system. The

system shall also be able to handle a point and click method to traverse the information.

Assume that we have an image showing the Entertainment System. Each of the objects on

this image must have a button on the image for each subcomponent (child). A list of

subcomponents could be substituted for the button. The ideal is to have an image where the

buttons are located above the displayed subcomponents (invisible). This requires that

someone (developer?) relate the subcomponent buttons to the correct place on the image.

Since a subcomponent can be displayed on more than one parent image, the same

34

subcomponent must be able to relate to more than one button and more than one image. The

same component image shown on the display, can be related to different real objects.

Compare the TV's in the different rooms (figure 14). This points to a solution where the

images do not show the relations as in the existing ARGOS system, but only reflect what

are in the tables describing the parent-child relations. The unique information of an object

is reflected in the parent-child relation so the button location will naturally go in as an extra

column in that table. This creates overhead since some of the images are the same. This

overhead is acceptable since the alternative, creating an image-button table, wastes storage.

35

3. E/R DIAGRAM

fTJoesmrf tiecessailv 'SxiSf 1

1-1

0-J

0-1

1-M ^Parent-\^ 0-M
Child

TYPE
OBJECT

(^Prope rties^)

Cross- ^*v 1-M APL/
COSAL/
EIC

reference ^

1-1
.^"v.

"Xross-^ LCN
reference ^>

Figure 16: E/R diagram for the basic system

36

C. TABLES

Every time the user is traversing the system the PARENT-CHILD table (table 1) is

used to move from a Parent ID to a Child ID. The Child ID then becomes the new Parent

ID. The Parent ID is used in the ID-REAL table (table 2) to relate to a specific object

(Type_ID). Neither the ID nor the Type_ID numbers have to be meaningful to the user.

They are only used for relating objects. The Type_ID number is used in the

SPECIFICATION table (table 3)to retrieve the actual image and to store general

infonnation about that component. It is not necessary to use the INDIVID table for storing

the existence of an individual if no individual information is attach to the individual. This

is under the assumption that an object without a parent-child relation does not exist. In the

proposed system all objects are defined as a tuple in the INDIVID table (table 4)as well as

in the ID-REAL table even if no individual information is attached. When an image is

displayed the ButtonLoc for all Parent ID's is retrieved and stored on the image together

with Child ID for that button.

1. Parent-Child

Field description:

Parent ID: Used to identify an individual. Unique for the individual and

generated by the computer.

Child ID : The same as Parent ID

ButtonLoc: Describes the location of the button on an image. Described as upper

right and lower left comer as a percentage of the overall length and width of the image.

PARENT-CHILD

Parent ID Child ID ButtonLoc

Table I : The parent child relation tob'r

37

2. Type - individual relation

Field description:

ID: Used to identify an individual. Unique for the individual and generated by the

computer.

Type ID : Many individuals can relate to the same type of object. This is an one-

many relation implying that the table could be replaced by an extra column in table 4.

ID-REAL

ED TypeJD

Table 2: Relation between the individual objects and TypeJD

3. Type related information

Field description:

Spec: Many Id's can relate to the same type of object. The Spec is the code for

an object type (like a specific TV type).

Name: The specific type object has properties. Name is one of them.

Image: Stores the information about the location of the image (could be the path

to the image).

Other spec: Columns can be added for each of the additional infonnation items

that need to be stored about the objectField description:

SPECIFICATIONS

Spec Name Image Other spec

Table 3: Relations between real objects, images and descriptions

38

4. Individual related information

ID: Used to identify an individual. Unique for the individual and generated by the

computer.

Status: One example of individual information.

Textpointer: Can be the path to a block of text describing the history of the object.

INDIVID

ID Status Textpointer Other info

Table 4: Stores individual information about objects

D. PROCEDURES

This section describes a selection of procedures in the enhanced system which

perform different actions on the database. All procedures are described with pseudo code.

Access to information in the database is always executed using ANSI SQL IANSI 891.

Procedures are also described based on a user interface that allows users to point and click

on images. When an action (order, change status, delete etc.) is performed on an item, it is

performed only on the item displayed. This gives two different approaches for the user

interface. First, the exploded view of an item serves as the substitute for the large image on

the selected item. This approach will speed up the traversing of the system. Second, when

clicking on an object, an enlarged view of the object can be displayed. This enlarged view

gives access to perform actions on the actual object. One action is to explode the object.

When the object is exploded the user can continue to traverse the system. By selecting the

second approach some additional problems are introduced into the system.

• AM objects are not individuals or one individual has more than one image attached.

- If the system allows both methods inconsistencies occurs in the system.

- If the system does not allow both methods manv extra images must be ciented.

39

1. Procedure Navigate

Objectives: To navigate in the existing systems. The current path, during the session,

is always saved, making it possible to traverse back to the root. This is necessary since the

system accepts multiple parents.

CODE:

Read button_click from user

Put result into current_id

Append current id to currentjpath

SELECT TYPE_ID

FROM ID_REAL

WHERE ID = current_id

Put result into current_type

SELECT IMAGE

FROM SPECIFICATIONS
WHERE TYPE_ID = current_type

Put result into current_image

Retrieve image using current_image

Repeat

SELECT BUTTONLOC
FROM PARENT_CHILD
WHEPF PARENT_ID = current_ID

Put result into button_loc
Create button using button loc

end repeat

40

Create default buttons

2. Procedure CreateLink

Objectives: To create a new relation in the system. Normally relations are created

by suppliers of system. This procedure is used when attaching different systems and

individual components to the ship. Three different, or combination of, cases exist:

1. Create a new individual and a new type. Initially a new image is created. The

user is asked to point to the image and name the type. A unique type_id is created and the

type information is written to the database. Next step is to query for the location of the

button that gives the path to the new child. After creating an unique individual ID, the

relations between parent and child, new item and type id, and individual information are

written to the database. As a last step the new button is created.

2. Create a new relation, in the database between two existing items. To perform

this the user only has to move to the parent item and give a unique id to the child. This is

accomplished after the parent is entered in the database.

3. Create a new individual using a existing type. The user provides the button

location and the ID of the type that is supposed to be used. This is saved in the database.

The following code shows 1 above. 2 and 3 are subsets of 1.

CODE:

If necessary create and store new child_image
Ask user for type of link

Create unique type_id Should be performed by accessing
the database

Ask user for type_infol

INSERT INTO SPECIFICATIONS
VALUES (type_id, type_infol, child_image, type_info2)

Create new unique child id

41

INSERT INTO ID_REAL

VALUES (child_id,type_id)

INSERT INTO INDIVID

VALUES (child_id,NULL)

Display parent_image and let the user point out the but-

ton__loc

INSERT INTO PARENT_CHILD

VALUES (current_jparent , child_id, button_loc)

3. Procedure DeIete_Link

Objectives: To delete a relation in the system. Normally a deletion is performed

on the relation between the displayed image and its current parent. This is done when

changing the system (i.e. changing inventory). If a parent-child link is deleted there is a

possibility that the database could hold items (relations) impossible to reach. A special

procedure that checks the database for inconsistencies alleviates this problem.

CODE:

DELETE FROM PARENT_CHILD

WHERE PARENT_ID=parent_id AND CHILD_ID=child_id

4. Procedure Attach_Info

Objectives: To attach individual information to components in the database. This

is always performed on the displayed image.

CODE:

Retrieve individual information from the user

Put result into text_field
UPDATE INDIVID

SET TEXT POINTER=text field

42

WHERE ID=current_id

5. Procedure Statusreport

Objectives: To show an example of a report. This report counts the number of

chairs that do not need repair. The counting of items and similar procedures always assume

that inconsistencies do not exist in the database.

CODE:

SELECT COUNT (
*

)

FROM INDIVID I,ID_REAL R, SPECIFICATIONS S

WHERE I.ID=R.ID AND S . TYPE_ID=I . TYPE_ID AND S . NAME= ' chair

'

AND I .STATUS=' OK'

43

V. IMPLEMENTATION

This chapter describes a general way of looking at a distributed "non tactical" system

onboard a ship. It also gives an example of a process for distributing information in a

logistics system.

A. GENERAL

1. Ideas for building a distributed system onboard a ship

As mentioned earlier many of the problems involved in distributing information

have not been solved. Despite this, there are several general reasons promoting distribution

of information.

Availability. If one part of the ship is damaged or a computer fails it is important

that accurate information be available elsewhere. At first glance it could look like it is of

little importance to have information about a completely damaged section available, but the

information could hide important statistics useful for avoiding problems in the future. To

make sure that information be available on more than one site, information has to be

duplicated. The updating of information has to be carried out on more than one site with

well defined frequencies. Frequency could be defined differently for different kinds of

information (i.e. directly, every minute, every hour, every day). The trade-off for doing this

is that eveiy update has to be carried out in more than one place using both network and

computing resources. If a system is large and widely used, the network capabilities could

be the most important part of a distributed system. Redundancy in a distributed system

usually implies less response time when asking questions. It is more likely that the

requested information is closer to the user so responses are normally faster.

Efficiency. By distributing the information it is possible to customize the system

for efficiency. Tn a fully distributed system there is no single duplication of information.

Tables, or parts of tables are located on different sites. It should be possible to carry out

44

Three identical databases.

Eveiy update made on one
database is carried out

on all tluee.

Advantages:

Reliability

Fast retrieval

Easy to construct

Disadvantage:

Slow updates

Figure 17: Full redundancy

frequent requests on a users personal system. Less frequently asked questions are allowed

to go outside the users own environment. Every update has only to be carried out once. A

major drawback with a fully distributed system is that lack of connection to a site that holds

necessary information makes the execution of a task impossible. A list of advantages and

disadvantages with a distributed system is showed in figure 18.

It is clear, that a redundant and efficient system is a hybrid between a centralized

and distributed system, having all or parts of information duplicated at one or more

locations.

To determine where and how information will be stored is a tedious job that involves users,

technicians and system designers.

4?

a
Three different databases.

No duplication of data
Advantages:

Fast updates

Less use of space

Disadvantages:

Low reliability

Complex to con-

struct

Long responstime

for nonlocal que-

ries

Figure 18: Fully distributed

Design . There are a lot of methods and tools available for designing information

systems. Most of them deal with information flows based on needs to execute specific

tasks. Specific tasks may include:

• Order an item.

• Move an item.

• Change inventory.

- Deliver an item.

Very few information system developing methods and corresponding tools deal with

redundancy and efficiency problems.

46

B. DISTRIBUTED SYSTEM ONBOARD

The previous section showed clearly that a working system must have duplication of

information to increase reliability. It also showed that each duplication that is made must

address:

• Efficiency with respect to updates.

• Efficiency with respect to queries.

• Reliability.

The following shows a sample of necessary steps to create a distributed system

onboard a ship. Parts of this description include processes that are carried out during normal

system development.

I .Start by dividing the ship into functionally autonomous units. Typical examples

could be supply, onboard communication, external communications, and weapon systems.

2. Each unit must, independently clearly define what information are necessary to run

the unit

3. The next step deals with interaction between units, Infonnation flow between units

must be described. This description should include both the content and frequency of flows.

The first three steps are found in almost every software engineering process. The next

step directly addresses distributed issues.

Not all information flows have to be implemented as actual flows. In several cases it is

more efficient to share a particular storage in the database. So when an update is made the

infonnation is not transferred, rather a note is sent to the receiver that an update was made

to the database. This note could generate a series of actions at the receiving end.

4. Divide the list of information flows, into two separate lists, one for information that

should be transferred and one for information that should be shared.

5. Concentrate on shared infonnation. Construct tables and procedures so that they

match all units sharing the infonnation. At this stage it is best to assume that each unit has

47

it's own database and tables even if they are sharing the same hardware. Shared infonnation

could now be stored on a single site or duplicated. Figure 19 shows the logical

EIC_table

EIC# NAME DEP

123456 Bull 1

111222 Nut 1

222333 Screw 1

333444 Washer 1

EIC_table

EIC# NAME DEP

234567 Desk 2

555666 Lamp 2

777888 Raiser 2

999000 Pen 2

Figure 19: Horizontally fragmented tables

fragmentation of a database holding infonnation about EIC items. The left table is owned

by Department 1 and the right by Department 2.This is called horizontal fragmentation.

Some RDBMS (but certainly not all) can by default handle this fragmentation without

concerning the user. In those cases one site (database) is the master database, keeping track

of all fragmentations. Only by empiric calculations and extensive testing it can be

determined if access and update times are acceptable. If access tunes are not acceptable, the

shared information must be duplicated in both sites. If update times are too slow

information should be moved to one site. If both are too slow, the problem must be solved

by changing hardware or software or totally rearranging tables and procedures.

6. When data is separated logically it is necessary to deal with physical location.

Physical location of data must not necessaiy coincide with logical location. However, it is

preferable to let logical and physical location be the same.

7. Duplication of data for reliability reasons must be dealt with separately. Each

logical unit should determine the consequences of lost communication links, hard disk

48

failure and other run time interferences. Solving this problem involves either backups or

more duplication of data.

8. Finally, new calculations and test must take place.

C. DISTRIBUTED SYSTEM WITH RESPECT TO OTHER UNITS

Another approach is necessary when dealing with the interaction between units which

are not normally connected. Information can be brought from one unit to another many

different ways. This can include using tapes, broadcast, oral, paper, and other not directly

digitized communication medias. This may be especially necessary on a ship where radio

silence is a must. Here infonnation flow is the key. By clearly defining the information flow

between units, including frequencies and volumes, it is possible to build interactive

systems. If each unit carries it's own infonnation needs, and information flow is based on

possible communications, an 'up to date' information system can be achieved. Figure 20

shows an example of format definitions for infonnation interchange between units.

40

^—

-

® F3

FROM:UNIT34
TO:UNlT 11

BY:AIR
DATAMEDIA: TAPE
FORMAT: ASCII

FREQUENCY:DAILY
CONTENTS:TABLE 123.56, 138.66, 345.76

Figure 20: Information flow based on agreements

50

VI. TEST SYSTEM

This chapter describes the test system which is provided in the appendix. It explains

tables and procedures. It also gives a short user manual for the system.

A. REQUIREMENTS FOR THE TEST SYSTEM

The test system is created for the purpose of showing the utilization of the most

important parts of the enhanced system.

Separation of data and user interface. To implement the system, even in a test system,

it is necessary to show that it is possible to separate the user interface from the stored data.

This is necessary not only with respect to stored data about logistic items but also in tenns

of storing user access paths, creating of unique ID's and other system dependent variables.

If as much access as possible is through SQL, user interfaces for additional machines are

less complicated to develop.

Use of a well tested commercially available RDBMS. By using a well tested database

with network capabilities it is easy to expand the test system from a fairly inexpensive

hardware configuration to a fully developed prototype. The selected RDBMS must

therefore have working system configurations for at least personal computers (Macintosh,

IBM PC), workstations, terminal based mainframes (IBM, VAX) and large mainframes. It

is also necessary for the selected RDBM to have a SQL language as close as possible to the

ANSI standard. Network capabilities should initially be easier to use than solving

complicated distributed queries.

Use of an easy programmable user system tool. To make it possible to easily

implement the enhanced system it is preferable to use a tool that it is both commonly used

and easy to learn. In the first stage, speed is not the highest priority. It is also important that

future work can easily be carried on by other students at NPS.

B. SELECTED TOOLS

The test system is developed using Oracle 1.2 as the RDBMS. The system is

implemented on a Macintosh running system 7.0. The access tool for Oracle on the

Macintosh is HyperCard. There is also an Oracle C precompiler (ADA and Pascal as well)

for Macintosh systems that could be used to create regular Macintosh applications. Oracle

1 .2 is created for system 6.x but all tested Oracle calls work fine on system 7.0 after

converting the hypercard stacks from 1.2 to 2.1. Some external functions and commands

(ResCopy. etc.) used in the stacks will not run on system 7.0 and have to be replaced. The

database has to be initialized using the Oracle shell tool to run on system 7.0. It is likely

thnt the test system will nan on Oracle 2.0 without conversion.

C. TABLES USED FOR THE TEST SYSTEM

I. Tables

Formats for table columns are listed as they are used by the Oracle RDBMS.

Format 'NUMBER' used by ORACLE is the same as format 'NUMERIC defined in the

SQL ANSI standard.

PAR_CHI is used to describe the relation between two items in the system. Each

relation is represented by a button on the parent image. The location of the button is

described in HyperCard window coordinates. Another way of doing this is to use a

percentage of the size of the original image.

PAR_CHI

PARENTJO CHILDJD X_LOC YJLOC HEIGHT WIDTH

NUMBER(10,0) NUMBER(10,0) NUMBER! 10,0) NUMBER(10,0) NUMBER(IO.O) NUMBER(10,0)

32

CURJPATH is used to describe the current path for users accessing the system. It could

also be used to save different paths used by users or the system.

CUR PATH

PARENTJD CHILDJD USER_ID

NUMBER* 10,0) NUMBER(10,0) CHAR(JO)

SPEC is used to store information about types. Each type has a name and an image

related to the type. The image is stored as the full path to the file containing the image. Images are

stored in Macintosh 'PICT' format.

SPEC

TYPEJD NAME IMAGE

NUMBER(10,0) CHAR(50) CHAR(70)

ID REAL is used to relate individual items to their corresponding types.

ID_REAL

ID TYPEJD

NUMBER! 10,0) NUMBER! 10,0)

INDIVID is used to store individual information about an item. This table represents

tables that could be used to hold history and other interesting individual information about items.

This table could also be expanded to include relations to external databases (COSAL, EIC etc.).

TNDTVTD

ID STATUS

NUMBER) 1 0.0) CHAR(JO)

53

ITEM_ID is used to keep track on the latest issued unique individual ID. This

table as implemented never exceeds one row. This solutions will not provide reuse of ID's.

ITEM ID

NUM

NUMBER! 10.0)

TYPE_ID is used exactly in the same manner as 1'1'EMJD.

TYPE ID

NUM

NUMBER! HMM

O. TECHNIQUES USED IN PROCEDURES

All procedures are written on the background script in the TurboArgos 2 stack. The

size of the HyperCard stack that holds the program never exceeds 2 cards during a miming

process. The start size of the stack is slightly less than 200 K. Each time an action involving

a traversal of the stored system is perfonned, the previous card is deleted before a new card

is created. All variables except the current card ID are passed between procedures. The

current card ID is a global variable.

Log on procedures are perfonned using the provided template procedures. After starting

and logging on to Oracle the first image and corresponding buttons are retrieved. Create

new link button, display type info button, etc., are default buttons which are always

displayed.

Unique ID's are created by storing an integer value in a table that holds the next available

ID. Each time an ID is used, the stored integer value is incremented.

When creating a link to an existing type or item, the user has to use the unique ID to point

out tbe path to the new item.

54

The HyperCard environment provides a lot of ways to exit the system without using the

entrance procedure. To make sure that changes made to the database are always saved,

commit is done after each update. This slows down the system. It could be changed to

commit after each session, encouraging the user to exit the appropriate way. No

inconsistency checks are performed on the database. It is possible to create infinite paths

and other illogical information.

E. SHORT USER MANUAL

t. NAVIGATE

To navigate to a displayed item just point and click on it. To go back up to the

parent press the up arrow button in the upper left comer.

2. DISPLAY INDIVIDUAL INFORMATION

Depress the magnifier button. This displays individual information, including

unique IDs. The individual information can be changed and stored back in the database.

3. DISPLAY TYPE INFORMATION

Depress the type button. Type information including ID is displayed. This

information can not be changed.

4. CREATE LINK

When creating a link to a new object and a new type just click on the create link

button and follow the instructions.

To create a link to an existing item first go to that item and display the unique ID

using the magnifier button. Write down the ID and traverse back to the parent image. Click

on the create link button and follow the instructions provided.

55

To create a link to an existing type first go to an item using that type. Click on

the type button and write down the type ID displayed. Go to the parent image and press the

create link button and follow the instructions provided.

5. DELETE LINK

Navigate to the child image of the link you want to delete. Press the delete link

button. Just the link through the current path is deleted.

56

VII. FUTURE WORK

This chapter describes suggested future work.

A. GENERAL WORK

It is important to keep in touch with current developments and trends in the DoD.

Annual or semi annual meetings with the sponsors at Naval Weapon Station in Concord to

check out the current state of SNAP II system development are important. The annual

CALS conference must be at least scanned for new adopted standards. Keep up to date

versions of new logistic support standards. Scan the DoD for new published standards in

the logistic and database area. New information storage tools, including object oriented

tools, should be tested and evaluated.

B. MULTIPLE PLATFORMS

The next logical step to prove the usefulness of the enhanced system is to develop a

system on multiple platforms. To facilitate this, a new RDBMS tool for the SUN

workstations must be installed. An upgraded version of Ingres, or even better, Oracle is a

logical choice. This must include tools to provide access from the Macintosh network in

the Argos lab in Spanagal 31 1 to the workstations where the selected RDBMS is installed.

The workstation version of the enhanced system could be developed using X-Windows and

ADA as the HyperCard equivalent languages.

C. DISTRIBUTED SYSTEMS

Distributed RDBMS systems are not standardized. Future work in distributed systems

involves a lot of basic research. To build a distributed test system the first step is to develop

a system on multiple platforms. This could be done using two networked Macintosh

workstations. Two local RDBMS servers have to be installed, one on each workstation.

57

APPENDIX

CODE:

PROCEDURES FOP. ARGOS 2

NAVIGATE

on navigate n«wjparent_id

put "stefan" into user

global cur_parent_id

EXECSQL "SET ERRORINDICATOR :sqlErrNum:"

Check if you are going down or up

EXECSQL "SELECT CHILD_ID FROM CUR_PATH INTO : temp :"&&-<

"WHERE PARENT_ID = : new_parent_id : and USER_ID = :user:"

EXECSQL "GET NEXT ROW"

put the result into sqlerror

if sqlerror = then

Delete path if going up

EXECSQL "DELETE FROM CUR_PATH"&&-

"WHERE PARENT_ID = : newjparent_id : and USER_ID = :user:"

else

Save path if going down

EXECSQL"INSERT INTO CUR_PATH"&&-'

" (PARENT_ID, CHILD_ID, USER_ID) "&&-

" VALUES (:cur_parent_id: , :new_parent_id :
, :user:)"

end if

put new_parent_id into cur_parent_id

Retrieve image path

EXECSQL "SELECT IMAGE "&&-

"INTO : ownpath: "&&-•

"FROM ID_REAL R, SPEC S "&&-

"WHERE R.ID = :cur_parent id: and P. .TYPE ID = S.TYPE ID"

58

EXECSQL "GET NEXT ROW" —

domenu New Card

choose select tool

import paint from file ownpath

choose browse tool

Retrieve buttons

EXECSQL "SELECT CHILD_ID, x_loc, y_loc, height, width "&& -<

"INTO :temp_child_id: , :rightloc: , :downloc: , : height : , : width: "&& -•

"FROM PAR_CHI"&&-

"WHERE PARENT_ID = : cur_parent_id :

"

repeat Create buttons

EXECSQL "GET NEXT ROW" —

put the result into sqlerror

if sqlerror <> then

exit repeat

end if

domenu New Button

set the loc of last button to rightloc, downloc

set the height of last button to height

set the width of last button to width

put "on mouseUp" & return &-•

"doMenu delete card" & return &-

"navigate (" & temp_child_id & ")" &-•

return & "end mouseUp" &-

return into laststring

set the script of last button to laststring

set shown ame of last button to false

set style of last button to transparent

set autcHilite of last button to true

end repeat

Retrieve parent

EXECSQL "SELECT PARENT_ID INTO :parentpath : "&&-

"FROM CUR_FATH"&^-

"WHERE USEF ID 'stefan' AND CHILD_ID = : curjpar ent_id :

"

59

EXECSQL "GET NEXT ROW" —

put the result into sqlerror

If parent exists create parent and delete button

if (sqlerrcr = and parentpath > 0) then

parentbutton (parentpath)

deletelinkbutton

end if

EXECSQL "DELETE FROM CUR_PATH"&& -

"WHERE USER_ID =' stefan' AND PARENT_ID = :cur_parent_id:

"

Create default buttons

createlinkbutton

gotostartbutton

infobutton

typebutton

end navigate

CREATELINK

on createlink currentpath

EXECSQL "SET ERRORINDICATOR isqlErrNum:"

answer "Select:" & return & "1. Create link to existing individual."-'

& return S "2. Create link using existing type." & return &-

"3. Create link to new type." & return with "1" or "2" or "3"

put it into choice

Get button values

answer "Please click on the" & return & "upper left corner" &-

return & "of the button" with "OK" or "Cancel"

if it is "OK" then

Get upper left corner of new button

wait until the mouseClick

put the clickH into upperx

put the clickV into uppery

answer "E lease click on the" S return < "lower riaht corner" &-

return '- "of the button" with "OK" oi "' ancel"

60

if it is "OK" then

Get lower right corner of new button

wait until the mouseClick

put the clickH into lowerx

put the clickV into lowery

end if

end if

put trunc ((lowerx-upperx) /2+upperx) into locx

put trunc ((lowery-uppery) /2+uppery) into locy

put (lowery-uppery) into height

put (lowerx-upperx) into width

Act accordingly to choices

if choice is "1" then

ask "Please enter the INDIVIDUAL ID" & return-

er "of the item you want to creatye a link to"&return

if it is empty then

exit createlink

else

put it into newpath

Store new parent - child link

EXECSQL "INSERT INTO PAR_CHI"&& -

"VALUES (: currentpath: , : newpath : , : locx: , : locy: , : height : , : width :)

"

end if

end if

if choice is "2" then

ask "Please enter the TYPE ID" & return-

& "of the item you want to creatye a link to"&return

if it is empty then

exit createlink

else

put it into typepath

put unique id() into newpath

Store new parent - child link

EXECSQL "INSERT INTO PAR_CHI"&& ->

"VALUES (: currentpath: , : newpath: , : locx: , : locy : , : height : , : width :

)

"

Store new indiv j d

6]

EXECSQL "INSERT INTO INDIVID"&& ->

"VALUE? (:newpath: , NULL)

"

Store relation to type

EXECSQL "INSERT INTO ID_REAL"&& -

"VALUES (: newpath: , : typepath:)

"

end if

end if

if choice is "3" then

answer file "Please select the next picture:" of type PNTG

put it into path

if path is not empty then

put path into pictpath

else

exit createlink

end if

ask "Ple?se enter a type name "Sreturn

if it is empty then

exit createlink

else

put it into typename

put unique_id() into newpath

put unigue_type_id () into typepath

Store new parent - child link

EXECSQL "INSERT INTO PAR_CHI"&& ->

"VALUES (: currentpath: , : newpath: , : locx: , : locy :
, : height : , : width:)

"

Store new individ

EXECSQL "INSERT INTO INDIVID"&& -i

"VALUES (: newpath
: , NULL)

"

Store relation to type

EXECSQL "INSERT INTO ID_REAL"&& -

"VALUES (: newpath : , : typepath :

)

"

Store type

EXECSQL "INSERT INTO SPEC&& -

"VALUES (: typepath: , : typename :
,

:
pictpath :

)

"

end if

62

Create new butt<

domenu New Button

choose browse tool

set the loc of last button to locx, locy

set the height of last button to height

set the width of last button to width

put numtochar (34) into fnyf

put "on mouseUp" & return &-

"doMenu delete card" & return &->

"navigate (" & newpath & ")" &-

return & "end mouseUp" & -1

return into laststring

set the script of last button to laststring

set showname of last button to false

set style of last button to transparent

set autoHilite of last button to true

answer "Link created"

end createlink

DELETELINK

on deletelink currentpath

answeL "This will delete the link between" & return &->

"this item and its parent" with "OK" or "Cancel"

if it is "OK" then

Retrieve parent

EXECSQL "SELECT PARENT_ID INTO tparent :
"&&-^

"FROM CUP_PATH"&&-

"WHERE CHILD_ID = : currentpath :

"

EXECSQL "GET NEXT ROW"

EXECSQL "DELETE FROM PAR_CHI "&&^

"WHERE PARENT_ID = :parent: AND CHILD_ID = : currentpath :

"

Go to the parent

send mouseUp to button "find parent"

end if

end deletelink

63

CREATE UNIQUE ID

function unique_id

EXECSQL "SELECT NUM INTO : number : "&&-

"FROM ITEM ID"

EXECSQL "GET NEXT ROW"

put number into tempnum

put number + 1 into number

Store the new highest number

EXECSQL "UFDATE ITEM_ID" &&-

"SET NUM = :number: WHERE NUM = rtempnum:"

return number

end unique id

CREATE NEW UNIQUE TYPE ID

function unique_type_id

EXECSQL "SELECT NUM INTO :number:"&&-

"FROM TYFE ID"

EXECSQL "GET NEXT ROW"

put number into tempnum

put number + 1 into number

Store the new highest number

EXECSQL "UPDATE TYPE_ID" &&-

"SET NUM = : number: WHERE NUM = : tempnum:"

return number

end unique_type_id

PETPIE'"'? ITTPTVTnnjw tmtt. .riir.TT- >M

64

on individual item_id

EXECSQL "SELECT STATUS INTO : status :"&& -

"FROM INDIVID "&&->

"WHERE ID = :item id:

"

EXECSQL "GET NEXT ROW"

ask "Personalized information "&"(ID = "iitem id & ".)"-»

&return&"Change information if you want" with status

Change individual information

execsql "UPDATE INDIVID"&&-

"SET STATUS = :it:"&&-

"WHERE ID = :item_id:"

end individual

RETRIEVE TYPE INFORMATION

on typefetch item_id

EXECSQL "SELECT NAME, S . TYPE_ID into : name
:

, : id_type : "&& -

"FROM SPEC S, ID_REAL R "&&-

"WHERE R.ID = :item id: and R.TYPE ID = S.TYPE ID "

EXECSQL "GET NEXT ROW"

answer name & return & " (Type_ID = "& id type & ")" with OK

end typefetch

G0T0 STABT

on gotostart

domenu delete card

execsql "delete from cur_path"S&-'

"where user_id = 'stefan' and parent_id > 0"

end gotostart

CREATE GO TO START BUTTON

65

on gotostartbutton

domenu New Button

choose browse tool

set showname of last button to false

set the loc of last button to 450,310

set the height of last button to 35

set the width of last button to 35

put numtochar (34) into fnyf

put "on mouseUp" & return & "gotostart"-1

& return & "end mouseUp" & return into laststring

set the script of last button to laststring

set icon of last button to "fleet return arrow"

set autoHilite of last button to true

end gotostartbutton

CREATE INFO BUTTON

on infobutton

global cur_parent_id

domenu New Button

choose browse tool

set showname of last button to false

set the loc of last button to 155,310

set the height of last button to 35

set the width of last button to 35

put numtochar (34) into fnyf

put "on mouseUp" & return & "" & return &-<

"individual (" & cur_parent_id &->

")
" f- return &-•

return & "end mouseUp" & return into laststring

set the script of last button to laststring

set icon of last button to "closer look"

set the name of last button to "INFO"

set autoHilite of last button to true

end infobutton

CREATE GO TO TYPE BUTTON

on typebutton

global cur_parent id

domenu New Button

choose browse tool

66

set showname of last button to false

set the loc of last button to 210,310

set the height of last button to 35

set the width of last button to 35

put "on mouseUp" & return & "" & return &-<

"typefetchC & cur_parent_id &->

") " & return &-

return & "end mouseUp" & return into laststring

set the script of last button to laststring

set icon of last button to "type"

set the name of last button to "TYPE"

set autoHilite of last button to true

end typebutton

CREATE GOTO PARENT BUTTON

on parentbutton parent_path

domenu New Button

choose browse tool

set showname of last button to false

set the loc of last button to 45,25

set the height of last button to 45

set the width of last button to 60

put "on mouseUp" & return & "domenu delete card" & return &-

"navigate (" & parent_path & ")" &->

return & "end mouseUp" & return into laststring

set the script of last button to laststring

set icon of last button to find parent

set the name of last button to "FIND PARENT"

set autoHilite of last button to true

end parentbutton

CREATE CREATE LINK BUTTON

on createlinkbutton

global cur_parent_id

domenu New Button

choose browse tool

set showname of last button to false

set the loc of last button to 45,310

set the height of last button to 35

set the width of last button to 35

67

put numtochar (34) into fnyf

put "on mouseUp" & return & return &-•

"createlink (" & curjparent id &-

")
" & return &->

return & "end mouseUp" & return into laststring

set the script of last button to laststring

set icon of last button to "create link"

set the name of last button to "CREATE LINK"

set autoHilite of last button to true

end createlinkbutton

CREATE DELETE LINK BUTTON

on deletelinkbutton

global cur_parent_id

domenu New Button

choose browse tool

set showname of last button to false

set the loc of last button to 100,310

set the height of last button to 35

set the width of last button to 35

put numtochar (34) into fnyf

put "on mouseUp" & return & return &->

"deletelink (" & cur_parent_id &-

"
)
" & return &-

return & "end mouseUp" & return into laststring

set the script of last button to laststring

set the script of last button to laststring

set icon of last button to "delete link"

set the name of last button to "DELETE LINK"

set autoHilite of last button to true

end deletelinkbutton

68

LIST OF REFERENCES

[GIAN 89] Giannotti B.B., Kevin F. Duffy, Argos: Design and development of object-oriented,

event-driven multimedia database technology in support of the paperless ship.

Thesis NPS Dec 1988, D78372

[MOLI 9 1] Moliere John P. A. , CALS STANDARDS OVERVIEW,
GTX CORPORATION, 1991

[ORCE 88] OKACLE,SQL, the quiet revolution

ORCE Systems Software, 1988

[SNAP 86] SNAP II Supply and Financial Management Subsystem, Volume 1

NAVMASSO DOCUMENT NO. S- 1059-005, SB-001, 1986

[TARI 92] Chalousche Tari, Using Object-Oriented Databases for Implementation of Interactive

Electronic Technical Manuals

Thesis NPS March 1992

[ANSI 89] American National Standard for Information Systems- Database Language • SQL with

cntegrity Enhancement.

American National Standards Institute, Inc, ANSI X3. 135-1989

[MILS 91] DOD Requirements for a logistic support analysis record (Draft). MIL-STD-1388-2B

Department of Defence 1991.

[SAG 91] The SQL Access Group, Backgrounder. Overview of the SQL Access Specification

Papers released be the SQL Access Group

69

BIBLIOGRAPHY

M. Tamer Ozsu, Patrick Valduriez, Principles ofDistributed Database Systems

Prentice-Hall 1991

Carl Malamud,Van Nostrand, INGRES Toolsfor building an Information Architecture

Reinhold 1989

Mark D. Veljkov, MacLans Local Area Networking with Macintosh,

Scott, Foresman and Company 1988

comp.database

Discussions in UseNet, Jul-Sept 1991

70

INITIAL DISTRIBUTION LIST

Defense Technical Information Center

Cameron Station

Alexandria, VA 221314

Dudley Knox Library

Code 0142

Naval Postgraduate School

Monterey, CA 93943

Director of Research Administration

Code 012

Naval Postgraduate School

Monterey, CA 93943

Chairman, Code CS
Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

CDR Gino Giannotti

NROTC UNIT
RAS 104

University of Texas

Austin, TX 78712-1184

Naval Ocean Systems Center

271 Catalina Boulevard

San Diego, CA 92150

Division Head

MDS Division

Data Systems Department

Naval Weapon Station

Concord, CA 94520-5000

Phillip B. Stiles

Naval Sea Systems Command
Technical Data Division of the Chief Engineer for Logistics Directorate

Washington, D.C. 20362-5101

71

