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1. Problem Description

A critical problem in the link between computer-aided-drafting and
computer-aided-manufacturing (CAD/CAM) is the volume and complexity of data that must
be sent between CAD computers and rapid prototyping machines. The research project
reported here was designed to apply neural networks to this problem. The basic questicn
was, "Do neural networks enable a decrease in the grid sampling density for surface

interpolation in solid modeling for CAD/CAM?"

Rapid prototype development (RPD) 1s a computer-aided-manufacturing technique for
producing pre-production parts directly from the parts’ CAD representation. The technique
is also used for small batch runs and for producing molds. According to Kirshman et al,,
"Rapid prototyping technology is perhaps the most significant new concept in manufacturing
since numerical control machine tools." According to Hull, there are seven critical areas in

rapid prototyping:

1) Part size
2) Building speed
3) Building accuracy
4) Physical properties of formed parts
. 5) Eease of use
6) Reliability
7) Process benefits and costs in the overall manufacturing framework.

The research reported here was mainly concerned with building accuracy but building speed,

ease of use, and reliability were also considered. It had be¢n hoped that process benefits




and costs also would be addressed, but an advantage over traditional interpolation schemes

for this application was not shown (see Conclusions).

Reliability was addressed by using a .eural network whose training and performance
characteristics are predictable. The stretch and hammer neural network (SHNN) trains in
a number of steps and uses an amount of resources that are predictable before training
begins. The same is truc of performance once training is completed. The amount of

resources and the throughput time are known before the network is trained or implemented.

Ease of use was addressed in that the SHNN does not require the user to set any internal

"network parameters. The SHNN is fully self-adjusting to the problem at hand.

Not all neural networks have these features of reliability and ease of use.

Building speed is affected by the amount and complexity of data that must be transferred
to the rapid prototyping machine from the CAD computer. The SHNN was investigated as
a way to minimize the density of the sampling grid needed to represent the surface of a
given part. An alternative that was considered was the use of the SHNN to enable the use
of larger surface facets. In both cases, it was hoped that data oi less volume and
complexity would need to be transferred. Hull states that past improvements in this area

have come from various data compression schemes and faster data communications. He

maintains that data preparation is still the slowest portion of the CAD/RPD process for




complex parts.

For building accuracy we investigated the amount of data (and thus the density of the
sampling grid) needed to achieve CAD/CAM precision (0.001). The hope was that
CAD/CAM precision could be achieved by the SHNN using a less dense sampling grid than

that required by traditional interpolation schemes.

Donahue and Turner have also noted the large file sizes that have to be transferred for a
given precision. They state that “... current information transfer methods coupled with the
differences in CAD representation schemes provide ample opportunity for improvement in
the CAD to rapid prototyping process ..." Heller notes that, "One of the largest hurdles to
cross at this stage of rapid modeling is the data transfer nightmare." He cites three major
solid modeliug methods:

1) Polygonal: representation by a collection of triangular-shaped facets

2) Constructive solids: representation using standard shapes as building blocks

3) Surfacing: representation by splines or polynomials
The effort reported here focused on the surfacing method and used Gaussian radial basis

functions instead of splines or polynomials.




2. Brief Overview of Neural Networks

From an applications point of view, the field of neural networks investigates ways to
program massive arrays of parallel processors to perform useful tasks. The interest in this
field stems from the difficulty of using traditional sequential software methods to meet
modern requirements. Another impetus to the field is that the traditional uni-processor
architectures are increasingly the cause of bottlenecks that prevent timely task completion,
especially in real-time environments. Finally, neural networks can generalize from examples

composed of multiple data elements.

Neural networks are massive arrays of simple processors that execute in parallel. These
processors are typically arranged in layers (see Figure 2-1). The processors in one layer are
usually fully connected with the processors in the immediate neighboring layers. A
processor is sometimes connected to itself and to other processors in its own layer. The
connections between processors have associated weights that modify data flowing through
the connections. Each processor executes (in parallel with the other processors in its own
layer) a weighted summation or procuct of its input data elements, an intermediate non-
linear transfer function, and an output function. The "program" of a neural network is
contained in the inter-processor connection weights. There can be hundreds of thousands

of these connection weights.
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There are many methods for setting the connection weights (sometimes called training the
network). Not =1l methods are logistically supportable (See Raeth. Logistical cipportability
refers to modifiability and maintainability in the face of changing requirements). All
methods involve sending "training" data through the network. These data represent
examples of the task the network is to accomplish. As the training data pass through the
network, the weights are adjusted automatically according to one of several training
metheds. The network will respond appropriately to the training data given that the
network has had a sufficient exposure to the training data. If the training data adequately
represent the task tc be accomplished, the network also can correctly process test data that

it has not been trained on.

Neural networks are not programmed in the traditional sense. Rather, they adjust
themselves to the task at hand based on examples. Computers programmed via traditional
sequential methods learn from algorithms coniposed of explicit task-accomplishment
instructions. Neural networks are heuristic in nature, not algorithmic. Because of this,
training a neural network is not as siraightfoiward as it might first appear. There are many
training miethods and many network architectures. Dcpending on the task ai hand, a given

training method and network architecture may or may not be appropriaie,

The trzining and performance reliability of a neural network is of primary concern for
logistical and mission support reasons. Thus, it is necessary to use a neural network

architecture and training method that has predictable training and performance




characteristics. Such a r.etwork is the stretch and hammer neural network discussed in this

report.

Klimasauskas et al., Lippman, Rogers et al., and Rumelhart & McClelland have all written
more detailed introductions to neural networks. Lippman’s paper is easy to follow and is
widely referenced. The other authors have produced full-length books. Klimasauskas and
Rumelhart & McClelland provide IBM-PC disks with example networks. For increasing

length and level of detail, start with Lippmann then go on to Rogers. Follow up with

Klimasauskas. Rumelhart & McClelland is the most theoretical of the four.




3. Introduction to Stretch and Hammer Nearal Networks

Stretch and hammer neural networks are members of the more general class of radial basis
function networks. Tue Probabilistic Neural Network defined by Specht and further

described by Maloney is also a member of this class as are the networks described by

Zahirniak.

For three-dimensional solid modeling, stretch and hammer is best understood as a surface
fitting or surface interpolaticn neural network. In this context the network has two phases:
training and operation. In any supervised neural network, the training phase uses example
inputs and expected outputs to adjust the weighted connections. When training is completed
whenever the example irputs are presented, the expected output is produced. In solid
modeling, selected (x,y) coordinates are used as exanple inputs and the height of the surface
above some table (or baseline) is used as the expected output. In testing or operation,
inputs that were not used for training are provided and an output is produced. For solid
modeling, the neural network is expected to deliver as output a very accurate height for all

(x,y) coordinates of the surface in question.

riefly stated, the training of a stretch and hammer neural network is described as follows.
(More details are provided in the paper by Gustafson et al. and in later sections of this
report.) Orthogonal coordinates with two horizontal input axes and one vertical output axis

are established. The training points can then be plotted in the coordinates of the resulting




three-dimensional space. These points are stretched so that they are evenly distributed in
the input (horizontal) space. A malleable plane is positioned to minimize the sum of
squared vertical distances between the plane and the training outputs. The malleable plane
is hammered at each training output by directing the hammer along each vertical least-
squares line with normally and radially distributed accuracy using many small strikes. The
variances of the resulting Gaussian radial functions are set so that the number of strikes at
any training point just exceeds the number of strikes at all other training points. The
hammering is stopped when the malleable plane is deformed to intersect each training

output.

Testing is conducted by projecting the test inputs vertically from the horizontal plane to the
vertical surface generated during training. The output is the vertical height of the surface

from the horizontal plane at the (x,y) cootdinates of a given test input.

Poggio and Girosi have also interpreted neural network learning in terms of hyper-surface
construction. Such an interpretation also can be given to Specht’s development of the
Probabilistic Neural Network (PNN) although the surface developed by the PNN places
radial Gaussian functions that have one of only two different heights at each training point.
Thus, the PNN is less general than the stretch and hammer neural network and is useful for

classification but not for continuous interpolation. The SHNN can be used for both tasks.




1

4. Stretch for Data Preparaiion

Aside from selecting appropriate inputs, preparing the input data for use in training and
testing is perhaps the most critical process in neural network operation. Two data
preparation methods are in common use: normalization and transformation by principal

components.

Normalization takes ihe vector of input values and scales the elements so that they are
bounded to a range of values. Normalization also can be used to ensure that the sun: ot
input elements is bounded to a fixed value or to a geometric surface. The constras ‘s
imposed by many types of neural networks require normalization of some kind to be
performed on the dawa inputs, network outputs, cor on inter-layer node outputs.
Normalization is not required by the SHNN and so it is nci discussed further in this report.
Normalization is typically discussed in the literature relative to specific types of neural

networks,

Principal component analysis is a well-known statistical technique that is useful as an input
data preparation step for the SHNN. According to Kruskal, principal component analysis
allows reduction or elimination of indeterminacy. Translational indeterminancy is reduced
by adding various constraints, such as constraints that force the data element mean to z<0.
Rotational indeterminacy is reduced by rotating the input vectors to principal coordinates,

Principal coordinate axes form an orthogonal system in which the input data vectors are

10




uncorrelated. Dilation indeterminancy due to relative scaling of the data elements is

reduced by forcing the sum of the norms of the data elements to unity.

Principal component analysis also can be used to eliminate input datz. zlcinents that have
little variation relative to other elements. This function is accomplished by choosing for
elimination those input data elements associated with the smallest magnitude eigenvalues
of the data covariance matrix. Thus, the dimensionality of a problem may be reduced.
(This procedure is described further by Hecht-Nielsen and Hertz, et al.) In the SHNN,
however, the eigenvalues are used to "stretch” the small-variation elements in the principal
compunent space so that the maximum variation is achieved. Thus, no information is lost

and maximum use of all available information is achieved.

A more complete treatment of principal component analysis is given by Hotelling. The
specific implementation of the principal component transformation used in the SHNN
transforms all input data vectors based on an analysis of the training inputs. This

“stretching" transformation finds linear combinations of the training input elements that are

optimum in that the transformed-coordinate covariance matrix is the identity matrix.




Let x; be training element j for training vector i, where there are n elements j = 1,2, ..., n
and mvectorsi = 1,2, .., m. Here, nis strictly less than m and the elements are assumed

to be real.

The mean inputs are

m

X; =

The inputs relative to the means are

' - - _'—
X i le XJ

Let X’ be the matrix of {x’y} of inputs relative 10 the means. The corresponding covariance

matrix A i (T refers to the matrix transpose) ’

X T X
m-1

A =




The orthogonal eigenvectors v; and the corresponding real eigenvalues A, associated with

matrix A are the solutions of

Av, = AV,
where: v; is column j of the matrix of eigenvectors {v}
q = 1,2, ..,n, and the eigenvalues are solutions of
|a-A1| = o©

Let u; be input j in principal component coordinates for training vector i. Let u; be the
column vector formed from row i of the matrix of {u;}. Let x’; be the column vector formed

from row i of the matrix {X’;}. Then the principal component transformation is

u. = BX';

where the elements of the transformation matrix B are

\

] —Jq
a
Valvie

b

The numerical evaluation of the eigenvectors and eigenvalues is best accomplished using

singular value decomposition of the matrix A. Mote that the transformed inputs u;; are unit-

13




less and that the columns of the matrix {u;} have zero mean, unit variance, and zero
covariance. Singular value decomposition is a mathematical technique for dealing with
systems of equations that are singular or numerically very close to being singular. Our

implementation follows Press, et al., and is supplemented by Nobel and Daniel.
A simple two-dimensional example that employs the above algorithm is as follows. Choose

the original coordinate values in the training space as shown below and plotted in Figure

4-1,

x-coordinate Expected SHNN Output

50 1.0
2.0 2.0
B 3.0 3.0
1.0 4.0

Note that the SHNN does not require any particular order in the training data. The above

x coordinates are transformed to the coordinates plotted in Figure 4-2,

- x-coordinate Expected SHNN Output

13175 1.0
-0.4392 2.0
0.1464 3.0
-1.0247 4.0

14
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Note that the Expected SHNN Output is not affected by the coordinate transformation and
that the transformed coordinates are in principal component space, not the original training
space. As desired, the average value of the transformed element values is 0.0 and the
covariance matrix is the identity matrix, which in this case has a single unit element. The

Expected SHNN Output is defined by the network user as the value to be produced by

SHNN when the given coordinates are applied as input.




S. Hammer for Training

There are three phases to the training of a stretch and hammer neural netvork. Phase 1
fits a least squares plane to the training data. Phase 2 places Gaussian radial basis functions
at each training point. Phase 3 uses those Gaussian functions to "hammer" the least squares

plane until it contacts the expected network output at each training point.

Phase 1 of SHNN training fits or positions for "hammering" a linear hyper-plane of n
dimensions to the training outputs using a least squares criterion. Depending on specific
requirements, the training data is first be prepared using the principal components
transformation (see Stretch for Data Preparation). Let z be the vector of training outputs
(2;, 2,y - Z,,)", Where T refers to the vector transpose. Let vector a, (a,, a, a,, .., a,)", be
the coefficients of the linear hyper-plane, where n is the number of elements, a, is the z-axis
intercept, and a,, a,, .., a, are multipliers for the corresponding training vector elements.
Let C be the matrix for which row i is (1, uy, u;, .., u,,), where u; refers to one of the m

training vectors. Then the least squares solution of

z= Ca

fits the linear hyper-plane to the training outputs. Note that the numerical evaluation of the

unknown elements in vector a is best accomplished using singular value decomposition and

that the solution involves m linear equations in n+ 1 unknowns, where m is strictly greater




than n. Continuing the example from the section, "Stretch for Data Preparation,” Figure 5-1
shows the least squares line that fits stretched training points. The vector, 1, of points on

the least squares line are calculated using the following equation after a has been resolved:

l= Ca

where vectora = 2.500

-1.073
Phase 2 of SHNN training nlaces Gaussian radial basis functions at each training point. The
variances for these functions are adjusted so that the matrix of Gaussian equation results
is diagonally dominant by columns. In traditional interpolation methods, lines, polynomials,
or splines connect adjacent training points. The SHNN adds up a series of Gaussian curves,
where each curve is centered on a single training point. The variance ot any given curve
is such that the number of hammering strikes at the training point on which the curve is

centered equals the number of strikes at all other training points.

Let F be the matrix of Gaussian functions which have an output of unity at their respective
training points and an output which decreases as the distance to other training points
increases. It is these functions which ultimately, in Phase 3, "hammer” the least squares

plane (which was fit to the training points in Phase 1) to contact the training points.

Each column of the F matrix represents a given training point. Each element of each
column also represents a given training point. Thus, the F matrix is of size m-by-m. The

value stored at each matrix element is the result of the Gaussian function centered at the

19
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column’s training point as calculated at the training point indicated by the element. For
example, column #1 indicates training point #1. The first element of column #1 indicates
the first training point, the second element of column #1 indicates the second training point,
and so on. Thus, column #1, eleraent #2 stores the output for the first training point’s
Gaussian function calculated at the second training point, Note that the diagonal elements
of matrix F are always equal unity and that the off-diagonal elements are always less than
unity. The Gaussian equation employed to calculate the value of the Fy; matrix elemeant is

as follows:

n
-3 (mu)’
i1

2
e 2oj
wkhere: Uy = the ith element of the jth training vector
o’ = the Gaussian variance associated with the jth training point
c = the base of natural logarithms

For many choices of o® the matrix F is singular. This results in a final network which does
not fully represent the training data. A solution is to choose the Gaussian variances so as
to ensure that the matrix F can never be singular. The approach wiich requires the fewest
computations appears to be selecting the variances so that the matrix F is diagonally
dominant by columns, Columnar diagonal dominance means that the sum of the absolute

valnes of all off-diagonal elements in a given matrix column is less than the absolute value

of the diagonal element in that column.




Physically, columnar diagonal dominance occurs when the variances are sufficiently narrow
that the Gaussian function’s value at neighboring (and, therefore, distant) points is small,
Since extremely narrow variances would result in a pin cushion interpolating surface having
poor smoothness, it is reasonable to attempt to make the variances as large as possible while
maintaining diagonal dominance. This condition is achieved using a short iterative
procedure. This procedure sets each column’s varian<e to a fairly small value and then sums
the off-diagonal elements in that column (in the case of Gaussians, the result is always
positive). If the summation is not less than unity within some margin of error (say 0.001),
then the variance is appropriately modified and the addition is repeated. This procedure
is performed for each column in the F matrix. The F matrix and the variances for our

continuing example are shown below.

The F matrix: 1.0000 0.0019 0.1760 0.0055
0.2985 1.0000 0.6477 (.7220
0.5843 0.4988 1.0000 0.2718
0.1165 0.4988 0.1760 1.0000

Variances (0%): 1.2760 0.2965 0.3948 0.5264

Figure 5-2 shows the four Gaussian functions relative to the stretched training points and

the least squares line.

Phase 3 of SHNN training uses the Gaussian functions developed in Phase 2 to "hammer"
Phase 1’s least squares plane so that it contacts the training points. The first step in Phase

3 is to develop the vector 2, Each element of 2’ is the difference between the value of the

22
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least squares plane calculated at a training poirt and the value at that training point. After

a has been resolved,

2/=2-Ca=2z-1

Coefficients for the F matrix elements are calculated so that the sum of the previously
developed Gaussian functions calculated at each training point equals the difference
between the least squares plane and that training point. This task is accomplished by

solving a system of m equations in m unknowns:
= Fb
z =
where b is the vector of Gaussian coefficients, (b, b, ..., by)"
Since F is guaranteed to be nonsingular, singular value decomposition need not be used to

resolve b. We use LU Decomposition as implemented by Press, et al. Figure 5-3 shows the

modified Gaussians from our continuing example, where z’ and b were determined as

follows:
z’ = -0,086 b= -0484
-0.971 -3.632
0.657 2.242
0.400 1.873

Remember that each F matrix column refers to the Gaussian surrounding a specific training
point. The 2’ modification of those Gaussians permits their summation at the training points
to equal the difference between the least squares plane and those points. Figure 5-4 shows

the summation of the z* modified Gaussians.
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The last step in Phase 3 is to complete the "hammering" by combining the sum of the 2z’
modified Gaussians with the least squares plane. The resulting vector, z”, contains values
on a continuous surface at the training points’ coordinates. This surface can be used for
interpolation after a and b have been resolved. Figure 5-5 shows z” calculated for our

continuing example. Note that z” does indeed contact each training point.

2/ = Fb+Ca= 2/ +1
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6. Execution For Testing

The function that the "hammering" process develops to exactly fit the training points is
continuous. Thus, any point that has the same dimensionality as the hyper-space generated

by the network may be chosen and an output calculated.

Typically, test and training points are chosen in the original problem space. If the network
was trained in principal component space, the coordinates of the test points must be mapped
from the original space to principal component space. The following equation performs this

mapping:
p = B(o-%)

where: p is the test vector in principal component space
o is the test vector in original space
B is the transformation matrix calculated as part of the principal
components analysis during the "stretching" portion of training
x-bar is the vector of element means '
(In p and o, each element contains a coordinate value for a given
dimension)

Note that if matrix B is the identity matrix I and x-bar is the 0 vector, then vector p is the
same as vector o, These values of B and x-bar are used if the network has been trained in

the original problem space. Given this more general understanding of B and x-bar, it is

clear that vector p is simply the test vector in original space mapped to the appropriate

space.




Once the test vector is in the appropriate space, the following equation generates the

position on the hyper-surface developed during the "hammering" portion of SHNN training:

h= gb+pa+a,

where: b is the vector of Gaussian coefficients
a is the vector of least squares coefficients, (a,, a,, ..., a,)"
a, is the least squares plane z-axis intercept .
g is the row vector of Gaussian training functions calculated at the
test point

h is the scalar value of the "hammered" surface at the coordinates
of the test point
p is the test vector mapped to the appropriate space and taken as
a row vector
Figure 6-1 shows this equation calculated for our continuing example. Here, 60 test points

were chosen in the range -5.0 through +5.0. h was then plotted at the coordinates indicated

by the test vector elements. Note that the SHNN extrapolates asymptotically to the least

squares plane as the distance from the edge of the training domain increases.
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7. Interpretation as a Neural Network

The B matrix and the a and b vectors developed during SHNN training can be viewed as
neural network weights. The test vector in the original space would be the network input.

This section discusses the resulting SHNN neural network architecture.

As indicated in Figure 7-1, the SHNN architecture connects every node in a lov-er level to
every node in the layer above. The nodes in a given layer are not connected to other nodes
in that layer. Data flows through the network with the input at the bottom of the figure and
the output at the top. Weight values are placed along the inter-node connection lines and
are subscripted to show that the data flowing on the line to the input of one node from the
output of another are modified. The two-letter subscript’s first letter is the "to" node and
the second letter is the "from" node. Each node typically executes a weighted summation
of its inputs and feeds the result directly to its output. In this case, no transfer or output
functions are employed making for a very simple node. In nodes that occur less cften in the

architecture, a transfer function also is used.

The equations discussed in Section 6, "Execution for Testing," lend themselves in a natural
way to parallel implementation. Figure 7-2 shows an overview. There are two values which
are summed to obtain the SHNN output, the value on the Gaussian curve, gb, and the value
on the least squares plane, a, + pa, of the test vector coordinates, o, in criginal space. A

weight of 1 on each line from the input layer to the single-node output layer
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indicates that the input layer scrves only to distribute the input lines to the layer above and

that the layer performs an input function that is only an unweighted summation.

The z-axis intercept, a,, is calculated during training and needs no further development.
Figure 7-3 contains the architecture for determining the rest of the value on the least
squares plane. This architecture also maps the test vector from origiral space to principal
compenent space. The test vector is input at the bottom of the figure. The hidden layer
produces p, the test vector in prircipal component space. The output layer result is pa.
The weights on the lines to the nidden layer from the input layer are the element values of
the transformation mat:;ix B. Remember, B is an n-x-n matrix, where n is the number of
elzments in the test and training vectors. Bji is row j, element i, of matrix B. This
corresponds to the weight on the line to hidde: .xode j from input node i. The weights a,
on the lines going to the ontput layer from the hidden layer are the least squares coefficients

assigned to the corresponding ele.nents of p.

Figure 7-4 gives the architecture for determining the position of p on the Gaussian surface,
gh. Vector p is input a! the bottom of the figure. The input layer, in this case, simply
serves to distributc the input to the hidden layer nodes. Thus, the lines to the hidden layer
from the input layer are weighted at 1. The hidden layer has one node for each of the
training examples. The memory for each iridden layer node holds a unique training vector,
u,, 2ud its associated variance multiplied by -2 (-20,% -2 x Sigma’, in the figures). Each

hidden layer node executes an input unweighted
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summation whose result is used to drive a Gaussian transfer function. The hidden layer is
connected to the output layer. The weights between these layers are the Gaussian
coefficients, b, related to a specific training vector. The output layer executes a weighted

summation of the hidden layer output te obtain gb.
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8. Application D

This section presents an example of the SHNN applied to a smail three-dimensional
problem. Figures are presented which show input vectors moving through training and
testing. Note that in the case of 3D spaces two dimensions are used for independent
variables and the third dimension is used for the dependent variable. Accordingly, n (the
number of elements or coordinates in the training and test vectors) is equal to 2. A
subscript convention employed refers i0 matrix elements M;, where the first subscript refers

to the matrix row and the second subscript refers to the matrix column.

Streiching

Consider a matrix of training vectors in original space. The rows are the m vectors and the

columns are the n vector elements or coordinates.

(X, Xy o X,

1n

Xy Xpps s Xy,

X

\ X

ml> “m22 v an)

39




For our example, this matrix reduces as foliows. The vector z contains the expected SHNN

output for each traiving vector. A plot illustrating this set of training vectors is given in

Figure 8-1.
(2.3, 1.1) (1.0) .
3.0, 3.0 2.0 d
X - zZ =
3.0, 4.0 3.0
5.5, 6.2, - 4.0

The vector of ccluinn means is:

(X, + X, + oo + X Dm)
X, + Xpp + . + X, )M

= |
]

* Xy ot X))

(X

in
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For this example, the following means were calculated.

3.450
3.575

x|
I

The matrix of input elements relative to their means is:

(X1~ % X~ Xy ooy X X, )

Xo1— Xy Xpp= X ooy Xy - X,

\Xml— X1 sz— K29 vees an_ xn)

This equation produces the following matrix for our example.

(~1.150, ~2.475)
~6.450, -0.575
-0.450, 0.425
| 2.050, 2.625)

42




The corresponding covariance matrix is: (See Lipschutz for a basic discussion on matrix

operations.)

(X1 Xy oos X\ (X ypo X iy wor X'py )

ml 1n
4 (] () () 1 () ’
L4 A B 1
) m-1
() (] (4 (
Xln’ XZn’ e an) LXmI’ XmZ’ e an)

From this, it is plain to see that the elements of matrix A are computable without actually

creating the transpose of X. Rather, the following equation may be used:

3 x,x,
A, = ==
Y m- 1

For this example, matrix A becomes:

1.977, 2.765
2.765, 4.509
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Find the matrix of eigenvectors, V, and the vector of eigenvalues, A. A discussion of the
required process is beyond the scope of this repert. Press et al. give an excellent discussion
on practical means of finding thc following eigenvectors and eigenvalues. (Note: The

eigenvectors are the V matrix columns.)

' 0.842, 0.540
~0.540, 0.842

A= (0202, 6.284)

Find the w,’s, the m training vectors mapped from original space to principal component

space.
(Bll’ B12’ ey Bln\ (X'il\
B2l’ B22’ ""BZn X'i2
u; = '
\Bnl’ Bn2’ et Bnn) \X’in) -




The matrix elements qu are calculated as individual elements of an n-x-n matrix.

( Vll V21 an \
A A A
V12 V22 Vn2

AN AN AN

| 4 V. V

n

in 2n n
LAV AN AN




For our example, the transformation matrix B becomes:

{ 1.874, -1.203
\0.216, 0.336

As a result of these "stretching” calculations, the original set of training vectors is mapped

as shown below and plotted in Figure 8-2.

( 0.822, -1.079) (1.0
-0.152, -0.290 2.0

U = z =
-1.354, 0.046 3.0
| 0.684, 1.323, 4.0)

where the rows of matrix U = w,.
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Hammering

‘Take a matrix of training vectors in original or principal contponent space along with the

corresponding vector of expectad SHNN outputs.

(U,,, Uy, ..y Uy, (z,) .
Uy Upps oes Uy, 2 :
U = . 7 = .
l\Uml’ UmZ’ e Umn) \zm/

For our example, we will continue with the previous training vectors in priacipal component

space and the same expected SHNN outputs.

Fit a least squares plane to the training data. This involves solving an overspecified,

(m > n), system of equations,

48




(z.) L, Uy Upys oo Uy ) (@)
2, 1, U,,, U22, ey Uy, a,
\Zm/ \1, Uml’ Um2’ oeny Umn) \anJ

Our example ha- this system:

10) (10, 0822, -1.079) () .
20| _ |10, -0.152, -0290| |

3.0 1.0, -1.354, 0.046| | '
40/ 10, 0684, 1323) \

The solution to this system is plotted in Figure 8-3 and has the following a vector:

2.500
a = |-0270
1.257

Center Gaussian functions, G(u,u), at each of the training points. These functions are

placed in matrix F. The columns represent training points and the rows represent G(u,u)

49
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at the column’s training point, g, calculated at the coordinates of the row training point. u;.

(G(upul), G(uz,ul), ooy G(um,ul)\
G(uy,1y), Gluyly), - G(U,l,)

L]

\Gupu,), Gluyu,), ..., Gu,.u,)

where: u, refers to the training point i
G(u;u,) is the Gaussian function for training vector j calculated
at training vector k

n
-3 (“;F“u)z
i=1

B

2
20}

training element i of training vector |
the Gaussian variance associated with the jth training point
the base of natural logarithms

Q
I |




Adjust the ¢’s until F achieves columnar diagonal dominance. For our example, the
following F matrix was produced. The summed Gaussian curve is compared to the least

squares plane in Figure 8-4.

(1.000, 0.418, 0.176, 0.265) :
0.635, 1.000, 0.637, 0.469
0.177, 0.421, 1.000, 0.265
\0.188, 0.160, 0.187, 1.000,

202 = (3.459, 1.801, 3.451, 4.359)

Force the peaks of the Gaussian functions to equal the difference between the least squares
plane and the training points. This is accomplished by solving another system of equations.
First, develop 2’, the vector of differences between the training points and the least squares

plane.

(5 g - - -
2)7 Qg™ QU T Gy anulnw

2,7 Ay~ Q Uy~ AylUpy— . AUy,

\Zm_ aO— aluml_ a2um2_ S anumn)
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The example produced the following z’ vector:

(0.077)
~0.176

0.078 '
\ 0.022)

Use 2’ to solve for a set of coefficients which will adjust the Gaussian peaks so that they
represent the difference between the expected SHNN output at the training points and the

value of the least squares plane at those points.

2\  (Fyp Fip s Fy ) (By)
b2

Z, F,,F,, .., F.

m




Our example resolved the b vector as

(0.234)
-0.480
: 0.235

\ 0.015)

The sum of the adjusted Gaussian curves are compared to the least squares plane in Figure

8-5.
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Execution

Given the previous calculations, it is now possible to use the SHNN to calculate outputs
based on test vectors not used in training, If the network was trained with the training

vectors in principal component space, the test vectors must also be mapped to that space.

(Pl\ By, By, ..., B ) (01\ (’71 )

in

1 23 B,,, B,y, ..., By, 0, X,

\pn) \Bnl’ Bn2’ e Bnn) u\on) \xn )
A single mapping for this example is shown below, assuming that the test vector
o = (2.300,1.100)".

0.822 1.874, -1.203) |(2.300 3.450
-1.079 0.216, 0.336) [\1.100 3.575

57




The appropriately mapped test vectors are used to calculate the SHNN’s output.

/bl\
b

2

SHNN Output = (G(p,tl), G(p,t2), ooy G(p,tm)) . +

(1, Dyps -+ pn)

58




Choosing p, the mapped test vector as calculated above, the following SHNN result is

calculated:

(0.234)
. -0.480
1 = (1.000, 0.208, 0.003, 0.003) 0235 +

\ 0.011)

2.500
(1, 0.822, -1.079) | -0.270
1.257

Figure 8-6 shows the surface generated if a regular matrix of test vectors is chosen

surrounding the test points (coordinate axes bounded by -2 through 2 inclusive).
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9. Data for Network Training and Testing in 3D Solid Modeling

The SHNN network was trained and tested for 3D interpolation using data generated from
an equation z = f(x,y) where z is height above a table or baseline and x and y are
independent coordinate axis values. For example, let f(x,y) = sin(x)sin(y), x = 0.5, and y
= (.25, then z = f(x,y) = sin(x)sin(y) = sin(0.5)sin(0.25) = 0.1186118. This point is plotted

in Figure 9-1.

Training data were generated from a regular sampling grid. First, ti.e limits of x and y were
defined and a grid density was specified in terms of the number of evenly spaced y
coordinates required for each of a number of evenly spaced x coordinates. For example,
if the limits of both x and y are each 0.0 through 1.0 and a 3-by-5 grid is selected, then there
are 15 total data samples as shown in Figure 9-2. Figure 9-3 extends this example by
showing sin(x)sin(y) for the original limits but using a 20-by-20 regular sampling grid. The

axes are tilted to display the surface shape,
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All (x,y) training coordinates for a regular i-by-j grid were generated using the following

equations:

x. = min(x)+ L = 1) (max(x) - min(x))
’ | max (i) - 1

v. = min(y)+ X4 = 1) (max(y) - min(y))
J

max(j) - 1

where i = 1,2, ..., # x coordinates and j = 1,2, .., # y coordinates for each x coordinate.

Test data were produced by positioning these data relative to the training data. The goal
in test data production was to cause the maximum loss of interpolation precision. This goal
was very easy to attain. It was only necessary to put the test points at the maximum distance
from the training points while, like the training points, covering the entire surface. For grid
sampling, the test points were placed in the center of the grid blocks formed by the training

points. Figure 9-4 repeats Figure 9-2 with the test points entered. The test points lie at

coordinates (x,, ¥,)-
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In general, x, = x + 0.5(x, - x) and y, =y + 0.5(y, - y); where x, y, x,, and y, are the four
corners of a given grid as noted in Figure 9-4.

For regular grids x,,; = x + 0.5(x; - x) + i(x,-x) and y,,; =y + 05(y; - y) + j(y; - ¥);
where i = 0,1, ...,(t-1) and j = 0,1, ...(u-1). If the training grid is t-by-u (that is: u y-
coordinates for each of t x-coordinates) then the testing grid is (t-1)-by-(u-1), where both t

and u must be equal to 2 or greater.

When the testing data were applied to the trained network, a measure of interpolation
precision was calculated. This measure essentially reveals the overall difference between
the answer the trained network result and the actual function result. The same training and
testing data and the same measure of precision were used for both the SHNN and

traditional interpolation. The equations used for precision calculations are given below.

Precision =

CalculatedResult - InterpolatedResult
CalculatedResultsRange

O 2
E Precision

RMS Precision = et
#TestVectors

C Precision
Average Precision = .ZQI I
#TestVectors
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10. Tests on Three Surfaces

The SHNN was tested on surfaces of low, medium, and high complexity. The results were
compared to bicubic interpretation. Training grids of 3, 4, 5, 6, 7, 8, 9, 15, 20, 25, and 31
were chosen. The available computing hardware did not permit higher densities. The
training and test points were chosen as described in "Data For Network Training and

Testing in 3D Solid Modeling."
Low Complexity Surface

The surface of low complexity is described by the following equation:

/

7)
_ 2
Surface Height = cos( nzx) L (/Z ¢

1- /e

A plot of this equation is shown in Figure 10-1 for a 50x50 grid with the x and y axes in the
range of 0 through 1 inclusive. This equation was chosen because it is not symmetric on

either coordinate axis. Thus, there are no duplicated test points. .

Figure 10-2 compares the RMS precision of the SHNN to that of bicubic interpolation.

Figure 10-3 compares the worst precision of the SHNN to that of bicubic interpolation.
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Mediurn Complexity Surface

The surface of medium complexity used the same basic equation as the low complexity
surface. However, a Gaussian bump was added on each of the four corners. The Gaussian

bumps were generated using the following equation:
Surface Height = Low Complexity Height +

s @y 0 3y~ 1)

0.025)" 0.005
i=1
where: g, and g; are the x,y coordinates of the Gaussian centers

x and y are the x,y coordinates of a training point

A plot of this surface is shown in Figure 10-4 for a 50x50 grid. The same data ranges and

grids as before were used.

Figure 10-5 compares the RMS precision of the SHNN to that of bicubic interpolation.

Figure 10-6 compares the worst precision of the SHNN to that of bicubic interpolation.
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High Complexity Surface

The surface of high complexity used the same basic equation as the lnw complexity surface.
Howeer, Gaussian bumps were added oa an 8x8 grid which spanned the entire surface. =

The Gaussian humps were generated using the following equation:
Surface Height = Low Complexity Heigh: +

@ D+ (g~

100y e 002
i=1 .
where: 8. and g; are the xy coordinates of the Gaussian centers

x and y are the x,y coordinates of a training point

A plot of this surface is shown in Figure 10-7 for a 50xS0 grid. The same data ranges and .

grids as before wers used.

Figure 10-8 compares the RMS precision of the SHNN to that of bicubiz interpolation.

Figure 109 compares e worst precision of the SHNN 1o that of bicubic interpolation.
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11. Observations and Folklore

A key to ‘he accurate functioning of neural networks based on Gaussian radial basis
functions is appropriately setting the Gaussian variances. Specht’s PNN has a single
variance that is set by the user. The SHNN calculates a variance that is, generally, different
for each training point. Thus, although the user could set desired widths, the SHNN can

calculate optimal widths for best performance.

Only one pass through the training data is needed by the SHNN. This pass includes four
places where iterations occur:

a) F'nding the eigenvectors and eigenvalues

b) Solving the equations to fit the least squares plane to the training data

c¢) Adjusting the “Faussian variances to achieve columnar diagonal dominance

d) Solving the equations to dctermine the Gaussian coefficients

The longest iteration occurs when solving the equations that determine the Gaussian

coefficients.

Solutions to systems of lincar equations are generally of O(N*/c) computational complexity,
where N is the number of equations and unknowns in a completely specified system.
Singular Value Decomposition (SVD) is O(N*/3) and Lower-triangular:Upper-triangular

Decomposition (LUD; is O(N?/15), according to our experience with those two methoris.

When calculating columnar diagonal dominance, it is possible to use off-diagonal sums of

less than 1, This possibility was investiguted briefly. Our observation from a few
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experiments is that, while RMS precision is not greatly affected, there are opportunities to
improve worst precision. The implication is that there may be ways to fine-tune the SHNN
to minimize gross errors. Remember, all neural networks are heuristic by nature. They do
not compute precise answers according to some algorithm. On the few surfaces we tried,

an off-diagonal sum of 0.4 (rather than unity) worked best if there was any effect at all.

When using SVD for solving systems of equations, we have found that solutions to systems
of equations are more readily achieved if the training vectors are first passed through a
principal components transformation. In addition, we have found that the principal
components transformation does not affect interpolation accuracy when regular grid
sampling is used. However, even with regular gzrids, the principal components
transformation speeds up the solution of systems of equations when SVD is used. In fact,
SVD would not solve some systems we attempted without the principal components

transformation,

It is best to use the C language precompiler called "Lint" on all code, especially that which
is commercially procured. The version of Lint used must be oriented to your specific
compiler. During this project, we were often surprised over how fragile C source can be due
to compilable and executable coding errors such as coercion, promotion, and demotion.

Lint will usually catch these types of errors. The C compilers typically will not catch such

€ITors.




12. Conclusions Relative to 3D Solid Modeling

The authors have come to the following conclusions relative to 3D solid modeling.

For simple surfaces, traditional interpolation methods yield precision superior to that
achievable by stretch and hammer’s current implementation. (Bicubic interpolation was
used as ¢ base-line.) As the surface becomes more comriex, the stretch and hammer neural

network yields comparable precision.

For complex n-dimensicnal problems where the problem space cannot be sampled using an
arbitrarily dense grid, traditional algorithms grow in complexity and execution time as n
increases. Traditional methods grow in execution time as the number of training samples
grows. The stretch and hammer neural network remains fixed in complexity (but not size)
as n and the number of training samples grows. The SHNN remains fixed in execution time
as n and the number of training sumples grows if true neural hardware is used for

implementation.

Traditional interpolation methods cannot extrapolate outsidc their training data without
making certain assumptions and, in effect, adding training data. If the test data fall outside
the training data, traditional methods cannot interpolate a surface height without the added
training data. ‘Thus, input data tolerances can cause values outside the realm of

computability for traditional methods. The stretch and hammer neural network easily
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generalizes so that input data tolerances are accommodated.

Finally, stretch and hammer’s parallel nature allows it to take advantage of off-shelf and
future parallel computing hardware such as transputers and neural chips. Thus, there is

strong reason to believe that the SHNN can execute in real time despite the problem

complexity. Such may not be possible with traditional interpolation methods. '




13. Two Other Applications

Filtering and classification are two other areas to which the SHNN may have useful

application.

Filtering

An application of the stretch and hammer neural network is the synthesis of filters for an

optical correlator used for pattern recognition. Figure 13-1 shows an optical correlator.

Input Scene Comntaining Target Pattern (Squamre)

Output Plane
Wwith Bright Spot
Indicatinmg Target

/

Ve

Fourier Transform of lnput Scene
and Filter for Square

Figure 13-1: Optical Correlator
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Coherent light from a pixelated input scene containing a target pattern passes through a
simple lens one focal length away from the input. One focal length behind the lens, the
Fourier transform (or spatial frequency spectrum) of the input scene is imaged. A pixelated
transparency filter made from the Fourier transform of the target pattern to be recognized
is also placed in this plane. Light passing through the filter is now the product of the
Fourier transform of the input scene and the filter transparency. This light is then passed
through another lens placed one focal length away. One focal length behind this second

lens an image showing the correlation between the input scene and the target pattern is

formed. Points of high correlation appear as bright spots on this output plane. Points on
the input plane and the output plane can be matched in a one-to-one manner. Points of
high correlation in the output plane (bright points) can be related to specific positions on

the input plane that indicate the presence of the target pattern.

One major problem with this method is that the filter is made for a target pattern of specific
orientation and scale (or size). If the target pattern in the input scene rotates or changes
scale, then the original filter does not produce a strong correlation point in the output plane
for the newly oriented target. It is possible that the SHNN can be used to synthesize new,
more appropriate filters as the orientation and scale of the target pattern changes within the
P input scene. The input to the SHNN is data from the input scene which contains
information about the orientation and scale of the target pattern. The output from the

network is information w.out how to synthesize a new filter.
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One specific implementation now being investigated at the University of Dayton Research
Institute uses the following steps. First, it is assumed that the target pattern has been
previously located in the input plane, but has since changed its orientation and scale. The
values of the input scene in the region around the target location are sampled using a
rectangular grid of points. The values from the sampling grid are used as the input values
for the neural network. The network is trained by sampling the target pattern at
orientations and scales for which the proper filter is known. The outputs of the network are
the pixel values for the new filter which matches the sampled input from the reoriented and

rescaled target pattern.

Classification

The SHNN may be employed to solve classification problems since classification is a sub-set
of interpolation. In interpolation, the neural network determines the "height" of some
hyper-surface at coordinates not included in the training set. In classification, the hyper-
surface consists of "heights” that correspond to given classes. For instance, all coordinates
(called features in classification) that are samples of the automobile class might have a
height of 1. All features that are of none of the classes might be given a height of 0.

Classes would have outputs valued sequentially using integers,
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For classificatior, the SHNN would be trained in the same way as for interpolation. The
training set would include all the feature vectors and the hyper-surface "heighi" that
corresponds to the appropriate class for each vector. Then, test vectors would be applied
and an output would be calculated. The difference here is that the SHNN final output node
would ex~cute the output function int(output + 0.5) to truncate the decimal and ensure

an integer class value.

A variation on this idea would have a post-processor layer that would take the raw SHNN
output and determine if it represented a known class. Here, the classes would not have to
be numbered sequentially (nor even be integers). Another advantage of this variation is that
it would be possible to have an output value between two class values but not close enough
to either to say it belonged to one class nr the other. Thus, the opportunities to flag

unknowns would increase.

The above approach to the use of the SHNN in classification makes little change to the
original method. However, there are some weaknesses:

a) It is not possible, without transforming the coordinate axes, to collect "evidence"
that multiple classes are indicated by the same feature vector.

b) A class with a low output value could be dominated by a, spatially, nearby class
that has a very high output value,

¢) Learning in real time would be difficult if not unlikely,
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A solution is to create an SHNN with multiple outputs. Then connect the training sample
nodes only to the output node(s) for the class(es) to which they apply. The expected output
for all training vectors for all classes would then be fixed at some value. Class selections
would be based on the highest-valued output node. If similarly high output values were

produced by more than one node, then an ambiguity would result.

The least squares plane fits this case exactly. There is no difference between the surface
value on the least squares plane at the training coordinates and the expected output at the
training coordinates. Thus, the value of the initial Gaussian peaks would be zero. The
resulting "hammered" surface would simply be the least squares plane itself, and there would

be no surface variability that could be used to separate classes.

A solution to this dilemma is to "hammer" to the zero plane instead of the least squares
plane. However, the difference between the value on the zero plane at the training
coordinates and the expected output at the training coordinates is the expected output.
Thus, the part of the training and the network used for "hammering" can be eliminated. The
Gaussian coefficients would all have the same value. The Gaussian functions would
generate the expected output at the training coordinates with the value decreasing as the
distance from the training coordinates decreases. The expected output would be a value
that is the same for all classes and training vectors. The Gaussian coefficients are cqual to

that expected value.
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Columnar diagonal dominance might still be useful for determining the variances for each
training point’s Gaussian. It is possible that this technique could be used to ensure that the
Gaussians have small overlap. During some brief trials with this idea, we found that the
sum of the off diagonal column elements needs to be fairly small. We had success with
sums of 0.05 and 0.1. All the training examples for all classes were placed into one large

matrix for the diagonal dominance calculation.

If extra training sample nodes and class output nodes are added to the network, real time
training could be implemented since there are no systems of equations to solve. The
variance for any new training point could be something very narrow, the average of the two
closest original training points, the average of all the original training points, or something

else depending on the situation,

Specht’s PNN is very similar to the Exponential Neural Network (ENN) outlined above.
Specht’s radiai basis functions are Gaussian, but he varies the coefficient 10 ensure a volume
of unity under each Gaussian. The PNN uses the same variance at each training point. The
ENN subset of the SHNN maintains a Gaussian coefficient eqnal to the expected output and

places Gaussian’s with generally different variances at each training point.
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14. Recommendations

Much work has been done, by various researchers, on basis function methods for
programming massive arrays of parallel processors. This work should be consolidated since
it offers much in the way of logistical supportability. Many other currently popular methods

of programming these arrays are not logistically supportable.

A serious problem with the SHNN is that it does not train in real time for interpolation.
Traditional interpolation methods train in real tinic and are more or as accurate as the
SHNN. The SHNN has the advantage of constant execution time, given true neural
hardware, in spite of increases in the dimensions and the numbers of training vectors.
Traditional interpolation methods do not share this execution advantage. Efforts should be

undertaken to develop a means of training the SHNN in real time for interpolation.

It would be interesting if neural network interpretations could be devised for traditional
interpolation schemes. Such interpretations are not obvious but further study on the basic
theories behind the traditional methods might reveal them. It is true that a pipelin=
interpretation is fairly easily made of traditional interpolation msthods. However, the length
of the pipe tends to grow as does the number of dimensions. Each joint on the pipe takes
longer to execute as the number of training vectors grows. The advantage of the pipeline
is that the joints execute in parallel. Upon receiving its input data, a joint can begin

execution while earlier jeints begin preparing the next round of input. With neural




networks, vhe layers and the nodes in each layer execute in parallel. Like the pipeline joints,
a layer receives its input data and begins executing. Previous layers then begin preparing
the next round of input. Unlike the pipeline, the number of luyers is fixed. As dimensions,
training vectors, and classes are added, the number of nodes in various layers grows. The
nodes in each layer always execute in parallel so there is never any change in the execution
time of each layer if true neurai hardware is used. Also unlike the pipeline, the neural
network remains fixed in complexity. As the pipe grows in length with more joints added,
a more sophisticated control method is needed. Neural networks simply change weight

values from zero on inter-node connections to activate additional nodes.

Only the least squares plane and Gaussian radial tasis functions were applied to the SHNN
in this study. Explorations were briefly undertaken during this study to determine if other
surfaces and functions would yield greater interpolation accuracy. These explorations should

continue.

An effort to pin down the effect of off-diagonal sums of less than 1 should be made. An
experimental approach would perform tests on surfaces of increasing complexity while
applying to each surface an incrzasing density of sampling. For each surface, at each

incremental density chosen, various off-diagonal sums, in a logical progression, could be

tried.




On very complex surfaces, the SHNN has accuracy comparable to traditional interpolation
schemes. However, we did not have the computing power to use the sampling density
necessary to achieve CAD/CAM accuracy on the most complex surface. When it becomes
possible, the sampling density should be significaatly increased until CAD/CAM accuracy
is reached. The goal is to see if the SHNN needs fewer samples than traditional methods
need to reach CAD/CAM interpolation accuracy on very complex surfaces. To this end,
the authors have submitted a grant proposal for time on the Ohio Super Computer Center’s

Cray. This proposal was approved after the research period that produced this report.
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