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1. Problem Description

A critical problem in the link between computer-aided-drafting and

computer-aided-manufacturing (CAD/C.AM) is the volume and complexity of data that must

be sent between CAD computers and rapid prototyping machines. The research project

reported here was designed to apply neural networks to this problem. The basic question

was, "Do neural networks enable a decrease in the grid sampling density for surface

interpolation in solid modeling for CAD/CAM?"

Rapid prototype development (RPD) is a computer-aided-manufacturing technique for

producing pre-production parts directly from the parts' CAD representation. The technique

is also used for small batch runs and for producing molds. According to Kirshman et al.,

"Rapid prototyping technology is perhaps the most significant new concept in manufacturing

since numerical control machine tools." According to Hull, there are seven critical areas in

rapid prototyping:

1) Part size
2) Building speed
3) Building accuracy
4) Physical properties of formed parts
5) Ease of use
6) Reliability
7) Process benefits and costs in the overall manufacturing framework.

1?he research reported here was mainly concerned with building accuracy but building speed,

ease of use, and reliability were also considered. It had been hoped that process benefits
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and costs also would be addressed, but an advantage over traditional interpolation schemes

for this application was not shown (see Conclusions).

Reliability was addressed by using a ,'eural network whose training and performance

characteristics are predictable. The stretch and hammer neural network (SHNN) trains in

a number of steps and uses an amount of resources that are predictable before training

begins. The same is true of performance once training is completed. The amount of

resources and the throughput time are knowr before the network is trained or implemented.

Ease of use was addressed in that the SHNN does not require the user to set any internal

network parameters. The SHNN is fully self-adjusting to the problem at hand.

Not all neural networks have these features of reliability and ease of use.

Building speed is affected by the amount and complexity of data that must be transferred

to the rapid prototyping machine from the CAD computer. The SHNN was investigated as

a way to minimize the density of the sampling grid needed to represent the surface of a

given part. An alternative that was considered was the use of the SHNN to enable the use

of larger surface facets. In both cases, it was hoped that data oi less volume and

complexity would need to be transferred. Hull states that past improvements in this area

have come from various data compression schemes and faster data communications. He

maintains that data preparation is still the slowest portion of the CAD/RPD process for

2



complex parts.

For building accuracy we investigated the amount of data (and thus the density of the

sampling grid) needed to achieve CAD/CAM precision (0.001). The hope was that

CAD/CAM precision could be achieved by the SHNN using a less dense sampling grid than

that required by traditional interpolation schemes.

Donahue and Turner have also noted the large file sizes that have to be transferred for a

given precision. They state that "... current information transfer methods coupled with the

differences in CAD representation schemes provide ample opportunity for improvement in

the CAD to rapid prototyping process ..." Heller notes that, "One of the largest hurdles to

cross at this stage of rapid modeling is the data transfer nightmare." He cites three major

solid modelinig methods:

1) Polygonal: representation by a collection of triangular-shaped facets
2) Constructive solids: representation using standard shapes as building blocks
3) Surfacing: representation by splines or polynomials

The effort reported here focused on the surfacing method and used Gaussian radial basis

functions instead of splines or polynomials.
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2. Brief Overview of Neural Networks

From an applications point of view, the field of neural networks investigates ways to

program massive arrays of parallel processors to perform useful tasks. The interest in this

field stems from the difficulty of using traditional sequential software methods to meet

modern rquirements. Another impetus to the field is that the traditional uni-processor

architectures are increasingly the cause of bottlenecks that prevent timely task completion,

especially in real-time environments. Finally, neural networks can generalize from examples

composed of multiple data elements.

Neural networks are massive arrays of simple processors that execute in parallel. These

processors are typically arranged in layers (see Figure 2-1). The processors in one layer are

usually fully connected with the processors in the immediate neighboring layers. A

processor is sometimes connected to itself and to other processors in its own layer. The

connections between processors have associated weights that modify data flowing through

the connections. Each processor executes (in parallel with the other processors in its own

layer) a weight,.d summation or product of its input data elements, an intermediate non-

linear transfer function, and an output function. The "program" of a neural network is

contained in the inter-processor connection weights. There can be hundreds of thousands

of these connection weights.

4
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There are many methods for setting the connection weights (sometimes called trainivg the

network). Not :ll methods are logistically supportable (See Raeth. Logistica! ýnpportability

refers to modifiability and maintainability in the face of changing requirements). All

methods involve sending "training" data through the network. These data represent

examples of the task the network is to accomplish. As the training data pass through the

network, the weights are adjusted automatically according to one of several training

methods. The network will respond appropriately to the training data given that the

network has had a sufficient exposure to the training data. If the training data adequately

represent the task to be accomplished, the network also can correctly process test data that

it has not been trained on.

Neural networks are not programmed in the traditional sense. Rather, they adjust

themselves to the task at hand based on examples. Computers programmed via traditional

stquential methods learn from algorithms composed of explicit task-accomplishment

instructions. Neural networks are heuristic in nature, not algorithmic. Because of this,

training a neural network is not as straightfoi ward as it might first appear. There are many

training methods and many network architectures. Dcpending on the task aL hand, a given

training method and network architecture may or may not be appropriate.

The troining and performance reliability of a neural network is of primary concern for

logistical and mission support reasons. Thus, it is necessary to use a neural network

architecture and training method that has predictable training and performance

6



characteristics. Such a network is the stretch and hammer neural network discussed in this

report.

Klimasauskas et al., Lippman, Rogers et al., and Rumelhart & McClelland have all written

more detailed introductions to neural networks. Lippman's paper is easy to follow and is

widely referenced. The other authors have produced full-length books. Klimasauskas and

Rumelhart & McClelland provide IBM-PC disks with example networks. For increasing

length and level of detail, start with Lippmann then go on to Rogers. Follow up with

Klimasauskas. Rumelhart & McClelland is the most theoretical of the four.

7



3. Introduction to Stretch and Hammer Neural Networks

Stretch and hammer neural networks are members of the more general class of radial basis

function networks. The Probabilistic Neural Network defited by Specht and further

described by Maloney is also a member of this class as are the networks described by

Zahirniak.

For three-dimensional solid modeling, stretch and hammer is best understood as a surface

fitting or surface interpolation neural network. In this context the network has two phases:

training and operation. In any supervised neural network, the training phase uses example

inputs and expected outputs to adjust the weighted connections. When training is completed

whenever the example inputs are presented, the expected output is produced. In solid

modeling, selected (x,y) coordinates are used as example inputs and the height of the surface

above some table (or baseline) is used as the expected output. In testing or operation,

inputs that were not used for training are provided and an output is produced. For solid

modeling, the neural network is expected to deliver as output a very accurate height for all

(x,y) coordinates of the surface in question.

Briefly stated, the training of a stretch and hammer neural network is described as follows.

(More details are provided in the paper by Gustafson et al. and in later sections of this

report.) Orthogonal coordinates with two horizontal input axes and one vertical output axis

are established. The training points can then be plotted in the coordinates of the resulting

8



three-dimensional space. These points are stretched so that they are evenly distributed in

the input (horizontal) space. A malleable plane is positioned to minimize the sum of

squared vertical distances between the plan- and the training outputs. The malleable plane

is hammered at each training output by directing the hammer along each vertical least-

squares line with normally and radially distributed accuracy using many small strikes. The

variances of the resulting Gaussian radial functions are set so that the number of strikes at

any training point just exceeds the number of strikes at all other training points. The

hammering is stopped when the malleable plane is deformed to intersect each training

output.

Testing is conducted by projecting the test inputs vertically from the horizontal plane to the

vertical surface generated during training. The output is the vertical height of the surface

from the horizontal plane at the (x,y) cooidinates of a given test input.

Poggio and Girosi have also interpreted neural network learning in terms of hyper-surface

construction. Such an interpretation also can be given to Specht's development of the

Probabilistic Neural Network (PNN) although the surface developed by the PNN places

radial Gaussian functions that have one of only two different heights at each training point.

Thus, the PNN is less general than the stretch and hammer neural network and is useful for

classification but not for continuous interpolation. The SHNN can be used for both tasks.

9



4. Stretch for Data Preparation

Aside from selecting appropriate inputs, preparing the input data for use in training and

testing is perhaps the most critical process in neural network operation. Two data

preparation methods are in common use: normalization and transformation by principal

components.

Normalization takes the vector of input values and scales the elements so that they are

bounded to a range of values. Normalization also can be used to ensure that the sum of

input elements is bounded to a fixed value or to a geometric surface. The constraiv- ýs

imposed by many types of neural networks require normalization of some kind to be

performed on the data inputs, network outputs, or on inter-layer node outputs.

Normalization is not required by the SHNN and so it is nc,• discussed further in this report.

Normalization is typically discussed in the literature relative to specific types of neural

networks.

Principal component analysis is a well-known statistical technique that is useful as an input

data preparation step for the SHNN. According to Kruskal, principal component analysis

allows reduction or elimination of indeterminacy. Translational indeterminancy is reduced

by adding various constraints, such as constraints that force the data element mean to zfr.o.

Rotational indeterminacy is reduced by rotating the input vectors to principal coordinates.

Principal coordinate axes form an orthogonal system in which the input data vectors are

10



uncorrelated. Dilation indeterminancy Oue to relative scaling of the data elements is

reduced by forcing the sum of the norms of the data elements to unity.

Prinicipal component analysis also can be used to eliminate input dat4 -lz:zlents that have

little variation relative to other elements. This function is accomplished by choosing for

elimination those input data elements associated with the smallest magnitude eigenvalues

of the data covariance matrix. Thus, the dimensionality of a problem may be reduced.

(This procedure is described further by Hecht-Nielsen and Hertz, et al.) In the SHNN,

however, the eigenvalues are used to "stretch" the small-variation elements in the principal

component space so that the maximum variation is achieved. Thus, no information is lost

and maximum use of all available information is achieved.

A more complete treatment of principal component analysis is given by Hotelling. The

specific implementation of the principal component transformation used in the SHNN

transforms all input data vectors based on an analysis of the training inputs. This

"stretching" transformation finds linear combinations of the training input elements that are

optimum in that the transformed-coordinate covariance matrix is the identity matrix.

U!
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Let x, be training element j for training vector i, where there are n elements j = 1,2, ..., n

and m vectors i = 1,2, ..., m. Here, n is strictly less than m and the elements are assumed

to be real.

The mean inputs are

X = Xl j'+X2j 3 M-7

The inputs relative to the means are

xV, 7j = Xijj ~j

Let X' be the matrix of {x',j of inputs relative to the means. The corresponding covariance

matrix A is (T refers to the matrix transpose)

A = XITXI

m1-i

12



The orthogonal eigenvectors vj and the corresponding real eigenvalues 1, associated with

matrix A are the solutions of

Av9 = jVj

where: vj is column j of the matrix of eigenvectors {vq,)
q = 1,2, ...,n, and the eigenvalues are solutions of

IA-XII = 0

Let uij be input j in principal component coordinates for training vector i. Lot ui be the

column vector formed from row i of the matrix of {(u}. Let x'1i be the column vector formed

from row i of the matrix {X'j}. Then the principal component transformation is

U.! = BX'

where the elements of the transformation matrix B are

bqj
IVC1I V2 ~

The numerical evaluation of the eigen'ectors and eigenvalues is best accomplished using

singular value decomposition of the matrix A. Note that the transformed inputs uij are unit-

13



less and that the columns of the matrix {uij} have zero mean, unit variance, and zero

covariance. Singular value decomposition is a mathematical technique for dealing with

systems of equations that are singular or numerically very close to being singular. Our

implementation follows Press, et al., and is supplemented by Nobel and Daniel.

A simple two-dimensional example that employs the above algorithm is as follows. Choose

the original coordinate values in the training space as shown below and plotted in Figure

4-1.

x-coordinate Expected SHNN Output
5.0 1.0
2.0 2.0
3.0 3.0
1.0 4.0

Note that the SHNN does not require any particular order in the training data. The above

x coordinates are transformed to the coordinates plotted in Figure 4-2.

x-coordinate Expected SHNN Output
1.3175 1.0

-0.4392 2.0
0.1464 3.0

-1.0247 4.0

14
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Note that the Expected SHNN Output is not affected by the coordinate transformation and

that the transformed coordinates are in principal component space, not the original training

space. As desired, the average value of the transformed element values is 0.0 and the

covariance matrix is the identity matrix, which in this case has a single unit element. The

Expected SHNN Output is defined by the network user as the value to be produced by

SHNN when the given coordinates are applied as input.

17



5. Hammer for Training

There are three phases to the training of a stretch and hammer neural network. Phase 1

fits a least squares plane to the training data. Phase 2 places Gaussian radial basis functions

at each training point. Phase 3 uses those Gaussian functions to "hammer" the least squares

plane until it contacts the expected network output at each training point.

Phase 1 of SHNN training fits or positions for "hammering" a linear hyper-plane of n

dimensions to the training outputs using a least squares criterion. Depending on specific

requirements, the training data is first be prepared using the principal components

transformation (see Stretch for Data Preparation). Let z be the vector of training outputs

(Z 1, Z2, ... , Zm)T, where T refers to the vector transpose. Let vector a, (ak, a,, a2, ..., an)T, be

the coefficients of the linear hyper-plane, where n is the number of elements, a0 is the z-axis

intercept, and a1, a2, ..., an are multipliers for the corresponding training vector elements.

Let C be the matrix for which row i is (1, uil, ui2, ... , uin), where ui refers to one of the m

training vectors. Then the least squares solution of

z= Ca

fits the linear hyper-plane to the training outputs. Note that the numerical evaluation of the

unknown elements in vector a is best accomplished using singular value decomposition and

that the solution involves m linear equations in n+ 1 unknowns, where m is strictly greater

18



than n. Continuing the example from the section, "Stretch for Data Preparation," Figure 5-1

shows the least squares line that fits stretched training points. The vector, 1, of points on

the least squares line are calculated using the following equation after a has been resolved:

l= Ca

where vector a - 2.500
-1.073

Phase 2 of SHNN training places Gaussian radial basis functions at each training point. The

variances for these functions are adjusted so that the matrix of Gaussian equation results

is diagonally dominant by columns. In traditional interpolation methods, lines, polynomials,

or splines connect adjacent training points. The SHNN adds up a series of Gaussian curves,

where each curve is centered on a single training point. The variance of any given curve

is such that the number of hammering strikes at the training point on which the curve is

centered equals the number of strikes at all other training points.

Let F be the matrix of Gaussian functions which have an output of unity at their respective

training points and an output which decreases as the distance to other training points

increases. It is these functions which ultimately, in Phase 3, "hammer" the least squares

plane (which was fit to the training points in Phase 1) to contact the training points.

Each column of the F matrix represents a given training point. Each element of each

column also represents a given training point. Thus, the F matrix is of size ni-by-rn. The

value stored at each matrix element is the result of the Gaussian function centered at the

19



_____ ____ ____ ___ O

LLI

urn

CL

l Ci) 4

CT,

........). . . ....... . .. .. ........

. 4-0

CDC

L()(U

0)0



column's training point as calculated at the training point indicated by the element. For

example, column #1 indicates training point #1. The first element of column #1 indicates

the first training, point, the second element of column # 1 indicates the second training point,

and so on. Thus, column #1, element #2 stores the output for the first training point's

Gaussian function calculated at the second training point. Note that the diagonal elements

of matrix F are always equal unity and that the off-diagonal elements are always less than

unity. The Gaussian equation employed to calculate the value of the Fki matrix element is

as follows:

-~(Uji-Uti)22o

e 20i2

wh~re: U*. = the ith element of the jth training vector
= the Gaussian variance associated with the jth training point

e = the base of natural logarithms

For many choices of a2 the matrix F is singular. This results in a final network which does

not fully represent the training data. A solution is to choose the Gaussian variances so as

to ensure that the matrix F can never be singular. The approach which requires the fewest

computations appears to be selecting the variances so that the matrix F is diagonally

dominant by columns. Columnar diagonal dominance means that the sum of the absolute

valies of all off-diagonal elements in a given matrix column is less than the absolute value

of the diagonal element in that column.

21



Physically, columnar diagonal dominance occurs when the variances are sufficiently narrow

that the Gaussian function's value at neighboring (and, therefore, distant) points is small.

Since extremely narrow variances would result in a pin cushion interpolating surface having

poor smoothness, it is reasonable to attempt to make the variances as large as possible while

maintaining diagonal dominance. This condition is achieved using a short iterative

procedure. This procedure sets each column's varianze to a fairly small value and then sums

the off-diagonal elements in that column (in the case of Gaussians, the result is always

positive). If the summation is not less than unity within some margin of error (say 0.001),

then the variance is appropriately modified and the addition is repeated. This procedure

is performed for each column in the F matrix. The F matrix and the variances for our

continuing example are shown below.

The F matrix: 1.0000 0.0019 0.1760 0.0055
0.2985 1.0000 0.6477 0.7220
0.5843 0.4988 1.0000 0.2718
0.1165 0.4988 0.1760 1.0000

Variances (02): 1.2760 0.2965 0.3948 0.5264

Figure 5-2 shows the four Gaussian functions relative to the stretched training points and

the least squares line.

Phase 3 of SHNN training uses the Gaussian functions developed in Phase 2 to "hammer"

Phase l's least squares plane so that it contacts the training points. The first step in Phase

3 is to develop the vector z'. Each element of z' is the difference between the value of the

22
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least squares plane calculated at a training poiri and the value at that training point. After

a has been resolved,

Z/= z-Ca= z-l

Coefficients for the F matrix elements are calculated so that the sum of the previously

developed Gaussian functions calculated at each training point equals the difference

between the least squares plane and that training point. This task is accomplished by

solving a system of m equations in m unknowns:

Z/= Fb

where b is the vector of Gaussian coefficients, (b1, b2, ..., bm)T.

Since F is guaranteed to be nonsingular, singular value decomposition need not be used to

resolve b. We use LU Decomposition aG implemented by Press, et al. Figure 5-3 shows the

modified Gaussians from our continuing example, where z' and b were determined as

follows:

Z9 = -0.086 b = -0.484
-0.971 -3.632
0.657 2.242
0.400 1.873

Remember that each F matrix column refers to the Gaussian surrounding a specific training

point. The z' modification of those Gaussians permits their summation at the training points

to equal the difference between the least squares plane and those points. Figure 5-4 shows

the summation of the z' modified Gaussians.
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The last step in Phase 3 is to complete the "hammering" by combining the sum of the z'

modified Gaussians with the least squares plane. The resulting vector, z", contains values

on a continuous surface at the training points' coordinates. This surface can be used for

interpolation after a and b have been resolved. Figure 5-5 shows z" calculated for our

continuing example. Note that z" does indeed contact each training point.

z"H= Fb+Ca= z/ +1

2-7
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6. Execution For Testing

The function that the "hammering" process develops to exactly fit the training points is

continuous. Thus, any point that has the same dimensionality as the hyper-space generated

by the network may be chosen and an output calculated.

Typically, test and training points are chosen in the original problem space. If the network

was trained in principal component space, the coordinates of the test points must be mapped

from the original space to principal component space. The following equation performs this

mapping:

p= B(o-x)

where: p is the test vector in principal component space
o is the test vector in original space
B is the transformation matrix calculated as part of the principal

components analysis during the "stretching" portion of training
x-bar is the vector of element means

(In p and o, each element contains a coordinate value for a given
dimension)

Note that if matrix B is the identity matrix I and x-bar is the 0 vector, then vector p is the

same as vector o. These values of B and x-bar are used if the network has been trained in

the original problem space. Given this more general understanding of B and x-bar, it is

clear that vector p is simply the test vector in original spece mapped to the appropriate

space.
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Once the test vector is in the appropriate space, the following equation generates the

position on the hyper-surface developed during the "hammering" portion of SHNN training:

h = gb + pa + ao

where: b is the vector of Gaussian coefficients
a is the vector of least squares coefficients, (a,, a2, ..., an)T
ao is the least squares plane z-axis intercept
g is the row vector of Gaussian training functions calculated at the

test point
h is the scalar value of the "hammered" surface at the coordinates

of the test point
p is the test vector mapped to the appropriate space and taken as

a row vector

Figure 6-1 shows this equation calculated for our continuing example. Here, 60 test points

were chosen in the range -5.0 through + 5.0. h was then plotted at the coordinates indicated

by the test vector elements. Note that the SHNN extrapolates asymptotically to the least

squares plane as the distance from the edge of the training domain increases.
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7. Interpretation as a Neural Network

The B matrix and the a and b vectors developed during SHNN training can be viewed as

neural network weights. The test vector in the original space would be the network input.

This section discusses the resulting SHNN neural network architecture.

As indicated in Figure 7-1, the SHNN architecture connects every node in a lower level to

every node in the layer above. The nodes in a given layer are not connected to other nodes

in that layer. Data flows through the network with the input at the bottom of the figure and

the output at the top. Weight values are placed along the inter-node connection lines and

are subscripted to show that the data flowing on the line to the input of one node from the

output of another are modified. The two-letter subscript's first letter is the "to" node and

the second letter is the "from" node. Each node typically executes a weighted summation

of its inputs and feeds the result directly to its output. In this case, no transfer or output

functions are employed making for a very simple node. In nodes that occur less often in the

architecture, a transfer function also is used.

The equations discussed in Section 6, "Execution for Testing," lend themselves in a natural

way to parallel implementation. Figure 7-2 shows an overview. There are two values which

are summed to obtain the SHNN output, the value on the Gaussian curve, gb, and the value

on the least squares plane, ao + pa, of the test vector coordinates, o, in original space. A

weight of 1 on each line from the input layer to the single-node output layer
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indicates that the input layer serves only to distribute the input lines to the layer above and

that the layer performs an input function that is only an unweighted summation.

The z-axis intercept, a0, is calculated during training and needs no further development.

Figure 7-3 contains the architecture for determining the rest of the value on the least

squares plane. This architecture also maps the test vector from origiral space to principal

component space. The test vector is input at the bottom of the figure. The hidden layer

produces p, the test vector in principal component space. The output layer result is pa.

The weights on the lines to the hidden layer from the input layer are the element values of

the transformation maot:ix B. Remember, B is an n-x-n matrix, where n is the number of

elzments in the test and training vectors. Bjj is row j, element i, of matrix B. This

corresponds to the weight on the line to hiddt-ii . ovle j from input node i. The weights a8

on the lines going to the output layer from the hidden layer are the least squares coefficients

assigned to the corresponding elements of p.

Figure 7-4 gives the architecture for determining the position of p on the Gaussian surface,

gb. Vector p is input at the bottom of the figure. The input layer, in this case, simply

serves to distributc the input to the hidden layer nodes. Thus, the lines to the hidden layer

from the input layer are weighted at 1. The hidden layer has one node for each of the

training examples. The memory for each hidden layer node holds a unique training vector,

uk, and its associated variance multiplied by -2 (-2ak 2, -2 x Sigma2 k in the figures). Each

hidden layer node executes an input unweighted
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summation whose result is used to drive a Gaussian transfer function. The hidden layer is

connected to the output layer. The weights between these layers are the Gaussian

coefficients, b, related to a specific training vector. The output layer executes a weighted

summation of the hidden layer output to obtain gb.
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8. Anolication to 3D $taces

This section presents an example of the SHNN applied to a small three-dimensional

problem. Figures are presented which show input vectors moving through training and

testing. Note that in the case of 3D spaces two dimensions are used for independent

variables and the third dimension is used for the dependent variable. Accordingly, n (the

number of elements or coordinates in the training and test vectors) is equal to 2. A

subscript convention employed refers 'o matrix elements MO, where the first subscript refers

to the matrix row and the second subscript refers to the matrix column.

Stretching

Consider a matrix of training vectors in original space. The rows are the m vectors and the

columns are the n vector elements or coordinates.

XII, X12, e.°. Xxn

1X ...2 I X'

X=

Xmi, XM2 , ... , Xmn
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For our example, this matrix reduces as follows. The vector z contains the expected SHNN

output for each trairing vector. A plot illustrating this set of training vectors is given in

Figure 8-1.

'2.3, 1.1 1.0)

S 3.0, 3.0 2.0

3.0, 4.0 3.0

5.5, 6.2 k4.0)

The vector of column means is:

(Xli + X2 1 + ... + Xmi)Im)

(X 12 + X22 + + Xm2)Im

(Xln + X2n + + Xmn)Im
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For this example, the following means were calculated.

3.450'

x-- =(3.575)

The matrix of input elements relative to their means is:

X -x1) X1-2 , ... X2l,,- x,

x21- x1, X22- X2, ..., X2,- -,

XI-

X/ =

XVmA - XM2x- X2, ..., x,,m- xn

This equation produces the following matrix for our example.

- 1.150, -2.475)

- -0.450, --0.575
-0.450, 0.425

2.050, 2.625
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The corresponding covariance matrix is: (See Lipschutz for a basic discussion on matrix

operations.)

X'p X' X125 "' XX X11, "21' "", ,.l "1' 12' , 1.n

X 12' X 2 2 , ,X 2 X2, X'22, .. , X2n

A m1

Xin' X2n, X*'mn Xml, Xm2 -9 X'mn

From this, it is plain to see that the elements of matrix A are computable without actually

creating the transpose of X. Rather, the follwing equation may be used:

n

SI X'5  X k

M-1

For this example, matrix A becomes:

A 1.977ý2.765'
2.765, 4.509)
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Find the matrix of eigenvectors, V, and the vector of eigenvalues, A. A discussion of the

required process is beyond the scope of this report. Press et al. give an excellent discussion

on practical means of finding the following eigenvectors and eigenvalues. (Note: The

eigenvectors are the V matrix columns.)

( 0.842 0.540
-0.540, 0.842)

X = ( 0.202, 6.284)

Find the uii's, the m training vectors mapped from original space to principal component

space.

B11, B12 , Bln,)

B 2 1 B22, ..99B2n

U 
i

B nlBn2, 9*.9 Bnnl
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The matrix elements B• are calculated as individual elements of an n-x-n matrix.

VlI V21 V..I

IV, I FI11 IV1IF , *.., FIX

[ VnF " [ IVnl ~n9 I' iVn I -- n

where:

j=l1
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For our example, the transformation matrix B becomes:

(1.874, -1.203o

k0.2 16 , 0.336)

As a result of these "stretching" calculations, the original set of training vectors is mapped

as shown below and plotted in Figure 8-2.

0.822, -1.079' 1.0

-0.152, -0.290 2.0

-1.354, 0.046 3.0

0.684, 1.323 4.0,

where the rows of matrix U = u7.
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Hammering

Take a matrix of training vectors in original or principal component space along with the

corresponding vector of expectvd SHNN outputs.

U11) U 12 , "", Uln Zl

U z

U- 4

•Um1, Um2 , .".. UmZ mI

For our example, we will continue with the previous training vectors in priacipal component

space and the same expected SHNN outputs.

Fit a least squares plane to the tr.ining data. This involves solving an overspecified,

(m > n), system of equations.

48



zi 1, U 11, U 12 , ... , Uin a.

Z2 1. U 21, U 225 ... 1U2n a1

LMj '1m, U m 2, Un .

Our example h:; this system:

1.0) 1.0, 0.822, -1.079 ao

2.0 1.0, -0.152, -0.290

3.0 1.0, -1.354, 0.046 1

,4.0, 1.0, 0.684, 1.323 a2

The solution to this system is plotted in Figure 8-3 and has the following a vector:

2.500)

a = -0.270
1.257)

Center Gaussian functions, G(u1 ,u1), at each of the training points. These functions are

placed in matrix F. The columns represent training points and the rows represent G(ui,uj)
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at the column's training point, aj, calculated at the coordinates of the row training point. uj.

G(u,,u1), G(u2,u1), ..., G(u,,,ul)

G(u•, '.!2), G(u2,u2),1 .... G(u,,,u2)

F=

4

G(ul,u,,), G(u2,Um), ..., G(U,n,Um)/

where: ui refers to the training point i
G(uj,uk) is the Gaussian function for training vector j calculated
at training vector k

n-• ujJu/d)2
i=1 _____

G(uJuk) = e

where: u.- = training element i of training vector i
C j = the Gaussian variance associated with the jth training point
e = the base of natural logarithms
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Adjust the a's until F achieves columnar diagonal dominance. For our example, the

following F matrix was produced. The summed Gaussian curve is compared to the least

squares plane in Figure 8-4.

1.000, 0.418, 0.176, 0.265)

F 0.635, 1.000, 0.637, 0.469

0.177, 0.421, 1.000, 0.265

0.188, 0.160, 0.187, 1.000

2a2 = (3.459, 1.801, 3.451, 4.359)

Force the peaks of the Gaussian functions to equal the difference between the least squares

plane and the training points. This is accomplished by solving another system of equations.

First, develop z', the vector of differences between the training points and the least squares

plane.

z2- a0- a -u21  a2u22- ...- a

Z/=

Zm- aO- aluml- a2um2- - anumn
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The example produced the following z' vector:

0.077'

-0.176
0.078

0.022

Use z' to solve for a set of coefficients which will adjust the Gaussian peaks so that they

represent the difference between the expected SHNN output at the training points and the

value of the least squares plane at those points.

zoI FnI, F22, ..., FIr b'

Zm F F *.* F

'2 F21 22,... F2m b2_

m, FP, Fm23, ... 3m2' " rmm
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Our example resolved the b vector as

0.234

-0.480b =
0.235

0.015

The sum of the adjusted Gaussian curves are compared to the least squares plane in Figure

8-5.
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Execution

Given the previous calculations, it is now possible to use the SHNN to calculate outputs

based on test vectors not used in training. If the network was trained with the training

vectors in principal component space, the test vectors must also be mapped to that space.

P) B1, B121 ...1 B1n 01 X1

P 2  B 2 1, B22,, .. B 02

* .

Bn1' Bnnj On

A single mapping for this example is shown below, assuming that the test vector

o = (2.300,1.100)".

0.822 1.874, - 1.203 2.300 3.450

- 1 .0 7 9) 0.216, 0.336) 1.100) 3.575-
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The appropriately mapped test vectors are used to calculate the SHNN's output.

SHNN Output = (G(p,t1), G(p,t2), ... , G(p,tm)) +

bmI

a0

a,

51, Pn)

,an)
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Choosing p, the mapped test vector as calculated above, the following SHNN result is

calculated:

0.234

-0.480
1 -- (1.000, 0.208, 0.003 0.003) .235 +

0.011

2.500'

(1, 0.822, -1.079) -0.270

1.257

Figure 8-6 shows the surface generated if a regular matrix of test vectors is chosen

surrounding the test points (coordinate axes bounded by -2 through 2 inclusive).
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9. Data for Network Training and Testing in 3D Solid Modeling

The SHNN network was trained and tested for 3D interpolation using data generated from

an equation z = f(x,y) where z is height above a table or baseline and x and y are

independent coordinate axis values. For example, let f(x,y) = sin(x)sin(y), x M 0.5, and y

= 0.25, then z = f(x,y) = sin(x)sin(y) = sin(0.5)sin(0.25) = 0.1186118. This point is plotted

in Figure 9-1.

Training data were generated from a regular sampling grid. First, tLe limits of x and y were

defined and a grid density was specified in terms of the number of evenly spaced y

coordinates required for each of a number of evenly spaced x coordinates. For example,

if the limits of both x and y are each 0.0 through 1.0 and a 3-by-5 grid is selected, then there

are 15 total data samples as shown in Figure 9-2. Figure 9-3 extends this example by

showing sin(x)sin(y) for the original limits but using a 20-by-20 regular sampling grid. The

axes are tilted to display the surface shape.
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All (x,y) training coordinates for a regular i-by-j grid were generated using the following

equations:

(i - I) (max(x) - mirn(x))xi = rain (x) + (. 1 m xW -m n-W
max(i) - 1

S= min (Y)-s+(j - 1)(max(y) - min(y))
max (j) - 1

where i = 1,2, ..., # x coordinates and j = 1,2, ..., # y coordinates for each x coordinate.

Test data were produced by positioning these data relative to the training data. The goal

in test data production was to cause the maximum loss of interpolation precision. This goal

was very easy to attain. It was only necessary to put the test points at the maximum distance

from the training points while, like the training points, covering the entire surface. For grid

sampling, the test points were placed in the center of the grid blocks formed by the training

points. Figure 9-4 repeats Figure 9-2 with the test points entered. The test points lie at

coordinates (Xa, Y.).
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In general, xa = x + 0.5(x1 - x) and ya = y + 0 .5 (y, - y); where x, y, xj, and yi are the four

corners of a given grid as noted in Figure 9-4.

For regular grids x8+i = x + 0.5(x 1 - x) + i(xj - x) and Ya+i = y + 0.5(y, - y) + j(y1 - y);

where i = 0,1, ...,(t-1) and j = 0,1, ...,(u-i). If the training grid is t-by-u (that is: u y-

coordinates for each of t x-coordinates) then the testing grid is (t-1)-by-(u-1), where both t

and u must be equal to 2 or greater.

When the testing data were applied to the trained network, a measure of interpolation

precision was calculated. This measure essentially reveals the overall difference between

the answer the trained network result and the actual function result. The same training and

testing data and the same measure of precision were used for both the SHNN and

traditional interpolation. The equations used for precision calculations are given below.

Precision =

CalculatedResult - InterpolatedResul t
Calcula tedResul tsRange

RMS Precision ZPr- isori
#TestVectors

S Average Precision = E IPrecisionl
# Test Vectors
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10. Tests on Three Surfaces

The SHNN was tested on surfaces of low, medium, and high complexity. The results were

compared to bicubic interpretation. Training grids of 3, 4, 5, 6, 7, 8, 9, 15, 20, 25, and 31

were chosen. The available computing hardware did not permit higher densities. The

training and test points were chosen as described in "Data For Network Training and

Testing in 3D Solid Modeling."

Low Complexity Surface

The surface of low complexity is described by the following equation:

/ 1T 
Y 2

Surface Height = cos7,)[l(-

A plot of this equation is shown in Figure 10-1 for a 50x50 grid with the x and y axes in the

range of 0 through 1 inclusive. This equation was chosen because it is not symmetric on

either coordinate axis. Thus, there are no duplicated test points.

Figure 10-2 compares the RMS precision of the SHNN to that of bicubic interpolation.

Figure 10-3 compares the worst precision of the SHNN to that of bicubic interpolation.
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Medium Complexity Surface

The surface of medium complexity used the same basic equation as the low complexity

surface. However, a Gaussian bump was added on each of the four corners. The Gaussian

bumps were generated using the following equation:

Surface Height = Low Complexity Height +

4 -((ga- x)2 + (si - y)2)

0.025E e 0.005
i=1

where: g.1 and g, are the x,y coordinates of the Gaussian centers
x and y are the x,y coordinates of a training point

A plot of this surface is shown in Figure 10-4 for a 50x50 grid. The same data ranges and

grids as before were used.

Figure 10-5 compares the RMS precision of the SHNN to that of bicubic interpolation.

Figure 10-6 compares the worst precision of the SHNN to that of bicubic interpolation.
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High Complexity Surface

The surface of high complexity used the same basic equation as the low complexity surface.

Howe;er, Gaussian bumps were added on an 8x8 grid which spanned the entire surface.

The Gaussian bumps were generated using the following equation:

Surface Height = Low Complexity Heighz +

64 _((ga- x)2+ (gyi- ,)2)

10.O0 e 0.o02
i=1

where: gx1 and g. are the x,y coordinates of the Gaussian centers
x and y are the x,y coordinates of a training point

A plot of this surface is shown in Figure 10-7 for a 5OxSO grid. The same data ranges and

grids a.; before were used.

Figure 10-8 compares the RMS precision of the SHNN to that of bicubic interpolation.

Figure 10.9 compares i,. worst precision of the SHNN to that of bicubic interpolation.

7
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11. Observations and Folklore

A key to the accurate functioning of neural networks based on Gaussian radial basis

functions is appropriately setting the Gaussian variances. Specht's PNN has a single

variance that is set by the user. The SHNN calculates a variance that is, generally, different

for each training point. Thus, although the user could set desired widths, the SHNN can

calculate optimal widths for best performance.

Only one pass through the training data is needed by the SHNN. This pass includes four

places where iterations occur:

a) Fnding the eigenvectors and eigenvalues
b) Solving the equations to fit the least squares plane to the training data
c) Adjusting the 'taussian variances to achieve columnar diagonal do !ninance
d) Solving the equations to d( termine the Gaussian coefficients

The longest iteration occurs when solving the equations that determine the Gaussian

coefficients.

Solutions to systems of linear equations are generally of O(N3/c) computational complexity,

where N is the number of equations and unknowns in a completely specified system,

Singular Value Decomposition (SVD) is O(N3/3) and Lower-triangular:Upper-triangular

Decomposition (LUD, is O(N3/15), according to our experience with those two methods.

When calculating columnar diagonal dominance, it is possible to use off-diagonal sums of

less than 1. This possibility was investigated briefly. Our observation from a few

80



experiments is that, while RMS precision is not greatly affected, there are opportunities to

improve worst precision. The implication is that there may be ways to fine-tune the SHNN

to minimize gross errors. Remember, all neural networks are heuristic by nature. They do

not compute precise answers according to some algorithm. On the few surfaces we tried,

an off-diagonal sum of 0.4 (rather than unity) worked best if there was any effect at all.

When using SVD for solving systems of equations, we have found that solutions to systems

of equations are more readily achieved if the training vectors are first passed through a

principal components transformation. In addition, we have found that the principal

components transformation does not affect interpolation accuracy when regular grid

sampling is used. However, even with regular grids, the principal components

transformation speeds up the solution of systems of equations when SVD is used. In fact,

SVD would not solve some systems we attempted without the principal components

transformation.

It is best to use the C language precompiler called "Lint" on all code, especially that which

is commercially procured. The version of I int used must be oriented to your specific

compiler. During this project, we were often surprised ovei how fragile C source can be due

to comnpilable and executable coding errors such as coercion, promotion, and demotion.

Lint will usually catch these types of errors. The C compilers typically will not catch such

errors.
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12. Conclusions Relative to 3D Solid Modelin.

The authors have come to the following conclusions relative to 3D solid modeling.

For simple surfaces, traditional interpolation methods yield precision superior to that

achievable by stretch and hammer's current implementation. (Bicubic interpolation was

used as z. base-line.) As the surface becomes more com,-.ex, the stretch and hammer neural

network yields comparable precision.

For complex n-dimensional problems where the problem space cannot be sampled using an

arbitrarily dense grid, traditional algorithms grow in complexity and execution time as n

increases. Traditional methods grow in execution time as the number of training samples

grows. The stretch and hammer neural network remains fixed in complexity (but not size)

as n and the number of training samples grows. The SHNN remains fixed in e:xecution time

as n and the number of training samples grows if true neural hardware is used for

implementation.

Traditional interpolation methods cannot extrapolate outside their training data without

making certain assumptions and, in effect, adding training data. If the test data fall outside

the training data, traditional methods cannot interpolate a surface height without the added

training data. Thus, input data tolerances can cause values outside the realm of

computabi!ity for traditional methods. The stretch and hammer neural network easily
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generalizes so that input data tolerances are accommodated.

Finally, stretch and hammer's parallel nature allows it to take advantage of off-shelf and

future parallel computing hardware such as transputers and neural chips. Thus, there is

strong reason to believe that the SHNN can execute in real time despite the problem

complexity. Such may not be possible with traditional interpolation methods.
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13. Two Other Applications

Filtering and classification are two other areas to which the SHNN may have useful

application.

Filtering

An application of the stretch and hammer neural network is the synthesis of filters for an

optical correlator used for pattern recognition. Figure 13-1 shows an optical correlator.

Input Scene Containing Target Pattern (Square)

with Bright SPot

0 Indicating Target

Lens

Fourler Transform of Input Scene
and FIIter for Square

Figure 13-1: Optical Correlator
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Coherent light from a pixelated input scene containing a target pattern passes through a

simple lens one focal length away from the input. One focal length behind the lens, the

Fourier transform (or spatial frequency spectrum) of the input scene is imaged. A pixelated

transparency filter made from the Fourier transform of the target pattern to be recognized

is also placed in this plane. Light passing through the filter is now the product of the

Fourier transform of the input scene and the filter transparency. This light is then passed

through another lens placed one focal length away. One focal length behind this second

lens an image showkng the correlation between the input scene and the target pattern is

formed. Points of high correlation appear as bright spots on this output plane. Points on

the input plane and the output plane can be matched in a one-to-one manner. Points of

high correlation in the output plane (bright points) can be related to specific positions on

the input plane that indicate the presence of the target pattern.

One major problem with this method is that the filter is made for a target pattern of specific

orientation and scale (or size). If the target pattern in the input scene rotates or changes

scale, then the original filter does not produce a strong correlation point in the output plane

for the newly oriented target. It is possible that the SHNN can be used to synthesize new,

more appropriate filters as the orientation and scale of the target pattern changes within the

input scene. The input to the SHNN is data from the input scene which contains

information about the orientation and scale of the target pattern. The output from the

network is information a,,out how to synthesize a new filter.
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One specific implementation now being investigated at the University of Dayton Research

Institute uses the following steps. First, it is assumed that the target pattern has been

previously located in the input plane, but has since changed its orientation and scale. The

values of the input scene in the region around the target location are sampled using a

rectangular grid of points. The values from the sampling grid are used as the input values

for the neural network. The network is trained by sampling the target pattern at

orientations and scales for which the proper filter is known. The outputs of the network are

the pixel values for the new filter which matches the sampled input from the reoriented and

rescaled target pattern.

Classification

The SHNN may be employed to solve classification problems since classification is a sub-set

of interpolation. In interpolation, the neural network determines the 'height" of some

hyper-surface at coordinates not included in the training set. In classification, the hyper-

surface consists of "heights" that correspond to given classes. For instance, all coordinates

(called features in classification) that are samples of the automobile class might have a

height of 1. All features that are of none of the classes might be given a height of 0.

Classes would have outputs valued sequentially using integers.
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For classificatior, the SHNN would be trained in the same way as for interpolation. The

training set would include all the feature vectors and the hyper-surface "height!" that

corresponds to the appropriate class for each vector. Then, test vectors would be applied

and an output would be calculated. The difference here is that the SHNN final output node

would ex'-cute the output function int(output + 0.5) to truncate the decimal and ensure

an integer class value.

A variation on this idea would have a post-processor layer that would take the raw SHNN

output and determine if it represented a known class. Here, the classes would not have to

be numbered sequentially (nor even be integers). Another advantage of this variation is that

it would be possible to have an output value between two class values but not close enough

to either to say it belonged to one class or the other. Thus, the opportunities to flag

unknowns would increase.

The above approach to the use of the SHNN in classification makes little change to the

original method. However, there are some weaknesses:

a) It is not possible, without transforming the coordinate axes, to collect "evidence"
that multiple classes are indicated by the same feature vector.

b) A class with a low output value could be dominated by a, spatially, nearby class
that has a very high output value.

c) Learning in real time would be difficult if not unlikely.
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A solution is to create an SHNN with multiple outputs. Then connect the training sample

nodes only to the output node(s) for the class(es) to which they apply. The expected output

for all training vectors for all classes would then be fixed at some value. Class selections

would be based on the highest-valued output node. If similarly high output values were

produced by more than one node, then an ambiguity would result.

The least squares plane fits this case exactly. There is no difference between the surface

value on the least squares plane at the training coordinates and the expected output at the

training coordinates. Thus, the value of the initial Gaussian peaks would be zero. The

resulting "hammered" surface would simply be the least squares plane itself, and there would

be no surface variability that could be used to separate classes.

A solution to this dilemma is to "hammer" to the zero plane instead of the least squares

plane. However, the difference between the value on the zero plane at the training

coordinates and the expected output at the training coordinates is the expected output.

Thus, the part of the training and the network used for "hammering" can be eliminated. The

Gaussian coefficients would all have the same value. The Gaussian functions would

generate the expected output at the training coordinates with the value decreasing as the

distance from the training coordinates decreases. The expected output would be a value

that is the same for all classes and training vectors. The Gaussian coefficients are equal to

that expected value.
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Columnar diagonal dominance might still be useful for determining the variances for each

training point's Gaussian. It is possible that this technique could be used to ensure that the

Gaussians have small overlap. During some brief trials with this idea, we found that the

sum of the off diagonal column elements needs to be fairly small. We had success with

sums of 0.05 and 0.1. All the training examples for all classes were placed into one large

matrix for the diagonal dominance calculation.

If extra training sample nodes and class output nodes are added to the network, real time

training could be implemented since there are no systems of equations to solve. The

variance for any new training point could be something very narrow, the average of the two

closest original training points, the average of all the original training points, or something

else depending on the situation.

Specht's PNN is very similar to the Exponential Neural Network (ENN) outlined above.

Specht's radial basis functions are Gaussian, but he varies the coefficient to ensure a volume

of unity under each Gaussian. The PNN uses the same variance at each training point. The

ENN subset of the SHNN maintairns a Gaussian coefficient equal to the expected output and

places Gaussian's with generally different variances at each training point.
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14. Recommendations

Much work has been done, by various researchers, on basis function methods feor

programming massive arrays of parallel processors. This work should be consolidated since

it offers much in the way of logistical supportability. Many otner currently popular methods

of programming these arrays are not logistically supportable.

A serious problem with the SHNN is that it does not train in real time for interpolation.

Traditional interpolation methods train in real time and are more or as accurate as the

SHNN. The SHNN has the advantage of constant execution time, given true neural

hardware, in spite of increases in the dimensions and the numbers of training vectors.

Traditional interpolation methods do not share this execution advantage. Efforts should be

undertaken to develop a means of training the SHNN in real time for interpolation.

It would be interesting if neural network interpretations could be devised for traditional

interpolation schemes. Such interpretations are not obvious but further study on the basic

theories behind the traditional methods might reveal them. It is true that a pipelin-.

interpretation is fairly easily made of traditional interpolation methods. However, the length

of the pipe tends to grow as does the number of dimensions. Each joint on the pipe takes

longer to execute as the number of training vectors grows. The advantage of the pipeline

is that the joints execute in parallel. Upon receiving its input data, a joint can begin

execution while earlier joints begin preparing the next round of input. With neural
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networks, the layers and the nodes in each layer execute in parallel. Like the pipeline joints.

a layer receives its input data and begins executing. Previous layers then begin preparing

the next round of input. Unlike the pipeline, the number of layers is fixed. As dimensions,

training vectors, and classes are added, the number of nodes in various layers grows. The

nodes in each layer always execute in parallel so there is never any change in 'he execution

time of each layer if true neural hardware is used. Also unlike the pipeline, the neural

network remains fixed in complexity. As the pipe grows in length with more joints added,

a more sophisticated control method is needed. Neural networks simply change weight

values from zero on inter-node connections to activate additional nodes.

Only the least squares plane and Gaussian radial basis functions were applied to the SHNN

in this study. Explorations were briefly undertaken during this study to determine if other

surfaces and functions would yield greater interpolation accuracy. These explorations should

continue.

An effort to pin down the effect of off-diagonal sums of less than 1 should be made. An

experimental approach would perform tests on surfaces of increasing complexity while

applying to each surface an increasing density of sampling. For each surface, at each

incremental density chosen, various off-diagonal sums, in a logical progression, could be

tried.
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On very complex surfaces, the SHNN has accuracy comparable to traditional interpolation

schemes, However, we did not have the computing power to use the sampling density

necessary to achieve CAD/CAM accuracy on the most complex surface. When it becomes

possible, the sampling density should be significantly increased until CAD/CAM accuracy

is reached. The goal is to see if the SHNN needs fewer samples than traditional methods

need to reach CAD/CAM interpolation accuracy on very complex surfaces. To this end,

the authors have submitted a grant proposal for time on the Ohio Super Computer Center's

Cray. This proposal was approved after the research period that produced this report.
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