
AD-A247 929

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
ELECTE
MAR 27 19923D U THESIS

SEARCHING FOR SHORTEST AND SAFEST PATHS
ALONG OBSTACLE COMMON TANGENTS

by

Jerry Allen Crane
September 1991

Thesis Advisor: Yutaka Kanayama

Approved for public release: distribution is unlimited.

92-07794III ~ I[!lfIfIi IlllI 111l11111l f IIl iIl

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION UNCLASSIFIED 1b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

§ E FORMG ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Computer cience Dept. (it applicable) Naval Postgraduate School
Naval Postgraduate School CS

6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000f Monterey, CA 93943-5000

Ba. NAME OF FUNDING/SPONSORING 81b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if apphcable)

8c ADDRESS (City. State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO. ACCESSION NO.

11. TITLE (Include Security Classification)
SEARCHING FOR SHORTEST AND SAFEST PATHS ALONG OBSTACLE COMMON TANGENTS (U)

. s r T s esisPORT 13b.FRTIMECOVEREDo 14 DATE OF REPORT 'Year, Month, Day) 115. PAGE COUNT
Master seiFRM& TO SEPTEMBER 169

16 SUPPLEMENTARY NOTATION The views expressed in his thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse ifnecessary and identify by block number)

FIELD GROUP SUB-GROUP Robotics, path planning, shortest paths, safe path planning, common
tangents, convex subpolygons

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This thesis describes a method for computing globally shortest paths for a point robot in a two-dimensional,

orthogonal world composed of convex and concave polygons through the construction of obstacle common tangent
visibility graphs. Visibility and intersection testing are based on the orientation of three or more points in the plane,
and complex obstacle tangent visibility graphs are constructed using only these orientation relationships. Obstacle
common tangents for convex and concave polygonal obstacles are implemented as a computational representation of
locally shortest paths. A series of tangent sequences form global paths which equate to global path equivalence
classes, effectively reducing the path finding problem to that of finding the shortest path in the path equivalence class.
A simple and logical approach for processing concave polygons using convex subpolygons is implemented, allowing
common tangent construction and path searching algorithms to process complex geometrical shapes in an efficient
and symbolically unique fashion. Dijkstra's algorithm is implemented using heuristic control for optimal path
searching. The framework for utilizing constant clearance strips for safe path planning along obstacle common tan-
gents is presented but not fully implemented.
20. DISTRIBUTIQ)N/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
[] UNCLASSIFIED/UNLIMITED [] SAME AS RPT [] DTIC USERS UNCLASSIFIED
a. NAME ,F RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 2 SYMBOL
uaa Kanayama (408) 662095 a

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited

SEARCHING FOR SHORTEST AND SAFEST PATHS
ALONG OBSTACLE COMMON TANGENTS

by
Jerry Allen Crane

Major, United States Army
B.S., USMA 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCllOOL
September 1991

Author:
--Je e A_ Crane

/9

Approved By:
Yu aka Kanayama, Thesis Advi-6

Ir.,/licdp ecZe'ond Reader

RnhPrt R lMr(3bpP_ C"h~irmrnn

Department of Computer Science

ii

ABSTRACT

This thesis describes a method for computing globally shortest paths for a point robot

in a two-dimensional, orthogonal world composed of convex and concave polygons

through the construction of obstacle common tangent visibility graphs. Visibility and

intersection testing are based on the orientation of three or more points in the plane, and

complex obstacle tangent visibility graphs are constructed using only these orientation

relationships. Obstacle common tangents for convex and concave polygonal obstacles

are implemented as a comnputational representation of locally shortest paths. A series of

tangent sequences form global paths which equate to global path equivalence classes,

effectively reducing the path finding problem to that of finding the shortest path in the

path equivalence class. A simple and logical approach for processing concave polygons

using convex subpolygons ', implemented, allowing common tangent construction and

path searching algorithms to process complex geometrical shapes in an efficient and

symbolically unique fashion. Dijkstra's algorithm is implemented using heuristic control

for optimal path searching. The framework for utilizing constant clearance strips for safe

path planning along obstacle common tangents is presented but not fully implemented.

Acce7ion For

NTS ,-:iA, "I

U . ."(,i. . ..

.y

Di:-t IU.:t0;,

" ' t I

A2-IlI , :. :

TABLE OF CONTENTS

I. INTR O D UCTIO N .. I

A . O BJECT IV ES .. I

B . B A C K G RO U N D .. 1

C. THESIS ORGANIZATION .. 2

II. MATHEMATICAL BASIS FOR COMMON TANGENTS 4

A. POINT REPRESENTATION .. 4

B. O RIENTA TIO N ... 4

C. NORMALIZATION OF ORIENTATIONS .. 6

D. PLACEMENT OF THREE POINTS .. 10

E. CROSSING TEST FOR LINE SEGMENTS 14

F. REPRESENTATION OF POLYGONS .. 16

G. TANGENTS OF CONVEX POLYGONS .. 20

H. CONVEX POLYGONS AND COMMON TANGENTS 27

1. CONVEX SUBPOLYGONS .. 31

J. COMMON TANGENTS AND CONVEX SUBPOLYGONS 40

III. SHORTEST PATHS USING COMMON TANGENTS 47

A. WORLD DEFINITION AND VISIBILITY .. 47

B. PATH EQUIVALENCE CLASSES ... 50

C. TANGENT SEQUENCES AND SHORTEST PATHS 55

iv

D. SEARCHING FOR PATHS USING TANGENT SEQUENCES 61

E. USING PATH AREAS TO RESOLVE MULTIPLE LANDINGS 62

IV. CONSTANT CLEARANCE SAFE PATHS 73

V. IMPLEMENTATION AND RESULTS .. 80

A. PROGRAMMING LANGUAGE AND HARDWARE DETAILS 80

B. BASIC DATA STRUCTURES ... 81

1. Point C lass .. 81

2. V ertex C lass ... 82

3. Polygon C lass ... 84

4. Convex-sub-polygon Class .. 88

5. Tangent-line C lass ... 90

6. Path-node C lass ... 91

C. PROGRAM INITIALIZATION ... 93

1. Obstacle Data File Format .. 94

2. Loading and Initializing the Application .. 95

3. Initial Structuring and Processing ... 96

D. CONVEX AND CONCAVE POLYGONS 97

1. Processing Polygons - The General Case 97

2. Implementation of Convex Subpolygons 99

3. Partitioning of Concave Polygons .. 100

E. TANGENT PRE-PROCESSING .. 101

1. V isibility T esting ... 102

2. Self-tangents for Concave Polygons ... 103

3. Common Tangents Between Polygons ... 105

V

F. POINT-SIZED SHORTEST PATHS 107

G. PATH PLANNER DISPLAY AND OUTPUT 112

VI. SUMMARY AND CONCLUSIONS .. 114

A. RESEARCH CONTRIBUTIONS.. 114

B. RESEARCH EXTENSIONS... 115

LIST OF REFERENCES.. 116

APPENDIX A... 117

APPENDIX B... 122

APPENDIX C... 127

APPENDIX D. PROGRAM LISTING.. 134

INITIAL DISTRIBUTION LIST ... 189

vi

MISSING PAGES NOT ATITAINABLE

I. INTRODUCTION

A. OBJECTIVES

The primary objective of the work in this thesis was to develop an application

program implementing the theoretical work being done by Professor Yutaka Kanayama,

U. S. Naval Postgraduate School, Monterey California, in searching for shortest and

safest paths among obstacle common tangents. Obstacle common tangents are one form

of representing path equivalence classes, as well as providing a representation of locally

shortest paths.

The implementing this work equates to determining minimum cost paths for a robot

moving in an environment that imposes certain geometric constraints. The main

objectives of this thesis are the following:

1) Develop a two-dimensional world model capable of representing convex and
concave polygons.

2) Construct a world tangent visibility graph providing symbolic representation of all
common tangent situations.

3) Implement a searching method for the tangent vidibility graph using heuristic
control to locate shortest path,,.

B. BACKGROUND

We are currently employing an autonomous, program controlled, mobile robot

Yamabico 11, to test and evaluate scientific and engineering problems related to robot

guidance, navigation, and sensor integration (sonar and vision sensors and processors).

Yamabico II operates using the Model-based Mobile robot Language (MML), which is a

hardware independent standard language embedded in C that simplifies the programming

of the robot IKanayarna.1988. p. 11. A path in MML is specidfied using a series of robot

postures. A single posture is a triple (x, y, 0), where (x, y) is the position and 0 is the

orientation of the robot in the global Cartesian coordinate system. A posture simply

represents three degrees of freedom in the two dimensional plane of the vehicle.

The current method of generating path data for Yamabico 11 is through manually

developing the series of postures required for movement of the robot from one point to

another. Logically, the process of generating the necessary postures for Yamabico 1 l4o

follow would be far easier if we could develop a path planning application which, when

provided a world model, necessary start and goal points, and the robot's minimum

clearance requirements, could provide the necessary robot postures to complete the

desired movement without human intervention. Thus, the theoretical work on

development of an efficient method for finding optimal safe paths for Yamabico 11

unfolded.

C. THESIS ORGANIZATION

The concepts which are introduced and applied in this thesis deal with finding

globally shortest paths through a two-dimensional. orthogonal world, represented as

distinct convex and concave polygons. The first three chapters of this work detail much

of the as yet unpublished work of Professor Yutaka Kanayama on searching for shortest

and safest paths. I

The mathematical foundations for path planning using obstacle common tangents is

presented in considerable detail in Chapter I1, beginning with the simple geometric

relationships between points, polygons and lines in the two-dimensional plane. The

construction and identification of obstacle common tangents is explained, and we

introduce the convex sUbpolygon; a very simple and elegant method we use to represent

and process concave polygons, allowing all obstacles to be processed in a standardized

symbolic manner.

Chapter III addresses the efficient visibility testing between two points, interpretation

of tangent sequences, and links paths along xommon tangents to path equivalence classes

and locally shortest paths. We conclude the chapter by outlining the necessary tools for

developing efficient searching algorithms using pre-processed obstacle tangent visibility

graphs. Chapter IV completes the theoretical background by describing the process of

building constant clearance paths along obstacle common tangents, yeilding shortest

safest paths for robot vehicles.

In Chapter V. the implementation of optimal path searching among obstacle common

tangents is detailed. A working application is presented for constructing obstacle tangent

visibility graphs. as well as path finding through the tangent visibility graph using

heuristic control of it modified Dijkstra search. A detailed account of this

implementation in Common Lisp is given, as well as the graphical screen displays

showing the shortest path searching process. Chapter VI addresses the contributions of

this work, and outlines the areas where additional research effort is needed.

Il. MATIIEMATICAL BASIS FOR COMMON TANGENTS

A. POINT REPRESENTATION

The path planning concepts of this application deal with moving a robot of two

dimensions through planar space. We therefore confine our representation to a two

dimensional plane where we can represent any point by its global Cartesian coordinates.

Let

1) = (x,, y,) and P2 = (X2, Y2) (1)

be two points given by their global coordinates and (xi, Y1) # (x2, Y2) (Figure 1).

B. ORIENTATION

An orientatiun from p; to p2 is measured from the positive x-axis orientation in a

counter-clockwise direction. Evaluation of this orientation can be accomplished using the

inverse tangent function as follows:

orientation(p,, p2) = tan-' tx2- xK j (2)

and orientation values range 1-n, Til.

Consider the two points p:=(2 , 1) and p,=(3, 2) (Figure 2).

orientation(p,, p2) = tan-' (1) =

orientation(p,, p,) = tan-' (I) =

4

',2 * P2 =(X 2,y2)

Pi= (X.,Yl)

Figure 1 - Cartesian Coordinate System

P2 = (x2,y2)

orientation(p1 'P)

Pi = (X07v1)

No x

Figure 2 - Orientation Between Two Points

5

This method has two serious shortcomings. First, the orientation function does not

yield a distinct value based on the ordering of a given pair of distinct points. What we

desire is

3it 7t
orientation(pl, p2) = "" orientation(p 2, P) = "E

However, the orientation function defined in Equation 2 yields

7E
oientation(p, p,) = orientation(p2, Pi) = 4.

for all point pairs considered. The second problem is that Equation 2 is undefined when

xi = x,. The solution to these problems is the use of the inverse-tangent function using

two arguments (atan2). The atan2 function is implemented in most modern programming

languages. We redefine orientation as

orientation(pl,p) = atan2(Y2-Y1 , x2-x) (3)

The range of values is [-i, 7]. This definition of orientation will function as desired over

all pairs of points and we are assured that

orientation(p,p 2) - orientation(p,,p,) = +/-7c. (4)

C. NORMALIZATION OF ORIENTATIONS

Restricting an orientation to the range 1-n, itj thru normalization is not always

necessary nor desirable. Assume (x represents the orientation of a robot or other vehicle

which may execute an indefinite number of orientations along a path (Figure 3). In this

case, the current orientation contains information regarding the cumulative number of

6

rotations of the vehicle if it has not been normalized. The fact that one or more full or

partial rotations have occurred can be an element of essential global information. There

appears to be no situation in which these unnormalized orientations cause a problem.

In dealing with angles, normalization of orientations is generally required. For any

orientations (x, and 0 2, we write ci. E 0X2 if there exists an integer n such that a,-a2=2nt.

Consider an angle P from an orientation (1 to another, a 2 (Figure 4). We have already

indicated that the orientations are not normalized. This leads to the conclusion that the

range of the angle 3 is unbounded since it may include an undetermined number of

rotations. The desired result is the normalized angle, P, free of any rotational data.

The function normnalie is defined as

nornalize(f3) (5)

and

normalize(p) element of [-7t, 7E]. (6)

As an example, consider normalize(2.570= 0.57c (Figure 5a) and normalize(3.5nt)= -

0.5t (Figure 5b). Using this normalization function, we define an order < among

orientations such that for an\y orientations a, and a2,

a < a(2 (7)

if and only if

normalize(a - (2) > 0.
(8)

it it 3h 3ir
For instance, -n < n and 7 < - We can write a < a2 if normalize(a2 - a,) 0.

7

y

final orientation

START ''

k X

Figure 3 - Normalization of Robot Orientation

x

orientation 2

orientation 1

y

Figure 4 - Angle Between Two Orientations

8

1 /2nt

2.5nr E .5nr

Ic 0

Figure 5a - Equivalent Orientations After Normalization

1 /27c

3.5nr=-.5i

-I/27t

Figure 5b -Equivalent Orientations After Normalization

9

Consider a triple(p,p 2.p 3) of distinct points. The ordering of these points is said to be

counter-clockwise (Figure 6), written ccw(p1,p2,p 3), if and only if

orientation(p,,p 2) < orientation (P2,P3). (9)

It is said to be clockwise, written as cw(p 1,p 2,P3) (Figure 7), if and only if

orientation(p21p3) < orientation (PlP 2). (10)

When the points lie on the same line, the) are obviously collinear, and written as

(plp,,p,). In terms of the orientations of the point pairs, we can say

orientation(p,,p2) = orientation (P2,P3)

or

orientation(p,,p,) = orientation (P2,P3) + n. (11)

D. PLACEMENT OF THREE POINTS

Consider now a tiple(p, p, P) of distinct points, where p, = (x1 , y1), P2 = (x2, Y2), and

P3 = (x3, Y3). The three points can serve as vertices of a triangle, Ap P2 P3 (Figure 8). Let

us define S(p, P2, P 3) as

S(P1, P2 P3) = X1 X2 X3 (12)
Y1 Y2 Y3

= Ix2 Y3 + X3 Y1
+ X1 Y1 - X1 Y3 - X2 Y1 " X3 Y2] (13)

= - [(X, - X) (Y3 - Y1) - (X3 - X)(Y2 - y)] (14)

The absolute value of S(pl, P2, P3) equals the area of Ap1,p2,p3. Using Equation 12,

consider the following values of S for Ap 1,p2,p 3:

(1) The area of Ap 1,p2,p3 is equal to S(p1 , P2. P3) if the ordering of p, P2 P3 is in a

counter-clockwise orientation: written ccw(p p, p).

10

y

P3

P2

Pi
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 6 - Counter-Clockwise Ordering

P3

P2

PI

Figure 7 - Clockwise Ordering

I1I

P)3

P2

Figure 8 - Placement of Three Points

(2) The area of Ap,,p2.p3 is equal to -S(pI, P2, P 3) if the ordering of p, P2 P3 is in a

clockwise orientation: written cw(p P2 P3).

(3) The area of Ap1.p,.p3 is equal to S(p1 , P2, P 3) = 0, regardless of the

orientation, if collinear(p, P2 P3).

We can now define a function, order, which returns the value, positive/negative or

zero of S(p, p21 P3) as

order(p, p2 p.1) = sign(S(pI P2 P) (15)

where

I ifx<O

sign0x)= if x = 0 (16)
11if x>O0

and for any triple of points p, p . 3 we can further state that

- if cw(p 1 P2 P3)

order(p P2 P3) = 0 if collinear(p, P2 P3) (17)
1 if ccw(p1 P2 P3)

Given an ordered triple of three distinct points, we have outlined two tests to

determine the counter-clockwise or clockwise placement of the three points with respect

to each other. Equations 8, 9 and 10 can be used after calculating the orientations of the

individual points, or Equations 15, 16 and 17 are available. Both testing methods are

effective the choice of one over the other depends on the nature of the calculations. The

simple concept of testing orientation and point placement are the foundation for the

methods outlined in the following chapters.

13

E. CROSSING TESTS FOR LINE SEG(MENTS

We can extend the idea of the placement and orientation of three points to develop

efficient crossing tests for open and closed line segments. The computational cost of

these tests are constant, built on simple multiplication and addition. An open (or closed)

line segment can be defined by two distinct end points. Further, two segments are said to

cross if they share exactly one point in common. Consider two line segments PIP 2 and

P3p each defined by their respective end points. Two segments cross under the

following circumstances:

(1) pP,, and P3P.;, both open segments, intersect at a point p, and p is not one of

the four end points (Figure 9), or,
(2) p~p, and p3p.:, closed segments, have one or two end point of their end points

as the crossing point (Figure 10).

In terms of point orientations, a necessary and sufficient condition for two open

segments to cross is

[order(pp 2p3) = - order(pp 2p 4) : 01
and

[order(pp 4p) = - order(p3p4p2) :4 01 (18)

A necessary and sufficient condition for two closed segments to cross is

lorder(pp 2p3) 4 order(pp2p4)]

and

lorder(p3p4p,) : order(p3p4p 2)] (19)

The above crossing tests can be used as components of more complex tests like

visibility testing and line segment intersection tests. It should be noted that if two open

segments cross, so do the corresponding closed segments. Its converse, however, is not

true.

14

y

P3 P2

pI P4

. X

Figure 9 - Crossing of Two Open Segments

Y

P2

P3

PI

P4

x

Figure 10 - Crossing of Two Open or Closed Segments

15

F. REPRESENTATION OF POLYGONS

We have outlined crossing tests for line segments, but still lack a method for modeling

the two dimensional environment where our robot or vehicle will be required to navigate.

The two dimensional model will be constructed from polygons, both convex and concave,

as defined in this section.

Let V be a set of n (n > 3) distinct points, v0 a point in V, and next be a function such

that V -> V. A triple B = (', vo, next) is said to be a polygon if the following conditions

hold:

{ next"(v.).... ,next~ v)} = V

and
next"Ivo) = 1 (20)

where a function ttn is defined aS

/x ext10 v) = v
next"-1 nexti+'(v) = next (nexte(v)) for anv i > 0 (21)

for any v element I '. Additionally. we can say that for any v and v', elements of V,

(1) the two segments v next(v) and v' next(v') do not cross, and,
(2) that for an\y v element V, a triple of points (v, next(v), next(next(v))) are not

collinear.

The following properties concerning the function next are proposed, allowing us to

develop and define the inverse function of next, previous.

(1) If B = (', P0. next) is a polygon. next is a one-to-one mapping of the vertices

of B.
(2) For any v element V with n vertices, next n(v) = v.

16

Thus, if next(v) = LI, then previous(u) = v. We now define vi, which allows reference

to be made to any specific point in describing a polygon, v, as

Vi = next (vo) for all i > 0 (22)

A point v in a polygon is called a vertex. A segment v next(v) of a polygon is called

an (directed) edge. The set of all the closed edges of a polygon is called the boundary of

the polygon. A polygon boundary forms a simple directed loop. A well known theorem

by Jordan. known as Jordan's Curve Theorem, states that a polygon boundary divides a

plane into two parts. The finite part of the plane divided by the boundary of a polygon is

called its inside, the other part its outside (Figure 11). Also, the right side of a boundary,

when traversing along the directed edges. is called free space. The left side is called filled

space (Figure 12 and 13). It is within this free space that a robot can exist, and with

which the path planning process is concerned.

In a polygon B. we define the orientation 7, of the ith edge

7i = orientation(vi, Vil) (23)

and the angle , as the external angle of the ith vertex (Figure 14), vi, as

8i Z norinalize(Y,1 - Y) (24)

A vertex on a polygon B is said to be convex is its external angle is positive, i.e.,

ccu'(v, next(-), next(next(v))). (25)

A polygon B is said to be convex if and only if all the vertices in B are convex. If a

polygon is not convex, it is said to be concave. For any polygon B,

17

inside

I~ 'fied-space

outside or free-space

Figure II - Polygon Inside/Outside

free-space filled-space

Figure 12 - Filled and Free-space Solid Polygon

] free-space

Figure 13 - Filled and Free-space Hollow Polygon

18

orientationi~1

Vi

or ien tat ion

Figure 14 - Vertex External Angle

19

n-I1

i=o

If Z 8 = 2nr, the polygon is called normal, and if 8 , =-2n, B is called inverted. We

can further propose that

(1) If a polygon is convex. it is normal.

(2) If a polygon is inverted, it is concave.

G. TANGENTS OF POLYGONS

Movement through a two dimensional environment with obstacles modeled by

polygons requires paths which can avoid obstacles while presenting the shortest, most

direct paths through the obstacles. The most direct and shortest path from a point around

an obstacle (polygon) will lie on a line beginning at that point and tangent to the obstacle

to be avoided. The following section defines the "plus" and "minus" tangent modes

(counter-clockwise and clockwise tangents) to polygons and details the necessary and

sufficient conditions for these tangents to exist.

Let B be a polygon, and I a directed line or ray existing in B's free space. I is said to

be tangent to B if a vertex of B, or a pair of adjacent vertices of B, are on I (Figure 15).

The vertex (or adjacent vertices) where I and B intersect is called the osculating vertex

(Figure 16). Given a point p in B's free space, it is possible to construct exactly two

tangents from p to B if B is convex (Figure 17). If B is a concave polygon, it may be

possible to construct multiple tangents from p to B, depending on the positioning of p

with respect to B and its convex vertices (Figure 18).

20

osculating
vertex

Figure 15 -Tangent with a Single Osculating Vertex

osculatingvertices

L

Figure 16 -Tangent Osculating on TwoVertices

21

p

Figure 17 - Tangents From a Point to a Convex Polygon

Figure 18 - Multiple Tangents From a Point to a Concave Polygon

22

The line I is said to he a plus or counter clockwise tangent to B (Figure 19) if

(I) a vertex v of B is on I and its adjacent vertices next(v) and previous(v) are on
the left side of 1, or,

(2) two adjacent vertices v and u of B are on I and their adjacent vertices, next(v)

and previous(u) or previus(v) next(u)., are on the left side ofl.

i is said to be a minus or clockwise tangent to B (Figure 20) if

I) a vertex v of B is on i and its adjacent vertices next(v) and previous(v) are on

the right side of i, or.

(2) two adjacent vertices v and u of B are on I and their adjacent vertices, next(v)
and previOus(uW or previ, ,i.(v) fl.ut(u . are on the right side of 1.

Plus and ninus tangent modes can be defined in terms of the orientations of the point

p, the osculating vertex of B. and its adjacent vertices. If v is an osculating point of a

plus tangent from p to B. then

ccw(p.%v,pr-eious(v-)) and ccw(p,vnext(v)). (26)

If v and next(v) are both osculating points of a plus tangent from p to B then

ccw(p,v,pre 'ious(v)) and collinear(p,',next(v))

and

ccw(p,next(v),next(next('v))). (27)

If v is an osculating point of a minus tangent from p to B, then

cw(p.%v,previous(v)) and cw(p,v,next(v)). (28)

23

Figure 19 - Counter-Clockwise Tangent B+

L
previous(v)

next(v)

p

Figure 20.- Clockwise Tangent B-

24

If v and next(v) are both osculating points of a minus tangent from p to B then

cw(p,v,previous(v)) and collinear(p,v,next(v))

and

cw(p,next(%v),next(next(v))). (29)

Similar propositions for plus and minus tangent modes from a polygon B to a point p

in its free space are determined in a like fashion by reversing orientations (Figure 21). If

v is an osculating point of a pls tang'nt from B to p. then

cw(p,%,previous(%v)) and cw(p,v,next(v)). (30)

If v and next(v) are both osculating points of a plus tangent from B to p then

cw(p, v, previous(v)) and collinear(p, v, next(%))

and

cw(p, next(v), next(next(v))). (31)

If v is an osculating point of a minus tangent from B to p, then

ccw(p, V, previous(v)) and ccw(p, v, next(v)). (32)

If v and next(v) are both osculating points of a minus tangent from B to p then

ccw(p, v, previous(v)) and collinear(p, v, next(v))

and

ccw(p, nex(v), nexl(next(v))). (33)

25

counter-clockw"ise

clockwise

Figure 21- Tangents from a convex polyvgon to a point

26

H. CONVEX POLYGONS AND COMMON TANGENTS

Let B1 and B, be two convex polygons. Let a directed line I pass through and

osculating vertex first on B, and then on B2, and call these vertices p and q respectively. I

is said to be a common tangent of B, and B-, since I is a tangent to both polygons (Figure

22). Common tangents consist of four distinct modes, plus-plus, plus-minus, minus-

plus,and minus-minus. Notationally, ++, +-, -+, and - - are used to represent the common

tangent modes.

I is called a plus-plus tangent of B1B, (Figure 23), written B1+B2+, if

ccw(p,q,previous(q) and I ccw(p,q,next(q)) or collinear(p,q,next(q)) I
and

I ew(q.p,previous(p) or collinear(q,p,next(p)) I and cw(qp,next(p)). (34)

. is called a plus-minus tangent of B, B. (Figure 24). written B1+B,- if

Icw(p,qprevious(q)) or collinear(p,q,next(q)) I and cw(p,q,next(q))
and

I cw(q,p,preiious(p) or collinear(q,p,next(p)) I and cw(q,p,next(p)). (35)

. is called a minus-plus tangent of B, B, (Figure 25), written B -B2+, if

ccw(p,q,pre%'ious(q)) and I ccw(p,q,next(q)) or collinear(p,q,next(q)) I
and

ccw(q,p,previous(p) and I ccw(q,p,next(p)) or ccw(q,p,next(p)) 1. (36)

£ is called a minus-minus tangent of B1 B, (Figure 26), written B,-B2", if

Jcw(p,q,previous(q)) or collinear(p,q,next(q)) I and cw(p,q,next(q))
and

ccw(q,p,previous(p) and Iccw(q,p,next(p))] or collinear(q,p,next(p))]. (37)

27

p

q

L

Figure 22 -One Type of Common tangent between two convex polygons

previous(q)

pre'vious(p)

0next(p)
next(q)

Figure 23 - Plus-plus tangent B1+B2+

28

previous(p)

BI+B2'previous(q)

Figure 24 - Plus-minus Tangent B1+B2 '

next(p)
1 2

previous(p) next(q)

Figure 25 - Minus-Plus tangent Bl'B 2+

29

next~p)previ ous(p)

previous(q)

Figure 26 - Minus-Minus Tangent B1 -B2 '

30

If two polygons B, and B2 are both convex, there exist exactly one common tangent of

each type or mode from B, to B2 and exactly one of each type or mode from B 2 to B1

(Figure 27). Thus, the existence or validity of a common tangent in one direction means

that one also exists in the opposite direction. The tangent modes, however, do not remain

the same in all cases. When I forms the plus-plus tangent B1+B2+ there also exists a

minus-minus tangent B.-B- when I's direction is reversed, and when I forms the tangent

B'-B- reversing I's direction forns B2+BI + . The plus-minus and minus-plus tangents

formed by ., B +B, - and B1 + become B2+B1 - and B2-B1+ when I's direction is

reversed (Figure 27).

I. CONVEX SUBPOLYGONS

If either B,, B, or both are concave polygons, there can exist more than one tangent of

a given mode between B, and B. depending on the orientation of the two polygons

(Figure 28). It is also possible for a concave polygon to have common tangents onto itself

(Figure 29). The fact that more than one tangent of a particular mode may exist when

dealing with concave polygons can make reference to a distinct tangent difficult. In order

to provide some form of unambiguous symbolical representation of common tangents, a

convention for the division and naming of distinct portions of concave polygons is

necessary. Tangents can only exist to and from convex vertices of a concave polygon,

and the division can be accomplished based on a logical ordering or grouping of these

convex vertices. This subdivision will not fully meet the requirement to distinctly

reference all possible polygon/tangent possibilities. It does, however, establish a simple

and logical convention for construction of and reference to tangents in a world where

concave polygons are allowed to exist.

The convention presented here takes any given concave polygon and subdivides it into

the smallest number of distinct portions, or convex subpolygons. A convex subpolygon of

31

B1 +B2-

B2B 2B1'

B2+B1-

Figure 27 - Eight Modes of Common Tangents
Between Two Convex Polygons B, and B2

32

B1-B2

Figure 28 - Multiple Minus-Plus Tangents BI'B2

B+B +

B+B+ /BB

B+B+ J

Figure 29 - Multiple Self-Tangents of the Same Mode

33

a concave polygon is defined as a consecutive group of convex vertices. A convex

polygon is the base case where a single convex subpolygon contains every vertex in the

original vertex set (Figure 30). For a concave polygon, there may be one or more convex

subpolygons, since each consecutive grouping of convex vertices may be seperated by one

or more concave vertices (Figures 31 and 32).

Consider a single concave polygon B represented by the triple

B = (Vil, vO, next), (38)

where I B represents the vcrtex set of B such that

It { .O vn}, (39)

and n is the number of vertices of B. We wish to divide the vertices of B into two distinct

subsets, one consisting of the convex vertices of B, V 3convx, and the other consisting of

the concave vertices of B. I'lic O'l, J\ . Vcor%,' cx is further partitioned into subsets of

consecutive or adjacent vertices. These groupings of consecutive convex vertices in

IV,,-111c are labeled B1 . where O< i < q-1. and q = the number of groupings of consecutive

convex vertices in I Each of these groupings of vertices outline a distinct portion

of the original polygon consisting only of convex vertices, hereafter referred to as a

convex subpolygon, of the original concave polygon. Every convex vertex of B belongs

to one and only one convex subpol/,gon, and

V ' I -1(%e\=V 1I U v", U ... U VBq-I* (40)

The concave polygon B is composed of the convex suhpolygons B0,B1 ,...,Bq_ , where

each B, is the conv'.v subpol'gion corresponding to the ith grouping of consecutive convex

34

Figure 30 -Equivalence of Convex Polygon and its Convex Subpolygon

B B0

......................... " ,.

...................................
......................

Figure 31 - Concave Polygon Represented by a Single Convex Subpolygon

35

B1

BB

BB

Figure 32 - Single Concave Polygon with Multiple Convex Subpolygons

36

vertices, plus the set of all concave vertices. Reconsider the polygons and tangents in

Figures 28 and 29 after partitioning into convex subpolygons in Figures 33a and 33b.

Procedurally, the vertices of B must be partitioned using only v0 and the next function.

This is necessary since no constraints have been imposed concerning the positioning of

the vertex v0 with respect to the convex portions of polygon B except that v0 is the first

vertex used in specifying B. This subdivision of B into consecutive convex subsets is

accomplished by locating the first set of consecutive convex vertices beginning after v0.

Thus. if vo is a concave vertex.

%'current = 0

and

tive(vcairrnt)=conca'e, (41)

then continue traversingz the vertices of B in a counter clockwise direction using the next

function.

Vv.urrtn = next(vcurrn), (42)

examining each vertex until one is found which is convex,

type(Vcurrnt)=convex. (43)

The first grouping of consecutive convex vertices, B0, is opened and this vertex becomes

the first vertex in the convex suhpolygon BO. This traversal of the vertices of B in a

counter clockwise manner continues, adding each succeeding convex vertex to B0,

type(V'urrent)=con vex. (44)

37

BI-B2 0

B2,BB20

Figure33a - Multiple Minus-Plus Tangent Using Convex Subpolygons

................

B2\B

Figure 33b - Multiple Self-Tangents Using Convex Subpolygons

38

When a vertex is encountered which is concave.

t'pe(vcurr,.d)=conca e, (45)

the convex suhpolVgon B(, is closed. This counter clockwise traversal continues, creating,
opening and closing the sucCes~ixe cfMI suhpol.vgons, B0,B B..... -.1 until all vertices

have been examined.

When v0 is a cons\cx vertex.

$t:Lir rvllt -'

and

typ('I ,rm,,t)=coniex, (46)

it is not certain vhethcr this i, the be'innin, middle or ending element in one of the

coilvex ,ertex subset. It is ccesar\ to traverse Counter clockwise past v0,

%curret = nex t(o (47)

continuing couinter clockwise.

Vorret = next(vCurr,.,,t (48)

and examining each vertex until one is found which is concave.

type(current =concave. (49)

At this point, the processing continues as if v had been a concave vertex, outlined above.

39

J. COMMON TANGENTS AND CONVEX SUBPOLYGONS

The conditions for locating common tangents for concave polygons follow exactly

those for convex polygons, except that like their more complicated geometrical shapes, we

must consider a more complicated set of relationships. First, as discussed earlier, there

can exist tangents from one portion of a concave polygon to another portion of that same

polygon, called self-tangents. Second, the naming convention for distinct portions of

concave polygons, or t /nvex suhpol.ygons, does not provide a wholly unambiuous tangent

mode descriptor. The following section addresses the complexities of concave polygons

and coni1on tangents.

Consider a concave polygon B. consisting of only four vertices, and a directed line 1

existing in B's free space (Figure 34a).

B= 4),,,, 3,v.j. (50)

If B is sub-divided into umwv s hpl.\.v'ns as we have prescribed for a concave

polygon. we have

IN, 1'%)', 4} (5 1)

shown in Figure 34b. The line - forns a plus-plus tangent, written B+B+ , using the same

criteria as a plus-plus tangent between two seperate convex polygons. Reversing the line

I's direction would form the minus-minus tangent, B-B-, just as for two convex polygons.

This most simplistic case can be extended to cover all concave polygons which, when

partitioned as described, have a single subset of convex vertices, all adjacent to each other

and all contained in the convex hull of a concave polygon.

When B's shape becomes more complex, there exist conditions where multiple

tangents of any given type can be formed between the same or different convex

40

B+B +

V3

V0

L

VI

Figure 34a - Concave Polygon and a Single Tangent Line L

B0+B0+

V0

L

VI

Figure 34b -Convex Subpolygon of Figure 33 with Tangent Line L

41

suhpolygons of a single concave polygon (Figure 35). Partitioning of a concave polygon

into convex subpolygons as we have described eases much of the confusion in tangent

referencing, clearly ambiguities continue to exist (Figure 36).

Consider another concave polygon B,

B= {v0, v,....v1 ,}, (52)

partitioned into a single convex subpolygon, B0,

B11 = {lfl, 'I' %2, N31 V4 V %5 1 IO1 1), (53)

and a point p exsting in B's free space (Figure 37). When p is positioned as shown, it is

possible to construct four tangents from p to B, two plus tangents, each labeled B+, and

two minus tangents, each labeled B-, (Figure 38). The partitioning of B into the convex

subpolygon B0 does not aid in uniquely identifying one plus or minus tangent from

another since there still exist two plus tangents, BO+, and two minus tangents, B0-.

Now consider the pair of minus tangents from p to B0 . If the minus tangent which

osculates on 1-5 is extended infinitely it would intersect the convex subpolygon B0 along

the edge formed by vi and v,. Extension of the minus tangent line which osculates on V3

does not result in an intersection with any edge of the convex subpolygon BO (Figure 39).

Examination of the two plus tangents to B0 yield the same results. We can now classify

the four tangents to the convex subpolygon into two catagories when the tangent lines are

extended; those that intersect the convex subpolygon and those that do not. A plus or

minus tangent line osculating on a vertex of a convex subpolygon which, when extended

infinitely, intersects one of the edges of that convex subpolygon, is said to be an interior

tangent, as this tangent line provides access to the interior of this convex subpolygon.

Similarly, a tangent line which does not intersect one of the edges of its convex

42

Figure 35 - Complex Concave polygon and Selftanlgents

Before Prtiofling into Convex SbpOlYgon

------------

Figre 6- omPex Concave polygon and Sef.taflgents

FiueAfter prtioning into Convex upo"o

43

V 3 __ _ _ _ _ _ _ _V 2

V4 V

Y9 V8

VO K VI

Figure 37 - Partitioning of the Vertices of B into the Convex Subpolygon B0

BB 0

Figre38Mutile anens ro p o heCove SBpolonB

44o

V4 V5

.......
i...

VO V1

Figure 39 - Extension of the Minus Tangents to the Convex Subpolygon B0

45

subpolygon is said to be an exterior tangent. Notationally, an exterior tangent is noted

using a single tangent mode superscript, in this case BO+ and B0-, while a double

superscript is used for interior tangents as in B ++ and B0--.

We now have a convention for concave polygons which allows reference to be made

to distinct portions of the polygon using convex subpolygons. Additionally, we can not

only notationally distinguish between interior and exterior tangents to a convex

subpolygon, but can use a simple test for intersection previously oultined to make this

determination. What may not be readily apparent is that this approach to concave

polygons using Con\ex subpoly'gons is whollv consistent with the propositions presented

earlier concerning tangents to convex polygons. The only sigificant difference is that a

convex polygon has only external tangents, while a convex subpolygon has both internal

and external tangents.

46

i11. SHORTEST PATHS USING COMMON TANGENTS

A. WORLD DEFINITION AND VISIBILITY

A world, W, consists of a set of polygons

W= {B,B....,Bn,,}

where the space divided by the polygon boundaries are consistent. Consistency implies

that the intersection of the filled space of all polygons in W is empty,

filled-space(B,) int ersect filled-space(B,),..., filled-space(B,) =

The free space of W, called F. is defined as the union of the free space of the set of

polygons in W. F includes the boundaries of the polygons in W, allowing paths to touch

the polygons, but not enter into the filled space of any polygon. Two points, p, and P2,

existing in W's free space or F are said to be visible if the segment PlP2 does not cross

the boundaries of the polygons in W, written visible(p,,p). An osculating polygon, or

one which has one or two adjacent xertices on P:P2, is not considered to be a crossing

(Figures 40 and 41). consistent with our definition of F. A visibility test for a segment,

especially for a tangent, is a frequent operation in spatial reasoning. These tests are

easily constructed using the crossing tests for two line segments outlined in Chapter II.E.

of this thesis.

Generally, we must determine whether a line segment L intersects any of the edges of

the polygons which partition a world into free space and filled space. This is

accomplished by sequentially testing the line L for crossing with the edges of all of the

polygons in the world in question.

47

PP2

PI

Free Space

Figure 40-Segment pIp2 Osculating on a Single Vertex of a Polygon

P2

PI

Free Space

Figure 41 -Segment pIp2 Osculating on aTwo Vertices of a Polygon

48

Consider a world W such that

WNY={ Bo, B 1,Bm} (54)

where each polygon in W is specified as

Bi = (V'Bi, Vo next) (55)

and 0 < i5 <n-I, and a line segment L, given by its two end points, p1 and p2. We begin

by selecting B, as the current polygon, and \(, of B0 as the current vertex,

p 0 ly g)n , ,,r,,,. = B 0 (5 6)

and

V,,,rrn t = (57)

The edge formed by ,urr,,t and ne. tTr.) is tested for crossing with the line L using

the crossing test previously introduced.

[order(p,, P.- ,'(.r,,n) : order(p1, P2, next(vcurrn,)) 1
and

10oder(''currtni neXI(,urr,,,), p,) :order(currnt, next(Vcurren), P2)]. (58)

When true, the test indicates that the line segzment L crosses the edge formed by vcurenr

and next(v,,urrn and the testing is discontinued. Otherwise, it is necessary to test the next

edge of the polygon for a crossing with L by selecting the next vertex as vc ,

V",rrent = next(%-current) (59)

49

and testing the edge formed by v...,,, and next(vcrt). The crossing test of the edges

continues until crossing has resulted and the test is terminated, or the last vertex of

polygon,.,r,,, is reached,

next vO.urr,.,t) = v0 . (60)

When the latter is the case, the next polygon in W becomes the current polygon and the

testing of polygon edges is repeated as outlined above. It is important to note that for a

polygon with n vertices, n-1 crossing tests are necessary to confirm that the line segment

does not cross one of the edges of the polygon. Determining that the line segment L is

visible in a world with in polygons and n vertices requires n-m crossing tests.

B. PATti EQI'VALENCE CLASSES

In the polygonal world we have described, there exist an infinite number of paths

which can be constructed between a selected start point, S, and goal point. G. We are

interested in finding the optimal path in terms of distance traveled through this world to

connect S and G. The boundaries of the polygons which define the world are considered

as part of the free space. F. where paths are permitted to exist, while paths are prohibited

in filled space. F is a connected. non-empty closed subset of the plane RxR, where R is

the set of real numbers.

We define a path R' in F as a continuous function such that

7T = (T, 7T) : 1-> F (61)

where I is the unit closed interval 10, 1]. A point anywhere on the continuous path p is

given by

71(s) = (M(s), T,(s)) (62)

50

with s element of 10, 11. The end points of 7t are given by iT(O) and 7t(l), the start and

goal of t respectively. Since the number of paths existing in F sharing the same end

points, T(O) and 7(1). is infinite, finding the optimal path from S to G is will be

intractable without a means to reduce the number of possibilities to consider.

Consider a world W consisting of two convex polygons B1 and B, and the paths 71

through 7t, , all sharing common end points (Figure 42). Examination of the five paths

visually indicates that 71 and IT, are similar, as are it 3 and It4. However, 715 is not similar

to any of the other paths. Relying on the definition of an equivalence relation from the

field of algebraic topology [-lilton 19691, we can formalize this intuitive understanding of

the differences and similarities between these paths.

Two paths it and 7' in F are "equivalent" if they share common end points and we can

continuously transform T into 7' without crossing the boundaries of the polygons in W

and keeping the end points fixed. The analogy can be made to that of two loose strings

which are anchored at the same end points. If we can deform one string through

stretching or shrinking until it is exactly the same length and follows exactly the same

path as the other, then we have performed such a path transformation. Formally, the

equivalence of 71 and t' can be written as

7I: T' (63)

if and only if there exists a continuous functiori 1] : 12 -> F and such that

fl(0,s) = 7t(s)

and

"1(Is) = T'(s) (64)

51

G

C3

S

Figure 42 - Five Sample Partial Paths in a Two Polygon World

52

for all s an element of I. and

11(t,0)= TI()

and

11(t, 1) = W'(1) (65)

for all t an element of I. When the free space, F. is understood, we can simply write I[

Xt. Likewise, we can state that if

71 =- ' (66)

then

7tO) = lt'(0)

and
1) = ' 1,0). (67)

When two such paths are equivalent, we can say that = establishes an equivalence

relation among the various classes of paths which may exist in F. If t - X, these paths

traverse the same regions of F and are considered homotopic in F, and an equivalence

class of paths under the relation =- is said to be a homotopy class in F. We can now

formally restate our intuitive observations concerning the paths previously considered in

Figure 42 using the path equivalence relationships. The paths 7E, and it 2, which appear

similar, belong to the same homotopy class C, since TE = i 2, and i3 and it4 are in the

same hornotopy class C, since 7., = 71.. The path It5 has no other paths in its homotopy

class, C3, since there does not exist a continuous function to transform any of the paths in

F without violating the boundaries of either B, or B,.

53

Consider another world W with four paths existing in its free space as shown in Figure

43. Clearly these paths all share common end points, however, paths It 2 and It 3 cross

over themselves while 7T, does not. We can observe that 7t2 has two points along its path,

s, and s2, where IT(s) = It(s 2) with 0 < s < S1 < 1. In this situation, the path 7t2 is said to

have a loop. The path It 3 also has a loop. When a path does not cross itself, as is the case

for paths EIt and 1T4, the path is said to be loop-free.

When a path equivalence class contains a loop-free path, the entire path equivalence

class is called loop-free. Path It2 is an example of a path that has a loop, but is equivalent

to the loop-free path 7t, since we can transform this looped path into an equivalent one

without a loop. The path IT,, however, is not equivalent to any loop-free paths since we

cannot transform It into a loop-free path without violating the boundaries of the polygon

B. Thus. 1TE belongs to a path equivalence class which is not loop-free.

Note that it is possible to construct an infinite number of homotopy path classes with
loops even in a simple world with only one polygon by simply adding another turn around

the polygon to each subsequent path. A path which makes k counter-clockwise rotations

around a polygon and another which makes k+l counter-clockwise rotations clearly

belong to distinct homotopy path classes. This set of paths with loops is infinite, while

the set of loop-free paths consist of i finite number of loop-free homotopy classes. It is

much more attractive in the optimal path searching process to deal with this finite set of

path classes without loops than the infinite set of paths which are not loop-free.

54

C. TANGENT SEQUENCES AND SHORTEST PATHS

Consider a world W consisting of a finite number of convex polygons. The set T =

T(W) of tangent modes of this world is defined as

T(W)_ { B+, B- I B an element ofW)

A tangent sequence o over T is a finite sequence of tangent modes such that no

subsequence of BB or BB* with B an element of W. The empty tangent sequence is

denoted by E. The set of tangent sequences is expressed as T(W)*, where * is an element

of { +,-.++.--} ' following the conventions of language and automata theory.

Now consider an example wNorld W consisting of two polygons A and B. Allowable

tangent modes are A% A. B and B: and possibly A+*, A, B++, and B if A or B are

allowed to be concave polygons. Examples of tangent sequences for W consisting of

convex polygons only are

= { C, A+,A-,B+,I ,A+B+A+B....,B'A+,A'A',...}.

Note that the sequence A-A- appears as an allowable tangent sequence. This

representation signifies a tangent sequence which loops around the polygon A one full

rotation (Figure 44). 'The tangent mode is repeated once for each loop around a polygon,

pemfitting tangent sequences of A,+A 1 +...A,, + and B0B-...Bm - to represent n full

counter-clockwise rotations about A and in full clockwise rotations about B.

We can now describe the various paths in this world using a series of tangent

sequences, each of which represents the shortest path among a homotopy class of paths.

Tangent sequences are an enumeration of zero or more polygon tangent lines and modes,

coupled with zero or more polygon edge traversals, which, when interpreted according to

55

the formal definition presented below, define a path from a given start point to a goal

point. This path definition method using tangent sequences is another form of

representation of path equivalence classes in a polygonal world. As will be shown,

tangent sequences provide a method for translating paths with loops into equivalent loop-

free paths.

Before formally defining a method for interpretation of tangent sequences, several

examples of paths and their tangent sequence equivalents are presented. A simple world

W consisting of three convex polygons, A, B and C, can consist of many paths between a

fixed start and goal point (Figure 45). It is possible to construct a path directly from S to

G (Figure 46) without having the path osculate on or intersect any of the polygons. This

is the empty tangent sequence. or E. The tangent sequence A-B+C+ (Figure 47a)

represents a path which runs from S. then clockwise around A, counter-clockwise around

B and C, and then to G. Tangent line traversals are represented as 1,, where 0 < i < _n-I,

and n is the number of tangent lines covered by the path. Edge traversals, which can be

empty, are represented as k1, where I <-j :_._n, and i is the number of polygons on which

the path osculates. Thus, the path A-B+C+ can also be described as lok 1l1k212k313.

Similarly. the path C+C+B+A - (Figure 47b) can be denoted as 10k111k21,k313. This

introduction to the notation of tangent line and edge traversals embellishes the formal

definition of tangent sequence interpretation which follows.

56

S3 7C4

Figure 43 - Four Paths with Common End Points

k

Figure 44 - Tangent Sequence A'A"

57

NNFigure 45 - Possible Paths in a Three Polygon World

G

S

Figure 46- An Example of an c Path Where G is Visible from S

58

Figure 47a - The Tangent Sequence A'BC+ or 10kj11k212k3 l3

S

Figure 47b - The Tangent SequenceC+C4 B+A- or 10k111k2l2k3 l3
59

A tangent sequence a element T(W)* with a start point S and a goal point G is

interpreted into a path T(a) by the following two rules.

(I) Ifo= X

(y) = SG if visible(S, G) (68)

where visible(S,G) means S and G are visible in this world. If they are not visible, the

value TE(E) is undefined.

(11) If a = B'. 1 .. B'qq where q2:l. B,1 , Bq are elements of W, and *1,...,*q are

elements of {+.-,++,--}. then J(o)= l0k1 l1 . kql,

where

(i) the right hand side of this equation is the concatenation of the 2q+1 sub-
paths.

(ii) 10 is a * 1 tangent from S to polygon B if this tangent exists in this world.
(iii) for each j(l <j -1). 1. is (*j,*j+l) common tangent from polygon Bij

to polygon B,, 1 if this tangent exists.
(iv) lq is a *q tangent from polygon Bq to G if this tangent exists, and

(v) for each j(< j :S q). k is the minimum portion (possibly empty) of the
*j-directed boundary of polygon B, between the two osculating points of the previous and

next tangents if both tangents exist.

(vi) If any of these sub-paths do not exist in the world, the value 7t(a) is

undefined.

Now let us consider a tangent sequence in which the same tangent mode occurs more

than once in it.

(Ill) If a tangent sequence a' is obtained from a=B*il ,...B*q,q, where q > 1,
.....B,q are elements of W, and * I....*q are elements of (+,-,++,-- 1, by duplicating one of

the tangent modes B",, then the interpreted path 1(;') is the path 71(Y) added by another

60

complete turn of the *r-directed boundary of polygon Br. An example of this rule is
given in Figure 47b.

D. SEARCHING FOR PATHS USING TANGENT SEQUENCES

A path IT is called canonical if there exists a tangent sequence a such that 7t=7t(o).

The following propositions are essential in the shortest path planning problem:

(I) For any path it, there is a canonical path 7iT0 which is equivalent to 7t.
(II) A canonical path is the shortest one of paths in an equivalence relation.

Since a canonical path is the locally shortest path in an equivalence relation class,

searching for the shortest path from S to G is equal to searching for the shortest one

among canonical paths. The variety of paths comes from the variety of tangent modes to

polygons. Since the number of osculating points in a world is finite, this problem is a

kind of graph search if wke preprocess the world for tangents to obtain all of the visible

tangents with osculating point information. A variation of Dijkstra's algorithm and the

A* search algorithni is appropriatc for solving this geometric problem. The following

propositions are essential in the shortest path planning and searching process:

(1) If 7iT is the shortest path joining two points in a world consisting of only

convex polygons, the path 7t is loop-free.

61

(11) Let I be the shortest path joining two points in a world consisting of only

convex polygons, and 01 and 02 the orientations of two consecutive tangents in IT sharing
a common osculating vertex with a tangent mode of *, * element {+, -, ++, --) (Figures
48 and 49). Then

01 < 0 z if * = +

and

0 < i* = -. (69)

Therefore, when extending a partial path TI it is necessary to consider all possible tangent

modes from the last polygon. but not from the last osculating vertex of It.

E. USING PATH AREAS TO RESOLVE MULTIPLE LANDINGS

The search for an optimally shortest path through a polygonal world along tangent

lines resembles a search through a directed graph for a shortest path from one node to

another. The primary difference is that there are two ways for a convex polygon or

convex subpolygon to become an osculating polygon for a partial path; through either a

counter-clockwise or a clockwise landing of It on the polygon. Thus, a single polygon

can equate to two nodes of the sear,:h graph, a plus and a minus mode path node. Path

planning with in convex polygons is similar to conducting a graph search with 2m nodes

when the graph is complete.

Another property which differs from the graph search analogy is that there are

multiple osculating vertices for a given polygon mode, whether plus or minus. A node in

a graph has all directed edges emanating from or terminating at a single point in the node.

Thus, it is possible to have two separate partial paths, It1 and It 2, which osculate on a

polygon in the same mode but have different osculating vertices (Figure 50 and 51).

62

O1 <02

" '" osculating vertex

Figure 48 - Example of Allowable Tangent Expansions in Plus Mode

osculating vertex00<

Figure 49 - Example of Allowable Tangent Expansions in Minus Mode

63

Figure 50- Two Partial Paths Osculating in Plus Mode on a Single Polygon

Figure 51 - Two Partial Paths Osculating in Minus Mode on a Single Polygon

64

When this situation arises, comparison of the respective path lengths does not provide an

indication as to which path is more lands on the polygon mode in a more optimal manner.

Consider two partial paths 71, and 7r2 of the same landing mode which osculate on

different vertices of the same polygon. It is possible to reach either of the two osculating

vertices from the other by traversing along the polygon's edges in the direction

corresponding to the path landing mode (Figure 52). Y. is the edge distance which must

be traveled by ITE to reach the osculating vertex of 1[2, and 12 is distance 'E2 must traverse

to reach 71,'s osculating vertex. If we reverse the labeling of 7r, and 7E2, we simply

reverse the relationships of Y- and E, to the two partial paths (Figure 53). Visually, the

problem solution is obvious as we can observe the relative spatial relationships between

the two partial paths and make the determination as to which path appears to land first.

Computationally, however, the solution is not obvious. The partial paths are specified

only in terms of osculating points and tangent orientations, which provide no indication as

to the spatial relationships involved. This problem of determining path landing

relationships is known as the path upstreail/dowmtream landing problem. When two

partial paths osculate on different vertices of the same polygon landing mode, the partial

path which makes its landing first is said to be the upstreamt path, while the other is said to

be the dow1strecan path. By computing the closed area under each partial path, we can

determine the relative upstream/downstream relationship of two paths.

65

Figure 52 - Traversals to Reach Osculating Vertices

66

72

TE

Figure 53 - Impact of Partial Path Label Reversals on Edge Traversals

67

The formula for determining the spatial relationship of three ordered points was

previously introduced as the function S(p, p., p,). This same fomula will also allow us

to compute the area contained within the edges of the triangle formed by the three points.

S(p, p,. p_3) will now be referred to as Area(p, P2, P3). where

Areap 1, P., p) = x2 x 3 (70)
I Y2 Y3

= Ix , + x. % + x, y, . xy ., -x v- . (71)

= X, - x (3 Y (X3 - X")yX, - y1)]. (72)

Recall that the a-ca computCd using this formula can be positive or negative,

depending on the relative orientation of the three points to each other. Now consider a

polygon 13 with n vertices (Fiure 54). We can calculate the area of B by fixing a point S

in space and summing the area of all of the triangles formed by S and the vertices B when

taken in order (Figure 55). Thus.

Area(S, B) = Area(S,i,Vi) + AreaS,v1 ,v,') +...+ Area(S,vn-,v 0), (73)

yields the area of the polygon 13.

Calculating the area tlinLCr ait partial path is accomplished in a similar manner,

summing the areas of the triangles formed by the partial path osculating points. Given a

partial path specified by a series of points,. IT = (S' P1. P2, P.3 P4) (Figure 56), the area
covered under it from its starting point S to the current end point P4 is given by

Area(S, IT) = Area(S,S,p,) + Area(S,pl,p 2)

+ Area(S,p2,p.) + Area(S,p1 ,p4). (74)

68

Vl V

V3 B

Figure 54 - Polygon with n Vertices

S

Figure 55 - Computing the Area of B with Triangles

69

P3

2p4

S

Figure 56 - Computing Partial Path Area from Triangles

70

We previously indicate that the Area function was sensitive to the respective

orientations of the three points used in the calculation. This sensitivity to orientation

requires that we compare the path areas differently, depending on the landing mode of the

partial paths. Consider a world consisting of two convex polygons A and B, and two

partial paths ITE and itE. which osculate on B in a counter-clockwise mode (Figure 57).

Tile relative partial path lengths are compared using the following criteria:

If Area(S. IT,) - Area(S. 1t +
1)>() then (75)

compare the path length of 7r, to the path length of (t + 1)

else

compare the path length of ITE to the path length of (7 2 + 12).

When the two partial paths 7T, and IT.. which osculate on B in a clockwise mode (Figure

58). the following comparison criteria are used:

If Area(S. It,) - Area(S. 7TI + 1l) < 0 then (76)

compare the path length of It. to the path length of (IT1 + 11)

else

compare the path length of It1 to the path length of (7r, + I,).

71

IV. CONSTANT CLEARANCE SAFE PATHS

We now have the methods in place for determining shortest paths through a given free

space using common tangents and modified graph search techniques. However, the

shortest path is the most dangerous one if an error in robot motion control exists even for

a point robot. In practical motion tasks in a real world, we need to plan and use safer

paths.

The simplest way to do this is to maintain a constant clearance, say t. at every point

on a path and minimize its length under the clearance constraint. When planning paths for

a disk robot whose effective radius is w , a safe path must maintain a clearance of w0 from

all obstacles to be useful, and these paths consist of straight line segments and circular

arcs of radius it, (Figure 59). As w e reduce the size of wo, and as w0 approaches zero, our

safe path strip gets closer and closer to becoming the line which osculates on the polygon

B, and the disk robot path planning problem resembles that of planning for a point sized

robot.

Our goal is to produce safe paths for robot motion, not to reduce a safe path into a

point path. The above example, however, illustrates that there exists a degree of

similarity between the two extremes. If we can generalize the common tangent path

planning concepts for a point, where w = 0, and allow w0 to lie in some arbitrary range of

values limited by some k, 0 < w < k, then we can formulate a method using tangent strips

of a fixed width to generate constant clearance paths.

72

Y12

S

Figure 57 - Two partial Paths Osculating in Plus Mode

Y.

Zl 2 TC2

S

Figure 58 - Two Partial Paths Osculating in Minus Mode

73

To define a tangent strip of width 2w, from a point p to a polygon B (Figure 60), it is

necessary to first construct the tangent line from p to B which osculates on the vertex q.

The end points of this tangent are specified by their respective coordinate pairs, p=(xp, yp)

and q=(x, ' y4). The direction of the tangent line, P is then used for determining (x, the

direction of the tangent strip, and where 0x should be extremum. a is given by

. + ,(77)

w~.he re

j3atan2 (I). -,' -xP) (78)

and the angle 6 between u and 3 IS found usin.g

WI'

sill.' ('), (79)

where d is the length of the tangent line from p to B. The center point of the end of the

tangent strip, r, lies at a distance w() from the vertex q. and its coordinates,

r = (xrq Yr (80)

are given by

r.= xq + w o cos (X (81)
r. = q + w, Sill (1. (82)

74

G

IA0

0r

S

Figure 59 - Disk Path with Radius of wo

75

It is also necessary to define a tangent strip between two polygons, A and B, which

follows the common tangent osculating on the vertices q, and q, respectively. Calculating

tangent strips when the polygon modes are the same, plus-plus or minus-minus, is

straightforward (Figure 61). When the tangent modes are opposite, that is plus-minus or

minus-plus, the direction alpha of the strip is calculated through the angle 6 by

2w 1

6 = si-' (- -), (83)

and the distance d is the length of the tangent line from ql to q2. The values of the

corners of the tangent strip. r1 and r-. are calculated as above, and the center of the

tangent strip, c2 . bet een (12 and r is given by

c, = (xc2 v,,' (84)

q2 = (x,, y), (85)

alld

X,, X2 + ,%cos ([3- (86)

,,= v, + w0sin ([3 -). (87)

The values for r, and c, can now be calculated in the same manner.

76

" 2w°

Figure 60 - Tangent Strip From Point to Polygon

77

The validity of the path formed by the tangent strips is easily confirmed by checking the

visibility of the four edges of the strip, and verifying that the circular arcs connecting two

consecutive tangent strips is also visible. The interpretation of tangent sequences into

paths for a disk robot is similar to that for a point robot. Paths obtained for a disk robot

using tangent strips connected by circular wedges possess an advantageous property of

tangent direction continuity, which paths for a point robot did not.

78

2w0

~ 2w0

Figure 61 - Constructing Polygon to Polygon Strips

79

V. IMPLEMENTATION AND RESULTS

A. PROGRAMMING LANGUAGE AND HARDWARE DETAILS

The emphasis for this application was on producing a working prototype with

efficiency a second priority. This was the first major coding effort by the author in

Lisp, and there was a concurrent goal of learning basic Lisp programming skills while

developing a working world model based on the concept of common tangents between

obstacles.

Although the programming for this application was done using Allegro Common

LISP and the Common Lisp Object System (CLOS), we have not taken an "object-

oriented" approach in development of the Lisp code to support this project. We

frequently refer to classes and objects in the following discussion, but the claim is not

made that this is an object-oriented application. The majority of the functions and

methods in the application can clearly be coded more efficiently using another

programming language like C. but the capability of Lisp to operate in the interpreted

mode made Lisp. in the author's opinion, a better choice for the prototyping process.

The implementation was written entirely in Allegro Common LISP release 4.0 for

Sun 4 workstations and SPARCstations running SunOS 4.0 or later. Allegro Common

LISP release 4.0 is a significant, yet not complete, move towards Common Lisp as

specified by the ANSI X3J13 committee.

A graphical display utility was developed using Allegro Common Windows on X

release 2.0. Although not required to run the application, the graphical displays

enhance the user's understanding of the path searching process using common

tangents. Since the graphical display portion of the application is built around Allegro

80

Common Windows, it is necessary to have version II of the X window system

running (preferably release 4.0).

We assume the reader has a basic understanding of the functions and methods

peculiar to both Common Lisp and CLOS.

B. BASIC DATA STRUCTURES

The object classes used in this implementation parallel both the theoretical and

geometrical aspects of a world consisting only of points, vertices, polygons, and

common tangents. The design and implementation was from the bottom up, providing

each object class with the greatest possible functionality, and relying as little as

possible on information contained at the next higher and lower levels. This results in

duplication of data at several levels, however the complexity of the application and the

nature of the implementation language made this an advantage during development.

Additionally, there were several unre.solved aspects concerning references to concave

polygons and convex subpolygo .s at critical development points which made some

duplication of data a necessity.

I. Point Class

The point class is the most elementary of the object classes used, and is

necessar- to distinguish between vertices of polygons and simple points within the

world. The two most evident such points are the "starting-point" and "ending-point"

for the path planning operations. The point class slot definition is as follows:

(defclass point ()
((x-coord :initarg :x-coord :accessor x-coord)
(y-coord :initarg :vertex-type :accessor y-coord)
(name :initarg :predecessor :accessor name)))

A brief description of the slots and their purposes are contained in Table 1.

TABLE I. POINT CLASS DATA STRUCTURE

Component Description
x-coord The integer or decimal value of the x component of the

Cartesian coordinates of the point in the plane.

y-coord The integer or decimal value of the y component of the
Cartesian coo~rdinates of the point in the plane.

name Slot reserved for providing a name or designator for a
specifit xv coordinate pair.

2. Vertex Class

The vertex class is the primar\ structure used in the application for almost all

operations. It is from the information stored in the slots of the vertices of the

polygons that the type of the polygon is ascertained, tangents are constructed, and

where determinations are made on ho% and what type of partial path expansion is

made. The class declaration is shown belo\%:

(defclass vertex ()
((coordinates :initarg :coordinates :accessor coordinates)
(vertex-type :initarg :vertex-type :accessor vertex-type)
(predecessor :initarg :predecessor :accessor predecessor)
(successor :initarg :successor :accessor successor)
(plus-tangents :initarg :plus-tangents :accessor plus-tangents)
(minus-tangents :initarg :minus-tangents :accessor minus-tangents)
(parent-name :initarg :parent-name :accessor parent-name)
(parent :initarg :parent :accessor parent)
(sub-polygon :initarg :vertex-type :accessor vertex-type)
(vertex-number :initarg :vertex-number :accessor vertex-number)))

The specific slots and a brief description of their purpose is found in Table 2.

The predelcessor and successor slots contain reference to the neighboring

vertices, and are treated as pointers in a doubly linked list, and point to the vertex

before and after the current vertex. These pointers allow easy traversal forward and

backward, or more appropriately. counterclockwise and clockwise, around the

x2

obstacle. The use of pointers, particularly in this LISP based application, permits fast

and efficient access to adjacent vertices in either direction without regard to a specific

position of this vertex in a list of vertices.

TABLE 2. VERTEX CLASS DATA STRUCTURE
Component Description
coordinates Slot contains an instance of the point class, recording the x

and y coordinates, as well as a name if assigned.
vcrtex-type Slot contains the value, as a string, of either "interior" or

"exterior." This corresponds to the two vertex types, concave
or convex respectively.

predecessor Slot containing a reference to the vertex which precedes this
one based on the primary rotation direction of counter-
clockwise about a filled polygon, and clockwise about a
hollow polygon.

successor Slot containing a reference to the successor vertex, again
based on a counter-clockwise or clockwise primary rotation
about the polygon, depending on polygon type.

plus-tangents, An unordered list of instantiations of the tangent-line class
for all plus tangents osculating on this vertex.

minus-tangenLts An unordered list of instantiations of the tangent-line class
for all minus tangents osculating on this vertex.

parent-name String value consisting of the name of the polygon or convex
subpolygon to which this vertex belongs.

parent Reference to the parent polygon for this vertex.
sub-polygon A "nil" value indicates a convex parent, otherwise slot

references the parent convex subpolygon.

vertex-number Slot contains an integer > 0 indicating this vertex's relative
position in the counter-clockwise ordering of vertices of
either convecx polygon or convex subpolygon, whichever

•applies.

The plus and minus-tangents slots each contain an unordered list of the

respective tangent types found which osculate on this vertex. Self-tangents, if the

polygon is a concave polygon, are stored in these slots and are not differentiated from

common tangents to any other polygon. This lack of distinction allows the procedures

83

used in shortest path planning algorithms to treat all tangents the same, not requiring

special methods or functions for processing.

The last four slots in Table 2 evolved as the result of a need to distinguish

between vertices belonging to a simple convex polygon, and those which were a part

of a convex subpolygon. The implementation is not eloquent, but serves an important

purpose. When a vertex belonging to a convex subpolygon is examined, it is possible

to identify both the parent concave polygon and the parent convex subpolygon by

selectively accessing these slots. The parent slot always references the original

polygon, regardless of whether the parent is convex or concave, and is used in the

same manner a,, a pointer to the parent polygon. The parent-name slot has two

possible string values. First, it can contain the name of the convex polygon which

contains this vertex, or second. it can contain the name of the convex subpolygon

which contains this vertex when the parent slot references a concave polygon. The

suh-poly'gon slot is similar to the parent slot, except that it is used only when this

vertex belongs to a particular convex subpolygon, and contains the traditional LISP

value of "nil" when the parent is a convex polygon.

3. Polygon Class

The polygon clas., briefly described in Table 3, is designed to represent both

convex and concave polygons as the same type of object. This makes it possible to

develop methods to process all polygons in a similar manner. The class declaration is

shown below for reference.

84

(defclass polygon ()
((name :initarg :name :accessor name)
(type-of-polygon :initarg :type :accessor type)
(vertice-list :initarg :vertice-list :accessor vertice-list)
(exterior-vertice-list :initform () :accessor exterior-vertice-list)
(number-of -vertices :initarg :nu mber-of-vertices :accessor number-of-vertices)
(xy-coordinates :initarg :xy-coordinates :accessor xy-coordinates)
(plus-tangents :initarg :plus-tangents :accessor plus-tangents)
(minus-tangents :initarg :minus-tangents :accessor minus-tangents)
(convex-sub-polygons :initarg :sub-polygons :accessor sub-polygons)
(plus-mode-path :initarg :plus-mode :accessor plus-mode)
(minus-mode-path :initarg :minus-mode :accessor minus-mode)))

The slot used to differentiate whether a polygon is convex or concave is the

type-of-polygon slot. When the polygon is convex, the type-of-polygon slot contains

the string value "convex" and the convex-sub-pol.gons slot value is unassigned or

"nil." If the polygon is concave, type-c'bpodygon slot is assigned the string value

'concave" and the conv'e.-sub-pol.vgons slot will contain an ordered list of the convex

subpolygons into which the concave polygon has been partitioned. Each convex

subpolygon consists of an instantiation of the class convex-suh-polygons, discussed in

the subsequent section.

85

TABLE 3. POLYGON CLASS DATA STRUCTURE
Component Description
name Slot reserved for providing a name or designator for

individual polygons.
type-of-polygon A string value equal to either "convex" or "concave" which

corresponds to the polygon's type.
vertice-list An ordered list of all of the polygon's vertices. Each element

of the list is an instantiation of the vertex class.
exterior-vertice-list Also an ordered list of the polygon's vertices, however each

vertex in this list is a convex vertex, labeled as an "exterior"
vertex in this application.

number-of-vertices An integer value corresponding to the total number of
vertices belonging to the polygon.

xy-coordinates Ordered list of the xy coordinates of all vertices. Used
exclusively for drawing screen displays of the polygon using
Allegro Common Windows draw-polygon method.

pluN-uingent.s A composite list of instantiations of the tangent-line class for
all plus tangents osculating on this polygon.

minus-tangenL, A composite list of instantiations of the tangent-line class for
all minus tangents osculating on this polygon.

convex-sub-polygons This slot is used only by concave polygons. Consists of an
ordered list of the convex subpolygons making up the
original concave polygon. Each element of the list is an
instantiation of the convex-sub-polygon class.

plus-mode-path This slot is used only during the path search and expansion
phase of the application. The slot is either "nil" or references
an instantiation of the path-node class, representing a partial
path osculating on this polygon in a plus mode..

minus-mode-path This slot is used only during the path search and expansion
phase of the application. The slot is either "nil" or references
an instantiation of the path-node class, representing a partial
path osculating on this polygon in a minus mode..

Each polygon has a nain' slot to contain an assigned string value to

symbolically represent that particular polygon. The value assigned to this slot can any

string value desired. How names are assigned to specific polygons will be addressed

later during discussion of data files and program setup.

There are two slots to contain the polygon's vertices; a vertice-list slot and an

exterior-vertice-list slot. Although the nature and purpose of the two slots are

different, the individual elements of each list are each instantiations of the vertex class.

86

The vertice-list slot is an ordered list of the vertices in a counter-clockwise

rotation about the polygon if the polygon is filled, or a clockwise rotation if the

polygon is hollow. The first vertex, or vo, can be any vertex selected at random

belonging to the polygon as long as the rotation criteria are followed. Recall that

individual vertices have a predecessor and successor slot, referencing the neighboring

vertex on either side. The as a simple list of vertices, the vertice-list slot offers two

options for processing, each individual vertex can be processed sequentially by

moving down the list, or we can access the first vertex on this list, vo, and use the

predecessor and successor slots to process the vertices in a doubly linked list fashion.

The exterior-vertice-list slot is a special purpose slot used only during the

tangent construction phase of the application. The list of vertices in this slot are only

those vertices which are convex. labeled with the string value "exterior" in this

application. The exterior- vertice-list slot allows the tangent construction phase of the

application to quickly consider only those vertices which are convex. Thus, access to

the vertex-type slot of each vertex to determine if the vertex is convex or concave and

whether tangents can exist is not required. In a world with a large number of complex

concave polygons, a modest gain in program efficiency is possible.

The xv-coordinates slot is a single purpose, display related slot. Allegro

Common Windows is used to provide graphical world display and user interface

functionality. The draw-polygon method is an Allegro Common Windows built-in

function which facilitates fast drawing of polygons, and requires a parameter which is

a simple list of x and y coordinates for all vertices in the form (x1 Y1 x2 Y2 . . . xn y,).

The plus-tangents and minus-tangents slots are lists containing references to

the tangents of the type corresponding to the slot name. The elements of these two

lists are simply a collection of the plus-tangents and minus-tangents slots of all of the

87

vertices making up the polygon. This collection is without regard to whether the

polygon is convex or concave. Thus, all of the tangents for a given polygon can be

accessed collectively through these two slots, or those of a particular vertex can

accessed by locating the vertex and accessing the plus-tangents and minus-tangents

slots of that vertex.

When the polygon is determined to be concave, the application partitions the

polygon into convex subpolygons. The convex subpolygons are placed into an

ordered list in the convex-sub-polygons slot as an instantiation of the convex-sub-

polygon class addressed in the following section. Convex polygons do not use this

slot and the value of this slot is the default for the implementation.

The last two slot., in the polygon class, plus-path-mode and minus-path-mode.

are used only doing the shortest path search portion of the algorithm, and then only if

the polvon is convex. The initial value assigned to these slots is "nil." The slot value

remains so until the polygon becomes an osculating polygon in the partial path

expansion process. When this occurs, the plus or minus-path-mode slot is set to

reference an instance of the path-node class, which contains all of the pertinent

infornation on the current shortest path which osculates on this polygon.

4. Convex-sub-polygon Class

This class is the result of the need to partition concave polygons into convex

subpolygons. Comparing Table 3 with Table 4, it is obvious that the coivex-sub-

polygon class is simply a subset of the polygon class. There is no need to have an

exterior-vertice-list slot as all vertices in a convex subpolygon are convex. Drawing

functions are handled by the parent polygon's xy-coordinate-list slot, and since this is

the convex subpolygon level, the convex-sub -polygons slot is omitted. Otherwise, the

88

slots are named the same and fulfill the same purpose as those in the polygon class.

The class declaration is shown below.

(defclass convex-sub-polygon ()
((name :initarg :name :accessor name)
(vertice-list :initarg :vertice-list :accessor vertice-list)
(plus-tangents :initarg :plus-tangents :accessor plus-tangents)
(minus-tangents :initarg :minus-tangents :accessor minus-tangents)
(plus-mode-path :initarg :plus-mode :accessor plus-mode)
(minus-mode-path :initarg :minus-mode :accessor minus-mode)))

TABLE 4. CONVEX-SUB-POLYGON CLASS DATA STRUCTURE
Component Description

name Slot reserved for providing a name or designator for
individual convex subpolygons.

vertice-list An ordered list of the convex subpolygon's vertices. Each
vertex in this list is a convex vertex, labeled as an "exterior"
vertex in this application.

plus-tangents A composite list of instantiations of the tangent-line class for
all plus tangents osculating on this convex-subpolygon.

minus-tangens A composite list of instantiations of the tangent-line class for
all minus tangents osculating on this convex subpolygon.

plus-mode-path This slot is used only during the path search and expansion
phase of the application. The slot is either "nil" or references
an instantiation of the path-node class, representing a partial
path osculating on this convex subpolygon in a plus mode.

minus-mode-path This slot is used only during the path search and expansion
phase of the application. The slot is either "nil" or references
an instantiation of the path-node class, representing a partial
path osculating on this convex subpolygon in a minus mode.

The plus-tangents and minus-tangents slots are a collection of the tangents

osculating only on this convex subpolygon, and the vertice-list slot contains only a list

of references to the convex vertices making up this convex polygon. The predecessor

and successor slots of the first and last vertex in the vertice-list reference vertices

which are not in this convex subpolygon. This is an important point to note since, as

will be discussed in later sections, the only way to determine when a vertex belongs to

89

this convex subpolygon, another convex subpolygon, or are concave vertices, is to

check the individual vertices for parent and type information.

5. Tangent-line Class

The tangent-line class consists of five slots, outlined briefly in Table 5. The

first two of which, end-point-I and end-point-2, are references to the vertices of the

polygons or convex subpolygons on which the tangent osculates. The tangent-type

slot is labeled with a string value, "++", "+-", "-+" or "--", representing the tangent

type. The last two slots, distance and angle, contain decimal values representing the

straight line distance between the two ending vertices and the normalized orientation

of the tangent line in degrees. The inclusion of the length and orientation of the

tangent line is based on the desire to pre-process the world for tangents and retain as

much information as possible to expedite the path searching process. When the path

searching process is to be repeated on an infrequent basis, these slots may be omitted

and calculated only as needed. The class declaration is shown below for reference.

(defclass tangent-line 0
((end-point-1 :accessor end-point-1 :initarg :end-point-1)
(end-point-2 :accessor end-point-2 :initarg :end-point-2)
(tangent-type accessor tangent-type :initarg :type)
(distance :accessor distance :initarg :distance)
(angle :accessor angle :initarg :angle)))

90

TABLE 5. TANGENT-LINE CLASS DATA STRUCTURE
Component Description
end-point-I Contains a reference to the vertex on which the tangent line

first osculates. The slot's value is an instantiation of the class
vertex.

end-point-2 A reference to the second osculating vertex of the tangent-
line. The slot's value is an instantiation of the class vertex.

tangent-type A string value representing the mode of the tangent-line.
String values are used to represent the possible tangent
modes [++, +-, -+, --).

distance This slot contains the decimal value of the straight line
distance between the two osculating vertices, end-point-I and
end-point-2.

angle The value of the angle between the positive x-axis and the
tangent-line from end-point- I to end-point-2.

6. Path-node Class

The path node class is a collection of data contained in other classes which is

necessary to record path search and expansion information. Actual instantiations of

the path-node class are assigned to either the plus-mode-path or minus-mode-path

slots of a convex polygon or convex-sub-polygon. The actual class declaration is

shown below, and is summarized in Table 6.

(defclass path-node ()
((path-mode :initarg :path-mode :accessor path-mode)
(landing-vertex :initarg :landing-vertex :accessor landing-vertex)
(from-vertex :initarg :from-vertex :accessor from-vertex)
(from-polygon :initarg :from-polygon :accessor from-polygon)
(from-mode :initarg :from-mode :accessor from-mode)
(cost :initarg :cost :accessor cost)
(symbolic-path :initform :nil :accessor path)
(path-area :initarg :path-area :accessor path-area)
(distance-to-goal :initarg :distance :accessor distance)
(total-path-cost :initarg .lotal-path-cost :accessor total-path-cost)))

91

TABLE 6. PATH-NODE CLASS DATA STRUCTURE

Component Description
path-mode Slot contains the string descriptor "plus" or "minus," indicating

the mode of the path at this polygon.
landing-vertex A reference to the specific vertex of this polygon or convex-sub-

polygon where the path osculates. The slot's value is an
instantiation of the class vertex.

from-vertex This slot references the vertex on the polygon or convex-sub-
polygon where the current path to this mode osculated before
reaching this polygon. The slot's value is an instantiation of the
class vertex.

from-polygon Slot contains a reference to the polygon or convex-sub-polygon
on which the partial path osculated before reaching this path-
node. The slot's value is an instantiation of the class polygon or
convex-sub-polygon.

from-mode A string value representing the partial path mode at the from-
polygon. Value is either "plus" or "minus."

cost A decimal value representing the actual path length, to include
any edge traversals of polygons, to reach the landing-vertex.

symbolic-path This slot contains a series of strings representing the symbolic
partial path. Example: "start" "A" "+" "B" "

path-area A positive or negative decimal number representing the area
under the partial path to reach this polygon path node.

distance-to-goal A positive decimal value for the straight line distance from the
landing-venrex to the goal point.

total-path-cost This slot contains a positive decimal number representing the sum
of the cost and distance-to-goal slots, used as the primary
heuristic for selecting a partial path for expansion.

The path-mode slot contains the current mode of the partial path. The

implementation uses a list of references to instantiations of the path-mode class as the

search agenda, rather than creating a separate class to act as a header for each partial

path. A certain amount of partial path information is therefore stored in each path

node which is used only during selection of potentially best paths for expansion. The

landing-vertex and from-vertex slots hold references to the first and second osculating

vertices of the tangent line which osculates on the from-polygon and the polygon

which containing the instantiation of the path-node. The cost, distance-to-goal, and

total-path-cost are slots containing distance information about the relative costs of the

92

partial path. The cost slot contains the actual length of the path from the starting point

to the path's current end point, which is the vertex referenced in the landing-vertex

slot. The distance-to-goal slot contains the straight line distance from the vertex

referenced in the landing-vertex slot to the goal point, without consideration as to

whether the line is visible or not. The total-path-cost slot is the sum of the cost and

distance-to-goal slots, providing a heuristic for the selection and expansion of

candidate partial paths during the search process.

The path-area slot contains the area under the partial path up to the landing-

vertex. As discussed in Chapter IllI.E, the path area computation is necessary to

resolve multiple landings on a polygon or convex subpolygon when this landing

occurs at different vertices. Finally, the symbolic-path slot contains a list of string

values representing the symbolic progress of the path search and expansion process. It

is possible to access this slot value and, following the method defined fc. interpreting

tangent sequences, determine the exact route of a partial path without referencing any

geometric information regarding the world model.

C. PROGRAM INITIALIZATION

This section defines the format for obstacle data files, explains how to load the

program into memory and initialize the application, and explains the initial structuring

and processing of the obstacle data. All references here are to uncompiled Lisp files,

using ".Iisp" as a file name extension, which are loaded and executed in the interpreted

mode. We confine our explanations to running the application in the interpreted

mode, but the program is most efficient when pre-compiled and converted into an

executable program.

93

1. Obstacle Data File Format

Relatively old as far as programming languages go, Lisp remains as one of the

better list-processing languages. Rather than developing a complex data input

interface using pointers, classes, and structures, the goal was to develop a text based

obstacle data file for the application program which could be prepared off-line. We

use a simple global variable declaration in the obstacle file consisting of a list of

polygons, representing each polygon by a list of vertices. The list of lists format for

the obstacle data file provides the potential user(s) with a simple and efficient method

for manually entering world definitions. Additionally, this format makes it a simple

task to interface this application program with a user designed world model editor,

permitting the user to interactively create and change world descriptions from a

graphics capable terminal. The only requirement from such a world model editor is

that its output follow the obstacle data file format detailed in this section.

The world description is prepared by imposing an arbitrary x and y axis on the

world, which allows each vertex to be specified as a list of its global x and y

coordinates. Each polygon is then composed of a list of vertices belonging to that

polygon by selecting an arbitrary vertex as the starting vertex, v0. A counter-

clockwise traversal of the edges is made, listing each vertex until all are included in

the list. If the polygon is hollow, possibly for a boundary polygon, the edge traversal

is in a clockwise direction around the polygon. Once all polygons have been

processed in this manner, the world list consisting of all polygons is composed. This

list is entered into the obstacle data file as the global variable *polygon-list* using the

Lisp declaration defvar. An example world declaration is shown below for a world

consisting of six polygons:

94

(defvar *polygon-list* '(((160 140) (340 140) (340 260) (160 260)) <- polygon 1
((400 200) (600 200) (600 400) (500 400) <- polygon 2
(500 300) (400 300))

((160 460) (340 460) (340 540) (160 540)) <- polygon 3
((560 460) (640 460) (640 540) (560 540)) <- polygon 4
((700 400) (800 400) (800 500) (700 500)) <- polygon 5
((100 100) (100 300) (300 300) (300 400) <- polygon 6
(100 400) (100 600) (400 600) (400 500)
(500 500) (500 600) (900 600) (900 300)
(700 300) (700 200) (900 200) (900 100))))

The assignment of symbolic letters, names, or numbers to reference individual

polygons is almost always a requirement. This is particularly helpful when the

application is run without the advantage of graphical display. The global variable

obstacle-names is included to support this requirement. The declaration for

obstacle-names is made with a list of strings, where each element of the list

represents the desired designator for an individual polygon. The *obstacle-names*

declaratior, of the example world model above could be made as follows:

(defvar *obstacle-names* (list "A" "B" "C" "D" "E" "F"))

2. Loading and Initializing the Application

The application program is initially invoked by loading the file "setup.lisp" at

the Lisp prompt. A series of files are then auto-loaded, each containing functions and

methods which accomplish specific tasks once the obstacle file has been loaded. The

first file, "world-def.lisp," contains global variable declarations, class definitions, and

the functions and methods related to the initial structuring of raw world data. The

second, "tangent-functions.lisp," contains the functions and methods for tangent

processing. Finally, "concave.lisp," which contains the functions and methods

95

peculiar to processing concave polygons, is loaded. The program then displays the

prompt "ENTER OBSTACLE FILE NAME:" requesting the user to enter the

complete name and extension of the file which contains the declarations for the global

variables *polygon-list* and *obstacle.names*.

3. Initial Structuring and Processing

Once the obstacle data file name has been entered and the file is loaded, the

data is then converted into data structures more representative of the complex

geometric relationships involved. The structuring and conversion necessary consists

of three phases; first, conversion of xy-coordinate pairs into points and vertices,

second, the conversion of lists of vertices into polygons, and lastly, the partitioning of

concave polygons into convex subpolygons. In this section, we will only address the

first phase which deals with the processing of data immediately following program

initialization.

The data structure of the global variable *polygon-list* lends itself to a series

of calls of the Lisp dolist macro for first striping off the polygons one by one, and then

the individual xy-coordinate pairs. The current procedure for conversion of the xy-

coordinate lists in the obstacle data file is accomplished in two such passes over the

global variable *polygon-list*. During the first pass, each xy-coordinate pair is

converted into an instantiation of the point class, where the x-coord slot gets the value

of the first element in this pair and the y-coord slot gets the value of the second

element. Each individual point object is then loaded into the coordinates slot of an

instantiation of the vertex class, and every xy-coordinate pair of the original global

variable *polygon-list* is now an instance of the vertex class. Another pass is then

made on *polygon-list* and the predecessor and successor slots are set to reference

90

the vertices which come before and after to form a doubly linked list which can be

traversed in either a clockwise or counterclockwise direction.

The principle function and method calls used to accomplish the data

conversion discussed above are shown in Table 7, along with a brief description its

purpose.

TABLE 7. DATA CONVERSION FUNCTIONS AND METHODS
First Pass Purpose
convert-polygon-point-list Iterates down the *polygon-list*, calling convert-polygon-

coordinates-to-vertices on each element (a list of polygon
vertices). When completed, the xy coordinate pairs in the
original *polygon-list* are all replaced by instantiations of the
vertex class.

convert-polygon-coordinates-to- Recursively converts all of the xy-coordinate pairs of each
vertices polygon into instantiations of the vertex class with a call to the

make-vertex method.

Second Pass Purpose
coordinate-conversion Sequentially processes down the *polygon-list*, calling link-

polygon-vertices on each list of polygon vertices.
link-polygon-vertices Sets the slot values for the predecessor and successor slots by

calling connect-links. The first and last vertex in the list being
processed require special processing, since the predecessor of the
first element is the last vertex in the list, and the successor of the
last element is the first element in the list.

connect-links Employs setf to set the slot value for the predecessor and
successor slots to the previous and next vertex.

D. CONVEX AND CONCAVE POLYGONS

1. Processing Polygons - The General Case

The next phase is to convert the lists of vertices representing individual

polygons into instances of the polygon class. This conversion takes each list of

vertices representing a polygon and creates an instance of the polygon class. The list

of vertices, each of which represents a single polygon, is placed into the vertice-list

slot of each polygon instance. The processes treats all polygons equally, with no

97

differentiation yet being made as to whether a polygon is convex or concave, and the

type slot is set to "convex" for all polygons at this time.

When this process is completed, the global variable *polygon-list* consists of

a list of composite objects, each an instance of the polygon class. We still need to

differentiate between convex and concave polygons, and to do this we need to classify

the individual vertices of each polygon as to their particular type; either convex or

concave.

Classification of the vertices is accomplished using the function determine-

vertex-types (Table 8). It is necessary to sequentially process down the list of

polygons contained in *polygon-list*, accessing the list of vertices in the vertice-list

slot of each polygon. Then, we examine each vertex and test the relative orientation

of the three points formed by its predecessor, the vertex itself and its successor using

the function point-position, which is similar to the order function given in Equation

17, Chapter II, Mathematical Basis for Common Tangents. Those vertices which are

concave have the string "interior" assigned to their vertex-type slots and the polygon is

immediately classified as a concave polygon by assigning the string "concave" to the

polygon's type-of-polygon slot. Convex vertices are added to the polygon's list of

convex vertices by adding them to the list in the exterior-vertice-list slot.

98

TABLE 8. INITIAL POLYGON PROCESSING

Function or Method Purpose
polygon-conversion Traverses down the lists of vertices in *polygon-list* and creates

an instance of the polygon class for each sublist in *polygon-list*.
Each polygon is instantiated with the type slot set to "convex".
Also names the individual polygons based on the strings in
obstacle-names.

determine-vertex-types After all polygons have been converted into an instance of the
polygon class, the individual vertices are checked to determine if
they are interior or exterior vertices. This is done by a call to
determine-obstacle-vertex-types. When a vertex is found that is
interior (implying a concave polygon) the type slot of the polygon
is set to "concave". If the vertex is convex, it is added to the list
in the exterior-vertice-list slot

determine-obstacle-vertex-types Utilizes a call io the method point-position to determine the
relative orientation of this vertex and its predecessor and
successor vertices, The method point-position performs the same
function as the order function in equation 17, Chapter II
Mathematical Basis for Common Tangents.

Once we have completed determining the type of each vertex ("interior" or

"exterior") and each polygon ("convex" or "concave"), we can then analyze the

concave polygons and generate the required instances of the convex-sub-polygon class

for tangent construction.

2. Implementation of Convex Subpolygons

Before addressing the partitioning of the concave polygons, we should note

that the application program deviates slightly from the theoretical approach in

definition of convex subpolygons. During development of this program, we had not

completely understood nor satisfactorily solved the complexities surrounding common

tangents and the more intricate concave polygon shapes which were encountered.

Initially, we attempted to partition or sub-divide concave polygons into convex

subpolygons by the set of vertices belonging to the convex hull. This was not

successful in the general case, and we continued to search for a simple method which

would allow unique identification to all common tangents.

99

The development of the program was at a critical juncture, and the decision

was made to adopt a less than optimal approach towards partitioning concave

polygons. We determined that by restricting the size of the consecutive convex vertex

sets for any given concave polygon to no more than four vertices each, we could

guarantee that every tangent could be symbolically references in a unique way. These

restrictions solved the partitioning problem, but required more convex subpolygons to

represent a concave polygon than the previously stated theoretical approach. It also

resulted a requirement to allow an edge traversal between two convex vertices of the

same concave polygon but different convex subpolygons to be classified as a tangent

line. This was necessary to insure that the convex portions of the concave polygon

could be traversed in a continuous manner.

3. Partitioning of Concave Polygons

The subdivision of concave polygons is reduced to examining the type-of-

polygon slot of each element of *poliygon-list* and processing all polygons having

'concave" as a slot value. The method sub-divide-concave-polygons accomplishes

this partitioning by first calling the list-adjacent-vertices-together function. Since we

have allowed any vertex to be used as vO, we do not know the vertex type of the

predecessor and successor vertices of v0. Thus, we need to reorder the list of exterior

vertices, keeping all adjacent vertices together before proceeding with the partitioning

of convex subpolygons. This is the purpose of calling the list-adjacent-vertices-

together function. The key methods and functions are briefly describe in Table 9.

100(

TABLE 9. CONCAVE POLYGON PROCESSING
Function or Method Purpose

create-convex-sub-polygons This function uses the Lisp dolist macro to process through the
global variable *polygon.list*, calling the sub-divide-concave-
polygons method on those which are concave.

sub-divide-concave-polygons Method first calls list-adjacent-vertices-together to reorder the
consecutive convex vertices, then partitions into groups of four or
less consecutive convex vertices, creating an instance of the
convex-sub-polygon class for each such grouping.

list-adjacent-vertices-together Reorders the exterior-vertice-list of the polygon , placing all
adiacent vertices together.

assign-name Concatenates an incrementing integer to the name of the parent
polygon and assigns this string to the name slot of the convex-
sub-polygon.

The sub-divide-concave-polygons method then partitions the vertices into

groups of four or less consecutive convex vertices, creates an instance of the convex-

sub-polygon class, and assigns a name to the instance by concatenating an integer onto

the string specified for the name of the parent polygon based on the number of

convex-sub-polygons instances created. The range of the integers used is 0,1,2,...,n-1,

where n is the number convex-sub-polygons required for a complete partitioning of

the polygon. Each such instance is then added to the list of convex subpolygons in the

convex-sub-polygons slot of the parent polygon, and the process is repeated until all

concave polygons have been sub-divided.

E. TANGENT PRE-PROCESSING

This application locates all legitimate tangents which can exist before entering into

the path searching/finding phase. It is fully possibly to develop the tangent

construction process on an as needed basis where tangents are only constructed while

the path search and expansion process is on going. We plan on modeling real world

environments, however, and intend on reusing the model repeatedly for providing path

information to semi-autonomous robot vehicles on a recurring basis. Thus, we made

I01

the decision to pre-process the world model and use the Lisp dumplisp macro to store

the pre-processed world as a type of tangent visibility graph or map. When a path

finding/searching requirement surfaces, the map is loaded in the form of the

executable image saved by using calling the dumplisp macro, and the path search

algorithm can begin almost immediately.

In developing the application, there are four situations where tangent construction

methods and procedures are needed. These are shown in Table 10. We restrict our

discussion here to only the first two, self-tangents and common tangents, which are

necessary to create the tangent visibility graph. We will begin, however, with a

discussion covering the implementation of visibility testing, a prerequisite for tangent

construction.

TABLE 10. TANGENT CONSTRUCTIONS
I Type of Construction Situation Where Required
1. Self-Tangents Required for concave polygons only, and

consists of tangents between convex vertices
of the same polygon.

2. Common Tangents Addresses tangents between two different
polygons. These can be either simple
convex polygons of convex subpolygons.

3. Point-to-Polygon Tangent Required from a given starting point to
convex polygons and convex subpolygons.
Necessary to link the starting point into the
pre-processed tangent visibility graph.

4. Polygon-to-Point Tangent This construction is used during the path
finding phase to determine if the goal point
can be reached from a partial path end point.

1. Visibility Testing

The ability to test the visibility of a line segment is critical to the actual

construction of tangents in the application, as well as goal visibility testing. The

methods implemented here parallel the discussion of visibility testing addressed in the

102

theoretical background sections of this thesis. A brief review of the functions and

methods critical to visibility testing is covered in Table 11. In practice, this is the

most used section of code in the application, as each individual tangent line must be

validated by visibility testing before we can be assured that the tangent line is legal.

TABLE 11. VISIBILITY TESTING
Function or Method Purpose

check-visibility Tail recursive method which calls check-for-polygon-intersection
on the supplied tangent-line, the polygon's vertice-list slot, and the
obstacle at the head of the supplied list of polygons. If check-for-
polygon-intersection fails to detect intersection (i.e., returns
"intersection"), this method calls itself on the tail of the list. This
continues until either an intersection has occurred, or the list of
polygons is empty.

check-for-polygon-intersection Using tail recursion, this function tests the supplied tangent-line
for intersection with the head of the supplied venice-list and its
predecessor by calling the intersection-test method. Calling stops
if "intersection" is returned, otherwise tie function calls itself on
the tail of the supplied vertice-list.

intersection-test This method tests for intersection of the supplied tangent-line and
the line formed by the two supplied vertices. It relies on four
calls to the point-position method, computing the relative position
of the four sets of three points to each other. Utilizes a series of
Lisp cond clauses to test for intersection. Returns either
"intersection" or nil.

point-position Computes the relative position of three points in the same manner
as the order function introduced in equation 17, Chapter II
Mathematical Basis for Common Tangents. Returns a decimal
value which is <0, =0, or >0.

2. Self-Tangents for Concave Polygons

The global variable *polygon-list*, containing the list of obstacles or

polygons, is searched sequentially using the dolist macro for those polygons with a

type-of-polygon slot having "concave" as a value. When such a polygon is found, the

exterior-vertice-list slot is accessed, and the program begins building tangent lines.

Recall that only vertices which are convex can have legal tangent lines, and only

103

convex vertices are in the list contained in the exterior-vertice-list slot. This means

that we can process all vertices in the exterior-vertice-list without checking each

vertex type.

Using the first vertex in the exterior-vertice-list as a fixed point, the program

attempts to construct a tangent to the next vertex in the exterior-vertice-list. If the next

vertex is adjacent to this fixed vertex, the next vertex in the exterior-vertice-list is

selected. When a vertex-to-vertex pair is found which is a likely tangent line

candidate, a landing and leaving validity test of the segment is performed. This test

examines each end of the line segment being considered to insure that the tangent line

is valid as far as its relative landing and leaving orientation on the polygon. In short,

the test examines the relative position of the predecessor and successor vertices at the

landing end of the tangent line segment using the point-position function. The

direction of the tangent line is then reversed and the same test is performed on the

predecessor and successor vertices at the leaving end of the tangent line segment.

Based on the results of these two tests, we can verify the validity of this line as a

tangent. If the segment qualifies as a legitimate tangent with respect to the landing

and leaving tests, the final step to confirm the tangent line segment is to check the

visibility of the segment through the world.

Visibility testing is completed as previously indicated. If the segment passes

the visibility test, then two instances of the tangent-line class is created; one

representing the tangent in each direction. These instances are then added to the plus

or minus-tangent slots of the leaving and landing vertices respectively, and the process

is repeated until all vertices for this concave polygon have been tested.

The remaining concave polygons are tested in a similar manner until the end of

polygon-list is reached. Table 12 contains a brief description of the principle

104

functions and methods called during this phase. When all concave polygons have

been processed, the dolist macro is used in a nested form to copy the self-tangents for

the concave polygons into the plus and minus-tangents slots of both the convex

subpolygon and the parent polygon.

TABLE 12. SELF-TANGENT CONSTRUCTION FOR CONCAVE POLYGONS
Function or Method Purpose
find-self-tangents This method sets up the initial call to locate-self-tangents by

stripping the first vertex off of the exterior-vertice-list of the
polygon.

locate-self-tangents Attempts to construct a tangent to the first vertex in the exterior-
vertice-list. Calls itself recursively on the remaining vertices of
the same polygon.

adjacency-test Simply tests if the fixed-vertex is adjacent to the current-vertex.
If they are adjacent, no tangent construction is attempted.

check-line Simple test of the predecessor and successor vertices at each end
of the candidate tangent line for proper tangent positioning.

test-verify-and-attach Tests the visibility of the candidate tangent line using a call to
intersection-test. If the line is valid (no intersections) then the
tangent and its reciprocal are added to the plus or minus-tangents
list of the fixed and current vertices.

3. Common Tangents Between Polygons

Locating common tangents between polygons is similar in approach to finding

the self-tangents of the concave polygons. We must consider possible tangent

constructions from one convex vertex to all the other convex vertices of different

polygons or convex subpolygons which have not yet been considered. When we find

and verify a tangent from one polygon's vertex to the vertex of another polygon

(forward tangent), we have also verified the that the tangent in the opposite direction

(return tangent) is valid. This is the reciprocal relationship of the forward and

returning tangents discussed in Chapter II.H. and illustrated in Figure 27. Thus, it is

not necessary to attempt to verify this return tangent in the opposite direction if we

105

develop our tangent construction process around this reciprocal relationship of

forward and return tangents.

Construction of common tangents between polygons is implemented as a

recursive process in the method locate-some-tangents. Each call uses the first polygon

in *polygon-list* as a fixed reference polygon for the tangent construction process to

take advantage of the above relationships, constructing tangents from the convex

vertices of the fixed polygon only to the polygons or convex subpolygons remaining

in the rest of *polygon-list*. Construction of the remaining tangents between the

polygons in *polygon-list* is then accomplished by calling locate-some-tangents on

the tail of *polygon-list*. As the recursion progresses deeper, the list of polygons

remaining in the rest of *polygon-list* becomes fewer and fewer until we reach the

point where there are no polygons remaining.

The methods and functions used to perform the tangent construction process

are the same or parallel ones developed for constructing self-tangents (Table 13).

Tangent candidates are found by selecting the first vertex in the exterior-vertice-list

slot of the fixed polygon, and attempting to construct a tangent to the vertices in the

exterior-vertice-list slots of the polygons remaining in *polygon-list*. Every effort

was made to reduce the number of visibility tests that were required for possible

tangent lines, since the tangent line requires testing against every polygon edge to

confirm visibility. The check-line and point-position methods are used to analyze the

landing and leaving relationships of the ends of the potential tangent line, allowing the

determination to be made on whether the line is a viable tangent. Only those tangent

lines which meet the tangent landing and leaving criteria in the cond statements of the

function locate-all-tangents are tested for visibility. Finally, the valid tangent lines are

106

added to the plus and minus-tangents slots of both the landing and leaving vertices,

and the process is repeated for the next vertex in the exterior-vertice-list.

TABLE 13. COMMON TANGENT CONSTRUCTION
Function or Method Purpose

locate-some-tangents Removes the first polygon from *polygon-list* and begins the
tangent construction process using the vertices of this polygon
sequentially as the fixed vertex. Recursively calls itself on the tail
of *polygon-list*.

find-tangents Using the dolist macro to consider each polygon in the tail of
polygon.list, calls locate-all-tangents with the fixed vertex and
the exterior-vertice-list of each convex polygon, or the vertice-list
of a convex-sub-polygon.

locate-all-tangents Attempts to construct a tangent from the fixed vertex to each of
the vertices in the supplied list of convex vertices. Calls check-
line to evaluate the landing and leaving relationships, and if valid,
calls test-verifA-and-aitach for further processing.

test-verify-and-attach This method first test the visibility of the potential tangent line.
If the line is visible (i.e., the string "valid-tangent-line" is
returned from the call to verify-tangent-line-visibility) then this
tangent is added to the plus or minus-tangents slot of the leaving
vertex, and the reciprocal tangent is added to the plus or minus-
tangents slot of the landing vertex.

F. POINT-SIZED SHORTEST PATHS

Searching for shortest paths proved to be the most complex portion of the application

to develop. The functions and methods implemented are both lengthy and complex, and

some restructuring and simplification is currently an on-going project. Rather than offer a

detailed analysis of the coding involved in the implementation, we will discuss the

purpose and functions of the key functions and methods of the implementation, and how

the implementation is executed.

The approach for locating the shortest point-sized path was divided the procedure into

two initial and four subsequent phases. The two initial phases consist of first, entering the

start and goal points and determining if the start and goal are initially visible, and second,

107

if they are not visible, then connecting the start point into the pre-processed tangent line

visibility graph. Connecting the start point required the construction of the visible tangent

lines from the start point to the polygons contained in the global variable *polygon-list*.

It was necessary to rewrite many of the functions and procedures already developed

to handle polygons and convex-sub-polygons, allowing them to now handle a tangent line

consisting of a single point and a vertex, versus a tangent consisting of a pair of polygon

vertices. The approach is exactly the same as that for constructing common tangents from

a single fixed vertex, except that the methods are slightly different. These methods are

contained in the file "tangent-functions.lisp" and are listed in Table 14 below.

TABLE 14. POINT-TO-VERTEX METHODS
Methods

find-tangents-from-poinl
construct-tangents-from-point
locate-all-tangents-from-point
check-line-from-point

check- ine-from -vertex
intersection-test

attach-tangent

Once a tangent has been found, we want to use this tangent as the basis for a path

expansion, rather than simply add it to a plus or minus-tangents slot. The purpose of the

path-node class is to fulfill this requirement, allowing the tangents from the start point to

be connected to the tangent line visibility graph and serve as the first set of nodes for the

path expansion process. As a tangent is found, we create an instance of the path-node

class and make assignment of the slot values of this instance (see Table 6 to review the

slot names and class structure). Next we assign the appropriate plus-path-mode or minus-

path-mode slot of the landing polygon or the landing convex-sub-polygon to reference

108

this path-node instantiation. Finally, we build a list of references to the path-node

instantiations in the global variable called *polygon -mode-list*, which serves as the list

of the end points of the active partial paths.

When all tangents from the start point to the surrounding polygons and convex

subpolygons is complete, *polygon-mode-list* contains a list of the modes of all

polygons and convex subpolygons visited from the start point. Note that a polygon or

convex subpolygon can be osculated on by these tangents originating from the start point

in two possible modes; a plus or counter clockwise mode, and a minus or clockwise mode.

Each element of *polygon.mode.list* is an instance of the path-node class, and the slots

of each of these elements contains the information and references necessary to begin the

shortest path search.

Searching for the shortest path is now a matter of implementing the concepts

introduced in Chapter III, Shortest Paths Using Common Tangents into the framework of

Dijkstra's Algorithm. Heuristic control of path end point expansion is integrated into

Dijkstra's search, using the evaluation function

f(n) = g(n) + h(n),

where n is the path-node instance representing a partial path end point, g(n) is the actual

length of the path from the start point to the partial path end point, and h(n) is the straight

line distance from the path end point to the goal. Since h(n) cannot possibly overestimate

the distance to the goal, we can be assured that the search algorithm will find the optimal

path to the goal usingf(n).

We begin by sorting the path-node elements in *polygon-mode-list* based on the

values in the total-path-cost slot of each path-node, where the elements with the lower

values are placed first. Recall that the value in this slot is the sum of the current path

109

length and the distance from the path end point to the goal point, providing the heuristic

control measure for partial path expansion. After sorting, the first element in *polygon-

mode-list* represents the partial path (an instance of the path-node class) with the lowest

overall cost. The expansion of this partial path proceeds by first determining whether the

last osculating polygon in the path is a convex polygon or a convex subpolygon. This

determination is necessary due to the orthogonal nature of the world model.

Partial paths ending with an osculation on a convex polygon require considering only

tangents emanating from the osculating vertex and either its successor (if the landing

mode is plus or counter-clockwise) or its predecessor (if the landing mode is minus or

clockwise). Processing partial paths which osculate on convex subpolygons require the

same consideration be given to tangents emanating from the osculating vertex. However,

the tangents emanating from all subsequent vertices when traversing the convex

subpolygon in the direction consistent with the partial path landing mode must also be

considered. Thus. for a convex subpolygon, it is necessary to examine all tangents from

counter-clockwise vertices when landing in a plus mode, and all tangents from clockwise

vertices when landing in a minus mode. The incorporation of the landing and leaving

tangent orientation criteria from Equation 69 restricts the number possibilities for

expansion from the osculating vertex, and prevents inclusion of less than optimal local

paths.

When the candidate tangent lines are identified to expand the current partial path,

there are three possibilities surrounding the new partial path end points generated. First,

the polygon or convex subpolygon has not yet been visited. When this situation arises,

the particular plus or minus-mode-path slots of the new landing polygon or convex

subpolygon have "nil" as a slot value. We need only create a new instance of the path-

II(0

node class and assign the appropriate plus or minus-mode-path slot to reference this

instance.

The second possible finding is that another partial path has already visited this

particular polygon or convex subpolygon in the same landing mode and both osculate on

the same vertex. Comparing the path lengths of the two partial paths indicates which is

the shortest path. The plus or minus-mode-path slot of the polygon or convex subpolygon

is set to reference the partial path with the lower path cost, and the other path is discarded.

The last possibility is when the two partial paths osculate on the same polygon or

convex subpolygon in the same landing mode but on different landing vertices. This

situation requires differentiating between the two partial paths by comparing the relative

magnitude of the path areas to reach the same end points. The path areas are computed

and compared as discussed in Chapter III.E. Using Path Areas to Resolve Multiple

Landings, and the partial path with the greater relative cost is discarded, and the plus or

minus-mode-path slot of the polygon or convex subpolygon is set to reference the shorter

of the two paths.

With the expansion of each path. the end points of the tangent line which lead to the

next polygon or convex subpolygon is tested to determine if the goal is visible or not.

When the goal is visible from a tangent end point, the search process is terminated by

setting the global variable *goal-found-flag* to "true." This has the effect of immediately

stopping all further expansions and terminates path finding process. Optimal path data is

then retrieved by examining the instance of the path-node class which led to the discovery

of the goal. We can obtain the actual path length and the symbolic path description,

which allows the instances of the path-node class to be retrieved from the polygons

osculated on during the search process.

I1

H. PATH PLANNER DISPLAY AND OUTPUT

The application developed for this thesis was oriented not towards providing a

numerical or computational analysis of another path finding algorithm. The intent was to

validate the theoretical work done thus far in applying obstacle common tangents to the

optimal path finding task. The output of the implementation is a series of Allegro

Common Windows graphical displays which are the result of conducting path finding

searches for various start and goal point combinations over two example worlds.

Additionally, we can examine the instances of the path-node class contained in the global

variable *polygon-mode-list* on completion of the search to access path data in greater

detail than that provided by the graphical display. The experimental results discussed here

refer to the graphical output of the program contained in the appendices.

Appendix A contains the obstacle data file and initial program output for a small

world consisting of only a few simple polygons. Appendix B contains similar data for a

more interesting and complex world. The world model in Appendix B is indicative of the

requirements surrounding path planning in more intricate manmade surroundings.

Within Appendices A and B, the displays are organized to parallel the work performed

by the application program. The first figure contains the Lisp code for the example world

obstacle data file. The second figure shows the free and filled space of the example

world, where black is filled space and white is free space. The third and fourth figures are

line drawings of the polygons before and after the partitioning of concave polygons into

convex subpolygons. The last two figures in each appendix show self-tangents for

concave polygons, and the display of all tangents once the pre-processing is complete.

Appendix C contains figures showing the final output displays for various start and

goal point combinations for the two example worlds. These figures show the final

expansion phase where the goal point was reached and the search terminated. In addition

112

to showing the shortest path from the start point to the goal point, the display also shows

the intermediate partial path expansions to polygons and convex subpolygons examined

during the search. These intermediate partial path expansions are the current shortest

paths to the plus and minus modes of the respective polygons and convex subpolygons at

the time of program termination. They clearly reflect the influence that the heuristic cost

function has on the selection of partial paths for expansion.

The results of the application program clearly indicate that optimal path finding using

obstacle common tangents is a viable path planning method. The pre-processing of the

world model permits the path finding process to become one of conducting a relatively

straightforward graph search of the tangent visibility graph. Although we were not speed

or efficiency focused in program development, it is interesting to note some informal

observations about the actual performance of the application.

Using the two example worlds discussed in Appendices A and B, we were able to

obtain final paths almost instantly (between 2 and 9 seconds) without display. Without

discounting the rather complex interactions between Allegro Common Windows, the XII

windowing system, and the operating system, we consistently found optimal paths using

the Common Windows displays in 20 to 30 seconds, even for the most complex

positioning of the start and goal points.

These are informal timing observations rather than accurately measured performance

windows, but the observations are worth mention. An efficiently coded application,

probably in C, using pre-processed tangent visibility graphs would most likely achieve far

superior performance results than this Lisp prototype.

113

LIST OF REFERENCES

Bochereau, L., Wolfshein, D., and Kanayama, Y., Simulation of Model-based Path
Planning for a Mobile Robot, unpublished technical report, University of California,
Santa Barbara, California, June 1988.

Feinberg, E. B., Characterizing the Shortest Path of an Object Among Obstacles,
paper contained in Information Processing Letters, vol. 31, no. 5, 12 June 1989.

Hilton, P. Algebraic Topology, Courant Institute of Mathematical Sciences at New
York University, 1969.

Kanayarna. Y., and DeHaan, G. R.. A Mathematical Theory of Safe Path Planning,
unpublished technical report, University of California, Santa Barbara, California, June
1988.

Lozano-Perez, T. and Wesley, M. A., An Algorithm for Planning Collision Free Paths
Among Polyhedral Obstacles. Communications of the ACM, vol. 22, no. 10, pp. 165-
175, 1979.

116

APPENDIX A

EXAMPLE WORLD NUMBER ONE

(defvar *obstacle-names* (list "A" "B" "C' "D" "E" "F" "G"))

(defvar *polygon-list* '(((160 140) (340 140) (340 260) (160 260)) ;A
((400 200) (600 200) (600 400) (500 400) B
(500 300) (400 300))

((160 460) (340 460) (340 540) (160 540)) C
((560 460) (640 460) (640 540) (560 540)) D
((700 400) (800 400) (800 500) (700 500)) E
((100 100) (100 300) (300 300) (300 400) G
(100 400) (100 600) (400 600) (400 500)
(500 500) (500 600) (900 600) (900 300)
(700 300) (700 200) (900 200) (900 100))))

117

Screen Image of Example World I Free and Filled Space

II1

L3 L<

Screen Image of Example World 1 Before
Partitioning into Convex Subpolygons

119

AF

Screen Image of Example World I AfterPartioning into Convex Subpolygons

A

Screen Image of Example World I After Self-Tangent Construction

120

Screen Image of Example World I AfterFinal Tangent Construction

121

APPENDIX B

EXAMPLE WORLD NUMBER TWO

(defvar *obstacle-names* (list "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "0" "P"))

(defvar *polygon-list* '(((520 80) (540 80) (540 140) (520 140)) ;A
((740 80) (780 80) (780 140) (740 140)) :B
((820 80) (840 80) (840 140) (820 140)) ;C
((880 80) (900 80) (900 140) (880 140)) ;D
((80 240) (380 240) (380 300) (360 300) ;E
(360 260) (200 260) (200 300) (260 300)
(260 340) (240 340) (240 320) (180 320)
(180 260) (100 260) (100 300) (140 300)
(140 340) (120 340) (120 320) (80 320))

((780 180) (920 180) (920 200) (860 200) ;F
(860 360) (920 360) (920 380) (860 380)
(860 620) (840 620) (840 600) (740 600)
(740 620) (720 620) (720 600) (360 600)
(360 580) (420 580) (420 240) (440 240)
(440 580) (540 580) (540 240) (560 240)
(560 580) (660 580) (660 240) (680 240)
(680 580) (840 580) (840 440) (780 440)
(780 420) (840 420) (840 320) (780 320)
(780 300) (840 300) (840 200) (780 200))

((300 300) (320 300) (320 340) (380 340) ;G
(380 380) (360 380) (360 360) (300 360))

((180 360) (200 360) (200 380) (260 380) ;H
(260 420) (240 420) (240 400) (180 400))

((300 400) (320 400) (320 420) (380 420)
(380 460) (360 460) (360 440) (300 440))

((180 440) (200 440) (200 460) (260 460) ;J
(260 500) (240 500) (240 480) (180 480))

((300 480) (320 480) (320 500) (380 500) X
(380 540) (360 540) (360 520) (300 520))
((80 540) (140 540)(140 620) (80 620) ;L
(80 600) (120 600) (120 560) (80 560))

((180 520) (200 520) (200 540) (260 540) ;M

122

(260 580) (240 580) (240 560) (180 560))
((300 560) (320 560) (320 620) (300 620)) ;N
((900 420) (920 420) (920 520) (900 520)) ;O
((40 40) (40 180) (180 180) (180 140) R
(200 140) (200 180) (240 180) (240 200)
(40 200) (40 360) (80 360) (80 380)
(140 380) (140 420) (120 420) (120 400)
(40 400) (40 440) (80 440) (80 460)
(140 460) (140 500) (120 500) (120 480)
(40 480) (40 660) (360 660) (360 640)
(680 640) (680 660) (780 660) (780 640)
(800 640) (800 660) (900 660) (900 620)
(920 620) (920 660) (960 660) (960 580)
(900 580) (900 560) (960 560) (960 260)
(920 260) (920 320) (900 320) (900 240)
(960 240) (960 40) (600 40) (600 80)
(580 80) (580 40) (480 40) (480 180)
(580 180) (580 120) (600 120) (600 180)
(680 180) (680 80) (700 80) (700 180)
(740 180) (740 240) (800 240) (800 260)
(740 260) (740 360) (800 360) (800 380)
(740 380) (740 480) (800 480) (800 540)
(720 540) (720 200) (620 200) (620 540)
(600 540) (600 200) (500 200) (500 540)
(480 540) (480 200) (420 200) (420 180)
(460 180) (460 40) (340 40) (340 180)
(380 180) (380 200) (280 200) (280 180)
(320 180) (320 40) (200 40) (200 100)
(180 100) (180 40))))

12 3

U -

Screen Image of Example World 2 Free and Filled Space

124

Screen Image of Example World 2 Before
Partitioning into Convex Subpolygons

E 0

Screen Image of Example World 2 After

Partitioning into Convex Subpolygons

125

P

Screen Image of Example World 2 After Construction of Self-Tangents

-F-0F, T
t'l/

Screen Image of Example World 2 After Construction of All Tangents

126

APPENDIX C

PATH PLANNING RESULTS

127

Q2

Screen Image of path finding on Example World I showing
the shortest path expansions from the starting point (110, 110) to
the goal (700, 550) along the symbolic path A+B+.

128

Ja

Screen Image of path finding on Example World 1 showing
the shortest path expansions from the starting point (110, 550) to
the goal (700,550) along the symbolic path C-FI+D-.

129

u

Screen Image of path finding on Example World 2 showing
the shortest path expansions from the starting point (100, 100) to
the goal (940, 60).

130

L -R

22

Screen Image of path finding on Example World 2 showing
the shortest path expansions from the starting point (940, 60) to
the goal (110, 500).

131

uI

Screen Image of path finding on Example World 2 showing
the shortest path expansions from the starting point (110, 110) to
the goal (110, 500).

132

i

Screen Image of path finding on Example World 2 showing
the shortest path expansions from the starting point (400, 100) to
the goal (940,60).

133

APPENDIX D

PROGRAM LISTING

FILENAME: SETUP.LISP
AUTHOR: JERRY A. CRANE
DATE: 14 AUG 1991

DESCRIPTION:
Contains the initialization actions and file loading
to support the common tangent path planner.
SETUP runs the complete path planner, while
SETUP-1 processes the world and stores the
results in an executeable file by using the
LISP dumplisp macro.

- .----------*------ *** *---- ** ***--****--*** **

BATCH ACTIONS TAKEN TO SETUP DATA STRUCTURES AND
INITIALIZE POINTERS AND SLOT VALUES ARE CONTAINED
IN "SETUP". ALL METHODS AND FUNCTIONS ARE RGANIC
TO WORLD-DEF.LISP EXCEPT "POINT-POSITION" WHICH
IS IN "TANGENT-FUNCTIONS.LISP".

.****---***t***t. ***Qt, t*** * t** *** * t* ***-

DEFUN SETUP

(defun setup 0
(load "world-def lisp")

(let ((answer "no"))
(load "tangent-functions. lisp")
(load "concave.lisp")
(format t "DISPLAY WITH X-WINDOWS? (YES/NO) ")
(setf answer (read))
(format t "ANSWER = (-a)" answer)
(cond ((equalp answer 'yes)

(setf *display* "yes")

134

(load "new-window. lisp"))
(t (setf *display* "no")))

(format t "ENTER OBSTACLE FILE NAME: ')

(setf answer (read))
; (setf answer (read))
(format t "-%-%OBSTACLE FILE TO PROCESS = (-a)-%-%" answer)
(load answer)

INITIALIZE NEW VARIABLE
(setf *my-list* nil)

CONVERT EACH SET OF (XY) COORDINATES
INTO VERTEX DATA STRUCTURE

(setf *my-list* (convert-polygon-point-list *polygon-list*))
CONNECT PREDECESSOR AND SUCCESSOR
POINTERS OF ALL VERTICES

(setf *my-list* (coordinate-conversion *my-list*))
CONVERT LIST OF VERTICE DATA STRUCTURES
INTO POLYGON DATA STRUCTUREs

(setf *my-list* (polygon-conversion *my-list* *polygon-list*))
(load "tangent-functions.lisp")

CLASSIFY EACH VERTEX AS TO INTERIOR OR
EXTERIOR, AND EACH POLYGON AS EITHER
CONVEX OR CONCAVE.

(determine-vertex-types *my-list*)
LOAD THE SLOT EXTERIOR-VERTICE-LIST
FOR CONCAVE POLYGONS WITH THE VERTICES
WHICH WILL HAVE TANGENTS ALL INTERIOR
VERTICES ARE OMITTED TO REDUCE PROCESSING
AND IDENTIFICATION TIME LATER.
PROCESS ALL CONCAVE POLYGONS INTO CONVEX
SUB-POLYGONS. EACH SUB-POLYGON WILL BE
USED DURING SYMBOLIC PATH EVALUATION

(create-convex-sub-polygons *my-list*)
(if (equal *display* "yes")

(display-convex-sub-polygons *my-list*))
(if (equal *display* "yes")

(display-polygons *my-list*))
(dolist (poly *my-list*)
(if (equal (type poly) "concave")

(find-self-tangents poly *my-list*)))
(locate-some-tangents (first *my-list*) (rest *my-list*) *my-list*)
(collect-tangents *my-list*)
(load "new-path.lisp")
(get-start-and-goal-coordinates-2)
(build-tangents *start-point* *my-list*)
(sort-and-expand-best-path)))

135

DEFUN SETUP-i

(defun setup-i (
(load "world-def. lisp")

(let ((answer "no"))
(load "tangent-fu nctions. lisp")
(load "concave. lisp")
(sell *display* "no")
(format t "ENTER OBSTACLE FILE NAME: "

(setf answer "obstacle. lisp")
(format t "-%-%OBSTACLE FILE TO PROCESS =(-a)" answer)
(load answer)
(setf *mny-list* nil)
(self *my-list* (convert -polygon -point -list *polygon -list*))
(self *my-list* (coordinate -conversion *my-list*))
(seti *my-list* (polygon-conversion *my-list* polygo n-Ilist*))
(dete rmine-ve rtex -types *my-list*)
(create-convex-sub-polygons *my-list*)
(dolist (poly *my-list*)
(if (equal (type poly) "concave')

(find-self-tangents poly *my-list*)))
(locate-some-tangents (first *my-ist*) (rest *my-list*) *my-ist*)
(collect -tangents *my-list*)
(dumplisp :name "mapi " read-init-file t)))

136

FILENAME: WORLD-DEF.LISP
.;. AUTHOR: JERRY A. CRANE

DATE: 14 AUG 1991
DESCRIPTION:

Contains the data structures and initialization
actions taken to convert polygons consisting of
coordinate point lists into CLOS objects.

(setf *print-circle* 1)
(defvar *display* "yes")
(defvar *my-list* nil)

(setf *my-list" nil)

..-

DEFCLASS POINT

(defclass point ()
((x-coord :initarg :x-coord :accessor x-coord)
(y-coord :initarg :y-coord :accessor y-coord)
(name :initarg name accessor name)))

..-

DEFCLASS VERTEX

(defclass vertex ()
((coordinates :initarg coordinates :accessor coordinates)
(vertex-type :initarg :vertex-type :accessor vertex-type)
(predecessor :initarg :predecessor :accessor predecessor)
(successor :initarg :successor :accessor successor)
(plus-tangents :initarg :plus-tangents :accessor plus-tangents)
(minus-tangents :initarg :minus-tangents:accessor minus-tangents)
(parent-name :initarg :parent-name :accessor parent-name)
(parent :initarg :parent :accessor parent)
(sub-polygon :initarg :sub-polygon :accessor sub-polygon)
(vertex-number :initarg :vertex-number :accessor vertex-number)))

DEFCLASS POLYGON

(defclass polygon ()
((name :initarg :name :accessor name)
(type-of-polygon :initarg :type :accessor type)

137

(vertice-list :initarg :vertice-list :accessor vertice-list)
(exterior-vertice-list :initform 0 :accessor exterior-vertice-list)
(number-of-vertices :initarg :number-of-vertices :accessor number-of-vertices)
(xy-coordinates :initarg :xy-coordinates :accessor xy-coordinates)
(plus-tangents :initarg :plus-tangents :accessor plus-tangents)
(minus-tangents :initarg :minus-tangents :accessor minus-tangents)
(convex-sub-polygons :initarg :sub-polygons :accessor sub-polygons)
(plus-mode-path :initarg :plus-mode :accessor plus-mode)
(minus-mode-path :initarg :minus-mode :accessor minus-mode)))

DEFCLASS CONVEX-SUB-POLYGON

(defclass convex-sub-polygon ()
((name :initarg :name :accessor name)
(vertice-list :initarg :vertice-list :accessor vertice-list)
(plus-tangents :initarg :plus-tangents :accessor plus-tangents)
(minus-tangents :initarg :minus-tangents :accessor minus-tangents)
(plus-mode-path :initarg :plus-mode :accessor plus-mode)
(minus-mode-path :initarg :minus-mode :accessor minus-mode)))

..

DEFCLASS PATH-NODE

(defclass path-node ()
((path-mode :initarg :path-mode :accessor path-mode)
(landing-vertex :initarg landing-vertex :accessor landing-vertex)
(from-vertex :initarg :from-vertex :accessor from-vertex)
(from-polygon :initarg :from-polygon :accessor from-polygon)
(from-mode :initarg :from-mode :accessor from-mode)
(cost :initarg :cost :accessor cost)
(symbolic-path :initform nil :accessor path)
(path-area :initarg :path-area :accessor path-area)
(distance-to-goal :initarg :distance :accessor distance)
(total-path-cost :initarg :total-path-cost :accessor total-path-cost)))

..

DEFUN MAKE-PATHNODE (POLYGON)
..

(defmethod make-path-node ((landing-vertex vertex)
(from-vertex vertex)
(from-polygon polygon)
from-mode
cost)

(make-instance 'path-node
landing-vertex landing-vertex
:from-vertex from-vertex

138

:from-polygon from-polygon
:from-mode from-mode
:cost cost))

..

DEFUN MAKE-PATHNODE (CONVEX-SUB-POLYGON)
--.------------------.-------------------------------

(defmethod make-path-node ((landing-vertex vertex)
(from-vertex vertex)
(from-polygon convex-sub-polygon)
irom-mode
cost)

(make-instance 'path-node
:landing-vertex landing-vertex
:from-vertex from-vertex
:from-polygon from-polygon
from-mode from-mode
1cost cost))

..-

DEFCLASS TANGENT-LINE

(defclass tangent-line ()
((end-point-1 :accessor end-point-1 :initarg :end-point-I)
(end-point-2 :accessor end-point-2 :initarg :end-point-2)

(tangent-type :accessor type :initarg -type)
(distance :accessor distance :initarg :distance)
(angle :accessor angle :initarg :angle)))

DEFUN MAKE-POINT

(defun make-point (x-coordinate
y-coordinate
&optional name)

(make-instance 'point
:x-coord x-coordinate
:y-coord y-coordinate
:name name))

DEFUN MAKE-VERTEX

(defun make-vertex (x-coordinate
y-coordinate

139

&optional name)

(make-instance 'vertex
:coordinates (make-point x-coordinate y-coordinate name)
:vertex-type "exterior"
:plus-tangents nil
:minus-tangents nil
:parent-name nil
:sub-polygon nil
:vertex-number nil))

DEFMETHOD MAKE-TANGENT-LINE

(defmethod make-tangent-line ((first-point vertex)
(second-point vertex)
&optional tangent-mode)

(make-instance 'tangent-line
:end-point-1 first-point
:end-point-2 second-point
:type tangent-mode))

DEFMETHOD STRAIGHT-LINE-DISTANCE

Determines the straight line distance
between the two points.

(defmethod straight-line-distance ((first-point vertex)
(second-point vertex))

(let ((xl (x-coord (coordinates first-point)))
(yl (y-coord (coordinates first-point)))
(x2 (x-coord (coordinates second-point)))
(y2 (y-coord (coordinates second-point))))

(sqrt (+ (expt (- xl x2) 2)
(expt (- yl y2) 2)))))

DEFUN RADIANS-TO-DEGREES

(defun radians-to-degrees (angle)
(I (angle 360) (* 2 pi)))

DEFUN BETA1

140

(defmethod betal ((first-point vertex)
(second-point vertex))

(let ((xl (x-coord (coordinates first-point)))
(yl (y-coord (coordinates first-point)))
(x2 (x-coord (coordinater second-point)))
(y2 (y-coord (coordinates second-point))))

(/*(atan (- y2 y1) (- x2 x1)) '360)

(2 pi))))

DEFUN CONVERT-POLYGON-COORDINATES-TO-VERTICES

(defun convert-polygon-coordinates-to-vertices (coordinate-list)

(let ((list-length (length coordinate-list)))
(cond ((<= list-length 1)

(list (make-vertex (first (first coordinate-list)) (second (first coordinate-list)))))
(t

(cons (make-vertex (first (first coordinate-list)) (second (first coordinate-list)))
(convert-polygon-coordinates-to-vertices (rest coordinate-list)))))))

DEFUN CONVERT-POLYGON-POINT-LIST

(defun convert-polygon-point-list (polygon-list)

(let ((list-length (length polygon-list)))
(cond ((<= list-length 1)

(list (convert-polygon-coordinates-to-vertices (first polygon-list))))
(t

(cons (convert-polygon-coordinates-to-vertices (first polygon-list))
(convert-polygon-point-list (rest polygon-list)))))))

DEFUN COORDINATE-CONVERSION

(defun coordinate-conversion (polygon-vertice-list)

(dolist (polygon polygon-vertice-list polygon-vertice-list)
(link-polygon-vertices polygon)))

DEFUN MAKE-POLYGON

(defun make-polygon (name

141

type
vertice-list
number-of-vertices
xy-coordinates)

(make-instance 'polygon
:name name
.type type
:vertice-list vertice-list
:number-of-vertices number-of-vertices
:xy-coordinates xy-coordinates))

DEFUN POLYGON-CONVERSION

(defun polygon-conversion (polygon-vertice-list
coordinate-list)

(let ((temp-list ())
(temp-name (first *obstacle-names*)))

(setf *obstacle-names* (rest *obstacle-names*))
(cond ((null (second polygon-vertice-list))

(list (make-polygon temp-name
"convex"
(first polygon-vertice-list)
(length (first polygon-vertice-list))
(dolist (vertex (first coordinate-list) temp-list)

(setf temp-list
(cons (first vertex)

(cons (second vertex)
temp-list)))))))

(t (cons (make-polygon temp-name
"convex"

(first polygon-vertice-list)
(length (first polygon-vertice-list))
(dolist (vertex (first coordinate-list) temp-list)
(setf temp-list

(cons (first vertex)
(cons (second vertex)

temp-list)))))
(polygon-conversion (rest polygon-vertice-list)

(rest coordinate-list)))))))

DEFMETHOD DETERMINE-OBSTACLE-VERTEX-TYPE

(defmethod determine-obstacle-vertex-type ((current-vertex vertex))

142

(let* ((current-point (coordinates current-vertex))
(next-point (coordinates (successor current-vertex)))
(previous-point (coordinates (predecessor current-vertex)))
(result (point-position next-point

previous-point
current-point)))

(cond ((> result 0)
(setf (vertex-type current-vertex) "exterior"))

((< result 0)
(setf (vertex-type current-vertex) "interior")))))

DEFUN DETERMINE-VERTEX-TYPES

(defun determine-vertex-types (polygon-list)
(dolist (poly polygon-list)

(dolist (point (vertice-list poly))
(setf (parent-name point) (name poly))
(setf (parent point) poly)
(determine-obstacle-vertex-type point)
(cond ((equal (vertex-type point) "interior")

(setf (type poly) "concave"))
(t (setf (exterior-vertice-list poly)

(cons point (exterior-vertice-list poly))))))))

DEFUN LINK-POLYGON-VERTICES

(defun link-polygon-vertices (polygon-vertice-list)
(let ((list-length (length polygon-vertice-list)))

(dotimes (list-index list-length polygon-vertice-list)
(cond ((equal list-index 0) ;first vertex

(setf (predecessor (first polygon-vertice-list))
(first (last polygon-vertice-list)))

(setf (successor (first polygon-vertice-list))
(second polygon-vertice-list)))

((equal list-index (- list-length 1)) last vertex
(setf (successor (first (last polygon-vertice-list)))

(first polygon-vertice-list))
(setf (predecessor (first (last polygon-vertice-list)))

(nth (- list-index 1) polygon-vertice-list)))
(t (connect-links (nth (- list-index 1)

polygon-vertice-list) all others
(nth list-index polygon-vertice-list)
(nth (+ list-index 1) polygon-vertice-list)))))))

143

DEFUN CONNECT-LINKS

(defun connect-links (first-point point-to-process second-point)
(setf (predecessor point-to-process) first-point)
(setf (successor point-to-process) second-point))

DEFUN SET-EXTERIOR-VERTICE-LIST

(defun set-exterior-vertice-list (polygon-list)
(dolist (polygon polygon-list)

(if (equal (type polygon) "concave")
(dolist (current-vertex (reverse (vertice-list polygon)))

(if (equal (vertex-type current-vertex) "exterior")
(setf (exterior-vertice-list polygon)

(cons current-vertex
(exterior-vertice-list polygon))))))))

144

FILENAME: TANGENT-FUNCTIONS.LISP
AUTHOR: JERRY A. CRANE
DATE: 14 AUG 1991
DESCRIPTION:

CONTAINS THE FUNCTIONS TO DETERMINE LINE
INTERSECTION FOR A GIVEN LIST OF POLYGONS
AND A LINE. ALSO CONTAINS THE FUNCTIONS
NECESSARY TO FIND POINT-TO-OBSTACLE
TANGENT LINES, AS WELL AS COMMON-TANGENTS
FOR TWO GIVEN OBSTACLES.

(defvar *TEST* "false")

* POINT-POSITION

DETERMINE THE RELATIVE POSITION OF THE TEST
POINT TO THE LINE FROM POINT-1 TO POINT-2
USING THE FORMULA

S(((Xl - X) * (Y2 - Y)) - ((Y1 - Y) - (X2 - X)))

(defmethod point-position ((test-point point)
(point-1 point)
(point-2 point))

(let ((x (x-coord test-point))
(y (y-coord test-point))
(xl (x-coord point-1))
(yl (y-coord point-1))
(x2 (x-coord point-2))
(y2 (y-coord point-2)))

(- ((- x1 x)(- y2 y))
((- yl y) (- x2 x)))))

LINE-INTERSECTION (TANGENT-LINE & 2 - POINTS)

DETERMINE IF THE TANGENT LINE AND THE LINE
FORMED BY THE FIRST AND SECOND VERTICES
INTERSECT. RETURNS "nil" or "intersection".

145

(defmethod intersection-test ((line tangent-line)
(first-vertex vertex)
(second-vertex vertex))

(let* ((starting-point (coordinates (end-point-1 line)))
(end-point (coordinates (end-point-2 line)))
(first-point (coordinates first-vertex))
(second-point (coordinates second-vertex))

(first-point-sign (point-position first-point
starting-point
end-point))

(second-point-sign (point-position second-point
starting-point
end-point))

(starting-point-sign (point-position starting-point
first-point
second-point))

(end-point-sign (point-position end-point
first-point
second-point)))

(cond ((or (equal first-point starting-point)
(equal first-point end-point) ONE OF THE POINTS TO TEST
(equal second-point starting-point) IS ONE OF THE END POINTS OF
(equal second-point end-point)) nil) THE LINE BEING TESTED

((and (> first-point-sign 0)
(> second-point-sign 0)) nil) BOTH GREATER THAN ZERO

((and (< first-point-sign 0)
(< second-point-sign 0)) nil) BOTH LESS THAN ZERO

((and (= first-point-sign 0)
(= second-point-sign 0)
(= starting-point-sign 0)
(= end-point-sign 0))

(cond ((or (and (< (x-coord first-point)
(x-coord starting-point))

(< (x-coord second-point)
(x-coord starting-point)))

(and (> (x-coord first-point)
(x-coord starting-point))

(> (x-coord second-point)
(x-coord starting-point)))

(and (< (y-coord first-point)
(y-coord starting-point))

(< (y-coord second-point)
(y-coord starting-point)))

(and (> (y-coord first-point)
(y-coord starting-point))

(> (y-coord second-point)
(y-coord starting-point)))) nil)))

1.46

((and (and (>= first-point-sign 0)
(<= second-point-sign 0)) LINE FORMED BY THE TWO

(and (<= starting-point-sign 0) ; TEST POINTS INTERSECTS, HAS
(>= end-point-sign 0))) ; ONE OR BOTH POINTS ON THE

"intersection") ; TANGENT LINE
((and (and (<= first-point-sign 0)

(>= second-point-sign 0)) LINE FORMED BY THE TWO
(and (>= starting-point-sign 0) TEST POINTS INTERSECTS, HAS

(<= end-point-sign 0))) ONE OR BOTH POINTS ON THE
"intersection") TANGENT LINE

(t nil))))

CHECK-FOR-POLYGON-INTERSECTION

DETERMINE IF THE TEST-LINE INTERSECTS A
THE GIVEN POLYGON. RETURNS THE VALUE "nil"
OR "intersection." TESTS THE FIRST VERTEX
AND THE PRECEEDING VERTEX FOR THE RESULT.

(defun check-for-polygon-intersection (test-line
polygon-vertice-list)

(cond ((null polygon-vertice-list) nil)
(t (let* ((initial-polygon-vertex (first polygon-vertice-list))

(second-polygon-vertex (predecessor initial-polygon-vertex))
(test-result (intersection-test test-line

initial-polygon-vertex
second-polygon -vertex)))

(cond ((equal test-result "intersection")
"intersection")

(t (check-for-polygon-intersection test-line
(rest polygon-vertice-list))))))))

CHECK-VISIBILITY

TESTS WHETHER THE TEST LINE INTERSECTS
ANY OF THE OBSTACLES IN THE PROVIDED
OBSTACLE LIST. RETURNS EITHER THE VALUE
"nil" or "intersection."

(defmethod check-visibility ((test-line tangent-line)
&optional (obstacle-list

my-list

obstacle-list-supplied-p))
(cond ((null obstacle-list) nil)

(t (let ((result (check-for-polygon-intersection
test-line

147

(vertice-list (first obstacle-list)))))
(cond ((equal result "intersection")

"intersection")
(t (check-visibility

test-line
(rest obstacle-list))))))))

CHECK-LINE

CHECKS THE RELATIVE POSITION OF THE PREDECESSOR
AND SUCCESOR VERTICES OF POLYGON 1 VERTEX
TO THE LINE FROM POLYGON 2 VERTEX TO
POLYGON 1 VERTEX. RETURNS THE SIGNS OF
THE RESULT AS A STRING

(defmethod check-line ((polygon-l-vertex vertex)
(polygon-2-vertex vertex))

(let* ((predecessor-test (point-position (coordinates (predecessor polygon-I-vertex))
(coordinates polygon-1 -vertex)
(coordinates polygon-2-vertex)))

(successor-test (point-position (coordinates (successor polygon-i-vertex))
(coordinates polygon-1 -vertex)
(coordinates polygon-2-vertex))))

(cond ((and (< predecessor-test 0)
(> successor-test 0)) "-+")

((and (> predecessor-test 0)
(< successor-test 0))"+-)

((and (> predecessor-test 0)
(> successor-test 0))"++")

((and (< predecessor-test 0)
(< successor-test 0)) "--")

((and (= predecessor-test 0)
(> successor-test 0)) "0+")

((and (= predecessor-test 0)
(< successor-test 0)) "0-")

((and (> predecessor-test 0)
(= successor-test 0)) "+0")

((and (< predecessor-test 0)
(= successor-test 0)) "-0"))))

FIND-EXTERIOR-VERTEX

(defun find-exterior-vertex (vertex-list)
(cond ((equal (vertex-type (first vertex-list)) "exterior")

vertex-list)
((null (second vertex-list)) nil)

148

(t (find-exterior-vertex (rest vertex-list)))))

ADJACENCY-TEST

(defmethod adjacency-test ((vertex-1 vertex)
(vertex-2 vertex))

(cond ((or (equal (predecessor vertex-i) vertex-2)
(equal (successor vertex-I) vertex-2)) "adjacent")
((equal vertex-1 vertex-2) "equal")

(t nil)))

FIND-SELF-TANGENTS

(defmethod find-self-tangents ((poly polygon)
obstacle-list)

(locate-self-tangents (first (exterior-vertice-list poly))
(rest (exterior-vertice-list poly))
obstacle-list))

LOCATE-SELF-TANGENTS

(defmethod locate-self-tangents ((fixed-vertex vertex)
exterior-vertice-list
obstacle-list)

(cond ((null exterior-vertice-list) nil)
(t
(dolist (current-vertex exterior-vertice-list)

(let ((adjacency-test-result (adjacency-test
fixed-vertex
current-vertex)))

(cond ((equal adjacency-test-result "adjacent") nil)
(t
(let* ((from-fixed-vertex-test (check-line

fixed-vertex
current-vertex))

(from-current-vertex-test (check-line
current-vertex
fixed-vertex))

(temp-tangent 'make-tangent-line
fixed-vertex
current-vertex)))

(cond ((and (equal from-fixed-vertex-test "--")

(equal from-current-vertex-test "++"))

(test-verify-and-attach temp-tangent

149

fixed-vertex
current-vertex
"minus-minus"

obstacle-list))
((and (equal from-fixed-vertex-test --")

(equal from-current-vertex-test "--"))
(test-verify-and-attach temp-tangent

fixed-vertex
current-vertex
"minus-plus"

obstacle-list))
((and (equal from-fixed-vertex-test "++")

(equal from-current-vertex-test "--"))
(test-verify-and-attach temp-tangent

fixed-vertex
current-vertex
"plus-plus"

obstacle-list))

((and (equal from-fixed-vertex-test "++")
(equal from-current-vertex-test ++"))

(test-verify-and-attach temp-tangent
fixed-vertex
current-vertex
'plus-minus"

obstacle-list))
((and (equal irom-fixed-vertex-test "0+")

(equal from-current-vertex-test "-0"))
(test-verify-and-attach temp-tangent

fixed-vertex
current-vertex
'plus-plus"

obstacle-list))
((and (equal from-fixed-vertex-test "-0")

(equal from-current-vertex-test "-0"))
(test-verify-and-attach temp-tangent

fixed-vertex
current-vertex
"minus-plus"

obstacle-list))
((and (equal from-fixed-vertex-test "-0")

(equal from-current-vertex-test "0+"))
(test-verify-and-attach temp-tangent

fixed-vertex
current-vertex
"minus-minus"

obstacle-list))

150

((and (equal from-fixed-vertex-test "+0")
(equal from-current-vertex-test "+0"))

(test-verify-and-attach temp-tangent
fixed-vertex
current-vertex
"plus-minus"

obstacle-list))
(t nil)))))))

(locate-self-tangents (first exterior-vertice-list)
(rest exterior-vertice-list)
obstacle-list))))

TEST-VERIFY-AND-ATTACH

(defmethod test-verify-and-attach ((temp-tangent tangent-line)

(fixed-vertex vertex)

(current-vertex vertex)
tangent-mode
obstacle-list)

(let ((intersection-test (verify-tangent-line-visibility
temp-tangent
obstacle-list)))

(if (equal intersection-test "valid-tangent-line")
(attach-tangent temp-tangent

fixed-vertex
current-vertex
tangent-mode))))

..

VERIFY-TANGENT-LINE-VISIBILITY

(defmethod verify-tangent-line-visibility ((line tangent-line)
obstacle-list)

(let ((visibility-test-result (check-visibility line obstacle-list))
(point-1 (end-point-1 line))
(point-2 (end-point-2 line)))

(cond ((equal visibility-test-result nil)
(if (equalp *display* "yes")

(display-tangent-line line))
"valid-tangent-line")

(t nil))))

...-

ATTACH-TANGENT

(defmethod attach-tangent ((first-tangent-line tangent-line)

151

(originating-vertex vertex)
(terminating-vertex vertex)
first-tangent-mode)

(setf (distance first-tangent-line) (straight-line-distance originating-vertex
terminating-vertex))

(setf (angle first-tangent-line) (betal originating-vertex
terminating-vertex))

(let- ((second-tangent-mode
(cond ((equal first-tangent-mode "plus-plus")

"minus-minus")

((equal first-tangent-mode "minus-minus")
"plus-plus")

(t first-tangent-mode)))
(second-tangent-line (make-tangent-line

terminating-vertex
originating-vertex
second-tangent-mode)))

(setf (distance second-tangent-line)
(straight-line-distance terminating-vertex

originating-vertex))
(setf (angle second-tangent-line)

(betal terminating-vertex
originating-vertex))

(setf (type first-tangent-line) first-tangent-mode)
(cond ((or (equal first-tangent-mode "plus-plus")

(equal first-tangent-mode "plus-minus"))
(cond ((null (plus-tangents originating-vertex))

(setf (plus-tangents originating-vertex)
(list first-tangent-line)))

(t (setf (plus-tangents originating-vertex)
(cons first-tangent-line

(plus-tangents originating-vertex)))))
(cond ((equal first-tangent-mode "plus-plus")

(cond ((null (minus-tangents terminating-vertex))
(setf (minus-tangents terminating-vertex)
(list second-tangent-line)))

(t (setf (minus-tangents terminating-vertex)
(cons second-tangent-line

(minus-tangents terminating-vertex))))))
(t
(cond ((null (plus-tangents terminating-vertex))

(setf (plus-tangents terminating-vertex)
(list second-tangent-line)))

(t (setf (plus-tangents terminating-vertex)
(cons second-tangent-line

(plus-tangents terminating-vertex))))))))
((or (equal first-tangent-mode "minus-minus")

152

(equal first-tangent-mode "minus-plus"))
(cond ((null (minus-tangents originating-vertex))

(setf (minus-tangents originating-vertex)
(list first-tangent-line)))

(t (setf (minus-tangents originating-vertex)
(cons first-tangent-line

(minus-tangents originating-vertex)))))
(cond ((equal first-tangent-mode "minus-minus")

(cond ((null (plus-tangents terminating-vertex))
(setf (plus-tangents terminating-vertex)

(list second-tangent-line)))
(t (sett (plus-tangents terminating-vertex)

(cons second-tangent-line
(plus-tangents terminating-vertex))))))

(t

(cond ((null (minus-tangents terminating-vertex))
(sef (minus-tangents terminating-vertex)

(list second-tangent-line)))
(t (sett (minus-tangents terminating-vertex)

(cons second-tangent-line
(minus-tangents terminating-vertex)))))))))))

LOCATE-TANGENTS

(defmethod locate-the-tangents (polygon-list)
(locate-some-tangents (first polygon-list)

(rest polygon-list) polygon-list))

LOCATE-SOME-TANGENTS

(defmethod locate-some-tangents ((fixed-polygon polygon)
list-of-polygons
obstacle-list)

(cond ((null list-of-polygons) nil)
(t (dolist (fixed-vertex (vertice-list fixed-polygon))

(find-tangents fixed-vertex
list-of-polygons
obstacle-list))

(locate-some-tangents (first list-of-polygons)
(rest list-of-polygons)
obstacle-list))))

FIND-TANGENTS

153

(defmethod find-tangents (fixed-vertex
list-of-polygons
obstacle-list)

(cond ((null list-of-polygons) nil)
(t (dolist (polygon list-of-polygons)

(construct-tangents- 1 fixed-vertex
(cond ((equal (type polygon) "concave")

(exterior-vertice-list polygon))
(t (vertice-list polygon)))

obstacle-list)))))

...

CONSTRUCT-TANGENTS
...

(defmethod construct-tangents-1 (fixed-vertex
list-of-exterior-vertices
obstacle-list)

(locate-all-tangents fixed-vertex
list-of-exterior-vertices
obstacle-list))

..

LOCATE-ALL-TANGENTS

(defun locate-all-tangents (fixed-vertex
list-of-exterior-vertices
obstacle-list)

(cond ((null list-of-exterior-vertices) nil)
(t (dolist (current-vertex list-of-exterior-vertices)

(let ((adjacency-test-result (adjacency-test
fixed-vertex
current-vertex)))

(cond ((equal adjacency-test-result "adjacent") nil)
(t (let* ((from-fixed-vertex-test (check-line current-vertex fixed-vertex))

(from-current-vertex-test (check-line fixed-vertex current-vertex))
(temp-tangent (make-tangent-line

fixed-vertex
current-vertex)))

(cond ((and (equal from-fixed-vertex-test "--")
(equal from-current-vertex-test "++"))

(test-verify-and-attach temp-tangent
fixed-vertex
current-vertex
"plus-plus"

obstacle-list))
((and (equal from-fixed-vertex-test "--")

(equal from-current-vertex-test "--"))

154

(test-verify-and-attach temp-tangent
fixed-vertex
current-vertex
"minus-plus"

obstacle-list))
((and (equal from-fixed-vertex-test "++")

(equal from-current-vertex-test "--"))
(test-verify-and-attach temp-tangent

fixed-vertex
current-vertex
"minus-minus"

obstacle-list))
((and (equal from-fixed-vertex-test "++")

(equal from-current-vertex-test "++"))
(test-verify-and-attach temp-tangent

fixed-vertex
current-vertex
"plus-minus"

obstacle-list))
((and (equal from-fixed-vertex-test "0+")

(equal from-current-vertex-test "-0"))
(test-verify-and-attach temp-tangent

fixed-vertex
current-vertex
"minus-minus"

obstacle-list))
((and (equal from-fixed-vertex-test "-0")

(equal from-current-vertex-test "-0"))
(test-verify-and-attach temp-tangent

fixed-vertex
current-vertex
"minus-plus"

obstacle-list))
((and (equal from-fixed-vertex-test "-0")

(equal from-current-vertex-test "0+"))
(test-verify-and-attach temp-tangent

fixed-vertex
current-vertex
"plus-plus"

obstacle-list))
((and (equal from-fixed-vertex-test "0+")

(equal from-current-vertex-test "0+"))
(test-verify-and-attach temp-tangent

fixed-vertex
current-vertex
"plus-minus"

obstacle-list))

155

It nil))))))))))

DEFUN CH ECK-VISIBILITY-OF-START-TO-GOAL-PATH

(defun check-visibility-of-start-to-goal-path 0
(let* ((start-to-goal-line (make-tangent-line *start-point*

"goal-point'))

(test-result (check-visibility start-to-goal-line
"my-list*)))

(cond ((equal test-result nil) "no intersection")
(t "intersection"))))

DEFMETHOD CHECK-VISIBILITY-OF-GOAL

(defmethod check-visibility-of-goal ((vertex vertex))
(let* ((vertex-to-goal-line (make-tangent-line vertex

goal-point))

(test-result-1 (check-line-from-vertex vertex
my-list))

(test-result-2 (check-visibility vertex-to-goal-line
my-list)))

(cond ((and (equal test-result-1 "no intersection")
(equal test-result-2 "no intersection"))

"no intersection")
(t "intersection"))))

...

DEFUN BUILD-TANGENTS
...

(defun build-tangents (start polygon-list)
(find-tangents-from-point *start-point*

polygon-list
polygon-list))

SPECIAL FUNCTIONS FOR PROCESSING

POINT-TO-POLYGON TANGENTS

DEFMETHOD FIN D-TANGENTS-FROM-POINT

(defmethod find-tangents-from-point (fixed-vertex
list-of-polygons
obstacle-list)

(cond ((null list-of-polygons) nil)
(t (dolist (polygon list-of-polygons)

156

(construct-tangents-from-point fixed-vertex
(cond ((equal (type polygon) "concave")

(exterior-vertice-list polygon))
(t (vertice-list polygon)))

obstacle-list)))))

DEFMETHOD CONSTRUCT-TANGENTS-FROM-POINT

(defmethod construct-tangents-from-point ((fixed-vertex vertex)
list -of-exterior-vertices
obstacle-list)

(locate-all-tangents-from-point fixed-vertex
list-of-exterior-vertices
obstacle-list))

DEFMETHOD LOCATE-ALL-TANGENTS-FROM-POINT

(defmethod locate-all-tangents-from-point ((fixed-vertex vertex)
list-of-exterior-vertices
obstacle-list)

(cond ((null list-of-exterior-vertices) nil)
(t (dolist (current-vertex list-of-exterior-vertices)

(let ((adjacency-test-result (adjacency-test
fixed-vertex
current-vertex)))

(let* ((from-fixed-vertex-test (check-line-from-point
current-vertex
fixed-vertex))

(from-current-vertex-test (check-line-from-point
fixed-vertex

current-vertex))
(temp-tangent (make-tangent-line

fixed-vertex
current-vertex)))

(cond ((and (equal from-fixed-vertex-test "--")

(or (equal from-current-vertex-test "++")

(equal from-current-vertex-test "00")))
(test-and-attach temp-tangent

0
0
fixed-vertex

current-vertex
"plus-plus"

obstacle-list))
((and (equal from-fixed-vertex-test "--")

157

(or (equal from-current-vertex-test "--")
(equal from-current-vertex-test "00")))

(test-and-attach temp-tangent
0
0
fixed-vertex
current-vertex
"plus-plus"

obstacle-list))
((and (equal from-fixed-vertex-test "++")

(or (equal from-current-vertex-test "--")

(equal from-current-vertex-test "00")))
(test-and-attach temp-tangent

0
0
fixed-vertex
current-vertex
"minus-minus"

obstacle-list))
((and (equal from-fixed-vertex-test "++")

(or (equal from-current-vertex-test "++")
(equal from-current-vertex-test "00")))

(test-and-attach temp-tangent

0
0
fixed-vertex
current-vertex
"plus-minus"
obstacle-list))

((and (equal from-fixed-vertex-test "0+")
(or (equal from-current-vertex-test "-0")

(equal from-current-vertex-test "00")))
(test-and-attach temp-tangent

0
0
fixed-vertex
current-vertex
"minus-minus"

obstacle-list))
((and (equal from-fixed-vertex-test "-0")

(or (equal from-current-vertex-test "-0")
(equal from-current-vertex-test "00")))

(test-and-attach temp-tangent
0
0
fixed-vertex
current-vertex

1 5X

"plus-plus"
obstacle-list))

((and (equal from-fixed-vertex-test "-0")
(or (equal from-current-vertex-test "0+")

(equal from-current-vertex-test "00)))
(test-and-attach temp-tangent

0
0
fixed-vertex
current-vertex
"plus-plus"

obstacle-list))
((and (equal from-fixed-vertex-test "0+")

(or (equal from-current-vertex-test "0+")
(equal from-current-vertex-test "00")))

(test-and-attach temp-tangent
0
0
fixed-vertex
current-vertex
"plus-minus"
obstacle-list))

(t nil))))))))

DEFMETHOD CHECK-LINE-FROM-POINT

(defmethod check-line-from-point ((polygon-i-vertex vertex)
(polygon-2-vertex vertex))

(let* ((predecessor-test (point-position (coordinates (predecessor polygon- 1 -vertex))
(coordinates polygon-l-vertex)
(coordinates polygon-2-vertex)))

(successor-test (point-position (coordinates (successor polygon- 1-vertex))
(coordinates polygon-1 -vertex)
(coordinates polygon-2-vertex))))

(cond ((and (< predecessor-test 0)
(> successor-test 0))"-+")

((and (> predecessor-test 0)
(< successor-test 0))"+-")

((and (> predecessor-test 0)
(> successor-test 0)) "++")

((and (< predecessor-test 0)
(< successor-test 0))"--")

((and (= predecessor-test 0)
(> successor-test 0)) "0+")

((and (= predecessor-test 0)
(< successor-test 0)) "0-")

151)

((and (> predecessor-test 0)
(= successor-test 0)) "+0")

((and (< predecessor-test 0)
(= successor-test 0)) "-0")

((and (= predecessor-test 0)
(= successor-test 0)) "00"))))

DEFMETHOD CHECK-LINE-FROM-VERTEX

(defmethod check- line-from-vertex ((fixed-vertex vertex)
obstacle-list)

(let* ((from-current-vertex-test
(check-line-from-point *goal-point*

fixed-vertex))
(setf (predecessor °start-point*) *start-point*)
(setf (successor *start-point*) start-point'

(from-fixed-vertex-test (check-line-from-point
fixed-vertex
.goal-point')))

(cond ((and (equal from-fixed-vertex-test "--")
(or (equal from-current-vertex-test "++")

(equal from-current-vertex-test "00")))
"no intersection")

((and (equal from-fixed-vertex-lest "--")

(or (equal from-current-vertex-test "--")

(equal from-current-vertex-test "00")))
"no intersection")

((and (equal from-fixed-vertex-test "++")
(or (equal from-current-vertex-test "--")

(equal from-current-vertex-test "00")))
"no intersection")

((and (equal from-fixed-vertex-test " +")
(or (equal from-current-vertex-test "++")

(equal from-current-vertex-test "00")))
"no intersection")

((and (equal from-fixed-vertex-test "0+")
(or (equal from-current-vertex-test "-0")

(equal from-current-vertex-test "00")))
"no intersection")
((and (equal from-fixed-vertex-test "-0")

(or (equal from-current-vertex-test "-0")
(equal from-current-vertex-test "00")))

"no intersection")
((and (equal from-fixed-vertex-test "-0")

(or (equal from-current-vertex-test "0+")

I160

(equal from-current-vertex-test "00")))
"no intersection")

((and (equal from-fixed-vertex-test "-0")
(or (equal from-current-vertex-test "0+")

(equal from-current-vertex-test "00")))
.no intersection")
((and (equal from-fixed-vertex-test "0+")

(or (equal from-current-vertex-test "0+")
(equal from-current-vertex-test "00")))

"no intersection")
(t "intersection"))))

161

FILENAME: CONCAVE.LISP
AUTHOR: JERRY A. CRANE
DATE: 14 AUG 1991
DESCRIPTION.

CONTAINS THE FUNCTIONS TO PARTITION
CONCAVE POLYGONS INTO CONVEX-SUB-
POLYGONS.

(defvar *numbers* (list "0" "1" "2" "3" "4" "5" "6' "7" "8" "9"
"10" "11" " 12" "13' "14" "15"
'16" "17" "18" "19" "20" "21"
"22" "23" "24" "25" "26" "27"
"28" "29" "30" "31" "32" "33"
"34" "35" "36" "37" "38" "39"
"40" "41" "42" "43" "44" "45"
"46" "47 "48" "49" "50"))

LIST-ADJACENT-VERTICES-TOGETHER

(delun list-adjacent-vertices-together (vertice-list)
(let* ((first-vertex (first vertice-list))

(last-vertex (first (last vertice-list)))
(temp-list (remove last-vertex vertice-list))
(test-result (adjacency-test first-vertex

last-vertex)))
(cond ((equal test-result "adjacent")

(setf temp-list (cons last-vertex temp-list))
(list-adjacent-vertices-together temp-list))
(t vertice-list))))

CREATE-CONCAVE-SUB-POLYGONS

(defun create-convex-sub-polygons (polygon-list)
(dolist (poly polygon-list)
(cond ((equal (type poly) "concave")

(sub-divide-concave-polygons poly))
(t))))

162

SUB-DIVIDE-CONCAVE-POLYGONS

(defmethod sub-divide-concave-polygons ((poly polygon))
(setf (exterior-vertice-list poly) (list-adjacent-vertices-together (exterior-vertice-list poly)))
(let* ((first-vertex (first (exterior-vertice-list poly)))

(name-list *numbers*)
(temp-concave-sub-polygon-list (list (make-instance 'convex-sub-polygon

:name (assign-name (name poly) name-

list)
:vertice-list (list first-vertex)))))

(setf (sub-polygon first-vertex) (name (first temp-concave-sub-polygon-list)))
(self (parent first-vertex) (first temp-concave-sub-polygon-list))
(setf (vertex-number first-vertex) 1)
(setf name-list (rest name-list))
(dolist (vertex (rest (exterior-vertice-list poly)) temp-concave-sub-polygon-list)

(let ((result (insert-vertex vertex (verlice-list (first temp-concave-sub-polygon-list)))))
(cond ((not (null result))

(self (vertice-list (first temp-concave-sub-polygon-list)) result)
(self (parent (first (vertice-list (first temp-concave-sub-polygon-list))))

(first temp-concave-sub-polygon-list)))
(t (self temp-concave-sub-polygon-list

(cons (make-instance 'convex-sub-polygon
:name (assign-name (name poly) name-list)
:vertice-list (list vertex))

temp-concave-sub-polygon-list))
(self name-list (rest name-list))
(self (vertex-number (first (vertice-list (first temp-concave-sub-polygon-list)))) 1)
(self (parent (first (vertice-list (first temp-concave-sub-polygon-list))))

(first temp-concave-sub-polygon-list))
(self (sub-polygon (first (vertice-list (first temp-concave-sub-polygon-

list))))
(name (first temp-concave-sub-polygon-list)))))))

(sel (sub-polygons poly) temp-concave-sub-polygon-list)))

163

INSERT-A-VERTEX

(defmethod insert-vertex ((current-vertex vertex)
poly)

(let* ((test-vertex (first poly))
(current-fnu mber-of -vertices (length poly))
(adjacency-test-result (adjacency-test current-vertex

test-vertex)))
(cond ((and (equal current-number-of-vertices 4)

(equal adjacency-test-result "adjacent")) nil)
((and (<= current-number-of-vertices 4)

(equal adjacency-test-result "adjacent"))
(setf (sub-polygon current-vertex) (sub-polygon test-vertex))
(setf (vertex-number current-vertex)

(+ current-number-of-vertices 1))
(setf poly (cons current-vertex poly)))

(t nil))))

ASSIGN-NAME

(detun assign-name (name name-list)
(concatenate 'string name (first name-list)))

(setf *new-list* *my-list*)

COLLECT-TANGENTS

(defun collect-tangents (polygon-list)
(dolist (poly polygon-list)
(let ((plus-tangent-list nil)

(minus-tangent-list nil))
(dolist (vertex (vertice-list poly) plus-tangent-list)

(cond ((null (first (plus-tangents vertex))) nil)
(t
(dolist (tangent (plus-tangents vertex))

(cond ((null plus-tangent-list)
(setf plus-tangent-list (list tangent)))

(t (seti plus-tangent-list (cons tangent plus-tangent-list))))))))
(dolist (vertex (vertice-list poly) minus-tangent-list)

(cond ((null (first (minus-tangents vertex))) nil)
(t
(dolist (tangent (minus-tangents vertex))

(cond ((null minus-tangent-list)
(setf minus-tangent-list (list tangent)))

1(4

(t (setf minus-tangent-list (cons tangent minus-tangent-list)))))))
(setf (plus-tangents poly) plus-tangent-list)
(setf (minus-tangents poly) minus-tangent-list)
(cond ((equal (type poly) "concave")

(collect-sub-polygon-tangents (sub-polygons poly)))
(t nil)))))

COLLECT-SUB-POLYGON-TANGENTS

(defun collect-sub-polygon-tangents (polygon-list)
(dolist (poly polygon-list)
(let ((plus-tangent-list nil)

(minus-tangent-list nil))
(dolist (vertex (vertice-list poly) plus-tangent-list)

(cond ((null (first (plus-tangents vertex))) nil)
(t
(dolist (tangent (plus-tangents vertex))

(cond ((null plus-tangent-list)
(setf plus-tangent-list (list tangent)))

(t (setf plus-tangent-list (cons tangent plus-tangent-list))))))))
(dolist (vertex (vertice-list poly) minus-tangent-list)

(cond ((null (first (minus-tangents vertex))) nil)
(t
(dolist (tangent (minus-tangents vertex))

(cond ((null minus-tangent-list)
(sett minus-tangent-list (list tangent)))

(t (setf minus-tangent-list (cons tangent minus-tangent-list))))))))
(setf (plus-tangents poly) plus-tangent-list)
(setf (minus-tangents poly) minus-tangent-list))))

I 65

gemini:crane

stdin

Wed Sep 18 22:25:48 1991

ps / LaserWriter II NTX

ps gem-rni:crane i: stai. 1, e: WeJ Sep 25 22:25:48 1991

ps qen.I: crane J: sti:ir . ate: Wed Sep 2, 22:25:48 1991

ps cemini :cra.e Cs:: stdin Pate: Wed Sep 1 22:25:48 1991

ps aemini:cianre Jfl : stdin :ate: Wei S-: 18 22:25:48 1991

FILENAME:- NEW-PATH.LISP
AUTHOR: JERRY A. CRANE
DATE: 14 AUG 1991

DESCRIPTION:
Contains the functions and methods for
path searching. Uses a modified Dijkstra
Algorithm to search for the shortest path.

DEFUN RESET-WORLD

(defun reset-world (
(zero-modes)
(setf *initial-path-list* nil)
(setf *polygon-mode-list* nil)
(setf *goal-found-flag* "false")
(self *my-bitmap-stream-3* *bitmap-copy*)
(cw:bitblt *my-bitmap-stream-3* 0 0 *win-3* 0 0)
(get-start-and-goal-coordinates-2)
(build-tangents *start-point* my-Iist*)
(shortest-paths))

(defvar *start* nil)
(defvar *goal* nil)

(defvar *initial-path-list* nil)
(delvar *polygon- mode-Iist* nil)
(defvar *goal-found-flag* "false")
(defvar *new* nil)
(defvar *start-point*)
(defvar *goal-point*)
(defvar *error-f lag*)
(defvar *stuff* "run")
(setq *bitmap-copy* *my-bitmap-stream-3*)

DEFUN GET-START-AND-GOAL-COORDINATES

(defun get-start-and-goal-coordinates-2 (
(format t "ENTER THE START POINT COORDINATES: (X Y))
(setf *start* (read))
(format t "ENTER THE GOAL POINT COORDINATES: (X Y))

166

(setf *goal* (read))
(setf *start-point* (make-vertex (first *start*)

(second *start*)
"start"))

(setf *goal-point* (make-vertex (first *goal*)
(second *goal*)

"goal"))

(cond ((equalp *display* "yes")
(draw-vertex *win-3* *my-bitmap-stream-3* *start-point*)
(label-vertex *win-3* *my-bitmap-stream-3* "START" *start-point*)))

(cond ((equalp *display* "yes")
(draw-vertex *win-3* *my-bitmap-stream-3* *goal-point*)
(label-vertex *win-3* *my-bitmap-stream-3* "GOAL" *goal-point*)))

(setf (predecessor *start-point*) *start-point*)
(setf (successor *start-point*) *start-point*)
(setf (predecessor *goal-point*) *goal-point*)
(setf (successor *goal-point*) *goal-point*)
(setf (parent-name *start-point*) "start")
(sett (parent-name *goal-point*) "goal")
(zero-modes))

...

DEFMETHOD EXTEND-PATH-LIST

(defmethod extend-path-list ((current-path path-header)
polygon-list)

(let ((mode (path-mode current-path)))
(cond ((equal mode "plus")

(let* ((current-path-node (plus-mode (path-end-point
current-path)))

(new-paths (path-expansion current-path-node
(path-end-point current-path)
mode
polygon-list))

(new-path-list nil))))
((equal mode "minus")
(let* ((current-path-node (minus-mode (path-end-point

current-path)))
(new-paths (path-expansion current-path-node

(path-end-point current-path)
mode
polygon-list))

(new-path-list nil)))))))

...-

DEFMETHOD EXTEND-PATH-LIST

167

(defmethod expand-path-list ((current-polygon-path-node path-node)
polygon-list)

(path-expansion current-polygon-path-node
(from-polygon current-polygon-path-node)
(path-mode current-polygon-path-node)
polygon-list))

1 68

DEFMETHOD PATH-EXPANSION

(defmethod path-expansion ((current-path-node path-node)
(path-end-point polygon)
current-path-mode
polygon-list)

(let* ((landing-vertex (landing-vertex current-path-node))
(from-vertex (from-vertex current-path-node))
(tangent-angle (betal from-vertex landing-vertex))
(allowable-tangent-paths nil)
(edge-traversal-cost 0)
(path-area (path-area current-path-node))
(current-path-area path-area))

* PROCESS THE PLUS-MODE SLOT OF THE
* POLYGON OF THE LANDING-VERTEX

COLLECT PLUS-TANGENTS FROM LANDING
* VERTEX LEFT OF INCOMING TANGENT

AS WELL AS THE VERTEX WHICH IS THE
PREDECESSOR OF THE LANDING VERTEX

(cond ((equal current-path-mode "plus")
(cond ((equal (check-visibility-of-goal landing-vertex) "no intersection")

(setf *goal-found-flag* "true")
(draw-dark-line-3 *win-3*

my-bitmap-stream-3
landing-vertex
.goal-point*)))

(dolist (tangent (plus-tangents landing-vertex) allowable-tangent-paths)
(let ((normal-angle (- (angle tangent) tangent-angle)))
(sef current-path-area

(+ current-path-area
(compute-path-area (end-point-1 tangent)

(end-point-2 tangent))))
(cond ((and (>= normal-angle 0) (<= normal-angle 180))

(cond ((null allowable-tangent-paths)
(setf allowable-tangent-paths

(list (list tangent

edge-traversal-cost
current-path-area))))

(t (self allowable-tangent-paths
(cons (list tangent

edge-traversal-cost

1 6)

current-path-area)
allowable-tangent-paths))))))))

(let* ((next-vertex (successor landing-vertex)))
; COMPUTE EDGE TRAVERSAL COST
(setf edge-traversal-cost

(straight-line-distance landing-vertex
next-vertex))

COMPUTE EDGE TRAVERSAL PATH AREA, ADD TO PATH
; AREA TO GET TO THIS POINT

(setf current-path-area (+ path-area
(compute-path-area landing-vertex

next-vertex)))
(cond ((and (equal (check-visibility-of-goal next-vertex) "no intersection")

(equal *goal-found-flag* "false"))
(setf *goal-found-flag* "true")
(draw-dark-line-3 *win-3*

my-bitmap-stream-3
next-vertex
goal-point)))

(dolist (tangent (plus-tangents next-vertex) allowable-tangent-paths)
COMPUTE PATH AREA FOR POLYGON,
; EDGE, AND TANGENT TO NEXT POLYGON

(let ((new-path-area (+ (compute-path-area (end-point-1 tangent)
(end-point-2 tangent))

current-path-area)))
(cond ((null allowable-tangent-paths)

(setf allowable-tangent-paths
(list (list tangent edge-traversal-cost new-path-area))))

(t (setf allowable-tangent-paths
(cons (list tangent edge-traversal-cost new-path-area)

a!lowable-tangent-paths))))))))

PROCESS THE MINUS-MODE SLOT OF THE
POLYGON OF THE LANDING-VERTEX

; COLLECT MINUS-TANGENTS FROM LANDING
; VERTEX RIGHT OF INCOMING TANGENT
; AS WELL AS THE VERTEX WHICH IS THE

SUCCESSOR OF THE LANDING VERTEX

((equal current-path-mode "minus")
(cond ((equal (check-visibility-of-goal landing-vertex) "no intersection")

(setf *goal-found-flag* "true")
(draw-dark-line-3 *win-3°

my-bitmap-stream-3

landing-vertex
goal-point)))

(dolist (tangent (minus-tangents landing-vertex) allowable-tangent-paths)

170

(let ((normal-angle (- (angle tangent) tangent-angle)))
(setf current-path-area
(+ current-path-area (compute-path-area (end-point-1 tangent)

(end-point-2 tangent))))
(cond ((<= normal-angle 0)

(cond ((null allowable-tangent-paths)
(setf allowable-tangent-paths

(list (list tangent edge-traversal-cost current-path-area))))
(t (setf allowable-tangent-paths

(cons (list tangent edge-traversal-cost current-path-area)
allowable-tangent-paths))))))))

(let* ((next-vertex (predecessor landing-vertex)))
; COMPUTE EDGE TRAVERSAL COST
(setf edge-traversal-cost (straight-line-distance landing-vertex next-vertex))
COMPUTE EDGE TRAVERSAL PATH AREA,
; ADD TO PATH AREA TO GET TO THIS POINT

(setf current-path-area
(+ path-area (compute-path-area landing-vertex

next-vertex)))
(cond ((and (equal (check-visibility-of-goal next-vertex) "no intersection")

(equal *goal-found-flag* "false"))
(setf *goal-found-flag* "true")
(draw-dark-line-3 *win-3*

my-bitmap-stream-3

next-vertex
goal-point)))

(dolist (tangent (minus-tangents next-vertex) allowable-tangent-paths)
COMPUTE PATH AREA FOR POLYGON,
; EDGE. AND TANGENT TO NEXT POLYGON

(let ((new-path-area (+ (compute-path-area (end-point-1 tangent)
(end-point-2 tangent))

current-path-area)))
(cond ((null allowable-tangent-paths)

(setf allowable-tangent-paths
(list (list tangent edge-traversal-cost new-path-area))))

(t (setf allowable-tangent-paths
(cons (list tangent edge-traversal-cost new-path-area)

allowable-tangent-paths)))))))))
(setf *new* allowable-tangent-paths)

(cond ((equalp *display* "yes")
(dolist (tangent *new*)

(build-subsequent-path-node (first tangent)
(second tangent)
(third tangent)
(end-point-1 (first tangent))

171

(end-point-2 (first tangent))
(type (first tangent)))))

(t
(dolist (tangent *new*)

(build-subsequent-path-node (first tangent)
(second tangent)
(third tangent)
(end-point-1 (first tangent))
(end-point-2 (first tangent))
(type (first tangent))))))))

DEFMETHOD PATH-EXPANSION (CONVEX-SUB-POLYGONS)

(defmethod path-expansion ((current-path-node path-node)
(path-end-point convex-sub-polygon)
current-path-mode
polygon-list)

(let* ((landing-vertex (landing-vertex current-path-node))
(from-vertex (from-vertex current-path-node))
(tangent-angle (betal from-vertex landing-vertex))
(allowable-tangent-paths nil)
(edge-traversal-cost 0)
(path-area (path-area current-path-node))
(current-path-area path-area))

PROCESS THE PLUS-MODE SLOT OF THE CONVEX-SUB-POLYGON
OF THE LANDING-VERTEX
FIRST STEP IS TO COLLECT THE MINUS TANGENTS RIGHT OF
THE INCOMING TANGENT

S................................. I..................................

(cond ((equal current-path-mode "plus")
(cond ((equal (check-visibility-of-goal landing-vertex) "no intersection")

(setf *goal-found-flag* "true")
(draw-dark-line-3 *win-3*

my-bitmap-streamo3
landing-vertex
.goal-point*)))

(dolist (tangent (plus-tangents landing-vertex) allowable-tangent-paths)
(let ((normal-angle (- (angle tangent) tangent-angle)))
(sef current-path-area

(+ path-area (compute-path-area (end-point-1 tangent)
(end-point-2 tangent))))

(cond ((and (>= normal-angle 0) (<= normal-angle 180))
(cond ((null allowable-tangent-paths)

(self allowable-tangent-paths

172

(list (list tangent
edge-traversal-cost
current-path-area))))

(t (setf allowable-tangent-paths
(cons (list tangent

edge-traversal-cost
current-path-area)

allowable-tangent-paths))))))))
S...

BEGIN PROCESSING ALONG ADJACENT VERTICES USING
THE SUCCESSOR SLOT

(let* ((next-vertex (successor landing-vertex))
(current-parent (parent landing-vertex))
(last-vertex-examined next-vertex))

COMPUTE EDGE TRAVERSAL COST
(setf edge-traversal-cost (straight-line-distance landing-vertex

next-vertex))
COMPUTE EDGE TRAVERSAL PATH AREA, ADD TO
PATH AREA TO GET TO THIS POINT

(self current-path-area
(+ path-area (compute-path-area landing-vertex

next-vertex)))
(cond ((and (equal (check-visibility-of-goal next-vertex) "no intersection")

(equal (vertex-type next-vertex)
(vertex-type landing-vertex)))

(sett *goal-found-flag* "true")
(draw-dark-line-3 *win-3* *my-bitmap-stream-3* next-vertex *goal-point*)))

(loop
BEGIN PROCESSING ADJACENT VERTICES UNTIL
ONE IS FOUND BELONGING TO
A DIFFERENT SUB-POLYGON

(when (not (equal (parent landing-vertex) (parent next-vertex)))
(return allowable-tangent-paths))

(dolist (tangent (plus-tangents next-vertex) allowable-tangent-paths)
(let ((new-path-area (+ current-path-area

(compute-path-area (end-point-1 tangent)
(end-point-2 tangent)))))

(cond ((null allowable-tangent-paths)
(setf allowable-tangent-paths
(list (list tangent

edge-traversal-cost
current-path-area))))

(t (seti allowable-tangent-paths
(cons (list tangent

edge-traversal-cost
current-path-area)

173

allowable-tangent-paths))))))
(setf last-vertex-examined next-vertex)
(self next-vertex (successor next-vertex))

INCREMENT EDGE TRAVERSAL COST FOR THE NEXT EDGE
(setf edge-traversal-cost
(+ edge-traversal-cost

(straight-line-distance last-vertex-examined
next-vertex)))

INCREMENT PATH AREA TO INCLUDE THE NEW EDGE
(setf current-path-area
(+ current-path-area

(compute-path-area last-vertex-examined
next-vertex))))

(cond ((and (equal (check-visibility-of-goal next-vertex) "no intersection")
(equal *goal-found-flag* "false")
(equal (vertex-type next-vertex)

(vertex-type landing-vertex)))
(self *goal-found-flag* "true")
(draw-dark-line-3 *win-3*

my-bitmap-stream-3
next-vertex
goal-point)))

* LAST VERTEX OF THIS SUB-POLYGON FOUND.
CHECK THE NEXT ADJACENT VERTEX

; IN CASE WE NEED TO TRAVERSE ALONG AN EDGE
THIS IS THE RESULT OF THE
WAY THAT CONCAVE SUB-POLYGONS HAVE BEEN DIVIDED

S...

(let ((adjacency-test-result (adjacency-test last-vertex-examined
next-vertex))

(temp-tangent nil))
(cond ((and (equal adjacency-test-result "adjacent")

(equal (vertex-type next-vertex)
(vertex-type landing-vertex)))

(cond ((and (equal (check-visibility-ot-goal next-vertex)'"no intersection")
(equal (vertex-type next-vertex)

(vertex-type landing-vertex)))
(self *goal-found-flag* "true")
(draw-dark-line-3 *win-3*

my-bitmap-stream-3
next-vertex
goal-point)))

(self temp-tangent
(make-tangent-iine last-vertex-examined

next-vertex
"plus-plus"))

174

(setf (distance temp-tangent)
(straight-line-distance last-vertex-examined

next-vertex))
(cond ((null allowable-tangent-paths)

(setf allowable-tangent-paths
(list (list temp-tangent

edge-traversal-cost
current-path-area))))

(t (setf allowable-tangent-paths
(cons (list temp-tangent

edge-traversal-cost
current-path-area)

allowable-tangent-paths)))))))))

; PROCESS THE MINUS-MODE SLOT OF
THE CONVEX-SUB-POLYGON OF THE LANDING-VERTEX

FIRST STEP IS TO COLLECT THE MINUS TANGENTS
* RIGHT OF THE INCOMING TANGENT
S............ I...................................

((equal current-path-mode "minus")
(cond ((equal (check-visibility-of-goal landing-vertex) "no intersection")

(setf *goal-found-flag* "true")
(draw-dark-line-3 *win-3*

my-bitmap-stream-3
landing-vertex
goal-point)))

(dolist (tangent (minus-tangents landing-vertex) allowable-tangent-paths)
(let ((normal-angle (- (angle tangent) tangent-angle)))
(setf current-path-area (+ path-area (compute-path-area (end-point-1 tangent)

(end-point-2 tangent))))
(cond ((and (<= normal-angle 0) (>= normal-angle -180))

(cond ((null allowable-tangent-paths)
(setf allowable-tangent-paths
(list (list tangent edge-traversal-cost current-path-area))))

(t (setf allowable-tangent-paths
(cons (list tangent edge-traversal-cost current-path-area)

allowable-tangent-paths))))))))

BEGIN PROCESSING ALONG ADJACENT
: VERTICES USING THE PREDECESSOR SLOT

(let* ((next-vertex (predecessor landing-vertex))
(current-parent (parent landing-vertex))
(last-vertex-examined next-vertex))

COMPUTE EDGE TRAVERSAL COST
(setf edge-traversal-cost (straight-line-distance landing-vertex

175

next-vertex))
COMPUTE EDGE TRAVERSAL PATH AREA,
; ADD TO PATH AREA TO GET TO THIS POINT

(setf current-path-area
(+ path-area (compute-path-area landing-vertex

next-vertex)))
(cond ((and (equal (check-visibility-of-goal next-vertex) "no intersection")

(equal (vertex-type next-vertex)
(vertex-type landing-vertex)))

(set *goal-tound-flag* "true")
(draw-dark-line-3 *win-3*

my-bitmap-stream-3
next-vertex
.goal-point*)))

(loop
BEGIN PROCESSING ADJACENT VERTICES
: UNTIL ONE IS FOUND BELONGING TO

A DIFFERENT SUB-POLYGON
(when (not (equal (parent landing-vertex) (parent next-vertex)))

(return allowable-tangent-paths))
(dolist (tangent (minus-tangents next-vertex) allowable-tangent-paths)

(let ((new-path-area
(+ current-path-area (compute-path-area (end-point-1 tangent)

(end-point-2 tangent)))))
(cond ((null allowable-tangent-paths)

(sett allowable-tangent-paths
(list (list tangent edge-traversal-cost current-path-area))))

(t (setf allowable-tangent-paths
(cons (list tangent edge-traversal-cost current-path-area)

allowable-tangent-paths))))))
(setf last-vertex-examined next-vertex)
(sef next-vertex (predecessor next-vertex))
: INCREMENT EDGE TRAVERSAL COST FOR THE NEXT EDGE
(setf edge-traversal-cost

(+ edge-traversal-cost
(straight-line-distance last-vertex-examined

next-vertex)))
INCREMENT PATH AREA TO INCLUDE THE NEW EDGE

(sef current-path-area
(+ current-path-area (compute-path-area last-vertex-examined

next-vertex)))
(cond ((and (equal (check-visibility-of-goal next-vertex) "no intersection")

(equal (vertex-type next-vertex)
(vertex-type landing-vertex)))

(setf *goal-found-flag* "true")
(draw-dark-line-3 *win-3*

176

"my-bitmap-stream-3*

next-vertex
goal-point))))

S...

LAST VERTEX OF THIS SUB-POLYGON
; FOUND. CHECK THE NEXT ADJACENT VERTEX
IN CASE WE NEED TO TRAVERSE ALONG AN EDGE.
; THIS IS THE RESULT OF THE
WAY THAT CONCAVE SUB-POLYGONS HAVE BEEN DIVIDED

(let ((adjacency-test-result (adjacency-test last-vertex-examined
next-vertex))

(temp-tangent nil))

(cond ((and (equal adjacency-test-result "adjacent")
(equal (vertex-type next-vertex)

(vertex-type landing-vertex)))
(setf temp-tangent (make-tangent-line last-vertex-examined

next-vertex
"minus-minus"))

(setf (distance temp-tangent)
(straight-line-distance last-vertex-examined

next-vertex))
(cond ((null allowable-tangent-paths)

(setf allowable-tangent-paths
(list (list temp-tangent edge-traversal-cost current-path-area))))

(t (setf allowable-tangent-paths
(cons (list temp-tangent edge-traversal-cost current-path-area)

allowable-tangent-paths))))))))))
(setf *new* allowable-tangent-palhs)
(cond ((equalp *display* "yes")

(dolist (tangent *new*)
(build-subsequent-path-node (first tangent)

(second tangent)
(third tangent)
(end-point-1 (first tangent))
(end-point-2 (first tangent))
(type (first tangent)))))

(t
(dolist (tangent *new*)
(build-subsequent-path-node (first tangent)

(second tangent)
(third tangent)
(end-point-1 (first tangent))
(end-point-2 (first tangent))
(type (first tangent))))))))

177

DEFMETHOD TEST-AND-ATTACH

(defmethod test-and-attach ((temp-tangent tangent-line)
edge-traversal-cost
path-area
(fixed-vertex vertex)
(current-vertex vertex)
tangent-mode
obstacle-list)

(let ((intersection-test (verify-tangent-line-visibility
temp-tangent
obstacle-list)))

(cond ((equal intersection-test "valid-tangent-line")

(build-initial-path-node temp-tangent
edge-traversal-cost
path-area
fixed-vertex
current-vertex
tangent-mode)))))

DEFUN ZERO-MODES

(defun zero-modes ()
(dolist (polygon *my-list*)

(setf (minus-mode polygon) nil)
(setf (plus-mode polygon) nil))

(dolist (polygon *my-list*)
(cond ((equal (type polygon) "concave")

(dolist (thing (sub-polygons polygon))
(setf (minus-mode thing) nil)
(setf (plus-mode thing) nil))))))

..

DEFMETHOD BUILD-INITIAL-PATH-NODE

(defmethod build-initial-path-node ((first-tangent-line tangent-line)
edge-traversal-cost
path-area
(originating-vertex vertex)
(terminating-vertex vertex)
first-tangent-mode)

178

(if (equalp *display* "yes")
(draw- dark-line-6 *win-3* °my-bitmap-stream-3* first-tangent-line))

'let* ((ending-polygon (parent terminating-vertex))
(current-path (make-path- header ending-polygon)))

(cond ((and (or (equal first-tangent-mode "plus-plus")
(equal first-tangent-mode "minus-plus"))

(null (plus-mode ending-polygon))
(equal *stuff" "run"))

(setf (plus-mode ending-polygon)
(make-path-node terminating-vertex

originating-vertex
ending-polygon
first-tangent-mode
(+ (straight-line-distance originating-vertex

terminating-vertex)
edge-traversal-cost)))

-----------.SETTING VALUES IN THE PATH HEADER -------------------
(setf (path-end-point current-path) ending-polygon)
(sett (path-cost current-path) (cost (plus-mode ending-polygon)))
(setf (distance current-path)
(straight-line-distance terminating-vertex

.goal-point*))

(setf (total-path-cost current-path)
(+ (path-cost current-path)

(distance current-path)))
(setf (symbolic-path current-path)

(list "START" (name (path-end-point current-path)) "+"))

(sef (path-mode current-path) "plus")
-----------.SETTING VALUES IN THE PATH NODE ---------------------

PATH-MODE
(sett (path-mode (plus-mode ending-polygon)) "plus")
; SYMBOLIC PATH
(setf (path (plus-mode ending-polygon))

(list "START" (name ending-polygon)"'"))
DISTANCE SLOT

(setf (distance (plus-mode ending-polygon))
(straight-line-distance terminating-vertex

"goal-point*))

TOTAL-PATH-COST SLOT
(setf (total-path-cost (plus-mode ending-polygon))

(+ (cost (plus-mode ending-polygon))
(distance (plus-mode ending-polygon))))

PATH-AREA SLOT
(setf (path-area (plus-mode ending-polygon)) path-area)

(cond ((null *initial-path-list*)

179

(setf *initial-path-list* (list current-path)))
(t (setf *initial-path-list*

(cons current-path *initial-path-list*))))
(cond ((null *polygon-mode-list*)

(sett *polygon-mode-list* (list (plus-mode ending-polygon))))
(t (setf *polygon-mode-list*

(cons (plus-mode ending-polygon) *polygon-mode-list*)))))
((and (or (equal first-tangent-mode "minus-minus")

(equal first-tangent-mode "plus-minus"))
(null (minus-mode ending-polygon))
(equal *stuff* "run"))

(setf (minus-mode ending-polygon)
(make-path-node terminating-vertex

originating-vertex
ending-polygon
first-tangent-mode
(+ (straight-line-distance originating-vertex

terminating-vertex)
edge-traversal-cost)))

-----------. SETTING VALUES IN THE PATH HEADER ---------------
(setf (path-end-point current-path) ending-polygon)
(setf (path-cost current-path) (cost (minus-mode ending-polygon)))
(self (distance current-path) (straight-line-distance terminating-vertex

goal-point))

(setf (total-path-cost current-path) (+ (path-cost current-path)
(distance current-path)))

(self (symbolic-path current-path)
(list "START" (name (path-end-point current-path)) "-"))

(self (path-mode current-path) "minus")

-----------. SETTING VALUES IN THE PATH NODE --------------------
PATH-MODE

(self (path-mode (minus-mode ending-polygon)) "minus")
; SYMBOLIC PATH
(self (path (minus-mode ending-polygon))
(list "START" (name ending-polygon)"-"))
DISTANCE SLOT

(self (distance (minus-mode ending-polygon))
(straight-line-distance terminating-vertex *goal-point*))
TOTAL-PATH-COST SLOT

(self (total-path-cost (minus-mode ending-polygon))
(+ (cost (minus-mode ending-polygon))

(distance (minus-mode ending-polygon))))
PATH-AREA SLOT

(self (path-area (minus-mode ending-polygon)) path-area)
...

(cond ((null *initial-path-list*)

I 8,)

(setf *initial-path-list* (list current-path)))
(t (sett *initial-path-list*

(cons current-path *initial-path-list*))))

(cond ((null *polygon-mode-list)
(setf *polygon-mode-list* (list (minus-mode ending-polygon))))

(t (setf *polygon-mode-list*
(cons (minus-mode ending-polygon) *polygon-mode-list*))))))))

DEFMETHOD BUILD-SUBSEQUENT-PATH-NODE

(defmethod build-subsequent-path-node ((first-tangent-line tangent-line)
edge-traversal-cost
path-area
(originating-vertex vertex)
(terminating-vertex vertex)

tangent-mode)

(let* ((ending-polygon (parent terminating-vertex))
(current-path (make-path-header ending-polygon))
(previous-polygon-cost 0)
(tangent-length (distance first-tangent-line))

(previous-polygon-path-node nil))

DETERMINE WHETHER TO ACCESS PLUS-MODE OR
MINUS MODE COST AND PATH AREA COST. SET
THESE COSTS EQUAL TO PREVIOUS-POLYGON-COST
AND PREVIOUS-POLYGON-PATH-AREA

(cond ((or (equal tangent-mode "plus-plus")
(equal tangent-mode "plus-minus"))

(self previous-polygon-cost
(cost (plus-mode (parent originating-vertex))))

(setf previous-polygon-path-area
(path-area (plus-mode (parent originating-vertex))))

(setf previous-polygon-path-node
(plus-mode (parent originating-vertex))))

(t
(setf previous-polygon-cost
(cost (minus-mode (parent originating-vertex))))

(setf previous-polygon-path-area
(path-area (minus-mode (parent originating-vertex))))

(setf previous-polygon-path-node (minus-mode (parent originating-vertex)))))

..

181

LANDING MODE IS PLUS SO MUST DETERMINE WHETHER TO BUILD A
; PLUS-MODE PATH-NODE BASED ON WHETHER VISITED ALREADY OR NOT.

(cond ((or (equal tangent-mode "plus-plus")
(equal tangent-mode "minus-plus"))

CURRENT POLYGON PLUS MODE NOT YET VISITED
(cond ((null (plus-mode ending-polygon))

(build-plus-path-node originating-vertex
terminating-vertex
previous-polygon-path-node
previous-polygon-cost
previous-polygon-path-area
edge-traversal-cost
tangent-mode
tangent-length
ending-polygon
path-area))

CURRENT POLYGON PLUS MODE PREVIOUSLY VISITED USING
THE SAME LANDING/TERMINATING VERTEX. SIMPLY COMPARE
PATH COST. PLUS PATH NODE GETS THE VALUE OF THE

; PATH WITH THE LOWEST PATH COST.
((eq terminating-vertex

(landing-vertex (plus-mode ending-polygon)))
NEW PATH COST LESS THAN CURRENT PATH COST

(cond ((< (+ previous-polygon-cost
tangent-length
edge-traversal-cost)

(cost (plus-mode ending-polygon)))
(erase-dark-line-3 *win-3*

my-bitmap-stream-3

(from-vertex (plus-mode ending-polygon))
(landing-vertex (plus-mode ending-polygon)))

(build-plus-path-node originating-vertex
terminating-vertex
previou s-polygon -pat h- node
previous-polygon-cost
previous-polygon-path-area
edge-traversal-cost
tangent-mode
tangent-length
ending-polygon
path-area))))

CURRENT POLYGON PLUS NODE PREVIOUSLY VISITED USING
DIFFERENT LANDING/TERMINATING VERTICES. MUST CONSIDER
PATH AREA TO DETERMINE WHICH PATH IS UPSTREAM/DOWNSTREAM.
MUST ADD EDGE TRAVERSAL COST TO DOWNSTREAM PATH BEFORE

; COMPARING PATH LENGTHS.

182

(t

NEW PATH IS DOWNSTREAM OF OLD PATH. ADD THE DIFFERENCE
BETWEEN THE TWO TO THE NEW PAIR AND THEN COMPARE PATH
: LENGTHS.

(let ((distance-between-vertices
(straight-line-distance terminating-vertex

(landing-vertex (plus-mode ending-polygon))))
(adjusted-path-length- new-path (+ previous-polygon-cost

tangent-length
edge-traversal-cost))

(adjusted-path-length-old-path (cost (plus-mode ending-polygon))))
(cond ((< path-area (path-area (plus-mode ending-polygon)))

NEW PATH IS DOWNSTREAM OF OLD PATH. ADD THE
DIFFERENCE

BETWEEN THE TWO TO THE NEW PATH AND
; THEN COMPARE PATH LENGTHS.

(setf adjusted-path-length-new-path (+ adjusted-path-length-new-path
distance-between-vertices)))

((> path-area (path-area (plus-mode ending-polygon)))
NEW PATH IS UPSTREAM OF OLD PATH. ADD THE DIFFERENCE
BETWEEN THE TWO TO THE OLD PATH AND THEN COMPARE

; PATH LENGTHS.
(setf adjusted-path-length-old-path (+ adjusted-path-length-old-path

distance-between-vertices))))
IF ADJUSTED PATH LENGTH OF NEW PATH IS LESS, THEN THE
NEW PATH IS THE BEST. OTHERWISE, DO NOT CHANGE.

(cond ((< adjusted-path-length-new-path adjusted-path-length-old-path)
(erase-dark-line-3 *win-3*

my-bitmap-stream-3

(from-vertex (plus-mode ending-polygon))
(landing-vertex (plus-mode ending-polygon)))

(build-plus-path-node originating-vertex
terminating-vertex
previous-polygon-path-node
previous-polygon-cost
previous-polygon-path-area
edge-traversal-cost
tangent-mode
tangent-length
ending-polygon
path-area))))))

S...................

LANDING MODE IS MINUS SO MUST BUILD A MINUS-MODE PATH-NODE

((or (equal tangent-mode minus-minus)
(equal tangent-mode "plus-minus"))

CURRENT POLYGON MINUS MODE NOT YET VISITED

183

(cond ((null (minus-mode ending-polygon))
(build-minus-path-node originating-vertex

terminating-vertex
previous-polygon-path-node
previous-polygon-cost
previous-polygon-path-area
edge-traversal-cost
tangent-mode
tangent-length
ending-polygon
path-area))

CURRENT POLYGON MINUS MODE PREVIOUSLY VISITED USING
THE SAME LANDING/TERMINATING VERTEX. SIMPLY COMPARE
PATH COST. MINUS PATH NODE GETS THE VALUE OF THE

; PATH WITH THE LOWEST PATH COST.
((eq terminating-vertex

(landing-vertex (minus-mode ending-polygon)))
; NEW PATH COST LESS THAN CURRENT PATH COST

(cond ((< (+ previous-polygon-cost
tangent-length
edge-traversal -cost)

(cost (minus-mode ending-polygon)))
(erase-dark-line-3 *win-3*

.my-bitmap-stream-3*

(from-vertex (minus-mode ending-polygon))
(landing-vertex (minus-mode ending-polygon)))

(build- minus-path-node originating-vertex
terminating-vertex
previous-polygon-path-node
previous-polygon-cost
previous-polygon-path-area
edge-traversal-cost
tangent-mode
tangent-length
ending-polygon
path-area))))

CURRENT POLYGON MINUS NODE PREVIOUSLY VISITED USING
DIFFERENT LANDING/TERMINATING VERTICES. MUST CONSIDER
PATH AREA TO DETERMINE WHICH PATH IS UPSTREAM/DOWNSTREAM.
MUST ADD EDGE TRAVERSAL COST TO DOWNSTREAM PATH BEFORE
COMPARING PATH LENGTHS.

(t
NEW PATH IS DOWNSTREAM OF OLD PATH. ADD THE DIFFERENCE
BETWEEN THE TWO TO THE NEW PAIR AND THEN COMPARE PATH
; LENGTHS.

(let ((distance-between-vertices
(straight-line-distance terminating-vertex

184

(landing-vertex (minus-mode ending-polygon))))
(adjusted-path-length-new-path (+ previous-polygon-cost

tangent-length
edge-traversal-cost))

(adjusted-path-length-old-path (cost (minus-mode ending-polygon))))
(cond ((< path-area (path-area (minus-mode ending-polygon)))

NEW PATH IS DOWNSTREAM OF OLD PATH. ADD THE
DIFFERENCE BETWEEN THE TWO TO THE NEW PATH

; AND THEN COMPARE PATH LENGTHS.
(setf adjusted-path-length-new-path (+ adjusted-path-length-new-path

distance-between-vertices)))
((> path-area (path-area (minus-mode ending-polygon)))
NEW PATH IS UPSTREAM OF OLD PATH. ADD THE DIFFERENCE
BETWEEN THE TWO TO THE OLD PATH AND THEN COMPARE

; PATH LENGTHS.
(setf adjusted-path-length-old-path (+ adjusted-path-length-old-path

distance-between-vertices))))
IF ADJUSTED PATH LENGTH OF NEW PATH IS LESS, THEN THE
NEW PATH IS THE BEST. OTHERWISE, DO NOT CHANGE.

(cond ((< adjusted-path-length-new-path adjusted-path-length-old-path)
(erase-dark-line-3 *win-3*

°my-bitmap-stream-3*

(from-vertex (minus-mode ending-polygon))
(landing-vertex (minus-mode ending-polygon)))

(build-minus-path-node originating-vertex
terminating-vertex
previous-polygon-path-node
previou s-polygon-cost
previous-polygon-path-area
edge-traversal-cost
tangent-mode
tangent-length
ending-polygon
path-area))))))))))

DEFMETHOD BUILD-PLUS-PATH-NODE

(detmethod build-plus-path-node ((originating-vertex vertex)
(terminating-vertex vertex)
(previous-polygon-path-node path-node)
previous-polygon-cost
previous-polygon-path-area
edge-traversal-cost
tangent-mode

1 85

tangent-length
ending-polygon
path-area)

(if (equalp *display* "yes")
(draw-dark-line-3 *win-3*

my-bimap-stream-3

originating-vertex
terminating-vertex))

(setf (plus-mode ending-polygon)
(make-path-node terminating-vertex

originating-vertex
ending-polygon
tangent-mode
(+ previous-polygon-cost

tangent-length
edge-traversal-cost)))

SETTING VALUES IN THE PATH NODE ---------------------
PATH-MODE

(setf (path-mode (plus-mode ending-polygon)) "plus")
; SYMBOLIC PATH

(setf (path (plus-mode ending-polygon))
(reverse (cons (list (name ending-polygon) "+")

(reverse (path previous-polygon-path-node)))))
DISTANCE SLOT

(setf (distance (plus-mode ending-polygon))
(straight-line-distance terminating-vertex *goal-point*))

TOTAL-PATH-COST SLOT
(setf (total-path-cost (plus-mode ending-polygon))
(+ (cost (plus-mode ending-polygon))

(distance (plus-mode ending-polygon))))
PATH-AREA SLOT

(setf (path-area (plus-mode ending-polygon))
(+ path-area previous-polygon-path-area))
...

(cond ((null *polygon-mode-list*)
(setf *polygon-mode-list* (list (plus-mode ending-polygon))))

(t (setf *polygon-mode-list*
(cons (plus-mode ending-polygon) *polygon-mode-list*)))))

..

DEFMETHOD BUILD-MINUS-PATH-NODE
..

(defmethod build-minus-path-node ((originating-vertex vertex)
(terminating-vertex vertex)
(previous-polygon-path-node path-node)
previous-polygon-cost
previous-polygon-path-area

186

edge-traversal-cost
tangent-mode
tangent-length
ending-polygon
path-area)

(if (equalp *display* "yes")
(draw-dark-line-3 *win-3*

my-bitmap-stream-3

originating-vertex
terminating-vertex))

(set! (minus-mode ending-polygon)
(make-path-node terminating-vertex

originating-vertex
ending-polygon
tangent-mode
(+ previous-polygon-cost

tangent-length
edge-traversal-cost)))

--.-------- SETTING VALUES IN THE PATH NODE --------------------
PATH-MODE

(sef (path-mode (minus-mode ending-polygon)) "minus")
; SYMBOLIC PATH
(sef (path (minus-mode ending-polygon))
(reverse (cons (list (name ending-polygon)"-")

(reverse (path previous-polygon-path-node)))))
DISTANCE SLOT

(setf (distance (minus-mode ending-polygon))
(straight-line-distance terminating-vertex *goal-point*))

TOTAL-PATH-COST SLOT
(setf (total-path-cost (minus-mode ending-polygon))
(+ (cost (minus-mode ending-polygon))

(distance (minus-mode ending-polygon))))
PATH-AREA SLOT

(setf (path-area (minus-mode ending-polygon))
(+ path-area

previous-polygon-path-area))
...

(cond ((null "polygon-mode-list*)
(setf *polygon-mode-list*

(list (minus-mode ending-polygon))))
(t (sef *polygon-mode-list*

(cons (minus-mode ending-polygon)
.polygon-mode-list*)))))

DEFMETHOD COMPUTE-PATH-AREA

187

S =((xl - x-start) * (y2 - y-start))
- (yl - y-start) * (x2 - x-start))

(del method compute-path-area ((first-vertex vertex)
(second-vertex vertex))

(let &(-start (x-coord (coordinates *start-point*)))
(y-start (y-coord (coordinates *start-point*)))
(xl (x-coord (coordinates first-vertex)))
(yl (y-coord (coordinates first-vertex)))
(x2 (x-coord (coordinates second-vertex)))
(y2 (y-coord (coordinates second-vertex))))

(~ -xl x-start) (-y2 y-start))

LOWER-COST-P

(del method lower-cost-p ((path-segment-i path-node)
(path-segment-2 path-node))

(< (total-path-cost path-segment-i)
(total-path-cost path-segment-2)))

LOWER-COST-P

(del method sort-and-expand-best-path ()
(setf *polygon-mode-Iist* (sort *poiygon-mode-list*

#(lambda (p1 p2)
(lower-cost-p p1 p2))))

(let* ((expansion -node (first *polygon-mode-list*)))
(setf *polygon-mode-ist* (rest *polygon-mode-list*))
(expand-path-list expansion-node *my-list*)))

LOWER-COST-P

(defun shortest-paths (
(loop
(when (or (equal *goal-found-flag* "true")(null *polygon-mode-listr))(return "DONE"))
(sort-and-expand-best-path)))

188

INITIAL DISTRIBUTION LIST

I. Defense Technical Information Center 2
Cameron Station
Alexandria, Virgina 22304-6145

2. Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, California 93943-5100

3. Dr. Yutaka Kanayama 8
Code CS/Ka, Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

4. Dr. Neil Rowe
Code CS/Ro, Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

5. MAJ Jerry A. Crane 2
3290 S. Duncan Rd.
Bloomington, Indiana 47403

189

