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0.1 Abstract

This technical note investigates the estimation of environmental parameters in the
Bistatic Scattering Strength !odel (BISSM) given backscatter strength and bathy-
metric data. A monostatic version of the model is derived, since this will be the form
of data provided by acoustic imaging sensors. Feedforward neural networks, using the
backpropagation learning algorithm, are used to perform the estimation of parameters
for the nonlinear BISSM equation. The parameters that can be estimated are iden-
tified, and neural networks have been developed to estimate these parameters. Using
noise-free artificial data generated with the BISSM equation, the networks provided
excellent estimates of the desired parameters.

The primary impetus for this work is a need for the Naval Oceanographic Office
(NAVOCEANO) to provide relevant survey support for Low-Frequency Active Acous-
tics (LFAA) programs and future Low-Frequency Active (LFA) operational systems.
It has been recognized by the Commander, Naval Oceanographic Command (CNOC)
that such support will require knowledge of certain bottom and subbottom properties
and high-resolution geomorphology.

The BISSM model has been proposed as a model for aspects of active bottom rever-
beration. It was postulated that the parameters that activate the BISSNI algorithm,
might be measurable with NAVOCEANO's swath bathymetry system - SASS phase
IV. This latest version of the SASS system developed by the Naval Air Development
Center (NADC) generates 91 one-degree beams that can reach grazing angles down to
45 degrees and records backscattering strength as a function of grazing angle. Future
SASS systems are expected to reach grazing angles down to 30 degrees. Although
BISSM is designed as a LFAA prediction tool and should be most valuable as such
below 1kHz, it should be scaleable to the higher frequency of 12kHz used by SASS
and useful for inverse applications. The system parameters of SASS will determine
the characteristics of the measurement process.
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Neural Network Parameter Estimation for the Modified
Bistatic Scattering Strength Model (BISSM)

Chapter 1

Introduction

This paper investigates estimation of the environmental parameters in the Bistatic
Scattering Strength Model (BISSM). The BISSM model has recently been proposed by
Caruthers et al. [1] as an advancement of the model previously developed at the Naval
Oceanographic and Atmospheric Research Laboratory (NOARL). The end goal is to
use the backscatter and bathymetric data obtained from advanced acoustic imaging
sensors to determine the parameters in the BISSM model. Thus, given backscatter
strength and the incident and azimuth angles determined from bathymetry, it is
desired to compute the ratio of sound speeds and densities at the bottom interface,
the Mackenzie coefficient, the root mean square (RMS) microscale heights roughness,
and the fine-scale RMS slopes in the along track and across track directions.

The approach taken in this technical note is to use artificial data, generated by the
BISSM equation, to estimate the known parameters that were used to generate the
data. Since BISSM is a nonlinear equation it cannot be inverted directly, requiring an
error minimization approach for the estimation of its parameters. Using artificial data
provides an opportunity to determine the best possible performance of the estimation
techniques. Neural networks are used in this work to estimate the desired parameters,
given an input data vector of backscatter strength as a function of incident angle.
Essentially, this work shows proof of concept, using noise free data.

In the next chapter, the BISSM equation is presented, and the monostatic ver-
sion of this equation is derived. A monostatic version is used in this work since
this is the form of data that will be collected by acoustic imaging systems. Chap-
ter 3 investigates the sensitivity of the backscatter strength produced by the BISSM
equation to its parameters. By examining the correlation between the effects of the
various parameters, a set of parameters that have potential for estimation are deter-
mined. In Chapter 4 various multidimensional, nonlinear minimization approaches
are discussed, and the advantage of a neural network approach over more traditional
approaches is explained. A quick review of feedforward neural networks and the back-
propagation learning algorithm is also given in this chapter. Chapter 5 presents the
results of the parameter estimation attempts, showing that the trained neural net-
works reliably provide good estimates. Finally, Chapter 6 summarizes the significant
results, and details further research that is required.
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Chapter 2

Monostatic Reduction of BISSM

As stated in the previous chapter, the goal of this task is to estimate the environ-
mental parameters in the BISSM equation given collocated bathymetric and backscat-
ter data. Specifically, it is desired to estimate n, the ratio of sound speeds, in, the
ratio of densities, y, the Mackenzie coefficient, o, the RMS microscale heights rough-
ness, and 6, and b., the fine-scale RMS slopes in the x and y directions. Potential
sources of data for this inversion are multibeam hull mounted sonar and towed sides-
can sonar systems. In both cases the source and receiver will be at the same position
so that 0 - Oi = 0, and =i = k, - 7r, where Oi is the source incident angle.
is the receiver scattered angle, and qi and ¢, are the incident and scattered azimuth
angles. Thus, the first step in parameter estimation is to redue the bistatic model
to a monostatic model.

The BISSM bistatic equation [1] is given by:

mbs = mI + m 2 . (2.1)

In (2.1) nil is the incoherent term and is given by:

ml = it sin 0i sin 0s . (2.2)

Both angles are measured upward from the local bottom facet plane. In (2.2) p is
the Mackenzie coefficient.

In (2.1) m 2 is the coherent term and is given by:

F 2 2%
M2 =R exp(-g)2 6 exp +q - . (2.3)

Ro, in (2.3), is the Rayleigh reflection coefficient between two fluids which is given
by:

m sin Oi - 772 - cos 2 0,
r sin 0i + I I - cos 2 0, (2.4)

where m is the ratio of densities and n is the ratio of sound speeds. In (2.3) g is the
square of the Rayleigh roughness parameter given by:

g = O 2q2 (2.5)



where a is the RMS microscale heights roughness. q is given by:

q = k (sin Oi + sin 0,) (2.6)

and k is the acoustic wavenumber given by 27r/A, where A is the wavelength of the
acoustic soarce. F is given by:

F = i (I + (2.7)

where

and

X. = k (cos 0, cos €-cos Oi cos € ) (2.8)
Xy = k(cos0, sin¢,- cosOisin Oi)

,i and 0, are measured clockwise from North to the projection of the vector onto the
local horizontal plane. Finally, 51 and by are the fine-scale RMS slopes in the x and
y directions, and are given by:

b2= . (2.9)
=1 j=1

b2 =2(2.10)

i=1 *7=1

where n is the number of pixels along one side of a square grid, and 6'J and 6 J are
the incremental change in slope in the x and y directions. The equation's parameters
are summarized in Table 2.1.

For the monostatic case, the incoherent term (2.2) simplifies to:

m, = usin0sinO (2.11)

= ysin 2o.

Also, X., becomes

X = k[cos0(cos -cos(-r))]
= k [cos0(cos ± + cos€)]

= 2k (cos0cos¢)

and Xy becomes

XY = k[cos0(sinq-sin( -ir))]
= k [cos 0 (sin 6 + sin )]

= 2k (cos 0 sin 6)
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Table 2.1: Parameters in the BISSM model.
Parameter Description Units

n ratio of sound speeds unitless
m ratio of densities unitless

Y (mu) Mackenzie coefficient unitless
a (sigma) RMS micro-scale heights roughness meters
S, (delx) fine-scale RMS slopes in x direction radians
6v (dely) fine-scale RMS slopes in y direction radians

9, source incident angle radians
0, receiver scattered angle radians
0 monostatic incident angle radians

source azimuth angle radians
receiver azimuth angle radians

k wavenumber radians/meter

q reduces to
q = 2k sin 0

and from (2.3) we have:

exp {+ ( I )+ (2.12)
1 4k2 cos2 0 cos2 € 4 c 2

= exp 1 (4 3O20 2 + 30CO2 S112{ 8k2 sin 2  
V

- cOt 2 0 cos2 sin 2
-exp +-

Finally. F can be simplified to

F (1 + Xk2)o 2 cs,4~o 2 sn&2 \ q 2k sn O

1 40(1 CS + 4k2 cos 2 0(cs ± sin22 4k2 sin 2 0

l+ 42 cos
2_ 0(Cs2\ 

SnS 4k2 s in 2 0

I csc 2 o

2

and
F1_

4sin4 0
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Thus, (2.1) becomes

m o + R2exp(-g) e cot20 [cos2 € sin 2 1. (3mms=-,., I r5sini 0 0 - - +  8 J "(2.13)

87rb,,b sin4 0 x 2 [6,2 52

Note that if we assume 8= 6,= 6 then (2.12) simplifies to

{ cot2 0
exp { - 2

and (2.13) simplifies to
2 { cot2 0 }

m S =/isin 2 0 + R° exp (-g) exp f (2.14)

S87r82 sin 4 0 262

Given collocated bathymetric and backscatter data for a region, we desire to
determine the values of n, m, ji, a, 6, and by that provide the least mean square error
between the actual data (for a single scan line) and (2.13). The angles 0 and 0 are
determined from the bathymetric data and the source ray trace angle (with respect
to the local horizontal plane), and k is determined from the source frequency and the
local speed of sound in the water (assumed constant).



Chapter 3

Independence of BISSM
Parameters

As previously stated, it is desired to estimate the parameters n, m, I, a, 6, and
6y in (2.13) given collocated bathymetric and backscatter data. Successful estimation
of these parameters requires that their effect on the computed backscatter intensity
be uncorrelated with each other. In this chapter the correlation between the desired
parameters is determined empirically in order to identify those parameters that may
potentially be estimated. The ranges of interest for the desired parameters for abyssal
plains are given in Table 3.1. A wavenumber of 5.0265 radians/meter is used, which
corresponds to a sound velocity of 1500 m/sec and a sonar frequency of 1.2 kHz.

Table 3.1: Parameter ranges for the BISSM model
Parameter Nominal Low High

n (unitless) 0.99 0.97 1.2
m (unitless) 1.4 1.2 1.8
y (unitless) 0.002 0.0002 0.02
a (meters) 0.01 0.005 0.02

6, (radians) 0.05236 0.01745 0.08727
6,, (radians) 0.05236 0.01745 0.08727

Figure 3.1 shows the backscatter strength versus incident angle with all six param-
eters at their low, nominal, and high values. In this figure the angle 4 has been set to
zero. Figure 3.1 illustrates three dominant motions in the backscatter strength curve
as the parameter values are varied. One motion is a fairly uniform rise in backscat-
ter intensity at lower incident angles (less than 70 degrees) as the parameters are
increased. Secondly, the 'pivot point', where the backscatter intensity curves sharply
upward, moves to lower incident angles as the parameter values are increased. Thirdly,
the slope of the sharp rise at higher angles decreases with an increase in parameter
values.
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Figure 3.1: Scattering Strength Curves for all parameters at their high, nominal, and
low values.
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Figure 3.2: Scattering Strength Curves for it at high, nominal, and low values, with
all other parameters nominal.
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Figure 3.3: Scattering Strength Curves for n at high, nominal, and low values, with
all other parameters nominal.

Figure 3.2 shows the effect on backscatter strength due to variations in ,i with all
other parameters at their nominal values. It is seen in this figure that an increase in
it will result in a fairly uniform increase of the backscatter strength for lower incident
angles (less tLan 70 degrees). From the remaining figures shown in this chapter. it
is seen that It is the dominant parameter for backsca'ter intensity changes at low
incident angles.

Figures 3.3 through 3.5 show the effect on backscatter strength due to variations
in the n and in parameters. In Figure 3.3 n is varied and all other parameters have
nominal values, in Figure 3.4 m is varied, and in Figure 3.5 n and m are varied
simultaneously. Both parameters cause a change in the slope of the sharp rise at high
incident angles, where an increase in n causes a decrease in slope, and an increase
in in causes an increase in slope. It is seen from these figures that the effect of
changes in ni and in on the backscatter strength are highly correlated, so n and
rn cannot be independently estimated. However, when 72 is large 77 is also large,
so a simplifying assumption will be used during parameter estimation that the two
parameters are linearly related. This essentially reduces the parameter estimation to
a single parameter, 7n or it, and in will be estimated in this work. Figure 3.6 shows
that the effect on backscatter strength due to changes in ar are highly correlated with
those due to changes in n and m. Furthermore, the variations due to changes in a are
extremely small. Consequently, a cannot be successfully estimated for a frequency of
1.2 kHz, especially since actual data will be contaminated by noise.

Figures 3.7 through 3.11 show the effect on backscatter strength due to variations
ill 6, 6., and O. In Figures 3.7 and 3.8 o is zero, and it is seen that k6, shifts the pivot
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Figure 3.4. Scattering Strength Curves for m at high, nominal, and low values, with
ali other parameters nominal.
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values, with all other parameters nominal.
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point and affects the slope at high incident angles, while 6, only affects the slope. This
result is expected from the form of (2.13) since sin 0 is zero when 0 is zero. In Figures
3.9 and 3.10 4 is 45 degrees, so the effect on backscatter strength due to changes in
64 and 6 are equal. These figures show,' that the effect of changes in 64 and 6 are
highly correlated, so that these parameters cannot be independently estimated. To
simplify the problem, it will be assumed that 6 = 6 = 6k, and this single parameter
will be estimated. As shown in (2.14), when we set 6 = 6. the parameter Q vanishes.
In Figure 3.11 64 and 6, are varied simultaneously. The effect on backscatter strength
due to the 6 parameter is seen to be a shift in the incident angle of the pivot point,
and a change in the slope at higher angles. While there is some correlation between
the 6 and the m pa"ameter as seen by the change in high angle slope, the change in
pivot point due to 6 may provide enough unique information to distinguish between
changes in backscatter strength due to 6 versus nm.

Summarizing, it has been observed that only three parameters may potentially

be estimated from actual backscatter data using the BISSM (monostatic version)
relationship: p, m, and 6. The changes in the y parameter result in a shift up or
down of the backscatter strength at low angles of incidence (less t'an 70 degrees).
The effect of the n and m parameters on backscatter strength were seen to be highly
correlated, so only one of these parameters can be estimated. A linear relationship
will be assumed between n and m to perform the estimation. so only in will be
estimated. The primary effect of the n and m parameters is to change the slope of
the curve at high incident angles. It was observed that the effect of 0 on backscatter
strength was too small to be reliably estimated at the frequency used in this stiidv.
Also, the effects of a and nrn are highly correlated. The effects of 6, and 6, were seen
to be highly correlated, depending upon the value of 0. Consequently, these terms
are combined into a single parameter 6. The 6 parameter affects the slope of the
backscatter strength curve at high incident angles, which is correlated with the rni
parameter, but it also shifts the pivot point in the curve transition from low to high
incident angles.
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Figure 3.6: Scattering Strength Curves for a at high, nominal, and low values, with
all other parameters nominal.
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Figure 3.7: Scattering Strength Curves for b. at high, nominal, and low values, withl
all other parameters nominal, and =0 degrees.
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Figure 3.8: Scattering Strength Curves for 6., at high, nomninal, and low values, with
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Figure 3.9: Scattering Strength Curves for b., at high, nominal, and low valuies, withi
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Figure 3.10: Scattering Strength Curves for 8. at high, nominal, and low values, with
all other parameters nominal, and q$ = 45 degrees.
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Figure 3.11: Scattering Strength Curves for both 6. and 6. at high, nominal, and low
values, with all other parameters nominal, and 4 = 0 degrees.
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Chapter 4

Model Parameter Estimation from
Monostatic Data

4.1 Parameter Estimation Methods

As discussed in Chapter 3, it is desired to estimate the parameters Pi, n77, and
6 given backscatter strength, mb,, incident angle, 0, and acoustic wavenumber, k.
The data that will be used for the estimation is m, (0), backscatter strength as a
function of incident angle, and k will be assumed constant for this vector. The vector
mb, (0) will typically be obtained from the backscatter strength and bathymetric data

produced by the sonar systems mentioned earlier. A single vector, and correspond-
ing wavenumber, is obtained for each transmit/receive cycle of these sonar systems.
The work discussed in this paper demonstrates the ability to estimate the desired
parameters by generating artificial backscatter data using the BISSM equation.

The estimation of p, nm, and b can be viewed as a minimization problem. We have
mbs(0i), the scattering strength at angle 0i for Z = 1 to n. We also have a function T,
{T : T(Oi,')}, which is the BISSM equation and is assumed to be a model for lbs.

In T, -y is a vector composed of the model parameters: -f = [m, p, b]. Thus given 0,
and an estimate of -y we can compute an estimate for scattering strength, mbs(Oi),.

The mean square error between the estimate and the actual scattering strength is a
function of y, and is denoted E(y). We want to minimize this error, which is given
by:

1n

E(y)= -iibs(9z) - T(O,, )]2 (4.1)
n =1

where ii is the total number of incident angles. By minimizing E(-Y), our estimate of
-y approaches the actual value -yo.

Thus, given initial estimates of these parameters, the BISSvIN equation is used to
generate an estimate of the backscatter strength Mb (0). A better estimate of the
parameters is obtained by iteratively adjusting them to minimize the mean square
error between the actual backscatter, mb, (0), and the estimated backscatter Mb, (0),.
Parameter adjustment is typically accomplished through random search or gradient
techniques. While random search techniques can guarantee a global minimum error,
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they are very computationaly expensive. There are several gradient search methods
available for nonlinear, multidimensional minimization problems. Techniques that
don't require computation of first derivatives include the downhill simplex method,
due to Nelder and Mead [2], and Powell's method [3]. Methods that require the com-
putation of first derivatives include the Polak-Ribiere algorithm [4] and the Broyden-
Fletcher-Goldfarb-Shanno algorithm [5]. Gradient techniques can provide a global
minimum if the error surface is relatively smooth. For highly irregular error surfaces,
which are encountered with noisy data, it may be required to start the estimation with
multiple initial conditions to ensure that the final solution is not a local minimum.

Gradient approaches are also fairly computationally intensive, and a gradient
search must be performed for each new data vector mb,(O). Another approach for
the estimation of -y is to use a feedforward neural network to model the inverse rela-
tionship, F, between the model T, and -y where

F(T(O, -)) = -y (4.2)

Assuming that T is a good model for Mb, then F(mb,) will provide a good estimate
of -y. As shown by Kolmorogov [6], a 2 hidden layer feedforward neural network can
approximate any nonlinear R' to R' mapping function arbitrarily close, depending
on the number of nodes in the hidden layers. Furthermore, neural networks are
robust in the presence of noise. A significant advantage of a neural network approach
over gradient search is that once the network is trained, it will directly produce
an estimate of -y, without having to perform a gradient search for each new 7 1 bs

vector. Also, neural networks are well suited for implementation on parallel machines.

The following section provides a brief review of feedforward neural networks and the
backpropagation algorithm, which will be used for the estimation of - in this work.

4.2 Review of Neural Networks

A neural network is a device that can be used to recognize signal phenomena or
perform numeric functions. A neural network is composed of one or more layers, each
containing one or more neurons. Each neuron in a feedforward type network typically
accepts multiple inputs, where these inputs are signals provided to the network or
are the outputs of neurons in a previous layer. A single neuron is essentially a linear
combiner; it produces a weighted sum of it inputs. Additionally, each neuron's output
is limited by a signum or sigmoid function. Signum functions, or hard limiters,
are typically used for applications where the network is intended to make discrete
classification decisions based on the inputs. Sigmoid functions, or soft limiters, are
used for networks designed to perform various real valued signal processing tasks.

A neural network typically must be trained to perform a particular function.
Training involves providing the network with a series of input and desired signals.
and adapting the weights of the neurons within the network to minimize the error
between the network's output and the desired signal. One of the more popular training
algorithms is backpropagation [7], and this training method is reviewed here.
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Updating network weights with the backpropagation algorithm is analogous to
the process used by the adaptive least mean square (LMS) filter. The algorithm
computes an estimate of the gradient of the mean square error with respect to the
system's weights, and this information is used to move the weights so that the error
approaches a minimum. It is important to note that a neural network is a nonlinear
device, typically with many local minima. The existence of local minima often make
it difficult for the network to reach its global minimum with unsupervised training.
A derivation of the backpropagation algorithm is now presented.

Given Xk as the input vector at time k, and Wk as the weight vector at time k,
the output of the linear summation of a single neuron is given by:

Sk = XTkWk (4.3)

and the output of the neuron is:

Yk = sgm(sk) (4.4)

where sgm denotes a sigmoid function. The hyperbolic tangent is the sigmoid function
used in this paper. The error here is defined as ek = dk - Yk where dk is the desired
signal at time k.

The gradient of the mean square error with respect to the neuron's weights is
given by:

kE(e ) (4.5)

0Wk

where E denotes the expected value. By eliminating the expected value we obtain a
stochastic estimate of the gradient:

&e k (4.6)
19wk

resulting in the following weight update equation:

Wk+0 =Wk b. (4.7)
(9Wk

where p is the learning gain that controls the speed of convergence. Taking the partial

derivative we obtain the following:

&2~ _ ekkek (4.S)09wk - 2 kw

0 (dk - sgm(sk))
OWk

t OSk

= -2eksgm'(sk) --wk

(9Wk
= -2Cksgm'(sk)xk

However, the sigmoid function used here is tanh, so we have

sgm'(sk) - d tanh(sk) (4.9)
d sk

= 1 - tanh2 (sk)

l6
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and thus the weight update equation for a single neuron becomes:

Wk+1 = Wk + 2lek 0 - Xk (4.10)

In a multilayer neural network, desired signals are typically available only for the
neurons in the output layers. A general weight update equation for any neuron is
given by Widrow and Lehr [7] as:

Wk+l = Wk + 2 6 kXk (4.11)

where 6 k is called the square error derivative for the particular neuron, and Xk is the
input vector for that neuron. For the output layer neurons, where desired signals are
available, bk in (4.11) is obtained from (4.10) and is given by 6 k = ek(1 - y). For a
neuron not in the output layer b5k is given by [7]:

6'm,k = el,,sgm (s,k) (4.12)

where 6blk is the square error derivative at time k for the mth neuron in the t' layer,
SM kt is the output of the same neuron (before the sgm function) at time k, and e,k
is the backpropagated error for that neuron at time k. The backpropagated error is
given by:

q

1 - 1+ 11 +, (4.13)em ,k E i,k o(njl)-i,k

j=1

wherew+)-i,k is the weight that connects the mth neuron in the I" layer to the i t h

neuron in the (1 + 1)st layer. Thus the backpropagated error for a neuron that is not
in the output layer is given by the sum of the square error derivatives of the neurons
in the following layer, each scaled by the neuron weight that connects the neuron
being evaluated with the neuron in the next layer.

17



Chapter 5

Results

In this chapter the results for estimation of each of the three parameters in -Y
are shown, using noise-free artificially generated data. To perform the estimation
a neural network program was written in 'C' using the backpropagation algorithm
[7]. This program is given in Appendix A, and the program that controls it during
training is in Appendix B. The program implements a two hidden layer network with
a single output neuron, and provides the capability to select the number of neurons
in the hidden layers, and the number of inputs to the first hidden layer. The number
of neurons in each of the two hidden layers is identical, and full connectivity between
layers has been used thus fir. A weight jogging capability has also been included,
which allows the addition of small amounts of random noise to the weights to jog'
the network out of local minima. This feature is paramount since, as illustrated
by Widrow and Lehr [7], the error surface of a neural network is typically rich in
local minima. The computation time has been found to be a nearly linear function
of the total number of weights in the network. With learning on the computation
time is about 4.56. 10 4 seconds/iteration.tap on an AT computer. With learning off
the time is about one third of this value, thus the backpropagation process requires
about two thirds of the total computation time. Tests on a Sun 4 computer yielded a
computation time of 2.13. 10' seconds/iteration.tap, approximately 21 times as fast
as the AT.

The network architecture that is best for a given problem must be determined
empirically, typically through iterative training and testing of different architectures.
The method used here is to start with a small network, and to increase its size to
the point where a significant reduction in error is no longer obtained. The data
sets for training are generated by randomly varying the parameters in the BISSM
equation, providing very large training sets. The BISSM equation is implemented in
the program given in Appendix C. The training method used here starts with a large
learning gain for fast convergence, followed by successive reductions in gain to achieve
lower error. Further estimation improvement may be possible by adding more layers,
or through advanced techniques such as momentum, feedback, or feedforward from
nonadjacent layers.

The following sections discuss the architecture, training, and results for estimation
of p, m, and 6. With the tanh function a neuron's output is limited to the range of
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[-1, 1], so the data provided to the network is scaled and in some cases normalized
to improve the network's estimation. The range of values for p and 6 are sufficiently
small and do not require scaling. The values for n and m may be large, so the

network is trained to estimate one-fourth of their value. As previously discussed,
a linear relationship is assumed between n and m. The relationship used here is
n = m * .3833 + .51, allowing for the full range of both parameters. Initial training
attempts held two of the parameters constant and randomly varied the parameter of
interest. It was found that the error could be made small for the parameter being
estimated, but could become large if the other two parameters were varied from
the values used during training. This is a consequence of some correlation existing
between the three parameters. To reduce this problem, all three parameters are varied

randomly throughout their full ranges during training.

5.1 Mackenzie Coefficient (p) Estimation

Table 5.1: it network training
Learning Iterations Average Percent

Gain Error
0.8 500 136.4

0.8 500 84.6

0.6 60') 42.5
0.6 600 20.3

0.4 800 7.75
0.4 800 4.16
0.2 1000 1.89
0.2 1000 1.30
0.1 800 0.87

0.1 800 0.72

0.05 800 0.58
0.05 800 0.52
0.01 800 0.50

0 800 0.47

For the estimation of it the input vector given to the network is the backscatter
strength for incident angles ranging from 15 to 60 degrees in 2 degree increments,
where each input to the network corresponds to a specific incident angle. Angles
higher than 60 degrees are not required since the dominant effect of 11 is at lower
angles. Angles below 15 degrees cannot be used since the incident angle must be
large enough with respect to n in the Rayleigh reflection coefficient calculation to
avoid a complex result. An angle increment of 2 degrees was found to be sufficient

to obtain small estimation errors. The error could possibly be reduced by using a
smaller increment, but this will also require a larger network. Since the backscatter
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Figure 5.1: Probability density function of the percent estimation error for the ,u
estimating program. The scattering strength data was obtained by randomly varying
6, p, and m.

strength is small at lower angles (ranging from about 106 to 10-2), the data vector is
multiplied by 10 before giving it to the network. Also, the data vector was 'centered'
by subtracting 0.15 from all values. This allows the data at the lower angles to have
approximately equal influence on the training process as the higher angles.

The final configuration for the p network has 23 inputs to each of the nodes in
the first layer and 10 nodes in each of the two hidden layers. The Yi estimation
program is given in Appendix D.1. The final training sequence is shown in Table
5.1, and an average percent error of 0.47 was obtained with training off (gain = 0).
As shown in this table the network converged very rapidly to a small error. Faster
computation rates can be obtained by increasing the angle increment in the input data
vector, probably with a minimal increase in estimation error. The probability density
function of the percent estimation error is shown in Figure 5.1, and indicates that for
the majority of the test data the estimation error is below 1 percent. As expected, the
estimation of i was relatively easy since its dominant effect on backscatter strength
is essentially a near uniform change in amplitude at all lower incident angles.

5.2 m Estimation

For the estimation of m the input vector given to the network is the backscatter
strength for incident angles ranging from 71 to 88 degrees in 1 degree increments.
where each input to the network corresponds to a specific incident angle. Angles
lower than 71 degrees are not required since the dominant effect of 7nm is at higher
angles, and exclusion of the lower angles helps to reduce sensitivity of the estimation
to changes in p. Angles of 89 and 90 degrees gave backscatter strength values greater
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Table 5.2: m network training
Learning Iterations Average Percent

Gain Error
1 2000 4.55

0.9 2000 1.78
0.8 2000 1.45
0.7 2000 1.35
0.6 2000 1.19
0.5 2000 1.10
0.4 2000 1.03
0.3 2000 1.02
0.2 2000 0.98
0.1 2000 0.91

0.05 2000 0.88
0.0 1000 0.87

than 1 and were excluded. An angle increment of 1 degree was found to be sufficient
to obtain small estimation errors. In the m network the parameter being estimated is
m, but as mentioned previously a linear relationship is being used to obtain n given
a value for m. The error could possibly be reduced by using a smaller increment,
but this will also require a larger network. The data vector is normalized to reduce
the effect of changes in it by subtracting the backscatter strength at the angle of 71
degrees from all other points in the vector. Also, the data point corresponding to 71
degrees in the data vector is set to 1 to provide the network with an adjustable offset
capability. As previously mentioned, the values of m may become too large for the
tanh function, so the network is trained to estimate m/4. Thus the final estimate of
m is given by the netwvork output multiplied by 4.

The final configuration for the m network has 18 inputs to each of the nodes
in the first layer and 8 nodes in each of the two hidden layers. The n estimation
program is given in Appendix D.2. The final training sequence is shown in Table
5.2, and an average percent error of 0.87 was obtained with training off. The table
indicates that the network trained rapidly to an error of about 5 percent, but then
slowly decreased to its final value. This indicates that the error surface is shallow in
the vicinity of the minimum, which will cause difficulty in training with noisy signals.
Recall that all three parameters (M, m, and 6) are being varied randomly, so this
network has successfully differentiated between the effect of m and 6 on the slope of
the backscatter strength curve at high angles. The probability density function of the
percent estimation error is shown in Figure 5.2, and indicates that for the majority
of the test data the estimation error is below 2 percent.
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Figure 5.2: Probability density function of the percent estimation error Ior the III
estimating program. The scattering strength data was obtained by randomly varying
6, It, and m.

5.3 6 Estimation

For the estimation of S the input vector given to the network is the backscatter
strength for incident angles ranging from 71 to 88 degrees, and an increment of 0.5
degrees was required to obtain low estimation errors. As with the In parameter,
angles lower than 71 degrees are not required since the dominant effect, of ( is at
higher angles, and exclusion of the lower angles helps to reduce sensitivity of the
estimation to changes in it. The data vector for the 5 network is also normalized
using the 71 degree data point, and this point is set to 1 to provide the network with
an adjustable offset capability.

The final configuration for the 6 network has 36 inputs to each of the nodes in the
first layer, and 7 nodes in each of the two hidden layers. The 6 estimation program
is given in Appendix D.3. The final training sequence is shown in Table 5.3, and
an average percent error of 5.16 was obtained with training off. Training of the 6
network proved to be more difficult than for m and p. The training sequence shows
rapid convergence to an error of about 20 percent, but a much slower convergence to
smaller errors indicating a very flat error surface near the minimum. Using a network
with only 18 inputs to the first layer yielded a minimum error of about 15 percent
without the adjustable offset capability (71 degree data point = I). and about 12
percent with this capability. In earlier tests, when /u and in were held constant, an
error of 1 percent was achieved, but this became as large as 20 percent when different
values of y and nm were used in testing than those used during training. Figure
5.3 shows the probability density function of the percent estimation error for the 6
network, and indicates that for the majority of the test data the estimation error is
below about 10 percent.
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Table 5.3: 6 network training
Learning Iterations Average Percent

Gain Error
1.6 4000 17.1
1.5 4000 12.6
1.4 4000 8.74
1.3 4000 7.89
1.2 4000 7.70
1.1 4000 7.10
1.0 4000 6.98
0.9 4000 7.05
0.8 4000 6.72
0.7 4000 6.50
0.6 4000 6.07
0.5 4000 6.03
0.4 4000 6.09
0.3 4000 5.99
0.2 4000 5.80
0.1 4000 5.53

0.05 4000 5.51
0.0 1000 516

0.16
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Figure 5.3: Probability density function of the percent estimation error for the 6
estimating program. The scattering strength data was obtained by randomly varying
6, p, and 77.
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Chapter 6

Summary

This work has demonstrated the ability to estimate certain parameters in the
BISSM [11 acoustic scattering model using artificial backscatter data. The six param-
eters of interest are /1, n, m, a, 6,, and by. It was desired to estimate these parameters
given inputs of backscatter strength, mb,, the incident angle, 0, and the azimuth angle,
0. These inputs potentially can be obtained from backscatter and bathymetric data
collected by sidescan or multibeam acoustic imaging systems. Of the six parameters
only three could be estimated: n and m are highly correlated, c has minimal effect
on the backscatter strength at 1.2 kHz, and 6, and 8. are highly correlated. 64. and
6. were assumed to be equal, giving a single parameter b, and this eliminated 0 from
the monostatic version of the BISSM equation. A linear relationship was assumed
between n and m, allowing m or n to be independently estimated. Feedforward neural
networks were used to estimate the three parameters, p, m, and 6, given backscatter
strength values as a function of the incident angle. Using backscatter data generated
with the BISSM equation, the networks successfully estimated i and in with less than
1 percent average error, and 6 with about 5 percent average error.

Further developmen. of the neural networks used in this project will be required for
application to real data. Real data will necessarily be corrupted with noise, and will
seldom have ground truth information available. Without ground truth, real data
cannot be used to train the networks. One approach to improving the parameter
estimates in the presence of noise would be to analyze the noise character in real
data. Then, synthetic noise of similar character can be used to contaminate artificially
generated data, and the networks can he retrained to improve their performance with
noisy data. Also, the number and range of incident angles available from real data
depends on the bottom morphology as well as the survey system, with the result that
the networks may not have a full input data vector. Further testing is required to
determine the effect on the network's estimates in the event of missing intuit data
points.
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Appendix A

Neural Network Subroutine

/* nn. c

Brian Bourgeois Created: 26AUG91 Last Mod: 26AUG91
This neural net sub is designed to take a fixed vector

length data as input and produce a single output variable,

representing some mapping from R-n to R-1. Full connectivity

is used, and backpropagation is the learning

algorithm. The ability to 'jar' the weights during learning

is included (annealing). A call to nn causes a single pass
through the network.

All controlling information is passed through vectors arch
(architecture) and train. Data is passed thru in, des, and est.

in is the input vector, des is the desired vector, and est is

the estimate vector. The network weights are passed via taps.

In the vector arch, it is possible to specify the number

on inputs to each of the first layer nodes, and the number of

nodes in each layer. A variable for specifying the number of

layers is used, but the program is only set up for 3 layers

at this time.

In the vector train, the learning (adaptive) gain is
specified, which is typically less than 1. The learning switch

controls whether the node errors are computed and weights updated.

The annealing gain controls the amount of noise added to the
weights in a iteration. train[3] and train[4] are not used in

this sub, but in the controlling program.

/* train[O] learning gain */
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/* train[l] learning switch, 1 = on */
/* train[2] annealing gain, 0 off */
/* train[3] 0 = init taps, I = load from taps.in */
/* train[4] Number of repetitions for this set *1

/* arch[O] = Number of layers */
/* arch[l] = Number of neurons in first layer */
/* arch[2) = Number of neurons in second layer */
/* arch[3] = Number of neurons in output layer */
/* arch[4] = Number of inputs to first layer */

#include "nn.h"

/**************************************************/*

int nn(in,des,est,arch,train,taps)

double *in; /* in = input vector */
double *des; /* des = desired vector */
double *est; /* est = estimated vector */
long *arch; /* network configuration parameters */
double *train; /* network training parameters *1
double ***taps; /* network weights */
{

/****** declare variables *******I

/* network configuration */
/* arch[O] = number of layers of neurons
/* arch[l] = layer 1 length */
/* arch[2] = layer 2 length */
/* arch[3] = output layer length *1
/* arch[4] = Number of inputs to first layer */
/* train[O] learning gain */
/* train[l] learning switch, 1 = on */
/* train[2] annealing gain, 0 = off *1
/* train[3] 0 = init taps, 1 = load from taps.in */
/* train[4] Number of repetitions for this set */

long no-layers, /* Number of network layers with neurons */
*no-neurons,/* Number of neurons in each layer */
*no-inputs, /* Number of inputs for neuron in given layer*/

layer, /* Current layer number */
node, /* Current node number */
tap, /* Current tap number in a neuron */
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elem; /* Node in next layer, for error caic */
double sum, /* Summer output for a neuron */

**nodeout, /* Outputs on each node in nn *1
**err, /* Error for each neuron */

corr; /* Tap correction for updata */

/* Misc variables */
long ctrl, /* counter */

ctr2, /* counter */
ctr3; /* counter */

double temp;

/****** Load up architecture variables ******/
no-layers = arch[OJ;

no-neurons = (long *)malloc(sizeof(long)*(int)arch[O]);

if(no-neurons == NULL){

printf("noneurons allocation error {nn}\n");

return;
}

no-neurons[O] = arch[l];
no-neurons[l] = arch[2];
no-neurons [2] = arch [3];

no-inputs = (long *)malloc(sizeof(long)*(int)arch[Ol);
if(no_inputs == NULL){

printf("no.inputs allocation error {nn}\n");

return;

}
no-inputs[O] = arch[4); /* Inputs to first layer */
no-inputs[l] = no-neurons[O]; /* Inputs to second layer */

/* same as no-neurons in first layer for full connectivity */
no.inputs[2J = no-neurons[l]; /* Inputs to output layer */

/* same as no-neurons in second layer for full connectivity */

/****** Memory allocation ******/

node-out - (double **)malloc(sizeof (double **)*nolayers);

if(node-out == NULL){
printf("node.out allocation error, level 1\n");
return;
} /* if node-out == NULL */

for(ctrl=O;ctrl<no-layers ;ctrl++){

node-out[ctrl] = (double *)malloc(sizeof(double)*noneurons[ctrl]);
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if(node-.out[ctrl] == NULL){

printf("node.out allocation error, level 2\n");

return;

) /* if node-.out[] == NULL *
}/* for ctrl */

err = (double **)malloc(sizeof (double **)*no-layers);

if (err == NULL){

printf ("err allocation error, level 1\n");
return;

I /* if err == NULL *

for(ctrl=O; ctrl<no-.layers ;ctrl++) {
err[ctrl] = (double *)malloc(sizeof(double)*no-neurons[ctrl);

if(err[ctrl] == NULL){

printf ("err allocation error, level 2\n");

return;

I /* if err[] == NULL *
}/* for ctrl *

/**********Functional Part of Program *******

/***Forward Sweep through network ***

/* Layer 1 *
layer - 0;
for(node=0 ;node<no-.neurons [layer] ;node++) {

sum=O;

for(tapO;tap~no-.inputs [layer] ;tap++){

sum += taps [layer] [node] [tap]*in[tap];
I /* for tap */
node-.out[layer] [node] = tanh(sum);

} * for node */

/* Following Layers *
for(layer= ; layer<no-layers ;layer++) {

for (node0 ;node<no..neurons [layer] ;node++){

sum0O;
for(tap=O;tap~no-.inputs [layer] ;tap++){

sum += taps [layer] [node] [tap] *node~out [layer-i] [tap];
}/* for tap *

node-.out[layer] [node] = tanh(sum);
} * for node *

}/* for layer *
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/* Estimated Outputs *

for(ctrl=O;ctrl<arch[3] ;ctrl++){

est~ctri] = node...out[nolayers-1] Ectri];

/* printf ("train [1] = %f\n" ,train [1]); *
if(train[l] == i){ 1* Do this next section for learning on only *

/***Backward Sweep through network ***

/* Compute Errors *

/* Output Layer *
layer = no-.layers-1;

for (node=O ;node<no-neurons [layer) ;node++) {
err [layer) [node] = (des [node] -est [node] )* (1-est [node] *est [node]);

/* Following Layers *
for(layerno-layers-2; layer>- ; layer--) {

for (node=O; node<no..neurons [layer ; node++) {
sum =0;

for(elem=0,elem<no-.neurons[layer+1 ; elem++){

sum += err[layer+1] [elem]*taps[layer+1] [elem] [node];

I. /* for elem */

temp = node-out [layer] [node] *node-out [layer] [node];

err[layer] [node] = sum*(1-temp);
I. /* for node *

} * for layer */

/* Update filter weights *

/* All but first layer *
for(layer=no-layers-l;layer>0;layer--){

for(node=O;node<no..neurons [layer] ;node++){

for(tap=O;tap<no-.inputs [layer] ;tap++){
corr = 2.*train[0]*err[layer] [node] *node-out [layer-i] [tap];

taps[layer] [node] [tap] += corr;
I. /* for tap *

3/* for node *
3/* for layer */

/* first layer *
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layer = 0;
for(node= ; node<no-.neurons [layer] ;node++) {

for(tap=o;tap<no-.inputs [layer] ;tap++){
corr =2 .*train[0]*err[layer] [node]*in[tap];
taps [layer] [node] [tap] += corr;

}/* for tap *
} * for node */

/* Jog taps: annealing method *
if(trin[1==1 && train[2>O){
/* printf ("Jog taps\n"); */
for(layer= ; layerno-.layers ;layer++) {

for(node=0 ;node~no-.neurons [layer] ;node++) {
for (tap=O; tap<no-inputs [layer] ;tap++) {
taps [layer] [node] [tap] += train [2] *(((double) rando0/RAND..MAX) -. )
} * for tap *
} * for node *

} * for layer */
} * if train[1] && train[2] 1

} * if train[l] == 1, Learning on *

/******* End Sub***/

/* free memory */

for(ctrl=O; ctrl<no-layers ;ctrl++) {
free (node-.out [ctrl]);

I
free(node-,out);

for(ctrl=O; ctrl<no-layers ;ctrl++) {
free(err[ctril);

I
free(err);

free(no-.neurons);
free(no-.inputs);

return;
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Appendix B

Neural Network Training Program

/* del.c

Brian Bourgeois Created: 13SEP91 Last Mod: 23SEP91
This is the driving main program for the neural net sub 'nn.c'.
The taps array is created and maintained in this program, and
network architecture and training motif are also specified here
and passed to the network sub. Each call to nn does a single
pass through the network.

This program also provides an area for calling a data generation
routine, for specifying the input and desired signals. */

#include "nn.h"
#include "bism.h"

extern int nn(double*, double*, double *, long *,

double *, double ***);

extern int bism(double *ss, double *theta, double *model);
/* exclude this for cc */

main(int argc, char *argv[])
/* main(argc,argv)

int argc;

char *argv[]; */
{

/******* Declare variables ********/

/* Data vectors */
double *in; /* network input vector */
double *des; /* network desired vector */

32



double *est; /* network estimated vector */

/* network configuration */
long *arch; /* network configuration parameters */
double *train; /* network training parameters */
double ***taps; /* network weights */
long no-layers; /* Number of network layers with neurons */
long *no-neurons; /* Number of neurons in each layer */
long *no-inputs; /* Number of inputs for a neuron in a given layer */

/* Training variables */
long num-sets; /* Number of training sets in train.dat file */
long set-cnt; /* Current training set */
double error; /* Output error */
double mse; /* Output mse */

double perr; /* desired signal squared */
double errdev; /* error std deviation */
double *iterr; /* Error for each iteration */

/* Misc variables */

long ctrl, /* :ounter */

ctr", . counter */

c -3, /* counter */
7lag,
temp;

FILL. *ftaps-in, /* Input taps file, with arch header */
*ftaps-out, /* Output taps file, with arch header */
*ftrain, /* File with training instructions */
*fdefarch, /* default network architecture file */

*fdefmodel, /* Default model parameters file */
*fiterr; /* iteration error data dump file */

/* Model variables */

double *theta, /* incident angle array */
*ss, /* scattering strength data */

model[9]; /* model parameters */

/* Model Parameters
model[O] = size of data vectors theta and ss
model~l] = n, Ratio of sound speeds
model[2] = m, Ratio of densities
model[3] = mu, Lambert coefficient
model[4] = sigma, Microscale heights roughness
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model[S] = phi, azimuth angle in radians

model[6] = delx, RMS slope deviation along track, radians
model[7] = dely, RMS slope deviation across track, radians

model[8] = k; Wavenumber

long cntl, /* counter */
cnt2, /* counter */
min, /* minimum thet angle */
max; /* maximum thet angle */

double step; /* thet angle step size */

/* Assign model parameters */

flag = 0;
min = 71; /* minimum theta in degrees */
max = 88; /* max theta : 60 to 89 for del test */
step = .5; /* theta angle step size */
/* compute vector length */

model[0] = (double)(max - min + 1)/step ; /* size of theta vector */
/* Note: No of Inputs to network should be same as model[Ol *1

/****** Obtain network configuration data ******/

/* Allocate storage for controlling parameters */

arch = (long *)malloc(sizeof(long)*(int)5);

if(arch == NULL){
printf("arch allocation error\n");

return;

}

train = (double *)malloc(sizeof(double)*(int)5);
if (train == NULL){

printf("train allocation error\n");

return;
}

/* Pick up first training set. This is done first to determine

(from init field) if the architecture will be specified by the file
defarch.dat, or if weights from a previous execution will be used,

and thus the arch will be contained in a file taps.in */

ftrain = fopen("train.dat","r");
if(ftrain == NULL){
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printf(ItTraining file does not exist -- terminating\n'l);

return;

I

/* read in no of training sets *
fscanf(ftrain," %ld",&num-.sets);

/* read in first training set *
for(ctrl=O; ctrl<5 ;ctrl++) {

fscanf (ftrain," %lf" ,&train [ctrI]);
I /* for ctri */

/* train[O] learning gain *
/* train~l) learning switch, 1 = on *
/* train[2] annealing gain, 0 = off *
/* train[3] 0 = mnit taps, 1 = load from taps.in *
/* train[4] Number of repetitions for this set *

if(train[3] ==1f

/* Read in architecture from existing taps file, taps.in *
ftaps-.in = f open ("taps. into, Itrl)
if(ftaps..ir. == NULL){

printf("taps.in does not exist -- terminating\n");
return;

for(ctrl=O; ctrl<5;ctrl+*){
fscanf (ftaps..in," %ld" ,&arch ~ctr ii);
I /* for ctrl *

I /* if train[3] *
else{

/* use default network architecture vector *
fdef arch = fopen("defarch.dat","r");
if(fdef arch ==NULL){

printf("defarch.dat does not exist -- terminating\n");
return;

I
for(ctrl=O; ctrl<5 ;ctrl++) {

fscanf (fdef arch," '.ld" ,&arch Ectri]);
I /* for ctrl *

fclose(fdef arch);

/* arch[0] = Number of layers *
/* arch [l] = Number of neurons in first layer *
/* arch[2] = Number of neurons in second layer *
/* archE3] = Number of neurons in output layer *
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/* arch[4] Number of inputs to first layer *

} * else */

/* Load up architecture variables *

no-layers =arch[O];

no-neurons =(long *)malloc(sizeof(long)*(int)arch[O]);
if(no-.neurons ==NULL){
printf("no..neurons allocation error\n");
return;

I
no-.neurons[O1 = arch~l];
no-.neuronsI:1] =arch[2];
no-neurons[2] = arch[3];

no-inputs = (long *)malloc(sizeof(long)*(int)arch[O]);
if(no-inputs == NULL){
printf("no-inputs allocation error\n");

return;

I
no-inputs[O] = arch[4]; /* Inputs to first layer *
1* Note this should be same as length of ss vector *
no-inputs [11 = no-neurons [01; 1* Inputs to second layer *

/same as no-neurons in first layer for full connectivity *

no-inputs[2] = no-neurons[l]; 1* Inputs to output layer */
/same as no-neurons in second layer for full connectivity *

/****** Allocate storage *****I/

in = (doubl~e *)malloc(sizeof(double)*(int)arch[4]);

if(in ==NULL){
printf("in allocation error\n");

return;

I

des = (double *)malloc(sizeof(double)*(int)arch[31);
if(des == NULL){

printf("des allocation error\n");
return;

est = (double *)malloc(sizeof(double)*(int)arch[3]);

if(est == NULL){

printf("est allocation error\n");
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return;

I

theta = (double *)malloc(sjzeof (double)*(jnt)model [0]);

if (theta == NULL){

printf("theta allocation error\n"l);

return;

ss = (double *)malloc(sizeof(double)*(int)model[0]);
if(ss == NULL){

printf("ss allocation error\n");

return;

I

/* nn weights allocation is a bit more involved *
taps = (double ***)malloc(sizeof (double ***)*no-layers);

if (taps == NULL){
printf("taps allocation error, level 1\n");

return;

I /* if taps == NULL *

for(ctrlO;ctrl<no.layers ;ctrl++){

taps Ectri] = (double **)malloc(sizeof (double **)*no-neurons~ctrll);
if(taps[ctrl] == NULL){

printf ("taps allocation error, level 2\n");

return;

I /* if tapsE] == NULL *
}/* for ctrl */

for(ctrl=O; ctrl~no-.layers ;ctrl++) {
for (ctr20; ctr2<no.neurons [ctrl ; ctr2++) {
taps Ectri] [ctr2] = (double *)malloc(sizeof(double)*no-.inputs[ctrl]);

if(taps[ctrl][ctr2] = NULL){

printf ("taps allocation error, level 3\n");

return;
I /* if taps[J[ == NULL *

} * for ctr2 *
}/* for ctrl *

/* Working Area MAIN *

/****** Load taps array***/

if (train [3J ==1)f
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/* Load taps from taps.in and close file *
for (ctrl=0; ctrl<no-layers ;ctrl++) {

for(ctr2= ; ctr2<no-.neurons Ectri ; ctr2++) {
for(ctr30; ctr3<no..inputs Ectr] ; ctr3++) {
fscanf (ftaps. in," %le" ,&taps Ectri] [ctr2] Ectr3]);

I /* for tap *
}/* for node *

}/* for layer */
f closeCf taps .. in);
I /* if train E3]
else(
/* Initialize taps with small random numbers *
for(ctrl=O; ctrl<no-.layers ;ctrl++) {
for(ctr2=0;ctr2<no-.neurons~ctrl] ;ctr2++){

for(ctr3O ; ctr3<no..inputs Ectr] ; ctr3++) {
taps~ctri] [ctr2] [ctr3] = .5*(((double)rando/RAND.MAX)- .5);

f* -. 5 to .5 *

/* Print weights
for(ctrl=O; ctrl<nojlayers ;ctrl+#) {
for(ctr20; ctr2<no-.neurons Ectr] ; ctr2++) {
for(ctr3=0;ctr3<nojinputs[ctri] ;ctr3++){
printf ("Xf \n", taps Ectri] [ctr2] fctr3])

I I I */
I /* else *

/* Assign incident angles *
for(cntl=O;cntl<model[o) ;cntl++){

theta[cntl] = (double) (mmn + cntl*step) *PI 180.;
/* printf("theta = %f\n",theta[cnt1]); *
I

/* Load nominal model parameters *

fdefmodel = fopen("defmodel.dat","r");
if(fdefmodel ==NULL){

printf("defmodel.dat does not exist -- terminating\n");
return;
I

for(ctr1l ; ctrlZ9 ; ctrl++) {
fscanf(fdefmodel," %/lf",&model~ctrlll;
I /* for ctrl *

f closeCf def model);

/* model~l] = n, nom .99 *
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/* model[2] = m, nom 1.4 */
/* model[3] = mu, nom .002 *

/* model[4] = sigma, nom .01 *
/* model f5J = phi, no effect for delx=dely *
/* model[6] = deix, nom .05236 radians *
/* model[7] = dely, nom .05236 radians *
/* model[8] = k, nom 5.0265 for 1200 Hz c0 1500 m/s *

/******MAIN PROGRAM LOOP ****

/* Print net arch to stdio *
printf ("Net Architecture:\n");

printf("No. layers = %ld\n",arch[0]);

printf ("Layer 1 nodes = '/ld\n",arch[1]);
printf ("Layer 2 nodes = %ld\n",arch[2]);
printf("Layer 3 nodes =%ld\n",arch[3]);
printf("No. inputs =%ld\n\n" ,arch [4]);

/* Print theta range to stdio *
printf ("Theta parameters:\n");
printf( "mmn = %ld\n", min);
printf("max = %ld\n", max);
printf ("step = Xlf\n\n", step);

/* Print defa-ait model parameters *
printf("Default model parameters:\n");
printf("n = %/lf\n",model[1]);
printf("m = Xlf \n", model [2]);
printf ("mu = %lf\n" ,model [3]);
printf ("sigma = %lf\n" ,model [4]);
printf ("del = %lf \n\n", model [6]);

/* Print the number of training sets to stdio *
printf ("Number of sets = %ld\n",num..sets);

for(set..cnt0 ; set.cnt<num..sets; set-.cnt++){
/* This is loop for number of training sets *

/* Get new training set, after first pass only *
if (set-.cnt>0) {

for(ctrlO ;ctrl<5;ctrl++){

flag fscanf(ftrain," 7%lf",&train[ctrl]);
}/* for ctrl *
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if (flag != ){

printf("EOF reached in train.dat: terminating\n"l);
return;
}/* if flag *
}/* if set-cnt *

/* Print training setup for this training set *

printf ("Set No. Xld\n",set.cnt);

printf ("Learn Gain = %lf\n",train[0]);

printf ("Learn Switch = %lf\n" ,train[1]);
printf ("Anneal Gain = %lf\n",train[2]);
printf("Init Switch = Ylf\n",train[3]);
printf ("No. reps = %lf\n",train[4]);

/* Assign iteration error memory */

iterr = (double ., )malloc(sizeof(double)*(int)train[4J);
if(iterr == NULL){

printf("iterr allocation error\n"t);
return;
I

1* Initialize error *
perr = 0;

for(temp=O;temp<(long)train [4] ;temp++){

/* Loop for repetition of same training set *

/* Obtain input and estimated data */

/* Compute a random value for delx&dely, scale in the range

of .01745 to .08727 for the desired signal (1 to 5 degrees) *

do{

model[6] = (((double)randO/RAND-MAX)); /* range is 0 to 1 *
model [6] = . 08727 * model [6];
}while(model[6] < .01745);

model [7] = model [6];
des [0] = model [6] ;

/* Randomize the nm parameters to try and make del estimation
independent of them *

do{
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model[2] = (((double)randO/RANDMAX)); /* range is 0 to 1 */
model [2) = .8 + model [2];
}while(model[2] < 1.2); /* range is 1.2 to 1.8 */

model[l] = model[2] * .3833 + .51; /* range is .97 to 1.2 */

/* Randomize the mu parameter: range .0002 tO .02 */

do{
model[3] = (((double)randO/RANDMAX)); /* range is 0 to I */
model[3] = .02 * model[3];
}while(model[3] < .0002);

/* Call bism.c to generate input vector, scale for 0 to 1 *1
/* theta is from 71 to 88 degress for del test, e9 degrees

gives too large a value of ss (2.5) for the program to handle.

Using 71 degrees vice 60 to reduce sensitivty to changes in mu.

Larger errors were obtained at 60 deg even when noramlizing the
curve to the start angle magnitude, and this is appraently due
to the curvature caused by mu

flag = bism(ss, theta, model);

if(flag == I)f
printf("Error in bism sub\n");
return;

for(ctrl=O;ctrl<model [0] ;ctrl++){

in[ctrl]=ss[ctrl]-ss[OJ; /* normalize ampl for 71 deg */
}
in[0]1=; /* Give a constant to play with */

/* Call to network subroutine */

nn(in,des,est,arch,train,taps);
/* printf("interset %ld, est = %le\n",temp,est[O]); */

/* Computer errors */
iterr[temp] = fabs(des[O]-est[O])*100.,es[O];
perr += iterr[temp];

} /* for temp */

/* Compute err std deviation */
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perr = perr / (double)train[4);
errdev = 0;
for(ctrl=O;ctrl<train[41 ;ctri++){

errdev += (iterr[ctrl - perr) * (iterr[ctril perr);
I
errdev = sqrt(errdev / ((double)train[4]-1));

/* Print results of network for end of current set *

printf ("avg perr = %lf\n",perr);
printf("lperr dev = '/lf\n",errdev);
printf ("last des = '/lf\n" ,des [0]);
printf ("last est = '/lf\n" ,est [0]);
printf ("last n = Ylf\n",model[1]);
printf ("last m = ,lf \n ",model [2 ) ;
printf ("last mu = %lf\n",model[3]);

/* Print errors to ascii file */
fiterr = fopen("iterr.out","w");
if(fiterr == NULL){
printf ("Cannot open iterr file {w}\n"l);
I /* if fiterr == NULL *
else{
for(ctrl=0;ctrl<train[4] ;ctrl++){

fprintf (fiterr,"X/lf\n" ,iterr ctri]);
}/* for ctrl */
} * else ftaps-.out *
fclose(fiterr);

free(iterr);

}/* for set.-cnt *

/ ******** Finish up *****

/* Close training file *

fclose(ftrain);

/* Save arch and taps to output file *
ftaps-.out = fopen("taps .out". "w"I);
if(ftaps-.out == NULL){
printf ("Cannot open taps file {w}\n");

I /* if ftaps-.out == NULL *
else{
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printf(I'Dumping arch and taps\n\n\n");
for(ctrl=O; ctrl<5 ;ctrl++){

fprintf(ftaps-.out," %ld",arch[ctrl);

for(ctrl=O; ctrl<no-layers ;ctrl++) {
for(ctr2O;ctr2<no-neurolsrctrl] ;ctr2++){

for(ctr3O;ctr3<lo.ifputsEctrl] ;ctr3++){

fprintf(ftaps.out," %le",taps~ctrl) [ctr2) [ctr3]);

I /* for tap *
} * for node *

}/* for layer */
} * else ftaps-.out *

fclose(ftaps-.out);

/* Free memory *
free(in);
free (des);
free(est);
free(arch);
free (train);
f ree (theta);
free(ss);

/* free tap memory *
for(ctrl=O; ctrl<nojlayers ;ctrl++) {

for(ctr2O ; ctr2<no.neurons [ctrl ; ctr2++) {
free~taps~ctri] Ectr2));

for(ctrl=O; ctrl<no-layers ;ctrl++) {
free(taps~ctrl]);

free(taps);

return;
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Appendix C

BISSM Subroutine

/* Brian Bourgeois, Written 26AUG91, Modified 26AUG91 */

/* Program bism.c */
/* This program will compute the various parts, and the total

scattering strength based upon the bissm2 model and its various
parameters. The output is a vector of scattering values for
a specified range of theta (incident ray angle). */

#include "bism.h"

int bism(ss, theta, model)

double *ss,
*theta,
*model;

{

/* Model Parameters

model[O] = size of data vectors theta and ss

model[l] = n, Ratio of sound speeds
model[2] = m, Ratio of densities

model[3] = mu, Lambert coefficient

model[4] = sigma, Microscale heights roughness
model[5] = phi, azimuth angle in radians
model[6] = delx, RMS slope deviation along track, radians
model[7] = dely, RMS slope deviation across track, radians
model[8] = k; Wavenumber

/* Model intermediate variables */
double tempi, /* interm variable */

temp2, /* interm variable */
temp3, /* interm variable */
R, /* Rayleigh coefficient */
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R~a, * part of Rayleight computation *
R-b, /* part of Rayleight computation *

ae, /* angular dependent exponential part *
ref, /* reflective component *
lam; /* Lambert component *

/* Misc variables */
long cntl, /* counter *

cnt2, /* counter *
flag; /* error flag */

/* Note: The smallest value of thet must be large enough with

respect to n for the Rayleigh reflection coefficient calculation.

This can be made program adjustable in the future, but for now lets

just flag it */

if((model~l] < 1) && (theta[O] < acos(model[])))
printf("Error in theta range\n");
flag = 1;
return flag;

/* Scattering Stength Computations *

for(cntl=O;cntl<model [0] ;cntl++){

/* Rayleigh Coefficient */
Ra= modelE2] * sin(theta[cntil);

tempi = model~l] * model~l];
temp2 = cos(theta[cntl);

temp2 = temp2 * temp2;
R..b = sqrt(templ - temp2);

R = (R-.a - R-.b)/(R-.a + R-.b);

/* compute g */
tempi = 2 * model[4] * model[8] * sin(theta[cntl);

g =tempi * tempi;

/* Compute angular dependent exp part *
tempi = cos(model[5]);

tempi = (tempi * templ)/(model[6]*model[6]);
temp2 - sin(model[5]);

temp2 = (temp2 * temp2)/(model[7]*model[7]);
tempi = -.5 *(tempi + temp2);
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temp2 =cos(thetarcntl])/sin(theta~cnt1]);

tempi = tempi * (temp2 *temp2);
tempi = exp(templ)/(8 *PI * model[6] * model[7]);
temp2 =sin(theta[cntl]);
temp2 = (temp2 * temp2) * (teznp2 *temp2);
ae = templ/temp2;

/* Compute reflective component *

ref = (R * R) * exp(-1*g) * ae;

/* Compute lamnbert component *

tempi = sin(theta[cntl]);
lam = model[3] * (tempi * tempi);

/* Compute total scattering strength *
ss~cntl] = ref + lam;

I /* for cntl, scatter stength loop *

return;
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Appendix D

Parameter Estimation Programs

D.1 ,i Parameter Estimation

/* muest.c

Brian Bourgeois Created: 25SEP91 Last Mod: 25SEP91

This program is used to estimate the mu parameter of the
BISSM algorithm given a vector that is scattering strength
vs. angle of incidence. The program loads its network
architecture and taps from file taps.in. Note that the

number of ss points provided to this program, and their
respective angles is fixed by the network architecture and
its training. An area is provided in this program to call
for data input. */

#define RAND-MAX 2147483647 /* 2 31 -1 */
#define PI 3.14159265358979

#include <stdio.h>

#include <malloc.h>

#include <math.h>
#include <ctype.h>

#include <stdlib.h>

extern int nn(double*, double*, double *, long *,

double *, double ***);
extern int bism(double *ss, double *theta, double *model);
/* exclude this for cc */

main(int argc, char *argv[])

/* main(argc,argv)

int argc;
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char *argv[]; */

{

/******* Declare variables ********I

/* network configuration */
long arch[5]; /* network configuration parameters */
double train[5]; /* network parameters */

double ***taps; /* network weights */
long no-layers; /* Number of network layers with neurons
long *no-neurons; /* Number of neurons in each layer */

long *no-inputs; /* Number of inputs for a neuron in a given layer */

/* data variables */
double des; /* network desired signal *1
double est; /* network estimated signal */
double perr; /* desired signal squared */
double errdev; /* error std deviation */
double *iterr; /* Error for each iteration */

/* Misc variables */

long ctrl, /* counter */
ctr2, /* counter */
ctr3, /* counter */
flag,
temp;

double ftemp;

FILE *ftaps-in; /* Input taps file, with arch header */
long cntl, /* counter */

min, /* minimum thet angle */
max; /* maximum thet angle */

double step; /* thet angle step size */

/* Model variables */

double *theta, /* incident angle array *1
*ss, /* scattering strength data */
model[9]; /* model parameters */

/* Model Parameters
model[O] = size of data vectors theta and ss

model[l] = n, Ratio of sound speeds
model[2] = m, Ratio of densities

model[3] = mu, Lambert coefficient
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model [4] sigma, Microscale heights roughness
model[S] = phi, azimuth angle in radians
model[6] delx, RMS slope deviation along track, radians
model[7] = dely, RM14 slope deviation across track, radians
model [8] = k; Wavenumber

/* Initialize variables *
flag = 0;
train[0]=0; /* Not used *
train[1l]0; /* Not used *
train[2]=0; /* Not used *

train[3]=0; /* Not used *
train[4]=1000; /* No. of iterations to do *

/* Compute theta vector length */
/* This must match the training motif used for the network in use *

min = 15; 1* minimum theta in degrees *
max = 60; /* max theta */
step = 2; 1* theta angle step size *
/* compute vector length */
model [01 = (double) (max - min + 1)/step ; /* size of theta vector *

/****** Obtain network configuration data ******/

/* Read in architecture from taps file, taps.in *
ftaps-.in = fopen("taps .in", 11rl);

if(ftaps-in ==NULL){
printf("taps.in does not exist -- terminating\n");
return;

for(ctr1O; ctr1<5;ctr1++){
fscanf(ftaps-.in," %ld",&arch[ctrl]);
I /* for ctrl */

/* arch[0] = Number of layers *
/* arch[l] = Number of neurons in first layer *
/* arch[2] = Number of neurons in second layer *
/* arch[3] = Number of neurons in output layer *
/* arch[4] = Number of inputs to first layer *

/* Load up architecture variables *

no-layers = arch[01;
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no-neurons = (long *)malloc(sizeof(long)*(int)arch[O]);

if(noneurons == NULL){
printf("no-neurons allocation error\n");

return;

}
no-neurons[O] = arch [1];
no-neurons[l] = arch[2];
no-neurons[2] = arch[3];

no-inputs = (long *)malloc(sizeof(long)*(int)arch[0] );

if(no-inputs == NULL){

printf("no-inputs allocation error\n");

return;

}
no-inputs[O] = arch[4]; /* Inputs to first layer */
/* Note this should be same as length of ss vector */
no-inputs[I] = no-neurons[O]; /* Inputs to second layer *1

/* same as no-neurons in first layer for full connectivity */
no-inputs[2] = no-neurons[I]; /* Inputs to output layer */

/* same as no-neurons in second layer for full connectivity */

/****** Allocate storage ******/

theta = (double *)malloc(sizeof(double)*(int)model[O1);
if(theta == NULL){

printf("theta allocation error\n");

return;

}

ss = (double *)malloc(sizeof(double)*(int)model[O]);
if(ss == NULL){

printf("ss allocation error\n");

return;

}

iterr = (double *)malloc(sizeof(double)*(int)train[41);

if(iterr == NULL){

printf("iterr allocation error\n");

return;

}

/* nn weights allocation is a bit more involved */
taps = (double ***)malloc(sizeof(double ***)*no-layers);

if(taps == NULL){
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printf ("taps allocation error) level 1\n");
return;
I /* if taps == NULL *

for(ctrl=O; ctrl<no-layers ;ctrl++) {
taps[ctrl] = (double **)malloc(sizeof (double **)*no-.neurons[ctrl]);

if(taps~ctrl == NULL){
printf ("taps allocation error) level 2\n");
return;
I /* if taps[] == NULL *

}/* for ctrl */

for(ctrl=O; ctrl<no-.layers ;ctrl++) {
for(ctr2=O; ctr2<no..neurons Ectri] ;ctr2++) {
taps [ctrl ctr2] = (double *)malloc(sizeof(double)*no..jnputs[ctrll);

if(taps[ctrl~ctr2] = NULL){
printf ("taps allocation error, level 3\n");
return;
I /* if taps[J]= NULL *

}/* for ctr2 *
}/* for ctrl *

/* Working Area of MAIN *

/****** Load taps array***/
/* Load taps from taps.in and close file *
for(ctrl=O; ctrl<nojlayers ;ctrl++) {

for (ctr2O ; ctr2<noneurons [ctrl] ;ctr2++) {
for(ctr3=Q;ctr3<no.inputs~ctrl] ;ctr3++){
fscanf (ftaps-in," %~le" )&taps [ctrl ctr2] [ctr3]);

I /* for tap *
}/* for node *

} * for layer */
fclose(ftaps-.in);

/* Assign incident angles *
for(cntl=O;cntl~model [0];cntl++){

theta[cntl] = (double)(min + cntl*step) *P1I 180.;
/* printf ("theta = 7%f\n" ,theta[cnt 1]); *
I

/* Load nominal model parameters *

model[1] =.99;
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model[2] = 1.4;
model[3] = .002;

modej.[4] = .01;

model[5] = 0;
model[6] = .05236;

modej.[7] = .05236;

model[8] = 5.0265;

/******* MAIN PROGRAM LOOP ****

/* Loop for multiple estimations *

printf ('WORKING\n"l);

for(temp=O;temp<(long)train[4] ;temp++){

/* Obtain input and estimated data */

/* Compute a random value for delx&del~,, scale in the range

of .01745 to .08727 for the desired s--_nal (1 to 5 degrees) *

do{
model[6] = (((double)rando/RAND-MAX)); /* range is 0 to 1 *
model[6] = .08727 * model[6];
}while(model[6] < .01745);

model [7] = model [6];

/* Compute a random value for nm. Note that n and m are
computed as being linearly related *

do{
model[2] = (((double)randQ/RAND.MAX)); /* range is 0 to 1 *
model [2] = .8 + model [2];
}while(model[2] < 1.2); /* range is 1.2 to 1.8 *

model[1] = model[2] * .3833 + .51; /* range is .97 to 1.2 *

/* Randomize the mu parameter: range .0002 tO .02 *

do{

model[3] = (((double)randO/RAND-MAX)); /* range is 0 to 1 *
model [3] = . 02 * model [3];
}while(model[3] < .0002);

des = model [3];
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/* Call bism.c to generate input vector, scale for range 0 to 1*

flag = bism(ss, theta, model);
if (flag == )

printf ("Error in bism sub\n");

return;

/* Adjust ss data for proper network operation, as per training *
/* For 10 to 60 deg, ss ranges from 3*10--6 to 3*10--2 *
/* Scale up from .03 to .3 */
for(ctrl=O;ctrl<model [0] ;ctrl++){

ss[ctrllss[ctrl]*10. - .15;

I

/* Call to network subroutine *

nn(ss,&des,&est,arch,train,taps);

/* Compute errors */
iterr [temp] = f abs (des-est) *100./des;

) /* for temp */

/* Compute err and its std deviation *
perr = 0;

for(ctrl=O;ctrl<train [4] ;ctrl++){

perr += iterr[ctrl
I
perr = perr / (double)train[4];
errdev = 0;

for(ctrl=O~ctrl<train[4] ;ctrl++){

errdev += (iterr~ctri] - perr) * (iterr~ctri] perr);

I
errdev = sqrt(errdev / ((double)train[4]-1));

/* Print results of network test *

printf ("avg perr = %lf\n",perr);

printf("perr dev = %lf\n",errdev);
printf ("last des = %/lf\n",des);
printf ("last est = %lf\n",est);

/*******Finish up *****
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/* Free memory */
free(iterr);
free(theta);
free(ss);

free(no-neurons);

free(noinputs);

/* free tap memory */
for(ctrlO;ctrl<nolayers;ctrl++){

for (ctr2=O ; ctr2<noneurons [ctrl] ; ctr2++) {
free(taps [ctril] [ctr2]);
}

}
for(ctrl=O;ctrl<nolayers;ctrl++){

free(taps [ctrl]);
}
free(taps);

return;

}

D.2 nm Parameter Estimation

/* nmest.c

Brian Bourgeois Created: 25SEP91 Last Mod: 25SEP91

This program is used to estimate the nm parameter of the BISSM

algorithm given a vector that is scattering strength vs. angle

of incidence. The program loads its network architecture and

taps from file taps.in. Note that the number of ss points

provided to this program, and their respective angles is fixed

by the network architecture and its training.

An area is provided in this program to call for data input.

#define RAND-MAX 2147483647 /* 2 31 -1 */
#define PI 3.14159265358979

#include <stdio.h>
#include <malloc.h>

#include <math.h>

#include <ctype.h>
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#include <stdlib.h>

extern int nn(double*, double*, double *, long *,

double *, double ***);

extern int bism(double *ss, double *theta, double *model);
/* exclude this for cc */

main(int argc, char *argv[])
/* main(argc,argv)
int argc;

char *argvl; */
{

/******* Declare variables ********I

/* network configuration */
long arch[5]; /* network configuration parameters */
double train[5]; /* network parameters */
double ***taps; /* network weights */
long no-layers; /* Number of network layers with neurons */
long *noneurons; /* Number of neurons in each layer */

long *no-inputs; /* Number of inputs for a neuron in a given layer */

/* data variables */
double des; /* network desired signal */

double est; /* network estimated signal */

double perr; /* desired signal squared */
double errdev; /* error std deviation */

double *iterr; /* Error for each iteration */

/* Misc variables */

long ctrl, /* counter */
ctr2, /* counter */
ctr3, /* counter */
flag,
temp;

double ftemp;
FILE *ftaps-in; /* Input taps file, with arch header */

long cntl, /* counter */
min, /* minimum thet angle */
max; /* maximum thet angle */

double step; /* thet angle step size */

/* Model variables */
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double *theta, /* incident angle array *
*ss, /* scattering strength data *

model[9); /* model parameters *

/* Model Parameters
model[O] = size of data vectors theta and ss

model~l] = n, Ratio of sound speeds
model[2] = m, Ratio of densities
model[3] = mu, Lambert coefficient

model[4] = sigma, Microscale heights roughness

model[5] = phi, azimuth angle in radians

model[6] = deix, RMS slope deviation along track, radians

model[7] = dely, RMS slope deviation across track, radians

model[8] = k; Wavenumber

/* Initialize variables *
flag = 0;
train[0]=0; /* Not used *
train[1l]0; /* Not used *
train[2]=O; /* Not used *

train[3]=0; /* Not used *
train[4]=1000; /* No. of iterations to do *

/* Compute theta vector length */
/* This must match the training motif used for the network in use *

min = 71; /* minimum theta in degrees *
max -88; /* max theta */
step = 1; 1* theta angle step size *
/* compute vector length */
model[o] = (double) (max - min + 1)/step ; /* size of theta vector *

/****** Obtain network configuration data ******/

/* Read in architecture from taps file, taps.in *
ftaps-.in = f open (taps. info, orII);
if(ftaps-in == NULL){

printf("taps.in does not exist -- terminating\n");
return;
I

for(ctr1O; ctrl<5 ;ctr1++) {
fscanf(ftaps..in," %ld",&arch[ctr1]);

}/* for ctrl *
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/* arch[O] = Number of layers */
/* arch[l] = Number of neurons in first layer */
/* arch[2] = Number of neurons in second layer */
/* arch[3] = Number of neurons in output layer */
/* arch[4] = Number of inputs to first layer */

/* Load up architecture variables */

no-layers = arch[O];

no-neurons = (long *)malloc(sizeof(long)*(int)arch[0]);
if(noneurons == NULL){

printf("no.neurons allocation error\n");

return;

}
no-neurons[O] = arch[l];
no-neurons[l] = arch[2] ;
no-neurons[2] = arch[3];

no-inputs = (long *)malloc(sizeof(long)*(int)arch[0]);
if(no-inputs == NULL){

printf("no-inputs allocation error\n");

return;
}

no-inputs[O] = arch[4]; /* Inputs to first layer */
/* Note this should be same as length of ss vector */
no-inputs[i] = no-neurons[O]; /* Inputs to second layer */

/* same as no-neurons in first layer for full connectivity */

no-inputs[2] = no-neurons[I]; /* Inputs to output layer */
/* same as no-neurons in second layer for full connectivity */

/****** Allocate storage ******/

theta = (double *)malloc(sizeof(double)*(int)model[O);

if (theta - NULL){

printf("theta allocation error\n");

return;
}

ss = (double *)malloc(sizeof(double)*(int)model[O]);

if(ss == NULL){
printf("ss allocation error\n");

return;
}
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iterr = (double *)malloc(sizeof(double)*(int)trajn[4]);
if(iterr == N'ULL){

printf("iterr allocation error\n");
return;

I

/* nn weights allocation is a bit more involved *
taps = (double ***)malloc(sizeof(double ***)*no-layers);

if (taps == NULL){
printf("taps allocation error, level 1\n");

return;
I /* if taps == NULL *

for(ctrl=O;ctrl<no-ayers;ctrl++) {
taps~ctrl = (double **)malloc(sizeof (double **)*no-neurons~ctrl]);

if(taps[ctrl] == NULL){
printf("taps allocation error, level 2\n");
return;
I /* if taps[] == NULL *

}/* for ctrl */

for(ctrl=O; ctrl<no-layers ;ctrl++) {
for(ctr2Q0;ctr2<no neurons Ectri] ;ctr2++){

taps Ectri] [ctr2] = (double *)malloc(sizeof(double)*no.inputs[ctrl);
if (taps Ectri] Ectr2] = NULL){
printf("taps allocation error, level 3\n");

return;
) /* if taps00 == NULL *

}/* for ctr2 *
}/* for ctrl *

/* Working Area of MAIN *

/****** Load taps array***I

/* Load taps from taps.in and close file *
for(ctrlO; ctrl~no-layers;ctrl++){

for(ctr2O ; ctr2<no..neurons Ectr] ; ctr2++) {
for(ctr3O;ctr3<no-inputs[ctrl] ;ctr3++){
f scanf (f taps-.in, " %le",&taps [ctrl] [ctr2] [ctr3])

I /* for tap *
}/* for node *

}/* for layer */
fclose(ftaps-.in);
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/* Assign incident angles *

for(cntl=O;cntl<model [0] ;cntl++){

theta~cntl = (double) (mmn + cntl*step) *P1I 180.;
/* printf(Iltheta = %f\n",theta[cntl]); *
I

/* Load nominal model parameters *

model~l] = .99;
model[2] = 1.4;
model[3] = .002;
model[4] = .01;
model[S] = 0;
model[6J = .05236;
model[7] = .05236;

model[8] = 5.0265;

/******MAIN PROGRAM LOOP ****

/* Loop for multiple estimations *

printf("vORKING\n");
for(temp=0;temp<(long)train [4] ;temp++){

/* Obtain input and estimated data */

/* Randomize delx&dely, scale in the range of .01745 to .08727

(1 to 5 degrees) *

do{
model[6] (((double)rando/RAND-MAX)); /* range is 0 to 1 *
model [6] = .08727 * model [6];
}while(model[6) < .01745);

model [7) - model [6];

/* Compute a random value for nm. Note that n and m are
computed as being linearly related *

do{
model[2) (((double)randO/RAND-MAX)); /* range is 0 to 1 *

model [2] .8 + model [2];
}vhile(model[2] < 1.2); /* range is 1.2 to 1.8 *
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model~l] = model[2] * .3833 + .51; /* range is .97 to 1.2 *
des -model[2]/4.;

/* Randomize the mu parameter: range .0002 tO .02 *

do{
model[3] = (((double)randO/RAND-MAX)); /* range is 0 to 1 *
model[3] = .02 * model[3];
}whi3.e(model[3] < .0002);

/* Call bism-c to generate input vector, scale for range 0 to 1 *

flag =bism(ss, theta, model);
if (flag == O

printf ("Error in bism sub\n");
return;
I

/* normalize ampl for starting incident angle to reduce
mu effect on estimate *
ftemp = ss[o:1;
for(ctrl=0;ctrl<model [0) ;ctrl++){

ss Ectri] =ss [ctrl] -ftemp;

ss[0]=1; /* Constant input node for network *

/* Call to network subroutine *

nn(ss,&des,&est,arch,train,taps);

/* Compute errors */
iterr Etemp) fabs(des-est) *100./des;

I /* for temp */

/* Compute err and its std deviation *
perr = 0;

for(ctrl=0;ctrl<train [4) ;ctrl++){
perr += iterr~ctri];

perr = perr / (double)train[4];
errdev = 0;
for(ctrl=O;ctrl<train [4) ;ctrl++){
errdev += (iterr[ctrl] - perr) * (iterr[ctrl perr);
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errdev = sqrt(errdev / ((double)train[4]-1));

/* Print results of network test */

printf("avg perr = %lf\n",perr);
printf("perr dev = %lf\n",errdev);

printf("last des = lf\n",4.*des);
printf("last est = %lf\n",4.*est);

/******** Finish up *********/

/* Free memory */
free(iterr);

free (theta);
free(ss);

free(no.neurons);
free (no.inputs);

/* free tap memory */
for(ctrl=O; ctrl<no-layers ; ctrl++) {

for(ctr2=O ; ctr2<noneurons [ctrl] ; ctr2++) {
free(taps [ctrl] [ctr2]);
}

}
for(ctrl=O ; ctrl<no-layers ; ctrl++) {

free (taps [ctri]);
}
free(taps);

return;
}

D.3 6 Parameter Estimation

/* delest.c

Brian Bourgeois Created: 23SEP91 Last Mod: 24SEP91

This program is used to estimate the del parameter of the

BISSM algorithm given a vector that is scattering strength
vs. angle of incidence. Due to the dependence of the delx

and dely parameters, only a single parameter, del, is used
wherein delx = dely = del. The program loads its network

architecture and taps from file taps.in. Note that the
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number of ss points provided to this program, and their
respective angles is fixed by the network architecture
and its training. An area is provided in this program to
call for data input. */

#define RAND-MAX 2147483647 /* 2 31 -1 *1
#define PI 3.14159265358979

#include <stdio.h>
#include <malloc.h>
#include <math.h>

#include <ctype.h>

#include <stdlib.h>

extern int nn(double*, double*, double *, long *,
double *, double ***);
extern int bism(double *ss, double *theta, double *model);
/* exclude this for cc */

main(int argc, char *argv[])
/* main(argc,argv)

int argc;
char *argv[]; */
{

/******* Declare variables ********/

/* network configuration */
long arch[S]; /* network configuration parameters */
double train[5]; /* network parameters */
double ***taps; /* network weights */
long no-layers; /* Number of network layers with neurons */
long *noneurons; /* Number of neurons in each layer */
long *no-inputs; /* Number of inputs for a neuron in a given layer */

/* data variables */

double des; /* network desired signal */
double est; /* network estimated signal */
double perr; /* desired signal squared */
double errdev; /* error std deviation */

double *iterr; /* Error for each iteration *1

/* Misc variables */

long ctrl, /* counter */
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ctr2, /* counter */
ctr3, /* counter */
flag,

temp;

double ftemp;
FILE *ftaps-in; /* Input taps file, with arch header */

long cntl, /* counter */
min, /* minimum thet angle */
max; /* maximum thet angle */

double step; /* thet angle step size */

/* Model variables */

double *theta, /* incident angle array */
*ss, /* scattering strength data */
model[9]; /* model parameters */

/* Model Parameters
model[O] = size of data vectors theta and ss
model[l] = n, Ratio of sound speeds
model[2] = m, Ratio of densities
model[3] = mu, Lambert coefficient
model[4] = sigma, Microscale heights roughness

model[5] = phi, azimuth angle in radians
model[6] = delx, RMS slope deviation along track, rad.ans

model[7] = dely, RMS slope deviation across track, radians
model[8] = k; Wavenumber
*/

/* Initialize variables */
flag = 0;
train[0]=0; /* Not used */
train[1]=O; /* Not used */
train[2]=0; /* Not used */
train[3]=O; /* Not used */
train[4]=1000; /* No. of iterations to do */

/* Compute theta vector length */

/* This must match the training motif used for the network in use */

min = 71; /* minimum theta in degrees */
max = 88; /* max theta */

step = .5; /* theta angle step size */

/* compute vector length */
model[O] = (double)(max - min + 1)/step ; /* size of theta vector */
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/****** Obtain network configuration data ******I

/* Read in architecture from taps file, taps.in *
ftaps-.in = fopen("taps. in");
if(ftaps~in == NULL){

printf("taps.in does not exist -- terminating\n");

return;

for(ctr1=O; ctrl<5 ;ctrl++) {
fscanf (ftaps-in," Yld" ,&arch Ectri]);
I /* for ctrl *f

/* arch EO] = Number of layers *
/* arch[1] = Number of neurons in first layer *
/* arch £2] = Number of neurons in second layer *
/* arch[3J = Number of neurons in output layer *
/* arch[4] = Number of inputs to first layer *

/* Load up architecture variables *

no-layers = arch[ol;

no-neurons = (long *)malloc(sizeof(long)*(int)archEO1);
if(no-neurons == NULL){

printf("no-neurons allocation error\n");
return;

I
no-neurons[O] arch[l];
no..neurons[lJ = arch [2];
no-.neurons[2] = arch [3];

no-inputs = (long *)malloc(sizeof(long)*(int)arch[O]);

if(no-i',puts ==NULL){
printf("lno-inputs allocation error\n");

return;

no-.inputs[OJ = arch[4]; /* Inputs to first layer *
/* Note this should be same as len~gth of ss vector *
no-inputs [1] = no-.neurons [O]; /* Inputs to second layer *

/same as no-neurons in first layer for full connectivity *
no-.inputs[2] = no..neurons[1]; /* Inputs to output layer */

/same as no-neurons in second layer for full connectivity *

/*****Allocate storage ******I
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theta = (double *)malloc(sizeof(double)*(int)model[O]);
if (theta == NULL){

printf("theta allocation error\n");
return;

I

ss = (double *)malloc(sizeof (double)*(int)model [01);
if(ss == NULL){

printf('ss allocation error\n");
return;

iterr = (double *)malloc(sizeof(double)*(int)train[4]);
if(iterr == NULL){

printf("iterr allocation error\n");
return;

I

/* nn weights allocation is a bit more involved *
taps = (double ***)malloc(sizeof (double ***)*no-layers);

if (taps == NULL){f
printf ("taps allocation error, level 1\n");

return;

I /* if taps == NULL *

for(ctrl=0; ctrl<nojlayers ;ctrl++){
taps[ctrl = (double **)malloc(sizeof (double **)*no-.neurons[ctrl]);

if(taps[ctrl] == NULL){
printf ("taps allocation error, level 2\n");

return;
I 1* if taps[] == NULL *

} * for ctrl */

for(ctrl=O; ctrlno-layers ;ctrl++) {
for(ctr2_O ; ctr2(no-neurons Ectr] ; ctr2++){
taps[ctrl[ctr2] = (double *)malloc(sizeof(double)*noinputs~ctrl]);

* if(taps[ctrl][ctr2] == NULL){

printf("taps allocati-on error, level 3\n");

£ return;
I /* if taps[C][] == NULL *

}/* for ctr2 *
}/* for ctrl *
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/* Working Area of MAIN */

f****** Load taps array***/

/* Load taps from taps.in and close file *
for(ctr1=O :tr1<no-layers;ctr1++){

for(ctr2O ; ctr2<no.neurons [ctrl] ;ctr2++) {
for(ctr30; ctr3<no-.inputs Ectri ; ctr3++) {
fscanf (ftaps-in," %le" ,&taps Ectri] [ctr2] [ctr3]);

I /* for tap *
}/* for node *

/ * for layer */
fclose(ftaps.in);

/* Assign incident angles *
for(cntl=O;cntl<model[O] ;cntl++){

theta~cntl = (double)(min + cntl*step) *PI 180.;

/* printf("theta = Yf\n",theta[cntl]); *

/* Load nominal model parameters *

model~l] = .99;

model[2] = 1.4;
model[3] = .002;
modelt43 = .01;
model[5] = 0;

model[6] = .05236;

modelE7] .05236;
model[8] = 5.0265;

/******* MAIN PROGRAM LOOP ****

/* Loop for multiple estimations *

printf("WORKING\n");
for(temp=O;tempZ(long)train[4j ;temp++){

/* Obtain input and estimated data */

/* Compute a random value for delx&dely, scale in the range of
.01745 to .0872 for the desired signal (1 to 5 degrees) *

do{

model[6] = (((double)rando/RAND-MAX)); /* range is 0 to 1 *
model [6] = . 08727 * model [6];
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}whjle(model[6] < .01745);

model [7] = model [6];
des = model [6];

/* Compute a random value for nm. Note that n and m are

computed as being linearly related *

do{
model[2] = (((double)randO/RAND-MAX)); 1* range is 0 to 1I*
model [2] = .8 + model [2] ;
}while(model[2] < 1.2); /* range is 1.2 to 1.8 *

model[l] = model[2] * .3833 + .51; 1* range is .97 to 1.2 *

/* Randomize the MU Darameter: range .0002 tO .02 *

do{
model[3] = (((double)randO/RAND-MAX)); /* range is 0 to 1 *
model [3] = . 02 * model [3];
}while(model[3] < .0002);

/* Call bism.c to generate input vector, scale for range 0 to 1 *

flag = bism(ss, theta, model);
if (flag == )

printf ("Error in bism sub\n");

return;
I

/* normalize ampi for starting incident angle to reduce

mu effect on estimate *

ftemp = ss[0];
for(ctrl=0;ctrl<model [0];ctrl++){
ss [ctrl =ss [ctrl] -f temp;

ss[0]=1; /* Constant input node for network *

/* Call to network subroutine *

nn(ss,kdes,&est,arch,train,taps);

/* Compute errors */
iterr[temp] = fabs(des-est)*100./des;
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} * for temp *

/* Compute err and its std deviation *
perr = 0;
for(ctrl=0;ctrl<train [4] ;ctrl++){
perr += iterr [ctrl];

I
perr = perr / (double)train[4];
errdev =0
for(ctrl=0;ctrl<train[4] ;ctrl++){
errdev += (iterr~ctri] - perr) * (iterr~ctri] perr);

errdev =sqrt(errdev / ((double)train[4]-1));

/* Print results of network test *

printf ("avg perr =%lf\n",perr);
printf("perr dev =%lf\n",errdev);
printf ("last des =%lf\n",des);
printf ("last est =%lf\n",est);

/ ******** Finish up *****

/* Free memory *
free(iterr);
free (theta);
free(ss);
free(no-.neurons);
free(no.inputs);

/* free tap memory *
for(ctrl=0; ctrl<no-layers ;ctrl++) {

for(ctr2=0 ;ctr2<no.neurons Ectr] ; ctr2++) {
free (taps Ectri] [ctr2]);

for(ctrl=O; ctrl<no-layers ;ctrl++) {
free(taps[ctrl);

I}
free (taps);

return;
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