
* DTIC
AD-A247 887 f ELECTE

MAR 2 992

C
Fault-Tolerant Parallel Computer Systems

for Real-Time Applications

Final Report
Contract No. N00014-88-K-0622

Office of Naval Research

S.M. Yang and Bill D. Carroll
Computer Science Engineering Department

The University of Texas at Arlington
Arlington, TX 76019

February 1992

Approve: . .... 6

923iu I.wu....II#rI I4 Alr154I I



Table of Contents

Chapter

I. Introduction I-1

If. A Parallel Architecture and Process Configuration with Conversations

for Ultra Reliable Real-Time Computing I-1

1. Introduction 11-2

2. The Hybrid Higher Radix Hypercube (HHRH) architecture 11-4

3. A real-time control system 11-14

4. Process configuration with conversation 11-19

5. Analysis of Reliability and Communication Overhead 11-25

6. Summary 11-28

7. References 11-29

Ill. Implementation of The Conversation Scheme in

Message-Based Distributed Computer Systemsa III- 1

1. Introduction 111-2

2. Synchronously Exited and Asynchrounously Exited Conversations 111-3

3. Conversation Acceptance Test 111-17

4. Implementation of the NLRB Scheme in Message-Based DCS's 111-20

5. Implementation of the ADT-Conversation Scheme

in Message-Based DCS's 111-26

6. Simplified Unmanned Vehicle Sysytem: An Example 111-30

7. Summary 111-39

8. References 111-40

IV. Performance Impacts of Look-Ahead Execution

in the Conversation Scheme IV-I

1. Introduction IV-2

2. Basic Conversation Structure and Lockahead IV-3

3. The Execution Environment Assumed and

Queueing Network Models IV-5

4. Performance Comparison IV- 18

0



5. Summary IV-28

6. References IV-30

V. An Approach to Dynamic Execution Time Estimation V-1

1. Introduction V-2

2. Known Estimation Approaches V-3

3. Dynamic Execution Time Estimation V-4

4. Real-Time Task Scheduling V- 15

5. Conclusion V-16

6. References V- 18

VI TP/C: A Real-Time Communication Protocol in LAN/MAN VI-1

1. Introduction VI-2

2. LAN Protocols for Hard-Realtime Communication VI-2

3. TP/C Protocol VI-4

4. Performance Analysis VI-5

5. Implementation Environment VI-8

6. Conclusion VI-9

7. References VI-10

VII SUVS: A Distributed Real-Time System Testbed

for Fault-Tolerant Computing VII- I

1. Introduction VII-2

2. SUVS (Simplified Unmanned Vehicle System) VII-3

3. Fault-Tolerant SUVS VII-6

4. Implementation of FT_SUVS VII-15

5. Experimental Results and Future Work VI-21

6. Summary VII-25

7. References VII-27

VIII. Summary and A New Model for Future Real-Time Applications VIII-1

1. Summary VIII-2

2. Five Phases of a New Development Model VIII-2

3. Current Work VIII-4

4. References VIII-6



CHAPTER I

INTRODUCTION

I OTI-

Ac oeg joam oL

Statement A per telecom
Dr. Keith Bromley Al'lotl1i%'y Codes

ONR/Code 126A-2 .... Id/er

Arlington, VA 22217-5000 D1 t i 1)Gia

NWW 3/24/92 

D 1 t

I-I



This is the final report that summarizes the research results obtained under the contract

N00014-88-K-0622. The objective of our research was to investigate techniques for designing

-- fault-tolerant parallel computer systems for critical real-time applications. The focus of our
research was to develop the practical fault tolerance design, implementation and analysis

technology with the considerations of real-time recovery, structuring of recoverable

interactions, and handling of software as well as hardware failure in distributed/parallel

computing environments. We also investigate techniques for scheduling of real-time messages

as welll as real-time tasks in fault-tolerant distributed systems.

The specific tasks carried out are as follows:

(1) A Parallel computer architecture and software structures for ultra reliable, real-time

applications are proposed. The proposed architecture is a modified hypercube called the

Hybrid Higher Radix Hypercube (HHRH). Processor nodes are partitioned into clusters.

Nodes in a common cluster communicate through shared memory but communicate with nodes

in other clusters by point-to-point connections. A possible implementation of the architecture

along with the system components are investigated. The conversation scheme is adopted as the

basic fault tolerance scheme to be used with the HHRH architecture. Along with the

conversation scheme three difficult concepts of error detection and recovery schemes, namely,
filtration, consensus and approval, are incorporated at the various stages of computation and/or

communication.

(2) Several different approaches for implementing conversations in message-based distributed

computer systems are investigated. Important implementation factors to be considered include

the control of exits of processes upon completion of their conversation tasks and the approach

to execution of the conversation acceptance test. As a case study, an unmanned vehicle system

is used to illustrate how the identified approaches to implementation of the conversation scheme

can be used in a realistic real-time application.

(3) Queueing network models are developed for both the system operating under the basic

conversation execution scheme and the system operating under the execution scheme extended
with the look-ahead capability. Based on the models, various performance indicators such as

the system throughput, the average number of the processors idling inside a conversation due

to the synchronization required, and the average time spent in a conversation, are evaluated

numerically for different application environments. The performance under the lookahead

scheme are compared against these under the basic conversation execution scheme.
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(4) An execution time estimation techniques is proposed for efficient and safe task scheduling

of critical embedded real-time applications. Execution time estimation is one of the most

important issues in real-time systems since etermination of task schedulability depends

primarily on the exact knowledge of the execution time behavior of a task. However, input-

dependent branches or loops and intertask communications make the program's timing

behavior hard to predict. We introduces a Dynamic Execution Time (DET) estimation

technique for determining the worst-case execution time behavior of a task. DET estimation

comprise two concepts: (1) compile time estimation based on semantic as well as syntactic

analysis and (2) runtime estimation based on Execution Time functions. We demonstrate the

usefulness of DET estimation for real-time task scheduling, especially under time-value-

function based (or best effort) scheduling saategy.

(5) A protocol, named token passing with concession (TP/C), is proposed for real-time

messages and communication channel scheduling in distributed computer systems. The

protocol can be implemented on top of the existing contention-free protocols such as token bus,

token ring and FDDI ring protocol. The protocol is useful for real-time control applications in

distributed computing environments as well as for voice and data communication in LAN/MAN

environments. The performance matrics such as percentage of message lost and effective

channel utilization were obtained by simulation under various network and protocol parameters

and compared with CSMA/CD, Virtual Time CSMA, window and token bus protocols.

(6) A distributed real-time system testbed to support experimental research has been

established. The testbed, named SUVS (Simplified Unmanned Vehicle System), is being used

to conduct experimental evaluation of system level fault tolerance techniques in

distributed/parallel real-time systems. Current version of SUVS is written in C and is running

on a network of eight SUN Workstations. The SUVS testbed is planned for clinical study of

specification, design and implementation methods studied by the investigators for real-time

distributed/parallel systems.

The following 6 chapters, Chapter 11 to Chapter VII, describe the details of the tasks

discussed above. Attempts were made to organize the chapters to be self-contained. Chapter

VIII is the summary. We also propose a new system development model for large complex

real-time embedded systems along with the current status of our work.
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1. INTRODUCTION

The use of computers as embedded components in critical real-time systems has led to a

need for ultra reliable, fault-tolerant, real-time computers. For the past two decades various

fault tolerance mechanisms have been proposed and implemeted at different levels, e.g.,

hardware level, operating system level, application software level, etc., within computer

systems [Ran78,Ren8O,Ser84,Kim82]. Although many systems containing different sets of

mechanisms are now available, they do not satisfy the requirements for reliable operations of

many critical real-time applications. Furthermore, many current fault tolerance mechanisms

cannot be implemented for practical use. This is partly because of high implementation cost

due to redundancy required in software as well as in hardware and partly because of lack of

practical design technologies to implement the mechanisms in a parallel-processing, real-time

computing environment [Kim85].

Recently, the development of newer, faster, and cheaper microprocessors has led to

their incorporation into a variety of parallel processing systems [Aga86,Bon87]. The primary

reason for adopting parallel processor systems is their computing power, especially for

problems with inherent parallelism either in data or in processing operations. Another attractive
reason is the redundancy which is essential for fault-tolerant operation of the computer system.

That is, in a parallel processor organization, a failure in one unit need not interfere with the

continuing operation of other parallel units. Hence, a parallel organization can increase the

system reliability, particularly if software redundancy is also employed.

In designing fault tolerant capabilities into real-time computer systems in

distributed/parallel environments, the following characteristics must be carefully considered.

First, processing nodes exchange information among themselves. This interaction may cause

fault propagation through the network. That is, faulty behavior of one node may cause the

failure of other nodes. Therefore, cooperation among nodes for fault detection and recovery is

needed. Second, timely recovery (or real-time recovery) is an important aspect to be

considered in designing a fault-tolerant real-time system. The system should produce correct

results within a specified time limit in the presence of failure in hardware and/or software.

Finally, the network structure of a system has a significant effect upon the design of the

operating system as well as the fault tolerance mechanisms incorporated in it. It also affects the

system performance in terms of communication overhead, recovery time, and reconfiguration
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after failure.

In this chapter a modified hypercube architecture, called the Hybrid Higher Radix

Hypercube (HHRH), is proposed for use in reliable, real-time environments. Processor nodes

are partitioned into clusters. Nodes in a common cluster communicate through shared memory

but communicate with nodes in other clusters by point-to-point connections. This approach

provides (1) short diameter and average node distance which makes communication between
nodes fast and predictable (speed and predictability are the most important factors in real-time

systems), (2) redundancy which is essential for fault-tolerant computing, and (3)

reconfigurability as required by many applications.

The conversation scheme has been adopted as the basic fault tolerance mechanism to

be used with the HHRH structure. This choice was made because (1) the scheme deals with

recovery actions of interacting processes, (2) software redundancy is provided, (3) real-time

recovery is achievable, and (4) the scheme is relatively easy to implement. Various process

configuration strategies with conversations are illustrated and compared using a real-time

control system scenario, called the Simplified Unmanned Vehicle System (SUVS). SUVS
consists of a set of real-time interacting processes. Software redundancy is thus incorporated
in two forms in SUVS: (1) multiple versions in the form of alternate try blocks in

conversations and (2) multiple identical copies of processes. Three different concepts of error

detection and recovery schemes, namely filtration, consensus, and approval are incorporated

along with the conversation scheme. Filtration is implemented in the form of voting among

multiple (identical) copies of a process, consensus in the form of comparison among multiple

versions of a process, and approval in the form of conversation acceptance test. These are not

exclusive but are incorporated into the system at various stages.

In the next section the HHRH architecture is described and its characteristics are

discussed. A possible implementation of the architecture with the description of the system
components is also discussed. Section 3 presents a real-time control system scenario, the

SUVS, which is used to illustrate the software structuring strategies. The conversation scheme

along with other error detection and recovery schemes are incorporated in the SUVS. In

Section 4 three different process configuration and mapping strategies to the HHRH
architecture are proposed and compared. Section 5 presents the preliminary result on the

reliability and the communication overhead of various fault-tolerant configurations. Section 5
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is the summary section.

2. THE HYBRID HIGHER RADIX HYPERCUBE (HHRH) ARCHITECTURE

In this section the basic characteristics of the binary hypercube (or simply

hypercube in this chapter) architecture and the higher radix hypercube architecture are

reviewed. Then the Hybrid Higher Radix Hypercube (HHRH) architecture is proposed. The

architecture and a message routing scheme are described and the performance of the HHRH

architecture is analyzed. A possible implementation of the architecture with a description of the

system components is also given.

2.1 The Higher Radix Hypercube Architecture

2.1.1 Binary vs. Higher Radix Hypercube. The Hyperube structure can be visualized as a

cube of any dimension with a node at each comer. Each node typically has its own processing

unit, local memory, a communication processor, an optional floating point processor, a kernel

of the operating system and the application program. At the lowest level of the hypercube

family is the binary hypercube, for which the relation:

N = 2n  where N = number of nodes, and

n = dimension of the hypercube.

the success of the hypercube in parallel systems is a result of a number of suitable

features, some of which are unique to it [Sei84]: the ease of expansion by increasing the

dimensionality, the absence of memory contention, the flexibility of its interconnection scheme

allows embedding of other topologies, and the simplicity of routing messages. Moreover, the

fault tolerance capability in terms of the number of disjoint paths between any two nodes

increases as does the ratio of the communication to computation capability, with increase in the

network size.

As the proposed hybrid architecture is partially obtained by increasing the radix beyond

2, examined below is the resulting topology and the benefits obtained if any, as a result of

radix enhancement. Figure 1 shows the higher radix hypercube (HRH) [Bhu84] for N = 27, r

- 3. For this structure the following relation is true:
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N = rn or LogrN = n where N = number of nodes,

n = demension of the hypercube, and

r = radix
022 . 222

012

0021

221

0 1

0, 220

0(3 100200

Figure 1. The HRH with N=27 and r=3.

The interconnection scheme between the nodes is as follows: Given nodes

X = Xn-lXn-2 ..... Xi ..... XIX 0

and

Y = Yn-IYn-2 ...... Yi ..... YIY 0

then node X connects to node Y iff there exists a k such that

Xi <> Yi for i = k and Xi = Yi for all other i <> k
where Xi, Yi (0,1,2 .... (r-l)) and i, k (0,1,2 .... (n-1)).

2.1.2 Effect of the Radix on the Hypercube Performance. The radix of the hypercube affects

the parallel system characteristic parameters, such as diameter, degree of node, average node

distance, and message traffic density.
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(1) Diameter: The diameter, which is defined to be the maximum number of links that must be

traversed between any two nodes in the network provided that the shortest possible route is

chosen, can be shown to be:

Diameter = logrN

It should be noted that for a binary hypercube, the radix, r, is equal to two. It follows from the

above equation that by increasing the radix reduces the diameter for the same sized network.
This translates into a vital reduction in the maximum value for the message latency that is

brought about by reduced store-and-forward operations.

(2) Degree of node: The degree of a node is given by the following relation:

Degree = n*(r - 1)

As current technology supports more than an order of magnitude higher than the degree of

nodes in highly parallel systems, the increase with the radix does not pose a problem.

(3) Average Node Distance (AND): This parameter fAga86] is given by the relation:

AND = {d * (r-l)d* C(n d))/ (N - 1)

From the above equation, it can be shown that for the same sized network, an increase in the

radix reduces the average node distance.

(4) Message Traffic Density (MTD): By proper substitution in the definition, the MTD [Aga86]

for an HRH can be shown to be given by the following relation:

MTD = 2 * (AND)/(n*(r - 1))

The above relation confirms the decrease in the traffic density obtained by increasing the radix.

Considering the fault tolerance of the HRH, it is found that the number of alternate disjoint

paths is n*(r -1). Hence, more node and link failures can be tolerated in a network with a

higher radix.
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2.2 The Hybrid Higher Radix Hypercube (HHRH) Architecture

The major advantage of using the hypercube structure for designing fault-tolerant real-

time systems is the inherent redundancy provided in processors and communication links. As

the number of nodes increases, however, the distance between nodes (i.e., the number of
intermediate nodes between two communicating nodes) becomes longer. This long distance

not only increases the message traffic among the nodes but, more importantly, makes the

accurate prediction of the system behavior and performance difficult. The HRH architecture

remedies these weaknesses to some degree, there is yet a limitation.

The shared memory with bus architecture, on the other hand, seems more predictable in

its behavior and performance. However, it suffers from two problems: (1) the bus is a single

failure point, and (2) the bus may become a communication bottleneck of the system.
Therefore, a shared memory architecture is not suitable for some real-time applications which
requires ultra reliable computing and/or high communication traffic among nodes.

The Hybrid Higher Radix Hypercube (HHRH) architecture remedies these problems by

combining the hypercube structure and shared memory units. Processor nodes are partitioned

into clusters. Nodes in a common cluster communicate through shared memory but

communicate with nodes in other clusters by point-to-point connection. The shared memory

units not only provide high bandwidth to nodes within clusters but reduce the distance between
nodes in different clusters. Characteristics of the HHRH architecture are presented in the

following subsections. The discussion includes implementation of message routing and

performance analysis of the HHRH architecture.

2.2.1 The HHRH Architecture. Figure 2 illustrates a simplified diagram for the hybrid

network obtained by collapsing the least significant bits of an HRH with N =16, r = 4. The

components of Figure 2 are the nodes (00, 01, ... 32, 33), the cluster memory units (CMO,
CM1, CM2, CM3), and the links between the nodes and memory units. Nodes that are

directly connected to the same cluster memory unit are grouped as PCO, PC1, PC2 or PC3.

The overall topology between the processor clusters is that of an HRH, while the grouping of

the processor nodes of the HRH architecture into clusters makes it hybrid. The grouping is

accomplished by collapsing relevant bit positions. The nodes that have identical non-collapsed
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bits, irrespective of the collapsed bit values, belong to the same processor cluster and share the

same cluster memory. In Figure 2, for example, nodes 00, 01, 02, and 03 belong to the

processor cluster PCO and share the cluster memory CMO. Hence the collapsed bit positions,

i.e., the least significant digit in the case, can be thought of as "don't care" positions.

CLUSTER MEMORY CLUSTER MEMORY
C 1 CM2

01 02 03 PC3[30 31 2 33

CLUSTER MEMORY CLUSTER MEMORY
cmO0 CM 3

Figure 2. The HHRH with N=16 and r=4.

The hybrid system in addition to the underlying network includes the processor node,

cluster memory and the system manager.

(1) Processor Node: As mentioned earlier, the node at each corner of the cube consists of the
main CPU, a communication processor, a floating point processor and local shared memory.

An internal bus interconnects these devices. The communication processor handles all message

requests that require routing to other nodes as well as the cluster memory. The 1/O channels
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are connected via links to neighboring nodes in other processor cluster groups, and one

channel connects to the memory unit shared by all processor nodes in its cluster. Each node

also has storage for message requests in a buffer that is accessed on a FIFO basis by the

communication processor. Figure 3 is a typical node processor layout.

SHAREDMAIN MAIN
PROCESSOR MAINMEMOR~Y

m0

SYSTEM BUS

to neighbor- CLU OR
ing nodes & CHANNE
one channel LOCAL
to cluster MMR
memory.

to host via TPLEJt
ethernet CHANNE

FLOATING
COMMUNICATION POINT
PROCESSOR PROCESSOR

Figure 3. Node Processor Layout.

(2) Cluster Memory: The cluster memory is a high speed memory unit that consists of 2 sub-

devices: the message handler and the memory mailbox. Figure 4 is a block diagram of the

cluster memory shared by p node processors. The memory mailbox is a passive device that

stores messages at appropriate locations. These predesignated location addresses are stored in
a lookup table in the message handler. As each node has with it (p- 1) slots to post messages to

all possible nodes shared by the memory unit, a total of p*(p-1) slots exist. The message

handler is a dedicated unit for handling message requests for the cluster memory. Its hardware
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includes a processing unit, a message request buffer and I/O channels that connect to the

member nodes. Figure 5 shows the main components in the message handler unit. An

additional lookup table provides information on the read/write status for the message slots.

The message request buffer is accessed by the processing unit on a FIFO basis. The detailed

execution of the message handling is discussed in a later section.

ltrCluster Memory

P1 to P2
P1 to P3 From P1 to

* rest of the
P1 (p-i) nodes.

_ m P 1 to Pp 1

Message
Handler I

Pp to P1
Pp to P2 From Pp to

rest of the
_ _ _(p-i) nodes.

Pp to Pp-1

Memory
Mailbox

Figure 4. Cluster Memory Layout.
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Processing
Unit

High speed
Memory

P1 to P2,P3,..Pp
P2 to P1,P3,..Pp

MLook-up for
Messagest Slot Address

Buffer

Pp to P1,P2..Pp-I
P1 to P2,P3,..PD
P2 to PI,P3,..Pp

Look-up for
R/W Status

Pp to PI,P2..Pp-1

Channels

TO TO \ \Message Handler
Processor Memory
Cluster Mailbox

Figure 5. Memory Handler Layout.

(3) System Manager: This device is connected to the nodes in the network via a global

communication channel such as the Ethernet. The system manager has varied functions. It

serves as the administrative console and also acts as the gateway to the hypercube for the users.

It supports a program development system that includes compilers, simulators and vector tools

that users can access. In addition, the system manager is able to download data/instructions to
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the processors in the network in a short span of time.

2.2.2 Implementation of Message Routing. Prior to an in-depth discussion, it is important to

consider the assumptions made with respect to the routing procedure. It is assumed that the

mode of communication is packet switched and is further assumed that each message packet

has a message header. The message header has fields to hold attributes such as source and

destination addresses, source and destination process id numbers, message length and type etc.

The basic primitives employed are send and receive, and in addition some variation of

these. As the routing hardware is different for the links and the cluster memory, the

implementation also differs and is hence presented separately. The routing of messages over

the links is handled by the communication processor. It accesses the message request buffer

on a FIFO basis, and for each request obtains routing information from the header. It should

be noted that the necessity of global communication (via communication links) arises only

when the non collapsed bit positions of the source and destination do not match. The

communication processor at each intermediate node determines at least one non-matching bit

position and to reduce the disparity, routes the message via the appropriate channel to an

address that resembles the destination. Thus the same message is stored and forwarded at

several processor nodes. This sequence of events continues until all non-collapsed bits are

matched. Following this, the matchability of the collapsed bits is determined. If all these bits

match then the destination is the current node. Otherwise, a local transfer via cluster memory

will be necessary to complete the routing procedure. Message routing via cluster memory may

be initiated due to any of the following: (a) a node in the cluster has to send a message to

another node belonging to the same cluster, and (b) a node in the cluster, which is an

intermediary node in the complete route path has to forward a message to the destination node.

Consider the case when a node wishes to send a message via the cluster memory. The

communication processor at the sender node initiates handshaking with the message handler

unit in the cluster memory and upon success, the message is buffered in the request buffer.

The processing unit in the handler, like the communication processor at each processor node

accesses the buffer on a FIFO basis. Processing the request involves determining the address

slot for the source destination pair, and obtaining the Read/Write status for that slot.

Depending on the message type, the Read/Write status is interpreted to enable or postpone

message transfer. It should be noted that for each send request, a corresponding receive
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primitive must be inserted in the source code. It is important to also note that to prevent
queueing at the slots, a node does not initiate a second message to the same destination unless

the acknowledgement for the previous message is received.

2.2.3 Performance Analysis of the HHRH. The analysis of the HHRH necessitates the

redefining of certain terms, as the introduction of memory units must also be taken into

account. In the network analysis the following is obtained [Bha88].

(1) Hybrid Diameter: This parameter includes traversals via the memory units, while the rest of
the definition is identical to that of the diameter. For an HHRH, it is given as follows:

Hybrid diameter = (logrN) - x + 1 memory traversal

where x = number of collapsed bits

The hybrid diameter is further reduced as the size of the processor cluster is increased. There

will however be a performance as well as a physical restriction on this size.

(2) Degree of node: The presence of shared memory units that interconnect all nodes in a

particular cluster eliminates the need for any direct connection among them. This reduction

increases with the cluster size and hence the number of collapsed bits, and is given as:

Degree = n*(r -1) - (r- 1)x + 1

(3) Hybrid Average Node Distance (HAND): This parameter is also modified to accommodate
memory traversals as was the case for the diameter. Equating a memory traversal to a link

traversal, then for an HHRH the following is derived:

HAND = [1*{(rx-1) + C(n-xl)*(r-1)l1 +

2*((rX-1) + C(n-x 2 )*(r-1) 1 + C(n-x 2 )*(r-1) 2
} +

(n-x)*{ .............................. +
(n-x+l)*{(rX-1) + C(n-xn-x)*(r-1)n-x}]/(N - 1)

Upon substitution in the above equation, it is found that for x > 1, the average node distance
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for the HHRH is lower than that for an HRH with the same radix, and even greater difference

is found when a comparison is made to the binary hypercube.

(4) Hybrid Message Traffic Density (HMTD): The total number of paths in this definition of

the message density accommodates paths via links as well as cluster memory, and for the

hybrid HRH it is found to be:

HMTD = (2*HAND)/( (r- 1)*(n-x)+(rx - 1))

From the equation above, it is obvious that the traffic density is improved (i.e., lessened). If

the higher bandwidth of the memory were accounted for, the hybrid hypercube traffic density

would further reduce.

The fault tolerance capability, in terms of the number of disjoint paths, is found to be
* n*(r-1). This is the same as that obtained for a regular HRH, but is an improvement over the

binary hypercube. It should be noted that as the reliability of the paths is now greatly

dependent on the reliability of the memory units.

3. A REAL-TIME CONTROL SYSTEM

This section presents a real-time control system scenario, called the Simplified

Unmanned Vehicle System (SUVS). The system consists of interacting real-time processes.
The conversation scheme is incorporated in SUVS for error detection and recovery among the

interacting processes. The scenario is used to illustrate various process configurations and
mapping strategies to the HHRH architecture proposed in Section 4. The SUVS will be

implemented to be used as a testbed for experimental evaluation on the performance and time

complexity of process configurations and error detection schemes.

3.1 Simplified Unmanned Vehicle System (SUVS)

The SUVS consists of three different sets of tasks, i.e., sensor tasks (or sensors),

analyzer tasks (or analyzers), and actuator tasks (or actuators). (Note that we use the term
"task" here as a sequence of actions defined at the software specification level. A "process" is

an implementation of a "task" using a programming language.)
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(1) Sensors are input devices such as speedometer, engine temperature meter, direction

indicator, vision sensor, and road surface sensor. They periodically provide data to the

analyzer tasks.

(2) Analyzers process sensor data and include speed analyzer, direction analyzer, vision
analyzer, and surface analyzer. They make decisions which are forwarded to the actuators.

They also exchange information among themselves.
(3) Actuators are output devices such as brake, accelerator, handle, and camera handlers. They

receive commands from the analyzers and provide control to the system.

The information flow among these tasks is shown in Figure 6. In the following the

basic conversation scheme is briefly reviewed. Then the strategies of incorporation of the
conversation scheme into the SUVS are illustrated. Our discussion focuses on the
implementation of the analyzer tasks.

Sensors Speed Engine irectio Vision Surface
Meter Temp Id. Sensor Sensor

Analyzers Analyzrayr alyzer ay

Break ccelerato (Handle Camer

Figure 6. Information Flow of the Simplified Unmanned Vehicle System (SUVS).

3.2 Incorporation of the Conversation Scheme

3.2.1 The Conversation Scheme. The conversation is a two-dimensional enclosure of

recoverable activities of multiple interacting processes, in short, a recoverable interacting

session [Kim82,Ran75]. It creates a "boundary" which process interactions may not cross.
The boundary of a conversation consists of a recovery line, a test line and the walls defining

membership as shown in Figure 7. Each participant process contains one or more try blocks
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designed to produce the same or similar computational results as well as an acceptance test
which is a logical expression representing the criterion for determining the acceptability of the
execution results of the try blocks. A recovery line is a coordinated set of the recovery points
of interacting processes that are established (possibly at different times) before interactions
begin. A test line is a correlated set of the acceptance tests of interacting processes.

A conversation is successful only if all the interacting processes pass their acceptance

tests forming the test line. Therefore, the participants are allowed to leave the conversation
when all the participants have passed their acceptance iests. If any of the acceptance test fails,

all the processes roll back to the recovery line and retry with their alternate try blocks. These
alternate try blocks collectively define an alternate interacting session (AIS) where as the set of
primary try blocks executed first after the processes enter the conversation define the primary
interacting session (PIS). A process that has executed its try block and passed its acceptance
test is said to have finished its conversation task.

A process which is inside a conversation cannot interact with a process which is not in
the conversation. Conversations must be strictly nested in two dimensions. That is, when
conversation C.nest is nested within conversation C, the set of processes that participate in
nested conversation C.nest must be a subset of the processes that participate in C, the entire

recovery line of C.nest must be established after the entire recovery line of C, and the entire test
line of C.nest must be set before the entire test line of C. Mechanization schemes and
implementation strategies of the conversation scheme are discussed in detail in

[Kim82,Yan89].

The conversation scheme has been adopted as the basic fault tolerance mechanism to

be used with the HHRH structure. This choice was made because (1) the scheme deals with
recovery actions of interacting processes, (2) software redundancy is provided, (3) real-time

recovery is achievable, and (4) the scheme is relatively easy to implement.

3.2.2 Incorporation of Conversations into SUVS. In order to incorporate conversations into a

real system, the characteristics of the system (in terms of interaction among tasks) should be
carefully analyzed. This vehicle control system has the following characteristics. First, the
decision made by one analyzer affects the decision of other analyzer(s). For example, before
we change the direction of a car, we may have to reduce the speed, if the current speed is too
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fast. This means that the direction analyzer has to cooperate with the speed analyzer. Second,

the actions made by the system are not revocable. There may be cases where we cannot

compensate or change, even if we find a mistake immediately after an action was done.

Therefore, the output actions should be very carefully taken. Finally, any decision should be

made within a specified time under all circumstances. (Otherwise, the effect is the same as

driving a car while sleeping.)

A B C
recovery

time

side
wall

test
line

recovery point (RP)
acceptance test
try of process

A,BB(C : interacting process

Figure 7. Conversation.

The above three characteristics requires cooperation among the analyzer tasks to

properly control the real-time response of the system. Therefore, the following conversation

structure is proposed.

(1) Four analyzer tasks, i.e., speed, direction, vision, and surface analyzers, cooperate (i.e.,
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exchange information and preliminary decisions) to make decisions on any action.

(2) Output (to actuators) is made only when all of the analyzer tasks agree.

(3) Upon disagreement, the alternate algorithms (or alternate interacting session) are executed.

(4) If they don't reach any final agreement within a specified time or they have failed in all

alternate algorithms, the system goes into emergency mode and tries to stop the car in the safest

and fastest way.

The conceptual conversation structure and possible information exchanged among tasks

are shown in Figure 8. Note that the preliminary decisions made by the tasks are broadcast so

that this information may be used for the conversation acceptance test. The acceptability

criteria may include (1) whether the decisions made by the speed analyzer and the direction

analyzer conflict with each other, (2) whether the decision made by the vision analyzer conflicts

with the request made by the speed and/or direction analyzer, and (3) whether the analyzers

have made decisions based on correct information.

Speed Direction Vision Surface
Analyzer Analyzer Analyzer Analyzer

(3 't(4 )

(5- !(5 (1) Vision information
((2) Surface information

(3) Acceleration information

(4) Momentum information
(7 (5) Request for more

information as needed

(6) Response on request
(7 P (7) Preliminary decision

Figure 8. Conceptual conversation structure and information excahnge

among four analyzer tasks.
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4. PROCESS CONFIGURATION WITH CONVERSATIONS

This section investigates some possible process configuration and mapping strategies

relative to the HHRH architecture. The SUVS described in the previous section is used to

illustrate these strategies. Two forms of software redundancy and three concepts of error

detection and recovery schemes are incorporated in SUVS. Our objective is to achieve system

level fault-tolerance, both hardware and software, in consideration of communication and

synchronization overhead, reconfigurability after failure and real-time recovery.

4.1 System Configuration

As mentioned in the previous section, four analyzer tasks in SUVS run' concurrently

and participate in the same conversation every cycle of executions. They receive inputs from

the sensor tasks periodically and make decisions based on current inputs and status under strict

timing constraints. These four tasks are to be implemented on the HHRH architecture

described in Figure 2. Since there are sixteen nodes in the system, quadruple redundancy can

be achieved if each node runs one task. Software redundancy is thus incorporated in two

different forms.

(1) Multiple identical copies of processes: Since quadruple redundancy is provided, we may

have up to four identical copies of each process running on different nodes.

(2) Multiple versions of processes: Different versions of processes are provided in the form of

alternate try blocks in conversations.

Three different concepts of error detection and recovery schemes, namely filtration,

consensus, and approval are also incorporated. Filtration is implemented in the form of voting

among multiple copies of a process, consensus in the form of comparison among multiple 0

versions of a process, and approval in the form of conversation acceptance test. These are not

exclusive but incorporated into the system at various stages. In the following subsections we

present three different process configuration and mapping strategies of the SUVS. Advantages

and drawbacks of each strategy are also discussed. 0

4.2 Configuration I: Clusters of Conversations
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With this configuration each cluster (i.e., four nodes with shared memory) runs a

complete set of processes of the system. As shown in Figure 9, four clusters run identical

software simultaneously. Therefore, we may view the system as the collection of clusters,

each cluster performs the complete functions.

CLUSTER MEMORY CLUSTER MEMORY
Im I C

CM 0 CM 3

Figure 9. Configuration I: Clusters of conversations.

Since we have quadruple redundancy in software as well as hardware it is possible to

incorporate the voting mechanism into various stages of computations and/or communications.

(Note that the voting is done independently from the conversation acceptance test. Therefore,

these different types of checking mechanisms can improve the system reliability significantly.)

For example, we may design the system such that four identical copies of a process take a vote

for every message from one process to another. Or we may design the system such that four

identical copies of a process take a vote only for the output to the actuator tasks. It is hoped

that errors due to hardware failure are masked by voting among multiple (four in this case)

copies of a process. Software fault, on the other hand, is assumed to be detected by the

conversation acceptance test (CAT). As mentioned in the previous section the CAT is done for

the decisions made by the four analyzer tasks before the decisions are output to the actuator
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tasks. Upon failure of the CAT, alternate try blocks provided in each process are executed.

The major advantage of this configuration is the modularity of each cluster. Since each

cluster performs the complete functions little modification is required when clusters are added
into the system or removed from the system . (The only change expected is the voting

mechanism.) Therefore, reconfiguration after failure is easy. Another advantage is the fast

communication among a set of processes within the cluster through the shared memory. That

is the interactions among processes within conversations are done through the shared memory.
However, the cost of communication among the identical processes for voting is high. This is

because each message is passed through a point-to-point connection among four identical

processes. Therefore, the communication overhead would be significant if we want to
incorporate voting logic frequently (e.g., voting for every message from one process to

another).

4.3 Configuration II: Clusters of Processes

Another way to configure the system is to have each cluster run multiple identical

copies of a process. As shown in Figure 10, each cluster runs four identical copies of a
process in this configuration. Therefore, the number of clusters should be the same as the

number of different processes in the system.

The same error detection and recovery schemes (i.e., the voting among multiple
identical copies and the CAT) can be incorporated in this configuration. Since the multiple

copies of a process reside in a cluster and communicate through shared memory, the cost of
voting among those processes is relatively small compared with the previous configuration.

However, communication cost among the four analyzer tasks is high. Also crash of shared

memory leads to very clumsy communication among multiple identical copies of a process.

4.4 Configuration III: Parallel Executions of Conversations

With the previous two configurations it is inevitable that all processes roll back and

execute the alternate interacting session if CAT fails. (Voting among identical copies of a
process cannot detect or mask the failure due to errors in software design and/or

implementation.) In some applications, however, because of strict response time requirement
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rollback and retry may not be tolerable. One way to handle this problem is to execute the

different versions of software (i.e., alternate interacting sessions in this case) simultaneously

and take the result of the alternate version if the primary version fails to produce the acceptable

result.

CLUSTER MEMORY CLUSTER MEMORY

1 10mI I I M -
pC, [P2 P2 P C2 P3 P3 P3 P3

P1O PI PI PC3 [4 P4 P4I P4

CLUSTER MEMORY CLUSTER MEMORY
CM 0 1CM 3

Figure 10. Configuration II: Clusters of processors.

Figure 11 shows one possible configuration of parallel execution of conversations.

(Assume that each process is designed with one primary try block and one alternate try block.)

As shown in the figure, Clusters 0 and 1 run primary try blocks (i.e., primary interacting

session) of the four analyzers, whereas Clusters 2 and 3 run the alternate try block (i.e.,

alternate interacting session). Should none of the primary try blocks (running on Clusters 0

and 1) succeeds in producing the acceptable result, one of the results produced by the alternate

try blocks will be output to the actuators. Since rollback and retry is not required even if there

are errors in the primary try blocks this configuration is especially good for time critical

applications. It is also possible to incorporate other error detection and recovery schemes, i.e.,

voting and comparison. Figure 12 shows one possible process configuration with three error

detection and recovery schemes. In the upper half of the figure there are four analyzer
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processes, each with four identical copies. These four copies of a process take a vote for a

message to be transmitted to other analyzer process(es). At the end of every conversation the
CAT is performed for outputs to the actuators. In the bottom half of the figure there is another

set of processes with the same configuration but run different versions of processes. The

results of the two sets (i.e., the set of primary versions and the set of alternate versions), if

both have passed in their CAT's, are compared before the results are finally output to the

actuators. By comparing these results we can possibly detect errors that have not been detected

by the CAT. If one of them fails in the CAT or does not produce the results within a specified

time (or timeout) the results produced by the other set are immediately output.

I I I I I

PC 1 P2 P3 P4 PC2 P1' P 4

)0

Figure 11. Configuration III: Parallel execution of conversations.

4.5 Discussion

This section described three possible process configuration and mapping strategies to

the HHRH architecture shown in Figure 2. Two forms of software redundancy and three

different concepts of error detection and recovery schemes, namely filtration, consensus, and
approval are incorporated within each configuration. In the first configuration each cluster runs
a complete set of processes of the system. In the second configuration each cluster runs
multiple identical copies of a process. In the third configuration each cluster runs a complete

set of processes, but different versions simultaneously. Although each configuration has its
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own merits and drawbacks the third configuration seems the most attractive approach

(especially for time critical applications) because the rollback and retry is not required. This is

yet determined based on careful analysis of timing aspects, i.e., worst-case execution time and

the response time limit (or deadline).

Multiple identical copies
(running on different nodes)* /

Analyzer Tasks
(Version 1) (vi)ectia Vision urface

Interaction among 1 i VOTING

Output~ _ _-m-

actuators CONVERSATION ACCEPTANCE TEST

COMPARISON

10 CONVERSATION ACCFEPrANCETE'

Spe eto Vision urface

Analyzer Tasks,

(Version 2)

Figure 12. Three error detection schemes with Configuration IIl.

One of the major factors to be considered for incorporating these approaches is

communication and synchronization overhead. Since the HHRH architecture provides two

different communication paths, i.e., shared memory and point-to-point connection, the

communication cost should be carefully analyzed. Another design consideration is to

incorporation of the timeout mechanism. The timeout mechanism is required for every

synchronization stage to avoid lockup of other processes. The proper timeout period should be

determined based on the analysis of the system behaviour. It is also important to consider the
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cases where no agreement is reached among processes (in the case of voting or comparison) or

no acceptable result is produced (in the case of CAT). Analyses on the reliability and

communication overhead of on different configurations and implementation strategies (in terms

of design and implementation cost, runtime cost, timing aspects, and reliability) are under

study. Some preliminary result is discussed in the next section.

5. Analysis of Reliability and Communication Overhead

In this section, the reliabilities and the communication overhead are analyzed under the

six cases, i.e. three message passing structures for two process configurations, Configuration I

and Configuration II, described in Section 4.

5.1 Message Passing Methods

We considered three different message passing structures. Under Structure 1 as

shown in Figure 13(a) a message is forwarded without voting to the directly connected

receiving node. The structure is very simple to implement, but fault is propagated.

A message is forwarded after a voting under Structure 2 as shown in Figure 13(b).

One node (among four sending nodes) is designated as a voter which takes a majority vote

against the four outputs. The voted message is forwarded to one of the four receiving nodes,

which forwards the message to the remaining three other receiving nodes. Under this

structure it is necessary to provide the mechanism for the redesignation of the voter when the

original voter fails.

Under Structure 3 shown in Figure 13(c) voting is done by the four receiving nodes.

Each sending nodes forwards a message to the directly connected receiving node. Then the

receiving nodes exchange the received message among themselves and take a majority vote.

This message passing structure can mask fault made during the communication as well as

faults made by the sending node. However, the structure suffers from the communication

overhead.
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Pi(1) Pi(2) Pi(3) P1(4) Pi(l)-"-Pi(2) Pi(3) Pi(4) Pi(1) Pi(2) Pi(3) Pi(4)

Pj(1) Pj(2) Pj(3) Pj(4) Pj(1)-a-Pj(2) Pj(3) Pj(4) P-(1j!%..Pj(2j!!%.Pj(3Y (4)

(a) Message passing without voting (b) Voting before message passing (c) Voting after message receiving

Figure 13. Message Passing Structures.

* 5.2 Analysis

Failure rates of node, link, and cluster memory are assumed to be 1O- 5 , 10-6, and

10-7 per hour, respectively. In order to a message to be reliable, it is assumed that at least

* two nodes among four receiving nodes must receive a correct message from the sending

node. Let R be the reliability of a message passing at a mission time t. Then the

combinatorial reliability models [Joh88] for the three structures are as follows:

* Message Passing Structure 1:

Configuration 1:
R R2-of-4 (Rnode * RCM)

=3exp(-4.04t * 10-5) - 8exp(-3.03t * 10-5) - 6exp(-2.02t * 10-5)

* Configuration 11:
R =R2-of-4 (Rnode * Rlink)

=3exp(-4.4t * 10-5) - 8exp(-3.3t * 10-5) - 6exp(-2.2t * 10-5)

The fault propagation should be considered in this structure. For example, the reliabilities in

* second step can be changed as follows:

Configuration 1:
R =R2-of-4 (Rnode * RCM * Rnode *RCM)

=3exp(-8.08t * 10-5) -8exp(-6.06t *10-5) + 6exp(-4.04t * 10-5)

* Configuration HI:
R = R2-of-4 ( Rnode * Rlink * Rnode *Ririk)

= 3exp(-8.8t * 10-5) - 8exp(-6.6t * 10-5) + 6exp(-4.4t * 10-5)
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Message Passing Structure 2

Configuration 1:
R =RA2 * RCm * R I-of-3 (Rlink)

R RI -f-3 (Rnode * Rlink) * Rnode * RCm * RlI-of-3 (Rlink)

=(exp(-4.31t * 10-5) - 3exp(-3.21t * 10-5) + 3exp(-2.l It * 10-5)) * (exp(-3t * 10-6)

- 3exp(-2t * 10-6) + 3exp(-t * 10-6))

Congiguration IL:
R = RAI * Rlink * RI-of-3 (RCM)

= R I-of-3 (Rnode * RCM) * Rnoyie *Rlink * R I -f-3 (RCM)

= (exp(-4.13t * 10-5) - 3exp(-3.12t *10-5) + 3exp(-2.l It *10-5)) *(exp(-3t *10-7)

- 3exp(-2t * 10-7) + 3exp(-t * 10-7))

Message Passing Structure 3

Configuration 1:
R = R2.0 f..4 (RCM * RA2)0

= R2-of-4 (RCM * R1I-of-3 (Rnode *Rlink) *Rnoyde)

= 3D - 8D + 6B

where
D = exp(-4.31It * 10-5) - 3exp(-3.21It *10-5)

+ 3exp(2.I It *10-5)

Configuration II:
R = R2-of-4 (Rlink *RAI)

= R2-of-4 (Rlink * I -of-3 (Rnode *RCM) * Rnoyde)

= 3B 4 - 8B 3 -6B 2

where

B = exp(-4.13t * 10-5) - 3exp(-3.12t * 10-5) + 3exp(-2.llIt *10-5)

The result confirms that Message Passing Structure 3 is the best in terms of reliability.

We also analyze the communication overhead assuming that the message passing time in point-

to-point connection is 600 jisec (this is the average latency of iPSC/2 [Aga86I) whereas that via

cluster memory is 50 pgsec. From the result we can make the following conclusions:

Configuration I is generally more reliable than Configuration II. However, communication

overhead of Configuration I is generally higher than that of Configuration 11. More detail

analysis on reliability and communication overhead is reported in [Yoo891.
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6. Summary

This chapter reports part of our effort to develop practical design and implemntation

approaches for ultra reliable, fault-tolerant computers for critical real-time applications. The

proposed appoaches are intended for system-level fault-tolerance, both hardware and software,

in parallel and distributed systems. We proposed a hybrid parallel architecture, called Hybrid

Higher Radix Hypercube (HHRH) architecture, and process configuration and mapping

strategies relative to the HHRH architecture. The HHRH architecture is attractive because it is

well suited for ultra reliable, real-time applications due to (1) high bandwidth and predictability

in communication between nodes (speed and predictability are the most important factors in

real-time systems), (2) inherent redundancy which is essential for fault-tolerant computing, and

(3) reconfigurability as required by many applications. We are investigating efficient and

reliable message routing algorithms on HHRH architecture. The algorithm should find the

optimal path between the sender and receiver in the presence of failures in nodes, links, and/or

cluster (or shared) memories. The timing aspects of the proposed algorithm will also be

analyzed.

The conversation scheme has been adopted as the basic fault tolerance to be used with

the HHRH MPS. A real-time control system scenario, the SUVS, is used to illustrate process

configuration with conversations. (As part of the experimental study, C version of SUVS is

being implemented on a network of six SUN 3/60 workstations at the University of Texas at

Arlington.) Along with the conversation scheme three different concepts of error detection and

recovery schemes are incoporated at the various stages of computations and/or

communications. An important design consideration is how to coordinate these schemes

within the system to maximize the reliability in consideration of implementation and runtime

cost.

Although our discussion was based on the SUVS, we believe that the architecture,

process configuration strategies, and error detection and recovery schemes are applicable for

the design of most fault-tolerant real-time applications in distributed/parallel environments.

Experimental as well as analytical evaluation is yet required on the performance (in terms of

reliability increase) and time complexity of various process configurations and error detection

schemes. We leave these problems for future research.
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1. INTRODUCTION

Since the concept of conversation structuring was introduced in an abstract form as an

approach to facilitating cooperative recovery in systems of interacting processes [Ran75],

continuous research efforts have been invested to convert the concept into a practical technology.

For example, several mechanized structuring schemes containing practical language syntax and

associated precise semantics have been formulated [Cam83,Gre85,Kim82,Rus79]. Subsequently,

some practical language processing systems have been produced [Kim85], a "recovery

metaprogram" has been proposed for efficient design of conversations [Oza881 and the execution

costs of conversations have been studied [Kim89]. Conversation design schemes using Petri Nets

have also been studied [Tyr86, Wu89]. In [Man89] an attempt is made to utilize some well-known

object replication techniques in design of communicating processes with conversation structures.

However, experimental studies of the scheme have been scarce and have not yet progressed

to the point of producing concrete results. Moreover, techniques for efficient implementation,

especially in distributed computer systems (DCS's), have not been much studied either. This

chapter presents issues in implementing conversations in DCS's together with some efficient im-

plementation approaches. While some of the issues discussed in this chapter are common to both

tightly coupled parallel processing networks and loosely coupled DCS's, others are unique to the

latter types of systems due to the major difference in the inter-process communication costs

between the two types of systems. The following three cost factors should be carefully considered

in such an implementation.

The first factor is the cost of communication between remote processes. In selecting an

efficient implementation strategy for the conversation scheme, the interprocess communication cost

plays an important role as will be elaborated in this chapter. The communication cost is primarily

determined by the network structure adopted, i.e., network topology, communication medium, and

protocol used. In this chapter "message-based DCS's", in which computing nodes communicate

with each other via message passing, are considered.

The second factor is the cost of synchronizing processes at the exit of a conversation. As

shown in [Kim89], this cost can have significant impact on the performance of the conversation

scheme. To reduce this cost, the approach of conversation lookahead, (allowing asynchronous

exits from the conversation) was studied in IKim89I for its potential performance impacts based on

an analytic model. The conversation scheme extended with the lookahead capability is called the

asynchronously exited conversation scheme whereas the conversation scheme with no lookahead is

called the synchronously exited conversation scheme. Under the synchronously exited
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conversation scheme, all processes are synchronized at the end of each conversation, i.e., no pro-

cess is allowed to exit from the conversation earlier than other processes even if the process has

passed its acceptance test. On the other hand, under the asynchronously exited conversation

scheme processes are allowed to exit from the conversation as they finish their tasks, but the

exiting processes maintain the capabilities for their rollback to the beginning of the conversation

until all processes have passed their acceptance tests and exited from the conversation.

The third factor is the cost of designing and executing the conversation acceptance test

(CAT). In a single-node multiprocess system, the choice between the centralized CAT (i.e., one

participant takes care of the non-local acceptance test routine) and the decentralized CAT (i.e., each

participant has its own acceptance test routine), has relatively insignificant effect on the system

performance. However, in a message-based DCS, the CAT choice affects the system

performance to a significant extent. In this chapter, three different approaches to design and

execution of CAT's, centralized, decentralized, and semi-centralized, are discussed.

In the next section, approaches to the implementation of synchronous and asynchronous

exit control strategies are introduced and the pros and cons of each approach are discussed. An

efficient approach to run-time management of recovery information based on an extension of the

recovery cache scheme is also discussed. In Section 3, three different CAT execution approaches

are presented. The effectiveness of different execution approaches also depends on the way con-

versations are structured by program designers. The cases of using two different basic types of

conversation structures, Name-Linked Recovery Block (NLRB) and Abstract Data Type (ADT)

Conversation, are examined in Sections 4 and 5 respectively, in order to analyze the effectiveness

of the execution approaches discussed earlier. In spite of the passage of a considerable amount of

time since the publication of the first paper that proposed the concept of conversation structuring

[Ran75], practical illustrations have been scarce. In Section 6, an unmanned vehicle system is

used to illustrate how the approaches discussed in earlier sections for implementation of the

conversation scheme can be used in a realistic real-time application. Section 7 is the summary

section.

2. SYNCHRONOUSLY EXITED AND SYNCHRONOUSLY EXITED CONVERSATIONS

This section starts with a brief description of the conversation structure. Then the

characteristics of synchronously exited and asynchronously exited conversations are discussed.

These two approaches are quite different in terms of their impacts on system performance and

complexity. A brief comparison is made at the end of this section.
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2.1 Basic logical structure of the conversation

A conversation is a two-dimensional enclosure of recoverable activities of multiple

interacting processes, in short, a recoverable interacting session [Kim82, Ran75]. It creates a

"boundary" which process interactions may not cross. The boundary of a conversation consists of

a recove line, a test line and the walls defining exclusive membership as shown in Figure 1.

Each participant process contains one or more try blocks, i.e., program blocks designed to produce

the same or similar computational results, as well as an acceptance test which is a logical ex-

pression representing the criterion for determining the acceptability of the execution results of the

try blocks. A recovery line is a coordinated set of the recovery points of interacting processes that

are established (possibly at different times) before interactions begin. A test line is a correlated set

of the acceptance test excution-points of interacting processes.

A B Crecove.

time

wallside
wall ,

test
line

E recovery point (RP)
acceptance test
try of process

A,B(C : interacting process

Figure 1. Conversation (adapted from [Kim82]).

A conversation is successful only if all the interacting processes pass their acceptance tests

forming the test line. Therefore, the participants are allowed to leave the conversation when all the

participants have passed their acceptance tests. If any of the acceptance test fails, all the processes

roll back to the recovery line and retry with their alternate try blocks. These alternate try blocks

collectively define an alternate interacting session (AIS), whereas the set of primary try blocks
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executed first after the processes enter the conversation define the primary interacting session
(PIS). A process that has executed its try block and passed its acceptance test is said to have
finished its conversation task. A process which is inside a conversation cannot interact with a
process which is not in the conversation. Conversations must be strictly nested in two
dimensions. That is, when a conversation Cnest is nested within another conversation C, the

following conditions must be satisfied:
(1) the set of processes that participate in nested conversation Cnest must be a subset of the

processes that participate in C,
(2) for each process the point of entry into Cnest must be after the point of entry into C and thus in
a sense the recovery line of Cnest is always established "after" the recovery line of C, and

(3) for each process the acceptance test execution-point for Cnest must precede that for C and thus
the test line of Cnest is always set before the test line of C.

2.2 Exit control

In the basic conversation scheme sketched above, processes enter a conversation

asynchronously but synchronize themselves before exiting from it. The synchronization

considered here is of a special kind specifically required by the conversation scheme and thus is
different from the application-dependent synchronization required between cooperating processes.
The synchronization can add significantly to the time cost of the conversation scheme. A

fundamental approach to reducing the synchronization overhead is the lookahead. Under the
lookahead approach each participant process leaves the conversation as soon as it passes its own

acceptance test. It does so with the awareness of the possibility that another participant may
execute an acceptance test later and fail in the test thus making it necessary for the former to roll

back to the recovery line of the conversation. Therefore, the lookahead approach here is an opti-
mistic approach and is aimed at trading increase in recovery costs for reduction of synchronization

overhead.

Although it is logically feasible to make provisions for a participant process to execute
beyond the unfinished conversation to an unlimited extent, it is a sensible choice to limit the extent
of the lookahead with respect to controlling the implementation complexity. In addition, the
lookahead should not be allowed to go past the points where critical irreversible actions, e.g.,
certain critical output actions, are taken. In this chapter, the cases where lookahead is allowed to
limited extents are considered.

The conversations which are executed under the lookahead permitting strategy are called the
asynchronously exited conversations whereas those executed where the lookahead is not permitted
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are called the synchronously exited conversations. Although the concepts of synchronously exited

and asynchronously exited conversations were introduced in earlier papers
[Kim76,Kim89,Rus79], their implementation techniques were not studied in depth. Finite state

machine representations of both conversations that can be useful in implementing the conversations

are introduced below.

* A synchronously exited conversation may transit among the following five different states:

(S 1) null: None of the participants have entered into the conversation.
(S2) on-going: There is at least one participant which is executing its conversation task.

(S3) passed: All the participants have passed their acceptance tests.

(S4) session failed: At least one participant has failed in its acceptance test.

(S5) conversation failed: The conversation has failed due to the failures of all alternate interacting

sessions.

Figure 2 shows possible changes in the state of a synchronously exited conversation. Once a

participant process fails in its acceptance test (transition (3) in the figure), all the participant

processes abandon the try with the current interacting session and later start a retry with the next

alternate interacting session.

In the case of an asynchronously exited conversation, a process that has exited from a

conversation CI via lookahead may enter another conversation C2. If some slow progressing

participants of CI are not participants of C2, then it is possible that C2 activities including ac-

ceptance tests are completed while C1 remains unfinished. In such a case, C2 should be treated as

an unfinished conversation until Cl becomes completed. This is because if CI fails, then all C2

activities that have taken place must be nullified as a part of the rollback to the recovery line of C1.

Definition 1: A conversation is validated if all the participants of the conversation have passed their

acceptance tests.

Definition 2: When a process exits from a conversation and enters another conversation, the latter
(the former) conversation is said to be logically after (before) the former (the latter) conversation.

On the other hand, when a process in a conversation enters another (nested) conversation (without

exiting from the former conversation), the newly entered nested conversation has no logical

ordering relationship with any order earlier entered conversations.

Definition 3: A conversation CONV is completely validated (1) if CONV has been validated and
there is no other conversation which is not only logically before CONV but also in the on-going

state, or (2) if CONV has been validated and all other conversations which are logically before

CONV have been completely validated.
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•0

null session
(fu) failed

(SO

(0g) conversa -tion failed

(2)f

(1) Start execution of the primary interacting session.
(2) All the participants have passed their acceptance tests.
(3) A participant has failed in its acceptance test.
(4) Start execution of the next alternate interacting session.
(5) A conversation has failed due to the failures of all interacting sessions.

Figure 2. Change in the state of a synchronously exited conversation.

Definition 4: A conversation CONV is partially validated if CONV is neither in the on-going state

nor in the completely validated state. To be more specific, a conversation CONV is partially
validated if CONV has been validated and there is at least one conversation which is not only

logically before CONV but also in the on-going state.

For example, in Figure 3 conversations CONVI, CONV2 and CONV3 are logically before

CONV4. Therefore, CONV4 r---not be completely validated (even if it has been validated) until all
of its logically earlier conversations CONV 1, CONV2 and CONV3 become completely validated.
Also, CONV5 is logically before CONV6. However, CONV5 and CONV6 have no ordering
relationship with any other earlier entered conversations (i.e., CONV 1, CONV2, CONV3, and

CONV4 in this example). Therefore, CONV6 becomes completely validated if it has been
validated and CONV5 has been completely validated.
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Figure 3. An example of asynchronously exited conversation.

An asynchronously exited conversation may, therefore, transit among the following six

different states as shown in Figure 4.

(S 1) null: None of the participants have entered into the conversation.

(S2) on-going: There is at least one participant which is executing the conversation task.

(S3) partially validated:

(S4) completely validated:

(S5) session failed: At least one participant has failed in its acceptance test.

(S6) conversation failed: The conversation has failed due to the failures of all interacting sessions.

In Figure 4 the transition (2) means that the on-going or partially validated conversation is

nullified when one of the participants must roll back to an older conversation. For example, in

Figure 3 Processes A and B participate in CONVI. Then Process B participates in CONV3.

Suppose Process A fails at t after Processes B and C completed CONV3 (that is, CONV3 has

been partially validated). This results in CONV3 being nullified since Process B has to roll back to

the recovery line of CONV1. If a retry of the older conversation (i.e., CONV 1) is successful,

Process B and C may again execute the conversation (i.e., CONV3) with their primary try blocks

(transition (1) in Figure 4).
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(2) ng)tcnonversa-
tion failed
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(1) Start execution of the primary interacting session.
(2) Conversation execution is nullified due to the rollback of a participant to an

older conversation.
(3) All the participants have passed their acceptance tests but there is at least one logically

earlier conversation which is in the on-going state.
(4) All the participants have passed their acceptance tests and there is no logically earlier

conversation which is in the on-going state.
(5) A participant has failed in its acceptance test.
(6) All logically earlier conversations have become completely validated.
(7) Start execution of the next alternate interacting session.
(8) A conversation has failed due to the failures of all interacting sessions.

Figure 4. Change in the state of an asynchronously exited conversation.

Intuitively, the system performance would increase if asynchronous exits of the participants

are allowed. The performance improvement would be particularly conspicuous when the

acceptance test failure probability is very low (making the rollback infrequent) and the number of

participants is large (making the synchronization overhead substantial). A previous analytic study

on the performance of the conversation scheme based on a queueing network model [Kim89]

confirmed this property. It also showed that the performance of a system would be significantly

affected by the synchronization required of the processes in exiting from a conversation, not by the

failure probability of each process. For example, suppose a process is allowed to make "one con-

versation lookahead", which means that a process can continue lookahead as long as it has not

111-9



exited from more than one unfinished (i.e., on-going or partially validated) conversation. The

analytic study based on a queueing network model showed that by allowing one conversation

lookahead the performance could increase about 46% when the number of participants is six, the

failure probability is almost zero, and the amount of computation that a process performs inside a

conversation is on the average about 10% of the total computation the process performs. On the

other hand, the performance would decrease only 2% when the failure probability increases from

zero to 0.05 (which is higher than that of most practical systems) and other parameters including

synchronous exit remain unchanged. (Further details are referred to [Kim89].)

2.3 Management of recovery information

Under the asynchronous exit approach, the information needed for rollback, e.g., try block

entry-points, prior values of the non-local variables which have been changed after the process

entered the conversation, etc., should be kept until the conversation is completely validated. To

keep this information, each process maintains a table called the "conversation record" for each

unfinished conversation. The entries of the conversation record are shown in Figure 5. The table

is created when the process initially enters the conversation and removed when the conversation

becomes completely validated.

L conversation id conversation id

participant id participant id
and CAT results and CAT results

rollback point rollback point
(instruction pointer)

pointer to the pointer to the
recovery cache recovery cache

link to next table link to next table

Figure 5. Conversation record.

The conversation records are linked hierarchically as they are created. All partially validated or

on-going level-0 conversations (i.e., conversations with no parent conversations) are linked

linearly. The conversation record of a nested conversation (i.e., level- 1 conversation which is
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immediately nested within a level-O conversation or lower level conversation) is linked under its
parent record. Therefore, records of various unfinished conversations (including partially
validated conversations) are in general related in the form of a tree. Figure 6.a illustrates nested

conversations and Figure 6.b shows how the conversation records are managed in Process B
under the following scenario: (In Figure 6.b a solid box represents a conversation record for an on-

going conversation, a dotted box for a partially validated conversation, and a shaded box for a

completely validated conversation.)

(a) Process B is executing a level-1 conversation CONV2, i.e., CONV 1 and CONV2 are on-

going conversations.
(b) Process B completed CONV2 and then CONV1 while Process A has completed CONV2.
Therefore, CONV2 has been completed validated within CONV1.
(c) Process B has entered another level-O conversation CONV3 while Process A is still executing

CONV1.

Processes

A B C D
CONVI - "

time ~ CONV2 -- _

timeI

F --- CONV4

SCONV5

CONV6 I' I

CONV7_ __

Figure 6.a. An illustration of nested conversation. S
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* OOiVN1 COVI CONV 4 IP 2 J4

Lj~j~ LvQ.0 H
ONV2

(a) (b) (c) (d)

L L

F NIWCONV3 CONV4 CONV

L

*OV CONV

(g) (h)

I I n g partially completelyon-going L - J validated validated

Figure 6.b. Conversation record structure for nested conversations.
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(d) Processes B, C and D completed CONV3 and have entered another level-O conversation

CONV4. CONV3 has been partially validated since CONV I which is logically before CONV3 is •

still on-going.

(e) Processes B and C entered and completed CONV5, have entered CONV6, and then CONV7

(a level-2 conversation). Therefore, CONV5 was completely validated within CONV4 and

CONV6 and CONV7 are on-going. CONV 1 has not been completely validated yet, because

Process A is still in CONV I.
(f) Process A has finally completed CONVI. CONV3 becomes completely validated since its

logically earlier conversation, CONV 1, has been completely validated. The conversation records

of CONV 1 and CONV3 are removed from the link. 0
(g) Processes B and C have completed CONV7. Therefore, CONV7 is completely validated

within CONV6.
(h) Processes B, C and D have completed CONV6. CONV4 is now the only on-going

conversation.

Another implementation consideration is how to keep the original values of non-local
variables that have been modified after the process entered a conversation. An approach, which is

an extension of the recovery cache scheme developed in [Hor74, And76] to facilitate efficient

execution of recovery blocks, is discussed here. Under the recovery cache scheme a special run-

time stack, named a cache stack, is used to save the old values of non-local variables. When a

non-local variable is assigned a value for the first time after the process execution has gone past a

recovery point, the existing value together with the variable name is saved into the top region of the

cache stack. Therefore, using the values in the top region of the cache stack, the process can roll

back to the recent recovery point. This also means that whenever a non-local variable is to be

assigned a value, it must be checked whether it is the first assignment after a recovery point. In

the rest of this subsection we briefly discuss how the recovery cache can be extended to facilitate

conversation execution.

The cache stack of an ordinary stack structure for each process is sufficient for facilitating

synchronously exited conversations. However, that is not the case for facilitating asynchronously

exited conversations. The reason is because the stack needs to shrink in two directions: (1) to

shrink from the top when a process has to roll back, which requires restoration of the modified

non-local variables, and (2) to shrink from the bottom when the oldest conversation has been

completely validated, which requires discard of the old values. Assume that no nested

conversations are used for the time being. In a normal situation (i.e., when there is no fault) the

stack grows in one direction (when the old values of non-local variables are saved in the stack) and
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shrinks from the other direction (when the saved old values are discarded from the stack).

Therefore, this type of data structure can be implemented as a stack with the "leaking" base and the

two pointers associated with the stack, "stack-top" and "stackbase", are dynamically changing.

The stack consists of stack-segments, each created when the host process enters a new

conversation.

When a process enters a conversation the current stacktop is saved in the conversation

record of the newly entered conversation, more specifically, the "pointer to the recovery cache"

field shown in Figure 5. Suppose the process needs to roll back to the beginning of the

conversation which has failed or been nullified. The values of non-local variables saved in the

segment(s) of the cache stack delimited by the current stack__top and the recovery cache pointer in

the conversation record, are restored. (If the same variables appear more than once in the

segment(s), then the oldest values should be restored.)

In the cases of nested conversations (i.e., level- I or lower level conversations), even after a

nested conversation is completely validated within its parent conversation, the values of the non-

local variables which have been modified within the nested conversation should be kept until its

parent conversation becomes completely validated. In other words, the segment which belongs to

the nested conversation in the recovery cache stack gets merged into the segment belonging to the

parent conversation. When two stack segments get merged into one, the same variables may

appear twice, one appearance in the segment of the nested conversation and the other appearance in

the segment of the parent conversation. There are two approaches to handling this problem: (1)

discard the useless values (the younger ones) immediately, or (2) keep the younger values as they

are in the stack until the entire merged segment becomes useless. Under the second approach if the

restoration of the variable becomes necessary (due to rollback), the younger values are simply

discarded without being used. Although the first approach saves some memory space, the run-

time overhead under the approach is higher than under the second approach. Therefore, the second

approach seems more suitable for real-time applications. (In fact, if the first approach is to be

pursued, then it is generally more storage-efficient to use a tree of cache stacks in which each stack

is used in support of one conversation only.)

In Figure 7.a, CONVI and CONV3 are level-O conversations and CONV2 is a nested

(level-i) conversation within CONVI. Suppose that in Process B

(1) non.local variables p, q, and s are assigned new values within CONVI;

(2) non-local variables q and r are assigned new values within CONV2;
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(3) non-local variables r and t are assigned new values after completion of CONV 1 and before
entry into CONV3; and
(4) non-local variables q and u are assigned new values within CONV3.

Figure 7.b shows how the recovery cache stack is managed at run-time in Process B. The
stack grows in the upward direction. The left column is for variable names and the right column is

for saved values.
(bl) Initially both the stack-top and the stack-base point to the bottom of the stack.
(b2) Process B is about to enter CONV2.
(b3) Process B is about to leave CONVI (assuming that CONV2 has not been completely

validated.)
(b4) Process B is about to enter CONV3. (CONV2 has not yet been completely validated.)
(b5) Process A has completed CONV2. Therefore, CONV2 has become completely validated
within CONV 1. (If Process A has failed in CONV2 then the values of q, r, s and t should be

restored. Since r appears twice, the older value 4 is restored.)
(b6) Process A has completed CONV 1, thereby making CONVI completely validated. (Variables q
and u have been modified within CONV3.)
(b7) Processes B and C have completed CONV3, thereby making it completely validated.

A B C

CONVI
p~q

CONV2

q,.r

0 NV3 0_

Figure 7.a. An example of an asynchronously exited conversation.
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Figure 7.b. Snap shots of the recovery cache stack in Process B of Figure 7.a.

2.4 Discussion
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The asynchronous exit approach increases the performance at the cost of increase in 0
implementation complexity. The process must keep the history information until the conversation
becomes completely validated. As discussed in the previous section, run-time overhead due to
handling of conversation records and recovery cache stacks would increase rapidly as the
lookahead level increases. Therefore, the one- or two-conversation lookahead strategy seems the
most practical for a wide range of applications. (Also, analytic study results showed that the
incremental performance gain expected when changing from the one-conversation lookahead
strategy to the two-conversation lookahead strategy would be relatively insignificant in comparison
to the incremental gain expected from the change from the synchronous exit strategy to the one-
conversation lookahead strategy [Kim89].) In addition, in order to support fast rollback, it is
necessary to incorporate the interrupt mechanism in the system. That is, when the 10 handler
receives a failure or rollback message, it immediately interrupts the corresponding process to
minimize the waste of time. 5

3. CONVERSATION ACCEPTANCE TEST

This section describes three different major approaches to execution of the conversation
acceptance test (CAT): centralized CAT, decentralized CAT, and semi-centralized CAT.
Advantages and disadvantages of each approach are discussed.

3.1 Centralized CAT

In this approach only one designated participant, named "head" participant, contains the
complete CAT routine. Therefore, the head participant executes the CAT when all the participants
have finished their execution of try blocks, and thereafter it broadcasts the CAT result to other
participants. Since the code that implements the CAT is not scattered among the participant 0
processes this approach has an advantage of not requiring the decomposition of the CAT routine.
This property is valuable where the CAT is designed as a single function.

In the centralized CAT approach, it is possible to designate the head participant in two S
ways: statically and dynamically. With static designation, the predetermined head participant

executes the CAT. With dynamic designation, on the other hand, the last participant that completes
the conversation task executes the CAT. Under the synchronous exit approach the effect of a
choice between static and dynamic designations is relatively insignificant since all other participants 5
must wait until the last participant completes the conversation task. However, in the cases of
asynchronous exits, the dynamic designation approach generally performs better than the static
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designation approach. This is because under the static approach some extra work is required for

the last participant to inform the head participant of completion of the conversation task.

Nevertheless, the static approach seems more practical in the sense that it makes it easier to debug

and monitor the system.

The total number of messages needed for CAT under this approach is N, the number of

participants in the conversation. (In fact, this number is the same for all three CAT execution

approaches as will be shown in the following sections. However, the messages communicated

under the three approaches are different in length and number of destination processes.) In this

approach, N-I of the N messages would be of a relatively long type because the messages include

the values of the variables needed for CAT. Therefore, the centralized approach may lead to
relatively large communication overhead due to these sizable messages from the participants to the

head participant. Another factor to consider in using this approach is that the malfunctioning of the

head participant process causes the loss of the entire CAT function. Various ways to avoid such a

loss of the CAT function are conceivable but they all represent additional costs.

3.2 Decentralized CAT

In this approach each participant performs its own acceptance test, and the participants

exchange their results with each other. Therefore, every process receives the results of other

participants and figures out by itself the total result of the CAT execution.

One of the advantages of this approach is the symmetry that exists among all participants
with respect to CAT execution. This makes it simple to implement. However, decomposition of

the CAT function is sometimes a costly burden on the programmer. Although automated

decomposition is conceivable, its practicality requires further study. Also, all N messages needed

for CAT are broadcast messages and thus each message has N destination processes including the

sender itself. Therefore, if an efficient broadcasting channel is not available, the number of CAT-

related messages exchanged among participants may become very large, although each message

will be short. (That is, the messages include "pass" or "fail" information only.) Therefore, in

such an environment the communication cost becomes very high.

3.3 Semi-centralized CAT

This approach compromises the above two approaches in such a way that the "local"

acceptance test is done by each participant and the total CAT result is determined by the head

participant. That is, each participant performs its own acceptance test and sends the result to the
head participant. The head participant judges the success or failure Of the CAT depending upon
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whether all the reports received are success reports or not, and then broadcasts the CAT result. In
order to facilitate speedy recovery this approach should be implemented whenever possible in such
a way that a failure report of a participant is made in a broadcast form so that all participants may

begin their rollback actions immediately. The main advantage of this approach is the small

communication overhead; all N messages are short messages and among them N-I messages are

one-to-one messages. The semi-centralized approach, however, shares one deficiency with the
decentralized CAT approach: it is necessary to decompose the CAT function.

3.4 Discussion

Table I summarizes the number of messages needed for CAT under each approach. As

discussed in the previous sections the total number of messages is the same for all three cases, but
the messages communicated under the three approaches are different in length and number of des-

tination processes. For example, as mentioned earlier, the messages from the participants to the
head participant under the centralized CAT approach are of the relatively long type because the
messages include the values of the variables needed for CAT. On the other hand, the CAT-related

messages required in the semi-centralized and decentralized CAT approaches include "pass" or

"fail" information only. Therefore, the size of each message is very short and fixed.
Nevertheless, all the messages in the decentralized CAT approach need to be broadcast whereas in

the centralized and semi-centralized CAT approaches only one message (the total CAT result
message broadcast by the head participant) needs to be. It seems reasonable to conclude that the

semi-centralized CAT approach is the best in terms of message traffic.

In contrast to the decentralized or semi-centralized CAT approach, the centralized CAT
approach does not require any local acceptance test to be done by each participant. This possibly

degrades detection and recovery performance because the CAT is not evaluated until all the

participants complete the conversation tasks. Under the decentralized or semi-centralized CAT

approach, it is possible to have participants abandon the conversation tasks if one of the par-
ticipants has failed in its local acceptance test. This reduces unnecessary computation time
although the amount of gain is highly application-dependent. The relatively high fault latency

associated with the centralized CAT approach can be a serious drawback in many safety-critical

applications such as that to be discussed in Section 6.

The choice should also be made based on the following two factors: (1) characteristics of

the application program such as process structure and reliability consideration, and (2)

characteristics of the communication system such as network topology, communication medium,
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and protocol used. Also, the conversation structuring scheme used by the program designer favors

a certain CAT execution approach. This will be further elaborated in Sections 4 and 5.

Sem-

MesaetyeCentralized Decentralized centralized

(N - 1)(1) N(sn) (N - 1)(s)Total number of + 1 (sn) + I (sn)
messages for CAT N - 1

one-to-one large* messages (1) N- I
one-to-one small messages (s) N 1
one-to-n small messages (sn)

Maximum number of CAT-
related messages from/to 2 N 2
a participant N N

Head participant case

Number of participant = N
1: long message
s: short message
sn: short, broadcast message

* This message contains the values of the variables needed for CAT.

Table 1. Comparison in number of messages for CAT.

4. IMPLEMENTATION OF THE NLRB SCHEME IN MESSAGE-BASED DCS'S

This and the next sections describe how some structuring schemes used by the program

designer and the execution approaches di,'iissed in preceding sections can be used in combination
in implementing conversations in message-based DCS's. The structuring schemes selected for

discussion in this chapter are the Name-Linked Recovery Block (NLRB) scheme and the Abstract
Data Type (ADT-) Conversation scheme described in [Kim82,Rus791.

Message-based DCS's considered in these two sections have the following characteristics:

(1) Each node contains a processor, a local memory, and an 10 handler.
(2) Each node runs one or more software processes.
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(3) Communication between processes in different nodes is done through a bus with the aid of 10

handlers. (Broadcasting is facilitated).
(4) The 10 handler in the destination node receives and puts a message into the mailbox of the

destination process.

4.1 NLRB scheme

The basic idea of the NLRB scheme is to extend the recovery block (RB) construct with a

conversation identifier field as follows [Kim82,Rus791: [ cony C:] ensure T by B 1 else by B2 ...
else by Bn else error where C is the conversation identifier, T the acceptance test, and Bi, I<i<n,

the try blocks. The set of name-linked RB's, each executed by a different process but having the

same conversation identifier, compose a conversation construct.

Although this scheme has several deficiencies as pointed out in [Kim82], the scheme is
believed to be suitable in some distributed environments for the following reason. In some

message-based DCS's, nodes are geographically dispersed. It is very likely that in such

application environments processes on different nodes are designed largely independently. In such
an environment the NLRB scheme is more natural for use than other schemes such as the ADT-

Conversation scheme [Kim821.

4.2 Syntax adopted and message format

The following syntax is an extension of the original NLRB syntax and the extended part is

the "participant" field: [ conv C:] participants PROCA, PROCB, ... ensure T by B I else by B2
... else by Bn else error where PROCA, PROCB, ... are the process ids of the conversation
participants. (Each process has a unique process id in the system.)

In the following subsections, execution of NLRB's under the two different exit control

approaches and the two different CAT execution approaches, semi-centralized and decentralized,

are considered. The centralized CAT approach was not considered because each participant of the

NLRB conversation is designed to have its own acceptance test routine and placing all the

participants' acceptance test routines in one node did not seem competitive with other two

approaches in terms of resulting execution performance.
S

The generic message format adopted is shown in Figure 8. Note that it is of a multicast

type sent to more than one destination process. By doing this the number of messages

communicated among the processes can be reduced. Messages are classified largely into two

types: normal message and CAT result message. In the case of a CAT result message, the data
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field is empty. As will be shown in the following subsections, different types of CAT result

messages are required for different implementations.

IML IT INI D ISIDatalE M
ML: message length in number of bytes (2 bytes)
T: message type (1 byte)
N: number of destination process (1 byte)
D: destination process id's (I byte per destination)
S: source process id (1 byte)
Data: contents (m bytes)
EOM: end of message (2 bytes)

Figure 8. Message format.

4.3 Approach NI for execution of NLRB's: Synchronous exit and semi-centralized CAT execution

Under the synchronous exit approach, history logging is not necessary because a

participant can exit the conversation only when all the participants pass their acceptance tests.

Therefore, its implementation is relatively simple.

The types of CAT result messages used in this execution approach are as follows:

(1) local success notice (LS): This message is sent to the head participant when the participant has

passed its local acceptance test.
(2) failure notice (FA): This message is sent to the head participant when the participant has failed

in its local acceptance test.

(3) conversation success notice (CS): This message is broadcast when the head participant has

concluded the CAT to be a success.

(4) conversation failure notice (CF): This message is broadcast when the head participant has

concluded the CAT to be a failure.

In normal cases (i.e., when there is no fault) N messages are needed for each conversation

where the number of the participants is N; those are N- I LS messages from the participants to the

head participant and one CS message from the head participant to others. For example, if there are

six participants in a conversation construct, six messages are needed for each execution of the
conversation: five one-to-one messages are 8 byte-long each and one broadcast message is 12 byte-

long (because this broadcast message has five destinations). If the head participant receives an FA

message, it immediately notifies other participants by broadcasting the CF message and then all
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participants should roll back. Therefore, in order to minimize the recovery time it is desirable to
incorporate an interrupt mechanism for receiving an FA or CF message.

4.4 Approach N2 for execution of NLRB's: Synchronous exit and decentralized CAT execution

The execution approach is almost the same as the previous one (Approach NI). As
mentioned earlier, however, there is no head participant with the decentralized CAT approach. The •
success or failure notice from each participant is broadcast to all other participant processes.
Therefore, in normal cases N LS messages are needed for each conversation. For example, with
six participants six broadcast messages are needed and each message is 12 byte-long. Upon
receiving an FA message the participant rolls back for retry. Besides the LS and FA messages, no
other types of CAT result messages are required.

4.5 Approach N3 for execution of NLRB's: Asynchronous exit and semi-centralized CAT

execution

As discussed in Section 2, implementation of asynchronously exited conversations is much
more costly. Also, many more types of CAT result messages are needed than in the case of the
synchronous exit:
(1) complete local validation notice (CV): This message is sent to the head participant when a
process has passed its acceptance test and all the conversations which the process had participated
is prior to entering the conversation currently being exited has been completely validated.
(2) partial local validation notice (PV): This message is sent to the head participant when a process
has passed its acceptance test and there is a conversation which the process had participated in prior

to entering the conversation currently being exited but has not been completely validated.
(3) failure notice (FA): This message is sent to the head participant when a process has failed in its
acceptance test.

(4) conversation success notice (CS): This message is broadcast when the head participant has
concluded the CAT to be a success. That is, the conversation is completely validated.
(5) conversation failure notice (CF): This message is broadcast when the head participant has
concluded the CAT to be a failure.

(6) rollback notice (RO): This message is sent to/from the head participant of a conversation when
a participant process learns that the conversation which it participated in earlier has become a

failure.
(Note: The PV message is not an absolute necessity. However, it is believed that the PV message
is helpful in implementing and testing the system.)
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Figure 9 shows two different execution scenarios under N3. Process A is the head

participant of CONVI and Process C is the head participant of CONV2. In both scenarios

Processes B and C complete CONV2 with no failure before Process A completes CONVI.

Therefore, CONV2 is not completely validated until CONV 1 is since CONV 1 is logically before

CONV2. In the first scenario (shown in Figure 9.a), by the time Process A passes CAT of

CONV 1 both CONVI and CONV2 become completely validated. Consequently, in Process B the

conversation records for CONVI and CONV2 are removed. In the second scenario (shown in

Figure 9.b), on the other hand, Process A fails at (4), which results in CONV2 being nullified

since Process B has to roll back to the recovery line of CONV 1. Process B sends the RO message

to Process C (which is the head participant of CONV2) and retries CONV 1 with the next alternate

try block. Later, Processes B and C are allowed to use their primary try blocks when they reenter

CONV2.

A B C

CONV1 r -1]

CONi CNV

L(2)

(4 4 (3)

History Message Conversation State
CONV1I CONV2

(1) B passes CAT of CONV1I B-->A: CV(CONV1I) og -
(2) C passes CAT of CONV2 og og
(3) B passes CAT of CONV2 B-->C: PV(CONV2) og pv
(4) A passes CAT of CONV1I A-->B: CS(CONV1) cv pv

B-->C: CV(CONV2) cv cv
C-->B: CS(CONV2) cv cv

Figure 9.a. Asynchronously exited conversation: Scenario 1.
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A B C

L -- (2)/

CONV1I CONV2

(1) B passes CAT of CONVI B-->A: CV(CONV1) og --

(2) C passes CAT of CONV2 og og
(3) B passes CAT of CONV2 B-->C: PV(CONV2) og pv
(4) A fails CAT of CONVI A-->B: FA(CONV1) sf pv

B-->C: RO(CONV2) sf nu
C-->B: RO(CONV2) sf nu

Figure 9.b. Asynchronously exited conversation: Scenario II.

By allowing asynchronous exit the number of messages needed for each conversation may

increase. That is, in normal cases the participants exchange N-1 CV messages, one LS message,

and up to N-i PV messages. For example, if there are six participants, five CV messages are 8

byte-long each, one CS message is 12 byte-long, and each PV message is 8 byte-long. The
number of PV messages needed may become a non-negligible source of overhead as the scope of

the lookahead increases.

4.6 Approach N4 for execution of NLRB's: Asynchronous exit and decentralized CAT execution

Thib execution approach is almost the same as the previous case. Since there is no head

participant under the decentralized CAT approach, the result of the non-local acceptance test is not

broadcast. Consequently, CS and CF messages are not required. In normal cases N CV messages

(and up to N PV messages) are broadcast. Therefore, with six participants all six CV messages are

12 byte-long. Each PV or RO message is also 12 byte-long.

4.7 Discussion

As expected, asynchronously exited conversations require more messages than

synchronously exited conversations, although the overhead does not seem serious with one- or
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two-conversation lookahead. The message traffic incurred under the semi-centralized CAT

approach and that under the decentralized CAT approach are almost the same. However, the load

on each participant (due to incoming and outgoing messages) in the decentralized CAT approach is

higher than that in the semi-centralized CAT approach as shown in Table 1. The difference

becomes larger as the number of participants increases.

We did not examine the centralized CAT execution cases closely in this section since the

NLRB scheme is most likely applicable to "loosely coupled" network environments where

processes on different nodes are designed largely independently. Consequently, the CAT

execution by one process/node is not natural in such environments. Moreover, the centralized

CAT approach requires long messages which may result in too much communication overhead in

loosely coupled network environments. Nevertheless, it is possible to apply the implementation

strategies of the centralized CAT approach which will be discussed for the case of ADT-

Conversation in Section 5 to the NLRB scheme.

5. IMPLEMENTATION OF THE ADT-CONVERSATION SCHEME

IN MESSAGE-BASED DCS'S

5.1 ADT-Conversation scheme

The Abstract Data Type (ADT-) Conversation scheme was proposed to remedy the

shortcomings of the NLRB scheme [Kim82], which stems from the scattered appearance of the

constituent RB's of a conversation structure in the program text. In the ADT-Conversation

scheme, the conversation construct is structured in the form of an abstract data type.

A possible syntactic structure is shown in Figure 10. The participant enters a conversation

by calling a procedure, say CONV.PROCA, of which the name and the formal parameters are

listed in the participant area. The role of CO (conversation object) in the figure is to facilitate

interprocess communication within the associated conversation. In other words, CO is accessible

only within the conversation. This prevents information smuggling by a process participating in

the conversation.

Basically, there are two options in executing the CAT. One is to decompose the CAT into

segments, each executed by a different participating process. The CAT execution can be done with

either the decentralized or the semi-centralized approach. The other is to have one process execute

the entire CAT after all the participating processes have completed their executions of conversation
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tasks. In the case of the first option, the implementation strategies should be the same as those

discussed in the previous section (i.e., NLRB scheme cases). Therefore, in the following

subsections 5.3 and 5.4 strategies for implementing the ADT-Conversation scheme with the

centralized CAT approach in combination with either the synchronous or the asynchronous exit

approach are discussed.

5.2 Syntax adopted and message format

The syntax given in Figure 10 can be incorporated into most of the target implementation

languages, although some variations are possible. The ADT-Conversation incorporated into Path

Pascal [Kol80] was implemented by the investigators [Kim85]. The same message format given in

the previous section (Figure 8) is used here again.

type C = conversation
<const & type declaration> "can declare nested conversation"
participants

PROCA ( "formal parameters");
PRO C B ( ...................................

var
CO: c-object-type; conversation object declaration"

<CAT function declaration> "conversation acceptance test"
<procedures & functions declaration>
ensure CAT
by begin "primary interacting session"

PROCA: begin ..... end;
PROCB: begin ..... end;

end;...
elseby begin "alternate interacting session"

PROCA: begin ..... end;
PROCB: begin ..... end;
..... •.~.......

end;

elseerror
endconversation;

Figure 10. ADT-Conversation.

5.3 Approach A I for execution of ADT-Conversation: Synchronous exit and centralized CAT

execution
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In the centralized CAT approach, only one participant executes the acceptance test and
broadcasts the result. Therefore, only two types of CAT result messages are needed.
(1) conversation success notice (CS): This message is broadcast when the CAT has succeeded.

(2) conversation failure notice (CF): This message is broadcast when the CAT has failed.

However, as discussed in Section 3, the participants must send the values of the variables

needed for CAT to the head participant. Since these messages are longer than simple "pass" or
"fail" messages the communication overhead of this approach is higher than those of other

approaches. For example, suppose that there are six participants, including the head participant
which executes CAT, and each participant provides 50 bytes data for CAT execution. Then each
conversation requires five 58 byte-long messages and one 12 byte-long message. Moreover, in
general, recovery time under this approach is longer than under the others because CAT cannot be

performed until all participants complete the conversation tasks and provide information needed for
CAT. (Under the decentralized or the semi-centralized CAT approach it is possible to have the
participants abandon their conversation tasks if one participant has failed in its local acceptance

test.)

5.4 Approach A2 for execution of ADT-Conversation: Asynchronous exit and centralized CAT

execution

With asynchronous exit the pass of the CAT does not necessarily make the conversation
completely validated. The conversation success notice is deferred until the conversation becomes

completely validated. Three types of CAT result messages are needed.
(1) conversation success notice (CS): This message is broadcast when the CAT has succeeded and

all the participants are irrevocable.
(2) conversation failure notice (CF): This message is broadcast when the CAT has failed.
(3) rollback notice (RO): This message is sent to the head participant of a conversation when a par-

ticipant process learns that the other conversation which it participated earlier has become a failure.
The messages needed for CAT in this approach are basically the same as those in the previous

approach (Approach Al). That is, in normal cases five 58 byte-long messages and one 12 byte-
long message are needed assuming that there are six participants and each participant provides 50

bytes data for CAT execution.

5.5 Discussion
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The ADT-Conversation scheme has a number of advantages over the NLRB scheme.
Among others, (1) each interacting session is presented as a single unit in the program text and

thus easier to read and (2) it is not necessary to decompose the CAT into distributed routines of
which collective effect is generally harder to comprehend. All six implementation approaches

(combinations of three different CAT approaches and both synchronous and asynchronous exit

cases) can be applied to ADT-Conversations. However, it is the easiest to apply the centralized
CAT approach to ADT-Conversations because decomposition of CAT's could be a burden on the
program designer. Table 2 summarizes how three CAT execution approaches are applicable to

NLRB's and ADT-Conversations.

Centralized Deentralized Semi-centralizE
CAT CAT CAT

NLNB less applicabl most applicab applicable

ADT-
Conversatio most applicab e applicable applicable

Table 2. Applicability of three CAT execution approaches. 0

Table 3 illustrates the communication costs incurred under the six different implementation

approaches (combination of three different CAT approaches and both synchronous and

asynchronous exit cases). We assume here that there are six participants and each participant
provides 50 bytes data to the head participant in the case of the centralized CAT approach. We also

assume that transmission speed is I jisec per bit (i.e., I Mbps transmission). Two different

amounts of fixed protocol overhead incurred in each message transmission are considered: 10 ltsec
in one case and 100 itsec in the other case. As shown in the table the communication time cost •

under the centralized CAT approach is almost three times of that under the decentralized or the

semi-centralized CAT approach even with the 100 Rsec fixed protocol overhead. As this fixed
protocol overhead decreases, the ratio will increase. On the other hand, as the transmission speed
becomes faster the difference becomes smaller. It also shows that the decentralized CAT approach •
requires a little more communication cost than the semi-centralized CAT approach.
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Comm. Comm.
Communication Time Cost Time Cost

Cost (10 gtsec (100 tsec
fixed protocal fixed protocal

Approach Type of messages overhead) overhead)

2476 .sec 3016 .sec
Centralized CAT 5(1 -to- 1) + I (broadcast) 2476 gsec 3016 pgsec

Synchronous Exit 5(1-to-I) + l(broadcast)
Asynchronous Exit

636 t.sec 1176 I.tsec
Decentralized CAT 6(broadcast) 954 g.sec 1764 lgsec

Synchronous Exit 9(broadcast)
Asynchronous Exit

476 g.sec 1016 tsec
Semi-entralized CAT 5(1-to-1) + I (broadcast) 698 g.sec 1508 pgsec

Synchronous Exit 8(1-to-I) + 1(broadcast)
Asynchronous Exit

* 3 PV messages are assumed in the asynchronous exit case.

Table 3. Communication costs incurred under six implementation approaches.

6. SIMPLIFIED UNMANNED VEHICLE SYSTEM: AN EXAMPLE

The previous sections dealt with general strategies for implementing the conversation

scheme into message-based DCS's. In this section, a simplified unmanned vehicle system

(SUVS) is used to illustrate the conversation implementation strategies.

6.1 Scenario

The SUVS consists of three different sets of tasks, i.e., sensor tasks (or sensors), analyzer

tasks (or analyzers), and actuator tasks (or actuators).

(1) Sensors are input devices such as speed meter, engine thermometer, direction indicator, vision

sensor, and road surface sensor. They periodically provide data to the analyzer tasks.

(2) Analyzers process sensor data and include speed analyzer, direction analyzer, vision analyzer,

and surface analyzer. They make decisions which are forwarded to the actuators. They also

exchange information among themselves.
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(3) Actuators are output devices such as brake, accelerator, handle, and camera handlers. They
receive commands from the analyzers and cause the controlled objects to change their states.

The information flow among these tasks is shown in Figure 11. In the following

subsection we illustrate the strategies for incorporation of the conversation scheme into the system.

Our discussion focuses on the implementation of the analyzer tasks.

Sensors Speedo Engine Direction Vision Surface
-meter Tm Id. Sensor Sensor

Analyzers Direction Vision Surface

Actuators Brake D-r, a

Figure 11. Information flow of Simplified Unmanned Vehicle System (SUVS).

6.2 Implementation strategies

6.2.1 System architecture

A bus-structured computer network, as shown in Figure 12, is assumed for this
implementation. Each node has its own local memory and database and runs a single analyzer

task. Tasks communicate with each other via message passing. Nodes are also connected to

sensors and actuators.
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Bus

Node Node Node Node
12 3 4

Connected to Sensors and Actuators

Figure 12. Computer network to implement the SUVS.

6.2.2 Incorporation of the conversation scheme

In order to incorporate conversations into a real system, the characteristics of the system (in

terms of interaction among tasks) should be carefully analyzed. This SUVS has the following

characteristics. First, the decision made by one analyzer affects the decision of other analyzer(s).
For example, before the direction of a car is changed, the speed may have to be reduced, if the

current speed is too fast. This means that the direction analyzer has to cooperate with the speed
analyzer. Second, the actions taken by the actuators are not revocable. There may be cases where

we cannot compensate or change, even if we find a mistake immediately after an action was done.

Therefore, the output actions should be very carefully taken. Finally, any decision should be made
within a specified time under all circumstances. (Otherwise, the effect is the same as driving a car

while sleeping.)

The above three characteristics cause it to be a requirement for the analyzer tasks to

cooperate in order to properly control the real-..,ne response of the system. Therefore, the

following conversation structure seems useful.

(1) Four analyzer tasks, i.e., speed, direction, vision, and surface analyzers, cooperate (i.e.,

exchange information and preliminary decisions) to make decisions on any action.
(2) Output (to actuators) is made only when all of the analyzer tasks agree that the system is in a

safe state.

(3) Upon disagreement, try again with the alternate algorithms provided.
(4) If they don't reach any final agreement within a specified time or they have failed in all alternate

algorithms, the system goes into an emergency mode and tries to stop the car in the safest and

fastest way.
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The conceptual conversation structure and possible information exchanged among tasks are

shown in Figure 13. Note that the preliminary decisions made by the tasks are broadcast so that

this information may be used for the conversation acceptance test. The acceptability criteria may

include

(1) whether the decisions made by the speed analyzer and the direction analyzer conflict with each

other,

(2) whether the decision made by the vision analyzer conflicts with the request made by the speed

and/or direction analyzer, and

(3) whether the analyzers have made decisions based on correct information.

Each analyzer also needs to check whether the current inputs are consistent with the outputs made

before. For example, if the output action is "reducing speed", then we expect a reduced speed

after a while. If the inputs are not consistent, we should suspect either the actuator or the sensor,

or both. Therefore, an emergency action is required. Further details on the semantics of this

conversation are given later in section 6.2.5.

6.2.3 Exit control

Intuitively, the synchronously exited conversation scheme is suitable for the conversation

sketched in the previous section because the conversation is followed by critical output actions of

the analyzers. The outputs (to the actuators) made by the analyzers are irrevocable and sometimes

critical, thus making it dangerous to allow asynchronous exit in most cases.

However, we may need to allow a special kind of asynchronous exit (i.e., to send the

output to the actuator before the total CAT result is determined) to handle an emergency situation.

For example, the speed analyzer has decided to reduce the speed quickly after it received the

information about an unexpected object from the vision analyzer and/or surface analyzer. In such a

case, all the analyzers abandon their current execution and restart the conversation based on the

new information.

6.2.4 CAT execution

Although all three CAT execution approaches (centralized, decentralized, and semi-

centralized) are applicable, the decentralized and semi-centralized CAT approaches seem more

suitable mainly because safety is the major concern in this type of applications and fast recovery is

very important. In other words, the relatively high fault latency characteristics makes the

centralized CAT approach less attractive in this application. Also, since "fail-stop", i.e., to stop the

car if the system does not reach any final agreement, is allowed as a safe emergency action in

SUVS, it is beneficial to utilize a conservative approach which may generate more "false alarms"
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Speed Direction Vision Surface

Analyzer Analyzer Analyzer Analyzer

0i

6()

(5)6

(1) Vision information (5) Request for more information needed
(2) Surface information (6) Response on request
(3) Acceleration information (7) Preliminary decisions
(4) Momentum information

Figure 13. Conceptual conversation structure and information exchange among the tasks.

than other approaches. False alarms do little harm but late alarms or the absence of necessary
alarms can be catastrophic. The decentralized and semi-centralized CAT approaches are more

conservative approaches in the sense that under the approaches the system does not suffer from the
kind of catastrophe that is possible under the centralized CAT approach due to abnormal behavior
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of the sole generator of alarms, i.e., the head participant. If the total CAT result is a success, the
analyzers output proper command messages to the actuators. Otherwise, all analyzers roll back
and try again with alternate try blocks. In this kind of applications there is generally no need to use
the previous input data (which were already used for the failed execution) for retry if the new input

data can be easily obtained.

6.2.5 The fault-tolerant SUVS

In this subsection we describe the fault-tolerant SUVS (SUVS extended with
conversations) in more detail. Figure 14 depicts the high-level logic of an analyzer task. (This 0
logic is applicable to all four analyzer tasks.) The analyzer receives new input data periodically

(every 10 msec in this illustration) from the corresponding sensor(s). The input data are checked
to see whether they are consistent with the outputs made before. Then the data are exchanged
among the analyzers and used to determine the next outputs.

task analyzer;

every 10 msec do ( on "timeout" => invoke emergency routine;)
receive input data from the sensor(s) and analyze them;

-- for validity and consistency check
exchange the data among the analyzers;
make a decision;
exchange the decisions made along with the input data used among the analyzers;
perform CAT;
if "pass" => forward the decision to the actuator(s);
if "fail" => roll back and retry;

end do every;

end task analyzer;

Figure 14. High-level logic of an analyzer task in SUVS.

Once a decision is made by an analyzer it is broadcast to other analyzers. These
preliminary decision results are used in parts of the CAT performed under the decentralized (or

semi-centralized) execution approach. The exchanged information is used to ensure that the
decisions made by the analyzers should not conflict with each other. Then the result of each CAT-
segment (performed by each analyzer) is broadcast tc, facilitate the determination of the total CAT
result. If the total CAT result is a success, the decisions made are forwarded to the actuators.

Otherwise, the analyzers roll back and retry with an alternate interacting session. For every
iteration of a task a watchdog timer is set. If a timeout occurs, an "emergency routine" is invoked.
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Once it is invoked, normal operation is suspended and an attempt is made to stop the car in the

safest and fastest way.

In principle, an alternate interacting session should be designed such that it may produce

acceptable results for the cases where the primary interacting session fails to do so. Although

designing efficient alternate interacting sessions is an open research topic and it is largely
application-dependent, here we will briefly sketch a systematic approach which, we believe, is

applicable to this type of applications. The major difference between the primary try blocks and the
alternate try blocks in SUVS should be in the way the decisions are made. And those decisions are
made based on several factors. For example, the speed analyzer makes a decision based on the

current speed, RPM (revolutions per minute) of the engine, road condition (e.g., wet or dry),

curve of the road, and existence of objects in front and if exists, characteristics (e.g., moving

speeds) of the objects. Therefore, one way to design alternate try blocks is to apply the decision
factors in different sequences.

Figure 15 shows two different approaches to designing the speed analyzer tasks. In Figure
15.a the road condition is first examined; then the curve status of the road is examined and so on.
On the other hand, in Figure 15.b, the current speed is first examined; then the existence of an
object is examined and so on. By doing so we can systematically produce multiple versions of

software. Such produced versions are still considerably diverse in the detailed logics used and also
have substantially different chances of encountering overflow/underflow conditions due to the

diversity in the sequence of calculations used.

task primary speed analyzer;

-- decision making routine of the primary try block
if road condition is dry

=> if the road is straight
=> if ...

else if road condition is wet of degree I
=> if... )

Figure 15.a. The primary try block of the speed analyzer in SUVS.
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task alternate speed analyzer;

-- decision making routine of the alternate try block
{if 0 < current speed <= 5 mph

=> if there is no object in front
=> if ...

else if5 < current speed <= 10
=> if... ) 0

Figure 15.b. An alternate try block of the speed analyzer in SUVS.

A major portion of the CAT in the fault-tolerant SUVS is to check whether (1) the decisions

are made based on correct information, (2) each decision made locally is reasonable with respect to
both the recently observed condition of the car and the laws of physics, and (3) the decisions do
not conflict with each other. The first part of the test (which is trivial in nature in comparison to the

other two pats) can be facilitated by broadcasting the input data (which were used to make
decisions) along with the preliminary decisions made. For example, the input data from the

speedometer is initially received by the speed analyzer for every cycle of the task execution. This
data is checked and then broadcast to other analyzers. The data may then be used by other

analyzers in reaching certain preliminary decisions. Therefore, in the first part of the CAT the
speed analyzer checks whether the speed data received from other analyzers together with their
preliminary decisions are exactly the same as the original data that it received from the speedometer
and has kept since. By doing so we can detect possible faults due to communication failure and/or

memory failure.

The second and more important part of the CAT is largely to check if the preliminary local

decision falls within a reasonable range. For example, if the preliminary decision on the
acceleration to be made is beyond the capacity of the car, clearly a computation error can be
suspected. The third part involves checking in each analyzer the possibility of conflict between the
local decision and the preliminary decisions made by other analyzers. The decisions made by the

analyzers are examined to see if there is any conflict among them. For example, as shown in
Figure 16, decisions made by the speed analyzer and the direction analyzer should not conflict with

each other.
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task analyzer;

conversation acceptance test (CAT) segment under the
-- decentralized execution approach

(if (attached data which were used to make decisions = original data)
=> if acceleration* = +2 and direction** = +3

=> if (current speed < 20 mph) and (current RPM < 1000)
=> if ....

=> CAT is "pass"
=> else if ...

=> CAT is "fail"

broadcast the result of the CAT-segment;
determine the total CAT result

* "acceleration", the output of the speed analyzer, is an integer value which indicates
the acceleration ranged between -3 and +3. (Zero means no change.)
** "direction", the output of the direction analyzer, is an integer value which
indicates the angle ranged between -9 and +9. (Zero means no change.)

Figure.16. A conversation acceptance test segment in SUVS.

6.2.6 Run-time support

One of the important run-time support functions in systems such as the fault-tolerant SUVS

is to facilitate efficient and reliable communication among tasks. Since tasks run under tight

synchronization, especially for CAT-related messages, message delay blocks the execution of other

task(s). This may lead to the degradation of the system performance significantly. Furthermore,

most messages are time-sensitive, i.e., the validity of a message depends on time. Therefore,

protocols should be designed in such a way to support reliable and real-time communication. (For

real-time communication the timing behavior of the protocol should be predictable.)

The system should also handle timeouts associated with conversations as well as those with

protocols. The decision made by the analyzer becomes obsolete after a certain time period. Hence,

absence of a report (CAT-segment result) from a participant within a timeout period during the

CAT execution phase should be treated as the failure of the CAT. Finally, as mentioned in Section

4.7, an interrupt mechanism is required for fast initiation of the rollback of all participant tasks.

6.3 Discussion

In this section, an unmanned vehicle system was used to illustrate the factors to be

considered in incorporating the conversation scheme into real-time control systems. The
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centralized CAT approach is not suitable for this application because of its relatively high fault

latency and high communication overhead characteristics. This means that if the ADT-

Conversation structuring approach were to be used, decomposition of the CAT for decentralized or

semi-centralized execution must be performed either by the program designer or by means of an

automated tool. Also, since the entire control cycle is captured in one conversation, the

synchronous exit approach is natural in this application. If the control cycle was implemented in

the form of a series of conversations, then it might be possible to exploit the asynchronous exit

approach in executing the conversations except the last one which is followed by actuator output

actions. The approaches to implementation of the conversation scheme outlined in this section are

believed to be applicable to many safety-critical applications. A preliminary version of a fault-

tolerant SUVS testbed has been implemented on a workstation network at the investigators'

institutes.

7. SUMMARY

This chapter presented several different approaches for implementing the conversation

scheme in message-based DCS's. Important implementation factors such as the control of exits of

processes upon completion of their conversation tasks and the approach to execution of the

conversation acceptance test, were considered. A new efficient approach to run-time management

of recovery information based on an extension of the recovery cache scheme was also proposed.
Both exit control strategies, synchronous and asynchronous exits, and three different approaches

to execution of CAT, centralized, decentralized, and semi-centralized, have been examined and

compared in terms of system performance and implementation cost. Since each approach has

merits and deficiencies, it is hard to say that one approach is simply better than another. Moreover,

the implementation strategy should be carefully chosen based on the characteristics of the

application system such as network topology, communication cost, etc.

However, it seems that the asynchronous exit approach is generally better than the

synchronous exit approach. The former provides a higher performance during error-free execution

than the latter. If the NLRB structuring approach is used, then the semi-centralized CAT approach
or the decentralized CAT approach are more attractive than the centralized approach. On the other

hand, if the ADT-Conversation structuring approach is used, then the selection of a good strategy

for execution of a CAT depends on whether one can afford the effort required to decompose the

CAT into distributed acceptance tests. If so, the semi-centralized or decentralized approach is

more attractive and otherwise, the centralized CAT execution is the only choice.
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Incorporation of the timeout capability into the conversation scheme is another area to be

studied. The crash of a participant can result in the lockup of several other participants if the

timeout mechanism is not used. Since participants enter the conversation asynchronously, the

timeout period is an important design parameter, and an effective technique for determination of a

proper timeout period needs to be developed. Integration of the conversation scheme and other

established fault tolerance schemes [Bha87,Hec9l,Toy87] is also an important area for future

research.

Through analytic modeling studies, we have obtained some understanding of system

performance behavior under various workload conditions. However, in order to obtain "real" data

on implementation cost and system performance, experimental work and field experiences are

necessary. Testbed-based evaluation [Chu87] of the proposed approaches in the contexts of

additional real world applications (other than the unmanned vehicle system illustrated in this

chapter) is regarded as a highly worthwhile research topic. Such efforts will also provide further

insights into the types of applications for which the conversation scheme become a cost-effective

approach to reliability enhancement.
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CHAPTER IV

PERFORMANCE IMPACTS OF LOOK-AHEAD
EXECUTION IN THE CONVERSATION SCHEME
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1. INTRODUCTION

As the use of distributed computer systems in safety-critical applications has steadily

increased in recent years, the design of fault handling capabilities into the concurrent programs

running on the distributed hardware has become a subject of serious interest to system

designers [Bha87,Dav8O,Fou84,Hec76,McD82,Ram8 1,Toy87]. The conversation scheme

proposed by Randell in [Ran75] is one of the fundamental approaches to structured design of

such fault-tolerant concurrent programs. As discussed in [Shr87I the scheme provides a means

of facilitating failure atomicity and backward recovery in cooperating process systems in a

manner analogous to that of the atomic action mechanism in object-based systems. On the

basis of the abstract notion of the conversation in [Ran75], several concrete structuring

approaches and supporting tools have been developed as described in [Cam83,Gre85,Kim82,

Kim85,Oza88]. However, their utilities have not been fully tested and not much is known

about the performance characteristics of the conversation scheme.

One of the costs of using the conversation scheme is the execution time increase due to

the tight synchronization imposed among participant processes and due to the execution of the

conversation acceptance test. This is an overhead. Another cost of interest to system designers

is the recovery time, i.e., the time spent for recovering from detected faults. These time costs

were analyzed in [Kim86] by use of a queueing network model. The results showed among

other things that under practical circumstances the system performance is significantly affected

by the synchronization required of the processes in exit from a conversation, not by the

probability of acceptance test failure.

A fundamental approach to reducing the synchronization overhead is the lookahead.

That is, by allowing the participant processes which complete their conversation activities

including acceptance tests earlier than other participants to exit from the conversation and

continue processing rather than to wait until all the participants have passed their acceptance

tests, substantial reduction of the synchronization overhead can be achieved. When the

participants exit from a conversation via a lookahead, they should maintain the recovery points

established on their entries to the conversation. This is because other participants may later fail

in their acceptance tests in which case all the participants must be brought back to the recovery

line (i.e., the entry points of the conversation) for retry. Therefore, the recovery costs may

increase when the lookahead is used. The possibility of incorporating the lookahead capability

into the conversation scheme was discussed in IKim76,Rus79,Yan86J. In this chapter, we

analyze the impacts of the lookahead approach on the performance of the conversation scheme.
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Our interest here is in studying the inherent overhead, i.e., the overhead due to

acceptance test and synchronized exit, not the scheduling overhead due to limitations in the

available processors. Therefore, we consider the cases of using multiprocessor systems or

tightly coupled networks of computers in which each processor is dedicated to running a single

process. This actually matches with the current trend in use of multi-microcomputer systems in

real-time applications. The queueing network model developed in [Kim86j for the case of the

basic conversation scheme without the lookahead capability is extended in this chapter to cover

the cases with the lookahead capability. One attractive feature of this queueing network based

analytic evaluation is the feasibility of covering a broad range of situations. The specific

performance indicators analyzed include the system throughput, the average number of
processors idling inside a conversation due to the synchronization, and the average time spent

in a conversation. Comparison of the performance in the two cases, i.e., the case of

synchronous exit without lookahead and the case of using lookahead, reveals that the

lookahead approach offers potential for significant reduction of the execution overhead of the

conversation scheme. In the next section a brief review of the basic conversation scheme is
given together with an introduction of the lookahead approach. Section 3 then discusses the

execution environment considered in this chapter and the queueing network models developed
for both the basic conversation scheme and the scheme extended with the lookahead. The

models are used in Section 4 to evaluate and compare the system performance under different

execution approaches and workloads. Section 5 is the summary section.

2. BASIC CONVERSATION STRUCTURE AND LOOKAHEAD

The conversation is a two-dimensional enclosure of recoverable activities of multiple

interacting processes, in short, recoverable interacting session [Kim82,Ran75J. As depicted in

Figure 1 it creates a "boundary" which process interactions may not cross. The boundary of a

conversation consists of a recovery line, a test line, and the walls defining the membership.

Each participant process contains one or more try blocks designed to produce the same or

similar computation results as well as an acceptance test which is a logical expression
representing the criterion for determining the acceptability of the execution results of the try

blocks. A recovery line is a coordinated set of the recovery points of interacting processes that

are established (possibly at different times) before interactions begin. A test line is a correlated

set of test points at which computation results of interacting processes are checked out via

execution of acceptance tests. The correlated set of acceptance tests used at a test line may be

viewed as a single global acceptance test called a conversation acceptance test. A conversation
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is successful only if all the interacting processes pass their acceptance tests at the test line. If

any of the acceptance tests fails due to a residual design error in the try block used, a hardware

malfunction, a timeout enforced by a watchdog timer, etc., all the processes roll back to the

recovery line and retry with their alternate try blocks. These alternate try blocks collectively

define an alternate interacting session (AIS) (and may be viewed as an alternate interaction

block (AIB)), whereas the set of primary try blocks executed first after the processes enter the

conversation define the primary interacting session (PIS) (and may be viewed as the primary

interaction block (PIB)).

A B C

recoveryline

side

• • •wall

walllie

Ml recovery point (RP)
A V: Acceptance test (AT)

: try of process

A.BC: interacting processes

Figure 1. Abstract Conversation Structure.

A process which is inside a conversation cannot interact with a process which is not in

the conversation. Conversations must be strictly nested in two dimensions. That is, when

conversation C.nest is nested within conversation C, the set of processes that participate in
nested conversation C.nest must be a subset of the processes that participate in C, the entire

recovery line of C.nest must be established after the entire recovery line of C. and the entire test

line of C.nest must be set before the entire test line of C.

IV-4



In the basic conversation scheme sketched above, processes enter a conversation

asynchronously but synchronize themselves before exiting from it. The synchronization

considered here is of a special kind specifically required by the conversation scheme and thus

different from the application- dependent synchronization required between cooperating

processes. As mentioned in the preceding section, the synchronization can add significantly to

the time cost of the conversation scheme. The lookahead is a fundamental way of reducing this

synchronization overhead. Under the lookahead approach each participant process leaves the

conversation as soon as it passes its own acceptance test. It does so with the awareness of the

possibility that another participant may execute an acceptance test later and fail in the acceptance

test, thus making it necessary for the former to roll back to the recovery line of the

conversation. Therefore, the lookahead approach here is an optimistic approach and is aimed at

trading increase in recovery costs for reduction of synchronization overhead.

A process that has exited from a conversation CI via lookahead may enter another
conversation C2. If some participants of Cl are not participants of C2, then it is possible that

C2 activities including acceptance tests are complted while C1 remains unfinished. In such a

case, C2 should be treated as an unfinished conversation until Cl becomes completed. This is

because if CI fails, then all C2 activities that have taken place must be nullified as a part of the

rollback to the recovery line of Cl.

Although it is logically feasible to make provisions for a participant process to look

ahead of the unfinished conversation to an unlimited extent, it is useful to limit the extent of the
lookahead with respect to controlling the implementation complexity. In most practical

applications, there are natural limits to the extents of lookahead possible; when a process

progressing past the test lines of one or more unfinished conversations reaches a point where it

needs to interact with other slowly following processes, it has to wait for the other processes to

become ready for interaction. In addition, the lookahead should not be allowed to go past the

points where critical irreversible actions, e.g., certain output actions, are taken. In the next

section, the cases where the lookahead is allowed to limited extents are considered.

3. THE EXECUTION ENVIRONMENT ASSUMED AND QUEUEING NETWORK

MODELS

The characteristics of the hardware and the software of the systems considered are

described first. Queueing network models are then developed in Section 3.3.
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3.1 Hardware characteristics

The type of systems considered in this chapter is depicted in Figure 2. A system

consists of multiple, say N, computing nodes. Each node is equipped with a processor, a local

memory, and a communication interface. The inter- node connection medium is either a high-

speed bus or a common memory shared among multiple nodes. We assume that inter-node

signaling is accomplished via interrupts or single-byte messages. Consequently, the

communication overhead is negligible.

PSI PS2 . . . . PSn Processes

Non-conversation
task. J ...-....I -.. ..... ...... ... ... ..............................
Conversation

PH1 PH2 PHn Processors

[1 Connection network

Figure 2. A Model of the Fault-Tolerant Systems in parallel Execution of Conversation

3.2 Software characteristics

As shown in Figure 2, each node in the systems runs a single process which is a non-

terminating cyclic program in execution. Each process cycle consists of two steps: a process

step inside a conversation called a conversation task, and a process step outside a conversation

called a non- conversation task. Each process alternates between two tasks and in every cycle
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all the processes participate in. t:,i same conversation. Therefore, we are dealing with systems

in parallel execution of conversations.

A conversation is successful only if all the participant processes pass their acceptance

tests. If any of the acceptance tests fails, all the processes roll back to the recovery line and

retry with their alternate try blocks. It is assumed that the conversation construct contains one

primary interaction block and an infinite number of alternate interaction blocks. This means that

every conversation succeeds eventually.

If a process fails its acceptance test which is a part of conversation CONW, it

broadcasts the failure message to other participant processes. Upon receiving a failure

message, the processes which have been executing their conversation tasks belonging to

CONV abandon the tasks (including acceptance tests) and join the group of failed processes.

The processes which have already completed their conversation tasks belonging to CONV also

join the group of failed processes. On the other hand, the processes which have not entered

CONV and have been executing their non-conversation tasks will complete the tasks and then

immediately after entering CONV, they will also join the group of failed processes. After all

the participants join the failed group, they retry with their alternate try blocks.

In this modeling study, the conversations nested within other conversations were not

explicitly dealt with for the sake of simplicity. The following is a summary of the software

characteristics assumed in this chapter. (1) Each process alternates between its conversation

task and non- conversation task.

(2) All processes participate in the same conversation in every cycle.

(3) Each process has an unlimited number of alternate try blocks.

(4) Once a process fails its acceptance test, all other processes that have not finished the

conversation tasks abandon the conversation tasks.

(5) There are no conversations nested within other conversations.

The lookahead capability is incorporated into the system in Figure 2 with the scope of

lookahead limited. The lookahead scope is defined here in terms of the active conversations

dhat a process can participate in and leave from via lookahead. In the simplest case, a process

ill allowed to make a "single conversation lookahead", which means that a process can continue

, kahead as long as it has not exited from more than one unfinished conversations. In Figure

t,,r cample, assume that process B completes its conversation task (132) in CONVI while

.. , ,, still executing CONV I. Process B can leave CONV I because there are no other
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active conversations which it exited from. Assume further that process B completes its task

(B4) in conversation CONV2 while process A is still executing CONVI. Now process B

cannot leave CONV2 because CONV 1 has not been completely validated. Therefore, under the

single conversation lookahead rule a process is not allowed to leave a conversation if there is an

earlier initiated but unfinished conversation that the process has participated in.

Process A P-rocess B

A3 B1

CONV 1

A2 J B2

J A3 B3

CONV 2

A4 J B4

JA5 3B5
Figure 3. An Example of Conversation Structure.

Similarly, the two-conversations lookahead rule can be defined. In this case a process

is not allowed to leave a conversation if the conversation is currently the third unfinished

conversation that the process has participated in.

For convenience, the basic conversation scheme without the lookahead capability is

denoted by CL-O in the rest of this chapter whereas the conversation scheme operating under

the single conversation lookahead rule and the scheme under the two-conversations lookahead
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rule are denoted by CL-I and CL-2, respectively.

3.3 Queueing network models

(1) Model for CL-0 (zero lookahead)

A queueing network model of the system shown in Figure 2 operating under CL-0 is

depicted in Figure 4. Servers in the model represent processors and customers represent

processes which alternate between two different tasks.

PIS ',,a 02 PS

~F I"030

AI~x /

PIS: Primary Conversation
Interacting Session Acceptance Test

AIS: Alternate a :Probability of Failure
Interacting Session

Figure 4. A Queueing Network Model of the System in Figure 2.

Each process moves among three different states: executing a conversation task,

waiting for other processes to complete the conversation tasks, and executing a non-

conversation task. In Figure 4, the customers in QI represent the processes in execution of

conversation tasks whereas the customers in Q3 represent the processes in execution of non-
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conversation tasks. The customers in Q2 represent the processes which have finished their

conversation tasks and are waiting for others to finish. As soon as Q2 becomes full, all the
processes in the queue move to either Q3 or Q Ii, 1 i<oo, depending upon whether any of the

processes has failed in its acceptance test or not. If they all have passed their acceptance tests,
then they enter Q3. Otherwise, they all enter Qli, l_<i<oe, the queue for their next alternate

interacting session. Since Q3 is empty during the retry, there is no loss of information caused

by merging all Qli, li<oo, into QI. Figure 5 depicts a more abstract representation of the

queueing network model depicted in Figure 4. Therefore, N processes, where N is the total
number of processes in the svstem, are distributed over three different queues.

Conversation task

excution [

Non-conversation task
execution

03

Figure 5. An Abstract Representation of the Queueing Network Model in Figure 4.

Since each process runs on a dedicated processor, no waiting time is needed for the
process to execute its task. This characteristic is correctly represented in the queueing network

model by the number of QI servers as well as the number of Q3 servers being always equal to

N. Therefore, the execution time of a conversation task is represented by the length of stay in

QI whereas the execution time of a non-conversation task is represented by the length of stay

in Q3.

Let (nl,n2,n3) represent a state of the queueing network in which nl processes are in
QI, n2 processes in Q2, and n3 processes in Q3, where N=nl I+n2+n3. P(nl,n2,n3) denotes
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the stationary probability of the state. However, this does not represent all possible states since
(nl,n2,n3) does not indicate anything about whether any of the processes in Q2 has failed its
acceptance test or not. If any of the processes in QI fails its acceptance test then all others in
Q1 should immediately abandon their conversation tasks and enter Q2. From then on, a
process which has been in Q3 proceeds directly to enter Q2 without executing its conversation

task in QI as it leaves Q3 and enters the conversation. This is shown as a bypass around QI in
Figure 5. When Q2 becomes full, all the processes return to Q1. Let (e,n2,n3) represent an

error state in which n2 processes are in Q2, n3 processes in Q3, where N=n2+n3, and at least
one of the processes in Q2 has failed its acceptance test. P(e,n2,n3) denotes the stationary
probability of the state. As discussed above, when the network is in an error state (e,n2,n3),
Q1 is empty. The following assumptions are also an integral part of the queueing network

model.

A 1: The execution times of the conversation tasks and those of the non- conversation tasks are

exponentially distributed with means 1/u 1 and 1/u3, respectively.

A2: The probability of failure in an acceptance test for each process is a.

The transitions of the six-process system among all possible states are depicted in

Figure 6.

(2) Model for CL- I (one-conversation lookahead)

The queueing network model developed above for the system operating under CL-0 can

be extended as depicted in Figure 7 to represent the system operating under CL-1. This
queueing model contains two sets of three queues, i.e., queue sets (Q1,Q2,Q3) and
(Ql',Q2',Q3'). The three queues in each set correspond to the three queues in Figure 5. The 0

customers in QI and QI' represent the processes in execution of conversation tasks whereas

the customers in Q3 and Q3' represent the processes in execution of non- conversation tasks.
The customers in Q2 and Q2' represent the processes which have finished their conver
sation tasks and are waiting for others to finish. 0

0
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20u, QUI 2aul 3 ul 4cEul

Put d 30u I 4PU 1 50UI 6oul 5CtUj
5U3 4u 3 3 2 J3 U3

015 114 213 312 411 510
Ct if 2 ul 3aul

out Out ) 30ui 4pul A 5oul 4aul

024 4U3 1 3 3U3 222 2U3 321 U3 420
CLU I 2cLu

Out 2oul ,Wl 3P I 4ou I 3aul

033 3U3 132 2U3 231 U3 330
aul

out 2oul /101 3oul 2ctu 1
2U3 U3

042 141 240

15U 1 2oul

U3 
CCU

051 150

a: failure probability

uj

ul and u3 here correspond to ul and W in the text, respectively.

Figure 6. State Transition Diagram for the Six-process System Operating under CL-0.
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CONVERSATION TASK
EXECUTION

01 02

2
NON-CONVERSATION TASK
EXECUTIO

03

03'

92

CONVE RSATION TASK

03'

Figure 7. A Queueing Network Model for CL- 1.

Therefore, this new queueing model looks similar to the model of the system in which

processes alternate between two types of conversations. The only difference is that there are

bypasses around Q2 and Q2' with on-off switches, S 1 and S2, respectively. In a sense, the

bypasses are lookahead paths and the switches enable/disable lookahead. The lookahead

switches are opened and closed alternatively, i.e., if S I is open, S2 is closed and vice versa.

The role of these switches is to allow the process to make only one conversation lookahead.

For example, assume that processes A and B in Figure 3 start execution of A 1 and B 1,

respectively, from Q3 in Figure 7. Initially, switch SI is closed (i.e., a process which has

passed its acceptance test can go ahead through S I instead of waiting in Q2) and switch S2 is

open. At two different times the processes enter conversation CONV 1 and thus move from Q3

to QI. Now process B completes its conversation task B2 and passes its acceptance test while

process A is still executing its conversation task A2. Under CL-0 process B should wait in Q2
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until process A completes its conversation task. Under CL-I however, process B skips Q2
(since SI is closed) and proceeds into Q3 to execute B3. If process B completes B4 in

* CONV2 and passes its acceptance test, then one of the following cases will arise.

Case 1: Process A is in QI, i.e., still executes A2. In this case, process B should wait in Q2'
until process A completes A2 because only one-conversation lookahead is allowed. The

following two cases are possible later:

Case 1.1: Process A successfully completes CONV 1. Process A enters Q3'. Now the
status of the lookahead switches becomes reversed, i.e., S I is open and S2 is closed.
Therefore, process B moves from Q2' to Q3 and executes B5 immediately. (Now
processes in the upper queue set (Q1,Q2,Q3) are ahead of processes in the lower queue

set (QI',Q2',Q3').)

Case 1.2: Process A fails the acceptance test of CONVI. Both processes roll back to
Q1 and execute their alternate try blocks of CONV1. (All the lookahead executions

done by process B become nullified.)

Case 2: Process A has successfully completed CONV 1 and already left Qi. The status of two
switches was changed when process A left Qi and entered Q3'. In this case, process B moves
to Q3 without waiting in Q2' because the lookahead path is available.

Let (nl,n2,n3,nl',n2',n3') represent a state of the queueing network in which nI, n2,
n3, nl', n2', and n3' processes are in Qi, Q2, Q3, QI', Q2', and Q3', respectively, where

N=nl+n2+n3+nl'+n2'+n3' and N is the number of customers (i.e., processes) moving

through the network. Figure 8 depicts the transition of the network among states when N=2.
The steady state behavior of this network is discussed in Section 4.

(3) Model for CL-2 (two-conversations lookahead)

A further extension of the model in Figure 7 to represent the system operation under

CL-2 results in the model depicted in Figure 9. This queueing model contains three sets of
three queues, i.e., queue sets (Q1,Q2,Q3), correspond to the three queues in Figure 5. There

are three lookahead switches, S1, S2, and S3, and only one switch is open at a time.
Therefore, processes are allowed to make two-conversations lookahead.
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Sl:closed S2:open Sl:open S2:closed

0

I0

10

n0 number of processes in 0

nin 3n23 number of processes in 03

nln~fl3n3 number of processes in 013
n2 number of processes in 0 2

n3' number of processes in 03'

Figure 8. State Transition Diagram for the Two-process System Operating under CL-I.
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S1

* CONVERSATKON TASK
EXECUTON

01 02

NON-CONVE RSATKON TASK

0

CONVERSATION TASK
EXECUTO

I1---I ION01"0 02"

• Figure 9. A Queueing Network Model for CL-2.

The state of this queueing network can be characterized by nine parameters, each
representing the number of processes in a queue. The steady-state behavior of this network is
discussed in Section 4.

3.4 Analysis of the queueing network models

The steady state balance equations for all the states of the queueing network models
formulated in the preceding section (3.3) are included in Appendix A. From the equations, the
stationary probability of each state can be numerically obtained. In the next section, the
performance of the system in parallel execution of conversations is analyzed by making use of

such values.
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The complexity of the analysis process grows rapidly as the lookahead scope expands.

A good indicator of this complexity is the number of states which a given system can be in.

The exact number of all possible states of a system can be derived by use of the following

formulae. Here n represents the total number of processes in the system.

(1) CL-0

a) Non-error states: (n2+3n)/2

b) Error states: n- I

c) Total: (n2+5n-2)/2

(2) CL- I

a) Non-error states: (1/24)*(n 4+10n 3+23n 2+14n)

b) Error states: (1/6)*(n 3+3n2 +2n-6)

c) Total: (1/24)*(n 4 +14n 3+35n 2+22n-24)

CL-O CL-1 CL-2

2 processes 6 12 18

6 processes 32 237 965

12 processes 101 2092 21111

Figure 10. The NUmbers of Queueing Network Models.
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(3) CL-2

a) Non-error states: (1/720)*(n 6+21 n5 + 145n 4+435n 3+574n 2+264n)

b) Error states: (1/120)*(n 5+ 10n4+35n 3+50n 2+24n- 120)

c) Total:(1/720)*(n 6+27n5 +205n4 +645n 3+874n 2+408n -720)

Figure 10 summarizes the numbers of possible states for three different sizes of systems

operating under three different execution schemes, CL-0, CL- 1, and CL-2.

4. PERFORMANCE COMPARISON

In this section various system performance indicators obtained through the analysis of

the steady-state behavior of the models developed in section 3.3, are discussed. Among the

several performance indicators, the following are considered to be the most interesting ones:

(1) System throughput evaluated in terms of the number of successful conversations per unit

time,

(2) Resource utilization evaluated in terms of the number of processors idling due to the

synchronization required inside the conversation, and

(3) Conversation participation time, i.e., the average amount of time a process spends inside

each conversation.

4.1 System throughput

The system throughput, TPc, indicated by the number of successful conversations per

unit time, is obtained by use of the following formulae.

(1) Under CL-0

TPc(0) = (1-o)*ul*P(1,N-l,0),

where (1-x) represents the probability that each process passes its acceptance test, and

u I represents the completion rate for the conversation task.

(2) Under CL- I

TPc(0) = (1-)*u I *P(1,0,,n 1',n2',n3')
ni'+n2+n3'=N- I
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+ ( -(l) uI *P(1,0,0,E,n2 ,n3)
n2'+n3'=N-1

(3) Under CL-2

TPc(2)= Y ( 1 -o*u I *P(n 1,0,n3, 1,0,0,n I ",n2",n")

n I +n3'+n I "+n2"+n3"=N- 1

+ I (1 -oc)*u I *P(n 1,0,n3, 1,0,0,_,n2",n3")
nI+n3+n2"+n3"=N-1

+ I (1-o)*u1 *P(c,n2,n3,1,0,0,0,0,0)
n2+n3=N- 1

Figures 11 and 12 depict the system throughputs under both CL-0 and CL-I for the

cases of the number of processes being two and twelve, respectively. The execution time ratio

between the non-conversation task and the conversation task (ul/u3) varies from 0.1 to 10.
The wide range of values for ul/u3 is examined because the ratio ul/u3 may actually vary
widely among different applications. Since the execution time of the non-conversation task is

fixed to 0.1 time unit, the execution time of the conversation task varies from I to 0.01 time

unit. Each figure depicts for each conversation scheme (CL-0 or CL-1) four different curves
corresponding to four different probabilities of acceptance test failure. Here we are interested
only in those practical cases where the failure probability is less than 0.05.

Both figures show that under CL-0 the system throughput is not much affected by the
probability of the acceptance test failure if there are a relatively small number of processes.

However, the system throughput is more sensitive to the acceptance test failure probability

under CL-I than under CL-0. For example, when ul/u3=10 and the failure probability
increases from zero to 0.05, the system throughput for the case of twelve processes decreases

by 0. 1 under CL-0 whereas it decreases by 1.0 under CL- I (Figure 12). This is a reflection of

the higher recovery cost under CL-1.

On the other hand, comparison of Figure 11 and Figure 12 reveals that as the number
of conversation participants increases, the system throughput degrades more slowly under CL-
1. For example, as the number of participants increases from two to twelve While u l/u3=10,

the throughput degrades from 6.2 to 3.2 (i.e., 4 9 /c reduction) under ('L-() whcreas the
throughput degrades from 7.5 to 4.9 (i.e., 35% reduction) under CL.- I. This al:,o means that S
the benefits of lookahead are greater when the number of participants, is larger. Figure 13
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shows this phenomenon from another perspective. As long as the acceptance test failure
probability is within a practical range, i.e., 0 <~ a< 0.05, the throughput increase resulting

from incorporation of the single conversation lookahead rule is greater when the number of

participants is larger.

* System throughput (2 processes)

U3: fixed to 1/0.1=10

8 Failure probablity
0%
5%
1 0%O

30%
0%5%

6- 10%
30%

-C

2

20

synchronous conversation
*:one conversation lookahead

0-1 1
*0 2 4 6 8 10

I/U3

Figure 11I. System Throuighput uinder Cl-0O and CL.- 1 (2 proce'.\c\
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System throughput (12 processes)

U3: fixed to 1/0. 1=1 0

Failure probability

6-

0%

C.

0)

10%
5%
10%

2-0
30%

-.- : synchronous conversation

-*:one conversation lookahead

0 2 4 6 8 10

UIIU3

Figure 12. System Throughput under CL-O and CL- I (12 processes).
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System Throughput Ratio

(1 cony. look-ahead I synchronous conv.)

2.0-

U1/U3=1

1.5

0
- 1.0

0.5

-4- 2 processes
6 processes

-*- 12 processes

0.0 ,
40 60 80 100

(1-failure probability)*100%

Figure 13. System Throughput Ratio.

Figure 14 shows the increase of system throughput resulting from the change of the
scheme from CL-0 to CL-i and then to CL-2. Two cases of the acceptance test failure
probability, i e., zero and 0.05, are displayed and ul/u3 is 10. The figure shows that when the
failure probability is as large as 0.05, the benefits of changing from CL-i to CL-2 are not
substantial, especially if the number of participants is six or more. On the other hand, when
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0

the failure probability is closer to zero, the benefits are substantial. For example, when the

number of participants is six and the failure probability is zero, the benefit of changing from

CL-0 to CL- I is 46% increase in throughput whereas the benefit of changing from CL-0 to CL-

2 is 69% increase in throughput. Therefore, CL-2 brings 23% additional increase in

throughput in this case. The schemes permitting lookahead of three or more conversations can

be analyzed in similar ways to support decisions regarding their adoption in given execution

environments.

System Throughput Ratio

(U/U3=10, U3=10)2.0. 0

1.6

1.5

1.4
1.3

1.2

1.1

0.9.

0.8-

0.7- Failure probability
• 4- 2 processes 0%

0.5• -0- 2 processes 5% 0
0.4 -4- 6 processes 0%

- 6 processes 5%
0.3-

0.2

0.1 0
0.0 " '

one look-ahead two look-ahead
(CL-O) (CL-i) (CL-2)

Figure 14. System Throughput Ratio.
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4.2 Resource utilization

The number of processors idling due to the synchronization required on the processes

inside the conversation is represented by the length of Q2 in the case of CL-0 and by the sum

of the lengths of Q2 and Q2' in the case of CL-1. The following formulae can be used to

derive the resource utilization.

(1) Under CL-0

N-I N-1

MQL2(0)= I Y n2*P(nl,n2,n3) + Y n2*P(e,n2,n3)
n2=1 nl+n3=N-n2 n2= 1

(2) Under CL- I

N-I
MQL2(1)= Y Y n2'*P(n 1,0,n3,n l',n2',n3')

n2'=1 nl+n3+nl'+n3'=N-n2'

N-1

+ 1 Y, n2'*P(n 1,0,n3,e,n2',n3')
n2'=l nl+n3+n3'=N-n2'

N-I
+ I n2*P(e,n2,n3,0,O,O)

n2=1

(3) Under CL-2

N-I

MQL2(2)= Y, I n2"*P(n 1,0,n3,n i',O,n3',n I",n2",n3")
n2'= nl+n3+nl'+n3'+nl'+n3"=N-n2"

N-1

+ Y I n2"*P(nl,O,n3,nl',O,n3',,n2",n3")
n2'= n1+n3+nl'+n3'+n3"=N-n2"

N-1

+ Y, Y n2*P(e,n2,n3,nl',,n3',0,0,0)
n2'=l n3+nl'+n3'=N-n2
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0

N-I

+ Y n2'*P(O,O,O,,n2',n3',0,0,0)
n2'=l

Figures 15 and 16 depict the queue len gths under both CL-0 and CL-I for the cases

where the number of processes are two and six, respectively. The probability of successful

acceptance tests (1-a) varies from 0.5 to 1. The completion rate for the non-conversation task

(u3) was fixed at 10. Each figure depicts five different curves for each conversation scheme, 0

each curve corresponding to a different execution time ratio (ul/u3).

Mean 02 length (2 processes)

U3: fixed to 1/0.1=10

1.0 UI/U3

0.9

0.8

0.7
10

0.6 10 0.2
0.5~5

* 0.5 7.2

So 0.5
=10a .4 - 10 ,A . - s- 10

0.3 .

0.2

0.2- .

0.1 -.- : synchronous conversation
-,-: one conversation lookahead 0

0.0 , " " ' "
40 50 so 70 8o 90 100

(1 - failure probability) * 100%

Figure 15. Mean Q2 Length under CL-0 and CL- 1 (2 processes).
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Mean 02 length (6 processes) -

U3: fixed to 1/0.1=10

4 UI/U3
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5
0.2
0.5
1

10
10

.€:2-0.2

= 0.5
0)

0.5
o.2

5

o.2
0.5
1

•-: synchronous conversation
: one conversation lookahead

0 -I I V . I

40 50 60 70 80 90 100

(1 - failure probability) ' 100%

Figure 16. Mean Q2 Length under CL-0 and CL- i (6 processes).

As expected, processor utilization is substantially higher under CL-I than under CL-0
when the failure probability is within a practical range (0 < a << 0.05). When the failure

probability is close to zero in a system of six processors and ul/u3 is 10, the expected

percentage of busy processors is about 63% under CL-I whereas it is only about 43% under
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CL-0. Also, under CL-0, processor utilization does not get much better as the failure

probability approaches zero whereas it increases faster under CL-i.

Figure 17 shows resource utilization in a six-processor system under CL- 0, CL-1, and

CL-2. Two different cases of ul/u3, 1 and 10, are shown. When ul/u3 is 10, the expected

number of idling processors is 3.4 (57% of the processors available) under CL-0, 2.2 (37%)

under CL-1, and 1.7 (28%) under CL-2.

Mean Queue Length Comparison

(6 processes, U3=10)

5
U1/J3=lO or 1

- 1O(CL-O)
1 (CL-O)
1 O(CL-1)

4 - I(CL-1)
-- 1 O(CL-2)

S1(CL-2)

3-0

0 2

1 0

O* . I '

40 50 60 70 80 90 100

(1-failure probabillly)*1 00%
Figure 17. Comparison of Mean Q2 Length under CL-0, CL-1, and CL-2.

4.3 Conversation participation time
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Mean participation time, Wp, can be obtained by use of the Little's Law [Kle75], i.e.,

Wp = L/T where L is the queue length and T is the throughput of the queue server. Since the

customers in Q1 (also QI', QI") and Q2 (also Q2', Q2") represent the processes inside a

conversation, L is the sum of the lengths of those queues and T is N*TPc where N is the

number of processes and TPc is the number of successful conversations per unit time

discussed in Section 4.1.

(1) Under CL-0

Wp(O) = (MQLI(O) fMQL2(0)) / (N*TPc(O))

(2) Under CL-I

Wp(1) = (MQLI(1)+MQL2(1)+MQLI'(1)+MQL2'(1)) / (N*TPc(1))

(3) Under CL-2

Wr(2) = (MQLI(2)+MQL2(2)+MQLI'(2)+MQL2'(2)

+MQLI"(2)+MQL2"(2)) / (N*TPc(2)),

where MQLm(n) denotes the length of Queue Qm in model CL-n and TPc(n)

denotes the system throughput under CL-n.

Figure 18 shows mean participation times under CL-0, CL-1, and CL-2 when the

number of participating processes is six. Three different cases of failure probability are

plotted. It shows that when the failure probability is within a practical range, the mean

participation time improves significantly as the scheme changes from CL-0 to CL-1, but

considerably less as the scheme changes from CL-I to CL-2.

5. SMMARX

Overall the lookahead approach reduces the synchronization overhead of the

conversation scheme to a significant extent. The system performance improves substantially

by all three measures used in this chapter. Interestingly, as the synchronization overhead plays
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Mean participation time (12 processes)
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Figure 18. Conversation Participation Time under CL-O and CL-I (12 proecsses).

a less dominant role in determining the system performance under the lookahead approach

(than under the basic conversation execution scheme), the impact of the acceptance test failure

probability on the system performance is more noticeable. As the scope of lookahead
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increases, the system performance improvement becomes gradually less substantial although

implementation costs and recovery costs may grow steadily. Therefore, determination of a

suitable limit on the scope of lookahead requires a tradeoff analysis reflecting various

environmental characteristics.

The queueing network models developed in this chapter can be extended to represent

the systems in which processes engage in multiple types of conversations including some

nested within others. For example, Q3 in Figure 5 can be expanded into a series of Q1- and

Q2-types representing different types of conversations followed by a queue of Q3-type in order

to represent the systems in which processes engage in multiple types of non-nested

conversations under CL-0. Such extended models will be useful in evaluating the potential

performance of the systems being considered in specific application environments.

Formulation and analysis of the lookahead approach to execution of conversations

represent only one of many research tasks needed to establish the conversation scheme as a

design technique that can be widely practiced. There are still several other fundamental

questions regarding the conversation scheme, e.g., how to design effective conversation

acceptance tests and alternate interacting sessions, that remain unsatisfactorily answered. An

experimental work aimed at finding answers to such questions and at validation of the predicted

performances discussed here, is regarded as a highly worthwhile subject for future research.
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Appendix A. Steady State Balance Equations

The steady-state balance equations for the states of each queueing network model

developed in Section 3.3 are as follows.

(1) Model for CL-O

P(nl,n2,n3) =[l/(nl*ul+n3*u3)]*[ul *(nl+1)*(1a()*P(nl+1,n241,n3)

+ u3*(n3+1)*P(nl-l,n2,n3+1)]

P(e-,n2,n3) = [l/(n3*u3)]

n2
* I~ ul*i*a*P(i,n2-i,n3)

+ u3*(n3+1)*P(E-,n2-1,n3+l)]

(2) Model for CL- I

P(nl,O,n3,nl ',n2',n3') = [l/((nl+n1')*ul+(n3+n3')*u3)I

*[u1*(nl+l)*(1-a)*P(nl+l,O,n3,n1,n2l,n3'-l)

+ u3*(n3+ l)*P(n 1-1,O,n3+l ,n 1',n2',n3')

+ ul *(nl'+l)*(1..a)*P(nl ,O,n3,nl'+1 ,n2'-1 ,n.3')

+ u3*(n3'+1)*P(nl ,O,n3,nl1-1 ,n2',n3'+ 1)]

P(nl1,O,n3,s-,n2',n3') = [l/(nl1*ul +(n3+n3')*u3)I

* ul1*(n 1+1)*( l-c)*P(n I 1,O,n3,E-,n2',n3'- 1)

+ u3*(n3+ 1 )*P(n 1I ,0,n3+ 1 ,E,n2',n3')
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+ ul*i*cx*P(nl,0,n3,i,n2.-i,n3')

+ u3*(n3f+ 1 )*P(n 1 ,0,n3,E-,n2'- I ,n3'+ 1)1

P(e-,n2,n3,0,0,0)

= 1/(n3*u3)J * I * 1i*(a
i=1 X=-O

*P(i,n2-i-X,n3,nl',n2',n3')

+ u3*(n3+ 1)*P(E,n2 1 ,n3+ 1,0,0,0)1,

where X=nl1'+n2'+n3'

(Note: The above steady state balance equations cover only the case where switch S I is

closed and S2 is open in the model for CL-i. Due to the symmetric characteristics of this

queueing network, it is not necessary to consider the other case where switch S I is open and

S2 is closed. Similarly, in the following, we consider only the case where switches S I and S2

are closed and S3 is open in the model for CL-2.)

(3) Model for CL-2

P(n l,0,n3,nl1',0,n3 t ,nlI",n2",n3")=

[1/((nl +nl1'+n 1 ")*ul1+(n3+n3'+n3")*u3)]

* [ul *(nl+1)*(1.ax)*P(n1+1 ,0,n3,nl1 ,0,n3',nlI",n2",n3"- I)

" u3*(n3+l )*P(nl1-1,0,n3+I ,nlI',0,n3,n I",n2",n3')

+ ul *(nl'+1 )*(l-a)*P(n1 ,0,n3- 1,n '+1 ,0,n3',nlI",n2",n3")

+ u3*(n3'+1 )*P(nl1,0,n3,n 1'-l ,0,n3t+1,n 1 ",n2",n3")
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+ ul*(nl"+1)*(1Icc)*P(nl,O~n3,n1',O,n3',n1 "+1,n2"-1,n3")

+ u3*(n3"+ 1)*P(nl1,O,n3,nlI',O,n3',n 1"-1 ,n2",n3"+ 1)]

P(nl ,O,n3,nl ',O,n3',c,n2",n3") =

[1/((nl+nl')*ul+(n3+n3'+n3')*u3)]

* [ul *(nl+1 )*(1-a)*P(n1+1 ,O,n3,nl1,O,n3#,e-,n2hf,n3f" 1)

* ~+ u3*(n3+l )*P(n 1-I ,O,n3+1 ,nl1',O,n3',e,n2",n3")

+ ul *(n 1'+1)*(1 ac)*P(n1,O,n3-1 ,n 1'+1,O,n3,e,n2",n3")

* ~+ u3*(n3t+1 )*P(nlI,O,n3,nl'-1 ,O,n3t +1 ,E,n2",n3")

+ u1I i"'a

*P(nlI,O,n3,nlI ,O,n3',i,n2 t -i,n3"#)

+ u3*(n3"+l)*P(nl1,O,n3,nl',O,n3',e-,n2'- 1,n3"+1)I

P(e,n2,n3,n 1 ',O,fl3',O,O.O)

=[1/(nl'*ul+(n3+n3)*u3)I

*[I I ul*i*cc
1=1 Y=O

* + u3*(n3+I )*P(E,n2 1 ,n3+ 1,nl',O,n3,O,O,O)

+ ul *(nl'+I)*(1-cx)*P(s,n2,n3-1 ,nl'+1 ,O,n3',O,O,O)

* + u3*(n3'+l)*P(E,n2,n3,n'-1,O,n3'+,,O,O)],
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where Y=nl1 +n2"+n3"

P(0,O,O,e,n2',n3',0,O,O)

=[1/(n3'*u3)I

n2* n2'-i*[X Xul*i*ax
i=1 b=0

*P(nlI,O,n3,i,n2 t-i-Z,n3',nlI",n2 t',n3")

+ u3*(n3'+ )*P(0,O,O,s-,n2' 1 ,n3'+ 1,0,0,0)],

where Z=ri I +n3+n I "+n2tt+n3"
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CHAPTER V

AN APPROACH TO DYNAMIC EXECUTION TIME
ESTIMATION
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1. INTRODUCTION

Computer systems are being increasingly used for control of complex and sophisticated

real-time applications such as flight control systems and ballistic missile defense systems.

Since the real-time systems operate in the presence of concurrent events (e.g., inputs from

multiple sensors and outputs to multiple actuators) the software is usually designed for a large

number of concurrent tasks which may have different priorities and deadlines. Such tasks can

be divided into two categories according to the strictness of their temporal constraints, namely,

hard-real-time tasks and soft-real-time tasks. Output obtained after a deadline from a hard-real-

time task is of no use, while the output usability for a soft-real-time task only decreases. The

scheduling of the real-time tasks is not trivial due to these temporal requirements (or execution

time deadlines). Most deadline-driven scheduling algorithms guarantee the schedulability of

tasks at preruntime assuming that the worst-case execution time of each task is known.

Although this preruntime (or design time) guarantee is necessary for critical real-time tasks,

there is a limitation. As the real-time systems become more complicated and distributed it is

almost impossible to guarantee the schedulability of all tasks at design time.

Adaptive scheduling can overcome this limitation and maximize processor utilization by

incorporating runtime optimization. The adaptive scheduler should be designed such that it will

(1) guarantee the most critical tasks are scheduled before deadlines, whose schedulability is

verified at design time and (2) accommodate other tasks (usually soft-real-time tasks and

aperiodic tasks) efficiently at runtime. For the former the deadline-driven scheduling

algorithms, such as the shortest deadline first or least laxity preemptive scheduling, can be

used. The "reward value" based on the time-value function [Jen85] is an example of an

efficiency measurement for the latter type tasks.

Since all these real-time scheduling algorithms assume the execution time behavior of

tasks is known, the accurate estimation of the execution time is crucial. System failure may

result from a missed deadline due to under-estimated task execution times. On the other hand,

over-estimates degrade system utilization significantly. (This over-estimate may create more

serious problem than low CPU utilization under the adaptive scheduling such as time-value

function based scheduling. We will show an example in Section 4.) Although several

approaches to execution time estimation have been proposed [Gop90, Hab9O, Par9O, Pus89,

Wei81] they seem insufficient to support efficient implementation of adaptive scheduling.

This chapter proposes a Dynamic Execution Time (DET) estimation technique for

determining the worst-case execution time behavior of tasks. The DET estimation comprises

two new concepts: (1) compile time estimation based on semantic as well as syntactic analysis,

and (2) runtime estimation based on Execution Time (ET-) functions. DET estimation is

V-2



performed by two analyzers: Compile-time Analyzer (CA) and Runtime Analyzer (RA). The
CA estimates the upper bound worst-case execution time of program segments and produces an
ET-function which is used by the RA during runtime to calculate the remaining execution time
of a task accurately for the scheduler. The usefulness of DET estimation is demonstrated with

an example.

2. KNOWN ESTIMATION APPROACHES

Estimation of execution time is difficult because of input-dependent branches and
loops, and unpredictable delays associated with resource contention. Moreover, in a
distributed real-time system, the communication and synchronization between tasks make the
analysis of timing behavior much more difficult. The experimental approach can, if the domain
of the possible inputs for a given program segment is finite, obtain accurate worst-case
execution times by making some finite number of test runs. However, the process is very
costly and often impossible in most cases since the input domain is infinite. Hence, analytical
approaches, which estimate execution time by analyzing program segments, have been studied

by researchers.
Wei [Wei81] proposed a "limit" keyword in Path Pascal, which bounds the maximum

number of loops, e.g., "for i=l Io N k limit 1000". In [Pus89] a loop bound can either be a
limit for the maximum number of iterations or a time limit for the termination of the loop.
Puschner and Koza also proposed new language constructs, "scopes" and "markers". A scope
is a segment of a program's instruction code, limited by a special scope construct that is

embedded into the syntax of a programming language. A marker is a special mark located
within a scope. It specifies the maximal number of times the marked position in the program
may be passed by the program flow between entering and leaving the scope. Markers are
mainly used to state that the number of executions of one or more paths through a loop can be

bounded. Loop sequence is another language construct which can be used when the sum of
the iterations of the loops is bounded. That is, a loop sequence is a series of loops which has
the property that the sum of the iterations of the single loops does not exceed a given constant
value at runtime.

Puschner and Koza try to reduce the gap between the "structural" worst-case time and
the "realistic" worst-case time by having programmers (or designers) provide information
about the execution of their algorithms as much as possible. However, in many real-time
programs, the control flows are determined by input values at runtime and the domain of the
input values are often infinite. In such cases, very little information can be provided by
programmers. Moreover, programmers may provide wrong information which causes the
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program to fail at runtime.

Park and Shaw [Par9l] consider the worst-case and best-case bounds using "timing

schema" which are essential formulae for computing upper and lower bounds for program

constructs. Their approach (which uses a special tool) decomposes a program statement into

atomic blocks by examining the object code generated by a compiler. They compute the

execution time of the statement using the execution time of the atomic blocks and timing

schema. Loops are handled in a similar fashion except that they must know the range of

iterations. Park and Shaw include control costs, and handle interferences such as clock

interrupts by removing interference times from measured times.

The approaches discussed so far are considered to be static analytical execution time

estimation techniques. The estimations are based mainly on syntactic structure of program

segments and the hints provided by programmers. In contrast, Haban and Shin compute the

remaining pure execution time of a task at runtime [Hab9O] by employing a real-time monitor.

The monitor is composed of dedicated hardware, called "test and measurement processors",

that measure, with minimal interference, the true execution time including any resource sharing

delay. The monitor is very useful in determining whether a task will terminate within a

deadline, which makes adaptive scheduling possible.
In [Gop9O], Gopinath and Gupta propose "Compiler Assisted Adaptive Scheduling"

(CAADS) where the compiler examines the application code and inserts measurement code at

appropriate boundaries. The measurement code enables execution times of the various parts of

the program to be determined at runtime. Code reordering is discussed to allow greater

adaptability and early failure detection. CAADS, unlike Haban and Shin's approach, does not

require any hardware support. However, both approaches [Hab90, Gop90] ignore that the

execution time of periodic tasks may vary significantly depending on the input values of each

iteration.

3. DYNAMIC EXECUTION TIME ESTIMATION

Dynamic Execution Time (DET) estimation is performed by two analyzers: Compile-

time Analyzer (CA) and Runtime Analyzer (RA). The CA attempts to estimate the execution

time of a program not only by syntactic (or structural) analysis, but also by semantic analysis.

The latter is done by tracing the influence of variable input data as it progresses through a

simulation of program execution. As a result, each statement is classified either as a fixed

statement (whose exact execution time is known at compile time), or as a variable statement

(whose exact execution time is not known at compile time). The statements are grouped into

segments based on the rule discussed in Section 3.1. The Execution Time (ET-) function and
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the worst-case execution time of each segment is then obtained.
The RA calculates the remaining execution time of a task at runtime. The quick and

accurate estimation of the remaining execution time is possible by using the ET-functions

generated

by the CA. This time information makes efficient implementation of adaptive scheduling

possible. Figure 1 shows the relationship among the CA, RA, and scheduler. We will discuss

the details in the following subsections.

Compile-time Analyzer Compile time(CA
ET-function..

Runtime Analyzer 4

Remaining Ecime Runtime

Figure 1. Relationship among CA, RA and Scheduler

3.1 Compile-time Analyzer

The Compile-time Analyzer (CA) has four phases: F/V-statement classification,

partitioning, worst-case execution time estimation, and ET-function generation.

F/V-statement classification
During this phase, each statement of a program is classified either as a fixed statement

(F-statement) or as a variable statement (V-statement). The execution time of an F-statement is

known at compile time as either a constant or almost constant. The execution time of a V-

statement, on the other hand, is unknown at compile time. There are largely two kinds of V-

statements.

(I) The execution time of the statement is determined by the values of some variables or
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operands. Therefore, if the values are unknown at compile time the exact execution time is also
unknown. Examples include branch statements, loop statements, and statements involving
string manipulation. Once the values of the unknown variables are known, very accurate
execution time can be calculated.
(2) There are statements which may be blocked at runtime. Examples include any statement
requiring synchronization such as I/O statements, "send" and "receive" statements, and

0 rendezvous calls. These statements need a special treatment at runtime by the scheduler.
Our goal in this phase is not only to classify statements into F- or V-statements but

also, more importantly, to minimize the V-statements as much as possible. This is possible by
tracing the values of each variables (i.e., semantic analysis) along with the syntactic analysis.
Since our approach to the syntactic analysis of statements is not different from others we focus
our discussion on the semantic analysis.

It should be noted that the actual execution time also depends on the compiler
optimization. The examples which are used to illustrate the DET estimation approach are
provided at the source code level (i.e., C). However, this approach is claimed to be directly
translatable to the compiled object image or assembly code. In fact, the semantic analysis is
more naturally explained using low level assembly language terminology. Note also that the
terms "instruction" and "statement" (including "operand" and "variable") are used
interchangeably even though one one high level statement may consist of multiple instructions.

Semantic analysis is done by simulating the execution of each instruction and tracing
the values of operands. Tracing is done by the CA through a process of interpretation which
keeps track of information about the data (or operand) by taging it with a boolean flag called the

"known" flag or k-flag for short [Reh87].
The k-flag allows the data to be identified in its associated word as either constant

(known) or variable (unknown) at any point in time during the interpretation of the program.

When a program to be analyzed is first loaded into memory, all cells or words that are loaded
are marked as "known" (k-flag true), since they will always have this value at the start of
execution. The memory cells that are not touched by the loading process are marked as
"unknown" (k-flag false), since they are uninitialized. (If the target system always initializes
memory prior to loading, then the k-flags are adjusted accordingly.) As interpretation takes
place, the k-flags of an operation and its operands are combined by a logical AND to determine
the k-flag of the result. Thus, if at least one of the k-flags of the instruction and its operands is
false, the k-flag of the result is false.

For example, for the statement "x:=y+z" the addition is performed and the result is
stored in x. At the same time, the k-flag of the operations (in this case "+" and ":=") and the k-
flag of y and z are ANDed, and the result is stored in x's k-flag. The k-flags of most
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operations are true except for those operations whose execution times depend on their
operands, such as string manipulation instructions. More detail on k-flag is reported in

[Reh87].
During semantic analysis a statement is marked as "Fixed" and called an F-statement if

the execution time of the statement is known at compile time. Otherwise, the statement is

marked as "Variable" and called a V-statement.
For a simple statement, marking of the statement is determined by the following rule:

if (k-flag of operation) OR

(k-flag of operand, AND k-flag of operand 2 AND ... )

then F-statement

else V-statement
If the k-flag of an operation is true then the execution time of the statement is fixed regardless
of its operands. On the other hand, if the k-flag of an operation is false the execution time of

the statement depends on the operands. Therefore, if the operands are known then the
statement is an F-statement. (If a statement consists of more than one instruction, the result of
each instruction is ANDed.) For example, statements (1) through (5) in Figure 2 are marked as
F-statement. Table 1 shows the relationship among k-flags of operation and operands and F/V

marking.

Table 1.
Relationship among k-flags and F/V marking

k-flag of k-flag of F/V-
operation operand statement

True True F
True False F
False True F
False False V

The execution time of a branch statement is determined by the branch choice. If the k-
flag of the branch factor is true, i.e., the variables which determine the selection of the branch
are known, we know that which branch will be executed at compile time. However, this does
not necessarily mean that the execution of the whole branch statement is known because the 0

selected branch may have some V-statement(s). In such cases branches of "if' statement are
treated as separate blocks.

If the k-flag of the branch factor is false, the branch that is selected is not known at
compile time. However, there may be cases in which the difference between the execution time
of the longest branch and that of the shortest one is negligible or less than a certain value
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determined according to the timing criticalness of the program. In such cases even if the
branch factor is not known the execution time of the whole branch statement is almost constant,
which should be treated as an F-statement. For this purpose, a flag called a "negligible flag" or
"n-flag" for short is introduced. The n-flag of a branch statement is true if the execution time
of the statement is almost constant regardless of the branch selected. For example, "if(a<b)
c=5 else c=6" with unknown variables a, b and c. In this case although it is not known which
branch is selected hence the k-flag of c is false, the execution time of this statement is constant
hence an F-statement. Table 2 summarizes the relationship.

Table 2.
• Relationship among n-flag, k-flag, and F/V marking

n-flag k-flag of FN-
branch factor statement

True True F
True False F

* False True F/V
False False V

The execution time of a loop statement depends on both the loop factor which decides
* the number of loop iteration and body of the loop. Therefore, a loop statement is an F-

statement only if the k-flag of the loop factor is true and the loop body has no V-statement. If a

branch or loop statement has V-statement(s) in it F/V-statement classification is nested. As
shown in Figure 2 statement (7) has three nested statements, (7.1), (7.2) and (7.3) and in turn
(7.2) also has nested statements. These nested statements are, unless all of them are F-
statements, partitioned as nested segments explained later.

We now discuss how the statements whose execution is possibly blocked at runtime
can be treated. Among others, "send" and "receive" statements are typical in a distributed
computing environment. We assume an asynchronous communication with the following

syntax:

send message IQ destination
receive message ftr source within timelimit

Since the sending message is assumed to be never blocked under asynchronous communication
"send" statement can be treated as a normal statement with no delay. (Although the exact
execution time is sometimes unknown at compile time due to unknown size of messages.) The
ftreceive" statement, on the other hand, may be blocked if the message is not ready. Since the
delay may depend on many factors it is very difficult, if not impossible, to estimate the exact
waiting time, even worst-case waiting time sometimes. Therefore, it is inevitable to attach the
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# include <stdio.h> _

# define EOS V0' /* End of String */ ( ( •)segments
# define TIMELIMIT 10

F, V •statements
char string[80]; 

F

mainO
I

char c, source, destination;
int i, low, in, high, digit, sum;

(1) i--O; F
(2) low=O; Y
(3) in=O; F
(4) high=O; Y
(5) sum--0; F

(6) receive(string, source, TIMELIMiT); V_

(7) while( c=string[i] != EOS) V

(7.1) send(c, destination);
(7.2) if( c <'0') .V
(7.2.1) low++ F-__ _ _ _

else if( c> '9')
(7.2.2) high++ F -0

else
(

(7.2.3) in++; F"_,_____..____
(7.2.4) digit=atoi(c); F-________
(7.2.5) sum=sum+digit; Y
(7.2.6) if(sum>100) V

(7.2.6.1) send(sum, destination); F
(7.2.6.2) sum=0; F 

(7.3) i++; F

(8) send(low, destination); F
(9) send(in, destination); F
(10) send(high, destination); F

Figure 2. Sample Program
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time limit which is used for two purposes. At compile time this is used as the worst-case

execution time of the receive statement and at runtime time_limit is a timeout. (In practice, the

programmer may want to specify the actions after timeout occurs.) Under the synchronous

communication "send" statement is treated same as "receive" statement since the "send"

statement can also be blocked. The other statements which are not discussed here can be

treated in the same manner.

Once the analysis is done the program is partitioned into segments. (In real

implementation this phase and the later phases can be done simultaneously with the F/V-

statement classification.) The partitioning is done based on the following rule:

(1) A program block contains at most one F-segment and zero or more V-segments.

(2) An F-segment contains F-statements only.

(3) A V-segment contains one leading V-statement and the following F-statement(s) which

appear before the next V-statement (same level statement case).

(4) There are three different V-statements, i.e., v_branchstatement, viloop-statement, and

v_functioncall-statement.

Therefore, a program can be represented using BNF notation as

block ::= [F-segment] {V-segment}

F-segment ::= F-statement (F-statement)

V-segment ::= V-statement (F-statement)

V-statement ::= vbranchstatement I vjloop-statement

I vfunctioncall statement

v_branchstatement ::= block {block}

vjloopstatement ::= block

The sample program shown in Figure 2 has one F-segment followed by two V-segments. The

second V-segment has a nested F- and V-segment in it.

0 Worst-case Execution Time Estimation

The worst-case execution time of each segment is estimated based on F/V marks. For

an F-statement the exact execution time is calculated. While for a V-statement, the worst-case

is chosen. For example,
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if expri stmtj max( T(exprj) + T(stmtj),

else if expr2 stmt2 T(exprj) + T(expr2) + T(stmt2),
o00 @00eo

else if exprnq stmt. T(exprj) + T(expr 2 ) + * . * + T(exprn-1 ) +

T(stmt.),

else stmtn; T(exprl) + T(expr 2 ) + * e o + T(exprn.j) +

T(stmt,) )

while expr do stmt;

=> MAXIMUMNUMBEROFLOOPS * (T(expr) + T(stmt)) + T(expr)

The worst-case execution time of the statement whose execution is possibly blocked at

runtime, e.g., statement (6) in Figure 2, is given as the sum of the maximum delay time and the

execution time. The worst-case execution time obtained by the DET estimation should be of

better quality, i.e., closer to the actual execution time than those obtained by other approaches

due to the semantic analysis of a program. This information is used for the preruntime

schedulability test as well as for the remaining execution time estimation.

ET-function Generation

The last phase of the CA (Compile-time Analyzer) is the generation of the ET-function

for each segment. Instead of choosing the worst-case execution time of a V-statement, the

execution time is expressed as a function of unknown variables. For example, the ET-function

of "for i=1 to N do stmt" is a function of unknown variable N and can be expressed as

"ET=N*T(stmt)" where T(stmt) is the execution time of each loop. In the same way the ET-

function of the second V-segment in Figure 2 can be expressed as a function of the length of

the string received. During runtime, the length should be known by the time that statement (7)

is about to execute. Hence the RA (Runtime Analyzer) can calculate the accurate, not worst-

case, execution time and provide this information to the scheduler. The ET-function is

generated using a bottom-up parsing. Figure 3 shows the CA except the F/V-statement

classification.

In this section we have explained how the CA classifies F/V-statements, partitions a

program into F/V-segments, estimates the worst-case execution time, and generates the ET-

function of each segment. All of the timing information is stored into the Timing Information

Block (shown in Figure 4) and eventually copied into the process control block at runtime.

Figure 5 shows the Timing Information Block generated for each segment of the program in
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Figure 2. As shown in this figure for the F-segment AET is calculated whereas for the V-

segment both WET and ET-function are calculated. The CA is being implemented in C

language for the PL/O language [Wir76], a subset of Pascal. (Part of the CA was implemented

in Pascal for the PL/O language by Rehm [Reh87].) The CA will be extended for the C

language and will include provisions for estimating "send" and "receive" statements in

distributed systems.

3.2 Runtime Analyzer

The Runtime Analyzer (RA) is a small program in the runtime kernel. The RA,

whenever invoked by a task, calculates the remaining execution time of the task using the
timing information in the process control block. Figure 6 shows the control and data flow

among tasks, the RA, and the scheduler. (Although we draw the RA separately from the

scheduler to show the control and data flow, it can be a part of the scheduler in real
implementation.)

compile-time-analyzer0
S int i = 1, /* segment number */

j = 1; /* statement number */

do { read statementj;
if V statement
{ i=i+l;

if branchstatement
for(k=l; not endofbranch; k++)
{ go to the kth branch;

compile timeanalyzerO;

else if loopstatement
{ go to loop body;

compileimeanalyzero;

WET[ij = worst-case execution time of statementj;
ET[i] = ET-function of statement];

else /* F-statement */
*( AET = actual execution time of the statement j;

ETIi] = ETfi] + AET;I
j=j+1;

I while not end of statement;

Figure 3. Compile-time Analyzer (except F/V-statement classification)
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PrgrmAETIWETI Classficaion T-imrti

PartitoningAET/WET

D , ET-function

Worst-case ExecutionSemn3
Time Estimation ETfunTio

ET-funcniono*

Generation Dezdi ]
Compile-time Analyzer (CA) Timing Infor-mation Block

Figure 4. Block Diagram of Compile-time Analyzer (CA)0

F-segment AET =5 * Tassignment

V-segment W[ETTIME -LIMIT + Treceive

WET = 80 * Tioop-body + 3 * Lsend
ET-function = NUMBER_-OF_-LOOP * Tloop-body

+ 3* Tsend
NUMBEROFLOOP =SIZEOF INPUTSTRING

F-segment AET = Tsend

V-segment 'WET
ET-function = Tif + Tincreinent

Tif =00 * 0

V-segment F-segment AET

F-segment AET

F-segment AET

V-segment WET/ET-funcfion
__________ _________F-segmentAT

*AFT = Actual Execution Time
WET = Worst-case Execution Time
FT-function = Execution Timc-function

Figure 5. Timing Informnation Block
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When a program starts to run, the estimated remaining execution time is the same as the
worst-case execution time. For example, the task shown in Table 3 has three segments with

the worst-case execution time 100. Segment 1 is an F-segment with the estimated execution

time 20. Segment 2 is a V-segment with the worst-case execution time 30 and the ET-function
5X+5. Segment 3 is also a V-segment. Now suppose, during the course of execution, that the

value of X is 2 at the time that Segment 2 begins to execute. Since ET 2 = 5(2) + 5 = 15 the

estimated remaining execution time is 65 instead of 80. Since the scheduler knows this before

Segment 2 executes, the scheduler can allocate times more effectively. Similarly, once the

value of Y is known the remaining execution time can be estimated more accurately. Figure 7

shows the pseudo codes of the RA.

Table 3. Example

Segment I F AETI=20 I
Segment 2 V WET 2=30 ET-function 2=5X + 5
Seg ment 3 V WET 3=50 ET-function 3=10Y + 10

Task Task 2 Task 3 Task 4 @ 0

Value of unknown

Process Control Block

Runtime ET-fucti ' onchdue

Analyzer DeadlineSceur
(RA) • • •

Remaining Execution Time

Figure 6. Control & Data Flow among Tasks, RA and Scheduler
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runtime_analyzer0
{ int n; /* number of segments */

when invoked /* unknown variable of the kth segment is known */
/* RET is the remaining execution time */
RET = ETfunction(value of unknownvariable);
for(i=k+l; i<=n; i++)
{ /* WET[ij is the worst-case execution time of the ith segment */

RET = RET + WET[i];

send RET to scheduler;

Figure 7. Runtime Analyzer

4. REAL-TIME TASK SCHEDULING

The real-time task scheduling approaches can be divided into three categories: (1)

design-time guarantee, (2) runtime "best-effort", and (3) hybrid of the two approaches. The

traditional deadline-driven scheduling algorithms, such as shortest-deadline-first, least-laxity-

preemptive and rate-monotonic-preemptive, try to find the conditions for schedulability at

design-time or at preruntime. Under such environments, although the accurate execution time

is always necessary scheduling based on their runtime estimation is almost meaningless since

all tasks are already guaranteed to execute within deadlines. However, this design-time

guarantee approach suffers from the following two problems. First, due to the fact that the

worst-case execution time is used (and in many cases those are too worst) the processor

utilization is usually very poor. Second, and more seriously, as real-time systems become

more complicated and distributed, the design-time guarantee is extremely hard if not

impossible. Therefore, the second and the third approaches offer more appropriate solution.

One promising scheduling concept under the second approach (and also applicable for

the third approach) is based on the "time-value" function which defines a reward value at the

completion of a task. Tasks of real-time systems may have different time-dependent value

functions based on the criticalness of the tasks. For example, in Figure 8 Task A has reward
value VA if the task is completed by time dA; otherwise, the reward value becomes zero. On

the other hand, Task B has reward value of VB until dBi; then the reward value decreases and

becomes zero eventually at time dB2. Task C has a different reward value function as shown

in the figure. (In general, we can say that a task with the Task A-type reward function is called

a hard-real-time task and a task with the reward function type of Task B or Task C is called a

soft-real-time task.) The scheduler should be designed to maximize the reward values and/or
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minimize the penalty. Since the DET estimation approach produces very accurate remaining

execution time information it makes more effective scheduling possible.

Moreover, typical real-time systems provide a control mechanism based on a three-step

process: (1) obtain inputs from the external environments, (2) process inputs based on a

control algorithm, and (3) produce control outputs back to the external environments before the

deadline. Therefore, once the inputs are given, a more accurate execution time, instead of the

worst-case execution time, can be determined by DET estimation. And, as a result, more

effective scheduling becomes possible. The following subsections demonstrate two cases

where the DET estimation is very useful for real-time task scheduling.

4.1 The Restricted Preemptive Scheduling based on Time-Value Function

The performance criterion of deadline-driven scheduling is to minimize the number of

tasks which miss the deadline. In the design time guaranteed case, the number should be zero.

However, under time-value-based scheduling, tasks should be scheduled such that the reward

value is maximized.

Reward
Value

Task A
VA

Task B
VB

Vc

0 dci dC2 dA dC3 dBl dB2 Time

Figure 8. Time-Value Function

Suppose that two tasks, Task A and Task B have time-value functions as shown in

Figure 9(a). Both tasks consist of three segments as shown in Figure 9(b). Deadlines are 15

and 10, and the estimated worst-case execution times are 10 (3,5,2) and 7 (2,3,2),

respectively, although their actual execution times are 8 (3,3,2) and 7 (2,3,2). Assume that the

preemption can be done only at the end of each segment. Task A is scheduled initially since it

is not possible to schedule both tasks within deadlines, and Task A has a higher reward value.
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After completion of Segment 1 of Task A, the RA reevaluates the remaining execution times,

which turn out to be 5 and 7 instead of 7 and 7. Now we can schedule Task B which results in
a successful completion of both tasks (Figure 9(c)). This would not be possible without using
DET estimation since the scheduler would schedule Task A until it is completed, which would

not permit Task B to complete on time (Figure 9(d)).

4.2 Estimation of the Proper Timeout Period

DET estimation can be used to select proper timeout periods at runtime. Suppose two

tasks, Task A and Task B, run concurrently on different nodes. They are periodic tasks and
receive inputs from the sensors for each execution cycle. At the end of each cycle, Task A

sends the result to Task B. Now the question is how to select the proper timeout period of the
receive statement in Task B. This is not easy if both tasks receive inputs asynchronously for
each cycle. Using DET estimation this problem may be solved by dynamically selecting the
timeout period at runtime. That is, upon receiving input from the sensor Task A estimates its

execution time and informs Task B. Task B then sets up a timeout period based on that
information. By doing this, (1) processor utilization will increase, (2) more effective real-time

scheduling is possible, and (3) earliest detection of abnormal behavior of tasks is possible.

5. CONCLUSION

The execution time behavior of a program is affected by many factors, namely, input
values, compiler optimization, resource contention, communication uncertainties, and

synchronization overhead. Consequently, techniques that fail to address these factors may not

be of much use to the scheduler due to the wide variations in task execution times. This
dilemma forces system designers to compensate for uncertainties by tolerating worst-case

timing scenarios. However, in real-time systems both under- and over-estimation must be

avoided. System failure may result from missed deadline due to under-estimated task

execution times and alternatively, over-estimates degrade system utilization and may cause poor

performance under time-value-based scheduling.
This chapter has introduced the DET estimation, which is distinguished from other

approaches because: 1) semantic analysis as well as syntactic analysis is done by tracing values
of variables of a program using k-flags, and 2) ET-function is generated. The ET-function

makes it possible to calculate more accurate runtime execution times when the values of
variable factors are known. The remaining execution times of the tasks produced by DET

estimation are very useful to real-time task scheduling because they improve predictability
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which supports better resource utilization.
The research reported here is a part of our concurrent effort to develop the Application-

Specific Distributed Real-Time Kernel which is designed to support real-time embedded control

systems. We are investigating real-time scheduling algorithms which can be benefited by the
DET estimation, especially scheduling with the time-value function. The Runtime analyzer

(RA) and the scheduling strategies studied along with the Compile-time Analyzer (CA) will be

implemented for the kernel.

Reward
Value Task A

VA

Task B Task A Task B

VB Task B AETi 3 2

WET2(AET2) 5(3) 3(3)
WET3(AET3) 2(2) 2(2)

0 1 1AET: Actual Execution time of segment i
0 10 15 Time WETi• Worst-case Execution Time of segment i

(a) Time-Value function (b) Timing Information

Task A Task A missing
i deaCine

Task B Task B

3 10 15 Time 8 10 Time

(c) Scheduling with DET estimation (d) Scheduling with only worst-case

execution time estimation

Figure 9. Scheduling based on Time-Value function
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CHAPTER VI

TP/C: A REAL-TIME
COMMUNICATION PROTOCOL IN LAN/MAN
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1. INTRODUCTION

Communication systems that carry real-time data should assure timely delivery of
messages, particularly when the medium is shared by several nodes. Examples are LAN/MAN
which carries packetized voices/images and distributed systems such as flight control systems
and ballistic missile defense systems. Bus and ring (e.g., Ethernet, token-ring, FDDI ring) are
common media of communication in such systems. When dealing with real-time data, the
crucial performance measure for medium access protocols (MACs) is the minimization of
message loss (viz., not delivering data within given deadlines) rather than the minimization of
average delays or maximization of throughput and utilizations. While minimum-laxity-first and
minimum-deadline-first policies for scheduling messages are suitable, they require a system-

wide knowledge to achieve the optimal performance.

Several MAC protocols have been studied to deal with real-time messages, including
CSMA/CD [Ch185], token-passing [Jan87,Kam86], Virtual-Time CSMA [Med86,Mol85] and
Window protocols [11]. We propose an alternative protocol, named "token passing with
concession (TP/C)", for real-time messages and communication channel scheduling. This can
be implemented on top of the existing contention-free protocols such as token bus, token ring
or FDDI ring protocol. The protocol seems useful for real-time control applications in
distributed computing environments as well as for voice and data communication in LAN/MAN
environments. The performance metrics such as percentage of messages lost and effective
channel utilization were obtained by simulation under various network and protocol parameters
and compared with other protocols. We also discuss how the protocol can be implemented in a
hard-real-time kernel.

2. LAN PROTOCOLS FOR HARD-REAL-TIME COMMUNICATION

Need for real-time delivery of messages can be found in many applications. In voice
transmission, a small number of lost frames has been shown to have little, if any, effect on
human speech intelligibility [Kur84]. Therefore, some frame loss is allowed and is even
desirable because it alleviates channel traffic. This is an example of a "loss" system. However,
distributed simulation and control systems have more stringent time constraints where message
loss is not tolerated [Ram87]. These are "no-loss" systems, i.e., all message are required to
arrive within specified intervals. Whether the system is a "loss" system or a "no-loss" system
the major performance measure for time-constrained application is, thus, rate of message loss
rather than average delay in non-time-constrained applications. Some of the existing MAC
protocols may seem suitable for time-constrained communications as well. However, these
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protocols do not consider scheduling of packets on a system-wide basis, and it becomes very

difficult to tune the protocol for varying loads.
Virtual Time CSMA (VTCSMA) and Window Protocols have been proposed for

broadcast multiple networks with a large number of stations and bursty traffic. They are

designed to adapt to the input load. In both cases it is assumed that the time axis is slotted

(synchronous mode). The length of a slot is equal to the end-to-end propagation delay, t,

which is considered as the unit of time. The message transmission time, tf, is a multiple of the

length of a slot, and tf >= 1. A node can transmit a message only at the beginning of a slot.

Collision duration, C, is less than or equal to tf. If C < tf then the channel is said to have

collision detect capability. The channel can be sensed idle, busy with the transmission of a

successful message, or with more than one messages in which case a collision has occurred.
Furthermore, a station can "remember" the previous channel state and make decisions based on

the previous state.

VTCSMA: This protocol is an extension of CSMA/CD protocol with virtual clock. Each

node is equipped with two clocks, a real-time clock, rt, and a virtual-time clock, vt. The real-

time clock always runs at unit speed. The virtual-time clock stops running when the channel is

busy and resumes running when the channel is subsequently sensed idle. When it runs the

virtual-time clock runs at a rate d times faster than the real-time clock. A frame is sent only if its

Is <= vt, where ls is the the latest time to send a frame (see Figure 1). Each node senses the

channel in lock-step. When a node finds that the channel is idle, either after a successful frame

transmission or after a collision, the node drops any waiting frame if its Is < rt because it will

not meet its deadline. The virtual-time clock is then set to the real-time clock (vt = rt) and

begins to run. When a collision occurs during the transmission of a message, the sender node

re-transmits its frame immediately with probability p, or modifies the Is of the frame to be a

random number from the interval (rt, Is), then the frame is put back in the queue of frames

waiting to be transmitted.

Window Protocol: In this protocol each station maintains a window structure. Window

position and size depend on the present and past channel state. The lower edge of the window

is always the real-time clock maintained by each station. The upper edge is initialized at d time

units above the lower edge and changes dynamically. At the beginning of a time step messages

are transmitted if they are inside the current window; or a message is dropped if Is < rt. Each
station keeps a stack and when a collision is detected the current upper edge of the window

along with the id of the collided frame are pushed onto the stack. The upper edge of the
window is then adjusted to half the previous value. The message in the stack is removed if the

upper edge of the window is less than the current time. When the channel is detected idle the
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stack is popped up and the previous upper edge of the window is restored, i.e., the window

expands. If the stack is empty the window upper edge keeps expanding by d units.

Ltime

I Is tf+t dt

rt

rt : current time
vt : virtual time
dt: deadline
Is: latest tirne to send a frame
Ix : laxity time
tf: transmission time
t : propagation delay

Figure 1. Various Times.

It has been shown that the performance of these protocols is better than other protocols
such as CSMA/CD. However, they have several drawbacks. Since they are contention-based
protocols (1) performance would decrease significantly as the input load becomes higher and

(2) it is not easy to predict whether a message would be deliverable or not. Also, the

performance would suffer a lot if the global synchronization is not achieved.

3. TP/C PROTOCOL

In this section we describe the "token-passing with concession (TP/C)" protocol which

can be implemented on top of protocols such as token bus, token ring or FDDI ring protocol.
The TP/C protocol works as follows: A token has a counter which is initially set to zero. The

token is passed among nodes in the system and a node which possesses the token is permitted

to transmit a fixed size message. The messages are discarded if Is < rt. The node transmits the

most urgent (i.e., shortest valid time) message. If the queue contains any message whose
validity time would expire before the token returns (we can always calculate the worst-case and

the best-case turn around time of the token since each message size is known.), the node
increases the counter attached to the token and sets the "urgent" flag before forwarding the

token. Then the node forwards the token to the next node. A node skips transmitting a message
and simply forwards the token if (1) the node has no message to transmit or (2) the node has

only messages whose validity times will not expire before it gets the token in the next turn and
the counter, attached to the token, is not zero. That is the node yields its turn to accommodate
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more urgent messages in other nodes. Figure 2 shows the pseudo code for TPIC protocol.

Constant; /* Common to all stations */

MAXturn = n 1; /* The worst-case token turn-around time,
i.e., the token turn-around time when all stations send messages,/

MINturn = n2; /* The best-case token turn-around time,
i.e., the token turn-around time when no station send messages

Initialization; /* Within each station */
urgent = FALSE;

Loop
Wait for free token;
IF urgent I Send the most urgent message; /* It was set in the previous turn,/

urgent=FALSE; decrease tokencounter by 1)
ELSE IF the laxity time of the most urgent message <MAXtum

(Send the most urgent message)
ELSE IF tokencounter = o

(Send the most urgent message)
IF the laxity time of any remaining message <MINtum

(discard these messages) /* not possible to deliver in time
,/

ELSE IF the laxity time of any remaining message <MAXtum
(urgent=TRUE; increase TOKEN COUNTER by 1)

forward free token to the next station;
Forever,

Figure 2. The TP/C protocol.

4. PERFORMANCE ANALYSIS

4.1 Simulation Model and Parameters.

Discrete-event system-level simulation [Mac87] is used. Events are identified by type

and time of occurrence. They are kept in a list sorted by time. On every simulation step the next

event is retrieved from the list, the simulation clock is advanced to reflect the event's time, and
finally the event is deleted from the list. Relevant events are identified for each protocol.

Simulation parameters include network parameters, input load parameters, protocol-dependent

parameters and statistics collection parameters.

(1) Network parameters are protocol type, N (number of stations), CL (cable length in

kilometers), R (data rate in Mbps), t (maximum end-to-end propagation delay) and a

(normalized propagation delay which is defined as the ratio of the end-to-end channel

propagation delay to the packet transmission time). Most of the analysis is performed for a =

0.01 and a = 0.1. For a 5 Km and 10Mbps typical network this corresponds to frame
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transmission times between 250 and 2500 usec or frame size between 2500bits and 25Kbits.

(2) Incoming frames are assigned at random to the queues attached to the stations. In the

infinite population case a new frame is assigned to an inactive station (whose queue is empty).

Frames that do not meet the given deadlines are discarded. Input load parameters are message

length distribution (exponential, normal or constant), tf (frame transmission time), ti (frame

inter-arrival time), g (load intensity or g = tf/ti), Is (latest time to send a frame) and the

distribution of a message deadline (exponential, normal or constant).
(3) Protocol-dependent parameters include d (virtual time rate for VTCSMA case or window

size for Window protocol case), p (re-transmission probability), C (collision detection time)

and THT (token holding time). It is assumed that all local clocks are well synchronized or

there is a system-wide time reference that "ticks" every time unit. Collision detection takes one

time unit (C = 1), i.e., idealized synchronization.

(4) The "Batch Means Method" is used to gather statistics on the measures of interest [Mac87].

A simulation run is divided into batches and the performance measures are calculated for each

batch consisting of 2000 frames. The measured data are averaged and a confidence interval is

calculated. The simulation will run either until the confidence level (95%) is reached or until the
number of batches collected reaches the maximum number (50) whichever comes first.

4.2 Comparative Analysis

Performance Measures: The three most commonly used measures in evaluating the

performance of LANs are information throughput, channel utilization, and delay [Abe91]. In

this study we have measured the rate of message loss (ML) and other performance indicators

such as (1) D (normalized average frame delay) which is defined as the time from a frame's

arrival time at a station until the end of successful transmission, (2) ECU (Effective Channel

Utilization), (3) CCU (Collision' Channel Utilization) and (4) NTL (Normalized average

Transmitted frame Length) which is the average length of transmitted frames divided by the

average length of arrived frames.

Centralized Minimum Laxity First Scheduler: The Centralized Scheduler can be
represented by a single queue of messages. There is only one server and messages are served

on a first-come-first-served basis if there is no timing constraint associated. Since no time is

wasted in collision resolution, queueing delay is thus minimized. In the time-constrained case

messages are ordered by their Is's, and served accordingly. Therefore, the message loss is

minimized. The scheduler is known as Centralized Minimum Laxity First (CMLF) scheduler.

The CMLF scheduler is not realizable in practice and is used to provide an upper bound on

performance IZha90].
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Comparison: Figures 3a and 3b show ML versus Ix for the protocol studied. The curves

were obtained for N=200, a=0.01 and 0.1, input load 1.0. Protocol parameters for VTCSMA

and Window are selected to minimize the ML whereas no attempt made to optimize the

performance of CSMA/CD and token bus. The curve for the CMLF protocol is the ideal lower

bound for ML. The window protocol performed very close to CMLF especially at low values

of Is. Virtual time performs close to the window protocol most of the time. At low values of Is

the CSMA protocol performs very well, but its performance deteriorates for higher values of Is

and a. The token protocol performs better than the others as the input load increases and for

large values of Is. (Curves for TP/C protocol are not included. However, the preliminary

results show that it performs better than ordinary token bus, particularly when Ix is small.)
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(a) Case 1: N=200, g=1.0, and a--0.1 (b) Case 2: N=200, g=1.0, and a=0.01

Figure 3. Performance comparison.

From the study we can draw the following conclusions:

(1) ML in the CSMA/CD protocol is very insensitive to N at low values of a, however, this

degrades as a increases, specially at high g values. ML deteriorates in the token bus protocol as

N increases. Window and VTCSMA were less sensitive to N over a wider range. (Here, the

comparison is made with the fixed input load regardless of the value of N.)

(2) The Window protocol performed very close to CMLF especially at low values of Is.

VTCSMA performs close to the Window protocol most of the time. At low values of Is

CSMA/CD performs very well, but its performance deteriorates for higher values of Is and a.

(3) The token protocol performed better than the others for large values of g and Is. However,

for smaller values of Is ML increased rapidly. At large input loads the token overhead became

VI-7



negligible compared with the time spent transmitting data frames. This protocol also

outperformed the others for very large values of a. This is due to its collision-free nature. This

protocol may be more suitable than the others for situations involving high data rates, such as

in fiber optics networks, or very long distances.

(4) All protocols were equally fair in transmitting variable length frames under all conditions,

i.e., NTL is close to 1.

(5) The Window protocol was much less sensitive to protocol parameters (d and p) than

VTCSMA. This makes the protocol implementation simpler and easier to maintain. In a real

implementation, an issue to consider is the synchronization of the clocks required by these two

protocols. Imperfect synchronization will cause a degradation in performance.

(6) Overall, the Window and VTCSMA protocols performed better than CSMA/CD and token

bus over a wider range of input parameters.

5. IMPLEMENTATION ENVIRONMENT

The study of real-time communication protocols is part of our on-going effort to

investigate techniques and methods for development of ultra-reliable real-time systems. The

motivation is the increasing reliance on computer systems for control of time and safety-critical

applications. The major research tasks include system-level fault tolerance, reliability modeling

and scheduling of real-time tasks and messages. Also, a distributed real-time system testbed,

named Simplified Unmanned Vehicle System (SUVS), [Yan9l] has been developed for

experimental research. Our target distributed real-time system consists of autonomous

computing nodes which communicate through a network. Each node is composed of three

large layers which are the Network layer, the System layer and the Application layer: (I) The

Network layer provides communication between tasks in different nodes. The TP/C protocol

and other real-time protocols will be implemented in this layer.

(2) The System layer is the layer which provides the functions of the OSI (Open Systems

Interconnection) transport and session layers as well as the functions of traditional operating

systems. Since it is not our intention to develop a general purpose DOS, the design issues

should be different from the ordinary DOS design. We focus on three major functions which

are real-time message ha, ialing, task scheduling and fault tolerance. (3) The Application layer

consists of a set of tasks which communicate to each other through message passing

mechanism. Software fault tolerance techniques such as the recovery block scheme, N-version

programming and the conversation scheme can be incorporated. Figure 4 depicts how

messages are handled within each node.
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Figure 4. Messages flow in three layers.

6. CONCLUSION

In this chapter we proposed a hard-real-time communication protocol, named Token-
Passing with Concession (TP/C) protocol, and analyze the performance. We compare the

performance with other protocols based on simulation. A discrete-event simulation technique

was used to model the network. Large amounts of data were collected and plotted to verify the

performance of the protocols under different input load and network and protocol parameters.

The result shows that the TP/C protocol performs well, especially when input load is high and

is suitable for very fast networks such as fiber-optic ring network. The TP/C protocol is more
predictable than VTCSMA and Window protocol in the sense that the message scheduling is
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more deterministic. This is because the TP/C protocol does not require back-off due to
collision. Another advantage of the TP/C protocol is that it is less affected by loose

synchronization among clocks in the system. We will analyze the effect of non-synchronous
clocks. We also plan to analyze the performance of the TP/C on ring networks (i.e., as an

extension of token ring and FDDI ring protocols.)
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1. INTRODUCTION

Computer systems are increasingly being used for complex and sophisticated real-time

applications such as flight control systems and ballistic missile defense systems. In such time

critical applications correctness (i.e., both logical and temporal characteristics) of the system

behavior should be rigorously validated. Although various formal (or analytic)

verification/validation methods have been proposed [Hoa85,Jah86,Mil8O,Ram89] there is a

limit to proving the correctness of the system behavior formally. The situation becomes worse

in a distributed computing environment where concurrent tasks/processes communicate

through a communication network. Therefore, experimental validation techniques are highly

desirable in such systems [Avi85,Bha89, Chu87,IEE86,Kim88a, Koh86,Kop89, McD82].

The importance of experimental research (or experimental validation and evaluation of

techniques/methodologies) has been established by the distributed computer systems research

community, especially in a real-time environment [DCS89]. As pointed out in [Chu87],

testbed-based evaluation provides more accurate results than software simulation because

testbeds can be configured to represent the operating environments and input scenario more

accurately than simulation.

Researchers at the University of Texas at Arlington (UTA) have formulated a

distributed system testbed to support experimental research at UTA. The testbed, named

SUVS (Simplified Unmanned Vehicle System), is being used to conduct experimental

evaluation of techniques and methods for design of reliable distributed real-time systems.

More specifically, we plan to experiment wi:h various fault tolerance techniques such as the

conversation scheme [Ran75] and the voting scheme. As part of the research effort to convert

a concept into a practical technology, we demonstrate how multiple versions of software can be

systematically produced. We also demonstrate how the acceptability routine can be realized in

a "real" application. The testbed will also be utilized for clinical study of specifications, design

and implementation methods studied at UTA for development of real-time distributed and

parallel systems.

The software part of SUVS consists of a set of sensor tasks, analyzer tasks, and

actuator tasks. The first version of SUVS was implemented using Verdix Ada (version 5.5) on

a Micro Vax 3900/Ultrix. The second version, reported here is written in C, runs on a network

of eight SUN Workstations, and X-windows is used to provide a graphic interface. The fault-

tolerant SUVS (FT-SUVS) is then implemented. The target architecture we have simulated for

FT-SUVS is a hybrid parallel architecture (i.e, a modified hypercube), named the Hybrid

Higher Radix Hypercube (HHRH). Processor nodes are partitioned into clusters. Nodes in a

common cluster communicate through shared memory, while communication with nodes in
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other clusters is through point-to-point connections. This approach provides several

advantages: (1) short diameter and average node distance which makes communication between

nodes fast and predictable (speed and predictability are the most important factors in real-time

systems), (2) redundancy which is essential for fault-tolerant computing, and (3)

reconfigurability as required by many applications.

This chapter reports the implementation details of SUVS and FT-SUVS and the results

of the first phase of experimentation with FT-SUVS. The conversation scheme was chosen as

a major fault tolerance scheme in FT-SUVS mainly because cooperation among tasks for error

detection and recovery is needed. We have also implemented and experimented with the voting

scheme. Various faults such as node crash, link failure, and software design errors are

simulated and injected for the experiment. How these faults are detected, the system's

recovery mechanisms, and the response time under various situations are described. We also

demonstrate how the voting scheme along with other fault tolerance schemes (i.e., comparison

scheme) can be incorporated with the conversation scheme in the second phase planned for FT-

SUVS.

Section 2 describes the functional and temporal requirements, as well as the design and
implementation of SUVS on the SUN network. In Section 3, FT-SUVS is introduced: the

HHRH architecture for FI-SUVS and the system level error detection and recovery schemes

incorporated into FT-SUVS. Section 4 discusses FT-SUVS implementation details. The

experimental results on the first phase of FT-SUVS, as well as the plan for the second phase

experiment are discussed in Section 5. Section 6 is a summary discussion.

2. SUVS (SIMPLIFIED UNMANNED VEHICLE SYSTEM)

Real-time systems cover various applications: from factory automation to nuclear power

plant, from automobile engine control to space shuttle and aircraft avionics, and from robotics

to command-and-control systems. These real-time applications share much commonality.

Typically, a set of sensors acquire real-time data from other systems (i.e., the outside world).

The sensor data is processed and the output is sent to a set of actuators which then respond to

the outside world under strict timing constraints. Nevertheless, each application (or group of

applications) has its own distinctive features. Some applications require more rigorous

verification of logic and timing correctness depending on the criticality of the mission scenario.

For example, some scenarios require tight synchronization among the sensors and actuators,

some require tightly coupled communication whereas other may operate in loosely coupled

environments. Therefore, the scenarios of real-time system testbeds must be selected such that

they cover (and closely match) the characteristics of the target applications of interest.
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Otherwise, the methods and results obtained for one application may not be directly applicable
to other applications. In this section we describe the functional and temporal requirement of the
SUVS. The design and implementation details of the SUVS are also described here.

2.1 SUVS: A Real-Time System Scenario

SUVS (Simplified Unmanned Vehicle System) is a real-time control system scenario
implemented for our testbed. SUVS controls a vehicle with no assistance from the human
driver. It periodically receives data from sensor readings such as speedometer, temperature
sensor, direction sensor, etc., and reacts to the system (i.e., the vehicle) by generating
appropriate signals to the actuator devices such as accelerator, brake, steering wheels, etc.
Decisions are made based upon the current inputs from the sensors and the current status of the
road and the vehicle. The decisions (or the response) must be made within a specified time.

SUVS was chosen as our testbed mainly because it has many interesting features.
These features include (1) a hard-real-time system scenario, (2) a ultra reliable computing
scenario, (3) interaction and cooperation among analyzer tasks (i.e., the decision makers), and
(4) both tightly coupled and loosely coupled communication alternative scenarios.

2.2 Functional Decomposition and Timing Constraints in SUVS

The SUVS consists of three different sets of tasks, i.e., sensor tasks (or sensors),
analyzer tasks (or analyzers) and actuator tasks (or actuators) as follows:

(1) Sensors are input devices which periodically (every 100 msec in this experiment)
provide data to the analyzer tasks. Speedometer, engine temperature, direction
indicator, vision and surface sensors are implemented.
(2) Analyzers make decisions based on the sensor data and the current status of the road
and the vehicle. They exchange information among themselves. The decisions are for-
warded to the actuators. Speed, direction, vision and surface analyzers are
implemented.
(3) Actuators are output devices which control movement of the unmanned system.
They receive decisions from the analyzers. Actuators for the brake, accelerator,
steering handle and vision camera are implemented for the SUVS.

The information flow among these tasks are shown in Figure 1.
The SUVS is a hard-real-time system where the response time should be guaranteed.

The proper action or decision must be made within a given deadline (200 msec in this
experiment). Therefore, one of our major objectives in this experiment was to demonstrate that
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the system meets this time requirement even under various fault conditions in both the

hardware and the software.

2.3 Design and Implementation

The first version of the SUVS, as described above, runs on a Micro VAX 3900/Ultrix

and consists of two procedures, one for main and one for "make decisions", and twenty

additional concurrent tasks, i.e., five sensor tasks, four analyzer tasks, four actuator tasks and

seven buffer

Sensors SedEngine irectio Vision Surface
Meter Ind Sensor Sensor

Figure 1. Information flow of the Simplified Unmanned Vehicle System (SUVS).

tasks. Future research efforts will investigate the suitability of Ada for the implementation of
hard-real-time systems running on a distributed/parallel environment.

The second version (i.e., version) runs on a network of eight SUN workstations.

We chose a SUN network mainly because we believe that both the loosely coupled and the

tightly coupled environments can be easily simulated using sockets, pipes, and shared

memory. Also, due to the popularity of the Unix/C environment, the SUVS software is

portable. And, in fact, we plan to run analyzer tasks of SUVS on a Sequent parallel computer

system.

Figure 2 shows the system configuration: One node (i.e.,workstation) runs all sensor

tasks and one node runs all actuator tasks; Four nodes are occupied by four analyzer tasks;

Two extra nodes are used for the environment simulator and the graphics interface. The
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environment node simulates the road status (i.e., curves and surface condition). The road

status is determined by a given scenario. The environment simulator receives inputs from the

actuators (e.g.., brake for deceleration, acceleration from the accelerator, etc.) which

determines the status of the vehicle (i.e., speed, position and angle of camera view, etc.).

Thus, the sensors get data from the environment simulator whereas the actuators output data to

the environment simulator.

Initially the system starts by giving a scenario number to the environment simulator

node (there are several scenarios with different road configurations). The graphics node

draws the road and the vehicle using the information provided by the environment simulator

node. This node also displays the gauges such as speed and engine temperature. A separate

graphics node is used because there is a time overhead that might affect the real-time execution

of the environment simulator node. The X-windows graphic interface is used for this

implementation.

Fu Viion 5urfac

Anlzr Aaer r nlzer Analyzer

Acaor

LSnl Wor*tumo91

Figure 2. SUVS testbed configuration.

3. FAULT-TOLERANT SUVS

This section describes the target architecture we propose for fault-tolerant SUVS (FT-
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SUVS). We also discuss the fault tolerance schemes incorporated in FT-SUVS along with a

proposed conversation structure for FT-SUVS.

3.1. The Hybrid Higher Radix Hypercube (HHRH) Architecture

The architecture we have proposed for this testbed is a hybrid parallel architecture,
named Hybrid Higher Radix Hypercube (HHRH). The architecture and a possible
implementation of the architecture with the description of the system components are given.

The performance of the HHRH architecture is briefly analyzed.

Binary vs. Higher Radix Hypercube

The Hypercube structure can be visualized as a cube of any dimension with a node at
each corner. Each node typically has its own processing unit, local memory, a communication
processor, an optional floating point processor, a kernel of the operating system and the

application program. At the lowest level of the hypercube family is the binary hypercube, for
which the relation:

N = 2n  where N = number of nodes and n = dimension of the hypercube.
The proposed hybrid architecture is partially obtained by increasing the radix beyond 2. In the
resulting topology we examined the benefits (if any) that are obtained as a result of radix en-
hancement. For the higher radix hypercube (HRH) [Bhu84] the following relation is true:

N = rn where N = number of nodes, n = dimension of the hypercube, and r = radix
The radix of the hypercube affects the parallel system characteristic parameters, such as diame-
ter, degree of node, average node distance, and message traffic density.

Diameter = logrN = n

Degree of node = n*(r - 1)
Average Node Distance (AND) = ( (d * (r-l)d* C(n d))/ (N - 1)

Message Traffic Density (MTD) = 2 * (AND)/ {n*(r - 1))
The Hybrid Higher Radix Hypercube (HHRH) Architecture

The major advantage of using the hypercube structure for designing fault-tolerant real-

time systems is the inherent redundancy provided in processors and communication links.
However, as the number of nodes increases, the distance between nodes (i.e., the number of
intermediate nodes between two communicating nodes) becomes longer. This long distance
not only increases the message traffic among the nodes but, more importantly, makes accurate
prediction of the system behavior and performance difficult. The HRH architecture remedies

these weaknesses to some degree with certain limitations.

On the other hand, the shared memory bus architecture seems to be more predictable in
its behavior and performance. However, it suffers from two problems: (1) the bus is a single
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failure point, and (2) the bus is a potential communication bottleneck. Therefore, a shared

memory architecture is not suitable for some real-time applications which require ultra reliable

computing and/or high communication traffic among nodes.

The HHRH architecture remedies these problems by combining the hypercube structure

with shared memory units. The shared memory units not only provide high bandwidth to
nodes within clusters but reduce the distance between nodes in different clusters. Figure 3

illustrates a simplified diagram for a sixteen-node HHRH obtained by grouping four nodes into

a cluster from an HRH with N = 16, r = 4. The components of Figure 3 include the nodes (00,

01, ... 32, 33), the cluster memory units (CMO, CM1, CM2, CM3), and the links between the
nodes and memory units. Nodes that are directly connected to the same cluster memory unit

are grouped as PCO, PC1, PC2 or PC3. The overall topology between the processor clusters

is that of an HRH, while the grouping of the processor nodes of the HRH architecture into
clusters makes it hybrid. The grouping is accomplished by collapsing relevant bit positions.

The nodes that have identical non-collapsed bits, irrespective of the collapsed bit values, belong

to the same processor cluster and share the same cluster memory. In Figure 3, for example,
nodes 00, 01, 02, and 03 belong to the processor cluster PCO and share the cluster memory

CMO. Therefore, the HHRH architecture can be represented with four parameters: HHRH[N,

n, r, x] where N = number of nodes, n = dimension of the hypercube, r = radix, and x =

number of collapsed bit. Each cluster consists of 2x nodes.

The major components of the HHRH architecture, in addition to the underlying
network, include the processor node, cluster memory and the system manager.

(1) Processor Node: As mentioned earlier, the node at each comer of the cube consists of the

main CPU, a communication processor, a floating point processor and local shared memory.
An internal bus interconnects these devices. The communication processor handles all message

requests that require routing to other nodes as well as the cluster memory. The I/O channels

are connected via links to neighboring nodes in other processor cluster groups, and one

channel connects to the memory unit shared by all processor nodes in its cluster. Figure 4 is a

typical node processor layout.

(2) Cluster Memny: The cluster memory is a high speed memory unit that consists of 2 sub-

devices: the message handler and the memory mailbox. Figure 5 is a block diagram of the

cluster memory shared by p node processors. The memory mailbox is a passive device that

stores messages at appropriate locations. These predesignated location addresses are stored in
a lookup table in the message handler. Each node has (p-1) slots to post messages to all the p

possible nodes that share the memory unit. Thus, a total of p*(p- 1) slots exist. The message
handler is a dedicated unit for handling message requests for the cluster memory. The
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handler's hardware includes a processing unit, a message request buffer and I/O channels that

connect to the member nodes. Figure 6 shows the main components in the message handler
unit. An additional lookup table provides information on the read/write status for the message
slots. The message request buffer is accessed by the processing unit on a FIFO basis. The
detailed execution of the message handling is discussed in [Bha88a].

CLUSTER MEMORY CLUSTER MEMORYc CM

Pi 0 1 3 C

CLUSTER MEMORY CLUSTER MEMORY

CM 0 CM 3

Figure 3. The HHRH with N= 16 and r=4.

Performance Analysis of the HHRH

The analysis of the HHRH necessitates redefining certain terms because the

introduction of memory units must be accounted for. In the network analysis the following is

obtained [Bha88a].
Hybrid Diameter (HD) = (logrN) - x + I memory traversal

Degree of node = n*(r -1) - 2x + 2
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Hybrid Average Node Distance (HAND?
- 1*((rx-1) + C(flxl)*(r-1)l) +

2*[(rx-1) + C(fl-x 2 )*(r-l)l + C(flx 2 )*(r-1)2 ) +

(n-x+1)* ((rx- 1) + C(n-xn-x)*(r- )n-x J /(N - 1)

Hybrid Message Traffic Density (HI-ITD) = (2*IHAND)/ I(r- 1)* (n-x)+(rx- 1))

The fault tolerance capability, in terms of the number of disjoint paths, is found to be

n*(r..1). This is the same as that obtained for a regular HRH, but is an improvement over the

binary hypercube. It should be noted that the reliability of the paths is now greatly dependent

on the reliability of the memory units.

to~MI neihbr-RHANE

to cleibr- HNE

to houstera /

ethernet

OMMUNICRTION POINT
5 PROCESSOR PROCESSOR

Figure 4. Node processor layout.
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(3) System Manager: This device is connected to the nodes in the network via a global

communication channel such as the Ethernet. The system manager has varied functions. It

serves as the administrative console and also acts as the gateway to the hypercube. It supports

a program development system that includes compilers, simulators and vector tools that users

can access. In addition, the system manager is able to download data/instructions to the

processors in the network in a short span of time.

Cluterster~,

PI to P2
PI to P3 From P1 to

I rest of the
I t(p-) nod 

P! to Pp

Message
Handler I

Pp to P A
Pp to P2I From Pp tc

I rest of th(
I I (p-I) node s.

Pp to Pp-I

Memory
Mailbox

Figure 5. Cluster memory layout.
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I R/W Status
I/0 Pp to PI,P2..Pp-

Channels

•L
To To \ \Messagqe Handier

Processor Memory
Cluster Mailbox

Figure 6. Memory handler layout.

3.2 Fault Tolerance Schemes for SUVS

System (as well as software) reliability is achieved by fault avoidance, fault removal,
and fault tolerance [Mus90]. Fault tolerance is based on redundancy. Software redundancy
(as well as hardware redundancy) can be incorporated in two different forms: (1) multiple
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identical copies of processes (or tasks) and (2) multiple versions of processes. Many fault

tolerance schemes have been proposed: they include check pointing, recovery block, triple

modular redundancy, conversation scheme, PTC (Programmer Transparent Coordination )
scheme, MVP (multiple version programming), DRB (Distributed Recovery Block), and more

[Kim85]. These schemes can be classified into two groups based on how the faults are detected

and recovered.

Fault detection/recovery schemes

In real-time systems fault refers to, not only errors in logic, but also to failures to

respond in time (i.e., missed deadlines). Therefore, timeout should be incorporated as a basic

form of error detection mechanism. In addition, there are largely two different ways to detect

errors: by approval and by consensus.

(1) Approval can be implemented as an acceptability test (i.e., acceptability test on produced

results, environment or both). Some acceptability test criteria are application dependent,

whereas some are application independent. Examples of the latter criteria include common

exceptions (such as overflow, underflow, divide by zero, etc.), commonly used functions

(such as sorting, searching, square root, etc.), and auditing of the environment. Recovery

block, conversation scheme, and DRB schemes are based on acceptability tests.
(2) Concensus can be implemented either as a bit-by-bit comparison (called a simple voting) or

as a comparison with a certain bound (called a bounded comparison). A simple voting is easier
to implement and is application independent. However, it may not be used for systems with

multiple versions because there may be a slight discrepancy in the results that are actually

correct within acceptable limits (e.g., due to round-offs floating point calculations, etc.)
Therefore, in most cases, a simple voting is not applicable to multi-version software systems.

MVP is based on concensus.

Independent Recovery vs. Cooperative Recovery

In the previous subsection we classified fault tolerance schemes based on how the

errors are detected (and also recovered). We should also consider how to coordinate the
rollback and recovery actions to avoid the domino effect [Ran75] for systems where multiple
processes are involved in error detection and recovery. This cooperative recovery is inevitable

in many applications.

The coordination among processes can be done either at design time (i.e., static

coordination) or at runtime (i.e., dynamic coordination). A hybrid form of coordination is also

possible. The conversation scheme [Ran75] is an example of static coordination, whereas the

PTC scheme IKim88b] and some check pointing schemes IBha88b, Ram88j are based on

dynamic coordination.

The Conversation Scheme
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The conversation scheme is based on approval and static cooperation among interacting

processes. The conversation is a two-dimensional enclosure of recoverable activities for

multiple interacting processes, in short, a recoverable interacting session [Kim82,Ran75J. It

creates a "boundary" which process interactions may not cross. The boundary of a

conversation consists of a recovery line, a test line and the walls defining membership as

shown in Figure 7. Each participant process contains one or more Try-blocks designed to

produce the same or similar computational results as well as an acceptance test (conversation

acceptance test or CAT). The Try-block is a logical expression representing the criterion for

determining the acceptability of the execution results for the Try-blocks. A recovery line is a

coordinated set of recovery points for interacting processes that are established (possibly at

different times) before the interactions begin. A test line is a correlated set of acceptance tests

for the interacting processes.

A conversation is successful only if all the interacting processes pass their acceptance

tests which form the test line. The participants are allowed to leave the conversation after all

the participants have passed. If any of the acceptance tests fail, all of the processes must roll

back to the recovery line and retry with their alternate Try-blocks. Thus, the alternate Try-

blocks collectively define an alternate interacting session (AIS). And, the primary Try-blocks

which are executed first inside the conversation, define the primary interacting session (PIS).

Note however, that parallel execution of the AIS and PIS are also possible as discussed in

Section 4. A process that has executed its try block, and passed its acceptance test is said to

have finished its conversation task.

The conversation scheme has been adopted as the primary fault tolerance mechanism to

be used for FT-SUVS. This choice was made because: (1) the scheme provides recovery ac-

tions for interacting processes, (2) software redundancy is furnished, (3) real-time recovery is

achievable, and (4) the scheme is relatively easy to implement.

3.3 FT-SUVS

The FT-SUVS has been implemented on a sixteen-nodes HHRH (i.e., HHRH

[16,2,4,2]) as shown in Figure 3. These sixteen nodes run multiple copies and/or versions of

four analyzer tasks simultaneously.
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Figure 7. Conversation.
The following conversation structure is proposed for the FT-SUVS.

(1) Four analyzer tasks, i.e., speed, direction, vision, and surface analyzers, cooperate (i.e.,

exchange information and preliminary decisions) to make decisions on any action.

(2) Output (to actuators) is made only when all of the analyzer tasks agree.

(3) Upon disagreement, the alternate algorithms (or alternate interacting session) are executed.
(4) If they don't reach any final agreement within a specified time or they have failed in all

alternate algorithms, the system goes into emergency mode and tries to stop the vehicle in the

safest and fastest manner.
Although the conversation scheme is the primary fault tolerance scheme in FT-SUVS,

incorporation of other schemes is also possible (e.g., a simple voting and a comparison scheme
within the system at various stages). Among others, two configurations, one with a simple

voting scheme and one with the conversation scheme, have been implemented and tested.

4. IMPLEMENTAION OF FT-SUVS

This section discusses the implementation details of FT-SUVS. The sixteen node

HHRH architecture is simulated using four SUN Workstations. FT-SUVS is implemented

with two different fault tolerant schemes: one with the simple voting scheme and one with the

conversation scheme.
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4.1 -HRH Architecture Simulator

As described in Section 3 a sixteen node HHRH (HHRH[16,2,4,2]) is used for this

experiment. The architecture, consists of four clusters with each cluster consisting of four

nodes. This architecture is simulated on four SUN Workstations (i.e, each workstation

simulates a cluster of four nodes as shown in Figure 8). These sixteen nodes run multiple

copies of the four SUVS analyzer tasks. The copies are either all identical, all different, or an

even mixture of both.

* Virtr, ual Fn or

5wu Works 'c.on C-

Figure 8. SUVS Testbed with Software Redundancy in HHRH Architecture (FT-SUVS).

4.2 FTSUVS(I)

The voting scheme is implemented in FT-SUVS(I). As shown in Figure 9, each cluster

runs a set of analyzer tasks which provides quadruple redundancy. All sixteen tasks run

simultaneously for every input from the sensor tasks and forward their decision to one of the

three
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a. A network configuration with four sets of analyzer tasks.
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b. A cluster

from Speed Analyzers from Direction Analyzers from Vision Analyzers .0

To Actuator To Actuator To Actuator

c. Voting-Executives

Figure 9. Configuration of FT_SUVS(l).
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Voting-Executives at the actuator. SpeedVotingExecutive receives decisions on speed, either

acceleration, deceleration or no change, from different speed analyzer tasks, each residing on a

different cluster. Similarly, DirectionVotingExecutive and VisionVotingExecutive receive
decisions from multiple copies of direction analyzers and vision analyzers, respectively. The

SpeedVotingExecutive process looks as follows:

SpeedVoting_ExecutiveO
{ for (;;)

{starttimer();
for (i= 1;i<=no-ofclusters; i++)

f recv-speedtanalyzer (speed-in);
speed array[i] = speedin)

speed-voting-routine (speed-array, i, &speed-out)
send speed-to-actuator (&speed-out))

As shown above the timer is set for every voting. If a timeout occurs the control jumps out of

the loop and voting is done based on the decisions received by that time. The voting policy we
have chosen is a conservative approach. If the voting is unanimous or 3:1, the decisions are

forwarded to the actuator. Otherwise, (i.e., the voting is split with 2:2, 2:1:1, or 1:1:1:1) the
decision is reserved. A successful vote (i.e., unanimous or 3:1 voting) on a consecutive

subsequent decision from the analyzers is forwarded to the actuator and, in this case, the
previous outputs are ignored. If the voting is not successful on consecutive attempts the

emergency routine is invoked and the vehicle is stopped in the fastest and safest fashion.
We believe that the conservative approach is suitable to this kind of application because

"fail stop" is allowed. That is, it is better to stop the vehicle if we are not confident about the

decision. The conservative approach may generate more "false alarms", but we can avoid
catastrophic situations. However, there are some applications such as Ballistic Missile

Defense, where "fail stop" is not allowed. In such environments some form of false alarm

filtering must be employed.

4.3 FTSUVS (II)

The conversation scheme is implemented in FT-SUVS (II). Each cluster runs a set of

analyzer tasks which participate in the conversation of every execution cycle. As shown in
Figure 10, Clusters I and 3 run the original version of SUVS, whereas Clusters 2 and 4 run

the second version of SUVS. The analyzer tasks in Cluster 2 forward their decision to the
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actuators only when the analyzer tasks in Cluster 1 has failed either in logic or in time as

determined by the CAT. Similarly, the tasks in Cluster 3 (or Cluster 4) forward decisions to

the actuators only when clusters 1 and 2 (or Clusters 1,2, and 3) have failed the CAT.

Environment Simulator Grmahic Nod

Actuator Node

a. A network configuration with two versions of analyzer tasks

AnlzrAnalyzerAnlzrAaye

CAT CATstAT CAT

from Cluster n-I t

b. CAT execution in cluster n.

Figure 10. Configuration of FT-SUVS(II).

Implementation of the Second Version of SUVS

In principle, the second version of the analyzer tasks should be designed such that it

may produce acceptable results for the cases where the original version of the analyzer tasks
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fails to do so. Although designing efficient multiple versions is somewhat application-

dependent we believe a systematic approach is possible for this type of application.

The major difference between the two versions in SUVS is in the way the decisions are

made. Decisions are made based on several factors. For example, the speed analyzer makes a

decision based on current speed, RPM (revolutions per minute) of the engine, road condition

(e.g., wet or dry), curve of the road, the existence of obstructive objects in front and if they

exist, characteristics(e.g., moving speeds) of the objects. Therefore, the second version is

designed by applying the decision factors in a different sequence. Such produced versions are

still considerably diverse in their logics used and also have substantially different chances of

encountering same software failure.

Conversation Acceptance Test (CAT)

There are three different approaches to execution of the CAT: Centralized,

Decentralized, and Semi-centralized [Yan89]. In the centralized CAT approach only one

designated participant, named "head" participant, contains the complete CAT routine.

Therefore, the head participant executes the CAT when all the participants have finished their

execution of Try-blocks and then broadcasts the CAT result to other participants. In the

decentralized CAT approach, each participant performs its own acceptance test, and the

participants exchange their results with each other. Therefore, every process receives the

results of the other participants and figures out by itself the result of the "non-local" acceptance

test.

The semi-centralized approach, which is adopted for the FT-SUVS(II) implementation,

compromises the above two approaches in such a way that the "local" acceptance test is done

by each participant and the "non-local" CAT result is determined by the head participant. Thus,

each participant performs its own acceptance test and sends the result to the head participant.

The head participant judges the success or the failure of the CAT depending upon whether all

the reports received are success reports or not, and then broadcasts the CAT result. We have

chosen this approach mainly because of the low communication overhead and the possibility of

fast recovery as pointed out in [Yan89].

The CAT checks whether (1) the decisions are made based on correct information, (2)

the decision made locally is reasonable with respect to both the recently observed condition of

the vehicle and the laws of physics, and (3) the decisions do not conflict with each other. The

first part of the test (which is trivial in nature by comparison to the other two parts) can be

facilitated by sending the input data (which is used to make decisions) along with any

preliminary decisions. For example, the input data from the speedometer is initially received by

the speed analyzer for every cycle of the execution. This data is checked and then broadcast to

other analyzers. The data may then be used by other analyzers in reaching certain preliminary
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decisions. Therefore, in the first part of the CAT, the speed analyzer checks whether the speed

data received from other analyzers together with their preliminary decisions, are the same as the
original data that it received from the speedometer and has since kept. By doing so we can

detect possible faults due to communication and/or memory failures. The second and more

important part of the CAT is largely to check if the preliminary local decision falls within a
reasonable range. For example, if the preliminary decision on a change in the acceleration is

beyond the capacity of the vehicle, then clearly a computation error can be suspected. Actually,
this reasonableness test of the local preliminary decision can be performed even before it is sent

to other analyzers. The third part (i.e., checking the possibility of conflict) can be viewed as a
tnon-local" logic test. That is, the decisions made by the analyzers are examined to see if there

is any conflict among them.

Handling of Redundant Messages

In some cases the actuators receive decisions from more than one cluster. This may
happen if Cluster 2 (or Cluster 3 or 4) forwards the decisions to the actuator due to timeout

before it receives the completion signal from Cluster 1 (or Cluster 2 or 3). In order to handle
these duplicated decisions a sequence number is attached to every set of decisions. That is, the

sequence number is increased for every cycle of execution. The actuators ignore the decisions

whose sequence numbers are the same as or smaller than the one previously received.

5. EXPERIMENTAL RESULTS AND FUTURE WORKS

The preliminary experimental result and failure modes are summarized here. The plan

for future SUVS testbed experimentation is also discussed.

5.1 Fault Mode and Fault Injection

We considered both hardware and software faults in this experiment. Hardware faults

include node crash, link failure, and cluster memory failure. Software failures include

design/implementation errors and calculation overflow/underflow. Software failures cannot be
handled by the simple voting scheme. Table 1 summarizes how these faults are simulated and

injected into the system. The table also shows that how these faults are detected and recovered

in FT-SUVS(l) and FT-SUVS(II).

5.2 Time Measurement (Preliminary Results)

In this experiment we measured the response time of each cycle: Sensors get data from
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the environment simulator every 100 msec; These input data are processed by the analyzers that

make decisions and forward the decisions to the actuators; The actuators finally react to the

system by sending output to the environment simulator. The measurement is done at two

points in the environment simulator, (1) the time that the new input set is forwarded to the

sensors and, (2) the time that the outputs from the actuators arrive. The response time deadline

is 200 insec. (We plan to scale down the execution cycle and response time deadline in future

expeiiments).

Fault Mode How to Inject How to Detect/Recover

FT-SUVS(I)

Node crash Using exit(l) system call at a given Voting with timeout
execution cycle

Link failure Sensors stop sending data at a given Voting with timeout
execution cycle

FT-SUVS(II)

Node Crash Using exit(l) system call at a given Timeout
execution cycle

Link failure Infinite loop at a given execution cycle Timeout

Software failure Sending corrupted data to the analysis at CAT
a given execution cycle

Table 1. Fault injection and detection in FT-SUVS's.

Figure 11 shows the response time of the first two hundred execution cycles for SUVS

and FT-SUVS(I). The dotted line is the response time when only one cluster (i.e., one set of

analyzer tasks) is running and no voting scheme is incorporated into the actuator node. The
response time varies between 70 msec and 80 msec. The solid line shows the response time of

FT-SUVS(I). Faults (node crash and link failure) are injected to Clusters 1, 2, and 3 at

execution cycle numbers 50, 100, and 150, respectively. The timeout is set to 50 msec at each
voting executive. As shown in the figure the response time varies between 120 msec and 140

msec before the fault is injected. This 60 msec overhead is mainly due to the communication

cost between the sensor node and the analyzer clusters and between the analyzer clusters and
the actuator node. Consequently, response time does not vary much even after the fault is

injected.

In Figure 12, a fault (node crash in Cluster 1) is injected at cycle number 52 in FT-

SUVS(II). The second fault (link failure) is injected to one node in Cluster 2 at cycle number
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Figure 11. Response time of SUVS AND FT_SUVS(I).
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Figure 12. Response time of FT_SUVS(II).

101. Finally, at cycle number 150 the third fault (software error) is injected to one node in

Cluster 3. As shown in the figure, the response time when no fault is injected is abotll 85

msec. Therefore, if there is no fault the overhead of FT-SUVS(II) is much smaller than that of

FT-SUVS(I) because of less communication overhead. However, the response time increases
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after the fault is injected to a node in Cluster 1. This is due to the waiting time at Cluster 2.

Currently, the timeout is set to 20 msec in Cluster 2. That is, Cluster 2 waits for the

completion signal of each execution cycle from Cluster 1. If the signal does not come within

20 msec (after the completion of computation) Cluster 2 forwards its output to the actuator.

Waiting times in Cluster 3 and 4 are 30 msec and 40 msec, respectively. After all three faults

are injected the response time stays about 140 msec.

5.3 Future Experimentation

We have established SUVS testbed and experimented with two fault-tolerant configura-

tions: one with the voting scheme and one with the conversation scheme. We plan to use the

testbed for clinical study including evaluation of techniques and methods for design of reliable

distributed real-time systems as follows.
(1) Further experimental study on fault tolerance schemes such as voting, comparison and

DRB (Distributed Recovery Block) will be conducted. For ultra reliable computing we will

also study how the different schemes can be incorporated effectively into the systems at various

stage of computing For example, Figure 13 shows one possible process configuration using

three error detection and recovery schemes. In the upper half of the figure there are four

identical analyzer processes. These processes vote on a message before it is transmitted to

other analyzer process(es). At the end of every conversation the CAT is performed on outputs

that go to the actuators. In the bottom half of the figure, there is another set of processes with

the same configuration but run different versions of processes. The results from both sets

(i.e., primary and alternate), if both have passed their CAT's, are compared before the results

are finally sent to the actuators. By comparing these results we may detect errors that have not

been detected by the CAT. If one of them fails the CAT or does not produce the results within

a specified time (i.e., missed deadline or timeout) then the results produced by the other set are

immediately used.

(2) In [Yan89I various implementation approaches of the conversation scheme have been pro-

posed. Those approaches, e.g., synchronous and asynchronous conversations as well as

centralized, decentralized, and semi-centralized acceptance tests, will be validated by

experimental study.

(3) One of the major factors to be considered for incorporating redundant software is the

communication and synchronization overhead. Since the HHRH architecture provides two

different communication paths (i.e., shared memory and point-to-point connection), the

communication cost are somewhat alleviated. Another design consideration is the possible

incorporation of the timeout mechanism. The timeout mechanism is required for every
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synchronization stage to avoid lockup of other processes. The proper timeout period should be

determined based on an analysis of the system behavior. It is also important to consider the

cases where no agreement is reached among processes (in the case of voting or comparison) or

when no acceptable result is produced (in the case of CAT). Detailed analysis of different

configurations and implementation strategies (i.e., design and implementation cost, runtime

cost, timing aspects, and reliability trade-offs) will be discussed in later papers.

(4) Reliability modeling and estimation of FT-SUVS is another "najor area for the future S
research. The model should be able to reflect both hardware and sofware components.

The testbed will also be used for clinical study of the specification, design, and implementation

methods studied at UTA [Gra89].

6. SUMMARY

This chapter reports implementation details and the experimental result of a distributed 0
real-time system testbed developed at UTA. This is part of our continuous effort to investigate

development methods and techniques for ultra reliable real-time computing. This particular

work focuses on experimental validation of fault tolerance techniques. The testbed is named

SUVS and is implemented on a network of eight SUN Workstations. •

We have implemented two fault-tolerant SUVS configurations. The first is FT-

SUVS(I) which incorporates both multiple identical copies of software and a voting scheme.

The second is FT-SUVS(II) which uses two versions of the software (and two copies of each

version) and a set of acceptance test routines. Both configurations are implemented on a 0
sixteen-node HHRH architecture. The response time is measured for both cases by injecting

various faults. The preliminary measurement exposes the temporal behavior of the two fault-

tolerant configurations of SUVS.

We believe that the major obstacle to realizing fault-tolerant computing concepts within 0
practical technologies has been the cost of implementing multiple versions of software. In

addition, the acceptability check routines for "real" applications has been another obstacle in the

application of the fault tolerance schemes which are approval based. In this work we have

demonstrated that multiple versions can be generated in a systematic manner that is both cost •

effective and conceptually simple when used within this application domain. The acceptability

check routine is incorporated into FT-SUVS(II) as a form of conversation acceptance test

(CAT). Although there may be no general way of designing acceptability check routines, we

believe the approach used here in designing the CAT for FT-SUVS(II) can be applicable to

many applications.
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Figure 13. Three levels of error detection in FT-SUVS.
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We plan to refine the timing measurement capabilities of our testbed. So far, we have

only measured turn-around times. We plan to measure the exact overhead at various stages of

each cycle. We also plan to implement and experiment with various fault-tolerant 0
configurations (e.g. see Figure 13). This experimental work along with the theoretical work

on timing and reliability analysis will provide a valuable contribution towards developing ultra

reliable real-time systems in a cost-effective manner.
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CHAPTER VIII

SUMMARY AND A NEW DEVELOPMENT MODEL
FOR FUTURE REAL-TIME APPLICATIONS
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1. Summary

In this report we have discussed several aspects of designing fault-tolerant
parallel/distributed computer systems for real-time applications, which include parallel
architecture, software fault tolerance schemes, performance modeling, real-time task
scheduling, real-time communication protocols, and a testbed for experimental validation.
These works must be integrated into a stream of development process.

The traditional waterfall model seems inadequate for developing fault-tolerant real-time
systems in distributed/parallel environments, which require rigorous design and verification of
timeliness and reliability; this is because (1) design time verification has limitation, especially in

distributed/parallel computing environments and (2) due to the high cost and long development
times it is often too late when problems in software are discovered at system integration time.

We now propose a new model for the development of large, complex and distributed
real-time embedded systems. It is our premise that since software costs are high compared to

those of hardware (which include development costs) and in many cases the complexity of
software is much higher than hardware, that a better approach is to develop the system's

software functionality first. This premise is somewhat contrary to the typical approach of
finding the best hardware solution and then meeting the remaining system requirements with

software. Our model defines five phases of development.

2. Five Phases of a New Development Model

Phase I: Problem Conception. Target system is characterized. A domain specific
framework is necessary to support better communication between the customer and the

developer such that a clear and precise specification can be written. Time and reliability
requirements must be specified along with logical requirements. The formal approach is

preferable [Ost921, yet some form of compromise seems inevitable.

Phase 11: Decomposition. Software driven decomposition of system's functionality is
done based on an object-oriented design (OOD) approach [Boo91 ]. The OOD approach seems
natural for large complex real-time systems: sensor and actuator objects and in between these
objects are control objects. Moreover, reusability and maintainability among others are the
positive attributes of the approach. Phase II focuses on logic correctness only, and excludes
consideratcrn of timing or architectural elements. However, timing criteria, inherited from the

requirements specification are carried forward into the decomposition framework.
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The output from phase II consists of a set of communication objects, each of which is

the smallest reusable and schedulable unit. It is often the case that the system results in many 0
oljects (orders of hundreds to thousand). These objects must be clustered to minimize the

overheads due to communications, duplicated functionality, coupling and locality of resources

etc.

Phase III: Software Instantiation. This phase begins by clustering of objects.

Clustering is combining the objects based on their connectivity (i.e., coupling or data sharing)

and functionality. This reduces the complexity and overhead due to too many objects. The

runtime kernel is another object that must be instantiated in this phase. We propose a generic,

framed kernel designed for such applications. The frame must be optimized and/or adjusted for

a particular application (i.e., specific functions and services including communications) and

then instantiated. Therefore, all of the system functionality (including hardware) is instantiated

as software which constitutes the output of this phase.

In many cases an integrated software system which is constructed from reusable objects

may lead to inefficient implementation. For this reason, we believe that the system should go

through a "Post Integration Optimization." In this phase the system will be converted into

conventional process (task) graphs. These task graphs will be partitioned for implementation

on a generic multiprocessor system. The generic processors can be based either on a shared

memory or distributed memory model. Optimization decisions such as scheduling, load

balancing, placement of data, context switching overhead, and interprocess communication are

performed in the next phase.

Phase IV: Design Evaluation. The task of this phase is to determine the "optimal"

candidate target architecture which satisfies the system's performance characteristics, i.e.,

timeliness and reliability. First step is to map one task to one processor (1:1). Then combine

(i.e., further mapping) more than one task into one processor. The performance is affected by

three major factors which are (1) architecture, (2) mapping of tasks to processors, and (3)

scheduling of tasks and messages. Therefore, these factors should all be considered

simultaneously (i.e. many different combinations must be evaluated). This must be done by

three analysis approaches, namely, mathematical (or theoretical) analysis, simulation-based

analysis [Fuj90], and testbed-based analysis [Yan92]. These analyses are not exclusive, and

often supplementary. Although we do not mention other limitations such as hardware cost,

maximum number of processors, and various topologies still, in some cases these factors

should also be considered.
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(1) Mathmatical Analysis: Mathemetical proof, albeit restricted is necessary for reliability and

timeliness guarantee. For example, we should guarantee the timeliness of very critical tasks,

to meet the execution deadlines. That is, schedulability of some tasks must be guaranteed

before runtime. Real-Time Logic and/or deadline scheduling algorithms can be used.

Reliability modeling with the consideration of both hardware and software is yet another area to

be studied.

(2) Simulation-based Analysis: The simulation-based technique can be used to analyze the

performance whenever the mathematical approach is impossible. (Many mathemetical models

are not applicable for analyzing complex real-time systems due to the approximation or

simplification of many parameters.) The simulation model should realistically reflect the actual

physical environment or system, i.e., inputs to the systems and feedback from the outputs, as

well as system behavior. One challenging issue is parallel real-time simulation.

(3) Testbed-based Analysis: The testbed is also utilized to evaluate the candidate configuration.

The major focus here is to confirm the simulation result. The software including the kernel are

executed on a hardware emulator. Various timings are actually measured. Real faults are

injected into the system and the recoverability is also evaluated. Another major task is software

refinement including debugging. Software features which heavily depend on architecture and

networking are refined. For example, synchronization and communication mechanisms must

be refined depending on whether the shared memory or message passing mechanism is used.

The development of a flexible and truthful hardware emulator is another challenge.

Phase V: System Integration. The target architecture is developed while the software can

continue to be refined using the testbed. The integration test is performed after the hardware

part is complete.

Figure 1 shows the five phases of our development model. The major difference

between our model and the traditional waterfall model is that software decomposition and

instantiation are done before the target architecture is considered. This provides several

advantages: (1) software reuse is easier, (2) performance analysis is more accurate, and (3)

software cost is reduced.

3. Current Work

The current research at the University of Texas at Arlington (UTA) is as

follows:
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(1) HHRH Architecture: More theoretical and practical study on HHRH (Hybrid Higher Radix
Hypercube) architecture is carried on. Especially, fault-tolerant routing algorithms and various

fault-tolerant configuration for ultra reliable computing are under study.

(2) Real-time task and message scheduling: Time-value-function based scheduling as well as
the deadline-driven scheduling algorithms are under study. We have proposed a dynamic
execution time estimation technique for effective scheduling. Performance of various real-time
communication protocols is under study.

(3) Fault-tolerant model: Software fault-tolerance model for interacting tasks is under
investigation. The model will be extended with the consideration of hardware configuration.

(4) A parallel simulation technique: We will focus on stochastic discrete event simulations for
performance evaluation and study of meaningful ways to measure the validity of simulation
models.

(5) Testbed and real-time kernel: SUVS (Simplified Unmanned Vehicle System) testbed is

being used to conduct experimental evaluation of techniques and methods for design of reliable
distributed real-time systems. We will extend the testbed with a generic, framed real-time
kernel for large real-time systems. The major parts of the kernel are real-time scheduling,
intertask and internode communication, and fault-tolerant support.

(6) Integrated environment: An integrated environment and tools will be developed for the
three different analysis components, i.e., mathematical, simulation-based and testbed-based
analysis. This will provide an integrated (i.e., mutually supplemented) development

environment.
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