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ABSTRACT D

A graph G is well-covered (or w-c) if every maximal independent set of points in
G is also maximum. Clearly, this is equivalent to the property that the greedy algorithm
for constructing a maximal independent set always results in a maximum independent set.
Although the problem of independence number is well-known to be NP-complete, it is
trivially polynomial for weil-covered graphs.

The concept of well-coveredness was introduced by the author in [Pl] and was first
discussed therein with respect to its relationship to a number of other properties involving
the independence number.

Since then, a number of results about well-covered graphs have been obtained. It is
our purpose in this paper to survey these results for the first time. As the reader will see,
many of the results we will discuss are quite recent and have not as yet appeared in print.

1. Background, Terminology and an Updated Lattice of Implications

In this paper, all graphs will be assumed to be connected. A set of points is indepen-
dent if no two of its members are joined by a line. The size of a largest (i.z., maximum)
independent set will be denoted by a(G) and this number will be called the independence
number of G. A point cover for a graph G is a set S C V(G) such that every line of
G has at least one endpoint in S. Let us denote the size of a smallest point cover in a
graph G by 7(G). It is clear that the complement of a point cover is an independent set
(and vice-versa) and that in fact, the complement of a minimum point cover is a maximum
independent set (and vice-versa). Thus we always have that a(G) + 7(G) = |V (G}|. We
thus have the option of adopting the point of view of independent sets or of point covers.
Historically, well-covered graphs (the subject of this paper) were defined in terms of point
covers (hence the name), but more recently, most researchers in the area have converted
to the independent set point of view. We too will follow this more recent trend.

In 1972, Karp [K] showed that the independence number problem for graphs in general
is NP-complete. Thus it is considered most unlikely that a polynomial algorithm will ever
be found to compute a(G).

It is natural, therefore, to look for interesting families of graphs for which this parame-
ter is polynomially computable. A number of such families have been found. For example,
Ft has long been known that bipartite graphs have polynomially computable independence
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number. The reason is that in a bipartite graph G, we always have v(G) = 7(G) by the
well-known minimax theorem of Konig (Cf. Theorem 1.1.1 of [LP].) Here v(G) denotes
the size of a largest matching in G. But matching is well-known to be polynomial in all
graphs by a famous result of Edmonds (cf. Theorem 9.1.8 of [LP].) Hence it immediately
follows that the independence number is polynomially computable as well.

Graphs jn ‘which v(G) = 7(G) are said to have the Kénig Property. We have just
observed that every bipartite graph has the Konig Property. However, so do a number
of non-bipartite graphs. It has been shown independently by Deming [De], Sterboul [Ste]
and Lovész [Lo] that graphs with the Konig Property are polynomially recognizable.

For a more comprehensive list of other graph families with polynomially computable
independence number, we refer the reader to [GJ] and [LP).

Well-covered graphs are, in a sense, the most trivial family of graphs having poly-
nomial independence number. Consider the so-called greedy algorithm for constructing a
maximal independent set in a graph. Namely, begin by choosing any point v; in graph
G, put it in a set I and delete it and its neighbors from G to obtain a graph G,,. Now
select any point v in G,,, put it into set I also, delete it and its neighbors from G,, to
obtain a yet smaller graph (G, )y,. Continue this procedure until all points have either
been chosen for membership in I or deleted. Clearly, the set I which we have obtained
in polynomial time is a maximal independent set in G. However, it may be far from a
maximum independent set! But let us call a graph G well-covered if no matter which
point in G we start with, the above greedy procedure always results in an independent set
which s maximum. Note that this property is clearly equivalent to demanding that every
maximal independent set in G is also maximum.

Intuitively speaking, the property of being well-covered would appear to be quite
strong and hence perhaps it is not unreasonable to hope that a good characterization
and/or a polynomial recognition algorithm can be found for this class of graphs. Alas, as
we shall see in Section 2, it is unlikely that this will ever be the case.

We now proceed to several other definitions with which we shall deal in this paper.

A line in a graph G is said to be a-critical (or simply critical) if a(G —¢) > a(G). If
every line of G is critical, G is called a-critical. A point v of graph G is called essential
if v lies in every minimum point cover of G. Denote the set of essential points of G by
Ve(G). Note that if V,(G) = @ then each point of G lies in some maximum independent
set, and vice-versa. Graphs exhibiting this property have been christened B-graphs by
Parthasarathy and Ravindra [PR]. Clearly, every well-covered graph is a B-graph, as is
every a-critical graph. (It is an easy exercise for the reader to show that the converse
assertions are false in both cases.) A point v € G is said to be 7-critical If 7(G—v) < 7(G).
If every point v € G is 7-critical, we say that G is 7-point-critical. This notion seems
to have first been studied by Erd3s and Gallai in their 1961 paper [EG]. It is easily seen
that a graph G is 7-point-critical if and only if for all points v € G, there is a maximum
independent set which does not contain v. Again it is immediate that every B-graph is 7-
point-critical, but again the interested reader can easily show that the converse implication
fails.

A 2-matching in graph G is an assignment of integer weights 0, 1 or 2 to the lines
of G such that the sum of the weights of the lines incident with each point is at most
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2. If the sum at each point is exactly 2, we say that the 2-matching is perfect. One
can view a perfect 2-matching as a spanning subgraph consisting of point-disjoint cycles
some of which are odd and some of which are even. However, for all perfect 2-matchings
containing an even cycle, one can find another perfect 2-matching which does not contain
that cycle merely by taking every second line of the even cycle with weight 2 and discarding
the remaining lines of the cycle. One then has a perfect 2-matching which is a spanning
subgraph consisting of the union of a matching and a collection of odd cycles, all of which
are line-disjoint. Such a perfect 2-matching was originally called a ¢-factor by Tutte [Tu|.
In the same paper, Tutte also proved that any graph has a perfect 2-matching if and only if
for each independent set X in V(G), [['(X)| > |X|, where I'(X) denotes the neighborhood
of X, i.e., the set of all points adjacent to at least one point in X.

In the middle 1970’s, Berge introduced two new properties which tie in with those
mentioned above and which we shall now define. Let G be a graph, e a line in G and
k a non-negative integer. Multiplication of line e by k signifies replacing line e with
k parallel copies of e. (Note that multiplication of line e by 0 means the removal of line
e.) A graph G is regularizable if one can multiply each line of G by an integer > 1
so as to produce a regular multigraph of degree # 0. More generally, we say that G is
quasi-regularizable if one can multiply each line of G by an integer > 0 so as to obtain a
regular multigraph of degree # 0. (Clearly, every regularizable graph is quasi-regularizable
by definitirn. Once again it is left to the reader to verify that the converse implication
is false.) .erge proved in [B2] and [B3] that a graph is quasi-regularizable if and only if
IT(X)| > | X|, for all independent sets of points X in the graph. Combining the results of
Tutte and Berge, we also have that a graph is quasi-regularizable if and only if it has a
perfect 2-matching. In the same paper, Berge also proved that every a-critical graph must
be regularizable and that every r-point-critical graph is quasi-regularizable.

Let us now return to the property of well-coveredness. Let us denote by W,, the class
of all graphs G with the property that given any collection of n point-disjoint independent
sets {I1,...,I,} in G, there is a set {Jy,...,Jn} of n point-disjoint maximum independent
sets in G such that for each t = 1,...,n, I; C J;. Thus, in particular, class W, is just the
class of well-covered graphs. Clearly, these classes are nested: W, D W, D ...,

The graph classes {W;,W,,...} were introduced by Staples in her Ph.D. thesis [Stal]
in 1975. (See also [Sta2].) In [Stal], Staples also began the study of n-well-covered graphs,
where n > 1. A graph G is said to be n-well-covered if for all sets S C V(G) such that
|S| = n and a(G - S) = a(G), G- S is also well-covered. Thus 0-well-covered is equivalent

to being well-covered. Staples proved that for any n > 1, graph G is (n — 1)-well-covered
if and only if G e W,,,

Pinter, in his 1991 Ph.D. thesis [Pi], focused on deriving further properties of the class

W,; that is, the class of 1-well-covered graphs. We shall present a number of his results
for this class in Section 6.

One of the nicest early results about a-critical graphs was obtained by Hajnal [Haj]
in 1965. He showed that for every a-critical graph G, maxdeg (G) < |V(G)| - 2a(G) + 1.
The right hand side of this inequality is called the Hajnal bound. l'en years later, Staples
[Stal, Sta2] proved that all W, graphs also satisfy the Hajnal bound. Twelve years after
that, Staples’ Hajnal bound result for W, graphs was improved by Campbell [Cal. Let
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us say that a graph G is in class A, if it is well-covered and for all points v € V(G), the
graph G, = G — ({v} UT'(v)) has no isolates. Campbell showed that the class A, properly
contains the class W, and that the graphs in the larger class A, also satisfy the Hajnal
degree bound.

It is interesting to note at this point that we have established that the properties of
being a-critical and belonging to class W, separately imply a number of weaker properties
concerning independence number. However, it is easy to see that in general, the a-critical
and W, properties are independent. On the other hand, Staples obtained the only non-
trivial condition known to date which connects the two properties when she proved that
if G is a triangle-free member of class W, then G is also a-critical.

Next, 1:t us define a well-covered graph G to be strongly well-covered if G—e is also
well-covere. . for all lines e € E(G). Pinter [Pi] has shown that no line in a strongly well-
covered graph is a-critical. Earlier, Staples [Stal] showed that if a well-covered graph has
no a-critical lines, then it has the property that G — v is not well-covered, for all points
v € V(G). (Grephs with this latter property are called well-covered point-critical
graphs.)

We close this section with the diagram on the following page which summarizes most
of the implications we have discussed in this section.
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2. Complexity Issues for Wel]‘Covered Graphs

Can we recognize a well-covered graph in polynomial time? Although this basic algo-
rithmic question remains unanswered, it seems likely that the answer will turn out to be
“no”. But more about that below.

First let us point out that the property of being not well-covered is easily seen to oe
in NP. In order to see this, one need only exhibit two maximal independent sets of the
graph G under consideraiion which have different cardinalities.

What is not so apparent is that the property of being not well-covered is NP-hard.
Proofs of this result have recently reached the writer from three different sources. Chvital
and Slater independently proved it and have now co-authored a joint paper [CS] containing
their proof. Independently, Sankaranarayana and Stewart [SS] have produced a virtually
identical proof. The only difference is that Chvital and Slater use reduction from 3SAT
while Sankaranarayana and Stewart reduce from SAT. We will outline the proof as given
by Sankaranarayana and Stewart.

Theorem 2.1. ([CS;SS]) The property of being well-covered is co-NP-complete.

Outline of Proof. Let ISAT be any instance of SAT. That is to say, ISAT is a
conjunction of m clauses ¢;,...,¢,, where each clause is itself a disjunction of a subset of
boolean variables uj,...,u, (and their complements). Given ISAT, we now build a graph
G with point set V(G) = {¢1,...,em} U {u1,%1,...,4n,%n}. The lines of graph G are
defined as follows. Every pair of distinct clause points are joined. Each literal u; is joined
to its negation u;. Finally, each clause point ¢; is joined to literal u; (resp. u;) if u; (resp.
T;) is contained in clause ¢;. (Note that it is assumed here that no clause contains both a
literal and its negation, for such a clause is always satisfiable and can hence be eliminated.)

It is now straightforward to prove that ISAT is satisfiable if and only if graph G is
not well-covered.

First suppose that ISAT is satisfiable. Suppose an assignment of values to the literals
is made which makes ISAT true. Then the set of those literals which are true in this
assignment clearly form an independent set of size n which is maximal. Moreover, this set
is not maximum, for one can easily find an independent set in G of size n+1; namely, choose
one point corresponding to a clause and then add n additional literal points obtained by
choosing from each literal pair {u,,%;} that one literal which is not in the chosen clause.

Thus G is not well-covered.

Conversely, suppose G is not well-covered. It is easy to see that all maximal indepen-
dent sets in G of size n + 1 must contain a clause point. Now construct an independent
set S; of size n by choosing exactly one of the two literals u;, ¥; in such a way that S;
is maximal. But we have maximality only if each clause point ¢; is adjacent to (at least)
one of the literals chosen for set S;. Thus if one assigns the value true to each literal in
S, each clause will be satisfied and hence so will ISAT.

Thus any polynomial recognition algorithm for non-well-covered graphs could be used
to find an assignment of truth values which makes ISAT true. It thus follows that the
property of not being well-covered is at least as hard as SAT and hence is NP-hard.




Now let us return to the question of whether the property of being well-covered is also
in NP. It is NP-hard, since its negation is NP-hard. Thus if it were in NP, it would follow
that NP = co-NP! Although this could conceivably be true without having P = NP, it too
is considered highly unlikely by the vast majority of complexity theorists.

In a different direction, Sankaranarayana and Stewart [SS] have investigated a number
of other known NP-complete properties, but limited to the class of well-covered graphs. To
mention only several of their results, they have shown that the Hamilton cycle 3roblem,
the dominating cycle problem, the chromatic number problem, the max cut problem and
the dominating set problem all remain NP-complete even when restricted to the class of
well-covered graphs. Moreover, the graph isomorphism problem for well-covered graphs is
equivalent to the general graph isomorphism problem—a problem the complexity of which
remains unknown.

Let us close this section with a remark about the matching-analogue of the well-covered
property. A graph G is said to equi-matchable if every maximal matching is maximum.
The problem of characterizing this family of graphs was first posed by Griinbaum in 1974
[G]. Lesk, Plummer and Pulleyblank [LPP] solved this problem in 1983 when they obtained
a characterization of such graphs which leads to a polynomial recognition algorithm.

3. Well-Covered Bipartite Graphs and Very Well-Covered Graphs

We now begin our survey of the well-covered property with respect to various special
classes of graphs. Let us start with bipartite graphs.

If G is a bipartite graph and e = uv is a line in G, let G, denote the subgraph of G
induced by I'(v) UT(v). The following was proved by Ravindra in 1977 [Ral].

Theorem 3.1. Let G be a connected bipartite graph. Then G is well-covered if and
only if G contains a perfect matching F such that for every line e = uv in F, G, is a
complete bipartite graph.

A characterization of well-covered trees follows as an easy corollary of this result.

Corollary 3.2. A tree T is well-covered if and only if it is K or its pendant lines
form a perfect matching.

Notice that if G is any well-covered graph, then a(G) < |V(G)|/2. This is easy to
see, for if G centained a maximum independent set of size greater than |V (G)|/2, then no
point in the complement of the maximun: independent set could itself lie in a maximum
independent set. The family of well-covered graphs in which equality is attained in the
above inequality, namely, those for which a(G) = |V (G)|/2, were characterized by Nelson
and Staples [Stal] in 1975 and independently by Favaron in 1982 [Fa|.

Let us define a graph G to be very well-covered if it is well-covered and has «(G) =
IV (G)|/2. For the sake of conciseness, let us use the following terminology. Suppose a graph
G has a perfect matching F. Then the matching F = {a;b;,...,a,b,} has property P
if (a) no point w € G satisfies w ~ a; and w ~ b; where a;b; € F and (b) no set of two
independent points {u,v} C V(G) satisfies u ~ a, and v ~ b; where a,b; € F.
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Parts (i) and (ii) of the following theorem are proved in [Stal] while the equivalence
of all three statements is proved in [Fa ].

Theorem 3.3. For any graph G the following are equivalent:

(i) G is very well-covered,

(ii) there exists a perfect matching in G which satisfies property P,

(iif) G contains a perfect matching and every perfect matching in G satisfies property
P.

Of course, if G is well-covered and, in addition, bipartite with point bipartition AU B
it follows immediately that both A and B are maximal independent sets. (Remember: we
are not allowing our graphs to have isolated points.) Thus |A| = |B| and o(G) = |4]| =
[V (G)|/2. But by the well-known minimax theorem of Konig for bipartite graphs, graph G
must then have a perfect matching. In fact, it is easy to characterize bipartite well-covered
graphs and, in particular, trees, as corollaries of the preceding theorem. These corollaries
was first proved by Ravindra in 1977 [Ral]. To the best of the author’s knowledge, Staples
and Ravindra were unaware of each other’s work at the time.

From part (iii) of Theorem 3.3 it follows that since matching is polynomial, there
is thus a polynomial algorithm for recognizing very well-covered graphs and hence also
well-covered bipartite graphs.

We now turn to the two areas of well-covered graph research which seem to have
produced the bulk of results to date.

4. The Well-Covered Property versus Girth

The girth of a graph G is the length of any shortest cycle in G. Substantial contri-
butions to the theory of well-covered graphs dealing with their girth are due to Finbow,
Hartnell and Nowakowski. In particular, Finbow and Hartnell [FiH] introduced the idea
of studying well-covered grapths from the point of view of girth in the context of analysis
of a certain two-person game. In particular, they obtained the following result. Note that
a pendant line in a graph is any line incident with a point of degree 1.

Theorem 4.1. Let G be a graph with girth at least 8. Then G is well-covered if and
only if its pendant lines form a perfect matching in G.

In cooperation with Nowakowski, in 1987 these same two authors [FHN2] generalized
the above result to obtain a characterization of all well-covered graphs having girth at least
5. (This paper has not yet appeared at the time of this writing.) In order to state their
result, we must first introduce some new terminology.

A 5-cycle Cj of a graph G is called basic if cycle Cs does not contain two adjacent
points of degree 3 or more. In a given graph G let C(G) denote the set of all points which
belong to basic 5-cycles. Denote by P(G) the set of points in G which are incident with
pendant lines in G. Then G is said to belong to the class PC if V(G) can be expressed
as P(G) U C(G), where P(G) N C(G) = @ and the subgraph of G induced by P(G) is a
matching.




The main result of [FHN2] can now be stated.

Theorem 4.2. Let G be a graph with girth at least 5. Then G is well-covered if and
only if G belongs to the class PC or is one of the six exceptions shown in Figure 1.

Outline of Proof. It is straightforward to show that all graphs in class PC are
well-covered. In fact, every maximal independent set in a graph G in class PC has size
[P(G)|/2 + 2|C(G)|/5. That the six exceptional graphs are well-covered can be easily
checked.

The hard work lies in showing that the converse holds; namely, that the PC graphs
and the six exceptions are the only well-covered graphs of girth at least 5.

The key to the rest of the proof lies in the concept of an eztendable point. A point v
in a well-covered graph G is extendable if G — v is also well-covered and o(G —v) = a(G).

Assume, now, that G is a well-covered graph with girth at least 5. It is shown next
that this is equivalent to the following condition: if u and v are adjacent points with
deg (u) > 3, then if v is extendable, so is u. Next it is shown that if v is an extendable
point in such a graph, then either v is incident with exactly one pendant line or else v lies
on a basic 5-cycle C and the neighbors of v on C are of degree 2 in G. The authors then
prove that if v is an extendable point and lies on a basic 5-cycle then all neighbors of v
not on this basic 5-cycle are also extendable. Moreover, if v is incident with a pendant line
then any neighbor of v which is not of degree 1 is also extendable. Finally, these results
are used to show that no two basic 5-cycles can have a point in common.

The authors now use these preliminary results to show that a well-covered graph of
girth at least 5 belongs to class PC if and only if G contains at least one extendable point.

The most difficult—and most lengthy—part of the characterization is now to prove
that if G is well-covered and has girth at least 5 and has no extendable point, then it must
be one of the exceptional graphs shown in Figure 1. The proof proceeds by considering
the maximum degree. It is easy to see that K; (an exceptional graph) and K, (a member
of class PC) are the unique well-covered girth at least 5 graphs with maxdeg (G) < 1. The
authors then proceed to show that Cy is the only exceptional graph with maxdeg (G) = 2,
that P, P13 and Py4 are the only exceptions having maxdeg (G) = 3, that Q3 is the sole
exception with maxdeg (G) = 4 and finally, that there are no exceptional graphs having
maximum degree greater than 4.

—PLACE FIGURE 1 ABOUT HERE—

By inspecting the exceptional graphs, the following corollary is immediate.

Corollary 4.3. Let G # K, C7 have girth at least 6. Then G is well-covered if and
only if its pendant lines form a perfect matching of G.

We observe that the characterization given in Theorem 4.2 immediately gives an
obvious polynomial algorithm for recognizing well-covered graphs with girth at least 5.
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So what about well-covered graphs with girth 3 or 4?7 It seems safe to say that those
of us who have worked in the field of well-covered graphs have long felt that triangles are
the real heart of the difficulty. Finbow, Hartnell and Nowakowski, however, in a second
paper in 1989 [FHN3| characterized well-covered graphs in which triangles are allowed, but
which have no 4-cycles nor 5-cycles. (Note that in particular, in si ch graphs no cliques of
size greater than 3 can exist.)

In order to state this characterization, the concept of a simplicial point must be
introduced. Let I'[v] denote the “closed” neighborhood of point v; that is, let I'[v] =
I'(v) U {v}. A point v € G is said to be simplicial if I'[v] is a complete graph. Now,
following [FHN3|, let us define a family ¥ to be that class of graphs G in which there
exists a point set {v,v2,...,vx} C V(G) where for each s = 1,...,k, point v; is simplicial,
IT[v;]] < 3 and T[v;]UT[vz] U--- UT[vg} is a partition of V(G).

The characterization can now be stated as follows.

Theorem 4.4. G is a well-covered graph containing no 4-cycles nor 5-cycles if and
only if G € ¥ or G is one of the two exceptional graphs shown in Figure 2.

It is easy to see that in any well-covered graph if v and v are two simplicial points,
then either I'[u] N T[v] = @ or T'[u] = T[v]. Clearly, then, the graphs characterized in
Theorem 4.4 can also be recognized in polynomial time.

—FIGURE 2 GOES ABOUT HERE—

5. The Well-Covered Property versus Degrees

The second of the two primary directions of research on well-covered graphs to date is
the study of well-coveredness versus degree properties. One such result has already been
mentioned in Section 2. We refer to the theorem which states that all graphs in W satisfy
the Hajnal degree bound.

Staples also realized that a 1972 result ¢f Meyer [Me] has, as a corollary, a result
relating well-covered graphs to their degree sequence. Let us state his theorem and then
its implication for well-covered graphs as a corollary.

Theorem 5.1. Let G be a graph with point set V(G) = {v;,...,v,} where 1 <
deg (v1) < deg (v3) < -:- < deg (v,). If k is any integer, 2 < k < n such that deg (v,) +
--++deg (vp_k+2) < n—k, then every independent set with fewer than k points is contained
in an independent set with k points.

If we set kK = a(G) in the above theorem we get the following.

Corollary 5.2. If the sum of the degrees of the a(G) —1 points of G of largest degree
does not exceed |V (G)| — a(G), then G is well-covered.

9




Before proceeding further, we present a result which, although easily obtained, turns
out to be extremely useful in the proofs of most of the theorems of this section.

Theorem 5.3. If G is a well-covered graph which is not complete, then for each
v € V(G), the graph G, = G — I'[v] is also well-covered.

Note that the graph G, may be disconnected. However, it is trivial from the definition that
a disconnected graph is well-covered if and only if each of its components are well-covered.

Campbell [Ca] and Campbell and Plummer {CP] took yet another approach when they
began the study of well-covered cubsc (i.e., 3-regular) graphs. The three graph “fragments”
A, B and C shown in Figure 3 below will be important in this context. Our studies
proceeded via increasing values of point-connectivity.

—PUT FIGURE 3 ABOUT HERE—

Theorem 5.4. Let G be a cubic well-covered graph with x(G) = 1. Then G is
obtained by joining a finite number of the three fragments A, B and C in a “path”
containing at least one A.

Let us denote the class of well-covered graphs characterized in Theorem 5.4 as §;.
Clearly, the smallest member of class §; has 18 points. It is also clear, but perhaps
something of a surprise, that all the graphs in class §; are planar.

In characterizing the cubic well-covered graphs with x = 2, it is useful to subdivide
this class into two subclasses. Denote by G,; the subclass of these graphs in which each
cutset of size 2 is independent and let §24 denote the rest; i.e., those cubic well-covered
graphs having k = 2 and having at least one cutset of two adjacent points.

Theorem 5.5. Let G be a cubic well-covered graph having «(G) = 2. Then if G
belongs to class G21, G arises by joining a sequence of fragments of type A and B in a cyclic
configuration. Moreover, such a configuration must contain at least two type A fragments.

The planar members of G2, are precisely those cyclic configurations obtained using
only fragments of type A.

On the other hand, if G belongs to class G4, G arises by joining a sequence of
fragments of ‘vpe B or C in a path-like configuration of the form CBB--- BC, in which
there may be no fragments at all of type B.

All members of class G, are planar.

Now we deal with the remaining class of cubic well-covered graphs; namely those with
connectivity 3. The sequence of results leading up to the (very recent) final resolution of
this case is quite interesting, and we shall therefore describe them.

After a notable lack of success on attacking the family in its complete generality, it
was decided to try to investigate those which are planar. The motivation to do so lay in
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the realization that we might make some progress on what appeared to be an impossible
case-by-case analysis through the use of what has come to be called the Theory of Fuler
Contributions.

This technique applicable to planar graphs was first introduced by Lebesgue [Leb] in
1940. It was then further developed by Ore [O] in his work on the 4-color problem, by Ore
and Plummer [OP] and by Plummer and Toft [PT] to treat another type of graph coloring
(called cyclic coloration).

Suppose connected graph G is embedded in the plane. Let v be any point in G. We
define the Euler contribution of point v to be

_q_dee(v) 1

d(v) =1 o+ > =

where the sum is taken over all faces F; incident with v and z,; denotes the number of lines

in the boundary of face F;. Using Euler’s Formula, it is easy to see that }_ ®(v) = 2. But

it then follows that for at least one point v in graph G, we must have ®(v) > 0. (We have

christened such points control points.) Now suppose graph G is cubic. It then follows
that for any control point v,

-1 1
3 + p > 0.

This diophantine inequality has infinitely many solutions, but they can be classified
into a number of finite families and dealt with a family at a time. For example, one family
can be denoted by (3,3,z), where £ = 3,4,.... In other words, the three faces at the
control point are two triangles and a third one of arbitrarily large size.

This, then, was the approach taken to characterize all cubic 3-connected planar well-
covered graphs. Whereas there are infinitely many well-covercd cubic graphs with con-
nectivity 1 and 2, somewhat surprisingly, in the 3-connected planar case, there are only
four!

Theorem 5.8. There are precisely four cubic 3-connected planar well-covered graphs. °
They are shown in Figure 4.

—FIGURE 4 GOES ABOUT HERE—

The proof of Theorem 5.6 required over 60 pages of computation and made repeated
use of Theorem 5.3 applied to the many solution classes for control points referred to
above.

But what about those cubic 3-connected well-covered graphs which are not planar?
A bit of history is again in order. In 1989-91, M. Ellingham and G. Royle were both
participants in the graph theory seminar at Vanderbiit University and during ihat time,
several talks were given on well-covered graphs, including most of the results mentioned
above. In view of the paucity of planar 3-connected cubic well-covered granhs as shown in
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Theorem 5.6 above, Royle decided to conduct a computer search on all cubic graphs on a
maximum of 18 points, seeking all those which were not planar.

So far in this paper, the cubic well-covered graphs mentioned are those in classes G,
G215 G24, the one exceptional 14-point (non-planar) graph found by Finbow, Har*nell and
Nowakowski and called by them P;4 and the four planar graphs K4, R3, Cs X K2 and E2
in Theorem 5.6.

In his computer search, Royle found precisely two additional graphs. They are K3 3
and K3, where the latter is the 8-point cubic graph obtained from K33 by replacing
one point with a triangle. (It should be remarked that both these graphs were known by
Campbell to be well-covered and indeed appear in his thesis.)

This motivated Ellingham and Royle to attempt to prove that indeed all cubic well-
covered graphs were accounted for in the above results. This they succeeded in doing and
we close with the theorem which completely settles the problem of identifying all cubic
well-covered graphs. These results have just been written up [CER1; CER2] and submitted
while the present paper was being written.

Theorem 5.7. The cubic well-covered graphs are precisely those graphs belonging to
graph families G, 21, 24, together with the exceptional graphs K4, R3, C5 X K3, Eo,
P14, K3,3 and K:';,a-

Outline of Proof. This proof, too, is quite long, but the main steps are the following.
By the results of Finbow, Hartnell and Nowakowski, we can reduce the problem to graphs
having girth 3 or 4. Then by the results of Campbell, we can restrict our considerations to
the 3-connected case. Finally—and herein lies the crucial new insight of the authors—one
can reduce the 3-connected girth 3 and 4 cases to the connectivity 1 and 2 cases and then,
once again, use Campbell’s results.
|
In closing this section, it is important to mention that it now follows easily that all
cubic well-covered graphs are recognizable in polynomial time.

6. Results for Graphs in Class W,

In this section, we present some known results about the subclass of well-covered
graphs defined earlier in this paper and denoted by W,. Recall from Section 2 that the
class W, can also be defined as the class of 1-well-covered graphs and these graphs are
precisely those with the property that they are well-covered and if any point is deleted the
resulting graph remains well-covered.

We remark that the W, property is in co-NP. For suppose G is not in W;. Then
either it is not well-covered, and—as remarked in our section on complexity—this is easily
exhibited by giving two maximal independent sets which have differing cardinality; or for
some point v € V(G), graph G — v is not well-covered. But the latter situation can again
be certified by giving two independent sets (this time maximal in G — v) of differing sizes.

There is an additional point of concern to be dealt with here, however. If we again
consider the definition of n-well-covered graphs given above—and in particular, the defi-
nition of 1-well-covered graphs—it seems, at first thought, that a graph G could fail to be

12




1-well-covered in the following way: it is well-covered and for each point v € V(G), G — v
is also well-covered, but a(G — v) < «(G), for some point v € V(G). However, this is
impossible, for all well-covered graphs are 7-point-critical and hence a(G — v) = a(G) for
allv e V(G).

The relationship of the property of being in class W2 to a number of other properties
was studied in Section 2. In this section we proceed to investigate certain special classes
of W, graphs and the structure of their members.

First we remark that Staples [Stal] was the first to construct infinite families of graphs
in Wj,. Although the number of both well-covered and W, graphs on a given number of
points is not known in general, Royle [Ro] gives us some feeling for their frequency by
means of his computer search on all graphs with no more than 9 points. He found that
among the 273,191 possible graphs, 9968 are well-covered and 558 are in W,. (The reader
is referred to open question 11 at the end of this paper.)

Next we state a result due to Staples [Stal] which relates the W, property to that
of having ecrstical lines. (Recall that we defined a line e in a graph G to be critical if
a(G —€) > a(G).)

Theorem 6.1. If graph G is in class W3, then V(G) is spanned by critical lines.

The rest of the results in this section, unless otherwise specified, are due to Pinter in
his 1991 thesis [Pi]. 7o begin with, we have a theorem for W, graphs which is analogous
to Campbell’s result (Theorem 5.3 of the present paper). This theorem turns out to be
extremely useful in the study of W5 graphs, much as Theorem 5.3 is for well-covered graphs
in general.

Theorem 6.2. If G is a W, graph which is not complete, then for each v € V(G),
the graph G — I'[v] is also in Wj.

As was the case with well-covered graphs in general, we will group the W, results in
this section in two main categories. First, we will address girth and then deal with degree
results.

It is reasonably straightforward to show that with two small exceptions, graphs in W,
have girth no more than 4. The two exceptions are K; and Cs.

Theorem 6.3. If G is a graph in W, and G # K, or Cs, then girth (G) < 4.

Outline of Proof. Recall the family PC of Finbow, Hartnell and Nowakowski intro-
duced earlier. First it is shown that if G is in PC and has girth at least 5 (G # K3 or Cs),
then G is not in W.

It is then routine to check that the six exceptional graphs of Figure 1 are not in class
W,.

|

In view of Theorem 6.3, it is natural to group W, graphs into two categories: those
containing triangles and those having girth exactly four. It is the girth 4 graphs which will
occupy our attention.
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It is reasonably easy to prove that no W, graph of girth 4 can have a cutpoint. Since
we are considering only connected graphs in this paper, it then follows that, with the
singular exception of K3, the minimum degree in any girth 4 graph in class W, is at least
2.

Although cutpoints are forbidden, infinite families of girth 4 graphs in W, having
connectivity 2 can be constructed. It is known, however, that these families do not account
for all such graphs. At the moment, it is also an open question as to whether or not there
exist such graphs having connectivity greater than 4.

Pinter’s main result on girth 4 graphs in class W is a characterization of those which
are planar. We can begin by showing that every such graph must have points of degree
2. This is proved by once again invoking the Theory of Euler Contributions and is rather
lengthy. We can then show that points of degree 2 cannot exist “in isolation”; namely, at
least one of their neighbors also has degree 2.

Now consider a recursive construction procedure described as follows. Begin with the
8-point graph shown in Figure 5. Call it G3.

—FIGURE 5 GOES ABOUT HERE—

Now given any graph G in the construction, let z and y be two adjacent points of
degree 2 in G. Let u be the neighbor of z such that u # y. Then construct a new graph
G' with precisely three more points than G as follows. Let the three new points be a, b
and ¢. Now join a to z and b, b to a and ¢ and ¢ to b, u and y. Let us denote this infinite
family of graphs by §. Pinter proved the following.

Theorem 6.4. A graph G is a girth 4 planar member of class W, if and only if G is
a member of the family G.

Now let us turn our attention to relationships between membership in class W, and
degree. In particular, following the line of enquiry pursued in the case of general well-
covered graphs in Section 5, we will deal with regular graphs.

Of course, the complete graph K is a member of class W,. On the other hand, Staples
[Stal] proved the following result.

Theorem 6.5. If G € W,, and G is not complete, then mindeg (G) < n.

Thus we may begin our study of regular graphs versus membership in W5 with degree
2; that is, with cycles. But it is trivial to see that the only cycles which are in W are C3
and Cs.

Hence we may move on to cubic W, graphs. But recall that by the very recent theorem
of Campbell, Ellingham and Royle (Theorem 5.7 above), we have a nice characterization
of the cubic well-covered graphs. Armed with this characterization, Pinter proved the next
result.

Theorem 6.6. The only cubic graphs in class W, are K4 and Rj, the triangular
prism.
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Thus we may now move up to 4-regular W2 graphs. But here, the story seems far from
complete. It is straightforward to show that no such graph can contain a cutpoint. It is
known that there exist such graphs with & = 2, but knowledge is meager here; for example,
no infinite families have even been constructed. An infinite family of 4-regular W graphs
having k = 4 is known. Beyond that, the principal result known is the following.

Theorem 6.7. The only graph in W, which is 3-connected, 4-regular and planar is
the 8-point graph shown in Figure 6.

The proof is yet another long struggle using the Theory of Euler Contributions.
—PUT FIGURE 6 ABOUT HERE—

7. Strongly Well-Covered Graphs

Recall that a well-covered graph is said to be strongly well-covered if G — e is also
well-covered for each line e € E{G). To the best of our knowledge, Pinter is the first
to undertake the study of this subfamily of well-covered graphs. Staples [Stal], however,
initiated the study of a related subfamily—the so-called well-covered point-critical graphs.
A well-covered graph G is said to be well-covered point-critical if G — v is not well-
covered, for all points v € V(G). She constructed infinite families of such graphs and
showed that no such graph can have a cutpoint. She also showed that if G is a bipartite
well-covered graph, other than K, then G is well-covered point-critical if and only if it is
2-connected. Finally, she showed that if,G is well-covered and has no critical lines, then G
is well-covered point-critical. |

What have these graphs to do with strongly well-covered graphs? Except for two
trivial exceptions, every strongly well-covered is well-covered point-critical.

Theorem 7.1. If G is strongly well-covered and G # K, K, then G is well-covered
point-critical.

We immediately have the following somewhat surprising result.

Corollary 7.2. The only strongly well-covered graphs which are also in class W, are
K 1 and K 2.

Of course it now also follows from Staples’ result that all strongly well-covered graphs,
except K, and K, are 2-connected. We will see in a moment that this result can be
sharpened.

Let us once again recall the Hajnal bound encountered in Sections 1 and 2. In partic-
ular, it was mentioned there that both a-critical and W, graphs satisfy this upper bound
on the maximum degree. It is known, however, that the same cannot be said for strongly
well-covered graphs. However, Pinter showed that the latter class indeed “comes close”.

Theorem 7.3. If G is a connected strongly well-covered graph, then deg (v) <
IV(G)] - 2a(G) + 2, for all v € V(G).
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The bound in Theorem 7.3 is known to be sharp.
On the other hand, we have a non-trivial lower bound on the degree for strongly
well-covered graphs.

Theorem 7.4. If G is strongly well-covered and G # K, K3,Cj4, then mindeg (G) >

It is not known whether or not the bound in Theorem 7.4 is sharp. (See problem 7 in
Section 9.)

Appealing to the main result of Finbow, Hartnell and Nowakowski (See Theorem 4.2),
we can inspect the well-covered graphs with girth at least 5 and see that each has a point
of degree at most 3. This observation, combined with Theorem 7.4, yields the next result.

Corollary 7.5. If G is strongly well-covered and G # K, K, Cy, then girth (G) < 4.

We remarked above that, with the exception of K; and K, all strongly well-covered
graphs are 2-connected. In fact, we can say more.

Theorem 7.8. If G is strongly well-covered and G # K,,K,,Cy4, then G is 3-
connected.

The proof of this result is interesting for its own sake, as it is one of the few known to
the author which proceeds by induction on the independence number a. The basis step for
the induction—namely, the case when a(G) = 2—follows from a characterization of such
strongly well-covered graphs obtained by Pinter. Namely, the class of strongly well-covered
graphs G with a(G) = 2 is precisely the class of all graphs H, obtained from the complete
graphs K3, on an even number of points by deleting a perfect matching. Since we know
the minimum degree of any strongly well-covered graph (with the exception of the three
graphs listed in the hypothesis of this theorem) is at least 4, it follows that n > 6 and
hence H,, is 3-connected. The basis step of the induction is thus verified.

Is 3-connectivity the best that we can hope for here? The answer is unknown. (See
Section 9.)

The final result we will mention for strongly well-covered graphs is consistent with
the method of attack upon well-covered graphs in general and W, graphs in particular as
previously outlined in this paper. Namely, what can be said in the planar case?

Here, fortunately, we have a complete answer.

Theorem 7.7. The only planar strongly well-covered graphs are K;, K2, C4 and the
octahedron.

The octahedron is shown in Figure 7. It is not surprising that in the proof of Theorem
7.7, once again use is made of the Theory of Euler Contributions.

—Figure 7 GOES ABOUT HERE—
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Let us close this section with a comment on the abundance of strongly well-covered
graphs. Recall that in his computer search through the class of 273,191 graphs having at
most nine points, Royle [Ro| found that 9968 of them were well-covered. Upon further
checking, he found that only 4 of these are strongly well-covered! This leads one to be
more hopeful, perhaps, that a characterization of this class will be found in the not too
distant future. On the other side of the coin, however, using the idea of lexicographic
product, Pinter has constructed infinite families of strongly well-covered graphs.

8. Other Results on Well-Covered Graphs

Staples [Stal; Sta2] discovered a number of constructions for families of well-covered
graphs. Further constructions have been provided by Campbell [Ca] and Pinter [Pi]. One
of the more general construction procedures developed to date involves the concept of
lexicographic product. Suppose H is a graph with n points and let {G;}* , be a family
of n graphs. Suppose V(H) = {v;,...,v,} and let us implicitly associate with point
v; the graph G; for each + = 1,...,n. Define the lexicographic product of H and
{G1,...,Gn}, written Ho (Gy,...,Gy), as follows: V(H o (Gy,...,G,)) =V (G,)U---U
V(Gyr) and E(Ho(Gy,...,Gn)) = E(G1)U-- - UE(Gp)U{zy|z € V(G:),y € V(G;) and v; ~
v; in graph H}.

The following result is essentially due to Topp and Volkman [TV2].

Theorem 8.1. If H is well-covered and each G;, fort = 1,...,|V(H)| is a family of
well-covered graphs with a(G;) = a(G,) for all 5 and j, then the lexicographic product
H o (Gy,...,G|v(#)) is well-covered and has independence number o H)a(G,).

Pinter was able to employ the lexicographic product in a similar way to obtain infinite
classes of W, graphs and also strongly well-covered graphs. We mention one of his results
in this direction.

Theorem 8.2. If H is well-covered and each G, for ¢t = 1,...,|V(H)| is a family
of W, graphs with a(G;) = a(G;) for all ¢ and j, then the lexicographic product H o
(G1,...,Gv(my) is a W, graph with independence number o( H)a(G,).

Topp and Volkman have also studied various other types of graph products with
respect to the well-covered and the very well-covered properties. The interested reader is
again referred to [TV2].

We will now give the briefest of summaries of several other papers which deal directly
or indirectly with the well-covered property. In [To] and [TV1], Topp and Volkmann study
the well-covered property for some very special classes of graphs: the so-called k-trees,
C(n)-trees, block graphs and unicyclic graphs.

Hartnell [Har| has introduced a more restricted variation of the well-covered property
with his radius 2 independent set concept. A set of points S in a graph G is said to be
radius 2 independent if for every two points in S have disjoint closed neighborhoods.
That is, for every pair of points u and v in S, I'[z]NT[y| = 9. He then characterizes those
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trees which have the property that every maximal radius 2 independent set is maximum.
These graphs arise in considering a certain 2-person game.

Dean and Zito [DZ] have begun to study yet another variant of the well-covered
property. They define a graph G to be k-extendable if every independent set of size k
is contained in a maximum independent set. A graph is thus well-covered if and only if it
is k-extendable for all k, 1 < k < a(G). At the other extreme, the 1-extendable graphs
are just those graphs for which V.(G) = 0; i.e., the so-called B-graphs. (See Section 1.)
The authors use the concept of k-extendability to show that two types of perfect graphs—
namely, those with bounded clique size and those which contain no induced 4-cycle—can
be checked for well-coveredness in polynomial time.

Note that a graph may be 2-extendable without being 1-extendable. However, Dean
and Zito are able to show that every 2-extendable graph which is not also 1-extendable
must be the join of a complete graph and another graph which s both 1-extendable and
2-extendable.

(The choice of terminology “k-extendable” is somewhat unfortunate since there are a
number of papers in print in which this term is applied to matchings rather than indepen-
dent sets of points.)

Finbow, Hartnell and Nowakowski [FHN1] and Finbow and Hartnell [FiH2| have also
introduced several new properties related to, but different from, well-coveredness.

In [FHN1] a graph G is defined to be well-dominated if every minimal dominating
set is of the same cardinality. It is very easy to see that a well-dominated graph must
be well-covered, but not conversely. Motivated by their girth 5 theorem for well-covered
graphs (cf. Theorem 4.2 above), the three authors observe that among the six exceptional
graphs of Theorem 4.2, precisely four are also well-dominated. They then determine which
graphs in class PC are well-dominated in terms of how their basic 5-cycles are joined. As
a corollary of this work, the authors then are able to show that for graphs of girth at least
6, the concepts of well-dominated and well-covered coincide.

In [FiH2], the authors define two additional subclasses of well-covered graphs, the
so-called EIDL graphs and a subclass of these called EDL graphs. The reader is referred
to the paper for the details.

Now let us define a set of points S in a graph G to be k-independent if each point in
S is adjacent to no more than k—1 other points in S. (Thus a set of points is 1-independent
if and only if it is independent.) Favaron and Hartnell [FaH] define a graph G to be well-
k-covered if every maximal k-independent set is maximum. They then characterize those
trees which are well-k-covered (not to be confused with the well-covered k trees of Topp
[To]!) as well as those well-2-covered graphs of girth at least 8.

One can view well-covered graphs as those having precisely one size of maximal in-
dependent set. With this perspective in mind, Finbow, Hartnell and Whitehead [FHW]
relax the definition of well-covered graphs and say that a graph is in class M, if it has
precisely two sizes of maximal independent sets. They then obtain a very complicated
characterization of such graphs having girth at least 8.

Finally, we close with a class of well-covered graphs of quite a different nature. Call
a function w which associates with each point of a graph G a non-negative real number a
weighting of V(G). For any set S C V(G), denote the sum of the weights of the points
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in G by W(S;w). In particular, W(G;w) is called the graph weight. Call a weighting
w a fractional cover if W(I'[v];w) > 1 holds for all points in G. A fractional cover is
minimal if no point can have its weight reduced and have the corresponding weighting
remain a fractional cover. A graph G is then said to be fractionally well-covered if
W (G;w) is the same for all minimal fractional covers.

It is easy to show that fractionally well-covered graphs are also well-dominated and
hence, well-covered by Lemma 1 of [FHN1]. On the other hand, there are well-covered
graphs which are not fractionally well-covered. As an example, the authors offer a 5-cycle
with a weight of 1/3 on each point. Clearly, this is a minimal fractional cover having
weight 5/3. On the other hand, if one assigns a weight of 1 to two non-adjacent points of
the 5-cycle and O to the remaining three points, one has another minimal fractional cover
the weight of which is 2.

Recall that we defined a point v € G to be simplicial if the closed neighborhood T'|v}
is a complete graph. A graph G will then be called simplicial if it can be partitioned
into point-disjoint maximal complete subgraphs H,, H,,..., Hx where each H; contains at
least one simplicial point. The authors then obtain the following tidy characterization of
fractionally well-covered graphs.

Theorem 8.4. A graph is fractionally well-covered if and only if it is simplicial.

It is now obvious via this characterization that the property of being fractionally
well-covered is in NP,

9. Some Open Questions

As we have previously remarked, it is considered unlikely that a polynomial verification
algorithm will be found for graphs which are well-covered. As we stated before, that would
mean that the well-covered property is an NP-property and that, in turn, would imply that
NP = co-NP, an equation thought highly unlikely by the vast majority of those working
in complexity theory.

In light of the girth results of Finbow, Hartnell and Nowakowski [FHN2], it is the
presence of short cycles—that is, triangles and quadrilaterals—which is causing the diffi-
culty. We feel that the first two unsolved problems in the following list are likely the most
difficult. Problems 3 through 12 may prove to be more tractable.

1. Characterize w-c sraphs which contain C3’s, but no Cy’s.
2. Characterize w-c graphs of girth 4.

3. Characterize w-c graphs with maxdeg (G) < 3.

4. Characterize w-c graphs which are r-regular, for any r > 4.

5. Characterize W, graphs with are 3-connected, 5-regular and planar.

19




6. All known examples of girth 4 W, graphs have x(G) < 4. Is there an upper bound
for k(G) for girth 4 W, graphs?

7. It is known that G strongly w-c and |V(G)| > 4 implies G is 3-connected. Can we
strengthen the conclusion to 4-connected?

8. Characterize girth 4 strongly w-c graphs.

9. Characterize those graphs which are (a) both a-critical and w-¢c; or (b) both a-
critical and W,.

10. What about graphs G which are w-c, but G — e is not w-c, for all e € E(G)?

11. (a) Does # w-c G’s/# G’s — 0 as |[V(G)| — oo?
(b) Does # W2 G’s/# G’s — 0 as |V (G)| — oo?

And finally, although the last problem we pose does not directly deal with well-covered
graphs, we remind the reader of the common implications discussed in Section 1 for the
properties of being a-critical and belonging to class W,.

12. Does # a-critical G’s/# G’s — 0 as |V (G)| — o0?
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