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ABSTRACT
An analytical estimate of the performance of a blanket
as a spatial-temporal filter for turbulent boundary layer
pressure fluctuations is presented. The formulation is
developed as an aild for the design of experiments and experi-
mental procedures for measuring the performance of blankets.
The interpretation of data acquired in such experiments is
treated in some detail. A simplified analytical model is
utilized which has the gross features of the pressure field
beneath 4 convecting turbulent boundary layer. This serves
to illustrate the trends that can be anticipated in data and
to 1llustrate the effects of undesirable stray pressure fields.
Some limited data were acquired in a quiet turbulent pipe
facility and are treated with the developed formalism. Sig-

nificant features in the data are briefly discussed.
N

ADMINISTRATIVE INFORMATION
The work described in this report was funded under the David Taylor Naval Ship
Research and Development Center's Independent Research Program, Program Element

61152N, Task Area ZR 011 0801, Work Units 1902-025, 1902-027, and 1942-053.

I. INTRODUCTION

The movement of vehicles through fluid media usually causes the fluid to become
unstable at various locations on the outer plating of the vehicles. Indeed, over
extended regions of the outer plating, a turbulent boundary layer is formed. The
fluctuations that are present in the flow of a turbulent boundary layer induce pres-
sure fields on the surfaces on which they form; these pressure fields exhibit both
spatial and temporal variations. The pressure fields that are induced by turbulent
boundary layers constitute drives that generate acoustic noise, be it in the form of
radiation noise to the far field or in the form of local noise in the interior and
on the vehicle. Often, at the higher operational speeds of these vehicles the noises
that are flow-induced are significant and well-nigh dominant. Amongst them is the
noise that is generated by a turbulent boundary layer. The suppression of these

noises has been central to many noise control programs. Progress has been made, but




no means has it been sufficient. The progress is manifested in understanding
ith the generating mechanism and the nature of the pressure fields in turbulent
wundary layers, as well as in devising means to control or suppress their adverse
‘fects. In this paper, the authors report a small but significant step in the
‘fort to control or reduce the noises that a turbulent boundary layer may generate.
device that appears to have promise of beneficially controlling and reducing the
ressure fleld exerted on a surface by a turbulent boundary layer is a blanket. An
ieally designed blanket is a device ~hat displaces the turbulent boundary layer a
Llanket thickness away from the surface on which it would have formed were the
lanket absent. To state the function of a blanket more precisely it may be advan-
ageous to formulate its use. However, it may be useful to gear the formalism so
hat it may also be employed to examine and interpret data yielded by a recent
xperiment. In this experiment, the output of an array of flush-mounted pressure
ransducers subject to the pressure field in a turbulent boundary layer was investi-
ated. The array was constructed and used, for the most part, as a wavevector fil-
er [1]. The influence of interjecting a blanket between the pressure field and the
rray was of particular interest in this experiment.

ITI. OUTPUTS OF AN ARRAY OF FLUSH-MOUNTED PRESSURE TRANSDUCERS
PLACED ON A UNIFORM PLANE BOUNDARY
Consider a plane boundary in which are placed flush-mounted pressure trans-

icers. The transducers are placed so that their presence introduces no impedance
onuniformities in the boundary so that the surface impedance operator zb(g,t) of
ne plane boundary is pure; x = {xl,xz} i{s the spatial vector coordinate in the
lane and t 1s the temporal coordinate {[2]. 1Ignoring effects of the steady flow and
oncentrating only on the fluctuating components, the pressure field p(x,t) on the

sundary can be expressed in the form




p(x,t) = zP(x,t) vix,t) = 2pY(x,t) - p(x,t), (1)

where p:(g,t) and pv(g,t) are the incident test external pressure field drive and
the fluid loading on the plane, respectively, and v(g,t) is the velocity field on
the boundary induced by the incident test external drive. In spectral space, Equa-

tion (1) can be cast in the form [2]

P(k,w) = z%(k,w) V(k,w) = 2PY(k,w) - PY(k,u0) , (2)
where

PV(k,w) = ZV(k,w) V(k,w) ; (3a)

27(k,w) = (pyey/x)) 3 (3b)

<y = [1-(¥)2]1/2 Uf1-(«V)2] = 1[(«V)2-1] U[(x¥)? -1] ;5 (3¢)

the Fourier transform is defined by
S(k,w) = (21)73/2 [ dx [ dt s(x,t) exp[i(kex-wt)]; (4a)
dx = dx dx, 5 k = {k,k,} 5 k= [k] ; (4b)

1

EV is a normalized wavevector

v v v v v

V= {7, 5 kY= kU] K = (ke /w) (4c)
the density p, and speed of sound c, are those of the semi-infinite fluid occupying

the space above the boundary, see Figure 1; the purity of the surface impedance
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yperator zb(g,t) is invoked; s(x,t) in Equation (4) is any typical well-behaved

function of x and t; and U is the step function. From Equation (2), one obtains

V(k,w) = [2%Ck,w) + 2Y(k,0)] 7 2PV (k,w) , (5)
P(k,w) = [1+T (k)] PY(k,w) , (6)
(/) 11418k, 0) 1 = 2Pk, 0) [2PCk,0) + 2V, )10, (7

where the quantity TBV(&,w) can be identified to be the reflection coefficient at
the boundary facing the (v)-fluid.

The pressure p(x,t) on the boundary is sensed by the flush-mounted pressure
transducers. This array of transducers is assumed to possess a filtering function

g'(goig,to!t) so that the output q(x,,ty) is given by
q(%x0,to) = J dx | dt g'(xo|x,t0lt) plx,t) . (8)
The spatial-temporal vector {ﬁo’to} defines a specific spatial-temporal position-—

ing of the array. Using Equation (4), Equation (8) can be cast in spectral space

in the form

Qlk,w) = [ dic’ [ dw' 6'(k|k',wlw') P(k',0") , (9)

where

q(Eo’to) = (2m)73/2 | dk [ dw Qk,w) exp[—i(E°§o-mto)];

Qk,w) = (2m)73/2 [ dx [ de alx,,t,) expliCkex +wt )] , (10)

=~




g'(x0l%,t0]t) =

(2m)73 [ dk [ dw [ dk' [ dw' 6" (k|k'w|w') exp[~i(kex —k'x-wt +w't)];

G'(‘S“S"”,“") =

(2m)73 | dx, J de / dx [ dt g'(golg,tolt) exp[i(E-§o—k'-g—wt0+w't)] . (1)

It is now assumed that the filtering function g'(§0|§,to|t) is stationary,

both spatially and temporally, so that

g' (x| x,t lt) = (2m)73/2 g(x ~x,e,-t) . (12)
In spectral space, Equation (12) takes the form
G'(k|k',wlw") = G(k,w) §(k-k") §(w-w') (13)
§(k=k') = 8(k ~k') 6(k,~k}) (14)
Substituting Equation (13) in Equation (9), one obtains

Q(k,0) = G(k,w) P(k,w) . (15)

Usually, and quite generally, the vector {§orto} is set identically equal to zero

so that from Equatinns (6), (10), and (15), one obtains

q(0,0) = q = [ dk | dw G(k,w) P(k,w) (16a)




q = [ dk [ dw {6(k,w) [1+TD (k,w)]} PV(k,0) . (16b)

Thus, with reference to the indigenous drive P(k,w), the filtering function of the
flush-mounted array is G(k,w). On the other hand, with reference to the incident
test external drive PZ(E,w), the filtering function of the flush-mounted array is
fG(k,w) [1+TSV(E,w)]}. Of course, the particular designation of the drives and the
corresponding filtering functions is a matter of convenience and interpretation;

the integrands are, after all, the same in these cases and, therefore, the outputs
are also the same. Having determined the output of the array in the absence of a
blanket, attention is turned to determining the central question posed in this paper.
How does a blanket placed on the flush-mounted array just considered influence the

output of the array?

ITT. INFLUENCE OF A BLANKET ON THE OUTPUT OF A FLUSH-MOUNTED ARRAY

The introduction of the blanket is depicted in Figure 2. The blanket is
featured here as a slab of fluid of density py, speed of sound ¢y, and width hg.
The bottom side of the blanket is backed by the boundary previously discussed.
In this boundary is placed the flush-mount:d array. The top side of the blanket
is backed by a semi-infinite space occupied by the (v)-fluid. The pressure field
is considered to be generated by the incident test external drive PZ(E,w) which
acts on the top surface of the blanket. The pressure field P:(g,z,w) in the blan-

ket at a plane a separation z above the boundary is composed of two components,
P,v(l.(.,z,w) = PQ...(‘S,Z,U)) + pQ—(Erzyw) 17)

as indicated in Figure 2. The pressure field Py, propagates down toward the
boundary and Py_. propagates up away from the boundary. The derivation of the
pressure fields Py, and Py_ is greatly facilitated if it is conducted in spectral
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space. It can be readily shown that (3]
Poi(k,w) = exp(ik,z) Tlv(g,w)
x [1-Tp, (k,w) Ty, ()17 Yk 0) (18a)

Py_(k,w) = $Ez exp(-1k,z) T, (k,w)

x (1-T0, (k,w) T), (0] PY(k,w) (18b)

where
(1/2) [1+T9, (k, )] = 2%(k,w) (2%k,w) + Z%(k,w)]7! (19a)
(1/2) T, (k,0) = 2%k, w) [2%(k,0) + 2*(k,w)]7} (19b)
T(k,w) = exp(-tkghy) T(k,w) 5 ky = (w/cy) <& (19¢)
A= [1-GeN)2)172 U[1=(e2)2] -1 [(«2)2-11172 U[(xP)2-1] (19d)

The pressure field Py(k,o,w) = Pg(k,w) on the boundary is given by
Py, w) = Py (k,w) + By (k,w) = (1415, (k,w)] Ty, (k,w)

X [1-T8, (eyw) T, (0170 PY(k,w) (20)




[Cf. Equation (6).] This is the indigerous pressure field that is sensed by the
array. Following a procedure similar to that which led from Equation (8) to Equa-

tion {16), the output qp(hy) = gy of the blanketed array is given by
qg =, ak [ dw 60 w) Pylk,w) (21a)
q, = [ dk [ de (6Gk,w) [1+T0, (k,e) 1} T, (k,0)
x [1-T0 Ge,w) T (k) 17 PY(k,w0). (21b)

A similar remark to that following Equation (16) can be made with respect to Equa-
tion (21). Finallv, if the fluid of the blanket, the (£)-fluid, is chosen to match
that of the (Vv)-fluid, Equation (21b) is substantially simplified and becomes

QZ = dk J dw {G(E,w)[l+Tgv(§,w)]}{exp(—ikzhl)} P:(&,w), (21c)

woere gy = py oand o = ¢ . Comparing Equation (16b) with Equations (21b) and

o

{2ic), nne finds that the presence of the blanket is accounted for by introducing

the factor
Fo,w) = (1475 (k,w)) (1410 (k)17
x g, Uaw) [T, (w) Ty (e, ™, (223)
F;(E,w) = exp[—{wjh;] ; hz = (mhi/cv); (22b)

if vg = vy and ¢y = cy, , in the integrand of the output of the array as stated in




Equation (16). Thus, if the filtering function F(k,w) in the absence of a blanket

is defined by

Fk,0) = F (k,w) Fy(k,w) ; F,(k,0) = G(k,w) ; Fplk,w) = (1410 (i 0)], (23)

then from Equations (16b) and (21b) through (23), one obtains

q =/ dk [ do F(k,w) Pu(k,e) , (242)
ag(hg) = [ dk [ dw F(k,w) Fy(k,0) PY(k,w) , (24b)
ag(hy) = [ dk [ dw Flk,w) F(k,0) P (k,w) . (24¢)

The quantities F,(k,w), Fp(k,w), and Fy(k,w) may be dubbed the filtering functions
of the array, the boundary, and the blanket, respectively. A blanket that can be
made to possess a filtering function FX(E,w), as stated in Equation (22b), is dubbed
ideal.
IV. QUADRATIC AND STATISTICAL FORMS FOR THE PRESSURE
FIELD ON A BOUNDARY

Consider the pressure field pb(g,t) acting on a plane surface. There are situ-

ations in which the quadratic form of the pressure field is the desired description.

This quadratic form 1is defined by
*
vxlx'ele) = [pGe,t) pplx',e D] . (25)

This form is usually desired when the linear description is difficult so that a




statistical description is preferred. To indicate that appropriate statistical

averaging has been performed, the quantity is enclosed in angular brackets so that
b Cxelxmotle") = <uixlx’,e]em)> = <py(x,t) pplx',t)> . (26)

The desirability of casting the pressure field in its quadratic and statistical
form is often dictated by the fact that pressure fields in this form can be

assumed to be stationary, both spatialiy and temporally, so that
vp(xlxefe’) = (2m)7372 ¢ (x-x',t-t') . (27)

This assumption is seldom strictly true in practice. Nevertheless, provided the
phenomenon that is being formulated is not strongly dependent on the deviation of
the quadratic and statistical form of the pressure field from stationarity, the
assumption is tempting; the simplicity that is gained in the formalism makes it

attractive. Converting Equations (253) through (27) into spectral space yields
*
e klk ', wlw) = [P (k,w) Pp(k',wD], (28)

(k' wlw)

<Py (k,w) Pp(k',w')> , (29)

Ylklk ', tfe") = op(k,w) 8(k—k') S(w-w') , (30)
respectively, where
Pplk,w) = (2m)73/2 [ dx [ dt plx,t) explilkex-wt)] , (31a)
10




vl 0w =

(2m)73 | dx [ at dx' [ de! Wb(§'§',t,t') expfi(kex~k'sx'"-wt+w't')], (31b)

Qb(g,m) = (2n) 372 f dx f dt ¢b(§,t) exp[i(k-x-wt)] . (31c)

The quantity ¢p(k,w) is dubbed the spectral density of the pressure field. By
definition, a pressure field that has a spectral density description is stationary,
both spatially and temporally. If one assumes that the test external drive
P:(g,w) stated in Equation (24) is stationary, both spatially and temporally,

then from this equation and Equation (30), one obtains

<|q|2> = [ dk [ de W(k,w) oJ(k,w) , (32a)
<]q£(h2)l2> = [ dk [ dw W(k,w) W,(k,w) ¢ (k,w) , (32b)
<|qX(h2)|2> = [ dk [ do W(k,w) w;(g,w) oo(k,w) , (32¢)
respectively, where
Rk, w) PYY(k',w")> = ¢U(k,w) S(k—k') S(w-w') , (33)

Wk,w) = |F(k,) |2 ; Wl,0) = W(k,0) Wyk,w) ;

Wat,w) = [F w2 5 Wk, = [Fdoo ], (34)

11




Welk,w) = |Fo(k,w)|2 (35a)

it

Wo(k,w) = [F7(k,w)|?

[}

Ul1-k3] + exp[-2h](k3-1)1/2} U[(k3)] ;5 K3 = (kc,/w) (35b)

The quantities W (k,w), Wy(k,w), and Wy(k,w) may be dubbed the filtering actions of
the array, the boundary, and the blanket, respectively [4]. 1In Equation (32), the
outputs are given in terms of what is commonly referred to as the mean-square-values
of the outputs.

Before turning to consider specific pressure fields of interest, it may be use-
ful to state briefly a point of order. An array of transducers designed to decipher
the wavevector distribution of a given field is dubbed a wavevector filter. Often
an array designed to decipher the spectral distribution of a given field is dubbed
a wavevector filter under the assumption that a frequency filter is readily acquired
and, therefore, its inclusion needs no special mention. A pressure wavevector filter
is, then, an array of pressure transducers, the filtering function, and/or the
filtering action of which is shaped, in spectral space, with the specific intent of
acquiring information relating to the pressure field described in spectral space.
Aa array of transducers that is designed to acquire information relating to a field
described in the spatial domain may thus be dubbed a spatial filter. In summary,
the designation of an array of transducers, a wavevector, or a spatial filter indi-
cates the operational purpose for which the array was designed.

V. PRESSURE FIELD OF A TURBULENT BOUNDARY LAYER AND OTHER
STRAY PRESSURE FIELDS
The pressure field pt(g,t) of a turbulent boundary laver is one of those pres-

sure fields for which linear characterization is too complex to describe and one

12




commonly describes this precsure field in a quadratic and statistical form. It {is
also customary to assume that, at least over a spatial extent of interest, the
pressure field of a turbulent boundary layer is stationary, both spatially and

temporally, so that

e Celxat]e") = <po(x,t) prlx'st™> = (21)73/2 ¢ (x~x',t-t') ,  (36a)

¥ (klk' wlw') = <P (k,w) Pr(k",0')> = & (k,0) §(k-k') 6(w-w'). (36D)
Often on surfaces on which turbulent boundary layers form, stray pressure fields
also exist. That is, on a boundary in addition to the turbulent boundary layer
pressure field p¢(x,t), there may exist other pressure fields Z ps(x,t) so that

s

the pressure field on the boundary pb(x,t) is given by

Pp(x,t) = pelx,t) + ) pglx,t) . (37)
s
Seldom are the various comoonents of the pressure fields correlated. If one assumes
these various components to be uncorrelated, one may derive from Equation (37) the

quadratic and statistical forms
Phix|x',tlt") = yelx|x",tft") = | vg(x|x',t]e") . (38)
s

If all the various components are assumed to be stationary, both spatially and

temporally, then Equation (38) can be written in the form

op(xx",t-t") = dp(x-x",t-t") + ) o5(x—x",t-t") . (39)
S

13




In spectral space, Equation (39) can be stated in the form

Fplk|k ', wjw') = ¢p(k,w) S(k-k") S(w-w") ;

Pk, w) = &, (k L obalk,w) . (40)

!
€

[ad
~~
=

€

A
+

The detailed nature of the spectral density ¢,(k,w) of the pressure field in a
turbulent boundary layer is not known. Only some gross description of that spectral
density 1s available. It is thus possible to describe the spectral density Qt(va)

in a simple representative manner [5]

Pplk,w) = 0o(w) @ (k ,w) 0, (k,,0) 3 (41a)
to(w) = ¢J(wd*/U,) @1(k1,w) = @f(kluc/w); @2(k2,w) = ¢£(k2Uc/w) (41b)
¢1(k1’“) = ®n(k1,w) + ¢c(kl,m) ; (41c)
@u(kl,w) = (a)[a? + (1+|k1UC/w|)2]_l (41d)
b (kW) = faf+(1-k U /)47 - fa + (1+1k1UC/w!)2]_1 (41e)
@, (k,w) = B2[B2 +(k,U /w)¢]7! . (41F)

Assigning a strength facter ¢, and a pair of factors ¢l and ¢2, the spectral den-—
sity b, (k,w) is factorized. The pair of factors ¢ and 07 allows for the separ-
-~ L 4

at{ion between the two principal directiens; the flow is designated to be in the
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xl—direction and the convection speed of the turbulent boundary layer is designated
Us.. The factor ¢l(kl,w) is assigned two terms, the convective part @c(kl,w) and

the nonconvective part ¢n(kl,w). The nonconvective part is adjustable in that the
parameter (a) is an unspecified constant; the nonconvective part of the spectral
density can be made to vanish by setting (a) equal to zero. The parameters a and B
are usually assumed to be such that a = 107! and B = 3a; a more precise designa-
tion of a and B8 could imply that the description of the spectral density ¢.(k,w), as
stated in Equation (41), is more thorough than is intended. A sketch that depicts
the form of the spectral density ¢.(k,w), as stated analytically in Equation (41),
is given in Figure 3.

If one knows the nature of a stray pressure field, its spectral density can be
similarly stated. Thus, in wind or water tunnels one knows that in addition to the
pressure field of a turbulent boundary layer, grazing acoustic pressure fields that
propagate in the direction of flow are likely to be gemnerated. A description that

typifies such pressure fields may take the form [5]

da(k,w) = ®a+(k2,w) 5[k1’(w/cv)} + ¢a_(k2,w) 6[k1+(m/cv)], (42)

where ¢, is the speed of sound in the (v)-fluid. A sketch that depicts the form of
ba(k,w) as stated analytically in Equation (42) is given in Figure 4. Also,
resonance vibration fields may be excited in the panels usually found in the walls
of the test section of such wind or water tunnels. These vibrational fields would
cause pressure fields to be generated on the boundary. The description that may

typify such pressure fields may take the form [5]

Pplk,w) = bpalk @) 6[kl-(m/cp)] + op(k,,w) é[k1+(w/cp)]. (43)




where cp is the free wave flexural speed in the panels. 1t is ;ssumed in Equa-
tion (43) that the resonant vibration of the panel is predominantly confined

to the direction of the flow. A sketch that depicts the form of Qp(g,w) as stated
analytically in Equation (43) is given in Figure 5. Similarly, one may visualize
other stray pressure fields and typify their spectral density in the manner in
which Equations (42) and (43) were constructed. However, since the experimental
measurements tc be discussed were performed in a water-tunnel-like environment, it
is likely that the stray pressure fields could be substantially accounted for by

the spectral density ¢4(k,w) so that
bs(k,w) = ¢, (k,w) + QP(g,w) . (44)

It is assumed then that the spectral density ¢b(E’“) of the pressure field on the
boundary of the test section in the experimental setup is given by
®b(5,w) = ¢t(E,m) + @S(g,m) ;o by =0, + 0 (45)
with the terms on the right defined more explicitly in Equations (41) through (43).
A sketch that depicts the composite form of ¢p(k,w) as stated analytically in
Equation (45) is given in Figure 6. |[Cf. Equations (41) through (43).]} The array
of pressure transducers that is flush mounted in the walls of the test section
would then respond to the pressure field whose spectral density is @b(g,m). Using

the formalism just developed, what is the output of the array? In particular, what

1s this output when the array is that deployed in the experiment of concern?




VI. FILTERING ACTION OF A TYPICAL WAVEVECTOR FILTER
Before determining the array output, one may inquire as to the nature of the
filtering performed by the array. Since the driving field on the boundary is
assumed to possess a spectral density, it is the filtering action of the array
that one would desire to know [see Equation (32)]. It is also assumed that the
transducers in the array are nominally identical [4]. Under this latter assumptionm,

one may cast the filtering action of the array in the form [4,5]

Walk,w) = Wg(k,w) Wy(k,w) , (46)

where Wp(g,w) is the filtering action of an equivalent array, except that the
transducers are assumed to be point transducers placed at the central positions of
the actual transducers, and Wg(k,w) i1s the filtering action of a single transducer.
For example, the transducers of the arrays deployed in the experiment of concern
here were aligned in the xl-direction (direction of flow), were equi-spaced, and
their outputs were summed in phase (+ + mode) and alternatively out of phase

(+ - mode). The arrays are typified in a sketch in Figure 7. For this array

configuration one may show that [1]

Wplk,w) = Wy (k ,w) Wy, (ky,0) 5 Wy (k,,0) 21, (47a)
(s1n2{N(k d-wt)/2} [N%s1n2{(k d-w1)/2}]7} , (47b)

Wy, (kyw) = { s1n2{N(k d-w1)/2} [N2cos?{(k d-w1)/2}]7} , (47¢)
\cosz{N(kld-m)/Z} [N2cos2{(k d-wr)/2}]7! , (474d)
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where d is the spacing and T is the time delay parameter. Equation (47b) repre-

sents a situation in which adjacent transducers are similarly polarized (+ + mode),

Equation (47c¢) represents a situation in which adjacent transducers are oppositely

polarized (+ — mode) and the number N of transducers is even, Equation (47d) repre- -
sents a situation in which adjacent transducers are oppositely polarized (+ - mode)

and the number N of transducers is odd, and in each of the three cases the outputs

of the transducers are simply summed to give the output of the array. Also, as an

example, the single transducer is assumed to be rectangular in shape and of uniform

point reacting sensitivity with one side lying in the xl—direction as indicated in

Flgure 7. For this type of transducer one may show that [1]

=
n
Eany
b
€
~
[l

Wol(w) Wog(k) 5 Wog(k) = Wg (k) Wg, (k) 3

b
~
=
~
]

sin' (kyryd/2) [(kgygd/D°1™ , a=1or 2, (48)

where W, (w) is the frequency filtering action of the transducer and any frequency

tilter that may be interjected in the output circuit; vy, and Y, are linear scale

1

factors in the L and xz*directions, respectively, of the sides of the rectangular
transducer as compared with the spacings between adjacent transducers. In the

experiment of concern here, the frequency filtering action Wy(w) is assumed to be

that of a narrow hand, e.g., (1/10) octave band, centered about the center fre-

quency w,. The skirts of the filter are considered low as indicated in Figure 8. .
Also in the experiment of concern here, the number of transducers in a typical array

was 123 N =12, A tyvpical form of wp(g,m) fcr the array is depicted in Figure 9.

Figure 10 is depicted a tvpical form of W, (k) for a rectangular transducer.

The filtering action factor W,,(k,w) is defined so that
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Walk,w) = Wolw) Woa(k,w) 5 Woa(k,w) = Wog(k,w) wp(E’w) . (49)

From Figures 9 and 10 and Equation (49), the nature of the filtering action factor
woa(E’“) is depicted in Figure 11. It is important to note that if the nominal
properties of the transducers and the spacings between them as stated above are not
strictly adhered to, the result is that the discrimination of the filtering action
is not as good as that depicted in Figure 1l. The loss of discrimination is mani-
fested by peaks and valleys, being neither as high and deep, respectively, nor as
sharp. The loss in definition in the filtering action just discussed is most pro-
nounced in those spectral ranges defined by coordinates that are of the same and
higher linear sizes than the variations and deviations from nominality. Thus, if
the spacing in the xl—direction admits to variations of the order of Axl, the spec-
tral range in which even major peaks lose substantial definition covers the range
(klel) > 1 in the kl-coordinate of spectral space. Yet it is noted that the

integrated acceptance A of the array, namely

A, Y LY, Tywg) = [ dk [ dw Walk,w) , (50)

remains substantially invariant to these variations and deviations [4].

Now that the natures of the spectral densitv of a typical pressure field and
the filtering action of a typical array are grossly known and expressed, the gross
values of the output of the array may be ascertained [Equation (32a)]. Then aspects
of the pressure fields and the performance of the array as a spectral filter can be
investigated. Further, if blankets are placed on the boundary, the influence of
these blankets on the outputs of the array may then be ascertained [Equation (32b)
or (32¢)] by inserting the appropriate expression for the filtering actions of the
blankets [e.g., Equation (35b)]. The investigation of the nature of this influence
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has a significant purpose for this experiment. Therefore, the analysis developed
in this paper is cast in a form that would assist with the interpretation of the

data obtained.

VII. TYPICAL EXPERIMENTAL PROCEDURES AND DATA ACQUISITION
To retain simplicity 1t is assumed that the boundary is of uniform impedance

and that the pressure field on it possesses a spectral density. Under these assump-
tions, Equation (32) is valid for the determination of the output of an array that
s flush mounted in the houndary in the manner prescribed therein. Using the
description of the spectral density of the pressure field on the boundary given in
Section V and the filtering action of the spectral filter that is flush mounted in
that boundary given in Section VI, the output <lq|2> of that filter can be

stated in the form

dal™> = Jagl™> + <fayl” + <Ja l™> (51)
<]quil> = Ag(w)) We (@ /) wpl(‘”o/ca) ; a=aorpandc, =c,, (52)
Aglwy) = ] dk, [ dw W,(w) Wo, (k) [0g4(k,,0) + &4 (k,,w)], (53)
Qagl®> = aguy) (B (e,) + C ()], (54)
Ac(w) = [ dw W (w) ol(ws /) , (55a)
Belwy) = [ dk Woa(k,w5) B (k ywp) ¢ (k,,w) 5 k<@wg/ey) (55b)

‘

Celwy) = [ dk Wik, ey P k) @ G yw) 5 kD (wg/ey) (55¢)




where k2 = kf + kg. It is assumed in stating these equations that the frequency
filtering action represents a narrow enough frequency band and the skirts of the
filter are low enough. The filtering action of the blankets considered in this
section 1s assumed to be ideal so that the form of their filtering action is pre-
scribed 1in Equation (35b). It is also assumed that the pressure fields on the
boundary induced by the vibrational fields on the boundary are not changed by the
presence of a blanket. 1In addition, it is assumed that the spectral distribu ‘ons
@l and ¢2 of the pressure field in a turbulent boundary layer are not significantly
different whether they form on a boundary or on a blanket that may be placed on the
boundary. However, provision is made to allow the frequency spectral density
function to change from ¢8(w6*/UC) to ¢61(w5*/UC) if a blanket is introduced.

Under these assumptions, the output of the spectral filter in the presence of a

blanket may be stated

2 2 2 2
<|Qg| > = <|qag‘ >+ <|qu' >+ <'qtgi > (56)
2 2
<|qa2| >=<|q, > 5 ae=aorp, (57)
2
<Iqt2| > = Atl(wo) [Btﬂ(wo) + Cti( u)o)] ? (38)
Apg(uy) = [ dw W (w) & _,(ws™/u) , (59a)
Brp(wy) = Bplw,) (59b)
Cog(y) = [ dk W (ko) Wilk,w ) & (kyw ) ¢, (kw0 5 k>(w /e, ) (59¢)




[Cf. Equations (51) through (55).] It is noted that were a turbulent boundary

layer a truly external drive so that

* *
$ (W8 /U ) = ¢ (w§/U.), then Apg(wi) = A (w). (60)
(60)
From equations (51) and (56), one may define a blanket modification factor L so

that

2 2
L = <qp] >/<lal™> , (61)

in which the filtering conditions and mode of operation of the filter remain fixed.
The only change is the introduction of a blanket. Of course the factor L is a func-
tion of these conditions and also of the blanket thickness hg. From Equations (51)

through (61), one obtairs

L= [Re#E o] [RAL]TH 5 B = &y Crpo5 Apy = Apg/AL
Cop = CepfCp 5 By =B /Co 5 By =By, (62)
where
RQ(mO) = Ra(wo) + Rp(wo) + Ktﬂ(wo) Et(wo) , (63a)
R(wo) = Ra(wg) + Rp(wo) + Et(mo) s (63b)

Ry() = Ay Wy (oo /o) W (wo/ey) s

A, = (Aa/AtCt) . {64)




The blanket modification factor L is the quantity destined to be measured in an
experiment. However, it 1s the determination of the quantity E ¢ that is of
special interest. This latter gquantity is related directly to the effectiveness
of the blanket in inhibiting spectral components in the pressure field of a turbu-
lent boundary layer from reaching the covered boundary. The quantity Eyy may thus
be dubbed the blanket effectiveness factor. The blanket is beneficially effective
if Ery is less than unity; E y < 1, and is more effective the smaller the value of
Erge It is clear from Equation (62) that the blanket effectiveness factor is com-—
posed of two factors; the first factor Atz may be dubbed the frequency factor

and the second Ctl may be dubbed the wavevector factor [Cf. Equations (5%a) and
(59¢)]. A blanket may then be beneficially effective either because Ktz is less
than unity, Ctl is less than unity, or both are less than unity. Invariably Etk
is less than unity. Such a definitive statement cannot be made with respect to the
frequency factor th.l 1f, however, the turbulent boundary layer is truly an
external drive as stated in Equation (60), then Ktz = 1.

The prime purpose for the experiment of concern here was to determine the
blanket effectiveness factor, a..d a closer examination and interpretation of this
factor is thus warranted. Of particular interest is the experimental procedure.

A wavevector filter is placed in a boundary of the test section of a water tunnel.
A major acceptance region in the filtering action of the filter is placed at

k1 = (n/d) when the filter is operated in the (+ -) mode and at k1 = (2n/d) when
operated in the (+ +) mode; intermediate time delays are not used. A turbulent
boundary layer is formed on the houndary as a result of the flow that is imposed on
the fluid. The flow reaches a steady speed U. This speed is assumed to be highly

subsonic; (U/ecy) << 1. The frequency filter in the circuit of the output of the

transducer i{s manipulated so that at the center frequency w, the peak in the
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spectral density of the pressure field is coincidental with the major acceptance
regions just defined. The locations are ascertained by gross estimates and then
by finely tuning the c(enter frequency w, so that a maximum is attained in the out-
put of the array. It is conjectured that at this setting of the spectral filter,
and in che absence of a blanket, the output <|qt|2> generated by the turbulent
bonundary laver of concern here would substantially exceed the output <|q5'2> gen—
erated by the stray pressure fields. More precisely, it is assumed that R << 1 in
Fquation (62). This is achievable if the turbulent boundary layer is subsonic,

U, << ¢y, and and noise control procedures were applied to minimize the strengths
ot the stray pressure fields. It is noted in this connection that inherently
Et(wo) << 1 in a highly subsonic turbulent boundary layer. It is also noted that
if (NU./cy) << 7, the contribution to R by the (a)th stray pressure field in

the (+ -) mode is substantially less than that in the (+ +) mode of operation of
the wavevector filter. This is so because in the (+ +) mode a major acceptance
region in the filtering action of the filter lies at the origin |k| = 0, while in
the (+ -) mode, at worst, a minor acceptance region lies at the origin. 1t is
then assumed here that even [R(wy)](+ +)<< 1, and this condition ensu ~s that
[R(_u;q)}(+ -) << 1.2 Under the assumption that the contribution by the turbulent
houndary laver is dominant in the output of the array and that the flow is highly
subsonic so that R(w,) << 1, the locations of the spectral region at which the

maxima mav be defined are

Coordinate (+ =) mode (+ +) mode
kv ok, (n/d) (2m/d)
kz > kzu 0 0 (65)
X g, (vl /d) (2mul/d)
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The convection speeds are dependent on the wavenumber kl and, therefore,

a distinec-

tion has to be made with respect to the convection speed U. when the (+ -) mode is

operative, U, = U.(n/d,0), and U} when the (+ +) mode is operative, Ug = Ul(21/d,0).

Thus, U, may, in general, be different from Ul. When the blanket is placed on the

boundary so that the turbulent boundary layer is displaced away from the boundary in

which the array is flush mounted, the setting of the spectral filter specified in

Equation (65) remains, by definition, intact. The blanket modification factor L is

ascertained as a function of the thickness of the blanket at the same setting that is

established by the procedure that led to Equation (65). Then the center

frequency

w, is fixed either at (wU./d) or (2nUl/d); the center wavenumber k10 is either

at (w/d) or (2m/d), and the center wavenumber k20 is at 0, respectively.
then possible and convenient to deslgnate parameters and quantities that
the (+ -) mode of the array by superscript (~) and those that pertain to
mode of the array by superscript (+); e.g., m; = (nUc/d), w; = (ZﬂUé/d),
kig = (w/d), klO (2n/4d), kzo 0, k20 0, A(w)) = A (w_), etc. In

ular, and from Equation (62), one obtains
- 't
Lk ohgrwe) = [Re(w) + E o(k, ho,0 )] [R(w)+1]7H
P —-— - _ - - - — — — -— -l
L (k10hl’wo) = [Rl(wo) + Etl(klohl’wo)] [R (w0)+1] .

o+ Fy _ rpte F + o+ + +, + -1
L (klohl’wo) = [Rl(wo) + Etl(klohl’wo)] [R (m0)+1] ’

It is
pertain to

the (+ +)

partic—

(66a)

(66b)

{(66¢c)

It 1s noted that the bhlanket modification factor L and the hlanket effectiveness

factor Eyy are now specified with respect to a specific spectral region; here

that region is defined by {klo,ﬂ,wo}. [In the (+ =) mode the spectral region
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is defined by {kIO,O,m;} and in the (+ +) ,ode by {k

that in this paper it is assumed that R(wy) <<'1 so that Equation (66) can be

approximated to read

+
10°

L(klohzawo) = Ri(wo) + Etl(klohl’wo) 5 R(wg) << 1.

Coplk phpawy) = s¥(h®)/sV0)

Be (wy) + Cpg (i (hy,00) = S(hy0)/s(0)

where

2V Vo _
S (hz ) =

r

S(hg®) = [ dk exp{-2n° (k2 -1)1/2} Woa (ko) @ (kyyu0) @ (k)0
hy? = (hpu /) Kuo = (key/uw )
Rl(wo) = Ra(wo) + Rp(wo) + Ktz(wo) ﬁt(wo) s
Bt(wo) = Bt(wo)/At(wo) K1 if U Cy s
Ry(wy) = A (w,)) Wg, (/e ) Wpl(wo/cv) ;o A(e ) <1,
R (w ) = Kp(wo) wsl(wo/cp) wpl(wo/cp) ; Kp(wo) <1 .
26

5 dk exp{=2h°(x2 -1)1/2} Woalk,0, ) Ulk-(w/c,)] 0 (k) ¢, k0,

O,wg}.] It is recalled

(67)

(68a)

(68b)

(69a)

(69b)

(69¢)

(70a)

(70b)

(700)

(704)




The inequalities in Equations (70c¢) and (70d) imply that adequate and successful
noise control procedures were applied to the water tunnel in which the cxperiment

was performed. From Equations (67) through (70), one obtains

L ohgou) = Ry(we) + Ro(u)) + Ky (wy) By (wy)

Equation (71) is the basic equation for designing a proper experiment, acquiring
meaningful data, and interpreting that data. Significant progress can be achieved
with this equation if the wavevector factor Etl is estimated so that at least one
of the two factors in the blanket effectiveness factor is available. That this
factor can be computed in some detail is evident from Equation (68). At this
stage, however, it may be useful to try to evaluate this factor even approxi-
mately. This would not only prepare the groundwork for such computations, but
would also lead to understanding the significance of such evaluations without the
clutter that usually accompanies extensive computations. In that spirit, a mean

value estimate [6] is applied to Equation (69a). The application yields

= - _ . - (72)

One may argue that, grossly, b is a constant of the order of unity, b = 1. [Compu-
tations using Equation (68) and the spectral density stated in Equation (41) seem

to support this argument.] Then from Equations (66) and (68), one obtains
L(klohl’wo) = Ra(wo) + Rp(wo) + Atz(wn) Bt(wo)

+ Ktl(wo) exp(—Zkthl). (73)
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The meanings and interpretations of Equation (73) are depicted graphically in Fig-
ures 12 and 13.

It is observed that analytical estimates can be made of the employment of
spectral filters to investigate the effectiveness of a blanket to inhibit spectral
components in a turbulent boundary layer from reaching the boundary that the blanket
covers. Such analytical estimates can be used in turn to design proper experimental
setups and procedures, to decide the manner and extent of data acquisition, and to
assist with the interpretation of the data. The analytical estimates represented in
Equation (73), however, do more than that. The various limitations, conditions, and
assumptions that were laid down in order to reach the equation may be used to
advantage not only to explain idiosyncracies and controversies in the data, but also
the measures that may be taken to resolve them. Thus, one may, within the formalism
developed here, attempt to resolve such questions as: how important are deviations
from stationarity; how essential are the impositions that the boundary is of uni-
form impedance; and what are the implications if the blanket is not ideal [7]? The
answers to such questions lie outside the scope of this paper, but not outside the
scope of the formalism that is developed herein.

It would be useful now to try to match data with the formalism. However,
before making an attempt to cast the limited available data in the format pre-
scribed by the analysis performed in this paper, it is in order to peruse and esti-
mate the wavevector factor Ctl in the more elaborate, if not the more realistic,
form specified in Equation (68).

VIII. TYPICAL EVALUATION OF THE WAVEVECTOR FACTOR C
0OF THE NORMALTZED THICKNESS OF THE BLANKET

t1 AS A FUNCTION

A mean value estimate was applied to Equation (69a) to obtain the estimates

for the hlanket modification factor L stated in Fquation (73) [A]. The graphical




interpretations of Equation (73) are depicted in Figures 12 and 13. To validate the
range and nature of these estimates it is useful to perform the double integration
and obtain the wavevector effectiveness factor Ctz directly of Equations (68) and
(69). 1In spite of the simplification in the integrand obtained by the rough and
gross approximations to the explicit nature of the functions involved thereof,
numerical integration 1s nonetheless mandatory. To render the computational pro-—
cedure easier, the factor [Et + Etll is evaluated rather than the factor Ctl'
Equations (47) through (49) are used for the filtering action factors of the array,
and Equations (4la) through (41f) are used for the spectral density of the turbu-
lent boundary layer. The results of the calculations are presented in Figure 14
for several values of the constant (a) in Equation (41d). The curves in Figure 14
correspond to those in Figures 12 and 13 [evaluated from Equation (73)] with

R, = Rp = 0., The essential characteristics of Ctl [or §t + Ctzl in Figure 14 are
seen to be commensurate with those of Figures 12 and 13. 1In particular, the wave-
vector effectiveness factor Etl exhibits exponential variations in klohl until a
limit is reached where substantially no further dependence on klohg occurs in

(B, + Cools (B, + CtZ] saturates at a certain level as k  h) increases beyond a
certaln value. It is apparent in Figure 14 that the saturation level and the value
of k,  hy at which saturation commences, are different for the (+ +) mode and the

(+ -) mode of operation of the array. This feature was observed and discussed ear-
lier with respect to Figures 12 and 13. A difference of note between the correspond-
ing curves in Figures 12 and 13 and Figure 14 relates to the more abrupt transition
to saturation in the former than than in the latter; Equation (73) tends to exag-
gerate the transition to saturation of the factor [ﬁt + Etﬂl‘ It is, therefore,
concluded that, by and large the approximation in the derivation of Equation (73)
and the salfent features exhibited in Figures 12 and 13 are analytically viable

representations.
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IX. DESCRIPTION OF THE EXPERIMENT AND DATA

The experiments were performed in a quiet, blowdown, water facilitv at DINSRDC.
A schematic of the facility is shown in Figure 15. Water flows from the head tank
through a 12-inch inside diameter pipe, a gate valve, a settling tank, a ball valve,
and a 3-inch inside dlameter test pipe. The flow exits underwater in a large
receiving tank. All parts of the system from the head tank to the ball valve are
heavy gauge steel and are mounted rigidly to steel or concrete bases. The test
pipe is constructed of transparant Butyrate plastic with a 0.216-inch wall thick-
ness. The test pipe 1s rigidly fixed and mechanically damped with sandbags along
{ts length., The test section is 100 pipe diameters from the ball valve, ensuring
fully developed turbulent flow. All joints are carefully aligned and the gate and
ball valves were reworked to ensure smooth flow through them. Indeed, the hall
valve required extensive modification and reworking to ensure a good internal
alignment. Improper alignment usually results in the occurrence of cavitation
at the higher water speeds. Such conditions did not occur during the experiment.
The head tank can be supercharged with compressed air or evacuated. This results
in a large range of mean flow speeds, up to about 60 ft/sec. Water speed can he
measured by inference from pressure drop data or directly using an electromagnetic
flowmeter., Water speed can be held constant to less than 1 percent of the desired
speed, except when running only under gravity forces. Tvpical operation after
fitlling the system is to supercharge the head tank to the desired pressure, open
the pneumatically operated gate valve, walt a few moments for any vesulting noisc
or vihration to settle down, then open the pneumatically operated ball valve.
Water <peed remains constant for about 1 to 5 minutes, depending on the speed.
There are no external nolse sources, such as pumps, operating during a run, and

the continuously fed compressed air passes through a large muffler svstem prior




to entering the head tank. Background noise is usually the electronic noise of
the miniature pressure transducers commonly employed in the measurements.

Figure 16 illustrates the test section employed in the present experiment.
In order to ensure that the inside diameter remained constant for differing
blanket thicknesses, individual brass test sections were constructed for each
thickness. The test sections were 24-inches long with natural rubber of the
desired thickness vulcanized to the interior. For the results reported here, two
blanket thicknesses were used, 0.25 inches and 0.50 inches. A mounting slot was
cut into the test sections to allow two specially constructed linear wavevector
filter arrays to be mounted with their sensitive surfaces touching the inner side
of the blankets in the plane of the inner boundary. Both wavevector filters were
linear and constructed with 12 pressure sensing elements with a transverse dimension
of de = 0.250 inches. One had elements the widths of which were Yld = 0,150
inches, while the other had elements the widths of which were Yld = 0,060 inches
in the flow direction. 1In each case, the center-to-center separation distance d
was set so that Y, = 2/3. This setting eliminates the response peak at klO = 3n/d
in the (+ -) mode.

Data were obtained at a number of mean flow speeds from 15 to 60 ft/sec with
each of the two test sections and each of the two wavevector filter arrays. The
data were amplified and recorded on magnetic tape. The signals were analyzed by
passing all 12 channels of data into a specially constructed sum and difference
instrument. The signals could then be simultaneously summed together in phase,
(+ +) mode, or alternatively out of phase, (+ -) mode. This provided primary
wavenumber response bands at kTo = 0 and at kro = 27/d for the (+ +) mode and
at kIO = nd for the (+ -) mode. At each speed with no blanket in place, the data
showed a clear peak where the response bands centered at k* 2n/d and kIO n/d

10
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were coincident with the convective part of the pressure field [where w, =k U.].

With the blankets in place, the peaks at these frequencies were dramaticaliy reduced.
The average reduction in the peaks at each speed was taken as the measure of the
wavevector modification factor L as a function of the normalized blanket thickness
klahz. The preliminary results of the experiment with the above two blanket
thicknesses are plotted in Figure 17. The trends of Figures 12 and 13 are evident

in the data. The modification factor L is seen to decrease exponentially as klohg
increases and then saturates as klohg increases beyond a certain value. This is

seen to occur for both modes of operation. However, it is seen that L saturates
sooner in the (+ +) mode than in the (+ —-) mode. This is in agreement with the
analytical development discussed in this paper. Values of R, and Ry were not
obtained, however, so that it 1is not possible to say with certainty whether the
saturation is due to such extraneous sources or naturally due to the low wavenumber
part of the pressure field in a turbulent boundary layer. An interesting aspect

of the data occurs near klohi + 0., A line through the data does not extrapolate

to zero. Rather, 1t extrapolates to an intercept off zero commensurate with

Figures 12¢, 12d, 13c, and 13d. The intercepts in Figures 12¢, 124, 13c, and 173d
were explained on the basis that the strength ¢ {(w,8*/U.) of the spectral densitv

in a turbulent boundary layer may change if the turbulent boundarv laver is formed

on a boundary of a blanketed surface as compared with that on a boundarvy of a hare
surface. The data presented herein Is consistent with such interpretation and
indicates that an increase of about 10 dB may take place in 3)0.,, % 7 ) wit
the prescribed change in the boundary. Tt is noted that such an fnoroase diniaisbes
the effectiveness of the blanket bv a corresponding amount. Whetaer the dat i pre-
sented in Figure 17 is persistent and generally reproducible remains o hue o camine

further analvsis of the records taken in this experiment is pending. Tt wonld also
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be advantageous to acquire data 1n other experimental situations. Such examination
would be helpful in attempting to further explore the true effectiveness of a
blanket. It is hoped that the analytical tool developed in this paper may assist
with the further analysis of the data already acquired and with the design of exper-

iments in which fresh data could be meaningfully acquired.

X. REMARKS

1. Rumor has it, and fragmented theoretical and experimental evidence support
it, that the nature of turbulent boundary layers may be dependent on the nature of
the surfaces on which they form, even if the surfaces are hydraulically smooth;
e.g., the nature of a turbulent boundary layer that forms on a rigid surface may be
different from that which forms on a surface that is not rigid. In particular, the
nature of a turbulent boundary laver that forms on a bare surface may be different
from that which forms on the top surface of a blanket that covers the bare surface.
The nature of a turbulent boundary layer is defined herein in terms of the function
¢¢ (k,w) which is assumed to be composed of three factors, as stated in Equa-
tion (41). Differences in the nature of turbulent boundary layers may involve
either any one, any pair, or all three factors; no a priorl specification for the
differences is presently available.

The chief concern in this paper is the determination of the bhlanket effective-
ness factor Erg. Subsequently, it is shown that the experimental procedure is such
that the factor is ascertained largely at the localized and specific spectral range;
that range is defined by a major acceptance region in the filtering action of a
spectral filter. It is assumed in this paper that the blanket effectiveness factor
F,q is factorable into two parts Kti and Etﬁ 3 Epg = th Etl' The first
factor is assumed to be associated with the strength and frequency distribution of

the spectral density of the pressure field in a turbulent boundary layer, and the
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second factor is assumed to be associated with the wavevector distribution of this
spectral density., A blanket is commonly assumed to be a wavevector filter in that
it inhibits spectral components from reaching the boundarv it covers aceording to
the component's wavevector designation rather than its frequency designation. In
that sense it is specified that étz is less than unity. However, implicit in

this statement is the assumption that the wavevector distribution in the turbulent
boundary layer remains substantially intact when it forms on the surface of the
blanket rather than on the boundary that the blanket covers. Indeed, it is assumed
that if a change occurs it is due to a change in the strength of the pressure
tield and not even in the frequency distribution in the turbulent bhoundary laver.
[n that sense it is specified that th may change and that the change may

occur either way, or not at all; either A, > 1, A, <1 or A

te gg = 1. Tt is
recognized that efforts and attempts are bheing made to cause changes in the nature
of a turbulent boundary layer by introducing specific surfaces over which the
turbulent boundary layers are to form. [Some aspects of such introductions were
discussed in a recent Drag Reduction Symposium, September 13-17, 1982, held at the
National Academy of Sciences, Washington, D.C.] Programs that support the efforts
are directly related to the subject of this paper on the basis of hoth the analvti=-
cal and experimental endeavorgs. Thus, for example, a blanket designer wonld hene-

fit greatly if he knew how to manufacture a blanket that would not onlyv he etfec-

tive in decreasing Ct but also in decreasing substantially the valne of A

te"
2. Subsequently it is argued that for the (+ +) mode « =+ p: g (fVV;/d) and
+ - . - . .
T - e (ar Jd) and W S le ¢
wp > wp (ZWIC/cud), for the (+ =) mode W, o (W\C,d) and W wn (s Je d),
and Ul = U.. Thus if one imposes that the flow is highly subsanic with respect to

the speed ¢y so that (NUC/CQ) << 7w, then it follows {rom Fguatian (47) that
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2
(HUC/CQ) < 1 if N is even

-t
W ~
W, / b ]
(N)™* << 1 1€ N is odd .
. - ) T S
Thus, if (U./c,) is of the order cf 10  and assuming that Ajlwy) = A (w o)

one may conclude that

J/ 10'3 if N is even
[RG(w,)/RG(wI)] =

(N)'Z if N is odd .




v o
Z" ¢y, ¢,

X3, k

X3, kz

> x1, kg

S

Figure 1 - Coordinate System
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