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ABSTRACT

An analytical estimate of the performance of a blanket

as a spatial-temporal filter for turbulent boundary layer
pressure fluctuations is presented. The formulation is
developed as an aid for the design of experiments and experi-
mental procedures for measuring the performance of blankets.
The interpretation of data acquired in such experiments is

treated in some detail. A simplified analytical model is
utilized which has the gross features of the pressure field
beneath a convecting turbulent boundary layer. This serves
to illustrate the trends that can be anticipated in data and
to illustrate the effects of undesirable stray pressure fields.
Some limited data were acquired in a quiet turbulent pipe
facility and are treated with the developed formalism. Sig-

nificant features in the data are briefly discussed.

ADMINISTRATIVE INFORMATION

The work described in this report was funded under the David Taylor Naval Ship

Research and Development Center's Independent Research Program, Program Element

61152N, Task Area ZR 011 0801, Work Units 1902-025, 1902-027, and 1942-053.

I. INTRODUCTION

The movement of vehicles through fluid media usually causes the fluid to become

unstable at various locations on the outer plating of the vehicles. Indeed, over

extended regions of the outer plating, a turbulent boundary layer is formed. The

fluctuations that are present in the flow of a turbulent boundary layer induce pres-

sure fields on the surfaces on which they form; these pressure fields exhibit both

spatial and temporal variations. The pressure fields that are induced by turbulent

boundary layers constitute drives that generate acoustic noise, be it in the form of

radiation noise to the far field or in the form of local noise in the interior and

on the vehicle. Often, at the higher operational speeds of these vehicles the noises

that are flow-induced are significant and well-nigh dominant. Amongst them is the

noise that is generated by a turbulent boundary layer. The suppression of these

noises has been central to many noise control programs. Progress has been made, but



no means has it been sufficient. The progress is manifested in understanding

th the generating mechanism and the nature of the pressure fields in turbulent

iundary layers, as well as in devising means to control or suppress their adverse

'fects. In this paper, the authors report a small but significant step in the

fort to control or reduce the noises that a turbulent boundary layer may generate.

device that appears to have promise of beneficially controlling and reducing the

.essure field exerted on a surface by a turbulent boundary layer is a blanket. An

leally designed blanket is a device -hat displaces the turbulent boundary layer a

Lanket thickness away from the surface on which it would have formed were the

lanket absent. To state the function of a blanket more precisely it may be advan-

igeous to formulate its use. However, it may be useful to gear the formalism so

nat it may also be employed to examine and interpret data yielded by a recent

Kperiment. In this experiment, the output of an array of flush-mounted pressure

ransducers subject to the pressure field in a turbulent boundary layer was investi-

ated. The array was constructed and used, for the most part, as a wavevector fil-

ar [I]. The influence of interjecting a blanket between the pressure field and the

rray was of particular interest in this experiment.

I. OUTPUTS OF AN ARRAY OF FLUSH-MOUNTED PRESSURE TRANSDUCERS
PLACED ON A UNIFORM PLANE BOUNDARY

Consider a plane boundary in which are placed flush-mounted pressure trans-

icers. The transducers are placed so that their presence introduces no impedance

Dnuniformities in the boundary so that the surface impedance operator zb(x,t) of

ne plane boundary is pure; x = {x1 ,x2 } is the spatial vector coordinate in the

lane and t is the temporal coordinate [2]. Ignoring effects of the steady flow and

Dncentrating only on the fluctuating components, the pressure field p(x,t) on the

mundary can be expressed in the form

2



p(x,t) = zb(x,t) v(x,t) = 2pe(X,t) - p"'(x,t), (1)

where pe(x,t) and pV(x,t) are the incident test external pressure field drive and

the fluid loading on the plane, respectively, and v(x,t) is the velocity field on

the boundary induced by the incident test external drive. In spectral space, Equa-

tion (1) can be cast in the form [21

P(k,w) = Zb(k,w) V(k,w) = 2Pe (k,w) - PV(k,w) , (2)

where

PV(k,w) ZV(k,w) V(k,w) ; (3a)

zv(k,P) (pvcV/K) (3b)

V = [l_(KV) 2 ]l/ 2 U[1(KV)2 ] - i[(KV) 2 _I] U[(KV)2 -1] ; (3c)
3

the Fourier transform is defined by

S(k,)= (2n) - 3/2 f dx J dt s(x,t) exp[i(k.x-wt)]; (4a)

dx dx 1 dx 2 ; k = {klk 2 }  ; k = (4b)

KV is a normalized wavevector

V = {KVV ;I KV = IKI ; KY = (K c /W) ,(
4 c)

- 1' 2 ' i v

the density p. and speed of sound cv are those nf the semi-infinite fluid occupying

the space ahove the boundary, see Figure 1; the ptirity of the surface impedance

3



)perator zb(x,t) is invoked; s(x,t) in Equation (4) is any typical well-behaved

Function of x and t; and U is the step function. From Equation (2), one obtains

V(k,w) = [Zb(k,w) + ZV(k,w)] - 1 2PV(k,w) , (5)

P(kw) = [l+Tb(k, w)I Pv(k,w) , (6)

(I/2)(l+Tb (k,w)] = Zb(k,w) [zb(k,w) + Zv(k,w)]-l , (7)

b

where the quantity Tb (k,w) can be identified to be the reflection coefficient at

the boundary facing the (v)-fluid.

The pressure p(x,t) on the boundary is sensed by the flush-mounted pressure

transducers. This array of transducers is assumed to possess a filtering function

g'(xojX,tojt) so that the output q(xo,t o ) is given by

q(xo~t o ) = j dx j dt g'(xolx,tolt) p(x,t) . (8)

The spatial-temporal vector {X0 ,to} defines a specific spatial-temporal position-

ing of the array. Using Equation (4), Equation (8) can be cast in spectral space

in the form

Q(k,w) = f dk' f dw' G'(klk',w w') P(k',w') , (9)

where

q(xoto) = (20)- 3/2 f dk f dw Q(k,w) exp[-i(kx o-Wt 0 )];

Q(k,w) = (21) - 3 / 2 f dx0 f dtoq(xo,t 0 ) exp[i(k'x0 +wt0 )] , (10)



g'(X-o1 ,tolt)=

(2n) - 3 f dk f dw f dk' f dw' G'(klk'wfw') exp[-i(k'xo-k'.x-wto+w't)];

G'(kfk 'w~n') =

(2n) - 3 f dxo f dto f dx f dt g'(x 0 X,tolt) expli(k-xo-k'x-t o +w't)] (11)

It is now assumed that the filtering function g'(xoX,tolt) is stationary,

both spatially and temporally, so that

g (XoL,toit) = (2w)-3/
2 g(xo-X,to-t) . (12)

In spectral space, Equation (12) takes the form

G(kk',w1w') = G(k,w) 6(k-k') 6(w-u,') (13)

6(k-k') = 6(k -k') 6(k2-k') (14)

Substituting Equation (13) in Equation (9), one obtains

Q(k,w) = G(k,w) P(k,w) . (15)

Usually, and quite generally, the vector {xo,to} is set identically equal to zero

so that from Equations (6), (10), and (15), one obtains

q(0,0) = q = f dk J dw G(k,w) P(k,w) , (16a)

5



q = f dk f dw {G(k,w) [l+Tb (k,w)]} P (k,w) (16b)

Thus, with reference to the indigenous drive P(k,w), the filtering function of the

flush-mounted array is G(k,w). On the other hand, with reference to the incident

test external drive Pv(k,w), the filtering function of the flush-mounted array ise~

fG(k,w) [l+Tb (kw)]}. Of course, the particular designation of the drives and thevv -,

corresponding filtering functions is a matter of convenience and interpretation;

the integrands are, after all, the same in these cases and, therefore, the outputs

are also the same. Having determined the output of the array in the absence of a

blanket, attention is turned to determining the central question posed in this paper.

How does a blanket placed on the flush-mounted array just considered influence the

output of the array?

III. INFLUENCE OF A BLANKET ON THE OUTPUT OF A FLUSH-MOUNTED ARRAY

The introduction of the blanket is depicted in Figure 2. The blanket is

featured here as a slab of fluid of density pX, speed of sound ck, and width hX.

The bottom side of the blanket is backed by the boundary previously discussed.

In this boundary is placed the flush-mounted array. The top side of the blanket

is backed by a semi-infinite space occupied by the (V)-fluld. The pressure field

is considered to be generated by the incident test external drive Pv(k,w) which

acts on the top surface of the blanket. The pressure field P (k,z,w) in the blan-

ket at a plane a separation z above the boundary is composed of two components,

PX(k,z,w) = PZ+(k,z,w) + Pk_(k,z,w) (17)

as indicated in Figure 2. The pressure field PX+ propagates down toward the

boundary and PZ_ propagates up away from the boundary. The derivation of the

pressure fields PX+ and PZ_ is greatly facilitated if it is conducted in spectral

6



space. It can be readily shown that [3]

P,+(~w)= exp(iktz) 'T,,(k,k)

£2.-b(kw mVi (w)] 1l PV'kw 1a

P (k,w) = rr exp(-ik 2z) T (k,w)

where

(1/2) [l+Tc'(k,w)] =Za(k,w) [Za(k,w) + Z2 (k,w)V] , (19a)

(1/2) T tv(k,w) = Z9 (k,w) [Zv(k,w) + Zz(k,w)F1 , (19b)

T~~)= exp(-ik . h .) T(k,w) k = (W/c) K~ x (19c)

K2. = [1-(K'. )2 1 1/2 U [l-(K2. )2 ] -i[(KZ-)2 -l 1 1 2 U[(K2 . )2 -l] (19d)

3

The pressure field P2.(k,o,w) = P2.(k,w) on the boundary is given by

p 2 (k,w) = P2.+(k,w) + P,_(k,w) = [I+Tb (k,w)] T~ (k~w

x [l-Tb (k w) T f(k ,w)]-l Pv(kw) (20)

U2 - 2 e -

7



[Cf. Equation (6).1 This is the indigenous pressure field that is sensed by the

array. Following a procedure similar to that which led from Equation (8) to Equa-

tion (16), the output qZ(h;) q2 of the blanketed array is given by

q U dP(k,) (21a)

q= dk f dw {G(k,w) [l+T b(k,w)f} T (k,w)

. i , k, ) - (21b)

A similar remark to that following Equation (16) can be made with respect to Equa-

tion (21). Finally, if the fluid of the blanket, the (9)-fluid, is chosen to match

thqt of the (v)-fluid, Equation (21b) is substantially simplified and becomes

q v r dk f dw tG(k,u)[l+rb (k, w)l}{exp(-ikzh )} Pv(kw), (21c)

Pt =P) and - . Comparing Equation (16b) with Equations (21b) and

r ), one finds that the preseice of the blanket is accounted for by introducing

tho arctor

F (ku)= [I+T b  (k ))][I+T b  (k,W)] -

x T (k,!-)) [I-T" ( ,ow) -i,(~ )] ' (22a)

F ( k , w ) = e x p [ - i ,' °)h "; 1.51 , / = ( 2 2 b)/c ) '

if P, and cZ c, , in the inteyraind of the output of the array as stated in



Equation (16). Thus, if the filtering function F(k,w) in the absence of a blanket

is defined by

F(k,W) = Fa(k,W) Fb(k,w) ; Fa(k,w) = G(k,w) ; Fb(k,w) = [l+Tb (kw)], (23)

a~~w =('W F (k VV (~, (3

then from Equations (16b) and (21b) through (23), one obtains

q = f dk f dw F(k,w) Pe(kw) , (24 a)

qX(hk) = f dk f dw F(k,w) F,(k,w) P (k,w) , (24b)

q (ht) = f dk f dw F(k,w) Fv(kw) Pe (kw) .(24c)

The quantities Fa(k,w), Fb(k,w), and FZ(k,u) may be dubbed the filtering functions

of the array, the boundary, and the blanket, respectively. A blanket that can be

made to possess a filtering function Fv(k,w), as stated in Equation (22b), is dubbed

ideal.

IV. QUADRATIC AND STATISTICAL FORMS FOR THE PRESSURE

FIELD ON A BOUNDARY

Consider the pressure field Pb(X,t) acting on a plane surface. There are situ-

ations in which the quadratic form of the pressure field is the desired description.

This quadratic form is defined by

K (x ~l x t lt )  = [Pb (x- lt ) P b (x ,t ) ] .(25)

This form is usually desired when the linear description is difficult so that a

9



statistical description is preferred. To indicate that appropriate statistical

averaging has been performed, the quantity is enclosed in angular brackets so that

b( ,tft) < (xlx',tlt')> = <Pb(Xt) Pb(x',t')> (26)

The desirability of casting the pressure field in its quadratic and statistical

form is often dictated by the fact that pressure fields in this form can be

assumed to be stationary, both spatially and temporally, so that

h(xl 'tlt') =- (21T) - 3 / 2  b(X-- 'It-t ') . (27)

This assumption is seldom strictly true in practice. Nevertheless, provided the

phenomenon that is being formulated is not strongly dependent on the deviation of

the quadratic and statistical form of the pressure field from stationarity, the

assumption is tempting; the simplicity that is gained in the formalism makes it

attractive. Converting Equations (25) through (27) into spectral space yields

'b(kjk',w1w') = [P(k,w) P*(k',w') , (28)

= <Pb'wj') (k,w) P *(kyow')> ,(29)

Yb(kjk',tjt') = Db(k,w) 6(k-k') 6(w-w') , (30)

respectively, where

Pb(k,w) = (2n) - 3 1 2 f dx f dt p(x,t) explt(k-x-wt)] , (3 1a)

10



(2w)- 3 f dx f dt f dx' f dt' b(Xl'I,tlt ') expfi(k'x-k'.x'-wt+w't')], (31b)

b (k,w) = (2r)- 3 12 f dx f dt b(xt) exp[i(k-x-wt)] . (31c)

The quantity Ob(k,w) is dubbed the spectral density of the pressure field. By

definition, a pressure field that has a spectral density description is stationary,

both spatially and temporally. If one assumes that the test external drive

Pv(k,w) stated in Equation (24) is stationary, both spatially and temporally,

then from this equation and Equation (30), one obtains

<Iqi2> = f dk f dw W(k,w) 0 (k,w) , (32a)

<Jq£(hX)12> = I dk f dw W(k,w) W,(k,w) $D(k,w) , (32b)

<Iqx(£12 f dk f aw W(k,w) Wv(k,w) (Dv(k,w) ,(3)

respectively, where

<PV(kw) e *(k,) = 4eOk,w) 3(k-k') 6(w-w') ,(33)

W(k,w) = IF(k,w)1 2  ; W(k,w) = Wa(k,w) Wb(k,w)

Wa(kw) IFa(k,w)I2  ; Wb(kw) = IFb(k,w)I 2 (34)

1I



Wx(k,w) = lF£k,01l2  ,(35a)

W'(k,w) = IF(k,w)1
2

= U[1-k ] + exp[-2h"(K-l)1 / 2j U[(k2)1 ; k2 = (kc /W) (35b)

The quantities Wa(kw), Wb(kw), and Wz(k,w) may be dubbed the filtering actions of

the array, the boundary, and the blanket, respectively [4]. In Equation (32), the

outputs are given in terms of what is commonly referred to as the mean-square-values

of the outputs.

Before turning to consider specific pressure fields of interest, it may be use-

ful to state briefly a point of order. An array of transducers designed to decipher

the wavevector distribution of a given field is dubbed a wavevector filter. Often

an array designed to decipher the spectral distribution of a given field is dubbed

a wavevector filter under the assumption that a frequency filter is readily acquired

and, therefore, its inclusion needs no special mention. A pressure wavevector filter

is, then, an array of pressure transducers, the filtering function, and/or the

filtering action of which is shaped, in spectral space, with the specific intent of

acquiring information relating to the pressure field described in spectral space.

An array of transducers that is designed to acquire information relating to a field

described in the spatial domain may thus be dubbed a spatial filter. In summary,

the designation of an array of transducers, a wavevector, or a spatial filter indi-

cates the operational purpose for which the array was designed.

V. PRESSURE FIELD OF A TURBULENT BOUNDARY LAYER AND OTHER
STRAY PRESSURE FIELDS

The pressure field pt(x,t) of a turbulent boundary layer is one of those pres-

sure fields for which linear characterization is too complex to describe and one

12



commonly describes this precsure field in a quadratic and statistical form. It is

also customary to assume that, at least over a spatial extent of interest, the

pressure field of a turbulent boundary layer is stationary, both spatially and

temporally, so that

xt(XLx',tIt') = <pt(x,t) pt(x',t'> = (21) - 3 / 2  t(x-x',t-t') , (36a)

Vt(kj ',wjw') = <Pt(k,w) P*(k',w')> = t(k,() 6(k-k') 6(w-w'). (36b)

Often on surfaces on which turbulent boundary layers form, stray pressure fields

also exist. That is, on a boundary in addition to the turbulent boundary layer

pressure field pt(x,t), there may exist other pressure fields Ps(x,t) so that
s

the pressure field on the boundary Pb(x,t) is given by

Pb(X,t) = Pt(X,t) + i P s (x,t) • (37)
s

Seldom are the various components of the pressure fields correlated. If one assumes

these various components to be uncorrelated, one may derive from Equation (37) the

quadratic and statistical forms

b(x! ',tl t ')  = Wt( l ',tl t ')  = Ws( l ',tl t ')  • (38)

If all the various components are assumed to be stationary, both spatially and

temporally, then Equation (38) can be written in the form

b(x-',t-t') = t(x-x',t-t) + s(x-X,t-t' . (39)
s

13



In spectral space, Equation (39) can be stated in the form

4'b(kjk',wow') = Db(k,w) 6(k-k') 6(w-w')

Pb(k,w ) = Pt(k,w)+ 4s(k,) . (40)

The detailed nature of the spectral density Dt(k,w) of the pressure field in a

turbulent boundary layer is not known. Only some gross description of that spectral

klensftv is available. It is thus possible to describe the spectral density Dt(k,w)

in a simple representative manner 151

it(k,w) = Do(w) D1 (klw) P2(k 2 ,W) ; (4 1a)

lo(w )  =- (o(w6,/Uc) ; (Dl1(k19,W) z D,(kUc/w); 1 (k 2 ,w) = D;(kUc/w) (41b)

Si(kiw) = D n(kow) + Dc(k 1 ,W) ; (4 1c)

( (k ,w) = (a)[oL2 + (1+1k Il/ I)2-1 (41d)

Dc (k ,W) = Ic2+(l-k U c/w)z']-' _[ 2 + (l+1k U c/W )2 ]-1  (4 1e)

V (k ,w) = 2[82 +(k U c/w)2 -. (41f)

Assigning a strength factor (o and a pair of factors (I and 29 the spectral den-

sitv It(k,,W) is factorized. The pair of factors I and ' i lows for the separ-

ation between the two principal directions; the flow is designated to be in the

14



x -direction and the convection speed of the turbulent boundary layer is designated

Uc. The factor ¢ (k ,w) is assigned two terms, the convective part Dc(k ,w) and

the nonconvective part Dn(kiw). The nonconvective part is adjustable in that the

parameter (a) is an unspecified constant; the nonconvective part of the spectral

density can be made to vanish by setting (a) equal to zero. The parameters a and (

are usually assumed to be such that a = 10-1 and ( = 3a; a more precise designa-

tion of a and 8 could imply that the description of the spectral density Ot(k,w), as

stated in Equation (41), is more thorough than is intended. A sketch that depicts

the form of the spectral density Pt(k,w), as stated analytically in Equation (41),

is given in Figure 3.

If one knows the nature of a stray pressure field, its spectral density can be

similarly stated. Thus, in wind or water tunnels one knows that in addition to the

pressure field of a turbulent boundary layer, grazing acoustic pressure fields that

propagate in the direction of flow are likely to be generated. A description that

typifies such pressure fields may take the form [5]

Pa(kw ) = (a+(k 2,s) 6[k 1-(W/cv)j + pa-(k 2,w) 6[k 1 +(W/cv)], (42)

where c. is the speed of sound in the (v)-fluid. A sketch that depicts the form of

la(k,w) as stated analytically in Equation (42) is given in Figure 4. Also,

resonance vibration fields may be excited in the panels usually found in the walls

of the test section of such wind or water tunnels. These vibrational fields would

cause pressure fields to be generated on the boundary. The description that may

typify such pressure fields may take the form [5]

Dp(k,,) = Pp+(k 2 V') 'S[k -( .:/cp)I + Dp_(k 2  w) 6[k 1 +( /cp)]. (43)

15



where Cp is the free wave flexural speed in the panels. It is assumed in Equa-

tion (43) that the resonant vibration of the panel is predominantly confined

to the direction of the flow. A sketch that depicts the form of Dp(k,w) as stated

analytically in Equation (43) is given in Figure 5. Similarly, one may visualize

other stray pressure fields and typify their spectral density in the manner in

which Equations (42) and (43) were constructed. However, since the experimental

measurements to be discussed were performed in a water-tunnel-like environment, it

is likely that the stray pressure fields could be substantially accounted for by

the spectral density Os(k,w) so that

Ds(k,w) = Da(k,w) + 0p(k,w) . (44)

It is assumed then that the spectral density Ob(k,w) of the pressure field on the

boundary of the test section in the experimental setup is given by

(b(k,w) z Dt(kw) + Ds(kw )  ; (s = Oa + ip , (45)

with the terms on the right defined more explicitly in Equations (41) through (43).

A sketch that depicts the composite form of Ob(k,w) as stated analytically in

Equation (45) is given in Figure 6. [Cf. Equations (41) through (43).] The array

of pressure transducers that is flush mounted in the walls of the test section

would then respond to the pressure field whose spectral density is qb(k,w). Using

the formalism just developed, what is the output of the array? In particular, what

is this output when the array is that deployed in the experiment of concern?
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VI. FILTERING ACTION OF A TYPICAL WAVEVECTOR FILTER

Before determining the array output, one may inquire as to the nature of the

filtering performed by the array. Since the driving field on the boundary is

assumed to possess a spectral density, it is the filtering action of the array

that one would desire to know [see Equation (32)]. It is also assumed that the

transducers in the array are nominally identical [4]. Under this latter assumption,

one may cast the filtering action of the array in the form [4,5]

Wa(k,w) - Ws(k,w) Wp(kw) , (46)

where Wp(k,w) is the filtering action of an equivalent array, except that the

transducers are assumed to be point transducers placed at the central positions of

the actual transducers, and Ws(k,w) is the filtering action of a single transducer.

For example, the transducers of the arrays deployed in the experiment of concern

here were aligned in the x1-direction (direction of flow), were equi-spaced, and

their outputs were summed in phase (+ + mode) and alternatively out of phase

(+ - mode). The arrays are typified in a sketch in Figure 7. For this array

configuration one may show that [1]

Wp(k,w) Wpi(klw) Wp2 (k2,W) ; WP2 (k2,W) 1 , (4 7a)

sin 2{N(k d-WT)/2} [N2sin2{(k d-WT)/2}- 1 , (47b)

Wp1 (k,w) sin 2{N(k Id-WT)/2} [N2cos 2 {(k d-WT)/2}- 1 , (4 7c)

cos 2{N(k d-WT)/2} [N2cos 2 {(k dWT)/2}]- , (47d)
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where d is the spacing and i is the time delay parameter. Equation (47b) repre-

sents a situation in which adjacent transducers are similarly polarized (+ + mode),

Equation (4 7c) represents a situation in which adjacent transducers are oppositely

polarized (+ - mode) and the number N of transducers is even, Equation (47d) repre-

sents a situation in which adjacent transducers are oppositely polarized (+ - mode)

and the number N of transducers is odd, and in each of the three cases the outputs

of the transducers are simply summed to give the output of the array. Also, as an

example, the single transducer is assumed to be rectangular in shape and of uniform

point reacting sensitivity with one side lying in the x -direction as indicated in

Figure 7. For this type of transducer one may show that [11

Ws(k,w) = WO(w) Wos(k) ; Wos(k) Wsl(k 1 ) Ws 2 (k2 ) ;

2 21_
WsC(k a ) = sin (k ty d/2) [(k ycYd/ 2 ) ] , = 1 or 2 , (48)

where Wo(w) is the frequency filtering action of the transducer and any frequency

filter that may be interjected in the output circuit; yI and y2 are linear scale

tactors in the xI- and x -directions, respectively, of the sides of the rectangular

tra'isiucer as compared with the spacings between adjacent transducers. In the

experiment of concern here, the frequency filtering action Wo(ui) is assumed to he

that of a narrow hand, e.g., (1/10) octave hand, centered about the center fre-

quency io" The skirts of the filter are considered low as indicated in Figure 8.

Al o in the experiment of concern here, the number of transducers in a typical array

was 12; N = 12. A typical form of Wp(k,w) for the array is depicted in Figure 9.

Fi cure IP) i- depicted a typical form of W,, (k) for a rectanvular transducer.

,ho f i ltrin. action factor Woa(k,w) is defined so that
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Wa(k,w) = Wo(w) Woa(k,w) ; Woa(k,w) = Wos(k,w) Wp(k,w) . (49)

From Figures 9 and 10 and Equation (49), the nature of the filtering action factor

Woa(k,W) is depicted in Figure 11. It is important to note that if the nominal

properties of the transducers and the spacings between them as stated above are not

strictly adhered to, the result is that the discrimination of the filtering action

is not as good as that depicted in Figure 11. The loss of discrimination is mani-

fested by peaks and valleys, being neither as high and deep, respectively, nor as

sharp. The loss in definition in the filtering action just discussed is most pro-

nounced in those spectral ranges defined by coordinates that are of the same and

higher linear sizes than the variations and deviations from nominality. Thus, if

the spacing in the x -direction admits to variations of the order of Ax1 , the spec-

tral range in which even major peaks lose substantial definition covers the range

(k IAx ) > I in the kI-coordinate of spectral space. Yet it is noted that the

integrated acceptance A of the array, namely

A(d,y 1 ,y2 ,TWo) = f dk f dw Wa(k,w) , (50)

remains substantially invariant to these variations and deviations [4].

Now that the natures of the spectral density of a typical pressure field and

the filtering action of a typical array are grossly known and expressed, the gross

values of the output of the array may be ascertained [Equation (32a)]. Then aspects

of the pressure fields and the performance of the array as a spectral filter can be

investigated. Further, if blankets are placed on the boundary, the influence of

these blankets on the outputs of the array may then be ascertained (Equation (32b)

or (3 2c)] by inserting the appropriate expression for the filtering actions of the

blankets (e.g., Equation (35b)]. The investigation of the nature of this influence
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has a significant purpose for this experiment. Therefore, the analysis developed

in this paper is cast in a form that would assist with the interpretation of the

data obtained.

VII. TYPICAL EXPERIMENTAL PROCEDURES AND DATA ACQUISITION

To retain simplicity it is assumed that the boundary is of uniform impedance

and that the pressure field on it possesses a spectral density. Under these assump-

tions, Equation (32) is valid for the determination of the output of an array that

Is flush mounted in the boundary in the manner prescribed therein. Using the

description of the spectral density of the pressure field on the boundary given in

Section V and the filtering action of the spectral filter that is flush mounted in

that boundary given in Section VI, the output <lq1 2 > of that filter can be

stated in the form

<lq 2> = <ql 2 > + <qp 2 + <(qt 2> , (51)

<q 2> Ac (W0 ) Ws (W0 /ca ) Wp (W0 /ca) ; a = a or p and ca cv, (52)

A(w) dk2 f dw W W5 2 (k2 ) [,+(k2 ,w) + 10,_(k 2 ,w)I, (53)

<Iqt 2> = At (W) [Bt (W0) + Ct(w)] ' (54)

At(w) f dw W0 (1) ¢o(W6*/Uc) (55a)

Bt(u) dk Wa(k,wo) DI (ki,,o) I 2 (k2 ,W) ; k<((wo/Cv) , (55b)

't ,) -- ! dk- W,>a(k, o ) I I(k 29,Wo) (D2(k 2,W) ; k>(Wo/c,) , (55c)



2 =2 2
where k = k1 + k 2. It is assumed in stating these equations that the frequency

filtering action represents a narrow enough frequency band and the skirts of the

filter are low enough. The filtering action of the blankets considered in this

section is assumed to be ideal so that the form of their filtering action is pre-

scribed in Equation (35b). It is also assumed that the pressure fields on the

boundary induced by the vibrational fields on the boundary are not changed by the

presence of a blanket. In addition, it is assumed that the spectral distribu ions

I and 2 of the pressure field in a turbulent boundary layer are not significantly

different whether they form on a boundary or on a blanket that may be placed on the

boundary. However, provision is made to allow the frequency spectral density

function to change from (,(w6*/Uc) to ,(w6*/Uc) if a blanket is introduced.

Under these assumptions, the output of the spectral filter in the presence of a

blanket may be stated

=q > <(q 12> + <jqpX12 > + <qtt 2>  (56)

<=q,[2> <]q,, 2 > ; a = a or p , (57)

<IqtZI2> = A t(W 0 ) [Bt(W 0 ) + Ct( 0 ) ] , (58)

At (wo )  f dw Wo( ) DoZ(w6*/Uc), (59a)

Btk(wo ) = Bt(io) , (59b)

C(w) = dk Woa(k, ) W"(kw 0 ) (k ) (2 (k2 ,w) ; k>(Wo/c ) (59c)

21



[Cf. Equations (51) through (55).] It is noted that were a turbulent boundary

laver a truly external drive so that

Pox(W6*/Uc) = (06* /Uc), then At( 0o ) = At (o). (60)
(60)

From equations (51) and (56), one may define a blanket modification factor L so

that

L = <jq22>/< q12> (61)

in which the filtering conditions and mode of operation of the filter remain fixed.

The only change is the introduction of a blanket. Of course the factor L is a func-

tion of these conditions and also of the blanket thickness hk. From Equations (51)

through (61), one obtains

L = [R9+EtZ] [R+1]-1 ; Et& = Atz CtX ; Atk = Atz/At

Ctz = CtX/Ct ; ft Bt/Ct ; Bt = Bt, (62)

twhe rt,

R z o ) = Ra (w0 ) + Rp (W0 + Atz(0 t(0 )  (6 3a)

R(w0) = Ra (w ) + Rp (w) + Bt(W0 ) , (63b)

R( o ) = 01( ) W 1 (W /C9 W p (Wo/c Ic

A(, = (Aa/A Ct) 64)
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The blanket modification factor L is the quantity destined to be measured in an

experiment. However, it is the determination of the quantity Etk that is of

special interest. This latter quantity is related directly to the effectiveness

of the blanket in inhibiting spectral components in the pressure field of a turbu-

lent boundary layer from reaching the covered boundary. The quantity EtX may thus

be dubbed the blanket effectiveness factor. The blanket is beneficially effective

if Ett is less than unity; Ett < 1, and is more effective the smaller the value of

Etk. It is clear from Equation (62) that the blanket effectiveness factor is com-

posed of two factors; the first factor Atk may be dubbed the frequency factor

and the second t, may be dubbed the wavevector factor [Cf. Equations (59 a) and

(59c)]. A blanket may then he beneficially effective either because Ttz is less

than unity, Ct9 is less than unity, or both are less than unity. Invariably C t

is less than unity. Such a definitive statement cannot be made with respect to the

frequency factor . If, however, the turbulent boundary layer is truly an

external drive as stated in Equation (60), then A = 1.

The prime purpose for the experiment of concern here was to determine the

blanket effectiveness factor, ad a closer examination and interpretation of this

factor is thus warranted. Of particular interest is the experimental procedure.

A wavevector filter is placed in a boundary of the test section of a water tunnel.

A major acceptance region in the filtering action of the filter is placed at

k1 = (7/d) when the filter is operated in the (+ -) mode and at k, = (27/d) when

operated in the (+ +) mode; intermediate time delays are not used. A turbulent

boundary layer is formed on the boundary as a result of the flow that is imposed on

the fluid. The flow reaches a steady speed U. This speed is assumed to be highly

subsonic; (U/c v ) << 1. The frequency filter in the circuit of the output of the

transducer is manipulated so that at the center frequency wo the peak in the
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spectral density of the pressure field is coincidental with the major acceptance

regions just defined. The locations are ascertained by gross estimates and then

by finely tuning the .enter frequency w0 so that a maximum is attained in the out-

put of the array. It is conjectured that at this setting of the spectral filter,
2

and in che absence of a blanket, the output <qtJ > generated by the turbulent
2

bo,indary layer of concern here would substantially exceed the output <Iqs2 > gen-

erated by the stray pressure fields. More precisely, it is assumed that R << 1 in

Equation (62). This is achievable if the turbulent boundary layer is subsonic,

tic << c,, and and noise control procedures were applied to minimize the strengths

,)f the stray pressure fields. It is noted in this connection that inherently

B t(o) << 1. in a highly subsonic turbulent boundary layer. It is also noted that

if (NUc/Ca) << 7, the contribution to R by the (c)th stray pressure field in

the (+ -) mode is substantially less than that in the (+ +) mode of operation of

the wavevector filter. This is so because in the (+ +) mode a major acceptance

region in the filtering action of the filter lies at the origin JkI = 0, while in

the (+ -) mode, at worst, a minor acceptance region lies at the origin. It is

the;i assumed here that even [R(w 0o)](+ +)<< 1, and this condition ensu'- s that

-) (+ _ .2 Under the assumption that the contribution by the turbulent

hnilarv 1aer is dominant in the output of the array and that the flow is highly

s-ibsonic so that R(%)) << 1, the locations of the spectral region at which the

maxima may he defined are

Coordinate (+ -) mode (+ +) mode

k + k (/d) (2TId)

k - k 0 0 (65)2 2

24 * Id (fr If(', /d
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The convection speeds are dependent on the wavenumber kI and, therefore, a distinc-

tion has to be made with respect to the convection speed Uc when the (+ -) mode is

operative, Uc = Uc(T/d,O), and U' when the (+ +) mode is operative, U = Uc(2ir/d,O).

Thus, Uc may, in general, be different from Uc. When the blanket is placed on the

boundary so that the turbulent boundary layer is displaced away from the boundary in

which the array is flush mounted, the setting of the spectral filter specified in

Equation (65) remains, by definition, intact. The blanket modification factor L is

ascertained as a function of the thickness of the blanket at the same setting that is

established by the procedure that led to Equation (65). Then the center frequency

Wo is fixed either at (Uc/d) or (2ffU /d); the center wavenumber k 0 is either

at (IT/d) or (2n/d), and the center wavenumber k2 0 is at 0, respectively. It is

then possible and convenient to designate parameters and quantities that pertain to

the (+ -) mode of the array by superscript (-) and those that pertain to the (+ +)

mode of the array by superscript (+); e.g., wo = (7Uc/d), w' = (2ffU,/d),

k-0 = (r/d), k+0+ = (27/d), k20 = 0, k20+ = 0, A(wo) = A-(wo), etc. In partic-10 10 20 20 0 0

ular, and from Equation (62), one obtains

L(k 1 0 h hzW) = [R X()0 + Etz(k1 0hXW 0 )] [R(wo)+1-
1 , (66a)

L (k 10hxwo) = [RX(wo) + EtX(kI0 hX,w0 )] [R-(w 0 )+1]
-l , (66b)

L+ kh+ hw+ += R+(W+) + E (k+ h w+)] [R+(w+ (66c)10 0 X o tz 1[Z2+( )+1l ] - ,

It is noted that the blanket modification factor L and the blanket effectiveness

factor EtZ are now specified with respect to a specific spectral region; here

that region is defined by {k1 0,fl,wo}. [In the (+ -) mode the spectral region
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is defined by {k 0,wo} and in the (+ +) onele by (kl0,0,Wo} It is recalled

that in this paper it is assumed that R(wo) << 1 so that Equation (66) can be

approximated to read

L(k 10h9,Wo) = RX(wo) + EtX(k1 0 hX, 0o ) ; R(wo ) << 1 (67)

Ct(kh£,Wo) = S'(h'o)/S'(0) (68a)

(W + CtX(k 1 0h£,wo) = S(hv0 )/S(o) , (68b)

where

Sv(h') =

S dk exp{-2h'j(K2o-1)1/2 } Wo (k,wo) U[k-(w/e )] (klWO (D2(k2,Wo) (69a)

S(h° = dk expt-2ho(K2 -iP1/21 W (k,wo) 4 (k ,wo) D (k2' ) , (69b)
z -. X vo oa- o 2 2) 0

h (hW/c ; KVo = (kc /W) (69c)

R (w0 ) = Ra (W) + R P(w) + t (W t(W) , (70a)

Bt (Wo) = Bt(W 0 )/At(w o ) << 1 if U << cu , (70b)

Ra (o) = Aa(o ) Wsl(o/cV ) W p (W o/C v )  ; Aa(Wo) << I, (70c)

R (" ) = Ap (W ) W (W OC p ) W p (Wo c) ; 7 p(W o ) << I (70d)
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The inequalities in Equations (70c) and (70d) imply that adequate and successful

noise control procedures were applied to the water tunnel in which the cperiment

was performed. From Equations (67) through (70), one obtains

L(k 1 0h ,W) = Ra(Wo) + Rp (W ) + Atk(o 0 t(Wo )

+ AtX(o) C t(k 1 0 h)oW 0 ) " (71)

Equation (71) is the basic equation for designing a proper experiment, acquiring

meaningful data, and interpreting that data. Significant progress can be achieved

with this equation if the wavevector factor Ct. is estimated so that at least one

of the two factors in the blanket effectiveness factor is available. That this

factor can be computed in some detail is evident from Equation (68). At this

stage, however, it may be useful to try to evaluate this factor even approxi-

mately. This would not only prepare the groundwork for such computations, but

would also lead to understanding the significance of such evaluations without the

clutter that usually accompanies extensive computations. In that spirit, a mean

value estimate [61 is applied to Equation (69a). The application yields

Ct (k1 0hw 0 ) = exp(-2bk 10hd ;A = (Ati/At) " (72)

One may argue that, grossly, b is a constant of the order of unity, b = 1. [Compu-

tations using Equation (68) and the spectral density stated in Equation (41) seem

to support this argument.] Then from Equations (66) and (68), one obtains

L(k 1 0 h9 0  Ra(W ) + Rp (W ) + A t (W) t(W 0 )

+ AtzoW0 ) exp(-2k1 0h )" (73)
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The meanings and interpretations of Equation (73) are depicted graphically in Fig-

ures 12 and 13.

It is observed that analytical estimates can be made of the employment of

spectral filters to investigate the effectiveness of a blanket to inhibit spectral

components in a turbulent boundary layer from reaching the boundary that the blanket

covers. Such analytical estimates can be used in turn to design proper experimental

setups and procedures, to decide the manner and extent of data acquisition, and to

assist with the interpretation of the data. The analytical estimates represented in

Equatin (73), however, do more than that. The various limitations, conditions, and

assumptions that were laid down in order to reach the equation may be used to

advantage not only to explain idiosyncracies and controversies in the data, but also

the measures that may be taken to resolve them. Thus, one may, within the formalism

developed here, attempt to resolve such questions as: how important are deviations

from stationarity; how essential are the impositions that the boundary is of uni-

form impedance; and what are the implications if the blanket is not ideal [71? The

answers to such questions lie outside the scope of this paper, but not outside the

scope of the formalism that is developed herein.

It would be uiseful now to try to match data with the formalism. However,

before making an attempt to cast the limited available data in the format pre-

scribed by the analysis performed in this paper, it is in order to peruse and esti-

mate the wavevector factor ti in the more elaborate, if not the more realistic,

form specified in Equation (68).

VIii. TYPICAL EVAI.11ATION OF THE WAVEVECTOR FACTOR C AS A FINCTION
OF THE NORMAIIZED THICKNESS OF THE BLANKET

A mean value estimate was applied to Epiation (6 9 a) to obtain the estimates

for the blanket modification factor I, stated in Equation (73) I]. The graphical
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interpretations of Equation (73) are depicted in Figures 12 and 13. To validate the

range and nature of these estimates it is useful to perform the double integration

and obtain the wavevector effectiveness factor Ctz directly of Equations (68) and

(69). In spite of the simplification in the integrand obtained by the rough and

gross approximations to the explicit nature of the functions involved thereof,

numerical integration is nonetheless mandatory. To render the computational pro-

cedure easier, the factor [Bt + CEt] is evaluated rather than the factor Ct."

Equations (47) through (49) are used for the filtering action factors of the array,

and Equations (4 1a) through (41f) are used for the spectral density of the turbu-

lent boundary layer. The results of the calculations are presented in Figure 14

for several values of the constant (a) in Equation (41d). The curves in Figure 14

correspond to those in Figures 12 and 13 [evaluated from Equation (73)] with

Ra = Rp = 0. The essential characteristics of Ctz [or Bt + EtzI in Figure 14 are

seen to be commensurate with those of Figures 12 and 13. In particular, the wave-

vector effectiveness factor CtX exhibits exponential variations in k 1 0h, until a

limit is reached where substantially no further dependence on k 1 0 hk occurs in

[9t + tq,; [Et + Zt, ] saturates at a certain level as k 1 0 h9 increases beyond a

certain value. It is apparent in Figure 14 that the saturation level and the value

of k 1 0hk at which saturation commences, are different for the (+ +) mode and the

(+ -) mode of operation of the array. This feature was observed and discussed ear-

lier with respect to Figures 12 and 13. A difference of note between the correspond-

ing curves in Figures 12 and 13 and Figure 14 relates to the more abrupt transition

to saturation in the former than than in the latter; Equation (73) tends to exag-

gerate the transition to saturation of the factor lk + Zt£ ] " Tt is, therefore,

concluded that, by and large the approximation in the derivation of Equation (73)

and the salient features exhibited in Figures 12 and 13 are analytically viable

representations.
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IX. DESCRIPTION OF THE EXPERIMENT AND DATA

The experiments were performed in a quiet, blowdown, water facility at I)TNSRDC.

A schematic of the facility is shown in Figure 15. Water flows from the head tank

through a 12-inch inside diameter pipe, a gate valve, a settling tank, a hall valve,

and a 3-inch inside diameter test pipe. The flow exits underwater in a large

receiving tank. All parts of the system from the head tank to the ball valve are

heavy gauge steel and are mounted rigidly to steel or concrete bases. The test

pipe is constructed of transparant Butyrate plastic with a 0.216-inch wall thick-

ness. The test pipe is rigidly fixed and mechanically damped with sandbags along

Its length. The test section is 100 pipe diameters from the ball valve, ensuring

fully developed turbulent flow. All joints are carefully aligned and the gate and

ball valves were reworked to ensure smooth flow through them. Indeed, the hall

valve required extensive modification and reworking to ensure a good internal

alignment. Improper alignment usually results in the occurrence of cavitation

at the higher water speeds. Such conditions did not occur during the experiment.

The head tank can he supercharged with compressed air or evacuated. This results

In a large range of mean flow speeds, up to about 60 ft/sec. Water speed can be

measured by inference from pressure drop data or directly using an clectroma!netic

flowmeter. Water speed can be held constant to less than 1 percent of the desired

speed, except when running only under gravity forces. Typical operation after

filling the system Is to supercharge the head tank to the desired pressure, open

the pneumatically operated gate valve, wait a few moment; for any r, Snult j :>.

or vihration to settle down, then open the pneumatically operated hall valve.

Wtor c peefd remains constant for about 1 to 5 minutes, depeindin g on the, peed

'rro are no external noise sources, such as pumps, operat ing, dlr in,. ruin, ni,.,

the (,nt intltn-11lv fed compressed air passes through a large muffler vstem pri or



to entering the head tank. Background noise is usually the electronic noise of

the miniature pressure transducers commonly employed in the measurements.

Figure 16 illustrates the test section employed in the present experiment.

In order to ensure that the inside diameter remained constant for differing

blanket thicknesses, individual brass test sections were constructed for each

thickness. The test sections were 24-inches long with natural rubber of the

desired thickness vulcanized to the interior. For the results reported here, two

blanket thicknesses were used, 0.25 inches and 0.50 inches. A mounting slot was

cut into the test sections to allow two specially constructed linear wavevector

filter arrays to be mounted with their sensitive surfaces touching the inner side

of the blankets in the plane of the inner boundary. Both wavevector filters were

linear and constructed with 12 pressure sensing elements with a transverse dimension

of y2d = 0.250 inches. One had elements the widths of which were y1d = 0.150

inches, while the other had elements the widths of which were y Id = 0.060 inches

in the flow direction. In each case, the center-to-center separation distance d

was set so that Y, = 2/3. This setting eliminates the response peak at k 0 = 3t/d

in the (+ -) mode.

Data were obtained at a number of mean flow speeds from 15 to 60 ft/sec with

each of the two test sections and each of the two wavevector filter arrays. The

data were amplified and recorded on magnetic tape. The signals were analyzed by

passing all 12 channels of data into a specially constructed sum and difference

instrument. The signals could then be simultaneously summed together in phase,

(+ +) mode, or alternatively out of phase, (+ -) mode. This provided primary

wavenumber response bands at k+ = 0 and at k+ = 21/d for the (+ +) mode andwaeubr epnebad 1tk0 10

at k- = fud for the (+ -) mode. At each speed with no blanket in place, the data
10

showed a clear peak where the response hands centered at k+  2iu/d and k- I/d
10 io
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were coincident with the convective part of the pressure field [where k kt',

With the blankets in place, the peaks at these frequencies were dramati '-liv rdICd.

The average reduction in the peaks at each speed was taken as the measure cf the

wavevector modification factor L as a function of the normalized blanket thickness

k 1 h. The preliminary results of the experiment with the ahove two blan1ket

thicknesses are plotted in Figure 17. The trends of Figures 12 and 13 are evident

In the data. The modification factor L is seen to decrease exponentially as k10hk

increases and then saturates as k1 0 hX increases beyond a certain value. This is

seen to occur for both modes of operation. However, it is seen that L saturates

sooner in the (+ +) mode than in the (+ -) mode. This is in agreement with the

analytical development discussed in this paper. Values of Ra and Rp were not

obtained, however, so that it is not possible to say with certainty whether the

saturation is due to such extraneous sources or naturally due to the low wavenumber

part of the pressure field in a turbulent boundary layer. An interesting aspect

of the data occurs near k 10hx + 0. A line through the data does not extrapolate

to zero. Rather, it extrapolates to an intercept off zero commensuraite with

Figures 12e, 12d, 13 c, and 13d. The intercepts In Figures 12c, 12d, 13c, and [3d

were oxplained on the basis that the strength oAP(wo6*/Uc) of the spectr.al drisitv

in i turbulent boundary layer may change if the turbulent boundarv 1aver is formed

,)n a boundary of a blanketed surface as compared with that on ai hounfryd.v f 3 br,,

surface. The data presented herein is consistent with such tit orpr,.t -it i ,i ,ti

in.di rates that an increase of about 10 dB may take place in , -..

the prescribed change in the boundary. It is noted that sulch i 7 - i-;, Iii-ii t

the effectiveness of the blanket bv a corresponding amonnt. Yhi.t !-7 t !i 6 I t i1,t,.--

se'nted in Fture 17 is persistent and general] y reprodiicibl, , rcv ia , t i_

t-urrher anal vs is of the records taken In this experiment iq pfnj in :. 1 t 1 1 1
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be advantageous to acquire data in other experimental situations. Such examination

would be helpful in attempting to further explore the true effectiveness of a

blanket. It is hoped that the analytical tool developed in this paper may assist

with the further analysis of the data already acquired and with the design of exper-

iments in which fresh data could be meaningfully acquired.

X. REMARKS

I. Rumor has it, and fragmented theoretical and experimental evidence support

it, that the nature of turbulent boundary layers may be dependent on the nature of

the surfaces on which they form, even if the surfaces are hydraulically smooth;

e.g., the nature of a turbulent boundary layer that forms on a rigid surface may be

different from that which forms on a surface that is not rigid. In particular, the

nature of a turbulent boundary layer that forms on a bare surface may be different

from that which forms on the top surface of a blanket that covers the bare surface.

The nature of a turbulent boundary layer is defined herein in terms of the function

Dt(k,w) which is assumed to be composed of three factors, as stated in Equa-

tion (41). Differences in the nature of turbulent boundary layers may involve

either any one, any pair, or all three factors; no a priori specification for the

differences is presently available.

The chief concern in this paper is the determination of the blanket effective-

ness factor EtX. Subsequently, it is shown that the experimental procedure is such

that the factor is ascertained largely at the localized and specific spectral range;

that range is defined by a major acceptance region in the filtering action of a

spectral filter. It is assumed in this paper that the blanket effectiveness factor

F t is factorable into two parts At. and Ctk ; Etj = AtZ CtX" The first

factor is assumed to be associated with the strength and frequency distribution nf

the spectral density of the pressure field in a turbulent boundary layer, and the
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second factor is assumed to be associated with the wavevector dintribution of this

spectral density. A blanket is commonly assumed to he a waivovctor fi itr in that

it inhibits spectral components from reaching the houndarv it cvors 2onrdilng to

the component's wavevector designation rather than its frequency designation. In

that sense it is specified that C is less than unity. Vlowever, implicit in

this statement is the assumption that the wavevector distribution in the turbulent

boundary layer remains substantially intact when it forms on the surface of the

blanket rather than on the boundary that the blanket covers. Indeed, it is assumed

that if a change occurs it is due to a change in the strength of the pressure

field and not even in the frequency distribution in the turbulent boundary layer.

In that sense it is specified that AtX may change and that the change may

occur either way, or not at all; either Atz > I, Atk < I or At 1 " 1. It is

recognized that efforts and attempts are being made to cause changes in the nature

of a turbulent boundary layer by introducing specific surfaces over which the

turbulent boundary layers are to form. [Some aspects of such introductions were

discussed in a recent Drag Reduction Symposium, September 13-17, 1982, held at the

National Academy of Sciences, Washington, D.C.] Programs that support the efforts

are directly related to the subject of this paper on the basis of both the analvti-

cat and experimental endeavors. Thus, for example, a blanket desi ner would bene-

fit greatly if he knew how to manufacture a blanket that would not oulv he offec-

tive in decreasing Ct but also in decreasing substantially the value of Atz*

2. Subsequently it is argued that for the (I -) mode - i (, ,) nnd

W W + (2rUlt/c d), for the (+ -) mode o + o - (IF /d) and W W /c ),
p p c a c o1 C p

and II Q . Thus if one imposes that the flow is hi hlv suhsorii with respf'ct to

th spoed c so that (NUc/Cc) <Q r, then it follows from lMunti on () that
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(irU c )cQ 2K< 1 if N is even

M-2 << 1if Nis odd

Thus, if (U /C ) is of the order cf 10- and assuming that A +(w + )w

one may conclude that

10- if N is even

[R-(-)/R(w+2

(N)- if N is odd
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