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Abstract

Regular meshes are frequently used for modeling physical phenomena on both serial
and parallel computers. One advantage of regular meshes is that efficient discretization
schemes can be implemented in a straightforward manner. However, geometrically-
complex objects, such as aircraft, cannot be easily described using a single regular mesh.
Multiple interacting regular meshes are frequently used to describe complex geometries.
Eac'" mesh models a subregion of the physical domain. The meshes, or subdomains,
can be processed in parallel, with periodic updates carried out to move information
between the coupled meshes. In many cases, there are a relatively small number (one
to a few dozen) subdomains, so that each subdomain may also be partitioned among
several processors.

We outline a composite run-time/compile-time approach for supporting these prob-
lenis efficiently on distributed-memory machines. This paper describes these methods
in the context of a multiblock fluid dynamics problem developed at the NASA Langley
Research Center.

°This work was supported by the National Aeronautics and Space Administration under NASA contract
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1 Introduction

We are developing methods for porting programs with irregularly coupled regular meshes

(ICRMs) commonly known as multiblock applications, to distributed-memory parallel com-

puters. In order to ensure that our techniques are applicable to real-world problems, we

have begun our research with a specific multiblock problem from the domain of computa-

tional fluid dynamics. Although our initial focus was multiblock CFD, we aim to produce

methods that are applicable to all parallel codes that meet the following criteria:

" The data is divided into several interacting regions (typically called subdomains).

" 'I here exists a computational phase in which work on each subdomain can be carried

out independently.

" Data access patterns within each subdomain are regular.

* Communication between subdomains is limited to rectangular sections of data that

are exchanged between subdomains.

In many problems there are at most a few dozen subdomains of varying sizes. We can as-

sunie that we will have to assign at least some of the subdomains to multiple processors, we

must consequently be prepared to (leal with multiple levels of parallelism in ICIR codes. A

model of an ICRM application is shown in Figure 1. Typically ICRM applications have two

levels of parallelism available. A coarse-grained parallelism is available for processing the

subdomains concurrently. Each subdomain is a self-contained computation region that can,

except for boundary conditions, be operated upon independently of the other subdomains.

In addition, the cornputation for individual subdomains has fine-grain parallelism availa)le.

In order to achieve efficient execution of ICRNI applications on (list rihuted-memory iulti-

conput ers, both levels of parallelisn inust be exploited. Applying coarse-grained parallelismn



ICRM
(coarse-grain parallelism
irregular communication)

Subdomain Subdomain(fine grain parallelism
regular communication)

[ Subdomain 1" Subdomain

Figure 1: ICRM Application Model

will help to keep communication overhead to a manageable fraction of the computation time.

However, since the number of subdomains is relatively small, particularly when compared

to the number of processing elements in current distributed-memory multicomputers, the

coarse-grained parallelism between subdomains will not provide sufficient parallel activity

to keep all processors busy. The fine-grained parallelism within each subdomain must be

used to fill this gap.

The methods we are developing to support ICRM applications are semi-automatic and

include both compile-time and runtime support for partitioning and communication. We

have developed and benchmarked on the Intel iPSC/860 the runtime support required to

carry out the required patterns of interprocessor data motion. We have also developed a very

rudimentary compiler prototype to embed this runtime support. The compiler produces,

as output. Fortran 77 code that can be compiled and run on a distributed-memory parallel

computer. This compiler prototype was built to experimentally define what will be needed

to effectively support I(IRNI computations.

2



Our ultimate goal in this work is to provide language-level support for ICRMs in a

general-purpose parallel language like Fortran D[FHK+90]. We concentrate here on de-

scribing the functionality that must be added to such a language to handle ICRMs, and

implementation techniques that efficiently support that functionality. In the course of our

work, we have defined extensions to Fortran D that are useful for these problems; these are

a means to an end, not the final product. Although we strongly believe that the functions

provided by these new features will be critical for ICRM support, we believe that further

work is needed to define appropriate syntax. We are currently collaborating with Rice to

develop Fortran D extensions which capture the functionality we describe in this paper.

1.1 Problem Overview

The application we investigated is a problem from the domain of computational fluid dy-

namics. The serial code was developed by V. Vasta at the NASA Langley Research Center,

and solves the thin-layer Navier-Stokes equations for a fluid flow over a three-dimensional

surface with complex geometry. The problem geometry is decomposed into between one and

a few dozen distinct regions, each of which is modeled with a regular, three-dimensional,

rectangular grid. TI.e boundary conditions of each region are enforced by simulating any

of several situations including; viscous and inviscid walls, symmetry planes, extrapolation

conditions, and interaction with an adjacent region. The size of each region (hereafter sub-

domain), its boundary conditions and adjacency information are loaded into the program

at run time. For this application, the same program is run on all subdomains. However,

different subrouwines will be executed when applying the boundary conditions on different

subdomains. In general, the code used to process each subdomain of an ICRM application

inay hc ,ifferent.

The se(uence of activity for this program is as follows:
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Read subdomain sizes, boundary conditions and simulation parameters,

Repeat (typically large number of times):

A. Apply boundary conditions to all subdomnains,

13. C'arry out computations on each subdomain.

The main body of thle prograin consists of an outer sequential loop, and two inner parallel

loops. Eachi of thle inner loops iterate over the subdomains of the problem, the first applying

boundary condijtions (Step A), which may involve interaction with other subdomains, and

thle second loop adlvancing the physical simulation one time step In each subdomnain (Step B).

P~artitioning of the lparallel loops is the source of the coarse-grained parallelism for the

appllication. Furthermore, within each iteration of the loop that implements Step B there

is Fine-grainied parallelism available in the form of large parallel loops.

1.2 Compiler Overview

Tlo inivestigalte the extent to which ICRM applicationis can automatically be transformed

for execuit ion on a (list ri 1~uted -memnory m tilt icom puter, we designed a rudimentary compiler

geared toward applying the specific set of transformations required by ICRNs. The com-

piler is built using the Signia Toolkit (GLS+911, which provides dependency and dataflow

nasi.Sigmia also p~rovidles a framework for applying transformations to programs and

includes support for common dialects of Fortran. C and C++. As the main focus of the

('olipiler was K101 N applications, a numnber of important Compiler functions were not !III-

plernented . Hat her than duiplicate the efforts of ongoing or existing dist ribut edl-memiory

('01TW1 pihro~ject s. sucli as Fort ran n1) ~lI I.Super) [ZIIG86] [GerS9I. aind AL [Tse9OJ.

%0601 hav lllvvst iogat eti in of 1I~ I'e ld anintal 'Issues in dIi;ii~ist ribut d-meory. comnpiliig.

wi I ex ponriuerut a cotiplier nises t ccliiiiqules wit cli are coin plenictnta ry to t hiese W Ien aj)



Table 1: Compiler Transformations

Parallelism Communication
Between Subdomains Owner computes Subarray Exchanges

loop bounds replaced replace copies of
with function calls regular array sections

with procedure calls

Within a Subdomain Owner computes Overlap Cells
loop bounds replaced size of overlap determined
with function calls at compile time

procedure calls embedded
to implement communication

proaches; applying specific transformations to those sections of the program that exhibit

(haracteristic ICRM behavior.

The transformations performed by the compiler can be organized into four general cate-

gories, as shown in Table 1. The basic responsibilities of the compiler for ICRM applications

are to handle the coarse grain parallelism between subdomains, the fine grain parallelism

within a subdomain, and to ensure that the required communication takes place for both

levels of parallelism. As our principal objectives were to determine the level of functional-

ity required to handle ICRM applications, and to establish the potential for a compiler to

automatically transform annotated ICRM programs for distributed-memory environments,

the major focus of the compiler is to embed procedure calls to the enhanced PARTI runtime

library.

Our transformations introduce both fine and coarse-grained parallelism into the program

bY enforcing the ou,ncr computes rule. Communication within a subdomain is implemented

using overlap cells, utilizing both comlpile-tinle and runtime components. Communication

between siubdomains is provided thirougih runtime support for exchanging regular array

sections. lProcv(,ire calls to perform the data motion are inserted into the program by tho



corn piler.

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, the directives we use

in the annotated version of the program are explained. Section 3 outlines the runtime

library. Section -1 describes the parallelization of the computation for individual subdomains.

In Section 5 we describe the techniques we developed for achieving parallel execution of

niult il e subdoi ains.

2 Fortran Directives

As part of our investigation into ICRNI applications, we have identified the functionality

needed to express data layout and organization on the processors. Integration of this func-

tionality into the Fortran 1) language is currently underway. As a preliminary step. we

have defined an experimental syntax for expressing this functionality in Fortran programs,

and used this syntax to test our support for ICRMs. Although we feel that the expressive

content of our directives is necessary for ICRM applications, the directives themselves are

experirnental, andi unlikely to be adopted for implementation in Fortran D.

2.1 Subdomain Placement

The binding of subdornains to processors has important performance implications. Load

balance plays a crucial role in determining computational efficiency. Since the amount

of cornputation associated with each subdoinain is directly proportional to tlb, number

of elements in the subdomain. good load balancing is achieved by binding processors to

s;ihdornains in a ratio proportional to their sizes. In our iniplenent at ion. this na pplrig is

Ti ,dor iiser control and is specified using prograin directives.

l'he principal athstracti ,i for dealing with data placemnent is le dtroinpositir. Hlow-
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ever, unlike Fortran D, where decompositions are bound to the entire processor set, we map

decompositions to subsets of the processors. The mechanism for specifying this arrangement

is a directive called embed. The embed directive binds a decomposition to a rectangular sub-

region of another decomposition. Any number of decompositions may be embedded into a

single root decomposition. The root decomposition is mapped onto the entire set of physical

processors. Embedded decompositions are mapped onto subsets of these processors based

on the relative size, and location of the subregion in the root decomposition to which they

are bound. This methodology can easily be extended recursively to support an arbitrary

sequence of embeddings, although for most ICRM applications we are aware of, a two level

decomposition hierarchy appears to be sufficient. The root level establishes a template onto

which each subdomain can be mapped.

For the Navier-Stokes application, we use a one-dimensional decomposition for the root

level, and embed 3-dimensional subdomains into it. For example, if two subdomains, one of

size 10 x 10 x 10 and the other 5 x 5 x 10 were to be mapped onto the physical processing

resource, a root-level decomposition of size 1,250 would be used. The first subdomain would

be embedded into locations 1 through 1000 of this decomposition. and the second subdomain

into locations 1001 through 1250. To clarify the distinction between the declaration of a

decomposition and the specification of its size (which may be runtime dependent), we use

two directives, decomposition and shape, to provide the same functionality as Fortran D's

decomposition. This semantic partitioning allows us to conveniently declare an array of

decompositions to hold the set of subdomains. The dimensionality and size of each of the

decolupositions in this array is determine(] dynamically by the shapc directive. Although, in

this example. the sizes are constants, in general, for an ICR\I application, the subdomain

sizes are not known until runtime.



2.2 Distributing Array Data

In our implementation, the arrays that make up each subdomain are distributed using the

lortran 1) alignl directive. However, since the number of subdomains, and their sizes, are

not known until runtime, we allocate space using a single, one-dimensional work array. To

make it possible to allocate space for multiple decompositions (or multiple elements of an

array of decompositions) using a single work array, the align directive was extended to allow

array reshaping. Our implementation of align supports the arbitrary reshaping of a region

of nitiemory into multidimensional, distributed arrays.

3 Run Time Support

The runtine support contains a number of PARTI procedures which carry out the book-

keeping needed to track the distributed arrays that describe ICRM problems. This runtime

support is a generalized version of the runtime support described in [BSS91]. The major

fnictions in the runtime library are listed in Table 2.

There are two principal data structures that are created and maintained in the runtime

library. These data structures are distributed array descriptors, and communication schcd-

.. The distributed array descriptor is a data structure that tracks a variety of attributes

associated with each distributed array, including:

* array (liniensionality and size.

" the n,,tber of overlap cells (see Section 4) in each dimension,

Sarray (list ribution in each dimension, and

" the set of processors to which the distributed array is mapped.

(,)Iuuioucation schedulies are (tata strictiures that (escritbe how a specific data transfer is

to)4, cperfOrmd including:



Table 2: Runtime Library

Distribution Declarations
create-decomposition instantiates a decomposition
embed maps decompositions to processors
(listribute establishes distribution pattern

for decompositions
align binds arrays to decompositions

creates distributed array descriptor
records overlap region sizes

Communication Primitives
exchsched makes schedule for overlap regions
subarraysched makes schedule for subarray exchange

dlatamove executes a schedule (communicates data)

" individual send and receive lists on each processor, and

" data access patterns for moving data between arrays and message buffers.

The communication schc(lule, or schedule, allows us to implement data motion as a two-

phase process. ('ommonly known as Inspector/Executor, this methodology uses a prepro-

cessing stage to determine the set of low-level communications primitives which must be

used to transfer the data. A second stage then implements the data communication. This

mechanism has been applied to irregular problems in the PARTI system [SCMB90]. and to

both regular and irregular problems as part of the maparray construct in Paragon [CCRS91].

Table 2 is organized into two components. The upper section of the table shows the

primitives used to define the distibution of array data. The lower section lists the primitives

used to perform data corn . nication. These primitives can be used directly to )prograin

('RNI applications. or can t)e embedded into the program automatically.

The procedure create-decomposition defines a, new (]ecomposition with a given di-

menesionalit v and size in each (imension. The procedure embed imnplenirts tiIe ( mh d

directive (see Section 2.1) anD(I constrains the set of processors associated with a decomn-
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position. A decomposition that has not been embedded into another decomposition is, by

default, mapped to all processors.

The distribute procedure defines the type of distribution for each dimension of a de-

composition (e.g. BLOCK, CYCLIC or IRREGULAR) and is used to implement the

Fortran D distribute directive.

The align proced'aro implements the align directive and is used to associate arrays with

decormpositions and to create distributed array descriptors. The compiler determines the

number of overlap cells for each array dimension and passes this information to align.

Align writes the distributed array descriptor into a hash table, organized by array starting

address. Using the hash table allows arrays to be passed as parameters between subroutines,

transparently inheriting the distribution information from the calling procedure. Alterna-

tively,. the distribution data can, in some cases, be traced interprocedurally at compile time.

Ifiranandani ct al define a process known as reaching decompositions which can be used to

analyze array distribution both intra and inter procedurally (HKT91].

The communication primitives include a procedure exchsched which computes a sched-

ule that is used to direct the filling of overlap cells along a given dimension of a distributed

array. The schedule specifies required intra-processor data copying along with a set of send

and receive calls.

The primitive subarraysched carries out the preprocessing required to copy the con-

tents of a regular section, source, in one subdomain into a regular section, destination,

in another subdomain. The interactions between subdomains for ICRM applications are

limited to the exchange of regular subsections, as illustrated in Figure 2. The subar-

raysehed primitive supports data moves between arbitrary rectangular sections of two

subdom a ins, an1( can transpose the data along any dimnension. Subarraysched c-an also

copy the contents of a regular section in a given subdomain into another regular section

1 0
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do k=~kix
do j I jnix
do iIiix

(is =(skx(i,,j,k) + sky(ij,k) +
skz( i.j,k ))/ra

ra = 05-*(w( i,j,k± I) + w(ij,k))
his(i,k) = q* ra
ra .5*(w(i.j+1,k) + x(i,j+1,k))
as(ij,k) =:(1*ra
ra -0. 5*(Nv~(i± l,k) + w(i,j,k))
fs(i,k) = qs*ra

end do
end do
enddo

Figure 3: ELxanipk Code for Sweep Over a Single Subdomain

(.llt l. A tYpical lool) nest, for t his component of an ICRM application is Shown in Figure 3.

'H1001)o nlest is cornputationally intensive, with no loop-carried data dependencies. Be-

cause the communication is regular, this code can lbe efficiently handled by the overlap cell

inetl110( describedI by Gerndt in [Ger9o]. Our compiler transforms this code as follows:

" Overlap cells are determined by scanning every subroutine in the procedure and ac-

cumunilatiing the (data in an interprocedural analysis phase of the compiler. 'When two

sublroutines have dlifferent overlap) cell requirements, the maximum of the two values

is used(. [hie final value for the number of overlap cells for each dimension of everx'

a rrav inulst be a constant.

" Local array sizes are dleterminled dynamically at suibroutine boundaries. The array

sizes aire comnputed! by a function in the run time library, and includes the extra

iiemuorY requlired1 for thle overla p cells.

* L.(ops aIre part it ioned to en 1force the owner compuites ruile w ithin the loop body. For

Ills t ra sfortn ation, the comnpiler identifies an array appearing Onl thle left hand s'Ide
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of an assignment statement for which the loop-index is used as a subscript. This loop

is then partitioned in the same manner as the array. For multidimensional arrays, the

compiler identifies a specific dimension of an array for each loop in the loop nest.

4.1 Performance

Figure -1 shows tie performance obtained while processing a single 64.000 element subdo-

wlain. Figure 5 shows the same data normalized by the number of processors. The data was

collected using an iPSC/860 niulticomputer processing a single 40 x 40 x 40 subdomain. The

timings were made from a single routine which is representative of the computation behav-

ior of the program while processing an individual subdomain. The curve labeled "Actual"

sliows the performance, in megaflops, obtained for a single invocation of the subroutine.

The "'Optimistic" curve shows the performance that results when the time spent comput-

ing t he communication schedules is excluded. Since schedules can be reused, this cost can

be amortized over several invocations of the subroutine. The optimistic curve reflects the

asynlptotic performance for several iterations of this routine.

Tl'hie "Ideal" curve includes only the message-passing time, and excludes the time re-

quired to create communication schedules., and the time spent reorganizing the data. For

a niulti-diniensional array, the elements that must be transferred to fill the overlap cells

will not. in general, be in a contiguous section of memory. To transfer this data between

processors on the iPSC/860, it must be first copied into a local buffer. After transmis-

sion. the data is again reorganized as it is placed into the overlap cells. The "Ideal" curve

excludes the time spent packing and unpacking data. Since communication is always re-

quired for a (listributed-memory implementation, this curve demonstrates the maximum

possible perforniance for this loop given the bandwidth and communication latencies of the

ilPSC/860.

1:3
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Figure- -1: iPISC/86O Single-Subdomain Pecrformance

Tilec curve labeled "C'omrmunication- free" shows the computation rate obtained when no

communinication takes place. As the partition size on each processor decreases, the compu-

I ai on rate oil each tto(Ie, also dlecreases. This effect is attributable to the increased relative

cost of l0o[p overh~ead and1 pipeline set up time. This curve demonstrates that even when

coinmnun ication effects are excluded, a large grain size will result itt better overall perfor-

inance. This data indicates thle upper bound onl the performance imposed by the application

programi codle -01(1 the if77 compliler.

5 Supporting Multiple Subdomains

An important characteristic of ICRNI applications is the relative independence of the sub-

dornlai ns. Mu ich of thle conmput ation for a subdlomal n can be performed in parallel wit 1

tHie processing of other su l)(oinaius. .As Figure 5 illustrates. there is a. potcntial for much
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higher overall performance by partitioning tile set of processors, and binding a relatively

small number of processors to each subdomain. The cost of this approach is periodic syn-

chronization between those subdomains which must exchange data.

5.1 Inter-Subdomain Communication

Although the processing of individual subdomains exhibits regular communication, inter-

action between subdomains is irregular. An illustration of the sort of communication that

is required is shown in Figure 6. The figure shows two subdomains, one which models the

airflow around a wing and another which models the region around a control surface on the

wing. In this problem, there are two boundary conditions which require inter-subdomain

commnnunication. These boundary conditions consist of segments along exterior edges of the

grids that, in the problem geometry, are adjacent. Although the sections are rectangular,

the beginning and ending points of the sections are not determined until runtime. In gen-

eral, the adjacency information for an ICRM is problem specific, and not determined until

runtinie. lowever, an efficient implementation should be able to take advantage of the fact

that communication is limited to the exchange of rectangular sections of data.

Transforming an ICRM application to efficiently handle this type of data communication

begins by identifying those locations ,n the program which require data transfer between

subdornains. Our implementation recognizes code that performs regular data moves between

arrays bv simple symbolic analysis of array subscripts and checking the dataflow pattern

in loop bodies. When the compiler detects that a regular section of an array is being

transferred into another array, it removes the assignment statements from the loop body

and inserts procedure (ails to implement the data motion. Since the runtime library can

move regular sections of data between subdomains. or within the same subdomain. this

technique is safe for any paral!el loop (i.r. a loop with no loop-carried dependencies).

16
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Figure 6: Data Movement Between Subdomnains



Table 3: Int r-Subdomain Communication
Processors Transfer Scheduling Total

4 1 Ims 32ms 43ms
8 6.3ms 32ms 39ms
16 4.5ms 28ms 33ms
32 2.5ms 25ms 28ms

5.2 Performance

We applied our methodology for inter-subdomain data transfers to a sim plified version of the

Navier-Stokes application and benchmarked the resulting code on the iPSC/860. Table 3

shows the time required to communicate data between two 40 x 40 x 40 subdomains for

different processor sizes. Each subdomain is placed on half of the processors, and one 40 x 40

face is transferred from subdomain 1 to subdomain 2. The column labeled "Transfer" gives

the time required to actually transfer the data. The "Scheduling" column shows the time

required to compute the communication schedules. Since communication schedules can be

reused several times, the asymptotic performance is the data transfer rate.

As a point of reference, the time required to complete one iteration of the subroutine

benclhmarked in Section 4.1 was on the order of a few hundred milliseconds, ranging from

230ms on :12 processors to 760ms for 4 processors. The inter-subdomain communication

time is an order of magnitude less than the computation time for each iteration and is not

an impediment to processing multiple subdomains in parallel.

5.3 Partitioning for Coarse-Grain Parallelism

The parallelism between subdomains can be obtained by introducing partitioning at sev-

eral levels in the program. Our implementation is based on introducing partitioning at a

relatively low level. Wilh the exception of standard library routines, such as sqrt, sub-

routine calls are run on every processor. Within a subroutine, loops are partitioned to

18



iii irr-or thle arta\y (i.,t rilyort on. 'I" ileskrilbed ill Section .1. This loop) partitioning results ill

lll' exeilt iii of' thle tool) oil ll] jiocss01'5 bound1 to thle siil)(oiiiaiii. lIn addlitin iO H

ii 1"rml it p ro 'si hg of' iniiipie subIdoini s also develop)s, as processors 1w pass thle loops

"hiill itAte" over ii-ltial siihdoriia-iis. Thjis met hod is quiite effective at ext ract iig thle

tiiiie-raiiiilpa;diia ileli ava1ila1ble iii the Navier-Stokes iipllicationh lbecauise of the large

amiiiiiit of, comfpuitationi Withli eicl sldlilairi. Siiice a typical loop1 over all inidividuial

.j1!doiiiaiii reyIlitsm several t ens or perlial~s luiiii ds of inilliecoids mi thle i PS(Y'/60(. thle

"verliead ilocialed Wit Ii siibroii line calls and~ rnntinie tests to (heck locality is iisigtiificanit.

Ouiir si raig lit f orwa rd a pproach is safe. amid will result iii correct execu tioni onl dist ributted-

iieiiOrY Hiliutcoiiiput ers. lbit it is iiot especally aggressive. More sophist icaled techmiiqus

iiiV be re(Juiitel tomiext r~ thle coarse-grainved paraleli iii programis withI mny. relat ively

sniall siihdoianai. 'Ihe loop in [igmre 7 shows a siiplifiel version of one( of thle nmain loops

f'or thle Navier-StoKes applo at i. Thiis loop) iterates over it set of mieshies ( sul)(oniains ) in

seqiieiico. [or each iiiesli thIiree stibrolit inie' are called. [Ilie, paramieters to tie sublroutjnes

art, a sei'tioit of t li array X. anid thle sies fOr each dimenlsion of thle cuirretnt imesh. As

,.*aifl S'ctioi 2.2, at single. onie-dimienisionial splace aij~, ;.;; iuscd to hold] the (laia

I'.all stibdoniiaills. lIn our ituleimietitathio. every processor vxeo' sm th iis loop serially.

a ndleettI every so brouiitite call. [For anY given subldomiaitl. in, some hpro('ess~rs Will

part icip~ate iti thle coniputtat ion of the shmut ines. anid ot hers will simply fall thlrouigh thle

!o op,: perforiiing rio iteratiomis bePcause tMhY store tionie Of thle elemenits of in.

More effhietit paralheiz i/ti is posal if thle unnecessary suibroutinie calls can be

'lvoiiledil i inidividuial proci'ssors. A conipile-the iet hodology for t his can be based oti

itiprocedimil regular section atialyvs. By performting regiular sect ion analysis, stuch as

hat described it ll 1K00]. [lll'011 it miay be possible to determiine t hat a regulair region of'

ie( arraly X is accessed %Oh ~jin thle itidividmal sumbrotitines. A'rthr symbolic aVyss can
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do tiI 1. niii!i-diins

cal ravier( X( niesl( tit )). isizfe(ni1), jsizv(m 1). ksize(mi))

call fl itx( X( niesli(in )). isize(i ). jsize( in). ksize(rn))
call solvv( X (nmesli(m)). isize(mi). jsize(mi). ksize(mn))

enddo

subroutine tiavier( N. isz, jsz, ksz)
diinension X(Pszj,..ksz)

end(

Figuire 7: Loop Ox or Sn l)(oinains

lien be a pplied to associate this sect ion of X with the subdoinain to which it has been

aligned] Not e tihat this test nmay require interprocedural analysis since the distribution of

X mlax' have occunrred inl a different sublrout ine from the loop shown in Figure 7. Once the

comipiler has dletermlinedl that each subroutine invocation accesses only a single subdomain.

it may partition the tool) according to which subdornains are local.

.\nt alternative approach to plartitioning this loop could be based on runtime preprocess-

ngSi rice t loop showvn inl Figure 7 is executed many times as part of an outer sequential

loi p (seve Section 1. I ). the( cost of deternii iiing the loop partitioning at runtimne wvill likely be

im nii6giific ant part of tie( total execution t imne. Hlowever, even with a runtime approach,

SO101 alna1 
MS nmust be performed( to ensure that the partitioning remains valid as this ioop

is reexecnltedl at each iteration of t he outer loop).

Both of thlese approaches require interprocedlural and symbolic analysis that may extend

lie limit of whiat seems reasonable to expect from the current generation of compilers. U~ser

input. [it the form of additional (direct ives. may be required in order to partition loops such as

lie, one( shown in Figure 7. Fuirtlhermnore, since a high-level of coarse-grained parallelism can

b bained l Ia r-e nunmercl -nensive programs e-ven when this loop is executeil

sequent iallY onl all processors. t he rmost effective met hod for extracting the inter-snbdomairi
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parallelism fron I('? NI applications is an open question.

6 Conclusions

We have developed methods for efficiently executing ICRM applications on distributed

memory multicomputers. These applications are an important class of scientific programs

with computational behavior requiring specialized support not available in the current set

of (listribuited-memory compilers. The fundamental aspects of this class of applications that

we have addressed include:

* Identifying the set of functionality to be introduced at the language level for program-

iniig ICRNIs.

" 1)eveloping a methodology for maintaining several interacting subdomains, each dis-

tributed on a subset of the total processors.

" Providing communication support both within a subdomain and between subdomains.

* Identifying the compile-time requirements for embedding the communication support.

and for extracting parallelism (both fine-grained and coarse-grained) from ICRM ap-

plications.

The efficacy of our approach has been verified using a rudimentary compiler which

implements a set of highly specialized program transformations, and embeds procedure

calls to imhplement data motion. A runtime library has been developed for t le ;PSC/,

nulticormput er. This library implements the core set of functionality required by ICRMs.

and has been tested using an applications program developed at the NASA Langley Research

('enter. The comnmunications overhead imposed by the runtime support has been shown to

not be prohilitive to achieving good performance on the iWSC/,60.
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