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Abstract

Micro-Computer Network Architecture for
Range Instrumentation Applications

I oo First, the basic Decentralized Square Root Information Filter (DSRIF) theory was
extended in 2 ways. An expression for the likelihood function in terms of DSRIF variables,
and a method for distributing the prior and process noise statistics over the set of locally
optimal filters were derived.

Next, software developed in Phase I research was upgraded to enable multitarget
tracking within our distributed filtering environment. Outlier detection/rejection, track
initiation, measurement-to-track and track-to-track association routines were encoded and

successfully tested using real MLRS data provided by WSMR.

Finally, MTI conducted experimental work wherein 2 video trackers were built andInetworked with a global processor. Laboratory testing showed that the 2-camera network
could track a variety of objects over the entire laboratory space. Moreover, each tracker
was able to aid the other in acquiring a common target. Field testing of an individual
tracker showed that it could acquire and track objects similar to the SADARM submunition,
and against a cloudy background!I
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Summary

This final report describes results obtained over the entire 24 months of the Phase
II project. First, the basic Decentralized Square Root Information Filter (DSRIF) theory
as described by MTI personnel in a 1985 IEEE Conference Paper was extended in 2 ways.
An expression for the likelihood function in terms of DSRIF variables, and a method for
distributing the prior and process noise statistics over the set of locally optimal filters were
derived.

Next, in support of the Army's efforts to test and evaluate the SADARM
submunition, software developed in Phase I research was upgraded to enable multitarget
tracking within our distributed filtering environment. Outlier detection/rejection, track
initiation, measurement-to-track and track-to-track association routines were encoded and
successfully tested using real MLRS data provided by WSMR. A dual network topology in
which standoff radar and optical instrumentation provide MLRS tracks to a short range
network of video trackers, was formulated. Our thesis is that MLRS tracks will aid the short
range network in acquisition and tracking of the submunitions. Also, MTI worked with
another contractor to finalize the design of a multiprocessor board set for real-time
distributed processing of test range data.

Finally, MTI conducted experimental work wherein 2 video trackers were built and
networked with a global processor. Laboratory testing showed that the 2-camera network
could track a variety of objects over the entire laboratory space. Moreover, each tracker
was able to aid the other in acquiring a common target. Field testing of an individual
tracker showed that it could acquire and track objects similar to the SADARM submunition,
and against a cloudy background! We conclude that this low cost, dual network approach
is highly feasible, and recommend that a follow-on Phase III effort be approved.



I1. Introduction

Over the last several years, the U.S. Army White Sands Missile Range,
Instrumentation Directorate has been involved in the test and evaluation of the Multiple
Launch Rocket System (MLRS) Search and Destroy Armor (SADARM) submunition.
Standoff radar and optical trackers, which are well suited for tracking high speed targets of
considerable extent, at long range and over large distances, have been used to date but with
limited success. Consequently, WSMR has proposed that a new short range instrumentation
system, possibly in conjunction with the existing long range one, be used. We believe that
intemetworking both systems using inexpensive microcomputers is feasible, and this will lead
to a unified tracking system with superior performance. Thus, the focus of our Phase I
research was the development of this "dual network" approach to SADARM test range
tracking.

The outer surface of the submunition is a small cylindrical shell whose diameter,
length and mass are 175 mm, 180 to 205 mm, and 12 to 14 kgm respectively. The shell is
attached to a small parachute which stabilizes the submunition's vertical motion to an almost
constant descent velocity of 70 ft/sec (see figure 1). Downwards looking infrared and
millimeter-wave sensors are mounted to the bottom for detection of armored vehicles, such
as enemy tanks. Also, the entire submunition precesses at a 30 deg angle with respect to
its vertical descent axis. Thus, the sensor's field of view continuously spirals inward as the
submunition approaches ground zero. After detection and firing, the submunition will move
along an almost straight path towards the target.

Up to 6 submunitions can be delivered to the target area aboard a specially designed
rocket, and up to 6 rockets can be launched sequentially in time from a specially designed

I mobile launcher. Thus, up to 42 targets (36 submunitions and 6 rockets) could be airborne
at the same time during the test. Figure 2 portrays a sequence of 9 events which span the
interval of time from rocket launch, through ejection and deployment of the submunitions,
and ending at target impact. The same sequence of events is followed by the remaining 5
rockets.

I To date, WSMR has been successful in tracking the MLRS rockets with their standoff
instrumentation however, the same instrumentation has only been able to track
submunitions in a few instances. A short range tracking system composed of inexpensive
video cameras and radar "hand guns" mounted to 2-axis gimballed platforms under computer
control should be capable of tracking many more submunitions and with far greater
accuracy. This is true especially when the standoff instrumentation is used to track each
rocket and is in communication with the short range network. Our hypothesis is that the
standoff network can detect the submunition expulsion event and that this will aid the short
range network in target acquisition. Rocket tracks generated by the standoff network can
be continuously predicted ahead to expulsion. Then, accurate dynamical models of the
submunition during deployment can be numerically integrated to predicted target acquisition
points for specific short range sensors. Perturbations of the predicted acquisition points,

I2
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caused by wind gusting and other small effects, will determine the minimum field of view
and any small search pattern for each sensor, if necessary. After acquisition, the short range
sensors will follow the submunition until ignition or impact with the ground.

This report is organized in the following way. In the remainder of this section,
project background including a description of the network architecture is provided. Section
2 provides all results of the Phase II research. First, in section 2.1, extensions of our new
theory for distributed filtering are given. In Phase I we derived an extended form of our
Decentralized Square Root Information Filter (DSRIF) and used it to process real MLRS
data provided by WSMR. Phase II extends the theory to allow for evaluation of the
likelihood function in terms of DSRIF variables. The association of measurements from
multiple sensors with tracks from multiple targets is made using the likelihood function as
a metric. That is, correct associations are hypothesized when likelihood function values
exceed a predetermined threshold. Thus, we have developed a new theory for data
association within a distributed filtering environment. Also, a method for distributing the
a priori information over the set of local processors (LPs) is given. This allows each tracker
to generate locally optimal tracks so that good tracking performance is maintained even
when its link with a global processor (GP) is broken.

Next, in section 2.2, a simulation of almost the entire dual network is presented. The
simulation is useful for predicting the actual performance of the combined system, as well
as providing a basis for the real-time software in the actual system. Starting with our
"CODE 2" package developed under Phase I research, the simulation incorporates the
extended theory from section 2.1. The final package contains additional features such as
outlier detection/rejection, measurement-to-measurement association via clustering,
measurement-to-track association via hypothesis testing using the Method of Maximum
Likelihood, and track-to-track association. Thus, the package is based upon traditional
approaches to multitarget multisensor tracking, except that we are recasting these methods
in terms of our DSRIF.

In section 2.3 we discuss our interaction with another company in attempting to
design a specialized processor which will speed up the calculations inherent to the problem
at hand. The processor is being built, and we hope to incorporate it into our prototype
network under future funding.

Finally, in section 2.4 we describe our experimental work wherein 2 video trackers
(without the DSRIF) were built and networked with a global processor. Laboratory testing
showed that the 2-camera network could track a variety of objects over the entire laboratory
space. Moreover, each tracker was able to aid the other in acquiring a common target.
Field testing of an individual tracker showed that it could acquire and track objects similar
to the SADARM submunition, against a cloudy background! In section 3.0 we conclude that
this low cost, dual network approach is highly feasible, and recommend that a follow-on
Phase III effort be approved. Phase III should include incorporation of the DSRIF into the
experiment, and upgrade of the tracker hardware.

5



1.0 Background and Previous Results

From an information perspective, it is reasonable to expect an improvement in
tracking performance to the extent that a priori knowledge is included in the track
estimation process. A priori knowledge about the target dynamics (including its initial
condition) and the amount of uncertainty associated with this knowledge, along with a priori
knowledge about the functioning of the sensor and the errors associated with each
measurement can be used to predict the range, azimuth and elevation of the target into the
future, and fedback to the sensor for much improved tracking performance.

In 1960, R. Kalman first derived a solution to this constrained optimization problem
in which "least squares" estimates (and estimate error uncertainties) of target position,
velocity and acceleration, subject to this a priori information, may be computed recursively.

I The solution was appropriately named the (conventional) "Kalman filter", and since then,
a multitude of papers have been written on this topic. Most notable are its factorized
versions which, unlike Kalman's original formulation, are guaranteed to be numerically

I stable (positive semidefinite estimate error covariances are guaranteed). One such version
is the Square Root Information Filter (SRIF) [1], and more recently its "decentralized" form
[2]. Thus, the Decentralized Square Root Information Filter is a computationally distributed
form of the conventional Kalman filter but is far superior in many ways.

To summarize its operation, for a particular target, each measurement (such as range,
range-rate ...) or group of measurement variables from each tracking sensor may be
processed by a local SRIF, which generates a set of smoothing coefficients as well as a
square root information matrix and information vector. A centralized merge processor
consists of three separate processors which operate in parallel. The first combines the local
smoothing coefficients with the effects of process noise and prior information about the
initial state. The second merges the local square root information matrices and vectors with
output from the first, but only upon demand by the third. The third produces estimates and
covariances whenever desired by back-solving an upper triangular system of equations. An
important observation is that feedback of information from the merge processor to the local
filters is not necessary here. This helps to keep the bandwidth of communication between
the local processors and merge processor from exceeding hardware limitations.

Figure 3 is a block diagram of the algorithm. Notice that the local SRIFs can be
configured free of prior and/or process noise. This enables fast sequential or parallel
testing of different prior and process noise hypotheses in the merge processor, without
having to refilter any of the measurement variables over the short time interval in question.

When our extended form of the DSRIF (the E-DSRIF) is being used, local
processors must upload their set of smoothing coefficients after each time update step but
may upload their square root information matrix and vector after a particular measurement
update step upon demand. The central merge processor in turn downloads the time

6
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updated global state estimate which is needed by the local filter for the relinearization
process. The Extended form uses the actual measurement vectors (and not perturbed
measurements) to estimate the full (and not perturbed) state vector.

An adaptive form of the E-DSRIF wherein the process noise levels were chosen to
be a function of the globally optimal estimate error covariance, was successfully used to
track the same set of real data under contract with the Defense Advanced Research Projects
Agency (DARPA). This simple method for tuning the filter by using a feedback loop to
compute the process noise covariance level, gave exceedingly good results as was shown in
figures J through L of our previous report to DARPA [3] (where all measurement errors
were chosen to be the nominal values used in WSMR Phase 1 [14]).

Since 1960, the Kalman filter in discrete form has been programmed and successfully
used in numerous off-line situations; for example, Applied Physics Lab/Johns Hopkins uses
(a factorized form of) the Kalman filter for post-flight processing of Trident II missile test
flight data. On the other hand, real-time applications of the Kalman filter are virtually non-
existent because of the relatively large amount of computations that are required for most
physical systems. With the arrival of very high speed computing, real-time Kalman filtering
is becoming a reality. One iteration of the filter using simple kinematical motion models
and geometric measurement models typically requires a few thousand floating point
operations. Assuming 10,000 flops as an upper bound, this suggests that data rates on the
order of 100 per second are now achievable using compact megaflop processing!



2. Work Carried Out/Results Obtained

2.0 Dual Network Architecture

Figure 3 suggests that a natural network topology for implementing the DSRIF
equations is a multi-star configuration. In this structure, each network element (defined as
a local processor plus its platform and suite of attached sensors) is connected in parallel to
a centrally located global processor. Figure 4 shows the fine structure of this basic star or
"cluster", which we formally define to be a group of elements assigned to the same tracking
volume. Figure 5 shows the structure of the dual network. Each of the 2 primary networks
is a group of clusters connected in parallel to a centrally located "network processor". In
turn, both network processors can communicate with one another through a "dual network
interface".

The 4 types of processors which reside within the dual network are task specific.
Local processors perform local measurement and time updating in order to arrive at a
locally optimal track for each target within its field of view. They also preprocess the raw
data in order to extract target attributes such as attitude and centroid, and they are
responsible for providing feedback commands to repoint their respective platforms. Global
processors perform global measurement and time updating, as well as data association in
order to arrive at a globally optimal track for each target within its tracking volume. They
also assign elements to targets within their respective volumes. Network processors are
responsible for passing tracks between clusters when targets mve from one tracking volume
to another. Also, the short range network processor provides submunition acquisition data
to cluster elements, based upon MLRS tracks from the long range network processor. The
network interface acts as a network hub which will probably reside within the Range Control
Center. In principle, other networks could be brought on-line through this interface.

2.1 Extensions of the Phase I DSRIF Theory

2.1.1 The Likelihood Function in Terms of DSRIF Variables

In [1] we showed that

I Iekl 12  = lRk(-) Xk(+) - Zk(-) I12  + II Hk Xk(+) -Yk 112

On the other hand, the global measurement update from [2] may be written as

9
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(1). (1)
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where

H*(k-1) = Rk(-)

Z* (k-l) =z,(-)

Taking the norm of both sides gives

M
Zll R k(+)'j) xk(+) - Zk(+) ( 12 + I Rk(-) xk(+) -zk(-) 2

= II Rk(+) xk(+) - zk(+) I 2 + I 112

But

xk(+) = Rk-1 Zk(+)

eliminating the first norm on the r.h.s. of the last equation. Also. from [2] we have that the
first term on the l.h.s. of the above equation is just I I Hk Xk (+) - Yk 112. Thus,
comparison of the first and last equations here, shows that

I I # II = I lekI 12

The Likelihood function from [2] is

12



I

I N det Rk(+)
J = Z l ekI I2 + log ( (1)I k=l det Rk det Rk-)

I where

Rk= diag( [ Rk€1  ], ... , [ RK I

and all other terms are computed by the Global Processor.

2.1.2 Distributing P0 (-) and Q

The "Data Equations" for the prior and process noise random vectors are

z,(k) = R.(k) Wk + e,(k)

Z(-) = R 0 (-) Xk + Cp (k)

where, by construction

I (k) N(O,I)

p(k) " N(O,I)

Wk -N (0,Rw' (k) Rwtr (k))

In the case of process noise, it appears in the Least Squares Criterion as

II T (z,(k) - R,(k) wk ) III = II T ew(k) I1I

noting that the statistics of ( T ew(k) ) are the same as cw(k), and the orthogonal
transformation T puts the data equation in upper triangular form. Also, the statistics ofI (k) are invariant w.r.t. the following decomposition

C, (k) = ew€l(k) + ew(2)(k) + . . . + (k)

13



where by design,

CW(l) (k) J-  ew(2) (k) I-  . L CM(nw) (k)

ThusI
I w(k) lcz = I Ie. (1) (k) lI + I I1E( 2 (k) ll + + . IIe, ( ' ) (k) IVU
and the process noise square root information matrix may be decomposed asI

Rw(k) = R,( 1)(k) + RW(2)(k) + . . . +Rw(nw)(k)

In practice then, up to nw local filters can be driven with process noise, and the DSRIF
does not require that all of the process noise be contained in 1 Local Processor (as
originally shown in [2]). For example, when nw = 3, the matrix Rw (k) may be
decomposed as

X X X X XX 0 00 0 0 0
0 X X = 0 0 0 + 0 X X + 0 0 0
0 0 X 0 00 0 00 0 0 X

and then c,,(k) may be constructed according to

X X 0 0
X = 0 + X + 0
X 0 0 X

This corresponds to minimizing the norm of each row of the data equation for process noise
separately, in each of the local processors. Other distributions are possible. The same set
of necessary and sufficient conditions holds true for prior information on the initial estimate
error.. Also, distributing the prior and process noise amongst local filters will improve the
numerical conditioning of the local measurement update step and thus avoid the need for
double precision arithmetic there.
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2.2 Upgrade of the Phase I Software

On November 11, 1987 six rockets (without deployment of submunitions) were
launched sequentially in time over a period of 2 hrs and 30 min at WSMR. Only 1 rocket
was airborne at any one time and thus data association for multitarget tracking was not
needed. In Phase I, MTI obtained a copy of this MLRS data which contained azimuth and
elevation angle measurements (with respect to each local sensor) from 11 optical trackers
(OT in figure 6) located at the range coordinates listed in table 3 of the Phase I report.
The data set also contained range, azimuth and elevation angle measurements from 3 radars
(R1,R2,R3 in figure 6) but with respect to the local coordinate system originating at the
launcher (L in figure 6). Their locations and orientations are given in table 4 of the same
Jocument. The digitized measurements for all 6 shots were plotted in order to select the
best shot (as defined by the least amount of data drop-out and outliers) for processing.

Figure 6 shows the configuration of the long range network as well as the outer
boundary of the short range one, a 1.1 km by 1.1 km area. Reducing the plotting scale,
figure 7 shows the outer boundary of the short range network plus the 6 rocket tracks
(generated using the DSRIF in section 2.2.2) projected onto the X,Y plane.

The Global Coordinate System (GCS) is a right handed coordinate system with one
axis pointing east along latitude 32.380 deg and another north along longitude 106.481 deg.
The third axis is collinear with the radial vector which points outward from the earth's
center and passes through the origin of the GCS.

The Local Coordinate System (LCS) is a right handed coordinate system with one
axis pointing east along the local latitude, and another north along the local meridian. The
third axis is collinear with the radial vector which points outward from the earth's center and
passes through the origin of the LCS. Each sensor records measurements with respect to
its own LCS but are expressed in terms of global states.

In order to evaluate the feasibility of this dual-network approach, as well as make
progress in the development of the actual real-t':ne software, much new software was
developed and tested in Phase II. First, a perturbation study of the input parameters for
shot #2 was performed. Then, MTI processed all of the data from each of the 14 sensors,
and for all 6 rockets, 1 rocket at a time. To do this, the E-DSRIF software from Phase I
was upgraded to detect and reject outliers and missing data. Next, the tracking software was
upgraded again to handle multiple rockets being within the field of view of each sensor. A
new data simulator which created measurement files corresponding to shots fired
sequentially with a user determined delay, was written. Thus, the upgrade provided a new
capability for data association and fusion. Finally, a data simulator for computing
submunition (and MLRS) trajectories is presented. All of the simulation is encoded in
Fortran '77 and executes on an IBM (clone) Model "386" desktop computer (640K ram, 60
Mbyte hard disk, Intel 80387 math coprocessor).
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2.2.1 Tuning the MLRS Filter for Shot #2

For initialization of the DSRIF (or E-DSRIF), the input parameters, namely, the
initial state vector and its estimate error covariance, process noise mean vector and its
covariance matrix, measurement noise mean vector (usually assumed to be 0) and its
covariance matrix, are necessary. Their values depend upon the suite of sensors as well as
the target dynamics. They should be adjusted in order to achieve, at the very least
numerical stability. In Phase I, MTI successfully used the E-DSRIF to track the second
MLRS shot using measurement data from 5 sensors (radars 350,394, and optical trackers
G30,G80,Gl1O). The same simulation was repeated many times in order to obtain the
following parameter values for all 6 shots (where "D" denotes a double precision number):

diag {0.O1D+ 14, O.O1D+ 14, 0.O1D+ 14, 0.05D+ 14, 0.05D+ 14, 0.05D+ 14, 0.OlD+ 14,
0.01D+ 14, 0.01D+ 14} for an initial state estimate error covariance matrix,

diag {-10.0, -0.5, -0.48} for a process noise mean vector,

diag {0.17D+ 18, 0.74D+ 18, 0.93D+ 18} for a process noise covariance matrix,

diag {0.01D+ 12, 0.01D+ 12} for a measurement noise covariance matrix (optical
tracker), and

diag {0.OID+3, 0.OID+2, O.O1D+2} for a measurement noise covariarce matrix
(range radar).

In each of the simulation studies, only one type of parameter was changed with all

other types fixed to the above values. Changes in the x component of the global
measurement updated state were noted. In general, the study shows that the E-DSRIF is
robust with respect to wide variations in input parameter values.

Study 1: In this case, diagonal elements of the initial state estimate error covariance
matrix were changed. Very little change in the "x component" was observed
for increases of the diagonal elements up to 10' (see figure 8), and decreases
down to 10- (see figure 9). However when they are increased to 1019,

unstable estimates are obtained (see figure 10).

Study 2: In this case, diagonal elements of the process noise covariance matrix were
changed. Very little change in the "x component" was observed for increases
of the diagonal elements up to 10, (see figure 11), and decreases down to
10eP (see figure 12). However when they are increased to 1027, unstable
estimates are obtained (see figure 13).

18



-14U60 ft tm

191



x

-14066 ft

-LI I ttime

a sac 450 sac

Figure 9: Stability of the DSRIF with respect to decreases in

the initial estimate error covariance.

20



tr.,tab It tvg

tim
a*a 5 a

Fiue*0 Intbly ofteDFwt epc ocagsi

thInta siae ro oaine
I2



In .&c 458 sec

Figure I1: Stability of the DSRIF with respect to increase in

the process noise covariance

22



... stabllt I 

timstah ttty

-1606seFt I I I tine.

a sac 4508a

Figure 12: Stability of the DSRIF with respect to decrease in

the process noise covariance.

23



Ix
6.2E14 ft

S tb I it

t__ Instaht I i tqi

I-021 Atn
aIa 5 a

Fiue1:IsaiiyoIh SRFwt epc ocagsi
thIrcs os oaine

I2



Study 3: In this case, diagonal elements of the measurement noise covariance matrices
for range radars and optical trackers were changed, simultaneously. Very
little change in the "x component" was observed for increases of the range
radar diagonal elements up to 10, and optical tracker diagonal elements up
to 1013 (see figure 14). However, when they are decreased to 10' and 10,
respectively, unstable estimates are obtained (see figure 15).

Study 4: In this case, the values of the initial state were changed by a multiplying
factor. Stable estimates were observed for factors up to 1.008 (see figure 16).
Multiplication by 1.009 leads to unstable estimates (see figure 17).

Automated tuning of the input parameters for the E-DSRIF is a possibility for future
research. A maximum likelihood technique for estimating these parameters using the SRIF
was recently developed [4]. The theory can be easily extended to incorporate the DSRIF
(or E-DSRIF). The feasibility of this approach for retuning the input parameters in real-
time will depend upon the amount of data required for convergence as well as the
computational horsepower available.

2.2.2 Outlier Detection and Rejection

"Reasonable" values of the target's maximum speed and acceleration in each direction
were chosen from the MLRS data set. At each iteration of the filter, a gate centered at the
global measurement updated state, and with a radius equal to the maximum possible flight
distance in each direction, is drawn. The maximum possible distances are given by

dMx, X= VMX X (AT) + awxx (AT) 2

dmaxy = vmXIy (AT) + a aX.y (AT)2

dMX, = vMX,Z (AT) + amx,z (AT) 2

where AT is the time update interval. If a measurement is outside of the gate as
determined by the above condition, then it is regarded as an outlier and rejected from the
filter. One cycle of detection and rejection was programmed as follows:

step 1: Let Xk.1 (+) be the global measurement updated state at time k-1 . The
GP broadcasts Xk. (+) (as well as Xk (-)) to all LPs within the cluster.
Then, each LP sets up a gate centered at h' (xk. (+)).
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step 2: Outlier detection at each LP is performed by checking the gate condition on
the kth measurement. If the condition is satisfied, then standard local
measurement updating proceeds as usual, starting from xk (-) If the
condition is not satisfied, then the measurement is rejected by performing a
local measurement update with the observation matrix and measurement
vector set to zero.

step 3: In either case, each LP then sends its measurement updated square root
information matrix and vector to the GP.

I step 4: Global measurement updating is performed using the square root information
matrices and vectors from all of the LPs. The new global measurement

I updated state xk (+) , is obtained.

Figure 18 shows the X,Y components of the global measurement updated state for
shot #1. In this figure, "13-sensor" and "14-sensor" represent the cases of "wi:h .,t using the
G393 data", and "with using the G393 date" but with invoking the outlier detection

I procedure, respectively. Figures 19 and 20 contain the same information for the Y,Z and
Z,X components.

I This method is simple, but does not take into account the statistical nature of the
process and measurement noise. Also, more adaptive methods of determining the radius
of the gate should be considered in future work.

2.2.3 Data Association and Fusion

Associating measurements with measurements, measurements with tracks, and tracks
with tracks are essential parts of multisensor multitarget tracking [5]. In a multisensor
environment, measurements from all sensors within a cluster must be grouped in order to
decide how many targets are present and which measurements originate from the same
target. This is termed measurement-to-measurement association. Thereafter, each groupof measurements may be compressed or fused to produce one representative measurement
for the group. This process is called compression.

Compressed data from a grouping represents the position of a single provisional
target at some instant in time. The tentative track of a provisional target can be generated
by associating compressed data from one iteration to the next. The measurement-to-track
association process, determines which current compressed measurements belong to which
of the previous tracks.

If, on the other hand, each sensor is equipped with its own LP, and produces its own
tracks, it is necessary to decide whether two tracks from different sensors represent the
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same target at the GP. Hence, grouping of targets, or track-to-track association, is required.
Once tracks which represent the same target have been grouped together, the next problem
is how to combine the corresponding state estimates to get a globally optimal one. This
process is called global fusion (or merging).

In this report, we are mainly interested in measurement-to-measurement association,
compression, and measurement-to-track association. Track-to-track association and global
fusion (merging) are solved in the application of the E-DSRIF (or DSRIF) method to the
problem, since the measurement-to-track association and global merging processes (i.e.,
global time updating and measurement updating processes) generate globally optimal
estimates.

I For each type of association, whether measurement-to-measurement, measurement-
to-track, or track-to-track, one may adopt either a hard or soft decision approach. The hard
decision approach makes associations after each cycle of the filter. It makes efficient use
of computational power and memory, but precludes rectification of errors in association.
In the soft decision approach, association can be postponed until additional information has
been accumulated to corroborate proper association. Hence, the risk of misassociation is
reduced, but the approach demands considerably more computational power and memory
(and is, therefore, less suitable for real-time applications).

Our approach is a hybrid of the hard and soft decision approaches. Measurement-to-
measurement association is considered related with track initiation and addition of new
tracks. In initiating tracks and detecting new targets, a hypothesis tree is generated,
analogous to the soft decision approach. On the other hand, a hard decision approach is
adopted for global measurement-to-track association. The measurement-to-track association
problem is divided into local and global processes to utilize the distributed data association
concept. Our main tools for association are association matrices and the likelihood function.
Association matrices are very similar to the assignment matrices in [6]. A very simple rule
is applied to resolve conflicts in the association matrix. When conflicts are not fully
resolved, the likelihood function or other methods are employed to make a final decision.

2.2.3.1 Measurement-to-Measurement Association

Without any attributes except kinematic data, the grouping method is mainly based
on gating the distance between any two measurements. The distance metric may be
determined by a simple calculation of the spatial distance measure, for example, the
conventional Euclidean norm. Alternatively, a more complex method may be chosen which
takes the statistical nature of measurement noise into account. For example, a statistical
distance measure defined by
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!
I d2= (Y1 - Y2 )t r (R, + R2 )' (Y1 - Y2 )

also can be used. Here R1 and R2 are measurement covariance matrices of sensor 1 and
sensor 2, respectively, and y, is from sensor 1 and Y2 from sensor 2. Once a distance
metric is chosen, the basic idea of grouping is that measurements which are closer than a
specified threshold are regarded as originating from the same target.

For each measurement vector y1 in one data set, let d (y 1 ,y 2) denote the
distance between y1 and Y2 in another data set. Then, for each y, , the y from the
other data set, which is chosen in such a way that

I arg min ( d(y1 ,y) < thd

I is assumed to be a measurement from the same target. Here, thd is a threshold whose
initial value can be determined by statistical requirement analysis (for example, a Chi-square
test), or by a tuning approach using repeated simulation.

2.2.3.2 Compression

We have chosen to use the following well known compression method [7]. Let yl,
Y2, ... , Y,, be the measurements in one group, and each y, is from sensor i whose
measurement noise covariance is given by R1, R2 , ... , R,. Then a composite
measurement covariance R is defined by

n
R-1= Ri "  (2)

and the compressed measurement y is

y = R [Z R Z] (3)

2.2.3.3 Measurement-to-Track Association

In our program, the measurement-to-track association process is part of the local
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filtering process, more specifically, the local measurement updating process. Each LP is
informed as to which new measurements are correlated with existing tracks in the track file.
The local measurement-to-track association process is comprised of two subprocesses in our
system. The first one is based on the global predicted state estimate, and the second is
based on the global filtered state estimate. This is described in greater detail in section
2.2.4.

2.2.3.4 Track Initiation and New Track Addition

The problems of how to initiate tracks and when to add new tracks can be solved by
using a distance metric procedure similar to the grouping process. We assume that all
seasors are time synchronized. The track initiation method followed is a modification of "A
Logic-Based Multitarget Track Initiator" described by Bar-Shalom and Fortmann [5].

Let zit (k) be the 1 th component of measurement i at time k, where 1 = 1,
n and i = 1, ... , m. Then, for example, for k = 1, 2 the distance vector

between measurements zi (1) and z, (2) is defined as having components

dijt = max[z.t(2) -z.(1) -v, A O] +
I maxzi1

t (.) - -z'(2
) 

- v,,in ' A, 0

where A is the time interval between scans. The above expression consists of the observed
position displacement beyond the maximum (minimum) possible distance traveled, i.e., due
to the noise. Then, assuming the measurement errors to be independent, normal, and zero-
mean with covariances R, (k) , the normalized distance squared

I Dij = di r [ R(1) + Rj(2) ] dij

I will be the test statistic. The test for associating zj (1) with zj (2) is

I Dii <

1 where r is a threshold obtained from the Chi-square tables with nZ degrees of freedom
such that

P[X, < r] = - a
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and a is the probability of miss.

In this approach, a distance metric criterion, or gate, is used to associate
measurements from the previous scan with each candidate from the current scan. This
method generates time sequences of associated measurements, which represent the tentative
tracks of a set of provisional targets. The acceptance region of the gate accounts for
measurement noise variance and motion of the target, characterized by a maximum and
minimum velocity: vxL, Vmin L respectively, for coordinate 1.

2.2.3.5 Software Configuration

The new "Code 3" consists of 2 software subsystems, 5 modules, and 28 subroutines
in addition to the Estimation Subroutine Library developed by G. Bierman. The 2
subsystems are the Local Processing System (resides within each LP) and the Global
Processing System (GP resident). The local data association module and the local filtering
module are part of the Local Processing System. The global data association module, global
filtering module, and the track file management module are part of the Global Processing
System. Figure 21 shows this breakdown. Also, each module consists of several processes.

Local Processing System

A) Local Data Association Module

1) Coordinate Transformation Process

This process is performed only for the range radar measurements. Range,
azimuth, and elevation measurements are transformed from the launch site
coordinate system to the GCS.

- Subroutine called

COORTR

2) Local Measurement ID Setting Process

This process is performed for all range radars and optical trackers. Based on
the list of global measurement identification numbers (IDs) which is broadcast by the
GP, each LP adjusts its local measurement IDs accordingly.

- Subroutines called

GTOL, SETID
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3) Local Measurement-to-Track Association Process

Each LP performs a local measurement-to-track association and generates a local
association matrix. The size of the matrix is determined by the number of targets in
the current track file, as well as the number of measurements detected. A gate is
formed centered on each measurement. Each entry of the local association matrix
is "1", "0", or "M" depending upon whether the measurement is In the gate, Qut of
the gate, or Missing entirely (a drop-out), respectively.

- Subroutines called

MEASNM, MEASN, CMATM, MTOTA, CRXGP,

B) Local Filtering Module

1) Local Measurement Update Process

Once the local association matrix is generated, local measurement updating
proceeds track by track, using all of the measurements marked "I" for each track.
Then each LP sends its local association matrix with the results of local measurement
updating to the GP. Outlier rejection also begins.

- Subroutine called

LMUP

2) Local Time Update Process

Usually, local time updating is performed once data association has been
accomplished through the global measurement updating process.

- Subroutine called

LTUP

Global Processing

A) Global Data Association Module

1) Measurement Compression Process

After receipt of coordinate transformed measurements from each of the 3
range radars, this process decides which radar measurements originate from the same
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target.

- Subroutines called

RECIV, COMPR

2) Global Measurement ID Setting Process

In this process, a measurement ID is assigned to each of the compressed
measurements. For local measurement ID setting, compressed measurements with
ID's are then broadcast to optical tracker LPs. The original measurements with new
IDs are broadcast to the range radar LPs.

- Subroutines called

GTOL, CRD

3) Global Measurement-to-Measurement Association Process

This process finds correlations between external nodes (leaves) of the
hypothesis tree and newly obtained compressed measurements. The resulting
correlation is sent to the hypothesis management process.

Hypothesis Tree Generation For Tentative Tracks: First, all measurements with IDs
from the previous scan at time k, are assigned as root nodes of the hypothesis tree.
Then, tentative tracks are formed from each root to the measurements of the current
scan at time k+ 1, only if they are not correlated with any existing tracks and are
inside an acceptance region (of a leaf). If more than 2 measurements are inside the
gate (leaf), the track is split to form several branches, each of which represents a
tentative track. Measurements which do not belong to any gates will become root
nodes.

- Subroutine called

MTOMS

4) Initial State Determination Process

This process computes the initial state of targets which are confirmed by the
hypothesis management process. At any time step, if any leaf with level 3 contains
new measurements within the gate, a new track is confirmed. To choose one
measurement from the gate, first assume that the target trajectory is approximated
the second order polynomial,
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i x(t) = a0 + ax + a 2x2

Then, least square estimates of the coefficients a0 , a1 , a2 are available based on
3 observations (i.e., three measurements at three different times) given by

z = Hxi + W, i = 1, 2, 3

The predicted value of the next position is computed using these estimated
coefficients. Then, new measurements inside a gate are compared with the estimated
position, and only the track which gives the smallest difference between the predicted
value and a measurement survives. Level 2 and level 3 measurements are finite
differenced with the newly connected measurements, in order to determine an initial
state of the newly confirmed track. The initial state is then used to initialize the
filter.

-Subroutines called

MKINT, DEL, FINC

I 5) Global Measurement-to-Track Association Process

After the GP collects all of the local association matrices, global
measurement-to-track association is performed by fusing them. Three screening
methods are used to ensure correct associations and resolve conflicts. The Majority
Voting Method and the Rule are our basic tools. A likelihood function evaluation
process is invoked when conflicts still remain.

* -Subroutines called

FUSION, RULE

B) Global Filtering Module

* 1) Global Measurement Update Process

Global measurement updating is performed based on the result of the global
measurement-to-track association process, especially after Majority Voting and the
Rule have been applied. When conflicts exist, global measurement updating is
performed for all conflicting cases. Filtering results are then sent to the likelihood
function evaluation process for a final decision.
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- Subroutines called

GMUP, LKHD

2) Global Time Update Process

Performs a global time update step, noting that in future work, data
association using local smoothing coefficients could be done here.

Subroutine called

GTUP

3) Likelihood Function Evaluation Process

Likelihood function evaluation process is performed using its equation from
section 2.1.1.

Subroutines called

LKHD, DET

C) Track File Management Module

1) Hypothesis Tree Management Process

When track lengths are less than 5, correlation results from the global
measurement-to-measurement process are received here, and the hypothesis tree
management process is invoked. Hypothesis trees continue to branch out until their
length reaches 4. Then, a polynomial extrapolation method is used to make a final
decision, and all unnecessary branches are pruned. Confirmed tracks are sent to the
initial state determination process.

Tree Pruning For Tentative Track Deletion: It is necessary to delete
unrealistic tentative tracks in order to reduce computational burden. At any time
step, if any leaf with level less than or equal to 3 does not have any new
measurements in its gate, it is deleted assuming that it resulted from clutter or noise.
If any leaf with level 3 contains several new measurements in its gate, polynomial
extrapolation is used to choose the best of these measurements. Then, using thebranch which leads to the measurement chosen, the new track is confirmed, and a!l
other branches which share nodes on the confirmed track are deleted from the

hypothesis tree.

Subroutines called
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DELET, MKNEW, STORE

2) Track File Updating Process

In our system, the GP updates the track file and broadcasts it to all of the
LPs. The track file contains the track ID, as well as the global measurement and
time updated states. This process also includes track merging and deleting
subprocesses.

* -Subroutine called

*UPTRA

1 2.2.3.6 Functional Block Diagram and Test Results

Figure 22 is a functional block diagram of the upgraded software. It represents one
cycle of information processing. The field of view for each sensor is assumed to be
sufficiently wide so that each sensor is able to detect all of the airborne targets, at each
instant of time. All of the LPs and the GP have the same track file. Only measurement
data from 3 range radars and 2 optical trackers (G30, G80) for shot 1, shot 2, and shot 3,
was processed. However, the program is capable of processing data from all 14 sensors for
all of the 6 shots, on a computer with sufficient memory. Also, we have not included the
first 50 measurements from each sensor in our simulation, i.e., processing begins after 5
seconds of flight.

1 (1) Firing Period

The time interval between shots was set to 4.5 sec, as per information provided by
WSMR.

3 (2) Initialization

First, radar measurements are coordinate transformed and sent to the GP for
compression and measurement ID setting. When the second set of measurements is
received, the later is repeated, and then a global measurement-to-measurement association3is invoked with generation of a corresponding hypothesis tree. As new sets are received,
global measurement-to-measurement associations are made, and the hypothesis tree is
expanded. Global measurement-to-measurement association and tree expansion is repeated
until tracks are confirmed. Confirmed tracks are then stored in a track file.
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Tables 1-1 through 1-4 contain the coordinate transformed x-, y-, and z-values of data
at the first 4 time steps (labeled sequentially as 50, 51, 52, and 53) from each range radar.
Figures 23-1 through 23-3 show the grouped and compressed measurements at these steps
in X,Y Y,Z and Z,X coordinates. Figures 23-4 and 23-5 are zoomed versions of figure
23-2. In each of these figures, 2 new measurements are formed at each time step, one from
an actual measurement and the other from an outlier measurement. Figure 24 shows the
hypothesis tree generated for the same 4 steps after global measurement-to-measurement
association has been performed at each step.

In figure 24, at the 50th step, 2 new measurements form root nodes, and level 1 is
assigned to each node. After gating with the second measurement set, which also consists
of 2 measurements, measurement 1 of the 50th step is correlated with measurement 1 of
the 51st step, but measurement 2 of the 50th step is not correlated with any measurements
of the 51st step, i.e., the gate centered at the measurement 2 of the 50th step does not
contain any measurements from the 51st step. Hence, it is regarded as clutter and deleted
from the hypothesis tree. Level 2 is assigned to the leaf of branch 1. On the other hand,
measurement 2 in the 51st step is regarded as a new potential target, therefore level 1 is
assigned to it. The same process is repeated up to the 53rd step, where only 1 track is
confirmed (which is represented by level 4), and a new potential target is designated by
measurement ID 2 in the tree. For the confirmed track (with leaf of level 4), the initial
state (position, velocity, acceleration in global coordinates) is estimated and stored in the
track file.

(3) Coordinate Transformation and Local Time Update

After targets have been detected locally, the tracking cycle starts with two processes.
First, range radar measurements are transformed into the GCS and sent to the GP. In the
second step, local time updating is performed by all of the LPs, but only when the track file
contains at least one confirmed track.

In the foflowing example, targets are detected by radars 393, 350, and 394. Their
coordinate transformed xy,z values are listed in table 2, where k=93 for the third shot,
k=138 for the second shot, and k=183 for the first shot.

(4) Global Time Update and Global Predicted State Estimates

After receiving smoothing coefficients and their corresponding track IDs from all of
the LPs, the GP starts the global time updating process. Global time updated states are
obtained for all tracks and stored in a track file by invoking the track file updating process.
The updated track file is broadcast to all LPs for local measurement-to-track association.
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Table 1-1: Coordinate transformed measurements at step 50.

x Y z

Radar 393 -4503.9822 -72394.8189 1563.6824

Radar 350 -4428.8935 -71596.9552 1949.4430

Rdr394 -4436.4745 -71603.7353 1949.0175
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I
Table 1-2: Coordinate transformed measurements at step 51.

Ix y z
Radar 393 -4469.6811 -72360.5947 1604.5716

Radar 350 -4434.3141 -71509.6555 1975.5616

Radar 394 -4439.9353 -71516.1014 1973.6357

II
I
I
I
I
I

I
I



Table 1-3: Coordinate transformed measurements at step 52.

x y z

Radar 393 -4407.3084 -72295.3127 1683.3286

Radar 350 -4438.0967 -71422.3913 1999.2928

Radar 394 -4443.3743 -71428.8496 1998.0419
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Table 1-4: Coordinate transformed measurements at step 53.

x Y z

Radar 393 -4320.8625 -72201.0084 1785.4247

Radar 350 -4439.9678 -71335.7806 2025.2496

Radar 393 -4446.7809 -71342.0039 2022.2219

I
I
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Figure 23-1: Grouped and compressed measurements at step 50th, 51st, 52nd and 53th in
X,Y coordinates.
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Figure 24: Hypothesis tree generated using the 50th, 51st, 52nd and 53rd measurements.
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I Table 2: List of measurements from 3 radars at step 183.

I Radar 393

1-4832.9477 -59805.2021 3912.3792

I-4614.4501 -62083.0452 4057.9941

-4579.5235 -64775.5641 3496.6276

Radar 350

1-4837.8757 -59807.2487 3923.8294

I-4613.7217 -62084.1828 4064.8936

-4597.5922 -64714.7547 3481.2448

I Radar 394

I-4838.2044 -59807.4555 3925.0130

-4616.2307 -62085.3223 4071.2146

-4600.4270 -64713.6921 3482.3893
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I
(5) Compression and Measurement ID Setting

When the coordinate transformed data is received, the global time updating process
(4) begins, and a grouping process is performed concurrently. The grouping process begins
withcomputation of the distance to the target(s) measured by the sensors. Next, a simple
gating method is used for grouping the data. All targets whose position measurements
(range, azimuth and elevation) fall within the same gate belong to a single group. This
process can be described in the following pseudo-code form.

Define threshold value
In a loop, for number of radars

In a loop, for number of measurements of rl
In a loop, for number of measurements of r2

Compute the distance between a measurement from rl
and a measurement from r2

If the distance is less than threshold
Compute the mean value of measurements from rl
and r2

End if Increase COUNT by I and INDEX of r2 = 1

End loop
If COUNT is not ZERO

In a loop, for number of measurements of r2
If INDEX equals to 1

Choose the minimum distance measurement
and associated mean value

End loop
In a loop, for number of measurements of r3

Compute the mean value of measurements from rl,
r2, and r3
If the mean value is less than threshold

Increase COUNTI by 1 and INDEX of r3 = 1
End if

End loop
If COUNT1 is not ZERO

In a loop, for number of measurements of r3
If INDEX equals to 1

Choose the minimum distance
measurement and associated mean value
Create COMP FILE

End if
End loop

End if

Else
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n iCreate COMPFILE
End ifo

End loop

End loop

Here, rl,r2,r3 represent radar 393,350,394 respectively. The threshold chosen for
grouping is 46 m. Distance is measured using the conventional Euclidean metric.

Now, we have several groupings of position measurements, each of which represents
a different target. Each grouping of radar-based position measurements should have data
from at least 2 different radars. If any radar-based position measurement is not grouped
with a position measurement from another radar, then a group with only one measurement
is formed. When this actually happens in our simulation, the singular radar position
measurement is an outlier. By outlier we mean that the target is located outside the
expected range of position based on prior knowledge of the target. This indicates that the
measurement is not correct and should not be used.

In most cases, each group contains data from more than one radar. Since each
grouping represents data from a single target, the position data from the sensors which have
been grouped together must be combined as a single set of position measurements for that
target. The compression process is used to calculate the nominal position of a target based
on all the radar measurements in a specific group. Assuming that the measurement noise
covariance is the same for all 3 radars in our simulation, the same matrix can be
substituted for the noise covariance in equations (2) and (3). Then, the compressed
measurement is the arithmetic average of all the target position measurements in that group.

Figures 25-1 through 25-3 show results of the grouping and compression processes
with in X,Y Y,Z and Z,X axes. Figures 25-4 through 25-6 are zoomed versions of figure
25-1. For the 183th step, 4 groups are formed. Each group is distinguished by a circular

Sgate. The location of the center of the circle is the compressed measurement.

In the compression process, each group is assigned a global measurement ID, which
* identifies a target whose location is given by the compressed measurement of the group.

Assignment of global measurement ID is also shown in figures 25-1 through 25-3.

For the measurements identified as ID 1 and 2, the three dots are coordinate
transformed measurements, and the square is the compressed measurement. For the
measurement with ID 3, two measurements are grouped, and these two measurements are
used for compression. For the measurement with ID 4, only one measurement is within the
gate, and the data from radar 393 is act-jally an outlier. However, this determination has
not yet been made at this point in the processing, and there is no way to tell, a priori, which
data sets are outliers and which data sets are not. Therefore all the groups, including the
outlier, must be regarded as individual targets until further analysis can make a
determination regarding outliers. Hence, at this point in the analysis there are 4 different
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groupings of radar measurements, implying that there are 4 targets when the actual number
of targets is 3.

The global measurement IDs are sent to LPs along with their corresponding position
measurements for the identified target. This enables assignment of a global measurement
ID to the target being tracked at the LP. If the sensor is a range radar, the GP can simply
send back the original radar measurements transmitted from that radar along with the (new)
global measurement ID. If the sensor is an optical tracker, the GP will send the compressed
(radar) measurements with the corresponding (new) global measurement IDs. The
compressed measurements must be used to assign the appropriate global measurement ID
and its corresponding compressed position measurement to the optical tracker.

(6) Local Measurement ID Setting Process

In (5), we noted that original measurements or compressed measurements are
returned to LPs (along with their global measurement IDs) depending upon whether the
sensor is a range radar or optical tracker, respectively. Now we shall consider the local
measurement ID setting process. For the case of radar trackers, the measurement data
returned after global fusion are exactly the same as those transmitted from the radar to the
GP for grouping and compression, so it is simple to assign new global measurement IDs to
each set of radar measurements.

In order to assign a global measurement ID to measurements from an optical tracker,
the positions of identified targets must be compared to the positions given by the optical
tracker. The position of a target identified by its global measurement ID is given by its
associated compressed radar measurements. The compressed radar measurements for all
identified targets are returned to optical trackers along with their respective global
measurement IDs. Although the compressed radar measurements contain information about
range, azimuth, and elevation, the optical trackers only measure azimuth and elevation.
Theruore, the local compressed target locations can only be compared on the basis of
azimuth and elevation.

The ID setting process is based on gating and nearest neighbor analysis. Both gating
and nearest neighbor analysis compare the target position (elevation and azimuth) measured
by an optical tracker with the target positions for each of the compressed (radar)
measurements. A rectangular gate, centered at the compressed measurement in local
coordinates, is chosen. For the optical tracker G30, .009 rad is chosen as a radius for both
azimuth and elevation. For the optical tracker G80, .051 rad is chosen for azimuth, .02 rad
for elevation. Now, a correlation can be made. The magnitude of the difference between
the optical measurement and compressed radar measurement of azimuth is compared to the
azimuth side radius. Similarly, the elevation side radius is compared to the difference
between the optical measurement of elevation and the compressed radar measurement of
elevation.
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If the actual measurement and the compressed measurement are correlated, then the
global measurement ID associated with the compressed measurement is assigned to the
actual measurement. In most cases, gating will correlate one optical measurement set with
only one compressed radar measurement set. In this case, the measurement data from the
local optical tracker can simply be assigned the global measurement ID associated with that
compressed radar measurement. However, it happens that occasionally more than one
compressed measurement is correlated with an optical measurement. In this case, a nearest
neighbor analysis is performed; the Euclidean metric is computed for each association, and
the association with the smallest distance is chosen as a final association. Similarly, the
remaining measurements which were not correlated with any compressed measurements on
the basis of gating, are assigned the global measurement ID of the nearest identified
compressed measurement. Note that the local measurement IDs assigned to each optical
measurement is a global measurement ID which is common to a specific group of radar
trackers.

Table 3 shows how the local measurement IDs of the 18 3th step are associated with
global measurement IDs.

(7) Local Measurement-To-Track Association

Once global measurement IDs have been assigned to all measurements, local
measurement-to-track association starts. The track record contains the existing target tracks
up to the last cycle of processing, and now the track records must be updated to include the
presently identified measurements. In the last processing cycle, global measurement
updated states were calculated for each identified target. Global time updated states were
calculated for each target tracked in the last complete cycle after step (4) of the current
cycle. Both types of global states will be used for association. In the association process,
an association matrix is created locally at each local sensor. The local association matrix
indicates the association between all current measurements with the target tracks from the
last processing cycle.

Gating is used to associate the current local measurements with existing target tracks.
There are two different comparisons which can be made to correlate the current
measurements with an existing track. First, for each existing track, a target position is
calculated as a prediction based on existing knowledge as to what the target's location
should be at the present time:

compute h' (xk (-) ), where Xk (-) is the globally optimal time updated
state estimate of the target, and h' represents the nonlinear observation
function for the sensor i.
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Table 3: Local measurement ID setting.

Radar 393

Local ID Global ID

1 1

2 2

3 4

Radar 350

Local ID Global ID

1 1

2 2

3 3

Radar 394

Local ID Global ID

1 1

2 2

3 3

G30

Local ID Global ID

1 2

2

3

G80

Local ID Global ID

1 1

2 2

3 4
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This is the global time updated state for that target track, and was computed in step (4) of
the current cycle. Now, a gate is drawn centered around the global predicted state of the
target track position, h' (xk (-)). Any metric distance, d (thr) may be used for the gate.
Let d(h' (xk(-)) ,yj) be the distance between the measurement y, and h' (xk(-));
if

d(h'(xk(-)),yj) < d(thr),

then y, is inside the gate. Each measurement is compared to the gate. If any of the
measurements fall inside the gate those measurements are correlated with that target track.
Correlations are indicated by assigning an "I" to the location corresponding to that
measurement and target track in the local association matrix.

In our simulation, a rectangular volume gate is used for range radars, and a
rectangular (planar) gate is used for optical trackers. The radii of the gate are 2 m for
range, .1 rad for azimuth, and .1 rad for elevation. The radii of the gate for an optical
tracker are .1 rad for azimuth and .1 rad for elevation.

If a measurement was not correlated with the global time updated state for any of
the target tracks, a second method is tried to make the correlation. A new gate is used
which is centered on the global measurement updated state for the target, h, (Xk. 1 (+)) .
This gate represents a reasonable estimate of the maximum distance a target could travel
from its last known position, based on a general analysis of target motion (see section 2.2.2).
The gate radii for range radars are 100 m for range, .15 rad for azimuth, and .15 rad for
elevation. On the other hand, the radii for both azimuth and elevation is .15 rad. As
before, comparisons are made between each of the global measurement updated states and
the measurements. If any of the measurements fall inside the gate, an "I" is assigned to the
appropriate location(s) in the local association matrix.

Otherwise, the measurement is regarded as spurious, and an "0" is assigned to the
appropriate location(s) in the association matrix. "0" is marked unless there aren't any
measurements detected by the it' sensor, then, "M" replaces the ith column (or row,
depending upon the representation in the matrix) entries of that measurement. Next, the3 outlier detection process is invoked for that target.

More explicitly, the following pseudocode is adopted:

I If (the gate centered at the global time updated state does not contain any measurement)
then

If (the gate centered at the global measurement updated state does not contain any
measurement) then
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Assign "O" in the association matrix.

Else
Fill up the association matrix with "I" at the corresponding measurement
position.

Else
Fill up the association matrix with "I" at the corresponding measurement position.

Fill up the empty position of the association matrix with "M" for missing data.

If (all measurements are assigned by "0" or "M") then

Invoke outlier detection process

Tables 4-1 through 4-5 are local association matrices for radars 393,350,394 and
optical trackers G30,G80, respectively.

(8) Local Measurement Updating

Local measurement updating is invoked after local measurement-to-track association
has been completed. The local measurement updating process generates a local
measurement updated square root information matrix and vector for each target identified
by a tracker. For each target registered in the track file, the association matrix obtained
through local measurement-to-track association, is scanned along the measurements. Local
measurement updating is performed for all measurements marked "I" in the local association
matrix. Local measurement updating of outlier measurements is also performed for targets
which have "0" correlation with all measurements.

(9) Global Fusion and Global Measurement Updating

Each LP sends its local association matrix and corresponding local square root
information matrices and vectors to the GP for fusion and global measurement updating.
As a first step in the fusion process, the association matrices are combined by invoking the
Majority Voting Method. That is, a global fusion matrix is created, whose entri'es are
determined by the number of "I"s and "O"s from corresponding entries in the local
association matrices. If the number of "I"s is greater than or equal to the number of "O"s,
then the entry at that location in the global fusion matrix is "I". Otherwise, the entry is "0".
In this counting procedure, "M" is not considered.
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Table 4-1: Local association mtrix for radar 393.

Radar 393
Measurement ID

1 2 3 4

1 I 0 M 0

2 0 1 M 0

T

a
r 3 0 0 M 0
g
e
t

4 I 0 M 0
I
D

5 0 0 M I

6 0 0 M 0

7 0 I M 0
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Table 4-2: Local association mnatrix for radar 350.

Radar 350
Measurement ID

1 2 3 4 3
1 1 0 0 M

2 0 1 0 M

T
a
r 3 0 0 0 M
g

t
4 1 0 0 M

D

50 0 1 M

6 0 0 0 M

7 0 1 0 M

71



Table 4-3: Local association mtrix for radar 394.

I Radar 394

Measurement ID

1 2 3 4

1 0 0 M

32 0 I 0 H

T
a

r 3 0 0 0 H
g _ __ _ _

eI t
4 I 0 0 M

I
D 5I

6 0 0 I M

6 0 0 0 H
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Table 4-4: Local association matrix for optical tracker G30.

I G30
Measurement ID

1 2 3 4

1 H 0 H H

T 2 M I M M

a
r 3 M 0 H H
g
e
t

1 4 M 0 M M

D 5 M 0 M

6 M 0 M M

7 M I M H
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Table 4-5: Local association matrix for optical tracker G80.

G80 Measurement ID

I1 2 3 4

1 0 M 0

2 0 I M 0

I T
a
r 3 0 0 M M
g__ _

e
t

1 4 I 0 M 0
D

I5 0 0 M I

6 0 0 H M

7 0 I M 0
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If all conflicts are resolved in the global fusion matrix, global time updating proceeds
according to the result of association. Otherwise, the Rule is applied to the global fusion
matrix to resolve conflicts as a second screening method. The Rule is based on the
obseivation that one measurement is associated with at most one target.

Rule: Scan all of the slots, row by row, to find which shot is associated with only one
measurement. Reset all entries in the column of the measurement found to 0
(outside). When a target is associated with more than 2 measurements, the
measurement with more "I"s is chosen.

By repeated application of the Rule we might be able to reach the correct
association. The association result, after application of the Rule, is stored again in the
global fusion matrix. If correct association is achieved, global measurement updating
proceeds. However, there will be cases which cannot be resolved with this rule only. When
the Rule fails to provide a definitive association, a decision based on the likelihood function
is used as a third screening method.

The present simulation is comprised of 5 trackers, so the global fusion matrix
combines 5 local association matrices. Table 5-1 shows the global fusion matrix after the
majority voting method has been applied to the local association matrices in tables 4-i
through 4-5. In table 5-1, conflicting assignment exists for the target with ID 5. To
overcome this conflict, the next step is to use the Rule described in section 2.2.3.

However, as shown in table 5-2, the Rule cannot resolve the conflict in this particular
case, and as a last resort we must evaluate the likelihood function to resolve it. Before we
can evaluate the likelihood function, a global measurement update must be performed.

(10) Global Measurement Update

The global measurement updating process is invoked based on the results returned
by the global fusion matrix. If there are no conflicts in the global fusion matrix, the global
measuremenL updated state for each respective target can be computed and stored in the
track file. When conflicts in the global fusion matrix have not been resolved, global
measurement updating is performed for all possible cases and evaluation of the likelihood
function is applied to resolve the conflicts.

(11) Evaluation of Likelihood Function

. Conflicts that exist in the global fusion matrix are resolved using a likelihood function
generated from the global measurement updated square root information matrices for all
possible cases obtained in (10). Association conflicts which existed in the global fusion
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Table 5-1: Global fusion matrix using the Majority Voting Method.

Measurement ID

1 2 3 4

1 I 0 0 0

2 0 I 0 0

a
r 3 0 0 0 0

e
t

1 4 I 0 0 0

D

5 0 0 I I

6 0 0 0 0

7 0 I 0 0
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Table 5-2: Global fusion matrix using the RULE.

Measurement ID

1 2 3 4

1 I 00 0

2 0 I 0 0

T
a
r 3 0 0 0 0

g
e
t

I 1 0 0 0
I
D

5 0 0 1 I

6 0 0 0 0I
7 0 I 0 0

I
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I matrix can now be resolved by choosing the correlation case which gives the smallest value
of the likelihood function. The resolved associations and corresponding information are sent
to update the track file and complete the global measurement-to-measurement association
process.

For the case described in table 5-2, we have obtained the value 13.7406575 for
measurement 3, and 13.806810111 for measurement 4. The association pair which gives
the smallest likelihood function value is chosen; in this case, measurement 3 is selected.
This is shown in table 5-3.

(12) Track Merging and Track Deletion

Once a one-to-one mapping has been established between track IDs and global
measurement updated states, the tracks are evaluated to determine which ones are
duplicates and which are anomalous. Any tracks which show similar behavior (almost
identical) are considered duplicates, and will be merged into one track. On the other hand,
any track which shows anomalous behavior, i.e. velocity or acceleration beyond the physical
limits of an MLRS rocket, will be deleted from the track file. Duplicate tracks will be
merged, and anomalous tracks will be deleted.

Duplication is demonstrated by track 1 and track 4 in table 6. A comparison of the
data for tracks 1 and 4 shows small differences between y-velocity, x-acceleration, y-
acceleration, and z-acceleration for each track. The following explanation can be applied.
Initially one target is tracked, identified as track 1. At some iteration prior to 183, an
outlier was identified as a new track, labeled track 4. Then track 1 and track 4 were treated
as separate targets until it was clear that both tracks were convergent. In other words, the
gates of tracks 1 and 4 contained identical measurements. Since the same measurements
are used in the filtering process, the global measurement updated states of both tracks
converge. The criterion used for convergence is to compare the magnitude of the difference
between the position vectors of two tracks with a specified threshold. If the magnitude is
less than the threshold value (3 m), the tracks are considered identical and the two tracks
are merged. Another example of merging with a similar explanation is shown by track 2 and
track 7. Figures 26-1 through 26-3 show this case more clearly. The numbers in each figure
represent track numbers.

Track deletion is determined by comparing the global measurement updated state
with specific boundary values. In table 6, the magnitude of velocities for track 3 and track
6 are 3201.0421 m/sec and 3054.4420 m/sec, respectively. We hive set the threshold value
for deletion using a speed of 3000 m/sec. The behavior of the targets in track 3 and track
6 is anomalous because the velocity of these targets is not appropriate for the type of target
we want to track. Therefore, these tracks are deleted. This is also shown in figures 26-1
through 26-3.
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Table 5-3: Global fusion matrix using the likelihood function.

Measurement ID

1 2 3 4

1 I 0 0 0

2 0 I 0 0

T
a
r 3 0 0 0 0
g
e
t

4 0 0 0
I

D

5 0 0 1 0

6 0 0 0 0

7 0 I 0 0

79



00 - N '

0) ~r4 -,r ~ -~

%rJ C14 0 00 OON if4 r-W -
0o O\Oo 00k CC

v.J oc r n

C)

-'0 r- Lc m n i 0
C14 - r) 0 - r0 qq

Lr) 'ir-

oc v

4-FI

CC)

C. -zr - r- oc

itC . r O C

- .. .80



I

I 5 knI

I
!

/ 181

/ j-

I t i L/, \ t

g , , ,~%e

1 8

I



I
I V

1 -50 kui

1 '7

I /

I / /I - /

I /

L /3 ./ ,/ /

//

* /
/

U I' ~//~ 7

/ /I

-751cq b I itiMe

1 0 ~.c 580 ~ec

I Figure 26-2: Y component of global measurement updated states.

I
82

I
I



I x

4 k

-I n-Jt m
I a e a

Fiue2-:XcmoetoIlba esrmn pae tts
I8



(13) Global Measurement-To-Measurement Association

The global measurement-to-measurement association process correlates the external
nodes (or leaves) of the current hypothesis tree with the newly obtained compressed
measurements. This process is only applied to new compressed measurements which have
not yet been correlated with existing tracks. A simple gating method is used for correlation.
In our simulation, a rectangular volume gate is used with radii of 10 m (x-axis), 90 m (y-
axis), and 29 m (z-axis). Correlation results are sent to the hypothesis management process.

Up to now our examples have been for iteration step 183, however, it is not necessary
to make a global measurement-to-measurement association at the 183'd iteration step. First,
every hypothesis tree has at least 3 levels, which means every track has existed for at least
three consecutive iterations. Second, all of the compressed measurements at the 183r'
iteration are correlated with existing tracks.

An example of global measurement-to-measurement association can be found in the
9 4th step. In this case the current hypothesis tree is given by level 1, 2, and 3 branches.

Among the 9 4th compressed measurement set, measurement 3 and measurement 5 are not
correlated with any tracks that exist at the 93' iteration. Hence, global measurement-to-
measurement association is performed between the leaves of the hypothesis tree and
measurements 3 and 5. This is given in table 7. In table 7, only measurement 3 is
connected with leaf 3. This result is sent to the hypothesis management process.

(14) H~pothesis Management

The hypothesis management process consists of several subprocesses. First,
connections (branches) must be made between external nodes in the hypothesis tree and
newly obtained measurements. These connections are based on the correlation results.
Second, the number of levels of new external nodes are increased by adding one level to
each of their parent nodes. A new external node may have several parent nodes, and these
parent nodes might have different numbers of levels. In this case, a copy of the new
external node is made for each of the parent nodes. Each copy is regarded as a different
node and a tentative track is formed between each parent node and its copy of the external
node. The level of each copy is given by the level of the parent node to which that copy is
connected. Third, there is a pruning process which removes any parent nodes with less than
or equal to three levels from the hypothesis tree if they are not connected to any new
measurements. Fourth, any measurement which is not connected to any previous external
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Table 7: Global measurement-to-measurement association matrix
at step 94

measurement ID

1 2 3 4 5
t
r
a
c 3 0 0 I 0 0
k

I
D 5 0 0 0 0 0
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nodes is regarded as a new target and assigned level 1. Finally, after checking the levels of
all new external nodes, all possible tracks which end at leaves with more than 3 levels are
sent to the initial state determination process. In figure 27, one track is formed, and
compressed measurement 3 becomes the leaf of that track. This result is sent to the initial
state determination process.

(15) Initial State Determination

Initial state determination process is invoked after tracks which have level 4 nodes
are identified. Using the first three values and second order polynomial extrapolation, as
described in section 2.2.3, the initial state of the confirmed track is estimated.

The estimated initial state is stored in the track file as a global time updated state
and a global measurement updated state with track (or target) ID.

(16) Broadcast Updated Track File

The final updated track file is broadcast to all LPs. The LPs are also sent the final
decisions on the global measurement-to-track associations which were chosen by the global
measurement updating process. Based on this, local time updating is performed without any
data association, and the next cycle of the entire process may begin.

To summarize, MTI's software for multi-sensor multi-target tracking is based on the
EDSRIF. It was successfully tested using real MLRS data. Performance of the software
was evaluated by comparing its track calculations with tracks formed using only the
EDSRIF, but with perfect associations (see figures 28-1 through 28-3). In these figures,
solid lines mark the trajectories from the new software package and the dotted lines mark
the "EDSRIF-only" trajectories. The results are quite promising. Even though there were
extraneous tracks early on in the simulation, all of the extraneous tracks converged in less
than 16 seconds, leaving only three tracks, which corresponds to the number of targets in
the simulation. Note how closely the new software system's tracks (solid) matches the
"EDSRIF-only" tracks (dotted) once the extraneous tracks have converged. The small
difference is due to one using all 14 sensors and the other using only 3.

2.2.4 Computing Submunition Trajectories

Debris including "chem str glass pnl", restraint strap, piston and gas generator are
ejected along with each submunition. However, the drag coefficients for debris are much
smaller than for submunitions, and we expect that debris will fly past the impact area. Thus,
the short range network should only see true targets. Nonetheless, discrimination of
submunitions from debris by long range or short range/along track sensors will be necessary
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Figure 27: Hypothesis tree generated at step 94.
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Figure 28-1: Z component of global measurement updated states using the EDSRIF.
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Figure 28-2: Y component of global measurement updated states using the EDSRIF.

89



-4 kit
7

Now softw a

... EDSR!F-onlg

-6 kn II I I II timie

Ssac Sam sec

Figure 28-3: X component of global measurement updated states using the EDSRIF.

90



for submunition tracking during its early stages of motion. The latter problem is under
investigation as part of a separate project.

Desig. A Submunition Trajectories: This simulator generates a set of trajectories for 1
rocket and 6 submunitions in a Cartesian coordinate system. The trajectories are used to
create a set of corresponding simulated measurements for processing by the dual network.
The following is a brief description of the simulator.

stage 0: This represents the rocket boost phase, during which arbitrary piecewise
constant accelerations over arbitrary time periods may be imposed.

stage 1: This represents ballistic motion. At the height of 460 meters, the first 2
submunitions are ejected. Thereafter, 2 submunitions are ejected every 0.05
seconds until 6 submunitions have been deployed. The rocket and
submunitions move ballistically following a 3-dimensional constant
acceleration kinematic model. The initial conditions for the submunitions are
the vector sum of the state vector of the rocket plus the state vector of the
submunitions relative to the rocket. Different process noise levels for the
rocket and submunitions are used. Also, the process noise levels for the
rocket were increased after each ejection in order to compensate for non-
aerodynamic motion that is likely to occur.

stage 2: This stage represents ballistic motion of the rocket and deployment of the
Ram Air Inflation Decelerator (RAID) for submunitions. The RAID for each
submunition is deployed at a user specified time after ejection. The RAID
decelerates the submunition and reduces its spin rate. Assuming that
frictional force is proportional to the square of velocity, the following system
of differential equations was used to model the submunition trajectory after
RAID deployment:

x = x 2 , y = -RY y 2 , z = -R. z2 - g

Here R,,, Rg, R, represent coefficients for drag force in each direction due
the RAID. The gravitational acceleration is represented by g.

stage 3: In this stage we assume that the rocket still undergoes ballistic motion, and
the first and second Orientation & Stabilization (O&S) devices are deployed.
The following system of differential equations was used to generate a
submunition trajectory for the first part:
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x -Lx x2 , y = - y, z = -Lz z2 - g

For the second part we have:

x = -K x2, y = -K, z = -K. z' - g

Here LX, LY, L2, Kx, KY, K, are drag force coefficients. Thus, the 2
parts differ only in the values of their proportional coefficients. All the
parameters are tuned so that submunitions move approximately 5 km down-
range from launch, all submunitions land in a 1.1 km diameter circle, and the
submunition's rate of descent is approximately 21 m/sec from a height of
approximately 150 in.

Figures 29-1 and 29-2 show the trajectories of one rocket and 6 submunitions.
Piecewise constant accelerations (10 m/sec2, 20 m/sec2 , 50 m/sec2), (25 m/sec2 , 15 m/sec2,
60 m/se 2), (25 m/sec2, 25 m/sec2, 70 m/se2), (35 m/sec2, 35 m/sec2, 80 m/sec2), (45
m/sec2, 45 m/sec2, 90 m/sec2), and (50 m/sec2, 50 m/see, 90 m/sec2) are applied for 6
different but equally divided consecutive time periods from 0..sec to 3. sec. The RAID
coefficients were chosen to be 2.1E-2, 2.1E-2, and 2.1E-2. 1.3E-2, 1.3E-2, and 1.9E-2 are
used for the coefficients of the 1st O&S system. The second O&S system uses 1.5E-2, 1.5E-
2, and 2.3E-2 as coefficients. In figure 29-1, a submunition ejection angle of 450 is chosen,
and it is zoomed around the ejection point. An ejection angle of 1300 is used in figure 29-2.
In both cases, 3.0 sec is used as the time period for the RAID deployment.

2.2.5 Methods for Processing Submunition Data

In the remainder of this section, several methods for tracking maneuvering targets
within an E-DSRIF framework are considered. Tracking SADARM submunitions during
deployment requires sophisticated algorithms for maneuver detection because the
submunition's speed changes from approximately 300 m/sec to approximately 20 m/sec
over a very short time interval. The following methods were considered:

Method 1: In this method maneuver detection is not required. At each iteration, the
process noise covariance is updated according to

Qk = C Pk()
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Figure 29-1: Submunition trajectories in Y,Z coordinates (45 degree ejection angle).
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where Qk and Pk (-) are the process noise covariance and predicted state
estimate error covariance respectively, and c is the adjustment factor which
should be chosen based on the dynamics of the maneuver [13].

Method 2: Once a maneuver is detected by examining the residual or innovations
process, the process noise covariance is adjusted using any one of several well-
known methods for adaptive Kalman filtering. More specifically, the residual
at the iteration is obtained by

=rk : Yk - Hk Xk-1()

where Yk is the measurement, Xk (-) is the predicted state estimate and
Hk is the measurement matrix. The residual covariance matrix B is given
by

B-' = Hk Pk-1( - ) Hktr + Rk

where Pk.1 (-) is the covariance associated with Xk.1 (-), and Rk is the
measurement noise covariance. Define:

ik = Wk tr -I 7' k,

then, it is well known that 1k is a Chi-square random variable under the
assumption that 7rk forms a Gaussian distribution. Maneuver detection
follows from the change in 1 k (and especially from the increase in 1k ). An
increase in the process noise covariance levels should be performed so that
1 k is reduced [8],[9].

Method 3: Using the Dyer-McReynolds smoothing coefficients, one can obtain the one
step smoothed value of the process noise. The smoothed value is given by

W lj., * = [R,*(_) " I (z,,'(j) - Rwx(j) xj,.,,)

Changes in w, I.* which exceed a thrshold might be considered to signify
a detected maneuver. The process noise covariance levels should be adjusted
accordingly [10].
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Method 4: Among the several multiple model approaches, the Interacting Multiple
Model (IMM) method may provide improved performance (over residual
monitoring with adjustment of the process noise covariance). The algorithm
of this method can be found in [11].

To gain experience, methods 1 and 2 were integrated with a SRIF and tested.
Following an example from [6], a 2-dimensional constant velocity motion with sudden
maneuvering is considered. The sampling period is 10 seconds and it is assumed that the
initial state is

X(o) = [ x(0) x(0) y(0) y(0) ] = [ 2,000 0 10,000 -15 ]

where position and velocity are measured in meters and meters/second, respectively. A
piecewise constant acceleration input

ax = ay = .075 m/sec2

is applied to the target over the interval between 400 and 600 seconds. The dotted curve
in figure 30 is the corresponding trajectory. The solid curve in figure 30 represents filtered
state estimates using the SRIF. The corresponding rms position estimate error is given in
figure 31.

Next, we incorporated the adaptive filtering method into the SRIF as per the formula
described in METHOD 2. The solid curve in figure 32 represents filtered state estimates
for the SRIF and the rms position estimate error is given in figure 33.

Finally, we applied the continuous updating of METHOD 1 to the same test
trajectory and obtained the filtered state estimates, depicted as a solid curve in figure 34.
Figure 35 shows the position rms estimate error.

The following observations are made. The continuous updating method is to update
the process noise covariance matrix at each iteration. The updated values depend upon a
scale factor and the measurement updated globally optimal estimate error covariance matrix.
The scale factor determines the performance of the method but we do not yet have a
systematic method for determining its value. This is one disadvantage of the method.

The adaptive filtering method is to update the process noise (to a new but fixed
value) only when a maneuver is detected. The decision criterion is the norm of the residual
vector exceeding a threshold value which, like the scale factor, requires careful adjustment.
Also, the initial choice of the process noise covariance will affect tracking performance.
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Figure 30: Nominal trajectory and measurement updated states in XY coordinates using3 the SRIF.
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Figure 32: Nominal trajectory and measurement updated state in X,Y coordinates using
an adaptive SRIF.
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Figure 34: Nominal trajectory and measurement updated states in X,Y coordinates using
a continuous updating SRIF.
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This is seen in the following well-known equation from [81:

Pk-1(-) = #k-1 Pk-1(+) #k-1 tr + Qk-1

The initial choice of the process noise covariance matrix, Q, affects the predicted state error
covariance, Pk-1 (-) . Also, the residual covariance matrix, B, depends on the predicted
state estimate error covariance via the equation (4). Since the norm of the residual is given
by (5), tracking performance depends on the initial choice of the process noise covariance.

Nearly optimal parameters for each method were obtained by making repeated
simulation runs. Figure 36 shows the position rms estimate errors for each method when
using the nearly optimal parameters.

2.3 Design and Testing of a Specialized Processor for Integrated Tracking

Computational throughput is one of several keys to improved tracking performance.
Our approach to increased throughput is to distribute the processing of data over a network
of inexpensive microcomputers. However, inspection of the DSRIF algorithm shows that
computation may be parallelized even within each LP and the GP. To this end, MTI
entered into a collaborative arrangement with Space Tech Corporation, Ft. Collins,
Colorado, who has been working on the design of a multiboard set for a similar application
since approximately 1987. Much exchange of ideas between MTI and Space Tech was
made, and we converged to a final design which is being manufactured by Space Tech
subcontractors in small quantities. We hope to receive the multiboard set for testing and
integration with our laboratory experiment.

Most of our discussions with Space Tech involved efficient architectures for
implementing Fast Givens Rotations (which are free of expensive square root calculations)
and Householder transformations, since matrix orthogonalization is the major mathematical
operation in the DSRIF. We especially looked at GP architectures since the matrices are
much larger than those for LPs, and are already block-wise upper-triangular.

Also, Space Tech promised to provide a DT-Connect interface for preprocessing of
the video data, and an EISA bus for compatibility with MTI's "486" computer.

2.4 A Dual Camera Tracking Experiment

A "2-element" cluster (figure 37-1-d) within the short range network was built and
tested. Each element contains a single video sensor mounted on a 2-axis gimballed
platform. Figure 37-2 is a block diagram of the dual camera network. Each camera records
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images within its respective field of view (adjustable from 5 to 40 degrees) at 30 frames per
second. With the camera fixed, 2 consecutive frames are grabbed and then subtracted pixel
by pixel. This eliminates common background noise. Each local processor then computes
the centroid of its subtracted image and generates a new position feedback command for
repointing its platform. Separate dc servo motors control platform azimuth and elevation,
but both axes of rotation are controlled by a single board motor controller. After
repointing, the target's centroid is nearly at the origin of the focal plane's coordinate system
which has been preset to the center of the camera's field of view.

Various factors contribute to the observed offset between target centroid and focal
plane origin. They are, in order of decreasing magnitude, a non-zero target velocity, mount
rotational axes being noncoincidental with focal plane axes, finite resolution of the shaft
encoders, motor coupling slippage, and variation of the mount's axes of rotation with respect
to the manufacturer's specification. By far, the greatest contributor to repointing error is
the movement of the target between frame subtraction and repointing of the platform.
Filtering, and prediction based upon the filtered trajectory will greatly reduce this source
of error in future work. Also, incorporation of velocity feedback into the motor control loop
will greatly increase the maximum angular track rate of an individual element. Assuming
a constant velocity trajectory, grabbing frames while continuously repointing the platform
along the target's predicted velocity vector will prevent loss of target at the second frame.
For uniformly accelerating targets, incorporation of velocity and acceleration estimates into
the control loop will prevent track loss in a similar manner.

The remaining sources of error are relatively small and except for the second source,
were neglected. The fact that mount rotational axes were not coincidental with the focal
plane axes, became an issue when the ability of the cluster to coordinate target acquisition
was tested. The azimuth and elevation of each platform is continuously transmitted over
the network from local to global processor, and there displayed in real-time. When only 1
element is actively tracking, the global processor computes and transmits azimuth and
elevation commands to the non-tracking element. Upon command by the user at the global
processor's terminal, the non-tracking element will repoint using the global command,
acquire and begin to track the common target. The global processor computes an
equivalent azimuth and elevation in the local coordinate system of the non-tracking element,
assuming a predetermined range. Thus, the "tracking volume" is an arbitrarily thin
"spherical shell". Additional code which computes a full azimuth/elevation search path
based upon a preselected range gate, was written but neither installed on the global
processor nor tested. In this case, the "tracking volume" is a spherical shell whose thickness
is equal to the range gate.

For coordinated target acquisition at very short ranges, calculation of the equivalent
azimuth & elevation was also based upon geometric models of platforms and sensors. The
local coordinate system of each element is defined as the mount rotational axes plus their
cross product as vectors. The geometric model is a coordinate transformation which
includes the displacement and orientation of the focal planes with respect to the local
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coordinate systems, as well as the displacement and orientation of the local coordinate
systems with respect to each other. Thus, a vector drawn from the origin of 1 local
coordinate system to a target, can be transformed and added to the local coordinate systems'
displacement vector, in order to arrive at the vector from the origin of the other (non-
tracking) element to the same target.

Laboratory and field testing of an individual element, and laboratory testing of the
"2-element" cluster was carried out. The 80486 based element (figure 37-1-c) was field
tested in an open area near our Rockville office. A gasoline powered generator, placed 100
feet from the instrumentation, was used to provide 120 volt, 60 cycle power. Standoff of the
generator helped to reduce its rf interference with the instrumentation display. The launch
area was 165 feet from the tracker. Two types of targets were assembled and used for the
test. First, circular shaped balloons, filled with helium, were tethered from the launch area.
The balloons were essentially 2-sided with one side being highly reflective (and specular)
and the other side very dark. The distance between the balloons and the ground was
approximately 50 feet, but wind moved the balloons around by as much as 20 to 30 feet
from the tethered position. Once the tracker was manually pointed so that the balloon
appeared within the tracker's central window, automatic tracking was initiated. In this
mode, the balloon was successfully tracked (against a cloudy background sky) for many
minutes, and without loss (figure 37-1-a). Then, the same experiment was repeated but with
5 of the same balloons (for more upward movement) tied together and released from the
tethered position. Again, the group of balloons was tracked without loss, but only until the
group appeared out of range (at which point its image was only a few pixels).

Secondly, a variety of small rockets were assembled and launched, one at a time.
The 2 types were the "Alien" (figure 37-1-b) and "MTI Special" which was designed by MTI
staff to closely resemble the SADARM submunition. Both types were set for launch to
approximately 400 feet vertical, at which point a parachute is deployed and the rocket falls
back to ground. We were unsuccessful in launching the "MTI Special" as the fuselage
separated from the rocket body at lift-off. However, the "Alien" was successfully launched
5 out of 5 attempts. For 2 of the shots, we were unable to manually acquire the descending
rocket at all. For 2 of the shots we were able to view the descent but only outside the
central window. Finally, for the last shot we were successful in manually acquiring the
descending rocket. At this point automatic tracking was initiated, and the target was tracked
for approximately 9 seconds until impact (figures 37-3-a through 37-3-d)! A video tape of
our field test results was delivered to WSMR for their review.

Testing of the "2-element" cluster was carried out in our laboratory at MTI. Its floor
dimensions are 30 by 30 feet with a ceiling height of 10 feet. The "80386" and "80486" based
elements were bolted to a 3 foot by 8 foot table top at opposite ends of the table. Each
tracker's base was positioned flush with the edge of the table. Thus, the cluster's topology
is similar to a pair of human eyes providing binocular vision. A variety of targets were
successfully tracked. Most were hand held at the end of a hangar and led around the room.
Even goldfish in a 3 cubic foot tank were tracked. Of course, loss of track could be
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achieved by moving the target too quickly, but generally speaking, the cluster performed well
and was able to coordinate its acquisition from any point in the room.

Elements which contain multiple sensors on a single platform are a natural evolution
of our Phase H work. Small radar hand guns can provide range rate measurements at short
range. In combination with video, the SRIF could yield reasonable estimates of range after
only a few accurate measurements are processed. In this case, small initial estimate errors
are needed for rapid convergence of the filter.

Figures 38-1 through 38-3 show the configuration of video tracking system and
functional block diagram. In the remaining paragraphs, details about the design and
operation of the cluster are provided.

2.4.1 Tracker Hardware

Each element was built using the following components:

Servo Motor Controller (Technology 80, Model 5638): It is an IBM PC/XT/AT-compatible,
digitally sampled servo controller card, offering up to three axes of servo control. It
performs the time-intensive computations required for closed-loop digital motion control,
freeing the host computer for other tasks. The Model 5638 generates an analog voltage
from an on-board 12-bit DAC to drive the amplifier.

Servo Motor Power Amplifier (Technolcgy 80, Model 6410): It is a dual axis DC servo
motor amplifier capable of delivering 60 volts and -7 to + 7 amps of continuous current to
each motor. The amplifier accepts a -10 to + 10 volt input signal which produces a
corresponding amount of current in the motor. Highly efficient, power FET switching H-
bridges are used to supply current to the motor.

Power Supply (Electrostatics, Model 400-28): It is an all-silicon, regulated supply with
0.01% line regulation, 0.1% load regulation, 500 microvolts maximum ripple, foldback
current limiting, and of small size and weight.

DC Servo Motor (EG&G, Model ME2620-315B): It is a brush motor with an 8,000-hour
brush life at 1000 rpm. It contains a shielded precision ball bearing rated for a 40 lb side
load. Torque output is a direct function of current applied, while speed is a direct function
of the voltage level. Its maximum torque is 54 oz-in with 4.5 amps and maximum speed is
7000 rpm with 60 volts.

Optical Encoder (EG&G, Model 1DM-1000-5L37A5): Its resolution is 1,000 pulses per
revolution, however the servo controller can count 4 times for each encoder cycle. Thus,
with quadrature signals, the effective resolution becomes 1/4,000 of a revolution. The servo
controller keeps track of the motor position by incrementing or decrementing its actual
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Figure 38-2: Functional block diagram of the video tracking system.
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Figure 38-3: Diagram of the motor controller.
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position counter accordingly.

Rotary Table (Daedal, Model 208-01-SH): It is designed for precise motor driven rotary
positioning and indexing. It is low in profile and high in precision. Two rotary tables are
used per tracker, 1 for azimuth (10 inch and 8 inch diameters) and 1 for elevation (6 inch
and 5 inch diameters). It is stiffly pre-loaded to minimize run out, while producing smooth
rotation of the table top. A precision worm gear drive provides precise point-to-point
bidirectional accuracy and repeatability. A 180:1 gear ratio provides added flexibility in
establishing table speed and resolution when using a servo motor to drive the table.

Mounting Brackets (designed and built by MTI): Descriptions are provided in figures 39-1

through 39-7.

Video Cameras: Magnavox Moviemaker VHS camcorder, Panasonic VHS-C Palmcorder.

Display: Magnavox 8CM873 multimode color display

IBM Compatible PCs: One "80386" motherboard, and one "80486" motherboard designed
and built by MTI.

Frame Grabber (Data Translation): The DT-2851 is a 512 x 512 x 8-bit frame grabber well
suited for real-time digital image processing. The DT-2851 has 512 Kbytes of on-board
frame-store memory. This memory is used as two screen buffers. Each buffer has a
resolution of 512 x 512 x 8-bit per frame.

Network Card (AT&T Starlan)

2.4.2 Tracker Software

The image processing part of the tracker uses a Data Translation DT-2851 high
resolution frame grabber residing within a 12 MHZ IBM AT compatible computer. The
video images from the CCD camera are uniformly sampled at the rate of 30 frames per
second.

At first, we developed software which subdivides each buffer into four quadrants and
then sums the intensities of every pixel in the same quadrant. The intensities were
thresholded so that all values above threshold are set to 1 while all values below are set to
0. This speeds up the quadrant summations, and was perfectly acceptable when tracking our
nominal target simulator (a flat circle moving on a computer screen with a programmable
trajectory). With thresholding, approximately 9 frames per second can be processed into 4
quadrant intensity values and passed to the servo-motor control board for tracking.
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Figure 39-1: Mounting brackets.

115



PIECE #1

Thickness = 3/4" ALUMINUM

Oil

2.0"11

5.65"1

DRILL
DRI LL 1/4"1 Hole
7511 Hole 8 PLACES

AND COUNTrERSINK

[ 4 - 5.65" 'I

Figure 39-2: Mounting brackets.
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Figure 39-3: Mounting brackets.
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Figure 39-5: Mounting brackets.

119



N

N
H

012



PIECE #6

Thickness = 1/2" ALUMINUM

5f12.0" 1 2.0"1go1 . 5 "t 1 . 5 "I I
I I

DRILL 2.5"

1/4" Hole
3 PLACES

5.0"

I I I

MILL I X 1I "SLOT 6 PLACES 4,
I!I I ! FI _ _ F__

i.0" 1.0" 1.0" 1.0" 1.0" 1.0" 1.0"

14 7.0 11 101__ __ _ __

DRILL AND TAP HOLE FOR 10/32 SCREW 3/8" DEEP, 4 PLACES

_/_"

2 5

-" 4 5" I

. 6 5"

Figure 39-7: Mounting brackets.
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Simple motor control software for the Technology 80 programmable controller was
also developed and successfully tested.

Next, we began to improve the image processing algorithm. Windowing of the screen
was added, and various equations for calculating the target's true centroid (as opposed to
this iterative quad tree approach) were developed.

Changing the window from 512 x 512 pixels (full screen) to 96 x 96 pixels allowed
new servo-motor commands to be generated every 0.1 seconds, based upon recursive quad-
tree processing. Adding a true centroid calculation improved tracker performance but
increased the processing time. The centroid was calculated using the following equation:

I: X i I i

XC=

Yi Ii
Yc =

£. I.

where x, (or Y,) is the x (or Y) axis coordinate of the center of pixel and I i is its
measured intensity. The increase in processing time is due to the long buffer interface
library routine, provided by Data Translation.

MTI's Intel 80486 CPU based PC was substituted for our existing PC-AT computer.
As a result, the new MTI-486 based video tracker system is able to compute centroids and
execute motor control commands at 8 frames per second. This represents a speedup in data
rates by a factor of approximately 4 times.

Two changes in the software were made. They are the addition of a direct memory
block access scheme to the DT-2851 buffer, and the addition of sub-window subtraction
using a direct memory block access scheme.

The DT-2851 has two 256 K-bytes frame grabbing buffers which are synchronized to
the external video input at the rate of 30 frames per second. At the start, the software
establishes a subwindow of 64 x 64 pixels and creates 2-dimensional buffers corresponding
to the 2 frame buffers. Then, the software accesses each buffer in order to download pixel
intensities to the PC destination buffers.

Once pixel intensities in the subwindow have been completely transferred form DT-
2851 buffers to the destination buffers, the program then subtracts the current window
intensity from the reference window intensity for each pixel.
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Currently, only the central 64 x 64 window pixels within the full 512 x 512 frame of
pixels, is used for calculation of the target's centroid. The software for centroid calculation
is being upgraded to include an algorithm for selecting alternate 64 x 64 windows at
different locations within the full frame. This will improve tracking performance during
periods in which the target maneuvers or its velocity exceeds the tracker bandwidth. In the
long term, selection of the window location will be based upon globally optimal track
predictions (transformed back into local coordinates); in the short term, it will be based
upon locally optimal track predictions.

Along these lines, software for selecting 1 of 8 alternate 64 x 64 windows inside of
the full frame was completed but not fully tested. That is, in addition to the 64 x 64 window
located in the center of the full frame, 8 alternate 64 x 64 windows surrounding the central
window may be sequentially searched when the central window is empty.

The following describes the software structure for a video tracker.

Input: mppara.dat (fj.dat for Fujinon camera, mg.dat for magnavox)
Library:
1) Microsoft-C compiler large model library
2) Floating point library with Math Coprocessor (80387)
3) dtir.lib
4) t5638.lib
Algorithm:
main( )
{

initial value setting;
motor initialization;
image-grabberinitialization;
read data from the file mp_para.dat;
move motors to find target with cursor keys manually;
for (;;)
{

dt_target_direction(olddelta_x,old_delta_y,&direction);
dtmonopulse(delta_X, delta_');/*monopulse* /
if (delta_x = = 0 and delta.y = =0) then

switch direction(&direction, delta_x,deltay);/*relocate window*/
profile(0,deltax, vel, acc);/*move x axis motor*/
profile(1,delta.y,vel, acc);/*move y-axis motor*/
net(deltax,delta_y);*send data*/

{
free(memory);

The following are a list of functions.
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dt target direction(olddeltax, old delta_,, &direction)
/*find target direction and relocate window to the new area s/
{

switchdirection(&direction, ... ,deltax,delta_y);
}
dt-monopulse(deltax,deltajy)
/* monopulse main body*/
{

setupwindow:
dt centroid: /*calculate the centroid* /
return quadrantnumber;

}
dtchange window(delta x,delta.y)
/* if no target inside of window, change window, and ,/
/* move motors until if finds target '/
net(deltax,delta_y)
{

initializegraphic mode:
receivecmd;/*receive data from client 1 and 2"/
setpixel(delta x,delta_y); /*plot deltax and delta..y*/
if (key= ='s') then exit;

2.4.3 Network Communications

A network program for communicating between MS-DOS based local and global
processors was created. It is based on the AT&T Starlan Network. The 2 local processors
were named "clientl" and "client2", and the global processor was named "center". Each
client contains a network card in addition to the other cards previously described. Each
client performs centroid calculations and motor commands. Also, each sends delta x and
deltay values to the center, which receives data from both clicnts, and plots their values
using real-time graphics. This section describes basic networking concepts, the network
components, and explains how to operate the full cluster from a networking point of view.

Network Components: The AT&T Starlan Network is a baseband, 1-megabit per second,
local area network that provides simple, reliable communications (logical and physical)
between two or more devices on the network. Devices on the network include
minicomputers, personnel computers, video display terminals, printers, and intelligent
workstations.

The logical aspect of an AT&T Starlan Network connection is established and
maintained via network software and firmware within each device involved in the
connection.
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The physical aspect of an AT&T Starlan Network connection consists of AT&T
Starlan Network hardware and the transmission medium of the network; standard 24-gauge,
building telephone wire. Figure 40 illustrates the components involved in a typical AT&T
Starlan Network for video tracking system.

Basic Networking Concept: The following basic networking concepts explain the operation
of the AT&T Starlan Network.

Peer Oriented - The AT&T Starlan Network is a peer network. All devices on the
network are recognized as equal with regard to access of network services and the order of
servicing network devices. Requests for network services are handled on a first-come, first-
served basis with no need for a single, centralized point of network control.

Network Names - Each device on the AT&T Starlan Network is assigned unique
name. That name can then be used to identify the device on the network for all subsequent
network operations. Names can be locations (room number), a person's name (Bob), or any
other easy-to-remember identifiers. Names can also be assigned to local groups.

Communicating via a session - Devices on the AT&T Starlan Network are connected
with reliable, point-to-point connections known as virtual circuits. The establishment of a
virtual between two network names and the subsequent use of that virtual circuit to
communicate is known as a session. Sessions are equivalent to the reliable, point-to-point,
two-way connections that exist in traditional telecommunications networks.

Video Tracking Network Programs: The video tracking networking program contains
routines that add network names, connect to a network name, listen on a network, send
(transmit) data on a network, disconnect a network using the SLI (Session Layer Interface)
program interface.

To use the video tracking network program, the following network environment is
needed. Three MS-DOS version 3.3 PC workstations, either IBM-PC 386 or 486 machines,
each equipped with an AT&T Starlan Network NAU (Network Access Unit). A working
AT&T Starlan Network physical connection must exist between the three workstations.
Each workstation must have the AT&T Starlan Network client version 3.2 program software
installed and operational. Each workstation must have the clientl, client2, center program
files installed.

Running Client Programs - The following procedure is used to install program files.

Step 0: when you boot system, system asks you "Load AT&T Starlan program? (y/n)".

then, type 'y' to load Network program.

Step 1: Change dirc -ry for example (C:\> CD \NET).
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Video Tracking System

l.- 2)CL Target

Video Tracker 1 Video Tracker 2

Local Processor 1 Local Processor 2

MTI-486/33 SWAN-386/25

AT&T Starlan Card Client 1 (B) AT&T Starlan Card
F In Out Client 2(C)E[ In Out

Dasy chain connection
I AT&T Starlan Client Program 3.2

I Center(A)

Global Processor

SWAN-386/25
AT&T Starlan Card

On I Out

Figure 40: Starlan network for the video tracking system.
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Step 2: type 'client1'.

The video tracking network program is now loaded. The Main Menu screen should
now be displayed on the screen. This screen presents a list of available network operations.
To select a particular network operation, simply enter the letter of the network operation
from the menu. It will issue a series of screen prompts that request information necessary
to perform the network operation selected. See figures 41 and 42.

Establishing A Network: Each client displays the following after you type "clientl" or

"client2" at the DOS prompt.

VIDEO TRACKING TEST COMMAND MENU

a - Add a Unique Network Name

c - Call and Establish a Session

1 - Listen and Establish a Session

m - Redisplay This Menu

? - Help

q - Quit

menu selection --->

Center Menu is as follows (when you type "center" at the center computer).

VIDEO TRACKING TEST COMMAND MENU

a - Add a Unique Network Name

c - Call and Establish a Session

I - Listen and Establish a Session

v - Run Video Tracking

m - Redisplay This Menu

?- Help
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Video Tracker Network

S0 -.T7arget

Client 1 Client 2

Video Tracker 1 Video Tracker 2

Local Processor 1 1------------------- Local Processor 2

MTI-486/33 Start 2 I SWAN-386/25

tartla\ Start 2

Global Processor1

SWAN-386/25 Start/Starti /Start2

Figure 41: Operation of the netwoirk.
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Video Tracker Network

.C ..Target

Video Tracker 1 Video Tracker 2III

Local Processor I Local Processor 2
(Client 1) (Client 2)

,L- EL1 /LAZ1~(2) E (L-21 A44L ,AZ

(1)
(5) ,

Global Processor -

(Center) LELI/AZi,EL2/AZ2

Note:
Client1: Global Tracker
Client2: Local Tracker

Figure 42: Diagram of the video tracking network.
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I
q- Quit

menu selection --->

"ESTABLISHING A NETWORK" establishes a session between these two
workstations by issuing a listen ("1") on one then a call ("c") on the other. The 'remote1 name' is that of the other workstation. The 'local name' is that of the local workstation.
When the session is established, a local session number is displayed.

Adding A Network Name: The first step you must perform in order to communicate via this
program is to add a network name for each workstation as follows:

j At workstation 1:

i 1. Enter 'a' at the menu selection --> prompt.

2. a name ("clientl").

3. The program then adds the name and notifies you with the following prompt: "Add

name completed successfully".

1 4. Repeat this procedure for workstation2 ("client2"), workstation3 ("center").

Example: In order to send and receive data between two workstations on the network, first
establish a network connection between the two systems. To do this, you must do a
LISTEN at the center workstation and a CALL at the client1 workstation.

I At the center workstation,
1. enter '1' at the menu screen,
2. enter remote name to listen for: "client",
3. enter local name to listen from : "center",

then it returns the local session number,

At the clientl workstation,

1. enter 'c' at the menu screen,
2. enter remote name to call : "center",
3. enter local name to call from : "clientl",i then it returns the local session number.

At the clientl workstation,
1. enter T at the menu screen,
2. enter remote name to listen for • "center",
3. enter local name to listen from • "clientl",

then it returns the local session number.
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At the center workstation,
1. enter 'c' at the menu screen,
2. enter remote name to call to : "clienti",
3. enter local name to call from : "center",

then it returns the local session number.

At the center workstation,
1. enter T at the menu screen,
2. enter remote name to listen for : "client2"
3. enter local name to listen from : "center",

then it returns the local session number.

At the client2 workstation,
1. enter 'c' at the menu screen,
2. enter remote name to call to "center",
3. enter local name to call from : "client.2"

then it returns the local session number.

At the client2 workstation,
1. enter T at the menu screen,
2. enter remote name to listen for: "center"
3. enter local name to listen from : "client2"

then it returns the local session number.

At the center workstation,
1. enter 'c' at the menu screen,
2. enter remote name to call to: "client2"
3. enter local name to call from "center"

then it returns the local session number.

Running Dual Camera Tracking on the Network: Before you run video tracking, one should
run client1 and client2 workstations using the 'client1' and 'client2' command at each station.

At the client1 system, type 'r' to receive data (to wait for command). At the client2
system, type 'r' to receive data (to wait for command). Then each station waits for the
sender's command. At the center workstation, run 'center' command, then you will see the
Main Menu. Use 'v' command to run video tracking.

The screen asks questions as follows. 'Type 'y' to move client1 motor from center
workstation (y/n) ? [n]" If you say 'n' or hit enter key, then it will skip. If you answer 'y',
then "Enter data to send the 'move' command. The syntax 'MOVE delta x deltay:'" will
be displayed. Then you can answer: "move deltax (azimuth) deltajY (elevation)", for
example, ("move 10-20" or "move -5 10").
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Next, you have another question like the following: "Do you want to move motor for
CLIENT 2? (y/n) [n]". Then "Enter data to send syntax: 'Move delta x delta_y':" will be
seen. One can provide the same answer as above. If you say 'n', then it will skip to the
next.

Finally, system asks "Enter data to send (starting command):" If you type "start"
command at the center workstation, then the first workstation begins tracking. At the same
time, you can see the real time graphics (azimuth and elevation for client1 video system
working at the center system monitor). At this point, only the client system and video
camera are working.

If you want to give the client2 workstation a command to start tracking in the middle
of working, type 'c' at the center system's keyboard. Then you will see that both client1 and
client2 systems are working at the same time.

IIf you type a "start2" command at the center system, only the client2 workstation and
video camera work. If you type a "start" command at the center system, both clientl and
client2 systems start tracking at the same time.

If you want to stop tracking, you can type 's' at the client2 system first while client2
system is working, then only clientl system will stop. And type's' at the clientl system whileIthe clientl and center system are working together. Then clientl and center system will stop
working.
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3. Estimates of Technical Feasibility

Surrounding ground targets with a microcomputer based network of low cost video
trackers is an effective means for acquiring and tracking SADARM submunitions. At a
1,000 foot range, the submunition is at the top of the tracking volume, and will subtend only
a few pixels square when the video camera's field of view is fully extended to 45 degrees.
Both of the video trackers developed in Phase II were able to track high contrast targets of
this size. About 8 seconds are needed to zoom from full extension to the minimum field
of view (about 5 degrees). Unfortunately, after ejection, the submunition is airborne for
only 10 to 12 seconds; higher speed zooms could be used to increase track time with
reasonably sized images.

The Decentralized Square Root Information Filter (DSRIF) has several very unique
features which have been incorporated into the design of a dual network software package.
The package is approximately 50% complete, at a combined Phase I/II cost of less than
$500,000. Software modules to control both the short and long range network processors,
as well as the dual network interface are needed.

In future research, attitude measurements from the video camera, along with
conventional range, azimuth and elevation measurements could be processed in separate
filters and merged centrally. Process noise levels could be easily adjusted during target
maneuvers when attitude measurements become important. The contribution of the attitude
filter to the global solution is continuously available and may prove useful in maneuver
detection (besides being useful in predicting the translational motion of the targets).
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Appendix A
Simulation Subroutines

I 1. WSMR TM

WAssuming a linear time invariant target model x(k+ 1) = Fx(k) + Bw(k), in this

routine the matrices F and B are initialized, and the inverse of F is computed using the

Gauss-Jordan method.

INPUT

- F and B matrices

OUTPUT

- Inverse of F matrix

SUBROUTINES CALLED

ZERO DNVERT MULT

2. INPAR

Reads the initial parameters, which include the initial state estimate error covariance
matrix, the process noise mean vector and covariance matrix, and the measurement noise
covariance matrix, from a file to initialize the DSRIF. These parameters are changed to
their corresponding square root information matrix and vector forms using the upper
triangular Cholesky decomposition.

INPUT

- Initial state estimate error covariance matrix
- Measurement noise covariance matrix
- Process noise mean vector and covariance matrix

OUTPUT

- Initial estimate error square root information matrix
- Process noise square root information matrix and vector
- Measurement noise square root information matrix

SUBROUTINES CALLED
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ZERO FTOSYM COV12RI UTINV MULTUF

3. COORTR

Calculates a set of Euler angles for each local coordinate system, as well as matrix
transformations between global and local coordinate systems.

INPUT

- Radius of the Earth
- Latitude and longitude of the GCS
- Location of each sensor in the GCS

I OUTPUT

- The Euler angles and matrix transformations

SUBROUTINES CALLED

IMULT MADD

4. RECEIVE

Opens measurement data file(s) and stores the array YMD. Range radar
measurement data are rewritten in terms of global coordinates, and stored in temporary
files.

INPUT

- Matrices for transformation from local to global coordinates

- Local measurement data (Range, Azimuth, Elevation)
- Location of all sensors

OUTPUT

I- Radar (position) measurements for each target in global coordinates
- Number of targets per scan

5. COMPR

136



Groups and compresses the coordinate transformed range radar data. A global ID
is assigned to each compressed measurement. Compressed measurements and their global
IDs are stored in a "compressed measurement" file.

INPUT

- Coordinate transformed range radar data

OUTPUT

- Compressed measurement data with IDs

6. GTOL

Transforms compressed measurements into local coordinates. New measurement IDs
are transferred with corresponding transformed measurements.

INPUT

- Compressed measurement data with IDs
- Matrices for transformation from global to local coordinates

OUTPUT

- Compressed measurements in local coordinates with new measurement IDs

7. SETID

Resets each local measurement ID to a global measurement ID.

INPUT

- Local measurements
- Compressed measurements in local coordinates with new measurement IDs

OUTPUT

- Local measurements with new global IDs

8. ARRANGE
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Sort and store local measurement data in correspondence with the global

measurement IDs.

INPUT

- Local measurements with new global IDs

OUTPUT

- Sorted local measurements with new IDs

9. GTUP

Performs global time updating.

INPUT

- Smoothing coefficient matrices from all local processors
- Measurement updated global square root information matrix and vector
- Process noise square root information matrix
- F and B matrices

OUTPUT

- Time updated global square root information matrix and vector

SUBROUTINES CALLED

MULTUFM MULT TDHHT RINZM

10. MEASNM

Transforms the global state into equivalent local measurements, such as range,

azimuth, elevation or azimuth, elevation depending upon the type of sensor.

INPUT

_ Global state vectors (for all targets)
- Matrices for transformation from global to local coordinates

OUTPUT
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I
- Equivalent local measurement vectors

1 . CMAT-M

Computes the observation matrix.

INPUT

3 - Location of all sensors
- Matrices for transformation from global to local coordinates
- Time updated global state

OUTPUT

- Observation matrices for all local processors

3 12. MTOTA

Performs the first step of local measurement-to-track association. Gating is
performed using time updated global estimates which are represented in terms of local
variables.

I INPUT

- Local measurements with IDs
- Time updated global estimates in terms of local variables

3 OUTPUT

- Local association matrices

I SUBROUTINES CALLED

3 UTINV MULT MADD MSUBM2 MULT_Ml

3 13. CRXGP

Performs the second step of local measurement-to-track association. Gating is3 performed using time updated global estimates which are represented in terms of local
variables. This routine also detects outlying data.

I
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INPUT

- Local measurements with IDs
- Time updated global estimates in terms of local variables

OUTPUT

- Local association matrices

14. ADD

Receives and fuses the local association matrices from the subroutines MTOTA and
CR XGP. This routine is called by each local processor.

INPUT

- Local association matrix from MTOTA
- Local association matrix from CR-XGP

OUTPUT

Fused local association matrix

15. LMUP

Performs local measurement updating based on the local association matrix.

INPUT

- Local measurements
- Local time updated square root information matrix and vector
- Local observation matrix
- Global time updated state
- Matrices for transformation from global to local coordinates
- Measurement noise square root information matrix

OUTPUT

- Local measurement updated square root information matrix and vector

SUBROUTINES CALLED

140



ZERO TDHMT

16. FUSION

This routine performs global fusion of local association matrices using the Majority
Voting Method and Rule.

INPUT

_ Local association matrices

OUTPUT

- Global fusion matrix

SUBROUTINE

RULE

17. GMUP

Performs global measurement updating.

INPUT

_ Local predicted state information matrices and vectors
- Global predicted state information matrix and vector

OUTPUT

- Global measurement updated square root information matrix and vector

SUBROUTINES CALLED

ZERO TDHHT RINZ ,1

18. BGMUP

Performs the final fusion of local association matrices using the likelihood function.

INPUT
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Local association matrices

OUTPUT

- Global fusion matrix

SUBROUTINES CALLED

ZERO LKHD

19. LKHD

This routine evaluates the likelihood function.

INPUT

- Global time updated square root information matrix
IGlobal easurement updated square root information matrix
- Measurement noise square root information matrix

- Innovations vector

OUTPUT

Value of likelihood function

SUBROUTINES CALLED

SYMTOF DET
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20. LTUP

Performs local time updating.

INPUT

--- F and B matrices
. Local measurement updated square root information matrix and vector

- -Process noise square root information matrix

OUTPUT

I - Smoothing coefficients from all of the local processors
- Local time updated square root information matrices and vectors

I SUBROUTINES CALLED

MULTUF MULT TDHHT

21. MSTOMS

This routine performs global measurement-to-measurement association using gating.

I Leaves of hypothesis tree (position information)

-Compressed measurements

3 OUTPUT

- Measurement-to-measurement asociation matrix

22. DELET

Deletes leaves of hypothesis tree which are not associated with any new compressed
* measurements.

INPUT

- Hypothesis tree
- Measurement-to-measurement association matrix
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OUTPUT

Hypothesis tree

23. MKNEW

Adds new leaves to hypothesis tree with level is.

INPUT

- Hypothesis tree
- Measurement-to-measurement association matrix

OUTPUT

- Hypothesis tree with new leaves

24. STORE

Stores nodes of hypothesis tree in different files according to levels.

INPUT

-Hypothesis tree

OUTPUT

- Level files

25. MKINT

This routine generates initial state estimates for confirmed tracks and stores them in

a track file.

INPUT

- Level files
- Compressed measurement file
- Track file

OUTPUT
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I Track file with initial states of new tracks

* 26. DEL

Once a track is confirmed from the set of potential tracks, this routine deletes theI unnecessary tracks from the hypothesis tree.

* INPUT

- Hypothesis tree

OUTPUT

- Hypothesis tree

SUBROUTINES CALLED

IFINC

m 27. CMTOTR

Copies compressed measurement file into track file at the first iteration step.

INPUT

_ Compressed measurement file

OUTPUT

Track file

28. UPTRA

Updates the track file.

INPUT

Track file

OUTPUT
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Updated track file
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A DECENTRALIZED SQUARE ROOT INFORMATION FILTER/SMOOTHER

Gerald J. Bierman Mitchell R. Belzer
Factorized Estimation Applications, Inc. Business & Technological Systems, Inc.

15445 Ventura Blvd., Suite 10-410 10210 Greenbelt Road - Suite 440
Sherman Oaks, CA 91413 Seabrook, MD 20706

SUMMARY For the discrete-time linear dynamical model

In this paper we present a new method for xj+l a $ x + 8W ; j * 0. T-1 (1)

combining linear least squares estimates obtained from
independent data sets. A bank of Square Root with two local discrete measurement models
Information Filters (SRIF) Is used to generate these
"local" estimates as well as their corresponding (I) .(1) 1+ t)
smoothing coefficients which can be merged after each = H. x. J J.
predictive step to obtain globally optimal smoothing _(2) H(2) (2) ; , T (2)
coefficients. Additionally, the merging algorithm ' H
recursively computes a global Information vector and
square root information matrix which can be merged the goal is ([5], p.42) to find xo ... xT that
with their local counterparts to obtain globally minimizes the least-squares likelihood performance
optimal values. Globally optimal smoothed estimates functional
and covariances are obtained from a backwards
recursion using either the smoothed estimates and T
covariances directly [l or a data equation Square JT(xO.... xT) = Rox-zo2 + ( H (1)X. -z(. 2
Root Information Smoother (SRIS) [22 which uses the j=O ' 0
globally optimal Dyer-McReynolds smoothing
coefficients as input. T-1 2+ IH(2 )x -z(2) 2) + a R (jw. (3)

A major advantage of our approach over a + J j  a)wj (3)
j=O

decentralized covariance approach is its ability to
add effects of the apriori Initial estimate F
covariance and prociessnoise to the results obtained where the a priori estimate R0 zo has covariance

with these effects omitted. In the covariance based p = R' R-T
case, the effects have to be subtracted (after they 0 0

have been included twice). An additional feature of At this point we do not assume any special
the approach is that it is not even necessary to s t tre o n t e H t the an thatial
reprocess the data when the a priori Initial state structure on or the H terms other than that
covarlance and process noise variances are changed. invertible and {wj} {V~I}, are zero mean
This is especially attractive when one is trying to white Gaussian noise processes that are statistically
"tune" the filter for problems with large amounts of (1) 2
data. independent of one another with E[(v ) I = Im

I. INTRODUCTION AND PROBLEM FORMULATION E(2) ) 2] . I (i.e., local data sets can have

Recently, there has been considerable interest in arbitrary dimensions but noise-free measurements, or
decentralization of linear least squares estimators, noise-free measurement combinations are not allowed),
A major motivation is the impending emergence of VLSI and E(wkw4) - R ,(k) "I R.(k) "T. We only deal with two
technology, the realization of parallel processing, data sets, but it is clear from the methodology
and the need for algorithmic ways to speed the presented that any number of data sets can be
solution of dynamically decoupled, high dimensional accomodated.
estimation problems.

The estimates of xo, .. ,xT that minimize this
A survey of decentralized filtering techniques performance functional are the smoothed minimumwas made by T. Kerr et.al. in [3]. In this paper we variance estimates and, for covariance analysis

present a new method for combining SR1F estimates purposes, we are interested in smooth estimate error
obtained from Independent data sets. After the covariances. The approach described by Willsky et al,
problem statement that follows, the new technique is [6) is to combine the estimates obtained by separately
derived in Section II. The new technique turns out to processing the data sets, viz. for k = 1, 2
be an orthogonal transformation based algorithmic
Implementation that generalizes an information matrix
filter "homework" problem in f4]. Section III
contains a discussion of the decentralized SRIF in
which merits of the proposed approach are described,
along with concluding remarks.

ThTs work was supported in part by the Jet
Propulsion Laboratory, anrd by the Applied Physics
Laboratory, Johns Hopkins University, under Contract
602196-S.
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Ix(k) j=T II. THE DECENTRALIZED SRIF/SRIS

and jLet us turn attention to development of our

approach; we rely on the SRIF orthogonal transfora-

(k) 2 + T tion methodology described in [5], and assume the
= *R x _H.k -z . 2  (4) reader is familiar with both the method and jargon.

j0 J J Suppose that data type-1 were processed using the
standard SRIF mechanization:

- UR (j . Measurement Processing
JoJ -L- ) )R z(1)

where the slash subscript notation is suggestive of (1) IJI- [ Ij j

conditional expectation. Since both performance TU) (6)
functionals use the same a priori on x0 , and thesa() (e)

same process noise wil it is easy to see that the H L 0 e
estimates produced wil be correlated. Another way to L J L
see this is to note that the filter estimate is a
linear combination of the data and the model, so that Time Update

x (k) T F (k) z~k) +(k) ; X + F (k) ( T I (
IT I iT i OJIT 0° Io iLT i -1 R (1) 1 ()

i.0[R $_B Ri)o-

'i~o  J~j  j °  OPj  "jljJ

where the weighting term multipliers r0(k) fFi(k) and )(1)

)I depend on the minimization of (4). The U = 0

app oach taken by Willsky et al is to combine the (1) (1)

subtract the correlation effects. The formulas

resulting are elegant (i.e., compact and a posteriori where
intuitive) but appear ill suited for computational (1) z(1 ) = -

purposes. The problem seems to be that the Willsky et (ROI. I  OI-11 = [R0 zO]
al formulation requires considerable storage and
computation; moreover, from a numerical point of view
it is bad practice to subtract the correlated portion The matrices T( I) and T I  are, as discussed in
of the estimate, viz. because of word length and
roundoff considerations Ax - Ay * A(x-y). [5], implicitly defined orthogonal transformations

that introduce zero blocks on the right side of (6)
An alternate covariance based approach, and (7), respectively, as indicated.

Andrisani/Gau [7], appears to overcome the numerical
concerns present in the Willsky et al approach. Remark: We avoid detail here, but note that for
However, Andrisani and Gau only address the filtering satellite applications one can use a pseudo-epoch
problem, and a preliminary assessment of their state formulation in which tj has a special, simple
formulation leads us to believe that their approach structure. Also, when the process noise is white or

involves considerably more storage and computation colored, step (7) is carried out one-component-at-a-
than does our information based approach. time (see [5) and [8) for particulars).

The information array approach proposed here has In terms of the filter results (6)-(7), the

(among others) the following desirable attributes: performance index JT can be rewritten as

I-i Data and estimate combinations are accomplished T
using orthogonal transformation techniques that JT(X 0 ..... XT) [e
have a well earned reputation for numerical jO J

reliability.
T-1 .()11-2 Processing is arranged so that arrays to be + I - R(1) (j) W + R*(1) ) -z

combined are statistically disjoint; numerically j0 . Wx j+1 W
questionable subtractions and cancellations are
avoided. T

+ iR_( xT I - 2 + 1H (2) x - z (2 )i2 (8)
1-3 The formulas needed for smoothing require only TITj= TT 0 j . (

mcdest storage requireents, computer implementa-
tion and testng are yet to be done, but the If one peruses the relation of the filter process (6)-
scenario envisioned makes heavy use of existing (7) and compares how it is used to transform the
certified software r8 l that seems far more performance index, it follows that the same structure
efficient than the approaches suggested in [6] can be used to transform the type 2 data terms
and [7]. appearing in (8).



Measurement Processing To proceed further, start with the star sum in
(2). (2_ rR2) ( l  (11), and consider the following algoritnm

[(2) (2) [(2*(2 11 (9)i Tw Rxj W
T~2  L(2) (2) =(2)] *2 j R *2)(j) *2Wj. Z 0 e. W Ix

LJ J J L JJ-H*(j-1) s- 1 B H (j-1) o1 z *(j-1)

Time Update

J+l1j I -8J j  Jj 1 Jj 1 (1) 0 H*(j) z*(j) (1)

00 #

W _ W 1 for j 0 ...,. T-I ; where [H*(1) z*(-)l - [0 0]

J+lJj ZJ+lj J and H (j) is upper triangular. This recursion is
very much like the standard SRIF time update
algorithm, and is therefore easy to implement with

where now, [R(2 ) (2) 1 - 0 0). In the case of (9)- off-the shelf software [8].
01-1 01-1

(10) we have not used the a priori on w or on To obtain the globally optimal information vector110 wehae nt uedthea pio i on ro 0  zjj and square root informaItion mtrix R we|
and as a result it is not necessarily true that the a rm jtr i*x 3 we

(2) _ (2) sove the following equations using H(j) nd z*())
SRIF coefficient arrays RW~ and R 2j+I are non- from (12):

singular; indeed, often the) will be singular. This
is not a limitation because at times that a solution R1 R
is wanted we will combine the results of (9)-(10) with F jI z 1 R~1  '
-e corresponding results from the data type-i proces- T R (2 )  (3
sing. (Incidentally data type-i can be empty so that T jJj = (13)
.ie result of that processing would be just the pro-
cess noise and initial condition a priori effects.) [H(j-1) z*(j-1) j #

Return now to the transformed functional (8), and
recast it one step further in terms of the results of
(10); where T is an orthogonal transformation triangulari-

zation operator. Globally optimal filter estimates

T and covariances are then given by7 (1) 2 r (2) 2

j0(xo,..xT  [e + e= Rt 1
2= jPj = Rj j  (14)

*(2), x *(2)() To obtain the globally optimal smoothed estimates and

j +)([R covariances using the globally optimal Dyer-McReynolds0smoothing 
coefficients from (12), a Covariance

2 (Smoother (15) or SRIS (see [11, [2) may be used:

z l"- T T(11). [R*(j))- Cz(J) - X.(.)1T|L )1 ( AjT J - xj+IJT
L'TITJ TIT

To be able to create filter estimates and covariances x .jT 1 IT " BWj T 3 (15)

at time T .and sooth estimates and covariances for
Vie entire time span one needs the star ternis and -1 . *

terminal SRIF data array. Observe that the dimension- ((I j L. jfl
ality of what needs to be saved for later use is
independent of the number of measurements in the + L*L*) T T
oaservation batches. This is especially important for L J .
(:atch sequential) applications with large data sets. *. -1

where L=. B[R (~j)]

When the one component-at-a-time process noise

methodology is applied one can avoid tV Rw

triangular matrix inversions; more important is the
observation that in the one at a time case the smooth
covariance update will then be a rank-2 aJjustment
that is readily implemented in terms of UD
covariance factors [5], [8>.
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I1. DISCUSSION AND CONCLUSIONS ized algorithms. In addition, these tests will
quantify the relative amounts of algorithm complexity

In this paper a procedure was described for the and efficiencies.
separate processing of independent data sets, after
which the results are combined. The idea is to extend REFERENCES
an approach that has been successfully used to solve
least-squares process noise free problems. To keep [1] G.J. Bierman, "Sequential square root filtering
the analysis and notation tractable our presentation and smoothing of discrete linear systems,"
uses a single (total) state model rather than assume Automatica, Vol. 10, pp. 147-158, 1974.
separate local models, each of which is a subset of
the total system state. The latter case is accom- (2] P.G. Kaminski and A.E. Bryson, "Discrete square
modated by means of standard matrix partitioning to root smoothing," Proc. 1972 AIAA Guidance an4
account for the problem structure. Removing unneces- Control Conf., AIAA Paper No. 72-877, 1972.
sary global states from the local models dramatically
reduces storage and computational requirements. [3) T. Kerr and L. Chin, "The theory and techniques

of discrete-time decentralized filters," in
When there are several data types to be processed Advances in the Techniques and Technology of the

and combined one can simply cumulatively apply the Application of Nonlinear Filters and Kalman
methodology pairwise, and then repeat the process on Filters, ed. C.T. Leondes, AGARDograph No. 256,
these results. For example, with eight data types, 1982.
four computing blocks can be used to calculate four
sets of smoothing coefficients, information vectors, [4] F.C. Schweppe, Uncertain Dynamic Systems,
and square root information matrices. Each block Prentice-Hall, 1973.
solves (12) and (13). The four sets can then be
divided into two pairs with each pair an input to one [5) G.J. Bierman, Factorization Methods for Discrete
of two additional computing blocks. The final output Sequential Estimation, Academic Press, 1977.
pair is then merged using one final block to obtain
globally optimal values. [6] A.S. Willsky, M.G. Bello, D.A. Castonon, B.C.

Levy, and G.C. Verghese, "Combining and updating
Merits to the approach proposed here include: of local estimates and regional maps along sets

of one-dimensional tracks", IEEE Trans. Automat.
III-i Estimates based on independent data sets are Contr., Vol. AC-27, pp.799-813, Aug. 1982.

often themselves of interest.
[7) D. Andrisani and C.F. Gau, "Multistage linear

111-2 The methodology lends itself to networking estimation using partitioning," IEEE Trans.
(viz. concurrent processing on VAXes or (in the Automat. Contr., Vol. AC-30, pp.7T82-1T8, 7985.
future) hypercube processing.

[8] G.J. Blerman and K.H. Bierman, "Estimation

111-3 Separating the data sets is useful for opera- subroutine library (preliminary, user-guide -
tional applications, as this approach may more August 1984)," Factorized Estimation
readily detect faulty or inconsistent data from Applications, Inc., Report No. 81584.
one of the data groups.

111-4 The SRIF based decentralized algorithm can be
arranged so that it relies, in the main, on
established, well tested, numerically reliable
FORTRAN Subroutines [8].

111-5 Our methods allow one to change the a priori
initial state covariance and process noise
variances; it is not necessary to reprocess the
data. This feature is especially attractive
for problems with large amounts of data, for
which we are trying to "tune" the filter.

111-6 In applications where each data set involves
only a small portion of the total filter state
vector, decentralization of the SRIF can
significantly reduce computation.

111-7 Depending on observability (and/or rank defi-
ciency) it may be possible to identify bias
parameters and initial state a posteriori
uncertainties.

The basic formulation described here has been
refined so that the SRIF/SRIS process noise inclusion
algorithm due to Bierman, [5], is used. That formula-
tion allows for singular colored noise transitions and
impacts on both the time update and the smooth recur-
sions, and though it reauires a lengthier exolanation,
it corresponds to a more comoact, efficient and reli-
able comouter implementation. Tests are underway to
demonstrate the methodology described in this paper
and compare numerical results with estimates and co-
variances obtained by other decentralized and central-
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Maximum Likelihood Estimation Using Square
Root Information Filters

GERALD J. BIERMAN. FELLOW. IEEE. MITCHELL R. BELZER. MEMBER. IEEE. JAMES S. VANDERGRAFT. AND

DAVID W. PORTER. MEMBER. IEEE

Abstract-The method of maximum likelihood has been previously where Pk( -) is the predicted estimate error covariance. Other
applied to the problem of determining the parameters of a linear Kalman filter quantities that will be needed in the sequel are: the
dynamical system model. Calculation of the maximum likelihood esti- Kalman gain
mate may be carried out iteratively by means of a scoring equation

which involves the gradient of the negative log likelihood function and Kk 
= 

Pk( ) H'TBk . (1 5)

the Fisher information matrix. Evaluation of the latter two requires

implementation of a Kalman hlter (and its derivative with respect t the updated error covariance

each parameter) which is known to be unstable. In this paper, we derive

equations which can be used to obtain the maximum likelihood estimate Pk(+) = (I - KkH;)Pk( ). (1.6)
iteratively but based upon the square root information filter (SRIF). the residual (or innovaion)
Unlike the conventional Kalman filter, the SRIF avoids numerical insta-

bilities arising from computational errors. Thus. our new algorithm Vk = Y' - H Xk(--). (1.7)

should be numerically superior to a Kalman filter mechanization.
and the updated estimate

I. INTRODUCTION Xk( 
+ ) Xk() + KkV" (1.8)

HE maximum likelihood approach to parameter estimation is The calculation of the maximum likelihood estimate may be
a very general method which has been applied to the prob- carried out iteratively by means of the scoring equation

lcm of determining the parameters of a linear dynamical system
model as described, for example. by Astrom [11 or Goodwin and (F= I-- (Fi l .(1.9)
Payne [4]. Let the discrete-time dynamics be given as , 1

xk- = 't Xk + Gk w: k = 0. 1."'. N (1.1) where i denotes iteration number and F is the Fisher informa-

where the state vector xk ER ', the state transition matrix ,k E tion matrix. Iterative algorithms such as (1.9) will, in general,

R"'. G, q " and wk is a zero-mean white Gaussian noise converge in fewer steps than ones which involve evaluation of J

process with covariance Qk. i.e., w, - N(O. Q,). Let the exclusively. On the other hand, algorithms which incorporate -

discrete-time measurement model be given as d0
and F will require more computations in each step. In this

H x= + v (1.2) paper. we derive equations which can be used to obtain the
maximum likelihood estimate iteratively but based upon the

where the measurement vector v E Rm . the measurement ma- square root information filter (SRIF) as developed by Dyer and
trix H_ eR " ,

' " and the noise is v - N(0. PP k). Addition- McReynolds [3] and extended by Bierman [2]. The SRIF mea-
ally. the matrices Pk,. Gk. H,, Qk, and P k are functions of surement update is
the unknown parameter vector 0 c R ". The maximum likelihood
estimate is the value of 0 which maximizes the joint probability [Rk(-) [k(- RA (+) zk(+)]
that y., for k = 0. 1.-. N. is equal to the 3ctual measure- 0"J e, (1.10)

ments in hand. This is equivalent to minimizing the negative e

logarithm of the latter conditional probabilit: density function, where Tk is an orthogonal matrix such that R,(+) is upper
i.e.. the negative log likelihood function which is given as triangular. Also, Yk and H k correspond to normalization of

I .s' (1.2) o that

1: kf P - + logdet B} = R(1,3y)R . and H. = R.AH;,
- k= k Y k

where v, and BA are the a priori residuals and residual where

covariances. respectively, from a Kalman filter. That is p = ( 1.11)

BA = HP ( -) r + (1.4) and the measurement noise now has identit\ covariance. The
SRIF predictive step is
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where gives

Q,. = (1.13) - Rk()jX( ) J

and T,. is an orthogonal diagonal matrix such that R ( -) [ Hkk [Y4

and (Rk, ( -) if desired) are upper triangular. The SRIF data
array is [Rkl ±t. ZA( ±]. It is related to the Kalman filter state [Rk(+)1) .(+)

estimate Xk( -) and estimate error covariance P,( -, by 0  ek

Xk(:) R'(z(') (1.14) z, I Rk(+)Xk(+ - +)t + Ile,,.

Pk(±) RkT()R(±). (1.15) Equation (1.14) implies that

The quantity ek in (1. 10) will be shown below to be the square Rk(+)X1(+ Zk(+ 0
of the normalized measurement residual. The submatrix
Rw,,k.t(-) in (1.12) is useful for smoothing but will not be hence
used further here.

The purpose of this paper is to present a new algorithm for IeII = R(-)xk(+) - zk(-)I + IIHk xk(+) -Ykil
2 .

evaluating the likelihood function and its gradient by using
quantities that are generated naturally by the SRIF. This avoids Next, we use (1.8) to write this as
altogether the use of the Kalman filter with its inherent humeri- 1II e. 12 II Rk(-)(xk(-) + Kki'k) - Zk(-)Il
cal instabilities. In Section I. we derive expressions for the
likelihood function in terms of SRIF quantities. Sections InI and + 11 Hk(Xk( - ) + Kk k) - YkII 2 .
IV show how to obtain the gradient vector, and Section V gives
an outline of the complete algorithm for using the SRIF to A simple rearrangement gives
evaluate the likelihood function and its gradients. Some numeri-
cal results are shown in Section VI. We have also given, in 1le. 11 Rk - ) (- )gkvk 1H +k;! 2
Section IV. a first attempt at a formula for the Fisher informa-
tion matrix. Limited numerical experiments have indicated that where (1.14) has again been used. Hence

this may be a useful result: however, further work needs to be e_ l!. V[KR()R()K
done in this direction.

It is worth noting that another approach to this ML estimation +)r(
problem is to use a stable covariance filter, such as the UD filter +(HkKk - H) HK (2.5)

161 to generate the quantities needed to evaluate the likelihood Finally, by using (1.4), (1.5), and (1.15), it can be shown that
function according to (1.3). However, it is not known, at this the matrix inside the square brackets of (2.5) is just B -T I which
time. how to use the UD filter to generate the gradient. This, proves (2.3).
too. is an area for future research. The proof of (2.4) is based on the existence of an orthogonal

UI. LIKELIHOOD FUNCTION IN TERMS OF SRIF VARIABLES transformation between certain SRIF variables and residual co-
il. IKEIHOD FNCTIN I TEMS F SRF VRIALES variances. Specifically, let

In order to evaluate the likelihood function efficiently when a

SRIF has been used to filter the data, it is necessary to express I Hk R ( -)]

the quantities that occur in J directly in terms of quantities that U 3
are computed by the SRIF. That is. the two parts of (1.3) 0 Rk '( -

vrB- 'Pk (data dependent part) (2.1) and

logdet Bk (model dependent part) (2.2) V Kk[B ' R A .

must be expressed in terms of the quantities that appear in the
SRIF formulas in (1. 10) and (1.12). The two results of interest Then simple matrix algebra. again using (1.4). (1.5). (1 6), and
are as follows: Te ipemti leraanuig(.) 15.( ) n

(1.15) to simplify terms, shows that
i~eIl2 : 4(Vr -T (2.3) UU rP4 VVT.

and 
Hence, if we let

(det Rk( .)) =U' (2.6)

2log det Rk( logdet Bk. (2.4) then

TTr= U-IVVTu - T = U- lUTu-T= I

The proof of (23) is based on the eqi'-ion so that T is an orthogonal matrix. By writing (2.6) as

T HR , - lx,. _) ) ][ I we have

, Hdet(U) -det(T) = det( V.
f [RAL-)Jx( - Zk(")J{I 1 ]0 - Hence

L e, det(U) = det RZ'(-

where T, is an orthogonal transformation. Thus. taking norms det (T) =

I - -,,,, , ,m,,, m m n munmm n m ln mnmnn mn
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det( = det(B,'-) det R)-+ Again. a t )can be obtained by differentiating the SRIF. as

so that in Section IV. _ can be obtained by differentiating
dee Rj? (- j = det B - dee R. (+) R,,,kP ,Rr =Ior

dr det R,( + ) to obtain

SBk det R,(-) RaP r  aR,k  R,k \TR,,- Ro t :' --- R'l. (3.1)
By taking logarithms, and using the fact that

However. the matrix

det B, = det ( B ,2( B ' ) r) = [det (B 4'2)]2 aR ,. R

we obtain (2.4). A simple modification of the above arguments, 86 " k

where the measurement noise is also parameter dependent, gives is upper triangular, so it must equal U + ID, where U is the
the following general formula for the negative log likelihood upper triangular part of the matrix on the left of (3.1). and D isfunction in terms of SRIF variables: 8R,the diagonal part. Then 8s is found by backsolving a triangu-

k = ti ,I : +-tg}lar system. To summarize, the gradient of the negative log
'A 2 det R, • det R,( -) likelihood function may be written as

1.11. GRADIENT OF THE LIKELIHOOD FUNCTION 81a N aZk( +-) R 8RkI N~ ~ ~ z( -)., T R ,

To evaluate the gradient of J. note that the gradient of the k= 0 + Rk dtoy

model-dependent part is az,( +
a - z[+) -81o j logdet Rk(+) -log det R ,- - ,ogdet RLI} aR, +)_

fr R + 1 86 1k+ d

= rRk0 8 ~[R '(OR R, I
-o -rRl~ k( ]r [ R ak

f 8 trfR- k 8_
I r k 86 where all * he quantities involved here are produced directly by

Thus, since all of these are triangular matrices. onlh the diagonal the SRIF. or are easily computed by solving triangular systems.
IR,,k a . "+) Finally. to express the Fisher information matrix in terms of

elements of Rk +) , R 1( ). , and SRIF variables, recall that the 1. m element of the Fisher
86 )do d information matrix is

8R - need to be computed. Diagonal elements of the first mari

three matrices are obtained by an inexpensive partial inversion Fl, E.

of their SRIF values. Diagonal elements of the latter two matri- 0,,
ces can be computed by using the method described in Section a J,
IV. It is straightforward to show that i is a white sequence. ThusFor the gradient of the data-dependent part of the likelihood 86

function, we use the SRIF measurement update relationship Fl ( aJ 8J(}

Fim= (3.2) Z( ](d, o
R k[ ; e where Jk is the kth term in the time series summation for J.

where Tk is an orthogonal matrix. By taking norms, we find that The remaining steps are to rewrite (3.2) using the SRIF form of3I = Iz ( -) } + ;R ,ky~;i - j ( +) " J as well as the facts that E j I = 0. ek - N(O, l),and L

Thus is also Gaussian. The t. m element of the Fisher information

L ' e 2  a z,( ) matrix becomes

86 de~ 88e,, 8e 8eT r e! ae,
F1 S) trE trE e - -

2 ,rRMAiV '7 ad 0,, do, }d o,k ' A " k ( 3 .3 )
, az,(" This formula could be used b? replacing the expected values

-' with sample values. This same replacement is regularly doneI
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when using the standard Kalman hiter approach to the problem. for some lower triangular matrix L. In fact. the matrix L is
(See. for example. [51). However. in the Kalman formulation. related through (4.1) to A,, as follows.
part of the expression for the Fisher matrix can be written Lemma: The lower triangular matrix L in (4.5). where Q
without expectations. It is possible that parts of (3.3) can be satisfies (4.1) with A nonsingular, is in fact the lower triangular
evaluated exactly also. part of the matrix QA R -'. That is

IV. DERIVATIVES OF SRIF VARIABLES QAaR-' = L - D + U (4.6)

In this section. we describe a numerically efficient and accu- where L. D, and U are. respectively, lower triangular. diago-
aRk( ± ) nal. ard upper triangular, and L satisfies (4.5).

rate method for computing the quantities ao and Proof: From (4.3) we have

azk( ) that are needed for the formulas of Section III. To R.R- = QAR- + QaAR-.

ao
simplify the discussion, we observe that the SRIF transforma- Hence
tions in (1.10) and (1.12) have the form RR-i = QA.R- + Q Qr (4.7)

QA = R (4.1) where (4.1) has been used to replace Q.AR- i by Q,,QT.

where A is a rectangular matrix, and Q is an orthogonal matrix Now. R. and R are upper triangular and. therefore, so are
which when multiplied by A gives an upper trapezoidal matrix R- 1 and R. R- 1. Thus, the lower triangular part of QA, R- 1
R. The elements of A are differentiable functions of aparame- must exactly cancel the lower triangular part of QQT. Hence,

da, if QQQT = L - L. then QAR-' = L + D + U.
Then, given the matrix of derivatives A. = a . we Equation (4.7) leads easily to a method for computing Re,. By

wish to determine the matrix R.. The ideas involved in deriving substituting (4.6) and (4.5) into (4.7). we find that
the necessary formulas can be readily explained by studying this - =

simple situation. The generalization to the actual SRIF transfor- RR (L + D + U) + (L - L) = L + D + U

mations, and to the case where ot is replaced by a vector of (4.8)
paiameters 0 is very straightforward. In fact. for now we will
even assume that A. hence R. are square and nonsingular. and therefore, R. = (LT -

+ D + U)R. That is. to determine
For completeness. ' e first describe two fairly obvious ways to R,: compute QAR - 1 and write it as L - D + U. Then

solve this problem which, however, may lead to numerical compute (Lr+ D + U)R. The result is R,.
difficulties and are not recommended. The first of these methods Equation (4.8) clearly shows the danger inherent in using
is based on using (4.1) to write the equation R TR = (4.3) directly. That is, from (4.8) we find that
(QA)T(QA) = ATA.

Then straightforward differentiation gives R, (L + D + U) R + ( L - L) R

RTR + (RTRc,) Tr  r AT~
= ATA + AA (4.2) = LR + (D + U)R + LTR - LR.

By using the fact that R. and hence R., is upper triangular. QA Q,4

(4.2) can be used to compute the elements of R.. This involves The first term here is QA.. the second is Q. A. Written this
a forward substitution algorithm that is similar to the standard way. it is seen that the matrix LR occurs in both terms, but with

algorithm for solving a linear system. The numerical problem opposite sign. Moreover. LR is a full matrix, so that cancella-
that might arise here occurs when A. hence R. is ill-condi- tion occurs throughout the matrix sum QA. - QA. If LR is
tioned (i.e.. nearly singular). The forward substitution algorithm small, compared to the elements of (D + U R and LrR. then
may then give inaccurate results. this sum will be computed accurately. However. if some ele-

The second questionablk method for computing R. is to ments of LR are large. then the corresponding elements of the
differentiate (4.1) directly to get sum will suffer from severe cancellation and may be totally

R. = QA. + Q. A. (4.3) inaccurate.
V. SUMMARY OF THE ALGORITHM

The matrix Q is a product of Householder matrices (elementary

reflectors) whose derivatives can be determined recursively from The ideas of Section IV can be used to develop a very concise
A.. Thus, Q, can he computed by a simple modification of the algorithm for computing the likelihood function, its gradient.

algorithms used to compute Q itself. Notice, however, that R and the terms that appear in (3.3) for the Fisher matrix. Let
is upper triangular whereas the matrices QA . and Q. A on the 0 = (6

, 0...... 
0 ,,) denote the vector of parameters with re-

right side of (4.3) are full. Therefore. total subtractive cancella- spect to which the likelihood function is to be differentiated. To
tion occurs when computing the lower triangular part of R, om Ru (+) aznd ( +

fm(43.compute and - . for each i. we modify thefrom (4.3). ao, ae, "

The method of choice is based on the observation that since Q measurement update (I. 101 as follows.
is orthogonal, QQr = I. Hence. by differentiating this equation. MI: Replace (1.10) by
we find that

Q QT + QQr = or QQT - (QQr)T (4.4) Rk( -) Z,( -) aR - az(-

A matrix S that satisfies the equation sT= -S is said to be ,[ a H4
skew symmetric. It is easil,, seen that such a matrix has the form H,
Lr - L. where L is stricthy lower triangular. Thus. from (4.4).
we can write= tR,_) ,. A,Bj

QQ r = L r _ L (4.5) 0 e, , E
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where the last two columns are repeated for each 6j ,  = so
.. • in.
A2: Compute. for each i = 1.2." -. m. 50O-

L, + D, + U,
C, E, 0 e, 4U.-

M3: Compute. for each _ 350-

aRk(+) ak(+) 00-

ae, a200

0 10 20 30 40 .50 60

ek Fig. I Likelihood function for the conventional KF and the SRIF.

Note that in step M2. the matrix to be inverted is upper and then using (4.5) to replace the derivative of Tk+i with
triangular. Hence. this product can be computed by backsolving, quantities computed in step TI. Note also that S,-', needed for

The ideas of Section IV cannot be applied directly to the SRIF this final equation. is easily obtained since
time update (1.12) because the matrix to be triangularized is not
square. hence, not invertible. However. by working with subma- S,-I = 4kR (+)
trices, the following algorithm results.

Replace (1.12) by the following: where Rk(+) is upper triangular. aek

aR_, Finally. it is interesting to observe that the quantities -
#R 0., 0 0 88i

80, needed in (3.3) for the Fisher matrix are automatically produced
" as, as. az.( . ) by step M3 of the measurement update.

S'Z - In the Kalman formulation of this gradient evaluation, it is
aS - ae, ,necessary to run a "differentiated" Kalman filter for each of the

parameters 0, to be estimated. In the SRIF formulation, this[RWk.,(- ) Rwxk+,(-) : ,(-) X, , M, " bank" of filters is replaced with augmented arrays to which
= 1( orthogonal transformations are applied.

0 R* ,(--) Zkl(-) 1V W, N VI. NUMERICAL RESULTS

where the ldst three columns are repeated for each 0 , i = In order to check the aforementioned derivations, the algo-
l. 2.,". m. and rithm given in Section V was applied to a simple example. The

results were then compared to those produced by the standard

S = - Ri. {' )4- . S2 = RA( * )(- Kalman. filter approach. The example used for this comparison
as in (1. 12). has dynamics equation

T2: Compute. for each i the following: ( ( Xk + ( )
3[V, IV' '

-I
O  Rk., }- [*.L, + D, + Us] and measurement equations

where * denotes the first n columns of this product, which are Zk ( 0) k + 'k.

of no interest here.
3: Compute. for each i. the following: Here. r is a parameter to be estimated. The likelihood function

and its derivative, with respect to r, were evaluated for several
aRk.,( ) values of r. Figs. I and 2 show the result of these evaluations

T= [ + D, + Uj R,,,( -) using both the Kalman filter and the SRIF. Note that the twoI methods produce slightly different values for the derivative.
and However. it appears that both methods give the same zero point

for the gradient.
Further numerical experiments need to be done to determine

, S- 4") + N, the accuracy and efficiency of this new algorithm.

VII. CONCLUSION

Th o fr i- oThe SRIF has. in many applications. pioven to be a numeri-The equation for isobtained by differentiating the
cally reliable formulation of the discrete Kalman filter. In this

equation paper. we have shown how a very natural extension of the SRIF
time and measurement updates can generate the likelihood func-

0 tion and its gradient wiih respect to uniknown parameters. Pre-
[Z liminary numerical experience indicates that this method is both

accurate and efficient.
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