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Abstract

Common solutions for the problem of random transient detection are based on the
classical optimum detector for random signals in noise. However, such a detector
does not explicitly use the non-stationary character of the signal as a priori available
information. Reformulation of the optimum detection in the time-frequency plane allows
one to exploit this distinguishing signal feature and suppress noise. This is accomplished
here by use of the Wigner-Ville signal representation and an optimum signal/noise
subspace decomposition that improves the transient signal to noise ratio. The new
detection/classification procedure eliminates the subspace where major part of the energy
of random noise sample will fall.

1. INTRODUCTION

The problem of random transient detection arises in the areas of underwater surveilance,
seismic signal processing, biomedical signal processing, etc. Transients can be de-
scribed as signals with duration that is short compared to the observation interval. They
can be either deterministic finite energy signals of unknown form, or random finite dura-
tion non-stationary signals. The problems of detection and classification of finite duration
random signals, such as the underwater acoustic transients, have standard solutions
based on the classical optimum detectors of random signals in noise[l, 2, 3]. These de-
tectors are not designed to particularly distinguish non-stationary signals from stationary
noise background. Here, we shall show that, for the case of Gaussian transient detection
in Gaussian noise, it is possible to take advantage of this distinguishing signal feature
by reformulating the optimum detector in the time-frequency plane. This formulation is
based on the Wigner-Ville signal representation and relies on the generalized singular
value decomposition to optimally separate the signal and noise subspaces.

Classical optimum detection of Gaussian random signals in Gaussian noise is reviewed
in Section 1. Then, in Section 2, the optimum detection procedure is reformulated in the



time frequency plane. The basic tool used here is the Wigner-Ville signal representation.
Finally, in Section 3, the generalized singular value decomposition is used to generate
an optimum stationary/non-stationary subspace decomposition. This is the basis for the
new detector which then eliminates the subspace where major part of the energy of
random noise sample will fall.

2. CLASSICAL OPTIMUM DETECTION

We consider the problem of detecting a zero-mean, non-stationary, Gaussian random
signal in the zero-mean, stationary, colored, Gaussian noise background, i.e.:

Ho: r=n (1)
HI: r=iz+s

where r, n, s are N-dimensional vectors of samples representing the received waveform,
random noise, and random signal, respectively. The noise is assumed to be composed
of two independent components: colored interference and white noise background.
Therefore, the noise has a full-rank N x N covariance matrix that can be expressed as

= oRc + 0,1 (2)

where a-2, o are the variances of the interference and white noise components, respec-
tively. The signal has < N covariance matrix R, which is possibly rank-defficient. It
is further assumed that ,ne signal and noise are uncorrelated and, therefore, statistically
independent. Then, the detection problem can be rephrased in terms of the following
two multivariate normal models:

H o : r : A ( , R ,,)( 3
H1 : r : N(0, R,, + R,)

In words, the decision has to be made whether the received data vector is a realization
of a multivariate zero-mean normal distributed random vector with the covariance matrix
R, or R, + R,.

This problem has a well-known classical solution [1, 3] that will be outlined next. We
shall then reformulate this solution in the time-frequency domain, using the Wigner-Ville
representation, following the approach in [4].

2.1. Classical formulation

Standard solution to the detection problem above, based on the likelihood ratio, compares
the following sufficient test statistic[I, 3]:

SR-1 - (R, + )- r ' t (4)

Ho

with a threshold t determined according to a suitable optimization criterion, such as the
Neyman-Pearson criterion, for example. It is preferable to 'diagonalize' the computation



of this statistic by means of the generalized eigendecomposition of covariance matrices
R,, R,. Namely, since R, has full rank, there exist a non-singular .V x N matrix V
such that[5]

V1 Tv = A = diag(A,)

VTR,, V = [ diag{1} (5)
V = 1[,,( ) 1(2 ... J I

where A,'s are the generalized eigenvalues of R, with respect to R,, aranged in a non-
increasing order A1 > A-2 > ... > AQ > 0, Q = rank(R,) _< N, and the columns of V are
the corresponding generalized eigenvectors V(k)'s.

Now, a diagonalizir j transformation can be applied to the received data vector r (with
dimensionality reduction, since Q < N)

'= VTr = 1[.r I x) ... xQ]T (6)

and the detection problem is transformed into a decision which of the following hypothesis
is true

Hfo z:N(O, 1)HI x: . V(0,1+A) (7)

The set of generalized eigenvalues, {,}, represent the distribution of signal-to-noise
ratio over the coordinates defined by the generalized eigenvectors, SN\/ = trace(A).
The test statistic becomes

T [I - I + )- I ] = T + k)- ] T > t
X7 F x <il (8)

H0

The resulting detector performs the linear transformation, Eq. (6), of the received data,
with the result being used in the quadratic form computation, Eq. (8). More explicitly,
in terms of the components of vector x and the diagonal elements of F, A, the test
statistic is

[,T H (9)
t + t, _ + ±\, +

According to Eq. (9), the optimum receiver computes the Q squared correlations
between the received data and the generalized eigenvectors, followed by their weighted
summation. In this sum, the signal components along the coordinates with high signal-
to-noise ratio have approximately the same weight - 1, while the components along the
coordinates with low signal-to-noise ratio have reduced weight < 1. The test statistic T



is a quadratic form in Gaussian variates with the conditional means and variances

Q A\iE(rq H0) = trace(F) = E I + A i
j=1

Q

E( HI) = trace[r(I + k)] = A
,=1 (10)

Var(q Ho) = 2trace(r2 ) = 2Z (+ J)

Q

Var(r I I)= 2 trace[F2(I + A)2] -2 A

The probabilities of detection and false alarm, PD and PFA., are governed by the
probability distribution of q and the threshold value. The distribution of the quadratic
form q does not have a neat analytical form[2] and neither do the probabilities PD. Pfr.4.
In such a case, however, it is common to use the deflection signal-to-noise ratio as a
helpfull gross indicator of the detector performance:

Q 2

D [E(l HI) - E(l 1 Ho)2
Var(l I H ) Q A-2  (-- (11)")

In the high SNR case, most of the generalized eigenvalues are large, Ai > 1, and

A[ ] [.\ can(SVR,)]2 > 1 (12)

When the SNR is very low, a situation known as a low energy coherence caso or
threshold detection, all generalized eigenvalues are small, A, < 1, and

lQ  Q -
D Y \ = .clan (SN,R) (13)

In summary, the classical optimum receiver consists of a bank of correlators, followed
by a weighted summer of their squared outputs (Eq. (9)), and the threshold comparator.
Its performance is governed by the actual probability distribut'ons of the quadratic form 11
under the two hypothesis. A gross indicator of the receiver performance is the deflection
signal-to-noise ratio, Eq. (11).



2.2. Time-frequency formulation

The optimum detection procedure described in the previous section has an equivalent
formulation in the time-frequency domain. This is of interest since the signal to be
detected is non-stationary, a problem for which intuition suggests comparison of time-
frequency signal representations[4].

The time-frequency domain equivalents of the inner products in the classical optimum
receiver, Eq. (9), can be obtained using any bilinear transformation that preserves the
inner products. Among such transformations, Wigner-Ville representation[6] has certain
advantages that make it the most attractive for our purposes. Namely, it is the only one
that has all of the following desirable properties[6, 7]: (1) it is real-valued; (2) it is invariant
to time and frequency shifts; (3) it has the same region of support as the signal; (4) it
preserves the inner products; (5) it has the proper marginals; (6) among all the bilinear
representations satisfying (1)-(5) it is the one best localized in the time-frequency plane.

It should be noted, however, that these properties, while valid in the continuous-time
case, are not generally valid for the discrete-time Wigner-Ville representation which is
periodic in frequency with period r [6]. All of the above properties are valid only if the
discrete-time signal spectrum is non-zero over an interval less than 7, on its fundamental
period 27 [6]. Two practically important such cases are: (a) when the real-valued
continous-time signal is oversampled by at least a factor of 2, and (b) when the signal is
analytic, i.e. its spectrum vanishes for the 'negative' frequency half of the fundamental
period 27r [6]. In the rest of this paper, it will be assumed that the signals of interest
satisfy the aforementioned condition.

For signals of interest that have a finite discrete-time support region T of length V
2K + 1, i.e.r(k) = y(k) = 0. k T, the discrete Wigner-Ville representation is given by

K

W 1(k, 1) = 2 E .r(k + n) x*(k - In) GJC 7,M (14)
=-K

where k e T, and I E Q represents .1! > V frequency domain sampling points.

In the absence of aliasing, the following discrete-time discrete-frequency version of the
Moyal's formula is obtained

I EJ E llIV , , ( k , 1) ll -1 ,(k . 1) = ( I'l .X ( I'If. .r-4) (1 5 )
1cQ keT

For example, this form of the Moyal's formula is applicable to real-valued signals over-
sampled by at least a factor of two, and to analytic signals. This is the equation that allows
easy reformulation of the classical optimum detection procedure in the time-frequency
plane. However, it is necessary to consider the Wigner-Ville representation of random
signals(8] first.

Let x be a realization of a harmonizable zero-mean complex-valued discrete-time random
process X with finite discrete-time region of support T of length A' = 2K + 1, e.g. finite



length random transient. Then, for k E T

R,(k + m, k- m) = 0, ImI > K (16)

and the following expectation exists[8]

K

)'V~(,1 =E{WV,(k,1)} = 2 1: Elx(k + in) x*(k - in)) e-JAjrf

K keT' (17)
=2 Rx(k+m,k-m)e-J%-1m lQ

and is called the Wigner-Ville spectrum of the process X. Here, T. Q are the discrete-
time and discrete-frequency support regions, respectively.

Infinite duration random processes are usually observed over finite intervals, and their
covariances may be known or estimated only on a grid of limited extent. In such a case,
it is possible to obtain an approximation of the sampled Wigner-Ville spectrum, smeared
one-dimensionally in the direction of frequency, by means of the discrete Wigner-Ville
spectrum, Eq. (17).

For example, let X be a harmonizable infinite duration discrete-time random process
observed on the interval -2K < k < 2K, with spectral support less then , and the
covariance R,(p.q) known on the grid -2K _ pq <_ 2K. Then, R(k+mk-m) is
completely known on the grid -K < k. m < K and the sampled approximation of the
Wigner-Ville spectrum can be computed as

VWx(k. 1) =2 g(m) R,(k +m. k -rn) e-J.%f
K(18)

=2 1: R,(k+m,k-m)t?1m E Q, - < <K
rnl = -*

where g(m) is the rectangular truncating window with G(1) as its discrete Fourier trans-
form. If the process ,' is also stationary, since there is no aliasing in the time-frequency
plane, the Wigner-Ville spectrum equals the ordinary power spectrum, and its sampled
smeared approximation is

)4 r(k. 1) = G(1) * = S (1), I E,. (19)

In words, the finite-record approximation of the Wigner-Ville spectrum of an adequately
oversampled stationary process is equal to the finite-record approximation of its ordinary
power spectral density.

Now, the detection problem, Eq. (1), can be rephrased in the time-frequency plane as
the choice between the hypotheses

10 I r = (20)
Hi • r = VV, + W,



where W,", IV, are the discrete Wigner-Ville representations of the particular noise and
signal realizations.

We are ready now to transform the time-domain correlator based optimum receiver, Eq.
(9), into the time-frequency domain correlator based receiver. The inner products in Eq.
(9) can be replaced, according to the discrete Moyal's formula, Eq. (15), by

= 7-7 T . t 2 = I W r(k, 1) 111(k,. 1) (21)
IeQ kET

where I,,(k. 1) is the Wigner-Ville representation of the received data vector and II'i(A.)
are the Wigner-Ville representations of the generalized eigenvectors r',. Using this
result in Eq. (9), we get

= > t (22)'7 ~ ~ IV rr(k. 1) B (k. 1) < (2
IEQ kET 

no

where B(k,l) is the weighted sum

B(k,1) - 1 Z , I- (k..1) (23)

which is fixed by the generalized eigendecomposition, Eq. (5), does not depend
on the data vector r, and can be precomputed. If the slices of W, and B for the
fixed time-index k are labeled uT = [1'r(k.0) 1Ir(k, 1) ... 1'r(k. l - 1)] and bL'
[B(k.0) B(k. 1) ... B(k. J! - 1)], respectively, the optimum test has a more explicit
form

k- Q < ' (24)
kET 1°

Accordingly, the time-frequency domain equivalent of the classical optimum receiver
computes the slice by slice cross-correlation of the received data Wigner-Ville repre-
sentation with the precomputed weighted sum of Wigner-Ville representations of the
covariance matrix generalized eigenvectors. An alternative, expression for the optimum
test is obtained by introducing the matrix notation 1'r = [I '(k, 1)]. B B (k. 1)1

t'ace B iv - t'c(Ic{B llr u t (25)

In the reference [4], a similar reformulation of the continuous-time optimum detector has
been presented for the case of white noise only.

The test statistic conditional expectations remain the same as those of the classical
receiver, as given by Eqs. (10). It is interesting to relate those results with the Wigner-
Ville spectra of signal and noise. Taking the conditional expectations of Eq. (25), using



the Eqs. (17) and (18), and combining the results with Eqs. (10) we get

Q

E Ho) = tra cc ( V vTf) == E '

(26)

Var(iq Ho) = 2trace [(B vV) 2 -2Q (i2A ,)2

Var(i/l HI) =2trace{ B (2 } A

where W- is the finite-record approximation of the Wigner-Ville spectrum of noise, as
discussed in connection with Eq. (18), and Ws is the discrete Wigner-Ville spectrum of
a finite duration non-stationary signal, as in Eq. (17). The deflection signal-to-noise ratio
is the same as before and given by Eqs. (11) - (13).

We see that an alternative time-frequency domain realization of the optimum receiver
is possible. It matches optimality with physical interpretation provided by the use
of the Wigner-Ville representation, which is particularly relevant for the detection of
non-stationary signals. However, the receiver performance remains the same. The
real significance of this time-frequency formulation is that it will allow incorporation of
additional information that may bring improvement in performance, as will be shown in
the next section.

3. SUBSPACE BASED DETECTION

Our objective is to use a priori available information that signal, as opposed to the noise,
is non-stationary in order to suppress that background noise and thereby improve the
deflection signal-to-noise ratio and detector performance. How do we accomplish this
is discussed next.

3.1. Optimum signal/noise subspace decomposition

The Wigner-Ville spectrum of the stationary random signal and its finite record approxi-
mation, Eq. (19), are simple outer products of the power spectral density as a function
of frequency and a constant function of time. Consequently, the matrix of samples of
the finite record approximation of the Wigner-Ville spectrum of stationary noise, Wv, is
a unit-rank matrix. On the other hand, the discrete Wigner-Ville spectrum of the random
transient, Eq. (17), represented by the matrix Ws, has rank that is generally much higher
than one. This distinction can be exploited to suppress stationary noise and improve the
detector performance.



The generalized singular value decomposition of the signal Wigner-Ville spectrum with
respect to the noise Wigner-Ville spectrum provides a necessary tool to accomplish this.
Assuming that Wg- and Ws are N x .1. Al1 < A' matrices, then there exist a non-singular
.1l x Al matrix X and orthogonal matrices ((.V x V), U,,(.V x V) such that[5, 9]

A's = U DsX-

D,(. x .1) = diag(a,). 0 < () < . < ... < .1t (27)

D,,(. x M) = diag(3i), 31 > ... > q>3 q+1 3y = 0.

±23+ 3 , q = rank(W,)

where x(l), the columns of X, are the generalized singular vectors of vig and Ws
satisfying

.32 W7 () = (3 9 . . (28)

Note that for the stationary noise rank-- ') q =1 and, therefore, only 31 # 0.

Let's introduce the following matrix partitions

Un ,= [tin (',,].1, [ 01 011 (29)

where
X 1 = X( A\I x .A1 - 1).

DI = D,1(. - I x A! - 1) (30)

( 1,= UI(A' x V - I1).

Then= U.,I(N x . - 1)
Then,

VV " ~ , '" ()l (31)

Ws.\ = 0 D

i.e., X\ -transformation maps the Wigner-Ville spectrum of stationary colored noise into
an all-zero matrix 01. At the same time, since a, <_ o, is small, the signal Wigner-Ville
spectrum is mapped with the minimum loss of signal power.

We can interpret these results as saying that all of the noise energy, together with a
minimal fraction of signal energy, lie along the first generalized singular vector x.r ,

and there is no noise energy in the subspace determined by the remaining generalized
singular vectors that constitute the columns of XI[9]. Therefore, we can suppress noise
by projecting the Wigner-Ville spectrum onto the subspace spanned by the columns of



X1. To accomplish this, we need the subspace projection matrix that can be computed

by the following stable procedure.

Quite often, the matrix X- 1 is ill-conditioned and its inversion produces inaccurate
generalized singular vectors. Since we are mainly interested here in the subspaces
spanned by the generalized singular vectors, numerically more stable procedure[5],
adequate for our purposes, is to use the OR decomposition of this matrix

X-T = QR. X-1 = RTQT (33)

Here R is an upper triangular matrix, and Q is an orthogonal matrix whose first column
is the unit vector in the direction of the first generalized singular vector while the remain-
ing columns define an orthonormal basis for the subspace spanned by the remaining
generalized singular vectors x ( l) , i = 2.3 ...... I. The generalized singular value de-
composition, Eq. (31), now takes the form

WsQ U,D RT
)/t -Q :I', , T  (34)

VV%-Q I * , D, RT

If we use the partition

Q = [W'' Q11 (35)

where q") is the first column of Q while Q, contains the remaining ones, then

p = QIQ T  (6
P~ 1  (36)

is the projection matrix onto the subspace spanned by the columns of X1 . Then, the
projection of the noise Wigner-Ville spectrum onto this subspace equals zero,

14,-.P - 0 (37)

Therefore, using this projection operator the Wigner-Ville spectrum of the stationary noise
is anihilated while that of the transient signal is barely affected.

3.2. Detection with noise subspace elimination

The generalized singular value decomposition of WA- and "V8, Eq (27), thus generates
an optimum stationary/non-stationary subspace decomposition, Eq (31), tha t will be the
basis of the new detection scheme discussed next.

Rather than correlating the received data Wigner-Ville representation with a reference, as
in Eq. (25), we propose to first use the noise suppressing projection onto the subspace
spanned by the columns of X1. It is easy to show that

H () E(11Q 1) = 'kVyQj = 1 (38)

H1: E(11rQ) = ,vWQl + WsQ- (38)



Therefore, we propose to compute the test statistic

trace{(BQI)(,ItrQi)

=3if H 1 (39)
-trace{i} >~ t,

Ho

where t, is the threshold determined by a suitable criterion, while using P, the projection
matrix onto the subspace spanned by the columns of X1 (Eq. (36)), we have

B, - B(Q 1 Q) = BP (40)

The conditional means can be expressed as

E(,l[H,) = trace4BW.V =V 0
WS)TI(41)

E(rili) =trace LJ + I~)F = trucc(BI S) (1

However, the conditional variances cannot be brought into a neat form, but, intuitively
we expect them to be reduced with respect to the classical case due to the elimination
of noise subspace by the projection onto the XI-subspace. This point is verified by
Monte-Carlo simulations discussed next.

3.3. An example

As an illustration, we consider a case where signal and noise are specified according to
Fig. 1. The signal autocovariance and Wigner-Ville spectrum are given in Figs. l.a and
1 .b, respectively. Power spectra of the signal, noise, and signal plus noise are given in
Figs. 1 .c, 1 .d, and 1 .e, while the Wigner-Ville spectrum of the noise is shown in Fig. 1 .f.
Narrowband interference is five times stronger than the white noise component. Overall
signal to noise ratio is -7.8dB, while signal to white noise ratio is 0dB. Eigenspectra
of the signal and noise covariance matrices are shown in Figs. 2.a and 2.b. Rank of
the signal covariance is 14, while the noise covariance has full rank 32. Singular value
spectra of the signal and noise Wigner-Ville spectra (WVS) are presented in Figs. 2.c
and 2.d. Rank of the signal WVS is 31 and that of the noise WVS is 1. Generalized
singular values of signal and noise WVS's and generalized eigenvalues of signal and
noise covariances are shown in Figs. 2.e and 2.f. Finally, the corresponding WVS
matching function B, Eq. (23), and the WVS subspace matching function B1 , Eq. (40),
are displayed in Figs. 3.a and 3.b. Alternatively, the effect of projecting (filtering) the
signal and noise WVS's onto the no-noise subspace is shown in Figs. 3.c and 3.d.

In order to verify the conjecture made at the end of the previous section, the operation of
both the classical and the new detector on the sample vectors of signal and noise defined
above was simulated with 500 Monte-Carlo runs. While this number of simulations is
insufficient for accurate estimates of the probabilities of detection and false alarm, it was
sufficient to estimate the deflection signal to noise ratios of two detectors. The estimated



deflection signal to noise ratio gain obtained in this manner was 1.9 (or about 3dB),
confirming our conjecture that the new detector provides additional noise suppression.
Of course, this is far from being a definite proof of superiority of the new detector under
all conditions. A more comprehensive set of simulations is necessary for more definite
statement of such kind. It should be emphasized, however, that the noise suppression
Procedure described here is non-parametric, relies only on noise stationarity feature,
and therefore should be quite robust providing gain under various different signal/noise
scenarios.

4. SUMMARY

A new procedure for detection of Gaussian transients in stationary colored Gaussian
noise was presented that exploits the signal non-stationarity as its distinguishing feature.
The classical optimum detector for Gaussian random signal was first reformulated in the
time-frequency domain using the Wigner-Ville representation. In this domain the distinc-
tion between non-stationary and stationary processes is easy to exploit. The generalized
singular value decomposition of the signal and noise Wigner-Ville spectra generated the
optimum signal/noise subspace decomposition. By an appropriate subspace mapping,
the noise subspace was eliminated providing an extra degree of noise suppression. This
point was verified by simulations for a particular set of conditions. Although the new pro-
cedure appears to be robust with respect to changing signal/noise situations, a more
comprehensive set of simulations is needed for a definite conclusion. The approach ad-
vanced here can easily be extended to the optimal linear-quadratic detector for problems
involving certain classes of non-Gaussian background noise[10].
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(a) XVVS Marching Function (b) WVS Subspace Matching Function
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