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Introduction

Underwater acoustic systems detect the presence of objects in the water either by
directly sensing acoustic energy radiated by the object - passive sonar, or by transmitting
an acoustic signal and detecting the reflection from the object - active sonar. In general,
the acoustic energy emitted by the source reaches the receiver through different paths: as
direct, reflected and/or diffracied waves. The signals may be received at a single sensing
point or at multiple sensing points. The processing techniques depend on the number of
receiving points and on the number of armivals at each point.

The passive sonar system bases its detection and estimation of target parameters
on sounds which emanate from the target itself, including machinery noise, flow noise,
transmission from its active sonar, etc. The received signal represents the source signature
contaminated by noise. In addition to the direct path, there are multipaths in sound wave
propagation. The source signature may include wideband, narrowband and transient
components. These signals occur in various multiplicities and have differing spectra,
non-planar wavefronts and non-stationary behavior. Noise may be partially correlated
with the signal, and high noise coherence may exist between different sensors.

In the active sonar case, received echo represents the scattering signature of the target
contaminated by the noise. In addition to self-noise and ambient noise, the reverberation
noise is present and limits the system performance. The reverberation noise results from
the scattering of the propagating signal energy due to inhomogeneitiec in the ocean and its
boundaries. This noise component is correlated with the probing signal and proportional
to its power. Overall, due to relative target/receiver motion, time-varying signal/noise
characteristics, channel distortion and dispersion, etc., the underwater signal detection
and estimation deals with non-stationary signals and noise.

We were interested in the class of signals known as transients, which can be described
as signals with duration that is short compared to the observation interval. They can be
either deterministic finite energy signals of unknown form, or random finite duration
non-stationary signals. The problems of detection and classification of finite duration
random signals, such as the underwater acoustic transients, have standard solutions based




on the classical optimum detectors of random signals in noise[!, 2, 3]. These detectors
are not designed to particularly distinguish non-stationary signals from stationary noise
background. However, it 1s possible to take advantage of this distinguishing signal feature
by reformulating the optimum detector in the time-frequency plane. This formulation is
based on the Wigner-Ville signal representation and relies on the generalized singular
value decomposition to optimally separate the signal and noise subspaces. This can be
further applied to the optimal linear-quadratic detector for problems involving certain
classes of non-Gaussian background noise[4].

Another, more fundamental, aspect of this research was the study of probabilistic
approximation modelling of non-stationary random signals. Recently, a new class of
non-stationary random signals has been defined, called Markov meshes, that is more
general than the well-known Markov chains but with many similar properties. In
addition, new theoretical results have been obtained that enable us to approximately
model the statistical description of a random signal by simpler, more tractable ones
(such as Markovian descriptions). An objective of this research was to address the
approximation of random signals that are given not by their probability distributions, but
by their correlations. Harmonizable processes were of particular interest here because they
have well-defined joint ime-frequency representations and singular value spectra. Various
classes of simple, tractable non-stationary signals were analyzed in this framework. All
this allows for application of the newly developed approximation theory to the joint time-
frequency representations and the singular value spectral description of the non-stationary
underwater acoustic signals. This is useful from several theoretical and practical points
of v “w. As a result, approximations of joint representations and singular value spectra
of ..al signals with the help of the simpler ones are possible, providing at the same time a
precise quantification of the approximation error. Then, the performance of any detection
and classification scheme devised for the simpler types of non-stationary signals can be
easily evaluated in the presence of different signal statistics.



Signal Non-Stationarity as a Discriminating Feature for Detection
and Classification in the Time-Frequency Plane

We consider the problem of detecting a zero-mean, non-stationary, Gaussian random
signal in the zero-mean, stationary, colored, Gaussian noise background, i.e.:

Hy: r=n

1
Hy: r=n+s 1

where r, n. s are N-dimensional vectors of samples representing the received waveform,
random noise, and random signal, respectively. The noise is assumed to have a full-
rank .V x .V covariance matrix R,, while the signal .\ x .V covariance matrix R, is
possibly rank-defficient. It is further assumed that the signal and noise are uncorrelated
ar. , therefore, statistically independent. Then, the detection problem can be rephrased
in terms of the following two multivariate normal models:

Ho: »r:N(0,R,)

) (2)
Hy: r:NO.R, + Rs)

In words, the decision has to be made whether the received data vector is a realization
of a multivariate zero-mean normal distributed random vector with the covariance matrix
R, or R, + R;.

This problem has a well-known classical solution [1, 3] that will be outlined next. We
shall then reformulate this solution in the time-frequency domain, using the Wigner-Ville
representation, following the approach in [5].

A. Classical Formulation

Standard solution to the detection problem above, based on the likelihood ratio,
compares the following sufficient test statistic[1, 3]:

1,

_ T[p-1 -],
n=r [Rn — (R, + Rs) | Z t 3)

Hy

with a threshold ¢ determined according to a suitable optimization criterion, such as the
Neyman-Pearson criterion, for example. It is preferable to ’diagonalize’ the computation
of this statistic by means of the generalized eigendecomposition of covariance matrices
R., K. Namely, since R, has full rank. there exist a non-singular .\ x .\' matrix |*
such that{6]

VIRV = \ = diag(\,)
VIR,V =1 = diag{1} @)
V"= (1'(” e R
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where A;’s are the generalized eigenvalues of R, with respect to K,, aranged in a non-
increasing order A\; > Ay > ... > Mg > 0, @Q = rank(R,) < .V, and the columns of
V are the comesponding generalized eigenvectors v{¥)’s.

Now, a diagonalizing transformation can be applied to the received data vector r
c=Vir={r ;5 ... J'N]T %)
and the detection problem is transformed into a decision which of the following hypothesis
1s true
Hy: x:N(0.I)
. (6)
Hy: x:NO0,I+\)

The set of generalized eigenvalues, {\;}, represent the distribution of signal-to-noise ratio
over the coordinates defined by the generalized eigenvectors. The test statistic becomes

Hy
I I—(I+;\)_11£=1‘T[.\(I+.\)_l}.r:ITFI >t @
Hy

The resulting detector performs the linear transformation, Eq. (5), of the received data,
with the result being used in the quadratic form computation, Eq. (7). More explicitly,
in terms of the components of vector x and the diagonal elements of I'. .\, the test
statistic 1S

Q Q Q , M
_ 2 M2 M T " >
"’ZW'—21+A,‘1‘_ZL+/\1[" (1} <f (8)
=1 1= 1=1
Hy

According to Eq. (8), the opimum receiver computes the N squared correlations between
the received data and the generalized eigenvectors, followed by their weighted summation.
In this sum, the signal components along the coordinates with high signal-to-noise ratio
have approximately the same weight =~ 1, while the components along the coordinates
with low signal-to-noise ratio have reduced weight < 1. The test statistic 1 is a quadratic
form in Gaussian variates with the conditional means and variances

Q Q \
E(TI ‘ [1()) = fJ‘(lCC(F) = Za“. — Z l +1\
=1 =1 ot

E(n| Hy) = trace[l(I + \)] = Z A
! 9

Q Q
) D) ,\,
Var‘(r/|Ho):‘)trace(l“):QE 7,;:-_32 <m>

) Q
Viar(n | Hy) = 2 trace [F"”(I +\) } = ‘JZ/\,‘)




The probabilities of detection and false alarm, Pp and Pr,, are governed by the
probability distribution of n and the threshold value. The distnbution of the quadratic
form 1 does not have a neat analytical form(2] and neither do the probabilities Pp, Pr 4.
In such a case, however, it 1s common to use the deflection signal-to-noise ratio as a
helpfull indicator of the detector performance:

{i : }2
[E(L| Hy) - E(l] Hy))* =
D= - = (10)
Var(l | Hy) Qe A2
ZZ (1+A)

—

In the high SNR case, most of the generalized eigenvalues are large, A; > 1, and

1 1
Dzl—zazl\,:z\lean( 'VR) > | (11)

When the SNR is very low, a situation known as a low energy coherence case or threshold
detection, all generalized eigenvalues are small, \; < 1, and

]~ ) . )
EZ ,-: < Mean (SNR) (12)

In summary, the classical optimum receiver corsists of a bank of correlators, followed
by a weighted summer of their squared outputs (Eq. (8)), and the threshold comparator.
Its performance 1s governed by the actual probability distributions of the quadratic form n
under the two hypothesis. A gross indicator of the receiver performance is the deflection
signal-to-noise ratio, Eq. (10).

B. Time—Frequency Formulation

The optimum detection procedure described in the previous section has an equivalent
formulation in the time-frequency domain. This is of interest since the signal to be
detected is non-stationary, a problem for which intuition suggests comparison of time-
frequency signal representations[5].

The time-frequency domain equivalents of the inner products in the classical optimum
receiver, Eq. (8), can be obtained using any transformation that preserves the inner prod-
ucts. Among such transformations, Wigner-Ville representation[7] has certain advantages
that make it the most attractive for our purposes. Namely. it is the only one that has all
of the following desirable properties[7, 8]: (1) it is real-valued; (2) it is invariant to time
and frequency shifts; (3) it has the same region of support as the signal; (4) it preserves
the inner products; (5) it has the proper marginals; (6) among all the representations
satisfying (1)—(5) it is the one best localized in the time-frequency plane.

It should be noted, however, that these properties, while valid in the continuous-time
case, are not generally valid for the discrete-time Wigner-Ville representation which is




periodic in frequency with period « [7]. All of the above properties are valid only
if the discrete-time signal spectrum is non-zero over an interval less than = on its
fundamental period 2x [7]. Two practically important such cases are: (a) when the
real-valued continous-time signal is oversampled by at least a factor of 2, and (b) when
the signal is analytic i.e. its spectrum vanishes for the 'negative’ frequency half of the
fundamental period 27 [7]. In the rest of this paper, it will be assumed that the signals
of interest satisfy the aforementioned condition.

a. Wigner-Ville Representation of Discrete-Time Signals

Let (k). y(k). x.y € C. k € Z be complex-valued discrete—time signals, for
which there exist Fourier transforms X (#). Y (¢). Then, the discrete-time cross-Wigner-
Ville representation of x and y is defined by[7]

x

H'Iy(/\‘.()):"_). Z rhk+m)y (A—IN)C—J',H"' (13)

m=-—x

Here, 1, (k. %) can be interpreted as the Fourier transform of the sequence zx(m) =
r(k 4+ m) y*(k - m) considered as a function of m for fixed k. Obviously, the cross-
Wigner-Ville representation is complex-valued and periodic in frequency with period
7, and Wy, (k.0) = Wy (k.0). It can be expressed in terms of the signal Fourier

transforms: .

Weylh.0) = é / X(O+6) Y8 —8) ek g (14)

Of particular interest, however, 1s the special case y = x that gives the plain discrete-
time Wigner-Ville representation:

x
Wk 8) =2 3" (ke (h—m) e

m=-2x

o (15)
= _/‘\"(0 +E) X0 =€) ke

which is real-valued. W, (k.0) = W*(k.0), and symmetric with respect to frequency,
We(k.8) = Wtk —6). For the detection problems, the most important property of the
Wigner-Ville representations is expressed by the Moyal’s tormula, which in discrete-time
case reads{7]

flleA () ‘ l\ 0y dh

‘.r|~
w r’q&

(16)
(l‘l l;)(h rg)" + (o Marg(as. Meorg)
( )(\_u\;) (.\'1.53.\‘;,‘(.\’_)..""-r.\.;).




where
(17)

However, assuming that the signals of interest have the frequency domain support less
than =, the regions of support of .X|(8) and S; X3 = X3(8 — m) do not overlap, aliasing
is avoided, and Moyal’s formula reduces to®

| /2 <
_)—/ Y W, (k0) W7, (k.0) df
...T('_ﬂ'/‘z ke

= (r1.03) (@2 ay)” = (XL X)X Xy

(18)

For example, this form of the Moyal’s formula is applicable to real-valued signals
oversampled by at least a factor of 2, and to analytic signals, where the limits of
integration should be tzken to be 0. =

If the signals of interest have finite discrete-time support region T of length .\ =
2R + 1, ie. if

r(h)y=yk)=0. kgT (19)
then it follows that
Wey(h0)=0, kgT (20)
and
s(m) = z(k+m)y'k—m)=0. [m|>K 1)

Since M, (k. %) is a Fourier transform of the sequence zy(m) = «(k + m) y*(k — )
that has finite duration in this case, for each k, W, ,(k.#) is completely specified by
M >V frequency samples taken over its fundamental period =. These samples are

given by the discrete cross-Wigner-Ville representation

Woy (k) = W,y(k.() - \;1[)
K N heT

=2 30 etk tth o IS

m=—Ah

=2 DFT {zx(m)}

(22)

where &, [ are the time-index and the frequency-index, and T. () are the discrete-
time and discrete-frequency support regions, respectively. For the real-valued signals

2

In Ref [9] 1t is incorrectly stated that oversampling can not eliminate the aliasing terms in the
Moyal’s formula.
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QO ={l] -L<I<L,M=2L+1},and for the analytic signals @ = {/| 0 <! < M}.
Setting y = r gives the plain, real-valued, discrete Wigner-Ville representation
.
Welk ) =2 > e(k+m)e’(k—m)e —axpln

m=-K

-
L€ 23

The discrete-time discrete-frequency version of the Moyal’s tformula is obtained, in
the absence of aliasing, by discretization of Eq. (18),

_ZZWM kW (kD)

leQ keT (24)
= (. r3)(L2axg)’ = (X X)X Xy

This 15 the equation that allows easy reformulation of the classical optimum detection
procedure in the time-frequency plane. However, it is necessary to consider the Wigner-
Ville representation of random signals[10] first.
b. Wigner-Ville Spectrum of Random Signals

Let x. y be the realizations of harmonizable zero-mean complex-valued discrete-time
random processes .t'. ). Then, the following expectation exists[10]

Wyy(k 0) = E{W, (k. 6)}

x
=2 E{~"(l\'+1n)‘q'(k—m)}  —J2m
m:z—:x (25)
x<
= Z Rrylh+mk—mie —)2m

and is called the cross-Wigner-Ville spectrum of processes .Y. ). As its deterministic
counterpart, it is periodic with period =. We see that }V‘l'}‘(ﬁ‘.%) is the Founer
transformation of the cross-covanance £;,(k + m.k — m) with respect to displacement
m. Setting ) = .Y, we get the plain real-valued Wigner-Ville spectrum of .t" [10]

¥
Wth 0) = E{W (k0)} =2 Y Reth+ ok~ 2 (26)

which has the same periodicity, symmetry and support properties as its deterministic
counterpart. In particular, if the random signal is analytic (having the power spectrum that
vanishes on the 'negative’ frequency half of the fundamental period 2), or oversampled
by at least a factor of 2. alhiasing along the trequency axis is zero.

If the random signal is stationary, K,(k + m.k—m) = [{.(2m). and the Wigner-
Ville spectrum reduces to the aliased ordinary power density spectrum

Wik, 8) }_: Re(2m) e 24 = S (0) + 5,00 - =) (27)




However, if the random signal is adequately sampled, S;(f) and 5,(¢ — =) do not
overlap, and

Wylk.0) = 5:(0). 0eod (28)

where & is an interval of length = that includes the region of spec‘ral support as its
proper subset.

If the random process . has fimte discrete-time region of support T of length
N = 2K + 1, then

Wylk.0) =0, kT (29)

and
Ryk+m.k—m)=0, |m>K 30)

For each k, then, Wy (k. 6) is completely specified by M/ > .V frequency domain samples
taken over its fundamental period =. The result is known as the discrete Wigner-Ville
spectrum

Wk, l) = w,1-<1.'.9 = —"71)
el

e

&
=72 Z Rr(k+lll.k'—771)6~]%lm. (1)

m=—HK
= E{W (k.D)}
where T. () are the discrete-time and discrete-frequency support regions, respectively.

Infinite duration random processes are usually observed over finite intervals, and their
covariances may be known or estimated only on a grid of limited extent. In such a case,
it is possible to obtain an approximation of the sampled Wigner-Ville spectrum, smeared
one-dimensionally in the direction of frequency, by means of the discrete Wigner-Ville
spectrum, Eq. (31).

For example. let .Y be a harmonizable infinite duration discrete-time random process
observed on the interval —2K < & < 2A, with spectral support less then = and the
covaniance R;(p.q) known on the grid —2A < p.q < 2K. Then, B, (k +m.k—m)is
completely known on the gnd — A" < k.m < K and the sampled approximation of the
Wigner-Ville spectrum can be computed as

Pﬁ-(k‘.() = %1) =2 Z glm) Ry (h4+m.k—m) (b

m=-—x

(G(0) *g Wy(k.O)o=zi

(32)

I

I
2 Z Re(thk+m bk —m) AL

m=-K

= Wy(k.D). leQ. K <k<Kk

where x4 denotes convolution along the # axis. g(m) is the rectangular truncating window
and ((0) 1s its Founer transform. If the process .V’ is also stationary, since there is no

9




aliasing in the ime-frequency plane, the Wigner-Ville spectrum equals the ordinary power
spectrum, Eq. (28), and its sampled smeared approximation is

We(k,0) = [G(8) * So(0)mzi=S:(l),  leQ k<A (33)
In words, the finite-record approximation of the Wigner-Ville spectrum of an adequately

oversampled stationary process is equal to the finite-record approximation of its ordinary
power spectral density.

c. Detection Based on the Discrete Wigner-Ville Representation

The detection problem, Eq. (1), can be rephrased in the time-frequency plane as the
choice between the hypotheses

Hy: W, =1V,

4
Hy: W, =W, + 1, (34)

where 1W,. W, are the discrete Wigner-Ville representations of the particular noise and
signal realizations.

We are ready now to transform the time-domain correlator based optimum receiver,
Eq. (8), into the time-frequency domain correlator based receiver. The inner products in
Eq. (8) can be replaced, according to the discrete Moyal’s formula, Eq. (24), by

, 42 1
{r[ : M’! = SN Wtk ) Witk (35)
i T e keT

where W' (k.[) is the Wigner-Ville representation of the received data vector and W, (4. /)
are the Wigner-Ville representations of the generalized eigenvectors v!*!. Using this result
in Eq. (8), we get

H,
r):ZZW,(k.l) Bk.l) 2 (36)
et keT
Hy
where B(k.!l) 1s the weighted sum
s =] AV _
(k.l) = gﬁZm“l("-” (37)

=1

which is fixed by the generalized eigendecomposition, Eq. (4), does not depend on
the data vector r, and can be precomputed. If the slices of 11, and [3 for the fixed

time-index k are labeled u{ = (W (ko) Wik ) ... Wk M —1)] and b{ =
[B(k.0) B(k.1) ... B(k.M — 1)}, respectively, the optimum test has a more explicit
form
Hy
n = Z h{ Sk Z t (38)
vet H,

10




Accordingly, the time-frequency domain equivalent of the classical opimum receiver
computes the slice by slice cross-correlation of the received data Wigner-Ville repre-
sentation with the precomputed weighted sum of Wigner-Ville representations of the
covariance matrix generalized eigenvectors. An alternative, expression for the optimum
test is obtained by introducing the matrix notation 1, = [ (k.[)]. £ = [B(k. )]

H,

n = trace{B H"rT} = tracs{BT H',} Z { (39)

Hy
In the reference [5], a similar reformulation of the continuous-time optimum detector has
been presented for the case of white noise only.

The test statistic conditional expectations remain the same as those of the classical
receiver, as given by Eas. (9). It is interesting to relate those results with the Wigner-
Ville spectra of signal and noise. Taking the conditional expectations of Eq. (39). using
the Egs. (31) and (32), and combining the results with Egs. (9) we get

Q
. . e A
En | Hy) = trace(BWT) =3 w

1=1

E(n| Hy) = trace {B ({\7{ + V\/{)J = A
. (40)

, Q :
—_— A,
Var(y | Hy) = 'zmw[(lf W\’f) } ='—’Z<1 -\ )
. —r-,,4

o — a2 Q
Viar(n { Hy) =2 lra(‘f{ {B (M}.(. + Mfg)J } =2 Z A\
1=1

where WV\ is the finite-record approximation of the Wigner-Ville spectrum of noise, as
discussed in connection with Eq. (32), and W is the discrete Wigner-Ville spectrum of
a finite duration non-stationary signal, as in Eq. (31). The deflection signal-to-noise ratio
is the same as before and given by Eqgs. (10) — (12).

We see that an alternative time-frequency domain realization of the optimum receiver
1s possible. It matches optimality with physical interpretation provided by the use
of the Wigner-Ville representation, which 1s particularly relevant for the detection of
non-stationary signals. However, the receiver performance remains the same. The real
significance of this ime-frequency formulation is that it allows incorporation of additional
information that will bring improvement in performance. which is the subject of this
proposal.

C. Subspace Based Detection

Our objective is to use a prion available information that signal, as opposed to the
noise, i1s non-stationary in order to suppress that background noise and thereby improve
the deflection signal-to-noise ratio and detector performance. How do we accomplish
this 1s discussed next.

1




a. Optimum Signal/Noise Subspace Decomposition

The Wigner-Ville spectrum of the stationary random signal, Eq. (28). and its finite
record approximation, Eq. (33), are simple outer products of the power spectral density
as a function of frequency and a constant function of time. Consequently, the matrix
of samples of the finite record approximation of the Wigner-Ville spectrum of stationary
noise, Wy, is a unit-rank matrix. On the other hand, the discrete Wigner-Ville spectrum
of the random acoustic transient, Eq. (31), represented by the matrix W, has rank that is
generally much higher than one. This distinction can be exploited to suppress stationary
noise and improve the detector performance.

The generalized singular value decomposition of the signal Wigner-Ville spectrum
with respect to the noise Wigner-Ville spectrum provides a necessary tool to accomplish
this. Assuming that Wy and Ws are N x M, M > .V matrices, then there exist a
non-singular .V x .V matrix X' and orthogonal matrices {'(.M x M), V(1 x M) such
thatf11]

Ws = X"'D,UT

Wy =X"'D VT

Ds(N x M) =diag(ai). 0<a;<ay< ... <ay 41
Du(N x M) =diag(3). 31> .. 23,> 341 = .= 3y =0,

q = rank(Wy)

where z!?), the rows of .Y, are the generalized singular vectors of Wy and W satisfying
FEwswk W = 2 wew? 0 (42)

Note that for the stationary noise rank(Wy’) = ¢ = 1 and, therefore, only .3; # 0. Let’s
introduce the following matrix partitions

(7’
X:[‘r } U:[u(l) ], V:[v(” Wl Dg:[OI U} (43)

AY 0 D
where
Xi=X(V-1x N), Dy=Di(N~1x M-=1)=diaglar.....ay)
[(M=0Uy(M x M~—-1), Vi=Vi(M x M-1) (44)
Then, T
YA L -T _ Q) U
\ WS = Dgl - [ Dl(lT } (45)
- . 3] L’“)T
XWy=D,T =
W.\ Dl [ Ol
where O is a .V — 1 x M zero matrix. More specifically,
X Ws=Dil] =Y
IRARN] 14 (46)

XiWy =0y

12




1.e., X|—transtormation maps the Wigner-Ville spectrum of stationary colored noise into
an all-zero matrix O;. At the same time, since a, < a; 1s small, the signal Wigner-Ville
spectrum is mapped with the minimum loss of signal power.

We can interpret these results as saying that all of the noise energy, together with
a minimal fraction of signal energy, lie along the first generalized singular vector r'!,
and there 1s no noise energy in the subspace determined by the remaining generalized
singular vectors that constitute the rows of X[11].

b. Detection with Noise Subspace Elimination

The generalized singular value decomposition of V- and W, Eq (41), thus gener-
ates an optimum stationary/non-stationary subspace decomposition, Eq (45), that will be
the basis of the new detection scheme discussed next.

Rather than correlating the received data Wigner-Ville representation with a reference,
as in Eq. (39), we propose to first use the .X'| —subspace mapping. It is easy to show that

Hy: E(XiWr)=X Wy =0

47
H : EX\W)=X\W¢v+X Ws=Y (47)
Therefore we propose to compute the test statstic
H,
n = trace{(XlB)T(.\’lW,)} Z f 48)
H

where ¢, is the threshold determined by the suitable criterion, such as Neyman-Pearson’s,
for example. With notation By, = X B, the conditional means can be expressed as

E(n|Hy) = trace[B{(XlVV,\‘)} =0
: (49)
E(n|Hy) = trace [BIT(lev_\’ + XWVS)] = truce (BIY Y)

The conditional variances cannot be brought into a neat analytic form but, intuitively,
we expect them to be reduced with respect to the classical case due to the elimination
of noise subspace by the X|;—subspace mapping. This point needs to be verified by
Monte-Carlo simulations, as will be reported in a future publication.

Probabilistic Approximation Modelling of Non-Stationary
Underwater Acoustic Signals

Given an arbitrary random signal &, let -\ be some class of random signals with the
help of which it is reasonable to try to approximate ¢ (e.g. having the same sets of
states as £, a.s.0, and some sufficient tractable structure of probability distributions).
A method has been developed by M. Rosenblatt-Roth, a consultant on this project,
permitting the explicit determination of (1) the random signal » = £, € .1 which is

13




the best approximation of £ in 4, and (2) the least error r4(¢) corresponding to this
approximation. This approximation has been made in a meaningful sense so that this
closeness implies closeness in vanation. Taking for i various classes AR <k <o,
let the best approximants ot £ be &, and let the corresponding errors be r(£). | < A < n.
If r;(€) is the smallest of them, we should model the given signal £ by & € A%, For
this modeling to be effective, it is necessary (1) to chose the classes -A'*) in an adequate
manner, (2) to take n sufficiently large, and (3) to verify that the main properties for
which we study the signal £ are not lost in the modeling.

Among the best known and most analyzed non-stationary random signals are those
modelled by Markov chains. They have been studied since the beginning ot the century,
but it was not until 1950’s that a significant progress was made. At that time, R.L.
Dobrushin[12] obtained various important results concerning the central limit theorem
for Markov chains. M. Rosenblatt-Roth has investigated various aspects of the law of
large numbers for sequences of random variables forming Markov chains in the context
of a study of the transmission of signals produced by non-stationary sources through non-
stationary channels[13, 14, 15, 16]. He also obtained some results concerning problems
of stability and compression.

Methods will be devised for the reduction, in non-trivial ways, of more complex
non-stationary random signals onto Markovian ones. Therein lies the significance of
the non-stationary Markov chains in this research. For this reason, on the basis of the
well-known results, new aspects concerning the non-stationary Markov chains will be
studied. The basic i1dea of Markov chains was not exhausted by their strict defimition. It
1s possible to extend this concept by interpreting the Markov idea, from a somewhat more
general point of view, that the "future” of a Markov random process is "independent”
from its "past” if its "present” is known. For Markov chains, the "present” is represented
by a given finite set of random variables immediately preceding the future. By relaxing
the above condition so that the "present” be represented by a finite, but variable number
of random variables preceding the "future”, M. Rosenblatt-Roth has recently obtained a
much larger class of random signals than the Markovian ones[17]. This new class of non-
stationary random processes, called Markov meshes, can be of Gaussian or non-Gaussian
type and has important similanties with Markov chains.

More precisely, let { (1 < & < n) be a sequence of random variables; we say that it
is a Markov chain of order r > 1 if, for any & (r < k& < n), the "past” represented

by the random variables {{;.&,....&_,_} is independent of the random variable
£ representing the "future” if it is known that the random variables {&;_,..... k1)
representing the "present” take given values {rg_,......rx-1}.

On the other hand, a one-dimensional Markov mesh is defined in the following way
by M. Rosenblatt-Roth. For the same sequence of random variables as above, consider
a subset Sy of the index set [ = {1.2,....k — 1} with S; denoting the complement of
Sk with respect to /, and let £(S¢) = {&,. j € S} &(Sk) = {&,. ) € Si}. We say
that the sequence & (1 < k < n) is a one-dimensional Markov random mesh if for any
k (1 <k < n), the "past” represented by random variables £(.S;) is independent of the
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random variable & representing the "future” if it is known that the random vanables
£(Sy) representing the "present” take given values {r,. j € St}

The class of one-dimensional Markov meshes not only contains the Markov chains
as a sub-class, but shares with them some important properties. For this reason. Markov
meshes appear to have promising future in signal theory. The concept of a Markov chain
was extended to multi-dimensional signals under the name of Markov field. However,
because of the topological difterences between a one-dimensional sequence of sites and a
multi-dimensional array of sites, this concept remains still far from that ot a Markov chain,
lacking many of its essential properties. For this reason, in many important applications
Markov fields are unfit as a model of a multi-dimensional random signal.

M. Rosenblatt-Roth has recently shown that the basic idea of a Markov chain 1s not
exhausted by this extension. He has extended the concept of a one-dimensional Markov
random mesh to a multi-dimensional mesh retaining the basic Markovian idea that the
"future"” of the signal is independent of its "past” if its "present” is known[17]. In this way,
we obtain a very large class of non-stationary random signals, which can be of Gaussian or
non-Gaussian nature, and which posses important properties similar to those of Markov
chains. More than that, the multi-dimensional Markov meshes admit one-dimensional
causal representations, a property that reduces the study of multi-dimensional signals
to that of corresponding one-dimensional ones. Among the multi-dimensional random
signals, the multi-dimensional Markov meshes play the same role as do the Markov
chains among the one-dimensional ones.

Considering the complexity of non-stationary non-Gaussian random signals, an at-
tractive manner of handling them would be by approximating their statistical descriptions
with the help of various adequate classes of simpler ones. M. Rosenblatt-Roth defined and
studied a manner of approximation that allows the explicit determination of: (a) the best
approximant in the given class of statistical models, and (b) the least error committed in
this best approximation[17, 18, 19, 20].

Let: (X.S) be a measurable space, L = L(\.Y) the convex set of probability
measures on (.X.Y5); A an idempotent operator, non-linear in general, defined on L with
values in L' = A(L) C L. If U,V € L. let h(L": V') be the relative entropy of U
with respect to V. If P € L and AP € L' is absolutely continuous with respect to
Q€ L (AP < Q), let

h(AP:Q: P) = / P(dX) log[(AP)dX )/ Q(dN))] (50)
X
A is the projector on L' and AP € L' is the -\-projection of ” € L on L'; .\ is a regular
projector if for any P € L,
min{h(AP:Q:P); RQel'} =0 (51)
with equality iff Q = AP.
The quantity [4(P) = h(P : AP) is the amount of A-information determined by

P € L and the quantity [} = h(AP : P) is the amount of conjugate A-information
determined by P € L. M. Rosenblatt-Roth has obtained the following results:
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(DIfP e L,then [4(P) > 0. I*(P) > 0 with equalities iff P = AP, 1e. iff P € L.
(2) If A is a regular projector and /4(P) is finite, then

min{h(P Q) Q€ L'} = [4(P) (52)

and this minimum is reached iff ) = AP.

(3) Let P(t) be a Fourier transform of P € L and ||.|| the total variation of a
completely additive function defined on (.X.5). Then

sup{l.ﬁ(t) - (ﬁ)(f)

2. t} <||P - :\PHz <2min{lyP).I(P)} (53)

From (1) it is seen that [ 4( P) is good as a measure of the deviation of P from L' = A(L),
from (2) that AP is the best approximant of P in A(L) and from (3) that it [4(F) is
small, so is P — AP in total variation and AP is uniformly close to P.

Considering various particular classes of one-dimensional and multi-dimensional
signals, M. Rosenblatt-Roth calculated the explicit expressions for the A-information
using the expression

[4(P) = / P(AX) log[P(dX)/( AP)(dX)] (54)

which can be finite only if AP <« P.

Over the past three years, M. Rosenblatt-Roth has extensively studied such approxi-
mation of one-dimenstonal random signals with (a) sequences of independent identically
distnibuted random variables, (b) non-Gaussian Markov sequences of order r > 1, (c)
non-stationary Gaussian sequences, (d) non-stationary Gauss-Markov sequences of or-
der r > |, (e) non-stationary Gauss-Markov meshes, (f) stationary Markov chains of
order r > 1, (g) stationary Markov meshes of various classes. For multi-dimensional
random signals M. Rosenblatt-Roth has studied the approximation with (a) arbitrary
non-stationary Gaussian random signals, (b) Gaussian Markov meshes, (c) non-Gaussian
Markov meshes.

All these results were obtained under the hypothesis of the complete knowledge of
the probability distributions of the random signal being approximated. In the case when
the random process is given with the help of correlations and cross-correlations, we face
a new problem the solution of which requires difterent methods. At present, 1t seems that
the general case of arbitrary processes of this kind is intractable, except in some particular
cases such as the Gaussian processes. In those cases we are particularly interested in
harmonizable processes that have well-defined joint time-frequency representations, and
this research would investigate the new approximation problem for such processes.

During the last year, specifically, M. Rosenblatt-Roth obtained a series of important
results in these areas as well as in some new directions of research. In particular,
concerning: (a) the concept of relative entropy convergence; (b) the concept of a
continuous projector; (c) the best approximation by means of Gaussian probability
measures; (d) the study of the structure of the Boolean algebra of Markov mesh projectors;
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(e) the study of the structure of the Boolean algebra of Gauss-Markov mesh projectors; (f)
the amount of Gauss-Markov mesh information; (g) .. 2pt of decreasing stochastic
dependence; (h) the concept of intensity of stochastic dependence; (i) clustering of random
vanables; (j) condiuonal information; (k) the general explicit expression of a Gauss-
Markov mesh.

In addition, M. Rosenblatt-Roth defined and began to study of: (a) the important class
of completely regular projectors; (b) the best approximation of probability measures with
various classes of Markov meshes; (c) the extension of the theory of Markov meshes to
the case when when the characteristic sets and kernels are random; (d) the extension of
the best approximation method to generalized random processes and to random processes
with continuous time; () the best approximation of noisy channels.




References

[1] W. L. Root, “The detection of signals in Gaussian noise,” in Communication Theory
(A. V. Balakrishnan, ed.), ch. 4, pp. 160-191, New York: McGraw-Hill, 1968.

[2] C. W. Helstrom, Statistical Theory of Signal Detection. Oxford: Pergamon Press,
2nd ed., 1968.

(3] A. D. Whalen, Detection of Signals in Noise. New York: Academic Press, 1971.

[4] B. Picinbono and P. Duvait, “Optimal linear-quadratic systems for detection and
estimation,” /EEE Trans. Info. Theory, vol. IT-34, no. 2, pp. 304-311, March 1988.

[5] P. Flandnn, “A ume-frequency formulation of opttmum detection.” /EEE Trans.
Acoust., Speech. Signal Processing, vol. ASSP-36, no. 9, pp. 1377-1384, Sept. 1988.

(6] G. H.Goluband C.F. van Loan, Matrix Computations. Baltimore: The Johns Hopkins
University Press, 2nd ed., 1989.

(7] T. A. C. M. Claasen and W. F. G. Mecklenbrauker, “The Wigner distribution: A tool
for time-frequency signal analysis - Parts I, II, III,” Philips J. Res., vol. 35, no. 3.
4/5, 6, pp. 217-250, 277-300. 372-339, 1980.

(8] A. J. E. M. Janssen, “On the locus and spread of pseudo-density functions in the
time-frequency plane,” Philips J. Res.. vol. 37, no. 3. pp. 79-110, 1982.

[9] B. V. K. V. Kumar and C. W. Carol, “Effects of sampling on signal detection using
the cross-Wigner distribution function.” Appl. Optics, vol. 23, no. 22, pp. 4090-4094,
Nov. 1984,

(10]W. Martin and P. Flandnn, “Wigner-Ville spectral analysis of non-stationary
processes,” IEEE Trans. Acoust., Speech. Signal Processing, vol. ASSP-33, no. 6,
pp. 1461-1470, Dec. 1985.

(11]]. S. B. De Moor and J. Vandewalle, “Oriented energy and oriented signal-to-signal
ratio concepts 1n the analysis of vector sequences and time seres,” in SVD and signal
processing (F. Deprettere, ed.), ch. 9, pp. 209-232, Amsterdam: North-Holland, 1988.

[12]R. L. Dobrushin, “The central limit theorem for non-stationary Markov chains,”
Theory of Probability and Its Applications, vol. 1, pp. 365-425, 1956.

[13]M. Rosenblatt-Roth, The Concept of Entropy in Probability Theory and lIts
Applications in the Theory of Information Transmission Through Noisy Channels.
PhD thesis, Moscow State University M. V. Lomonosov. Moscow. USSR, 1956. (In
Russian).

[14]M. Rosenblatt-Roth, “The entropy of random processes.” Doklady Akademii Nauk
SSSR. vol. 112, no. 1, pp. 16-19, 1957. (In Russian).

[15]M. Rosenblatt-Roth, “The Theory of Information Transmission Through Noisy
Channels,” Doklady Akademii Nauk SSSR, vol. 112, no. 2. pp. 202-205, 1957. (In
Russian).

[16]M. Rosenblatt-Roth, “The Law of Large Numbers for Non-Homogeneous Markov
Chains,” Doklady Akademii Nauk SSSR. vol. 134, no. 2. pp. 278-281, 1960. (In

18




Russian). Translation in 'Soviet Mathematics,” vol.l, no. 5, pp. 1067-1070, Amer.
Math. Soc., 1960.

[17]M. Rosenblatt-Roth, “Reseaux aleatoires de Markov,” Comptes Rendus de I' Academie
des Sciences de Paris, vol. 305, pp. 561-563, 1987. (In French).

[18]M. Rosenblatt-Roth, “Sur la meilleure approximation des mesures de probabilite,”
Comptes Rendus de I’ Academie des Sciences de Paris, vol. 304, no. 12, pp. 343-346,
1987. (In French).

[191M. Rosenblatt-Roth, “Sur la meilleure approximation des mesures de probabilite a
I’aide des reseaux aleatoires de Markov,” Comptes Rendus de I’ Academie des Sciences
de Paris, vol. 306, pp. 283-285, 1988. (In French).

[20]M. Rosenblatt-Roth, “Sur la meilleure approximation gaussienne des mesures de
probabilite,” Comptes Rendus de I’Academie des Sciences de Paris. Submitted for
publication (In French).




