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CHAPTER I

INTRODUCTION

1.1 problem Definition

Recent improvements in the development of diphasic polymer

composites have lead to the formulation of materials with Improved

mechanical and/or electrical properties as compared with single phase

materials. The Nippon Electric Co., Ltd (NEC) has succeeded in developing a

ferrite compound which is structurally stiff (compressive strength: 150 x

1O N/m2), yet possesses desirably high damping (100 times that of iron or

aluminum) 11]. The material consists of ferrite particles embedded in a

polyester resin. It is postulated that the high specific gravity particles

resonate with the elastic resin causing high internal damping.

In a similar vein, the Materials Research Laboratory (MRL) at The

Pennsylvania State University, has been fabricating diphasic transducer

materials made from polymers and piezoelectric ceramics. When composite

transducers are driven at high frequencies they sometimes exhibit a mode of

vibration in which the component materials vibrate out of phase. Internal

friction between the filler and matrix materials causes the damping.

Additional damping, due to electromechanical energy conversion and ohmic

dissipation may also be realized if the piezoceramic particles are polarized.

A method of measuring damping properties in the frequency range 0 to
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20 kHz, for a composite of limited size, was necessary for acoustic loss

comparison. Since damping properties are a strong function of frequency for

viscoelastic materials, the method also had to be capable of computing the

damping values as a function of frequency.

After consideration of various procedures to measure the dynamic

modulus of elasticity, a technique using the acceleration transfer ratio

between the two ends of a mass loaded rod was selected [2-5]. A long thin

sample is excited into longitudinal vibration and the relative amplitude and

phase information recorded at frequencies in the audible range. The

amplitude ratio and phase at the longitudinal resonances (phase= ±_90) is

related to the elastic modulus and loss factor (1) by a pair of coupled,

nonlinear, transcendental equations derived from solving the equation of

motion of a mass-loaded rod excited into longitudinal vibrations. In theory,

the equations can be solved at any frequency, providing amplitude and phase

information is known. In practice, convergence problems limit usable data

to only the longitudinal resonances.

An improved computational algorithm has been developed which can

yield loss and elastic modulus values at frequencies other than the ± 90"

phase points. The method incorporates an improved "seed" formulation

based on the behavior of the accelerometer transfer function. This

algorithm facilitates the solution of the equations while reducing the

computation time.
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1.2 Discussion of Damoing

The dynamic characteristics of a structure can be determined through

the characterization of the mass, stiffness, and damping. The mass can be

easily ascertained using static measurements. The dynamic stiffness is a

complex mechanism which almost always requires a dynamic test setup.

Damping relates the energy dissipated to the energy stored in the material.

Each dynamic characteristic possesses an energy analogy. Kinetic

energy is associated with the mass, potential energy is related to the

stiffness, and damping is a measure of system energy losses. Damping

energy is usually dissipated as heat.

The mechanisms of damping are many. Interface friction, Internal

friction, fluid viscosity, turbulence, acoustic radiation, eddy currents, and

magnetic hysteresis are some of the major ones [6]. Internal and interface

friction constitute the most common types of damping. Friction

mechanisms include: plastic slip, plastic flow, dislocation movements, and

Inhomogeneous strain in fibrous materials (7]. Due to the polymeric nature

of the materials tested in this study, molecular curling and uncurling of

polymers may also be a major source of damping.

The majority of the materials tested in this study can be classified as

viscoelastic. Viscoelastic composites display both time and temperature

dependent properties. All linear viscoelastic materials possess a complex

modulus of elasticity:

E' + iE" = E'(l IO = E' eiS (1.1)



4

where,

E* =complex modulus of elasticity

E'= storage modulus of elasticity

E"= loss modulus of elasticity

i= loss factor

6 = phase lag between stress and strain

Typical plots of both the storage modulus and loss factor versus

frequency or temperature for a viscoelastic material are shown in Fig. 1. 1

The loss factor (1) will be the only measurement unit for damping used in

this study. No standard nomenclature for damping exists at this time. This

Is due in part to the great variety of applications of damping for both

engineering purposes as well as purely academic uses. For specimens with

uniform lateral stress distributions the following damping relationships

exist [7]:

i= tang= A/fl= y/217= 2/(-z)t/z= Af/fn= l/Ar= 1/0 (1.2)

where,

A = logarithmic decrement.

y - specific damping capacity.

= the damping ratio (c'IcC).

Aflf n = bandwidth at the half power points/natural frequency.
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Factor, rl, on Temperature or Frequency
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Ar = resonance amplification factor (induced force/exciting force).

0 = measure of sharpness of a resonance peak and amplification

produced by resonance.

Along with the problems of not having a standard nomenclature, there

are problems with documenting stress distributions and shape factors of

the samples which are tested for damping. The loss factor is not truly

independent of stress amplitude. As the stress amplitude increases the

damping property of the material will also increase. If the stress is

cyclical the number of fatigue cycles will have very little effect upon the

damping up to a stress level known as the cyclic stress sensitivity limit o"L.

Above this value, stress at approximately 80 per cent of the fatigue limit,

the damping will again increase [8].

Likewise, the relative dimensions of a specimen can affect the modulus

of elasticity, E*, and thus also affect the loss factor. For rubber-like

materials the resultant modulus of elasticity is given by [91:

Er =(l+ BS?) (1.3)

where Er* -resultant complex modulus of elasticity.

3 = numerical constant based on volume-stress function

and the stress distribution. (W usually equals 2.0)

S = shape factor (loaded surface area/remaining surface area)
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1.3 Complex Modulus Measurement Techniues

An abundance of techniques exists for measuring the damping properties

of materials. Two of the classic methods are the Frequency Response

Method and the Reverberation Method [10]. The Frequency Response Method

entails vibrating a cantilevered specimen at its resonance frequencies and

recording the vibration amplitudes, preferably on a dB scale. By taking the

frequency bandwidth between the two -3 dB points relative to the peak, the

loss factor and storage modulus can be calculated from:

TI= Afnf n  (1.4a)

E'= 38.24 pL4 fnZ/h (1.4b)

where, p = sample density (kg/m 3).

L = unsupported length (cm).

h = thickness in the direction of vibration (cm).

The Reverberation Method uses a measure of the vibration decay rate of

a specimen. To perform the test, the sample must be excited into vibrations

at any resonance frequency until steady state conditions are achieved. When

the exciting force Is suddenly removed, the resulting decay curve can be

used to ascertain the loss factor:

rj= 2.2/T60fn (1.5)

where, T60 - the time in seconds for the vibration level to

decrease 60 dB.

Nearly all methods for determining the complex modulus of elasticity

can be grouped Into one of the following seven measuremert categories [11];
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the shape, size and homogeneity of the sample will greatly determine which

method should be used:

1. Transverse Resonance Mode Vibration - A small bar-like sample is

excited into transverse vibration at one end using a non-contact

transducer while a second non-contact transducer picks up the

displacement of the other end. A plot of displacement versus

frequency is used to determine the loss factor (-3 dB bandwidth

method) and the storage modulus Is found using Eq. (1.6).

E' = 4.8TiZp[LZfn/hknZ] (1.6)

The coefficient kn depends upon the mode number and damping method.

2. Forced Vibration - Used primarily for large, highly damped specimens.

The specimen is fixed at the two ends and driven transversely, at a

constant displacement, at its middle using a sinusoidal force F. The

equations for computing the loss factor and storage modulus are:

E' = [Fcose/y + 212 f'LAp]2L3 /T1 4  (1.7)

1 = (I - y4T72f2LAp/F2coso] tano (1.8)

The parameter y is the displacement of the bar's middle, I is the

second moment of area of the cross section of area A, and o is the

phase angle between force and displacement.

3. Flexural Wave Method - A probe microphone is used to scan the length of

a transversely vibrating beam, mounted on flexible supports, to

determine the resonances from the node locations. Using the input
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frequency and material parameters the storage modulus can be

computed from Eq. (1.9):

E' = f 2472 pAL4/X 4 1 (1.9)

The constant Xn is dimensionless and dependent upon the boundary

conditions.

4. Mechanical Impedance Method - A small specimen is driven

longitudinally at a constant velocity using an Impedance head. A force

vs. frequency plot Is made and the loss factor is determined from the

-3 dB bandwidth. The storage modulus at the resonances (n) and

antiresonances (i) is found from Eqs. ( 1. 10) and (1. 11).

E' = p[2Lf,/n]2/K, (1.10)

E' = p[2Lfm/m- 1/2]2/Km (1.11)

The constants K, and Km are correction factors.

5. Transfer Function Method - A bar sample, with accelerometers located at

each end, is vibrated longitudinally. Using the amplitude and phase of

the ratio of acceleration at the ends and the equations of motion

for a mass-loaded rod the damping and storage modulus values can be

computed. (also called the Phase Measurement Method)

6. Thin Fibers - Setup similar to the Transfer Function Method except the

sample is loaded in tension. The loss factor Is obtained from the -3

dB bandwidths at the resonance frequencies and the storage modulus is

obtained using Eq. ( 1. 12).
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E' - 4TI2 fn2L2p (1.12)

7. Vibration Decay Method - By suddenly removing the excitation force,

after steady state conditions are achieved, the loss factor can be

determined from Eq. (1.5) and the storage modulus from Eq. ( 1. 12).

Several limitations on the size and compliance of the samples available

for this study reduced the method choice to a couple of those listed above.

First, the sample size had to be kept to a minimum for fabrication purposes.

The maximum convenient size for mixing and hot pressing was

approximately 8 cm by I cm2 . This eliminated the Forced Vibration (2) and

Flexural Wave methods (3). Second, the samples would include a large

number of very high damping materials so the resonance peaks would not

always be apparent. This effectively ruled out the -3 dB measurement

schemes, viz, the Transverse Resonance Mode Vibration (1), the Thin Fibers

Method (6), and the Mechanical Impedance Method (4). And last, the samples

were primarily too compliant for a technique requiring any amount of

sample rigidity. The Flexural Wave Method (7) would not work well with

extremely soft samples.

The method finally chosen was the Transfer Function or Phase

Measurement Method. The procedure consists of exciting a bar-shaped

specimen into longitudinal vibration and recording the complex ratio of the

acceleration, or displacement, between the two ends. This decision was

reaffirmed by the findings of a survey of current dynamic modulus
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techniques that was undertaken in ;982 by Bolt Beranek and Newman Inc.

[121.

That report ranks the available systems for testing the dynamic

modulus of elastomers according to three cost ranges. A preliminary list of

minimum requirements which all sytems had to meet was described. Some

of the more important of these are:

1. The system measures at least one frequency between 200 and 8000 Hz.

2. The accuracy of the system Is within ±20% in modulus or loss factor.

3. The technique must be capable of measuring two different materials.

4. The determination of modulus and loss factor takes less than 10 days.

A figure of merit was awarded to each system based upon a set of basic

attributes. Typical attributes Included: frequency and temperature range,

accuracy, time per measurement, availability, range of sample size, and

capability of computer interface. Table 1.1 assigns the attribute weights

using three schemes. The attributes in the "average" column are assigned

values according to rank of importance. The most important attribute,

frequency and temperature range, received the most points (16.1 and 15.6)

while the other attributes received decreasing values according to order of

importance. The weightings in the column labeled "flat" are assigned by

assuming that the attributes are nearly equal in importance with the more

important attributes still receiving a few extra points. The "highly skewed"

column gives a strong emphasis on frequency and temperature range. In all
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Table 1. 1 - Attribute Weightings from the BBN study [ 12J.

-tbeA uee Weiahtln Envelooes of Weiahtings Proiosed
Compressive Tensile Compressive Tensile

Load Load Load Load

"Flat" "Highly "Flat" "Highly"
Skewed" Skewed"

Frequency & Temperature
Range 16.1 15.6 10.6 40.0 10.6 38.9
Static Modulus Range 12.1 11.7 10.1 10.0 10.1 9.8
Acuracy 11.0 10.6 9.6 10.0 9.6 9.8
Meas Time/Measurement 10.5 10.2 9.0 10.0 9.0 9.8
Availability/Risk 9.0 8.8 8.0 10.0 7.9 9.8
Equipment Reliability 8.2 8 n 8,0 4.0 7.9 3.9
Total Meas. Time/Sample 7.7 7.5 7.45 4.0 7.4 3.9
Frequency Sampling 6.8 6.6 7.45 4.0 7.4 3.9
Effective Properties 5.2 5.0 7.45 4.0 7.4 3.9
Static Load & Pressure
Range 5.0 8.u 7.45 2.0 7.9 3.9
Computer Interfece 4.2 4.0 7.45 1.0 7.4 1.2
Sample Type 4.2 4.0 7.45 1.0 7.4 1.2
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cases the total point value of all the attributes had to add up to 100.

Table 1.2 gives a summary of the Figures of Merit for the evaluated

systems. The systems are grouped into three cost ranges. "Type" refers to

the seven measurement categories enumerated previously. Several of the

methods shown involve using the Transfer Function Method. Notice that the

top performer in the least expensive group, the NSWC Transfer Function

Test, received nearly as many points as the top two performers in the most

expensive group.

Based on this study and the limitations previously mentioned, a

decision was made to implement the Transfer Function Method for the

present study. The BBN study gives the following information for the NSWC

Transfer Method:

Frequency: 200 to 25,000 Hz.

Accuracy: ±5%

Temperature: 0 to 500C.

Static Modulus: 105 to 10" dynes/cm 2.

The Transfer Function Method looked particularly attractive since all of

the necessary electronic measuring equipment already existed and could be

linked to an HP 9825B computer. The only piece of equipment which needed

to be fabricated was a test stand to hold the shaker and sample. Chapter

Two details some of the particulars of the Transfer Function Method and

also describes the improvements made to the method during this study.
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CHAPTER 2

THE TRANSFER FUNCTION METHOD

2.1 Theory and Overview

The technique of obtaining dynamic material parameters using the

acceleration transfer ratio between the two ends of a bar-like specimen has

been utilized since J. L. Quimby first used longitudinal beam vibrations to

measure viscosity In 1925 [13]. At present, the transfer ratio and material

parameters can be used along with the well known longitudinal wave

propagation equation (Eq. (2. 1)) to determine E' and E" for a bar-like sample.

(E' + 1E")(a2u/axz)= p(alu/atl) (2. 1)

The loss factor,rl, is simply E"/E'.

Not all of the longitudinal vibration techniques require the

measurement of the acceleration transfer function. Galkiewicz and Karasz

employed a longitudinal resonance technique but used the -3 dB amplitude

method to obtain the logarithmic decrement [14]. Likewise, Ferguson uses a

similar method for finding the loss using a triple-bar composite resonance

technique [15]. D. I. G. Jones et. al. used a tuned damper technique to

simplify both the equations of motion and the experimental procedure for

determining the dynamic modulus of a short rod [1 6,171.

The present Transfer Function Method evolved as the result of two

theoretical papers. Tung-Ming Lee combined the appropriate boundary
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conditions and the longitudinal wave propagation equation to model a

fixed-free bar [18]. Later, D. M. Norris, Jr. and Wun-Chung Young extended

the solution to include a bar with an attached end mass [5]. The solution of

a bar with an end mass Is of practical importance since It Is common to

have a fixture, or at least an accelerometer, attached to the undriven end of

the bar or rod. Norris and Young used both graphical and computer methods

to solve the resulting two equations representing the real part, TR, and

imaginary part, T,, of the acceleration ratio, or equivalently, the

displacement ratio of the two ends. Equations (2.2) and (2.3) detail these

two, coupled, transcendental equations. The complete derivation can be

found in Appendix A.

TR = cosh[CO] (cost - RE sing) + RCC cost sinh[CQ] (2.2)

T= = sinh[WO] (sing + Rt cost) + R9O sing cosh[CO] (2.3)

where, R = mass ratio, M/pAL

M = the end mass

t - frequency parameter, wL/c

0 = tan(6/2)

c = complex phase velocity, (E*/p)/'zsec(S/2)

This experimental procedure has been successfully utilized by many

people including Madigosky [2,19], Pritz [31, and Capps [4]. To obtain the

storage modulus and the loss factor the solutions for C and S should be

inserted into Eqs. (2.4) and (2.5).

h = tan() (2.4)
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E' = p(wL/9)2 cos'(8/2) cos(S) (2.5)

The method seems straightforward. Measure the transfer ratio between

the end displacements or accelerations and solve the above equations using

a computer to obtain the complex dynamic modulus. Unfortunately, several

problems exist that limit both the accuracy and applicability of the

Transfer Function Method.

2.2 Limitations of Present Transfer Function Method

While the Transfer Function Method seems to be gaining popularity as a

dynamic modulus testing procedure, it still suffers some shortcomings in

the form that most practitioners are using. These problems can be grouped

into three categories: computer solution problems, data extension problems,

and lateral vibration effects.

2.2.1 Computer Solution of the Coupled Equations

The computer solution of Eqs. (2.2) and (2.3) can be complicated. The

most common approach Is to use an Iterative procedure such as the

Newton-Paphson technique [20] to simultaneously solve the two coupled

equations. This technique searches for the maxima or minima of the

equations by locating "he zeroes of the derivatives of the equations.

Although the Newton-Raiphson technique converges quickly to a root of

the equations, there is no guarantee that it will be the correct root. It turns

out that the number of possible roots for a given value of TR, R, and T, is
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Infinite; given any value of 9, a value of 0 can be found which satisfies Eqs.

(2.2) and (2.3). Like the solution to most eigenvalue problems, the roots are

related to the mode number.

An often used approxImatIon has been to chose a seed based upon

neglecting the damping and solving the wave equation for the frequency

parameter, C, at the resonance frequencies:

= (2n-I)Ti/2(R+ I) (2.6)

The mode number Is given by "n". Using Eq. (2.6) to generate the iteration

starting point, or "seed", the solution of Eqs. (2.2) and (2.3) at the resonance

frequencies can be achieved with some degree of confidence. Correct

solutions, or roots, are usually obtained for the first couple of modes. After

this, the Newton-Raphson technique will often yield incorrect solutions.

Thus, the judgment of a skilled operator will usually be necessary to

discern the good roots from the bad. To further complicate matters, a

certain amount of symmetry exists in Eqs. (2.2) and (2.3), that is, each

positive root has a corresponding negative root which is close in magnitude.

This false root can cause problems for Investigators who are not careful

about sign conventions. Depending upon the sample size and frequency

range, a typical test will yield no more than five or six data points.

Low damping materials provide an additional problem for this

measuring system. Whenever the phase angle of the acceleration ratio

approaches 0, the accuracy of the results becomes questionable. The

solution of Eqs. (2.2) and (2.3) will result in loss factor values very close to
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zero. The explanation for this can be understood by looking at Eq. 2.3. When

the phase angle equals zero, T, will also equal zero. The imaginary portion

of the acceleration transfer ratio equals zero at any frequency if the

damping parameter is also equal to zero. Thus, Eqs. (2.2) and (2.3) will have

two solutions, for the same value of 9, tan(6/2), and R; one with a loss

factor value near zero and one at the correct root. This is the primary

reason why investigators have not attempted to solve the equations at

nonresonance frequencies.

2.2.2 Three Methods for Extending Results

There are several ways to broaden the frequency range of the results.

The simplest method Involves varying the weight of the end mass.

Increasing the end mass will shift the resonance frequencies to lower

values. Conversely, a decrease In the end mass will raise the resonance

frequencies with an absolute limit corresponding to the resonance

frequencies of a free-free bar. Using this procedure, the resonances can be

shifted to obtain results for a wide range of frequencies.

The second method for increasing the number of data points is to shift

the resonances by varying the length of a sample. This will accomplish the

same effect as the first method. A long sample will naturally have a lower

primary resonance frequency than a short sample.

Using the present form of the Transfer Function Method, It is

advantageous to shift the resonances up in frequency. The chance of



20

obtaining incorrect C and 0 values Increases greatly for higher modes. By

shifting the first few modes up in frequency, the range of believable results

essentially shifts up in frequency. In addition, materials which are very

compliant will not provide valid results at higher frequencies. This Is due

to the mass-loaded end accelerations being so small that the noise floor of

the test equipment is approached. Some materials reach this noise limit at

frequencies below 4 kHz.

The final means of extending the frequency range of useful data is

applicable If the material is viscoelastic. A material which Is viscoelastic

will exhibit an increase In strain as a function of time and temperature

when subjected to a constant stress. By recording damping and storage

modulus data at various temperatures and using the time-temperature

superposition principle [211, the frequency range of the data can be

extended. The principle, as shown in Fig. 1. 1, is based upon the theory that a

decrease in temperature at a constant frequency causes the same change in

dynamic material properties as an increase in frequency at a constant

temperature. The frequency shift, corresponding to a change from some

temperature T to a reference temperature T., is given by the WLF [2 1]

equation:

log aT - -c, (T-To) / (c2 + T-To) (2.7)

The shift factor aT is equal to the shifted frequency divided by the

reference frequency. The constants c, and c2 are shift constants which are

characteristic of each viscoelastic material at a given T0. If the glass
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transition temperature of the material Tg is used as the reference

temperature, T., then c, and c2 become the universal constants (c = 17.44

and c2 = 51.6). The WLF equation is primarily applicable for temperatures

between T9 and Tg + I OOC. The use of the WLF shift equation can

effectively extend the frequency range of the data several decades higher

and lower from those over which valid data can be obtained at a single

temperature.

Most of the Transfer Function Method results quoted In the literature

have been enhanced using the WIF shift equation. The procedure can be time

consuming and introduces additional errors due to inaccuracies in finding

the shift constants and applying the shift factor aT to the experimental

data. In spite of this, the method stands as a useful tool for obtaining

dynamic material properties at frequencies outside the range of test

limits.

2.2.3 Lateral Motion Effect

The wave equation, Eq (2.1), is based on the assumption that wave

propagation occurs only in the axial directions. This approximation is only

valid if the lateral dimensions of the rod are small compared with the

wavelength. A better equation, which takes into account the effect of

lateral motions, is the Pochhammer-Chree frequency equation for

longitudinal waves in an infinitely long cylinder [22]. Using the boundary

condition that the cylindrical surface is traction-free and neglecting
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torsional waves, the solution [231 to the frequency equation for longitudinal

waves is:

(kZ-qZ)z [Jo(pa)/Jl(pa)] + 4k~pq [J(qa)/J(qa)] - (2p/a)(k+qz) = 0 (2.8)

where a = radius of the cylinder

p = [(Zp/E*) - ]1

q = [(Zp/G*) - k2]"2

k = complex wavenumber (w/c)

Solving Eq. (2.8) for its roots yields the cutoff frequencies or

elgenvalues. Pritz [241 and Snowdon [91 used a much less complicated

approximation to t!a Pochhammer-Chree equation developed by Love [251.

The lateral mcLion is taken into account to some extent by the differential

equati,,:

p [6 2u/at 2 
- (*rg)Z a4 u/ax2at 2 ] - E* a 2u/ax2  (2.9)

where u(x) = axial displacement of the bar

*= complex Poisson's ratio = V(1 - i1iV)

rg -radius of gyration about the x axis

For a sample with a square cross-section of area A, rg (A/6)"/2.

Neglecting the lateral motion of the sample yields a storage modulus

and a loss factor which deviate from the true values of E' and t1 when the

lateral dimensions become an appreciable portion of the wavelength at

higher frequencies. For a bar subjected to a time harmonic displacement,

Eq. (2.9) becomes:
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E0 + irj) =E(0 + iri)E1 - (p/E-l + iri)]cwo V"2(1 + iT'r 2 (2.10)

The apparent storage modulus and apparent loss factor can be normalized by

the true values of E' and kj

E ./'- I - (p/E) w(0' r)2 1, 2) (.1

'I/? -I1 - (p/E') (a (W r 9)2 2(tiv /ij)] E1/E') (2.12)

Assuming ?v=O, Eqs. (2.11) and (2.12) can be placed in a form suitable for

use as a correction factor for the apparent values E Ea and ?1,) obtained by

using the elementary theory (Eq. 2.1)

E' Ea [1 + 4TT I v( rg/ 1 ) (1 i9 (2.13)

1= t*a AI + 4172 VfZ2 r 9/Xr)2 (1- T,' - 2rlv/1Ol (2.14)

where, Xf = wavelength (1 )E8 /p)"/2

The 11 on the right hand side of Eq. (2.14) can tie approximated by Via

with little error. The assumption that rv is equal to zero can be justified

by defining the real and Imaginary portions of the Poisson's ratio In terms

of the elastic and shear moduli and loss factors [91:

* =(E */2G )-1 (2.15)

This can be separated into real and imaginary components:

V- i. + IV (2.16)

where

Vf = (E*/2G')[(l + 'ITIG)/( 1 + VIG )1 -1(2.170)

and
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v- = (E'/2G')[(T' - V/1 + . )] (2.18)

For plastic and rubberlike materials the elastic loss factor, 11, is very close

to the shear loss factor, G, [9] making Eq. (2.18) approximately equal to

zero. Since v = p"/v', the Poisson loss factor will also be close to zero.

Without the corrections In Eqs. (2.13) and (2.14), the elementary theory

will give storage modulus results at high frequencies which are too low

while the loss factor values will be too high.

2.3 Improvements to the Transfer Function Method

A better understanding of the behavior of Eqs. (2.2) and (2.3) is

Instrumental In understanding why convergence problems occur when using

the Newton-Raphson technique or any computer solution method. A

visualization of the two equations as a function of the frequency parameter,

C, and the damping parameter, tan(&/2), is obtained by making a three-

dimensional grid plot. The plots in Figs. 2.1 and 2.2 give a compressed view

of the real and imaginary components or the acceleration ratio. For 9= 20.

R= 1.0 and tan(6/2)= 2.0 (corresponding to the highest points on the curves),

TR and T, are of the order of 10" and I0"l respectively; I.e. very large

numbers. Consequently, these transfer function amplitudes are modified

using a logarithmic scaling factor to compress both the positive and

negative values so that the definition of the curve surfaces can readily be

discerned. This scaling is performed as follows: the logarithm of the

positive values greater than 1 are plotted, the logarithm of the absolute
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Figure 2.1 Three-Dimensional Grid Plot of the Real Transfer

Function Amplitude as a Function of E and tan(612)

for an Assumed Mass Ratio R= 1.0.
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Figure 2.2 Three-Dimensional Grid Plot of the Imaginary Transfer

Function Amplitude as a Function of { and tan(S/2)
or an Assumed Mass Ratio R= 1.0.
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values of the negative values less than -1 are plotted as negative numbers,

and the values between 1 and -1 are plotted directly.

Undulations in the plots are analogous to the modes of the mass-loaded

rod. Notice that the real and imaginary plots are out of phase in the sense

that a peak of one curve nearly corresponds to a zero of the other curve. The

zeroes of the real transfer function amplitude indicate the locations of the

resonances. The zeroes of the imaginary transfer function amplitude

indicate the locations of the antiresonances.

The plots of the real and Imaginary transfer function amplitudes in Figs

2.1 and 2.2 show only the positive E and tan(8/2) axis values. Convergence

to negative values can be achieved, but would result in negative loss factors

and storage moduli, neither of which have any physical meaning.

The benefit of seeing the transfer function plots is that the regions of

convergence can be accurately located. The trick is to turn this

visualization into a solution algorithm. Another variable complicates the

problem. Equations (2.2) and (2.3) are functions of three variables: t, 0, and

R. The effect of Increasing R will be to shift the undulations down the

axis.. This corresponds to the shift in resonances when the end mass is

changed. Any "seed" generating algorithm would have to consider the

interrelationship between all three variables and the mode number.

Fortunately, the transfer function equations are very nearly independent

of the damping parameter, tan(6/2), for a given frequency parameter, t. The

modes are almost uniformly separated along the t axis by the value n. It is
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only for small values of damping that the damping parameter becomes a

strong function of C.

Using the above properties, it would not be difficult to program a seed

algorithm to locate the approximate values or 9 by assuming a value for

tan(&/2) and solving for 9 knowing the value of R. However, this would

require too much computer time and the seed values would still be

approximate because tan(8/2) is approximated. In addition, this same

iteration procedure would need to be repeated at each frequency.

A seed generation routine which is just as accurate yet employs much

less computer time is a two step polynomial curve fitting procedure which

locates seed values quickly and accurately, usually within 5% of the true

solution. Two curves are necessary. The first polynomial curve locates the

approximate 9 value for the first mode as a function of R. A plot of the

relationship between C and R for the first three modes can be seen in Fig.

2.3. The equation used in this study to approximate the curve for mode I is:

C, - .002R1 -. I32R + 1.254 (2.19)

The quantity tan(6/2) is assumed to be equal to 0. 1. Even if the true value

of tan(8/2) is 0.01, the C values for the first mode will only differ by 0.1%

from the t values computed wit. t ;n(6/2) equal to 0. 1.

Once the true value of C1 is obtained, It can be used in the second

polynomial curve fitting procedure to approximate the higher mode seed

values. This polynomial curve is based upon the C versus n (mode number)

plot being a straight line at higher frequencies with a slope very near 11.
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Figure 2.3 Frequency parameter, E-, as a Function of the Mass

Ratio, R, for tan(8/ 2 ) = 0.1.
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The plot In Fig. 2.4 shows that this is indeed the case. The mass ratio, R, is

assumed to be equal to 1.0 for this plot. Different values for R will not

significantly alter Fig. 2.4. Notice that the curve only shifts appreciably for

very high damping values, yet the slope stll remains the same as that for

the lower damping curves. Thus, knowing the first mode value for C and the

approximate slope, it should be simple to find 9 for the higher modes. The

simple, yet effective, equation used to approximate C. for higher modes is:

C. = (n-1)Ti + C,/n (2.20)

Again, the 9 values are the more important of the two variables (to) in

the transfer function equations since the damping parameter can roughly be

considered independent of frequency. By applying a window on the

convergence limits about this seed, the correct solution can be assured

barring discontinuities in the amplitude and phase data.

The key to improving the solution method is that once the solutions for

the resonance and antiresonance frequencies are obtained accurately, it is a

simple matter to use linear Interpolation between adjacent modes to find

solutions at any frequency providing the frequency lies between two modes

whose solutions have been determined. This scheme was employed in the

current study to obtain results across the entire frequency range of interest

Instead or only solving for h and E' at the ±90" transfer function phase

points.

Another improvement made in this study, which has been overlooked by

many Investigators, Is the use of the lateral vibration correction as derived
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by Pritz [24]. Equations (2.13) and (2.14) were Incorporated into the

solution algorithm to Improve the accuracy of the results. The assumption,

as discussed by Snowdon (9], that Poisson's ratio can be considered a real

value (tlv= 0) for plastics and rubbers was also assumed for this study.



CHAPTER 3

EXPERIMENTAL PROCEDURE

3.1 Equipment Setup

The Transfer Function Method is particularly amenable to the use of

accelerometers for recording vibration levels. In most tests the

accelerometer signals must be calibrated and the vibration source must

have a feedback control to monitor the vibration levels. Neither is required

with the Transfer Function Method since only the relative acceleration

levels are needed. If the two accelerometers attached at the ends of the

test sample are well matched over the frequency range of Interest, their

output voltage ratio will be equal to the acceleration ratio. In addition, any

variations in the input acceleration level from the shaker will not hamper

the test as the response of interest is the ratio between the accelerations

of the two ends of the sample.

The equipment setup used In this study Is shown in Fig. 3. 1. A bar-like

sample is harmonically vibrated along its axis, at the frequency of interest,

by an Electrodyne Shaker. Two BBN 501 Accelerometers, mounted on either

end of the sample, supply a voltage signal proportional to the acceleration.

Each signal is then amplified before feeding into a HP 3570A Network

Analyzer. The Network Analyzer digitizes and filters the signals before

computing the relative amplitude and phase between the two inputs.
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Figure 3 1 Equipment Setup for Transfer Function Method Tests.
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The shaker is driven by a HP 3330B Automatic Frequency Synthesizer.

The HP 3330B communicates to the HP 3570A via an interface bus (HP I B).

This provides the HP 3570A with the input frequency on which to perform

the bandpass filtering. The filter bandwidth used in this study was 10 Hz.

The entire test setup is controlled by a HP 9825B computer/controller

through the same Interface bus. The HP 9825B also performs all of the

numerical calculations, stores all the data on floppy disks, and controls

both a display monitor and pen plotter so that plots of the results can be

made. A thermal printer outputs the test results In tabular form during the

testing. The computer, display, and pen plotter are shown in Fig. 3.2.

The shaker-specimen fixture, as shown in Fig. 3.3, is a brass tripod

with neoprene gaskets to reduce lateral structure-borne vibration. The

fixture is small enough to fit inside a Tenney Temperature Chamber should

tests at various temperatures be desired. The sample is connected to the

shaker by a small rectangular brass stirrup which threads Into the shaker.

One of the accelerometers is mounted inside this stirrup while the other

accelerometer Is attached to a brass end mass. To permit magnetic

materials to be tested, such as the NEC Composite, brass was used to make

many of the test fixture components because it is a nonmagnetic metal.

Two types of epoxy were used In the study. The accelerometers were

each cemented to their respective brass fixtures with a fast-setting

cyanoacrylate ester adhesive called Loctite Super Bonder 495. This type of

adhesive is similar to the "super glues" popular a few years ago. The
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Figure 3.2 HP 9825B Calculator, HP 1 347A Display Monitor,

and HP 9872A Pen Plotter.
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Figure 3.3 Tripod Sh'aker-Specimen Test Stand.
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sample-brass interface was sealed using a quick-setting epoxy sold under

the trade name Epoxi-Patch by the Dexter Corporation. The Epoxi-Patch

adhesive hardens to an extremely brittle compound within 5 to 10 minutes.

These properties made it ideal for this study since it did not require a long

curing period and the hardened epoxy could be chipped off the relatively soft

samples without tearing or otherwise damaging them.

The Network Analyzer and Frequency Synthesizer are extremely

accurate. The Network Analyzer is accurate in amplitude measurements to

0.4 dB and accurate to 0.2" in phase measurements over the frequency range

of the tests. Both of these errors are far below the error of the rest of the

electronic equipment and the error associated with poor mounting of either

the accelerometers or samples.

The rest of the equipment setup was tested to ensure that the

accelerometer signals were well-matched and not distorted by any

differences in the signal channels. First the accelerometers were mounted

side-by-side on a fixture attached to the shaker. The response of each

accelerometer was recorded on a dB scale with 1.0 volt as the reference.

Figure 3.4a shows these two signals on the same plot. They match very well

over the frequency range of interest considering that they were mounted to

a thin plate at slightly different locations. Figure 3.4b is a comparison of

the same input accelerometer signal fed through the two measurement

channels. The signals compare so well that it is difficult to discern two

separate curves. This ensures that both channels of the power source and
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Figure 3.4a Response of Each Accelerometer When Mounted Side-By-Side

to a Fixture Attached to the Shaker. (Reference= 1.0 volt)
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Figure 3.4b Response of an Accelerometer Signal Passed Through

the Two Channels. (Reference= 1.0 volt)
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preamplif ier are well-matched.

3.2 Materials Tested

The twelve materials tested In this study are listed In Table 3.1 The

first seven consist of PZT (PbZrTiO 3) or TIO powder embedded in a polymer

matrix. These composites are classified as 0-3 composites. This indicates

that the PZT particles are completely encapsulated within the polymer

matrix. The 0 denotes no connectivity in any direction for the filler while

the 3 indicates that the polymer possesses connectivity in all three

directions. The primary reason for using PZT in the compounds instead of a

less expensive, dense powder, such as lead, is that PZT may provide

additional damping due to electromechanical losses. A comparison between

PZT polymer composites which have been polarized and the same unpolarized

composites should reveal the extent of the additional damping, if any,

caused by electromechanical dissipation.

One sample tested consisted of anatase (TiO2) in a polypropylene

matrix. Anatase has a similar morphology to PZT except that It cannot be

polarized. Loss factor differences between an anatase-polymer composite

and a PZT-polymer composite of the same polymer and volume percentage of

filler might Indicate that even an unpolarized piezoelectric material

contributes some amount of electromechanical damping.

The amount of PZT embedded in the polymers varied from 0 to 60% of

the volume fraction. Some duplicate samples, fabricated at different times,
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Table 3.1 - Materials Tested and their Manufacturers

Material Manufacturer

PbZrTiO. (PZT501 A) Ultrasonic Powders

TiOz (Anatase) Whittaker Clark Daniels

Polyethylene (Marlex 6001) Phillips Petroleum

Polypropylene Phillips Petroleum

Polychloroprene Polysciences

Spurrs epoxy Polysciences

Eccogel (Eccogel Zero) Emerson & Cumming

Polyurethane (EN-4) Conap

Neoprene (GN 35003) B. F. Goodrich

NEC Composite Nippon Electric Company

SOAB B. F. Goodrich

Aluminum (6061) Unknown
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were made to provide an indication of the variability between two batches

of the same composite.

The materials tested in this study were fabricated at the Materials

Research Laboratory, on the campus of The Pennsylvania State University, as

part of a related research project to characterize various properties of

ferroelectric/ferromagnetic polymer composites. Two separate procedures

were used to form the composites 126].

ThC polyethylene and polypropylene composites were made using the

following procedure. First the PZT powder was sieved using a No. 325 mesh

(particle size less than 45 microns). Next, the PZT and polymer were mixed

together using a Brabender mixer at 40 rpm for 20 minutes. After mixing,

the materials were hot pressed at pressures ranging from 5000 to 10000

psi. The temperature used during this operation was 160"C for the

polyethylene and 195"C for the polypropylene. The final step was to cool

the samples to room temperature while still under pressure.

A similar procedure was followed for the Eccogel and Spurrs epoxy

composites. The PZT powder was sieved using the same No. 325 mesh. The

PZT was mixed with the polymer using either the Brabender or, in the case

of the Eccogel composites, by adding the PZT to the liquid polymer. The next

stage was to pour the mixture Into a Teflon mold and sonicate It to remove

air bubbles. The mixture was then cured at 70'C for 8 hours.

Some of the materials tested cannot be considered purely viscoelastic

since PZT, an elastic material, is used as a filler. Thus, the dynamic
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modulus of the PZT composites should not be as strong a function of

frequency or temperature as that of the pure polymers.

The PZT was not polarized in any of the samples tested. Samples will

be poled at a later date due to difficulties In polarizing the present

composites. This difficulty was primarily due to the low conductivity of

the polymers. The addition of carbon black to the composites was being

considered at the time of this thesis.

3.3 Dynamic Modulus Computer Program

The computer program used to run the test apparatus and solve Eqs.

(2.2) and (2.3) for the loss factor and storage modulus was written in HPL

(Hewlett Packard Language). HPL Is a simple form of BASIC with short

commands and single letter variables. It is primarily a scientific language

which performs very well and has an extensive error recovery system, but

does not allow easy interpretation due to the lack of meaningful variable

names available in most computer languages. For example, instead of using

"LOSFAC" to represent the loss factor, the array "D" Is used. For this reason

it is felt that a more instructive description of the program can be achieved

by using the flowchart in Fig. 3.5. than by including a copy of the program

listing.

The entire program consists of four sections: parameter input, search

for resonances, solution of the equations, and data storage/retrieval. The

first stage of the program interactively loads the necessary material
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parameters. After these are loaded, the phase and amplitude values,

measured at frequency increments of 50 Hz, are saved in an array for use

later. The primary resonance is also located during this initial search and

array-loading operation. Knowing the approximate frequency of the first

mode saves a great deal of time during the "search" stage.

The search for the t 90" phase points is the next step. The method of

searching is iterative. Phase values are read until the t 90" point is passed.

The frequency step is decreased and the search begins at the last frequency

read before passing the resonance. In this manner the resonance frequencies

can be ascertained to within 0. 1 Hz.

Once the resonance is located, the phase, amplitude and frequency

values are used as input to the solution algorithm. Before beginning the

solution process the seed values t and 0 are determined using the procedure

discussed in Chapter 2. The next step is to use the Newton-Raphson solution

technique along with Eqs. (2.2) and (2.3) to solve for the loss factor and

storage modulus. If this is not the first mode then the results for

frequencies between this mode and the previous one are determined by using

the values for & and 0 at the two modes to interpolate the seed values for

the frequencies between these two resonances. The data stored in 50 Hz

Increments at the very beginning are used along with the Newton-Raphson

solution technique to find tj and E' at frequencies between the modes.

This same procedure is repeated for the remaining modes until the

frequency exceeds 20 kHz or one of the accelerometer outputs reaches the
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noise limit of the equipment. Since the driven end accelerometer signal

does not vary appreciably with different samples, the amplitude ratio

corresponding to the noise floor can be estimated. This value is usually

near -70 dB. The program also contains an option to extrapolate seed values

past the last mode and solve for E' and t1 for frequencies up to the 20 kHz

limit. The upper frequency limit of 20 kHz was chosen based upon the

assumption that the epoxy bond could not be considered truly rigid at higher

frequencies.

The results are then stored onto a floppy disk so that they may later be

retrieved, edited, or appended. Several different plotting routines are also

linked with the program. The amplitude and phase data from the test can be

plotted versus frequency to determine if there are any problems with

equipment malfunctions or if the sample is improperly mounted. These

plots can also be used to find the frequency at which the noise level of the

accelerometer signals is reached. The noise level is characterized by

random fluctuations in both the phase and amplitude plots. Typical plots of

the amplitude and phase can be seen In Figs. 3.6a and 3.6b. The material

tested is polyurethane. Most materials are characterized by only two or

three modes in this frequency range instead of the six shown here.

Several plotting routines exist for displaying the loss factor, the

storage modulus, or both. The particular plotting routine used contains an

option to fit a least squares polynomial curve through the data if desired.

The dynamic modulus testing procedure has been almost totally
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automated. The Input material parameters are entered Into the computer

and ten minutes later a plot of the loss factor and storage modulus can be

obtained.



CHAPTER 4

DISCUSSION OF RESULTS

4.1 Introduction

The results are presented in the form of plots of both the loss factor

and storage modulus versus frequency. The ordinate axes are individually

scaled to make maximum use of the plot area. The abscissa (frequency axis)

Is not scaled and thus some of the plots only contain data for the initial

portion of the frequency interval.

The samples were all approximately 7 to 8 cm in length and 1 cmz in

cross-sectional area. The corrections for the shape factors, as computed

using Eq. (1.3), were negligible. All tests were performed at room

temperature, 24'C. In order to combine results taken using different end

masses at different times, the temperatures had to be the same. The

ambient room temperature was chosen because it was fairly constant. In

addition, tests were attempted at temperatures ranging from -20"C to 45"C

but the available Tenney Temperature Chamber could not provide a stable

temperature for the duration of any test. The composites containing 25% or

more PZT by volume could not be considered true viscoelastic materials and

thus application of the time-temperature superposition principle would

have been inaccurate for these samples. Note again that in no case were the

PZT particles polarized, i.e. they function simply as rigid particles added to
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the polymer matrix material. The results are grouped according to the

polymer matrix of the composites.

4.2 Eccogel Composites

The composites composed of PZT and Eccogel presented some

difficulties during the testing procedure. Eccogel is extremely compliant; it

has a consistency close to gelatin. It molds very easily, but tends to

contort upon setting. Results for frequencies higher than 5 kHz were

difficult to obtain for the Eccogel composites because the acceleration

levels of the mass-loaded end approached the electrical noise limit of the

equipment.

In spite of these difficulties, the test results appear good. The first

plot, shown in Fig. 4. 1, details the loss factor and storage modulus results

of Eccogel without the addition of PZT. As might be expected, with a very

compliant material, the damping is high. The loss factor peak,

corresponding to the region of transition between the "rubbery" stage and

the "glassy" stage (see Fig. I. I) of the material, occurs at 1.8 kHz. The

storage modulus increases over the entire frequency range.

The addition of PZT to the Eccogel reduces the loss factor values and

Increases the storage modulus. The addition of a ceramic, such as PZT, will

always tend to increase the storage modulus of a less rigid polymer.

Figures 4.2a and 4.2b contain dynamic modulus results for identical Eccogel

samples containing 10o PZT by volume. The term "identical" is used here to
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Indicate that the composites contain the same proportion of polymer and

filler. However, slight variations in the fabrication process may cause

"identical" samples to possess different mechanical properties. While the

general trends of the loss factor curves are similar, Fig. 4.2b displays

slightly higher damping. The loss factor peaks at approximately the same

frequency as the pure Eccogel sample. The storage modulus curves for the

two materials agree well.

The addition of more PZT, 25% by volume, Increases the storage modulus

by a factor of 5 over Eccogel alone. The plots of the dynamic moduli of

identical samples are shown In Figs. 4.3a and 4.3b. The loss factor curves

differ from those previously shown. Initially the loss factors decrease but

then increase without reaching a peak. This same pattern is repeated for

many of the specimens containing other polymers.

4.3 Polyethylene Composites

The composites made using polyethylene as the matrix material

generaily have low damping properties compared to the Eccogel samples (an

order of magnitude lower). A plot of the loss factor and storage modulus of

undoped polyethylene, Fig. 4.4, shows a gap where no results are available.

These results were discarded because they were deemed to be unreliable.

When the phase angle of the transfer ratio is close to 0" the correct

solution of Eqs. (2.2) and (2.3) becomes very difficult to obtain. This was

discussed in detail in section 2.2. 1. The loss factor curve in Fig. 4.4 most
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likely peaks near 9 kHz and then decreases in value until it reaches the data

points at 12 kHz.

Figures 4.5a and 4.5b contain the results for identical specimens of 25%

PZT and polyethylene. Again, the addition of PZT Increases the storage

modulus. There is a fairly wide scatter In the results for the loss factor in

both plots. In the first plot a peak appears to occur near 8 kHz.

Unfortunately, the second plot contains no results at this frequency to

either confirm or deny the existence of a peak. The regions containing no

data points signify frequencies where the phase of the transfer ratio Is very

Llose to 0".

A discrepancy exists in the loss factor values for frequencies greater

than 15 kHz. In Fig. 4.5a, the loss factor Increases for higher frequencies

while in Fig. 4.5b it remains stable over the same region. This indicates

that either the material or some aspect of the test setup was different.

This phenomenon of increasing loss factor also occurs in the plots of other

tests with different materials.

Two possible mechanisms might account for the rapid Increase In

damping for the first polyethylene sample with 25% PZT (Fig. 4.5a). One

explanation could be that the epoxy holding the sample to the test fixture

became ineffective at the higher frequencies and caused an increase in

friction at the epoxy-specimen interface. This would explain why Fig. 4.5b

did not show the same loss factor pattern. Unfortunately, a second test
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using the sample from Fig. 4.5a was run and the test results match the first

results fairly well; notice that two separate storage modulus lines can be

seen on each plot. A second possibility is that the sample in Fig. 4.5a was

more porous than the sample, of the same composition, shown in Fig. 4.5b.

Variations in the mixing duration of the polymer and filler could account for

this difference. Damping, in the form of friction, is generated by the

expansion-compression cycle of the pores. The same effect occurs if the

material contains voids. This would explain the increased damping at high

frequencies for one sample as compared to the relatively stable damping of

a second sample.

Figure 4.6 contains the loss factor and storage modulus results for a

60% PZT and polyethylene composite. This was the most dense sample

tested (4.75 g/cm 3). The storage modulus curve is somewhat flat and

approximately twice the value of the 25% PZT composites. A sharp peak in

the loss factor occurs at approximately 15.6 kHz. It is possible that

increasing the density shifts the rubbery frequency range to a higher value

and causes a more narrow loss factor peak.

4.4 Polypropylene Composites

No samples with PZT were available using polypropylene as the matrix

material. The two plots shown in Figs. 4.7a and 4.7b contain the dynamic

modulus results for a pure polypropylene specimen and a polypropylene and

25% anatase specimen. The damping for the polypropylene is fairly high and
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there Is a readily discernable loss factor peak. Figure 4.7a shows that the

loss factor and storage modulus for three tests using three different end

masses agree fairly well with each other.

A 25% anatase and polypropylene composite was used for the tests

whose results are shown in Fig. 4.7b. The anatase must also act to stiffen

the composite because the loss factor decreases and the storage modulus

increases over the values for polypropylene alone. The loss factor initially

decreases and then shows a sharp increase at the higher frequencies. It is

possible that the loss factor peak occurs near 18 or 19 kHz. Another

possibility is that the transition frequency (between the "rubbery" and

"glassy' regions) occurs at a much lower frequency, say around 2 kHz.

However, this would not explain the sharp peak near 18 kHz.

4.5 Polychloroorene Composites

Two samples containing polychloroprene were tested. One consisted of

only polychloroprene and the other contained 25% PZT by volume. Comparing

Figs. 4.8a (no PZT) and 4.8b, It can be seen that the decrease in damping due

to the addition of PZT is compensated by the interaction between the

polychloroprene matrix and the PZT particles. The PZT particles must

resonate with the matrix material causing additional friction losses.

Notice that the storage modulus still increases with the addition of PZT

particles by nearly a factor of three. Fig. 4.6a shows a distinct peak in the

loss factor near 6 kHz. The loss factor curve in Fig 4.8b appears to follow
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the same pattern except that it is shifted higher in frequency by about 2

kHz. This lends credence to the idea that increasing the percentage of PZT,

or any dense filler, will shift the loss factor curve of the polymer

composite to a higher frequency.

4.6 Spurrs Epoxy Composites

Spurrs epoxy is another low-damping material. The loss factor, as

shown in Fig. 4.9, ranges between 0.03 and 0.045 for the two separate tests

conducted. The two sets of test results show a discrepancy In the loss

factor at frequencies between 9 and 12 kHz. This could be a result of

variations in the cure time of the epoxy used to bond the specimen to the

test fixtures or it might be related to the difference in the end mass used.

For low damping materials the effect of insufficent cure time will be

magnified. The cure time was kept fairly constant so this large a

discrepany Is probably a result of the larger end mass causing an increase in

the stress amplitude through the sample. This occurs with metals

subjected to cyclical stress when the fatigue limit Is approached [7]. It is

not known if the stress amplitude is great enough to cause plastic slip or

flow in the polymeric samples.

The same problem of loss factor discrepancies also occurs with the

results shown in Figs. 4.10a and 4. I Ob. Both composites used for these

tests are composed of 25% PZT and Spurrs epoxy. For the higher

frequencies, the storage moduli compare well, but the loss factors do not.
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Again, the higher-valued loss factor curve corresponds to the test using the

larger end mass. The upper loss factor curve in Fig. 4.1 Ob (two tests are

shown in this figure) contains a sharp peak near 12 kHz. It looks like the

upper loss factor curve shown in FIg. 4. 1 Oa might have a peak near 10 kHz.

However, neither of the two lower curves shows a peak.

For granular materials the loss factor increases markedly with

increasing stress amplitude, especially if the acceleration approaches the

acceleration of gravity [6]. Unfortunately, the definition of "granular" is

somewhat vague. If the PZT-polymer composites could be considered

granular, then tests run with larger end masses should show higher damping

levels. This indeed was the case with the results shown in Figs. 4. Oa and

4.1Ob.

4.7 Test Results for Additional Materials

The four additional polymeric materials tested provided good results.

The test conducted using aluminum yielded only a few valid points. The

measured storage modulus compares well with values typically quoted for

the Young's Modulus of aluminum (7.0 x IO0 N/mz). The measured loss factor

for the first mode was 0.002 which is much lhrger than the damping of most

aluminum alloys (tajum= 0.0001) [6]. This indicates that the inherent

damping of the test system dominates the results for very low values of

damping. The system losses consist of epoxy losses, brass fixture losses,

and the losses caused by the effect of the accelerometer cables. These
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sources of additional damping effectively limit the present test setup to

materials with a loss factor no smaller than 0.002.

Figure 4.11 a is a plot of the storage modulus and loss factor for SOAB.

SOAB is an acronym for a 50und ABsorbing material marketed by B. F.

Goodrich Co.. It consists of aluminum particles embedded in butyl. SOAB

had the largest loss factor of any material tested; it had a peak loss factor

near 1.3. The i and E' curves for SOAB are reasonably smooth and

continuous.

A sample of the Nippon Electric Company (NEC) composite discussed in

Chapter I was tested. The loss factor and storage modulus plots are shown

in Fig. 4.11 b. Approximate values for the loss factor and storage modulus of

this type of composite [27] are tl=0.35 and E'= 1.8 x 109 N/m2. The present

test results give slightly higher damping values and slightly lower storage

modulus values.

The plot of the dynamic properties for the neoprene specimen resembles

the plots of the Eccogel composites. The loss factor, shown in Fig. 4.12a,

peaks near 3 kHz with a value of 0.78. This result is quite believable. The

storage modulus is low (1.0 x I0? N/mz) like that of the Eccogel composites.

The final plot, Fig. 4.12b, shows the dynamic properties of a

polyurethane sample. The loss factor curve generally increases with

increasing frequency. The regions where the loss factor tends to decrease

correspond to frequencies near the 0 phase poi ts of the transfer ratio,

where valid data could not be obtained. Both the loss factor and storage
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4.8 Comparison of the Test Results

The loss factor and storage modulus test results for the various test

materials are compared to each other and to some storage modulus values

obtained using an ultrasonic pulse-echo technique at about 3.0 MHz [26] in

Table 4.1. The materials are listed in order of decreasing loss factor. The

high-damping materials (0_ 0. 0) are compared at 2 kHz and the

lower-damping materials are compared at 5 kHz. The ultrasonic frequency

storage modulus values should be a little larger than the storage modulus

values obtained in the acoustic range because the storage modulus slopes

slightly upward in the "glassy" region. This is indeed the case for materials

tested using both methods.

Additional comparisons with published results are shown In Table 4.2.

It is virtually impossible to compare results of identical materials since

one blend of a polymer will inevitably differ in composition from another.

Variations in aging, temperature, or frequency can also change material

properties considerably. The purpose of the comparisons is simply to

provide another check against gross errors in the results.
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Table 4.1 Comparison of Loss Factor and Storage Modulus

Results at Common Frequencies.

Material Frequency Loss Factor Storage Modulus
Acoustic Ultrasonic* Pulse/Echo

kHz N/m2  N/m2

Eccxgel 2.0 0.87 3.78 x 106

SAB 2.0 0.86 5.89x 107

Eccogel/1O% PZT 2.0 0.80 7.27 x 106

Eccoel/25Z PZT 2.0 0.67 3.27 x 107

Neoprene 2.0 0.51 1.03 x 107

NEC Composite 2.0 0.25 9.39 x 108
Polychloroprene 2.0 0.22 3.19 x 1 07

Polychloroprene/25Z PZT 2.0 0.19 1.22 x 108
Polyurethane 2.0 0. 11 1.42 x 108
Polypropylene 5.0 0.080 3.96 x 109

Polypropylene/25Z TiO2  5.0 0.063 7.80 x 109

Polyethylene 5.0 0.035 3.07 x 10) 5.63 x 109

Spurrs Epoxy 5.0 0.029 3.05 x 109 5.46 x 109

Spurrs Epoxy/25% PZT 5.0 0.028 6.99 x 109
Polyethylene/25XPZT 5.0 0.015 6.94 x 109 8.25 x 10g

Polyethylene/60ZPZT 5.0 0.011 1.75x 1010 2.28x 1010

* - at 3 MHz
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Table 4.2 Comparison of Loss Factor and Storage Modulus Values

with Those of Other Studies.

Material Frequency This Study Other Study Reference

?I E' 11E'

(kHz) (N/m2) (N/mz)

NEC Composite - 0.41 1.0 x 10' 0.35 1.8 x 10' [1]

Polyurethane 2.0 0.11 1.4 x 101 0.15 1.2 x 10 [41

Polypropylene - 0.08 4.0 x 10' 0.11 2.6 x 10' [29]

Aluminum 0.002 7.0 x 10'0 0.0001 7.0 x 10 [61



CHAPTER 5

CONCLUSIONS AND SUMMARY

5.1 Conclusions

The loss factor and storage modulus results quoted here compare

closely with those of other researchers for similar materials. The results

for high-damping materials are more characteristic of viscoelastic

materials than are the results for low-damping materials. This is probably

a consequence of the PZT material being an elastic material since most of

the unusual results occur with the addition of PZT. A good example is the

difference between Eccogel with 25% PZT, Eccogel with 10% PZT, and pure

Eccogel. While pure Eccogel and Eccogel with 10% PZT have a discernable

loss factor peak, this peak disappears when the percentage of PZT is

increased to 25%.

In every case except one, adding PZT to a polymer had the effect of

decreasing the loss factor. Only with polychloroprene did the damping not

decrease appreciably with the addition of PZT. This probably is a result of

the PZT mass particles resonating with the compliance of the polymer.

Although Eccogel is also a very high-damping polymer, it is not as dense as

polychloroprene and thus it may not provide enough frictional resistance to

the vibrating PZT particles. This effect is most likely responsible for the

high damping in the NEC cemposite where ferrite particles resonate with
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the polyester resin matrix.

The test of an aluminum sample effectively set the lower limit for

damping measurements. Any material with a loss factor less than 0.002 can

not be tested accurately by the measuring system used here because the

inherent system losses will obscure the material damping. Since the

primary application of the Transfer Function Method is to test viscoelastic

or rubbery specimens this lower limit should not pose a problem. If verby

low damping materials are to be tested, either the sytem losses must be

decreased or another dynamic modulus test procedure must be used.

One disadvantage of the Transfer Function Method is that results can

not be obtained for frequencies lower the first bar resonance. For some of

the low damping composites this first resonance was as high as 3 kHz. If

loss factor values could be obtained for the very low frequencies then many

of the transition peaks could be discerned. The Spurrs epoxy samples appear

to have transition frequencies lower than the first resonance. The

supporting evidence for this is the decreasing loss factor values at low

frequencies shown In Figs. 4.9. 4. 1 Qa, and 4. 1 Ob. The loss factor peak for

these samples probably occurs before the first resonance.

Most of the composites containing 25% or more PZT are characterized

by relatively flat storage modulus curves. Typical loss factor and storage

modulus values for this type of PZT are r1= 0.002, and E'= 8 x 100 N/m [28].

The PZT may act to stiffen the composite so that the elastic modulus

resembles that of a ceramic more than that of a viscoelastic material.



75

Some of the polymers also show very gradually Increasing storage moduli

(e.g., Fig. 4.9). The probable cause for this behavior is that the polymer has

already entered the "glassy" region. The loss factor peak probably occurred

at a frequency below the primary resonance.

5.2 Summary

For applications at room temperature and in the audible frequency

range, the Transfer Function Method appears to be a reasonable method for

measuring the storage modulus and loss factor of a viscoelastic material.

The primary difficulty in using it is that the solutions to Eqs. (2.2) and (2.3)

become suspect after the first few modes if the starting Iteration seed is

not close to the correct solution. Equations (2.2) and (2.3) may look

imposing but with the aid of the three-dimensional plots the behavior can be

readily understood. From this point it was a simple matter to develop an

algorithm guaranteeing convergence to the correct solution. The algorithm

developed during this study to seed the equations to the correct values is

simple, yet.works well.

The other Improvement made to the Transfer Function Method was to

account for the effect of lateral vibrations in the bar. This correction can

easily change both the loss factor and storage modulus by 10% or more at

the higher frequencies. It should not be neglected as commonly practiced

when using the Transfer Function Method.

Although the loss factor and storage modulus plots may still be subject
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to some experimental error, they are useful from the standpoint that a

comparison of the damping between different polymer composites can be

made with confidence. The test results also seem to indicate that the

method is capable of providing reproducible results. These two

requirements were considered the most important to meet when the

decision to develop a test procedure for measuring the damping properties

of the PZT-polymer composites was made.

The primary attributes of the Transfer Function Method, with the

Improvements made during this study, are that It Is very fast, easy to

perform, can be implemented at modest cost, is capable of testing

viscoelastic materials in a wide range of aizes, and requires almost no

operator judgment.

5.3 Recommendations for Further Study

The test setup in its present form is useful but with the proper

modifications it could become much more versatile and accurate. The first

Improvement that could be undertaken would be to decrease the inherent

system damping. This could be accomplished by using noncontact

transducers for determining the acceleration ratio of the mass-loaded and

driven ends. If the system losses could be reduced to the losses associated

with air friction then this test arrangement could be used to test very low

damping materials such as metals.
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Another Improvement would be to solve Eqs. (2.2) and (2.3) for the loss

factor and storage modulus at frequencies below the primary resonance.

The same extrapolation procedure used to approximate seed values beyond

the last mode could also be used to seed the Newton-Raphson Iteration

procedure for frequencies smaller than the first mode resonance frequency

provided the amplitude and phase data were accurate. This would provide

valuable low frequency data. The behavior of the dynamic modulus at low

frequencies seems to be important because it appears that for many

composites the transition frequency is below 2 kHz.

One final improvement to the method would be to extend the testing

procedure to include torsional vibrations. The equations of motion are the

same as for the longitudinal vibrations except that the material and

displacement parameters change. If both the complex elastic and shear

moduli could be determined, the complex Poisson's ratio could also be found

by using relationships among the various elastic constants. This would

probably nectssitate that physical changes be made to the testing

apparatus. However, the software changes would probably be minimal.



APPENDIX A

Derivation of equations used to solve for loss factor
and storage modulus.

I
A= cross-sectional area of the bar.f M= the end mass.

W m E*= complex elastic modulus.
k= complex propagation constant.

x=O x=L F= force on the cross-section.

Assume a solution of the one dimensional, reduced, wave
equation of the form:

u(x)= C, coskx + C2 sinkx u(x)= longitudinal displacement

of the bar.
u(O)= Uo UO= displacement at x=O and t=O.

The axial force in the bar at any position x is given by:

F= -AE* au/ax (A.l)

The boundary conditions are:

@ x=O u(O,t)= C1= UO (A.2)

@ x=L F= M aIu/at 2 = -MW2u(L) (A.3)

Therefore:

AE*u/x = -M 2 u(L) (A.4)

Applying the solution for u(x) yields:

AE*k[-Uo sinkL + C2 coskL]= I1LA)[ Uo coskL + C2 sinkL] (A.5)

or

C2[M. 2 sinkL - AE*k coskLl = -[AE*kU o sinkL + Mcw2Uo coskL] (A. 6)



thus, 79

Uo[ AE*k sinkL + Mw2 coskL]
2= AE*k coskL - Mw2 sinkL

Uo[ tankL + * Mawhere 1'= (A.8)
[ I - "rtankL] AE*k

The ratio of displacement of driven end to that of the mass
loaded end is therefore:

u(O) Uo - U n (A.9)
u(L) u(L) U0 coskL + Uo! tankL sinkL

[I - I'tankLI

I- ^'tankL (A 10)

[( coskL - -tsinkL) * ( tankL sinkL + IrsinkL)]

= coskL- -fsinkL (A.1 1)

The complex wave propagation constant can be written

k= (pwl/E*)l/2 (A. 12)

i6/2

kL= wL( p/E'ei Y-/2 _L e (A. 13)
(EVp )1/2

uL [cos (S)-i sin (-§) ] (A. 14)

(EYp) 1/ 2  2

-L - [I- i tan(i)] (A.15)
(E'/ p) 2sec( )

but,

c= the phase velocity = (E/p)1/'2sec(-f) (A 16)

= L/c (A. 17)

Thus,

kL= - tan(-)] (I-io) (A. 18)
2

where (? tan(.§) (A. 19)
2
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2 - = L = RkL (A.20)

AE*k A(pw2 /k )k ApL

= RCII-iQ] where R is the mass ratio (A.21)

= M/pAL

Plugging in I and k Into (A. 11) yields:

coskL - -sinkL = cos&(1-iQ) -RZ(l-iQ) sin&(l-iM) (A.22)

Expansions for the complex sine and cosine are:

cos(x-ly) = cosx coshy + Isinx sinhy (A.23)

sin(x-iy) = sinx coshy - icosx sinhy (A. 24)

Using the above identities and Eq. (A.I 1)

u(L) u = coskL - I sinkLu(L) u(L)

= cos~coshQ + isin~sinh g - RC(I- iQ) [ sin~cosh Q -

icos~sinh Q] (A.25)

This can be expressed in terms of a real part,TR,and an
imaginary part, T1, as:

TR = cosh Q [cos - R~sin] . R Q cost sinh O (A.26)

and

T1 = sinhO [sin& + R~cos] + RCO sinC coshCO (A.27)
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