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Overview over Discrete Time Domain Methods in
Electromagnetic Field Computation

Peter Russer I

Abstract

The modelling of fields in the time domain describes the evolution o physical
quantities in a natural way. Transient phenomena, nonlinear and dispersive beha-
viour, the characteristics of systems with moving boundaries or with time dependent
properties are best described in the time domain. In this contribution different ap.
proaches for time domain modelling of electromagnetic fields are compared.

1 Introduction

For electromagnetic field modelling numerous techniques have been developed [1,2,3). The
modelling of fields and networks in the time domain is highly attractive since it describes

the evolution of physical quantities in a natural way. Time domain modelling is especially
advantageous in the case of transient electromagnetic fields, fields in nonlinear, dispersive
or time-dependend media or in regions with moving boundaries. One of the main advan-

tages of time-domain modelling of electromagnetic fields is the local dependence of the

field variables on space as well as on time. Within discretized space and time the state

of the field in a given point and at a given time depends only on the field states of the
neighbouring points at previous times This allows a highly parallel computation of the

time evolution of the discretized field.

In modelling of high frequency circuits we have to deal with the network as Aell with the

field concept (Table 1). Whereas the field has a spatial structure the network structure
is topological. However if the field is described by a discrete set of base functions as it is

done for example in the method of moments [4,5] or if the field is discretized with respect
to space we obtain topological relations between the state variables of the field This

allows to apply ne ssoik-tieor-tical methods to field problems.

'Lehrstuhl ffir llochfrequenztechink, Technische Universitgt Manchen, Arcisstrasse 21,

D-8000 Munich 2, Fed. Rep Germany
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Table 1: Concepts of Field Theory and Network Theory

NETWORK FIELD

Topological structure Spatial structure
Time, Amplitude Time, Amplitude, Space

Continuous

Analog Network * Electromagnetic Field

~Discrete

•a Digital network * Cellular Automata I

* Discrete modelling * Discrete Modelling
of analog networks of fields

In the following we shall focus our attention on four approaches for time domain modelling
of electromagnetic fields.

* The finite-difference time-domain (FDTD) method

* The transmission line matrix (TLM) method

* The field modelling by cellular automata

* The field modelling by multi.dimensional wave digital filters (MDWDF)

2 The Finite-Difference Time-Domain Method

The finite-difference time domain (FDTD) method is the mathematical approach for the

solution of partial differential equations (6). The partial derivatives are simply replaced
by finite differences. In 1966 Yee has first given a finite-difference time-domain scheme

for solution of the Maxwell equations 17,8,9]. In the FDTD method space and time are

discretized with increments At and At, respectively. The field component placement in
the FDTD unit ce;l is shown in Fig. 1. The side length of a unit cell in our notation is
2AI

Space and time coordinates are given by x = I At, y = mAl, z = n At and t = k At. The

FDTD scheme for the solution of the Maxwell's equations is then given by
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(tm... 1) = E(I,m,n 1) + 1 -+

+H,'+'(l,m- l,n+l)-H,'+'(I,m+l,n+l)] (6)

with the stability factor

/-t "(7),

where c is the velocity of light, At is the time interval, Al is the length interval. The

condition for stability is given by

1(

The FDTD scheme gives the new field state at the time . Wt as a function of the field

states at (k - 1) At and (k - 2) At. Also the new spatial components at 1, m and n are

related to the spatial components at I 1, 1 ± 2, is ± 1, m ± 2, n ± land n ± 2. However
all electrical field components with even values of k, are only related to the magnetic field
components with odd values of k and vice versa.

Investigating planar circuits within the magnetic wall model a two-dimensional finite
difference scheme may be applied 1101. For the circuit plana. parallel to the z - y-plane

the electric field exhibits only the z-component and the magnetic field exhibits only the
z- and y- components The surface current J flowing in the upper plane of the planar
circuit is given by

J = -e, x H (9)

where e, is the unit vector in z direction. The voltage V between the plates is given by

V = -dE, (10)

where d is the distance between the plates.

V V(x,y,t)= -jL, OJ(X-,Yt) (1)
at

V J(X,Y,t) = -JC. OV(XYt) (12)at
C, is the capacitance and L, is the inductance of an arbitrary square element of the

two-dimensional parallel plate line.

Jk+i' is ,) = S " ((m,n) +

+ -1VI(.+ l,n)-vb(,n+,n) (13)
J +'(m,n) = -((n)

+At- [V'(m,n + 1)- V(m,n + 1)] (14)+',h
v



V
k+ 

(m
,n
) = Vk' ((m,n)-

-ah [J * (- + 1, n) - J. (- - 1, n) +

~+j,*(m, + 1- jk(m,,n- 1)j (15)

Nonrectangular grids have been treated for the FD method [111. The analysis of radiating
structures requires the termination of the grid with absorbing boundaries [11,12,13).

3 The TLM (Transmission Line Matrix) Method

The transmission line matrix (TLM) method was developed and first published in 1971
by Johns and Beurle [14,15,16,171. In the TLM method the physical analogy and the
isomorphism in the mathematical description between the electromagnetic field and a
mesh of transmission lines is used. The field evolution is modelled by voltage pulses
propagating on the mesh lines and being scattered in the mesh nodes. Field theoretically

the TLM method is based on the Huygens principle [18,19)

In the TLM model space and time are discretized in length intervals At and time intervals
At. The intervals 61 and At correspond to the real space and time intervals without
scaling if At = v2ceoAf//c- is chosen, where c, is the relative permittivity. Fig. (2)
shows the port numbering of a two-dimensional TLM shunt node.

-4

-2

n

3 m

Figure 2: A two-dimensional TLM shunt node.

The scattering of impulses at a shunt nodeis described by the following equation:

v v2 (16)

[V4 1[V
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Zo is the characteristic mesh line impedance, given by

Zo = q (17)

where no = 377fl, h is the height of the planar structure, and C, its permittivity.

The node scattering matrix for a shunt node is

Loony subregions can be msdelled in TLM by connecting a lumped resistor or an infinitely
Slong transmission line stub across each mesh node (20]. Also the modelling of nonlinear

passive elements has already been treated [21,22,23]. Nonlinear active regions may be
,modelled by connecting nonlinear active circuit elements to the r'.esh nodes (24,26]

The voltage wave pulbes V',, incident on a TLM mesh node depend on the voltage
wave pulses .1 V,, emerging from the neighboring nodes as follows:

Eqs (16)-(18) and (19) describe the complete algorithm for the time discrete field evolis.

tion,

Fo the iwo-dimensional case Johns has shown the relation between the FDTD method
and the TLM method (28]

E. =pq + r (20)

with

qT - 11111) (21)
p = (1 122)

r = -1 (23)

.,.= qC (,E. + ,v') (24)
+E = g~p .E, qCrCp s..1E, + qCrCp ..1V' (25)

With
CrCr = al (26)

tF

2 2 2 2
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Figure 3: Three-dimensional symmetric condensed TLM node.

where a is a constant we obtain

=+,E. = qCp sEqCrCp k.iE~a*.IE 4  (27)

\ , now have an algorithm relating k+,E, to hE, and tok.tE,. We have reduced the
, ariables but increase the time depths of the algorithm

Different TLM schemes have been proposed for the three.dimensional case [16]. A sym.
metrical three-dimensional condensed node has been introduced by Johns [26,27). Fig. 3
shows the symmetric condensed TLM node In the three-dimensional case we haw to
introduce twelve wave amplitudes The voltage wave vector is given by

V, =(v;v;vvv;vv;ov;i v v., 
1' (28)V, - IVIV2,VV4V$,V6,VV$,VgVoVIIVI,21 T  (28)

the incident wave pulses kV' at f = kAt and the scttered wave pulses k+IV' at =

(k + I)At are related by

a+IV' SaV' (29)
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the scattering matrix S given by [ 0 T T]
S= TT 0 T (30)

T TT 0

with
00 2

0 0 1 1 Iij1 0 - (31)
10 0

2 2
We introduce the field vector F given by

F =._ [E' ,I (32)I

The wave amplitude vector kVl,,,, is related to the field vector kFl,,,, by

F = QV' (33)

= jQTF (34)
2

with
0 00 0 10 01 1 1 10 0
1 1 0 0 0 0 0 0 0 0 1 1

Q 0 0 1 1 1 10 0 00 0 0 (35)
0 0 0 0 -1 1 0 0 0 0 1 -1

0 0 1 -1 0 0 0 0 -1 1 0 0

-1 1 0 0 0 0 1 -1 0 0 0 0

Structures to be analyzed in TLM may be segmented into substructures. This method
first proposed by Kron is called diakoptics 129,30,311. Within diakoptics the scattering
of waves by boundaries is expressed via discrete Green's functions or so-called Johns
matrices 1171. Discrete Green's functions may also be computed algebraically 132) The

TLM method in connedtion with absorbing boundary conditions has already been applied
to the analysis of a slot antenna 133]

4 Cellular Automata

John von Neumann's most extensive %%ork in the theory of automa~a was the investigation

of cellular automata [34]. The results of this work are contained ini the manuscript "The

L~-'w'



Theory of Automata- Construction, Reproduction, Homogeneity" [35]. John von Neu-

mann's cellular automata are homogeneous two-dimensional arrays of square cells, each
containing the same twentynine-state finite automaton. Any cell can assume at a given
time the unexcitable state, one of twenty quiescent states or one of eight sensitized states.

The unexcitable state represents the presence of no neuron. Quiescent cells can respond
to stimuli from adjacent cells. The state of a cell at a given time is determined by a set
of transition rides. The state after the transition is determined by the initial states of
the cell and of its four inondiagonal ueighbours. John von Neumann has shown that the
twentymne states are sufficient to accomodate all logical and construction circumstances

that may arise and also to establish all transition rules for moving from one state to the

other. He demonstrated the logical universality of the cellular automata by showing how
T ring's machine model can be reformulated in terms of cellular automata.

John von Neumann also has planned the continuous model as a further refinement. In 1969
Konrad Zuse discussed the modelling of the Maxwell's equations by cellular automata [36],

Cellular automata now meet with growing interest for modelling of physical systems (38].

The discrete system may be described in state variable form [37]. An autonomous system

is described by
z(r,t + 1) = A(rr)z(r',t) (36)

In vector notation this is given by

Z(t + 1) = Az(t) (37)

where z(t) is the state vector and A is called the transition matrix. The discrete time

variable is t, and r is the dscrete space variable.

As an example we consider the telegraphist's equation [37[.

Oi = R +n

-CL" = Gv+ ,± (38)

The corressponding difference equation is given by

-LAot = Ri + Av

-CAiv = Gv4+ Ai (39)

At and A, are given by

Aii(zt) = :(z',t +I) -:(z(,t)
A~s(x,*) = i(z + 1,1) - s(x,t) (40) i



The state vector z and the transition matrix A in eq. (37) are given by

[ (X, t) (41)

and
A = Ao + AIA, 

(42)

with

Using the Z transformation with respect to x the variable {, given by

Z fz(x)) = E z(,)C -  (45)
.. 0

and with
Z {Az)} = (X-i - 1) Z (z(x)) (46)

we obtain

z( ,t + 1) -Az((,t) (47)

with

,A - (48)

This result may be transformed into a digital circuit Fig. 4. shows the corresponding

digital model of the lossy transmission line.

5 Field Modelling by Multi-Dimensional Wave Digital Filters

The numerical integration of partial differential equations using principles of multidi-

mensional wave digital filters (MDWDFs) has been proposed by Fettweis 143,441. The
continuous-domain physical system is simulated by means of a discrete passive dynami-
cal system. In this method in a first step the partial differential equation is modelled

by a multidimensional analog circuit. This circuit is then transformed into a MDWDF
equivalent circuit (45]. The advantage of this method is the robustness of the algorithm

even under conditions of of rounding and truncation operations.

L
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!U(X- l,t) U(X,t) U(z+ 1,t)

Figure 4: Digital model of the lossy transmission line.

Let us consider as an example again the two--dimensional electromagnetic field problem
associated with a transverse electric field between two metal plates. We investigate the
equations

+Ri +- = ut(t) (49)
L4982 + t V

LT + = u2(t) (50)
61 012

oil + O + O + G = U3(t) (51)

The variable 13 corresponds to time, whereas tl and f2 represent the spatial coordinates.
The current density components in the upper metal plate in the directions tj and t2,
respectively, are given by i and i2, and v is the voltage between the metal plates. The
inhomogeneous terms ul, U2 and U3 represent distributed impressed sources.

In the three-dimensional complex frequency domain we obtain the algebraic equations

(pL+R)Il+pIR313 = U, (52)

(psL+R)I2+p2Rals = U2  (53)

piRali+p2Rl3 2+(pC+G)Rfl1l = U3  (54)

where pl, pj and p3 are the complex frequencies The corresponding analog circuit repre-
senting the partial differential equations is depicted in Fig. 5 Note that the this equivalent
circuit represents the complete field.
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-P1 3 -pjr3 p3i + r

i Es" yPr &E

p3-c' + gr' -N2'3 R-Par3 psl+t r

11

Figure 5' Multidimensional analog circuit

Introducing the d;fferential operators

D,=! for v=1...3 (55)

yields

(D3L + R)I1 + DIR313 = U, (56)

(D3L + R)12 + D2R3) 3  = U2  (57)

D1 R311 + D2R3 12 + (D3C + G)R213 = U3  (56)

Using the trapezoidal rule for integration yields the replacement of the differential equa-
tions by the following difference equations:

v(t) - v(t - T ) = R(t)i(t) - R(t - T )i(t - T ) (59)

i(t) - t(t - T) = G(t)v(t) - G(t - T )v(t - T,) (60)

where t is given by
t = {ji02, 3 (61)

the vectors T. are given by

T 1=[T,,O,OT, T2 = [O,T2,O), Ta = [0,0,T3)T, (62)

Ts is an arbitrary positive time increment and T, and T2 are related to T3 via

T, = T, = r/2T3/V/'- (63)

and R(t) and G(t) are given by

R(t) = 2L(t)IT, G(t) = 2C(t)/T (64)

- -- tA
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using the wave digital filter design rules the circuit according to Fig. 5 is converted into

the wave digital filter circuit shown in Fig. 6. The methods of MDWDFs ensure that
the algorithm is recursible and that the full range of robustness properties of WDFs is
conserved

- ~ ~~bs ! -- (

D rR4
- 1 , - -1/2 -

D,,2' '2 0,T, 3 R

Figure 6: Wave digital filter

6 Conclusion

We have compared four different methods of discrete time domain analysis of electroma-
gnetic fields. The methods originate from different theoretical frameworks. Whereas the

FDTD method is based on mathematical considerations, TLNI originates from a line mo.

del. The method of cellular automata is based on the theory of automata and systems and
the method of MDWDFs uses the analogy to multidimensional circuits and wave digital
filters. There are interesting analogies between these methods. Each of these methods
contributes special advantages and interesting contributions to the solution of problems

also relevant in the other models

I.
L 4
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RADIATION AND SCATIERING OF TRANSIENT ELECTROMAGNETIC FIELDS

by

Leopold B. Felseni Dept of Electrical Engineering/Weber Re!.arch Institute

Polytechnic University
Farmlngdale, NY 11735, USA

"Ultrawideband" (UWB) and "Very Short Pulse' (SP) provide alternative designations
for the same class of transient electromagnetic wave phenomena. However, UWB relates
these phenomena to the frequency domain whereas SP relates the same phenomena to the
time domain (TI). By generating SP.TD data through UWB frequency synthesis, the
evolution of the TD signal with increasing bandwidth can be tracked systematically to its
highly localized UWB form. Localized pulse-like featurt: (observables) In data suggest that
modeling and iaterpretation in terms of a TD "observable-based r!arametrizaton" (OBP) is
physically more appropriate. Implementing a TD.OBP requires new thinking and concepts
directly in the time domain. A systematic OBP strategy for learning to "think TD" via
identification of TI wave objects is proposed and illustrated by examples Involving SP
excitation of layered media, strip gratings and aperture-coupled cavities. Of special interest
is the TD evolution of the strongly dispersive leaky modes, Floquet modes and cavity modes,
and their role in synthesizing the SP response.
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Finite-Differenoe Time Domain Modelillin

of Electromagnetio Fielcd.

Inao Wolff. Duliburo Unvereitv

For the design of planar microwave integrated circuits up to 1985 mainly analysis
techniques in the frequency domain have been used With the requirements for
new and flexible tools in the design of planar circuits eg with closely coupled

S pi mpntq and three-dimensional dlscontiuitloc lihko airbridgoo, alternative tachniquet

must be studied. One of these techniqres is the finite-difference time domain

analysis (FOrD) which In principle is known since 30 years. Yee already in 1966
proposed this technique for the analysis of electromagnetic boundary value problems[I)

ItDuring a long time the FDTD technique only was used to quantitatively demonstrate

tlectromaognnfic, finld snhilinn in fhp time domain Only the Introduotion of oooorbing
walls made this technique to a powerful tool for the solution of real problems.

The FDT is a numerical method for the solution of electromagnetic field problems
which has a large numerical, but a low analytical expense. Despite the large

numerical expense i is believed to be on,) of the most efficient techniques, because
basically it stores only the field distribution at one moment in memory instead of

working with a large equation system matrix, The field solution for each other

time then is determined from Maxwell's equations and is calculated using a time
stepping procedure based on the finite-difference method in time domain. Available

algorithm, called the leapfrog algorithm fits very well on modern computer archi-

tectures, so that the data required to describe a three-dimensional field distribution
can be handled in a reasonable time. Therefore It can efficiently be implemented
on vector or parallel computers as well Sufficiently accurate results can be received

by using a single precision floating point expression requiring only four bytes. It is
a further advantage that the transient analysis delivers a broad band frequency

response in one single computation run.

In this talk it shall be demonstrated that the FDT technique can be applied to

real microwave circuit design problems It will be shown that this technique enables
to model arltrarfly shaQped planar structures with multiple coupled discontinuities
and planar lines and three-dimensional circuit structures Several applications to

realistic problems of modern monolithic Integrated microwave circuit design problems

will be demonstrated In the future the application of FDTD method surely Is a

powerful analysis technique for nonlinear microwave integrated circuit design by

combining physical semiconductor models which work in the time domain with the

FDT description of the passive crcuit elements.

(I] KS Ye, 'Numerical solution of initial boundary value problems involving

Mexwell's equations in isotropic meda', JEEE Trans Antennas Propagoat, Vol

14, 1966. pp. 302-307
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TLM Modelling of Electromagnetic Fields

Wolfgang J. R. Hoefer

Address: Laboratory for Electromagnetics and Microwaves,
Dept of Electrical Engineering, Univ. of Ottawa,
Ottawa, Ontario, Canada, KIN 6N5.

ABSTRACT

In this workshop paper the principal features of TLM analysis of electromagnetic
fields will be summarized, and research trends in this area will be discussed. Time domain
modeling in general, and TLM modeling in particular, is focusing on the realization of
a new generation of time domain simulation tools which link geometry, layout, physical
and processing parameters of a microwave or high speed digital circuit with its system
specifications and the desired time and frequency performance, including electromagnetic
susceptibility and emissions. Such CAD systems will most likely employ dedicated parallel
processors configured in a 3D array. Ftirthermore, the specific nature of discrete time
domain algorithms affords optimization and synthesis procedures which differ radically
from those employed in traditional frequency domain CAD tools.

1 PROPERTIES OF TIME DOMAIN FIELD MODELS

1.1 Time-Stepping Algorithms

Most time domain field models describe only the local properties of the propagation
space. The most current forms are based either on a discretization of Maxwell's Equations
(Finite Difference - Time Domain or FD-TD formulation) or on the description of space by
a discrete spatial network (Transmission Line Matrix or TLM formulation). Fig. 1 shows
the basic 2D TLM impulse scattering process which can be considered as a computer
implementation of Huygens' principle. Finite Element formulations in the time domain
are also possible but have not been used extensively so far.

FD-TD and TLM methods employ similar but different formulations. While FD-TD
is expressed in terms of total electric and magnetic field components, TLM uses incident
and reflected wave quantities in a spatial network. As a general rule, both formulations
are equivalent; for each TLM scheme there exists an equivalent FD-TD formulation. Fig.
2 shows two such pairs. Figs. 2a and b show Johns' distributed TLM node 11] and Yee's
unit FD-TD cell. [2]. Figs. 2c and d compare Johns' condensed TLM node [3) and
the equivalent FD-TD scheme derived by Chen et al. [4). Fig. 3 shows the dispersion

i1
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characteristics of the discretization schemes in Fig. 2 as derived by Nielsen and Hoefer [5].
For low frequencies the dispersion surfaces form a unit sphere in all cases. However, at
higher frequencies the dispersion characteristics of the condensed TLM node and Chen's
FD-TD scheme (Fig. 3b) are far superior to the other two (Fig. 3a).

Clearly, the equivalent TLM and FD-TD schemes possess identical dispersion and er-
ror characteristics They can also be derived formally one from the other. Furthermore,
optimized codes for equivalent schemes require a similar computer memory and execution
time. Nevertheless, they have their respective advantages and disadvantages when im-
plementing boundaries, dispersive constitutive parameters, and nonlinear devices. In the
final analysis, the choice between TLM or FD-TD is based mere on personal preferences
and familiarity with one or the other method rather than on objective criteria. In the
following, the salient features of time domain simulators will thus be described in terms of
TLM formalism with the understanding that there exists, or could be found, an equivalent
FD-TD formulation unless indicated otherwise.

1.2 Requirements for Time Domain Field A nalysis

The principal advantages of modeling electromagnetic fields in the time domain are
well known. However, in order to exploit them in a practical application, dispersive and
nonlinear properties, moving boundaries, and sophisticated signal processing procedures
must be implemented, which include forward and inverse Fourier transform, convolution,
and absorbing boundaries. Another important requirement for practical applicabihty is a
graphic user interface for 3D geometry editing, parameter extraction and display, as well
as dynamic visualization of fields, charges and currents.

The feasibility of these features has been demonstrated :ctli in TLM and FD-TD en-
vironments [6]-[S]. However, the computational requirements for wrodeling complex struc-
tures with such methods are still extremely severe. Therefore, research efforts are being
focused on the development of accelerating techniques, the most important of which will
be discussed below.

2 ACCELERATING TECHNIQUES IN TLM MODELLING

In the following, the most important accelerating techniques will be briefly described.
The first exploits the localised nature of the time domain algorithms through parallel
processing, the second is based on the numerical processing of the time domain output
signal using the Prony-Pisarenko Method, and the third involves the reduction of the

so-called coarseness error by improving the properties of the discrete TLM mesh in the
vicinity of sharp corners and edges.
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2.1 Parallel Processing

The principle of causality ensures that any change in the state of a TLM node affects

only its immediate neighbours at the next computational step. This allows the implemen-
tation of TLM in a form quite dIfferent from the program on a serial machine. Since in
a parallel computer each processor has its own memory, it is practical to assign to each
of them an impulse scattering matrix and a set of boundary conditions. The impulse
scattering matrix incorporates the local properties of the computational space such as
permittivity, permeability, conductivity, and mesh size in the three co-ordinate directions.
The boundary conditions specify whether there are boundaries between a node and its
neighbours, or whether the nodes are connected together. This parallel implementation
greatly facilitates variable mesh grading, conformal boundary modeling, and the simulation

of highly inhomogeneous materials and complicated geometries.
Fig. 4 compares, on a logarithmic scale, the improvements made over the last year in

computing speed using various programming techniques [9] and parallelisation. The orig-
inal matriz formulation by Johns [3] requires 144 multiplications and 126 additions and
subtractiors per scattering per node. Through manipulation of the highly symmetrical
impulse rcattering matrix, Tong and Fujino (9] have reduced the scattering to six multi-
plications, S6 additions/subtractions and 12 divisions by four, increasing computing speed
over six times. Programming in Assembler rather than C++ accelerates the process again
four times. Finally, parallel processing increases speed by more than two orders of mag-
nitude over the fastest serial version implemented on a 386 computer in C++ language.
The combined rotasures effectively reduce computation times from hours to seconds.

T:Ls comparison strongly suggests that future implementations of time domain simu-
lators fmi, CAD purposes will be based on dedicated parallel processors or supercomputers
that emulate parallel processing.

2.2 Signal Processing

'fht fast Fourier Transform (FFT) is the most frequently used signal processing
meth ! .or extracting the spectral characteristics of a structure from a time domain simu-
ltioL. For efBcient computations it is of prime importance to reduce the number of time
samples requi.ed to extract a meaningful frequency response. To achieve this goal, process-
ing of the time response using the Prony-Pisarenko method has been applied successfully.
[10].

in this appruach the discrete time domain output signal is treated as a deterministic
signal drowned in noise. (Fig. 5). The signal is then approximated by a superposition
of diumped exponential Junctions (Prony's method), and the noise is minimized using Pis-
arenko's model. This signal processing technique reduces the number of required time
samples by typically one order of magnitude.
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2.3 Reduction of Coarseness Error

One of the principal sources of error in the TLM analysis of structures with sharp

edges and comers is the so-called coarseness error. It is due to the insufficient resolution
of the edge field by the discrete TLM network. The error is particularly severe when

boundaries and their comers are placed halfway between nodes as shown in Fig. 6. It
is clearly seen that the nodes situated diagonally in front of an edge are not interacting

* directly with the boundary but receive information about its presence only across their
neighbours who have one branch connected to it. The network is thus not sufficiently
"stiff" at the edge, and results obtained are always shifted towards lower frequencies. The
classical remedy for this problem is to use a finer mesh in the vicinity of the edge, but
this introduces additional complications and computational requirements. On the other

hand, the dispersion characteristics of the condensed 3D TLM node (see Fig. 3b) are so
good that the velocity error is practically negligible even for rather coarse meshes. A much
better and more efficient way is thus to modify the corner node such that it can interact

directly with the corner through an additional stub as shown in Fig. 7 for the 2D case.
Since this stub is longer than the other branches by a factor V2 it is simply assumed to
have a correspondingly larger propagation velocity. In the 3D case up to three stubs must
be added depending on the nature of the corner. The effect of this corner correction is
demonstrated in Fig. 8 which shows typical results for the first resonant frequency of a
cavity containing a sharp edge as a function of the mesh parameter At. The parameter
p is proportional to the fraction of power carried by the fifth branch of the comer node

and is equal to half the characteristic admittance of the comer branch when normalized
to the link line admittance (see Fig 7). For p = 0 (no comer correction) the coarseness
error increases almost linearly with increasing Al, while for p = 0.1 the frequency remains
accurate even for a very coarse mesh.

3 BOUNDARIES IN ARBITRARY POSITIONS

3.1 Accurate Dimensioning and Curved Boundaries

The accurate modeling of waveguide components, discontinuities and junctions re.
quires a precision in the positioning of boundaries that is identical to, or better than the
manufacturing tolerances. If boundaries can only be introduced either across nodes or
halfway between nodes, then the mesh parameter A would have to be very small indeed,
leading to unacceptable computational requirements. Similar considerations apply when
curved boundaries with very small radii of curvature must be modeled. It is therefore
important to provide for arbitrary positiomng of boundaries. The basis for this feature
has been described already in 1973 by Johns 111).
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i Fig. 9 shows the concept of arbitrary wall positioning in two-dimensional TLM. The
boundary branch which has a length different from A1/2 is simply replaced by an equivalent
branch of length A1/2 having the same input admittance. This ensures synchronism,
but requires a different characteristic admittance for the boundary branch and hence, a

modification of the impulse scattering matrix of the boundary node. (see [11]). The
effect of such boundary tuning is shown in Fig. 10 which indicates that the length of the
boundary branch can be continuously tuned over a range of more than one mesh parameter
length At without appreciable error. This important technique removes the restriction that
dimensions of TLM models can only be integer multiples of the mesh parameter.

An alternative method %hich avoids the modification of the S-Matrix of the boundary
nodes is to replace the extension of a boundary beyond its standard position by an equiv-
alent reactance. The differential equation of that reactance is discretized, resulting in a
recursive formula for the impulse reflected by the boundary. This method is preferrable for
a serial type computer implementation while the former is more appropriate for a parallel
version.

3.2 Moving Boundaries, ard Time Domain Optimization

Since it usually takes considerable time to build up a quasi-stationnary field in a
structure of high Q-factor, optimization based on a new complete analysis after every
modification is extremely time consuming. Instead, techniques for continuously varying
the boundary position and other characteristics of a structure during a TLM simulation
will be developed. Two different methods will be investigated. One is to modify the

scattering matrix of nodes situated close to a boundary, the other is to generate the
impulses reflected by moving boundaries using recursive algorithms. In order to implement
automatic optimal tuning these measures will be coupled with appropriate optimization
strategies. Furthermore, if optimization criteria are to be formulated in the frequency
domain, a sliding Fourier transform window will be introduced as well in order to extract
the time-varying frequency domain characteristics from the evolving time domain response.

4 NUMERICAL SYNTHESIS BY REVERSE TLM

It has been shown recently by Sorrentino et a. [12] that the TLM process can be
reversed without modification of the algorithm, yielding the source distribution from the
resulting field by going backwards in time. Direct numerical electromagnetic synthesis is
completely unchartet territory as yet, and the exact procedure and its implementation are
not very dear. The desired characteristic of a structure or component is usually given for
a limited frequency range and for the dominant mode of propagation. This information
is insufficient to synthesise the exact topology of the structure. Therefore, the missing
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information must be generated and added by the designer. Implementation will most
likely be an alternate sequence of analyses and syntheses which will converge much faster
than repeated analysis and optimization in traditional CAD.

t 5 CONCLUSION

~Computer time and memory required to model realistic electromagnetic structures

' are still obstales when it comes to practical applications of time domain modeling tech-
I ' niques. Therefore, considerable research efforts are concentrating on ways to reduce the
computation count significantly. In this workshop paper we describe three different ways to
achieve this, namely parallel processing, Prony-Pisarenko signal processing, and coareness
error compensation at sharp comers and edges. All these methods can be combined to
accelerate TLM simulations by several orders of magnitude. Since the computation count
for TLM analyses increases faster than the fourth power of the linear mesh density, these
accelerating features enhance our ability to model complex structures to a much greater
extend than the mere memory size and speed of the computer. Procedures for fine tuning
of wall pceitiouns have also been described.

Future time domain CAD systems will most likely employ dedicated parallel proces-
sors configured in a 3D array. Furthermore, the specific nature of discrete time domain
algorithms requsres optimization and synthesis procedures different from those employed
in traditional frequency domain CAD tools. These include the implementation of mov-
ing boundaries for geometrical tuning during a simulation as well as numerical synthesis
through reversal of the TLM process in time. It is conceivable that at the present rate of

progress in time domain modeling these procedures will equal or surpass the capabilities
of frequency domain CAD tools in the next decade.
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Recent Developments of in Numerical Integration
of Differential Equations

Wolfgang Mathis
University of Wuppertal

Abstract
Numerical Integration of differential equation is a standard discipline in numer-
ical mathematics and basically for simulating dynamical systems in all areas of
engineering. In dependence of the kind of modelling dynamical systems will be
described by ordinary or partial differenti % equations. In this paper we restrict us
mainly to the former case. The most general type of ordinary differential equation
has the implict form

F~x,:,) = O, ()
and is called differentil.algebraic equation (DAE). By means of a suitable trans-
formation the explicit dependence of t can be dropped If F is solvable for i
globally we obtain

- fx); (2)
we refer this type as ODE Because these equations possess a manifold of solutions
rather than a unique solution additional conditions must be prescribed to x. If x
is determined at one time s this situation is called initial valued problem (IVP)
whereas conditions in different time points are called boundary valued problem
(BVP).
In order to simulate a dynamical system we start with a system description of
type (1) or (2). In dependence of our interests we formulate a IVP or a BVP. For
calculating the solution x(t) we associate a convenient difference equation to (1) or
(2). It is obviously to replace the derivative i by a difference approximation with
a step-size h and to construct a discrete sequence of x(,.). The quality of such
approximations will be characterized by consistency, convergency and stability.
The theory of numerical integration of ODE (1) and the art of its implementation
are available. In this paper we are interested mainly but not only in multistep
methods. In most applications, e g. mechanics and electrical engineering, most
dynamical systems are represented by DAE's in a natural manner. For this reason
we discuss the main aspects of to the theory and implementations of numerical
integration methods for DAE's and remark that the essential results are developed
during the last ten years.
Furthermore we will discuss the problem of step-size control and switching between
different integration algorithms (order control) from a control theoretical point of
view; this part includes also some results worked out in our corresponding project.
We illustrate this material by means of some examples from circuit simulation.
The final section contains something about the problem of rounding errors. This
is an esoential subiect because the development of algorithms (operations) and the
characterization of their properties will be discussed in the real numbers IR and
in other sets, e g. CY, , which are constructed in a 'vertical manner'. In
classical numerics we choose a suitable finite set (e.g. floating point numbers F)
of M and associated operations and construct the 'higher' sets and operations in
a 'vertical manner'm, too Therefore it is not clear that the nuaerical algorithm
(implemented in F) works in the manner as the algorithm in lR. To circumvent
this problem it seems to be useful to apply a well-defined arithmetic (Kulsch-
arithmetic) and well-adapted algorithms. This approach is close related to the
wave-digital filter method of Fettweis.
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Definition of CA

Djscret, in spac: CA consist 01 a dvcret lattice of saces

Cellular Automata: Dsrt ntm'C vlei iceetm tp
-Applications andl implementaltion Dsrt io Aeov odsrt ieset

Discrete states' Each state takes on a finite set of possible

values

Homogeneous All cells are identical ani ore arranged in

a regular may

hi. ir Synchironous: All cell vaues are updated to synchtony

Ur Sej .. WO.iee Deterisnistic' Each cell is uiolated according inoa fixed
detrnintistic role

Spatially local, The odle depends only oii the values ofta

local ineiglhothood

Teimporally tocal. The role depends only on values fot a

fined number of preceditg steps

Formal Definitton Related Models

Piartiat differential equations: space, lone and site values

.E (I, t) Qo({(I-d, 1 1) d E r)))) ate continuous

Finte difference equsations: site values ate contunuous

I "TeindexParticle models: particles have conttinuous positions asid
I idex domain of CA

aobitary function S!" -S

neighbothood. e g 11 =3 3J E Z" A 11711 !5 r) Neural etoort models, connection patteens ate aibitajiy.

set of states. toC a(1, ) E S site values are continuous, updates are asynchrtonous

set of colifigurattons. Ite E= S11 ellrnua e
5

rsst ausaecniuu
1' global mtapping, soe 4, E - Cellrsaa ntok o aue t oonu

0 s et ot configurations geneciated afir f iterated Iteratise arrays: differetit purpose rtan CA

applcatons f 0 t Q' EW-' OQ Sl Array processors: sites can store ostensive infortiation



Applications of CA Physical Modeling
ipttation Theory Motivation b eioec pril

*self reprodidion (3v Neumann 1949. Conway 1970 phsenomena are often describedby(irlna)pra)
*fonl"3 languageC (S WVolfram 1984) differential equations, two different approaches to s.,.'t'

I Viifieu cqiaation ons a msacrosoopse 30o10
lisoogicl l'iodelagdiscrtneation in lime and space

*self reproduction 0I v Neumninn 1949) 2 CSnCdsrtnd d

*evolution (S Ulam 1918) microtop. diceie ode'

*mcdels of msenmory (hi bujns, 1969) large nounber of smilar components with local as
tcraction; '

Phlysical Moodeling

*calculating spaces (K Zuse 1940)fucinlhmgniyrletspeadtmerva-
ance, locolity reflects finite speed of informtiron

*hydrodynamics (0 Hands 1973. U rrisclt 1986)

*groistli snclsainstos (I D Gunton 1983) cellular automata are simple to program aod amenable to

atiem recognition (K Prestoit 1984) parallel processing

$ pot mtodels (lii Cicute 1980) studies of collective phenomena possible (trbulence,

* ove odiels (HI Clien 1988) chaos. fractality,

I1B Salem, S Wolfraiss 'I'liettnodynraics and 11) drodyon-

nnes isiltCellular Antosnata In Theiory and ApiplicationisFudDnmc

,,I Cvlul Autoitti W01ld S-iiif, 1987 Fluid P M 92,Fr~ DyaicshPm 96

fluid inoompressible. abseoce of essemal forces Navies-

________________________________Stoikes Equation )NSE)

W+ V All -Vp + v V
2
1'

------- -' velocity

~ P (constant) density
Vviscosity

-. ~0Z\ Z<Z~/I'\ ~*fictiiiouts microscopic model,

*as simple as possible dynamics (snst necessarily follo-

___________ ting Hcamdltoniani equations for intetacting pat iv~les)

*reproduces NSE on r roscopic level

Ploss paut an obstacle (from Salons and Wellsain) .particles and their scattering ane modeled by reversible

CA rules



J 1B Satcm,- S Wolfram TItlermodynamics and Ifydrodyna- 'mUIcs With Cellular Automata In Theory and ApplicationsLatcG sOf Cellular Automata World Scientific. 1987 Latc Ga

Particles move On a lattice anid satisfy certain symmetry- requirements Moving and Scattering by reversible rules

Derivation Of moacroscopic behavior
Solecular level motion is revertible

kineoc tevel nuneatuilibriam statistical mechaics

~'~-- -- \~. * macroscopic level continuum approximation
I Wave eqaions-

~~~~~~~~10 s~~~~'* Z /'.- n mall Perturbations from eqailibriom. linear elastic
Properties Of lattice gas~NNN piopdg4iioii Of a disratbation Is governed by wave

-- - equation

FlowPas an bstcle(fro Saem ndWlfrm) tudy Of wave Initerference, reflection diffraction, re-oustan bstcleCfrm Saem rd ~ulwv)fraction

.4-

'R i . 1 -
v. 

-4* . - - x s e"

1, V -lie171



Modeling of Wave Equations Htyugens principle any spatial pointcasb iugtI

to Cire 19551as a revw wave source with intensity

Liea wvepopgaio=C2 72,,(X, t) decay rate Of Source

' 1 DU)2Cl(,u)2 i2(x,t + 1) = t2(x,t) - 9(Z' t + 1)

energy H dt
*continuous linear wave equation is recovered after ma.

wointi P=2 -V (LU)Idt ling an ensemble averaging

*result can be converted to a finite difference ecojation
Concept

*two kinds of photons propagating ov a lattice a

,VO(x,t)- nuntber of phiatons vnub quantum oat Va

particular sitir x aitd tinto t mavuig Wit elocity a

lChen, S Chet, 0 Doolen, Y C Lee Sitmple Li

tucGas Mol 0l for WVaves Cuniplcs Systents 2 (1988l)

259-267Implementation of Cellular Systems

ii -. ~(S Y K.,jt, P' tDaitle. E Dopreini a ttnr,,

- Specification

*Cellular automata

(!I I ao v(l,t).d({a( -d,t1- 1) 1 c P',)

- ij~u~iCell!ar Systems

3) {u'(I d) d Vi)

it()=6t ({ut(I - d) d E 7tt11,

~ -~(at,(] - d) d E Dir

xai truei iir '' a.a uerio



Example-agtAcietr

I ndence graph dedicated hardware (CAM-6. CAM.8 (Toffoh))

*Coarse grant parallel systemsa (MtMlD, Transputer)

Sfinr grain parallel systems (SIMD. Connection Mlachair)

Mapping criteria

X commuonicationa- comtputation

*consideration of pipelared aeslltictic unils

Progr am onisderation of finte resourcea

suited for automatic comilation
1,1 0 5 2 2A 12!

a)(', 0 = 01(-2(t 1,1 l),ci(s 1 1)) 11Applications

a2(,,t) =0(sal (z, t),ai(s +- 1, 1 -1)) *neural networks
*Itrfive arrays

Jsiced depcndence grathcllltsuomt
solution af PDE

systolic array$

I-D

41 Un 0 It
at<I

<a
ae

zI ; U :-L



Implementations Mapping Problems _

irfiguration: Partitioning (limited resources)

Synchronization (control path)

(0 O( nilobanki I

Scheduling (pipelined arithmetic units)

eovoral-~

specification or embedding (softnare)

Partitioning Partitioning

Projection. Actise Clustering.

a reduce dtoieooon of DG by I matrch given number of cells

slinprjecin oDGmatch gisen dimension of array

* rcncedooosin o DOrobiruilycombine ninloiprojcoon and passive clustering

* loop control or flow control
Soiuh I/O rate and computation rate I ocal Seqouniat / Gtobal Paratlel (I.SGP):

DG Srquencmtt Sigral fl., Sriph Processor array Clustcred anay

Passise Ctustering-

MA ninoefficient array efficient Loeat Parattet I Gtobal Sequenilt (LPtGS),
m ike use of pipolviod out P'rocesor array Clustercd array

AA 00,00 :-l~t 7-7

I P~Os
(folding)



Hierachicl T-a-n-sormaionsHierarchical -R epresentation of Algorithms

o11 fieain spie sngtilng mnn P Iowerhirarchia levels ~ dn

S2 S4

* nirodUaion of ieniiioals o Tlere are two basic Program schernas

70Day 2 Straigl'rline code (set of oisigrr'en statements, nonreguli

bRegular algonihen (regular dependence graph)

pormasformaio

(11,A,', JEJ AK E KA E r
[ K]l - PxJ- d - i1 +~ P)))

If J- d - r EJ3

Hierarchical Compilation Strategy Mathematical Tools

Icqince of provable corroct progranm traniformations *opcions on index sets

*spcfication of paranicrirable basic iranstomianoris tiling of iteration spacrs

*pumizatin iteger linear algebra

linear and integer linteir prngraniig

*geonietry of numbers
program *coibinaorial algoribimi on periodic graphs

bas.n programn tranfornat,ons
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ANALYSIS OF NONLINEAR MICROWAVE CIRCUITS VIA THE
TIME-DOMAIN VOLTAGE-UPDATE METHOD

H.D. Fol, *JJI. Davis, and T. Itolht
Although direct transient time-domain solutions of circuit equations (for example, SPICE-type

programs) are sometimes employed to analy , microwave systems containing nonledt ar devices,
teady-state methods (for example, harmonic balance techniques). preferable in cases involvingigh-Q resonant ciruits and other narrow-band structures, for which steady-state methods have a

significant advantage in computation time.

eail 'atdmtet-oin 
.A haou sead-tt ehius 

based hceet

formulated: (1) the waveform-balanc technique, which is related to the piecewiseharmonic-balance method, and (2) the sme-doiain voltage-update technque, which is relaxation-
based. In this paper, the laster technique will be examined in more detail and compared to more
conventonal approaches.

In the tme-domain version of the voltage-update, tme samples representing the steady-state
voltage waveform are applied o the nonlinear devce(s). The resuing current samples are appied
to the linear porons of the system, leading toa new set of voltage samples. Relaxaion ()awmeters
are then applied to determine the staring samples for the next iteraeion, and the process ts repeated
until convergence is obtained.

Voltage-update techniques have a marked advantage over most other approaches i simplcity and
speed per iteraton, when appled to problems in whih the frequency is known, such as
amplifiers, frequency multilihers, and mixers They can also be applied, with some modifications,to variable-frequency problems such as oscillators.

Strategies for extending the rsnge and speed of convergence for the relaxaton procedure will be
discussed, along with the relationship between frequency-domain and trie-domain relaxationparameters. The results of several repreentatve applicat ons ievolving negatve reststance devices
and SIS junctions will be presented.

The Umversity of Texas. Elecical Enginerng Research Laboratoty, Ausi.n, TX 78712
mUniversif of Calfomia. Los Angeles, Department of Elec tcal Engineenng, Los Angeles, CA

90024
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-Useful alternative to other

steady-state methods

Has been applied to wide variety
of circuits

-Should combine easily with
electromagnetic structures analyzed
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Efficient Anslytical.Num I Modeling Of Uliza.WiletbeM Pulsed

Plane Wave Scatteing Front a Lapg Strip Grat

Lawrence Carin and Leopold B. Pelsen
Weber Research Institute/ Electrical Engineeridg Department

Polytechnic University

Farmingdale, NY 11735-

Summary. Ultra-wideband (UWE) ptulsed plane wave scattering from a largea but finite strip
grating in free space is analyzed in the frequency domain via decomposition into plane wave
Spectra, implemented numerically by the method of momrenta, and then 1sivrted Into the
time domain (TD). To make this procedure practical under UWE conditions, closed formn
expressions are derived for interaction integrals Involving widely separated excpansion and
testing functions. Th'lese closed forms are based on a judicious choice of the bala unictiona,
and on asymptotic methods for reducing the integrals. Although large separation distane$
are assumed, the expressions have been found to be accrate for separations as small as 0.1
wavelength. The TD self terms can also be evaluated effciently. To test the frequency
domain algorithms, comparisons are made with available data In the literature for surface
currents and far field scattering from multiple strips. New short pulse MI results are shown
as well.



Transient, currents and fields of wire antennas with diodes

N. Scheffer, Telefunken SysteMtechnik VR3 E51, Sedanstr.l0, 7900 Ulm
+ 1. Numerical method

The electric field integral equation for a wire antenna can be written in matrix
notation for the.time step t.) as

The unknown quantitiy in (1) is the current distribution I,.
of the antenna. The antenna is devided into N segments. .
The impedance matrix Z is time independent.

l(( .. ) represents a diagonal matrix containing

the nonlinear loads.The components of E' are the tangential components of the incident electricfield and Z, are the tangential components of the scattered electric field.

Introducing the admittance matrix y Z- and
11" 11Z.'. =Y ('(+ K) (2)

equation (1) can be written as

Z repesentr the unity matrix.
For the special case, that the antenna is loaded at exactly two segments m and nwith p_ and R, , the currents in the loaded segments are

"=(- + 1. )- . (
I. ( , Y. &~r - (4),

"" + - + - (5)

The currents in the unloaded segments 'Ym,' are

(6)

2. The time detendent current distribution

The above method of calculation is used to examine a dipole. The dipole contains
two diodes and is centerfed by a source voltage with Gausssian pulse shape as
shown in Fig. I.
The two diodes are described by resistors on ao

A- ,lo1.Z
,W11 ,<0

Fig. 2 shows the two current pulses arriving at the antenna ends after passing
the diodes almost undistortedly. The arrows mark the positions of the diodes. In
F1g. the current pulses have arrived at the reversed biased diodes after they
have been reflected at the antenna ends. Fig. 4 shows the reflection at the re-
versed biased diodes.

3 The electric nearfoeld

It is possible to reduce the fieldline equation drxt.o to a potential.function

" e eHsr y: because of the c~linder symmetry.

An electric fieldliue is then described by U=4ov * , is derived in the ap-
pendix. Fig. 5 shows the electric f-eldlines located on concentric spheres
around the generator. The pulse has Just arrived at the antenna end. In Fig. 6
the reflection at the antenna end is considered: the fieldlines are now located
on concentric spheres around the source and the antenna end. Fig. 7 shows the 1
reflection at the diode- a new sphere around the diode is visible. In Fig. 8
multiple reflections for a late time step can be observed.



N

/

C, C,

~* ~

I

I



Fig.

FFig.

Fig.. 7

FFig. $



* Calculating Yrequency Domain Data by

byhI ~eer h.Dobe.Time Domain Methods

Techniache Ifothschule Darmstardt Tiecorie Elelromagnetisclier relder (FS 18)

Abu~ract

We show the slolati.o Qf far field pattersns old aatering Parameters by mreans of timsedo
tooln methods. Is order to o',talo a moods exci I Won, the elgensolutlons of the discrete reoveguide

4 tsleaval.. problem In circl -o-tton with an -deqoaute pruelaiog at the boandarieo I# Used.

Par Field Treasfornas
In general the electric field 0. ra1diating structureo con lbe written for lag* dlstssnces as

'here en -e. a1ti the waoe number nd r,e,4 denote spherical coordinates.
FOe the 9CA11 e3bOtio of the far held UtrSONfoPA 0(,). one needs to dettermin e the coraple v toe

tangentil electric and aoote amplitues on a closed surface surrounding the radiating structure.

=F(,0) cl" (; ( x A))- 4, x (it x JdA ,(2)

The compurtton oef the comiexe Aeld %mplitudea by a Fast Moorier 'Thonrsforer requires smpling
and sarorage of the tmisgoortial electric and morletlc Avid valus It the integration surface ant is
only feasilele for saell meeeoh sizeo Therefore %beoc aniltiudeA ate obtained by usng time harmeonic
exation sources land a direct sampling of the barmonle kilds. Anotlitr way is to perform a
mrooorromatrr. asigle freemoency footer tromoforat of the time domain fields.

Filter D.clgra

'tbe trAnroereat olcitic held in a woAieitudt ia dtjtcrihed for the tome harmonic c-e. by the mode
,xpaOsi.1O

9(r.y.0o);=Reei (rye)t(Jse Jo + (.ectl} ()

which casn be formulated for general time dependency sorb double coneolutionac:

Z4(,y.0 - (0,Y) P,f) +Ls40) e.Mt. -Z)) (4)

with P,(1, :) beking the inverse 'Fourier truoufoersa of eap( ~(er.The bowledge of 44,eje) z:
I MM + LI,-1) aesoeial for the calculation of the tanxennis boundarY field 1(r, 0,iw) at the

enrerfaco , = 0, The otinoIsuteow.m.se (j) ts kuoon, but b() bag to ho calculated fromr

&(Jw.) can be obtaied by nerdstexpaonoson of tbefield to the plant zm = 4. Therimodes &,(s.pqeje)
and the Popgtonatno ar Aluad by a 21) eigenealue sotlver. Tbe case of frequency
dlepetedenit L, ib problematic because the exapansion of sampled fieidi,s.'~~ is only poosoible
ilo the atoady atate. In the other cant D.(t,) is yielded directly and

rae calculated by single convoluetions. Thrs method to applicable for horogeeoslY filled Wae -
oileo nd for miodes, sith mesk freqeqncy dependency. A oimplificatiorn of the algorithui to possible,

0'if the convolution east be approximated in the destred freqenecy range by a lom order digitA filter.
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TIME DOMAIN ANALYSIS OF INHOMOGENEOUSLY LOADED

STRUCTURES USING EIGENFUNCTION EXPANSION

MICHAL MROZOWSKI
TECHNICAL UNIVESITY Or GDANSK, TEsccoMMUNICATION INSTITUTE

80-952 GDA9SK, POLAND, TEL,: +(048 58) 472 549, FAX: +(048 58) 47 10 71

SUMMARY

At present there are two algorithms, namely the TLM and FD-TD, which are used to solve
fMaxwell's equations in time domain. In this contribution we shall present new methods which

may broaden the range of options available in time domain analysis of 2-D and 3-D structures.
A wave Is treated as a superpositlon of elgenmodes (elgenfunctions) of the homogeneous Laplace
equation. An inhomogenesty in the structure perturbs the field and causes the coupling of eigen-
modes. Eigenmodes are chosen so that they fulfil the Helmholtz equation either on the entire
homogeneous domain or on homogeneous subdomalns. An advantage of this approach is that it
allows to obtain time domain algorithms which, in contrast to TLM and FD.TD methods, do not
exhibit the numerical dispersion.

i* Outline of time domain eigenfunction expansion algorithms.

Based on the concept briefly described above, a number of algorithms can be proposed. We
shall start with an algorithm called a complete eigenfunction expansion (CEE). Let us consider a
set of coupled differential equations reflecting the form of Maxwell equations

d

where £t, L, are linear operators.
In the FD-TD algorithm the above equations are discretized both in time and space. In the CEE
algorithm the discretization is only in time. As a result we get

= jns + Atsg"1-1l e
'
+1/2 = 

9
-

1 
/2 + Atic2f' (2)

The unknown functions f,g are now expanded into series of complete set of orthonormal
functions. f = °,/, 9 = Zg., (3)
Expansion function are defined on the entire domain. A sensible choice for the electromagnetic
fields is are the eigenfunctions of Laplace equation with suitable boundary conditions. Substituting
(3) into (2) we get

ZF4, = o,',, + ALC1  - (4)

'- b' 1g, = Ev"1 + Atic, E , of
Taking the inner product with the expansion functions results in

A" + t

b. = b
- l

+ At < £4f",, >



The above equatiqns can be cast into the following matrix form

A .- I + AtA_"" 2  (6)

An1/ in-1 + 4t~an

where p and J are the vectors containing expansion coefficients and A and B8 are dense matrices
with elements

Aqj = < C 9j, fj > B,,j = < L2 j, 9 > (7)

Another version of the eigenfunction expansion algorithm is obtained if the discretization is in
time and one spatial coordinate and the expansion Is done with respect to two remaning spatial
coordinate. This algorithm we shall call partial eigenfunction expansion (PEE). In this technique
the space is sliced into subdomains and the fields are ecpanded on each subdoman (slice) into

series of local expansion functions. In the PEE method one obtains a set of equations similar to
(6) except that matrices A and . are sparse.

Compared with the FD-TD method the CEE and PEE algorithms show the time evolution of
the expansion coefficients rather then field components at nodes. Such an approach allows one to
investigate propagation of particular modes and their mutual interactions. Moreover, in contrast
to FD.TD and TLM techniques, both algozithms proposed in this contribution do not exhibit
numerical dispersion.

Efficient numerical implementation of elgenfunction expansion algorithms: CEE-FFT
and PEE-FFT.

One drawbact of the CEE asd PEE algorithms that they may lead to higher numerical cost
then FD-TD and TLM. The CEE involves matrix multiplication hence. assuming that expansion is
done using L elgenfuncions, the cost of one lime step is of order O(V). For the PEE this cost is lower
as the matrices involved are sparse. In the FD.TD and TLM method with N nodes, the numerical
cost is of order O(N). Consequently, eigenfunction expansion techniques may be regarded ax an
alternative to classical time domain algorithms only when V - N. This condition will be fulfilled
in slightly and moderately perturbed homogeneous structures. Nevertheless, much more efficient
version of CEE and PEE may be obtained if the expansion functions are sine and cosines. Equations
(6) imply that at each step one evaluates the inner products < £sgn1/1,2 f > and < £x ,gi >.
For sine and cosine functions the inner product can be computed in a very efficient way using
the technique described in (1). In this technique the Inner products are computed In a sequence
of inverse and forward FFTs. The numerical cost of such computations is low and therefore the
overall performance of the CEE-FFa and PEE-FFT algorithms is better than original CEE and
PEE methods.

Conclusions. New algorithms of the time domain analysis of inhomogeneously loaded microwave
structures have been described. The methods proposed are based on the expansion of fields into
complete series of orthogonal elgenfunctions. The resulting equations show the time evolution of the
expansion coefficients and consequently allow one to investigate propagation of separate modes and
their mutual interactions The algorithms proposed in this contribution do not exhibit numerical
dispersion and allow coarser time discretization than the equivalent FD-TD or TLM program.
[I) M. Mrozowski, "IEEM FFT- A fast and efficient tool for rigorous computations of propa-

gation constants and field distributions sn dielectric guides with arbitrary crosssection and
permittivity profiles", IEEE Trants. Microwave Theory Tech., vol. MT'T-39, Feb. 1991.
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The Hilbert Space Formulation of the TLM
Method

Peter Russer, Michael Krumpholz I
I Abstract

The Hilbert space representation of the TLM method for time do-
main computation of electromagnetic fields and the algebraic compu.
tation of the discrete Green's function are Investigated. The complete
field state is represented by a Hilbert space vector. The space and time

evolution of the field state vector is governed by operator equations in
Hilbert space. The discrete Green's functions may be represented by a
Neumann series in space- and time-shift operators. The Hibert apace
representation allows the description of the geometric structures by pro-
jection operators, too. The system of difference equations governing the
time evolution of the electromagnetic field in configuration space is de-
rived from the operator equation for the field state vector in the Hilbert
space.

I Introduction

The TLM (transmission line matrix) meth,.d developed and first published in
1971 by Johns and Beurle is a discrete time domain method for electron'ag-
netic field computation (1,2,31. In this paper, the Hilbert space representation

of the TLM method is presented and applied to the algebraic computation of
discrete Green's functions. The Hilbert space representation is a very general

and powerful concept in field theory [41. Whereas in the electromagnetic the-
ory Hilbert s ),ce methods are mainly used for solving the field equations as
for example in the moment method (5], in quantum theory, the fundamental
theoretical concepts have been formulated in Hilbert space (6,71.

The state of a discretized field can be represented by a vector in the Hilbert
space. The !pecification of the mesh node connections and the boundary con-

'Lehrstuhl far Hochfrequenztechnik, Technische Univer;'tit Minchen, Ar-
cisstrasse 21, D-8000 Munich 2, Fed. Rep. Germany

!L
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ditions is done by operators in the Hilbert space. The Hilbert space representa.

t|on also allows the description of geometric structures by projection operators.

The space and time evolution of the field state vector is governed by operator

equations.

In field theory, the field propagation in spatial domains may be treated using
Green's functions [8). The concept of Green's functions may also be applied

to discrete time domain field computation (9]. Discrete time domain Green's
functions allow to model the relation between the field values on the boundaries

if the knowledge of the field in the spatial domains beyond the boundaries is
not required.

In this paper, the algebr6€ computation of the dis-rete Green's function is

investigated. Our approach is based on a Hilbert space represent&.tion of the
space- and time discretized electromagnetic field. The discrete Green's func-

tions may be represented by a Neumann series in space- and time-shift oper-
ators. The system of difference equations governing the time evolution of the

electromagnetic field in configuration space ii derived from the operator equa-
tion for the field state vector in the Hilbert vpace. First results are presented

for the two-dimevsional case.

2 The Two-dimensional TLM Method

The electromagnetic field is discretized within space and time. The space

is modelled by a mesh of transmission lines connecting the sample points in
space. The field computation algorithm consists of two steps:

• The propagation of wave pulses from the mesh nodes to the neighbouring
nodes.

* The scattering of the wave pulses in the mesh nodes.

In the following, we restrict our considerations to the two-dimensional case
with the transverse electric field. In the shunt TLM model, voltage wave

amplitudes are used instead of total voltage and current. The voltage wave

amplitudes of the incident and the reflected waves are given by ka,, and

kb, The left index k denotes the discrete time coordinate and the right

__ __ _



indices m and n denote the two discrete space coordinates. We consider the

TLM mesh to be composed by elementary TLM shunt node four-ports as

shown in Fig. 1, where each of the four arms is of length At/2. The scattering

in this elementary four-port is connected with the time delay At.

The scattering of the wave pulses is described by

Kb., t;
4 5b2 ra2(1

k+ b4  
a4

with the scattering matrix S given by

s:= 2-2 (2)

I I 1 -1J

With the scattering, a time delay of At is associated and therefore, the time

index k is incremented by one. The scattered pulses are the incident pulses of
the neighbouring elementary cell. This is described by

a=,. = b,+i,. (3)
ka3,,, = N...I

3 The Discrete Field State Space

In the TLM model, the field state at a given discrete time is described com.
pletely by specifying the amplitudes of the tour wave pulses incident to each
mesh node. The space of the voltage wave amplitudes of the incident and the
reflected waves ka,,,,, and kbi,,, is the four-dimensional real vector space
24. In order to develop our formalism in a more general way we introduce the

I-!

,m7m4
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3 mn

Figure 1: A two-dimensional TLM shunt node four-port.

four-dimensional complex vector space C for representing the wave amplitudes

ka,,, and b,,.

In order to describe the whole mesh state, we introduce the Hilbert space 7,
which allows to map each mesh node onto an ortonormal set of base vectors of
7.. The time states are represented by the Hilbert space W4. With each pair
of discrete spatial coordinates (mr,n), a basis vector of 71, is associated and
with each k, a basis vector of 1t is associated. We now introduce the state

space 7 given by the Cartesian product of C4
, 7, and 74

?i = C4 7 0 j, (4)

The space W is a Hilbert space, too. The complete time evolution of the field
state within the whole three-dimensional space-time may now be represented
by a single vector in 7. Using the bra-ket notation introduced by Dirac [6],

the orthonormal basis vectors of *" are given by the bra-vectors [k; m, n). The
ket-vector (k; m, nI is the Hermitian conjugate of Jk; m, n). The orthogonality

relations are given by

(ks~ms,nsilk2;ma:,us) m 6ss35j63%. (5)

i 9



The incident and reflected voltage waves are represented by

tx-oo 1001t-0 jo O3

and[a 10 0 +0: k; m, n) (6)k 
a 4  

,

and

1)0Ib) =1[k; m, n) (7)
/l ° m ' ~ m ° k b 14 ,

in the Hilbert space 1h. We define the shift operators X, Y and their Hermitian
conjugates X

t 
and Yt by

X 1k;m,n) = 1k;m + 1,n)

Xt lk;m,n) = Ik;m-l,n) (8)
YIk;m,n) = fk;m,n+l)
Y

t
lk;m,n) = Ik;m,n-1)

The operators X and Y shift the field state by one interval Al in the positive
m- and n-direction, respectively. Their Hermitian conjugates X

t 
and Y

t 
shift

the field state in the opposite direction.

We define the time shift operator T. The time shift operator increments k by

1 i.e. it shifts the field state by At in the positive time direction. If the time
shift operator is applied to a vector 1k; ,n), we obtain

T Ik;m,n) = Ik+ 1; m, n) (9)

We introduce the connection operator r given by

r Ox 010
r x t 0 0 0 (10)

10 00 Yj0 0 Y

With the connection operator r, equation (3) yields the operator equation

1b) - ) (11) 

Ui __
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describing the mcnh connections. The operator r is hermitian and unitary:

V r = r-' i

Therefore we obtain from eqs. (11) and (12)

1a) = r ib) (13)

We now express eq. (1) in the Hilbert space notation by

1b) = T S 1a) (14)

This equation describes the simultaneous scattering within all the mesh node

four-ports sctording to Fig. L The scattering by a mesh node causes the unit

time delay At.

Fig. 2 shows an example of a spttial domain within a TLM mesh. This spatiai

domain is specified by a given set of mesh four-ports. A spatial domain D

in our TLM mesh may be specified by projection operators. We define the
domain projection operator PD> which projects a state vector Jo > on the

domain D: P'o (a) = ja) (l&)

This projection operator may be written in dyadic notation as the sum of the

projection operators on the nodes belonging to the domain D:

PD Ik;m, n)(k;m, nl (16)
.EDnED

In the same way, we define the inner domain projection operator P, and the

boundary projection operator by

P ta) = 1a), (17)

Peta) = 1o)B (18)

with

P) = PIPD (19)

Pa: POPD (20)

PB + PI = PD (21)



i... ..............

Figure 2: A spatial domain within the TLM mesh,

The inner domain projection operator projects the circuit space Nf on the inner
ports of the domain D. Since the projection operator P and the connection
operator r are commuting, i.e.

1P,, ri = 0 (22)

we obtain

1b, = r a), (23)

Applying diakoptics to TLM structures requires the computation of the wave
pulses scattered at the domain boundaries. The initial conditions or boundary

conditions are given by the wave pulses incident on the boundary ports. We
apply the projection operators PtPs, and PBPD in order to seperate the field

states is) and Ib) into the inner field states Ia), and 1b), and the boundary states
iG)B and lb)B. From eq. (14) we obtain

16)8 = T SBB la)s + T SB, 1a), (24)

[b), = T SIB Ia)a + T Si [a),

SBB = PB S PB
SBI = PB s P, (2)

SIB = PI S PB
S11 = PI S PI
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Figure 3: The inner ports of a TLM domain.

Using eqs. (23) and (24), we eliminate the inner domain states [a), and 1b),
and obtain

Ib)B = [TS nB + :Sz ( -rIs.)" OsB] 1.), (26)

This is the relation between the incident and scattered boundary state. It
describes the evolution of the boundary field state without knowledge of the
inner field state. It has to be considered that the operator equation (26)
is nonlocal with respect to both space and time. We expand the operator

(1 - rTSII)- into a Neumann series 110,11) and obtain

(1 - rTsI)- = 74 (Sn) (27)
t.0

Inserting this into eq. (26) yields the boundary state evolution equation

Ib)B=GIa)B (28)

with the boundary field evolution operator G given by

G = [TSB + SBl ( +1 (rS)) rs.I (29)

The boundary field operator G gives the relation between the boundary state
vector [a)B representing the wave pulses incident on the boundary and the
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boundary state vector 1b)B representing the wave pulses reflected through the
boundary. Eq. (28) is the general formulation of the boundary element problem

4 in the Hilbert space. Since the Neumann series is an infinite geometrical series
in space- and time-shift operators, the boundary field operator is nonlocal
with respect to space and time.

4 The Discrete Two-dimensional Green's

function

As an example, we derive the discrete Green's function for the half-plane. The
discrete Green's function for the half-plane is given by the projection of the
boundary state evolution operator equation (28) onto configuration space for
a point-like initial state in}.E The half-plane (Fig. 4) is defined by th, domain
projection operator Po given by

PD = E E 1k;ss,sn) (k;m, nj (30)

As in the shunt TLM-model, voltage wave amplitudes instead of total voltages

are used, a new Green's function for wave amplitudes has to be defined. For
a boundary problem, the Green's function in discrete formulation is given by
the convolution

k bnfk Gn * k on, (31)

where k an is the column vector of the incident impulse functions at the time
kAt and at the boundary node number n. k ba is the column vector of the

scattered output wave impulses at the time kAt and at the n"A boundary
node. k G. is the discrete Green's function for an arbitrary boundary with
n boundary nodes. It describes the relation between the incident ant the

scattered wave amplitudes in the boundary ports.

For the half-plane, the boundary is given by m i 0 and n =

-oo... ,-1,0,1,...oo. Thereforeeq. (31) yields

ab.= a-a' G..L, a a,' (32)
n1=- V'-
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Figure 4: The homogeneous two-dimensiona half-space.

The boundary state evolution equation (28) may be expressed by the discrete

Green's function, eq. (32), via

lb)B = G Ia)B (33)

where the boundary field evolution operator is given by

G 0 0 0 0 E .,G..,Ik;O,n)(k';o,n'I (34)0= 0 0 0 ,=®k-

0000]

In order to calculate the Green's function for the boundary of the half-plane,
we start from an impulsive excitation at n' = 0, P? = 0 given by

la)Bk.O = 111 0;0,0) (35)

L0j4

Mapping eqs. (28) with (29) ard (35), (33) with (34) and (35) to configuration
space by multiplying both equations from the left side with (k; 0, ni, we obtain

-
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a system of partial difference equations which can be solved by transforming

it to frequency- and momentum-space.

We obtain an algebraic expression for the Green's function

jG. = 5a,.+s - , + a+s. -

2 1 1 .
+ r 8 k-i-jIn+2- - I k-l-l-

.o4

+ g

'.+ gk-2-j-3 (36)

with n =0, 1,2,.,,. oo; k = 2,3,4,.,..oo and

AG_,.= G, (37)

for n < 0.

The function J, is given by

a 11k-i ,+ , -2s)

kI. = 2E E -.s 3+,( 2

.-- , i 2 '() (I Is
x2r) (k -2+r )(21 -4., + 2r (8

X(r ( r -l 2s+r) (38)

In Fig. 4, k G, is depicted for n =-9..., -1,0,,... 9; k = 1,2,... 10.
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kG.

Figure 5: Values of the Green's function
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l- Solving eigenvalue and steady-state problems
using time-domain models

Gunnar Nitsche
Lehrstuhl f'ir Nachrichtentechnik

Ruhr-Universitgt lochum
D-4630 Bochum 1

Germany

Time-domain modelling of partial differential equations has becomepopular in the last years for several reasons. The detailed time-domain
behaviour, however, is often not of primary concern, but one is more Inter-
ested in the eigenvalues and eigenfunctions of a system or its steady-stateresponse to a sinusoidal excitation. These kinds of problems are usually
approached by methods based on the discrete Fourier transform.

A new alternative approach to efficiently compute the low frequency
eigeumodes of a time-domain model approximating a physical system will
be proposed. The method is based on principles known from digital signalprocessing, in particular from parametric spectrum estimation, so it is not
burprising that the achievable accuracy is much higher than the accuracy
of the non-parametric Fourier transform approach. The algorithm works in
the geueral lossy case even for a very large number of unknowns and can
easily be extcnded to calculate steady-state solutions for several different
frequencies simultaneously.
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-~ Restaurant Guide
Near the TU there are some restaurants and coffee-houses were you can go to. Some
of these are listed below. The number is related to the numbers on the map. So you
can easily find your location.

1. CANTON chzeese restaurant, Theresienstr. 49

2. BEI MARIO pizzeria, italian restaurant, Luisenstr.

3. BELLA ITALIA pizzeria, italian restaurant, Tsirkenstr.

4. HIMN Vietnamese food, Schellingstr. 91

5. CAFE ALTSCH WADING coffee house, bistro, Schellingstr.

6. WEINSCHATULLE restaurant, Theresienstr.

7. MC DONALDS fast food, Augustenstr.
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On thursday evening there is a social event consisting of a Song Recital with Piano
and dinner for all workshop participants at the restaurant "Seehaus", Englischer
Garten (see the map below). We recommend you to reach the Seehaus by car or taxi
coming from the Mittlerer Ring.

Me ~~~

- -, I--..g * _____________
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