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ABSTRACT

Discrete orthogonal functions are used in adaptive system

identification algorithms. Adaptive filters are realized by

forming linear combinations of discrete Legendre, Laguerre,

and Jacobi polynomials, and backward prediction-error

polynomials from a lattice structure. The adaptive filter

weights are updated using the LMS algorithm. FIR and IIR

bandpass filters are modeled using the adaptive filters, and

performance comparisons are made.
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I. INTRODUCTION

A. ADAPTIVE SYSTEM IDENTIFICATION ALGORITHMS

Adaptive FIR and IIR digital filters are widely used in

system identification algorithms. The extensive use of IIR

adaptive filters has been hindered by several problems:

(1) Instabilities encountered in their design; (2) Local

minimums in the mean square error surface; and (3) Slow

convergence rates of the adaptive filter weights [Ref. 1].

Although FIR adaptive filters do not suffer from the problems

that ail IIR adaptive filters, they typically require much

larger orders to effectively model a given system.

Using orthogonal functions in system identification

algorithms was first employed by Lee in 1932 [Ref. 2].

Adaptive filters based on orthogonal functions have several

advantages, namely, they are always stable and have an

infinite impulse response, making their use ideal for modeling

systems with long impulse responses. Additionally, the FIR

adaptive filter weights converge faster than those associated

with an IIR filter structure due to the unimodal mean square

error surface. The filter is realized by forming linear

combinations of discrete orthogonal functions, which are

weighted to minimize the mean square error of the

approximation.

1



B. THESIS OUTLINE

A brief description of contents of the remaining chapters

follows. Chapter II introduces the theory of orthogonal

functions and their use in modeling linear systems. The

definitions of the orthogonal functions included in this

research are given. Chapter III develops the actual adaptive

filter model that utilizes the orthogonal functions for system

identification. The derivation of the filter weights is

discussed in detail; significant development of the discrete

orthogonal functions is shown. Chapter IV presents the

simulation results of the various filters developed in chapter

III and comparisons are made between Legendre, Laguerre,

Jacobi, and backward prediction-error adaptive digital

filters. Chapter V presents conclusions including limitations

of the orthogonal polynomial filters and recommendations for

further research.
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II. ORTHOGONAL FUNCTIONS

A. THEORY OF ORTHOGONAL FUNCTIONS

Let {w1 (C), w2(r), ... } denote a set of real and continuous

functions. Then the system of functions is said to be

orthogo,al in the range (a,b) if

k2 for m = n
a

where k, is called the norm of the corresponding function

[Ref. 3]. The orthogonal set {w,(r)} is considered complete

if either of the following conditions is true [Ref. 2]:

(1) There exists no function x(r) with

b

fx ( r ) du < (2)
a

such that

b

f x(T)w-(T) dT = 0 , n = 0, 1, 2, (3)
a

(2) For any piecewise continuous function h(r) with

b

f ht ( ) dT < (4)
a

and an E > 0, there exists an integer N and a polynomial

3



N
E 'W'(r) (s)

n=0

such that

bN

f Ih(r) - c Cnw j ( 2 dr < e (6)

a n=0

Any stable causal system, h(T), satisfies (4) in the

interval [0, o) and can be represented by a complete set of

orthogonal functions [Ref. 2]. Letting {w,(T)} represent a

complete set of orthogonal functions in the interval [0,oz),

then

h(T) : I CnW(t) for 0 ! t (7)

l0 else

where the cn represent the expansion coefficients.

Albeit impossible to form an infinite sum of orthogonal

functions, it is practical to form a finite sum of orthogonal

functions with an accompanying error, E, as given by (6). It

is therefore possible to form an approximate synthesis of a

linear system, h(T), by forming finite linear combinations of

orthogonal functions:

I N: C'' - for 0 r (8)
n=0
0 else

This, in itself, is not particularly significant, for

there are other families of functions that are not orthogonal

4



that satisfy (8). A Taylor series expansion, for instance, is

never orthogonal on any interval, but it is often effective

when approximating functions [Ref. 3]. Orthogonal functions,

however, have several desirable characteristics that make

their use uniquely advantageous when synthesizing linear

systems.

Whereas (8) is based on a continuous set of orthogonal

functions, it is also possible to form an approximate

synthesis of a discrete linear system, h(k), such that

N

E(k)= crw (k) , k= 0, 1, 2, .... (9)
n=0

where {wn(k)} represents a complete set of discrete orthogonal

functions, and the expansion coefficients, cn, are chosen to

minimize the mean square value of the approximation error.

B. CLASSICAL ORTHOGONAL POLYNOMIALS

The classical orthogonal polynomials form a subset of

orthogonal functions. The three classical orthogonal

polynomial families that are included in this research are the

Jacobi, Legendre, and Laguerre. Other families such as the

Chebyshev and Hermite were found to be unsuitable for linear

system synthesis using the methods described herein.

The Legendre polynomials, denoted by Pn(r) [Ref. 4], are

orthogonal on the interval [-l,1], and, in the form of (1),

their norm is given by

5



f Ip"(,E) 12 dr = 2 (10)
-1

The Jacobi polynomials, denoted by pn(a' )(r) [Ref. 4], are also

orthogonal on the interval [-1,1] and their norm is given by

1

f In (11)

21*0*1 r(n+a+l) P(n+p+l)
(2n+a+3+1) n! P(n+a+p+1)

Note that if a substitution is made into (11) with both a = 0

and 5 = 0, the result is equivalent to (10). Therefore, the

Legendre polynomials form a subset of the Jacobi polynomials.

Given the orthogonality interval of the Legendre and Jacobi

polynomials, [-1,1], it is not possible to make a direct

substitution of the polynomials into (7). The desired

orthogonality interval for synthesizing causal linear systems

is [0,co); thus, the orthogonality interval of the Jacobi and

Legendre polynomials must be shifted by means of a change of

variables. Details of this process are discussed in

chapter III.

The Laguerre polynomials, ln(r) [Ref. 2], are orthogonal

in the interval [0, -), making them more readily applied to the

synthesis of linear systems than Jacobi and Legendre

polynomials. Their norm is given by

6



f I 2 = 1 (12)

C. ORTHOGONALITY OF THE LATTICE PREDICTOR

Assuming a stationary input of random variables, each

stage of the lattice predictor is known to produce a sequence

of uncorrelated random variables in the form of the backward

prediction errors, {b0(k), b1(k), ...} [Ref. 3]. These

backward errors are orthogonal in the range [O,co) and,

therefore, well suited for synthesizing discrete linear

systems of the form

h (k) cnbn(k) for 0 k < (13)

0 else

The lattice filter structure is a manifestation of the

Gram-Schmidt orthogonalization procedure insofar as the

generation of the backward errors is concerned. The forward

prediction errors associated with prediction-error filters are

also produced by each stage of the lattice filter. However,

their application to linear system synthesis is not germane,

for the forward errors are correlated and, therefore, not

orthogonal [Ref. 3].

7



III. SYSTEM IDENTIFICATION AND MODELING

A. ORTHOGONAL ADAPTIVE FILTER MODEL

Consider a system where x(k) denotes an input to both a

causal linear system, h(k), and an adaptive filter model, h(k)

as shown in Figure 3.1. Let d(k) be the desired output of the

system and y(k) be the output of the adaptive filter.

x(k) d(k)
System

e(k)

Adaptive
Filter y(k)

Figure 3.1: System identification configuration

Following the derivation in (Ref. 1], the output error is

given by

8



e(k) = d(k) - y(k)
k (14)

= d(k) - . x(i) S(k - i)

From (9), we write

k N

e(k) = d(k) - x(i) CnWn(k - i) (15)

where {wn(k)} represents a complete set of discrete orthogonal

functions, and the cn are the expansion coefficients.

Rearranging the summations in (15) yields

N k

e(k) = d(k) - c x(i)w,(k - i) (16)

And therefore,

e(k) = d(k) - cu,(k) = d(k)-cru(k) , (17)

where

C = [c !, c, .. ,c 
,  (18)

u k) = [u0(k), u (k) , u.(k)1 , (19)

and

k

u% (k) = U x(i)w (k - i) (20)

Figure 3.2 depicts the generic orthogonal function model.

We consider each Q,(z) to be a black box that has two outputs

when excited by an impulse: One is an orthogonal function

9



Un(k), and the other is a connection to the next black box.

For t'ie purposes of this thesis, we limit our investigation to

Legendre, Jacobi, Laguerre, and backward prediction-error

functions to model systems.

x(k)
,Q'(z) .Q,(z) Q.4(z)

u (k) u (k) u (k)
N

C c C
C 1 N

e(k) y(k) d (k)

Figure 3.2: Generic adaptive filter configuration for
oithogonal functions.

We wish to find a set of expansion coefficients to

minimize the mean square error of (17). Using the LMS

algorithm, we take e2(k) to be an estimate of the

instantaneous mean square error [Ref. 6]. To obtain the

minimum mean square error, we find the corresponding gradient

estimate by taking the derivatives of e2(k) with respect to

the expansion coefficients:

10



V(k) ae (k) - 2e(k) ae(k) 2e(k) u(k) (21)ac ac

Applying the method of steepest descent, the LMS algorithm

updates the expansion coefficients using

c(k+!) = c(k) + gj(-V) , (22)

where p is a constant that regulates the convergence rate.

Substituting (21) into (22), we obtain the LMS algorithm:

c(k+1) = c(k) + 2pe(k)u(k) (23)

The expansion coefficients of vector c converge in the

mean when [Ref. 61

o < 1 (24)
:u(k)

All simulations in this thesis set u according to the

range specified in (24). The expansion coefficients are

updated after each iteration in accordance with (23).

Convergence rates for the expansion coefficients vary

depending on model type and order.

A. LEGENDRE POLYNOMIALS

Recall from chapter II that continuous Legendre

polynomials form a complete set of orthogonal functions in the

range [-1,1] and are defined as

11



f p, (r)p() dc = 2n+ 1 .orm n (25)
- 0 for m n

Following the derivation given by Lee [Ref. 2], a change

of variable is made to transform the orthogonality range for

the Legendre polynomials from [-1,1] to [O,co), which is the

desired range to correspond to the causal time axis. Letting

the first change of variable be

= 2y - 1 (26)

causes (25) to become

12 formn
2 f P,(2y - l)pn(2Y - 1) dy = 2n + ! (27)

0 for III n

Letting the second change of variable in (27) be

y - (28)

where C is any positive real constant, yields

f Ce.-cp,(2Ce 0cc - -)p (2 c 1) d 1)
1 form = n(29)

0n for m = n

Now, defining

v, (t : v'C e' -'/2 p (2e -' -e) (30)

and substituting into (29) gives

12



( 1 for m n
f Vm(t)Vn(t) dt= 2n+ 1 (31)

0[ 0 for m n

Since (31) satisfies the definition of orthogonality given by

(1), then the set {v,(t)}, a shifted version of the Legendre

polynomials, is an orthogonal set defined in the desired range

[0, o). From (7), h(r) can now be represented by the series

given by

h(C) f c'n (r) for 0 < r (32)

else,

where, again, c, are the expansion coefficients chosen to

minimize the mean square error, and {vn(t)} is the orthogonal

polynomial set based on the shifted Legendre polynomials.

In order to realize a digital network, it is necessary to

generate the shifted discrete Legendre polynomials based on

the continuous set {v,(t)}. It is convenient to note the

first few terms of the Legendre polynomials [Ref. 7], {p,(r)}:

PI(T) -3 (33)

Substituting (33) into (30), the first few terms of {v (t)}

are

V (.
v. ( t = - + 2e-<t)e (34)

' (. C - e + 6e )e 

13



Taking the Laplace transform of (34) generates the first few

terms of the shifted Legendre polynomials in the frequency

domain, which are given by

V( S) = (s + C/2)

V1(s) (s - C/2) (35)
(s + C/2) (s + 3C/2)

(s - C/2) (s - 3C/2)
72(S) "' (S + C/2) (s + 3C/2) (s + 5C/'2)

From (35), it is apparent that the general expression for

{V'(s) } is

V(S) = A_ (s - C,2) (s - 3C/2) (s - (2n - !)C/2) (36)
(S + 02) (S + 3Ci2). (s + (2n + 1)C'2)

for n = 0, 1, 2, ..., where

= 2n I C (37)

Of the several techniques available for performing an

analog to digital filter transformation, the matched Z-

transform is best suited for our purposes. This technique

preserves the ability to express the digital frequency terms,

{V,(z)}, in a closed form as in (36) and, more importantly,

allows for a filter structure that is easily synthesized. The

matched Z-transform maps the poles and zeros of {V,(s)} into

those of {Vn(z)} through the substitution

(s + a) - (1 - e -a. z -1 ) (38)

where T represents the sampling period of the discrete-time

filter [Ref. 8.

14



Accordingly, performing an analog to digital

transformation on (36) yields the first three terms of

{V,(z) }:

Vo (z) = Vr_ _

S --C12 z 
-I

v, (z) = VT3 (1 - eC/2Z-1) (39)
(( - e-C/2z-1) (I - e- 3 C/2z) ( )

V2 (z) = (2. - eC/2z - ) (1 - e3C/2z -1)
V2 (Z) (l-e-C/Iz-1) (I-e-3C/2z-1) (l-e-SC/2z-1)

As noted, the matched Z-transform preserves the ability to

express the terms of {V,(z)} in the closed form

A n  (1 - eC' 2z -1) (1 - e3C/2z-!)... (1 - e(2-1)C/2z-1) (40)

(1 - e-CI2z - ) (1 - e.3C2z-).. (I - e-( 2 "3/)C/ 2 z - )

for n = 0, 1, 2, ... , where

A. = V(2n + )C (41)

The synthesis of a discrete system using shifted Legendre

polynomials is accomplished by generating each Legendre

polynomial using its corresponding transfer function in (40).

Accordingly, substituting each Q,(z) shown in Figure 3.3 into

the filter structure shown in Figure 3.2 provides the

necessary filter structure to generate each polynomial.

C. JACOBI POLYNOMIALS

The Legendre polynomials form a subset of the much larger

class of Jacobi polynomials. Like the Legendre polynomials,

the Jacobi polynomials form a complete set of orthogonal

15



Q (z)

-- e[n---l IZ-Z

Figure 3.3: Module of Legendre polynomial adaptive filter.

functions in the range [-1,1] and, therefore, require a

transformation to shift the orthogonality range to [0,o).

The Jacobi polynomials, 1p,)(r)}, are defined as

(2-k(I p' (r)p(') d = for m = n (42)
A 0 f or m n

where

kn= 2m*P' Fn-a*--) r(n+P+l) (3
(2n,++ +l) r2! r(n+(x+p+!) (3

Letting the first change of variable be

= 2y -: (44)

causes (42) to become

16



f (2 - 2y) (2y) p (2y - I) Pn'p (2y - 1) dy
o (45)

k 2 if m = n

=0 if ut n

Letting the second change of variable in (45) be

v = e -  , (46)

where C is any positive real constant, yields

2 Ce- (2 - 2e -) (2e-0 t) Pm p (2e - 1)

(47)

X >. ' (2eC _ i) dt = k2 for m = nX d 0 form # n

Now, defining

Vla' ( -) -C.al2-c' (48)
v '  ( '--- 2C 20" '  (2 - 2- -  pJ[,3 (2eCt 1) (8)

and substituting into (47) gives

f ('t(t)v,'"' )(t) dt n form n (49)
0 for m t n

where k 2 is defined as in (43). Since (49) satisfies the

definition of orthogonality given in (1), the shifted Jacobi

polynomials, {v (or')(t)}, form an orthogonal set of polynomials

in the range [0,c). From (7) , any causal system, h(t), may

be represented by

17



Scv ' ) for 0 (o
h(t) n V t (50)

0 else

In order to synthesize discrete linear systems, it is

necessary to generate the shifted discrete Jacobi polynomials.

Let the derivation of the shifted discrete Jacobi polynomials

begin by listing the first few terms of the continuous Jacobi

polynomials:

(a + I () 1 )+ +2)(t- )

2

P r) .(a+!) (a+2) + I(a10±3) (a+2)(tl) (51)
2 2

+ I-( +P+3) (a+0+4)(t_1)2)
8

Substituting (51) into (48) yields the first few terms of

{v n ' (t) }:

Vo ' 5 (t) = /Z-' 2 0.2 e -c (P1) t/2 (2 - 2e-Ct)a/2

v1a' (t) = 2C 20'2 ec( . i)t2 (2 - 2e-ct)/2

X [i+l) + (a+ +2) (2-o  -2)]
2

V ".P ( t) = 2 P 2 /' e-C(. - t'2 (2 - 2e-ct)a/2 (52)

2

+ - (a+0+3) ( (a+2) (2e -'t  - 2)2

+ - (a+0+3) (a+0+4) (2e - t - 2)2]8

We desire to obtain {Vn )(s)}, the frequency domain terms

of the shifted Jacobi polynomials; however, it is not possible

to form a general expression for each term of {Vn(O'n)(s)}

because the Laplace transform of (52) yields entirely

18



different results depending on the value of a. Therefore,

without losing the generality, we make the derivation specific

to a = 2.0 for the remainder of this development.

Substituting a = 2.0 into (52) and taking its Laplace

transform, we obtain the first few terms of {Vn(2, )(s

V '  (s) = K0________________
(s + c(P13 ) ) (s + C(P+3)

2 2
12 ," (s) = K. (s - (C+i)/6)

(s + C(P+I) ) (s + C(3+3) ) (s + C(P+5))
2 2 2

V2 z 'p (S) K. [12s 2  - (41-8) Cs - (P32 *+E 5) C2 ]

(s+ C(P+1) )(s+ C(P+3)) (s+ C(P5) ) (s+ C(0+7)
2 2 2 2

(53)

where the Kn are constants.

Unlike the Legendre polynomials, there is no apparent

closed form expression to represent the terms of {Vn(2,A)(s)}.

The denominator terms can be put into a closed form

expression, but not the numerator terms. This is an important

concern, for it is carried over to the frequency terms of the

discrete shifted Jacobi polynomials, {Vn(2')(z)}.

Using the matched Z-transform method to perform an

analog to digital transformation on the first two terms in

(53) produces the first two terms of {Vn(2' )(z):

V- - az-) (1 - aKz-)
zK.. ( - e 1'/z - ) (54)

-. - a zC) (1 - a z ) (1 - a z - )

where
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-C(P-2n.l)

an = e 2 , (55)

and the Knn are constants.

Without a closed form representation of the terms in (54),

the problem of generating the discrete Jacobi polynomials is

considerably more demanding than that of the Legendre

polynomials. Whereas the transfer function needed to generate

each of the shifted Legendre polynomials is known (see (40)),

the transfer function needed to generate each of the shifted

Jacobi polynomials must be explicitly derived. Due to the

complexity of the expressions involved , it was necessary to

use a symbolic software program called MACSYMA Lo generate

both the terms of {vn(2,B)(t)} and {Vn(2'R)(s)}. The terms of

{Vn (2,)(z)} could then be found by transformation.

Unfortunately, only the first 15 terms of {Vn(0'r)(z)j were

derived with a = 2.0 and a = 4.0 due to the large size of the

expressions involved.

D. LAGUERRE POLYNOMIALS

The Laguerre polynomials, {ln(t)}, form a complete set of

orthogonal functions in the range [O, ) and are defined by

I ( for m n (56f 1m(t)1,t) dt = or rmn (56)

Laguerre polynomials are defined over the desired

orthogonality range, [0,o ); thus, we can immediately proceed
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with the derivation of the discrete Laguerre polynomials that

are needed to synthesize discrete linear systems. The first

few terms of {ln(t) } are:

20(t) = 2C -ct
1. (t) = v' (2Ct - 1) e - c t  (57)

12 (t) = 2C-(2C2t 2 - 4Ct + 1)e - c '

where C is any positive real constant. Taking the Laplace

transform of (57), we have

L.(s) = V'2
(s + C)

L1 (s) =v (s - C)
(s + C)2  (58)

L.-(s) = (s - C)2(s + C) 3

Using the matched Z-transform technique to perform an analog

to digital transformation on (58) yields

L0 (z) = v/2- 1
(1 - e-cz-1)

L. (z) = V2 (1 - eCz - ' )  (59)
(I - e-cz - -) 2

L (z ) V 2_ (1 - eCz - ) 2

-eC Z-1) 3

The closed form general expression for the terms in (59) is

Lz) 2 (1 - ecz-l)n

(1 - ecz-)n* (60)

Notice that all zeros of (59) are located at z=ec , and all

poles are located at z=e -c. The synthesis of any linear system

using Laguerre polynomials is accomplished by generating each

Laguerre polynomial using its corresponding transfer function
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given in (60). Accordingly, substituting each Qn(z) in Figure

3.4 into the structure shown in Figure 3.2 provides the

necessary filter structure to generate the polynomials.

Q (z)

__ _ ___ - 1e z i
L I - e -Cz -1

e- 'z-

Figure 3.4: Module of Laguerre polynomial adaptive filter.

E. LATTICE PREDICTOR

Let {b0(k), b,(k), ..., bN(k)} denote the first N+1

backward prediction errors associated with a backward

prediction error-filter. If x(k) is a stationary input of

random variables to a backward prediction-error filter, it can

be shown that the backward errors are orthogonal, that is,

Eb(k) b, (k)) k, for i= n (61)
10 for m n,

where E[] is the expectation operator. Following the proof

given by Haykin (Ref. 5], we write
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m
bm(k) = a (m- 1) x(k - 1) , (62)

1=0

where am(l), 1 = 0, 1, ... , m, are the coefficients of a

prediction-error filter of order m. Substituting (62) into

(61) yields

Im n 1
E[b ,(k) bn(k)] E 1E 7 a,(m - 2) a,(n - p) x(k - I) x(k - p)

L1=0 p=O
S n

a ( n, - l)an(n -p) Etx(k - 1) x(k -p)
1=0 p:c
A n

E : am (m - 2) an(n - p)rx(p - 2)
I=0 p=o

(63)

where r,(p-i) denotes the correlation function. The normal

equations for a backward prediction-error filter are given by

[Ref. 5]

(.2
E a,(n - p) rx(p - 2) = n for =n (64)
P=,, 0 for I n

Substituting (64) into (65), we find

E[b,(k) br(k)] {k2 form n (65)
iofor m n

A lattice predictor structure is commonly used to generate

the backward errors. The lattice structure shown in Figure

3.5 utilizes the backward errors in an adaptive filter. Let

the transfer function needed to generate each {b,(k)} be

denoted by
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An(Z) (Z) (66)

X(z)

By comparing Figure 3.5 to Figure 3.2 we note that An(z) has

a definite relationship to Qn(Z). The exact relationship

could be found by evaluating each An(Z) using the signal flow

graph in Figure 3.5. Furthermore, it is apparent that

Un(k) = b,(k), and, thus, the backward prediction-errors could

be said to form a family of orthogonal polynomials. The

synthesis of a linear system is accomplished by forming linear

combinations of the backward prediction-error polynomials.

x (k) .

Z -1  z - . - .. -1 .. .

bo W) b Wk bn_ 1(k) b Nk)
N

C C C C
0 1 N-I N

S y (k)

Figure 3.5: Lattice predictor adaptive filter.

24



IV. SIMULATION RESULTS

A. FIR BANDPASS FILTER SIMULATIONS

For the purpose of evaluating the FIR system modeling

performance of the orthogonal polynomials, two bandpass FIR

filters were chosen as the systems to be identified. The FIR

filters were designed for filter orders of 22 and 71, with

cutoff frequencies of 0.1 and 0.2 (fraction of sampling

frequency). Each filter was excited by a zero-mean Gaussian

white noise sequence with unit variance. The desired output

sequence was compared against the output of the orthogonal

network, and the error was used to update the expansion

coefficients.

Figure 4.1 shows the impulse and frequency response plots

of an 1 8th order Legendre adaptive digital filter (ADF) with

C = 0.11 when used to model a 2 2 nd order FIR system. Notice

that the Legendre filter has an infinite impulse response that

allows smaller order Legendre filters to model larger order

FIR systems. In this case an 1 8 th order model is used for a

22nd system, which is roughly an 18% savings in terms of the

filter order. Figure 4.2 shows a 52 nd order Legendre ADF model

with C = 0.075 used to model a 7 1st order FIR system, which is

approximately a 27% savings in terms of the filter order.
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0.4 _____Impulse Response: Desired Versus Legendre ADF

0 .2 r -. Legendre ADF

U 0 5 10 15 20 25 30 35 40 45 50

Sample

Frequency Response: Desired Versus Legendre ADF

Lx gendre A DF

0 0.05 U.1 M .5 0.25 0.3 0.35 0.4 0.45 0.5

Friction of Sampling Frequency

Figure 4.1: impulse and frequenc17 response of an 1 8 th order
Legendre ADF used to model a 22" order FIR filter.

Impulse Response: Desired Versus Legendre ADF
0.2

I ----- Legendre A.DF

< 0.1~

0

U 10 20 30 40 50 60 7;0

sample

Freqluency Response: Desired Versus Legendre ADF
20

-~ 0- U____ _Lgendre ADF

-40

0 0 05 .1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0,5

Fraction of Sampling Frequency

Figure 4.2: Impulse and frequency response of a 5 2 ,d order
Legendre ADF used to model a 7 1 3t order F:R filter.
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The convergence of the first six expansion coefficients

for the 18'h order Legendre ADF and the resulting filter output

error are shown in Figure 4.3. Notice that all coefficients

converge by the 2 0 0th sample, which implies we need an input

sequence that has approximately 10 times more samples than the

order of the system to be modeled.

(a) Convergence of Legendre ADF Coefficients0.2,

> 0.1

0 10 200 300 4O 5(00 600 700

Sample

(b) Legendre ADF Output ErrorlII

u 0 .5 
--

< 0.5

0 1O0 200 300 400 500 600 7u0

Sample

Figure 4.3: (a) Convergence of first six expansion
coefficients and (b) Output error for an 1 8'h order Legendre
ADF used to model the 2 2 nd order FIR system.

The performance results when an 18th order Laguerre ADF

with C = 0.98 is used to model the 2 2 nd order FIR system is

shown in Figure 4.4. The fact that the results are comparable

to the Legendre ADF is not surprising, for the transfer

functions needed to generate both sets of polynomials have the

same number of poles and zeros (see (40) and (60)). Likewise,
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Figure 4.5 shows the result cf a 5 2 d order model with C = 0.98

used to model the 7 1
st order FIR system.

0.4t Impulse Response: Desired Versus Laguerre ADF

- 0.2- ---- Laguerre ADF

0.2

0 5 10 15 20 25 30 35 40 45 50

Sample

Frequency Response: Desired Versus Laguerre ADF
20;-

,-40-;

.60 
L

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fraction of Sampling Frequency

Figure 4.4: Impulse and frequency response of an 18" order
Laguerre ADF used to model a 22nd order FIR filter.

We expect an improvement in performance when using the

Jacobi ADF, for the transfer function needed to generate each

Jacobi polynomial has more poles than that needed to generate

the Legendre and Laguerre polynomials. Exactly how many more

poles are realized depends on the value of a. In the case

where a = 4.0, two more poles are realized in each transfer

function that generates the corresponding Jacobi polynomial.

Figure 4.6 shows the results of a 15t order Jacobi simulation

with {C, a, 5} = {0.002, 4, 1000} when used to model the 2 2 d

order FIR system.
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0.4- Impulse Response: Desired Versus Laguerre ADF

S0.2[--- Laguerre ADF

-. 0 1,0 2'0 3'0 40 5'0 6 0 70

Sample

Frequency Response: Desired Versus Laguerre ADF
20

01 L Iaguerre ADF1

-60-
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fraction of Sampling Frequency

Figure 4.5. Impul.se and frequency response of an 5 2 "d order
Laguerre ADF used to model a 7 1 St order FIR filter.

0.4. -Impulse Response: Desired Versus Jacobi ADF

0 .2r --- Jacobi ADF

-0. 2 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0 3 16 15 20 25 30 35 40 45 50
Sample

0 -~______ Frequency Response: Desired Versus Jacobi ADF

- -N ---- Jacobi ADF

0 0 01 U15 02 0.25 0.3 0.35 0.4 0.45 0.5

Fraction of Sampling Frequency

Figure 4.6: Impulse and frequency response of a 15 th order
Jacobi ADF used to model a 2 2 nd order FIR filter.
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Note that the frequency response of the Jacobi model is

significantly better in the lower end of the spectrum than in

the higher end. This can be attributed to the fact that the

frequency response of each Jacobi polynomial has lowpass

characteristics; therefore, it is not surprising that a linear

combination of Jacobi polynomials would perform better when

modeling frequencies in the lower end of the frequency

spectrum. The same is true for both the Legendre and Laguerre

polynomials. The 7 1st order FIR system was not modeled using

the Jacobi polynomials due to the difficulties encountered in

determining the transfer functions of the higher order Jacobi

polynomials as discussed in part C of chapter III.

Unlike the Legendre, Laguerre, and Jacobi filters, the

lattice filter structure has a finite impulse response. The

15th order Lattice model produces comparable results to that

of the classical orthogonal polynomial models when used to

model the 2 2 d order FIR system (see Figure 4.7). Although the

lattice filter has a finite impulse response, Figure 4.8 shows

that a 52nd order lattice filter is able to effectively model

a 7 1st order FIR system.
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Impulse Response: Desired Versus Lattice ADF0.4,-

0.2- ----- Lattice ADF

0~ - 20 25-03-4-4

-0.2
0 5 10 15 20 25 30 35 50

Sample

Frequency Response: Desired Versus Lattice ADF

1"--- Lattice ADF

-/ . • ..

-500 _ _ _ _ __
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fraction of Sampling Frequency

Figure 4.7: Impulse and Frequency response of a 1 5th order
lattice ADF used to model a 22d order FIR filter.

Impulse Response: Desired Versus Lattice ADF
0.4

02- -/\. Lattice ADF

-~/-I

0 10 20 30 40 50 60 70

Sample

Frequency Response: Desired Versus Lattice ADF20 . . . .

--0-- Lattice ADF

= -40.

-60'-0 0.05 0.1 0.15 0.2 0.2 0.3 0.35 0.4 0.45 0.5
Fraction of Sampling Frequency

Figure 4.8: Impulse and frequency response of a 5 2nd order
lattice ADF used to model a 71'3t order FIR filter.
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B. IIR BANDPASS FILTER SIMULATIONS

As with the FIR filters, two Butterworth IIR bandpass

filters were designed to evaluate the IIR modeling performance

of the orthogonal ADFs. The IIR filters were designed for

filter orders of 7 and 31, with cutoff frequencies of 0.1 and

0.2. Since an Nth order IIR filter has 2N coefficients, our

aim is to use orthogonal function adaptive models with

approximately 2N coefficients. The results herein show the

lowest order ADF models that demonstrated satisfactory

performance.

Figure 4.9 shows a 1 5th order Legendre ADF with C = 0.075

used to model the 7th order Butterworth IIR filter. Notice

that the Legendre ADF does not model the low order IIR system

as well as the low order FIR system as shown in Figure 4.1.

The IIR filters are difficult to model because the structure

of the orthogonal adaptive filters more closely resembles a

FIR filter (see Figure 3.2).

Figure 4.10 shows a 6 5 th order Legendre ADF with C = 0.055

used to model the 3 1st order IIR filter. Notice that the

impulse response of the IIR filter is still significant beyond

140 samples, but the impulse response of the ADF does a poor

job of duplicating it.

As in the FIR case, the Laguerre ADF performance is

similar to that of the Legendre ADF. Figure 4.11 shows a 15th

order Laguerre ADF with C = 0.98 modeling a 7 th order IIR

filter. There is marked increase in performance when the
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0.4 Impulse Response: Desired Versus Legendre ADF

a 02-Legendre ADFI

0 5 10 15 20 25 30 35 40 45 50

Sample

20Frequency Response: Desired Versus Legendre ADF

0., Legendre ADF

-40-
.60-

0 o.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.-i 0.5

Fraction of Sampling Frequency

Figure 4.9: Impulse and freque ncy response of a 15 th order
Legendre ADF used to model a 7 th order hIR filter.

Impulse Response: Desired Versus Legendre ADF

O.2~ ----- ---- Legertdre ADF

01~

< .0.1-

-0. 20 40 60 80 100 120 1-40 160

Sample

20 Frequency Response: Desired Versus Legendre ADF

-i 0. Legendre ADF

-40--

-60-
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fraction of Sampling Frequency

Figure 4.10: Impulse and frequency response of a 6 5 th order
Legendre ADF use'd to model a 3 1 "t order IIR filter.
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order of the system being identified is increased.

Figure 4.12 shows that the 3 1 't order IIR system can be modeled

with a 6 5 th order ADF. The Laguerre ADF has better performance

characteristics than the Legendre ADF (see Figure 4.10) in

both the passband and the stopband.

Impulse Response: Desired Versus Laguerre ADF

0.41

0.2, Laguerre ADF.- q/ _ __ __ __ _

E 0 \-.\/ \

\-j-0.2 -.. .. . .. .

0 5 10 15 20 25 30 35 40 45 50
Sample

Frequency Response: Desired Versus Laguerre ADF

" 0 0- Laguerre ADF

" -2 0 -

-40

-60-
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fraction of Sampling Frequency

Figure 4.11: Impulse and frequency response of a 1 5th order
Laguerre ADF used to model a 7th order IIR filter.

A 15 th order Jacobi adaptive filter with parameters

{C,a,O} = {0.0015, 4.0, 925.0} was used to model the 7 th order

IIR filter, and the plots of the model's impulse and frequency

response are shown in Figure 4.13. It appears that the two

additional poles in the Jacobi transfer functions do not

significantly increase low order modeling performance when

compared to the Legendre and Laguerre polynomials. However,

there is a possibility that other parameter sets, {C, a, D1},

34
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0

0 Lagerr JacbiAD

-01

.40

0 .5 It) 15 2 25 3 35 4 45 5
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Frequlen Response: Desired Versus Jacobi ADF

~ 0 ---- Jacob jcbiAD

E

.0.

0 0.5 0 015 0.3.0 035 0.4 045 0
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Figure .13: rIule aepne fresiuenc Vrsonse ofa ore

Jacobi ~ ~ ~ ~ ~ ~ ~ acb AD sdt mdla 7 h re Rfitr
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do exist that would produce better results.

The 1 5th order lattice ADF simulation of the 7 th order IIR

filter is shown in Figure 4.14. As with the FIR case, the

lattice filter performs better when modeling smaller order

systems. Notice the poor performance of the 6 5th order lattice

ADF when modeling the 3 1st order IIR filter as shown in

Figure 4.15. The reason the lattice filter performs worse

Impulse Response: Desired Versus Lattice ADF0.4 , . -
U

0-2-  ----- Lattice ADF
o I / \ / .... _ _ _

F \ ' .,"-0 ------ ------ - - - ________----_____________

0 5 10 15 20 25 30 35 40 45 50

Sample

Frequency Response: Desired Versus Lattice ADF
20-- - "'

Lattice ADF

- --0 - -- --- - ----
-40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 -0.4 0.45 0.5

Fraction of Sampling Frequency

Figure 4.14: Impulse and frequency response of a 1 5th order
lattice ADF used to model a 7th order IIR filter.

than the classical orthogonal polynomial filters is that it

has a finite impulse response, which restricts it ability to

model higher order IIR systems.
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Impulse Response: Desired Versus Lattice ADF
0.2

S0.1 -- Lattice ADF

E I
-0.2 -

0 20 40 60 80 100 120 140 160
Sample

Frequency Response: Desired Versus Lattice ADF20, ,

---- Lattice ADF

- -20 . , . ,

-40;-

-600 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fraction of Sampling Frequency

Figure 4.15: Impulse and frequency response of a 6 5th order
lattice ADF used to model a 3 1st order IIR filter.
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V. CONCLUSIONS

There are several characteristics of orthogonal filter

models that make their use attractive. The classical

orthogonal function filters are particularly adept at modeling

systems with long impulse responses. FIR systems with large

orders (say, greater than 70) can generally be modeled with

25-30% fewer coefficients using the orthogonal ADFs. Large

order IIR systems can commonly be modeled with the same number

of coefficients that are in the IIR system. The research in

this thesis has only evaluated the pcrforr=nce of the

orthogonal ADF models when used to identify bandpass FIR and

hIR filters. It is quite possible that systems with strictly

lowpass or highpass characteristics could be modeled with

varying degrees of success. Although the orthogonal function

filter models have shown considerable promise, there are

several limitations that must be addressed; recommendations

for future research are also presented.

A. LIMITATIONS OF ORTHOGONAL FILTER MODEL

Previous research has shown that the convergence rate for

the LMS expansion coefficients is increased when using

orthogonal functions [Ref. 1]. Even so, the length of the

input sequence must be increased when the desired filter order

is increased in order to allow the expansion coefficients
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sufficient time to converge. Typically, the input sequence

must have a length that is 10 to 15 times greater than the

desired model order. This fact places limitations on the

orthogonal functioi mc'iels, for large order models require

long input sequences.

The selection of the positive real constant, C, will

significantly influence the performance of the Legendre,

Laguerre, and Jacobi adaptive filters. Furthermore, the

Jacobi polynomials have two additional parameters, a and B,

that must be chosen for any given simulation. There is

currently no known algorithm for optimizing the selection of

these parameters. Therefore, evaluating the performance of

the orthogonal function filters is largely a matter of trial

and error.

The theory for the classical orthogonal function filters

was derived in the continuous time and frequency domains. The

matched Z-transform technique was used to map the poles and

zeros of the orthogonal filters from the s-domain to the z-

domain. Unfortunately, the matched z-transform technique was

found to introduce errors concerning the orthogonality of the

filter output sequences. Other analog to digital

transformations appear no more attractive, for their use would

eliminate the ability to express the filter transfer functions

in a closed form.
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B. RECOMMENDATIONS FOR FURTHER RESEARCH

An algorithm to determine the selection of the positive

real constant, C, is needed to reduce the trail and error

nature of the classical orthogonal filter models. Further

exploration of the Jacobi polynomials is bound to yield

improved requits, for little is known concerning the effect of

altering a and 5. The application of orthogonal filter models

to a broad range of systems should be explored. Because the

classical orthogonal polynomials are lowpass in nature, their

application may be limited.
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