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ABSTRACT

Discrete orthogonal functions are used in adaptive system
identification algorithms. Adaptive filters are realized by
forming linear combinations of discrete Legendre, Laguerre,
and Jacobi polynomials, and backward prediction-error
polynomials from a lattice structure. The adaptive filter
weights are updated using the LMS algorithm. FIR and IIR
bandpass filters are modeled using the adaptive filters, and

performance comparisons are made.
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I. INTRODUCTION

A. ADAPTIVE SYSTEM IDENTIFICATION ALGORITHMS

Adaptive FIR and IIR digital filters are widely used in
system identification algorithms. The extensive use of IIR
adaptive filters has been hindered by several problems:
(1) Instabilities encountered in their design; (2) Local
minimums 1in the mean square error surface; and (3) Slow
convergence rates of the adaptive filter weights [Ref. 1].
Although FIR adaptive filters do not suffer from the problems
that ail IIR adaptive filters, they typically require much
larger orders to effectively model a given system.

Using orthogonal functions in system identification
algorithms was first employed by Lee in 1932 [Ref. 2].
Adaptive filters based on orthogonal functions have several
advantages, namely, they are always stable and have an
infinite impulse response, making their use ideal for modeling
systems with long impulse responses. Additionally, the FIR
adaptive filter weights converge faster than those associated
with an IIR filter structure due to the unimodal mean square
error surface. The filter is realized by forming linear
combinations of discrete orthogonal functions, which are
weighted to minimize the mean square error of the

approximation.




B. THESIS OUTLINE

A brief description of contents of the remaining chapters
follows. Chapter II introduces the theory of orthogonal
functions and their use in modeling linear systems. The
definitions of the orthogonal functions included in this
research are given. Chapter III develops the actual adaptive
filter model that utilizes the orthogonal functions for system
identification. The derivation of the filter weights is
discussed in detail; significant development of the discrete
orthogonal functions 1is shown. Chapter IV presents the
simulation results of the various filters developed in chapter
ITII and comparisons are made between Legendre, Laguerre,
Jacobi, and Dbackward prediction-error adaptive digital
filters. Chapter V presents conclusions including limitations
of the orthogonal polynomial filters and recommendations for

further research.




II. ORTHOGONAL FUNCTIONS

A. THEORY OF ORTHOGONAL FUNCTIONS
Let {w,(T), w,(T), ...} denote a set of real and continuous
functions. Then the system of functions is said to be

orthogonal in the range (a,b) if

b 0 for m#+ n
]‘uh(r)u;(r) dt={41: forme=n (1)

where k,  is called the norm of the corresponding function
[Ref. 3)]. The orthogonal set {w (T)} is considered complete
if either of the following conditions is true [Ref. 2]:

(1) There exists no function x(t) with
E
[ %0 an <= (2)
a
such that
b
f x(t)w,(t) dt =0 , n=0, 2,2, ... . (3)
(2) For any piecewise continuous function h(t) with
b
[ Béte) ar < = (4)
a

and an € > 0, there exists an integer N and a polynomial




Y cuw, (1) (5)
n=0
such that
b N
[ 1) =¥ cuto) Par<ce . (6)
n=0

a

Any stable causal system, h(r), satisfies (4) in the
interval [0, ®) and can be represented by a complete set of
orthogonal functions [Ref. 2]. Letting {w_ (7)} represent a
complete set of orthogonal functions in the interval [0,%),

then

h(1) = nﬁ; c,Wo(t) for 0 <1 <o (7)
else ,
where the c_  represent the expansion coefficients.

Albeit impossible to form an infinite sum of orthogonal
functions, it is practical to form a finite sum of orthogonal
functions with an accompanying error, €, as given by (6). It
is therefore possible to form an approximate synthesis of a
linear system, h(r), by forming finite linear combinations of
orthogonal functions:

CWo(1) for 0 £ 1 g (8)

o

A

Hi
M=

o>
"
[a)

else

This, in itself, 1is not particularly significant, for

there are other families of functions that are not orthogonal




that satisfy (8). A Taylor series expansion, for instance, is
never orthogonal on any interval, but it is often effective
when approximating functions [Ref. 3). Orthogonal functions,
however, have several desirable characteristics that make
their use uniquely advantageous when synthesizing linear
systems.

Whereas (8) 1s based on a continuous set of orthogonal
functions, it 1s also possible to form an approximate

synthesis of a discrete linear system, h(k), such that
Bk =Y cw (k) , k=0,1,2,..., (9)

where {w_(k)} represents a complete set of discrete orthogonal
functions, and the expansion coefficients, c,, are chosen to

minimize the mean square value of the approximation error.

B. CLASSICAL ORTHOGONAL POLYNOMIALS

The classical orthogonal polynomials form a subset of
orthogonal functions. The three <classical orthogonal
polynomial families that are included in this research are the
Jacobi, Legendre, and Laguerre. Other families such as the
Chebyshev and Hermite were found to be unsuitable for linear
system synthesis using the methods described herein.

The Legendre polynomials, denoted by p (t) [Ref. 4], are
orthogonal on the interval [-1,1], and, in the form of (1),

their norm is given by




1
2 _ 2
:[\pn(t) *dr = 2 . (10)

The Jacobi polynomials, denoted by p ‘““%(t) [Ref. 4], are also

orthogonal on the interval [-1,1] and their norm is given by

1
j' (1 -1+ 0P | p P ()2 dr
1 (11)

2¢*F1 D(n+a+1) T'(n+P+1)
(2n+a+B+1) n! D(n+a+Pf+1)

Note that if a substitution is made into (11) with both a = 0
and B = 0, the result is equivalent to (10). Therefore, the
Legendre polynomials form a subset of the Jacobi polynomials.
Given the orthogonality interval of the Legendre and Jacobi
polynomials, [-1,1], it 1is not possible to make a direct
substitution of the polynomials into (7). The desired
orthogonality interval for synthesizing causal linear systems
is [0,o); thus, the orthogonality interval of the Jacobi and
Legendre polynomials must be shifted by means of a change of
variables. Details of this process are discussed 1in
chapter III.

The Laguerre polynomials, 1 (t) [Ref. 2], are orthogonal
in the interval [0,»), making them more readily applied to the
synthesis of linear systems than Jacobi and Legendre

polynomials. Their norm is given by




[ 1100 [Par=1 . (12)

C. ORTHOGONALITY OF THE LATTICE PREDICTOR

Assuming a stationary input of random variables, each
stage of the lattice predictor is known to produce a sequence
of uncorrelated random variables in the form of the backward
prediction errors, {by(k), by(k), ...} [Ref. 37]. These
backward errors are orthogonal in the range ([0,®) and,
therefore, well suited for synthesizing discrete linear

systems of the form

o

B(k) = 1), Cabn(k) for 0 < k< (13)

nEo

0 else

The lattice filter structure is a manifestation of the
Gram-Schmidt orthogonalization procedure insofar as the
generation of the backward errors is concerned. The forward
prediction errors associated with prediction-error filters are
also produced by each stage of the lattice filter. However,
their application to linear system synthesis is not germane,
for the forward errors are correlated and, therefore, not

orthogonal [Ref. 3].




III. SYSTEM IDENTIFICATION AND MODELING

A. ORTHOGONAL ADAPTIVE FILTER MODEL

Consider a system where x(k) denotes an input to both a
causal linear system, h(k), and an adaptive filter model, h(k)
as shown in Figure 3.1. Let d(k) be the desired output of the

system and y(k) be the output of the adaptive filter.

Adaptive
Filter v (k)

Figure 3.1: System identification configuration

Following the derivation in [Ref. 1], the output error is

given by




e(k) = d(k) - y;k)
- dk) - % x(i) Bk - 1) (14)
From (9), we write
k N
e(k) =d(k) - Y x(i) Y cw (k-1 , (15)
e m n=0

where {w_(k)} represents a complete set of discrete orthogonal
functions, and the ¢ are the expansion coefficients.

n

Rearranging the summations in (15) yields

N k
e(k) =d(k) - Y c, Y x(Dw (k-1 . (16)
n=Q

1=-o0

And therefore,

.
e(k) = d(k) - Y cu, (k) =d(k -cTulk) , (17)
n=0
where
c=l[cy c.o v 17, (18)
uk) = [ugtk), u (k)y, —, uy(x)17, (19)
and
k
u (k) = Y x(DHw (k- 1) . (20)

Figure 3.2 depicts the generic orthogonal function model.
We consider each Q (z) to be a black box that has two outputs

when excited by an impulse: One is an orthogonal function




u,(k), and the other is a connection to the next black box.
For the purposes of this thesis, we limit our investigation to
Legendre, Jacobi, Laguerre, and backward prediction-error

functions to model systems.

x (k)
Q. (2z) 0, (z) < Qy (2)
u_ (k) u, (k) u (k)
o S c c
¢ 1 N
. k
e (k) ERA d(x)
Figure 3.2: Generic adaptive filter configuration for

orthogonal functions.

We wish to find a set of expansion coefficients to
minimize the mean square error of (17). Using the LMS
algorithm, we take e?(k) to be an estimate of the
instantaneous mean square error [Ref. 6]. To obtair the
minimum mean square error, we find the corresponding gradient
estimate by taking the derivatives of e°(k) with respect to

the expansion coefficients:

10




Vik) = 98 pe (g 98Ll

= - 21
3¢ e 2e(k)u(k) . (21)

Applying the method of steepest descent, the LMS algorithm

updates the expansion coefficients using

ci{k+1) = e(k) + u(-V) , (22)

where p is a constant that regulates the convergence rate.

Substituting (21) into (22), we obtain the LMS algorithm:

c(k+2) = e(k) + 2pe(kK)ulk) . (23)

The expansion coefficients of vector e converge in the

mean when [Ref. 6]

1

0 <p s ———r
a u(k) -

(24)

All simulations in this thesis set u according to the
range specified 1in (24). The expansion coefficients are
updated after each iteration 1in accordance with (23).
Convergence rates for the expansion <coefficients vary

depending on model type and order.

A. LEGENDRE POLYNOMIALS
Recall from <chapter II that <continuous Legendre
polynomials form a complete set of orthogonal functions in the

range [-1,1] and are defined as

11




1 2 - _
f p,(t)p, (1) dt = {Zn Ty termenm (25)

g} 0 form=# n

Following the derivation given by Lee [Ref. 2], a change
of variable is made to transform the orthogonality range for
the Legendre polynomials from [-1,1] to [0,x), which is the
desired range to correspond to the causal time axis. Letting
the first change of variable be

T =2y -1 (26)

causes (25) to become

1' -
2 f p.(2v - 1)p,(2y - 1) dy ={2n + 1 torm=n (27)
: 0 for m = n

Letting the second change of variable in (27) be
y = e T, (28)

where C 1s any positive real constant, yields

- (29)
7—3;—— for m = n
=y z2n -1
0 forme#n
Now, defining
v.(t)y =T e ¥t p (287 - 1) (30)

and substituting into (29) gives




o 1 B
fvm(t) v (t) dr ={3as 1 foFrm=~n (31)
0 0 for m=#* n

Since (31) satisfies the definition of orthogonality given by
(1), then the set {v (t)}, a shifted version of the Legendre

polynomials, is an orthogonal set defined in the desired range

[0,©). From (7), h(t) can now be represented by the series
given by
hit) - Y. Cavp(T) for0 st sw (32)
n=J
0 else ,

where, again, c, are the expansion coefficients chosen to
minimize the mean square error, and {v, (t)} is the orthogonal
polynomial set based on the shifted Legendre polynomials.

In order to realize a digital network, it is necessary to
generate the shifted discrete Legendre polynomials based on
the continuous set {v (t)}. It is convenient to note the

first few terms of the Legendre polynomials [Ref. 7], {p,(T)}:

p-(t) =1
p (1) =1 (33)
p. (1) = —3-T2 Y

‘ 2 2

Substituting (33) into (30), the first few terms of {v (t)}

are

v (5 o= JCe et
V.5 = JTl-1 + 20 T e O (34)
‘/’c‘(t) - V'Zf".; _ 69*31 + 68'2\?2) e*\(‘,’,“ <

13




Taking the Laplace transform of (34) generates the first few
terms of the shifted Legendre polynomials in the freguency

domain, which are given by

_ 1
Lo e C/(Z) / (3
V1(S) m = C’//2) CRSEYIE}

V.(s) = J5C (s - C/2) (s - 3¢C/2)

(s + C/2) (s + 3C/2) (s + 5C/2)

From (35), it 1s apparent that the general expression for

{V.(s)} 1is
Vis) - a 8- €f2)(s - 3€/2)w(s - (%n - })Q{Z) ., (36)
- T8 + C/2) (s + 3C/2) (s + (2n + 1) C/2)
for n =0, 1, 2, ..., where
A, =Jy{2n+1C . (37)

0Of the several techniques available for performing an
analog to digital filter transformation, the matched 2-
transform is best suited for our purposes. This technique
preserves the ability to express the digital frequency terms,
{V.(z)}, in a closed form as in (36) and, more importantly,
allows for a filter structure that is easily synthesized. The
matched Z-transform maps the poles and zeros of {V_ (s)} into

those of {V (z)} through the substitution

(s +a) - (1 -eaz1) , (38)
where T represents the sampling period of the discrete-time

filter [Ref. 8]

14




Accordingly, performing an analog to digital

transformation on (36) vyields the first three terms of

{Va(2)}:
- vC
Vo (2) = 1 - e-C/ig1
v,(2) = V3C (1 - ez (39)

(1 - e-C/zz-l) (1 - e-3C/2z~1)
[5C (1 - ec/zz-l) (1 - eBC/Zz—l)
(1_e~c/2z-1) (l_e—BC/ZZ‘l) (l_e-SC/Zz-l)

v,(z) =

As noted, the matched Z-transform preserves the ability to

express the terms of {V (z)} in the closed form

v (,‘) A, (1 - e®/2z1) (1 - e3¢2z-1). (1 - g2a-L1/25-1y (40)
a\2) = (l _ e-C/’2Z-1) (1 _ e-3C/2Z-l)___(1 = e—(Zn‘L)C/ZZ-l)

for n=10,1, 2, ..., where

A, =y{2n+1)C . (41)
The synthesis of a discrete system using shifted Legendre
polynomials 1is accomplished by generating each Legendre
polynomial using its corresponding transfer function in (40).
Accordingly, substituting each Q (2z) shown in Figure 3.3 into
the filter structure shown in Figure 3.2 provides the

necessary filter structure to generate each polynomial.

C. JACOBI POLYNOMIALS
The Legendre polynomials form a subset of the much larger
class of Jacobi polynomials. Like the Legendre polynomials,

the Jacobli polynomials form a complete set of orthogonal

15
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0
a
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Figure 3.3: Module of Legendre polynomial adaptive filter.

functions in the range ([-1,1] and, therefore, reguire a

transformation to shift the orthogonality range to [0,®).

The Jacobi polynomials, {p ‘“®(t)}, are defined as

[ s )8 (q1 . B e B (a,B) _ ki form=n (42)
[ (1 -~9)* (1 - )P oy (7)o, (t) dv {o forms n,
where

220> T'(n+a+P~1) ['(n+P+1) (43)
(2n+a+p+1) nt T(n+ra+f+l)

e
[ 3]

ki =

Letting the first change of variable be

t =2y -1 (44)

causes (42) to become

16




2 f (2 - 2v)¢(2y) B =P 2y - 1) P 2y - 1) dv

0 (45)
_lki ifm=n
0 ifm=#n

Letting the second change of variable in (45) be
y = e Ct, (46)

where C 1s any positive real constant, yields

2 f Ce 5(2 - 2e°°%) % (2e¢t)B pl*® (2e-cc - 1)

(47)
X poP(2ec - 1) dt = {kn rerm=n
0 form=#n.
Now, defining
, . S, R /e N 48
vt P (o) = 2T 28 (2 - 27y @rCiben e/ plel (pgnct 1 ¢ )
and substituting into (47) gives
f V":a,ﬂi (E)V::a'ﬁ) (t) dt = kn for m=n (49)
0 form+n,
where kf is defined as in (43). Since (49) satisfies the

definition of orthogonality given in (1), the shifted Jacobi
polynomials, {v#“ﬂ)(t)}, form an orthogonal set of polynomials
in the range [0,%). From (7) , any causal system, h(t), may

be represented by

17




h(t) = z: chvﬁ“ﬁ’(t) for 0 < t ¢« = (50)

0 else

In order to synthesize discrete linear systems, it is
necessary to generate the shifted discrete Jacobi polynomials.
Let the derivation of the shifted discrete Jacobi polynomials

begin by listing the first few terms of the continuous Jacobi

polynomials:
ol (e) =1
fa,Pp) ) 1 ”
D () =(a+1) =~ —-2—((l+B+2) (£-1)
(a,P) 1 1 (51)
D (t) =-§(a+l)(a+2) +—§(a+ﬁ+3)(a+2)(t—l)
N % (@+B+3) (a+B+4) (£-1)2)

Substituting (51) into (48) yields the first few terms of

{v, @P(ty}:
via B: (t) = \/Z_C’ 2B/2 g-C(Be1)c/2 (2 - 2eCtya/2
viE P gy = J2C 2B/2 g-cBenIe/2 (g - pe-Ct)alz
X [(a+1)-+-%(a+ﬁ+2)(2'cr— 2)]
VL\aB (£) = mzp/z e Cipr12ese (2 - 29-Ct)a/2 (52)
X [b%(a+1)(a+2)
1

We desire to obtain {Vﬁaﬁ)(s)}, the frequency domain terms
of the shifted Jacobi polynomials; however, it is not possible
to form a general expression for each term of {V ‘% (g)}

because the Laplace transform of (52) vyields entirely

18




different results depending on the value of a. Therefore,

without losing the generality, we make the derivation specific

to a = 2.0 for the remainder of this development.
Substituting a = 2.0 into (52) and taking its Laplace

transform, we obtain the first few terms of {V “%®(s)}:

- K.
v (s = o
(s + _ﬂpz_'*i)_) (s + _C_(.;'*&L)
V{L'B\(S) — K1 (s ~ (C+1)/6)
(s+ S8y (5, CB23), (5, CiB23),
V{ZIB\ (S) _ KZ [1252 - (46'8)05 - (B2+€ﬁ+5)02]
‘ (5+ EB1) ) (5, CWB) ) (5, CUB2D) ) (g, CBT)

(53)
where the K are constants.

Unlike the Legendre polynomials, there 1s no apparent
closed form expression to represent the terms of {V ?®(g)}.
The denominator terms can be put 1into a closed form
expression, but not the numerator terms. This is an important
concern, for it is carried over to the frequency terms of the
discrete shifted Jacobi polynomials, {V ™ (z)}.

Using the matched Z-transform method to perform an
analog to digital transformation on the first two terms in

(53) produces the first two terms of {V M (z)}:

z,p Ka:
e g 5
L -az )1 -az)
¢ ) L e (54)
) K. (* _ e(C«A‘/GZ b
V-Alé'a) (Z) = - L—,~ " ) ’
(Z ~az(1-az(1l-azh)

where
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-Cif+2n+1)
a - o EEEE (55)

and the K are constants.

Without a closed form representation of the terms in (54),
the problem of generating the discrete Jacobi polynomials is
considerably more demanding than that of the Legendre
polynomials. Whereas the transfer function needed to generate
each of the shifted Legendre polynomials is known (see (40)),
the transfer function needed to generate each of the shifted
Jacobi polynomials must be explicitly derived. Due to the
complexity of the expressions involved , it was necessary to
use a symbolic software program called MACSYMA Lo generate
both the terms of {v,%M(t)} and {V.?M(s)}. The terms of
{Vﬁzﬁ)(z)} could then be found by transformation.
Unfortunately, only the first 15 terms of {V#“m(z)} were
derived with a = 2.0 and a = 4.0 due to the large size of the

expressions involved.

D. LAGUERRE POLYNOMIALS
The Laguerre polynomials, {1 (t)}, form a complete set of
orthogonal functions in the range [0,») and are defined by

1,(e)1,(t) dt = { 1 form

=n
0 form=#n (56)

O"B

Laguerre polynomials are defined over the desired

orthogonality range, [0,®); thus, we can immediately proceed
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with the derivation of the discrete Laguerre polynomials that
are needed to synthesize discrete linear systems. The first

few terms of {1 (t)} are:

1,(t) = y2C e
1,(t) =y2C (2Ct ~ 1) e (57)
1.(t) = y2C(2C%t* - 4Ct + 1) e ™t ,

where C 1s any positive real constant. Taking the Laplace

transform of (57), we have

M

vel -

n

L,(s)

(s + Q)
L (s) = Jﬁ'-s—:?% (58)
L.(s) = yzc 8 -C°

(s + O)°

Using the matched Z-transform technique to perform an analog

to digital transformation on (58) yields

1
L,(z) = 2C
o (1 - e €z71)
- C»-1
L(z) = y3Cc —L-€ez) (59)

(1 -e“z%)?

(1 - ez 1)?
L.(z) = J2C =
< (1 _ e—cz—x)3

The closed form general expression for the terms in (59) is

_ (1 - eCz 4)n
L (z) = V2C T o, (60)

Notice that all zeros of (59) are located at z=e‘ , and all
poles are located at z=e ‘. The synthesis of any linear system
using Laguerre polynomials is accomplished by generating each

Laguerre polynomial using its corresponding transfer function
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given in (60). Accordingly, substituting each Q (z) in Figure
3.4 into the structure shown in Figure 3.2 provides the

necessary filter structure to generate the polynomials.

Figure 3.4: Module of Laguerre polynomial adaptive filter.

E. LATTICE PREDICTOR

Let ({bg(k), by(k), ..., Dby(k)} denote the first N+l
backward prediction errors assocliated with a backward
prediction error-filter. If x(k) is a stationary input of
random variables to a backward prediction-error filter, it can

be shown that the backward errors are orthogonal, that is,

2 —-—
Elb, (k) b (k)] = {k,, form=n 1)
0 for ms+ n ,

where E[] 1s the expectation operator. Following the proof

given by Haykin [Ref. 5], we write
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b,(k) =Y a,(m-1) x(k-1), (62)
1=0

where & (1), 1 = 0, 1, ..., m, are the coefficients of a
prediction-error filter of order m. Substituting (62) into

(61) yields

M-

>

E(b,(k) b,(k)] = E a,m-1) a,(n - p) x(k - 1) x(k - p)
[1=0 p=0
=Y Y a,(m- Da,(n-p) Hx(k-1) x(k-p)]
1=0 p-=C
m n
=y ap{m-1) a,(n-plr,(p-1) ,
l=3 p=0
(63)
where r (p-1) denotes the correlation function. The normal

equations for a backward prediction-error filter are given by

(Ref. 5]
C k? for 1 =n
. - r ( - l = n (64)
2; (1 - p) I(p ) {O for 1 # n
Substituting (64) into (65), we find
E[br,(k) bp(k)] :{k; fOIm:D (65)
" : 0 form=n

A lattice predictor structure is commonly used to generate
the backward errors. The lattice structure shown in Figure
3.5 utilizes the backward errors in an adaptive filter. Let
the transfer function needed to generate each {b (k)} be

denoted by
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B (z)
= n 66
A (2) X (%) . (66)

By comparing Figure 3.5 to Figure 3.2 we note that A (z) has
a definite relationship to Q (z). The exact relationship

could be found by evaluating each A (2z) using the signal flow

graph in Figure 3.5. Furthermore, it 1is apparent that
u (k) = b (k), and, thus, the backward prediction-errors could
be said to form a family of orthogonal polynomials. The

synthesis of a linear system is accomplished by forming linear

combinations of the backward prediction-error polynomials.

-1 T e e S
b, (k) bl(k) bN 1 (k) bN(k)
o < CN-1 Cy
';, . y (k)

Figure 3.5: Lattice predictor adaptive filter.
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IV. SIMULATION RESULTS

A. FIR BANDPASS FILTER SIMULATIONS

For the purpose of evaluating the FIR system modeling
performance of the orthogonal polynomials, two bandpass FIR
filters were chosen as the systems to be identified. The FIR
filters were designed for filter orders of 22 and 71, with
cutoff frequencies of 0.1 and 0.2 (fraction of sampling
frequency). Each filter was excited by a zero-mean Gaussian
white noise sequence with unit variance. The desired output
sequence was compared against the output of the orthogonal
network, and the error was used to update the expansion
coefficients.

Figure 4.1 shows the impulse and frequency response plots
of an 18"™ order Legendre adaptive digital filter (ADF) with
C = 0.11 when used to model a 22™ order FIR system. Notice
that the Legendre filter has an infinite impulse response that
allows smaller order Legendre filters to model larger order
FIR systems. In this case an 18'™ order model is used for a
22™ system, which is roughly an 18% savings in terms of the
filter order. Figure 4.2 shows a 52" order Legendre ADF model
with C = 0.075 used to model a 71°' order FIR system, which is

approximately a 27% savings in terms of the filter order.
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Impulse Response: Desired Versus Legendre ADF
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Figure 4.1: Impulse and frequency response of an 18' order
Legendre ADF used to model a 22" order FIR filter.
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Figure 4.2: Impulse and frequency response of a 52™ order
Legendre ADF used to model a 71% order FIR filter.
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The convergence of the first six expansion coefficients
for the 18™ order Legendre ADF and the resulting filter output
error are shown in Figure 4.3. Notice that all coefficients
converge by the 200'™ sample, which implies we need an input
sequence that has approximately 10 times more samples than the

order of the system to be modeled.

(a) Convergence of Legendre ADF Cocfficients

0.2, v T -
g |
5
-2 O SO U UR
2 :
2 !
BT I ¥  \  oo  erE T DT R |
) |
S |
-0.1 = . -
0 100 200 300 400 500 600 700
Sample
, (b) Legendre ADF Output Error
05! | '
i . -
2 Tl |
eSS
= kT I LI i
< ost M 4
| :
B : - |
0 100 200 300 400 500 600 700
Sample
Figure 4.3: (a) Convergence of first six expansion

coefficients and (b) Output error for an 18" order Legendre
ADF used to model the 22" order FIR system.

The performance results when an 18" order Laguerre ADF
with C = 0.98 is used to model the 22™ order FIR system is
shown in Figure 4.4. The fact that the results are comparable
to the Legendre ADF is not surprising, for the transfer
functions needed to generate both sets of polynomials have the

same number of poles and zeros (see (40) and (60)). Likewise,
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Figure 4.5 shows the result of a 52™ order model with C = 0.98

used to model the 71°%' order FIR system.

Impulse Response: Desired Versus Laguerre ADF

0.4 v
ﬁ: 0.2i— N T Laguerre ADF 1
£ Ve ‘
-0 ‘)jL — I L " " ]

0 5 10 15 20 25 30 35 40 45 50

Sample

Frequency Response: Desired Versus Laguerre ADF

S oi» —-  Laguerre ADF

U

¥ b y /—\\ 1

'én ‘» ,/;,' N L l

:n 40 s \ '1
il

05005 01 015 02 035 Q3 035 04 045 05
Fraction of Sampling Frequency

Figure 4.4: Impulse and frequency response of an 18'™ order
Laguerre ADF used to model a 22" order FIR filter.

We expect an improvement in performance when using the
Jacobi ADF, for the transfer function needed to generate each
Jacobi polynomial has more poles than that needed to generate
the Legendre and Laguerre polynomials. Exactly how many more
poles are realized depends on the value of a. In the case
where a = 4.0, two more poles are realized in each transfer
function that generates the corresponding Jacobi polynomial.
Figure 4.6 shows the results of a 15" order Jacobi simulation
with {C, a, B} = {0.002, 4, 1000} when used to model the 22"

order FIR system.
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Impulse Response: Desired Versus Laguerre ADF
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Figure 4.5. Impulse and frequency response of an 52™ order
Laguerre ADF used to model a 71°" order FIR filter.

Impulse Response: Desired Versus Jacobi ADF
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Figure 4.6: Impulse and fregquency response of a 15" order
Jacobi ADF used to model a 22™ order FIR filter.
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Note that the frequency response of the Jacobi model is
significantly better in the lower end of the spectrum than in
the higher end. This can be attributed to the fact that the
frequency response of each Jacobi polynomial has lowpass
characteristics; therefore, it is not surprising that a linear
combination of Jacobi polynomials would perform better when
modeling frequencies in the lower end of the frequency
spectrum. The same is true for both the Legendre and Lagquerre
polynomials. The 71°%' order FIR system was not modeled using
the Jacobi polynomials due to the difficulties encountered in
determining the transfer functions of the higher order Jacobi
polynomials as discussed in part C of chapter III.

Unlike the Legendre, Laguerre, and Jacobi filters, the
lattice filter structure has a finite impulse response. The
15" order Lattice model produces comparable results to that
of the classical orthogonal polynomial models when used to
model the 22" order FIR system (see Figure 4.7). Although the
lattice filter has a finite impulse response, Figure 4.8 shows
that a 52™ order lattice filter is able to effectively model

a 71*' order FIR system.

30




Amplitude

Magnitude (dB)

Figure 4.7:
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B. IIR BANDPASS FILTER SIMULATIONS

As with the FIR filters, two Butterworth IIR bandpass
filters were designed to evaluate the IIR modeling performance
of the orthogonal ADFs. The IIR filters were designed for
filter orders of 7 and 31, with cutoff frequencies of 0.1 and
0.2. Since an N' order IIR filter has 2N coefficients, our
aim 1is to use orthogonal function adaptive models with
approximately 2N coefficients. The results herein show the
lowest order ADF models that demonstrated satisfactory
performance.

Figure 4.9 shows a 15 order Legendre ADF with C = 0.075
used to model the 7' order Butterworth IIR filter. Notice
that the Legendre ADF does not model the low order IIR system
as well as the low order FIR system as shown in Figure 4.1.
The IIR filters are difficult to model because the structure
of the orthogonal adaptive filters more closely resembles a
FIR filter (see Figure 3.2).

Figure 4.10 shows a 65 order Legendre ADF with C = 0.055
used to model the 31° order IIR filter. Notice that the
impulse response of the IIR filter is still significant beyond
140 samples, but the impulse response of the ADF does a poor
job of duplicating 1it.

As in the FIR case, the Laguerre ADF performance 1is
similar to that of the Legendre ADF. Figure 4.11 shows a 15t
order Laguerre ADF with C = 0.98 modeling a 7" order IIR

filter. There is marked increase in performance when the
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Figure 4.9: Impulse and frequency response of a 15™ order
Legendre ADF used to model a 7™ order IIR filter.
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Figure 4.10: Impulse and frequency response of a 65" order
Legendre ADF used to model a 31°" order IIR filter.
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order of the system being identified 1is 1increased.
Figure 4.12 shows that the 31°" order IIR system can be modeled
with a 65" order ADF. The Laguerre ADF has better performance
characteristics than the Legendre ADF (see Figure 4.10) in

both the passband and the stopband.
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Figure 4.11: Impulse and frequency response of a 15 order
Laguerre ADF used to model a 7™ order IIR filter.

A 15" order Jacobi adaptive filter with parameters
{C,a,B} = {0.0015, 4.0, 925.0} was used to model the 7™ order
IIR filter, and the plots of the model's impulse and frequency
response are shown in Figure 4.13. It appears that the two
additional poles 1in the Jacobi transfer functions do not
significantly increase low order modeling performance when
compared to the Legendre and Laguerre polynomials. However,

there is a possibility that other parameter sets, {C, a, B},

34




Impulse Respanse: Desired Versus Laguerre ADF
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Figure 4.12: 1Impulse and frequency response pf a 65™ order
Laguerre ADF used to model a 31°° order IIR filter.
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Figure 4.13: Impulse and frequency response of a 15 order
Jacobi ADF used to model a 7' order IIR filter.
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than the classical orthogonal polynomial filters is that it

has a finite impulse response, which restricts it ability to

model higher order IIR systems.
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Figure 4.15: Impulse and frequencv response of a 65™ order
lattice ADF used to model a 31% order IIR filter.
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V. CONCLUSIONS

There are several characteristics of orthogonal filter
models that make their use attractive. The classical
orthogonal function filters are particularly adept at modeling
systems with long impulse responses. FIR systems with large
orders (say, greater than 70) can generally be modeled with
25-30% fewer coefficients using the orthogonal ADFs. Large
order IIR systems can commonly be modeled with the same number
of coefficients that are in the IIR system. The research in
this thesis has only evaluated the perforrance of the
orthogonal ADF models when used to identify bandpass FIR and
IIR filters. It is quite possible that systems with strictly
lowpass or highpass characteristics could be modeled with
varying degrees of success. Although the orthogonal function
filter models have shown considerable promise, there are
several limitations that must be addressed; recommendations

for future research are also presented.

A. LIMITATIONS OF ORTHOGONAL FILTER MODEL

Previous research has shown that the convergence rate for
the LMS expansion coefficients is 1increased when using
orthogonal functions [Ref. 1)}. Even so, the length of the
input sequence must be increased when the desired filter order

is increased in order to allow the expansion coefficients
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sufficient time to converge. Typically, the input sequence
must have a length that 1is 10 to 15 times greater than the
desired model order. This fact places limitations on the
orthogonal functlion mcdels, for large order models require
long input sequences.

The selection of the positive real constant, C, will
significantly influence the performance of the Legendre,
Laguerre, and Jacobl adaptive filters. Furthermore, the
Jacobil polynomials have two additional parameters, a and 03,
that must be chosen for any given simulation. There 1is
currently no known algorithm for optimizing the selection of
these parameters. Therefore, evaluating the performance of
the orthogonal function filters is largely a matter of trial
and error.

The theory for the classical orthogonal function filters
was derived in the continuous time and frequency domains. The
matched Z-transform technique was used to map the poles and
zeros of the orthogonal filters from the s-domain to the z-
domain. Unfortunately, the matched z-transform technique was
found to introduce errors concerning the orthogonality of the
filter output sequences. Other analog to digital
transformations appear no more attractive, for their use would
eliminate the ability to express the filter transfer functions

in a closed form.
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B. RECOMMENDATIONS FOR FURTHER RESEARCH

An algorithm to determine the selection of the positive
real constant, C, is needed to reduce the trail and error
nature of the classical orthogonal filter models. Further
exploration of the Jacobl polynomials is bound to yield
improved results, for little is known concerning the effect of
altering a and B. The application of orthogonal filter models
to a broad range of systems should be explored. Because the
classical orthogonal polynomials are lowpass in nature, their

application may be limited.
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