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SUMMARY

The time course of 3H-soman and its metabolites was determined in tissues obtained from
gumca pigs exposed to a sublethai dose of 3H-soman by either inhalation, intramuscular, or
intravenous administration and mice exposed to a sublethal dose of 3H-soman by inhalation or
intramuscular injection.

Inhalation exposure of 3H-soman in mice resulted in rapid distribution from the lungs to
all tissues, with concentrations remammg elevated as long as 24 hr after exposure. The
intramuscular administration of 3H-soman also resulted in a rapxd distribution to all tissues,
particularly the lungs and kidneys. with high concentrations still remaining in most tissues after 24
hr. Soman rapidly phosphorylazed protein, and was quickly hyamlyzed to free SH-PMPA. The
biodisposition of 3H-soman and its metabolites was quite similar after both routes of
administration, but contrasted with previous studies showing rapid clearance of organophosphates
following intravenous administration.

The biodisposition of 3H-soman and its metabolites in guinea pigs was highly dependent
upon the route of administration. Following inhalation, the highest concentrauons were found in
lung, trachea, fat, and kidney 5 min after exposure. Concentrations of 3H-soman fell dramatically
by the 30 min time point but then remained relatively constant fcr the duration of the time period
studied. In contrast, intramuscular administration resulted in a sustained release of 3H-soman,
with maximal concentrations achieved in most tissues (highest in lung, fat, heart, and kidney) at
the 60 min time point and extremely elevated levels still remaining at 24 hr. Intravenous
adrmmstratlon resuited in a rapxd transfer to all tissues. Organs which contained the greatest
quantity of 3H-soman were again lung, kidney, and fat at the 5 min time pomt. However, these
concentrations dissipated much more quickly than with intramuscular injection or inhalation. With
all routes of administration, 3H-soman was rapidly hydrolyzed to free 3H-PMPA which was
present in all tissues. This reaction appeared to occur most rapidly after intravenous
administration.

The most striking difference between the mice and guinea pigs occurred with 3H-soman
concentrztion followmg the inhalation exposure. All tissues of the mice contained higher
concentrations of 3H-soman despite exposure to a dose that was less than that administered to
gumca pigs. 11owever, it appeared that there were no major differences between mice and guinea
pigs in the blodxsposmon and metabolism of 3H-soman which would directly account for the
differences in sensitivities of these two species to organophosphates. Although the time-course
varied across routes of administration, relatively high levels of organophosphatc were invariably
found in lung, fat, and kidney, with initial distribution and clearance occuring most rapidly with
intravenous exposure in both species. chardless of the route of administration, the kidney plays
an important role in the elimination of 3H-soman and its metabolites.
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FOREWORD

Opinions, interpretations, conclusions and recommendations are those of the author and are
not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such
material.

Where material from documents designated for limited distributions is quoted,
permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not consiitute
an official Department of Army endorsement or approval of the products or services of
these organizations.

\/ In conducting research using animals, the investigator(s) adhered to the "Guide for the
Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of
Laboratory Animals of the Institute of Laboratory Resources, National Research
Council (NIH Publicatior: No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies applicable
or Federal Law 45 CFR 46.

In conduction research utilizing recombinant DNA technology, the investigator(s)
adhered to current guidelines promulgated by the National Institutes of Health.
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PI Signature Date
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INTRODUCTION

The organophosphate esters, such as diisopropylfluorophosphate (DFP), soman and
sarin, are highly toxic compounds that affect a variety of physiological processes. Their best
characterized pharmacological effect is cholinesterase inhibition, although it has been
demonstrated in the past few years that numerous other biological processes are affected by these
agents. These organophosphate esters are truly unique compounds in that they are highly toxic,
reactive, volatile and labile, which imposes severe constraints on tne study of their
pharmecological effects. However, these properties exert imporant influences on the activity of
the organophosphates. For example, they rapidly phosphorylate tissue proteins (and thereby exert
their pharmacological effect) or they are quickly hydrolyzed to inactive metabolites. It would
appear that at=rations in the biodisposition of the organophosphates could have profound effects
on their toxicity,

One aspect that is crucial to organophosphate toxicity is the route of administration. It is
important to point out that humans are most likely to be exposed to organophosphates via
inhalation or percutaneous absorption. The respiratory tract is the most rapid and most complete
of these routes of absorption (1). Intoxication by inhalation manifests itself rapidly through
severe bronchial coastriction and excess accumulation of secretions from bronchial and salivary
glends (2). Most pharmacological studies in laboratory animals have been carried out using oral
(p.o.), intravenous (i.v.) or subcutaneous (s.c.) administration due to the ease and accuracy of
these routes. Fonnum ez al. (3) examined the ability of tri-o-cresyl phosphate to alter the toxicity
of inhaled soman. They concluded that the respiratory system did not act as a barrier to soman
because choliresterase in plasma and brain was inhibited after the inhalation. However, they did
not report the time of exposure nor the time at which cholinesterase activity was measured. In
addition, Mosberg ¢z al. (4) conducted studies in order to determine the significance of species
variation and route of administration with regard to the toxicity of soman. They found clear
differences between the physiological consequences of soman administration by the intravenous
and inhalation routes. Death occurred by different means after these two routes of administration
which prompted them to suggest that different modalities of therapy may be required depending
upon the route of exposure.

There have been numerous implications of the importance of biodisposition with regard to
delayed toxicity of organophospnates. Studies in which animals were injected with high doses of
soman suggested that it is stored in tissue depots and therefore is unavailable for inhibition of
acetylcholinesterase or hydrolysis (5, 6). Two sites suggested to be depots are plasma aliesterases
(7) and muscle (8). While the existence of storage depots for intact soman remains controversial,
these studies underscored the importance of biodisposition. Of course, it has also been shown
that aliesterases serve as an important mechanism for the detoxification of soman (9).

Another important dependent variable related to toxicity of organophosphates is species
differences. It has been reported that mice and guinea pigs respond differently with regard to
magnitude of response to both agent challenge and oxime/cholinolytic therapy (10-12).
Futhermore, Maxwell er al. (13) speculated that these interspecies differences resulted from
interspecies variations in soman metabolism and biodisposition. Indeed, they were able to show
that pretreatment with cresylbenzodioxaphosphorin oxide, which blocks nonspecific binding of
soman without inhibiting acetylcholinesterase, eliminated the differences in species susceptibility
to soman. These results suggest thar the pharmacokinetics differ dramatically among different
species. _

The first biodisposition studies were carried out with DF*2P in mize (14-16), rabbits (17),
humans (18) and cats (19). However, none of these studies was carsied out in a comprehensive




fashion, such as delineation between parent compound and metabolites, complete time courses,
etc. Shuh (20) examined the distribution of 3H-DFP between etrial tissue and blood from guinea
pigs but no in vivo bicdispositionn was studied. There was relatively little information in the
literature regarding the pharmacokinetics of soman. Benschop ¢z al. (21) determined the time
course of soman in the blood of rats, and Beck er al. (22) measured soman in brain and blood of
mice 30 sec after an i.v. injection of soman. While tissue biodisposition of radioactivity had been
studied after administration of 32P-sarin, no attempts had been made to qualify or quantify sarin
and metabolite concentrations (23). Studies were then undertaken ir our laboratory to determine
the time course of the parent compound as well as that of its individual metabolites in all of the
major organs of mice that had received an i.v. injection of radiolabeled organophosphate.
Futhermore, we correlated the time course of the organophosphates to that of pharmacoiogical
activity. In the first study, 3H-DFP was administered i.v. to mice so that the time course of non-
bound 3H-DFP, non-bound 3H-DIP (hydrolyzed 3H-DFP), bound 3H-DIP (PH-DFP
phosphorylation of tissue) and 3H-MIP could be established (24). It was clear from these
exgperiments that DFP readily penetrated all tissues, whereupon either it was rapidly hydrolyzed to
free 3H-DIP or it phosphorylated protein to form bound 3H-DIP. There were high concentrations
of 3H-DFP in brain at the early time points but these levels fell rapidly. Within 2 hr all assue
concentrations of 3H-DFP were below 50 pg/mg tissue. One of the most important findings from
this experiment was the extent and rapidity with which 3H-DFP was hydrolyzed. Approximately
one third of the 3H-DFP was inactivated to free 3H-DIP, either by enzymatic or spontaneous
hydrolysis, within 1 min after administration. Appropriate control experiments were carried out to
eliminate the possibility of spontaneous hydrolysis before the injection or during tissue
preparation and extraction. There was a rather quick decline in tissue concentrations of 3H-DIP
which was consistent with the earlier findings of Ramachandran (16) who m=asured the clearance
of DI32P administered to mice. The majcr portion of the radioactivity was bound to tissue as a
result of DFP phosphorylation. The time course of bound 3H-DIP differed from that of either free
3H-DFP or free 3H-DIP in that it persisted for long periods of time. The conceatratons of bound
3H-DIP were low for several days in all tissues except liver.

The DFP-induced cholinesterase inhibition did not correlate with the time course of bound
3H-DIP in brain, diaphragm and plasma, which underscores the fact that DFP readily
phosphorylates protein other than cholinesterase. In addition, the motor hypoactivity induced by
DFP recovered much earlier than brain cholinesterase inhibition which suggested that
cholinesterase inhibition may not be responsible for this effect. It is possible that cholinesterase
inhibition may be the major determinant for lethality, while the effects produced by lower doses of
DFP could be due to other mechanisms of action.

The biological fate of 3H-coman was also studied in mice in a fashion similar to that
described for 3H-DFP (25). Only trace quantities of °H-soman were found in all tissues as early
as 1 min following the i.v. administration of 25 ug/kg of 3H-soman. Within 1 min almest one-
half of the radioactivity was present in all tissues as free 3H-pinacolylmethylphosphonic acid
(PMPA), the pharmacologically inactive hydrolysis product of 3H-soman (see scheme 1 for the
metabolic profile of soman). The concentrations of free 3H-PMPA fell by almost 50% by 1 hr in
most tissues. High concentations of bound 3H-PMPA (*H-soman phosphorylation of dssue)
were found in all tissues immediately after 3H-soman treatment, particularly in lung, heart and
kidney. These concentrations declined to < 50% by 8 hr. The quantities of radioactivity that were
not extractable from tissue homogenates after basic hydrolysis were assumed to be 3H-
methylphosphonic acid (MPA) which is the "aged" torm of 3H-soman. These quantities of
nonextractable radioactivity were relatively small in all tissues except brain, which is rich in
cholinesterase. ‘




Scheme 1. Metabolism of soman

O
[
(CH3)3CCHO-|P‘F

Protein
/ ; 4, \
Hydrolysis

| |
(CH,);CCHO~P-OH (CHy);CCHO~P-Protein

Soinan
1, 3
Free PMPA AChE Bound PMPA
0 0
(CH,),CCHO -'P-AChE — HO-'P-AChE
G, a4,
Bound PMPA Bound MPA

PMPA = Pinacolymethylphosphonic acid
MPA = Methylphosphonic acid

The data from this experiment showed that i.v. treatment does not result in appreciable
storage of H-soman in any tissue in mice. The highest quantities were found in lung but they
were only a fraction of the concenwations of bound and unbound 3H-PMPA. Any storage degot
would be composed of bound 3H-PMPA or 3H-MPA rather than intact 3H-soman.

A major finding from the time course studies was the lack of correlation between
cholinesterase inhibition in brain and decreased motor activity and rectal temperature. These
pharmacological effects had subsided by 24 hr but cholinesterase activity remained depressed for
at least 3 days in brain as well as diaphragm. As with the DFP studies, the time course of
pharmacological effects did not correspond to the time course of *H-soman and its metabolites in
brain.

A detailed biodispositional stady of 3H-sarin was carried out at an i.v. dose of 8C pg/kg
wlich, as was the case with 3H-soman, represented approximately 65% of the LDsg (26). A
comparison of the biodisposition of 3H-sarin and 3H-soman revealed that the amount of tissue
phosphorylation was similar for both despite the lower dose of 3H-soman. The major difference
between the two was the higher degree of spontaneous and/or enzymatic hydrolysis of 3H-sarin
(to 3H-isopropylmethylphosphonic acid, IMPA). All tissues contained much higher
concentrations of 3H-IMPA than 3H-PMPA, the most notable of which was lung, which
contained concentrations of 3H-IMPA that were 15 times greater than those for 3H-PMPA. There
was also extensive phosphorylation (bound 3H-IMPA) in lung. High concentrations of free and
protein-bound 3H-IMPA, in addition to non-extractable radioactivity, remained in lung even at 24
hr. These data suggest that the lung may play an important role in the tissue disposition and
detoxification of 3H-sarin, even after i.v. administration.

In our inhalation studies with 3H-DFP, mice were exposed to the vapor generated from 4
mg of 3H-DFP, resulting in a dose of 2.1 mg/kg body weight, which was sublethal [the LCsp
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(C.L.) was found 10 be 5.4 (4.6-6.2) mg/kg]. The tissue concentradons of free 3H-DFP and 3H-
DIP were higher after this inhalation exposure than after i.v. injection which was probably 2
reflection of the lower i.v. dos¢ (1 mg/kg). The concentrations of bound 3H-DIP were actually
lower in lung following inhalation exposure as compared to i.v. teatment. These studies clearly
show that DFP is readily absorbed from the lurgs.

The lack of a correladon between the time course of whole brain concentrations of
organcphosphates and behavioral effects prompted us to examine the biodisposition within the
brain. Surprisingly, there were mach higher concentradons of organophosphates and metabolites
in hypothalamus than in other brain areas (27). It would appear that the neurochemistry in the
hypothalarus is affected to a greater degree than that in cther brain areas of the mouse.

There are numerous factors that may be important with regard to the expression of
organophosphate toxicity. The rate at which the organophosphates penetrate a particular tissue is
undoubtedly an important factor regulating their toxiciry. These agents are nighly reactive with
most proteins so that the tssues exposed initially to the organophosphates may suffer the greatest
degree of phospncrylation or these tissues may represent major sites of hydrolysis or inactivation.
Therefore, we hypothesized that the biodisposition of the crganophosphates, or the rate at which
they penetrate tissues, differs with regard to species as well as route of administration. Qur
specific hypothesis was that the biodisposition and/or hydrolysis of soman in guinea pig diffecs
depending upon the route of administradon and is responsible for the differences in toxicity
observed following administration of the organophosphate by various routes. .Additionally, the
difference in sensitivity of mice and guinea pigs to the organophosphates may be due to
differences in the biodisposition and metabolism between the two species.

The first specific objective in the current contract was to study the biodisposition of soman
and its metabolites in guinea pigs at sublethal doses with the emphasis on determining the
importance of route of administration with regard to metabolism and biodisposition of 3H-soman.
The tme course of 3H-soman and its metabolites {including noa-protein beind 3H-PMPA,
protein-bound 3H-PMPA and 3H-MPA] was detcrmined in tissues obtained from animals exposed
to 3H-soman by inhalation, intramuscular or intravenous administration. The second objective
was to evaluate species differences. The bicdisposition and metabolism of 3H-soman were

evaluated in mice following inhalation and intramuscular injections of sublethal doses of 3H-
soman.
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MATERIALS AND METHODS

Analytical procedures. Thin-layer chromatography (TLC) and gas chromatography
(GC) were nsed to determune the purity of our organophosphates as weli as the selectivity of the
extraction scheme. TLC analysis was carried out by applying radiolabeled standards or solvent
extracts to 5 x 10 cm silica gel plates (Analtech) which are develooed in either 5 %
methanol:chloroform or acetone:methanol:chloroform:conc. ammonia (25:25:45:5). The silica gel
(1 cm sections) was scraped into scintillation vials containing 1 ml of methanol:distilled water
(1:1, viv). The sampies were sonicated for 30 min and aqueous counting scintillant (RPI) was
added for counting. Soman had an Rg value of 0.64 while PL{PA remained at the origin in the 5
% methanol:chloroform system. In the acetone:methanol:chloroform:conc. ammonia solvent
system the Rg values of soman and PMPA were 0.90 and (.39, respectively, while MPA did not
move from the origin. The Hewlett Packard GC was equipped with a nitrogen/phosphcrus
detector and a 2 mm x 6 ft column packed with € %/4 % OV 210/CV 101 on WHP (80/100
mesh). The carrier gas (He) flow rate was 20 ml/min and the injector and detector temperatures
were 250 and 300 °C, respectively. The column was maintained at isothermal conditions. Ata
column temperature of 160 °C, soman and PMPA had retention times of 2.7 and 5.3 min,

respectively.

Synthesis of reference metabolites. 3H-PMPA was synthesized following the
methodology of Harris er al.(28), 3H-Soman (687 pCi) was added to soman (100 pg) which
was then placed in 2 ml of 0.5 N NaCH and mixed by vortex at frequent intervals for 1 hr. TLC
analysis of the reaction mixture indicated a single spot with an R of 0.39 when the plates were
developed in acetone:methanol:chlorofortn:conc. ammonia (25:25:45:5) which coincided with
PMPA. 3H-MPA was also synthesized as described by Harris er al. (28).

Measurement of tissue concentrations of 3H.soman, 3H-PMPA and
nonextractable radioactivity. Previous studies have shown that solvent extraction can be
used to separate DFP and its two metabolites in a quantitative fashion (15, 24). Therefore, an
extraction scheme was developed for the separation of 3H1-soman, free 3H-PMPA, protein-bound
’H-PMPA and *H-MPA so that tissue concentrations of each could be measured. In order to
establish the assay, 0.1 pCi of either 3H-scman, 3H-PMPA or 3H-MPA was added to 2-ml
aliquots of heat-denatured liver homogenates (500 mg tissue/2 ml). Toluene (10 ml) was added
and the samples were shaken for 15 min. The toluene removed 91 £ 0.2, 0.5+ 0.0 and 0.2 £ 0.0
% (means = S.EM., n =3) of the 3H-soman, 3H-PMPA and 3H-MPA, respectively. The
samples were then made acidic with H,SCy and reextracted with 4 ml of isobutanot:toluene (1:1,
v/v) which removed 2.3 £ 0.1, 95 £ 3, 5.5 £ 2.6 % of the 3H-soman, 3H-PMPA and 3H-MPA,
respectively. Approximately 7, 5 and 95 % of the 3H-soman, 3H-PMPA and 3H-MPA,
respectively, remained in the aqueous phase. Therefore, the following procedure was adopted.
Blood samples from the cervical wound were collected in heparinized tubes and centrifuged at
1000 x g to obtain plasma and erythrocytes. Tissues were removed, weighed and homogenized
with a polytron (Brinkman Instruments Co., Westbury, NY) for 1 min at high speed in a
combination of 2 ml of phosphate buffer:sucrose (9:1, vA") and 10 ml of toluene. The remaining
carcasses were skinned and homogenized with two volumes of buffer in a blender. Two-ml
aliquots of the carcass homogenates were removed, added to 10 ml of toluene and mixed with a
polytron as described above. All hemogenates were centrifuged at 1000 x g for 10 min and S ml
of the toluene extracts removed and added directly to spectrofluor PPO-POPOP (Amersham-
Searle) in tcluene for determination of 3H-soman conceatrations by liquid scintillation

-11-




spectrometry. Counting efficiency was determined by external standardization. One-ml aliquots
of the toluene extract of the five replicates of each tissue were peoled and concentrated to
approximately 0.3 ml under a slow stream of nitrogen for subsequent TLC analysis.

Table 1. Percent recovery of 3H-soman from various tissues®.

LIVER
Percent Standard Standard
Recovery Mean Deviation Eror
Free soman 75.00% 563,755 + 10,093 + 5,826.9
Fiee PMPA 7.50% 56,820 + 1,596.6 + 921.8
Bound PMPA 14.00% 105,690 + 3,145.4 + 1,816.0
Residual Metabolite 3.80% 12,575 + 324.3 + 187.2
LUNG
Free soman 83.00% 573,833 + 12,617.8 + 17,2849
Free PMPA 6.40% 41,739 + 605.17 £ 349.3
Bound PMPA 2.00% 12,725 + 424.7 + 245.2
Residual Metabolite 4.00% 10,969 + 704.4 + 406.7
BRAIN
Free soman 87.00% 721,529 i 7,270.8 + 4,197.8
Free PMPA 6.70% 55,638 i 3,382.5 + 1,952.8
Bound PMPA 2.00% 14,504 ~ 486.9 + 281.1
Residual Metabolite 4.00% 15,468 + 354.1 + 262.1

aAll tissues were prepared using 10 pl (6.7ng/uCi) of 3H-Soman per 0.5g of
tissue. Data are expressed as percent recovery as well as DPM's (means, N=§).

An aliquot (0.3) of the aqueous layer of each sample that remained after extraction was
solubilized (TS-2 Reagent, RPI) overnignt prior to liquid scintillation spectrometry. Quench was
corrected by external standardization. The remaining aqueous portion was acidified with 180 ul
of 12 N H,SO, prior to extraction with 4 ml of isobutanol:toluene (1:1, v/v). These samples were
homogenized with a polytron for 20 sec and then centrifuged at 1000 x g for 10 min. Aliquots (2
ml) of the isobutanol:toluene were counted for radioactivity as described above for the
- determination of concentrations of free 3H-PMPA. One-ml aliquots of the solvent extracts for the
five replicates of each tissue were pooled and evaporated under nitrogen to approximateiy 0.3 mi
for TLC analysis. The aqueous samples were then made basic by the addition of 0.5 ml of 10 M
NaOH and heated in an autoclave (22 psi at 270 °C) for 1 hr. The hydrolyzed samples wers
adjusted to IN H,SO, and homogenized again with 4 ml of isobutanol:toluene. After
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Table 2. Percent recovery of 3H-PMPA from various tissues.

LIVER
Percent Standard Standard
Recovery Mean Deviaton  Ermor
Free soman 0.15% 117.1 + 2.0 + 1.15
Free PMPA 85.00% 33,746 t 4,680.6 p 2,702
Bound PMPA 11.20% 4,453 + 120.9 + 69.80
Residual Metabolite 4.00% 1410.7 b - 221.2 + 127.7
LUNG
Free soman 0.15% 138.2 1 11.5 4 6.6
Free PMPA 83.40% 36,580.4 o 963.3 t 556.18
Bound PMPA 13.30% 5,830.4 + 5476 ¢t 31.6
Residual Metabolite 3.20% 1,212.8 t 97.7 e 56.4
BRAIN
Free soman 0.24% 2276 = 88.3 b 4 51.0
Free PMPA 85.40% 39.899.1 ¢ 661.7 + 382.0
Bound PMPA 11.60% 53989 + 2123 t 122.5
Residual Metabolite 2.80% 1,1406 = 5029 =% 29.0

3All tissues were prepared using 10 pul (0.67ag/uCi) of JH-PMPA per 0.5g of
tissue. Data are expressed as percent recovery 25 well as DPM's (means, N=6).

homogenizing the saraples with the polytron for 20 sec, the samples were centrifuged at 1000 x g
for 10 min. A 1-ml aliquot of each isobutanol:toluene extract was removed and counted for
radiocactivity aad the remaining solvent extracts were prepared for TLC analysis as described
above. The radioactivity found in this extraction step represented bound 3H-PMPA. An aliquot
of the remaining aqueous layer was solubilized as 2escribed above and counted for determination
of unextrzctable rudicacdyvity.

Coatrols were carried out with each experiment by homogenizing tissues from untreated
mice in 2 mi of buffer with a polytron. Either 3H-soman, 3H-PMPA or 3H-MPA (1 uCi each)
was added to these homogenates, as well as to 2 ml of buffer. followed immediately by the
addition of 10 m! of toluene. The samples were homogenized again with the polytron and then
processed at the same time and in the same manner as the tissue samples from treated mice. In
this way, the stability of the agent as well as the extraction efficiencies could be determined.

Animals. Male ICR mice weighing 25-30 g and male Hartley guinea pigs weighing 450-
500 g were used for these experiments.
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Measurement of total radioactivity in urine and feces. Urine was counted
directly in aqueous counting scintillant. Feces was homogenized with a polytron at high speed in
five volumes of phosphate buffer. Aliquots of these homogenates were combusted in a Hewlett
Packard Sample Oxidizer for liquid scintillation spectrometry.

Mecsurement of acetylcholinesterase activity. The exposed animals were
decapitated, 6 ml of blood was collected from guinea pigs and 500 ! of blood was collected from
mice in heparinized tbes. The samples were centrifuged 30 min for guinea pigs and 10 min for
mice in order to separate the plasma from the red blood cells. Total, pseudo-, and true
cholinesterase activity were measured in all samples. The substrate was prepared by adding [3H]-
acetylcholine iodide and acetylcholine iodide to a buffer solution (10 mM TES, pH 7.4) to
produce a 2.5 mM solution containing 2 pCi/ml. Tissue was diiuted 10-fold with buffer. The
samples were incubated for 30 min at 37°C. The incubation mixture contained 60 il of red blood
cells, 100 pl of [3H]- acetylcholine, and either 40 ul of TES buffer or 40 pl of a 2.5x10°M
solution of 1,5-bis(4-allyldimethylammoniumphenyl) pentan-3-one dibromide (BW284C51). This
compound is an inhibitor of true cholinesterase at this concentration. All samples were run in
triplicate. After incubation, the reaction was terminated by the addition of 40 pl of 1 N HCl and
the incubated tubes were placed on icz. 100 pl of the reaction mixture was removed and added to
5 ml of the special scintillation cockail, which contained 2,5-diphenyloxazole and p-bis-[-2-(5-
phenyloxazolyl)] benzene in a solution of toluene:isoamyl alcohol (9:1). The addition of HCl
reduced the polarity of the acetate (which contains the tritium) thus allowing it to be extracted into
the scintillation cocktail. Samples were counted by using the liquid scintillation counter (LS1801
from Beckman). Background values were determined and samples contained 60 ul of TES buffer
without RBC's. Values from sample tubes that were not incubated with BW284C51 represented
the total cholinesterase activity, whereas those that contained the inhibitor produced values that
represented the pseudocholinesterase activity. The latter was subtracted from the former to provide
th= true cholinesterase activity. The amount of substrate hydrolyzed was determined by dividung
the true activity by the specific activity of the [PH]-acetylcholine solution. Enzymatic activity was
then determined by dividing the amount of hydrolyzed (3H]-acetylcholine by the incubation time
and the protein content of the sample. The protein concentration was detcrmined by the method
described by Bradford (29).

Inhalation exposure. There are numerous methods for exposing animals to vapors.
However, there are added restrictions when dealing with highly toxic agents that are also
radioactive. Therefore, a relatively simple apparatus was designed in our laboratory that allows
for the dynamic exposure of a small quantity of material to mice, rats or guinea pigs. It is possible
to expose animals to pharmacologically active doses while at the same time safsly collecting the
remaining material. In addition, only the noses of the animals come into direct contact with the
volatilized materia! which minimizes percutaneous absorption.

The inhalation apparatus for guinea pigs is an enlargement of the apparatus used to expose
mice to volatilized organophosphates as described in detail by Scimeca et al. (30) and as depicted
in Scheme 2. The system consisted of three major components: volatilization tube and exposure
manifold, collecting traps, and a vacuum system. Four guinea pigs were placed in their individual
animal holders such that their heads remained snugly in place. The animal holders were then
attached to the manifold, which was designied to allow air flow past the animals’ noses. The agent
was pipetted into the U-shaped volatilization tube and then the oil bath (maintained at 80 °C) raised
so that the U-shaped tube was immersed in the oil, as shown in the diagram. This latter step
initiated the exposure period which has a duration of 10 min. The second component of the
system was the collecting traps, which were included for the purpose of capturing the
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Scheme 2. Inhalation exposure apparatus.
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organophosphate that was not inhaled. The first trap was a 15-cm section of tygon tubing
containing approximately 2.5 g of glass wool (which mimics a Cambridge filter). Air flow passed
from this filter through a bubbler trap (with a fritted end) that was immersed in equal parts of
propylene glycol and ethyl acetate. A flow meter was placed after the collecting system and
regulated the air flow at 1120 ml per min. The last component was the vacuum system which was
comprised of a water pump that recirculated four liters of 1 N NaOH to create the negative
pressure that drcve the air flow through the entire apparatus. This particular design placed the
entire system under negative pressure thereby preventing loss of the organophosphate. In
addition to the glass wool and propylene glycol/ethyl acetate traps, the recirculating 1 N NaOH
also served as an efficient means for detoxifying any organophosphate which has not been
trapped. The entire inhalation apparatus was contained within the hood in the Dilute
Organophosphate Laboratory.

The mouse exposure apparatus was similar to the guinea pig system with the exception
that it was capable of administering vapor to six mice rather than four guinea pigs. In addition,
the sample compartment in the mouse apparatus was designed somewhat differently, although
both systems work on the sample principle of pulling air over a heated sample of
organophosphate.

Determination of vapor concentration during inhalation. The manifoid of the
inhalation apparatus contains a port which allows sampling of the vapor with a 100 pl gas-tight
syringe. In order to establish the concentration of vapor during the 10-min inhalation period,
samples were taken at 1-min intervals with syringes that had been heated to 50 °C. The
volatilizaticn was done with 3H-soman so that the vapor concentration could be determined by
liquid scintilladon spectrometry. The sample in the syringe was injected into 10 ml of scintillation
fluid. The syringe was washed by drawing scintillation fluid into the syringe several times and
then injecting it back into the scintillaton vial. The sampies were then subjected to liquid
scintillation spectrometry.

Intravenous injections. The i.v. injections of soman (15ug/kg) in guinea pigs were
performed through the ear vein of lightly restrained guinea pigs using a 31 or 32 gauge needle.

Experimental protocol for the biodisposition and metabolism of 3H-soman
in guinea pigs following administration by different routes. The first requirement for
the inhalation studies was to establish a general protocol for exposing guinea pigs to 3H-soman.
Exposure condiidons were chosen so that the guinea pigs received a pharmacologically active dose
that was sublethal. 3H-Soman (54 uCi/238 ug) suspended in 244 i of propylene glycol was
volatilized at 65-70 °C for 10 min. at a flow of 1035 mi/min. Following exposure, the guinea pigs
were decapitated and skinned. The carcasses were homogenized in 2 volumes of water and an
aliquot was solubilized for determination of radioactivity by liquid scintillation spectrometry. The
results from these experiments demonstrated that the animal carcasses contained 2.31 £ 0.2 pug
(mean * SEM) of soman. This quantity represented 0.97 + 0.08 % of the starting material. The
remainder of the radioactivity was collected in the traps. The average dose + S.E.M. for six
animals was 5.03 £ 0.38 pg/kg.

Once the experimental protocol had been established, guinea pigs were exposed to the
vapor of 3H-soman for 10 min and then six animals per group were decapitated at the following
times: 35, 15, 30, 60, 120, 240, 480 and 1440 min. Six animals were needed per group due to
greater variability with inhalation exposure than with i.v or i.m. injections. Due to the fact that
only four guinea pigs could be exposed at a time, it was necessary to pool four animals from one
inhalation exposure with two animals from a subsequent exposure. The animals which were
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decapitated at 240, 480 and 1440 min were placed in metabolic chambers for the collection of
urine and feces. Intact 3H-soman, free 3H-PMPA, bound 3H-PMPA (phosphorylated protein)
and 3H-MPA were measured in plasma, erythrocytes, train areas, diaphragm, liver, lung,
trachea, kidney, fat, urine and feces. Total radioactivity was measured in the carcasses and added
to that in the other tissues in order to establish dosimetry. The concentration of 3H-soman vapor
in the manifold was measured at the beginning, middle and end of each exposure.

The biodisposition of 3H-soman and its metabolites was studied in guinea pigs after
intramuscular (hind leg) and intravenous (ear vein) injections of a sublethal injection of 3H-
soman. Again, it was necessary to establish a dose of soman which was sublethal. Doses of 20,
30 and 65 pg/kg produced 100% deaths in 3 animals, 1 animal and 1 animal injected
intravenously with the respective doses. An intravenous dose of 15 yg/kg produced no deaths in
three animals. Therefore, a dose of 15 pg/kg was chosen for both intramuscular and intravenous
studies. Guinea pigs (5 per group) were treated with 3H-soman and decapitated at the times
indicated above for the measurement of 3H-soman and individual metabolites in all of the specified
tissue.

Erythrocyte cholinesterase activity was the biological marker which was measured in all
animals.

Experimental protocol for the biodisposition and metabolism of 3H-soman
in mice following administration by different routes. The inhalation studies were
similar to that outlined for guinea pigs. The inhalation apparatus was the same as that described
previcusly (28). 3H-Soman (780 uCi/150 pg) suspended in 244 pl of propylene glycol was
volatilized at 65-70 °C for 10 min at a flow of 1035 ml/min. Following exposure, the mice were
decapitated and skinned. In order to determine dosimetry, the whole body carcasses were
homogenized in 2 volumes of sucrose/phosphate buffer, and an aliquot was solubilized for
determination of radioactivity by liquid scintillation spectrometry. The results from these initial
experiments demonstrated that the animal carcasses contained 2.06 + 0.16 pg/kg of 3H-soman.
Mice were exposed to this sublethal concentration of 3H-soman and six mice were decapitated at
cach of the following times: 5, 15, 30, 60, 120, 240, 480 and 1440 min. The animals
decapitated at 240, 480 and 1440 min were placed in metabolic chambers for the collection of
urine and feces. Intact 3H-soman, free 3H-PMPA, bound 3H-PMPA and 3H-MPA were
measured in plasma, erythrocytes, brain areas, diaphragm, liver, lung, trachea, kidney, fat, urine
and feces. Total radioactivity was measured in the carcasses which remained after dissection.
The total radioactivity levels in the remaining carcasses are presented in the tables describing
residual metabolites. The concentration of 3H-soman vapor in the manifold was measured at the
beginning, middle and end of each exposure. Cholinesterase activity was measured in
erythrocytes in all mice.

The biodisposition of 3H-soman and its metabolites was studied in mice after
intramuscular (hind leg) injection of a sublethal dose of 3H-soman. A dose of soman which was
sublethal yet produced cholinesterase inhibition was found to be 25 pig/kg. Therefore, mice (6 per
group) were treated with this dose of 3H-soman and decapitated at the times indicated above for
the measurement of 3H-soman and individual metabolites in all of thc specified tissues.
Cholinesterase activity was measured in erythrocytes in all animals as mentioned above.

The protocol for determining acetylcholinesterase inhibition following i.v. administration
was the same as that described above for the guinea pig experiments. The only exception was that
the mice received a 10-sec infusion of 3H-soman (25 pg/kg) via the tail vein rather than the ear
vein.
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RESULTS

Biodisposition and metabolism ¢f H-soman in mice after inhalation. Mice
were allowed to breathe vapor generated from 150 ug of 3H-soman as described above and then
decapitated at various times thereafter in order to measure the time course of tissue concentrations
of 3H-soman and its metabolites. Five min after the termination of the inhalation exposure, 3H-
soman levels were highest in fat, diaphragm, kidney and lung (Table 3). The time course of H-
soman was somewhat erratic in that the levels fell dramatically by 15 min but then appeared to
rebound by 30 min in several tissues. It is not clear why the 3H-soman concentrations are
elevated as long as 24 hr after inhalation exposure. However, these results suggest that soman is
slowly eliminated after inhalation exposure in contrast to our previous results (25) which clearly
showed a rapid clearance after intravenous administration. 3H-Soman was readily hydrolyzed to
form unbound (free) 3H-PMPA which was present in all tiscues (Table 4). Concentrations in
blood, brain, lung, liver, and fat remained relatively constant during the 24 hr period. Maximal
concentrations in trachea occurred during the 30-240 min time period. As expected, lung
contained high concentrations of bound 3H-PMPA which remained quite high throughout the 24
hr observation period (Table 5). It is also not surprising that relatively high concentrations of
bound 3H-PMPA were located in trachea. However, it is not clear why the maximal
concentrations were not obtained until 240 min. The concentrations in brain were notably low but
constant throughout. The pattern of distribution of 3H-MPA (Table 6) closely resembled that of
3H-PMPA. Due to the high content of acetylcholinesterase in brain, it was not unexpected to find
the concentrations of 3H-MPA to be almost double those of 3H-PMPA. Highest 3H-MPA
concentrations were found in the diaphragm at 5 and 120 min, the lungs at 5, 60 and 480 min and
the trachea at 240 min. 3H-MPA levels in the kidneys varied moderately with time as expected
with excretory organs, while 3H-MPA levels in the liver remained relatively constant.

Biodisposition and metabolism of 3H-soman in mice after intramuscular
administration. Free 3H-soman concentrations after intramuscular injection in mice are
depicted in Table 7. The highest quantities of free 3H-soman, found in the trachea, lung, heart,
diaphragm and testicular fat at 5 min, declined over the next 30 min. It is interesting to note that
the concentrations of 3H-soman then rose at 120, 240, and 1440 min in most tissues. Actually,
the levels at 1440 min were similar to those at the 5-min time point for trachea, fat, liver, kidney,
heart, diaphragm, and brain. It appears that this route of administration results in a sustained
release of *H-soman. Hydrolysis of 3H-soman occurred rapidly to form free 3H-PMPA. In most
tissues the highest amounts were _ound between 5 and 30 min after administration, except for the
trachea which had the highest levels at 1440 min (Table 8). Free 3H-PMPA concentrations were
highest in blood at 30 min and in the lung and brain at 5 min. Testicular fat levels were highest at
15 min in the early time points and then declined until rising again to reach a maximum
concentration at 1440 min. The concentrations in brain also declined and then rebounded at 1440
min. Bound 3H-PMPA tissue concentrations were highest in the lung, trachea and blood at the 5-
min time point (Table 9). The highest levels in lung, trachea and heart were found at 240 min.
An increase in bound 3H-PMPA was observed in blood at the 15 and 30 min time points,
followed by dramatic fluctuations for the remaining time. Bound 3H-PMPA levels in the kidney
were highest and most consistent during the 15-240 min time period. The highest 3H-MPA
concentrations in the diaphragm were found at 60 and 120 min, in the lungs at 5, 60 and 120 min
and in the trachea at 5 and 240 min. 3H-MPA levels in the kidneys varied moderately with time
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as expected with excretory organs, while 3H-MPA levels in the liver remained relatively constant
(Table 10).

Biodisposition and metabolism of JH-soman in guinea pigs after inhalation
exposure. The biodisposition of 3H-soman in guinea pigs following inhalation of a dose of 2
pg/kg is presented in Table 11. As expected the highest concentrations were fouad in lung 5 min
after exposure. Trachea, fat and kidney cortained relatively high concentrations at this first titae
point whereas the remaining tissues contained lower concentrations which were approximately
equivalent to each other. The concentrations of 3H-soman fell dramatically by the 30 min time
point but then remained relatively constant for the duration of the time period studied. In addition,
the 3H-soman was distributed relatively evenly throughout all tissues, with the possible exception
of the trachea, during the 30-1440 time period. Within 5 min, the major portion of the 3H-soman
had either been hydrolyzed to free SH-PMPA (Table 12) or had phosphorylated tissue in the form
of bound 3H-PMPA (Table 13). At the earliest time point, the greatest quaatity of free 3H-PMPA
was found in the kidneys followed by lung and trachea. Interestingly, the lowest quantities were
found in brain. The concentrations in kidneys and liver increased until they reached maximal
quantities at 30 min and then declined during the remainder of the time course. A similar time
course was observed in the trachea which is not readily explainable. In most tissues, there was a
steady decline in free 3H-PMPA for the entire time course. As for bound 3H-PMPA (Table 13),
the highest concentrations were found in trachea which remained high for at least 6 hr. The next
highest concentrations were measured in lung and kidney. Maximal concentrations in brain
occurred at 15 min but were relatively low thereafter. The distribution pattem of 3H-MPA (Table
14) was somewhat similar to that of SH-PMPA. The highest concentrations were found in trachea
and there was a relatively even distribution in the other tissues at the 5 min time point. One of the
major differences between their biodisposition was the higher concentrations of 3H-MPA in brain
which weuld be expected due io the high concentration of acetylcholinesterase in brain.

Biodisposition and metabolism of 3H.seman in guinea pigs after
intramuscular administration. This route of administration resulted in a sustained release of
3H-soman following treatment with a dose of 15 pg/kg (Table 15). In most tissues maxinal
concentrations were attained at the 60 min time point. These tissues included diaphragm, heart,
kidney, kiver, lung and fat. Maximal concentrations were achieved immediately in blood and only
declined by 50% after 6 hr. Levels in all tissues remained basically constant through the 60 mun
time point and then declined slowly through the 480 min time point, except for the lung and
testicular fat which had increasing and maximum concentrations over the 480 and 1440 min time
points. As with the other routes of administration, 3H-soman was rapidly hydrolyzed to free 3H-
PMPA which was present in all tissues (Table 16). Free 3H-PMPA tissue concentrations were
highest in the kidney and lung at 15 and 30 min following treatment. while free 3H-PMPA ievels
in the blood were greatest at S min and declined over time. It is interesting to note that the lowest
voncentrations of free 3H-PMPA were found in brain. Bound *H-PMPA tissue concentrations
were highest for the blood, kidney, and lung (Table 17) after 5 min. In general, the highest tissue
levels, found after either 5 or 30 min, declined slowly thereafter. An increase in bound 3H-PMPA
was observed in blood from 15 10 30 min, and then varied only slightly with time until increases
occurred at the 240 and 480 min marks. One of the most striking features of the bound 3H-PMPA
was the exceedingly high concentrations which were present in lung. Very low concentrations of
bound *rI-PMPA were present in brain which were similar tc those of frec 3SH-PMPA. High
concentrations of *H-MPA, consistent with phosphorylation of cholinesterase in areas with high
acetylcholinesteras activity, were found in the brain and in excretory organs such as the kidneys
(Table 18).
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Biodisposition and metabolism of 3H-soman in guinea pigs after
intravenous administration. The intravenous administration of 15 pg/kg of 3H-soman
resulted in a rapid transfer to all tissues. Organs which contained the greatest quantity of 3H-
soman at the 5 min time point were lung, kidney and, surpnisingly, fat (Table 19). Concentrations
were also quite high in brain at this initial observation time. However, the concentrations
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Figure ?. True cholinesterase activity in blood in guinea pigs after
exposure to soman by different routes of administration. The results are expressed as a
percent of control animals which were treated with saline either i.v or i.m. or exposed to air in a
manner similar to the soman inhalation.

True cholinesterase activities (means + SEM) for control guinea pigs were 1.35
0.14, 2.96 £ 0.51, 5.96 £ 1.32 nmol of ACh hydrolyzed per mg protein per min
following vehicle administration by inhalation (I.H.), intravenous (I.V.) and
intramuscular (I.M.) administration, respectively. Each data point represents a mean
of six animals. Despite the fact that intra-assay variability (represented by the
triplicate values of any given time point) was very low, the inter-assay variability was
often large.

= For L.H. group, the variability in the data was 6%-13% of the mean values.
* For LV. group, the variability in the data was 7%-55% of the mean values.
* For I.M. group, the variability in the data was 10%-46% of the mean values.




dissipated rather quickly in most tissues. 3H-Soman appeared to be hydrolyzed faster to free 3H-
PMPA after intravenous administration than after intramuscular administration. Free 3H-FMPA
concentrations were extremely high in kidney and lung at 5 min and remained so up to the 1440
min mark (Table 20). Free 3H-PMPA levels in the blood peaked at 5 min and declined steadily
over time. Free 3H-PMPA concentrations declined rapidly through the 60 min time point and then
declined to low but variable levels for the remainder of the time course. Bound 3H-PMPA tissue
concentrations were highest for the blood, followed by kidney and lung (Table 21). Very low
quantides were found in brain. The highest levels, found in tissues between S and 60 min,
declined slowly thereafter. An unexplained increase in bound 3H-PMPA was observed in most
tissues at the 60 min time point. The appearance of 3H-MPA was somewhat erratic although the
high concentrations of 3H-MPA were typically found within 30 min of administration (Table 22).

Inhibition of acetylcholinesterase activity by soman. Total, pseudo-, and true
cholinesterase activities were measured in tissue samples as described in Methods section (p. 12).
The effects of soman on chclinesterase activity in guinea pigs after either inhalation (5 pg/kg),
intravenous (15 pg/kg) or intramuscular (15 pg/kg) administration is presented in Figure 1.

160 &

120

% Control

Time (hr)

Figure 2. True cholinesterase activity in blood in mice after exposure to
soman by different routes of administration. The results are expressed as a percent of
control animals which were treated with saline either i.v or i.m. or ¢xposed to air in 2 manner
similar to the soman inhalation.
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True cholinesterase activities (means + SEM) for control mice were 1.52 + 0.47,
1.41 £0.24, 2.25 £ 0.24 nmol of ACh hydrolyzed per mg protein per min following
vehicle administration by inhalation (I.H.), intravenous (1.V.) and intramuscular
(I.M.) administration, respectively. Each data point represents a mean of six animals.
Despite the fact that intra-assay variability (represented by the triplicate values of any
given time point) was very low, the inter-assay variability was often large.

* For L.H. group, the variability in the data was 4%-22% of the mean values.
* For LV. group, the variability in the data was 9%-32% of the mean values.
* For L M. group, the variability in the data was 3%-18% of the mean values.

Soman administered either intravenously or intramuscularly produced profound and long-
lasting acetylcholinesterase inhibition. As would be expected, the onset was much faster with the
intravenous administration, whereas the maximal inhibition with the intramuscular adminisiration
did not occur untl 4 hr later. It can be seen that inhalation of a relatively low dose of 5 pg/kg had
very little effect on acetylcholinesterase activity. In fact, there appeared to be a parodoxical
increase in acetylcholinesterase activity 2 hr after the inhalation exposure. It is certainly clear that
the pharmacological effects following soman inhalation are dramatically different from those
observed following the other routes of administration which could influence both biedisposition
and metabolism of soman. The results in Figure 2 depict the acetylcholinesterase activity in mice
following either intramuscular injection of 25 pg/kg or inhalation of 2 ug/kg of soman. Neither of
these low doses produced suppression of acetylcholinesterase activity with the exception of slight
depression at 24 hr after inhalation exposare. Again, it would appear that these low doses actually
stimulated acetylcholinesterase activity up to 4 hr after treatment. In order to determine whether
procedural problems could be responsible for this anomaly, acetylcholinesterase activity was
quantitated in mice which were injected intravenously. As can been seen from the results in
Figure 2, intravenous administration resulted in the expected decrease in acetylcholinesterase
activity which occurred immediately after injection and returned to control quaniities by 24 hr.
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DISCUSSION

To reiterate the goals of the research, the first specific objective was to characterize the
biodisposition of soman and its metabolites in guinea pigs at sublethal doses in order to establish
the importance of rcute of administration with regard to metabolism and biodisposition of *H-
soman. The second objective was to determine the biodisposition and metabolism of 3H-soman in
mice following inhaladon and intramuscular injections of sublethal doses of 3H-soman in order to
assess species differences.

In summary, inhalation exposure of 3H-soman in mice resulted in rapid distribution from
the lungs to all tissues. It was rather surprising that the 3H-soman levels were sustained
throughout the 24 hr time course. There were considerable fluctations in the tissue concentration
of both 3H-soman and its metabolites. However, there were several similarities between the
results from this study and previous ones from our laboratory. The high concentrations of 3H-
soman and its metabolites in kidney and lung are consistent with previous results. The
intramuscular administration of 3H-soman also resulted in a rapid distribution to all tissues,
particularly the lungs and kifineys. It is particularly important to note that the trachea did not serve
as a storage depot for 3H-soman and its metabolites following inhalation exposure. In addition,
the concentrations of 3H-soman and 3H-MPA in trachea following intramuscular administration
were higher than would be expected. It rapidly phosphorylated protein and was quickly
hydrolyzed to free 3H-PMPA. The biodisposition of 3H-soman and its metabolites was quite
similar after both routes of administration.

Most of the differences in the biodisposition and metabolism of 3H-soman between
inhalation exposure and intramuscular administration could be logically explained based upon the
route of ircatment. For example, it was to be expected that relatively higher concentrations of 3H-
soman would be present in blood following intravenous administration than after inhalation. On
the other hand, high concentrations of >H-soman were present in iung and irachea after inhalation.
The higher concentrations in trachea are consistent with what would be expected following
inhalation exposure. On the whole, the biodisposition ard metabolism of 3H-soman after
inhalation exposure exhibited a pattern which was similar to that after intravenous administration.
Regardless of the route of administration, the kidney obvivusly plays an important role in the
climination of 3H-soman and its metabolites. Additicnally, high concentrations of the
organophosphaies were found in lung after all routes of administration. Of course, the dosc of
3H-sorman administered by the differen: routes is an important consideration.

The most striking difference between the mice and guinea pigs occurred with 3H-soman
concentration following the inhalatior: exposure. All tissues of the mice contained higher
concentrations of 3H-soman despite exposure to a dose that was less than that administered to
guinea pigs. It is interesting to note that tracheal concentrations of soman and its metabolites were
comparable following inhalation exposure and intramuscular injection in mice, whereas their
tracheal levels in guinea pigs were considerably higher after inhalation exposure. In addition, the
concentrations were highly variable in mice which complicated the irterpretation. However, it
appeared that there were no major diffsrences between the biodisposition and metabolism of 3H-
soman in guinea pigs and mice after these routss of administration, which would directly account
for the difference in sensitivities of these two animal species to soman.
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