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LARGE RESONANCE SIGNATURES IN SCATTERING FROM SUBMERGED ELASTIC

TARGETS IN THE TIME AND FREQUENCY DOMAIN

M. F. Werby and S. A. Chin-Bing

Naval Oceanographic and Atmospheric Research Laboratory

Acoustic Theory and Simulation Branch, Code 221

Stennis Space Center, MS 39529-5004

Abstract 2. A New Acoustic Background for Submerged Elastic Shells

There are a variety of resonances that can be excited when one The rigid background concept for elastic solid targets in which the

scatters a wave from a submerged elastic target. It is usual to detect total elastic response is viewed as a superposition of a resonance

these resonances by observing the backscattered echoes from either response and a nonresonant acoustical background' (rigid for solid elastic

pulses for the time domain case or by varying frequency in small step targets) has proven quite successful as the "correct" background

sizes in the frequency domain case. Many such resonances produce for elastic solids submerged in water. An analogous background for

fairly small effects that can get lost in the background in any realistic the elastic shell problem has proven more elusive to find. Earlier

environment. On the other hand several types of resonances are quite work2 -
4 has shown that for very thin shells a soft background is useful

prominent and quite possibly can be observed even in a fluctuating in extracting the elastic residual, but for shells of greater thickness
environment. Many of these resonances have characteristic return signals and at high frequencies, a rigid background has proven suitable. It has
and offer a "tell-tale" event of a particular target. We refer to such also been demonstrated that for some cases a soft background
characteristic signals as "resonance signatures." In this study we illustrate was suitable at the lower frequency limit and that a rigid background was
a number of "resonance signatures" and describe the underlying physics suitable at the higher frequency limit for the same target. The Uberall

or mathematics behind the event. We indicate how these signatures group4 at the Catholic University of America has employed a rigid
can be useful in target identification. background for elastic shells with some success for very thick shells.

In this paper a model is discussed that describes acoustic scattering

from an elastic shell in the absence of resonances. We then demonstrate

1, Introduction that it is a suitable background for the elastic shell problem by presenting

numerous examples that manifest a pure resid,,al resonance response.
Resonances are excited by incident acoustical signals as they impinge The model is then applied over a ka range from 0 to 300 for steel

on elastic bodies of rotation as well as elastic bars. They are charac- and WC at a thickness of 1%, and for steel at thicknesses of 0.3%
terizcd by the fact that they occur at discrete values of frequency and
when they occur, a characteristic event takes place. This event can be satisfactory results.

complicated and difficult to distinguish from other physical mechanisms t iao results.The inertial component of the radiation loading of a spherical shell

unrelated to resonances but they are usually distinguishable and can

be related to a particular process. Recent theoretical and numerical

developments1- 21 have enabled researchers to perform calculations
and to understand the nature of resonances. Our interest in this paper Ps = -g(0 Mn Wpn () ()

is to investigate particularly large and distinguishable resonances that i=O

manifest themselves in either the frequency or time domain. In the

literature there have been three classes of resonances usually studied. p lih
a 

(ka)

Investigations of Lamb resonances due to symmetric and antisymmet- where Mn= - -"

ric waves (labeled Si and A, for i = 0.1,2, . . .) for shells
2 4.

15 1 - 20 k hn (ka)

have been vigorously investigated; for elastic solids. Rayleigh resonances

(labeled as an ordered pair (n.l) with n = 2.3,4 . . .) and whispering Here, M. is the entrained mass per unit area for mode n. co is the angular

gallery resonances (labeled as an ordered pair (nl) with n = 0.1,2.. frequency, p the density of a fluid. P 0 (I) is an associated Legendre

and I = 2,3.4. . .) have also been extensively studied.
t
'
9 .10

- 1 2 1
7

'
2 t Here polynomial evaluated at 180 degrees, k is the wave number, and h is

n corresponds to the mode number of the resonance viewed as a surface an outgoing spherical Hankel Function. Here Wn is an expansion

standing wave with n = 0 corresponding to a breathing mode. These coefficient related to the displacement potential. If we excite the sphere

resonances are not particularly pronounced in magnitude or signature by an incident monochromatic plane wave, then we have

(the characteristic shape of the resonance). In this work we wish to
examine classes of resonances that are somewhat more pronounced in V = - gio an(jn(ka) + bnh,(ka))exp(- iot).

magnitude or pattern either in the time or frequency domains. We will
give a brief discussion of these phenomena including effects peculiar

to spheroids such as onhogonal classes of resonances recently discussed where j. is a regular Bessel function and ba is an unknown coefficient

in the lterature.
15 2t However, emphasis will be placed on the following: which corresponds to the partial wave scattering amplitude which we

I) resonances at coincident frequency (the frequency at which the seek. Here, a. is the plane wave expansion coefficient. The total

speed of the flexural Lamb wave equals the speed of sound in the pressure per unit area in the fluid due to the incident plane wave is

fluid) excited on submerged elastic shells; 2) "resonances" due to high 2

frequency incident plane waves on a submerged elastic shell due to an Pt=  c , Lan(Jf(kr)+bflhnOU))P 5 (i)CKP(-i(00t. (2)

internal reflection effect; and 3) flexural or bending resonances due to ka 0

plane oblique incident waves on a spheroid. It will be seen that each -i pt

of these classes of resonances are rather large, have characteristic The particle velocity at the surface of the object is: v =

signatures and have locations predictable using simplified expressions. peok ar

In the time-domain case a recently advanced methodology arising from

a time-domain resonance scattering theory is used to discuss the existence Here, c is the speed of sound in water. The particle acceleration a is

of strng pseudo-Stonely resonances excited on elastic shells that give the time derivative of v which leads to:

rise to a strong beat pattern in the time-domain resonance signature.
The time-domain methodology is outlined below. However, since we) 2

Will ate Occai to sN the correct coustical background for an a P. I a jn 0an+t)+bnnk)hn (r)jP ()exp(-o). (3)

elasi dell this rece devefotlmeuI t will be oine in the next section. i .. o

O.7U4=410-in I -I 351.0001991 IEEE
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The force at the surface of the object due to the incident plane wave is that only at the extreme ends does either background appear adequate.
simply the product of the particle acceleration and the mass of the Figure Id illustrates the case for which the new background is sub-
spherical shell. The mass of the spherical shell is 4tpa 3 [l - (I - h)3 ]1/3. tracted from the form function and it is evident that it is superior for
where h is the ratio of the shell thickness to the shell radius. The force the entire region of ka. Figure 2a-2d illustrates the same example for a
due to the total fluid loading at the object surface is equal to the total shell of 1% thickness (the form function, the residual obtained by
inertial fluid loading times the surface area 41ta 2 of the sphere. Here, subtracting soft, the residual obtained by subtracting rigid, and the
a is the radius of the spherical shell and Ps is the density of the shell residual obtained by subtracting the new background). Again, it is
material. We equate these two forces to obtain the unknown coeffi- evident from Fig. 2 that the new background is indeed adequate even
cient bn which leads to the following expression. in the region of strong flexurals around ka = 120.

Figure 3a-3d illustrates plane wave scattering from 1% thick WC

3p I hn (ka) shells for the elastic response (3a), the elastic response minus the soft
3 Im In (ka)-j'n (W background (3b), the elastic response minus the rigid background (3c).

ps 1-(-h)3 h  ... and the elastic response minus the new background (3d). For the WC
bn =

- ----. (4) case the new background is also quite superior to the others. In con-

hn (ka) trast to aluminum, the rigid background is adequate over a larger
p km hn (ka)-h'n (U) range due to the high density of WC, as predicted by Eq. 4. Further,

ps1-.(I-h) h'n (ka)1  the isolation of resonances at the higher ka region is superior to either
steel or aluminum; the explanation is presented in the next section.

The scattered field for the new background is obtained by using the
bn's as the partial wave scattering amplitudes in a normal mode series. 3. Time Domain Resonance Scattering Theory
The bn's define the new background and by subtracting this quantity The partial wave series that emerges from normal mode theory for
from the elastic response, we obtain the residual response that reflects separable geometries can be represented in distinct partial waves or
mainly the pure resonance contribution. It is easy to show that the modes. It has been shown l 17 that a representation due to a distinct
imaginary part of the enclosed brackets in Eq. 4 is approximately mode It ha beenrshown 1in tha aoreu

equal to ka/(I + ka2) so that for large ka, bn = -j'n(ka) / h'n(ka) which

corresponds to a rigid scatterer and for both a very thin shell and at, [i I T(r)(r)
low frequency, bn = -jn(ka) I hn(ka) which corresponds to a soft scatterer. 2i;) 2l(n r
Thus we see that the background represented by Eq. 4 has the appro- fn (0)= G ,-_ + e sin,(5)
priate limits for thin shells at low frequencies (soft) as well as the ka(r) r i(r)
appropriate limits for high frequencies (rigid). IXXn n

2.1 Application to Elastic Shells = i h t eoac n afwdh
where c=ka,Xn is the nth resonance and rn the half-width.

In an earlier work, the form function due to an incident plane wave
on a steel spherical shell with thickness 0.3% of the radius was )'
examined.3 Figure Ia is the form function for the shell for a ka range Where (2i)r ) _ h
between 0 and 300. At the lower frequency end, a soft background (1;
appeared adequate but at quite high frequencies, a rigid h t (x)
background appeared adequate; intermediate regions were poorly
represented by both backgrounds. In Fig. lb and Fig. Ic a soft and Here, the factor 2n + I is absorbed in the expansion coefficient. For
rigid background are subtracted (in partial wave space) to illustrate the pulse form a continuous wave (cw) ping is used which corresponds

(3) (b)

2 .ffnIO- .0 o.46f"-

00

0 so 120 ISO 240 300 0 60 120 160 240 300

Ka Ka
(c) (d)

M 3.3150

2.491 Z41129

1.832741.65752

0 6 0 IS 24 3 00 27 0 60 120 ISO 240 300

Ks Ka

Figure 1. Scatering response for ka = 0 to 300 for 0.3% steel shell. (a) total response; (b) total
amus soft background, (c) total minus rigid backgrond; and (d) total minus new background.
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Figure 2. Scattering response for ka =0 to 300 for 1% thick shell. (a) total response; (b) total minus
soft background; (c) total minus rigid background; and (d) total minus new background.

(a) 6.5146- (b) 698

o4.8a59 1,

3.2573-34-
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7.164. (d) 692

o5.373- C.2 770-

3.5W8- 3.4513

La.I

0 60 220 Ig0 240 300 0 60 120 160 240 300
Ka Ka

Figure 3. Scattering response for ka =0 to 300 for I% thick WC. (a) total response; (b) total minus
soft background; (c) total minus rigid background; and (d) total minus new background.

to a very broad frequency range. For each time domain modal component, The remaining contributions fromn backscatter are small .ue to phase
one has that averaging.

It is assumed that calculations are perfonmed in a nusonance region
-(Il sr ~ for which the resonance widths are fairly constant and the resonance

Re. (r) j (r) j r~u~se W (6) spacing is fairly uniform.19 " This assumption leads to the important
expression

T7hat is. at a resonance the time-domain solution is simply the product P~s -~ 2x2 .rizv aval 8
of the half-width times a sinusoidal function times an exponential
damping factor. From the time-domain solution for a nest of reso-
nances (N-in) for a cw ping, one obtains the form (r) I 1+ 2M Wr

where~ae~ Xi

P(S 2 2mj()s'in(X) srj (7) Here One SetS n - in 2M. It is Seen from the above expression:
T Ihe half-width is associated with the decay of the response i h
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Figure 4. (a) Time domain; and (b) frequency domain for scattering Figure 5. (a) Time domain; and (b) frequency domain for scattering
from a steel shell of I% thickness about coincidence frequency. from a WC shell of 1% thickness about coincidence frequency.

tme domain solution: the response decreases exponentially with The time-domain calculations are now examined. The first example
increasing value of the half-width, is a steel shell of 1% thickness. In this case a well-defined envelope
- When the number of adjacent resonances (2M) sensed increases, the (illustrated in Fig. 4a) with pronounced oscillations within the enve-
return signal becomes more sharply defined and the envelope function lope is consistent with Eq. 8. The enhancement due to the factor 2M
(the beats) are more enhanced and clearly defined, is obvious both here and in Fig. 5a for the WC case. The group velocity
- For larger carrier frequencies, the signal is more oscillatory within can be obtained from the peak-to-peak distance of the adjacent envelopes.
the envelope. The result leads to a value of 2.23 km/scc. Both flexural and pseudo-

Slonely resonances compete in this region. A mixture of pseudo-Stonely
waves, as well as flexural waves must be leaking into the fluid. For
flexural waves, the group velocity is 2.53 km/sec at coincidence

3.1 Time Domain Backscattering at Coincidence Frequency frequency with a range between 2.44 and 2.68 km/sec over the ka
range of 100-140, where the strong flexurals are significant. In that

Flexural waves do not yield resonances from fluid-loaded shells range the phase velocity varies from 1.37 to 1.58 km/sec. The value
until the phase velocity of the flexural wave is about equal to the of the extracted group velocity does not agree well with the flexural
speed of sound in the ambient fluid.5 '2 4 The value in frequency for group velocity; the discrepancy is 12%. This variation suggests that
which this happens is referred to as the coincidence frequency; however, the flexural resonances are of little importance for the time sequence
some subsonic fluid-borne waves produce sharp resonances 9

,
2° below presented here. The group velocity of the pseudo-Stonely waves for

coincidence frequency. These waves are referred to as pseudo-Stonely this case has been determined 19 to be 2.16 ki/sec based on plate theory.
waves and the related resonances as pseudo-Stonely resonances. 2° The The phase velocity is in the range from 88% to 98% of the speed of
pseudo-Stonely resonances are well defined in partial wave space. sound in the fluid. This value of group velocity is within 3% of the
they usually correspond to only one partial wave mode number and a extracted value from the time-domain solution. Moreover, the pseudo-
very narrow half-width with a dispersive phase velocity, which Stonely resonances have very narrow widths while the flexural resonances
approaches the speed of sound in the fluid with increasing frequency. are quite large. The conditions in the previous section would indicate
The pseudo-Stonely resonances diminish in significance at the point that the flexural resonances would rapidly dampen due to the large
where the flexural resonances begin to dominate. It can be determined half-widths while the pseudo-Stonely resonances would attenuate slowly
that a phase change occurs in the pressure field in the transition region in time. Thus, based on the similarity of the extracted group velocity
from subsonic to supersonic. This change accounts for the envelope of and that of the pseudo-Stonely wave and the conditions in the previous
the resonance curve at coincidence frequency where the waves are in section on level widths, one may conclude that the time-domain cal-
phase until coincidence and are out of phase afterwards. Our interest culations in Fig. 4a represent pseudo-Stonely r sonances.
here is in examining the time-domain response since one expects the
conditions previously described to be partially met over a broad frequency The final example is for the WC shell of 1 % thickness. The results
range and thus to yield a strong coherent response with a carrier fre- of the calculation are consistent with that of the steel case and are
quency in the neighborhood of the frequency at coincidence. Accordingly, illustrated in Fig. 5b. Here the group velocity was extracted to be
the case of cw pings for two examples-for which coincidence 2.33 km/see as opposed to the plate theory value of 2.65 km/sec for
resonances are expected to arise-is examined. This is certainly flexural waves. The range of values for the group velocities predicted
suggested by the strong responses in Fip. 4b and Sb at the ka values was from 2.49 to 2.71 kin/se over the ka ranging from 74 to 102.
113 and 87. respectively, for steel and WC. Further, in this analysis Here, as in the previous example, the difference was 12% between the
the Mindlin-Timoshenko

2
4 thick plate theory is used to determine die extracted value and the value predicted for flexural waves. The group

value for which the flexural phase velocity will equal the ambient velocity for pseudo-Stonely waves is, however, 2.26 which is within
speed of sound in water. The phase and group velocities are determined 3% of the extrcted value here. As in the previous example the pseudo-
from flat plae theory which proves to be quite reliable in predicting Stoely resonances are quite narrow and the flexural remonances anw
the phase velocity for the curved surfaces of the spheres at the boad and one may conclude that the resul offRt Sb 119PR ueS lUS1do-
coincidence frequecy. Sonely resonances. Further. we use Mndlln-TWh5ek 2 tdick piM
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wh q to determine the value for which the flexural phase velocity the fact that when a wave goes into a layered material, if the wave

will equal the ambient speed of sound in water. The expressions we length of the layer is equal to half the wavelength of the penetrating

use are from flat plate theory but they prove to be quite reliable in wave, the reflection coefficient is just equal to that due to the interior

predicting the phase velocity for the curved surfaces of the spheres at layers. In this case, this corresponds to a soft scatterer (the inclusion

the frequency limits in the vicinity of the value at coincidence fre- was evacuated) and thus the reflected signal when added to the usual

quency. It is remarkable that they in fact do predict the frequency surface reflected signal is at a maximum. We examine at what value

range in the figures which match the strong flexurals. We determine of ka this will happen for a steel shell with compressional speed

that the expression for the phase velocity is: 5.95 km/sec. The relation due to a flat plate approximation (adequate

04 ( 1r (0 2 at high frequency) is:

(r -(1+ 1-ka = n~ci n=1.2.3 (11)

Vf 11 0 0 (9) hc

(0 1Here CI and C. are the compressional speed of sound for steel and
water respectively (5.95 km/sec and 1.4825 km/scc) and h/a is the
ratio of the thickness to the radius of the shell (here 0.1 and 0.025).
Thus ka = 126 and 504, respectively, which are in the range of the

where 1 2 =Cp__2 h = 2.65 (1 +l.5v+0.75v 2 ) large returns. Figure 7a-7c are the form functions of steel, molybde-
num and WC for 5% thick shells. Here the compressional velocities

(h) are 5.95, 6.35 and 6.95 which are predicted (in the correct ranges)_ (ka)V,,, from Eq. 11. To determine that this is indeed the correct interpretation
and 1' 1 we examine where the plot is a maximum for the zeroth partial wave

corresponding best to the flat plate approximation. Figure 8a-gc

i'!us:%ites t t r+i, i .:,:d, is at ka = 126. 252 and 504. respectively

and Cp = CsV . for the steel cases. Moreover, Fig. 9a and 9b for the lowest partial
I -v waves yield similar agreement for molybdenum and WC. The broad

width of the resonances is due to the fact that the thickness that the

Here C. is the shear speed and v is the Poisson ratio of the material, plane incident wave 'sees' the shell is usually greater then the shell

The ratio (h/a) is a thickness parameter and V,, is the speed of sound thickness and must correspond to higher order partial waves but lower

in water. The remaining defining expressions in Eq. 10 are discussed ka values. This interpretation also predicts higher order resonances

in Ref. 24. For the cases presented here, (h/a) is 0.01 where a is the (when the thickness is equal to a multiple of half-integrals) and, indeed.

radius of the sphere. The group velocity is determined by us to be: the predictions are corroborated and will be illustrated elsewhere.

2 _ 2] (O 5. Rayleigh, Lamb and Flexural Resonances

do) 12C r+ I) 0We will discuss flexural or bending resonances excited on a spheroid,

dk 2 (10) and for contrast, briefly discuss the more well known resonances due

12vf C + 1Wr. I)
2  -2 V 2 to the generation of Rayleigh waves on an elastic solid and Lamb

P P fFjf waves on elastic shells. Rayleigh, or rather leaky-Rayleigh-type.
resonances are generated when incident plane waves impinge upon

Equation 10 was used to predict the group velocity reported in this fluid loaded elastic solids of rotation such as spheres and spheroids.

work. They correspond to frequencies at which the Rayleigh waves have half
integral wave lengths on the object surface (this does not preclude

4. Thickness Effects Due to Internal Reflections
From a Shell at High Frequency 3.5 ()

If one scatters a plane wave from an elastic shell then at a frequency
at which the interior wave length (associated with the compressional 2.5164

velocity of the material) is equal to an integral value of the thickness,
then it can be shown that the shell will appear transparent to the .6"

signal. Consequently the signal will reflect off of the inner surface of 1.6T76

the shell and add coherently with the specular signal at detection. For '., Li ,.ft
evacuated shells this tends to produce a maximum at such values and, 1 L [ ,
indeed, results that follow substantiate this. While this result is not , . . I I'
properly a "resonance" in the sense of the other processes discussed 0

here, for want of a better term we will refer to this rather large response 75 100 It
as a resonance. It can also be shown that the upper value of ka at 578- (b)
which this process takes place for a given thickness and multiple of
a half integral, terminates with the lowest partial wave allowed. Thus,
an examination of the partial waves at the lowest mode can substantiate 4, .

that our interpretation of this phenomena is correct. That will be
illustrated in the next section. 2-35 1

4.1 Thicksn "Resonances" From Elastic Shells at High Frequency W 14 .

Figur 6a an b are the form functions due to an incident plane
UPS On a spherical shell of 10% and 2.5% thickness for steel shells o " .
1e slvdy. It is evident that in the region between about a ka = 120 4M 4Z 451K 47 2

Md 490, Own 11e raher pinounced return which are quite a bit
rIn m t4uds thaen sally obinerved for symmetric and antisym. Figure 6. Form fction for (a) 10%; ad (b) (2.5%

MeWIC M6sonaCCs 'le exPIltwdm for ths eve, is determined from steel shell and thickness resonance.
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Figure 7. Form function for 5% thick shell and Figure 8. The lowest PWF for (a) 2.5%; (b) 5%;
thickness resonance. (a) steel shell. (b) Molvbde- and (c) 10% steel shell to a Ka = 1000.
num shell, and (c) WC shell.

interior contributions of the waves) thus producing standing waves on pattern is illustrated in Fig. 12 for the first four modes. The second
the surface which in turn radiates back into the fluid. The extended kind (at lower frequencies) are due to leaky Rayleigh waves and have
boundary condition (EBC) method

6 -
1
4 offers one the possibility to been shown to be related to both target geometry and material param-

predict such resonances. Lamb resonances are the analogue for shells eters (notably shear modules and density). Resonances can in this case
in which it is possible to excite both symmetric (extensional) and best be observed by examining the backscattered echo amplitude and
antisymmenc (flexural) resonances. 16 The bending or flexural resonances phase response plotted as a function of kL12, often referred to in the

(flexurals in this context are not to be confused with antisymmetric acoustic scattering literature as a form function. We illustrate this in

Lamb modes) occur on elongated objects such as spheroids both for Fig. 13, for broadside scattering from spheroids of aspect ratio 2. 3.

solids and shells and can be modeled using the approximate theory of 4. and 5. Here we see two resonances superimposed on the semi-

rods due to Timoshenko.
23  periodic pattern due to Franz waves associated with rigid scattering.

We now examine a phenomenon specific to elastic objects with If we subtract rigid scattering (in partial wave space) from the elastic

smooth boundary conditions surrounded by an acoustic fluid, namely, response, then we are left with the resonance response. In addition to

body resonances. The body resonances examined originate from the the above wave phenomena, it is also possible to excite "whispering

curved-surface equivalents of seismic interface waves of pseudo-Rayleigh gallery" resonances, which can be seen for the lowest aspect ratio

or Scholte type. propagating circumferentially to form standing waves cases in Fig. 13. In Fig. 13. the parallel sign indicates that the resonances

on a bounded object. If phase velocities are slowly-varying (as a function are excited about the longest meridian, while the perpendicular sign

of frequency) at the object surface, resonances occur at discrete values indicates that the resonance is excited about the shortest meridian.

of kL/2. These resonances manifest themselves in a prescribed manner The fact that broadside incident plane waves do excite resonances not

(described below). For elongated elastic solids, three distinct resonance only about the shortest meridian, but also about the longest meridian-

types occur. The first kind that we wish to illustrate has to do with coinciding to the resonances excited end on-excludes the possibility
bending modes or flexural resonances. For unsupported spheroids a that the resonances are due to longitudinal "bar" type waves. Finally,

we examine in Fig. 14, scattering from a 1.5 to I aspect ratio aluminum
plane incident wave at 45 degrees relative to the axis of symmetry can shell at incident angles of a) end-on. b) 45 degrees relative to axis of
excite these modes. This is illustrated in Fig. 10 for aspect ratios of
4 and 5 to 1. It can be shown that the lowest mode corresponds to 2. symmetry, and c) broadside. Here we can excite three phenomena. At

and thereafter 3, 4. etc. The Interesting thing about then resonances end-on we observe the lowest symmetric Lamb resonances, at 45 degres

Is they can be predicted by exact bar theories and coincide nicely with we observe in order of occurrence, a bending resonance, the lowest

results here. Of particular interest is the effect that with increasing order Lamb resonance excited about the largest meridian, and the two
aspect rtido the onset of resonances occur at lower kL/2 values, the lowest Lamb modes excited about the smallest meridian. Additional
Opposite observed for Rayleigh resonances. The resonances predicted bending resonances can be seen weakly at intermediate values. In
foraspect ratios of 3,4. and S ae illustrated in Fig. IIa-I Ic. The modal Fig. 14c we see the broadside results in which the lowest bending
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Figure 10. Two of the prolate spheroids and their Figure 12. First 4 vibrational modes of a free-free

circumscribed beams. Timoshenko beam (TB).

mode is seen as well as the lowest two Lamb modes about the shortest In Eq. (12). K is the shear modulus and A. is the aspect ratio of the
merdiaM . What this means is that with the exception of bending modes, spheroid with the remaining parameters defined below Eq. 9. Figure 15
an elastic shel (at least of this thickness) has resonances with only is a comparison of resonances calculated form the T-matrix (solid
two degrees of freedom and that both degrees can be excited at oblique curve) and that predicted fron Eq. 12. Agreement is quite acceptable.
angleS (except 90 degrees) and that only the long (short) meridian
types cam be excited (end-on) broadside. We end this section by giv-
in a approximate expression for predicting the location of bending 6- Conclusions

f~l MIKsl6 We have illustrated several new large resonance patterns that offer
Is2 2a means of target identification. 7Ue case of bending modes are rather

, (2n-) nZ2 (12) narrow which may be difficult to detect in the frequency domain but
A? - /A . 317X2 (- 1)2/g showed some promise when using the pulse scattering along with gating

techniques. The strongest response both in the frequency and the time

where r=2(l+vYK. domain pertains to pseudo-Stonely resonances about the coincidence

1353



(a)1 (a)'
1.84 Lf~ 231 ~ ~(1)

1.38A

0.!92

21)' 6'* ) A

DC

(b)I

1.25

0 . 375

0.93 2 31
0.32 Di

(1.2 L U

(4!.?

0.60 1A z

(d) 5t o .2=2t 4

0.8910.0

0.60 D3 1

2 4 6 8 12. 0 24

34.0

12.0-

AS8.0AiO10

F i u r S . C o p r i o n o t o o/ l .n o i d l i e

2-arx os B

6130



frequency region for shells. The location of each of these resonances and Applications, D. Lee, R. L. Steinberg, M. H. Schultz

can be determined by simple expressions (Eqs. 9, 11, and 12). (editors) Elsevier Science Publishers B. V. (North Holland),
1988, vol. 2 pp. 257-278.

11. Y.-H. Pao, and V. Varatharajulu, "Huygen's principle, radia-

7, Acknowledgments tion condition, and integral formula for the scattering of elastic
waves," J. Acoust. Soc. Am., vol. 60(7). p. 1361, 1976.

We wish to thank the management of the Naval Oceanographic and 12. A. Bostrom, "Scattering of stationary acoustic waves by an

Atmospheric Research Laboratory and the Office of Naval Research elastic obstacle immersed in a fluid," J. Acoust. Soc. Am., vol.

for support of this project. NOARL contribution PR91:100:221. 67(2). p. 390, 1980.
13. B. A. Peterson, V. V. Varadan, and V. K. Varadan, "T-matrix

approach of study of vibrational frequencies of elastic bodies
in fluids," J. Acoust. Soc. Am., vol. 74(5), p. 1051, 1983.

14. M. F. Werby, and L. R. Green, "An extended unitary approach
8. References for acoustical scattering from elastic shells immersed in flu-

I. H. Oberall, "Model and surface-wave resonances in acoustic- ids," J. Acoust. Soc. Am., vol. 74(2), pp. 625-632, 1983.
wave scattering from elastic objects and in elastic-wave scattering 15. M. F. Werby and G. Gaunaurd, "Classification of resonances

from cavities" in Proceedings of the IUTAM Symposium. from scattering at arbitrary incident angles from submerged

Modern Problems in Elastic Wave Propagation, 1978, spheroidal shells". J. Acoust. Soc. Am., vol. 82, pp. 1369-1379,

Northwestern Univ., Evanston, IL. Sept. 12-15, 1977, edited 1987.

by I. Miklowitz and J. D. Auchenbach. Wiley Interscience, Ncw 16. M. F. Werby and C. G. Gaunaurd, "Flexural resonances in

York, pp. 239-263. obliquely insonified solid elastic spheroids," J. Acoust. Soc Am.,

2. M. F. Werby and L. H. Green, "A comparison of acoustical vol. 85, pp. 2365-2371, 1989.
scattering from fluid loaded elastic shells and sound-soft ob- 17. L. Flax, G. C. Gaunaurd and H. Uberall, "The theory of

jcts." J Ac oust Soc. Am., vol. 76, p. 1227, 1984. resonance scattering," in Physical Acoustics, 1981, vol. 15, ch. 3

3. M. F. Werby and G. C. Gaunaurd, "Transition from soft to pp. 191-294, W. P. Mason and R. N. Thurston. editors,

rigid behavior in scattering from submerged thin elastic shells," Academic.

Acoustics Letters. vol. 9, No. 7. pp. 89-93, 1986. 18. J. D. Murphy. J. George, A. NagI, and H. Uberall. "Isolation of
4. E. D. Brietenback, H. Uberall and K.-B. Yoo, "Resonance resonance component in acoustic scattering from fluid loaded

acoustic scattering from elastic cylindrical shells," J. Acoust. elastic spherical shells," J. Acoust. Soc. Am., vol. 65, p. 368, 1979.

Soc. Am., vol. 74, p. 1267, 1983. 19. M. Talmant, H. Uberall, R. D. Miller, M. F. Werby, and
5. M. C. Junger and D. Feit, Sound Structures and Their Inter- J. W. Dickey, "Lamb waves and fluid borne waves on water-

action. Cambridge. MA: MIT Press, 1972. loaded, air-filled thin spherical shells," J. Acoust. Soc. Am.,

6. P. C.Waterman, "New foundation of acoustic scattering," vol. 86, pp. 278-289. 1989.
J. Acoust. Soc. Am., vol. 45. p. 1417, 1969. 20. G. Quentin, and M. Talmant, "The plane plate model applied

7. P. C. Waterman, "Matrix formulation of electromagnetic scat- to scattering of ultrasonic waves from cylindrical shells," in
tering," Proc. IEEE, 1965. 53(3). p. 802. Proceedings of the Int. Conf. on Elastic Wave Propagation, 1989,

8. P. C. Waterman. "Matrix theory of elastic wave scattering If: M. F. McCarthy, and M. A. Hayes, editors, Elsevier Publica-
a new conservation law," J. Acoust. Soc. Am.. vol. 63(6). p. tions B. V., North Holland.
1320. 1977. 21. M. F. Werby and G. C. Gaunaurd, J. Acoust. Soc. Am., vol. 88,

9. M. F. Werby and S. A. Chin-Bing, "Numerical techniques and pp. 951-960. 1990.
their use in extension of T-matrix and null-field approaches to 22. M. F. Werby, "The acoustical background for submerged elas-
scatering," Int J. Comp. Math. Appls., vol. 11(7/8), p. 717, tic shells." Submitted. J. Acoust. Soc. Am.

1985. 23. S. P. Timoshenko, "On the transverse vibrations of beams of
10. M. F. Wcrby, G. Tango and L. H. Green, "Eigenvalue and uniform cross-section," Philos. Mag.. vol. 43, pp. 125-131, 1922.

similarity transformation methods in the solution of acoustical 24. D. Ross, Mechanics of Underwater Noise. New York: Pergamon

scattering problems." in Computational Acoustics: Algorithms Press, 1976.

1360


