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LARGE RESONANCE SIGNATURES IN SCATTERING FROM SUBMERGED ELASTIC
TARGETS IN THE TIME AND FREQUENCY DOMAIN

M. F. Werby and S. A. Chin-Bing

Naval Oceanographic and Atmospheric Research Laboratory
Acoustic Theory and Simulation Branch, Code 221
Stennis Space Center, MS 39529-5004

Abstract

There are a variety of resonances that can be excited when one
scatters a wave from a submerged elastic target. It is usual to detect
these resonances by observing the backscattered echoes from either
pulses for the time domain case or by varying frequency in small step
sizes in the frequency domain case. Many such resonances produce
fairly small effects that can get lost in the background in any realistic
environment. On the other hand several types of resonances are quite
prominent and quite possibly can be observed even in a fluctuating
environment. Many of thesc resonances have characteristic return signals
and offer a “tell-taic” event of a particular target. We refer to such
characteristic signals as “resonance signatures.” In this study we illustrate
a number of “resonance signatures” and describe the underlying physics
or mathematics behind the event. We indicate how these signatures
can be useful in target identification.

1. Introduction

Resonances are excited by incident acoustical signals as they impinge
on elastic bodies of rotation as well as elastic bars. They are charac-
terized by the fact that they occur at discrete values of frequency and
when they occur, a characteristic event takes place. This cvent can be
complicated and difficult to distinguish from other physical mechanisms
unrelated to resonances but they are usually distinguishable’ and can
be related to a particular process. Recent theoretical and numerical
dcvelo;:omcms"2l have enabled researchers to perform calculations
and to understand the nature of resonances. Our interest in this paper
is to investigate particularly large and distinguishable resonahces that
manifest themselves in either the frequency or time domain. In the
literature there have been three classes of resonances usually studied.
Investigations of Lamb resonances due to symmetric and antisymmet-
ric waves (labeled S; and A, fori=0,1,2, . . .) for shells?~%15.18-20
have been vigorously investigated; for elastic solids, Rayleigh resonances
(1abeled as an ordered pair (n.1) with n=2,3,4 . . .) and whispering
gallery resonances (labeled as an ordered pair (n,l) withn=0,1,2". . .
and1=23.4. . .) have also been extensively studied.9:10-1217.21 pere
n corresponds to the mode number of the resonance viewed as a surface
standing wave with n = 0 corresponding to a breathing mode. These
resonances are not particularly pronounced in magnitude or signature
(the characteristic shape of the resonance). In this work we wish to
examine classes of resonances that are somewhat more pronounced in
magnitude or pattern either in the time or frequency domains. We will
give a brief discussion of these phenomena including effects peculiar
1o spheroids such as orthogonal classes of resonances recently discussed
in the literature.'>2! However, emphasis will be placed on the following:
1) resonances at coincident frequency (the frequency at which the
speed of the flexural Lamb wave equals the speed of sound in the
fluid) excited on submerged elastic shells; 2) “resonances”™ due to high
frequency incident plane waves on a submerged elastic shell due 10 an
internal reflection effect; and 3) flexural or bending resonances due to
plane oblique incident waves on a spheroid. It will be scen that each
of these classes of resonances are rather large, have characteristic
signatures and have locations predictable using simplified expressions.
In the time-domain case a recently advanced methodology arising from
s time-domain resonance scattering theory is used to discuss the existence
of strong pseudo-Stonely resonances excited on elastic shells that give
rise 10 a strong beat pattern in the time-domain resonance signature.
The time-domain methodology is outlined betow. However, since we
will have occasion 10 use the correct acoustical background for an
elastic shell this recent development™ will be outline in the next section.

2. A New Acoustic Background for Submerged Elastic Shells

The rigid background concept for elastic solid targets in which the
total elastic response is viewed as a superposition of a resonance
response and a nonresonant acoustical background! (rigid for solid elastic
targets) has proven quite successful as the “correct” background
for elastic solids submerged in water. An analogous background for
the elastic shell problem has proven more elusive to find. Earlier
work24 has shown that for very thin shells a soft background is useful
in extracting the elastic residual, but for shells of greater thickness
and at high frequencies, a rigid background has proven suitable. It has
also been demonstrated that for some cases a soft background
was suitable at the lower frequency limit and that a rigid background was
suitable at the higher frequency limit for the same target. The Uberall
group‘ at the Catholic University of America has employed a rigid
background for elastic shells with some success for very thick shells.
In this paper a model is discussed that describes acoustic scattering
from an elastic shell in the absence of resonances. We then demonstraie
that it is a suitable background for the elastic shell problem by presenting
numerous examples that manifest a pure resid»al resonance response.

The model is then applied over a ka range from 0 to 300 for steel
and WC at a thickness of 1%, and for steel at thicknesses of 0.3%
(i.e., ratios of inner-to-outer radii of 0.99 and 0.997) with highly
satisfactory results.

The inertial component of the radiation loading of a spherical shell
at the surface is in the form:’

Py=-io ¥ Ma W,PL(D), m
1i=0
where M, = —21m| ifn® |
kK ot

Here, M,, is the entrained mass per unit area for mode n, w is the angular
frequency, p the density of a fluid, Pg (1) is an associated Legendre
polynomial evaluated at 180 degrees, k is the wave number, and h,, is
an outgoing spherical Hankel Function. Here W, is an expansion
coefficient related to the displacement potential. If we cxcite the sphere
by an incident monochromatic plane wave, then we have

W, = - i ay(jaka) + byhgka))exp(-imt).

where j, is a regular Bessel function and b, is an unknown cocfficient
which corresponds to the partial wave scattering amplitude which we
seck. Here, a, is the plane wave expansion coefficient. The total
pressure per unit area in the fluid due to the incident plane wave is

P.=&k°a_“’ S an(in Ga)+ by hn G} P2 (Dexp (i) @
n=0

The particle velocity at the surface of the object is: v= —_..'_'21
pwk or

Here, ¢ is the speed of sound in water. The particle acceleration a is
the time derivative of v which leads to:

2 -
ax-2 3 am|ia o)+ ban Gl 0| Py (Dexp o). ®
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The force at the surface of the object due to the incident plane wave is
simply the product of the particle acceleration and the mass of the
spherical shell. The mass of the spherical shell is 4npga®(1 - (1 ~h)*}/3,
where h is the ratio of the shell thickness to the shell radius. The force
due to the total fluid loading at the object surface is equal 1o the total
inenial fluid loading times the surface area 4xa® of the sphere. Here,
a is the radius of the spherical shell and p; is the density of the shell
material. We equate these two forces to obtain the unknown coeffi-
cient b, which leads to the following expression.

¥

p;[l—(l—h)’
bp=- L

;Pn G2)
hn(ka)

jn (ka)—j'n (ka)

@

3 i | e G

- - hy, ka)- 'y, (ka)
ps[l-(l—h)-’} Wn (ka)

The scattered ficld for the new background is obtained by using the
b,'s as the partial wave scattering amplitudes in a normal mode series.
The b,’s define the new background and by subtracting this quantity
from the clastic response, we obtain the residual response that reflects
mainly the pure resonance contribution. 1t is easy to show that the
imaginary part of the encloscd brackets in Eq. 4 is approximately
equal to ka/(1 + ka?) so that for large ka, b, = -j'p(ka) / h'p(ka) which
corresponds (o a rigid scatterer and for both a very thin shell and at
low frequency. by, = -j(ka) / hy(ka) which corresponds to a soft scatterer.
Thus we sce that the background represcnted by Eq. 4 has the appro-
priatc limits for thin shells at low frequencies (soft) as well as the
appropriate limits for high frequencies (rigid).

2.1 Application to Elastic Shelis

In an earlier work, the form function due to an incident plane wave
on a steel spherical shell with thickness 0.3% of the radius was
examined.? Figure 1a is the form function for the shell for a ka range
between O and 300. At the lower frequency end, a soft background
appearcd adcquate but a1t quite high frequencies, a rigid
background appcarcd adcquate; intermediate regions were poorly
represented by both backgrounds. In Fig. 1b and Fig. lc a soft and
rigid background are subtracted (in panial wave space) to illustrate

(2)
3.82947
-]
S 287210
-
<Q
c
a 191474
g
é 0.05737
0+ T v r ¥ )
[ 120 180 240 300

that only at the extreme ends does either background appear adequate.
Figure 1d illustrates the case for which the new background is sub-
tracted from the form function and it is evident that it is superior for
the entire region of ka. Figure 2a—2d illustrates the same example for a
shell of 1% thickness (the form function, the residual obtained by
subtracting soft, the residual obtained by subtracting rigid, and the
residual obtained by subtracting the new background). Again, it is
evident from Fig. 2 that the new background is indeed adequate even
in the region of strong flexurals around ka = 120.

Figure 3a-3d illustrates plane wave scattering from 1% thick WC
shells for the elastic response (3a), the elastic response minus the soft
background (3b), the elastic response minus the rigid background (3c),
and the elastic response minus the new background (3d). For the WC
case the new background is also quite superior to the others. In con-
trast to aluminum, the rigid background is adcquatc over a larger
range due to the high density of WC, as predicted by Eq. 4. Further,
the isolation of resonances at the higher ka region is superior to either
steel or aluminum; the explanation is presented in the next section.

3. Time Domain Resonance Scattering Theory

The partial wave series that emerges from normal mode theory for
separable geometries can be represented in distinct panial waves or

modes. It has been shown!17 that a representation due to a distinct
mode {n} can be written in the form:
®

’ H i ‘E‘" Sh§g>\
e

where ¢ = ka,x(,.') is the nth resonance and (%' l'(,:) the half-width,

liéf‘r)

fn (@)= —c )

@’
(D h X
Where cz'gn =__'_1__(_2

ay
h,” )

Here, the factor 2n+ 1 is absorbed in the expansion coefficient. For
the pulse form a continuous wave {cw) ping is used which cotresponds
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3.20172

240879

0.82283

Form Function
2
g

T
240

T
180 300

a— )&

_

e

Figure 1. Scattering response for ka = 0 to 300 for 0.3% steel shell, (a) total response; (b) total :
minus soft background: (c) total minus rigid background; and (d) total minus new background. ;
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Figure 2. Scattering response for ka = 0 10 300 for 1% thick shell, (a) total response; (b) total minus
soft background; (c) total minus rigid background; and (d} total minus new background.
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Figure 3. Scartering response for ka = 0 10 300 for 1% thick WC, (a) total response; (b) total minus
soft background; (c) total minus rigid background; and (d) total minus new background.
10 & very broad frequency range. For each time domain modal component, The remaining contributions from backscatier are small .uc to phase
one has that averaging.
It is assumed that calculations are performed in a resonance region
1’ o (1) o for which the resonance widths are fairly constant and the resonance
Re l - 2 % gy 2x l’ o s'n‘ 0 12 (6 spacing is fairly uniform.'®?® This assumption leads to the important
- o fi}® 2 expression
X-2An + 3 In
) o M
‘That is, at a resonance the time-domain solution is simply the product Ps -h#(ma“,s)"msmz."s/),} ¢ N ®
of the half-width times a sinusoidal function times an exponential
damping factor. From the time-domain solution for a nest of reso-
nances (N-m) for a cw ping, one obtains the form o 1"™M g
where Xeve = s— Xi .
1} 0 M
s (1)@ (o (i] Ta
Po=2x I ‘i' Ta m(z. s)e . (7)  Here one sets n—m = 2M. It is seen from the above expression:
Anm ~ The haif-width is associated with the decay of the response in the
1354
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Figure 4. (a) Time domain. and (b} frequency domain for scattering
Jrom u steel shell of 1% thickness about coincidence frequency.

t.me domain solution: the response decreases exponentially with
increasing value of the half-width.

~ When the number of adjacent resonances (2M) sensed increases, the
return signal becomes more sharply defined and the envelope function
(the beats) are more enhanced and clearly defined.

- For larger carrier frequencies, the signal is more oscillatory within
the envelope.

3.1 Time Domain Backscattering at Coincidence Frequency

Flexural waves do not yield resonances from fluid-loaded shells
until the phase velocity of the flexural wave is about equal to the
speed of sound in the ambient fluid.5?* The value in frequency for
which this happens is referred 1o as the coincidence frequency; however,
some subsonic fluid-bome waves produce sharp resonances!920 below
coincidence frequency. These waves are referred 1o as pseudo-Stonely
waves and the related resonances as pseudo-Stonely resonances.2’ The
pscudo-Stonely resonances are well defined in partial wave space;
they usually correspond to only one partial wave mode number and a
very narrow half-width with a dispersive phase velocity, which
approaches the speed of sound in the fluid with increasing frequency.
The pseudo-Stonely resonances diminish in significance at the point
where the flexural resonances begin to dominate. It can be determined
that a phase change occurs in the pressure field in the transition region
from subsonic to supersonic. This change accounts for the envelope of
the resonance curve at coincidence frequency where the waves are in
phase until coincidence and are out of phase afterwards. Our interest
here is in examining the time-domain response since one expects the
conditions previously described to be partially met over a broad frequency
range and thus 1o yield a strong coherent response with a carrier fre-
quency in the neighborhood of the frequency at coincidence. Accordingly,
the case of cw pings for two examples—for which coincidence
resonances are expected 10 arise—is examined. This is certainly
suggesied by the strong responses in Figs. 4b and Sb at the ka values
113 and 87, respectively, for steel and WC. Further, in this analysis
the Mindlin-Timoshenko?* thick plate theory is used to determine the
value for which the flexural phase velocity will equal the ambient
speed of sound in water. The phase and group velocities are determined
from flat plate theory which proves to be quite reliable in predicting
the phase velocity for the curved surfaces of the spheres at the
coincidence frequency.

(a)

1.208 24415 27.623 30.830 34038 37.245 40453 43660 46.868 5007
T

5.162+
(®)

3.6714

2.501

F

1.290-

0 x v . v Y

140 768 796 824 852 830 908 936 964 932 1020
KL/2

Figure 5. (a) Time domain, and (b) frequency domain for scattering
from a WC shell of 1% thickness about coincidence frequency.

The time-domain calculations are now examined. The first example
is a steel shell of 1% thickness. In this case a well-defined envelope
(illustrated in Fig. 4a) with pronounced oscillations within the enve-
lope is consistent with Eq. 8. The snhancement due to the factor 2M
is obvious both here and in Fig. 5a for the WC case. The group velocity
can be obtained from the peak-to-pezk distance of the adjacent envelopes.
The result leads to a value of 2.23 km/scc. Both flexural and pseudo-
Stonely resonances compele in this region. A mixture of pseudo-Stonely
waves, as well as flexural waves must be leaking into the fluid. For
flexural waves, the group velocity is 2.53 km/sec at coincidence
frequency with a range between 2.44 and 2.68 km/sec over the ka
range of 100-140, where the strong flexurals are significant. In that
range the phase velocity varies from 1.37 to 1.58 km/sec. The value
of the extracted group velocity does not agree well with the flexural
group velocity; the discrepancy is 12%. This variation suggests that
the flexural resonances are of little importance for the time sequence
presented here. The group velocity of the pseudo-Stonely waves for
this case has been determined!? 10 be 2.16 km/sec based on plate theory.
The phase velocity is in the range from 88% 1o 98% of the speed of
sound in the fluid. This value of group velocity is within 3% of the
extracted value from the time-domain solution. Moreover, the pseudo-
Stonely resonances have very narrow widths while the flexural resonances
are quite large. The conditions in the previous section would indicate
that the flexural resonances would rapidly dampen due io the large
half-widths while the psecudo-Stonely resonances would attenuate slowly
in time. Thus, based on the similarity of the extracted group velocity
and that of the pseudo-Stonely wave and the conditions in the previous
section on level widths, one may conclude that the time-domain cal-
culations in Fig. 4a represent pseudo-Stonely resonances.

The final example is for the WC shell of 1% thickness. The results
of the calculation are consistent with that of the steel case and are
illustrated in Fig. 5b. Here the group velocity was extracted to be
2.33 km/sec as opposed 1o the plate theory value of 2.65 km/sec for
flexural waves. The range of values for the group velocities predicted
was from 2.49 10 2.78 km/sec over the ka ranging from 74 to0 102.
Here, as in the previous exampie, the difference was 12% between the
extracted value and the value predicted for flexural waves. The group
velocity for pseudo-Stonely waves is, however, 2.26 which is within
3% of the extracted value here. As in the previous exampie the pseado-
Stonely resonances are quite narrow and the flexural resonances are
broad snd one may conclude that the results of Fig. Sb represent pseudo-
Stonely resonances. Further, we use Mindtin- thick pise
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theory to detcrmine the value for which the flexural phase velocity
will equal the ambient speed of sound in water. The e)_(pressi.ons we
use are from flat plate theory but they prove to be quite reliable in
predicting the phase velocity for the curved surfaces of .the. spheres at
the frequency limits in the vicinity of the value at coincidence fre-
quency. It is remarkable that they in fact do predict the frequency
range in the figures which match the strong flexurals. We determine
that the expression for the phase velocity is:

’ 4 2‘1/2 o 2112
vl lT-12) 2 +4]2 —r+n|2
Q Q l Q N
vr= 2\]172 (
2|1-r|2
Q
where n=9£hi’—3 =265 (1+1.5v +0.75v2)
(ka)vw(%)
and — = ——————
n G2

and cp=csv_L.
I-v

Here C; is the shear speed and v is the Poisson ratio of the matcrial.
The ratio (h/a) is a thickness parameter and V, is the speed of sound
in water. The remaining defining expressions in Eq. 10 arc discussed
in Ref. 24. For the cases presented here, (h/a) is 0.01 where a is the
radius of the sphere. The group velocity is determined by us to be:

2
[zc; R l)vz} L
Q
= . (10)
2
w

do
dk

3 3
2vi C2+ l(n 1 C2 vp-2Tvy

Equation 10 was used to predict the group velocity reporncd in this
work.
4, Thickness Effects Due 10 Inticmal Reflections
From a Shell at High Frequency

If one scatters a plane wave from an elastic shell then at a frequency
at which the interior wave length (associated with the compressional
velocity of the material) is equal to an integral value of the thickness,
then it can be shown that the shell will appear transparent to the
signal. Consequently the signal will reflect off of the inner surface of
the shell and add coherently with the specular signal at detection. For
evacuated shells this tends to produce 2 maximum at such values and,
indeed, results that follow substantiate this. While this result is not
properly a “resonance” in the sense of the other processes discussed
here, for want of a better term we will refer to this rather large response
as a resonance. It can also be shown ihat the upper value of ka at
which this process takes place for a given thickness and multipie of
a half integral, terminates with the lowest partial wave allowed. Thus,
an examination of the partial waves at the lowest mode can substantiate
that our interpretation of this phenomena is correct. That will be
illustrated in the next section.

4.1 Thickness “Resonances” From Elastic Shells at High Frequency

Figure 6a and b are the form functions due to an incident plane
wave on 3 spherical shell of 10% and 2.5% thickness for steel shells
respectively. It is evident that in the region between about a ka = 120
and 490, there are rather pronounced returns which are quite 2 bit
lazger in smplitude then usually observed for symmetric and antisym-
metric resonances. The explanstion for this event is determined from

the fact that when a wave goes into a layered material, if the wave
length of the layer is equal to half the wavelength of the penetrating
wave, the reflection coefficient is just equal to that due to the interior
layers. In this case, this corresponds to a soft scatterer (the inclusion
was evacuated) and thus the reflected signal when added to the usual
surface reflected signal is at a maximum. We examine at what value
of ka this will happen for a steel shell with compressional spced
5.95 km/sec. The relation due to a flat plate approximation (adequate
at high frequency) is:

nxc
ka= 1

n=123 .. . (1n

_cw
a

Here C, and C,, are the compressional speed of sound for steel and
water respectively (5.95 km/sec and 1.4825 km/scc) and h/a is the
ratio of the thickness to the radius of the shell (here 0.1 and 0.025).
Thus ka= 126 and 504, rcspectively, which are in the range of the
large retums. Figure 7a-7¢ are the form functions of stee!, molybde-
num and WC for 5% thick shells. Here the compressional velocities
are 5.95, 6.35 and 6.95 which are predicted (in the correct ranges)
from Eq. 11. To determine that this is indeed the correct interpretation
wc examine where the plot is a maximum for the zeroth partial wave
corresponding best to the flat plate approximation. Figure 8a-8c¢
Mhasirates ©oad thie Tdeed, is at ka= 126, 252 and 504, respectively
for the steel cases. Morcover, Fig. 9a and 9b for the lowest pantial
waves yicld similar agreement for molybdenum and WC. The broad
width of the resonances is due to the fact that the thickness that the
plane incident wave ‘sees’ the shell is usually greater then the shell
thickness and must correspond to higher order partial waves but lower
ka values. This interpretation also predicts higher order resonances
(when the thickness is ¢qual to a multiple of half-integrals) and, indeed,
the predictions are corroborated and will be illustrated elsewhere.

5. Rayleigh, Lamb and Flexural Resonances

We will discuss flexural or bending resonances excited on a spheroid,
and for contrast, briefly discuss the more well known resonances due
to the generation of Rayleigh waves on an elastic solid and Lamb
waves on elastic shells. Rayleigh, or rather lcaky-Rayleigh-type.
resonances are generated when incident plane waves impinge upon
fluid loaded elastic solids of rotation such as spheres and spheroids.
They correspond to frequencies at which the Rayleigh waves have half
integral wave lengths on the object surface (this does not preciude
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Figure 6. Form function for (a) 10%, and (b) (2.5%
steel shell and thickness resonance.
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interior contributions of the waves) thus producing standing waves on
the surface which in turn radiates back into the fluid. The extended
boundary condition (EBC) method®~'* offers onc the possibility to
predict such resonances. Lamb resonances are the analogue for shells
in which it is possible 10 excite both symmetric (cxtensional) and
antisymmetric (flexural) resonances. !¢ The bending or flexural resonances
(flexurals in this context are not to be confused with antisymmetric
Lamb modes) occur on clongated objects such as spheroids both for
solids and shells and can be modeled using the approximate theory of
rods due 10 Timoshenko.??

We now examine a phenomcenon specific to clastic objects with
smooth boundary conditions surrounded by an acoustic fluid, namely,
body resonances. The body resonances examined originate from the
curved-surface equivalents of seismic interface waves of pseudo-Rayleigh
ot Scholte type, propagating circumferentiaily to form standing waves
on a bounded object. If phase velocities are slowly-varying (as a function
of frequency) at the object surface, resonances occur at discrete values
of kL/2. These resonances manifest themselves in a prescribed manner
(described below). For elongated elastic solids, three distinct resonance
types occur. The first kind that we wish to illustrate has to do with
bending modes or flexural resonances. For unsupported spheroids a
plane incident wave at 45 degrees relative to the axis of symmetry can
excite these modes. This is illustrated in Fig. 10 for aspect ratios of
4 and 5 10 1. It can be shown that the lowest mode corresponds (0 2,
and thereafier 3, 4, etc. The interesting thing about these resonances
is they can be predicted by exact bar theories and coincide nicely with
results here. Of particular interest is the effect that with increasing
aspect ratio the onset of resonances occur at lower kL/2 values, the
apposite observed for Rayleigh resonances. The resonances predicted
for aspect ratios of 3, 4, and § are illustrated in Fig. 11a-11c. The modal
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Figure 8. The lowest PWF for (a) 2.5%; (b) 5%
and (¢) 10% steel shell to a Ka = 1000.

pattern is illustrated in Fig. 12 for the first four modes. The second
kind (at lower frequencies) are due to leaky Rayleigh waves and have
been shown to be related (o both target gcometry and material param-
cters (notably shear modules and density). Resonances can in this case
best be observed by cxamining the backscattered echo amplitude and
phase response plotted as a function of kL/2, often referred to in the
acoustic scattering literature as a form function. We illustrate this in
Fig. 13, for broadside scattering from spheroids of aspect ratio 2, 3,
4, and S. Here we sce two resonances superimposed on the semi-
periodic pattem due to Franz waves associated with rigid scattering.
If we subtract rigid scattering (in partial wave space) from the elastic
response, then we are left with the resonance response. In addition to
the above wave phenomena, it is also possible to excite “whispering
gallery” resonances, which can be seen for the lowest aspect ratio
cases in Fig. 13. In Fig. 13, thc parallel sign indicates that the resonances
are cxcited about the longest meridian, while the perpendicular sign
indicates that the resonance is excited about the shortest meridian.
The fact that broadside incident plane waves do excite resonances not
only about the shortest meridian, but also about the longest meridian—
coinciding to the resonances excited end on—excludes the possibility
that the resonances are due to longitudinal “bar” type waves. Finally,
we examine in Fig. 14, scattering from a 1.5 to 1 aspect ratio aluminum
shell at incident angles of a) end-on, b) 45 degrees relative to axis of
symmetry, and c) broadside. Here we can excitc three phenomena. At
end-on we observe the lowest symmetric Lamb resonances, at 45 degrees
we observe in order of occurrence, a bending resonance, the lowest
order Lamb resonance excited about the largest meridian, and the two
lowest Lamb modes excited about the smaliest meridian. Additional
bending resonances can be secen weakly at intermediate values. In
Fig. 14c we sce the broadside results in which the lowest bending
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mode is seen as well as the lowest two Lamb modes about the shortest
meridian. What this means is that with the exception of bending modes,
an elastic shell (at least of this thickness) has resonances with only
two degrees of freedom and that both degrees can be excited at oblique
angles (except 90 degrees) and that only the long (short) meridian
types can be excited (end-on) broadside. We end this section by giv-
ing an approximate expression for predicting the location of bending
resonances ¢

2

Mﬂh.-;{—i @n-1? n22 (12)
A Aoy
where T'= 2(1 + vWK.

ki/2

1.35

n=$

/2

2 4 6 8 10 14 18 24

'
26411255, g2 115 148 181

‘oot t [ { wo=s
2 [3 ¢ 5

1.2 n=§

7 W2

2 4 6 8 1 14 18 24

Figure 11. Form-functions, for a steel spheroid
in water at 45°.
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Figure 12. First 4 vibrational modes of a free-free
Timoshenko beam (TB).

In Eq. (12), K is the shear modulus and A, is the aspect ratio of the
spheroid with the remaining parameters defined below Eq. 9. Figure 15
is a comparison of resonances calculated form the T-matrix (solid
curve) and that predicted from Eq. 12. Agreement is quite acceptable.

6. Conclusions
We have illustrated several new large resonance patterns that offer
2 means of target identification. The case of bending modes are rather
narrow which may be difficult to detect in the frequency domain but
showed some promise when using the pulse scatiering along with gating
techniques. The strongest response both in the frequency and the time
domain pertains to pseudo-Stonely resonances about the coincidence
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frequency region for shells. The location of each of these resonances
can be determined by simple expressions (Egs. 9, 11, and 12).
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