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Chapter 1

EXECUTIVE SUMMARY

The objective of this two and a quarter year contract (10/88-1/91) was to define and develop
modules for validating knowledge-based systems (KBSs) that enable the user to check the
redundancy, consistency, completeness and correctness of DARPA-sponsored KBSs, such as
Air-Land Battle Management (ALBM), Pilot's Associate (PA), or Fleet Command Center
Battle Management Program (FCCBMP), constructed with IntelliCorp's Knowledge
Engineering Environment (KEE) expert system shell.

The system built, DEVA (DARPA Expert System Validation Associate), consists of ten
modules, each with several submodules: the

KEE Translator,
Structure Checker,
Logic Checker,
Extended Structure Checker, (now the extended mode of the structure checker),
Extended Logic Checker, (now the extended mode of the logic checker),
Semantics Checker,
Omission Checker,
Rule Refiner,
Control Checker,
and a module for the Validation of Nonmonotonic Reasoning.

The nine validation modules are generic and can work with any translator.

The original implementation schedule was to deliver two of these modules during each 6-
months contract phase; in addition to that the Extended Structure Checker and Extended
Logic Checker were to be delivered at the end of Phase 2 (9/89). Problems in adequately
staffing the effort resulted in a two months' delay, and Phase 2 was delivered 11/89. At the
November 1989 review Mark Fausett, the technical monitor of the DEVA contract at Rome
Laboratory, suggested requesting a no-cost extension to the contract. As of 7/20/90
Lockheed Missiles & Space Company, Inc. executed and submitted Modification P00003 (via
LMSC Transmittal Letter, F404020) to extend the period of performance on the contract by
three months to 12/30/90 to RADC, Directorate of Contracting.

While developing DEVA, we discovered that none of the DARPA projects mentioned above
were still using KEE rules; some of them had completely abandoned the use of KEE. Our
attempts to find KEE rule bases through the KEE Users Group were not successful. The
DEVA modules were thus tested with in-house test systems and with large rule bases (about
1,000 rules) of varying depths generated with a synthetic rule-base generator built for this
purpose. The avalability of these synthetic rule bases led to considerable performance
improvements of the validation modules in comparison to the earlier in-house IR&D
prototypes, in some cases up to 3 orders of magnitude. The genericness of the DEVA
modules was successfully tested in combination with a translator - developed in MACProlog
with internal Lockheed IR&D funds - for expert systems written in C Language Integrated
Production System (CLIPS).

The Manned Maneuvering Unit Fault Diagnosis, Isolation and Rcconfiguration (FDIR)
expert system provided by NASA Johnson Space Center consists of 104 CLIPS rules. The
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CLIPS translator produced 357 normalized internal rules which were checked by the structure
and logic checkers. The structure checker 'ound 4 redundant CLIPS rules, 9 unreachable
predicates and many un-firable rules.

This report describes the scope of the effort and the design and implementation of the ten
major DEVA modules listed above and their integration with the KEE environment.

Appendices A through C were provided with the first Interim Technical Report (June 1989).
Appendix A contains the original DEVA User Guide describing the DEVA-KEE interactive
mode where all user KEE transactions were automatically recorded, translated and sent to
DEVA for loading and use while the user was working in KEE. This effective way of
communication between the two systems had to be abandoned because the many different
methods KEE uses for accessing and modifying the internal representation of a knowledge
base made this mode unreliable. It was replaced in January, 1990 by the batch mode. (For
details, see sections 1.2 and 4.3).

Appendix B discusses the applicability of the DEVA modules to the validation of both frame-
and rule-based systems. Appendix C gives a brief history of approaches to the validation of
knowledge-based systems.

We would like to express our appreciation to the many employees of IntelliCorp who willingly
helped us to understand the intricacies of KEE in the process of translating KEE to DEVA.
We would also like to thank the employees at Quintus Prolog for their support. We finally
express our thanks to the employees of the Lockheed Artificial Intelligence Center and
Software Technology Center who worked on this project.
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CHAPTER 2

OVERVIEW: VALIDATION OF KNOWLEDGE-BASED SYSTEMS

2.1 PROBLEM

Knowledge-based systems (KBSs) technology has emerged from applied Artificial Intelligence
(AI) as a vital technology for modeling complex systems. KBSs have consequently become
more and more integrated into large complex software systems in defense, industry, business,
and science. Failures in these systems could result in great danger to life and property;
therefore, validation of KBSs is of utmost importance to software systems developers,
implementors, and especially users.

The growing reliance on KBSs requires the development of appropriate methods for validating
such systems, because the traditional validation methods used for conventional software are
not directly applicable to KBSs. KBSs are typically developed and validated according to the
so-called exploratory program development paradigm. In this development style, the expert
or user states the requirements and the knowledge engineer represents the requirements as
one or more rules, facts or objects, i.e., as executable specifications. These are compiled and
executed by the inference engine of the development shell. The expert (knowledge engineer)
then compares the actual output with the expected output. If the outputs disagree, the expert
debugs the requirements or specifications.

This style of validation of KBSs is thus a process of incremental revision of the program logic
which typically requires many iterations - with many false tries - through the development
life cycle until the expert, user, or knowledge engineer is satisfied that the resulting program
meets the requirements. This methodology, however, does not ensure the reliability of the
created KBS, since the expert's requirements may still be imprecise, conflicting, partially
wrong, or incomplete. In addition, the representation of the knowledge may similarly be
imprecise, erroneous or inadequate.

An additional problem stems from the fact that KR3S software - in contrast to traditional
software which is procedural with explicit control flow within and between modules - is
mostly declarative, with little or no explicit control and no explicit functional modules. KBS
software lacks the explicit functional structure which is a prerequisite for tracing and
validating requirements.

To validate and verify a KBS, we must be able to associate a knowledge base (KB) with the
set of functional requirements it is supposed to implement. And similarly, we must be able
to associate a particular requirement with the set of rules, facts, or objects which implement
it.

In contrast to other current approaches of validating KBSs, which have not progressed during
the last four years beyond the validation of basically syntactic properties of KBSs, this effort is
based on an approach to validation that exploits more powerful information. It makes use of
semantic information and meta-knowledge about the objects, actions, rules, control strategies,
and integrated behavior of knowledge-based applications. It further exploits and makes
explicit the structural relations immanent in KBSs.
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2.2 GOAL AND OBJECTIVES

The stated objective of this contract was to define and develop a KBS validation system,
DEVA (DARPA Expert System Validation Associate), that enables the user to check the
redundancy, consistency, completeness and correctness of DARPA-sponsored KBSs (e.g.,
Air-Land Battle Management, Pilot's Associate, Fleet Command Center Battle Management
Program) constructed with IntelliCorp's KEE expert system shell.

The functionality of DEVA, as shown in Figure 1, is contained in a wide range of generic
validation tools which include the structure checker, logic checker, extended structure
checker, extended logic checker, semantics checker, omission checker, rule refiner and
control checker. The only DEVA module which is specific to KEE is the KEE translator
which converts a KEE KBS into the internal data structures used by the DEVA validation
tools.

plcati on~c Aplcaton heI Constrint Contwfrol C~

This in an Expert and Behavior ofse DEV mSystem Shell Statements Designer ' "'

under this ontract: t err EETaslatorSrcueCckLoiChkrEtnd

Structue Checkr, Extndlyed LoglicaChece, SeatcChkrOiso CekrRl

Constraints, Controls, Metaknowledge
and Behaviors in EVA Base

Data Base Format

Figure 1

This Final Technical Report describes the implementation of the DEVA modules developed

under this contract: the KEE Translator, Structure Checker, Logic Checker, Extended

Structure Checker, Extended Logic Checker, Semantics Checker, Omission Checker, Rule

Refiner, Control Checker, and the Validation of Nonmonotonic Reasoning module.
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2.3 TECHNICAL APPROACH

The knowledge representation of rule-based and frame-based ES shells is logic-based.
Applications or models written in such shells are therefore amenable to validation using logic
and mechanical theorem proving. (Cf. Appendix B, The Validation of Frame-Based
Systems.) The validation of such systems can be further improved by making use of meta-
knowledge (higher-order knowledge) with semantic information and integrity constraints.
This permits the system's designer to formulate conditions that the rules, frames, and facts of
a domain model have to meet; it also permits the automatic checking of the validity of the
underlying application without being limited to only those constraints that can be formulated
in the language supported by the shell.

DEVA provides the system designer with just such a language to express the constraints
which pertain to the domain model. DEVA then also uses the system designer's meta-
statements for the validation of the KB. To safeguard against unwanted modifications of the
knowledge base, DEVA only makes observations and recommendations. DEVA warns,
but does not modify the KB.

Our approach for KBS validation is obtained through three important features of DEVA:

" a unifying architecture

" a common meta-language

* an integrated environment

2.3.1 DEVA Architecture

DEVA is built on a unifying, extensible platform. The unifying architecture is based upon

" A single user interface for all checkers,

* A single meta-knowledge base for all checkers,

" A common meta-language for specifying constraints.

All of the DEVA checkers are implemented in Quintus Prolog 2.5 and use the same DEVA
internal data structures. T EE-DEVA translator rewrites a KEE application KB into these
data structures. Invoking E 'A checker is thus comparable to entering a goal (query) in
Quintus Prolog.

Our selection of Prolog as the implementation language was based on the following
considerations:

* The validation of KBSs requires extensive automatic theorem proving. Prolog has a
built-in automatic resolution-based theorem prover. By using Prolog we expedited the
development of DEVA as well as provided more validation functionality within the
proposed time frame since the automatic theorem prover did not have to be developed
separately.

" Maintaining the meta-knowledge base requires the functionality of a database
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management system. Prolog provides a built-in database management system, which
made it unnecessary to develop such functionality separately.

e The meta-language required for representing validation criteria as meta-statements can
be defined and implemented in Prolog. This made it unnecessary to develop a separate
abstract machine to interpret the DEVA meta-language.

2.3.2 Meta-Language

Facts and rules in a KEE KB are object level (first-order) declarations. Validation thus means
checking the correctness, consistency and completeness of a first-order KB. To permit
validation using logic, automatic theorem proving, and semantics, validation criteria are
defined in terms of the object level declarations, and are themselves meta-level (second or
higher-order) declarations.

DEVA provides a declarative meta-language for the developer to specify the meta-level
validation criteria. This meta-language permits the systems developer to define a wide range
of conditions that must be met by the application KBS in order to be correct, consistent, and
complete. These meta-level conditions are defined in much the same way as the developer
defines the object level declarations: as special DEVA rules whose syntax is that of KEE rules.
This will be discussed in more detail in Section 8 on the Semantics Checker.

The meta-language contains many built-in primitive meta-predicates which can be used to
represent validation criteria. The developer only needs to know the meaning of these meta-
predicates and how to use them.

The meta-predicates permit the developer to execute validation modules at different levels of
detail. For example, the meta-predicate, subsumes(< rule)> ,< rule2> ), denotes that rule
< rulel> is subsumed by rule < rule2> . Thus, we can enter

su bsum es(Ri,Rj)

to find all rule pairs where the second rule subsumes the first, or enter

subsumes(Rj,rule_19)

to list all rules subsumed by rule_19, or test whether rule_3 is subsumed by rule_24 with

subsumes(rule_3,rule_24).

Parameters (arguments) to meta-predicates can be variables and constants, such as unit
names, slot names, rule names, etc.

The long-range advantage of using a declarative language is that declarative languages are
more amenable to execution on parallel architectures. Since Parallel Prolog systems are being
developed elsewhere, our Prolog-based meta-language system can eventually make use of
these Parallel Prolog systems for the validation of very large KBs.
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2.3.3 System Integration

KEE and DEVA run as two independent processes. DEVA has an image of a KB in KEE.
Whenever a KB in KEE is sent to DEVA, its image in DEVA is changed to reflect its current
image in KEE. This way the KB in KEE and its image in DEVA are kept in sync.

In Phase 2 we supported an interactive mode between KEE and DEVA such that whenever
an operation such as ADD, CHANGE.TO, or DELETE was applied to a rule, a unit or a slot
value, the operation was performed by KEE, and then a message containing the translated
information was sent to DEVA to update its image. However, we learned that we could not
always predict the behavior of KEE and were thus forced to abandon this interactive
approach. (For details, see section 4.2 of this report.)

KEE and DEVA each have their own full-screen desktop window. At any time, there is only
one forefront desktop which accepts characters from the keyboard. The background desktop
can be brought to the front by clicking a left mouse button on its desktop icon. The user will
usually invoke DEVA from KEE and DEVA will return any error/warning messages after it
executes the validation modules on the image of the loaded KB. The display of the
error/warning messages for the majority of the checkers is text-oriented at this time, but in
future versions these messages may also be graphic-oriented (e.g., by highlighting the
incorrect/questionable rules). The interface for the Phase 3 module, the Rule Refiner, which
is described in detail in section 10.3 of this report, is an example of a graphic-oriented
interface.

2.4 ADVANTAGES OF DEVA APPROACH

We regard the following as the main advantages of the DEVA approach.

" the DEVA approach is general and not limited to a particular shell, like all the other
KBS validation approaches described in the literature. (Cf Appendix C. A Brief
History of Validation of Knowledge-Based Systems.)

" DEVA is not limited to the validation of propositional logic like many other
approaches.

" DEVA uses a logic-based declarative metalanguage which permits the statement of
requirements and constraints in a logical formalism and their verification and validation
by means of mechanical theorem proving.

" The DEVA language is more expressive than other shell languages and thus permits
the formulation of many requirements and constraints that cannot be made in those
Ian gu ages.

" The smooth integration of development environment and DEVA environment make
DEVA a natural extension of the development environment.
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CHAPTER 3

DEVA USER INTERFACE

3.1 DEVA AND KEE FROM THE SAME DESKTOP

This section assumes some knowledge of the Sun Windowing System known as Sunview or
Suntools. If unfamiliar with Sunview or Suntools, read the Sunview Manual before
proceeding. From the UNIX prompt type:

sunv i ew

or

suntool s

To load DEVA, open a shell window and enter:

deva.exe

To load KEE, from another shell window type:

kee

When the KEE desktop appears, it will take several minutes to load the ADVICE system
(used by the DEVA translator). During the KEE loading process, the user will be prompted
in the lower left corner typescript window:

Do you wish to load the Translator (y/n)?

The user should enter Y, and hit return.

3.2 THE DEVA WINDOW

The DEVA User Interface uses the unified design principle. This principle states that there is
generally a short list of guidelines that can be learned through interaction with the interface,
and once learned be applied through out the interface. The standard DEVA browser is one
example of this principle.

In SunView, the functionality of an interface object is sometimes ambiguous. Take the
example of a browser, which can look exactly like a picture with only one scroll bar. To
distinguish between them, when a browser is used in the DEVA interface it is peach colored,
a simple but effective visual clue.

The DEVA window can be divided into four sections:

Menu bar
A set of horizontal labels in which each label activates a unique pop-up menu (also
known as a pull-down menu). The pop-up menu is activated by moving the cursor to
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a menu label and holding down the right most mouse button (also known as a right
click and hold). While holding down the right mouse button, the user moves the
cursor vertically over the pop-up window. As the cursor passes over a menu option, it
is inverted. To select a menu item, the user lets up on the right mouse button while
that menu item is inverted.

Report Window
Output of all checkers are sent to this window.

Message Window
Messages generated by the system are sent to this window.

Options Window
Frequently user-modified options are contained in this window.

3.2.1 Menu Bar

The Menu bar contain the following entries:

Structure
Dead -End
Unreachability
Subsumption
Implication

Redundancy via BC
Redundancy via BC-CYC
Redundancy via QSQR
Redundancy via Residues

Cycle Detection
Irrelevance
Indirect Irrelevance
Ambiguity

Logic
Rule Inconsistency

Inconsistency via BC
Inconsistency via BC-CYC
Inconsistency via Residues

Add/Delete Ambiguity
Add/Delete via BC
Add/Delete via BC-CYC
Add/Delete via Residues

Conflict
Conflict via BC
Conflict via BC-CYC
Conflict via QSQR

Add/Delete Conflict
Add/Delete Conflict via BC
Add/Delete Conflict via BC-CYC
Add/Delete Conflict via QSQR

Sem antic
Inverse
Interstate Integrity
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Min-Max-Set
Subrelation
Value

Completeness
Frame Omission

MetaKB-Based Class Suggestions
Rule-Based Class Suggestions
Incomplete Relation Taxonomy
Incomplete Slot Values

Rule Omission
Logical Completeness
Numerical Completeness
Suggest Rules by Analogy

Refine Rules

Control
Control Constraints
Sequence
Exclusion
Necessity
Conditional
BC Interference

Nonm onotonic
Useless NWA Rules
Impossible Plans

Utilities
Connection Graph
Display Frame
Statistics
Save Logfile
Unit Graph
Residue Static Relations

3.2.1.1 Functionality of the Utilities pull-down menu

Connection Graph
Builds a Connection Graph for the current KB (consult 2.3.1 Connection Graph).

Display Frame
allows the user to display Frame knowledge in the report window.

Statistics
display statistics about the current KB (number of rules, Ihs clauses,...) in the report
window.

Save Logfile
writes the contents of the report window to ./deva.log.

Unit Graph
Builds a Unit Graph for the current KB (consult 2.3.2 Unit Graph).

Residue Static Relations
Put up a browser to Define Static Relations.
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3.2.2 Options Window

The Options Window contains the following items

Text items:

A text item is used for input from the user. The text item is displayed as a label
(identifying what the text item stands for) and sometime contains a user-editable value.

Version:
shows the version numbers of DEVA, Quintus-Prolog, and Quintus-Prowindows.
It is not user-editable.

Knowledge Base: < KB Name>
contains the name of the KB loaded and is not a user-editable value. A right click,
hold on < KB Name> , and selection of Rename Knowledge Base allows the user to
change the name of the current KB.

File: < File Name>
Name of file to store the KB in DEVA format. If < File Name> is not specified
when the user left clicks on the Save button, a dialog box will be opened prompting
input.

Infer Depth: < integer>
Depth at which to terminate search. Default value is 2.

Buttons:

A button is displayed as a rounded-corner box with a label inside. The button is activated
by a left click on the box's label. The button responds by flashing the rounded-corner
box, and calling the function programmed to handle it. Sometimes a button will have a
pop-up menu associated with it that can be activated by a right click hold on the button's
label. If no pop-up menu exist, a right click will do nothing.

Load
The Load button has a pop-up menu associated with it which contains the following
items:

Load KB in DEVA Format
Load KB in KEE-messages Format

Save
Save a KB to disk in DEVA format.

Help
Place DEVA in help mode.

Quit
Exit DEVA.

Erase
Erase the current KB from DEVA's active memory.

Clear
Clear the Report Window.

Browse
Lets the user display a rule, constraint rule, KEE ValueClass, or Proof Tree from a
DEVA browser. If the user highlights a rule name, or constraint name before left
clicking the Browse button, the text of the rule or constraint pops up in its own
window. If no selection is highlighted, or the selection is not a rule or constraint,
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then the rule browser pops up. The Browse button has a pop-up menu associated
with it which contains the following items:

Browse Rule
To display a KEE Rule, pull down the pop-up menu associated with the Browse
button and select Browse Rule. This will cause a DEVA browser to appear. By
choosing one of the labels in the browser (left clicking to select), the selected
KEE Rule will be displayed in its own pop-up window.

Browse Constraint
To display a DEVA Constraint Rule, pull down the pop-up menu associated with
the Browse button and select Browse Constraint. This will cause a DEVA browser
to appear. By choosing one of the labels in the browser (left clicking to select),
the selected DEVA Constraint Rule will be displayed in its own pop-up window.

Browse KEE ValueClasses
To display KEE ValueClass information, pull down the pop-up menu associated
with the Browse button and select Browse KEE ValueClasses. This will cause a
DEVA browser to appear. By choosing one of the labels in the browser (left
clicking to select), the selected KEE ValueClass information will be displayed.

Browse Proof Trees
Within the textual message of anomaly warnings will be references to proof-tree
labels. Valid labels (not just including labels that are relevant to redundancy
checking) include redundancyX, rederivableX, residue-redundancyX, conflictX,
add -delete-con flictX, rule-inconsistencyX, residue -incon sistencyX, add-delete-
ambiguityX, etc. To graphically browse a mentioned proof tree, pull down the
pop-up menu associated with the Browse button and select Browse Proof Trees.
This will cause two windows to appear. The window entitled DEVA Proof
Selector is a browser menu listing all proof-tree labels which have appeared in
the messages diplayed in the report window. By choosing one of these labels
(left clicking to select), the selected proof-tree can be browsed in the window
entitled DEVA Proof Browser.

The DEVA Proof Browser window is divided into 3 regions. The upper left right
hand corner region lists the current goal stack (stack grows downward). Initially
the top of the goal stack will be a term indicating the purpose of the proof tree
(i.e. redundant(rl), rederivable(rl), rule-inconsistency, conflict, etc). An
uninstantiated forward-chaining copy of the rule used to prove the goal at the
top of the goal stack is displayed in the upper left hand corner region. Initially
this will be a Horn Logic encoding of the anomaly definition proved. For
example, the following top-level rule would be used to express that a
redundancy had been found in rule rl:

rule name : deva default constraint
absent(rule(rl)),
provable(A)
B

redundant(rule(rl))
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The lower region contains an instantiated backward-chaining copy of the rule
displayed in the upper left hand region. The lower region rule also contains a
hypertext capability to allow further browsing of the subgoals. By holding down
the right mouse button on a subgoal, one will either see assumed true indicating
if the proof strategy assumed it true; true via fact lookup indicating a fact was
used to prove the goal; or show proof-tree to indicate that a rule was used to
prove this subgoal and that further browsing into the proof-tree is possible from
this point. If one selects the show proof-tree message when it appears, all of the
following occur: the selected subgoal is added to the top of the goal stack (upper
right hand region) ; an uninstantiated copy of the rule used to prove the new
subgoal is displayed in the upper left-hand region; and an instantiated version of
the rule now appears in the lower region. Further browsing can now be done
with respect to this new proof context.

When one is finished browsing at some context in the proof tree and does not
wish to (or is unable to) delve deeper into the proof tree, simply select one of
the goals on the ancestor stack (upper right hand region) to reset the DEVA
Proof Browser to that ancestoral context. To browse another proof tree entirely,
simply select another label from the DEVA Proof Selector window. Hit the
Cancel button on the DEVA Proof Selector window to terminate all proof-
browsing.

Interrupt
Stop currently running checker.

Circular Buttons:

A circular button is a menu in which the current choice is displayed. When the user left
clicks on a circular button, it cycles to display the next choice. A right click hold on a
circular button, displays a pop-up menu of all the possible choices, the current choice
being checkm arked.

Data
KEE Messages

Allow user to load KBs saved in DEVA messages format.
DEVA Format

Allow user to load KBs saved in DEVA format.

Mode
Regular

Do not use metarelationships between units.
Extended

Use metarelationships between units.

3.3 DEVA GRAPHICS

3.3.1 Connection Graph

When the user pulls down the DEVA Utilities menu and selects Connection Graph, a graphical
representation of the KB's Connection Graph is built in a newly created window called DEVA
Connection Graph. Rules are represented by a blue outline box with the rule-name contained

20



inside, and are referred to as a rule node. Dependencies between rules are represented by red
arcs connecting the rule nodes. For example, an arc pointing from Rulel to Rule2 would
mean there is a literal in the right hand side (RHS) of Rulel that matches (unifies with) a
literal in the left hand side (LHS) of Rule2.

3.3.1.1 Connection Graph Layout Algorithm

The Connection Graph is layed out in levels (top to bottom) according to the number of
rules a particular rule triggers (also called RHS to LHS connections). Rules at the top of the
graph trigger more rules than those at the bottom. Each level is then layed out (left to right)
according to the number of rules it is triggered by (also called LHS to RHS connections). The
algorithm is the Woods graph layout algorithm for hierarchical graph algorithm for directed
graphs that was adapted by Rowe et. al. This algorithm has several advantages:

The complete rule name is contained within the rule node box.

Rules that have no connections to other rules are placed on the bottom level of the graph.

On each level adjacent rule nodes have their Y coordinates offset so that overlapping arcs
are minimized.

3.3.1.2 Connection Graph Browser

The left side of the Connection Graph contains a browser (known as the Connection Graph
Browser) which contains a sorted list of all rules contained in the KB. A left click on a rule
name in this browser displays the text of the rule in a pop-up window, just as a left click on
the rule node in the Connection Graph would. A middle click arranges the graph so that the
clicked on rule node is against the left most edge of the graph. This functionality is useful for
locating a rule node in a very large graph.

Above the Connection Graph Browser are two buttons, Quit and Close. Quit destroys the
Connection Graph, and Close iconifies it.

Right click hold on a rule node produces a pop-up menu which allows highlighting of certain
rule relations. Each relation (triggers or triggered by) has a sub-menu of unique colors that
are used in highlighting a relation in the Connection Graph. Only one relation per node is
allowed. The following options are available on this rule relation menu:

triggered by
highlights all nodes that point to this node.

triggers
highlights all nodes that this node points to.

remove highlighting
unhighlights the displayed.

Other mouse button options are:

Middle click
allows the rule node to be dragged to another location.

21



Left click

displays the text of the rule clicked on in a pop-up window.

3.3.2 Rule browser

The rule browser is a list of the current rule names in the system, and it is located to the
right of the Connection Graph. Left click on a rule name displays the text of the rule clicked,
just like i left click on a rule node. Middle click moves the object to the very left of the
visual graph. With a very large graph this helps the user locate a particular rule node.

3.3.3 Unit Graph

When the user pulls down the DEVA Utilities menu and selects Unit Graph, a graphical
model of the fact base domain is built in a newly created window called DEVA Unit Graph. A
Unit Graph is a dynamic undirected acyclic graph that presents the relational hierarchy of
class, subclass, and instance links in the knowledge base. One may examine the slots and slot
values for all units in the Unit Graph to determine their relevancy to the rules.

In the Unit Graph, class-units are light blue; member-units are either light-grey
(unhighlighted) or yellow (highlighted); the background is light grey; the lines that represent
the relation between a class-unit and its subclass-unit are solid scarlet, and the line that
represents the relationship between a class-unit and its member-units is a dashed line of the
same color.

A left click on a member-unit toggles it's status (yellow = highlighted, light-grey =
unhighlighted). A left click on a class-unit toggles all of its members (including member-
units of its subclasses).

A middle click and drag on any unit allows the user to reposition the unit within the graph.
A right click hold on a class-unit displays the slots that are defined at that class in a pop-up
menu in which the menu-items are slot names.

When sub-menus (also known as walking menus) appear in the pop-up menu, the item(s)
that appear in a sub-menu are that slot's default values. When the class-unit has one or more
subclasses, the names of the subclasses are contained in the sub-menu of the menu-item
subclass. This feature is quite useful since it shows the KEE ordering in which the subclasses
were defined. Similar to a class-unit right click hold, a member-unit right click displays that
member-unit's slots for which it has a value. The sub-menu's menu-items are that slot's
value(s).

3.4 SOFTWARE AND HARDWARE REQUIREMENTS

Software:
Sun Microsystems Common Lisp version 2.1.3
IntelliCorp KEE version 3.1.75
SunOS 4.03
deva.exe (the runtime version of DEVA)
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Hardware:
Sun 4 or 3
Color Monitor
3 button Sun mouse and pad
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CHAPTER 4

THE KEE TRANSLATOR

4.1 INTRODUCTION

In Phase 3 the KEE to DEVA Translator was modified to run in batch mode only. The
interactive mode of the Translator was dropped from the DEVA system in January, 1990.
Prior to that time, as the user worked in the KEE environment, all KEE transactions were
automatically recorded, translated and sent to DEVA for loading and use. The interactive
mode proved to be unreliable because of the many different methods KEE uses for accessing
and modifying the internal representation of a knowledge base. This is discussed more fully
in sections 4.2 and 4.3.

In the current version of DEVA the user has the option of loading the DEVA Translator
when the KEE environment is entered. Once the user has loaded the DEVA Translator, he
has the option to unload or reload the Translator at any time during the session via the KEE
Icon Command Menu. While the Translator is active (loaded) the user may translate a KEE
KB into KEE message format by selecting the Send KB to DEVA item from the KB Command
Menu. The resulting translation is sent to a DEVA process via Unix pipes (see section 4.4).
This batch translation also takes place automatically whenever the user saves the current
version of an application KB.

The Translator also automatically maintains a special constraint KB for every application KB
that a developer loads or creates in the KEE environment. Just as the developer uses the
application KB to model the problem domain, he uses the corresponding constraint KB to
model the specifications pertaining to the problem domain. These specifications are defined
as DEVA metarules in a KEE-like syntax to facilitate their construction by the developer.
(These metarules are described in detail in Section 8 on Semantic Constraints). When a KB is
loaded, the Translator automatically also looks for a -constraint KB to load (e.g., if the KB file
is named auto-repair then the corresponding constraint file is named auto-repair-constraint). If
one does not exist then a new constraint KB is created and loaded automatically.

The KEE KB Command Menu system has been modified so that the user may perform only
limited (appropriate) actions on constraint KBs. For example, the user may only create rule
classes and display the constraint KB. He may not save, delete, create, copy, or rename the
constraint KB. All of the above mentioned actions happen automatically to the constraint KB
when the user applies them to the associated application KB. For example, whenever a KEE
KB source file, in a -constraint.u file, and a DEVA translation of both the application KB and
its corresponding constraint KB is saved in a -kee.msg file.

4.2 THE ADVICE SYSTEM

The interface between the Translator and KEE is implemented using the Sun Lisp ADVICE
system. With ADVICE one may wrap user-defined code around any Lisp function body.
When ADVICE is attached to a function name, the user-defined code for that function is
executed rather than the original function body. Within the user-defined ADVICE code one
may call the original function body by using the function apply-advice-continue.

In DEVA 2.0, when we were supporting an interactive mode between the Translator and
KEE, we attached ADVICE to all of the known KEE KB management functions (e.g.,
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create.slot, delete.slot, delete.rule, create.unit, rename.unit, etc.) in order to capture any KB
activity. However, we continued to experience different and unexpected KEE KB
management behavior depending on the order of KB editing events.

KEE is a very large system with incomplete documentation. It was impossible to guarantee
that all operations in KEE which have an effect on data and rules were being covered in the
interactive mode; therefore, in Phase 3 we elected to abandon the interactive mode of the
Translator, and focus on the batch mode.

In batch mode Sun Lisp's ADVICE function continues to be attached to the major KEE KB
management functions: load.kb, create.kb, delete.kb, rename.kb, and save.kb. These
ADVICED functions allow us to maintain a corresponding semantic constraint KB for every
application KB in the KEE system (see section 4.6).

4.3 KEE

IntelliCorp does not maintain a formal grammar for the KEE language (KEE users are
provided with an interface for creating KEE KBs). Thus the Translator's grammar was
created through observation, and may not be complete. The translation is actually performed
using KEE functions and predicates. That is, the Translator does not process ".u" files (KEE
KB source files), but rather it uses KEE access functions such as kee::units.kb and
kee:.unit.slots etc., to retrieve information about KEE KBs. This information is then
translated into Prolog predicate output. The Translator creates a string of all of the translated
functions and predicates and writes them to a file

Again, it must be stressed that KLI has no formal syntax or semantics, and the informal
syntax and semantics (in the form of user tutorials and tutoriallike documentation) provide
examples of what can be done n KEE. not a complete description of the KEE language.

4.4 THE COMMUNICATIONS SYSTEM FROM THE KEE PERSPECTIVE

Communication between KEE and DEVA is now possible through Unix pipes. This nev
functionality replaced the file based message system in previos versions of DEVA. The pipe
connection not only makes for faster communication between KEE and DEVA, but allows
DEVA to send information back to KEE, and even query KEE for specific information.
Additionally, it is possible run KEE and DEVA on different systems and still communicate
and the Unix pipe communication makes it easier to integrate DEVA with other systems such
as ABE.

4.5 THE KEE TRANSLATOR

The Translator uses various KEE access functions to read in data from the KBs that have
been loaded into KEE. Currently, the KEE Translator reads in and produces output for the
following KEE objects: KBs, units, rules, slots and facets. The Translator reads in this
information and produces Prolog as its output. It produces a predicate called message. The first
argument of message is the action that DEVA is to take. In batch mode this argument is
always create. The second argument of the message is the translation, when appropriate, of
the KEE object to which the action is to be applied, and the third argument is a time stamp.
For example, the following message:
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message(create, rule('division',
[[text, ['start', 'con strain ing', 'the', 'm ission', 'of ', Vx,[]]
[slot, 'phase.info', Vx, Vyl,
[slot, 'unit.being.supported', Vy, Vz],
[slot, 'unit.being.supported', Vz, yin],
[slot, 'm ission', Vy, Vym]
[slot, 'm ission', Vz, Vzm I
[slot, 'm ission ', Vm, Vm ml
[kee equ al, [ equ al, Vv ar2, [lisp, ['set-difference', Vym, Vzm, Vm m,[]][ [][],[

[[chan;c ~to, [slot,'mission',Vy,Vvar2l,[l],[lI,

'sam e.wo rld.action','div -rules', 'frien dlyu units',

[ '( ','IF',

'(','START', 'CONSTRAINING ','THE', 'MISSION', 'OF','? X',',
'(','? X','IS', 'IN', 'CLASS', 'FIG HTERS',')',
'(','THE', 'PHASE.INFO', 'OF', '? X', 'IS', '? Y',')',

'(','THE', 'UNIT.BEING .SUPPORTED ','OF', '?Z', 'IS', '?MZ',')',
'("'THE', 'MISIN.SU', ?Y''I ', 'Y "'','?ZI'' '''
'(','THE', 'MISSION', 'OF', '?Y', 'IS', '?Zlv',')",
'(','THE', 'MISSION', 'OF', '?M ','IS'. '?MM',')',

'THEN',
'(','CHANGE.TO',

''THE', 'MISSION ','OF','? Y','IS',

[17,56,11,24,7,1990]).

tells DEVA to create a rule called division with the left hand side

(START CONSTRAINING THE MISSION OF ?X)
(X IS IN CLASS FIGHTERS)
(THE PHASE.INFO OF ?X IS ?Y)
(THE UNIT.BEING.SUPPORTED OF ?Y IS ?Z)
(THE UNIT.BEING.SUPPORTED OF ?Z IS ?M)
(THE MISSION OF ? Y IS ? YM)
(TH E M ISSION OF ? Z IS ? ZM)
(THE MISSION OF ?M IS ?MM)

and the right hand side

(CHANGE.TO
(THE MISSION OF ?Y IS

(SET-DIFFERENCE ?YM ?ZM ?MM)))

The main access functions are:

kb.name - to get the name of a kb;

kb.units - to get all the units in a kb;
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unit.name - to get a unit's name;
unit.slots - to get the slots in a unit;
unit.parents - to get a unit's parents;
unit.children - to get a unit's children;

slot.name - to get a slot's name;
slot.values - to get a slot's values;
slot.min.cardinality - to get the minimum cardinality of a slot;
slot.max.cardinality - to get the maximum cardinality of a slot;

get.value - with argument rule.type - to get a rule's type;
get.value - with argument premise - to get a rule's premise;
get.value - with argument conclusion - to get a rule's conclusion;
get.value - with argument external.form - to get a rule's text representation;

wff.to.list - to convert a KEE well-formed form ua (WFF) structure into a Lisp list.

4.6 DEVA SEMANTIC CONSTRAINTS

DEVA also manipulates the constraint KBs that a developer uses to create DEVA metarules
(These metarules are described in detail in Section 8 on Semantic Constraints). When a KB is
loaded, the Translator automatically looks for a "-constraint" KB to also load (e.g., If the KB
file is named auto-repair then the corresponding constraint file is named auto-repair-constraint).
If one does not exist then a new constraint KB is created and loaded automatically. A special
KEE menu for constraint KBs is provided so that the user may perform only limited
(appropriate) actions on a constraint KB. For example, the user may only create rule classes
and display the constraint KB. He may not save, delete, create, copy, or rename the
constraint KB. All of the above mentioned actions happen automatically to the constraint KB
when the user applies them to the application KB with which the constraint KB is associated.
In other words, the constraint KBs are automatically maintained by the DEVA Translator.

4.7 RESTRICTIONS AND EXCEPTIONS

DEVA 2.0 did not properly handle variable names (that portion of a variable ID following the
mandatory question mark) which contained a character other than an alphanumeric character
or underscore (i.e., ?big-ship was not allowed) nor an apostrophe in a text string (i.e., "let's
see if he's home" was not allowed). The problem was not with the Translator, but with the
manner in which Prolog interprets delimiters in variables and double and single quotes.
These two restrictions were eliminated in Phase 3. The variable problem was rectified such
that nonalphanumeric/nonunderscore characters in a variable are changed to underscore while
at the same time preserving the uniqueness of the variable within the scope of the rule. The
apostrophe problem was handled by scanning the KB input and removing all apostrophe's
within a text string prior to translation.

While eliminating these two previous restrictions, we have had to introduce another: using a
quoted variable with KEE's equal operator. There is a bug in the WFF representation of
KEE's equal operator. When the second argument to the equal operator is a quoted atom
whose first character is a question mark (KEE's variable format), the quote is not present in
the WFF. Although the WFF representation is the same whether the second argument is
quoted or not, the behavior of the rule literal the WFF represents is not. During rule
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execution the quoted atom is not evaluated and the unquoted variable is. IntelliCorp has

been advised of this problem.

4.8 THE NORMALIZER

KEE permits rules with logical or's like

RI: if or([a(X),b(X)]), c(X) then d.
R2: if or([g(X),a(X)]), c(X) then d, e.

Given the facts a(i) and c(i), where i is an arbitrary constant, both rules RI and R2 would
apply.

The function of the normalizer is to convert the KEE rules - which KEE converts internally
to Conjunctive Normal Form (CNF) - to Disjunctive Normal Form (DNF); this facilitates
the recognition of rule duplication and subsumption.

The KEE rules above would thus be converted to the following DEVA rules:

R 1.1: if a(X), c(X) then d.
RI.2: if b(X), c(X) then d.
R2.1: if g(X), c(X) then d, e.
R2.2: if a(X), c(X) then d, e.

where the subsumption of R2.2 by R1.1 is now easily recognizable.

This section briefly describes some of the simplifications that KEE performs when creating
CNF's, the additional DEVA reductions, and the creation of the DNF's.

When a user enters a rule in KEE it is stored in the user's exact form in the slot External
Form. KEE performs the following simplification on the LHS of the rule and converts it into
CNF before it stores the result in the Premise slot.

(not (cant.find A)) is converted to (find.any A)
(not (find.any A)) is converted to (cant.find A)
(not (not A)) is converted to A
(cant.find (cant.find A)) is converted to (find.any A)
(find.any (cant.find A)) is converted to (cantfind A)
(cant.find (find.any A)) is converted to (cantfind A)
(find.any (find.any A)) is converted to (find.any A)
(< literal> or < literal> ) is converted to (or < literal> ,< literal> )
(< literal> and < literal> ) is converted to (< literal> ,< literal> )
(and < literal> < literal> ) is converted to (< literal> ,< literal> )

DEVA performs additional reductions using De Morgan's formulas and equivalences among
the KEE operators find.any, cant.find, and for.always.

(find.any (A or B)) is converted to (or (find.any A) (find.any B))
(cant.find (A or B)) is converted to (and (cant.find A)(cant.find B))
(for (A or B) always C) is converted to (and (for A always C) (for B always C))
(for (A always B)) is converted to (cant.find (and A (cant.find B))).
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When all literals have been reduced, the rule is in atomic form. DEVA constructs the DNF
representation of the rule from the conjunction of disjunctions which is KEE's CNF
representation of the premise.

For example, suppose the KEE user types in the rule:

((IF (?F IS IN FLOWER)
(OR (AND (THE COLOR OF ?F IS RED)

(THE STEM TYPE OF ?F IS THORNY))
(AND (THE COLOR OF ?F IS YELLOW)

(THE STEM TYPE OF ?F IS THORNY))
(AND (THE COLOR OF ?F IS PINK)

(THE STEM TYPE OF ?F IS THORNY)))
THEN (?F IS IN ROSE))))

KEE stores the premise of the rule in a nonminimal CNF:

((memberof(F, flower),
(or(color(F, pink),

color(F, yellow),
color(F, red))),

(or(color(F, pink),
color(F, yellow),
stem type(F, thorny))),

(or(color(F, pink),
stem type(F, thorny),
color(F, red))),

(or(color(F, pink),
stem type(F, thorny),
stem type(F, thorny))),

(or(stemtype(F, thorny),
color(F, yellow),
color(F, red))),

(or(stemtype(F, thorny),
color(F, yellow),
stemtype(F, thorny))),

(or(stemtype(F, thorny),
stemtype(F, thorny),
color(F, red))),

(or(stemtype(F, thorny),
stem-type(F, thorny),
stem _type(F, thorny)))),

DEVA converts this representation to a DNF representation using the algorithm of Slagle,
Chang and Lee which removes nearly all of the redundancies introduced by KEE's
normalization to CNF ("A new algorithm for generating prime implicants", IEEE Transaction
on Computers, Vol. C-19, No. 4, pp.304-310, April 1970). The final step of the DEVA
normalizer prunes the few remaining redundant LHSs before storing the rules. The result is
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three DEVA rules with the left-hand sides:

[member-of(Vf, flower), color(Vf,red), stem -type(Vf, thorny)]I,
(mem ber-of(Vf, flower), color(Vf, yellow), stem -type(Vf,thorny) I
[m ember-of(Vf, flower), color(Vf,pink), stem type( Vf,thorny) ]]
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CHAPTER 5

STRUCTURE CHECKER

5.1 DEVA DATA STRUCTURES

All DEVA validation modules make use of the internal DEVA data structures created from
the translations of the KEE units and rule-units.

A KEE rule is internally represented by means of four DEVA structures:

rule(Rule name, LHS, RHS) rule type(Rule_name, Ruletype) rule_class(Rulename,
Ruleclass') rulekb(Rulename, Rule_kb)

where LHS is a wff in a conjunctive normal form [Chang and Lee 1973], RHS is a list of
actions, rule_type is one of new worldaction, same world action, or deduction, and rule-class
and rule kb are user-assigned names. The rule type, ruleclass, and rule kb information is
extracted from the corresponding KEE rule slots.

The following KEE rule:

(RULEI
(IF (IN.CLASS ?CAR CARS)

(OWN.VALUE BATTERY ?CAR DEAD)
THEN

(ADD (IN.CLASS ?CAR NON.FUNCTIONING.VEHICLES))))

is thus translated into the DEVA structure:

rule(rulel,
[cars(Vcar),battery(Vcar,dead)],
[non_functioningvehicles(Vcar) ])

5.2 CONNECTION GRAPHS

Connection graphs are very important data structures which are used by DEVA to analyze
KBSs. A connection graph is defined as follows: an arc in the connection graph denotes a
match between a literal in the LHS of a rule and a literal in the RHS of a rule. A fact is
considered a rule without a LHS.

In order to build efficient meta-interpreters, DEVA maintains data-structures that can quickly
retrieve information about the connection graph for the checker modules. These data-
structures have been devised to make full use of the Warren Abstract Machine's indexing on
the predicate name and the first argument. For example:

rule(? Ruleld,?LHS,?RHS)

is used to retrieve the LHS and RHS of a specific rule. The RHS data-structure:

rhs(?Literal,?Rule_Id)
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is used to quickly index to a rule containing ?Literal on its RHS. A RHS literal such as

add(not(a())) would actually be stored in the database as

rhs2(a(X),add(not(_)),ruleldl)

thereby allowing indexing on predicate name a of arity 1. This was done because the external
wrappers, such as add(not(_)), provide very little indexing benefit. The LHS data structure:

lhs(?Literal,? RuleId)

is used to quickly index to a rule containing ?Literal on its LHS. The following data

structure:

rhsTOlhs(?Rulel ,?Rule2)

indicates that there exists a RHS literal in ?Rulel which satisfies a LHS literal in ?Rule2.

Using the connection graph, it is trivial to implement a depth-first backward chaining meta-
interpreter (but it is not guaranteed to terminate). For example:

bc(Goal):-
bc2([Goall).

bc2( [ 1).
bc2( [GoaIRest]):-

fact(Goal),
bc2(Rest).

bc2([GoaJRest]):-
rhs(Goal,Rule Id), % find a rule to prove Goal
rule(RuleId,LHS,RHS), % Gather LHS SubGoals
member(Goal,RHS), % Propagate Variable Bindings
bc2(LHS),
bc2(Rest).

5.3 DEADEND RULES

A rule is called a deadend rule if its LHS can never be satisfied. This happens when the LHS
of the rule contains a literal which cannot match with any fact or any literal in the RHS of a
rule.

For checking deadend rules, we introduce the meta-predicate deadend defined as follows:

deadend( < ruleid> , < LHS literal> ).

This predicate denotes that rule < rule id> is a deadend rule because of the unsatisfiability of
the LHS literal < LHS literal> . In terms of the connection graph: a rule is a deadend rule if
it contains a LHS literal-that is not pointed to by any arc.

5.4 UNREACHABLE FACTS AND LITERALS

A fact or a RHS literal of a rule is called an unreachable literal if it cannot be matched by any

34



LHS literal of a rule. Thus unreachable literals can not be used and may be omitted or the

KBS may require rule modification.

To find unreachable literals, we use the meta-predicate unreachable defined as:

unreachable( < rule id> , < RHS literal> ).

This predicate denotes that the RHS literal < RHS-literal> of rule < rule id> is unreachable.
In terms of the connection graph: a fact or RHS literal of a rule is unreachable if it is not
pointed to by any arc.

5.5 REDUNDANCY

A large KB may be developed by more than one person. When different subsets of the KB
developed by different persons are merged, there may be overlaps and redundancies. The
redundancies may cause performance, maintenance, updating and synchronization problems.
For example, given two rules RI and R2, if the LHS of RI subsumes the LHS of R2, and if
forward chaining is used, then whenever R2 can be fired, R I also can be fired. Therefore, any
actions (ADD, DELETE or CHANGE.TO) in the RHS of R2 which also occur in the RHS of
RI will be redundant. This causes a performance problem because the same actions are
repeated. The same redundancy may also cause an updating problem because desired
behaviors may not be achieved if RI and R2 are not updated at the same time. The
synchronization problem may occur if different actions in the RHSs of both RI and R2 need
to be taken simultaneously. In this last case, RI and R2 should be combined into one rule to
prevent them from firing at different times.

We consider three types of redundancies: Duplication, Subsumption, and Implication. The latter
is also referred to as Indirect Subsumption. Duplication and subsumption redundancies involve
only two rules, while implication redundancy involves more than two rules.

Two methods for detecting Implication Redundancy are discussed. The first approach, the
restricted generate-and-test method, generates an incomplete, but revealing, set of fact-base
scenarios to check whether redundancies stem from those scenarios. The second approach,
the residue-analysis method, is more general and attacks the problem from the reverse angle.
Rather than generating situations and checking for problems, we also ask "What must be true
of the fact-base in order for redundancy to exist? Furthermore is this fact-base likely to
occur? ".

5.5.1 Direct Subsumption and Duplication

This section describes direct subsumption involving two rules. Within this section,
subsumption means direct subsumption. Subsumption occurs between two rules when one
rule fires every time the other rule fires and produces all the same conclusions (maybe more).

In this case the first rule totally subsumes the function of the second rule and the second rule
can be omitted. Duplication is a special case of subsumption where one rule fires every time
the other rule fires (but NOT more often) and produces all the same conclusions (and NOT
more). Since duplication is "subsumed" by subsumption, duplicate rules will automatically be
detected by the subsumption checker. Here is an example of subsumption:

RI: A --+ XY,Z
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R2: A,B -- X,Y

Rule RI will fire every time R2 fires since its LHS is a subset of R2's LHS and will deduce
everything R2 deduces, therefore, Rule R I subsumes Rule R2.

Considerable progress has been made under this contract in performance improvements for
subsumption checking. Using specially constructed data structures, and several effective
heuristics, the check was sped up by a factor of 200 over the brute force method. DEVA can
now check a KB of 500 rules for subsumption in under 4 seconds (on a Sun 4/110c running
Quintus Prolog 2.5).

In general, the most useful of these optimizations is the addition of a simple data structure
that allows extremely fast indexing of literals into the rules in which they occur. The data
structures, one for LHS literals and one for RHS literals, are basically hash-tables from literals
to rule ID's. In the brute force method, to find which rule(s) contains a literal, one needs to
look through each rule searching the LHS or RHS for the literal. With the new indexing
structures, the Prolog system hashes to the rule(s) involved almost instantly. Since it is
exactly this type of lookup that most of the checkers rely on, a dramatic and comprehensive
performance improvement was realized. In the case of subsumption checking, we used the
heuristic that a subsumed rule shares at least one RHS literal with any possible subsuming
rules, so given any rule, finding the set of rules with which it shares a RHS literal involves a
quick lookup through the hash-table for RHS literals. All but a relatively small set of
candidate rules are immediately screened from the search.

Once a pair of candidate subsuming/subsumed rules has been gathered, the LHSs and RHSs
must be checked for the proper subset relationship. If R1 subsumes R2, RI's LHS literals
will be a subset of R2's LHS literals (requiring fewer conditions to fire), and RI's RHS literals
will be a superset of R2's RHS literals (producing more results when it does fire). To
optimize this process, a special subset procedure was written that aborts the check as soon as
an element is found which fails the membership test.

At this level in the subsumption checking process, literals from different rules are being
compared to each other to see if they match. This matching process is called unification, but
unification is not a sufficient test by itself to guarantee subsumption. For example in the
rules

RI': a(XY) -- p(X,Y).
R2': a(X,Y) -+ p(Y,X).

Rl does not subsume R2', even though rule RI' unifies with R2'. Since R2' also unifies
with RI', one might be tempted to think these two rules are duplicates. But consider the
effect of these two rules on the following data:

Fl: a(red,blue).

Rule RI' produces p(red,blue), but R2' produces p(blue,red).

We have identified several other situations where special attention must be paid to the
variable bindings when checking for subsumption:

a) Constants in the potentially subsuming rule would prevent the two rules from producing
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all the same results. Consider

RI': a(X,5) --+ p(X,5), q(X,5), r(X,5)
R2': a(X,Y), b(X,Z) --- p(X,Y), q(X,Z)

Unlike the structurally identical cases, RI' does NOT subsume R2' because, although the
LHS of R1 unifies as a subset of R2's LHS, it will not actually fire in all the same instances.
Furthermore, R1 produces only facts whose second argument is 5 while R2 can produce any
value in that position.

b) Natural unification of variables results in differing conclusions. Consider

R3: a(X,Y) -- p(X,Y)
R4: a(X,X) -- p(X,X)

Here the LHS of RI' unifies with the LHS of R2', but as variables bind and propagate across
the implication sign, the result does, in fact, turn out to be different.

c) Information gathered in the extra literals on the LHS of the "subsumed" rule is needed in
the conclusions on the RHS. Consider

RI': a(X,Y) -- p(X,Y), q(X,Y), r(X,Y)
R2': a(X,Y), b(Y,Z' ---+ p(X,Y), q(Y,Z)

R I' can't duplicate the , tiect of R2' since whatever data would bind to Z in the literal b(Y,Z)

is not available to ,; "

5.5.2 Implicatron Redundancy Checking via a Restricted Approach

Before proceeding, we would like to point out that all the results of this section, 5.5.2, are
necess-ry background material for rule-inconsistency detection in Chapter 6 Logic Checker.

A rule RI: (LHS = > RHS) is redundant if the action(s) on the rule's RHS can be
independently derived from the knowledge base and the condition(s) in the LHS of RI, but
without using rule RI in the inference process. In other words, it may be possible to exclude
the rule from the knowledge base or, a. the very least, replace the redundant rule with a
version that does not include the redundant RHS action. For example, consider the rules

RI: A- B
R2: B- C
R3: B,X - C
R4: A - C

Rule R4 is redundant. To see this:

a) Assume R4's LHS is provable. Imagine literal A is a fact.

b) Exclude rule R4 from the knowledge base.

c) Check to see if rule R4's RHS action, C, is derivable.
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Notice that rules RI and R2 interact to derive C. Rule R4 is unnecessary. Rules RI and R3
do not make rule R4 redundant, since there exists an extraneous condition X that needs
satisfaction.

In general this is an intractable problem. The brute force approach to solving this problem
would be to generate the power set P of all rules in the knowledge base. Each member p of P
would then be considered to see if the rules in p could interact to cause a redundancy in some
other rule r in the KB, where r is not an element in p. The size of the power set is
exponential in the number of rules. Obviously this is undesirable. Due to the general
intractability of the problem there does not exist any one good solution. A very straight-
forward/elegant strategy may perform quite admirably on some reasonable search-spaces, but
will very quickly become overwhelmed when dealing with a more hostile search space. Also a
more sophisticated strategy, which does a better job on hostile KBs, can have a huge
overhead which makes it less appropriate for dealing with a KB with a friendly search space.
The approach taken by DEVA is to provide a suite of algorithms from which the user can
choose. These will be discussed in more detail later in this section.

On the surface it seems that redundancy is merely an efficiency problem, since results may be
re-derived. It is, however, also potentially dangerous, especially when dealing with a
knowledge base containing retractions and assertions on the RHS of a rule. There may be a
synchronization problem. For example, consider:

R11: rank(? x,private), deserves_promotion(? x)
delete(rank(? x,private)),add( rank(? x,corporal))

R12: rank(?X,private), deserves_promotion(?x) --
delete(rank(? x,private))

If rule R12 is fired before rule RI, then there is the possibility that RI) will not be satisfied.
This is because rank(?x, private) is no longer true when rule R]I is checked for satisfiability,
since it has been deleted.

Redundancy also makes the task of maintaining a KB more difficult. For example: the person
in charge of KB maintenance modifies the KB (adds, deletes, or modifies a rule) in order to
achieve a different behavior in the expert system, but the modification does not alter the
behavior. The problem could be that the modification involved a redundant rule; therefore,
the addition and/or deletion of the rule had no effect on the performance of the expert
system. Tracking these problems down can be very time consuming, and thus add
significantly to the lifetime cost of an expert system.

Skolemization is required to correctly check a first-order logic knowledge base for
redundancy. Variables and constants within the arguments of a first-order literal may make
the literal less general than another similar literal. For example, the literal loves(?X.?Y) is
more general than loves(?X,?X). All solutions for the subgoal loves(?X,?Y) will contain all the
solutions for loves(?X,?X). So in the case of redundancy detection, if there is a way to prove
independently add(loves(?X,?X)), then it is not necessarily true that add(loves(?X,?Y)) is also
provable. The standard way to determine if one literal subsumes another is to use
skolemization. Skolemization is a process that replaces the variables contained in the literal
with constants. For example, the literal L2: loves(?X,?Y) is skolemized to lovcs(sklsk2). The
literal LI: loves(?X.?X) is skolemized to loves(skl,skl). If a skolemized literal LI can unify
with another (unskolemized) literal L2, then L2 subsumes Li.
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Thus a new definition is needed for Redundancy in the context of first-order logic knowledge
bases.

Definition:
K = The set of static facts and rules in the knowledge base
R = The rule being checked for redundancy.
K' = K set minus R
R' = R after undergoing skolemization
V = assumed set of valid input facts (LHS of R')
A = RHSofR'.

Redundancy exists if V u K' entails a, such that a is a member of A.

E x am ple:

R2: a(?X), b(?X) -- c(?X)
R3: a( 3) -- c(3)

R2': a(skl), b(skl) - c(skl)

Rule R2 above is not redundant. It is not guaranteed that rule R3 will fire whenever rule R2
does, rather only when ?X is bound to 3. Rule R2' represents the skolemized version of R2,
where all variables have been turned into skolem constants. It is now obvious that there is
no way to independently cause the assertion of c(skl) via rule R3 and assumed facts a(skl)
and b(sk2).

5.5.2.1 What does restricted redundancy detection involve?

Redundancy checking requires inference. Either forward or backward chaining can be used to
accomplish the task. Neither solution is absolutely better than the other. Depending upon the
characteristics of the KB's search space, one approach may be better than the other. Results,
outside this realm of validation, by Mike Genesereth from Stanford University have shown
that inference using both backward chaining and forward-chaining can be superior to
committing exclusively to either one or the other.

Three top-down backward-chaining algorithms have been implemented for redundancy. The
performance of these algorithms can be greatly enhanced by the storage of a provability
cache, whose size is not dependent upon the size of the extensional fact-base. The differences
between the algorithms will be presented later, as well as a detailed discussion of the
provability cache in section 5.5.2.3.

An outline of an elegant solution using backward-chaining was presented by the DEVA team
member C.-L. Chang. Essentially the idea involves translating forward-chaining rules to
backward-chaining Prolog rules. Consider this sample knowledge base:

R1I1: a(?X),b(?Y) -+ add( c(?X,?Y) )
R112: a(?X1) -4 add( d(?X1) )
R113: b(?Yl) --* add( e(?Yl) )
R114: d(?X2),e(?X2) - add( c(?X2,?X2) )
RIS: e(?X3) - add( not(c(?X3,?X3)) )
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and the resultant Prolog program:

Rli1p: c(X,Y):- a(X),b(Y).
RJJ2p: d(XI):- a(Xl).
Rll3p: e(Y1):- b(YI).
R l14p: c(X2,X2):- d(X2), e(X2).

% example of explicit negation
RlJ5p: not(c(X3,X3)):- e(X3).

Since the rule-set [R1l2p,RlI3p,Rll4p] unioned with the assumed input fact-set
[a(skl),b(sk2)] entails proof of the literal c(skl,sk2), then rule Rill is redundant. An
algorithm which models this approach via meta-interpretation has been included in the suite
of redundancy algorithms. The details of this algorithm are given in section 5.5.2.2.

An extension of the above approach is required to correctly handle negation by failure during
redundancy checking. When the checker reports that a rule is redundant, it must be
redundant under all possible states of the KB. Therefore, a special treatment of negation by
failure is necessary. In the following example, R21 does not subsume R31 (make R31
redundant). However if cant_find was handled the same as negation by failure, then R31
would be mistakenly labeled as redundant. This is because the rule-set [R2lp unioned with
the assumed input fact-set [a,d] entails proof of literal c.

Example:

R21: A,cant find(B) - add(C)
R31: A,D -- add(C)

Resultant Prolog Program:

R21p: c:-a, unprovable(b).
R31p: c:-a,d.

During redundancy checking (as well as rule-inconsistency checking in the Logic Checker),
negation by failure is handled by an explicit proof that the literal has been deleted. In other
words, the checker will act as if the following Prolog rule were always present:

negByFail: cantfind(X) :- delete(X).

Consider the following example of redundancy involving retractions on the RHS of the rule:

R41: A,cantfind(B) -4 delete(C)
R42: A,D -4 delete(C)
R43: A,cantfind(B) -4 add(D).

Resultant Prolog Program:

R41p: delete(c):- a,cantfind(b).
R42p: delcte(c):- a,d.
R43p: d:- a,cantfind(b).
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Since the rule-set [negByFail,R42p,R43p] unioned with the assumed input fact-set
[a,cantfind(b)] entails proof of the literal delete(c), then rule R41 is redundant.

A further extension to the backward-chaining approach is necessary to completely and
correctly handle numerical comparisons. It is possible for numerical comparisons to be
included in the LHS of a rule which is being checked for redundancy. Assumed satisfiability
of a numerical comparison containing a variable can entail proof of many other numerical
comparisons containing the same variable. For example, greater(?X,lO) entails equal(?X,29),
notequal(?X,19), etc.

Definition:
Assume C1 and C2 are numerical comparisons which each contain one variable.

Range-subsumes(CI,C2) is true if the range of Cl's variable is a superset of the
range of C2's variable.

Theorem:
If numerical comparison C2 rangesubsumes numerical comparison Cl, then C2 is
satisfiable whenever Cl is.

The range of ?X in greater(?X,1O) is (10 .. Poslnfinity], while the range of ?X in
lessthanorequal(5,?X) is [5..Poslnfinity). Since [5..Posinfinity] contains (lO..Poslnfinity], we
know lessthanorequal(5,?X) is true whenever greater(?X,JO) is true.

A module has been introduced into DEVA to handle these types of proofs. Both the
Redundancy and Inconsistency modules make use of this functionality. In DEVA, all
numerical comparisons are enclosed within a lisp(arityl) term. Therefore the redundancy
checker must act as if the following Prolog rule were present:

rangeSub: lisp(NumComp):-
lisp(AssumedNum Comp),
rangesubsumes(Num Com p,AssumedNum Corn p).

For example, rule R52 is made redundant by rule R51. This is because the rule-set
[rangeSub,R51p] unioned with the assumed input fact-set [age(skl,sk2),lisp([greater,sk2,10])]
entails proof of the literal qualityl(sk1).

R51: age(?Person,?X),lisp([lessthanorequal,5,?X]) - qualityl(?Person).
R52: age(?Person,?X),lisp([greater,?X,10]) -4 qualityl(?Person).

Resultant Proleg Program:

R51p: qualityl ('erson) :- age(Person,X), lisp([lessthanorequal,5, X]).

5.5.2.2 Restricted redundancy detection algorithms

In the previous section, the requirements of redundancy detection were described in the
context of a backward-chaining algorithm involving a straight translation down to Prolog, but
inference in Prolog is undecidable and incomplete. Therefore, we have implemented the
model in the form of various meta-interpreters thereby allowing more control. A maximum
inference depth can be specified for all of the algorithms thus allowing the user to specify the
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degree of completeness he/she desires, while remaining decidable. Furthermore, the depth
bound is intuitively desirable. We argue that it is more useful to first detect and remove
anomalies involving a shallow inference chain before moving on to more complex and deep
inference chains, since the longer inference chain may be a compounded side-effect of one or
more smaller ones.

The next enhancement is to maintain the goal stack. As soon as a recursion is detected, the
path is pruned. This has the benefit of guaranteeing termination, but it also makes the
detection process incomplete. Redundancies introduced via recursion/cycles will not be
detected. On mechanically generated knowledge bases with hostile search-spaces, significant
performance gains were realized with a minimal amount of incompleteness.

Backward-chainers suffer in that they will cheerfully re-attempt or re-prove a task they have
already completed. If one were to introduce dynamic programming, already proved/failed/in-
progress goals could be memoized. Potentially this could save considerable work.

Work already exists in the database community to efficiently handle recursive queries in the
presence of large amounts of data. Good solutions for recursive query processing can be
modified to also work for redundancy/inconsistency detection in the presence of a hostile KB.
The goals are similar: namely to ensure termination, to work with large amounts of data, and
to be efficient.

The Recursive Query SubQuery algorithm is essentially a depth-first set-at-a-time (as opposed
to Prolog's tuple-at-a-time) backward-chainer that does not backtrack and also uses dynamic
programming. It is guaranteed to terminate on all queries in the domain of predicate logic
where arguments are restricted to be co. stants or variables (also known as DataLog).
Potentially unsafe queries, such as greater(X, 9) which has infinite solutions, are handled in a
special manner.

DEVA uses a limited form of this algorithm that inherits the termination guarantee.
However, it will not find all redundancies and inconsistencies introduced via recursion.
Instead only those resulting from one application of the recursion will be found. In addition,
the algorithm has been modified to be also constrained by a maximum-depth bound.
Essentially the modified algorithm remembers all goals that it has been asked to prove. It
also remembers all intermediate derived relations. If an already seen goal should arise again,
the memoized results are re-used. If there are no memoized results for the already-seen goal,
then it assumes the original goal must have failed.

The overhead of the query subquery method is quite high. On especially hostile search spaces,
it may be the best solution when working in conjunction with the provability cache.

5 5.2.3 The usefulness of a provability cache

The idea behind the provability cache is to provide a means of knowing beforehand which
paths in the search-space are useless and therefore can be pruned away at runtime. Significant
performance gains will be realized if such a mechanism can be integrated into the top-down
strategies presented in ti e previous section. The worst case storage requirement of the
provability cache is O(N"), where N is the number of unique rule identifier's in the
knowledge base. This represents the ultimate in hostility among' \carch-spaces.
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In redundancy checking, inference is done over each assumption set. These assumption sets
are simply the LHSs of rules. The cache provides pruning information for each assumption
set. The provability cache is actually a collection of sub-caches. Each rule in the KB is
assigned a sub-cache, with the sub-cache's assumption set being the rule's LHS. Each
individual sub-cache, C, contains the rule identifier's of other rules which are likely to be
satisfiable whenever the assumption set is satisfiable (with the restriction that the parent rule
be excluded from all inference). Inclusion in a sub-cache does not guarantee satisfiability of
the included rule, but all rules which are derivable will be included in the sub-cache.

In addition to stating what is likely to be proven and under what circumstances, the individual
sub-caches also maintain an underestimate of how much effort is required. For example if R3
is contained in rule RI's sub-cache with an underestimated depth of 4, then that signifies that
a proof tree (exclusive of rule RI) of at least depth 4 will be required to prove rule R3
satisfiable via the assumption that rule RI's LHS is satisfiable.

Standard Artificial Intelligence textbooks point out the advantage of using underestimates
during search. If we know we are willing only to expend effort E to accomplish some task and
the underestimate is greater than E, then we can prune away that branch in the search space.
Therefore we are achieving two levels of pruning. First, no rule will be considered in a proof
unless it is in the relevant provability sub-cache. Second, no attempt will be made to prove a
rule if its underestimate is greater that the amount of allocated effort.

Computation of the provability cache is accomplished via the following:

For each rule, R, in the KB Do
Begin
- Assume that all LHS preconditions of rule R are provable via a fact lookup.
- set 'NewRules' = [R]
- set 'Depth' = I
Repeat

- Find all Rules currently not in this provability cache that contain a
LHS precondition that is satisfied
by a RHS action in 'NewRules'. These are the 'CandidateRules'.

- Set 'NewRules' = [I
- Set 'World' to be the set of static base and assumed facts UNIONED

with the set of RHS literals of rules currently in the cache provided
the included rule's inference depth is less than 'Depth'. This extra
constraint on the depth is done to guarantee correct computation of the
underestimated depth.

- For each member C of 'CandidateRules'
If C's LHS is directly satisfiable via a fact

lookup from the 'World' set
Then add C to the R's sub-cache with an

underestimated inference depth set to
'Depth'.
Also add the satisfied rule to 'NewRules'.

- Set Depth = Depth + 1.
Until No new rules are added to R's Cache

End {For Do-Loop)

We can now revisit the simple meta-interpreter by enhancing it to use a provability cache and

43



a maximum depth specifier.

% prove a goal with respect to rule ?ID's Valid Input Set.
% Limit the inference Depth to ?MaxD
bc(Goal,Id,MaxD):-

bc2( [Goal] ,Id,O, Max D).

bc2([], , ).
bc2([Goallest],Id,CurrentD,MaxD):-

fact(Goal), % This will succeed on the LHS assumption set also.
bc2(Rest,Id,CurrentD,MaxD).

bc2( [GoaliRest] ,ID ,CurrentD,MaxD):-
rhs(Goal,RuleId),
provable(ID ,Ruleld,Effort), %Attempt to Prune
Remaining is Effort + CurrentD,
Remaining=< MaxD,
rule(RuleId,LHS,RHS), % Gather LHS SubGoals
member(Goal,RHS), % Propagate Variable Bindings
NewD is CurrentD + I,
bc2(LHS,Id,NewD,MaxD),
bc2(Rest, Id,CurrentD,MaxD).

5.5.3 Implication Redundancy Checking via Residue Analysis

The residue-analysis technique was originally explored to handle the needs of the Control
Checkers (Chapter l1). Since we determined that it could also be used to provide a truly
general form of redundancy and rule-inconsistency checking we implemented an implication
redundancy checker via Residue Analysis. We briefly discuss this method and show that
redundancy and rule-inconsistency was enhanced as a byproduct of the work on the Control
Checker. (The paper "Uncovering Redundancy and Rule-Inconsistency in Knowledge Bases
via Deduction" presented at the Fifth Annual Computer Assurance Conference, IEEE
COMPASS-90, discusses these implementations in more detail.)

The truly general way to check for anomalies is to consider all possible fact-base scenarios,
and then check for anomalies. In general this is not computationally practical, and
semantically it may not make sense to consider a particular fact-base scenario. Just because
some combination of facts is a member of the universe of all fact-base scenarios does not
necessarily mean it will ever occur in practice. There are many laws of the domain, unknown
to the knowledge base, which restrict combinations of facts.

In the restricted generate-and-test approach, a finite set of likely fact-base scenarios is checked
for the occurrence of anomalies. Because the fact-base scenarios are determined by the
preconditions of rules, all derived anomalies should be taken seriously. Afterall, the
developer who wrote the rules determined that the preconditions were likely to occur
together. Due to the incompleteness of fact-base scenarios considered, many anomalies can
go undetected.

Wc have also implemented another more general approach, using proof residues, which can
detect anomalies in fact-base scenarios not considered by the restricted generate-and-test
approach. Rather than detect anomalies from specified fact-base scenarios, a residue approach
will try to derive a fact-base scenario which supports a specific anomaly. "What must be true
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of the fact-base for the specified anomaly to exist, and are these conditions likely to occur
simultaneously?"

The proof-residue of some goal is the set of conditions missing from the fact-base which are
needed before one can prove the goal. To determine all the proof residues for a goal, one
needs to generate all possible proof-trees of the goal (down to a specified depth, to ensure
termination). The leaves of the proof-tree, which must be assumed true (i.e., the residue),
constitute a fact-base scenario, and when added to the KB entails the goal. The intermediate
nodes and the root of the proof-tree are all ramifications of the assumed fact-base scenario.
It is important that the proof residues and their ramifications be consistent.

To show redundancy in the rule RI: LHS - RHS, independently (not using RI) derive a
residue proof for a RHS consequent, then check if the nodes in the reside proof tree entail all
literals in LHS. If the residue proof tree entails LHS, then the rule RI will be satisfiable
whenever the residue proof tree is.

In those cases where an entailment relationship does not exist, but for which other possible
proofs exist to independently derive the goal, a browsing capability can be used to explore the
residues.

5.6 CYCLES

Due to the declarative nature of rules comprising a knowledge base, unforeseen patterns of
interaction between the rules may arise during run-time. One such pattern is a cycle. In a
forward chaining system, each of the actions on the RHS of a rule may cause a condition on
the LHS of another rule to be satisfied. Each one of these potential rhsTOlhs connections is
captured in the connection graph model of the rule base. A cycle exists when a RHS action in
Rule RI directly or indirectly causes satisfaction of a LHS condition in Rule RI. In onc case,
such as a model of a feedback system, this may be exactly what is desired. In another case,
the interaction pattern may be unwanted and dangerous (i.e., preventing termination). In
either case, the detection of the cycle will prove useful to the knowledge engineer. In the first
case, the message will re-affirm the knowledge engineer's intentions. In the second case, a
dangerous interaction will have been unearthed.

Cycle-detection is an intuitively easy concept to grasp, but a difficult goal to accomplish
efficiently while remaining complete. The obvious solution to generating potential cycles is as
follows:

For every Rule ri in the rule-base Do
enumerate all paths from Ri to Ri using the cached rhsTOlhs connections in the
connection graph

This extremely inefficient algorithm also suffers from the defect that it will report the same
potential cycle N times, where N is the length of the cycle in question. The candidate cycles
detected will not visit an intermediate rule more than once. For example, the cycle a to b to
c to b to a would not be generated, since it visits rule b twice. Instead we would detect a to b
to a and b to c to b.

5.6.1 Efficient Non-Redundant Cycle-Detection

Cycle detection is a two step process. The first step is the on-the-fly generation of a safe and
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efficient connection graph. Safety is achieved by finding a set of edges all of whose removal
would make the graph acyclic. These cycle-producing edges will be referred to as ancestor
edges. For each detected ancestor edge, at least one unique cycle exists that uses that edge.
The efficiency is gained by labeling the edges in a way that prevents redundant detections of
the same cycle. The product of this first-step is a depth-first spanning forest representation of
the connection graph. Once this has been created, the cycles can be extracted in a very
efficient manner.

5.6.1.1 Creation of the depth-first spanning forest

The algorithm to create the depth-first spanning forest is an extended version of a simpler
algorithm found in Aho, Hopcroft, and Ullman's The Design and Analysis of Computer
Algorithm s.

Input: A graph G = (V,E) represented by adjacency lists L[v].
- V is the set of rules.
- E is a set of rhsTOlhs connections.

L[v] will be the set of rules S such that an rhsTOlhs connection
exists from v to s, where v element of V and s
element of S.

Output: A set of Trees that comprise the spanning forest.
The edges in each tree will be partitioned into:
- T, a set of tree edges. All vertices contained in the set T are considered

"owned" by the Tree.
- Seen, a set of edges that lead to vertices which had been previously encountered

along some other path. Note that the edge might lead
to a node owned by a different tree.

- Ancestors, a set of edges such that if all where removed the connection graph
would be acyclic.

Complexity: Order O(E) Time complexity, where E is the number of edges

PROCEDURE df-spanningforest:
begin

FOR all v in V Do mark v "unseen";
WHILE there exists a vertex v in V marked "unseen" DO
begin

Create new tree Ti with v as the root;
Path = path created by adding v to the empty path;
d f edgelabeling(v, Path,Ti);

end
end
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PROCEDURE dfedgelabeling(v,CurrentPath,Tree):
begin

mark v "seen"
Indicate that v is "owned" by Tree
FOR each vertex w on L[v] DO

IF w is marked "unseen" THEN
begin

add (v,w) to T, the set of tree-edges in Tree
NewPath = path created by adding w to CurrentPath;
d f_edgelabeling(w,NewPath,Tree);

end
ELSE

begin
IF w exists in CurrentPath THEN

add (v,w) to Tree's Ancestors set;
add (v,w) to Tree's Seen set;

end
end

5.6.1.2 Using the spanning forest to enumerate the cycles

Once the forest is created, cycle-checking proceeds quickly and smoothly. Each tree in the
spanning forest is searched in a depth-first manner to enumerate the cycles. When performing
the depth-first search of each tree in the forest, the current path is maintained for the
purpose of extracting the cycles.

An interesting property of cycles allows a good deal of pruning.

Theorem:
Vertices within a cycle (where each intermediate vertex appears once) will
be "owned" by the same spanning-tree. This is true by the behavior of
depth-first behavior of the procedure df-edge-labeling.

Imagine we are searching tree Ti and we encounter the edge (v,w). If w is "owned" by another
tree Tj, then we know that we can prune away the subtree rooted at vertex w. This is because
the edge leads to a vertex in a different spanning tree.

PROCEDURE allcycles:
FOR each tree Ti in the Spanning Forest DO

begin
v = root(Ti);
Path = path created by adding v to the empty path;
cycle detect(v,Path,Tree);

end
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/* Searches all edges */
PROCEDURE cycledetect(v,Cu rrentPath,Tree):

begin
FOR each vertex w on L[v] DO

IF (v,w) is an Ancestor edge in Tree THEN
Try to extract a cycle from CurrentPath;

ELSE IF (v,w) is a Tree edge in Tree THEN
begin

NewPath = path created by adding w to CurrentPath;
cycle detect(w,NewPath ,Tree);

end
ELSE IF w is "owned" by Tree THEN

begin
NewPath = path created by adding w to CurrentPath;
cycle detect2(w,NewPath,Tree);

end
end

/* Only search Seen and Ancestor edges */
PROCEDURE cycledetect2(v, CurrentPath,Tree):

begin
FOR each vertex w on L[vi DO

IF (v,w) is an Ancestor edge in Tree THEN
Try to extract a cycle from CurrentPath;

ELSE IF (v,w) is a Seen edge in Tree) AND
w is "owned" by Tree THEN

begin
NewPath = path created by adding w to CurrentPath;
cycle detect2(w,NewPath,Tree);

end
end

When expanding out of a node that was reached via a tree Edge, all edges from the node will
be searched. When expanding out of a node reached via a Seen edge, only the already-seen
edges and ancestor edges from the node will be searched. It is this activity which prevents
the generation of duplicate cycles.

Note that it is unnecessary to check for cycles at each step in the depth-first traversal. We
know which edges are ancestor edges. Furthermore, we know that each cycle in the graph
uses one of our ancestor edges. Thus checking for cycles need only occur after we have
traversed an ancestor edge.

5.6.2 Possible Future Enhancements

This algorithm discovers minimal cycles which do not visit an intermediate node twice. The
algorithm will be enhanced to report patterns of interactions between minimal cycles. For
instance if we have detected minimal cycles (a-b-a) and (c-a-c), we can report that the two
simple cycles have the capability of interacting and thereby creating a larger cycle. This can be
done by detecting an intersection condition between the discovered minimal cycles.

A KB could potentially contain many cycles. To avoid overwhelming the user with cycle
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warnings the above algorithm permits the user to group cycles according to whether they use
the same ancestor edge or whether they involve a specific rule.

An addition to the Structure Checker's cycle detection was developed under the Control
Checker task, and is discussed in section 11.6 Enhanced Cycle Checker.

5.6.3 Efficiency Gains

The algorithm discussed in the previous section is a significant improvement over the original
version in the cycle-checker. The overhead of translating the connection graph into a non-
persistent (i.e., not cached) depth-first spanning forest is definitely worth the effort, even
though the process takes up most of the time required to run the cycle-checker. On small test
KBs (i.c., 50 rules), the new algorithm is at least as fast as the original version. On larger test
KBs, the new algorithm is the clear winner. It is difficult and useless to try to quantify how
much better the new algorithm is based on one sample run, since the results are highly
dependent on the characteristics of the KB (size, branching factor). To get a rough idea, on a
KB of 400 rules the new algorithm took 8 seconds versus 32 seconds for the original version
cycle-checker. On a KB with different characteristics, the improvement could be more
dram atic.

Close examination of the above algorithms reveals them to be side-effect and data-structure
driven. These algorithms do not fit neatly into the standard Prolog pattern-matching
paradigm. One simple solution would be to perform all the side-effects by asserting and
retracting to the database. In general this is an expensive and theoretically unclean technique.
Studies by Richard O'Keefe from Quintus Computer Systems proved that side-effect driven
algorithms can usually be implemented more efficiently without resorting to using the
database as a scratchpad. Rather than use the underlying Prolog database, the depth-first
spanning forest was implemented as a 5+ 5 tree. (An N+ K tree is a tree constructed of
nodes that contain N data elements and K child pointer.) This permits access logarithmic (to
the base 5) of the size of KB when retrieving the adjacency list of some rule.

5.7 IRRELEVANT CONDITIONS

A rule establishes a relationship between conditions in the LHS and conclusions in the RHS
of the rule. That is, the rule specifies the dependency of the conclusions on the conditions.
However, since the rule may not be exact, it may contain unnecessary or irrelevant
conditions. A condition may specify a slot value. One way to tell if a slot value has any effect
on a conclusion is to test if the same conclusion can be derived regardless what the slot value
is. For example, consider the following two rules:

(RULEI
(IF (IN.CLASS ?CAR CARS)

(NOT (OWN.VALUE ENGINE ?CAR CRANKING))
(OWN.VALUE GAS.TANK ?CAR EMPTY)

THEN
(OWN.VALUE BATTERY ?CAR DEAD)))
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(RULE2
(IF (IN.CLASS ?CAR CARS)

(NOT (OWN.VALUE ENGINE ?CAR CRANKING))
(NOT (OWN.VALUE GAS.TANK ?CAR EMPTY))

THEN
(OWN.VALUE BATTERY ?CAR DEAD)))

Clearly, the condition on whether the gas tank is empty or not has nothing to do with the
conclusion that the battery is dead.

To check the existence of irrelevant conditions, we use the following algorithm:

a) Consider all rules in a KB one by one. Let R be a rule chosen from the KB.

b) If R does not contain negative literal, go to Step (a) to choose another rule. Otherwise,
focus on a negative literal L in R.

c) Obtain R' from R by deleting the negation sign from L. If R' is directly subsumed by a
rule T in the KB, then rules R and T contain the irrelevant conditions L and (NOT L).

We use the above example to illustrate the algorithm. RULE2 contains two negative literals.
Let us first consider (NOT (OWN.VALUE ENGINE ?CAR CRANKING)). We obtain
RULE2" from RULE2 by deleting the negation sign:

(RULE2'
(IF (IN.CLASS ?CAR CARS)

(OWN.VALUE ENGINE ?CAR CRANKING)
(NOT (OWN.VALUE GAS.TANK ?CAR EMPTY))

THEN
(OWN.VALUE BATTI RY ?CAR DEAD)))

Since RULE2' is not directly subsumed by RULEI, we do not find an irrelevant condition
yet. However, if we consider the negative literal (NOT (OWN.VALUE GAS.TANK ?CAR
EMPTY)), then we obtain the following RULE2" from RULE2 by deleting the negation sign
from (NOT (OWN.VALUE GAS.TANK ?CAR EMPTY)):

(RULE2"
(IF (IN.CLASS ?CAR CARS)

(NOT (OWN.VALUE ENGINE ?CAR CRANKING))
(OWN.VALUE GAS.TANK ?CAR EMPTY)

THEN
(OWN.VALUE BATTERY ?CAR DEAD)))

Clearly, RULE2" is directly subsumed by RULEI. Therefore, we detect the irrelevant
conditions (OWN.VALUE GAS.TANK ?CAR EMPTY) in RULE2 and (NOT
(OWN.VALUE GAS.TANK ?CAR EMPTY)) in RULEl.
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CHAPTER 6

LOGIC CHECKER

6.1 RULE-INCONSISTENCY DETECTION

All of the material discussed in 4.5.2 Implication Redundancy Checking via a Restricted Approach
is related to the material in this section, and we recommend reading the implication
redundancy section first in order to better understand rule-inconsistency.

As a result of the research into rule-inconsistency detection, it became obvious that a better
solution existed for the redundancy module of the Structure Checker. The fruit of this
research is now shared by both the inconsistency and redundancy modules.

The problem of rule-inconsistency detection is to check whether contradictory
actions/conclusions can be derived as a result of the satisfaction of one of the rules in the
knowledge base. This is a limited, but useful form, of syntactic inconsistency checking.

Like redundancy, each LHS of a rule in the knowledge base is used to determine a valid
assumption set. Specifically those members of a LHS which do not have a direct proof via a
fact lookup in the extensional fact base are assumed true. Unlike redundancy, rule-
inconsistency detection does not require the skolemization of the input assumption set. This
allows the variables in the input assumption set to be constrained by bindings. This is why wc
exclude from consideration all LHS literals which already have a proof via fact lookup.
Finally, unlike redundancy detection there is no constraint forcing exclusion of the parent
rule from the inference. Skolemization was used during redundancy checking to guarantee
generality, but the rule-inconsistency check allows instances of incompatibilities to be
reported.

The default incompatibilities are:

1) co-existence of a proof of the presence and absence of a literal

2) co-existence of a proof of the presence of a literal and the presence of its explicit negation

3) user-created semantic constraint rules whose RHS assert an incompatibility warning. For
example:

constl: sex(? Person,m ale),sex(? Person, fem ale) -4 (incompatible)

% Resultant Prolog Programs

1) %default incompatibility - explicit negation
incompatible:- not(Goal),

call(Goal).

2) %default incompatibility - negation by failure
incompatible:- cantfind(Goal),

call(Goal).
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3) %user-defined incompatibility
incompatible:- sex(Person,male),

sex(Person,fem ale).

Definition:
E = The set of static facts, i.e. the extensional database
I = The set of rules in the knowledge base
K= EuI
R = The rule being checked for rule-inconsistency.
V = All members of rule R's LHS which don't already have a proof via E
A = All potential incompatibilities.
A2 = Potential inconsistencies directly involving a member of rule R's RHS.

6.1.1 Revisiting the Provability Cache

If the provability cache is absent, rule-inconsistency exists if V u K -ntails a2, such that a2 is
a member of A2. If the provability cache is present, rule-inconsistency exists if V u K entails
a, such that a is a member of A. So the rule-inconsistency checker will attempt more work
when the provability cache is constructed.

Consider the following example:

r61: A , B --* add( not(C) )
r62: A -4 add( D )
r63: D, B - add( C)

Since the valid input set {A,B} UNIONED with the rule-set {r61,r62,r63) entails proof of
both add(C) and add( not(C) ), a potential rule-inconsistency exists.

Also consider the rules:

r72: A -- B,D
r73: B- C
r74: D -- not(C)

Satisfaction of rule r72 causes the incompatibility (C,not(C)), neither of which are on the
RHS of rule r72. When the provability cache is present, it will be searched for conflicting
literals, and a proof of the rule inconsistency will be attempted. The cache is therefore very
useful, and it works well in conjunction with the backward-chaining approach. Not only does
the cache provide pruning, but it also provides guidance in determining which
incompatibilities to check.

To reiterate, the provability cache is a collection of sub-caches. A sub-cache is associated with
each rule's LHS. As originally described, the parent rule was not allowed to participate in the
inference process during creation of the sub-cache. This is too restrictive for our notion of
rule-inconsistency checking, since the parent rule is allowed. Therefore, each sub-cache needs
to be segmented into a lhs-sub-cache and rhs-sub-cache. The lhs-sub-cache would apply
when checking Redundancy. The rhs-sub-cache contains the extra candidates that are likely to
be satisfiable when the RHS of the parent rule is also allowed to be used in the inference.
When checking rule-inconsistency, both the lhs and rhs sub-caches arc used.
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6.2 CONFLICT DETECTION

Conflict detection is the simple matter of attempting to prove from existing facts and the
rules an instance of any known incompatibility. Unlike the rule-inconsistency checker, there
are no assumption sets in this process.

The circuit domain KB (which is one of the example files in the test case file, see the Software
Test Description for the DARPA Expert System Validation Associate, Appendix A.) includes an
exampl, of conflict. The example is built on top of a KB which correctly models AND and
XOR gates. In this scenario, we have the results of an AND gate and an XOR gate being fed
incorrectly via two connections to the same port of another AND gate. In the face of
specified input values, port IN2 of gate AND2 will have both the value 0 and the value 1.
The circuit KB also contains a rule indicating that it is incompatible for a port on an AND
gate to have both a 0 and 1 value at the same time.

Conflict Example:
incompatl: and(? Port,?Gate, l),and(?Port,? G ate,O) --

text(incompatible).
xor2_to andl: xor(xor2,out,? Value)

add( an d(and l,in2,? Value)).
and2 to andl: and(and2,out,? Value) -

add( and(and l,in2,? Value)).

% Seed facts to cause a conflict.
% XOR2 will produce a 0.
% AND2 will produce a 1.

xor(xor2,in 1,1).
xor(xor2,in2, 1).
and(and2,in 1, 1).
and(and2,in2, 1).

6.2.1 Handling Negation by Failure during Conflict Checking

During redundancy checking, provability of cantfind(?Literal) could only be achieved via an
explicit proof that ?Literal had been deleted. If a redundancy was proven to exist, the claim
would be that the redundancy would still exist regardless of the inclusion of new information.

On the other hand, the point of conflict checking is to determine incompatibilities resulting
from the present state of the knowledge base; therefore, it makes sense to simulate the
negation-by-failure operator (cantfind) during conflict checking. For example, the following
should be an example of conflict assuming there does not exist a way to prove C.

Conflict Example using Negation by Failure:
% Rules

r81: A -- B
r82: D, cantfind(C) -- not B

% Facts
A
D
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6.3 NUMERICAL COMPLETENESS CHECKER

The numerical completeness checker module, originally a part ii Lhe logic checker, is
described under the Omission Checker (see section 9.4.1 Numerical Completeness Chec-- r.
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CHAPTER 7

EXTENDED STRUCTURE AND LOGIC CHECKERS

7.1 EXTENDED MODE VERSIONS

The extended versions of the Structure and Logic Checkers can be seen as a way for these
checkers to correctly handle some of the more obvious aspects of frames and class inheritance
(the isa meta-relation), as well as an extended form of unification (rewriting) expressed by
synonyms for slots (hereafter referred to as the meta-relation synonym), and subrelationship
between slots (hereafter referred to as the meta-relation isa rel, or subrelation). Synonym can
be useful for finding problems which can result from merging class definitions in separate
KB's. The isa rel meta-relation can be useful for modeling class inheritance when slots refer
to instances of classes.

The extended versions of the various checkers can be used by first switching the mode in
which DEVA operates from regular mode to extended mode (see Circular Buttons under
section 3.2.2 Options Window). Since the extended versions of these checkers were
implemented by changing the way these checkers access rule KB data, switching between
modes is really just a switch in access methods. All of the abilities of the Structure and Logic
Checkers in regular mode are found in the extended mode. When DEVA is in extended
mode, the extended version of unification is available to all the checkers. When in regular
mode, only classical unification without respect to the meta-relations (isa, synonym, and
isa_rel) is used.

Using the synonym and isa rel meta-relations requires consistent methods for applying
synonym rules on flat structure checkers. Here flat means those checkers which do not
emulate inferencing to perform their respective checks, but instead rely on diret matching
(actually unification, which is more general) to obtain their efficiency. A reference to an
indirect checker means that this checker emulates inferencing to arrive at its results. An
example of a flat checker is direct subsumption or deadend, while an example of a non-flat
checker is implication redundancy (also referred to as indirect subsumption).

7.2 EXTENDED MODE CONVENTIONS

The synonym meta-relation applies to frame slot names only and not to class names.
Synonymy between any two slots means that they can be treated as equivalent during any
unification that occurs in the flat or indirect checkers. Synonymy as applied to classes would
involve checking both classes to make certain they have a common inheritance from the
superclasses above them, and the same structure (slot names, number of slots, facets, etc.).
The synonymy relation permits and facilitates the validation of two or more merged KBs or
parts of a KB. It requires, however, that the underlying shell support the declaration of
synonymy. This is currently not the case in KEE.

The isa rel meta-relation, like synonym, applies only to frame slots, but unlike '.ynonym, it is
not bidirectional. For instance, if murderer of is a subrelation (sub-slot) of killer-of, then the
values for murderer_of slot are valid for the killer_of slot, but the values of killerof are not

necessarily valid for the murderer-of slot. To see why the relation does not hold in this
example, a person's killer may have done it unintentionally, and thus would not qualify as a
murderer. This module checks the KEE fact base for isa rel relationships. Checking the
KEE rule base requires that the isa rel has also been defined in KEE using rules similar to
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DEVA's isa rel rules.

The isa meta-relation applies to classes and instances (members) of classes only. This is
consistent with the traditional interpretation of isa, where KEE superclass information is held
in the isa meta-relation. Direct class inheritance is obtained through the transitive evaluation
of DEVA's isal2. isa between classes, isa(CJ,C2), means that class C1 is a subclass of C2
and not vice-versa.

Of course, the meta-relation for isa between classes (classical inheritance) does not require
additional KEE rules to give KEE the properties of class inheritance, since inheritance is an
integral part of the KEE inference engine. Isa applied to classes and tests for membership in
a class are properties that arise from KEE's class representation.

7.2.1 The Difference Between Classes and Slots

It is helpful to examine DEVA's representation of KEE's classes (frames) and class slots in
order to understand the output produced by DEVA and the difference between isa applied to
classes and isa-ret applied between slots within a class.

There are some assumptions about DEVA's class representation ,nat are necessary for the
correct operation of the structure and logic checkers in extended mode. Synonym and isa rel
rules must deal exclusively with class slots, while isal2 must operate exclusively on the
arguments of memberof/2 and isa/2 literals appearing in KB rules (the arguments for these
literals are always class names and class instances).

To see what this means, assume we have the meta relation between two classes,
isa(boy,human), a meta-relation between two slots, synonym(son,boy), and a class father with
slot boy (don't confuse this with the class boy), indicating the father's boy, which would have
as values the identifiers of instances of the class boy, e.g., boyl, boy2, etc. To summarize:

< < KEE FRAME> >
UNIT: fatherl
MEMBER OF: father
OWN SLOT: boy
VALUES: boyl

< < DEVA FACTS> >
m em ber_o f(father 1,father)
boy(fatherl,boyl).

< < KEE FRAME> >
UNIT: boyl
MEMBER OF: boy
OWN SLOT: name
VALUES: bill
SUPERCLASSES: human

< < DEVA FACTS> >
mcmberof(boyl,boy)
nam c(boyl ,bill).
isa(boy,human).
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< < KEE RULE> >
(RULE lineage

(IF (IN.CLASS ?X boy)
(IN.CLASS ?Y father)
(THE boy of ?Y is ?X)

THEN (THE parent of ?X is ?Y)))

< < DEVA RULE> >
rule(lineage,

[memberof(X,boy),
member of(Y,father),
boy(Y,X)],

[add(parent(X,Y))].

There exist two alternatives for representing class membership with a
DEVA literal.

I) boy(X)
2) memberof(X,boy)

In the first case, we may say that the class name appears as the functor (literal name), and in
the second case, the class name appears as an argument (occurring inside the literal). As we
can see in the example above, DEVA uses the second representation, namely member_ofl2.

What happens when we adopt the first representation boy(X)? It would be difficult to
distinguish between slots and classes because slots are represented in the form:
slotname(Object, Value), e.g. boy(fatherl,boyl). The functor of an arbitrary literal in a DEVA
rule could be referring to a slot name, or to a class name, as shown above. By applying the
isa rel meta-relation to an arbitrary literal functor, we might be applying it to a slot name or a
class. When we try to apply isa/2 to an arbitrary literal, we could be applying it to a class or to
a slot.

What are the consequences if we uniformly adopt the second representation which is of the
form: memberof(X,boy) (as DEVA indeed does)? If we have again chosen to represent slots
in frames as slot name(Instance,Value), the second class representation is consistent with this
slot representation. The isa meta-relation can always be applied to the first argument of an
arbitrary literal, which can be a class name or the name of an instance of that class (member)
or a variable. Likewise, synonym can always be applied to an arbitrary literal's functor,
because there is no clash with class names.

So the second representation of classes memberof(boy,X) is preferable to the first boy(X)
because we avoid applying isa to slot names and synonym to classes. No clashing between class
names and slot names will occur.

As a consequence of this representation, the first argument of any frame slot in DEVA is
expected to be a class instance.

As can be seen in the above example, the name boy can refer to a class name or a slot name.
The KB developer has decided that the values of the boy slot are indeed instances of the boy
class. To model the inheritance of isa(boy,human), the KB developer would use isarel/2 to
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specify isarel(boy(X, Val),human(XVal)), meaning that this same directional relationship
applies to slots of the with the names boy and human, because their values are indeed
instances of the boy and human classes.

7.2.2 Meta-relation Rule Form

Synonym and isa rel constraints are defined by the developer using the Semantics Checker
constraint-rule forms for Synonymy and Subrelation respectively. The developer defines
these rules as members of a special DEVA constraint KB described in section 8.1. The
format of these constraint rules is more restricted than for "normal" KEE application rules.
These restrictions help to identify them as semantic constraint rules, as opposed to other
rules, and make explicit the fact that no actual inferencing occurs with respect to application
rules in a regular KB and these special semantic constraint rules.

The exact syntax of these two types of semantic constraint rules will be described in more

detail in section 8.0, on the Semantics Checker.

7.2.3 Facts and Extended Mode

In DEVA, facts present in the KB are really just solitary RHS literals rules whose LHS is
always trivially true; therefore, the rewriting implied by synonym and isa rel must apply to
facts as well. So if synonym(urgency(Instance,Value), immediacy(Instance,1Value)) exists, and
there also exists a fact urgency(bill,great) in the fact base, then there also exists, virtually, a
fact immediacy(bill,great).

The isa meta-relation between classes must also be applied to any facts which have classes or
class names as their arguments. For the correct operation of the various checkers in
extended mode, the checkers expect the following two bodies of facts to exist. The first type
of fact is:

memberof(< instance> ,< class> ),

and the other is:

isa(< subclass> ,< superclass> ).

These facts represent the state of the KEE KB inheritance, and will satisfy literals of the same
name that may appear in KB rules.

The member_ofI2 fact is sent from the KEE environment as a message and then asserted to
the DEVA environment every time a new instance of a class is created or loaded.

The isa/2 fact is sent from the KEE environment as a message and then asserted to the
DEVA environment every time a new KEE class is declared as a subclass of another, or when
the declaration is initially loaded (along with the KEE KB).

The isa/2 fact is evaluated transitively, as would be expected. If the following isa facts are
sent from KEE:

isa(child,person)
isa(toddler,child)
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then a DEVA rule:

rule(rule_1,[isa(X,person),....,[...])

with the isa antecedent literal would be satisfied with

isa(child,person) and isa( toddler,person).

The member_of/2 fact is evaluated transitively with respect to any isa facts as well. Using the
above isa facts, and the additional:

m em ber of(billy,child)

any rule precondition memberof(X,person) would be satisfied by memberoftbillyperson) even
though member_of(billyperson) does not explicitly exist. This makes sense when one
considers that a child bill can have the properties of a person as well as those of a child
(possess the same member slots as a person), through class inheritance.

7.3 THE IMPLICATIONS OF USING EXTENDED MODE

The effect of using extended mode upon the various structure and logic checkers arises from
the extended unification available. Assume that these meta-relations hold in the following
examples:

isa(patient,person)
isarel(boy(I,C),human(I,C))
synonym (urgency(X,Val),im mediacy(X,Val)
synonym (urgency(X,Val),necessity(X, Val)

The dead-end checker can actually report fewer dead-ends under extended mode than in
regular mode. This is because a synonym or isa rel can apply between what was formerly a
dead-end literal and another literal on the RHS of another rule. Checks for membership
within a class (using member_ofl2) and queries abcut class inheritance (using isa/2 as a literal
in KB rules) can be satisfied by the transitive evaluation of isa between classes, and thus will
not appear as dead-ends.

The unreachability checker under extended mode can present the user with fewer examples
of unreachable literals in the RHS of rules because there may exist an LHS literal which calls
upon the RHS literal examined when the extended unification is taken into account.

More examples of subsumption (direct pairwise and indirect) are possible in extended mode,
while less examples of ambiguity between two rules result since rewriting between slots may
qualify the pair of rules being inspected in the ambiguity checker as having a subsuming
relationship instead. The following rule r] would be ambiguous with r2 in regular mode, but
would subsume r2 in extended mode:

ri: member..of(X,patient), near._death(X,true) - add(immediacy(X,great))
r2: memberof(X,patient), neardeath(X,true) -- add(urgency(X,great))

With respect to isa between classes, rules of the form r3 could subsume those in form r4 only

59



in extended mode:

r3: memberof(X,person),A -* B
r4: memberof(X,patient),A -- B

If isa(patient,person) then rules similar to r3 which deal with persons are more general than
rules r4 that deal with patients.

The possible cycles reported by the cycle checker increase when in extended mode. The
following rule shows a direct cycle which would appear in extended mode but not regular
mode if synonym(immediacy(X,Y),necessity(X,Y) is true:

r5: member-of(X,patient), immediacy(X,great) -- add(necessity(X,great)).

There are more cases of irrelevancy (direct and indirect), conflict, and inconsistency in the
respective checkers because of the many possible rewrites allowed in extended mode.

Whenever rewrites can be practically expressed to justify the existence of a condition which
the various checkers look for, an associated justification, or trace, of the rewriting is
displayed. It is impractical to show such a justification for the unreachability and dead-end
checkers, since there may exist a myriad number of justifications explaining why a literal is
unreachable or a dead-end.

7.4 IMPLEMENTATION METHODS

The evaluation of the synonym meta-relation is done in two steps. When the synonym is
added to the DEVA environment, a synonym set is computed. Then during run-time
checking, a two-level expression of the synonym set is used to obtain an efficient rewriting
between slots.

This synonym set consists of all slots which have been determined to be equivalent. The
equivalency is determined transitively and reflexively. So if the slot father is synonymous
with the slot padre in one synonym rule, padre is synonymous with dad in another, and father
is synonymous with poppa, the synonym set is ffather,padre,dad,poppa}. The father and dad
slots are synonyms even though this is not explicitly stated in any synonym rule. This limited
form of preprocessing saves time when compared to determining the mapping of a slot to all
other synonymous sets during run-time checks for synonymy.

The construction of synonym sets is done by first collecting all the distinct slot nodes
mentioned in any synonym rules. Then each of the nodes is examined. If the node is
already part of a synonym set, the algorithm goes on to the next node. If it is not included,
the bidirectional graph of synonym relations are searched in a breadth-first fashion. Circular,
non-ending paths expressed by the synonym rules are avoided by maintaining a list of visited
nodes during the search. When a node has been previously visited, the search tries another
alternative. So this search which determines the synonym set is guaranteed to terminate.

The computation of synonym sets from KEE synonym rules before using them in the
checkers serves to flatten any search for synonyms into a two-level mapping. This is an
obvious efficiency gain over a search which could be N-1 levels deep in the worse case, where
N is the number of synonym rules present in the system.
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The data structure used to represent synonyms is not a simple list. For each set, a unique
literal is generated which respects the bindings of the slots in the set, i.e. it respects the class
instances and slot values referred to in the synonym rules. Then this unique literal, appearing
nowhere else in the entire KB, is used to map each of the components of the synonym set to
all other members in the set, including itself (since a slot in the set is trivially a synonym with
itself). The data structure which maps a slot down to the unique literal is
synfanin(Slot,UniqueSlot). The data structure which maps the unique literal back out to all
the slots in the same set is syn_fan out(Unique_Slot, Slot). One can imagine the data structures
working together graphically as an hour-glass shape, with the narrowing at the center by the
unique literal.

There exists another meta-relation which maps a slot to another transitively, but not
reflexively (i.e. in one direction only). This is the isa rel meta-relation. When an isa rel
meta-relation is added to the DEVA environment, it is evaluated in two steps.

The first step rectifies the isa rel meta-relations with any synonym meta-relations. Since
synonymy between slots and is-a_rel both deal with slots, there are times when a synonym
rewrite can apply to one or more of the slots involved in an isa rel meta-relation. If one
considers the isa rel meta-relation as a directed relation, then a collection of chained isa rel
meta-relations can be viewed as a directed graph, a tree with the slot names as nodes and the
isa rel relation as arcs. If synonym rewrites apply to some of the nodes, the tree can become
quite 'bushy' with many subtrees being added at these nodes.

The important thing to note is that all of these subtrees being added are exactly the same as
their sibling subtrees. For this reason, the isa rel facts are examined to find the synonym
nodes. These nodes are replaced with the unique literal which represents the synonym sets
evaluated previously, collapsing the redundant subtrees into one equivalent subtree and
lessening the time it takes to search the tree during run-time checking.

The recursive search of isa rel facts during run-time never returns one of these unique
literals as its result. When tfhese unique leaf nodes are reached, the unique literal is mapped
back out to all of the elements of the synonym set it represents.

Finally, when an isa rel meta-relation is added to DEVA, all the isa rel facts in the DEVA
environment are searched as though they were the starting point of a tree, to make certain
that the graph(s) thus represented are indeed acyclical. This must be done because a
recursive evaluation is done in run-time checkers, and cycles would introduce infinite
recursion. Any cycles that appear with the addition of isa rel meta-relations are displayed via
the DEVA interface, and a flag is set which turns off the evaluation of the isa rel meta-
relation in the run-time checkers. Any checking will occur without the benefit of isa rel
mappings until the cycles are removed by the user.
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CHAPTER 8

SEMANTICS CHECKER

8.1 SEMANTIC CONSTRAINTS RULE FORMAT

A Semantic Constraints KB is created by the KEE translator automatically whenever an
application KB is created, or loaded (see section 4.1). The KB-constraint contains DEVA
information, i.e., semantic or metainformation, in the form of KEE rules about the
application KB. We selected the KEE syntax for these constraint rules to permit the developer
to make DEVA statements without having to learn a new language.

Constraint rules may be one of two forms depending on the type of constraint, success driven
or failure driven. While both types of rules have a LHS and a RHS. the LHS's and RHS's
are used differently.

8.1.1 Success Driven Constraint Rules

Success driven constraint rules are rules where the LHS of the rule is used to define the
context to which the constraint applies, and the RHS defines the constraint. As an example
take the rule SCI, which states that if someone is the father of a child, then they must be
members of the same class, the father must be male, and the father must also be the parent
of the child. (To facilitate the discussion of some points, we have commented each
potentially relevant line with ;n.m, where n is the rule number and m, the line number.)

(SC I
(IF (THE FATHER OF ?CHILD IS ?DAD) ;1.1
THEN

(THE SEX OF ?DAD IS MALE) ;1.2
(?CHILD IS IN ?SPECIES) ;1.3
(?DAD IS IN ?SPECIES) ;1.4
(THE PARENT OF ?CHILD IS ?DAD))) ;1.5

The more general the LHS, the more situations exist where the constraint may be applied.
Only when the LHS conditions are satisfied, do the RHS constraints apply. Alternatively the
rule SCI could have been written as rule SC2, which states that if someone is the father of a
child, and they are members of the same class, then the father must be male, and the parent
of the child.

(SC2
(IF (THE FATHER OF ?CHILD IS ?DAD) ;2.1

(?DAD IS IN ?SPECIES) ;2.2
(?CHILD IS IN ?SPECIES) ;2.3

THEN
(THE SEX OF ?DAD IS MALE) ;2.4
(THE PARENT OF ?CHILD IS ?DAD))) ;2.5

These two rules differ in the conditions under which the constraint applies and in the
constraint itself. Take the example of fatherof(fluffyfido) where member of(fluffv,.cat) and
member__oftfido,dog). The rule SCI, would generate a warning message that the father of fluffy
the cat is a dog, thus violating the class membership constraints (RHS lines 1.3, 1.4). The
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rule SC2 would generate no warning because the LHS would not be satisfied. The conditions
dealing with class membership (LHS lines 2.2, 2.3) do not apply to fatherof(fluffyjido).

Examples of success driven constraints are min-max-set, inverse, subrelation, value set and
valuerange. All of these semantic constraints are described in detail later in this section.

8.1.2 Failure driven constraint rules

Failure driven constraint rules are rules where the LHS of the rule is used to define a context
in which a constraint has been violated, and the RHS names the type of constraint. As an
example take the rule SC3, which states that if someone is a member of the class person and
their gender is known to be both male and female, then this is incompatible.

(SC3
(IF (?X IS IN PERSON) ;3.1

(THE GENDER OF ?X IS MALE) ;3.2
(THE GENDER OF ?X IS FEMALE) ;3.3

THEN
(INCOMPATIBLE))) ;3.4

Failure driven constraints work by attempting to prove the goal on the RHS (line 3.4), based
on the current state of the knowledge base.

Examples of failure driven constraints are incompatible, subrelation, and interstateintegrity.

8.2 INVERSE CHECKER

The Inverse Checker, using the semantic constraints which define the inverse property of
relations, notifies the developer when these constraints have been violated based on the
current state of the fact base.

Rule SC4 is an example of an inverse constraint that states that the relations father and has-
father are are inverses of one another.

(SC4
(IF (THE FATHER OF ?X IS ?Y) ;4.1
THEN

(INVERSE (FATHER ?X ?Y) (HAS-FATHER ?Y ?X)))) ;4.2

The Inverse Checker works by finding all facts in the KB that satisfy the LHS of rule SC4.
When a LHS matches, the checker attempts to prove the corresponding RHS subgoal, in this
case (has-father ?Y ?X). If the subgoal fails, a warning message is issued to the user.

8.2.1 Inverse Relation Rule Format

As mentioned above, the LHS defines the condition for which the constraint applies, and the
RHS defines the constraint. The LHS is in Tell and Ask format, just like any other KEE rule.
The RHS literal establishes the inverse property of the two slots. The format is

(inverse (slotl Varl Var2) (slot2 Var2 Varl))
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where slot] is the inverse of slot2. Notice that the arguments (Varl and Var2) appear in
opposite order for the two slots. At this time, Lisp expressions are not allowed in an inverse
constraint rule. If a Lisp expression is used, the Inverse module naively assumes that the
evaluation of the expression fails.

Note that while in KEE introducing a variable in the RHS of a rule, as in line 4.2 of rule SC4,
generates an error message; DEVA constraints allows this.

8.3 SUBRELATION CHECKER

The Subrelation Checker takes the semantic constraints defining the relation hierarchy in
particular domain and notifies the developer when these constraints have been violated based
on the current state of the fact KB. The subrelation constraints (i.e., isarel) also play an
important role in the Extended Mode Checkers, see section 7.1.

Rule SC5 is an example of a subrelation constraint that states the relation father-of is a
subrelation of parent-of. In other words, if Harry is the father of Sue, then it is the more
general case that Harry is also the parent of Sue. The rule also places certain data type
constraints on the arguments to the relations.

(SC5
(IF (THE FATHER OF ?X IS ?Y) ;5.1
THEN

(THE SEX OF ?X IS MALE) ;5.2
(?X IS IN ?Z) ;5.3
(?Y IS IN ?Z) ;5.4
(SUBRELATION (FATHER ?X ?Y) (PARENT ?X ?Y)))) ;5.5

The Subrelation Checker works in much the same way as the Inverse Checker, by matching
facts in the KB with the LHS of the constraint rule. When a fact matches the LHS, the
Subrelation Checker attempts to prove each corresponding subgoal on the RHS. If any one
subgoal fails, a warning message is issued to the user.

8.3.1 Subrelation Constraint Rule Format

The format for a subrelation is very similar to that for an inverse. The LHS is in Tell and
Ask format, just like any other KEE rule. The RHS can be divided into two parts. The first
part, which is used to establish data type constraints on the relation arguments, is also in Tell
and Ask format (lines 5.2 - 5.4). The second part of the RHS of the constraint rule defines
the relationship hierarchy (line 5.5) between the two slots. The format is

(subrelation (slotl Varl Var2) (slot2 Varl Var2))

where slotl is defined as a subrelation of slot2. Notice that the Varl and Var2 appear in the
same order between slot) and slot2, unlike the inverse constraint format. At this time, Lisp
expressions are not allowed in a subrelation constraint rule. If a Lisp expression is used, the
Subrelation Checker naively assumes that the evaluation of the expression fails.
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8.4 MINIMUM/MAXIMUM CARDINALITY CHECKER

The Minimum/Maximum Cardinality (Min-Max-Set) Checker uses semantic constraints
defining the minimum/maximum cardinality of particular slots, frames, and slot values. It
notifies the developer when these constraints have been violated based on the current state of
the fact KB. There are four cases of Min-Max-Set: min-max-role, min-max-relation, min-max-
frame, and min-max-inverserole. Each constraint type takes a slightly different form.

This is the general RHS form for stating a min-max constraint:

(min_m axType UnitName Slot-SlotValue-Pair Restrictions MIN-MAX)

UnitName --
(Unit I Var I NIL) where Unit could be a specific class, such as PEOPLE, or a variable
bound on the LHS of the constraint, or NIL, which means that the constraint applies
to all units.

Slot-SlotValue-Pair ([(Slot {SlotValue I NIL)) I NIL))) --
A list of one or more (slot slotValue) pairs where slot is defined for Unit, and
slotValue is either a specific value, or NIL, which means that any value will do. These
are all valid examples of Slot-SlotValue-Pair:

((age NIL)) -- All Units that have any value for AGE
((age 39)) -- All Units whose AGE slot has a value of 39
((hair blond)(eyes blue)(age 2)) -- All Units who have blond HAIR, blue EYES
and an AGE of 2.

NIL --
All Units.

Restrictions --
A list of classes of which the value of Slot-SlotValue-Pair must be a member.

MIN-MAX --
The minimum and maximum number of values allowed, where min is restricted to
non-negative integers.

8.4.1 Min-Max-Role

In the m-in-max-role constraint, for a particular slot, restrictions or qualifications can be placed
on that slot and the number of slot-values that satisfy those conditions are counted.

Example of the general form:

(Rule-Name
(IF {LHSINIL} ;6.1
THEN

(MIN MAX ROLE UnitName ;6.2
Slot-S-otValue-Pairs ;6.3
ClassRestrictions ;6.4
Min-max ;6.5

In line 6.2, UnitName may be either a Class name, a variable bound on the LHS of the
constraint, or NIL. A set is constructed for each Slot-SlotValue-Pair defined in line 6.3 where
the second element in Slot-S lotValue-Pair is a member of the classes in ClassesRestrictions in
line 6.4. Line 6.5 defines the lower and upper cardinality of the elements in the union of
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these sets.

The following is an example of min-max-role:

(FRESHMAN ELECTIVES
(IF (?P7IS IN PERSON) ;7.1

(THE STATUS OF ?P IS FRESHMAN) ;7.2
THEN

(MINMAX ROLE ?P ; 7.3
((ENROLLED NIL)) ;7.4
(ELECTIVES) ;7.5
(0 1))))) ;7.6

This min-max-role constraint states that a freshman may be enrolled in no more than one
elective.

Line 7.3 is an example of a variable bound on the LHS of the constraint. If. on line 7.3, ?P
had been replaced by PERSON or NIL, then the constraint would have limited the number of
electives anyone could enroll in, not just freshmen.

Line 7.4 defines the Slot-SlotValue pair on which the constraint is placed. min-max-role is
unique in that only one Slot-SlotValue pair is allowed. If the SlotValue is NIL, then a set is
constructed containing the number of slot values.

Line 7.5 defines the data type restrictions on the SlotValue pair.

The constraint FRESHMAN ELECTIVES queries the database for any one person who has a
value of FRESHMAN for the slot STATUS (lines 7.1 and 7.2). Lines 7.4 and 7.5 construct a
set of all ?P's slot values for ENROLLED that are members of the class ELECTIVES. Line
7.6 states that there may not be more than 1 nor less than 0 members in that set.

8.4.2 Min-Max-Frame

The min-max-frame constraint counts the number of Units that have at least one slot value
that satisfies the restriction or qualification placed on that slot. Multiple slot values are
counted as one.

An example of the general form:

((Rule-Name
(IF ({LHS I NIL}) THEN

(MINMAX FRAME UnitName
Siot-SlotValu e-Pairs

Restriction
Min-max)))

The syntax of min-max-frame differs from min-max-role in that the number of Slot-SlotValue-
Pairs is not limited to one. A set is constructed using from the database matching of any
number of Slot-SlotValue-Pairs, and failure to match on anything does not negate the
process.
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An example of the general form:

((NUMENROLLED IN ALL CLASS
(IF (?CLASS IS IN COURSES) ;8.1
THEN

(MINMAX FRAME PERSON
((ENROLLED ?CLASS)(AUDITING ?CLASS)) ;8.2
NIL
(100 3000))))

The constraint NUMENROLLEDINALL CLASS states that the number of students
enrolled in, or auditing one or more courses may be no less than 100, nor more than 3000.
Notice that ?CLASS is bound on the LHS side (line 8.1) of the constraint and used on the
RHS, (line 8.2). In addition, notice that there are two Slot-SlotValue-Pairs (line 8.2).

8.4.3 Min-Max-Relation

In the min-m ax-relation constraint the checker counts the number of Units that have at least
one slot value which satisfies the restriction or qualification placed on that slot. Multiple slot
values are counted as unique values.

An example of the general form:

((Rule-Name
(IF ((LHSI NIL)) THEN

(MIN MAX RELATION UnitName
Siot- SlotValu e-Pairs

Restriction
Min-max)))

The syntax for min-max-relation is the same as min-max-frame. Functionally, min-max-frame
and min-max-relation differ only in that the former counts one or more slot values as one,
and the latter computes the number of slot values in the KB. For example:

(TOTAL STUDENTS
(IF NIL THEN

(MINMAX RELATION PERSON
((ENROLLED NIL)(AUDITING NIL)) ;9.1
NIL
(500 10000))))

The constraint TOTAL STUDENTS states that the number of classes the student body as a
whole is collectively enrolled in or auditing may be no less than 500, nor more than 10000.
Notice that NIL is used in both Slot-SlotValue-Pairs in the constraint rule. This rule
constrains the total number of tuples (records) for ENROLLED and AUDITING.

8.4.4 Min-Max-Inverse-Role

The min-mix-inverse-role constraint counts the number of Units that have a particular value
for a slot.
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The general form:

((Rule-Name
(IF ({LHS I NIL)) THEN

(MIN MAX INVERSEROLE
UnitName

Slot-SlotValu e-Pair
Min-Max))))

Notice that the parameter list is different from any of the other min max constraints. The
Restriction parameter has been removed. UnitName and Slot-SlotValue-Pair are the same as for
each of the other types of min-max constraints. For example:

(UPPERDIVISION CLASS SIZE
(IF (?CLASS IS IN-UPPER_ DIVISION) THEN

(MINMAXINVERSE ROLE PERSON
((ENR(LLED ?CLASS))
(5 12))))

The constraint UPPERDIVISION CLASS SIZE places a limit on the number of students
enrolled in an upper division class to no less than 5, no more than 12.

(ENROLLEDTO AUDIT RATION
(IF (?CLASS ISIN COURSES)

(THE ENROLLED OF ?CLASS IS ?E) ;11.1
THEN
(MIN_MAXINVERSE ROLE PERSON

((AUDITING ?CLASS))
(0 ?E)))) 11.2

The constraint ENROLLED TO AUDIT RATION says that the number of students auditing
a class may not exceed the nurmber of students enrolled in a course. Notice the use of the
variable ?E in MIN-MAX (line 11.2), that was bound on the LHS (line 11.1) of the rule.

8.5 INTERSTATE INTEGRITY CHECKER

The Interstate Integrity Checker takes constraints written by the knowledge base developer
and notifies the user when these constraints can be violated based on the current state of the
knowledge base (rules plus facts). For KEE-based systems, constraints take the following
form:

IF (body of constraint)
THEN
(INTERSTATE-INCONSISTENCY)

The following is an example of an interstate integrity constraint that states that a person's
salary may not decrease:
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IF (?P IS IN PERSON)
(SALARY ?P ?SALARYI ?YEARI)
(SALARY ?P ?SALARY2 ?YEAR2)
(LISP(< ?YEARI ?YEAR2))
(LISP (< ?SALARY2 ?SALARY1))

THEN
(INTERSTATEINCONSISTENCY)

The Interstate Consistency Checker works by attempting to prove the goal
INTERSTATE INCONSISTENCY based on the current state of the knowledge base. Because
such a computation may take an arbitrarily long time, this checker uses a user-supplied depth
bound to limit the amount of chaining it will undertake. In addition, the user has the ability
to interrupt this processing in order to undertake other tasks.

Errors may be introduced into the proof process through the use of Lisp antecedents. DEVA
recognizes a limited number of lisp expressions (primarily simple arithmetic expressions), and
attempts to evaluate them. When DEVA does not recognize a lisp expression, it naively
assumes that the evaluation returned successfully.

8.6 INCOMPATIBILITY CHECKER

The Incompatibility Checker is a failure driven constraint as described in Section 8.1.2. The
Incompatible Constraints are used by the Semantics Checker to check the fact KB for
inconsistencies. They are also, more importantly, used by the Logic Checker to check the rule
base for consistency, see Sections 6.1 and 6.2.

The following DEVA rule, which defines an Incompatibility Constraint dealing with the the
rotation speed of airplanes, may serve as an example of the DEVA "KEE-syntax" format:

(ROTATION-SPEED
(IF (?X IS IN PLANE)

(THE SPEED OF ?X IS ?SPEED)
(THE STATUS OF ?X IS ROTATION-TAKEOFF)
(LISP ( < ?SPEED MINIMUM-ROTATION-SPEED))

THEN
(INCOMPATIBLE)))

Here the system developer is stating that it is incompatible for an airplane to perform a
takeoff rotation unless its speed is greater than or equal to the minimum rotation speed
allowed by flight regulations.

8.7 VALUE CHECKER

The Value Checker takes the semantic constraints defining the range or set a slot value may
have in a particular domain and notifies the dc eloper when these constraints have been
violated based on the current state of the fact KB.

Rule SC6 is an example of a value constraint that states that afighterjet may only have a slot
value for mission of [bombrun, refuel, aircombati. In other words if fighterjet St. Louis
had a mission of transport this constraint would be violated.
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(SC6
(IF (?P IS IN FIGHTERJET)

(THE MISSION OF ?P IS ?M)
THEN

(VALUESET ?M (BOMBRUN, REFUEL, AIRCOMBAT))))

The Value Checker works by matching facts in the KB with the LHS of the constraint rule
and then testing the value of a constraint specified variable. If that variable is not within its
specified range or set a warning message is issued to the user.

8.7.1 Value Constraint Rule Format

The LHS of the Value Constraint is in Tell and Ask format, just like any other KEE rule.
The constraint RHS is divided into three parts: valueconstraint_type, constraint variable, and
value constraint. Value_constrain ttype (either value_range or valueset) specifies whether
the constraint is covered by a range or set constraint. Constraintvariable specifies the
variable that was matched on the LHS of the constraint, that the developer wishes to
constrain. Value_constraint is either a range or set depending on the value_constraint_type.

A range constraint takes the form (low high), where low is a number or type symbol ni
standing for Negative Infinity; where high is a number or the symbol pi_, standing for
Positive Infinity.

A set constraint takes the form (set) or named set where set is a list of legal values, or a
named set which is one of the following: [is_digit,is_alpha,is ascii,isalnum].

is-digit: 0..9
is_alpha: a..z, A..Z
isascii: any ascii code from 0 to 127
is-alnum: any alpha-numeric a..z,A..Z,O..9

General form:
(v alu e_con strain ttype constrain t_v ariable value_constraint)

Exam ples:
(value range ?age (0 100))
(value range ?age is digit)
(value-set ?gender (male female boy girl))

In each of the examples the variable (ie ?age) must be set on the LHS of the constraint.
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CHAPTER 9

OMISSION CHECKER

9.1 INTRODUCTION

One can model much of the knowledge in knowledge-based systems around the concept of
sets, e.g., a set of classes of objects, a set of relations, a set of rules, and a set of values for a
multi-valued slot. Given a set written by the developer, the basic question to ask is "Is the
set complete?". In other words, does the set contain all the necessary elements or does it
miss some elements? A closely related question is "Given a set, do the explicitly mentioned
subsets completely cover this set?". The goal of completeness checking is to answer these
questions by investigating and identifying useful techniques and representations for defining
com pleteness.

9.2 OMISSION OF CLASSES

In KEE, as in most frame-based systems, the frames are organized in a hierarchy of classes,
where generality increases as one approaches the top of the hierarchy. Frames are defined in
terms of their slots or attributes, so a subclass may specialize a class by having additional slots
defined, or by having additiopal restrictions placed on a slot (e.g. by restricting the number
of allowable values), or both.

DEVA checks for completeness of the class hierarchy in two ways; the first uses rules defined
in the meta-KB to indicate those slots that are most meaningful in the development of
subclasses; the second infers potentially meaningful subclasses based on patterns in rules
present in the regular KB.

9.2.1 MetaKB-Based

DEVA allows the knowledge engineer to provide an object model in the meta-knowledge base
that provides guidelines for subdividing classes. For example, a metarule may say that the
class Person can be grouped by the slots sex and age. If the developer creates only the classes
for Man, Woman, and Boy, this omission checker will recommend adding a class
corresponding to Girl.

The metarules used by the class omission checker take the following KEE form:

IF (< ?Varl> IS IN < Class Name> )
(THE < SlotName> OF < ?Varl> IS < ?Var2> )
(other conditions)

THEN (SUBCLASSING RULE)

The following is the KEE representation of the subclassing rules for Person given above:
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IF (?P IS IN PERSON)
(THE AGE OF ?P IS ?A)

THEN (SUBCLASSING RULE)

IF (?P IS IN PERSON)
(THE SEX OF ?P IS ?S)

THEN (SUBCLASSINGRULE)

At this time, the class omission checker ignores the other conditions part of the metarule, so
the class omission checker operates based on class and slot names alone. The other conditions
may be used in future, enhanced versions of this checker.

The class omission checker generates subclasses based on both the minimum and maximum
cardinalities and the value classes of slots specified in the metarules. It currently handles
value classes which are defined to be one of a set of values, intervals of integers, or user-
defined classes.

The class omission checker may suggest more than one level of subclasses beneath the class
specified in a metarule; i.e, it suggests the addition of a new subclass hierarchy in the form of
a potentially complex directed acyclic graph. This graph retains the original subclasses, since
presumably these are important to the knowledge engineer. However, because these original
classes may inadequately subdivide the original parent class, it may also include suggested
classes which serve not only to cover, but also to partition, the original parent.

As an example, suppose the class Person had the immediate subclasses FemaleVoters (female,
age > 17) and Male IllegalDrinkers (male, age < 21) and a meta-knowledge base constraint
stating that Person can be subdivided by the slot age. The omission checker suggests retaining
the original class structure, with the addition of three new subclasses that would partition
Person based on age, that is, (age < 18), (age 18-20), and (age > 20). If there were an
additional meta-KB constraint that stated that Person could be subdivided based on the slot
sex as well, this checker would recommend subclasses corresponding to (male), (female),
(male, age < 21), (female, age < 21), (male, age > 17), (female, age > 17), (male, age <
18), (female, age < 18), (male, age 18-20), (female, age 18-20), etc.

The recommendations include both pre-existing subclasses and new subclass suggestions.
MaleIllegalDrinkers remains in the hierarchy, but its female counterpart, (female, age <
21), is also present. These subclasses have subclasses of their own, e.g., (male, age < 18) is
a subclass of MaleIllegalDrinkers.

In essence, the graph produced is the cross-product of the recommendations based upon
individual slots. Because the number of recommendations generated via the cross-product
rapidly becomes unwieldy, DEVA gives the user the option of viewing only the single slot
recommendations or of viewing the cross-product of selected slots when a large graph would
result.

9.2.2 Rule-Based

KEE is a system that allows a knowledge engineer to encode knowledge using both frames
and rules. Although information stored in one form may easily be transformed into thc
other, frames are generally more useful for storing terminological knowledge, whereas rules
are more useful for storing heuristic knowledge. KEE performs some semantic and
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consistency checks on frames, but does little checking of rules. Thus, it is often useful to
transfer knowledge from rules to frames based on patterns occurring in rules. Where
applicable, such a transfer makes the knowledge base more structured, hence more amenable
to easy debugging.

The rule-based omission checker proposes new rules based on two types of information:
explicit DEVA isa metarules and recognition of patterns in object base (KEE) rules.

Often, during the development of large knowledge bases, people write rules to cover certain
situations, but omit the rules that cover similar but distinct situations. If a rule exists that
checks membership in one subclass of a parent class, DEVA checks to see whether there are
additional rules of the same form that cover the other subclasses of the parent class.

As an example, consider the class hierarchy:

isa(B,A)
isa(C,A)
isa(D,B)
isa(E,B)
isa(E,C)
isa(F,C)

If there is a rule,

IF (?X IS IN B) (THE SOME-PROPERTY OF ?X IS ?Y)
THEN
(DOSOMETHING)

DEVA checks whether there is another rule in the knowledge base with the same form, e.g.

IF (?X IS IN C) (THE SOME-PROPERTY OF ?X IS ?Y)
THEN
(DO_SOMETH INGPOSSIBLY_D IFFERENT)

Notice that these two rules do not necessarily cover all individuals of A; there may be
individuals that belong directly to A, that are in neither B nor C. Therefore, DEVA also
checks for a rule:

IF (?X IS IN A) (THE SOME-PROPERTY OF ?X IS ?Y)
THEN
(DOANOTHERSOMETHINGPOSSIBLYDIFFERENT)

DEVA is also alert for situations involving multiple inheritance. If some other rule mentions
class E, DEVA checks for similar rules mentioning classes B, C, D, and F, and report those
classes which are not covered.

In addition to suggesting new subclasses based on rules in the meta-KB, DEVA also
recommends new subclasses based on patterns in rules and based on novel combinations of
existing subclasses' slot definitions. For example, if there were a rule whose conditions
included:
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(if (?a is in animal) (the skincovering of ?a is fur) ...

the class omission checker inquires whether it may be useful to explicitly subdivide the
Animal class into subclasses based on the skin_covering slot rather than having it implicitly
subdivided via the rules. Currently, suggestions are made for rules mentioning classes having
slot values that are either constant or that involve a numerical comparison.

9.3 OMISSION OF RELATIONS

This checker looks for missing subrelations of a relation. We define a relation as a unit which
uses user-defined unit names as value classes for more than one slot. Because we define a
relation as being a certain type of class, the relation omission checker is a specialization of the
class omiss-.on checker, with the following exception: the class omission checker currently
operates based on rules in the metaKB; the relation omission checker discovers relations in
the object knowledge base and reports on them.

As an example, the class ParentOf may be a relation with two slots, elder and younger, both
of which have a value class of Person. Parent Of may have a subclass (subrelation) FatherOf,
with the value class of elder being Man. If Person has two subclasses, Man and Woman, the
relation taxonomy omission checker will check to see whether a descendent of ParentOf has
an elder slot with the value class of Woman, corresponding to MotherOf. If such a relation
does not exist, DEVA will alert the user.

As does the class omission checker, the relation omission checker generates a potentially
complex directed acyclic graph. The root of this graph is the original relation and the
remainder of the graph consists of existing and/or suggested subrelations. Again, the graph
produced is the cross-product of the recommendations based upon individual slots, so DEVA
allows the user to select an abbreviated version for display.

9.4 OMISSION OF RULES

As the number of rules in a KBS increases, so does the difficulty of maintaining these rules
and understanding the interactions between them. KEE provides help with this rule
management problem via rule classes, which are intended to group rules according to their
usage. KEE does not enforce any rigorous relationship between rule classes and classes; any
structure that exists is that imposed by the knowledge engineer.

DEVA helps impose structure on rule classes through the rule omission checker which works
by determining which classes are covered by rule classes, and comparing the coverages of
these rule classes. The idea of checking omissions in a rule set is to find the most general
class that is covered by that rule set. If two rule sets cover classes that are related by thc
subclass relationship, then thr rule set associated with the smaller class may be incomplete.

For example, suppose we have a class hierarchy with a parent class P that has two children,
Cl and C2. If Rule Class I has rules that cover all children of P, while RuleClass 2 has
rules that cover all children of C1, this omission checker will inquire whether RuleClass_2
ought to have rules dealing with C2 as well.

9.5 INCOMPLETE SLOT VALUES

In KEE, each slot of a unit has a minimum and maximum number of values that may exist
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for that slot. The incomplete slot value checker checks to see that units have their slots filled
with the appropriate number of values, e.g., if a man should have exactly one wife, this
checker will issue a warning for those men who do not have wives (or have more than one
wife). KEE will do a similar check itself if the appropriate flags are set. To check more
intricate relationships on slot values, use min max role constraints as described in section 8
on the semantics checker.
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CHAPTER 10

RULE REFINER

'The goal of the rule refiner is to help the developer refine his rules. Since this is an
interactive process a good and comprehensive user interface is required and will be
provided" -- DEVA proposal

10.1 THE RULE REFINING PROBLEM

In the traditional approach to rule refinement, an expert creates a rule, applies it to the
knowledge base, observes what happens, then modifies the rule contingent on that
observation. This process is repeated until the expert is reasonably satisfied that the rule
reflects its creators intent.

10.2 THE DEVA RULE REFINER APPROACH

The Rule Refiner is a graphical software tool designed to assist system developers in
constructing a rule based expert system. The Rule Refiner facilitates building rule based
application systems that enhance the productivity and capabilities of technical experts and
developers.

The Rule Refiner simulates the rule application process by showing the effects of firing a rule
on a graphical model of the fact base domain called a Unit Graph. A Unit Graph is a dynamic
undirected acyclic graph that presents the relational hierarchy of class, subclass, instance, and
Temporary Unit links in the knowledge base. A Temporary Unit (TU) is an artificially created
instance of a class, created by the Rule Refiner. One may examine the slots and slot values
for all units in the unit graph (both temporary and original) to determine their relevancy to
the rules.

Units (both temporary and original) that application of the rule might affect are highlighted.
Any manipulation of the Unit Graph may indicate that the scope of the rule needs
modification. When one or more highlighted Units are changed by the expert to an
unhighlighted state, it indicates that the rule might be too general. Alternatively, if one or
more unhighlighted Units is changed to a highlighted state, it might be an indication that the
rule is too restrictive.

10.3 THE RULE REFINER INTERFACE

The Rule Refiner Interface consists of four windows joined together in a frame, known as the

Rule Refiner Frame. The windows are (from upper left to lower right):

1) Rule Refiner dialog box contains:

a) The name of the rule under refinement.

b) Quit button that removes the unit graph.

c) Close button that iconifies the unit graph
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d) (Lisp:Prolog) circular button that controls which language the rule is displayed in the
Rule Text View.

e) (Class:LHS) circular button that controls the relationship displayed in the unit graph
window. When this circular button displays Class the unit graph displays all the Class-
instance links. When it displays LHS, sets of units that make up one firing of the LHS
of the current rule are displayed. These sets of units are connected by a line of unique
color, and a like colored box is drawn around each unit of the set. Up to eight separate
relations may be shown at one time.

2) Rule Text View
This view contains the text of the rule under refinement, controlled by the circular
(Lisp:Prolog) button in the Rule Refiner dialog box.

3) Output View
This view contains a textual list of the algorithms used in construction of Temporary
Units. A complete description of the algorithms is presented in section 5.3.

4) Unit Graph
The unit graph, as described above, lc, the user see when the RHS of a rule will be
applied by generating Temporary Units from available data sources that are based on the
literals of the rule's LHS. Though a Temporary Unit is created and displayed in the unit
graph, no new information is added to the fact base, and the creation of any TU (and the
slot:slotvalues associated with it), will not affect any other checker whatsoever.

The Unit Graph Window
Class-units are light blue; member-units are either light-grey (unhighlighted) or yellow
(highlighted); the background is light grey; the lines that represent the relation between a
class-unit and its subclass-unit are solid scarlet, and the line that represents the
relationship between a class-unit and its member-units is a dashed with a bold font. A left
click on a member-unit toggles it's status (yellow = highlighted, light-grey =
unhighlighted). A left click on a class-unit toggles all of its members (including member-
units of its subclasses). A middle click and drag on any unit allows the user to reposition
the unit within the graph.

A right-click on a class-unit displays the slots that are defined at that class in a popup
menu in which the menu-items are slot names. When sub-menus (also known as walking
menus) appear in the popup menu, the items that appear in a sub-menu are that slot's
default values. When the class-unit has one or more subclasses, the names of the
subclasses are contained in the sub-menu of the menu-item subclass. This feature is quite
useful since it shows the KEE ordering in which the subclasses were defined. Similar to a
class-unit right-click, a member-unit right-click displays that member-unit's slots for which
it has a value. The sub-menu's menu-items are that slot's values.

10.4 UNDERSTANDING THE ALGORITHMS FOR BUILDING TEMPORARY UNITS

The creation of Temporary Units cleanly falls into two types.
Type 1.

Methods that create units based upon slot value (Rules, Value Class, Metaconstraints)
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Type 2.

Methods that create units based upon class membership (Sibling Class, Subclass)

10.4.1 Format of a KEE Rule

The LHS of a KEE rule is composed of a set of literals. The Rule Refiner is concerned with
literals dealing with class membership, slot values, and lisp comparisons, also known class
literals, slot literals and lisp literals respectively.

Examples of LHS literals that the Rule Refiner uses:

(?a is in pilot) -- class literal 1
(the sex of ?a is male) -- slot literal I
(the age of ?a is ?b) -- slot literal 2
(lisp (> ?b 30)) -- lisp literal I

Notice that while the slot value for age is not specified in slot literal 2, a boundary for the

value can be found in the lisp literal by matching the ?b variable in lisp literal 1.

10.4.2 Rule Refiner General Format

Both Type 1 and Type 2 algorithms for generation of Temporary Units follow a generalized
format based on the class literals and slot literals used in the LHS of the rule. In Example I
below, the class membership literal is plane, and the slot value literal is speed.

(if (?x is in plane)
(the speed of ?x is ?y)
(lisp (< ?y 741))
then
Some RHS action)

Example 1

10.4.3 Using a Type 1 Algorithm

Refining Example 1, using algorithm Type 1, creates TUs that are members of the class
plane, each with a different slot value for speed. If the LHS contains more than one slot
literal, then the rule refiner takes the cross product of all slot literal values used in the LHS
(see section 10.4.5).

10.4.4 Using Type 2 Algorithm

Refining Example I using algorithm Type 2 creates TUs that are members of classes related
to plane (either sibling class or subclass) with a slot value for speed of 741 (only if the slot
speed was defined or inherited at that class level).
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10.4.5 Taking the Cross Product of slot values

KEE Rule with two slot literals:

(if (?x is in plane)
(the speed of ?x is ?y)
(the aileron_position of ?x is ?z)
then
Some RHS action)

Example 2

Using the Type 1 algorithm of Temporary Unit generation, the slot values gleaned from the
KB for speed and aileronjposition are [0, 110, 220, 4401, and [up, down, stuck] (These slot
values could have come from sources explained in 9.5). The cross product of these slot
values are:

[stuck, 440]
[down, 4401
[up, 4401
[stuck, 2201
[down, 220]
[up, 2201
[stuck, 110]
[down, 1101
[up, 1101
[stuck, 01
[down, 01
[up, 01

10.4.6 Naming the Temporary Unit

A Temporary Unit name is derived from its designated member of class with a unique number
concatenated at the end of the class name. With Example 1, a Type 1 algorithm generates
several Temporary Units. Each TUs is a member of the class plane, and given names like
plane], plane2.planeN.

10.5 IMPLEMENTATION OF TEMPORARY UNITS ALGORITHMS

10.5.1 KEE Value Class

By using the Value Class Concept an expert is able to partially or fully specify what values a
slot may or many not have. KEE uses a restriction mechanism called the Value Class, which
restricts permissible slot values to belonging to a specified class, range or set.
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10.5.1.1 Example of a KEE Value Class

Unit: PILOT
in knowledge base FLIGHT

Created by combs on 11-14-89 23:56:07
Modified by cassell on 2-13-90 14:37:58

Superclasses: FLTPERSONNEL

Member Of: CLASSES in GENERICUNITS
Members: BOB, TIM, JACK, JOHN, SARA, TED

Member slot: AGE from FLT PERSONNEL
Inheritance: OVERRIDE.VALUES
ValueClass: # [Interval: [18 551]
Values: UNKNOWN

This Value Class specification constrains the value for the slot age of a fitpersonnel to 18 to

55.

10.5.1.2 Using Value Class Specification

Using information supplied by a Value Class specification, the Rule Refiner generates slot
values for any slot literals used in the rule. This is a Type 1 algorithm for Temporary Unit
generation.

Rule with slot literal age

(if (?x is in fitjpersonnel)
(the age of ?x is ?a)
(lisp (< ?a 54))
then
Some RHS action))

Example 3

Example 3 contains a slot literal for age. Using the Value Class specification from Section
10.5.1.1, the Rule Refiner generates two Temporary Units with slot:slotvalues of age:18 and
age:55.

flt_personnell:[age:18]
flt_pe rsonnel2:[ age :551

(The format used to describe a Temporary Unit is name:slot-list, where name is the unique
name generated for that particular TU, and slot-list is a list of slot:slotvalues, in which
slorvalues may be a list itself in the case of multiple values.)

10.5.1.3 Using Value Class to Refine a Rule

Suppose the RHS of Example 3 assigned fitjpersonnel to active duty. Now suppose there was
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an active duty age range between 22 and 55. When the Rule Refiner displays the unit graph
with

flt_personnell:[ age:181 (Highlighted)
flt.pe rsonnel2:[ age :551

the expert notices that the rule contains no lower bound for age. A corrected LHS might
look like:

(if (?x is in fit..ersonnel)
(the age of ?x is ?a)
(lisp (< = ?a 54))
(lisp (> = ?a 22))
then
Some RHS action))

Example 4.

10.5.2 DEVA Semantic (Meta) Constraints

The Meta Constraints algorithm, a Type 1 algorithm, uses the DEVA Semantic constraints
value set and valuerange. Both value-set and valuerange are used to extend the KEE Value
Class Concept to cover specific situations. The Meta Constraint format, similar to the KEE
rule format, uses the LHS to set up the situation, and the RHS to specify the constraint.

Exam pie of a DEVA Meta Constraint:

if (?fj is in fighterjet)
(the pilot of ?fj is ?p)
(?p is in flt_personnel)
(the sex of ?p is male)
(the age of ?p is ?a)
then
(value_range ?a (33 55))

Example 5.

This Meta Constraint specifies the age of a fighterjet's male pilot to be between 33 and 55
inclusive.

Example 3, contains a slot literal for age. Using the Meta Constraint in Example 5, the Rule
Refiner generates two Temporary Units with slot:slotvalues of age:33, and age:55

flt_personnel3:[ age :331

fltypersonnel4:[ age :551

10.5.3 Using DEVA Mcts Constraints to Refine a Rule

Suppose that the RHS of Example 3 asserted which health plan a flt_personnel would qualify
for. Suppose that the legal values for a flt_personnel's age dre as defined in Example 5.
When the Rule Refiner displays the unit graph with
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fitpersonnel3:[ age :331 (Highlighted)
fit personnel4:[ age :551

the expert notices that though the rule is correct, the Meta constraint for fittpersonnel is
incorrectly specified because flt_personnel3's age, while within the Value Class range defined
in Section 10.5.1.1, should be a boundary condition. A corrected Meta Constraint might
look like

if (?fj is in fighterjet)
(the pilot of ?fj is ?p)
(?p is in flt_personnel)
(the sex of ?p is male)
(the age of ?p is ?a)
then
(value_range ?a (22 55)))

Example 6

This demonstrates how the rule refiner can assist an expert in refining the Value Class, and
Meta Constraints of a KB, not just the rule base.

10.5.4 Using the KB's Rule Base to Refiner Rules

The rule base is consulted for slot literal constants used in the LHS of any rule in the rule
base. Any new slot literal constants that do not already exist in the fact base are used as
slot:slotvalues when Temporary Units are generated. The slot values are taken without
consideration of class membership in the rule from which they were derived.

Example of Rules with slot literals:

If the rule base only contained these two rules:

(if (?pisin f 111)
(the mission of ?p is training)
(the status of ?p is under-attack)
(the age of ?p is ?a)
(lisp (< ?a 10))
then
some RHS action)

Example 7

(if (?p is in plane)
(the status of ?p is ?y)
(the mission of ?p is classified)
then
some RHS action)

Example 8

85



Let Example 8 be the rule under refinement. Temporary Units that are created for Example
8 are all members of the class plane with slotvalues gleaned from the rule base. In Examples
7 and 8 above, the slot:slotvalues pairs are mission:[training, classified], and status:[under-
attack]. Therefore taking the cross product of the slot:slotvalue pairs, two Temporary Units
are created:

plane 1:[mission :training, status:under-attack]
plane2:[m ission :classified, statu s:under-attack]

10.5.5 Using Slot Literal constants to Refine a Rule

Suppose that when the expert created the rule used in Example 8 that the chance that a plane
may be on a classified mission and come under attack was not anticipated.

plane I :[m ission :training, status:under-attack] (Highlighted)
plane2:m ission:classified, status:under-attack] (Highlighted)

When the unit graph is drawn, the expert notices that plane2 should not have been
highlighted, and that the rule under refinement needs to be modified.

10.5.6 Class-Subclass links

Both Sibling Class and Subclass Type 2 algorithms build Temporary Units based on the class

literals used on the LHS of the rule.

10.5.6.1 Sibling Class

Similar to unit creation in the omission checker, Temporary Units are created for each sibling
class of a class literal used in the LHS of a rule. The creation of Sibling Class Temporary
Units assists the developer in determining when the class literals of a rule are too specific.

Using Example 3, let the sibling classes of fit_personnel be ground crew and atc_personnel. The
Rule Refiner creates one Temporary Unit for ground crew, atc_personnel, and fit_personnel.

groundcrewl:[age:54]
flt_personnel5:[ age:.41
atc_personnelI :[age:541

Notice that each Temporary Unit created for Sibling Class contains a slot:slotvalue of age:54.
Any slot literals used in the LHS of a rule that contain a constant are used in the creation of
Temporary Units. Also notice that a Temporary Unit was created for the class flt_personnel.
In construction sibling class Temporary Units, a chv.ss is considered a sibling of itself. This
also assures that at least one Temporary Unit will be highlighted when the unit graph is
drawn.

10.5.6.2 Using Sibling Class to Refine a Rule

Suppose that the RHS of Example 3 kept track of Social Security bei.2fits for fit personnel.
The Social Security benefits for groundcrew and atcpcrsonnel are thr -ame as for
flt_pcrsonnel (and thus do not each need unique rules). When the Rule R,-,,ner displays a
unit graph with
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ground_crewl :[age:54]
flt_personne5:[age:541 (Highlighted)
atc_personnell :[age :541

the developer notices that only flt_personnel5 is highlighted. This is an example of a rule that
is too specific. Since person is the superclass of ground-crew, fit_personnel, and
atc__personnel, the rewritten rule might look like:

(if (?x is in person)
(the age of ?x is ?a)
(lisp (< ?a 54))
then
(Some RHS action))

Example 9

10.5.6.3 Subclass

Creating subclass Temporary Units assists an expert in determining when the class literals
used in a rule are too general. A Temporary Unit is created for each subclass of each class
literal used in the rule under refinement. Any slot values of a Temporary Unit have come
from the slot literal constants used in the LHS of the rule.

Using Example 3, let the subclasses of ftpersonnel be pilot, flight engineer, and flight crew.
The Rule Refiner generates Temporary Units for each class literal used in the rule. The TUs
generated are:

pilotl:[age:54]
flightengineer :I[age -541
flight crew 1 :[age 54]

Using Subclass to Refine a Rule

Suppose that the LHS of Example 3 was to remind flight_personnel to recertify once each
year until age 54. Suppose that flightengineers and flight-crews need not recertify and that
only pilots are required to. When the Rule Refiner displays the unit graph with these three
TUs added

pilotl :[age:541 (Highlighted)
flight engineerl:[age:541 (Highlighted)
flight_crewl:[age:54] (Highlighted)

the developer notices that only pilotl should be highlighted. This is an example of a rule that
is too general. The rewritten rule might look like

(if (?x is in pilot)
(the age of ?x is ?a)
(lisp (< ?a 54))
then
Some RHS action))
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Example 10

10.6 CONCLUSION

The process of refining a rule base is highly subjective, based on an expert's experience,
intuition and practical knowledge. The DEVA Rule Refiner allows an expert flexibility to
propose rules then, in a variety of ways, test those rules for excess generality or specificity.

88



CHAPTER 11

CONTROL CHECKERS

11.1 INTRODUCTION

The term control checker could have two possible interpretations with respect to rule-based
systems. In the first interpretation, where we are concerned with entire rules, the developer
could specify the interactions that should be preserved between the rules in the KB in the
form of control constraints, and the checker could alert him of possible violations. In the
second interpretation, the control checker would verify that the KBS always operated within
the control constraints. The first interpretation is the one adopted by DEVA.

The important thing to remember when examining the various control checkers is that they
flag possible violations of various control constraints. Because of decidability issues, these
checkers do not check for complete compliance.

Any Turing machine can be reduced to a set of facts, a set of rules and its nonmonotonic
inference mechanism, in other words a knowledge-based system (the nonmonotonicity is not
strictly necessary, it is simply easier to envision where tape rewrites are concerned). The
various rule firings correspond to state transitions, and the tape input is the body of facts.
Assume we have an algorithm that checks for complete compliance with control constraints,
and that we have asserted the control constraint necessary(initial-situationfinal-situation). This
constraint means that the final situation will necessarily follow from the initial situation.
Thus, by our reduction, we also have an algorithm that solves the halting problem for Turing
machines. In the general case, a compliance-oriented control checker is an undecidable
problem. The DEVA project is not tasked with solving the halting problem; however, this
does not preclude us from indicating interesting, significant violations of the control
constraints, either independent of or dependent upon the current input (facts).

The control checker has several components. These are sequence, exclusion, necessity,
conditional, rule interference and enhanced cycle checking. Each of these components is in
some way concerned with whether or not rules in the KB can be satisfied under a given set of
conditions. These conditions may range from a collection of facts which are true, the
previous firing of other rules, to various combinations of facts and rule firings.

11.2 ASSUMPTIONS

It is useful for us to make explicit our working assumptions for the control checker. This is
equivalent to stating the axioms upon which we will base our work. These assumptions are:

Independence. The various control checks are performed independent of any given
conflict resolution strategy. In other words, we do not presume to know the specific order
in which rules will be examined during inferencing.

Noncompliance. The control checker will only be able to indicate with complete certainty
when a given control constraint is violated. The control checkers will not be able to say
with absolute certainty that the present KB will always be in compliance with a given
control constraint.

Nonprocedural. Procedural calls, appearing in the LHS or RHS of a rules, are ignored at
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this time. Only the declarative aspects of KB rules are addressed.

Revision. The RHS actions which the control checker will concern itself with are add and
delete, and a modify action will be treated as a delete followed by an add.

Reducibility. Since a KB consists of atomic formulas (facts) and conditional formulas
(rules), and the previous assumption excludes functional formulas, any control
specification must eventually be expressed in terms of atomic or conditional formulas.
Any abstract property of the KB which is used in a control constraint can be replaced by
the formulas which satisfy that property, thus the control checker will concern itself only
with those formulas (facts and rules).

11.3 RULE INTERFERENCE

The interference checker determines violations of an implicit control constraint. Whenever a
developer produces a rule, he expects that rule to be used under some set of circumstances
(fact-scenario) that he believes is likely tooccur. If it is impossible to use the rule because of
its interactions with other rules in the KB, then the developer's implicit constraint of rule
usage is violated.

Essentially interference is the inverse of rule-inconsistency detection. In rule-inconsistency
detection, we wish to detect the derivation of conflicting values from the rules and a likely
fact-base scenario. In interference detection, we want to show cases where the only way to
prove a valid goal is via the rules and an inconsistent (i.e., unlikely) fact-base scenario.
Consequently interference can result in unexpected proof-failures and useless rules.
Therefore DEVA will act as a diagnosis tool to explain why the rule "did not work". Rules
with interference problems can be satisfiable when the expert system uses an unsound,
procedural form of inference. This is the case with many production rule systems. For these
systems, our interference checkers will point out to the developer where he is relying on
unsound methods to do inference (i.e., the declarative reading of the rules has been
compromised). Our check for interference is performed using only the static facts and rules
of the knowledge base. We have also devised a strategy to model the operational semantics of
nonmonotonic rule-bases.

11.3.1 Proof-Residues And Ramifications

To generate the assumptions, we use residue resolution. A proof residue of a goal is a set of
dynamic conditions missing from the fact-base which, if present, would entail the goal. To
determine a proof residue for a goal, we generate a consistent proof-tree of the goal using
backward chaining. A proof-tree is consistent provided conflicts do not exist between the
literals in the tree. For example, a conflict exists in a tree which assumes A and not(A) or ?X
> 10 and ?X < 5. The special case of determining the relationships between numerical
comparisons is discussed in more detail in section 11.5 of this chapter.

Backward chaining is bounded by a user-specified proof-depth to ensure termination and to
provide an upperbound on the effort to expend. The leaves of a proof-tree constitute a proof
residue. Since there may be multiple proof-trees, there can be several proof-residues for a
goal, All literals derivable from a proof residue are the ramifications of that proof residue.
The original goal is a necessary ramification of the proof residue, as are all the intermediate
literals in the proof-tree used to derive the goal from the proof residue. There can also exist
extraneous ramifications which are additional literals derivable via the proof residue, but which
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are unnecessary to prove the goal. Consider the following rules:

C -->not(E) A -- B B - C D -- E E -4F C andF --- G

The proof-residue of the goal C is A . The necessary ramifications of A are [B,C] , while its
extraneous ramification is not(E) . The proof-residue of the goal F is D, and the necessary
ramifications of D are [E,F].

Given two subgoals gl and g2 with proof-residues Rgl and Rg2 respectively generated from
consistent proof-trees, the subgoals interfere if Rgl and its ramifications conflict with Rg2 and
its necessary ramifications. Therefore an interference exists in the conjunctive goal (C and
F), since the extraneous ramification not(E) produced from proving C conflicts with a
necessary ramification of the proof-residue of F. If an extraneous ramification of one
subgoal's residue conflicts with an extraneous ramification of the other's residue, then we will
have created an instance of rule-inconsistency. Since the conflict does not defeat a necessary
literal in one subgoal's proof-tree, it is not interference (but it is still a problem).

A subgoal interferes with itself if there does not exist a consistent proof-tree for the subgoal.

Consequently, any rule containing such a subgoal would be unsatisfiable.

11.3.2 Weak And Strong Interference

For rules containing several antecedents, we provide two types of interference checks. If we
can show the existence of two subgoals in the preconditions of a given rule such that all
consistent proofs of one of the subgoals interfere with any consistent proof of the other, then
we have demonstrated an instance of strong interference.

There may be times when we are interested in finding any form of interference that might
exist between any two literals appearing in a given rule's LHS. This would be referred to as a
check for weak interference. Each case of weak interference contributes to a possible case of
strong interference. When strong interference is detected, there definitely is a problem. By
showing cases of weak interference, we indicate how strong interference may occur.

11.3.3 Using Strong Interference To Validate Constraints

Above we stated that strong interfence creates a problem. The designer can use this
condition to do simple KB validation. DEVA allows the developer to specify ad-hoc
constraints on KB behavior. For example, the designer is allowed to specify the rule

(alpha and beta) --* incompatible

to indicate that the alpha and beta conditions should never be true at the same time. If it
could be proved that a case of strong interference exists for a constraint of this form, then we
will have validated the KB with respect to the constraint (assuming a sound inference
technique).

11.3.4 Handling Nonmonotonicity During Interference Detection

When a rule-base allows deletions on the RHS of rules, one needs to model the operational
semantics of the rules to accurately evaluate the rule-base for anomalies. In Chapter 12 on
nonmonotonicity, interference detection is used as a detailed example of how one would
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model the operational semantics of rules during anomaly detection.

11.3.5 Consistent Numerical Constraints

In the residue analysis approach to verification, one generates the conditions necessary to
infer an anomaly and then tries to determine whether these conditions are likely to occur
simultaneously; therefore, one must be careful not to require an inconsistent residue to
demonstrate an anomaly. This would be useless because from an inconsistent set of beliefs,
one in theory can prove anything. In the simplest case, it is a matter verifying that one never
assumes preconditions such as alpha and not(alpha). A more subtle check is one that verifies
that all numerical comparisons are consistent. As a trivial example, one would not want to
assume ?Z> 5 and ?Z< 3.

An efficient numerical-comparison consistency module has been built, which can be used by
any residue-based checker. It is also used by the enhanced cycle-checker to screen out phony
cycles. By efficient, we mean it should scale up nicely; however, on trivial problems a naive
approach may be faster (less overhead from algorithmic simplicity).

The problem of determining the consistency of constraints of the form ?X R ?Y (where R is
from [< , > , < , -,= 3) is much more interesting and difficult than it appears on the
surface. It requires an O(N) algorithm (N the number of variables) to accomplish the task,since transitive closures must be computed to do complete checking. For example, the set

[Z>= 2, Z=< 2, Z< X,X< W,X< W2, W2< W3, W< 10, W3< 11

is inconsistent. The first two conditions force Z= 2 and consequently the condition Z < X
becomes 2 < X. Via transitivity from 2 < X, we can infer 2 < W3. But this condition is
incompatible with the existing condition W3 < 1. This examples points out some of the
difficulties in performing this type of check (i.e., handling transitivity and the inferred binding
of a variable from existing constraints). In addition, if cycles exist from the transitivity
relationship, the facts are inconsistent (i.e., X < Y and Y < X is inconsistent) unless the
cycle involves the = < relation (i.e., X = < Y and Y = < X forces the condition X = Y).

11.3.6 Interference Detection Methods

For illustrative purposes, it is useful to examine the monotonic case of backward-chaining
interference (BCI) detection first. The method for detecting interference in the monotonic
case is relatively straight-forward but it is an integral part of generating a consistent residue
for any nonmonotonic method. Related techniques have been proposed that make use of
semantic information to optimize user-level queries in deductive databases by, among other
things, determining when such queries are unsatisfiable. Backward-chaining interference
detection in effect treats the LHS of each rule in the knowledge base as such a query. The
emphasis here is not so much on user-level query optimization, but instead on highlighting
possible anomalies for each respective rule.

The method begins by examining the LHS of each rule in the KB as a conjunctive goal. This
is referred to as the original LHS, to differentiate it from the LHS's of other rules involved in
the process of proving the original LFIS.

The residue of each antecedent is generated by backward inference from the antecedent to
the base set of assumptions necessary for it to be true. The construction of the proof residue
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is interleaved with the check for interference. Whenever the entire LHS of a rule is satisfied
during this inference, the proof tree is updated with the current RHS goal occurring in that
rule. Then this goal's residue and necessary ramifications are examined to see if they
contradict the residues and necessary ramifications of any of the other original LHS goals (the
types of possible conditions are outlined in the section dealing with residues and
ramifications). If such a contradiction is found, it is reported to the user as a case of weak
interference. No further exploration of that particular proof residue is then necessary.
Otherwise, the inference proceeds to the maximum allowed depth, trying to satisfy the rest of
the goals. Detecting strong interference under this scheme is a matter of recording the
presence or absence of interference in each alternative proof residue attempted. If every such
proof residue attempted has weak interference, then the developer is warned of the presence
of strong interference for the respective rule.

It is sufficient to consider only the original LHS when looking for contradictions in each proof
residue. We can ignore possible interference in the other LHS goals involved in the proof
residue. The interference check iterates through all of the rules in the knowledge base so
these other LHS goals will eventually be examined as the original LHS and any interference
will be detected at that time.

Backward-chaining interference detection can be augmented in the presence of nonmonotonic
revision with only a small overhead by incorporating a state representation that captures the
effects of local extraneous ramifications. The rule A,B -> D,E,delete(F) appearing in a
knowledge base can be equivalently expressed as three separate rules:

A,B -> D A,B -> E A,B -> delete(F)

Thus when proving D, its local, extraneous ramifications are E and the deletion of F. If a
separate rule A -> G appears in the knowledge base, then G is considered a nonlocal
extraneous ramification of D.

This method relies upon a fixed evaluation strategy and concept of state. For most knowledge
base systems that offer backward-chaining, the state S is cumulative according to goal
ordering. Whenever a goal is proven, its local ramifications are used to update the state. For
backward chaining in expert systems, conjunction between antecedents is usually
implemented by sequentially examining the antecedents. Once an antecedent is satisfied, the
next is examined in the same manner. Even though satisfying the next antecedent may cause
the previously examined antecedent to become unsatisfiable because of nonmonotonic
properties, the previously satisfied literals are not re-examined to see if they are still true in
the final state S. This is fine for a procedural interpretation, but when the antecedents of a
rule are stated conjunctively in a declarative context, they must all be satisfiable in the same
state of reasoning.

Essentially interference detection is achieved by cumulatively updating the state and re-
examining previously satisfied literals to see if they still hold true. This form of detection
indicates when rules are unsatisfiable, and highlights the case where the LHS of a rule is
procedurally satisfiable, but its declarative context is not upheld.

The antecedents of each rule in the knowledge base are examined in the same manner as in
the monotonic case of backward-chaining interference detection. The backward inference
proceeds in an attempt to satisfy each of the goals in the LHS in left-to-right order.
Whenever the antecedents of a rule necessary for the proof are satisfied during this inference,
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the state representation, in the form of a proof residue, is updated with the goal proven and
any local ramifications (or side-effects, in the case of Prolog). This is a limited form of
forward chaining local to the rules necessary for the proof. At this point, the state
representation is examined to see if it contradicts any of the original LHS goals. If such a
contradiction is found, it is reported to the user as a case of weak interference.

The advantages gained from interleaving the construction of a proof residue with state update
and interference check is that no separate pass over the proof residue is required to detect
contradictions. Other advantages are those inherited from normal backward inference: only
those rules which participate in the proof of the original LHS are examined, increasing
efficiency. Since all these rules directly take part in proofs, coherent explanation traces of
how weak interference occurs can be easily collected for presentation to the developer.

A disadvantage of this augmented backward-chaining detection is that it only takes into
account local extraneous ramifications appearing in the RHS of rules actually involved in the
proof-residue. This is entirely appropriate for backward-chaining inference systems, but there
are other ramifications possible under forward inference. These extraneous ramifications can
lead to contradictions as well, and under systems which have coherent forward inference, this
check may not detect all cases of interference. However, determining all the ramifications of
a given residue is an intractable problem in the general case. Some upper bound on the effort
to expend must be set. The tradeoff is completeness versus computing time. In this case the
upper bound is limited to local, extraneous ramifications so that a reasonably quick check for
interference is available for the developer, even if he is relying on a forward inference
system.

11.4 EXPLICIT CONTROL CONSTRAINTS

Each control constraint requires a separate checker within the general framework of the
control checker. The precedes constraint indicates the sequence in which rules should fire,
and is associated with the Sequence checker. The excludes constraint indicates that certain
rules should exclude other rules, and is associated with the Exclusion checker. The necessary
constraint indicates that using certain rules will necessarily lead to the use of another set of
rules, and is associated with the Necessity checker. Finally, the exception constraint indicates
that a certain body of rules will always be used except when a given condition is true. This
constraint is associated with the Conditional checker.

The sequence, necessity, exclusion, and conditional checkers all rely on the same control
constraint collector to preprocess their respective control constraints. This collector takes a
control constraint that deals with the abstract properties of rules in the KB and maps the
abstract properties to the actual sets of KB rules that satisfy those properties. It uses the
property arguments to collect the sets of rules they represent. The abstract control
constraints are thus reduced to more concrete control constraints involving sets of rules
which actually exist in the KB. Each of these checkers then uses this reduced form of control
constraint to uncover any violations.

To support exploration of the KB using the control checkers, DEVA provides a Control
Constraint Selector menu option. This selector provides menus of the four constraint types,
and menus of the many property types. Using these menus and a text-entry area for each
argument, the developer can easily build up a control constraint. Once this is accomplished,
the developer can list, assert or retract this control constraint. To aid the text-entry of
arguments. the developer can also view examples, once ,.ie constraint and property types are
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selected.

11.4.1 Properties Of Rules

To represent the arguments for the control constraints, DEVA provides meta-predicates that
represent the properties of rules. Each property denotes a set of rules that the respective
control checkers use when checking a specified control constraint.

Since the control constraint collector takes property arguments and replaces them with sets of
rules, it is necessary to further explain what the properties mean in terms of ordinary KB
representation. After each type of property, the corresponding low-level KB constructs
involved in collecting the proper rule sets are explained. There are two classes of properties;
unbound and bound.

In the following unbound property specifications, rules which match the properties are simply
collected - this does not mean the rules are actually bound to the property specifications.
During the actual control checking that follows, the rules may not have the same actual
bindings as the properties. By looking for a match, we have found rules which can, but do
not necessarily have now, the same bindings as the properties. Essentially, rules which are at
least as general as the properties themselves, or more general, are collected.

Name: This is probably the simplest, and most restrictive property. In this case, only
those KB rules which have excactly this name are collected as part of the rule set.

Ihs(LHS): The lhs/1 property collects any rules which have a left-hand-side that matches
at least those literals in its LHS argument.

rhs(RHS): The rhs/1 property collects any rules which have a right-hand-side that matches
at least those literals in its RHS argument.

rule(Name,LHS,RHS): This is the most general property available. Any rule that satisfies
this "template" is part of the set of rules collected. Rules collected must match at least
those literals appearing in the LHS and RHS arguments, and if a name is specified, the
name must be exactly matched.

ruleclass(Class): Within KEE, rules themselves belong to classes. This property naturally
groups the rules into sets, and so control constraints using rule class properties will be
useful.

depend(LHS): The depend/I property is used to collect any rules which depend on any of
the literals in the LHS argument. In this case, any rule which has at least one, but not
necessarily all of the literals in LHS, is collect,.d.

activity(RHS): The activity/l property collects rules which carry out a given activity. In
this case, any rule which has at least one, but not necessary all of the literals contained in
the RHS argument will be selected for membership in the rule set.

transition(LHS,NewLHS): Rules in the KB can be collected by determining the state
transitions that they achieve. A state transition can be expressed by a group of LHS
literals true in the previous state, and LHS literals that arc true in the following state. The
property used to represent this is transition/2, in which the first argument is the initial
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state and the second is the resulting state. Rules whose LHS literals are a subset of the
previous literals and whose RHSs directly satisfy all the following LHS literals are collected
as elements of the rule set.

slotvalue(Slot,Value): The slot value property selects rules based on the values they
assign to slots. The slot value computations are only performed on the RHS of rules.
Any rule which has a RHS literal that manipulates the slot value is an element of the rule
set.

slot_request(Slot,Value): Rules which on their LHS make a specific request for a slot
value can be collected into a set using the slot request property.

predicate(Lit): Collection of rules based on the predicates they define is accomplished by
using the predicate/I property. The predicates defined by a rule would necessarily be one
of the rule's RHS actions. Any rule containing the RHS actions becomes an element of
the set being collected.

purpose(Meaning): The property purpose/I denotes the purpose of rules. This could be
quite abstract. DEVA will allow the developer to attach purpose descriptions to the KB
rules (or use the native KB system's purpose field). Normal matching of these purpose
descriptions will then be used to collect sets of rules.

priority(Level): The priority of a set of rules is an integer associated with all rules in a
given rule set. All rules with a given priority Level are collected.

The following bound properties can be used not only to select the rules for a control check,
but to also give those rules a specific binding during the following control check. The control
check then becomes more specific to the rule properties that the developer states. The
violations uncovered will not be as general as those found using non-binding properties, but
they may reveal more to the developer about how the violation arises.

bound rule(Name,LHS,RHS): The bound rule/3 property is much the same as the rule/3
template, except that it also binds with each rule found in the set during the course of any
of the control checks.

boundlhs(LHS): The boundlhs/ I property expects a list of LHS literals just as the lhs/ I
property does, but also binds with the rules during control checking.

boundrhs(RHS): The bound rhs/2 property expects a list of RHS actions just as the
rhs/ I property does, but also binds with the rules during control checking.

situation(LHS): Situations when the rules can be applied are denoted by situation. Each
situation is denoted by LHS literals. A situation is a subset of the KB state, and many
different KB states could satisfy a given situation. Any rule whose LHS is contained in
the situation would be considered as part of that set.

operation(RHS): Operations defined by the rules are represented by operation. Operations
are rcally RHS literals. Individual rules containing any of these operations are elements of
the rule set.
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11.4.2 Property Filter

A rule-property filter that deals with the property arguments of the control constraints
indicates when the developer has supplied it with nonsensical control constraints. For the
exclusion and precedes constraints, the sets of rules defined by abstract properties must be
non-intersecting in order for them to make any sense. Another example of this is when a
control constraint is defined such that a situation (facts true in a KB state) must precede
itself. Also, this filter can indicate when no further checking is necessary, because the
properties are stated so as to be trivially true. Consider the case where the necessity control
constraint states that rules (in second set) which are satisfied in the situation where literal A
is true must necessarily be satisfied by rules (in the first set) which are fired in the situation
where both A and B are true. In this case, as long as there exist rules satisfying both these
situation properties, the necessity check is unnecessary because rules in the second set are
trivially going to be satisfied whenever rules in the first set are satisfied.

11.4.3 Residue Proofs Applied To Explicit Control Checks

The sequence, necessity, exclusion, and conditional control checkers rely heavily on the
proof-residue methods developed for the interference checker. Most of the techniques
employed by these checkers are explained in the section on rule interference (11.3). The
following sections relate these techniques to the specific checkers.

A residue is that body of assumptions which is necessary to prove a given RHS goal. One can
think of a residue as filling in the missing facts in a partial or incomplete KB. During the
course of KB development, it will often be the case that the developer wishes to determine if
his body of rules can lead to anomalies, and yet has not built a complete set of facts that
exercises the rules in the proper form to detect errors because the body of rules itself is in
flux. During the development of a KB, its rules and the facts these rely on are subject to
revision.

The control checkers actually keep track of more than just assumed facts during the course of
inference. Whenever the LHS of a rule is satisfied, all of its RHS actions are used to update
the residue. These are known as ramifications. The residue and ramifications together form
a state which is sometimes also referred to as a residue. In some cases the primitive,
assumed facts are referred to as findings, and the ramifications that result as hypothesis, since
they rest on the primitive facts. These terms should be familiar to those acquainted with
truth-maintenance systems. During the course of inference the residue is constructed by
assuming literals that occur only as findings (no hypothesis literal is directly assumed true or
false). That is, literals appearing on the RHS of a rule must be proven using the rule and are
not directly assumed true. This is a reasonable simplification, but it can be erroneous in cases
where a hypothesis literal is sometimes expected to appear as a free-standing fact.

Different variations upon residue proofs are possible. A useful variation is one that allows
the residue to be augmented with a collection of literals. The developer may require that a
reduced body of static facts should be used during inference. In this case the residue is
initially augmented with these static facts, and no assumptions contrary to them are allowed.
Static facts are usually those which are inherently part of the domain description, such as facts
describing connections in a circuit domain; they are essentially treated as rules with a trivial,
null precondition. On the other hand, dynamic facts (e.g. specific slot values) contained in
the knowledge base at any given time should be ignored when using residues. An example of
dynamic facts would be input values for a circuit component.
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11.4.4 Sequence Checker

The sequence checker determines violations caused by rules firing out of sequence with
respect to the precede(RI,R2) control constraint. Since the control checkers do not assume
any particular conflict resolution strategy, such a violation is flagged when it is possible for
rules in the second set R2 to fire independently of rules in the first set R1.

For the sequence constraint to be upheld, there must be at least one dependency between
each rule in the second set and the rule(s) in the first set. This dependency may be one or
more literals participating in an inference chain which do not appear as facts in the current
fact base, or on the RHS of any rule which can be satisfied independently of rules in the first
set. To determine if dependency exists, the sequence checker first uses the connection graph
as a filter for violations. If there exists a rule in the second set that is not connected to any
rule in the first set, there can be no dependency that will enforce sequence, and the second
rule is shown as a violation.

The connection between rules in the second set and rules in the first set is a necessary, but
not sufficient condition for showing such a dependency. There should not exist any other
way of satisfying a rule in the second set independent of the rules in the first set. To further
determine violations, a residue proof is attempted for each rule remaining in the second set
after the first filter. Rules contained in RI are excluded during this proof process. If such a
proof is successfully constructed (to a given maximum depth limit) then the developer is
warned of a possible control violation, by displaying the first residue that allows firing a rules
in R2 independent of any rule in RI.

11.4.5 Necessity Checker

Each necessary(RI,R2) constraint indicates that whenever a rule in the first rule set RI fires,
any rule in the second rule set R2 should be able to fire. The necessity checker determines
violations caused by rules in R2 which cannot fire, in contradiction to the constraint. In other
words, if any rule in RI, defined as necessarily triggering (directly or indirectly) all rules in
R2 actually causes them not to fire or is not sufficient to fire rules in R2, then a violation
occurs.

Since any consistent residue for any rule in RI should be sufficient for any rule in R2 to fire,
for each rule in RI, a consistent proof residue is generated. Then, using this proof residue as
a starting point, a proof is attempted for each rule in R2. If a contradiction is required to
prove a rule in R2, or if the necessary conditions for proving a rule in R2 are unsatisfiable
because of actions carried out during the proof of R1, then this pair of rules, one in RI and
the other in R2, is reported as a violation, indicating that in this fact-scenario where the rule
in RI fires, the rule in R2 could not be satisfied. The proof residue of RI for this specific
violation then becomes available for the developer to browse.

11.4.6 Exclusion Checker

For the exclusion checker, violations are determined when rules in a second set R2 can
possibly fire even though they are defined as excluded, using the excludc(R1,R2) constraint,
by rules firing in a first set R1. For one set of rules to exclude another set of rules, anti-
dependencies or contradictory requirements should exist between them. An anti-dependency
is a RHS action which actively prohibits the satisfaction of a LHS condition. Examples of this
are add(A) whenever cant jind(A), negation-as-failure, appears in the LHS of rules in the
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second set, or delete(A) whenever A appears as a condition in rules in the second set.

Contradictory requirements are cases where proving a rule indirectly requires the presence of
a contradiction, as A and not(A), or X < 5 and X > 10, or X E alien and X E earthling,
where alien and earthling are incompatible classes.

The residue proof procedure (as outlined in the interference section) is used to see if each
rule in the first set excludes all rules in the second set. The initial residue is augmented with
the LHS and RHS literals of a given rule (RI) in the first set. Then a residue proof (to a
user-specified depth) is attempted for each rule R2 in the second set. If such a proof is
possible, the violation is presented to the developer, indicating that rule RI does not, with
this residue, exclude the firing of R2.

11.4.7 Conditional Checker

The conditional check flags violations whenever the condition stated in the control constraint
exception(Condition,RuleSet) is true, but it is still possible to fire a rule(s) in the specified set
of rules. This constraint relies on anti-dependencies and contradictory requirements much
like the exclude(RI,R2) constraint, and thus the method for determining violations in the
conditional checker is similar. An initial residue is augmented with the literals appearing as
the first argument to exception/2 (the conditions). A residue proof is then attempted for each
rule Rn in the set of rules collected by the control constraint collector, using the second rule-
property argument of exception/2.

11.5 ENHANCED CYCLE CHECKER

We consider rigorous cycle checking a control check because cycles are one form of rule base
system control, the other being the If-Then action.

The original cycle checker, which is part of the Structure Checker (see section 5.6 of this
report), is an efficient first screen which finds a relatively small set of candidate cycles.
However, the original cycle checker does not make use of all the available semantic
information regarding legal values and data types for slots and class typing information. In
addition, the original cycle checker does not check for the presence of inconsistent
assumptions involving two literals in a cycle. That is, assuming both literal P and not(P) true
may invalidate the cycle. Furthermore, if the cycle contains any inequality comparisons, the
original cycle checker does not check that the set of comparisons is consistent. Clearly, a
cycle can not be genuine if one literal in the cycle tests for X less than 5 and another literal in
the same cycle tests for X greater than 10. Finally, the original cycle checker does not take
into account the propagation of variable bindings.

To enhance the cycle checker and to take advantage of the available semantic information
only requires a modification to the existing cycle checker. Once a set of candidate cycles is
produced by the original cycle checker, this set is passed on to the enhanced cycle checker
which acts as a second filter. Based on the propagation of variable bindings and the existence
of any semantic constraint information, the enhanced cycle checker verifies that a direct or
indirect candidate cycle is genuine. In our implementation, the enhanced cycle checker
operates independent of the fact base. That is, no facts need to exist in the data base for the
enhanced cycle checker to correctly verify the validity of possible cycles.
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11.5.1 Cycle Verification

The detection of phony cycles is essentially a two-step process. The first step involves the
propagation of variable bindings throughout the rules of a candidate cycle. At this point in
the analysis, several of the phony cycles may already be eliminated before we even consider
the existing semantic constraint information. The second step involves the use of the
semantic constraint information to eliminate more phony cycles from the candidate set of
cycles. It is at this stage of the cycle verification process where most of the phony cycles are
eliminated based on illegal values and data types, unrelated classes, inconsistent assumptions,
and inconsistent sets of inequalities.

11.5.1.1 Verification based on the propagation of variable bindings

Before information related to existing semantic constraints is utilized, a candidate cycle may
be invalidated when variable bindings are propagated across the RHS to LHS connections
between rules in a cycle. For example a predicate p on the RHS of a rule in a cycle may not
unify with the predicate p on the LHS of the next rule in the cycle because of differences in
the variable bindings. To illustrate how the propagation of variable bindings can invalidate a
cycle, consider the following example of an indirect cycle [RI,R2,R3,R1]. (Note in this and
all following variable binding examples: variable IDs, e.g., X and Y, are relevant only within
the context of a rule; the propagation of variable bindings between rules is based on predicate
ID, e.g., p and q, and argument position with respect to the predicate.)

RI: p(X,Y) -- q(X,Y)

R2: q(Z,yes) -4 r(Z,no)

R3: r(W,no) -- p(W,no)

The original cycle checker reports the cycle as genuine since the literals involved in the three
RHS to LHS connections unify with each other. That is, q(X,Y) unifies with q(Z,yes) because
we can bind the variable Y to the constant yes. The unification of the RHS literal r(Z,no) in
rule R2 with the LHS literal r(W,no) in rule R3 is trivial. Finally, the literal p(W,no) on the
RHS of rule R3 unifies with the literal p(X,Y) on the LHS of rule Ri since the constant no
can be substituted for the variable Y. However, after we propagate the variable bindings
across the rule connections, we get the following as one possible interpretation.

R ': p(X,no) -- q(X,no)

R2': q(Z,yes) -- r(Z,no)

R3': r(W,no) - p(W,no)

We can now see that the above indirect cycle is phony. Note that the value of the LHS literal
q in R2' must be yes because of the rule definition. Yet, once we propagate the variable
bindings, the value of the RHS literal p in R3' forces the value of the LHS literal q in R2' to
be no. Thus, the cycle is phony, and the enhanced cycle checker will report the phony cycle
at this stage of the analysis.
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11.5.1.2 Verification based on semantic constraint information

Assuming a candidate cycle passes the initial stage of variable binding propagation, we next
use existing semantic constraint information in an attempt to eliminate the cycle. Essentially,
three groups of semantic checks are implemented which analyze the rule literals of a potential
cycle for inconsistencies regarding legal values and data types, class membership, assumed
literals, and inequalities.

The first semantic check analyzes the rule literals of a cycle searching for illegal values and
incompatible data types. This semantic check utilizes facts in the data base of the form
semanticconstraint(< class> ,< slot> ,< restriction> ). In this representation, < class> is the
class of objects to which the semantic constraint applies, and < slot> corresponds to the
predicate name associated with a literal. The third argument, < restriction> , can be either
interval(inc,x,inc,y) meaning that the slot value is bound by [x,y], legalvalues([xlJ....xnJ)
meaning that the slot value must be in [xl,...,xn], kee datatype(Type) meaning that the slot
value must be the KEE data type Type, or datatype(Type) meaning that the slot value must be
the DEVA data type Type. To illustrate the role that legal values play in the verification of a
cycle, consider the following example of an indirect cycle [R4,R5,R4]. Assume that the data
base contains the following semantic constraints imposed on the slots p and q.

Given:
sem anticconstraint(classA,p,interval(inc,O,inc, 10))
sem anticcon strain t (classA,q, inte rv al( inc,6,inc, 15))

R4: p(X,Y) q(X,Y)

R5: q(W,Z) - p(W,Z)

From the semantic constraint information, we see that the value of slot p is bound by [0,10]
while the value for slot q is bound by [6,15]. Therefore, the indirect cycle [R4,R5,R4] is
genuine only when Y = Z is bound by [6,10]. As an example of how data type specifications
can affect cycle verification, consider the following candidate direct cycle [R6,R6].

Given:
sem anticcon straint(ClassA,p,datatype(integer))
sem an ticcon strain t(ClassA,q,datatype(person))

R6: p(X,Z), q(Y,Z) -* p(a,Z)

The semantic constraints specify that the value Z for slot p must be an integer. Yet, the
value Z for slot q must be a member of the class person. Thus, we have a conflict in data
types which invalidates the cycle.

Another semantic check is concerned with the presence of inconsistent assumptions in a

cycle. For example, consider the following candidate cycle [R7,R8,R7].

R7: p(X,Y), r(W,Z) -4 q(X,Y)

R8: q(X,Y), not r(W,Z) -- p(X,Y)

We notice that R7 contains the literal r(W,Z) on the LHS while R9 contains its negation,
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namely, not r(W,Z). In this case, the cycle is reported as possibly phony since the literals
r(W,Z) and not r(W,Z) must both be satisfiable for the cycle to exist.

The third semantic check analyzes the rule literals of a cycle and searches for a set of
inconsistent inequalities. For instance, consider the following case of a phony indirect cycle
[R9,R 1O,R9].

R9: p(X,Y), less(Y,5) - q(X,Y)

R10: q(W,Z), greater(Z,10) -+ p(W,Z)

Since the variable Y in RII unifies with the variable Z in R12, the cycle is reported as phony
because the value of Y = Z can not be both less than 5 and greater than 10.

11.5.2 Implementation

The enhanced cycle checker acts as an add-on module to the original cycle checker. Hence,
the first step in the cycle verification process is to obtain either a list of direct cycle candidates
or a list containing a series of rule names that represent an indirect cycle candidates from the
original cycle checker. To verify that a potential cycle is actually genuine, we need to first
construct a list containing the LHS and RHS literals of each rule in the cycle. This list is
constructed by traversing the cycle twice to make sure that all variables that can be bound are
bound during the second traversal of the cycle. For a cycle [RI,R2,RI], the list of cycle
literals takes the following form:

[LHS1-RHS1 ,LHS2-RHS2,LHSI -RHSI ,LHS2-RHS2,LHSl -RHS1]

While the list of cycle literals is being constructed, any literals encased by the keyword lisp
which equate a variable to a value are evaluated and removed from the resulting list. The
new value is substituted for the variable throughout the LHS and RHS of the rule.

The next step is to propagate the variable bindings across the RHS to LHS rule connections.
This is done using iselem(Lit,NextLhs,Justification), where Lit is the LHS equivalent of the
current rule's RHS literal which forms the RHS to LHS connection from the current rule to
the next rule in the cycle. Using iselem/3 rather than member2 allows us to correctly handle
synonymous literals that may be present in the cycle. It should be noted that the point in the
rule chain at which we start to propagate variable bindings contributes to the success or
failure of the variable binding propagation part of the analysis. To ensure a unique report of
either a genuine or phony cycle, variable bindings are propagated across the rule connections
beginning with the first rule in the chain. The process continues until the bindings have been
propagated through the rule chain twice. As we mentioned earlier, several of the candidate
cycles may be eliminated at this point in the analysis before the semantic constraint
information is even considered.

In the third step, we extract a set of inequality literals from the list of cycle literals, if any
exist. An inequality literal has the following form:

lisp([ Relation,Argl ,Arg2J),

where Relation is in [less,lessthanorequal,greater,greaterthanorequal,equal,notequal. We attempt
to evaluate both Argi and Arg2. If one of the arguments of the relation can not be evaluated,

102



the relation is excluded from the resultant set of inequality literals. Otherwise, the
nonvariable arguments are evaluated, and a new inequality is formed which is then appended
to the final result. We then use the predicate consistent-constraint-set/l to check the
consistency of the set of inequality literals.

After any existing inequality literals have been checked for consistency, we next need to
skolemize the list of cycle literals to prevent unintended bindings when the semantic checks
are performed. Skolemization is done using the numbervars/3 predicate, which binds unique
constants to free variables. As an example of skolemization, consider the following direct
cycle:

R13: p(X,Z), q(Y,Z) = > p(Y,Z)

After the literals p and q are skolemized, R13 becomes:

R13': p(skl,sk2), q(sk3,sk2) = > p(sk3,sk2)

We now have meaningful constants that can be used to represent legal ranges of values.

The final step in the cycle verification process utilizes existing semantic constraint information
to eliminate even more candidate cycles. These semantic constraints are supplied by the
developer and impose restrictions on the rule literals. It is at this point in the cycle analysis
where we check that each of the cycle literals contains a legal value and that each value is the
proper data type. In addition, class typing information is used for semantic checks involving
two or more memberof literals containing the same instance as the first argument. In such a
case, we need to check that the classes (the second argument of each member-of literal) are
related. Furthermore, if a potential cycle consists of rules containing both a literal and its
negation, the cycle is reported as possibly phony unless of course the cycle fails a subsequent
check. In the latter case, the cycle is reported as definitely phony.

As stated above, the enhanced cycle checker has been implemented in such a way that it
operates independent of the fact base. Thus, no facts need to exist in the data base for the
enhanced cycle checker to correctly verify the validity of potential cycles.

11.5.3 Explanation Facility

As part of the enhancement to the original cycle checker, an explanation facility which allows
the developer to see why a cycle was reported as either genuine or phony was developed.
The explanation facility is in the form of a graphical display and operates independently of the
enhanced cycle checker. The developer selects a rule chain that was reported as either
genuine or phony. For this rule chain, a pop-up window is then constructed.

If the cycle was reported as genuine, a possible chain of literals which validates the cycle is
displayed in the pop-up window. In addition, it is also beneficial to report (for genuine cycles
only) a range of legal values for each variable contained in the chain of literals, if such a
range of values is defined. For example, if the RHS literal p(X,Y) of one rule in a genuine
cycle unifies with the LHS literal p(W,Z) of the next rule in the cycle, we state a range of
legal values for Y and Z for which the cycle still remains genuine, say, when Y = Z is bound
by [0,10]. In addition, a set of possible instances and classes that X and W may assume is
also given, say, when X = W is in [mark,gunner,pilot].
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On the other hand, if the cycle is reported as phony, an explanation is written to the window
notifying the developer of the source of the failure. The reason for a phony cycle may be the
failure of a variable binding to propagate correctly or the failure of a check regarding a
semantic constraint imposed on a literal. This facility allows the developer to browse one
phony cycle at a time instead by being overwhelmed by information about all of the cycles at
the same time.
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CHAPTER 12

VALIDATION OF NONMONOTONIC REASONING

Ordinary logic is monotonic in nature. Any deduction from a base set of facts and conditions
can only result in the addition of more facts to the fact-base. Nonmonotonic systems allow
other revisions to an existing knowledge base state. As the result of adding or deleting a
fact to the fact-base, other facts which may have been previously provable suddenly lose
their support and consequently can no longer be considered true. Nonmonotonic reasoning
appears in various guises in expert system shells. These include delete actions in RHS
consequents of production rules, negation by failure in the LHS antecedents of rules, and
default values for attributes in frame-based systems.

Many of the effects of nonmonotonic reasoning are already being handled by the
checkers described in the previous sections; for instance, the conflict checker takes into
account delete actions on the RHSs of rules. The checkers discussed in this section cover
the effects of KEE's nonmonotonic new.world.action (NWA) rules which explicitly create new
worlds based on previous ones.

12.1 ELIMINATION OF USELESS NEW.WORLD.ACTION RULES

In KEE, deduction rules which conclude FALSE can be used to eliminate inconsistent,
improbable, or undesirable worlds. Worlds with FALSE in them will not be used any
further by the rule system.

In order to prevent an action rule from generating a "bad" world, the conjunction of
conditions in the new world action rule can not be more specific than the conditions of a
DEDUCE-FALSE rule. This checker reports on those NWA rules that can not generate
viable worlds, reusing some of the code that was originally written for the subsumption
checker.

For example, consider the following two rules:

runningon empty:

(IF
(NOT ( THE SPEED OF ?P IS 0))
(THE CURRENT FUEL AMOUNT OF ?P IS 0)
THEN DEDUCE FALSE)-

crashingplane:

(IF
(?P IS IN PLANE)
(THE CURRENT FUEL AMOUNT OF ?P IS 0)
(NOT ( THE SPEED OF-?P IS 0))
THEN IN.NEW.WORLD
(DELETE

( ?P IS IN PLANE)))

The rule running_onempty states that any time something is moving but has no fuel,
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then a bad world results. The rule crashingplane states that a plane that has no fuel
and is moving should be deleted from the knowledge base. This checker notices that
runningonempty will fire every time that crashing_plane does. Because
runningon empty is a "DEDUCE-FALSE" rule, crashing .plne is rendered useless, so the
knowledge engineer should modify or remove at least one of these rules.

12.2 DETECTION OF IMPOSSIBLE PLANS

In a "generate and test" problem, if a set of all test conditions is inconsistent, then no
solution will be found, so it is essential that test conditions must be consistent. In KEE,
this is equivalent to validating that the set of negations of DEDUCE-FALSE rules is
consistent. This checker performs that computation. It negates a clause in disjunctive
normal form, localizing the effects of negation to the literals. The resulting negated clause is
amenable to checking by the residue-based backward chaining interference checker.

The control checkers as well as versions of the redundancy and rule-inconsistency
checkers also use residue-analysis to uncover anomalies. In the residue analysis
approach to verification, one generates the conditions necessary to infer a goal and then
tries to determine whether those conditions are likely to occur simultaneously. A residue is
simply a KB-state from which the rules can derive some goal; therefore, one must be
careful not to require an inconsistent residue to demonstrate an anomaly. Inconsistent
residues are useless because from an inconsistent set of beliefs, one in theory can prove
anything. An example of an inconsistent residue is to assume within the residue that the
literal A is absent/unprovable, whereas A can actually be proven from the other literals
within the residue.

The backward chaining interference checker was originally designed to check for interference
among the subgoals (literals) of a single rule. Because the negated clause to be tested is
not found in any single rule, the backward chaining interference checker has been
generalized to report knowledge bases where negated clauses exhibit strong interference
- indicating that there are no possible viable new worlds via a declarative reading of the
knowledge base.

Because this checker deals with negated clauses, DEVA must take extra care to ensure that
the variables are bound correctly. In practice, most of the conditions of a "deduce false"
rule are likely to be positive literals, (e.g., "member of(Var, Class)") the negations of
which (e.g., "cant_find(memberof(Var, Class))") will not create bindings during
inference. This causes inaccuracy during inference.

Consider the example where the initial preconditions of the deducefalse rules are:

[memberof(X,'Ibr house'),haswing(X,true)I
[member_of(Y,bird) ,not(has wing(Y,true)) ]

which negates to:

GoodConds = [or([cant_find(mem ber of(X, l_br house)),cant_find(haswing(X,true))]),
or( canttfind(m ember o f(Y, bird)),has-wing(Y, true)1) I

If we had a KB of:
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member of(myhovel,'l br house'), haswing(my_hovel,false)

m em ber_of(tweety, bird), has wing(tweety,true)

GoodConds would be unsatisfiable, because of the semantics of cant-find.

To solve this problem, DEVA inserts a "memberof(Var, entities)" before each
occurrence of "cant find(memberof(Var, Class))" to provide the intended semantics for
variable bindings.

For the example, the new procedure transforms GoodConds into:

GoalConds = [member_of(X,entities),
or([cant_find(memberof(X, 1 br house)),cant_find(has-wing(X,true))]),
member-of(Y,entities),
or( [cant_find(mem berof(Y,bird)),haswing(Y, true)])]

which is satisfiable and has the intended semantics.

The user may choose whether to use facts during the formation of a residue. Using both
facts and rules during residue creation more accurately indicates whether a given KB can
give rise to unattainable goal conditions. Using rules alone indicates where trouble may
arise due to a modification to the initial facts of a KB. For example, consider an initial KB
consisting of:

--a* deduce false
--- -b deduce false
---a -- b
a
b

The negation of the preconditions of the "deduce false" rules is "a A b". Because we have
both of the facts "a" and '" in our KB, we can generate a "good" world. If we did not have
the facts in our initial KB, we would have had to prove "a A b" using the available rules.
Because there is no rule concluding "a", we assume it. There is a rule which concludes '"b",
but to fire it requires us to assume "-a", which contradicts our previous assumption.

This checker reports occasions of strong interference, i.e., when all possible proof trees
exhibit interference. Because it would be impractical to report every possible conflicting
proof, when the test conditions are inconsistent, a single representative inconsistent proof
is shown. When the test conditions are consistent, a consistent proof is displayed

12.3 VALIDATION OF NEW.WORLD.ACTION RULES

Syntactically, new.world.action rules are similar to ordinary (same.world.action) rules.
They have antecedents on the LHS and consequents on the RHS. As a result, they are
prone to many of the errors of same.world.action rules - they may be unreachable, logically
incomplete, etc.

Because new.world.action rules and same.world.action rules are syntactically similar, it was
unnecessary to devise a multitude of checkers specialized to handle new.world.action rules -
they may be validated using many of the checkers discussed in the previous sections. As an
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example, consider the two rules mentioned in the section Elimination of useless
new.world.action rules - crashing_plane and running_onempty. Because the LHS of
crashingplane is more specific than that of runningonempty and because they have different
RHSs, these rules will be flagged by the ambiguity checker.
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CHAPTER 13

CONCLUSION

13.1 DEVA, A GENERIC KBS VALIDATION SYSTEM

We have designed and implemented DEVA, a generic KB validation system which is
independent of any particular ES shell or KBS application. This independence was obtained
by providing a special translator for KEE which translates KBSs written in KEE into the
DEVA metalanguage format upon which the DEVA validation modules operate. DEVA is
thus theoretically applicable to the validation of KBSs written in other ES shells, such as ART
(Automated Reasoning Tool, Inference Corporation), CLIPS (NASA's C-Language
Integrated Production System), or others. We have demonstrated this genericness by
validating CLIPS-based ESs provided by NASA Johnson Space Center with DEVA using our
CLIPS translator developed under Lockheed's concurrent IR&D effort on Validation of
Knowledge-Based Systems.

The DEVA approach is unique. No other automated KBS validation system is ES shell
language, domain, and application independent. No other automated KBS validation system
provides a generic and powerful metalanguage for expressing application requirements and
constraints.

The DEVA metalanguage predicates are easy-to-use, powerful, and expressive; they allow the
KBS developer/designer to specify requirements and constraints about objects, relations,
rules, control, and behavior that his system must meet. All DEVA modules make use of
DEVA's metalanguage statements.

13.2 THE SUPERIORITY OF DEVA'S LOGIC-BASED APPROACH

DEVA provides validation functionality which by far surpasses that of KEE or other first-
generation ES shell languages. The V&V functionality provided by ES shell languages is
typically limited to integrity checking, making sure that the values of instances of concepts,
classes and binary relations, meet the requirements stated in the schema definition of the
concept and its slots.

The DEVA approach to creating generic validation tools is based on the fact that the
knowledge representation of rule-based and frame-based KBS shells is logic-based, though
typically not full lSt-order logic-based. Applications or models written in such shells are
therefore amenable to formal validation using a full lSt-order logic language (FOL) and
mechanical theorem proving. The validation of such systems can be further improved by
making use of a FOL enhanced with metaknowledge (higher-order knowledge) with semantic
information and integrity constraints (EFOL). This permits the system's designer to
formulate conditions, not expressible or efficiently enforceable in his ES shell language, that
the rules, frames, facts, and other components of a domain model have to meet. The DEVA
approach obtains this genericness through two components: a full EFOL-based metalanguage
and ES shell language-specific translators. DEVA uses a metalanguage with many
metapredicates to represent knowledge about knowledge. The metapredicates provide high-
level generic data structures to represent not only all constructs of KEE, but also constructs
of other current ES shells. Each validation requirement or constraint type is represented by a
separate metavalidation predicate (with that name) which checks the KB for the adherence to
the requirement/constraint. The DEVA metalanguage can therefore be easily extended to
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provide additional, as yet not incorporated or discovered, validation criteria. The
independence from a particular ES shell language is obtained by ES shell language-specific
translators.

DEVA has the following significant advantages in comparison to ES shell languages and other
validation systems. It is generic, independent of particular domains and applications,
amenable for reuse of validation knowledge, easily extensible, and usable for the validation of
shared or cooperating KBSs. DEVA is generic; it can validate KBSs written in any ES shell
language once a translator for the ES shell language has been written. It is independent of
particular domains and applications; knowledge required for the validation of domains and
applications is simply added to DEVA's metaknowledge base. This theoretically also permits
the reuse of validation knowledge for other applicatioas in a particular domain based on a
common representation of the validation vocabulary or by using the DEVA metalanguage
predicates synonymous and alias, which establish substitutability for properties/relations and
names. These primitives also permit the validation of shared KBs, once the equivalences of
the different expressions and objects in the KBs to be shared has been declared to DEVA.

The development of DEVA demonstrates the superiority of a logic- and metaknowledge-
based approach for the validation of KBSs written in ES shell languages.
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Appendix A

DEVA USERS' MANUAL

Lockheed Missiles & Space Company, Inc.
Lockheed Software Technology Center, 0/96-10, B/30E

2101 East St. Elmo Road Austin, Texas 78744

July 1990

This Manual was written for Rome Air Development Center under Contract F30602-88-C-
0130.
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Al. RESOURCE REQUIREMENTS

A 1.1. Software

Unlike previous versions of DEVA, this version is a standalone executable, and does
not need Quintus Prolog, or Quintus ProWINDOWS. The translator was built using Sun
Microsystems Common Lisp version A2.1.3 and IntelliCorp Knowledge Engineering
Environment (KEE) version 3.1.75. The operating system supported is SunOS 4.03.

A 1.2. Hardware
Sun 4 or Sun 3
A3 button Sun mouse and pad
Color monitor

A2. INSTALLATION

A2.1. Installing DEVA

On the installation tape there is the installation script called:

installdeva

DEVA may be installed on either a Sun-3 or Sun-4 using installdeva. If you plan to use
both of these machines you will need two different directories, and run installdeva separately
from each of them.

1) Select a directory in your system hierarchy for the installation directory deva.2. We
recommend placing it under /usr/local, although any directory will do. Unloading the
tape in lusr/local will create the directory:

/usr/local/deva.2

If you wish to use a directory other than /usr/local, substitute that directory for all
occurrences of /usr/local in the following instructions.

2) The tape you received was written using tar. When unloading the tape, you will need
write permission on the directory you choose and read permission for the tape device.
This may be best achieved by being logged in as root when you unload the tape. To
unload DEVA, load the tape into your tape drive and type:

cd /usr/local
tar xvf/dev/rmtO deva.2

where /de/rmtO should be the SunOS device name for the tape drive on your system.
This name shown here follows the normal SunOS device naming convention. If your
system is different, use your particular device name in place of /dev/rmtO. The tar
command will list all the files it unloads.

3) Usually, all files in the release will be owned by bin. To correctly access these files during
installation, and to make sure any generated files are owned also by bin, you should
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change your user-id to bin once the tape has been unloaded. The following command

can be used, provided that your are already logged in as root:

su bin

4) Having unloaded DEVA from tape, you are now ready to do the actual installation. The
installation procedure described below produces a subdirectory of /usr/local/deva.2 with
the executable files which are tailored to your precise hardware and UNIX operating
system 4.03.

To install DEVA, first go to the installation directory:

cd /usr/local/deva.2

and then type:

installdeva

5) To make DEVA generally available, the file deva from usr/local/deva.2 should be
copied or linked to a standard bin area on your system. Only that file needs to be
copied; the other files should remain where they are.

To use copy, type:

cp / usr/local/deva.2/deva /usr/local/bin

or to use link:

In -s /usr/local/deva.2/deva /usr/local/bin

or

In / usr/local/deva.2/deva /usr/local/bin

A2.2. Installing the KEE Translator

There are three main files that system support will have to modify to install the KEE
Translator:

1) kee-startup.lisp - a KEE system file under /usr/local/kee/misc/lisp where KEE
resides on the system

2) A-bin.lisp - a DEVA file that comes with the KEE Translator

3) uncompiled-VARS.lisp - a DEVA file that comes with the KEE Translator.

A2.2.1 Modifying the KEE system files

1) At the bottom of the file, kee-startup.lisp, type in the following LISP code, inserting the
directory path where you have the file A-bin.lisp stored:
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(if (probe-file '7< your path> /A-bin.lisp")
(load "/< same path as above> /A-bin.lisp"))

2) In A-bin.lisp change all paths to the pathname where you will store the KEE Translator.

In uncompiled-VARS.lisp make the following modifications:

set %%&deva-translator-path to '7< your path> /A-bin.lisp"

A3. USERS' GUIDE

A3.1 Running DEVA and KEE from the same Desktop

This section assumes some knowledge of the Sun Windowing System known as Sunview or
Suntools. If unfamiliar with Sunview or Suntools, read the Sunview Manual before
proceeding. From the UNIX prompt type:

sunview
or

suntools

To load DEVA, open a shell window and enter:

deva.exe

To load KEE, from another shell window type

kee

When the KEE desktop appears, it will take several minutes to load the ADVICE system
(used by the DEVA translator). During the KEE loading process, the user will be prompted
in the lower left corner typescript window:

Do you wish to load the Translator (y/n)?

The user should enter Y, and hit return.

A4. USER INTERFACE

Consult Chapter 3 sections 3.1-3.2

A5. GRAPHICS

A5.1 Connection Graph

Consult Chapter 3 section 3.3.1 Connection Graph

A5.2 Rule browser

Consult Chapter 3 section 3.3.2 Rule Browser
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A5.3 Unit Graph

C,nsult Chapter 3 section 3.3.3 Unit Graph

A6. TUTORIAL

This is a step by step tutorial on how to bring up DEVA, load a test knowledge base (KB)
from

1) the KEE environment

2) a saved KEE translation file

3) a KB saved in DEVA format

A6.1 The following KBs are supplied

1) flight A simple KB about military aircraft

2) circuit A full adder

3) myequals The transitivity of equals is explored

4) triage Some rules covering the Emergency Room

All KBs in KEE format, KEE messages format, and DEVA format are stored in the
subdirectory cases.

A6.2 Loading a KB into DEVA

A6.2.1 Loading a KB from KEE

First start the KEE and DEVA processes as described in Tutorial section above. In
KEE, move the mouse to the KEE key icon in the upper left hand side of the display.
Left-click to bring up a KEE KEY menu (the third icon in the upper left hand comer of the
KEE window). Select load KB option. Bring the cursor down to the Typescript Window
where you are being prompted for the name fo the KB you want to load. Type:

cases/ flight.u

When the KB has finished loading in KEE, a message will be printed in the KEE Typescript
Window

Knowledge base FLIGHT in /< your-path> /cases/flight.u loaded.

To load the KB from KEE to DEVA, left-click on

FLIGHT

in the upper left window Knowledge Bases. A KEE popup menu will appear called KB
Commands. Select
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Send KB to DEVA

When a KB is saved, a translation file of KEE messages will be constructed and saved
with the extension < KB name> -kee.msg as in flight-kee.msg.

To load a KB in KEE into DEVA, first move the cursor to the DEVA window, and left-
click on the data circular button in the options window so that is says KEE Messages.
Then in the KEE window left-click on the KB name in the Knowledge Bases window. A
submenu will appear called KB Commands. Left-click on the menu option Send KB to
DEVA. In the DEVA Report Window, a message will appear that lets the user know
that the translation/loading process has begun.

A6.2.2 Loading a KB saved in DEVA format

First move the cursor to the DEVA window and left-click on the data circular button in
the options window so that is reads DEVA Format. Then in the DEVA window, left-click
on the load button. A browser will appear on the right hand side of the screen listing the
KBs in the cases directory with a .pl extension, as in flight.pl. Move the mouse
the browser, and select the name flight.pl. In the DEVA Report Window, you should see a
message reporting the KB being loaded.

A6.2.3 Loading a KB saved in KEE Message format

First move the cursor to the DEVA window and left-click on the data circular button in
the options window so that is reads KEE Messages. Then in the DEVA window, left-
click on the load button. A browser will appear on the right hand side of the screen listing
the KBs in the cases directory with a -kee.msg extension, as in flight-kee.msg Move the
mouse to the browser, and select flight-kee.msg In the DEVA Report Window, you
should see a message reporting the KB being loaded.
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APPENDIX B

VALIDATION OF FRAME-BASED SYSTEMS

The value of the EVA validation methodology lies in the fact that the validation modules
developed according to it are applicable not only to rule-based systems but also to frame-
based systems. The reason for this is that logic-based and frame-based systems are equivalent.
Either can be represented in the formalism of the other. Patrick Hayes (1979) already
showed this for frame-based systems without 2d -order primitives, such as is-a-subset-of, for
example. Most current frame-based systems are variants of s~mantic nets whose
representation in a logic formalism requires lSt-order logic with a few 2n -order primitives.

Since we have heard repeatedly - even from cognoscenti in validation of knowledge-based
systems - that EVA (the Lockheed IR&D precursor of DEVA) applies only to rule-based,
i.e., logic-based systems, and not to frame-based systems, we shall simply show how KEE, an
admittedly frame-based system, can be translated into the EVA representation, a
representation which uses I '-order and 2n -order logic.

A KEE KB is a collection of units (frames), which are organized in a hierarchical class
structure. A unit may denote an object, a class of objects, a relation, a relational fact, a rule,
or a class of rules. Each unit has a set of slots whose values represent the unit's current state.
In addition to a value, a slot can also have attached facets (restrictions on values).

To repeat: The basic construct in KEE is a unit. A unit may represent or model a level-O or a
level-1 entity or term. For example, in

father-of(g000009,g000082)
person(g 000O09)
adult(g000082)

g000009 and g000082 denote (model) entities in the real world, let us say Harry S. Truman
and Margaret Truman. g000009 and goo000082 are thus level-O terms. Rather than using
meaningless surrogates like g000009 and goo000082, expert system shells allow meaningful
level-O representations like

father-of( Harry_STrum an ,MargaretTrum an)
person(Harry_STrum an)
adult(MargaretTrum an)

In an expression of the form a(b) or a(b .... ), the term a is a level-n term where n is higher by
one than the highest level of any term in (b) or (b...). In our examples father-of, adult, and
person are therefore level-1 terms.

In expressioris like slot-of(person,age), class(person), subset-of(person,adult), the terms slot-of,
class, subset-of are level-2 terms since person, age, adult are level-I terms.

Note that some level-I expressions can also be represented by means of level-2 expressions.
Thus some shells use person(Harry_S_Truman) whereas others prefer member-
of(person,Hary_S_Truman) or instance-of(person,Harry_S_Truman) to express that Harry S.
Truman is a person.
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In genera!, a formalism using terms at level-n can be represented in an nth-order logic.

KEE-Units

KEE supports units at three levels. Level-0 units are objects which are members (instances)
of a class, but are not themselves a class, i.e., have no members themselves; they are
represented as individuals or constants in ISt-order predicate logic. Level-2 units are
collections which have members, and which may have superclasses and/or subclasses. (They
are also themselves members [inst nces] of the KEE unit cjasses.) They are represented as
predicates in 1st-order logic or 2n -order constants in a 2n -order logic. Level-3 units are
KEE-system -specific objects, denoted by KEE's reserved primitives, such as classes, entities,
slot, generic units, superclasses, member of, and others; they are represented as predicates in a
2 -order logic. KEE also treats rules as units. In the context of this discussion, we take their
translatability for granted.

The translation of KEE terms into formulas, i.e., facts, of ISt-order and 2nd-order logic, is
straightforward. (In the following translations, we will represent level-0 terms in all lower-
case, level-I terms with initial capitalization, level-2 terms in all upper-case.)

A level-0 unit becomes a ISt-order constant; its predicate is the KEE term appearing after
MEMBER OF.

KEE EVA

UNIT: cutty.sark Square.rigged.sh ips(cutty.sark)
MEMBER OF: Square.rigged.ships

A level-I unit becomes a 2nd-order constant; its predicate is the KEE term CLASSES.

KEE EVA

UNIT: Square.rigged.ships CLASSES(Square.rigged.ships)
MEMBER OF: CLASSES

KEE SUPERCLASS information can be represented by a rule in logic. It is represented by
ISA in EVA.

KEE EVA

UNIT: Square.rigged.ships
MEMBER OF: CLASSES
SUPERCLASSES: Commercial.ships, Sailing.ships (x) Square.rigged.ships(x)-Commercial.ships(x)

(x) Squ are.rigged.sh ips(x) -- Sailing.sh ips(x)
ISA( Squ are.rigged.sh ips,Com m ercial.sh ips)
ISA( Squ are.rigged.sh ips, Sailin g.sh ips)

Slots

KEE distinguishes two kinds of slots: own-slots and member-slots. A level-O KEE unit
can only have own-slots; a level-1 KEE unit may have both own-slots and member-
slots. Own-slots cannot be inherited. Own-slots of a level-0 unit are level-I predicates;
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own-slots of level-I units are level-2 predicates. Member-slots are also level-I
predicates. They are inheritable. When they are inherited by a level-0 unit, they
change into own-slots. In other words, a level-0 unit has only own-slots and no
member-slots.

KEE own-slots of level-0 units become 1St-order predicates, own-slots of level-i units
become 2 -order predicates; their first argument is the KEE unit, their second, the
value(s) of the KEE term VALUES.

KEE EVA

UNIT: cutty.sark
MEMBER OF: Square.rigged.ships
OWN SLOT: Cargo.carried FROM Ships Cargo.carried(cutty.sark,steel)
VALUES: steel

UNIT: Square.rigge !.ships
MEMBER OF: CLASSES
SUPERCLASSES: Commercial.ships, Sailing.ships
OWN SLOT: MOST.VALUABLE.CARGO MOST.VALUABLE.CARGO(Square.rigged.sh ipsl
VALUES: gold

KEE member-slots result in lSt-order rules.

KEE EVA

UNIT: Square.rigged.ships
MEMBER OF: CLASSES
SUPERCLASSES: Commercial.ships, Sailing.ships
MEMBER SLOT: Crew FROM Sailing.ships (x)Ey (Square.rigged.sh ips(x)-Crew(x,y))
VALUES: unknown

Facets

KEE slots have facets which mostly provide information about requirements and
constraints that slot values need to satisfy. Of importance for translation into logic are
the facets Valueclass, Cardinality.max, and Cardinality.min. The KEE facet inheritance
contains information for KEE on how to propagate member-slot data from a class to
its subclasses and members. Inheritance requires no special translation mechanism
since the inherited information is available at each such subclass and member; i.e., it
will be translated as a member-slot (for classes and subclasses) or own-slot (for
members). The KEE facet comments is for recording user comments and is not
translated into logic. All KEE facets of interest are translated into 2 n-order facts in a
straightforward manner.

The specification operator of the KEE facet ValueClass is translated into the
corresponding EVA level-2 predicate whose first argument is the KEE slot name,
followed by the name of the KEE unit, followed by the value(s) of the KEE
ValueClass.
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KEE EVA

UNIT: Bird.type
MEMBER OF: CLASSES
MEMBER SLOT: Selected.bird FROM Bird.type
VALUECLASS: (NOT.ONE.OF green .finch ILLEGALVALS(Selected.bird,Bird.type, [green.11

kestrel kestrel,
black.backed black .l*

bald .eagle) bald.eagle]1)

The KEE facets cardinality.min and cardinality.max are combined into the EVA level-2
predicate NUMERICALRANGE.

KEE EVA

UNIT: Birds
MEMBER OF: LOCAL.FAUNA, CLASSES
MEMBERSLOT: Local.types FROM Birds
VALUECLASS: (LIST)
CARDINALITY.MIN: 3 NU MER ICA LR A NG E(Local. types, Birds, 3, 7)
CARDINALITY.MAX: 7
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APPENDIX C

A BRIEF HISTORY OF VALIDATION OF KNOWLEDGE-BASED SYSTEMS

It is evident, particularly in the Department of Defense, that KBSs cannot gain wide
acceptance without some formal method of proving the correctness of an application KB.
Since KBSs are usually developed without any pre-written requirements, it is not clear what
validations should be performed for them. In the early attempts of validating KBSs, people
came up with the general concepts of consistency and completeness. These concepts may not
be explicit requirements of any particular KBS, rather, it is a general belief that if a KBS is
not consistent or complete, it probably will not work correctly, at least for certain cases.
These concepts are useful even though there are no standard definitions of them. For
example, some authors restrict their definitions to rule pairs, others to propositional rules,
i.e., rules without variables.

Suwa et al. [1982] deal with consistency and completeness of rules written in ONCOCIN, an
EMYCIN-like expert system for oncology. To speed up the checking process, related rules are
clustered and checked together.

Nguyen et al. [19871 deal with inconsistency involving pairs of rules, and consider dead-end
rules and unreachable literals as some kind of incompleteness. They also detect equivalent
predicates by detecting cycles in two rules.

Cragun and Steudel [19871 use a method based on logical decision table checking to
determine the completeness and consistency of KBs. They also limit themselves to
propositional logic, i.e., rules without variables. Their method constructs a decision table for
all rules in the KB. Each row of the table is either a condition or an action, and each column
denotes a rule. There is an entry at row i and column j if rule j has the condition or action at
row i. Ambiguity occurs when the same set of logical conditions satisfy two or more different
rules that have different actions. Redundancy occurs when the same logical conditions satisfy
more than one rule, but the actions are the same. Completeness is present when all possible
combinations of logic are addressed by the rules in the table.

Ginsberg [1988] generates sum-of-products (disjunctive normal form) for each conclusion to
check KBs for inconsistency and redundancy. Each product represents possible input data. A
product is redundant if it is subsumed by other products. A product is inconsistent if it
contains conflicting facts. This approach is restricted to rules of propositional logic, i.e.,
without variables.

The most common validation approach deals with the functional behavior of KBSs. Since it is
often very hard to specify the functional requirements of a system, the KBS is used as an
approximation of the functional specification of the system. In this approach, the KBS is
tested (evaluated) by running the KBS on a given collection of cases of input data. The KBS-
generated output data are compared with the given (expected) output data. If there arc any
discrepancies, the rules in the KBS are refined. If the expected output data are not readily
available, the KBS generated output data are evaluated by inspection. Davis [1979], Politakis
and Weiss [1980, 19841, Weiss and Kulikowski [19831, and Ginsberg and Weiss [19851 all
take this approach. (The Rule Refiner of DEVA will give the developer similar capability.)

At the Lockheed Artificial Intelligence Center, we started an Independent Research project on
Validation of Knowledge-based Systems in 1986. Our goal was to develop flexible KBS
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validation tools. We achieve this goal by using the meta-knowledge approach [Stachowitz et
al. 1987a, 1987b, 1987c). Meta-knowledge, or knowledge about knowledge, describes
constraints on the knowledge that can be used for redundancy, consistency, completeness and
correctness checking. The power of using metaknowledge derives from the fact that validation
criteria for applications cannot be standardized: each application has its idiosyncratic
statements that need to be validated, but these validation criteria can be formulated and
represented by means of the meta-predicates.
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MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 31) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C 3 1 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.


