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CRITERIA FOR CHOOSING THE BEST NEURAL NETWORK
PART I

John E. Angus
Department of Mathematics

The Claremont Graduate School
Claremont, CA 91711

ABSTRACT

This paper considers the problem of determining a parsimonious neural network for use
in prediction/generalization based on a given fixed learning sample. Both the classification and
nonlinear regression contexts are addressed. Following an introduction to the problem and
survey of past research on model selection techniques in other statistical settings, algorithms for
selecting the number of hidden layer nodes in a three layer, feedforward neural network are
presented. The selection criterion attempts to "grow" the network beginning with a small initial
number of hidden layer nodes (as opposed to pruning a relatively large network). For the
nonlinear regression problem, the method is based on cross-validation estimates of the prediction
mean prediction error for the candidate networks. For the classification problem, the method is
based on resubstitution estimates of the misclassification probability for the candidate networks.
Also considered is the use of principal components analysis on the training set in order to reduce
the dimensionality of the input vector prior to "growing" the parsimonious network. Test cases
and applications of the methods described herein will be included in a sequel (Part II), to be
published separately, to illustrate the effectiveness of the methods.

1. INTRODUCTION

An artificial neural network (ANN) can be view ed as an analog computational device that

implements a potentially highly nonlinear function. That is, an ANN simply computes the

transfer function g in the relationship y=g(x), where g is a suitably well behaved (e.g.

measurable, continuous, differentiable, etc.) mapping from the n-dimensional hypercube [0,1] n

to the m-dimensional real numbers, Rm. A typical ANN, with five input nodes (neurons), three

middle layer nodes, and two output layer nodes, is depicted in figure 1. A simplified

explanation of the operation of this type of ANN, known as a single hidden layer feedforward

ANN is described as follows.

The values of the components of an input vector x are "presented" to the "input layer

nodes" of the network. Linear combinations of these values are formed using the

"interconnection weights" wMi , and "fed forward" to the "middle layer nodes," each computing a
in

function Fm , typically defined by the logistic "sigmoid" function F(v) = exp(v)(l+exp(v)) -1, on
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its input. Linear combinations of these middle layer outputs are then formed using the

interconnection weights wO M and fed forward to the "output layer nodes" where a (typically, the
ii

same) function F is applied to produce the final output y. Mathematically, the transfer function

g is given by

Y= Fo(jOMm WI
i F 1k (1)

where often, but not necessarily, Fo=Fm=F, yi is the ith component of y, and xk is the kth

component of x. A powerful feature of such an ANN is its ability to approximate a wide variety

of transfer functions g by varying the number of input, middle, and output layer nodes and the

corresponding interconnection weights. In fact, it was proved (Kolmogorov, (1957)) that if g is

continuous, then g has an exact representation of the type that could be implemented by a neural

network of the type in figure 1, providing that the individual neurons be allowed to compute

possibly different (not necessarily sigmoidal) transfer functions. In fact, this theory even

specifies the number of middle layer nodes, (2n+l), if n is the number of input layer nodes (i.e.

the dimension of the input vector x). Using the mathematical tools of functional analysis, it has

been proven that, loosely speaking, fairly general functions g can be approximated to any

desired degree of accuracy using the sigmoidal logistic function F for Fm and F in (1), and by

increasing the number of middle layer nodes (see Cybenko (1989), for example).

Yl Y2

OM wO3M

w II w 35

x 1 x2 x3 x4 x5

Figure 1. A single hidden layer feedforward ANN.
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Because of this ability to approximate a wide range of multivariate functions, ANNs have

been used as nonlinear regression functions for the purpose of developing predictive

relationships. A formal mathematical model for nonlinear regression is

y = g(x; 0) + C (2)

where y, x, and E are jointly distributed random m-, n-, and m-vectors, respectively, £ is

independent of y and x, E(£) = 0, Cov(c) = E(u t) = X, and 0 is a vector of unknown parameters

(the interconnection weights, in the case of an ANN). See, for example, Seber et.al. (1989) and

Gallant (1987) for extensive treatments of models such as (2). One objective in using the model

(2) is to first determine an estimate of the unknown parameter 0 based on a random sample from

the joint distribution of (x, y), and then use this estimate in the model to predict responses y at

new inputs x. For ANNs, this procedure is carried out in principle by "training" the network on a

sample of exemplars (X 1' Y 1), .... (XN, YN )' where X i and Yi are n- and m-dimensional vectors,

respectively. An approach to this training is to determine the interconnection weights that

minimize the mean squared error

Q = (1/N) N 1(Yi-Oi)t(YiOi) (3)

where 0. is the actual output vector displayed on the output layer of the ANN when input vector

Xi is presented to the input layer, and "t" signifies matrix transpose, interpreting the vectors

involved in (3) to be column vectors. Note that 0. will generally differ from Yi due to random

error (the "e" in equation 2) and the approximation error (since the g in equatin 2 may not be

exactly of the parametric form implementable by an ANN; i.e. of the form of equation 1). The

procedure (with variations) that is commonly used in determining the connection weights by

minimizing (3) is the back-propagation algorithm (Soulie et.al. (1987), Hecht-Nielsen (1991),

Hertz, et.al. (1991), and Rummelhart et.al. (1986)). A significant advantage of the

back-propagation algorithm is that the network itself can carry out the minimization and

estimation procedure, without external software, making it possible to imp-ement a neural

network completely in hardware or firmware. Having trained the network on the set of

exemplars, it is then used to predict new responses based on new inputs. That is, the network is

used to generalize.
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Great success has been achieved in using neural networks in this fashion in many

engineering, economic / financial, and biomedical applications. Recognition that the use of

ANNs in this context fits within the framework of nonlinear regression analysis appeared in the

literature fairly recently, although this was apparently understood by ANN researchers much

earlier. Angus (1989) gives an exposition of this connection along with an interpretation of the

back-propagation algorithm as a version of stochastic gradient descent. White's (1989) landmark

paper was the first to show that in the context of statistical estimation theory, the back

propagation estimator of the interconnection weights are relatively inefficient (i.e. have larger

variance) compared to standard nonlinear least squares estimators, and presents a method (which

amounts to taking one Newton-Raphson iteration step from the back-propagation estimators) for

reducing the asymptotic variances of the back propagation estimators down to those of the

nonlinear least squares estimators. Further along the lines of improving the statistical efficiency

of back propagation estimators, Angus (1991) gives a Monte Carlo data generation method that

reduces the mean squared error of the back propagation estimators when sufficient statistics are

available.

Another use of ANNs that has shown promise, especially in the area of medical

diagnosis, is in classification. Here, (X, Y) is assumed to be a random sample of size 1 from a
nprobability distribution p(A, j), where A is a Borel subset of R , and jE 1, ..., K}. Here, j is

assumed to signify one of K distinct populations ("classifications", or diagnoses), and,

conditional on Y=j, X has a distinct probability distribution on Rn. That is, P{Xe A,Y=j) =

p(Aj), and P{XEAIY=j) = .Ap(dxb), where p(AI) = p(AJ)/(j) and 7(j) is the marginal

probability that Y=j (i.e. that "X comes from population j"). In the classification problem, X is

observed (without its corresponding Y) and one must decide the population from which X came.

That is, one must predict Y based on observing X. If p(*[j) has a density f. with respect to

nLebesgue measure on R , and X=x is observed, then the optimum decision is to classify X into

the population j for which i(jx)=f.(x)1T(j) Klf.(x)Ir(j) is maximal. This latter quantity is

P(Y=jlX=x), and this decision rule is called the Bayes rule. In practice, neither the ir(j)s nor the

fjs are known, but a training sample (X1 , Y1) ..... (XN, YN ) is available, and an approximation

to the function t(jjx) is "learned" by an appropriate ANN using, for example, back propagation
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to minimize (3). Such an ANN would employ sigmoidal transfer functions at the output nodes

that restrict the outputs to lie in [0,1] (such as the logistic sigmoid function), and the output layer

would have m=K output nodes. The output Y=j would be designated by fixing the jth output

node at 1, and the other nodes at 0. The network thus trained would then be used to classify new

X values into one of the K populations. Other approaches to this classification problem include

discriminant analysis, in which the Xs are assumed to come from one of K different multivariate

normal populations, kernel density estimation, kth nearest neighbor rules, and classification /

regression trees (CART). Breiman et.al. (1984) is the definitive reference for CART methods,

and also gives a brief description of the first three methods. An ANN that directly attacks the

kernel density estimation problem is studied by Marchette and Priebe (1989).

Despite its success in many sophisticated applications, this "training-generalization"

application of ANNs has a serious drawback analogous to the misspecification problem

(underfitting or overfitting) in classical statistical models, as exemplified in figure 2 for the

nonlinear regression application. If the ANN architecture has enough middle layer nodes, then

by forcing the mean squared error (3) to be small enough, the network can be made to collocate

the exemplars exactly. Since the responses Yi in the exemplar set typically have measurement

error according to the model (2), this means that the ANN can be made to force the

approximating surface to pass through the points (Xi , g(Xi;O)+ i ) i=l, ..., N. This is what is

meant by "fitting the noise," and it leads to a regression surface that is irregular (i.e. "bumpy")

and hence poor at generalization. Similarly, if there are too few nodes in the middle layer, then

the ANN will be a poor approximation to the true regression surface, being able to achieve only

limited generalization capability. White (1981) discusses the misspecification problem for

general models of the form (2).

Acoession For
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Figure 2. The effects of overfitting and underfitting.

Selection of the proper size of the network is thus of vital concern in applications, and is

the major thrust of this paper. Following is a discussion of techniques that are used in other

modeling contexts to select the proper parametric model, and general principles that aid in

attacking the problem for ANNs.

2. APPROACHES AND PRINCIPLES IN MODEL SELECTION

Model selection has been studied extensively by many researchers for a variety of

statistical models related to (2). For intrinsically linear models, selection is tantamount to

selecting the proper regressor variables (e.g. linear, quadratic, cross product, etc.) along with the

dimension of the unknown parameter space. For example, Mallows (1964, 1973) considers the

general linear model, and the Mallows measure Cp is extensively used in computerized stepwise

linear regression packages. See also Myers (1990) for specific implementations and derivations

of C . Model selection is also of extreme importance in time series models where prediction

and/or interpolation are of interest. See, for example, Shibata (1976), Bhansali (1978), Hannan

et.al. (1979), Wei (1987), and Hemerly et.al. (1989) for model selection criteria analysis for

autoregressive and stochastic regression models under minimal distributional assumptions.

Hemerly et.al. (1991) have also studied the problem of determining the order of an
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autoregressive model when there is no a priori upper bound on this order.

When more specific distributional and parameter information are available (i.e. the

distribution of the error vector E in (2), and prior information concerning 0) several authors have

found optimal model selection criteria in a Bayesian context. Among these, see Atkinson (1978)

and Smith et.al (1980). Similarly, Schwarz (1978) has found a fairly simple criteria to apply in

selecting a linear model from a subset of linear models (with bounded dimensions) that is

asymptotically optimal when the observables follow a regular exponential family of

distributions. Schwarz's criteria has been named the Schwarz Information Criteria (SIC), and

will be discussed further later on. Other authors have studied the general problem of model

selection based on various notions of information. See, for example, Akaike (1969, 1973, and

1974) (the "Akaike Information Criterion, or AIC), Stone (1977b, 1978), and Rissanen (1976,

1986).

A controlling theme in these investigations in model selection is the determination of a

measure of prediction accuracy, or model fit, that takes into account both prediction variance

and prediction bias, the former tending to increase with model complexity (e.g. the number of

terms in the linear regression function), and the latter tending to decrease with model complexity.

Based on a training sample, the "best" model is then selected to achieve some optimum balance

between these competing quantities as estimated in some fashion from the sample. Naturally, the

more information available concerning the distributional structure of the error term in (2), the

more efficient is the model selection criterion in terms of accuracy and sample size necessary to

achieve a decision. For example both the AIC and SIC (which is asymptotically optimal), require

that the joint likelihood function of the observables be available and tractable in order to be used.

In contrast, the PLS (Predictive Least Squares) criterion discussed in Hemerly et.al. (1989) for

determining the order of an autoregressive model, and Mallows Cp measure for linear models,

are computable from relatively simple sample characteristics. By nature, however, all the above

methods are computationally intensive, as they require fitting many candidate models to the

training sample in order to make the final selection.

In the context of classification models, Breiman et.al. (1984) give extensive discussion

and methods for growing and pruning classification and regression trees (CARTs) based on
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cross-validation estimates of misclassification probabilities. There, the estimated

misclassification probability (a measure of accuracy) is traded off against the number of terminal

nodes of the tree (a measure of complexity).

Some specific work for ANNs has been done in the area of network size selection. 'I .1ese

approaches generally fall into two categories: those that attempt to "prune" a large network of

connections and/or nodes, and those that attempt to "grow" a larger network starting with a small

network. The work in the latter category is mostly related to ANNs with nodes that take values

in a discrete set (e.g. {0,1 }, or 1-1,1 }). See, for example, Marchand et.al. (1990), Frean (1990),

Mezard et.al. (1989), Sirat et.al. (1990), Fahlman et.al. (1990), and Gallant (1986). In the first

category, Sietsma et.al. (1988), Hinton (1986), Scalettar et.al. (1988), Kramer et.al. (1989),

Hanson et.al. (1989), and Chauvin (1989), have made contributions, attacking the problem by

modifying the training rule (i.e. back propagation algorithm) to consider a penalty term in (3) to

discourage complexity (complexity increases as number of interconnections and / or nodes

increases). Other novel approaches to ANN selection and design include the use of genetic

algorithms, which draw analogies with genetic natural selection for evolution and survival in

biological populations (Miller et.al. (1989), and Harp et.al. (1990)).

These aforementioned approaches are either not suitable for continuum-valued input /

output neurons, or they require extensive modification of the back propagation algorithm, a

luxury that may not be feasible nor desirable (for example, if the ANN is implemented in a
"canned" computer routine, or in hardware/firmware). In addition, they do not attempt to

optimize the network with respect to some statistical measure of prediction error, and do not
"preprocess" the input vector before presenting it to the ANN. The purpose of preprocessing

would be to eliminate redundant information in the input vector, attempting to encompass most

of the variability in the input sample space with far fewer dimensions. This concept is used

successfully in human learning, the preprocessing initially accomplished via teachers and

mentors, until the same level of input discrimination is learned by the pupil.

It is therefore proposed in this paper that the selection of an ANN for a given application

and training sample be accomplished in two stages. The first stage involves preprocessing of the

input data to achieve reduction in dimensionality if possible. The second stage is to grow an
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appropriate ANN, without modifying the back propagation algorithm, that is of the "best" size in

terms of balancing prediction variance with prediction bias (when regression structure is present

as in (2)) or balancing misclassification probability with a measure of network complexity (when

classification is the goal). More will be said concerning these tradeoffs later on. It is instructive

at this point to review the principles behind some of these past techniques (e.g. of Schwarz

(1978) and Mallows (1973)) for their pedagogic value and in order to motivate the algorithms

that will be proposed later in this paper for the second stage of selection of an ANN. The first

stage, the preprocessing of input data, will be accomplished via principal components analysis

(see Rao (1973), for example). A relatively new technique, SIR (sliced inverse regression, Li

(1991)), is also a feasible tool in achieving the dimensionality reduction of inputs in the case

where the ANN yields 1-dimensional output. Further development of this concept will be a topic

for future research.

Mallows' C measure will now be reviewed briefly. For the moment, consider the
p

full-rank linear model Y=X13+e where Y is an Nxl observation vector, X is an Nxm matrix of

"independent" variables, 03 is a mxl vector of unknown parameters, and E is an Nxl error term2 A

that satisfies E(e)=O, Cov(E)=a2I. It is well known that the least squares estimator of 3 is P =

(XtX)-IXtY, and this estimator is the best linear unbiased estimator of 3. Suppose O<p<m, and

that X and 3 are partitioned as X=(X IX 2 ), f3t=(P1t311), so that Y=X1 31+X2 32 +e where X1 is

Nxp, X2 is Nx(m-p), 11 is pxl, and 032 is (m-p)xl, and that we fit an underspecified model by

A t12'mgtt = estimating = (Xt X tY. Denote the rows of Xlby x ., x Thenassuming that A3=0 e1 1

the predicted value of Yi' the ith component of Y, based on this fitted model, is Ai ti The

2.total expected prediction error, summed over the data points and normalized by C2 , is
^ 2A

( AMi
N  /N 2  N var(Yi ) +  bias 2 Yi

N 2() N2Ny y 4E 1 (yi-EYi 2 /) 2  =IMSE(Yi ) /  = (4)

Ai) = A 2 t l) N t t
Notice that var(y i) = Cov(J)x. =a x (XIX 1) x and, sincex iv(xx1 i = XiX,

N xt(XX)- xi = N tr[(XtX ilxixt] = tr[(XtX (XtXI)] =p,

where "tr" denotes matrix trace, so that (4) becomes
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N 2A 2

Writing the vector of biases as Y-Xp = XIPII-Xl131-X2 32, the sum in (5) can be written as

N -2 A X A A-=Ibias (yi) = (E(XI I)-XI PI-X2P2 ))t(E(X I I)-XIPI -X2P")

=(X 2 32 )t(IX (XtX1)- 1Xt)X 2 132  (6)

with (6) following since the matrix in the quadratic form is idempotent. Notice now that the

expected value of the error sim of squares in fitting the underspecified model is given by

E(SSE) =E( (Y-X 1I3 I)t(y-X1I 1)) = r[E((I-Xl(XtXlx)YY)"]

(Np [ +2x jx(iN1 ) 1XI )(t2I+(I _XtI] =t X(N)-)I (X ) 2 )t(IXX1 (X= 02 P

=a (N-p) + 4- =bias (yi),

so that, letting s2= SSE/(N-p), (4) becomes

p + (N-p)(E(s )-a 2)/ 2 . (7)

2 tA2If an independent estimate of a is available, call it a , then (7) can be estimated by the Cp

statistic (Mallows (1973)) given by

C = 2_A2 A 2C = p +(N-p)(s -C )/ . (8)

The importance of the statistic (8) is that it expresses the tradeoff between the number of terms in

the regression model (p) and the prediction bias, and it is used in selecting the best regression

model by selecting the model with the lowest C value among candidate models. This selectionP

is usually carried out graphically by fitting the candidate models and plotting C versus p, and

selecting the model whose p is closest to the line Cp=p.

The PRESS (prediction sum of squares) method (see Myers (1991), ch. 4, for example)

is based on the principle of considering the prediction error of a fitted model (i.e. fitted to a

training sample) when used to predict the value of a new, independent exemplar. This principle

also underlies the derivation of Akaike's (1974) AIC and (1969) FPE (final prediction error)

criterion, as well as the PLS criterion studied by Hemerly et.al. (1989, 1991). The basic idea is to
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define a measure of the prediction error for the fitted model with respect to a new, independent

exemplar, and then develop a cross-validation estimator of the measure by splitting the training

sample iito a fitting sample and a validation sample. The PRESS method is described as

follows.

Assume the same linear model setup as in the discussion of Mallows' Cp statistic. For

each i, i=l, ..., N, remove the pair (xi, yi) from the training sample and fit the least squares

A
estimator of P based on the N-1 remaining points. Call the resulting estimator P_i, to designate

A tA
that the ith data point has been removed. Form the prediction Yi,-i = xi of Yi i=1, .... N. Note

A

that neither xi nor Yi have been used in determining " The PRESS residuals are defined by
A

eii= yi-Yi,-i, i=1, ..., N, and the PRESS is defined to be

PRESS=N__ e2 2

PRESS contains both components of prediction variance and prediction bias, as does C . An

advantage of the PRESS residuals is that they are particularly sensitive to points where

prediction is poor, while ordinary residuals (which measure empirical fit) are not. In fact, it can
tAbe shown that the PRESS residuals are related to the ordinary residuals ei = yi-xip by the formula

e. I=ei/(1-xt(XtX)-lxi) as follows. Let h..=xt(XtX)-lx.. Then, by definition, the ith PRESS
1,-i= 1 1 1 11 1

residual is

= y..x[xtXxxt]" I (XtY-xy.ei,-i Yi i. i l.J i 1

By the Sherman-Morrison-Woodbury Theorem (Rao (1973)),
(xtx - 1 xx(XtX)-1

Ext X-xix t 1 =( xtx)- I x- iX )
[x~xx~xj= (XX) +1-h..

11

so that

-l Xt ) xjx t(X tX)- t I l t (Xt )1x
ei,_i= yi-xt(XtX)-l xtY+x xt (Xtx))-lix( Xt y x(Xt)-lxix(XtxxiYi

-h. 1-h..
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A A 2 AYil -i)Yi(1 -hii)+hii ( 1 -hii)Yi-hiiYihiiYi Yi-Yi e i
1-h.. 1 -h 1-h

11 11 11

Thus, the PRESS can be computed without fitting the N-i "leave-one-out" regressions by the

formula
N ei  2

PRESS = .

and the PRESS residuals are seen to be ordinary residuals, inflated by (1-hii)1 , where

h..=xj(Xt X)- 1 xi is, apart from a missing factor of a 2 , the ordinary prediction variance. Hence,
where prediction is poor (i.e. hii close to 1), the PRESS residual is greatly inflated. When

several candidate models are under consideration, the one with the smallest PRESS is the model

of choice under this criterion.

Mallows' Cp and the PRESS residual methods were derived under minimal

distributional assumptions on the error vector e, but with the fairly strong assumption that the

regression was intrinsically linear. Essential use was made of this fact in computing Cp, and for

deriving a simple computational formula for the PRESS statistic that avoids fitting all the linear

regressions. When more specific information is available, the optimality of these selection

procedures can be improved, and an (asymptotically) optir p. -cedure can be derived. This

was accomplished by Schwarz (1978) as follows.

Suppose that X1, ..., XN are a random sample from a regular exponential family of

distributions with probability density, with respect to a a-finite measure g on the sample space,

given by f(x;O) = exp( ty(x)-Tj(O)), where 0 ranges over the natural parameter space E, a convex

subset of the d-dimensional Euclidean space, and y is the sufficient d-dimensional statistic. The

competing models are assumed to be defined by restricting the parameter space to subsets of the

original E) of the form L.pI, where each L. is a d.-dimensional linear submanifold ofJ j J

d-dimensional Euclidean space, O<dj_<d, j( J, where J is a finite index set. Suppose that 0 has an

a priori probability measure of the form t(d0) = IjJ jjjd0}, where a .=PImodel j is correct),
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and r.{), the conditional a priori distribution of 0 given that model i is correct, has a

nonsingular d.-dimensional density on L.rO1 with respect to d.-dimensional Lebesgue measure.1 J J

that is bounded and locally bounded away from zero throughout L.r)1. Notice that it is being

assumed that the total number of possible models is finite, and that there is an upper bound,

namely d, on the dimensionality of the model. In this Bayesian context, the optimum decision is

to choose the model with the highest posterior probability. By Bayes' formula, the posterior

probability that model j is correct, given X 1, ... XN' is

P(model j is correctiXI, ... X N )

0 J fl roexp(N(0ty-T())tj I dO) [Xje JxJ fL oexp(N(0ty- q(0)),tj {d0 (9)
j j

Y=(1/N)lifly(Xi). Since the normalizing constant is the same for each j, and since

xI-ln(x) is a monotone increasing mapping for x>0, the optimum decision is to choose the model

corresponding to j having the largest value of

S(Y, N, j )= ln(aj ) + ln( fL  exp(N(0tY-l(0))tj {d(0). (10)

The asymptotic behavior of (10) is of interest. An asymptotic expansion of (10) is easy to derive

arguing heuristically. A rigorous derivation is given in Schwarz (1978).

From the theory of asymptotic expansions of integrals of the form in (10), it follows that

the asymptotic behavior of the integral is determined by that of the integral over a small

neighborhood about the value of 0 at which 0tY-rl(O) takes on its maximum in L.r*E. Call this

value 00' Expanding 0 ty-TI( 0 ) in a Taylor series about 00, recognizing that the linear term in the

expansion vanishes since 00 yields a maximum, it follows that for 0 near 00, 0, 00 E LrOE),

0ty-TJ(0 = 0t0 t(Y-(00) -(1/2)(0-00)t01 (0-00 ),

where r1 l= aIo)) is nnnnegative definite, since it is the covariance matrix of y(X 1) when
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0=00. Using this in (10) gives

S(Y, N, j) - N SuPO LJnO( 0 ty-l(0)) - In(f n e-N(1/ 2 )(0-00)t1 (0 -00),t {dO})
j J

Let f. be the density of ct. Because of the assumptions on f., and by making a linear

transformation of the integration variables, the last written integral is asymptotic to

f(6) fRdj e-N( 1/2)X11kpI 2 dqp = f(00) (2 7t)dj/2(- )d j 2

where X is a positive constant. Using this in (10) yields

S(Y, N, j) - N suP0e L ,nO(0tY-7i(0)) -(di/2)ln(N), as N-.,-. (11)
J J

Notice that the supremum in (11) is just the maximum of the log-likelihood, the maximum being

taken over L.rnE. Denoting the maximum over OE L.nrO of the likelihood function by
J J

Mj (X 1.-... XN), the Schwarz criterion is, from (11), to choose the model j for which

ln(Mj(X 1, ... XN)) - (d./2)ln(N) (12)

is maximized, jE J.

Akaike (1974) defines a similar criterion to (12), called the AIC, which amounts to

choosing the model j having the maximum value of

ln(M (X 1 .... XN)) - dj. (13)

Of course, the work of Schwarz (1978) and the preceding discussion shows that (13) is not

asymptotically optimum in the aforementioned setting. Because of the ln(N) multiplier in (12),

the SIC tends to favor lower dimensional models than the AIC, and in fact, several authors have

observed that the AIC tends to overestimate the dimension of the model (Shibata (1976), Jones

(1975)).

Despite the pedagogic value of these considerations, it is clear that neither Mallows' Cp

nor the SIC are directly applicable to the determination of the best size for a neural network

based on a given set of training data. Conceptually, however, they suggest that a good procedure
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would be based on selecting a network that achieves a balance between the closeness with which

the model fits the training data, and the "dimensionality" of the approximating regression

surface.

3. ANN SELECTION FOR THE NONLINEAR REGRESSION PROBLEM

In this section an algorithm is described and proposed for selecting the size of a single

hidden layer feedforward neural network as described in section 1 and figure 1. The "size" of the

network will be defined to be the number of hidden layer nodes, the input layer and output layer

sizes being dictated by the dimensions of the Xi (input) and Yi (output) vectors. No attempt is

being make here to limit the number of interconnections for a given network size. This section

treats the case in which regression structure is present.

Suppose, as in section 1, that a random training sample (X1 , Y1) .... (X N, YN ) is

available. Here, it is assumed that Xi and Yi are jointly distributed n- and m- dimensional

random vectors, respectively. Suppose that Yi = gp(Xi;0) + ei, where E(Oi)=0, cov(ci)=X, i=l,

... N, and that the is are independent and identically distributed. The function gp is assumed to

belong to the class of functions that are represented by a single hidden layer feedforward neural

network with p hidden nodes and given node transfer functions (e.g. logistic sigmoid functions).

Thus, gp depends also on the (m+n)p interconnection weights of the network, represented by the

vector 0. To be definite, assume that the back propagation algorithm is used in fitting the

interconnection weights for a given value of p. This assumption is not essential, as any suitable

numerical method for finding the weights based on a given training sample will suffice.

For an ANN of size p, assume that the weights have been fit based on the training

sample, and that a new exemplar (X, Y), independent of the training set T=((X1 ,Y1), ....

(XN,YN)), is available. As usual, it is assumed that T constitutes a random sample from the joint

distribution of (X,Y). Define the prediction mean squared error by

PMSE = E(Ig p(X;0)-gp (X;0) 112). (14)
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where p0 is the correct size for the network, 0 is the true value of the weight vector, and 11011 is

m Athe Euclidean norm on R . In (14), gp(X;0) is the predicted value of Y based on knowledge of

A
X, using the ANN that implements the transfer function gp (.;0). The hat "A" indicates that the

interconnection weights in gp have been estimated from the training sample, so that gp contains

the training sample information through its dependence on these estimated weights. The value

gp0(X;0) is the expected value of Y given X, since gp0(*;0) is the true regression function. The

prediction mean squared error (14) contains both prediction variance and bias components

analogous to (4) in the derivation of Mallows' C . In fact, ("tr" indicates matrix trace)P
A .A • t A

PMSE = E trCov(gp(X;0)IX)] + E tr[Bias(gp(X;O)IX)Bas (gp(X;O)X)]=

the latter notation used to indicate the dependence on both N and p, and if m=1 (i.e. the response

variable Y is 1-dimensional), then

PMSE = E( Var(gp(X;0O)IX)) + E(Bias2(gp (X;6)I X)).

Unfortunately, g is unknown, and there are no tractable analytical calculations, as in

the case of Cp, that render (14) useable for estimating p. The technique of ordinary

cross-validation (OCV) estimation can be used to estimate (14). This method, also known as the

leave-one-out method, is implemented as follows.

For each kE (1, ..., N), remove the exemplar (Xk, Yk ) from the training set, and train the

network on the remaining N-i exemplars. Let g(k) be the resulting estimated transfer function.p

Note that g(k) is statistically independent of (Xk' Yk ) . Conditional on Xk , Yk is an unbiased

estimator of gp0(Xk;o). Hence, the OCV estimator of (14) is

N A(k)2

V(p) = (1/N) k=ll1g p (Xk)-Yk. (15)

The OCV estimator V(p) is biased in estimating E(PMSE). In fact,

E(V(p)) = 0 N- 1 (P ) + tr(y")
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but the term tr(X) is a constant, so that V(p) is still a measure of prediction bias plus variance, the

former tending to increase for p decreasing away from p0 ' while the latter tending to increase for

p increasing away from p0 . Hence, a reasonable estimate of p0 based on the training sample is

A
p0 = arg min V(p), (16)

that is, the value of p that minimizes V(p) with respect to p.

OCV estimators of various prediction figures of merit have been extensively and

successfully used in many contexts. See, for example, Breiman et.al. (1984) and Breiman (1991)

for its use in classification and regression trees and regression splines, Wahba (1990) for its use

in spline models for observational data, and Myers (1990, ch. 4) for its use in selecting a

regression function and a comparison with Mallows' Cp criterion. Theoretical work concerning

cross-validation estimation has been carried out by Stone (1974), (1977a) and (1977b).

Use of (16) in this fashion requires, of course, that potentially many values of V(p) be

computed, for various values of p, in order to locate the minimum value and corresponding p.

Convergence of the weight estimation algorithm (i.e. the back propagation algorithm in this case)

in computing the predictors g for each fixed p and k varying from I to N should be fairly

rapid, as the weights computed from the previous value of k can be used as starting values for the

algorithm for the next k. Nevertheless, this procedure is computationally intensive, and it is

imperative that an attempt be made to reduce the dimensionality of the input vector prior to

attempting to determine the best ANN via (16). Approaches to this are discussed later on.

4. ANN SELECTION FOR THE CLASSIFICATION PROBLEM

In this section, ANN selection is considered in the context of the classification problem.

Here, the training set of exemplars T=((X1 
Y 1), .... (XN,YN)) constitutes a random sample from

the distribution p(Aj) = P(XE A,Y=j) where A is a Borel set in R n , and jE ( 1 .... K) represents

K distinct populations. The interpretation of an examplar (Xk,Yk) is that the measurement

variable Xk was generated from a subject in the population Yk' The ANN is thus being used to

estimate the function t(jIlx) = P{Y=jlX=x).
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As described in section 3, an ANN of size p will constitute a three layer, single hidden

layer ANN with p nodes in the middle layer, n input nodes, and m=K output nodes. The output

neurons will be assumed to implement a sigmoidal transfer function that guarantees that each

output node outputs a value in [0,I]. The output Y=j will be presented to the network during

training by fixing the jth output node at 1, and all other output nodes at 0. A nontraining output

from the ANN will be judged to constitute "Y=j" if the jth output node has the largest output

value. This convention is made in lieu of constraining the output node values to sum to 1.

As in section 3, it will be assumed that the ANNs are trained based on T using the back

propagation algorithm, and that no attempt is made to limit the number of connections ("zero

out" weights) within a network of a given size.

A
Suppose a network of size p has been trained on the set T, yielding the decision rule dP.
A

That is, d is a mapping from R to {1,...,K} with the interpretation that if X-x is observed, thenP
A A

classify X into population dp (x). By the previous discussion, dp (x) = j if, when presented with

input x, the ANN output node j produces the largest value over all output nodes. Let a new

sample become available, (X, Y). The misclassification probability MP is defined by

* A
MP (N,p) =P1d p(X) YIT}, (17)

A
the conditional probability (conditional on the training sample T) that the rule dp fails to

correctly classify the new sample. Since the joint distribution of (X,Y) is unknown, (17) cannot

be computed. The resubstitution estimate of (17) is
N A

MP(N,p) = (I/N) =i1 I{dp(Xi)Vi}. (1 8)

A
In (18), I{S} =1 if S is true, and I{S)--0 otherwise. Notice that in (18), the rule d is determinedP

with the same data used to estimate the probability of misclassification. Therefore, MP in (18) is

likely to give overly optimistic estimates of (17), and would therefore not be appropriate by itself

as a figure of merit in sizing the ANN.

Drawing analogy with the work of Breiman et.al. (1984) for CARTs, and borrowing their

notation and terminology, define the cost-complexity measure
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Ra (N,p) = MP(N,p) + ap, (19)

where c. O is called the complexity parameter. Because of overfitting to the training data, MP

will tend to decrease as p, the size (complexity) of the ANN, increases. Conversely, MP will

tend to increase as p decreases. Thus, assuming that the true conditional probability function

ir(jx) belongs to the parametric family of functions that are implemented by the ANN, the ANN

true size p0 can be estimated by the value that minimizes (19). That is. the selection rule would

A
be to choose the network size p0 such that

A
p0 = arg min Ra,(N,p). (20)

At present, there are no guidelines for choosing (x, the complexity cost per hidden layer node in

(20). This will be a topic of study in the sequel (Part II) to this study.

5. PREPROCESSING OF THE TRAINING SAMPLE

Let (X 1, Y1 ), ... I (XNYN) be the training sample as defined in section 3. Typically, the

dimension of the Xis, namely n, is fairly large. Moreover, it is often the case that there is strong

linear association between some of the components of the Xs (e.g. pulse rate and respiration rate)

in which case, some of the information contained in the X vector may be redundant. In order to

eliminate some of this redundancy and, in effect, reduce the dimensionality of the Xis, the

following method, called principal components analysis, can be used. This principal components

technique is successfully used to eliminate multicolinearity in linear regression models (see

Myers (1991), ch. 8, for example).

Let be the sample covariance matrix of the Xis, given by Z,=(/N)XN (X X)(X -X t,

X=(1/N)l=I i . Let XO!X2  .. Xn 0 be the ordered eigenvalues of I and v 1 ... , vn the

corresponding set of orthonormal eigenvectors. Fix a threshold yE (0,1) (typically, 'y=.9 or .95)

and select n0 <n to be the smallest integer such that E0lXiyXn~lX TP Let V be the n0 xn matrix

whose ith row is given by v. Let Z.=VX i, i=l, ..., N. Each Z. represents a "reduced" version of

X i, the extraneous n-n0 dimensions being eliminated because they are associated with small
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A

eigenvalues of 1, which are in turn associated with high degrees of multicolinearity (redundancy)

in the components of the Xis. The new training sample to be used in the ANN is now given by

(Z, Y1) ... (ZN, YN).

6. SUMMARY AND CONCLUSIONS

Promising approaches have been presented to choosing the best size of a single hidden

layer feedforward ANN in both the nonlinear regression context as well as the classification

context. Although restriction to this type of ANN architecture has been assumed, it is not viewed

as a limitation in applications since there is compelling theoretical evidence that such an

architecture maintains sufficient potential for functional approximation. These approaches have

been designed to be applicable to an ANN without modifying its training rule (e.g. back

propagation) or basic architecture (i.e. single hidden layer feedforward type). Other approaches,

whereby the ANN size selection is embedded into the learning algorithm itself, were not

addressed in this investigation. The effectiveness of the methods proposed will be the topic of

the sequel to this report, Part H, in which simulation examples will be used to determine if the

methods select the correct (or nearly correct) size of ANNs in both the nonlinear and

classification contexts.

In order to render the proposed size selection algorithms more computationally feasible,

an approach has been proposed for reducing the dimensionality of the input data to an ANN. This

approach, the principal components approach, has been successful in classical statistical models

having similar structure, and in many types of applications it effectively eliminates strong

multicolinearities in high dimensional input data vectors (see Myers (1990), ch. 8, section 4, and

Press (1981), ch. 9, section 4, for example). This application of principal components to ANNs

will often greatly reduce the potential size of the ANN, thereby reducing the computation time

entailed in applying the size selection algorithms presented herein.

The size selection criteria presented herein have been chosen based on proven principles

in other statistical modeling problems (e.g. CARTs, time series models, and regression models).

There are many factors that will have an effect on their ultimate performance in applications,

however. For example, it has been assumed that back propagation will be used to train the
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ANNs in applications. When using this method, the error threshold in minimizing (3) is typically

selected by the user, and will have an effect on the ANN weights. The sensitivity of the size

selection criteria presented here to this error threshold will need to be investigated. Other factors

that require investigation include selection of the initial size of network for a given problem, the

selection of the complexity cost per hidden layer node parameter in the classification problem,
A

and the statistical properties of the proposed size estimators, P0.

Finally, the criteria proposed here may perform well in simulation examples where the

data are actually generated via a nonlinear function of the type implemented by an ANN (i.e. of

the parametric form given by equation 1). In reality ANNs produce, at best, approximations to

naturally occurring functions. These naturally occuring functions are generally not of the exact

parametric form of those that can be implemented by an ANN (see (1)), and hence they do not

have their own "true" p0 values associated with them (recall that the definition of p0 on page 16

tacitly assumes that the unknown function is actually of the parametric form of equation 1).

Nevertheless, finding the best size p0 for an approximating ANN is often still achievable. Indeed,

this difficulty (i.e. that of the underlying natural model not being of the a priori assumed

parametric form) pervades statistical modeling in general, and yet "idealized," parsimoniously

determined parametric models continue to provide useful and important answers to quantitatively

posed questions. Therefore, further investigations into the effectiveness (and other open

questions) of the selection criteria for simulated and real data will be important and worthwhile

undertakings.

-21-



REFERENCES

Akaike, H. (1969). Fitting autoregression models for predictiun. Ann. Inst. Statist. Math. 21, pp.
243-247.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.
2nd International Symposium on In'ormation Theory, pp. 267-281. Budapest: Akademia
Kiado.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on
Automatic Control AC-19, pp. 716-723.

Angus, J.E. (1989). On the connection between neural network learning and multivariate
nonlinear least squares estimation. The International Journal of Neural Networks, vol. 1, no.
1., pp. 42-47.

Angus, J.E. (1991). Computer-assisted improvement of the estimation mean squared error with
application to back propagation neural networks. Unpublished, under editorial review.

Atkinson, A.C. (1978). Posterior probabilities for choosing a regression model. Biometrika 65,
39-48.

Bhansali, R.J. and Downham, D.Y. (1977). Some properties of the order of an autoregressive
model selected by a generalization of Akaike's EPF criterion. Biometrika 64, pp. 547-551.

Breiman, L. (1991). The H method for estimating multivariate functions from noisy data.
Technometrics 33(2), pp. 125-143 (with discussion).

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C. J. (1984). Classification and
Regression Trees. Monterey: Wadsworth and Brooks/Cole.

Chauvin, Y. (1989). A back-propagation algorithm with optimal use of hidden units. In
Advances in Neural Information Processing Systems I (Denver 1988), ed. D.S. Touretzky,
pp. 519-526. San Mateo: Morgan Kaufmann.

Cybenko, G. (1989). Approximation by superposition of a sigmoidal function. Mathematics of
Control, Signals, and Systems 2, pp. 303-314.

Durrett, R. (1990). Probability: Theory and Applications. Belmont, CA: Brooks/cole.

Fahlman, S.E. and Lebiere, C. (1990). The cascade-correlation learning architecture. In
Advances in Neural Information Processing Systems H1 (Denver 1989), ed. D.S. Touretzky, pp.
524-532. San Mateo: Morgan Kaufmann.

Frean, M. (1990). The upstart algorithm: a method for constructing and training feedforward
neural networks. Neural Computation 2, 198-209.

Gallant, A.R. (1987). Nonlinear Statistical Models. New York: John Wiley and Sons.

Gallant, S.I. (1986). Optimal linear discriminants. In Eighth International Conference on
Pattern Recognition (Paris 1986), pp. 849-852. New York: IEEE.

Hannan, E.J. and Quinn, B.G. (1979). The determination of the order of an autoregression.
Journal of the Royal Statistical Society B 41(2), pp. 190-195.

-22-



Hanson, S.J. and Pratt, L. (1989). A comparison of different biases for minimal network
construction with back-propagation. In Advances in Neural Information Processing Systems
I (Denver 1988), ed. D.S. Touretzky, pp. 177-185. San Mateo: Morgan Kaufmann.

Harp, S.A., Samad, T., and Guha, A. (1990). Designing application-specific neural networks
using genetic algorithm. In Advances in Neural Information Processing Systems II (Denver
1989), ed. D.S. Touretzky, pp. 447-454. San Mateo: Morgan Kaufmann.

Hecht-Nielsen, R. (1991). Neurocomputing. Reading, Mass.: Addison Wesley.

Hemerly, E.M. and Davis, M.H.A. (1989). Strong consistency of the PLS criterion for order
determination of autoregressive processes. Annals of Statistics 17(2), pp. 941-946.

Hemerly, E.M. and Davis, M.H.A. (1991). Recursive order estimation of autoregressions
without bounding the model set. Journal of the the Royal Statistical Society B 53(l), pp.
201-210.

Hertz, J., Krogh, A., and Palmer, R.G. (1991). Introduction to the Theory of Neural
Computation. Reading, Mass.: Addison Wesley.

Hinton, G.E. (1986). Learning distributed representations of concepts. In Procecilngs of the
Eighth Annual Conference of the Cognitive Science Society (Amherst 1986), pp. 1-12.
Hillsdale: Erlbaum.

Jones, R.H. (1975). Fitting autoregressions. Journal of the American Statistical Association 70,
pp. 590-592.

Kolmogorov, A.N. (1957). On the representation of continuous functions of many variables by
superposition of continuous functions of one variable and addition. [in Russian], Dokl Akad.
Nauk USSR 114, pp. 953-956.

Kramer, A.H. and Sangiovanni-Vincentelli, A. (1989). Efficient parallel learning algorithms for
neural networks. In Advances in Neural Information Processing Systems I (Denver 1988),
ed. D.S. Touretzky, pp. 40-48. San Mateo: Morgan Kaufmann.

Li, K.C. (1991). Sliced inverse regression for dimension reduction. Journal of the American
Statistical Association 86(414), pp. 316-327 (with discussion).

Mallows, C.L. (1964). Choosing variables in a linear regression: a graphical aid. Presented at
the Central Regional Meeting of the Institute of Mathematical Statistics, Manhattan, Kansas.

Mallows, C.L. (1973). Some comments on C . Technometrics 15, pp. 661-675.

Marchette, D.J. and Priebe, C.E. (1989). The adaptive kernel neural network. Technical
document 1676, Naval Ocean Systems Center, San Diego, CA 92152-5000.

Marchand, M., Golea, M., and Rujan, P. (1990). A convergence theorem for sequential learning
in two layer perceptrons. Europhysics Letters 11, pp. 487-492.

Mtezard, M. and Nadal, J.-P. (1989). Learning in feedforward layered networks: the tiling
algorithm. Journal of Physics A 22, 2191-2204.

-23-



Miller, G.F., Todd, P.M., and Hegde, S.U. (1989). Designing neural networks using genetic
algorithms. In Proceedings of the Third International Conference on Genetic Algorithms
(Arlington 1989), ed. J.D. Schaffer, pp. 379-384. San Mateo: Morgan Kaufmann.

Myers, R.H. (1990). Classical and Modern Regression with Applications. Boston: PWS-Kent.

Press, S.J. (1981). Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of
Inference. Malabar, Florida: Robert E. Krieger.

Rao, C.R. (1973). Linear Statistical Inference and its Applications, 2nd ed. New York: John
Wiley & Sons.

Rissanen, J. (1976). Modeling by shortest data description. Automatica 14, pp. 465-47 1.

Rissanen, J. (1986). Stochastic complexity and modeling. Annals of Statistics 14(3), pp.
1080-1100.

Rummelhart, D.E. and McClelland, J.L. and the PDP Research Group (1986). Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1. Cambridge:
MIT Press.

Scalettar, R. and Zee, A. (1988). Emergence of grandmother memory in feed forward networks:
learning with noise and forgetfulness. In Connectionist Models and Their Implications:
Readings from Cognitive Science, eds. D. Waltz and J.A. Feldman, pp. 309-332. Norwood:
Ablex.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6(2), pp.

462-464.

Seber, G.A.F. and Wild, C.J. (1989). Nonlinear Regression. New York: John Wiley and Sons.

Shibata, R. (1976). Selection of the order of an autoregressive model by Akaike's information
criterion. Biometrika 63, pp. 117-126.

Sietsma, J. and Dow, R.J.F. (1988). Neural net pruning - why and how. In IEEE International
Conference on Neural Networks (San Diego, 1988), vol. I, pp. 325-333. New York: IEEE.

Sirat, J.-A., and Nadal, J.-P. (1990). Neural trees: a new tool for classification. Preprint,
Laboratoires d'Electronique Philips, Limeil-Brevannes, France.

Smith, A.F.M. and Spiegelhalter, D.J. (1980). Bayes factors and choice criteria for linear
models. Journal of the Royal Statistical Society 42(2), pp. 213-220.

Soulie, F.F., Robert, Y. and Tchuente, M., eds. (1987). Automata Networks in Computer
Science: Theory and Applications. Princeton: Princeton University Press.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of
the Royal Statistical Society B 36, pp. 111-147.

Stone, M. (1977a). Asymptotics for and against cross-validation. Biometrika 64, pp. 29-35.

Stone, M. (1977b). An asymptotic equivalence of choice model by cross-validation and
Akaike's criterion. Journal of the Royal Statistical Society B 39, pp. 44-47.

-24-



Stone, M. (1978). Comments on model selection criteria of Akaike and Schwarz. Journal of the

Royal Statistical Society B 41, pp. 276-278.

Wahba, G. (1990). Spline Models for Observational Data. Philadelphia: SIAM.

Wei, C.Z. (1987). Adaptive prediction by least squares predictors in stochastic regression
models with applications to time series. Annals of Statistics 15(4), pp. 1667-1682.

White, H. (1984). Asymptotic Theory for Econometricians. New York: Academic Press.

White, H. (1981). Consequences and detection of misspecified nonlinear regression models.
Journal of the American Statistical Association 76(374), pp. 419-433.

White, H. (1989). Some asymptotic results for learning in single hidden-layer feedforward
network models. Journal of the American Statistical Association, vol. 84, no. 408, pp.
1003-1013.

-25-



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified N/A

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

N/A Approved for public release; distribution
2b DECLASSIFICATION! DOWNGRADING SCHEDULE unlimited.

N/A unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

Report No. 91- 16

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Health Research Center Code 22 Chief, Bureau of Medicine and Surgery

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

P. 0. Box 85122 Navy Department

San Diego, CA 92186-5122 Washington, DC 20372-5120

Ba NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Naval Medical (If applicable) American Socieity for Engineering Education

Research & Development Command (ASEE) Navy Summer Faculty Resarch Program

8c. ADDRESS(City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

NNMC PROGRAM PROJECT !TASK WORK UNIT

Bethesda, MD 20889-5044 ELEMENT NO. NO NO ACCESSION NO.

i1 TITLE (Include Security Classification)

CRITERIA FOR CHOOSING THE BEST NEURAL NETWORK: PART I

12 PERSONAL AUTHOR(S) Angus, J.E., Ph.D.

1 3a TYPE OF REPORT 1 3b TIME COVERED 14 DATE9?F REPORT (Year, Month, Day) 15 PAGE COUNT

FINAL FROM TO 9 July 24 ' 27

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Regression, Classification, Overfitting, Underfitting,

Principal Components

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

An investigation into the problem of determining a parsimonious neural network for use
in prediction/generalization based on a given fixed learning sample was undertaken. Both the
classification and nonlinear regression contexts were addressed. An exposition and survey of the
problem and past research on model selection techniques in other statistical settings was
compiled, and algorithms for selecting the number of hidden layer nodes in a three layer,
feedforward neural network were developed. The selection criteria developed attempt to "grow"
the networks beginning with a small initial number of hidden layer nodes (as opposed to pruning
a relatively large network). For the nonlinear regression problem, the method is based on
cross-validation estimates of the prediction mean squared error for the candidate networks. For
the classification problem, the method is based on a cost complexity measure of the candidate
networks based on resubstitution estimates of the probability of misclassification and a penalty
function of the number of hidden layer nodes. Also considered was the use of principal

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

El UNCLASSIFIED/UNLIMITED [ SAME AS RPT 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

William Pugh 619-553-8403 Code 22

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*ULS Gonmmut Prbtinl Off im: 19S0-4MW4


