

92-07027

0
$y r n \cap \cap$

UNCLASSIFIED
SECURITY CIASSIFICATION OF THIS PAGE

19. ABSTRACT 'Gontinue on reverse if necossary and identify by block numbery

This manual describes the basic principles of the Military Grid Reference System and the non-standard reference systems. It describes the method for devermining references on map and charts at scales of 1:1,000,060 and larger. It contains identifications for the grid zone designations and for the 100.000 meler squarts of the Universal Transverse Mercator Grid and the Universal Polar Stereographic Grid. It also contains the specifications and grid identifications for the various non-standard grids. It provides diagrams and textual information for delineating geodetic datums and ellipsoids.

30. DISTRIBUTION / AVAALABILITY OF ABSTRACT \boxed{X} UNCIASSIFIED, UNUMITED \square SAME AS RPT. \square DTIC USERS	21. ABSTRACT SECURITY CIASSIFICATION CNCLASSIFIED	
22a. NAME OF RESPONSIBLE INDIVIDUAL John W. Hager	23b. TELEPHONE (Includo Area Coda) (301) 227.2216	22c. OFFICE SYMBOL SDAG

THE DEFENSE MAPPING AGENCY

With some 9,000 employees in more than 50 locations around the world, the Defense Mapping Agency (DMA) provides Mapping, Charting and Geodetic (MC\&G) support to the Secretary of Dcfense, the Joint Chiefs of Staff, the Military Departments, and other DoD Components. This includes production and worldwide distribution of maps, charts, precise positioning data, and digital data for strategic and tactical military operations and weapons systems. DMA also provides nautical charts and marine navigational data for the worldwide Merchant Marine and private yachtsmen.

The Defensc Mapping Agency was established in 1972, when MC\&G functions of the Defense community were combined into this joint DoD Agency. DMA is under the direction and control of the Assistant Secretary of Defense (Command, Control, Communications, and Intelligence). The Director of DMA, a flag officer, is responsible to the Joint Chiefs of Staff for operational matters.

DMA maintains close liaison with civilian agencies of the U.S. Government engaged in MC\&G activities and warks closely with various national and international scientific and operational organization in the MC\&G field.

DEFENSE MAPPING AGENCY BUILDING 56 U.S. NAVAL OBSERVATORY WASHINGTON D.C. 20305-3000

DMA TM 8358.I

DEFENSE MAPPING AGENCY TECHNICAL MANUAL 8358.1

DATUMS, ELLIPSOIDS, GRIDS, AND GRID REFERENCE SYSTEMS

FOREWORD

1. This manual states current authoritative guidance for the use and portrayal of grid and grid reference systems information as applicable to maps and charts compiled for the United States Department of Defense (DoD).
2. This publication contains 110 copyrighted material and has been approved for public release; distribution is unlimited. Department of Defense users may order from the Defense Mapping Agency Combat Support Center, ATTN: DDCP, Washington, D.C. 20315-0020. All other requests should be directed to the National Technical Information Center, Cameron Station, Alexandria, Va. 22314.6145.

MARCUS J. BOYLE
Colonel, USAF
Chief of Staff

CONTENTS

PAGE
FOREWORD v
LIST OF FIGURLJ xiii
LIST OF TABLES $x y$
CHAPTER 1 GENERAL
Section 1-1 Authority $1-1$
1-2 Reference 1.1
1-3 List of Documents Referencing DA TM 5-241 1-1
1-4 Purpose 1-1
1-5 Scope 1-1
1.6 Utilization 1-2
1-7 Definitions 1-2
1-8 Cross Reference to Other Volumes 1-4
1-9 Keference Systems 1.4
1-10 Standard and Non-Standard Grids 1.4
1-11 Multiple Grids 1.4
1-12 Cverlapping Grids $1-4$
1.13 Extended Grids 1-4
1-14 Grid and Darum Related Marginal Notes $1-5$
CHAPTER 2 DATUMS, FLLIPSOIDS, PROJECTIONS AND MILITARY GRIDS
Section 2-1 General 2-1
2-2 Datums 2-1
2-3 Transforming Coordinates from one Datum to Another Datum 2-1
2-4 Ellipsoids 2.6
2-5 Projections 2.6
2-6 Military Grids 2-15
2-7 Transforming Coordinates from one Grid System to Another Grid System 2-20
CHAPTER 3 THE U. S. MILITARY GRID REFERENCE SYSTEM (MGRS)
Section 3-1 General Description 3-1
3-2 The Grid Zone Designation 3.1
3-3 100,000-Meter Square Identification 3-3
3-4 The Military Grid Reference 3.5
3-5 MGRS Application 3-5
DMA TM 8358.1
CHAPTER 4 THE NON-STANDARD GRID SYSTEMS IN CURRENT USE PAGE
Section 4.1 Non-Standard Grids on Maps and Charts 4-1
4-2 Diagrams of Non-Standard Grids 4-12
CHAPTER 5 GEOGRAPHIC COORDINATE REFERENCES
Section 5.1 Use 5.1
5.2 The Reference 5.1
5-3 Geographic Coordinates on Maps and Charts 5-1
5-4 The World Geographic Referpnce System 5-3
CHAPTER 6 PORTRAYAL OF GRIDS ON MAPS AT 1:100,000 SCALE AND LARGERSection 6-1 General6-1
6-2 The Mojoi Grid 6.1
6-3 Multiple Major Grids 6-3
6.4 Overlapping Grids 6-10
6-5 Secondary Grids 6.12
0.6 The Declination Diagram (One Grid) 6-12
6.7 The Declination Diagram (More Than One Grid) 6-17
6.8 The Grid Reference Box 6-17
CHAPTER 7 PORiRAYAL OF GRIDS ON MAPS AT 1:250,000 AND 1:500,000 SCALE
Section 7-1 General 7.1
T-2 The Majo: Grid 7.1
7-3 Multiple Major Grids 7.4
7-4 Overlopping and Extended Grids. 7.6
7.5 Seconciary Grids 7-6
7-6 Grid Declinction 7.8
7.7 Magnetic Declination 7.9
7-8 The Grid Reference Box 7.12
CHAPTER 8 FORTRAYAL OF GRIDS ON MAPS AT $1: 1,000,000$ SCALE
Section 8-1 General 8-1
8-2 The Major Grid 8-1
8-3 Multiple Major Grids 8-3
8.4 Overlapping, Extended and Secondary Grids 8.4
8-5 Grid and Magnetic Declination $8-4$
8-6 The Grid Reference Box 8-4
CHAPTER 9 GRIDS ON NAUTICAL CHAKTS AT $1: 75,000$ SCALE AND LARGER PAGE
Section 9-1 General 9-1
9-2 The Major Grid on Combat Charts and Amphibious Assault Charts 9.1
9-3 The Major Grid on Mine Warfare Charts 9-2
9-4 The Major Grid on Marbor, Approach, and Coastal Charts 8.2
9.5 Multiple Major Grids on Combat Charts and Amphibious Asseult Charts. $9-4$
9-6 Multiple Major Grids on Mine Warfare Charis and Harbor, Approach, and Coastal Charts 9.7
9.7 Overlapping Grids on Combat Charts, Amphibious Assault Charts, and Mine Warfare Charts 9-7
9.8 Overlapping Grids on Harbor, Approach, and Coastal Charts 9.8
9.9 Secondary Grids 9.8
9.10 The Declination Note 9.8
9.11 The Grid Reference Box 9-9
9-12 World Geodetic System (WGS) Datum Note 9-10
CHAPTER 10 GRIDS ON NAUTICAL CHARTS AT SCALES SMALLER THAN 1:75,00010-1
10-2 The Major Grid 10-1
i0-3 Multipla Grids 10-2
10.4 Secondary Grids 10-2
10-5 The Grid Reference Box 10-5
10.6 World Geodetic System (WGS) Datum Note 10-5
CHAPTER 11 GRIDS ON AERONAUTICAL CHARTS AT 1:500,000 SCALE AND LARGER
Section 11-1 General 11.1
11-2 The Major Grid 11.1
11-3 Grid Declination 11-3
11-4 Magnetic Declination 11-3
11-5 The Grid Reference Box 11-3

APPENDIXES

A Table of Mil Equivalents

* B 100,000-Meter Square Identifications of the Military Grid Reforence System (Graphics), Figures B-1 through B-4
- C Guide To Geodatic Status Of Large Scale Mapping
* D Index to Preferred Grids, Datums and Ellipsoids Specified for New Mapping
F. World Geodetic System 84
* Requires periodic update and revision.

LIST OF FIGURES

Number Title Page
Defining Parameters of Ellipsoids $2 \cdot 10$
Mercator Prnjection 2-12
Transverse Mercator Projection $2 \cdot 13$
Secant Condition of Transverse Mercator Projection; Typical o-degree Projectiolı Zone 2-14
Polar Stereographic. Projection 2-16
Lambert Conformal Conic Projection 2-17
Grid Zone Designations of the Military Grid Reference System 3-2
Basic Plan of the 100,000-meter Square Identifications of the U.S. Military Grid Reference System, Betwoen $84^{\circ} \mathrm{F}$. and $80^{\circ} \mathrm{S}$. 3-4
Method of Reading a U.S. Military Grid Keference from a 1:250,000 Scale Map 3-8
Method of Reading a U.S. Military Grid Reference from a Large Scale Map. 3.7
Normal Lettering Plan of the 500,000 - י00,000-unit squares of the British Grid System 4.2
World Geographic Reference (GEOREF) System. 5-2
The Major Grid as Shown on a 1:50,000 Scale Map 6-2
The Major Grid as Shown on a 1:100,000 Scale Map 6.4
Two Major Grids (in this case, Zones of the UTM) Separated by a Grid Junction as Shown un a Large Scale Map. 6.5
Three Major Nonstandard Grids as Shown on a Large Scale Map. 6.6
Major and Overiapping Grids as Shown on a Large Scale Map. 6.7
Overlapping Grid in Combination with Two Major Grids Separated by a Grid Junction as Shown on a Large Scale Map. 6.8
Major and Secondary (Obsolete) Grids as Shown on a Large Scale Map 6-13
The Declination Diagram and Accompanying Notes with true North Appearing as the Center Prong 6.14
The Declination Diagram and Accompanying Notes with true North Appearing as an Outside Prang $6-15$
The Declination Datra when a Sheet Contains an Overlapping Grid and/or More Than One Major Grid 6-18
Grid Reference Boxes Most Commonly Used on Maps at Scales of 1:100,000 and Larger. $6-19$Methods of Showing Grid Zone Designations and 100,000-meter Squures of the UTM in the Grid Reference Boxesof Large Scale Maps6-20
Methods of Showing 100,000-unit, and Larger, Square Identifications of Nonstandard Grids in the Grid Reference Boxes of Large Siale Maps 6.21
Page
26

LIST OF TABLES
Numbar Title 「age
1 Geadolic Datums Used in Map Production $2-2$
2 Molodonskiy Transformution Constants to Convert from Local Datum to WGS 72 $2-7$
Characteristics of Projections 2.18
Grid Unit Iiterval for Various Scale Topographic Maps 2-19
Dimerisions of Grid Zune Designation Areas 3-3
Specifications for Secondary Grids 4-3
Table of the State Plone Grids Used in the United States and Pos:essions 4-7
8 Corner Labeling on Topographic Maps 5-1
$9 \quad$ The Equivalent of 40 Kilometers when Measured Along a Given Parallel of Latitude Expressed in Degrees, Minutes, and Seconds of Longitude 6.11
10 Maximum Acceptable Deviation of the Constructed Grid from the True Grid 10-1
E. 1 Mo'odenskiy Transformation Constants to Convert from Local Dcturi to WGS 84 E-3

1.1 AUTHORITY.

This document is issued under the authority delegated by DoD Directive 5105.40 , subject: Defense Mapping Agency (DMA), 23 April 1986.
1-2 REFERENCE.
JCS-MOP 88, Position Reference Procedures, 8 May 1981.
1-3 LIST OF DOCUMENTS REFERENCING DA TM 5-241.
The DMA TM 8358 series replaces the DA TM 5-241 series of manuals as a technical reference document in:
1-3.1 STANAG 2211, subject: Geodetic Datums, Spheroids, Grids, and Grid References, 4 May 1983.
1-3.2 STANAG 3676, subject: Marginal Infurmation on Land Maps and Aeronautical Charts, 27 April 1972.

1-3.3 QSTAG 544, subject: Geodetic Datums, Spheroids, Grids, and Grid References, 6 August 1984.
1-3.4 1HO Circular Letter 9, International Horizontal Datum for Chart Reference, 15 March 1983.

1-3.5 IHO Circular Letter 44, Transformation Notes, 14 December 1983.
1-3.6 IHO Circular Letter 46, International Horizontal Datum for Chart Reference, 16 December 1983.
1-3.7 IHO Circular Letter 18, Indication on Charts of Relationship of Horizontal Datum to Worldwide and Oiher Datums, 17 May 1984.
1-3.8 IHO Circular Letter 46, Indication on Charts of Relationship of Horizontal Datum to Worldwide and Other Datums, 14 December 1984.

1.4 PURFOSE.

1-4.1 This manual provides guidance to DoD Mapping, Charting and Geodesy (MC\&G) production elements, product users, and system developers on the application of grids, datums, ellipsoids, and grid reference systems within the DoD.
1.4.2 It describes the standard methods for selecting and portraying grids on maps and charts at scales of 1:1,000,000 and larger. Descriptions are based on the following categories.
1-4.2.1 Topographic Maps.
1-4.2.2 Hydrographic Charts.
1-4.2.3 Aeronautical Charts.
1.5 SCOPE.

1-5.1 This manual specifies the use of geadetic datums, ellipsoids, grids and grid re-
ference systems used in the production of maps and charts for the DoD.

The Universal Transverse Mercator and Universal Polar Stereographic grids, the Military Grid Reference System, and nonstandard grid reference systems are described.

1-5.2 Detailed instructions and farmars for grid depictions and labeling, grid margin data, declination data, etc. are contained in the DMA product specifisations for approved topographic, hydrographic, and aeronautical products.

1-6 UTILIZATION.

1-6.1 TM 8358.1 is to be used by DoD MC\&G production olements, product users, and DoD system developers in the application of datums, ellipsoids, grids, and grid refarance systems.

1-6.2 Users are cautioned that the information contained herein applies to current and future MC\&G production, and does not necessarily apply to products that are currently available through the DoD supply system.

1-7 DEFINITIONS.

1-7.1 Major Grid. The primary grid or grids on a map or chart.
1-7.2 Military Grid Reference System (MGRS). The alphanumeric position reporting system used by U.S. military. A full description is provided in Chapter 3.
1.7.3 Nonstandard Grids. Grids other than UTM and UPS, such as Ceylon Belt, India Zone IlA. West Malaysian RSO (Metric) Grid, etc.

1-7.4 Operational Grid. A grid in current operational use. Generally this would be the preferred grid but could be a previously prescribed grid.
1-7.5 Overiapping Grid. A majar grid from a reighboring area primarily intended to facilitate military surveying and fire-control.
1-7.6 Preferred Grid. The grid designated by the DoD for production of new maps, charts, and digital jeographic data; and shown on the "Index to Preferred Grids, 「atums, and Ellipsoids Specified for New Mapping" (Appendix D).

1-7.7 Prescribed Grid. The grid that is locally prescribed by the country of origin or military commander.

1-7.8 Secondary Grid. Any grid, other than the primary grid, required for combined operations application. Tick marks along the neat lines are the preferred method of portrayal. Such grids should remain on the maps or charts so long as the secondary grid remains in use.

1-7.9 Standard Grids. The Universal Transverse Mercator (UTM) grid and the Universal Polar Stereographic (UPS) grid.

1-7.10 World Geographic Reference System (GEOREF). A worldwide position reference system that may be applied to any map or chart graduated in latitude and longitude (with Greenwich as prime meridian) regardless of projection. It provides a method of expressing positions in a form suitable for reporting and plotting. The primary use is for interservice and interallied reporting of aircraft and air target positions.

1-7.11 Other Key Terms.

1-7.11.1 Bleeding Edge. That edge of a map or chart on which cartographic detail is extended beyond the neatine to the edge of the sheet.

1-7.11.2 Coordinate Reference Notation. Grid coordinates are given in terms of linear measurement, usuclly meters but occasionally in yards, feet, or otner units. Gengraphic coordinates are given in terms of angular measurement, usually in degrees, minutes, and seconds but occasionally in grads.
1-7.11.3 Datum. As used in this manual, datum refers to the geodetic or horizontal datum. The classical datum is defined by five elements giving the position of the origin (two elements!, the orientation of the network (one element), and the parameters of a reference ellipsoid (two elements). More recent definitions express the position and orientation as functions of the deviations in the meridian and in the prime vertical, the geoidellipsiod separation, and the porameters of a reference ellipsoid. The World Geodetic System datum gives positions on a specified ellipsoid with respect to the center of mass of the earth.
1-7.11.4 Easting. Eastward (that is left to right) reading of grid values on a map.
1-7.11.5 Ellipsoid. An ellipsoid or ellipse of revolution is a mathematical figure generated by the revolution of an ellipse abaut one of its axes. The ellipsoid that approximates the geoid is an ellipse rotated about its minor axis, or an cble.e spheroid.
1-7.11.6 False Easting. A value assigned to the origin of eastings, in a grid coordinate system, to avoid the inconvenience of using negative coordinates.
1-7.11.7 False Northing. A vaiue assigned to the origin of northings, in a grid coordinate system, to avoid the inconvenience of using negative coordinntes.
1-7.11.3 Geoid. The equipotential surface in the gravity field of the Earth which coinsides with the undisturbed mean sea level extended continuously thrsugh the continents. The direction of gravity is perpendicular to the geoid at every point. The geoid is the surface of reference for astronomic observations and for geodetic leveling.

1-7.11.9 Graticule. A network of lines representing parallels of latitude and meridians of longifude forming a map projection.
1-7.11.10 Grid. Two sets of parallel lines intersecting at right angles and forming squares; a rectangular Cartesian coordinate system that is superimposed on maps, charts, and other similar representations of the earth's surface in an accurate and consistant mariner to permit identification of ground locations with respect to other locations and the computation of direction and distance so other points.

1-7.11.11 Isogonic Line. A line drawn on a map or chart joining points of equal magnetic dectination for a given time. The line connesting points of zero declination is the agonic line. Lines connecting points of equal annual change are isopors. The Magnetic Variation chart for the current 5 -year epoch is ovailabie from the DMACSC.
1.7.11.12 Loxodrome. A line on the surface of the Earth cutting all meridians at the same angle, a rhumb line.

1-7.11.13 Map Projection. An orderly system of lines on a plane representing a carresponding system of imaginary lines on an adopted rerrestrial datum surface. A map projection may be derived by geometrical construction or by mathematical analysis.

1-7.11.14 Neattine. The lines that bound the body of a map, usually paralleis and meridians (but may be conventional or arbitrary grid lines); also called sheet lines.

1-7.11.15 Northing. Northward (that is from bottom to top) reading of grid values on a map.

1-7.11.16 Spheroid. A mathematical figure closely approaching the geoid in form and size, used as a suzface of reference for geodetic surveys. In geodesy spheraid and ellipsoid are synanymous terms. Ellipsoid will be used in this manual.

1-8 CROSS REFERENCE TO OTHER VOLUMES.

1-8.1 DMA TM 8353.2, The Universal Grids: Universal Transverse Mercator (UTM), and Universal Polar Stereographic (UPS) is scheduled for disiribution the 4 th quarter of FY 87.
1-8.2 DMA TM 8358.3, Users Guide to the DMA Digital Gendetic Parameters File. The print date of this volume has not been scheduled.
1-8.3 The DMA TM 8358 series w ill replace the Department of the Army TM 5-241 series manuals.

1.9 REFERENCE SYSTEMS.

1-9.1 Rectangular grid reference systems are usually shown on military maps and charts at scales of $1: 1,000,000$ and larger. Maps and charts at all scales show the geographic graticule. Maps and aeronautical charts at 1:250,000 scale and smaller show the GEOREF.

1-9.2 The Military Grid Reference System is described in Chapter 3.

1-9.3 Grid reference systems used with operational nonstandard grids are deseribed in Chapter 4.
1-9.4 The geographic coordinates are described in Chapter 5.
1-10 STANDARD AND NONSTANDARD GRIDS.
1-10.1 The standard grid for polar areas north of 84° north, and south of 80° south, is the Universal Polar Stereographic (UPS) grid.
1-10.2 Between 84° north and 80° south, the standard grid is the Universal Transverse Mercator (UTM) grid. Other grid systems are being phased out. The long term objective is to convert the mapping of all areas of the world to UTM and UPS grids.
1-10.3 Normally, grids are not portrayed on maps at scales smaller than 1:1,000,000.

1.11 MULTIPLE GRIDS.

The use of miliary grids presents complex conditions in junction areas, i.e., grid zone junctions within a grid system, grid junctions between various grid systems, datum junctions, and junctions between ellipsoids. Despite this complexity, these conditions lend themselves to a iniform graphical treatment of the grids with differences in grid orientation and grid color, labels, and values. The treatment of grids under various junction conditions is prescribed in later chapters of this manual.

1-12 OVERLAPPING GRIDS.

Maps at scales of 1:100,000 and larger, falling within approximately 40 kilometers of a grid junction, datum junction, or ellipsoid junction, usually show the adjacent (overlapping) grid by ticks and values around the neatline. In some instances, a coordinate conversion note may be used instead of an overlapping grid.

1-13 EXIENDED GRID.

An extended grid is a form of overlapping grid used on city maps. It provides total coverage of a map on a single grid when a portion of the map falls on an adjacent grid. The major grid is extended to cover the adjacent area and is shown by full lines.

1-14 GRID AND DATUM RELATED MARGINAL NOTES.

Marginal notes on maps and charts should include projection, ellipsaid, grid zone or belt, horizontal datum, and magnetic declination data. Specific treatment of these items on each product is covered in the various product specifications.

CHAPTER 2
 DATUMS, ELIIPSOIDS, PROJECTIONS
 AND MILITARY GRIDS

2-1 GENERAL.

2-1.1 The Earth is not a sphere, but an ellipsoid, flattened slightly at the poles and bulging somewhat at the Equator. The ellipsoid is used as a surface of reference for the mathematical reduction of geodetic and cartographic data.

2-1.2 A map projection is the systematic drawing of lines representing the meridians and parallels (the graticule) on a flat surface. Different projections have unique characieristics and serve differing purposes. They are depicted by projecting the graticule of the ellipsoid onto a plane; the intersections of the graticule are computed in terms of the ellipsoid.

2-1.3 U.S. military maps use the sexagesimal system of angular measurement the division of a full circle into 360°) for designating the values of the graticule. A degree is divided into 60 minutes, and each minute into 60 seconds. Parallels are numbered north and south from 0° at the eqcator to 90° at the poles. Meridians are numitered east and west from 0° at the prime meridian to a common 180° meridian. The prime meridian for U.S. military mapping is Greenwich, England. Some foreign maps may use the centesimal (decimal) system of angular measurement (the division of a full circle irto 400 grads). A grad (or gon) is divided into 100 centigrads (grad minutes), and each centigrad into 100 deci-milligrads (grad seconds). Prime meridians other than Greenwich may also be used in non-U.ड. mapping.
2.1.4 Grids are applied to maps to provide a uniform system for referencing and making measurements. There is a definite relationship between the grid and the graticule so that a corresponding geographic position can be determined for each grid position.

2-2 DATUMS.

The identification, pertinent descriptive information, parameters, and attendant explanatory footnotes for geodetic datums currentiy in use are contained in table 1. These datums are used in the production of new and revised ropographic maps, joint operations graphics, and selected large scale nautical charts. The listing corresponds to that shown in Appendix D which also graphically depicts their areas of application.

2-3 IRANSFORMING COORDINATES FROM ONE DATUM TO ANOTHER DATUM

2-3.1 Coordinates may be transformed from one geodetic datum to another geodetic datum by using the Abridged Molodenskiy Datum Transformation Formulas:

```
\(\Delta \Phi^{\prime \prime}=\left[-\Delta X \sin \Phi \cos \grave{\lambda}-\Delta Y \sin \Phi \sin \lambda+\Delta Z \cos \Phi+(a \Delta f+\{\Delta a) \sin 2 \Phi] /\left[R_{M} \sin l^{\prime \prime}\right]\right.\)
    \(\left.\Delta \lambda^{\prime \prime}=[-\Delta X \sin \lambda+\Delta Y \cos \lambda] /\left[R_{N} \cos \Phi_{\sin }\right]^{\prime \prime}\right]\)
    \(\Delta H=\Delta X \cos \Phi \cos \lambda+\Delta Y \cos \Phi \sin \lambda+\Delta Z \sin \Phi+(a \Delta f+f \Delta a) \sin ^{2} \Phi-\Delta a\)
\(\Phi\) = geodetic latitude .
\(\lambda=\) geodetic longitude
```

where
$H=$ the distunce of a point above or belcw the ellipsoid measured along the ellipsoid normal through the point.
(2-3.1 is continued on page 2-6)

ELLIPSOID
2
GRS 80
Clarke 1866
International
Internotional
International
International
Airy

				LATITUDE [(D)
NO.	DATUM	AREA	NAME OF POINT	LONGITUDE (.)
1	World Geodetic System	Sino-Soviet Bloc. S.W. Asia. Hydrographic Aeronautical	Earth cevter of mass	
2	North American 1983	Canada, C:Jbo, U.S. and Poss. essions in the Caribhean	Eorth Center of moss	
3	North American 1927	North America	Neades Ranch	$\begin{aligned} & 39^{\prime} 13^{\prime} 26.686^{\prime \prime} \mathrm{N} \\ & 98^{\prime} 32^{\prime} 30.506^{\prime \prime} \mathrm{W} \end{aligned}$
4	Qornoq	Greenland	Station 7008	$\begin{aligned} & 64^{\circ} 31^{\circ} \mathrm{C} 6.27^{\prime \prime} \mathrm{N} \\ & 51^{\circ} 12^{\circ} 24.86^{\prime \prime} \mathrm{W} \end{aligned}$
5	Hiorsey 1955	Iceland	Hiorsey	$\begin{aligned} & 64^{\circ} 31^{\prime} 29.260^{\prime \prime} \mathrm{N} \\ & 22^{\prime} 22^{\prime} 05.840^{\prime \prime} \mathrm{W} \end{aligned}$
6	Naparimo	Trinidad and Tobago	Naparima	$\begin{aligned} & 10^{\circ} 16^{\prime} 44.86^{\prime \prime} \mathrm{N} \\ & 61^{\circ} 27^{\prime} 34.62^{\prime \prime} \mathrm{W} \end{aligned}$
7	Provisional South American 1956	Bolivia, Chile, Columbia, Ecuador. Peru, the Guianas, Venezuelo	Lo Canoo	$\begin{gathered} 8^{\circ} 34^{\prime} 17.17^{\prime \prime} \mathrm{N} \\ 63^{\circ} 51.34 .88^{\prime \prime} \mathrm{W} \end{gathered}$
8	Cor. ego Alegre	Brazil	Corrego Alegre	$\begin{aligned} & 19^{\circ} 50.15 .14^{\prime \prime} \mathrm{S} \\ & 48^{\circ} 57^{\prime} 42.75^{\prime \prime} \mathrm{W} \end{aligned}$
9	Chua Astro	Paraguay	Chua Astro (Brazil)	$\begin{aligned} & 19^{\circ} 45^{\prime} 41.16^{\prime \prime} \mathrm{S} \\ & 48^{\circ} 06^{\prime} 07.56^{\prime \prime} \mathrm{W} \end{aligned}$
10	Campo Inchauspe	Argentino	Campo Inchauspe	$\begin{aligned} & 35^{\circ} 58^{\prime} 16.56^{\prime \prime} \mathrm{S} \\ & 62^{\circ} 10^{\prime} 12.03^{\prime \prime} \mathrm{W} \end{aligned}$
11	Yacare	Uruguay	Yacare	$\begin{aligned} & 30^{\circ} 35^{\prime} 53.68^{\prime \prime} \mathrm{S} \\ & 57^{\circ} 25^{\prime} 01.30^{\prime \prime} \mathrm{W} \end{aligned}$
12	European 1950	Europe, Middle East, North Africo	Potsdam, Helmertiurm	$\begin{aligned} & 52^{\circ} 22^{\prime} 51.446^{\prime \prime} \mathrm{N} \\ & 13^{\circ} 03^{\prime} 58.741^{\prime \prime} \mathrm{E} \end{aligned}$
13	Ordnance Survey of Great Britain 1936	Great Britain, Northern ireiand	3	

	べ¢

Ireland Morocco	
	Algeria, Tunisio
	Sudan, Ethiopia
	Sierra Leone
	Liberia
	Ghona
	Nigeria
	Southern Africa
	Malagasy Rep.
	Japan
	Toiwan
	Philippines
	Indonesia
	Austraiia
	New Zealand
	Marianc. Islands
	Antarctica

14	Ireland 1965
15	Merchirh
16	Voiral
17	Adindan
18	Sierra Leone 1980
19	Literia 1964
20	Ghana
21	Nigeria
22	Arc 1950
23	Tananarive (Antananarivo) Obsy. 1925
24	Tokyo
25	Hu-Tzu-Shan
26	Luzon
27	Indonesia 1974
28	Australian Geodetic
29	Geodetic Datum 1949
30	Guam 1963
31	Local Astro ${ }^{8}$
32	Camp Area Astro

Table i. Geodetic Datums Used in Mop Production - - continued.

FOOTNOTES-GEODETIC DATUMS FOR MAP PRODUCTION

1. $\xi\left(X_{i}\right)$ and η (Eta) are cieviations of the vertical at the datum point.
$\xi=$ deviation in the meridian $=\Phi_{\mathrm{A}}-\Phi_{\mathrm{G}}$
$\eta=$ deviation in the prime vertical $=\left(\lambda_{A} \lambda_{G}\right) \cos \Phi$
Subscripis a and o refer to Astronomic and Geodetic values respectively. Latitude is reckoned positive northward and longitude is reckoned positive eastward.
2. The Worid Geodetic System (WGS) is not referenced to a single datum point. It represents an ellipsoid whose placement, orientation, and dimensions best fit the Earth's equipotential surface which coincides with the geoid. The system was developed from a worldwide distribution of terrestrial gravity measurements and geodetic satellite observations. Several different ellipsoids have been used in conjunction with the various date WGS determinations. The dimensions of the WGS 72 Ellipsold are:
```
\(a=6,378,135\) meters
\(f=1 / 298.26\)
```

The dimensions of the WGS 84 Ellipsoid are:
$a=6,378,137$ meters
$f=1 / 298.257223563$
3. This datum is not defined in terms of an origin. It results from a retriangulation of the area to a number of points whose latitude and longitude were known with respect to Greenwich.
4. The dimensions of the Clarke 1880 Ellipsoid adopted by different countries vary in accordance with which of Clarke's original dimensions are used: (a, b) or (a, f), or which toot-meter relationship is used to convert the units from feet to meters. In the area referenced to Arc 1950 datum, the aimensions adopted are:

Semimajor axis: $a=6,378,249.145326$ meters
Semiminor axis: $b=6,356,514.960721$ neters
The above figures yield:
Flattening: $f=1 / 293.4663076$
In the areas of Merchich and Voirol datum, the dimensions adopted are:
$a=0,378,249.2$ meters
$b=6,356,515.0$ meters
The above figures yield:
$t=1 / 293.4660208$
The values adopted by the Department of Defense are:
$0=6,378,249.145$ meters
$f=1 / 293.465$
The above figures yield:
$b=6,356,514.8696$ meters
Tuble 1. Geodetic Datums Used in Map Production - continued.
5. Dimensions of the War Office Ellipsoid derived by G. T. McCaw (1924) are:
$a=6,378,300.58$ meters
$f=1 / 296$.
6. Prime vertical deflection is unknown.
7. Deviations for this station are unknown.
8. Local Astro refers to several independently determined datum origins or to areas where maps are positioned by a network of astronomic positions that are not interconnected.

Tithi: /. Geodetic Dotums Used in Map Production-continued.
$\Delta \Phi, \Delta \lambda, \Delta H=$ corrections to transform the geodetic coordinates from the input datum to the output datum (output minus input).
$\Delta X, \Delta Y, \Delta Z=$ shifts between ellipsold centers of the input datum and the output datum.
a = semi-major axis of the input ellipsoid.
$f=$ flattening of the input ellipsoid.
$\Delta a, \Delta f=$ differences between the parameters of the input ellipsoid and the output ellipsoid joutput minus input).
$\theta=$ ecceniricity.
$\mathbf{e}^{2}=2 f-f^{2}$
$R_{M}=$ radius of curvature in the meridian.
$=a\left(1 \cdot e^{2}\right) /\left(1 \cdot e^{2} \sin ^{2} \Phi\right)^{3 / 2}$
$R_{N}=$ radius of curvature in the prime vertical.
$=\sigma /\left(1 \cdot e^{2} \sin ^{2} \Phi\right)^{1 / 2}$
$\sin 1^{\prime \prime}=(0.4848136811)(10 \mathrm{~s})$
2-3.2 Table 2 Molodenskiy Transformation Constants to convert from local datum to WGS 72) lists the $\Delta X, \Delta Y, \Delta \mathbf{Z}, \Delta a$, and Δf to transform coordinates from the various datums shown in Appendix D to WGS 72. Valves for a and f are listed with figure 1.
2-3.3 The direction of the transformation may be reversed by changing the signs of $\Delta X, \Delta Y, \Delta Z, \Delta a$, and Δf. Note also that R_{M} and R_{N} must be computed with respect to the input ellipsoid.

2.4 ELLIPSOIDS.

2.4.1 Several ellipsoids are presently used in U.S. military mapping. The goal is to eventually refer all positions to the World Geodetic System (WGS), which has a specific set of defining parameters, or to a WGS compatible ellipsoid. Ellipsoids may be defined by a combination of algebraically related dimensions such as the semi-major and semiminor axes or the semi-mujor axis and the flattening. Figure 1 illustrates the defining elements and lists the dimensions of the ellipsoids used by the Defense Mapping Agency.
2.4.2 Appendix D (Index of Preferred Grids, Datums, and Ellipsoids Specified for New Mopping) identifies the extent of currently effective ellipsoids.

2-5 PROJECTIONS.

2-5.1 The projections used as the framework of all U.S. military maps have a common characteristic in that they are conformal. Conformality indicates that small areas retain their true shape; angles closely approximate their true values; and, at any point, the scale is the same in all directions.

2-5.2 Certain projections are prescribed for U.S. military topographic mapping:
2-5.2.1 Maps at scales of $1: 500,000$ and larger for areas between 80° south and 84° north are based on the Transverse Mercator Projection.

2-5.2.2 Maps at 1:1,000,000 scale between 80^{*} south and 84° north are based an the Lambert Conformal Conic Projection.
2-5.2.3 Maps at 1:1,000,000 scale and larger of the polar regions (south of 80° south

$\Delta \mathrm{a}$	$\Delta f \times 10^{4}$
-71.400	-0.37295 850
-253	-0.14223 913
-253	-0.14223 913
-253	-0.14223 913
-253	-0.14223 913
-253	-0.14223 913
-253	-0.14223 913
-253	-0.14223 913
-253	-0.14223 913
-253	-0.14223 913
571.604	0.11928817
794.811	0.11928750
-114.145	-0.54781925
-114.145	-0.54781925
-114.145	-0.54781925

MOLODENSKIY TRANSFORMATION CONSTANTS

$\Delta X(m)$	$\Delta Y(n)$.	$\Delta Z(m)$
-22	157	176
-13	142	174
202	-212	-354
162	128	-181
-76	39	-90
-267	135	-410
$-28 \epsilon_{1}$	168	-444
-284	105	-369
-284	105	-369
-284	105	-369
-284	105	-369
-281	164	-398
-222	165	-9
-157	238	-26
-161	129	85
-168	157	42
-84	-103	-127
-86	-122	-124
376	-120	425
505	-132	607
$7 i$	144	73
-73	-218	263
-162	-31	200
-155	-29	200

ELLIPSOID
Clarke 1866

International
International
International
International Internotional International Intarnational Mod. Airy
Clarke 1880
Clarke 1880
Clarke 1880
 5. Provisional Sowth Americon 1956
Bolivia Chils Colombia
Ecuador The Guionas Vonezuela
Porv 6. Corrego Alegre 7. Chuo Astro
8. Compo Inchauspe
9. Yocare
10. European 10. Europeon Iberia
except

Iberia 11. Ordnance Survey of | 0 |
| :--- |
| 0 |
| 8 |
| 0 |
| 0 |

 15. Adindan Ethiopio
Sudan
Table 2. Molodenskiy Transformation Constants to Convert From Local Datum to WGS 72 (poge 1 of 3).

$\frac{2}{6}$

 $\begin{array}{lccccc}\text { When a single astronomic station is used, a transformation may be possible, such as: } \\ \text { international } & -16 & 365 & 167 & -253 & -0.14223\end{array}$

[^0] 6. Sierra leone 1980

Naporima
Trinided and Tobago
デ
39. Comp Arec Astro
-0.14223913
$\underset{\sim}{n}$
Note: These shift cons Note: These shift constonts are the best available at the time of publication.
The latest volues may be obtained from DMA, ATIN: PR.
Table 2. Molodenskiy Transformation Constants to Convert from Local Dotum 10 WGS 72 - continued

ELIPSOID. SEMI-MAJOR AXIS (a) SEMI-MINOR AXIS (b) $\quad 1 / \mathrm{f}^{\boldsymbol{f}}$.

GUSTRALIAN NATIONAI OR GEODETIC REFERENCE SYSTEM 1967
bessel
CLARKE 1866
CLARKE 1880
EVEREST
GEODETL REFERENCE SYSTEM 1980^{2}
INTERNATIONAL
MODIFIED AIRY
MODIFIED EVEREST ${ }^{3}$
WORLD GEODETIC SYSTEM 1972
WORLD GEODETIC SYSTEM 1984
$0,377,563.396$
$0.378,160$
6,377,397.155
6.378,206.4
6.378,249.145

6,377,276.34518
6,378,137
6,378.388
6,377,340.189
6.377.304.063

6,378,135
6,378,137
$6,356,256.910$
299.3249646 298. 5 299.1528128 294.9786982 293.465 300.8017 298.257222101 297 299.325 300.8017 298.26 298.257223563

1 The flattering $f=(a-b, / a$. It is normully expressed by the reciprocal $1 / f$.
2 For cartographic purposes, the GRS 80 and WGS 84 allipscids are interchangeable.
3 This ellipsoid has the same flattening as the Everest Ellipsoid, but a slightly larger axis (28 meters) because of the difference between foot-meter relationships used in Malaysia and the one used in India.

Ficure' 1. Defining Parumeters of Ellipsoids.
and north of 84° norih) are based on the Polar Stereagraphic Projection.
2-5.2.4 General maps at scales smaller than 1:1,000,000 are based on projections individually selected to conform with the intended use of the map. Because of their variety, complexity, and limited use, such projections are nat described in this manial.
2-5.2.5 Projections for nautical and aeronautical charts cre discussed in Chapters 9, 10 , and 11 .

2-5.2.6 Maps produced by coproducing nations in non-U.S. areas of respensibility muy be based on other projections suct, as the Transverse Mercator Projection, the Lambert Conical Orthomorphic Prnjection (Lambert Conformal Conic Projection), Latorde Projection, New Zealand Map Grid Projection, the Rectified Skew Orthomorphic Projection, etc.
2-5.3 The following paragraphs coritain concepts of some of the frescribed projections; in practice, however, the projections are reduced to a plane surface by use of mathematical formulas. (See Chapter 1 for references to mathematical tables.) Figures 2, 3, 4, 5 , and 6 are provided as an aid in the understanding of these concepts.

2-5.4 The Mercator Projection is rot normally used for military topographic maps; however, it is used extensively for naval ocean navigation and bathymetric charts. Its description also serves as a basis for understandinc the Transverse Mercutor Projection. The Mercator Projection can be visualized as an ellipsoid projected onto a cylinder with tangency established at the Equator and with the polar exis of the ellipsoid in coincidence with the cylinder axis as shown in figure 2. The origins of the projection lines vary and are about three-quarters of the way back along the diameters in the equatorial plane. When the cylinder is opened and flattened, a distortion appears in the polar regions, in as much as the line representing the Equator is the true distanco and each parallel is represented by a line as long as the Equator. The poles are infinitely distant from the Equaior and can not be shown on the projection. Distortion becomes more pronounced as the distance north and south of the Equator increases. For example, the map scale at 60° north and 60° south is approximately twice that at the Equator.
2-5.5 A Transverse Mercator Projection is a Mercator Projection where the cylinder has been rotated or transversed 90°. The ellipsoid and cylinder are thus tangent along a meridian. B_{f} projecting the surface of the ellipsoid onto the cylinder, as shown in figure 3 , in the same manner as for the Mercator Projection, the Transverse Mercator Projection is developed on the surface of the cylinder, which is then opened and flattened.

2-5.5.1 Distortion - The east and west extremities appear distorted at the outer edges when projected onto a cylinder. The two shaded areas of figure 3 show the varying distortion of two equivalent geographic areas on the same projection. Note that both areas extend 15° in longitude within the 15 to 30° north latitude band. The area bounded by the 60° and 75° meridians is greatly magnified in comparison to the area bounded by the 0° and 15° meridians. When a meridian is tangent to the cylinder of projection, there is no distortion along that meridian. Distances along the tangent meridians are true distances, and all distances within 3° of the meridians are relatively accurate. Therefore, to minimize distortion, the Transverse Mercator Projection, for military purposes, uses 60 longitudinal zones, each zone 6° wide. For example, a zone centered on 3° (central meridian) is bounded by the 0° and 6° meridians, and a zone centered on 9° is bounded by the 6° and 12° meridians.

Figure 2. Mercator Projection.

Figure 3. Transverse Mercator Projection

DMA TM 8358.1

Fïgure 4. Secant Condition of Transverse Mercator Projection; Typical 6-degree Projection Zone.

2-5.5.2 Secant condition - The cylinder of projection is modified by reducing its elliptical dimensions and making it secant to the ellipsoid, intersecting the ellipsoid along lines parallel to the central meridian (fig. 4). For the Universal Transverse Mercator grid this condition establishes, in one 6° zone, two lines of secancy approximately 180,000 meters east and west of the central meridian. These lines of secancy, in effect, allow a more congruous relationship between ellipsoid and map distances than that of the central meridian tangency. Since the central meridian of all zones is given a false easting value of 500,000 meters east (mE), the secant lines have coordinates of approximately $320,000 \mathrm{mE}$ and $680,000 \mathrm{mE}$ respectively. Figure 4 also gives a schematic representation of the scale distortion in any 6° zone. Note that the scale of the projection at the lines of secancy is exact.

2-5.5.3 Scale factor - For most military operations, map and ground distances are assumed to be equivalent. However, in certain geodetic and artillery operations, where long distances are involved and accuracy of results is essentiai, it is necessary to correct for the difference between distances on the map and distances on the ground. This is done by the use of scale factors from prepared tables or by formula. For the Transverse Mercatar Projection, the scale factor is 1.00000 (unity) at the lines of secancy, decreasing inwardly to 0.9996 at the central meridian, and increasing outwardly to about 1.00010 near the zone boundaries at the equator.
2.5.6 The Polar Stereographic Projection, a conformal azimuthal projection, is similar in both the northern and southern polar regions. The projection is developed on a plane tangent at a pole with the projection lines originating from the opposite pole. The plane is perpendicular to the minor axis, as shown in figure 5. For use with the Universal Polar Stereographic grid, a scale factor of 0.994 is applied at the origin (pole) to lower the plane of projection to intersect the sphere at approximately $81^{\circ} 07^{\prime}$ latitude. This arbitrary geometry is applied to reduce the maximum scale distortion of the tangent projection. As shown in figure 5, the scale is exact (unity scale factor) at approximotely $81^{\circ} 07^{\prime}$ latitude. The scale factor decreases to 0.994 at the pole, increases to 1.0016076 at $80^{\circ} 00^{\prime}$ and attains its maximum value of 1.0023916 at $79^{\circ} 30^{\prime}$. The scale factor is constant along any given parallel.
2-5.7 The Lambert Conformal Conic Projection can be visualized as the projection of the ellipsoid onto a cone whose axis coincides with the polar axis of the ellipsoid as in figure 6. Usually, the cone is secant to the ellipsoid, intersecting along two parallels of latitude. These two parallels are called standard parallels. Meridians appear as straight lines radiating from a point beyond the mapped areas. Parallels appear as arcs of concentric circles which are centered at the point from which the meridians radiate. None of the parallels appear in exactly the projected positions; they are mathematically adjusted to produce the property of conformality. This adjustment is slight if the standard parallals are sufficiently close together.

2-5.8 The characteristics of prescribed projections are tabulated in table 3.

2-6 MILITARY GRIDS.

2-6.1 Military grids consist of parallel lines intersecting at right angles and forming a regular series of squares. The north-south lines are called eastings and the east-west lines northings. Each grid line is one of on even-interval selection of measurement units. The

Figure if Polar Stereographir Projection.
indicates a sample projection nlane

I 1.bHentid colle

Fiyure 6. Lambert Conformal Conic Projaction.

lambert conforinal conic
LAMRERT CONFORIAAL CONIC
axis of cone near
senter of ellopsoid
zone
parallel of origin
two standurd paralle's
of uni:y scole factor
of uni:y scole factor
arcs of concentric
cricles whose spacing
inceoses oway from the
standind porcillel:
straight lines converging
on the projected polar
axis
increases sutward from stondard parallelsi;
decrecses between curved :ine
opproxiniote o straigh,
line when between topogranhic - 1:1,000.000 and smaller - 1:500
aeronautical
and smaller POIAR STERECGRAPHIC
opposite pole
plane
pole
concentric circle of
unity scole factor
concentric sireles
unequally spoced
stragh lines rodiating
from the pole
tangent - increases
away from pole; secont oway from pole; secont equator. decreases
toward pole loward pole
see figure 5 curved line
stroight line when
through pole, oll
others are curyed
 TRANSVERSE MERCATOR
co point on the diameter
varying with the lotitude.
between the center ond
the opposite side
crin
twe meridions equidistan,
from the central meridian
equator is a stroight lines: all other are
curves concove toward
the nearest poie central meridion is a others ore curved lines.
concave townrd the
central meridien
tangent - increases
away from centrol
meridion: secont increases outward fror:: secancy. decreases
toward central meridian loward central meridian
isee figure 4 . curved line curved line
curved line except
centrol meridion and
equator topogrephic - 1:500.000
 aeronautical-1:250.000
Tuble 3. Characteristics of Proiections.
CHARACTERISTICS
Origin of Prciection
Lines Development Surioce
 Secancy Parallels

Meridians

Scale Distortion
Rhumb line
Great Circle
シ
interval is selected in accordance with the map scale. The unit intervals shown on military map scales are:

MAP SCALES	UNIT INTERVALS
$1: 12,500$	1,000
$1: 25,000$	1,000
$1: 50,000$	1,000
$1: 100,000$	1,000 or 10,000
$1: 250,000$	10,000
$1: 500,000$	10,000
$1: 1,000,000$	100,000 with ticks at 10,000

Table 4. Grid Unit Intervals for Various Scale Topographic Maps.
2-6. 2 The grids preferred for military maps are:
2-6.2.1 Universal Transverse Mercator (UTM) grid for areas between 80° south and 84° north.

2-6.2.2 Universal Polar Stereographic (UPS) grid for the polar regions south of 80° south and north of $84^{\prime \prime}$ north.
2-6.2.3 Other grids for certain parts of the world as shown in Appendix 0 . These grids are being progressively replaced by the UTM grid, with the intent to eventually cover all military mapping of the world with a universal metric grid system.
2-6.2.4 Area of application for the various other grids are given in Appendix D. A gencral description of the grids and numbering systems is given in Chapter 4 .
2-0.3 Specifications fo: the Universal Grid Systems follow:
2-6.3.1 Universal Transverse Merccitor (UTM) Grid.
Projection: Transverse Mercator (Gauss-Kruger type) in zone; 6° wide.
Ellipsoid:
International
Bessel
Clarke 1806
Clarke 1880
Everest
Australian National (GRS 1967)
World Geodetic System
Longitude of Origin: Central meridian (CM) of each projection zone $\left(3^{\circ}, 9^{\circ}, 15^{\circ}, 21^{\circ}, 27^{\circ}\right.$, $33^{\circ}, 39,45^{\circ}, 51^{\circ}, 57^{\circ}, 63^{\circ}, 69^{\circ}, 75^{\circ}, 81^{\prime \prime}, 87^{\circ}, 93^{\circ}, 99^{\circ}, 105^{\circ}, 111^{\circ}, 117^{\circ}, 123^{\circ}, 129^{\circ}$, $135^{\circ}, 141^{\circ}, 147^{\circ}, 153^{\circ}, 159^{\circ}, 165^{\circ}, 171^{\circ}, 177^{\circ}, E$ and W of Greenwich).

Latitude of Origin: 0° (the Equator).
Unit: Meter.
False Northing: 0 meters at the Equator for the Northern Hemisphere; 10,000,000 meters at the Equator for the Southern Hemisphere.

False Easting: 500,000 meters at the CM of each zone.
Scale Factor at the Central Meridian: 0.9996.

Grid Zone Designations: See Chapter 3 and Appendix B.

Latifude Limits of System: From $80^{\circ} \mathrm{S}$ to $84^{\prime \prime} \mathrm{N}$.
Limits of Projection Zonus: The zones are bounded by meridians, the longitudes of which are multiples of 6° east and west of Greenwich.
Overlap: On large-scale maps and trig lists, the data for each zone, datum, or ellipsoid overlaps the adjacent zone, datum, or ellipsoid a minimum of 40 kilometers. The UTM grid extends to $80^{\circ} 30^{\circ} \mathrm{S}$ and $84^{\circ} 30^{\prime} \mathrm{N}$, providing a 30 -minute overlap with the UPS grid.
2-6.3.2 Universal Polar Stereographic (UPS) Grid.
Projection: Polar Stereographic.
Ellipsoid: International.
Longitude of Origin: 0° and $180^{\circ} \mathrm{E}-\mathrm{W}$.
Latitude of Origin: 90 N and 90%.
Unit: Meter.
False Northing: 2,000,000 meters.
False Easting: 2,000,000 meters.
Scale Factor at the Origin: 0.994 .
Grid Zone Designations: See Chapter 3 and Appendix 8.
Limits ef System:
North Zone: Polar area north of $84^{\circ} \mathrm{N}$.
South Zone: Polar area south of 80 S .
Overlap: The UPS grid extends to $83^{\prime \prime} 30^{\prime} \mathrm{N}$ and $79^{\prime} 30^{\prime} \mathrm{S}$, providing a 30 -minute overlap with the UTM grid.
2.6.4 formulas for constructing UTM and UPS grids are contained in DMA TM 8358.2.

2.7 TRANSFORMING COORDINATES FROM ONE GRID SYSTEM TO

ANOTHER GRID SYSIEM.
Coordinates may be transformed from one grid system to another grid system, for instance, between o Lambert grid and a UTM grid or between differeni grid zones. The preferred procedure is to transform the grid coordinates from the first grid system to geographic positions. Then transform the geographic positions to grid coordinates of the second grid system. Note: This procedure does not change the datum. See paragraph 2-3 for the procedure to use when changing from one datum to anather datum.

CHAPTER 3

THE U.S. MILITARY
GRID REFERENCE SYSTEM

3-1 GENERAL DESCRIPTION.

3-1.1 The U.S. Military Grid Reference System (MGRS) is designed for use with the UTM and UPS grids.

3-1.2 For convenience, the world is generally divided into 6° by 8° geographic areas, each of which is given a unique identification, called the Grid Zone Designation (fig. 7). These areas are covered by a pattern of 100,000-meter squares. Each square is identified by two letters called the 100,000 -meter square identification. This identification is unique within the area covered by the Grid Zone Designation. Exceptions te this general rule have been made in the past to preserve the 100,000 -meter identifications on mapping that already exists. Appendix B shows the method for finding the 100,000 -meter square identifications.

3-1.3 A reference keyad to a gridded map of any scale is made by giving the 100,000meter square identification together with the numerical location. Numerical references within the 100,000 -meter square are given to the desired accuracy in terms of the easting (E) and northing $\langle\mathrm{N}\rangle$ grid coordinates for the point. The Grid Zone Designation usually is prefixed to the identification when references are made in more than one grid zone designation area.

3-2 THE GRID ZONE DESIGNATION.

3-2.1 An MGRS position location uses the standard military practice of reading "right (easting! and up (northing)". In each portion of a military grid reference igrid zone designation. 100,000 -meter square identification, and grid courdinates), the first part provides the easting component and the second part provides the northing component.
3-2.2 The MGRS is an alphanumeric version of a numerical UTM or UPS grid coordinate.
3-2.2.1 For that portion of the world where the UTM grid is specified $\left(80^{\circ}\right.$ south to 84° north), the UTM grid zone number is the first element of a Military Grid reference. This number sets the zone longitude limits. Zone 32 has been widened to 9° (ar the expens3 of zone 51) between latitudes 56° and 64° to accomodate southwest Norway. Similarly, between 72° and 84°, zones 33 and 35 have been widened to 12° to accomodate Svalbard. To compensate for these 12° wide zones, zones 31 and 37 are widened to 9° and zones 32, 34, and 36 are eliminated.

3-2.2.2 The next element is a letter which designates a latitude band. Beginning at 80° south and proceeding northward, twenty bands are lettered C through X, omitting I and O. The bands are all 8° wide except for band X which is 12° wide. Thus, in the UTM portion of the MGRS, the first three characters designate one of the 1197 areas with the following dimensions as shown in Table 5.

3-2.2.3 In the Polar regions, there is no zone number. A single letter designates the semi-circular area and hemisphere. Since the letters A, B, Y, and Z are used only in the Polar regions, their presence in an MGRS, with the omission of a zone number, designates that the coordinates are UPS.

3-2.3 The grid zones are divided into a pattern of 100,000 -meter grid squares forming
a matrix of rows and columns. Each row and each column is sequentially lattered such that two letters provide a unique identification, within approximately 9°, for each 100,000 meter grid square. Appendix B provides the location and identification of the grid zanes and 100,000-meter grid squares.

Latitude	Longituda	Number
8°	6°	1138
8°	9°	1
8°	3°	1
12°	6°	53
12°	9°	2
12°	12°	2

Table 5 Dimensions of Grid Zone Designation Areas.
3-2.3.1 For many years efforts have been made to reduce the complexity of grid reference systems by standardization to a single worid-wide grid reference system. This effort is continuing and will generate additional changes to Appendixes B, C, and D.
3-2.3.2 The remainder of this chapter describes the determination of the 100,000 -meter square idensification, and the military grid reference.

3.3 10U,000-METER SQUARE IDENTIFICATIONS.

3-3.1 The 100,000 -meter columns, including partial columns along zone, datum, and ellipsoid junctions, are lettered alphabetically, A through Z (with I and O omitted), north and south of the Equator, starting at the 180° meridian and froceeding easterly for 18°. The alphabetical sequence repeats at 18° intervals.

3-3.2 To prevent ambiguity of identificalions along ellipsoid junctions, changes in the order of the row letters are necessary. The row alphabet (second ietter) is shifted ten letters. This decreases the maximum distance in which the 100,000-meter square identification is repeated. See Figure 8.
3-3.3 The 100,000-meter row lottering is bosed on a 20 -letter alphabetical sequence (A through V with 1 and O omitted). This alphabetical sequence is read from south to north, and repeated at 2,000.000-meter intervals from the Equator.

3-3.3.1 The row letters in each odd-numbered 6° grid zone are read in an A through V sequence from south to north.
3-3.3.2 In each even-numbered 6° grid zone, the same lettering sequence is advanced five letters to F, continued sequentially through V and followed by A through V.
3-3.3.3 The advancement or staggering of row le:ters for the even-numbered zones lengthens the distance between 100,000-meter squares of the same identification.

3-3.4 Users are cautioned that deviations from the preceeding rules werc made in the past. These deviations were an attempt to provide unique grid references within a complicated and disparate world-wide mapping system.
3-3.5 Determination of 100,000 -meter grid square identification is further complicated by the use of different ellipsoids. Figure 8 shows the basic lettering system. Appendix B provides detailed guida:ce for finding the correct identification in each ellipsoid area.

DMA TM 8358.1

3.4 THE MILITARY GRID REFERENCE.

3-4.1 The MGRS coordinate for a position consists of a group of letters and numbers which include the following elements:

3-4.1.1 The Grid Zone Designation.

3-4.1.2 The 100,000 -meter square letter identification.
3-4.1.3 The grid coordinates (also refarred to as rectangular coordinates); the numericai portion of the reference expressed to a desired refinement.
3-4.2 A reference is written as an entity without spaces, parentheses, dashes, or decimal points.
Examples
185 (Locating a point within the Grid Zone Designation)
18SUU (Locating a paint within a 100,000-meter square)
18 SUU 80 (Locating a paint within a 10,000-meter square)
$18 S U U 8401$ (Locating a point within a 1,000 -meter square)
18 SUU836014 (Locating a point within a 100-meter square)
3-4.3 To satisfy special needs, a reference can be given to a 10 -meter square and a 1 -meter square as:
$185 U$ U83630143 (Locating a point within a 10 -meter square)
18SUU8362601432 (locating a point within a 1 -meter square)

3-5 MGRS APPLICATION.

3-5.1 All elements of a grid reference need not be used. Their use depends upon the size of the area of activities, the type of military operations, and the scale of the map to which the reference is keyed. The military area commander usually designates the elements of the grid references to be used. The following paragraphs provide guidance for the use of Grid Zone Designations and 100,000-meter square identifications.
3-5.1.1 For military operations spanning large geographical areas, the Grid Zone Designation is usually given (such as 185). This designation will alleviate ambiguity between identical references thot may occur when reporting to a station outside the area. The Grid Zone Designation is always used in giving references on 1:1,000,000 scale and 1:500,000 scale maps.
3-5.1.2 For operational areas of lesser extent, but exceeding 100,000 meters, the 100,000 -meter square identification is used (such as UU80). The 100,000 -meter square identification is used in reporting references on the $1: 250,000$ and larger scale maps to avoid ambiguity between identical references which occur every 100,000 meters, and near grid zone junctions and ellipsoid junctions.

Fituri: \% Method of Reading a U.S Military Grid Reference from a 1:250,000 Scale Map.

3-5.1.3 For small and localized operational areas, the Grid Zone Designations and 100,000-meter square identifications are not used, unless reporting falls within the parameters explained in preceding paragraphs. In the instance of local reporting, orly the numerical part of the grid reference is used (such as 836014). This condition applies to 1:100,000 scale maps and larger.
3-5.1.4 Jopographic maps ai scales 1:500,000 and larger provide a grid reference box with the elements and instructions for making a complete grid reference.

Fichar: 1\%. Method of Reading a U.S. Military Grid Reference from a Large Scale Map.

3-5.2 The numerical part of a grid reference alwoys contains an even number of digits. The first half of the total number of digits represents the easting, and second half the northing. The standard military practice of reading "right (easting) and up (northing)" is employed.

3-5.2.1 To read the easting coordinate, locate the first easting (vertical) grid line to the left of the point of reference and read the large digit (or digits), the principal digit labeling the line either in the top or bottom margin or on the line itself. Smaller digits shown as part of a grid number are ignored. Estimate, or scale to the closest tenth of the grid interval, the distance between the easting grid line to the left of the point and the point itself.

3-5.?.2 The reading of the northing coordinate is made in a similar manner. Locate the first northing (horizontal) grid line below the point of reference and read the principal digits labeling the line located in the left or right margin or on the line itself. Then estimate, or scale to the closest tenth of the grid interval, the distance between the northing grid line below the point and the point itself.

3-5.2.3 The numerical part of a point reference taken from a 100,000-meter grid lon maps of $1: 1,000,000$ scale) is a two-digit number; for example: 80. Reading from left to right, the 8 represents the 10,000 digit of the first easting grid line (or grid tick) to the left of the point; the 0 represents the 10,000 digit of the first northing grid line (or grid tick) below the point.
3-5.2.4 The numerical part of a point reference taken from a 10,000-meter grid (on maps smaller than $1: 100,000$ scale and larger than $1: 1,000,000$ scale) is a four-digit number; for example: 8401. Reading from left to right, the 8 represents the 10,000 digit of the first easting grid line to the left of the point, the 4 represents the estimated tenths (nearest 1,000 meters) from the easting grid line to the point, the 0 represents the 10,000 digit of the first northing grid line below the point, and the 1 represents the estimated tenths (riearest 1,000 metersj from the northing grid line to the point. See figure 9.
3-5.2.5 Normally, the numerical part of a point reference taken from a 1,000-meter grid (on maps at scales of $1: 100,000$ and larger) is a six-digit number; for example: 836014. Reading from left to right, the 83 represents the 10,000 and 1,000 digits of the first easting grid line to the left of the point, the 6 represents the estimated or scaled tenths (nearest 100 meters) from the easting line to the point, the 01 represents the 10,000 and 1,000 digits of the first northing grid line below the point, and the 4 represents the estimated or scaled tenths (nearest 100 meters) from the northing grid line to the point. See figure 10.

CHAPTER 4

THE NONSTANDARD SYSTEMS IN CURRENT USE

4-1 NONSTANDARD GRIDS ON MAPS AND CHARTS.

4-1.1 Nonstandard Grids.

4-1.1.1 There is no reguiar or uniform global plan for the various grids which make up the nonstandard grid systems. Some were originally developed by the native country and later conveniently adopted by the British and U.S. with or without modifications. Others are of British or French origin. The systems were devised or adopted at different times and, except in certain geographic areas, do not have a direct relationship with one another. Primary considerations in the selection of a grid were the projection, ellipsoid, origin, false coordinates for the origin, and limirs which would best suit the particular area. Consequently, various projections and ellipsoids have been employed. Nomenclature, sizes, predominant directions, and outlines of the grids vary considerably. This is demonstrated in Appendix D, which illustrates the layout of the nonstandard grids. This displays what is currently specified for new praducts and maintenance.
4-1.1.2 The nomenclature for the nonstandard grids includes the terms grid, zone, and belt to characterize the systems.

4-1.1.2.1 A grid cavers a relatively small area. Its limits cansist of combinations of meridians, parallels, loxodromes (rhumb lines), or grid lines. The origin of each grid is arbitrary. It is generally located approximately in the center of the grid and may bear no relation to the origins of other grids or to those of adjacent grids.
4-1.1.2.2 A zone usually is wide in longitude and compararively narrow in latitude. Its limits, which are regular in a few cases but irregular in most, consist of paraliels and meridians. Each zone has its own origin which, with some few exceptions, falls within the limits of the zone. There is no relation between the origins of the zones, although, in a regional geographic area, those of adjacent zones may be on a common meridian or parallel.
4-1.1.2.3 A belt originally referred to a grid that was extensive in latitude, but narrow in longitude.
4-1.1.3 Each grid, zone, and belt has a name. Where groups of adjacent grids or zones cover a regional geographic area, the same name may be used for each; distinction is preserved by adding either a cardinal point or a number and a le::er to the name.

4-1.1.4 The unit of measure is either meters or yards.

4-1.1.5 Normally, a British grid or zone is divided into 500,000-unit squares with each square identified by a letter of the alphabet. In a square comprised of twenty-five 500,000 unit squares the letters are arranged alphabetically (the letter 1 is omitted) in a left to right - top to bottom fashion. Each 500,000 -unit is similarly divided into twenty-five 100,000 -unit squares, each of which is identified by a letter following the same plan as for the 500,000 -unit squares. The Normal Lettering Plan is illustrated in figure 11. This basic lettering plan is repeated for India Zone IIA where it exceeds 2,500,000 yards in easting.
4-1.1.6 Among the British grids, deviations from the normal lettering system exist for the Irish Transverse Mercator Grid.

4-1.1.7 No letters are used for the Ceylon Belt, New Zealand Map Grid, Nord Algerie Grid, Nord Marac Grid, Nord Tunisie Grid, Sud Algerie Grid, Sud Marac Grid, and Sud Tunisie Grid.

4-1.1.8 The secondary grids are constantly changing. Specifications for those grids currently in this category are given in table 6.

4-1.1.9 The State Plane Coordinate System used in the United States and Possessions are only shown on maps and charts jointly produced with the civil mapping agencies. They ore shown by a system of grid ticks unique to the civil mapping agencies and covered in detail by the appropriate product specifications. Formulas for the various projections used are given in DMA TM 8358.2. Table 7 gives the specifications for the various State Plane Coordinates.

ORIGIN		false origin		SCALE FACIOR
latitude	IONGITUDE	easting	NORTHING	
$00 \quad .00 \mathrm{~N}$	6200 CO 00 W	400.000.000m	0	0.9995
102800.000 N 90000000 N	$84^{\prime} 20 \mathrm{CO} 000 \mathrm{~W}$ $83^{\circ} 40<0.000 \mathrm{~W}$	$\begin{aligned} & 500.000 .000 \mathrm{~m} \\ & 500.000 .000 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 271.820 .522 \mathrm{~m} \\ & 327.987 .436 \mathrm{~m} \end{aligned}$	0.99995696 0.99995989
$22^{21} 00000 \mathrm{~N}$	81.0000 .000 W	500.000 .000 m	280.295.016m	0.99993602
$20^{\circ} 43^{\prime} 00.000 \mathrm{~N}$	$76^{\circ} 50 \cdot 10.000 \mathrm{~W}$	$500,000.000 \mathrm{~m}$	229.126 .939 m	0.99994848
$18^{\circ} 49^{\circ} 00.000 \mathrm{~N}$	71.30 C 0.000 W	$560,000.000 \mathrm{~m}$	227,063.657m	0.99991102
000000000 N		$300,000.000 \mathrm{~m}$	0.	0.99985
$13^{\prime} 4700000 \mathrm{~N}$	$89^{\circ} 0000000{ }^{\prime} \mathrm{W}$	$500,000.000 \mathrm{~m}$	295,809.184m	0.98996704
$\begin{aligned} & 16.49 .00 .000 \mathrm{~N} \\ & 14^{\circ} 5400.000 \mathrm{~N} \end{aligned}$	$90^{\circ} 20.10 .000^{\prime} \mathrm{W}$ $90^{\circ} 20^{\circ} 60.000 \mathrm{~W}$	$\begin{aligned} & 500,000.000 \mathrm{~m} \\ & 500,000.000 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 292,209.579 \mathrm{~m} \\ & 325,992.68 \mathrm{Im} \end{aligned}$	0.99992226 0.99989906
18.4900 .000 N	$7{ }^{\prime} 30 \mathrm{co.000} \mathrm{~W}$	$500,000.000 \mathrm{~m}$	277.063.657m	0.99991102
$\begin{aligned} & 15.30 .00 .000 \mathrm{~N} \\ & 13.4700 .000 \mathrm{~N} \end{aligned}$	$86^{\circ} 1 \mathrm{C} 0.000^{\prime} \mathrm{W}$ $87^{\circ} 10^{\circ} \mathrm{CO} 000^{\prime} \mathrm{W}$	$\begin{aligned} & 500,000.000 \mathrm{~m} \\ & 500,000.000 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 296.917 .439 \mathrm{~m} \\ & 296,215.903 \mathrm{~m} \end{aligned}$	0.99993273 0.99995140
$34^{\prime} 39^{\prime} 00.000^{\prime \prime} \mathrm{N}$	$37.2100 .000{ }^{\prime \prime} \mathrm{E}$	$300,000.000 \mathrm{~m}$	$300,000.000 \mathrm{~m}$	0.9996256
$\begin{aligned} & 13.5200 .000 \mathrm{~N} \\ & 11.4400 .000 \mathrm{~N} \end{aligned}$	$85 \cdot 30 \cdot 0.000$ W $85^{\circ} 30^{\circ} 00.000^{\prime} \mathrm{W}$	$\begin{aligned} & 500,000.000 \mathrm{~m} \\ & 500,000.000 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 359,891.816 \mathrm{~m} \\ & 288,876.327 \mathrm{~m} \end{aligned}$	$\begin{array}{ll} 0.99990 & 314 \\ 0.99992 & 228 \end{array}$
$34^{\circ} 00^{\prime} 00.000{ }^{\prime \prime} \mathrm{N}$	$0^{\prime} 00{ }^{\prime} 00.000^{\prime \prime} \mathrm{E}$	$1.000,000.000 \mathrm{~m}$	$500,000.000 \mathrm{~m}$	0.99908
$31.444^{\circ} 02.749^{\prime} \mathrm{N}$	35.12.43.490"E	$170.251 .555 \mathrm{~m}^{2}$	$126,867.909 \mathrm{~m}^{2}$	1
8.2500 .000 N	80,0000.000"E	500,000.000m	294,865.303m	0.99989909

PRC CTION	Ellipsiod
TM	Clarke 1880
tombert	Clarke 1866
is 'eet	Clarke 1866
tan. Lamber	Clarke 1866 Clarke 1866
lambert	Clarke 1860
IM	Internatione
Cambert	Clarke
Lambert Lambert	Clarke 1866 Clarke 1866
Lambert	Clarke 186
Lambert Lamber	Clarke 1866 Clarke 1866
Lambert	Clarke 1880
Lambert Lambert	$\begin{aligned} & \text { Clarke } 1866 \\ & \text { Clarke } 1866 \end{aligned}$
Lamber	Clarke
IM	Clarke
lambert	Clarke

NAME
British West Indies
Costa Rica
Norte
Sud
Cubo
Norte
Suc
Dominican Republie
Egypt
El Salvador
Guatemalo
Norte
Sud
Haiti
Honduras
Norte
Sud
Levant
Nicuragua
Norte
Sud
Northwast Africo
Polestine
Poname

[^1]

STATE	PROJECTION'	CRIGIN				FALSE ORIGIN	
		LAIITUD		LONGITU		EASIING	NORTHING2
Alabomo							
East	IM	$30^{\circ} 30^{\prime}$	N	85'50	w	500.000 ft	-11.073.549.44ft
West	TM	$30^{\circ} 00$	N	$87 \cdot 30$	W	500.000	$-10.891 .421 .60$
Alaska							
13	RS	$57^{\prime} 00^{\prime}$	N	$133{ }^{\circ} 40^{\prime}$	w	4,000,000	5,000,000
2	IM	$54^{\circ} 00$	N	14200°	w	500.000.	-19.636,118.46
3	IM	54.00	N	14600	w	500,000.	-19,636,118.46
4	TM	54.00	N	150.00	w	500.000	-19.636.118.46
5	TM	54.00	N	154.00	W	500,000	-19.636,118.46
6	TM	54.00'	N	158.00^{\prime}	w	500,000.	-19.636.118.46
7	TM	$54^{\prime} 00^{\prime}$	N	16200	w	700.000	-19.636.118.46
8	IM	54.00	N	1660°	W	500,000	-19,636,118.46
9	TM	$54^{\circ} 00$	N	170.00	W	600,000.	-19.036.118.46
10	1	5250	N	17800	W	3,000,000	669.263 .41
American Samoa	1	14*' ${ }^{\prime}$	S	$170^{\circ} 00^{\prime}$	w	500,000.	312.234 .65
Arizona							
Enst	TM	31.00	N	$110^{\circ} 10^{\circ}$	w	500.000	-11.254,725.60
Central	TM	$31^{\circ} 00$	N	111'55'	W	500.000	- $11,254,725.60$
West	TM	3100	N	$113^{\prime \prime} 45^{\circ}$	W	500,000.	- 11,255,100.79
Arkansas							
North	1	$35^{\prime \prime} 35$	N	$92^{\circ} 00^{\prime}$	W	2,000,000.	454,963.16
South	1	$34^{\circ} 02$	N	$92^{\circ} 00$	w	2,000,000	497,293.41
California							
1	1	$40^{\circ} 50$	N	$122^{\circ} 00^{\prime}$	W	2,000,006	546,431.97
11	1	39.05	N	122.00	w	2,000,000	515.925 .21
I!	1	37×45	N	$120^{\prime} 30^{\prime}$	W	2,000,000.	455.126.68
IV	1	$36^{\circ} 37 \cdot$		$119^{\circ} 00^{\circ}$	W	2,000,000	470.213 .95
v	:	$34^{\circ} 45^{\prime}$	N	$1180^{\circ} 0$	W	2,000,000.	454,894.02
VI	1	$33^{\circ} 20^{\prime}$	N	110.15	w	2,000.000.	424,481.70
VII	1	$34^{\circ} 08^{\prime}$		118'20'	w	4.186,692.58	4,163,959.34
Colorado							
North	L	40'15'	N	. $05.3{ }^{\circ}$	W	2,000,000.	333.910 .6 .3
Central	1	$39^{\circ} 06^{\circ}$	N	$105^{\circ} 30^{\prime}$	W	2,000,000	461,305.58
South	1	$37^{\circ} 50^{\prime}$	N	$105^{\circ} 30^{\circ}$	W	2,000,000	424,796.56
Connecticut	1	$41^{\prime \prime} 32$	N	$72^{\circ} 45^{\circ}$	w	600,000	255,050.77

[^2]the state plane coordinate systems

0.99994	11765
0.99991	11765
0.99994	84343
0.9999	
0.9999	
1.	
0.99996	66667
0.99990	66667
0.99999	
0.99999	
1.	
0.99994	73684
0.99994	73684
0.99993	33333
0.99997	5
0.99994	11765
0.99996	66667
0.99990	66667
0.99994	53686
0.99994	83705
0.99995	68556
0.99993	59200
0.99996	20817
0.99994	53808
0.99991	47417
0.99992	57458
0.99989	47956

$\begin{aligned} & 888 \\ & 088 \\ & 888 \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{array}{ll} 88 \\ \hline 88 & 0 \\ 88 & 0 \\ 50 & \end{array}$			$\begin{aligned} & 88 \\ & 88 \\ & 88 \\ & 80 \\ & i n \end{aligned}$	$\begin{aligned} & 88 \\ & 88 \\ & 88 \\ & 80 \end{aligned}$	$\begin{aligned} & 80 \\ & 00 \\ & 000 \\ & 808 \\ & 80 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 88 \\ & 88 \\ & \text { N } \end{aligned}$	
333	$33 \stackrel{\sim}{n}$	33333	333	33	33	33	33	33	333
			 끙		$\begin{aligned} & 0 \text { in } \\ & 0.8 \\ & i-\infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \dot{0} \\ & { }_{2}^{2} \\ & \alpha_{2}^{2} \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 0 \% \\ & 0 \% \end{aligned}$	$\begin{aligned} & i n \\ & \dot{+} \\ & i n \end{aligned}$	
マ 2 Z		ママママて	z 2 Z	z 2	22	てマ	22	z 2	Z 2 Z
$\begin{gathered} \text { OOO } \\ \text { NiN } \\ \text { NOM } \end{gathered}$	$\begin{aligned} & 89 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0 \end{aligned}$		¢	$\begin{aligned} & 09 \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 00 \\ & 0 \\ & \text { in } \\ & \text { M } \end{aligned}$	－¢	$\begin{aligned} & i n \\ & i n \\ & i n \\ & i n \end{aligned}$	¢	$\begin{aligned} & \text { n } 88 \\ & \text { m } \\ & \text { m } \end{aligned}$

0.9999	
0.99996	66667
0.99994	98485
$0.998: 4$	45506
0.99799	84844
0.99994	10344
0.99995	09058
0.99994	50783
0.99990	28166
0.99992	20223
0.99992	26488
0.99996	
0.99994	11765
0.99993	33333
0.99993	33333
0.99994	11765
0.99997	14855
0.95992	20151
0.99991	07701
0.99996	45501
0.99992	20725
0.9999	
0.9999	
0.9999	
0.99996	66667
0.99997	5

-15.927 .141 .03
$-15.563,721.13$
379.351 .12
437.274 .82
139.670 .59
546.984 .589
592.436 .186
504.135 .693
486.319 .45
486.199 .22
546.800 .79
-10.770 .494 .91
-11.073 .340 .99
-13.013 .704 .91
-13.013 .704 .91
-13.135 .142 .77
468.150 .81
$486,271.21$
595.523 .96
364.402 .63
485.740 .33

$\begin{aligned} & 880 \\ & 080 \\ & 08 \\ & 080 \\ & 080 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 8 \% \\ & \hline 8 \% \\ & 0.8 \\ & \hline 8 \end{aligned}$		$\begin{aligned} & 8_{8} 80 \\ & 80 \\ & 080 \\ & 080 \\ & \text { rin } \end{aligned}$	$\begin{aligned} & 88 \\ & 88 \\ & 88 \\ & 88 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 988 \\ & 08 \\ & 88 \\ & 888 \\ & 080 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & 88 \\ & 08 \\ & 08 \\ & 080 \\ & 0.0 \end{aligned}$	$\begin{array}{lll} 888 & 8 & 8 \\ 088 & 0 & 0 \\ 088 & 8 & 0 \\ 0 & 0 & 8 \\ \hline \end{array}$
333	33	333	33	33	333	333	33	33333
	-		0 in 08 080	90 0 0 0 0	200 20% 80%	900 000 080 080	9% 80% 80%	

[^3]

31.00	N	:04'20	w		
31.00		$100^{\prime} 15$		30\%.000.	-11.254,827.92
31.00	N	,	w	500.000	-11.254,725.60
		1075	w	500,000.	-11.254.913.19
$40^{\circ} 51$	N	$74^{\circ} 00^{\prime}$	w	2,000,000.	227.513.12
40.00	N	74.20	w	500,000.	-14.531.372.61
$40^{\circ} 00^{\circ}$	N	76.35	w	500,000.	-14,530.948.76
$40^{\prime} 00^{\prime}$	N	$78^{\circ} 35^{\prime}$	w	500,000.	-14.530,948.76
$35.15{ }^{\prime}$	N	$79^{\circ} 00^{\circ}$	w	2,000,000.	545.898.61
$48^{\circ} 5^{\prime}$	N	$100^{\circ} 30^{\circ}$	w	2.000,050.	395.161.83
$40^{\circ} 50$	N	$100^{\circ} 30^{\circ}$	w	2,000,000.	425,465.38
4104	N	$82^{3} 30^{\circ}$	w	2,000,000	510,043.69
39.23.	N	$82^{\prime} 30^{\prime}$	w	2,000,000.	503,821.73
36, 10^{\prime}	N	$98^{\circ} 00^{\prime}$	w	2,000,000.	424,670.44
34'35'	N	98.00	w	2,000,000.	454,887.80
45*10'	N	$120^{\circ} 30^{\prime}$	w	2,000,000.	546.850.61
$43^{\prime} 10^{\prime}$	N	$120^{\circ} 30^{\prime}$	w	2,000,000.	546,656.58
41'25'	N	77×45	w	2,000,000.	455.429.06
40.27	N	$77^{\circ} 45^{\circ}$	w	2,006,000.	406,780.38
18'14'	N	$66^{\circ} 26^{\prime}$	w	500,000	145,242.64
41'07'	N	$71^{\prime} 30^{\prime}$	w	50c,000.	-14.926,437.50
18*14'	N	$66^{\circ} 26^{\prime}$	w	50c:000.	245,242.64
34.22'	N	$81^{\circ} 00^{\prime}$	w	2,000,000.	497,333.89
$33^{\circ} 00^{\prime}$	N	$81^{\prime} 00^{\prime}$	w	2,000,000.	424.449.78
$45^{\circ} 03$	N	$100 \cdot 0{ }^{\prime}$	w	2.000,000.	443.561 .10
43.37'	N	$100^{\prime} 20^{\prime}$	w	2,000,000.	467.732.89
$35^{\circ} 50$	N	$86^{\circ} 0^{\prime}$	w	2,000,000.	524,653.97

```
\sum\sum\sum{ - {\{\
```

Texas									
North	1	35 ${ }^{\circ} 5^{\circ}$	N	10130	w	2,000,000	515,602.12	0.99991	08771
North Central	1	33.03°	N	$97^{\circ} 30$	W	2,000,000.	503.255 .35	0.99987	26224
Central	1	$31^{\circ} 00^{\prime}$	N	$100^{\circ} 20^{\circ}$	w	2,000,000	484.911.61	0.99988	17443
South Central	1	29* 20	N	99.00	w	2,000,000.	545.383 .41	0.99986	32433
South	L	$27^{\circ} 00^{\circ}$	N	$98^{\circ} 30^{\circ}$	w	2,000,000.	484.630.65	0.99989	47956
Utah									
North	1	41'15	N	1110°	w	2,000,000.	333,969.17	0.99995	68422
Central	1	$39^{\circ} 50^{\circ}$	N	111 30°	w	2,000.000	546,338.90	0.99989	88207
South	L	$37^{\circ} 47^{\prime}$	N	$111^{\circ} 30^{\circ}$	W	2,000,000.	406,589.30	0.99995	12939
Vermont	TM	$42^{\circ} 30^{\prime}$	N	$72^{\prime 3} 0^{\circ}$	w	500,000.	-15,442.204.78	0.99996	42857
Virginio									
North	1	$38^{\prime} 37^{\prime}$	N	$78^{\circ} 30^{\circ}$	w	2,000,000.	345.951 .82	0.99994	83859
South	I	3722°	N	$78^{*} 30^{\circ}$	w	2,000,000.	376.217 .10	0.99994	54027
Washington									
North	1	$48^{\circ} 07^{\prime}$	N	$120^{\circ} 50^{\circ}$	w	2,000,000.	407.325 .95	0.99994	22551
South	1	$46^{\circ} 35^{\prime}$	N	$120^{\circ} 30^{\circ}$	w	2,000,000.	455.827.10	0.99991	45875
West Virginio									
North	1	39'37'30		$79^{\circ} 30^{\circ}$	w	2,000,000.	409.749.53	0.99994	07460
South	1	38'11'	N	$81^{\circ} 00^{\circ}$	W	2,000,000.	430,882.70	0.99992	56928
Wisconsin									
North	t	$46^{\prime} 10^{\prime}$	N	$90^{\circ} 00^{\circ}$	w	2,000,000.	364,643.64	0.99994	53461
Central	1	44.52.30	N	$90^{\circ} 00^{\prime}$	w	2,000,000.	379,748.37	0.99994	07059
South	L	$43^{\circ} 24^{\prime}$	N	$90^{\circ} 00^{\prime}$	w	2,000,000.	510.250 .26	0.99993	25474
1 (East)	TM	$40^{\circ} 40^{\prime}$	N	105'10'	w	500,000.	-14,773,855.20	0.99594	11765
II if. Central,	TM	$40^{\circ} 40^{\prime}$	N	$107^{\circ} 20^{\circ}$	w	500,000.	-14,773,855.20	0.99994	:1765
III (W. Central	TM	$40.40{ }^{\circ}$	N	108.45	w	500,000.	-14,773.855.20	0.99494	11765
IV (West)	TM	$40^{\circ} 40^{\circ}$	N	11005^{\prime}	W	500,000.	-14,773,855.20	0.99994	11765

Tuhle 7. Table of the 1927 State Plane Grids used in the United States

4-1.1.10 The Gauss-Kruger (GK) projection and grids are the basis for the UIM grid system. Within the scape of this manual, there are three GK systems that may be encountered even though the Defense Mapping Agency uses none of them. The Russian GK grid is discussed in Department of the Army Field Manual No. 34-85, Conversion of Warsaw Pact Grids to UTM Grids. General specifications are as follows:

Projection: Transverse Mercator in zones 6° wide.
Ellipsoid: Krasovskiy ($a=6,378,245$ meters, $1 / f=298.3$) (U.S.S.R., China to 1981). Geodetic Reference System of China 1980 ($a=6,378$, 140 meters, $1 / f=298.257$) (China from 1981).
Bessel (Germany).
Longitude of Origin: Same as the UTM.
Latitude of Origin: Same as the UTM.
Unit: Meter.
Folse Easting: 500,000 meters at the $C M$ of each zone. However, the zone number is prefixed to tho false easting in most cases, i.e. the faise easting for the GK zone 7 is $7,500,000$ meters.

False Northing: Same as the UTM.
Scale Factor on Central Meridian: Unity (1).
Grid Zone Designations: The zones are rumbered eastward from 1 to 60 starting at the Greenwich meridian rather than the 180° meridion. In othor words, tho UTM and CK zones differ by 30. Row letters are not used with the GK systems Limits of System: The limits north ond south are not rigidly defined as with the UTM. However, the limits can be assumed to be similar to the UTM.
Overlap: Same as the UTM.
4-1.1.11 The specifications for the nonstandard grids, including the various lettering systems, are shown later in this chapter.
4-1.2 Nonstandard Grids on Maps and Charts.
4-1.2.1 Maps at scales of 1:100,000 and larger are gridded at 1,000-unit intervals. Those at scales 1:250,000 and 1:500,000 are gridded at 10,000-unit intervals. Maps at scales 1:1,000,000 and smaller than 1:500,000 are gridded at 100,000-unit intervals intersected by ticks of 10,000 -unit intervals.
4-1.2.2 Each grid line, except on maps at $1: 1,000,000$ scale, is labeled with its value in the margin and on the line itself. Maps at $1: 1,000,000$ scale are not labeled on the face of the map. In the margins, the grid values for each line are shown in two sizes of type. The larger digits - the principal digits - are the only digits to be used in determining a grid reference. On the face of the map, the grid lines are labeled with principal digits only. These grid-labeling practices are similar to those of the UTM and UPS grids.
4-1.2.2.1 The number of principal digits labeling the grid lines is dependent upon the particular grid and the interval of the grid lines.
4-1.2.2.2 With grids whose 100,000 -unit squares are identified by letters or numbers, the 10,000 -unit or 100,000 -unit interval grid lines are iabeled with one principal digit
orly. This represents the 10,000 digit of the grid value. On maps in the same area whose grid lines appear of 1,000 -unit intervals, the lines are labelea with two principal digits. These represent the 10,000 and 1,000 digits of the grid value.
4-1.2.2.3 Except the Ceylon Belt, the lines of grids whose 100,000 -unit squares are not identified are labeied with two principal digits when the interval is 10,000 units and with three principal digits when the interval is 1,000 units. At the 10,000 -unit or 100,000 unit interval, the numbers represent the $100,000,10,000$, and 1,000 digits of the grid value.

4-1.2.2.4 With the Ceylon Belt, two principal digits are used, regardless of the interval of the grid lines. On maps gridced at 10,000- or 100,000-yard intervals, the number: represent the 100,000 and 10,000 digits of the grid value. On maps gridded at $1,000-$ yard intervals, the numbers represent the 10,000 and 1,000 digits of the grid value.

4-1.2.3 The 100,000 - and 500,000 -unit square identifications are shown in several ways depending upon the scale of the map.

4-1.2.3.1 On maps of British origin which are gridded at 10,000 -unit intervals, a miniature representation of the 100,000 -wait grid lines is printed in the index to adjoining sheets. Within each square is added the 100,000 -unit square identification. If the 500,000 -unit squares are identified, the identification is added in smaller type just before each 100,000. unit square identification, such as $S C$. Similar identifications appear on the face of the map. These will be found either in the center or at the corners of each 106,000-unit square. Variations in these practices will often be encountered.

4-1.2.3.2 This same plan is tollowed on maps of British origin which are gridded at 1,000 -unit intervals, although in many cases it will be found sher the identifications are omitted from the face of the map.

4-1.2.3.3 On U.S. maps containing nonstanciard grids, a minicture representation of the sheet with 100,000-unit grid lines appears in the grid reference box which is part of the marginal data of the sheet. The appropriate 500,000 - and 100,000 -unit square identifications appear in each square of the miniature. These are written together, with the 500,000 -urit square identification appearing in smaller tpe, such as sC. Examples are illustrated in figure 27. Similar identifications appear on the face of mops gridded at 10,000-unit intervals.

4-1.3 Referencing.

Two bo c methods for giving grid references are used on maps with nonstandard grid refi ence systems. These are modified in some instances. The first method, referred to a_{j} the normal British grid reference system, is used with gr^{\prime} 's whose 100,000 unit squares are identified by letters. The second method, eferred to as the abnormal grid reference system, is used with grids whose 100,000 -unit squares are not identified.

4.1.4 The Normal British Grid Reference System.

4-1.4.1 The instructions contained in ihis section apply only to those grids which adhere to the normal lettering plan.
4-1.4.2 The normal method for giving a reference based on a British grid is similar to that used for tie U.S. Military Grid Reference Syst3m. See Figures 10 and 11 . A reference consists of a group of letters and numbers which indicate (1) the 500,000-unit square identification, (2) the 100,000-unit square identification, and (3) the grid coordinates - the numerical portion of the reference - expressed to a prescribed refinement. It is desirable
to leave a space between lettsrs and numbers.

Examples:

NT 65 (locating a point within a 10,000-unit square)
NT 6354 (Locating a point witnin a 1,000 -unit square)
NY 63:543 (locating a point within a 100-unit square)
4-1.4.3 The USA of the letters of the 500,000 - and 100,000 -unit square identifications depends on the size of the area of operations. The above examples of reporting are desirable when reficrting herweer: 500,000 -unit squares so that ambiguity in letter identifications may be avoided. However, :hen all reporting is within a 500,000 -unit square, the 500,000 -unit square identification letter may be dropped, and the 100,000-unit square identificcition is retained to avoid ambiguity in numerical coordinates. When the area of operaticns is complately localized within a 100,000 -unit square, both the 500,000 - and 100,000 -unit squaro identifications may be dropped.

4-1.5 Exceptions to the Normal British Grid Reference System.

4-1.5.1 The letter 1 is used as the 500,000 -meter square letter with the Irish Transverse Mercator.
4-1.5.2 No 500,000-and 100,000-meter square letters are used with the New Zealand Map Grid. To avoid ambiguity, references are prefixed with the sheet number. A space separates the stieet number from the numerical reference.

Exainples:

Z15 894623 (Locating a point within a 1,000 -meter square at 1:50,000 scale)
Sht 5989362 (Locating a point within a 10,006-meter square at 1:250,000 scale)
4-1.6 The Abnormal Grid Reference System.
4-1.6.1 The abnormal grid reference system is used when 100,000 -unit squares are not identified, as with the Madagascar grid and the Lambert Grids of northwestern Africa. The reference usually is expressed in terms of grid coordinates anly and is determined in the same manner as that used with the normal British grid reference system. The number of digits in the reference depends upon the grid interval and the grid itself.
4-1.6.2 Except for the Ceylon Belt, an abnormal reference taken from a map gridded at 100,000 -meter intervals consists of four digits; at 10,000 meters, six digits; and for 1,000-meter intervals, eight digits.
Examples:
8645 (Locating a point within a 10,000 -meter square)
863454 (Locating a puint within a 1,000 -meter square)
86324543 (Locating a point within a 100 -meter square)
4-1.6.3 References based on the Ceylon Belt use four digits on maps gridded at 100,000yard intervals and six digits for all other grid intervals.

Examples:
Reference from map gridded at 100,000-yard intervals.
3524 (Locating a point within a 10,000-yard square)
Reference from map gridded at 10,050-yard intervals.
34.241 (locating a point within a 1,000-yard square)

Reference from map gridded at 1,000-yard intervals.
472413 (Locating a point within a 100-yard square)
4-1.6.3.1 The Ceylon Belt grid reference system has a distinct disadvantage. Ambiguity between references is possible when six-digit reporting covers an areat exceeding 100,000 yards square.
4-1.6.3.2 No official method is provided for preserving a distinction between the references. In practice, various devices have been used, such as prefixing the reference with the scale, name, or number of the map from which the reference was taken.
4-1.6.3.3 On maps prepared by the United States, the grid reference box will contain instructions for preserving distinctions. Normally, this will require prefixing the numerical reference with the sheet number of the map from which the reference was taken.

4-1.7 Unique Reporting.

Nonstandard reference systems, unlike the U.S. Military Grid Reference System, moke no provisions for worldwide reporting. It may be necessary to identify the general areas in terms of geographic coorclinates before giving the grid references for the separate general areas.

4.2 DIAGRAMS OF NONSTAINDARD GRIDS.

The fallowing pages show the diagrams and specifications of nonstandard grids used as the primary or secondary grid on maps produced by DMA:

BRITISH NATIONAL GR!D

PROJECTION: Transverse Mercator
ELLIPSOID: Airy
UNIT: Meter
ORIGIN: $49^{\circ} \mathrm{N}$., $2^{\circ} \mathrm{W}$.
FALSE COORDINATES OF ORIGIN: 400,000 meters E.; 100,000 meters N.
SCALE FACTOR: 0.9996012717
INCIDENCE OF GRID LETYERS: The 500,000-meter square letter S and the 100,000 -meter
square letter V are both north and east of the false origin.
GRID TABLES: Projection Tables for the Iransverse Mercator Projection of Great Britain.
GRID "COLOR': Black
REFERENCING FOR 1,000 -METER GRID (6 -digit numerical reference):
Principal digits: (2); 10,000, 1,000
REFERENCING FOR 10,000-METER GRID (4-digit numerical reference):
Principal digits: (1); 10,000
REFERENCING FOR 100,000-METER GRID (2-digit numerical reference):
Principal digits: (1); 10,000
See next page for junction with Irish TM Grid

CEYLON BELT

PROJECTION: Transverse Mercator
ELLIPSOID: Everest ($a=6,974,310.6$ Indian Yards, $1 / 4=300.8017$)
UNIT: indian Yard
ORIGIN: $7^{\circ} 00^{\prime} 01.729^{\prime \prime} \mathrm{N}^{\prime}, 80^{\circ} 46^{\prime} 18.160^{\prime \prime} \mathrm{E}$.
FALSE COORDINATES OF ORIGIN: 176,000 yards E., 176,000 yards N.[south and west of the false origin (0 yards E. and 0 yards N. grid lines) add 1,000,000 yards to the easting and northing.]
SCALE FACTOR: Unity
INCIDENCE OF GRID LETTERS: No letters used.
GRID TABLES: Transverse Mercator Projection Tables, Ceylon Belt
GRID "COLOR': Brown (red-brown)
REFERENCING FOR 1,000-YARD GRID (6-digit numerical reference):
Principal digits: [2); 10,000, 1,000
REFERENCING FOR 10,000-YARD GRID (6-digit numerical reference):
Frincipal digits: (2); 100,000, 10,000
REFERENCING FOR 100,000-YARD GRID (4-digit numerical reference): Principal digits: (2); 100,000, 10,000

PROJECTION Lambert Conical Orthomorphic
ELLIPSOID: Everest ($a=6,974,310.6$ Indian Yards $1 / f=300.8017$)
UNIT: indian Yard
ORIGIN: $32^{\circ} 30^{\prime} \mathrm{N}$., $68^{\circ} \mathrm{E}$.
FAISE COORDINATES OF ORIGIN: 3,000,000 yards E., $1,000,000$ yards N.
SCALE FACTOR: . 998786408
INCIDENCE OF GRID LETTERS: Nor.nal
GRID TABLES: Lambert Conical Orthomorphic Projection Tables, india Zone 1
GRID "COIOR': Black
REFERENCING FOR 1,000-YARD GRID (6-digit numerical reference):
Principal digits: (2); 10,000, 1,000
REFERENCING FOR 10,000-YARD GRID (4-digit numerical reference):
Principal digits: (1); 10,000
REFERENCING FOR $100,000-$ YARD GRID (2-digit numerical reference):
Principal digits: (1); 10,000

INDIA ZONE IIA

PROJECTION: Lambert Cenical Orthomorphic
ELLIPSOID: Everest $(a=6,974,310.6$ Indian Yards $1 / f=300.8017$)
UNIT: Indian Yard
ORIGIN: $26^{\circ} \mathrm{N}$., $74^{\circ} \mathrm{E}$.
FALSE COORDINATES OF ORIGIN: 3,000,000 yords E., $1,000,000$ yards N.
SCALE FACTOR: . 998786408
INCIDENCE OF GRID LETTERS: Normal
GRID TABLES: Lambert Conical Orthomorphic Projection Tables, India Zone IIA, India Zone $\| \mathrm{B}$.
GRID 'COLOR': Black
REFERENCING FOR 1,000-YARD GRID (6 -digit numerical reference):
Principal digits: (2); 10,000, 1,000
REFERENCING FOR 10,000-YARD GRID (4-digit numerical reference):
Principal digits: (1); 10,000
REFERENCING FOR 100,000-YARD GRID (2-digit numerical reference):
Principal digits: (1); 10,000

INDIA ZONE IIB

PROJECTION: Lambert Conical Orthomorphic
ELLIPSOID: Everest ($a=6,974,310.6$ Indian Yards $1 / f=300.8017$)
UNIT: indian Yard
ORIGIN: $26^{\circ} \mathrm{N} .90^{\circ} \mathrm{E}$.
FALSE COORDINATES OF ORIGIN: 3,000,000 yards E., $1,000,000$ yards N.
SCALE FACTOR: . 998786408
INCIDENCE OF GRID LETTERS: Normal
GRID TABLES: Lombert Conical Orthomorphic Projection Tables, India Zone MA, India Zone IIB
GRID "COLOR': Black
REFERENCING FOR 1,000-YARD GRID ($\mathbf{6}$-digit numerical reference):
Principal digits: (2); 10,000, 1,000
REFERENCING FOR 10,000-YARD GRID (4-digit numerical reference):
Principal digits: (1); 10,000
REFERENCING FOR 100,000-YARD GRID (2-digit numerical reference):
Principal digits: (1); 10,000

PROJECTION: Lambert Conical Orthomorphic
ELLIPSOID: Everest ($a=6,974,310.6$ Indian Yards $1 / f=300.8017$)
UNIT: Indian Yard
ORIGIN: $19^{\circ} \mathrm{N}$., $80^{\circ} \mathrm{E}$.
FALSE COORDINATES OF ORIGIN: 3,000,000 yords E., $1,000,000$ yards N.
SCALE FACTOR: 998786408
INCiDENCE OF GRID LETTERS: Normal
GRID TABLES: Lambert Conical Orthomorphic Projection Tables, India Zone IIIA, Indiu Zone IIIB
GRID 'COLOR': Black
REFERENCING FOR 1,000-YARD GRID (6-digir numerical reference);
Principal digits: (2); 10,000, 1,000
REFERENCING FOR 10,000-YARD GRID (4-digit numerical reference):
Principal digits: (1); 10,000
REFERENCING FOR 100,000-YARD GRID (2-digit numerical reference):
Principal digits: (1); 10,000

INDIA ZONE IIIB

PRCJECTION: Lambert Conical Orthomorphic
EL!IPSOID: Everest ($a=0,974,310.0$ indian Yards $1 / f=300.8017$)
UNIT: Indian Yard
ORIGIN: $19^{\circ} \mathrm{N}$. $100^{\circ} \mathrm{E}$.
FALSE COORDINATES GF ORIGIN: 3,000,000 yards e., $1,000,000$ yards N .
SCALE FACTOR: 998786408
INCIDENCE OF GRID LETYERS: Narmal
GRID TABLES: Lambert Conical Orthomorphic Proje..... iables, India Zone IIIA, India Zone IIIB
GRID "COLOR': Black
REFERENCING FOR 1,000 -YARD GRID (6 -digit numerical reference): Principal digits: (2); 10,000, 1,000
REFERENCING FOR 10,000 -YARD GRID (4-digit numerical reference):
Principal digits: (i); 10,000
REFERENCING FOR 100,000-YARD GRID (2-digit numericai reference):
Principal digits: (1); 10,000

INDIA ZONE IVA

PROJECTION: Lambert Conical Orthomorphic
ELLIPSOID: Everest $(a=0,974,310.6$ Indian Yards $1 / f=300.8017$)
UNIT: Indian Yard
ORIGIN: $12^{\circ} \mathrm{N} .4,80^{\circ} \mathrm{E}$.
FALSE COORDINATES OF ORIGIN: $3,000,000$ yards E., $1,000,000$ yords N.
SCALE FACTOR: . 998786408
INCIDENCE OF GRID LETTERS: Normal
GRID TABLES: Lambert Conical Orthomorphic Projection Tables, India Zone IVA, India Zone IVB
GRID "COLOR': Black
REFERENCING FOR 1,O00-YARD GRID (6 -digit numerical reference):
Principal digits: (2); 10,000, 1,000
REFERENCING FOR 10,000-YARD GRID (4-digit numerical reference):
Principal digits: (1); 10,000
REFERENCING FOR 100,000-YARD GRID (2-digit numerical reference):
Principal digits: (1); 10,000

PROJECTION: Lambert Conical Orthomiorphic
ELLIPSOID: Everest ($a=6,974,310.6$ Indian Yards $1 / f=300.8017$) UNIT: Indian Yard
ORIGIN: $12^{\circ} \mathrm{N}$., $104^{\circ} \mathrm{E}$.
FALSE COORDINATES OF ORIGIN: 3,000,000 yards E., $1,000,000$ yards N.
SCALE FACTOR: . 998786408
INCIDENCE OF GRID IETTERS: Normal
GRID TABLES: Lambert Conical Orthomorphic Projection Tables, India Zcne IVA, India
Zone IVB
GRID 'COIOR': Blue
REFERENCING FOR 1,000-YARD GRID (6-digit numerical reference):
Principal digits: (2); 10,000, 1,000
REFERENCING FOR 10,000-YARD GRID (4-digit numerical reference):
Principal digits: (1); 10,000
REFERENCING FOR 100,000-YARD GRID (2-digit numerizal reference):
Frincipal digits: (1); 10,000

IRISH TRANSVERSE MERCATOR GRID

PROJECTION: Transverse Mercator
ELLIPSOID: Modified Airy
UNIT: Meter
ORIGIN: $53^{\circ} 30^{\prime} \mathrm{N} .8^{\circ} \mathrm{W}$.
FALSE COORDINATES OF ORIGIN: 200,000 meters E., 250,000 meters N. (south of the false origin add $1,000,000$ meters to the northing.)
SCALE FACTOR: 1.000035
INCIDENCE OF GRID LEITERS: For the 500,000-meter square letter use the special letter I. Normal 100,000-meter square letters.
GRIC TABLES: Tables for the Transverse Mercator Projection of Ireland
GRID "COLOR": Red (red-brown)
REFERENCING FOR 1,000-METER GRID (6 -digit numerical reference):
Principal digits: (2); $10,000,1,000$
REFERENCING FOR 10,000 -METER GRID (4-digit numerical reference):
Principal digits: (1); 10,000
REFERENCING FOR 100,000-METER GRID (2-digit numerical reference):
Principal digits: (1); 10,000
See British National Grid for Limits of Junction Line

MADAGASCAR GRID

PROJECTION: Laborde
ELLIPSOID: International
UNIT: Meter
ORIGIN: 18'54'S., 46²0'13.95"E.
FALSE COORDINATES OF ORIGIN: 400,000 mete:s E., 800,000 meters N. (west of the false origin add $1,000,000$ meters to the easting.)
SCALE FACTOR: . 9995
INCIDENCE OF GRID LETTERS: No letters used
GRID TABLES: Laborde Proiection Tables, Madagascar Grid
GRID "COLOR': Red (red-brown)
REFERENCING FOR 1,000-METER GRID (8-digit numerical reference):
Principal digits: $(3) ; 100,000,10,000,1,000$
REFERENCING FOR 10,0n0-METER GRID (6 -digit numerical reference):
Principal digits: (2); 100,000, 10,000
REFERENCING FOR 100,000-METER GRID (4-digit numerical reference):
Principal digits: $(2) ; 100,000,10,000$

NETHERLANDS EAST :NDIES EQUATORIAL ZONE

PROJLCTION: Mercator
ELLIPSOID: Bersel
UNIT: Meter
ORIGIN: Equator, $110^{\circ} \mathrm{E}$.
FALSE COORDINATES OF ORIGIN: $3,900,000$ meters E., 900,000 meters N.
SCALE FACTOR: . 997
INCIDENCE OF GRID LETTERS: The 500,000-meter square letter P and the 100,000 meter square letter V are both east of the $4,000,000$-meter crid line and north of the $1.000,000$-meter grid line
GRID TABLES: Lambert Conical Orthomorphic Projection Tables, Netherland East Indies
Equatoria! Zone
GRID "COLOR': Blue
REFERENCING FOR 1,000-YARD GRID (6-digit numerical reference):
Principal digits: (2); $10,000,1,000$
REFERENCING FOR 10,000-YARD GRID ; 4-digit numerical reference):
Principal digits: (1); 10,0n0
REFERENCING FOR 100,000-YARD GRID (2-digit numerical reference):
Principal digits: (1); 10,000

PROJECTION: New Zealand Map Grid (derived by W. I. Reilly)
ELLIPSOID: International
UNIT: Meter
ORIGIN: $41^{\circ} \mathrm{S} ., 173^{\circ} \mathrm{E}$.
FALSE COORDINATES OF ORIGIN: 2,5IG,000 meters E.; $6,023,150$ meters N. INCIDENCE OF GRID LETTERS: No letters used
GRID TABLES: Not available
GRID "COLOR": Blue
REFERENCING FOR 1,000-METER GRID (6-digit numerical reference):
Principal digits: (2); $10,000,1,000$
REFERENCING FOR 10,000-METER GRID (6-digit numerical reference):
Principal digits: (2); $10,000,1,000$
REFERENCING FOR 100,000-METER GRID (6 -digit numerical reference):
Principal digits: (2); 10,000, 1,000

NORD ALGÉRIE GRID

[^4]
NORD MAROC GRID

[^5]
NORD TUNISIE GRID


```
PROJECIION: Lambert Conical Orthomorphis
ELLIPSOID: Clarke 1880
UNIT: Meter
ORIGIN: 36
FALSE COORDINATES OF ORIGIN: 500,000 meters E., 300,000 meters N.
SCALE FACTOR: . }99963554
INCIDENCE OF GRID LETTERS: No letters used.
GRID TABLES: Tables des Constantes Numériques des Systèmes de Projections Lambert
GRID 'COLOR': Brown (red-brown)
REFERENCING FOR 1,000-METER GRID (8-digit numerical reference):
    Principal digits: (3); 100,000, 10,000, 1,000
REFERENCING FOR 10,000-METER GRID (0-digit numerical reference):
    Principal digits: (2); 100,000, 10,000
REFERENCING FOR 100,000-METER GRID (4-digit numerical reference):
    Principal digits: (2); 100,000, 10,000
```


sud algérie grid

PROJECTION: Lambert Conical Orthomorphic
ELLIPSOID: Clarke 1880
UNIT: Meter
ORIGIN: $33^{\circ} 18^{\prime} N ., 2^{\circ} 42^{\prime}$.
FALSE COORDINATES OF ORIGIN: 500,000 meters $E, 300,000$ meters N. 'south of false origin add 1,000,000 meters to the northing)
SCALE FACTOR: 999625769
INCIDENCE OF GRID LETTERS: No letters used.
GRID TABLES: Tables des Constantes Numériques des Systèmes de Projections Lambert
SRID "COLOR': Brown (red-brown)
REFERENCING FOR 1,000-MEIER GRID (8-digit numerical reference):
Principal digits: (3); $100,000,10,000,1,000$
REFERENCING FOR 10,000 -METER GRID (6 -digit numerical reference):
Principal digits: $\{2 ; 100,000,10,000$
RFFERENCING FOR 100,000-METER GRID (4-digit numerical reference):
Principal digits: (2); 100,000, 10,000

SUD MAROC GRID

PRDJECTION: Lambert Conical Orihomorphic
ELLIPSOID: Clarke 1880
UNIT: Meter
ORIGIN: $29^{\circ} 42 \mathrm{~N} ., 5^{\circ} 24^{\prime} \mathrm{W}$
FALSE COCRDINATES OF ORIGIN: 500,000 meters E., 300,000 meters N. (west of the false origin add $1,000,000$ meters to the easting).
SCALE FACTOR: . 999615596
INCIDETICE OF GRID LEYTERS: No letters used.
GRID TABLES: Tables des Constantes Numériques des Systèmes de Projections Lambert
GRID "CO:OR': Blue
REFERENCING FOR 1,000-METER GRID ; 8 -digit numerical reference):
Principal digits: $\quad 3 ; 100,000,10.000,1,000$
REFERENCING FOR 10,000-ME ${ }^{\text {ER }}$ GRID (6 -digit numerical reference):
Principal digits: i2); 100.000, 10,000
REFERENCING FOR 100,000-METER GRID (4-digit numerical reference):
Princ:pal digits: $\quad 2 ; 100,000,10,000$

PROJECTION: Lambert Conical Orthomorphic
ELLIPSCID: Clarke 1880
UNIT: Meter
ORIGIN: $3318 \mathrm{~N}, 954 \mathrm{E}$.
FAISE COORDINATES OF ORIGIN: 500,000 meters E., 300,000 meters N. \{Scuth of false origin add 1.000 .000 meters 10 the northing;
SCALE FACIOR: . 999625769
INCIDENCE OF GRID LETTERS: No letters used.
GRID TABLES: Yables dies Constantes Numérques des Systèmes de Projections Lambert GRID "COLOR": Blue
REFERENCING FOR 1,000-METER GRID (8-digit numerical reference):
Principal digits: (3); $100,000,10,000,1,000$
REFERENCING FOR 10,000-METER GRID (6-digit numerical reference):
Principal digits: (2); 100,000, 10,000
REFERENCING FOR 100,000 -METER GRID; 4 -digit numerical reference!:
Principal digits: (2); 100,000, 10,000

WEST MIALAYSIAN RSO GRID

PROJECTION: Rectified Skew Orthomorphic
ELIIPSOID: Moditied Evertest
UNIT: Meter
ORIGIN: 4 is., $10215^{\circ} \mathrm{E}$
FALSE COORDINAIES OF ORIGIN: 472,854 meters E., 442,420 meters N.
SCAIE FACTOR: . 99984
INCIDENCE OF GRID LEITERS: Normal
GRID TABLES: No: Available
GRID "COIOR': Black
REFERENCING FOR 1,000-METER GRID ; σ-digit numerical reference):
Principal digits: (2); 10,000, 1,000
REFERENCING FOR 10.000-METER GRID (4-digit numerical reference):
Principal digits: (1); 10,000
REFERENCING FOR 100,000-METER GRID (2-digit n merical reference):
Principal digits: $11 ; 10,000$

CHAPTER 5
 GEOGRAPHIC COORDINATE REFERENCES

5-1 USE.

The use of geographic courdinates as a system of reference is accepted worldwide. It is based on the expression of position by latitude (parallels) and longitude (meridians) in terms of arc (degrees, minutes, and seconds) referred to the Equator (north and south) and the Greenwich Maridian (east and west).

5-2 THE GEOGRAPHIC REFERENCE.

The degree of accuracy of a geographic referance is influenced by the map scale and accuracy requirements for plotting and scaling purposes.

Examples of references are:
$40^{\circ} \mathrm{N} 132^{\circ} \mathrm{E}$ (In degrees of latitude and longitude)
$40^{\circ} 21^{\prime} \mathrm{N} 132^{\circ} 14^{\prime} \mathrm{E}$ (To minutes of latitude and longitude)
$40^{\circ} 21^{\prime} 12^{\prime \prime} \mathrm{N} 132^{\circ} 14^{\prime} 18^{\prime \prime} \mathrm{E}$ (To seconds of latitude and longitude)
$40^{\circ} 21^{\prime} 12.4^{\prime \prime} \mathrm{N} 132^{\circ} 14^{\prime} 17.7^{\prime \prime} \mathrm{E}$ (To tenths of seconds of latitude and longitude)
$40^{\circ} 21^{\prime} 12.45^{\prime \prime} \mathrm{N} 132^{\circ} 14^{\prime} 17.73^{\prime \prime} \mathrm{E}$ (To hundredths of seconds of latitude and iongitude)

5-3 GEOGRAPHIC COORDINATES ON MAPS AND CHARTS.

5.3.1 U.S. military maps and charts include a graticule (parallels and meridians) for plotting and scaling geographic coordinates. Graticule values are shown in the map margin.

5-3.2 On most maps and charts at the scale of 1:1,000,000, the parallels and meridians are shown by intersections of full lines at one-degree intervals. The intersections or lines ore labeled in degree values.
5-3.3 On maps and charts at the scale of 1:500,000, parallels and meridians are shown by full lines at $\mathbf{3 0}$-minute intervals. The full degree lines are labeled in degree values; the intermediate lines are labeied in minutes only.
5-3.4 On maps and charts at scales of 1:250,000 and larger the graticule may be indicated in the map interior by lines or ticks at prestribed intervals. The following indicates these intervals:

Scale	Tick Interval	Labeling at Corners ${ }^{1}$	Labeling of ticks
1:250,000	15 minutes	Degrees-minutes	15 minutes
1:100,000	10 minutes	Degrees-minutes	10 minutes
1:50,000	1 minute	Degrees-minutessecona's	5 minutes
1:25,000	1 minute	Degreas-minutesseconds	5 minutes
1:12,500	1 minute	Degrees-minutesseconds	1 minute

Tuthe s.' Corner Labeling on Topographic Maps.

1 When departing from standard sheet lines to avoid unnecessary sheeis or because of datum changes, corners are labeled to 1 second for 1:250,000 and 1:100,000 scale and to 0.1 second for $1: 50,000$ to $1: 12,500$ scale.

\therefore Wherld Geographic Reference (GEOREF System.

5-3.5 On JOGs, between 0° and 76", meridians are shown by full lines at 15 -minute intervals with 1 -minute ticks. Between 76° and 84° North and between 76° and 80° South, meridians are shown by full lines at 30 -minute intervals with 1 -minute ticks.

5-4 THE WORLD GEOGRAPHIC REFERENCE SYSTEM.

3.4.1 The World Geographic Reference System (GEOREF) is a system used for position reporting. It is not a military grid, ond therefore does not replace existing military grids. ir is an area-designation method used for interservice and interallied position reporting for air defense and strategic air nperations. Positions are expressed in a form suitable for reporting and plotting on any map or chart graduated in latitude and longitude (with Greenwich as prime meridian] regardless of map projection.
5-4.2 The system divides the surface of the earth into quadrangles, the sides of which are specific arc lengths of longitude and latitude; each quadrangle is identified by a simple systematic letter code giving positive identification with no risk of ambiguity.
5-4.2.1 There are 24 longitudinal zones each of 15 degrees width extending eastward from the 180° meridian around the globe through 360 degrees of longitude. These zones are lettered from A to Z inclusive (omitting I and O). There are 12 bands of latidude each of 15 degrees height, extending northward from the South Pole. These bands are lettered from A to M inclusive (omitting l) northward from the South Pole. This code divides the earth's surface into 28815 degree quadrangles, each of which is identified by two letters. The first letter is that of the longitude zone and the second letter that of the latitude band. Thus the greatest part of the United Kingdom is in the 15 degree quadrangle ink. See figure 12.

5-4.2.2 Each 15 degree quadrangle is sub-divided into 15 one degree zones of longitude, eastward from the western meridian of the quadrangle, these one degree units being lettered from A to Q inclusive (omitting I and O). Each 15 degree quadrangle is also subdivided into 15 one degree bands of latitude northward from the southern parallel of the quadrangle, these bands being lettered from A to Q inclusive (omitting I and O). A one degree quadrangle any where on the earth's surface may now be identified by four letters Salisbury therefore is in the one degree quadrangle MKPG. See figure 12.

5-4.2.3 Each one degree quadrangle is divided into 60 minutes of longitude, numbered eastward from its western meridian, and 60 minutes of latitude, numbered northward from its southern parailel. This direction of numbering is used wherever the one degree quadrangle is iocated. i.e., it does not vary even though the location may be west of the prime meridian or south of the equator. A unique reference defining the position of a puint to an accuracy of one minute in latitude and langitude (i.e., 2 kms or less) can now be given by quoting four letters and four numerals. The four letters identify the one degree quadrangle. The firsi iwo numerals are the number of minutes of longitude by which the point lies eastward of the western meridian of the one degree quadrangle, and the last two numerals are the number af minutes of latitude by which the point lies northword of the southern parallel of the one degree quadrangle. If the number of minutes is less than 10 minutes, the first numeral will be a zero and must be written, e.g., 04. The GECREF of Salisbury Cathedral is MK PG 1204 . See figure 12.

5-4.2.4 Each of the one degree quadrangles may be further divided into decimal parts $11 / 10$ th and $1 / 100$ th) eastward and northward. Thus, four letters and six numerals will define a location to 0.1 -minute; four letters and eight numerals will define a location to 0.01 -minute.

CHAPIER 6
 GRIDS ON MAPS AT $1: 100,000$ SC.ALE
 AND LARGER

O.1 GENERAL.

6.1.1 Requirements for grid data and grid formats on maps propared for the DoD at 1:100,000 scale and larger are essentially the same for Universal Transverse Mercator grids, Universal Polar Stereographic grids and nonstandard grids.
0-1.2 The grid data for DOD maps usually include the major grid, a declination diagram, a grid reference box, and notes identifying the grid.
6-:.3 The adjacent grid is provided as an overlapping grid when a map lies within ap-proximately 40 kilometsirs ot a grid junstion line or a daium junction boundary. A separata declination diagram and notes identifying the overlapping grid appear in the margin for grid junctions, and may or may not appear for datum junctions, depending on grid alignmants.
o.1.4 A map may show a secondary grid which occurs in the area. The secondary grid is identified by margin notes.
6-1.5 Normally, no single map of a foreign area in this scale cateçory ever shows more than three grids. When a sheet covers an area which includes more than three grids (either major, ovcriopping, or secondary), those omitted are the ones which are considered ai ieast miitory imnortance. Major grids are never omitted. When choice lies betwegl, two ovellapping grids, the one retained usually is the one which occurs most frequently on the sieets in the general area. Domestic maps may show up to five grids.
6-1.o Specific dimensions, size and siyle of type, and placement of margin data relating to grirts and grid forniats of ?:100,000 scale and larger are contained in DMA product specifications.
©-2 IHE MAJOR GRID.
6-2.1 the mojor grid is indicated by full lines of 1,000 -unit intervals. The unit is either yards or meters. Every i0,070 unit grid line is accentuated in weight.
0.2.2 Grid numbers upperar outside the neatline on all four sides of the sheet, labeling each grid line. Where a grid line coincides with a neatline of the map, the grid line is omitted, but the neatline is labeled in the margin with the values for the grid line.
0.2.3 Basically, all grid lines are labeled with tivo principal digits which represent the 10,000 and 1 , 0C0-unit values of the grid line, respectively. Some variations to this basic labeling are:
0-2.3.1 On all 10,000-unit grid !nes, the basic two principai digits are preceded by the 100,000 -unit digits. See figures 13 and 14.
6-2.3.2 Cn sileets with one major grid, only the first grid tines in each direction from the southwest corner are given full coordinate values. See figures 13 and 14 .
6-2.3.3 On sheets containing grid zone junctions, junctions of major grids, or datum junctions, the first giid lines in each direcion from all four zorners are giver full coordinate values. See figures 15, 16, and 18.

Figure /it The Major Grid as Shown on a 1:50,000 Scale Mup.

6-2.3.4 On sheets showing the major and overlapping grids, the first grid line and grid tick in each direction from the southwest corner are given the full coordinate values for both grids. See figure 17.
6-2.3.5 On the Madagascar grid and the Lambert grids of northwest Africa, use three principal digits to represent the $100,000-10,000$-, and 1,000 -meter values of the grid lines.

6-2.4 The grid lines in the map interior contain a pattern of grid value labels (principal digits) designed to assist in position referencing on a folded mop. The pattern, referred to as a grid ladder, may appear in either of two forms:

6-2.4.1 One row (easting) and one column (northing) intersecting at the approximate center of the sheet.
o-2.4.2 Two rows (easting) and two columns (northing) intersecting at approximate onethird intervals across the sheet. The principal digits are centered between adjacent horizontal (northing) and vertical (easting) grid lines. The digits may be displaced or omitted if they impair the legibility of important map detail. Omissions are held to a minimum. Grid ladder treatments are illustrated in figures 13 ans 14.

6-2.5 The color of the grid values is governed by the grid system.
6-2.5.1 Black (blue for $1: 100,000$ scaie) is used when the major grid is the Universal Transverse Mercator or the Universal Polar Stereographic.

6-2.5.2 With nonstandard grids. the color varies. It may be black, blue, or red-brown. The color to be used with each particular nonstandard grid is specified in Chapter 4.
0.2.6 A note identifying the grid and ellipsoid appears in the lower margin of a sheet. The note is modeled after one of the following:

$\begin{aligned} & \text { FLLPSOID } \\ & \text { GRiO } \end{aligned}$	BESSiL
	1,000 METER UTM ZONE 53
	(BLACK NJMMBERED LINES)
ELPFSOID	INTFRNATICTHȦL
GRiD	1.000 METER MADAGASCAF
	(RED-BROWN NUMBEREO LINES)

0-2.7 On maps having a land inset for which the grid or grid zone differs from that of the map proper, the appropriate grid note is shown within the inset.
6-2.8 Figures 13 and 14 illustrate the treatment for the major grid on DoD mapping at 1:50,000 and 1:100,000 scales.

6-3 MULTIPLE MAJOR GRIDS.

6-3.1 In certain instances a sheet contains more than one . . grid.
6-3.1.1 With the UTM and UPS grids this may occur:
6-3.1.1.1 Where original sheet lines are retained as established by a mapping agency of a foreign country.
6.3.1.1.2 Where a sheet is shifted from the normal position to avoid making additional sheets.

6-3.1.2 With nonstandard grids, this condition occurs more frequently since, in addition to the above cases, grid junctions are sometimes loxodromes or are grid lines.

Tiutu: 14. The Major Grid as Shown on o 1:100,000 Scale Map.

E.1IPSOIO は! 11

 L. 100 METER U:M ZONE 31 (Bt.UE NUMERRED UNES AND TICKS)

Scale $1.50,000$ (in numiature)

11195010 lible

CIARKE 1880

1000 MEIFH . CUD AllitRIE CBLACK MUMBERE MES ARO JICXS 1. UgU MFIFR NORD ALGERIG IGIUE NUMBERED LINES AMO IIEXS

Scale 1.50000 (in minlature)

Fiutir: 1ti Three Major Nonstandard Grids as Shown on a Large Scale Map.

1:15: Mit UH:4

Scate 150.000 (in minature)

Fiytir: $/ 2$ Major and Overlapping Grids as Shown on a Large Scale Map.

 Separated by r Grid Junciion as Shown or a large Scale Map

6-3.2 Grid, datum, ellipsoid, and zone junctions are indicated by accentuated lines, printed in black (blue for $1: 100,000$ scale). Labels identifying the junction appear parallel to and on each side of the junction line. The labels may be shown more than once to facilitate identification. Each label is printed in the colar designated for the particular grid system. When a grid, datum, ellipsoid, or zone junction line is coincident with a neatline, both the junction line and the identifying labels are omitted. If the junction line fulls within $2.5 \mathrm{~mm}(0.10 \mathrm{inch})$ of the neatline, the junction line is not shown; it is considered as being coincident with the neatline.
6-3.2.1 For nonstandard grids, the label is modeled after the following:
WEST MALAYSIAN RSO GRID
B., :in: Em

Mre tiase Gnib
Minatanscar GR:D
6-32.2 The label for a UTM grid junction, or a UPS grid junction, includes the :derififcotion et the Grid Zone Designation and is written in MGPS terms as:

UTA: GRID POAE DESIGNATION C7T
UPS GTO ZONE DFSGNATION. B
0-3.3 kach grid is shown by fuli lines within its own area anly, being represented at 1,000 -unst intervais with every 10,000 -unit line accentuated in weight.
 the other (overlopping grid) is shown by outside ticis emanoting from the neatline correctly aligned with its raspective major grid. The even 10,000 -unit ticks are accentuated in weight.
6-3.3.2 On maps hearing three major yrids, a similar practice is followed, except that outside ticks are used to indicate the extension of the grid which occupies the major part of the sheet, and inside licks are used to indicate the extensions of the others.
-0.3.4 Grid values appear on all four sides of the sheet labeling each grid lime and those grid ticks whose values are nultiples of 5,000 . Full values appear at each corner, labeling the first grid line in each direction from the corner.
©-3.4.1 For the UTM and UPS grids, the values for the different grids appear in black and blue. Elack is reserved for the grid which covers the greater portion of the sheet. If the grid junction divides the sheet equally, black is used for the grid which occurs most frequently on the sheers in the general area. On maps at $1: 100,000$ scale, blue is used for the dominant grid and red-brewn for the other grid.

6-3.4.2 For nonstandard grids, the vaiues appear in the colors designated for the grid system. Where the designated colors are the same, one or more substitutions are made to emphasize distinction, with the o:der of preference as follows: black, blue, red-brown (or blue, red-brown, blazk a: 1:100,000 scale).

6-3.4.3 Black is used for the UIM1 or UPS grids when either appears in combination with nonstanciard gids. In such cases, if the conventional color for a nonstandard grid is black, a substitution is mude for the nonstendard grid with bive, or red-brown being used. On maps at 1:100,000 scale, the order of colors is blue, red-brown, black.
5.3.5 Grid values, expressed in principal digits only, appear on the face of the map labeling each grid lina. Refer to figures 15, 16, and 18 for sample treatments of the grid ladder numbers when a sheet contains more than one major grid.
6-3.6 Notes identifying each grid appear in the lower margin of the sheet. The notes are modeled after the following:

ELLIPSOID	WORID GEDOETIC SYSTEM
	1.000 METER UTM ZONE

(BLACK NUMBEFED LINES ANE TICKS)
1.000 METER UTM ZONE 48
(BLLE NUMBERED LINES AND TICKS)
6.3.7 When the ellipsoid is not the same for each of the grids shown on the map, the ellipsoids are inciuded with the grid notes. The notes are patterned after the following:

- -3.8 Figures 15 and 16 illustrate the treatments described icr sheets containing more than one major grid.
6.4 OVERIAPPING GRIDS.
6.4.1 An overlapping grid is generally required within approximately 40 kilometers of o grid, zone, or ellipsoid junction. The overlapping grid may be omitted if there are no land bodiess within the 40 kilometer overlap area. See tabie 9.
0.4.2 The overlapping grid is st:own by ticks printed in black (blue for $1: 100,000$ scale) emanating from the nearline correctly aligned with its respective grid and spaced at 1,000 unit intervals. The even 10,000 -unit ticks are accentuated in weight. The direction of the ticks from the neatline (i.e., inside or outside) is dependent on the other grids shown on the map.

6-4.2.1 If the sheet contains one major grid, outside ticks are used.
6-4.2.? If the sheet contains two major grids, inside ticks are used.
0-4.2.3 If a sheet contains two overlapping grids in conjunction with a single major grid, outside ticks are used for the overlapping grid which occurs most frequently on the sheets in the generol orsa. Inside ticks are used for the other.
6.4.3 Values, similar in composition to those labeling the major grid lines, appear on all four sides of the sheet. The first grid tick in each direction from the southwest corner of the sheet whose values are multiples of 5,000 are labeled.

5-4.4 The color of the overlapping grid values is governed by the grid system. Where the prescribed color for two overlapping grids is the same, the color of the grid which occurs more frequently on the sheets in ine general area is zetained, and a substitution of biack, blue, or red-brown, in that order of preference, is made for the other. 'T'ne order of preference for $1: 100,000$ scale is blue, red-brown, or black.) A similar substitution is made when the color of an overlapping grid is the same as the major grid.

6-4.5 Notes identifying overiapping grids appear in the lower margin of each sheet.

0°	21'41"	30°	25'01"	$60^{\prime \prime}$	$43^{\prime} 16^{\prime \prime}$
$1{ }^{\circ}$	21'41"	$31{ }^{\text {² }}$	25'17"	61°	44*37"
$2{ }^{\circ}$	21'42"	32°	25'33"	62°	46'04"
3°	21'43'	33°	25'50"	63°	$47^{\prime} 38^{\prime \prime}$
$4{ }^{\circ}$	21'44"	34°	26'08"	64°	49'20'
5°	21'46"	35°	26'27"	65°	$51^{\prime} 10^{\prime \prime}$
6°	21'48"	36^{\prime}	26'46"	66°	$53^{\prime} 10^{\prime \prime}$
7	21'51"	37°	27'07"	67°	$55^{\prime} 20^{\prime \prime}$
$8{ }^{\circ}$	$21.54 \prime$	38°	27'29"	68°	57'43"
9°	21'57"	39°	27'52"	69°	$1{ }^{\circ} 00^{\prime} 20^{\prime \prime}$
10°	22'01"	40°	28'16"	70°	$1{ }^{\circ} 03^{\prime \prime} 13^{\prime \prime}$
11°	22'05"	41°	28.41"	71°	$1^{\circ} 06^{\prime} 24^{\prime \prime}$
12°	22'10"	42°	29\%08"	72°	$1^{\circ} 09^{\prime} 58^{\prime \prime}$
13°	22'15"	43°	29'36"	73°	$1^{\circ} 13^{\prime} 56^{\prime \prime}$
14°	22'21"	44°	30'06"	74°	$1^{\circ} 18^{\prime} 26^{\prime \prime}$
15°	22.27"	45°	30'37"	75°	$i{ }^{\circ} 23$ 3 ${ }^{\circ}$
16°	22'33"	46°	31'10"	76°	$1^{\circ} 29^{\prime} 21^{\prime \prime}$
17°	22'40"	47°	31'44"	77°	$1^{\circ} 36.05^{\prime \prime}$
18°	22'43"	48°	32'21"	78°	$1^{\circ} 43^{\prime} 58^{\prime \prime}$
19°	22'56"	49°	32'59"	79°	$1^{\circ} 53^{\prime} 17^{\prime \prime}$
20°	23'04"	50°	33'40'	80°	$2^{\circ} 04^{\prime} 28^{\prime \prime}$
21°	23'13"	51°	34'23"	81°	$2^{\circ} 18^{\prime} 10^{\prime \prime}$
22°	23 $23 \prime \prime$	52°	35 ${ }^{\prime} 09^{\prime \prime}$	82°	$2^{\circ} 35^{\prime} 18^{\prime \prime}$
23°	23'33"	53°	35'57"	83°	2'57'21"
24°	23'43'	54°	36'49"	84°	$3^{\circ} 26^{\prime} 46^{\prime \prime}$
25°	23'55"	55°	37'43'	85°	$4^{\circ} 08^{\prime} 58^{\prime \prime}$
26°	24**'	56°	38'41"	86°	$5^{\circ} 09^{\prime} 49^{\prime \prime}$
27°	2419"	57°	39'43"	87°	$6^{\circ} 52.57^{\prime \prime}$
28°	24,32"	58°	40'49"	88°	10019'15"
29°	24'46"	59°	42'00"	89°	$20^{\circ} 38^{\prime} 19^{\prime \prime}$

THE EQUIVAIENT Of 40 KILOMETERS IS GIVEN AS 22 MINUTES OF LATITUDE VJHEN MEASURED AT ANY POINT ALONG A MERIDIAN.

Tubli 4 . The equivalents of 40 kilometers when measured along a given parallel of latitude expressed in degrens, minutes, and seconds flongitude.
6.4.6 When the ellipsoid is not the same for the overlapping grid and the major grid, the ellipsoids are included with the grid notes. The notes are patterned after the following:

GFIOS ... 1.000 METER UTM ZONE 42. WOFLD GEODETIC SYSTEM
ELLIFSOID 'BLACK NUMBERED LINES)
1,000 METER UTM ZONE 41. INTERNATIUNA! ELLIPSOOU (BLUE NUMBERED TICKSj

6-4.7 figures 17 and 18 illustrate the treatments described for sheets containing mojor and overlopping grids.
6-5 SECONDARY GRIDS.
6-5.1 As a general rule, secondary grids are no ionger required on military topographic maps. Excepted are those instances where mapping arrangements with cooperating foreign ogencizs specify the showing of a secondary grid. No more than one secondary grid is shown.
0.5.2 When required, the secondary grid is shown by inside ticks, printed in black blue for $1:-00,000$ scale), emunating from the neatline in their correct alignment and spased at 1,000 -unit intervals. The even 10,000 -unit ticks are accentuated in weight.
6.5.3 Values, similar in composition to those labeling the major grid lines, appear or all four sides of the sheet. The first grid tick in each direction from the southwest corner of the sheet is labeled with full values. Thereafter, only those grid ticks whose values are multiples of 5,000 are labeled. If the secondary grid has a prescribed color, the color is used for the numbers unless there is conflict with another grid shown on the mop. In that event, substitutions are made in the established order of preference.

6-5. 1 A grid note, identifying the secondary grid, appears in the margin of the sheet.
0.5.5 When a secondary grid differs uniformly from the major grid, a coordinate shift rote may be used in lieu of showing the secondary grid. The note should be patterned after the following:


```
Ont Aad 30mE Suturact gmen
Crogyminc: Add 1% Long., Subtract 01'La:
```

0.50 Figure 19 illustrates the treatment described for sheets containing major and secondory grids.

O. 6 THE DECLINATION DIAGRAM [ONE GRID].

6-6.1 A declination diagram appr, ars in the margin of each sheet. The diagram shows the relationship of magnetic north and true north to grid north at the center of the sheet. it also provides information regarding the use of this data. See figures 20 and 21.
0.6.2 The diagram contains three prongs which emanate from a central point. These represent grid north, magnetic north, and true north, and are approprictely labeled.
6-6.2.1 The grid north prong is an extension of an easting (vertical) grid line; the extension is a continuous line which stops at the central point near the bottom work limits of the sheet. The prong is broken for the latiers GN.
6-6.2.2 The magnetic north prong emanates from the central point to the approximate

State 150.000 (ins minuluse)

Ath: : 2 "the Declination Diagram and Accompanying Notes with True North Appoaring as the Center Prong:
extent of the letters GN. It is surmounted with a half-arrowhead; a lefi half-arrowhead is used when magnetic north, lies to the west of grid north, while a right half-arrowhead is used when magnetic north lies to the east of grid north.
6-6.2.3 The true north prong, surmounted with a five-point star, is shorter in le igth than the other two prongs. When it occurs as the leff or right prong of the diagram, it emanates from the central point. When true north occurs as the middle prong, its characteristic star appears at the approximate height of the magnetic north arrowhead; the prong is shown as an extension from the central point.
6-6.2.4 Angies between the prongs are approximately rapresented. The magnetic north and true north prongs are platted :vithin 30 minutes of their given angular position from grid north, except that the magnetir prong is never shown within three degrees of the grid north prong. In maintaining relative jymmetry between prongs, the characteristic star of the true north prong must never touch another prong. When there is no declination

between prongs, a single prong represents the coincidence, and distinguishing charactoristics (star, full arrowhead, or letters GN) of each are shown on the composite prong-
6-6.3 The gridmagnetic angle ($\mathbf{G}-\mathrm{M}$ Argle) is expressed by a note alongside a dashed arc connecting the grid north and magnetic not th prongs. The value of this angle is derived from the latest isogonic aata for a standard epoch; i.e., a year that is divisible by five, such as 1985, 1990, etc. The value of the grid-magnetic angle is given to the nearest one-half degree with mil equivalent to the nearest ten mils. See Appendix A for a table of mil equivalents.

6-6.3.1 The grid-magnetic note is modeled aiter the following:
1985
G-M ANGLE
7 1/2 2° (130 MLS)
6-6.3.2 For sheets with 0° grid-magnetic angle the note is shown as follows:
1985
G-M ANGLE
010 MLS ;
6-6.3.3 For land insets, grid-magnetic data are shown only when the angle is different from that for the mop preper. A diagram is not shown. The grid-magnetic data are shown by a note modeled after the following:
MAGNETIC OECLINATION FOR 1985
IS $11 / 2^{\circ}$ i30 MILS)
WESTERLY OVER
THE ENTIRE INSET
6.6.4 The grid convergence is the angle between grid north and true north. The value of the angle is expressed to the nearest full minute, with the mils equivalent to the nearest one-half mil.

6-6.4.1 In the diagram, the grid convergence is indicated by a note alongside a dashed ars which connects the grid north and true north prongs. The convergence angle is given for the center of the sheet and is modeled after the following:

> GRID CONYCRGENCE
> 119 (23 $1 / 2$ MLS $)$
> FOR CENTER OF SHEET

0-6.4.2 In land insets, a diagram is not shown. The grid convergence is shown only when the angle is different from that on the map proper. The convergence angle is given for the center of the inset and is modeled after the following:

> GRID CONVERGENCE
> FOR THE CENTER OF

THE INSET IS 2*36' (46 MLLS) WESTERLY
6-6.5 Notes appear in conjunction with the diagram explaining the use of the G-M Angle.
6-6.5.1 When the magnetic north prong of the diagram is east of the grid north prong, the notes read as follows:

TO CONVERT A
MAGNETIC AZ:MUTH
TO A GRID AZIMUTH
ADD G-M ANGLE
TO CONVERT A
GRID AZIMUTH TO A
MAGNETIC AZIMUTH
SUBTRACT G-M ANGLE

6-6.5.2 When the magnetic north prong of the diagram is west of the grid north prong, the notes read as follows:

TO CONVERII A
MAGNETIC AZIMUTH
TO A GRID AZIMUTH
SUBTRACT G-M ANGLE

TO CONVERT A
GRID AZIMUTH TO A
MAGNETIC ATIMUTH
ADD G-M ANGLE
6-6.5.3 When the magnetic north and grid north prongs are coincident, azimuth conversion notes are omitted.

6-6.5.4 Azimuth conversion notes are not shown for insets.
6-6.6 The diagram and related notes are printed in the same color as the grid values.
6.; THE DECLINATION DIAGRAM (MORE THAN ONE GRID).

0-7.1 When a sheet bears more than one major grid, or major and overlapping grids, a separate diagram appears for each grid shown on the map. Declination data are not shown for secondary grids. Figure 22 illustrates the declination data shown on a sheet which contains more than one grid.
6.7.2 The grid north prong of each diagram is aligned with the easting (vertical) grid lines or grid ticks of the grid to which it pertains. No connection is shown between the grid north prong and any grid line or grid tick.
6-7.3 The composition of each diagram is the same as described in paragraph 6-6, except:

6-7.3.1 The diagram is miniaturized, and the three prongs are shown as full lines of the same length.

6-7.3.2 The minimum plotted angle between any two prongs is three degrees with relative symmetry maintained.
6-7.3.3 Each diagram bears the identification of the grid to which it pertains.
6-7.3.4 Each diagram and its related notes are printed in the same color as the grid values to which they pertain.
6-8 THE GRID REFERENCE BOX.
6-8.1 A grid reference box appears in the margin of each sheer. The box contains instructions and attendant data to enable the user to compose standard grid references.
6-8.2 The grid system(s) in use on the map dictates the referencing instructions contained in the grid reference box. The grid reference boxes most commenly used on maps, 1:100,000 scale and larger, are illustrated in figure 23. The boxes are subject to modifications.

6-8.3 The grid reference box also contains diagrams identifying applicable grid zone designations and grid square identifications.

Figure The Declination Data when a Sheet Contains an Overlapping Grid and/or More Than One Major Grid.

6-8.3.1 for the UTM and UPS grids, the diagrams show the grid zone designation, the 100,000 -meter grid lines and their values in abbreviated form, and the 100,000-meter square identification(s). Figure 24 illustrates the composition of the diagrams under various conditions.

6-8.3.2 For nonstandard grids, the diagram shows the 100,000 -unit square identifications and the values of the 100,000 -unit grid lines in abbreviated form. These data are printed in the same color as the grid values to which they pertain. If the grid system identifies larger squares, their identifications are shown in smaller type just preceding the 100,000 -unit identifications. The 100,000 -unit grid lines and grid junction lines are prinied in black (blue at $1: 100,000$ scale). If a junction is a grid line, its value is shown in abbreviated form and printed in the same color as the grid values to which it pertains. Loxadromes are not labeled. Figure 25 illustrates the composition of this information under various conditions.

For use with UTM and UPS Grids.

For use with nonstandard grids which identify the 500,000 and 100,000 yerd squaras.

For use witll nonstandard grids which do not identify the 100.000 unit squares.

Figure 23. Grid Reference Boxes Most Commonly Used on Maps at Scoles of 1:100,000 and Larger.

Fivure $\%$ Methods of Showing Grid Lone Designations and 100,000-meter Squares of the UTM in the Grid Reference Boxes of Large Scale Maps.

6-8.3.3 For sheets that have a land inset whose 100,000 -unit square identification letters differ from those of the map proper, the identification letters are shown in the interior of the inset, rather than in the grid reference box.
6-8.4 When more than one major grid appears on a sheet and the method for giving a reference is the same for all the grids, a common reference box is used.
6-8.5 When more than one major grid appears on a sheet and the method for giving a reference varies with the grids, circumstances control the treatment of the grid reference boxes.
0-8.5.1 A grid reference box is shown in the margin for each grid. Over each box appears a note limiting the use of the box to the grid or grids concerned.
6-8.5.1.1 When each box describes the method of referencing for one grid only, the note is printed in the same color as the values for its respective grid and is modeled after the following:

USE THIS BOX FOR GIVING REFERENCES ON THE UNIVERSAL TRANSVERSE MERCATOR GRID

IJSE THIS GOX FOR GIVING REFERENCES ON THE
MADAGASCAR GRID

Fiviure Me Methods of Showing 100,000-unit, and Larger, Square İdentifications of Nonstandard Grids in the Grid Reference Eoxes of Large Scale Maps.

6-8.5.1.2 When the same system of reterencing is used for nwo grids sciurring in the sarne sheet with a third grid which uses a different reference system, the note for the common reference box is printed in black and modeled after the following:

USE THIS BOX FOR GIVING REFERENCES ON THE
SUD ALGERIE AND SUD TUNISIE GRIDS
6-8.5.2 When ail reference boxes cannot be accommodated in the margin, the excess is shown in expanses of open water an the face of the map. When this is not practicable, a note which refers the user to an adjacent sheet is added to a reference box in the margin. The notes are mocieled after the following:

USE THIS BOX FOR GIVING REFERENCES ON THE UNIVERSAL TRANSVERSE MERCATOR GRID

SEE SHEET 3987 I FOR GIVING REFERENiES ON \therefore 드N NOFD MAROC GRID

USE THIS BOX FOR GIVING REFERENCES ON THE UNIVERSAL TRANSVERSE MERCATOR GRID

SEE SHEET 1285 III FOR GIVING REFERENCES ON the sud algerle and sud tunisie grids

CHAPTER 7

GRIDS ON MAPS AT $1: 250,000$
AND 1:500,000 SCALE

7.1 GENERAL.

7-1.1 Grid data and grid format for maps af scales of 1:250,000 and 1:500,000 are essentialiy the same for Universal Transverse Mercator grids, Universal Polar Stereographic grids, and nonstandard grids. When possible, sheer lines of maps at these scales are planned to coincide with grid junctions and ellipsoid junctions.
7-1.2 Grids added on reprints of maps of other origin adhere as closely as possible to these standards. There may be minor changes in limits of grid zones and variations in the culor of grid lines and grid values. The changes and variations are explained, as necessary, in the margin of the map.
7-1.3 The grid data consist of grid lines and values, grid reference boxes, notes identifying the grids, and notes giving the range of magnetic declination over the sheet. Overlapping and extended grids are not shown.
7-1.4 Descriptions and illustrations are keyed to $1: 250,000$ scale, unless otherwise indicated. Specific dimensions, size and style of type, and placement of margin data relating to grids and grid formats at 1:250,000 scale are shown on DMA style sheets.

7-2 THE MAJOR GRID.

7-2.1 The major grid is shown by full lines printed in blue, at 10,000 -unit intervals. The unit is predominately meters; yards are used for some nonstandard grids. Every 100,000unit grid line is accentuated in weight and definitive designations are shown at their intersections in the map interior.
7-2.2 Grid values appear outside the neatline on all four sides of the sheet, labeling each grid line.

7-2.3 Where a grid line coincides with a neatline of the map, the grid line is omitted but the neatline is labeied with the values for the grid line. Except for the values labeling the first grid line in each direction from the southwest corner of the sheet, the last four digits (0000) of the values are omitted. The values are shown in two sizes of type, with the larger size being reserved for the principal digits.
7-2.3.1 With most grids, one principal digit is used. This represents the 10,000 digit of the grid values.
7-2.3.2 Two principal digits are used with the Madagascar grid, the Lambert grids of northwest Africa, and the Ceylon Belt. These represent the 100,000 and 10,000 digits of the grid values.
7-2.4 At 1:250,000 scale, a grid ladder is shown in the interior of the map. The grid ladder is an established pattern of columns and rows of grid values, expressed in principal digits only. Positioning of the columns and rows is iliustrated in figure 26. In ar 3s of dense detail, a ladder number may be moved along a grid line a maximum of one-fourth of the grid interval, or omitted if it impairs legibility of map detail. Omissions are held to a mınimum.

Scala 1:250.000 (in miniatura)

Figure 26 . Treatment for the Major Grid in UTM Areas as Shown on a $1: 250,000 \mathrm{Map}$.

7.2.4.1 At the intersection of two 100,000 -unit grid lines, the appropriate unit square identification letters are always shown. When this intersection coincides with a neatine, only those identification :etters falling inside the neatline are shown. Idensification letters are similarly shown - inside the neatline - when the intersection of a 100,000 -unit line with 0 grid or ellipsoid junction line coincides with a neatione. Both sides of the neatline to the riorth and east on a Joint Operations Graphic (JOG) should be labeled, however, to show the different identification in the overlap area.
7-2.4.2 For nonstandard grids which identify 100,000-unit and 500,000-unit squares, the 500,000 -unit identification letter appears in smaller size immediately before the 100,000unit square identification letter.

7-2.5 At the 1:500,000 scale, the grid ladder is designed to treat each specific 100,000unit square. Figure 27 illustrates the treatment. Note the relationship of the ladder to the accentuated 100,000-unit lines. For non-standard grids which also identify larger grid squares - such as the 500,000 -unit squares - the additional identifications appear in smaller type immediately before each 100,000-unit square identification.
7-2.6 The color of the grid values and ladder values is governed by the grid system.
7-2.6.1 Blue is used when the grid system is either the Universal Transverse Mercator or the Universal Polar Steroographic.

Scala $1: 500.000$ (in miniature)

Figure 27 . Trearment for the Major Grid in UTM Areas as Shown on Maps Smaller than 1:250,000 Siale and Larger than 1:1,000,000.

7-2.6.2 With nonstandard grids, the color varies - black, blue, or red-brown - as specified in Chopter 4. Sheets with nonstandard grids adhere to these color conventions. (For a JOG, black is substituted for red.)

7-2.7 A grid note printed in the same color as the values for the major grid appears in the lower margin of euch sheat to identify the grid. The note is modeled after the following:


```
BLACK NLMMBERED LINES INDICATE THE 10,000 METER
ERTIISH NATIONAL GRID, AIRY ELLIPSOID
```

7.2.7.1 On sheets having land insets for which the grid or grid zone differs from that of the map proper, the appropriate grid note is shown within the inset. (A JOG does not have insets.)
7-2.7.2 On maps with nonstandard grids, in addition to identifying the interval, grid, and ellipsoid, the note usually describes the projection, origin, false coordinates of the origin, and the scole factor of the grid.
7.3 MULTIPLE MAJOR GRIDS.

7-3.1 In certain instances o sheet contains more than one major grid.
-3.1.1 With the Uint and UFS grids this may occur:
7-3.1.1.1 Where a sheet is shifted from the normal position to avoid making additional sheets.
7-3.1.1.2 In higher latitudes, where sheets may be wide in longitudinal extent.
7-3.1.1.3 At datum junctions.
7-3.1.2 With nonstandard grids, this condition occurs more frequently since grid junctions are sometimes loxodromes or are grid lines not coincident with parallels or meridians.
7.3.2 Grid, datum, ellipsoid, and zone junctions are indicated by accentuated lines printed in blue. Labels may appear on each side of the junction line. The labels may be shown more than orice to facilitate identification. Each label is printed in the color designated for the particular grid system. Where a grid, datum, ellipsoid, or zone junction line is coincident with a neatline, both the junction line and the identifying labels are omitted.

7-3.2.1 For nonstandard grids, the label is modeled atter the fallowing:

$$
\begin{aligned}
& \text { BRITISH NATIONAL GRID }
\end{aligned}
$$

$$
\begin{aligned}
& \text { madatascar gric }
\end{aligned}
$$

7-3.2.2 The label for a UTM grid junction, or a UPS grid junction, includes the identification of the Grid Zone Designation and is written in MGRS terms as:

7-3.3 Each grid is shown by full lines within its own area only, being represented in the normal manner at 10,000-unit intervals with every 100,000-unit line accentuated in weight. All grid lines are printed in blue.

7-3.4 Grid values appear on all four sides of the sheet (outside the neatline) labeling each grid line. The composition of the numiser is similar to that described in paragraph $7-2.3$, except that full grid values label the first grid line in each direction from each corner of the sheet.

7-3.5 On maps a: 1:250,000 scale, the grid ladder values are shown as described in paragraph 7-2.4. D.gpartures in labeling are often necessary when two or more major grids aro shown. At least one row and one column of identifications are shown within the areal extent of each grid; the normal labeling plan is followed when practical.
7-3.6 Where appropriate for the grid, af $1: 250,000$ scale, identificati-i of 100,000 -unit squares and larger unit squares appear on the face of the map at all 100,000-unit grid line intersections as described in paragraph 7-2.4. The unit-square identifications appear in the same culor as the grid values

7-3.7 The colors of the grid values vary with different grids.
7-3.7.1 the UTM and UPS grid values are shown in blue when either grid appears alone or with another grid. When both the UTM and UPS grids appear on the same sheet, the grid values are shown in blue for whichever of the two grids accurs most frequently on the sheets in the general area. The values for the other grid are shown in red-brown.

7-3.7.2 Sor nonstandard grids, the volues appear in the colors specified for the grid system as described in paragraph 7-2.6.2. Where the designated colors are the same, one or more substitutions are made to emphasize distinction. Usually, the conventional color is retained for the grid which occurs most frequently on the sheets in the general area. In general, the order of preference is black, blue, red-brown. (For a JOG, black is substituted for red.)

7-3.7.3 Blue usually is used for the UTM or UPS grids when either appears in combination with nonstandard grids. In such cases, if the conventional color for a nonstandard grid is blue, a substitution is made for the nonstandard grid with black or red-brown being used.

7-3.8 Notes identifying each grid n.ppear in the lower margin of the sheet. These are printed in the same color as that used for the values for the grid each identifies.

7-3.8.1 Wher the grids are different zones of the UIM grid, the note is modeled after the following:

7-3.8.2 When more than one grid is involved, the notes are modeled after the following:

7-3.8.3 A separate marginal note is not shown for the grid in the north or east overlap of a JOG. Such a grid is identified on the face of the map only.
7-3.9 Figures 28 and 29 illustrate these principles.
7-3.10 When an ellipsoid junction occurs on a map sheet, the UTM grid treatment is the same as that followed when a shee" straddles a grid junction. The ellipsoids are identified on each side of the junction line. See figure 30. A note, printed in the same color as the grid values, appears in the lower margin of the sheet identifying the grids, zone(s), and ellipsoids.

7-3.11 In certain cases, a sheet bearing the UTM grid may straddle a parallel which marks the division between different grid zone designations. The grid and corresponding labeling oppear as previously described. A sontinuous line in black indicates the cividing parallel. The proper grid zone designations, printed in the same color as the grid values, oppenr on each side oi the line. The dividing paralel is omirred when it falis within 2.5 mm (0.10 inch) of the north or south neatlines. Figure 31 illustrates these principles.

7-4 OVERLAPFING AND EXTENDED GRIDS.

Overlapping and extended grids are not shown on maps at these scales.

7-5 SECONDARY GRIDS.

7-5.1 Secondary grids are not showr, on JOGs. As a general rule, secondary grids are no longer required on military topographic maps. Excepted are those instances where mopping arrangements with cooperating foreign agencies specify the showing of a secondary grid. No more than one secondary grid is shown.
7-5.2 When required, the secondary grid is snown by inside ticks, printed in blue, emanating from the neatline in their correct alignment and spaced at 10,000 -unit intervals. The even 100,000-unit ticks are accentuated in weight.
7-5.3 Values, similar in composition to those labeling the major grid lines, appear on all four sides of the shoet. The first grid tick in each direction from the southwest corner of the sheer is labeled with full values. Thereafter, only those grid ticks whose values are multiples of 50,000 are labeled. If the secondary grid is a nonstandard grid, prescribed colors are used (para. 7-2.6.2), unless there is conflict with another grid shown on the map. In that event, substitutions are made in the established order of preference.

7-5.4 A grid note, identifying the secondary grid, appears in the lower margin of the

Scale 1:250,000 (in miniature)

Fügure 28. Two Major UTM Grid Zones Separated by a Grid Junction as Shown on a 1:250,000 Scale Map.
sheet. It is printed in the same color as that used for the values of the grid it identifies and is modeled after the following:
black Numbered ticks inside the neatline INDICATE THE 10,000 METER LEVANT ZONE GRID, CLARKE 1880 ELLIPSOID

7-5.5 The principles outlined above are illustrated in figure 32.
7-5.6 If a sheat includes areas of more than one secondary grid, only one secondary grid is shown. This is extended over the entire sheet. Usually, the secondary grid shown is that which covers the major portion of the sheet. If the sheet is divided equally by more

DMA TM 8358.1

black numeered lines inaicate the 10.000 meter nord maroc grio. clarke 1880 eilipsoim
 Scale 1:250.000 (in miniature)

Figure 24. Three Major Nonstandard Grids Separated by Grid Junctions as Shown on a 1:250,000 Scale Map.
than one secondary grid, the one shown is that which occurs on most of the sheets in the orea.
7-6 GRID DECLINATION.
Grid declinations from true north are not shown on maps at these scales.

Scale $1: 250.000$ (in miniaturs)

Filyuri 30. Two Major Grids (UTM) Separated by an Ellipsoid Junction as Shown on a 1:250,000 Scale Map.

7.7 MAGNETIC DECLINATION.

7.7.1 In the margin of each sheet a note is shawn to give the magnetic declination, usually for the centers of the west and east edges of the sheet. The declination is expressed to the nearest $1 / 2$ degreu, with mil equivalents to the nearest 10 mils.
7-7.1.1 The declination is obtained from the latest isogonic data for a standard epach (i.e., a year that is divisible by five, such os 1985, !990).

7-7.1.2 No reference is made to the annual magnetic change.
7-7.2 The note is usually printed in purple and is modeled after the following:

DMA TM 8358:1

Scgla 1:250.000 (in miniature)

Figure 31. Teatment when Grid Falls within More than One UTM Grid zone Designation Area as Shown on a 1:250,000 Scale Map.

S 985 MAGNETIC DECLINATION FROM TRUE NORTH VARIES FROM 1 1:2' 30 MiLS westerly for the center of the west EOSE TO 2° (40 MILS) WESTERLY FOR THE cervter of the east edge
7.7.3 On sheets where the declination is the same over the entire sheet, the note is modeled after the following:

[^6]Figure 32. Major and Secondary (Obsolete) Grids as Shown on a 1:250,000 Scalo Map.

For use with UTM and UPS Grios.

For wes weth gutesh Guds whech ident! the 500.000 and 100.000 meter squares.

For use with British Grids which identity the 500,000 and 100,000 yard squares.

For uso with British Grids which do not identity the 100,000 unit squares.

Fiunr: $3:$ Grid Reference Boxes Most Commonly Used on Maps at $1: 250,000$ and 1:500,000 Scale.

17-7.4 On the Air version of the JOG, isogonic lines (lines of equal magnetic variation) are shown on the face of the sheet in place of the magnetic declination note in the margin. In addition to the isogonic lines, a note modeled after the following is shown in the margin:

> LRNES OF EOUAL MAGAETK VAR:ATINA FOR 1985
> AAnnat: ra:e of zhage. no zhange)
7.7.5 If there are less than two 15 minute isogonic lines, the magnetic variation is shown by a note modeled after the following:

```
MAGNETIC VARIATION FOR 1985 IS APPRUXIMATEL
I'W OVER THE ENTIRE AREA
Annual rate of clange 7 decreasej
```


7.8 THE GRID REFERENCE BOX.

7-8.1 A grid reference box appears in the margin of each sheet. The box contains step-by-step instructions for composing a grid reference. For examples, see figure 33. The applicable grid zone designation is also identified in the box.
7-8.2 The grid system(s) in use on the map dictates the referencing instructions contained in the grid reference box.

7-8.3 When more than one major grid appears on a sheet and the method for giving a reference is the some for all the grids, a common reference box is used.
7-8.4 When more than one major grid appears on a sheet and the method for giving a reference varies with the grids, circumstances control the treatment of the grid reference boxes.

7-8.4.1 A grid reference box is shown in the margin for each grid, except those falling completely in opea water area. Over each box appears a note limiting the use of the box to the grid or grids concerned.
7-8.4.1.1 When each box describes the method of referencing for one grid only, the note is printed in the same color as the values for its respective grid and is modeled after the following:

$$
\begin{aligned}
& \text { use ine box her ging geranences of the }
\end{aligned}
$$

> LSE this bux fof giving refereices on the hiACHüsCLAT GRID

7-8.4.1.2 When the same system of referencing is used for two grids occurring on the same sheet along with a third grid using a different reference system, the note tor the common reference box is printed in blue and modeled after the following:

7-9.4.2 When all reference boxes cannot be accommodated in the margin, the excess is shown in expanses of open water on the face of the map. When this is not practicable, a note which refers the user to an adjacent sheet is added to a reference box in the margin. This note is positioned below the note described in paragraph 7-8.4.1.2, above. If only one grid is involved, the note is printed in the same color os the values for that grid. If more than one grid is involved, the note is printed in blue. The notes are modeled after the following:

See sheet vi 30.06 for giving refeninces on
THE WHD MAROC GRID

CHAPTER 8

GRIDS ON MAPS AT $1: i, 000,000$ SCALE

8-1 GENERAL.

Grid data and grid format for maps af 1:1,000,000 scale generally appear as described in this section. Except for minor differences, the design is essentially the same for Universal Transverse Mercator grids, Universal Polar Stereographic grids, and nonstandard grids. The maps usually show grid lines and ticks, their values, grid letters, and notes in the margin identifying the grid and the grid zone designation. Variations in the specifications for paricular types of products at $1: 1,000,000$ scale exist. The individual product specifications must be followed. A typical treatment is shown in figure 34.

8-2 THE MAJOR GRID

8-2.1 The major grid is shown by full lines at 100,000-unit intervals, infersected by ticks at 10,000 -unit intervals. Where a grid line coincides with a neatline of the map, the grid line and its intersecting ticks are omitted. However, the neartine is labeled in the margin with the values for the grid line.
8-2.2 Grid values appear outside the neatline on all four sides of the sheet, labeling each grid line. They may also label only the first grid line in each direction from the southwest corner. Except for the values labeling the first grid line in each direction from the southwest corner of the sheet, the last four digits (0000) of the values are omitted. The values are shown in two sizes of type, with the larger size being used for the principal digits.
8-2.2.1 With most grids, one principal digit is used. This represents the 10,000 digit of the grid values.
8-2.2.2 Two principal digits are used with the Madagarcar gric' and the Lambert grids of northwest Africa, and the Ceyion Belt. These digits represent the 100,000 and 10,000 digits of the grid values.
8-2.3 When the grid system is one which identifies its 100,000-unit squares, the identifications appear on the face of the map, centered within the appropriate squares. For nonstandard grid systems which also ideritify larger grid squares - such as the 500,000 unit squares - the additional identifications appear in smaller type immediately before each 100,000-unit square identification.
8-2.4 Blue is used for all grid information, including grid lines, grid ticks, 100,000-unit square identifications, grid values, and all margin grid information.
8-2.5 A note printed in blue appears in the lower margir or in the legend of each sheet to identify the grid and the full grid zone designation. The note is modeled after the following:

$$
\begin{aligned}
& \text { ricks al } 10000 \text { deter intefuals melcatl the }
\end{aligned}
$$

$$
\begin{aligned}
& \text { desigination 3it. hiternatioval ellipsume }
\end{aligned}
$$

Fiyure 34. Trearment for the Major Grid in UTM Areas as Shown on

8-2.6 On maps having land insets for which the grid or grid zone differs from that of the map proper, the appropriate grid note is shown within the inset.

8-3 MULTIPLE MAIOR GRIDS.

8-3.1 In many instances a sheet contains more than one major grid. This occurs especially in higher latitudes, where sheets may be wide in longitudinal extent, and in areas covered by nonstandard grids, where grid junctions are not necessarily coincident with parallels or meridians.

8-3.2 Grid, datum, ellipsoid, and zone junctions are indicated by accentuated lines, printed in blue. Labels appear on each side of the junction line. The labels may be shown more than once to facilitate identification. Where a grid, datum, ellipsoid, or zone junction line is coincident with a neatline, both the junction line and the identifying labels are omitted.

8-3.2.1 For nonstandard grids, the label is modeled after the following:

```
Gfininn NAMMD Glin?
```


8-3.2.2 The label for a UTM grid junction, or a UPS grid junction, includes the identification of the Grid Zone Designation and is written in MGRS terms as:

8-3.3 Each grid is shown by full lines within its own area only, being represented in the normal manner at 100,000 -unit intervals, intersected by ticks at 10,000 -unit intervals. All grid lines are printed in blue.
8-3.4 Grid values appear on all four sides of the sheet (outside the neatline) labeling each grid line. They may also label only the first grid line in each direction from each corner of the sheet. The composition of the number is similar to that described in paragraph 8-2.2, except that full grid values label the first grid line in each direction from each corner of the sheet.

8-3.5 Where appropriate for the grid, identification of 100,000-unit squares and larger unit squares oppear on the face of the map, centered within the appropriate squares, as described in paragraph 8-2.3.
8-3.6 Notes identifying each grid appear in the lower margin of the sheet. The note is modeled after the following:

```
EIUE (NES A
```



```
NNEFSA, TRAVSVERSE MERCATOR GAU! TUNE
```



```
EilU lHES AT 100 000 METER NTERIALS ALOC SU UE
T:ChS al 90.000 VE:ER MNERVALS INCMATE THE
```


8-3.7 In those cases where a sheet includes rin ellipsoid junction, the grids for the two ellipsolds are treated in the same manner as that specified in paragraph 8-3.2. The ellipsoids are identified on each side of the junction line. Where an ellipsoid junction line is coincident with a neatline, both the junction line and the identifying labels are omitted. The grid note in the lower margin of the sheet identifies each ellipsold which appears on that sheet. It is modeled after the following:


```
Thas al ?
```


8-3.8 In certain cases, a sheet bearing the UTM grid may straddle a parallel which marks the division between different grid zone designations. A continuous line in black or blue indicates the dividing parallel. The proper grid zone designations, printed in bive appear on each side of the line.

8-3.9 Figures 35 and 36 illustrate principles described for sheets with more than one major grid.

8.4 OVERLAPPING, EXTENDED, AND SECONDARY GRIDS.

Overlapping, extended, or secondary (obsolete) grids are not shown on the $1: 1,000,000$ scale map.

8-5 GRID AND MAGNETIC DECLINATIONS.

Grid and magnetic declination data are not shown on 1:1,000,000 scale maps.
8-6 THE GRID REFERENCE BOX.
8-6.1 A grid reference box may be shown in the margin of the sheet. The box contains explicit step-by-step instructions for composing a grid reference. See figure 37 for a typical grid reference box.
8-6.2 The grid system(s) in use on the map dictates the referencing instructions contained in the grid reference box.
8-6.3 When more than one major grid appears on a sheet and the method for giving a reference is the same for all the grids, a common reference box is used.
8-6.4 When more than one major grid appears on a sheet and the method for giving a reference varies with the grids, the treatment of the grid reference boxes is as follows:

8-6.4.1 A grid reference box is shown in the margin for each grid, except those falling campletely in open water area. Over each box appears a note limiting the use of the box to the grid or grids concerned.

8-6.4.1.1 When each box describes the method of referencing for one grid only, the note is modeled after the following:

[^7]

Scale 1:1.000.000 (in minioture)

Figure 3.5. Two Major Grids (in this case, Zones of the UTM) Separated by a Grid Junction, as Shown on a Map ar 1:1,000,000 Scale.

Fiyure :3n: Threo Major Nonstandard Grids as Shown on a Map at 1:1,000,000 Scole.

8-6.4.1.2 When the same system of referencing is used for two grids occurring on the same sheet with a third grid using a different reforence system, the note for the common reference box is modeled after the following:

USi ih:s bux ror glaing referenels on thi

Tilin' i:- Grid Reference Box for 1:1,000,000 Scale Map.
8.6.4.2 When all reference boxes cannot be accommodated in the margin, the excess is shown in expanses of open water on the face of the map. When this is not practicable, a note which refers the user to an adjacent sheet is added to a reference box in the margin This note is positioned below the note doscribed in paragraph 8-6.4.1.2 above. The noves are modeled after the following:

livirgsal maviltis mirialor gra

Tall wio Makia grin

CHAPTER 9

GRIDS ON NAUTICAL CHARTS

AT 1:75,000 SCALE AND LARGER

9.1 GENERAL.

9.1.1 Requirements for grid data and grid formats on nautical charts prepared for the DoD at 1:75,000 scale and larger are essentially the same for Universal Transverse Mercator grids, Universal Polar Stereographic grids and nonstandard grids.
9-1.2 The grid data for DoD charts usually include the major grid, a grid reference box, and notes identifying the grid. Combat Charts and Amphibious Assault Charis also include a declination note.

9-1.3 The adjacent grid is provided as an overlopping grid when a chart lies within approx:mately 40 kilometers of a grid junction line or a datum junction boundary. A separate declination note, and notes identifying the overlapping grid, appear in the margin for grid junctions, and may or may not appear for datum junctions, depending on grid alignments.

9-1.4 A chart may show a secondary grid which occurs in the area. The secondary grid is identified by margin notes.

9-1.5 No single chart in this scale category ever shows morr. diw. three grids. When a chart covers an area which includes more than three (e, iher major, overlapping, or secondary), those omitted are the ones which are considered of least military importance. Major grids are never omitted. When choice lies between two overlapping grids, the one retained usually is the one which occurs mosi frequently on the charts in the general orea.
9.1.6 Specific dimensions, size and style of type, and placement of margin data relating to grids and grid formats at 1:75,000 scale and larger are contained in DMA product specifications.

9-2 THE MAJOR GRID ON COMBAT CHARTS AND AMPHIBIOUS ASSAULT CHARTS.

9-2.1 The major grid on Combar Charts and Amphibicus Assault Charts is indicated by full lines at 1,000 -unit intervals. The unit is either yards or meters. Every 10,000 -unit grid line is accentuated in weight.

9-2.2 Grid numbers appear outside the neatline on all four sides of the chart, labeling each grid line. Where a grid line coincides with a neatline, the grid line is ornitted, but the neatline is labeled in the margin with the values for the grid line.
9-2.3 Basically, all grid lines are labeled with two principal digits which represent the 10,000 - and 1,000 -unit values of the grid line respectively. Some variations to this basic labeling are:

9-2.3.1 On all 10,000-unit grid lines, the basic two principal digits are preceded thy the 100,000 -unit digits. See figure 13 .

9-2.3.2 On charts with one major grid, only the first grid lines in each direction from each corner are given full coordinate values. See figure 13.
9-2.3.3 On charts containing grid zone junctions, junctions of major grids, or datum junc-
tions, the first grid lines in each direction from all four corners are given full coordinate values. See figures 15 and 16.

9-2.3.4 On charts showing the major and overlapping grids, the first grid line and grid tick in each direction from each corner are given the full coordinate values for both grids. See figure 17.

9-2.3.5 On the Madagascar grid and the Lambert grids of northwest Africa, use three principal digits to represent the 100,000 -, 10,000 -, and 1,000 -meter values of the grid lines.
9-2.3.6 Only the 10,000 meter grid lines are labeled in the margin of skewed cinarts. These labels include the appropriate Northing or Easting abbreviation and the unit of measurement.

9-2.4 The grid lines in the chart interior contain a pattern of grid value labels principal digits) designed to assist in position referencing on a folded chart. The 1,000 meter northing grid lines are labeled to the right of each 10,000 meter easting grid line and the 1,000 meter easting grid lines are labeled above each 10,000 meter northing grid line.

9-2.5 The color of the grid lines and values is purple for the primary major grid, blue for the second major or overlapping grid, and red.brown for the secondary grid.

9-2.6 A note identifying the grid and ellipsoid appears in the margin of a chart. The note is modeled after the following:

PURPLE LINES AND TICKS :NDICATE THE 1,000 METER UNIVERSAL TRANSVERSE MERCATOR GRID. ZONE 59N, INTERNATIONAL ELLIPSOID

9-2.7 Figures 13 and 14 illustrate the treatment for the major grid on Combat Charts and Amphibious Asscult Charts.

9.3 THE MAJOR GRID ON MINE WARFARE CHARTS.

9-3.1 The major grid is indicated by interior ticks at 10,000-unit intervals and by ticks along the neatlines at 1,000 -unit intervals. The 10,000 -unit ticks slong the border are accentuated in weight. The major grid ticks are printed in purple.

9-3.2 Grid numbers appear outside the neatlines on all four sides of the chart, labeling every 5,000 -unit grid tick. Every 10,000 -unit grid tick is labeled with the full coordinate value. The intermsdiate 5,000 -unit grid tick is labeled by the principal digits preceded by the 100,000 -unit and $1,000,000$-unit digits. The first 10,000 -unit tick fram each corner includes the \mathbf{E} for Easting and the N for Northing. All grids values ore printed in the same color as the ticks. See figure 38.
9-3.3 A ncte identifying the grid and ellipsoid appears in the margin of a chart. The note is modeled after the following:

UNIVERSAL TRANSVERSE MERCATOR (UTM) GRID, ZONE IOT, NORTH AMERICAN 1927 CATUM, CLARKE 1866 ELIIPSOID FOR MILITARY GRID REFERENCE

9-4 THIE MAJOR GRID ON HARBOR, APPROACH, AND COASTAL CHARTS.

9-4.1 The major grid is indicated by interior and neatline ticks at 10,000 -unit intervals for scales of approximately 1:40,000 to 1:75,000. For charts at scales larger than 1:40,000, a 5,000-unit interval is used. The grid ticks are printed in purple. Sometimes

LINIFRESAL TRANSVERSE MTRCATOR (UTM) GRIO. ZONE 39R. WORLD GEODE TIC: SYSIEM 1972 11AMM. WORI[I GtODE TII: SYSTEM 1972 ELLIPSOID. FUR MLITARY GRID RFFERENCE

Figure 38. Treatment for the Major Grid on a Mine Warfare Chart at 1:75,000 Scale and Largor.

the size and scale of charts may require the intervai to be modified to show at least two ticks in each direction.

9-4.2 Grid numbers appear outside the neatline on all four sides of the chart, labeling every 10,000 -unit grid tick with the full coordinate value. The first 10,000 -unit tick from each corner includes the E for Easting and the N for Northing. All grid values are printed in the same color as the ticks. See figure 39.
9-4.3 A note identifying the grid and ellipsoid appears in the margin of a chart. The note is modeled after the following:

```
UNMERSAL TRASSVERSL MiRCATGR {UTM! GRiN. ZONL IOT.
```



```
FOR N'ItIIARY (GRIO RE:IERINCE
```

9.5 MULTIPLE MAJOR GRIDS ON COMBAT CHARTS AND ĀMPHIEIOUS ASSAULT CHARTS.

9-5.1 In certain instances a chart contains more than one major grid.
9.5.1.1 With the UTM and UPS grids this may occur:

9-5.1.1.1 Where original chart limits are retained as established by a mapping agency of a foreign country.
9-5.1.1.2 Where a chart is shifted from the normal position to avoid making additional charts.
9-5.1.2 With nonstandard grids, this condition occurs more frequently since, in addition to the above cases, grid junctions are sometimes loxodromes or are grid lines.

9-5.2 Grid, datum, ellipsoid, and zone junctions are indicated by accentuated lines, printed in black. Labels identifying the junction appear parallel to and on each side of the junction line. The labels may be shown more than once to facilitate identification. Each label is printed in the color designated for the particular grid system. When a grid, datum, ellipsoid, or zone junction line is coincident with a neatline, both the junction line and the identifying labels are omitted. If the junction line falls within $2.5 \mathrm{~mm}(0.10 \mathrm{inch})$ of the neatline, the junction line is not shown; it is considered as being coincident with the nearline.
9-5.2.1 For nonstandard grids, the label is modeled after the following:

```
SLD MAKOC GFiN
NOLE TUNISIF GFDD
mADAGASCAR GRII
```

9-5.2.2 The label for a UTM grid junction, or a UPS grid junction, includes the identification of the Grid Zone Designation and is written in MGRS terms as:

```
(IIM GFID ZONE DFSIGNATION. \(54 T\)
```


9.5.3 Each grid is shown by full lines within its own area only, being represented at 1,000 -unit intervals with every 10,000 -unit line accentuated in weight. The first major grid is printed in purple, the second major grid in blue, and the third major grid in red-brown.

9-5.3.1 On charts bearing two major grids, the extension of either grid into the area

Figure 39. Treatment for the Major Grid on Harbor, Approach, and Coastal Chorts at 1:75,000 Scale and Larger.
of the other (overlopping grid) is shown by ticks crossing the neatline correctly aligned with its respective major grid. The even 10,000 -unit ticks are accentuated in weight.

DMA TM 8358.1

 FOR MILITARY GRID REFERECL

[^8]
9-5.3.1 On charts bearing three major grids, a similar practice is followed.

9-5.4 Grid values appear on all four sides of the chart labeling each grid line and those grid ticks whose values are multiples of 5,000 . Full values appear at each corner, labeling the first grid line in each direction from the corner.
9-5.5 Grid values, expressed in principal digits only, appear on the face of the chart labeling each grid line.
9.5.6 Notes identifying each grid appear in the margin of the chart. The notes are modeled after the following:

```
PURPLE LINES AND TICKS INDICATE THE 1.000 METER UNIVERSAL. TRANSVERSE MER- CATOR GRID. ZONE 59N. INTERNATIONAL ELLIPSOID
```

blue lines and ticks indicate the 1.000 meter universal transverse mercator GRIU, ZONE GON, INTERNATIONAL ELLIPSOID

9-5.7 Figures 15 and 16 illustrate the treatments described for charts containing more than one major grid.

9-6 MULTIPLE MAJOR GRIDS ON MINE WARFARE CHARTS AND HARBOR, APPROACH, AND COASTAL CHARTS.

9-6.1 In certain instances a chart contains more than one major grid. See paragrapin 9-5.1.

9-6.2 Grid, datum, ellipsoid, and zone junctions are not indicated in the interiar of the chart. They are marked only in the grid reference box.
9-6.3 Each grid is depicted across the full area of the chart. The first major grid is represented in purple. The second major grid is represented in blue, and a third major grid is shown in red-brown. Figure 40 illustrates the treatment of multiple major grids.
9-6.4 Notes identifying each grid appear in the margin of the chart. The notes are modeled after the following:

```
UNIVERSAL TRANSVERSE MERCATOR (UIM) GRID IS SHOWN
IN PURPLE FOR ZONE 50. NORTH AMERICAN 1927 DATUM.
CLARKE 1866 EILIPSOID, FOR MILITARY GRID REFE:RENCE
UNIVERSAL TRAFYVVERSE MERCATOR (UTM) GRID IS SHOWN
IN BIUF FOR ZONE 5O. NORTH AMERICAN }1983\mathrm{ DATUM.
GRS 80 [LLLPSOID, FOR MILITARY GRID REFERENCE
```


9.7 OVERLAPPING GRIDS ON COMBAT CHARTS, AMPHIBIOUS ASSAULT CHARTS, AND MINE WARFARE CHARTS.

9-7.1 An overlapping grid is generally required within approximately 40 kilometers of a grid, zone, or ellipsoid junction. The overlapping grid may be omitted if there are no land bodies within the 40 kilometer overlap area.
9-7.2 The overlapping grid is shown by ticks, printed in blue if there is one major grid and red-brown if there are two major grids, crossing the neatline correctly aligned with its respective grid and spaced at 1,000 -unit intervals. The even 10,000 -unit ticks are accentuated in weight.
9-7.3 Values, similar in composition to those tabeling the major grid lines or ticks, appear
on all four sides of the chart. The first grid tick in each direction from each corner of the chart whose values are multiples of 5,000 are labeled. These values are printed in the same color as that of the grid.

9-7.4 Notes identifying overlapping grids appzar in the margin of each chart. The notes are patterned after those used to identify multiple major grids. Figures 17 and 18 illustrate the treatments described for charts containing major and overlapping grids.

9-8 OVERLAPPING GRIDS ON HARBOR, APPROACH, AND COASTAL CHARTS.

9-8.1 An overlapping grid may be required within opproximately 40 kilometers of a grid, zone, or ellipsoid junction. The overlapping grid may be omitted if there are no land bodies within the 40 kilometer overlap area.
9-8.2 The overlapping grid is shown in the same manner as a major grid with interior and neatline ticks at 10,000 meter intervals, printed in blue if there is one major grid and red-brown if there are two major grids.

9-8.3 Values, similar in composition to those labeling the major grid lines or ticks, appear on all four sides of the chart labeling each 50,000 meter tick. The first grid tick in each direction from each corner of the chart are labeled with the full grid value. Thes: values are printed in the same color as that of the grid.

9-8.4 Notes identifying overlapping grids appear in the margin of each chart. The notes are patterned after those used to identify multiple major grids. Figures 17 and 18 illustrate the treatments described for charts containing major and overlapping grids.

9.9 SECONDARY GRIDS.

9.9.1 As a germerul rule, secondary grids aro not required on nautical charts.

9-\%. 2 When required, the secondary grid is shown in the same manner as overlapping grids except that they are printed in red-brown. They are labeled in the same manner as - erlapping grids.
7.3 A grid note, identifying the secondary grid, appears in the margin or on the face the chart depending on available space.

- . 4 When a secondary grid differs uniformly from the major grid, a datum shift note may be used in lieu of showing the secondary grid. The note should be printed in redbrow and patterned after the following:

```
TO REFER THIS CHART TO EUROPEAN DATUM:
SUBTRACT 0.1 SECONDS FROM THE LATITUDE VALUE AND
ADD 1.1 SECONDS TO THE LONGITUDE VALUE;
SUBTRACT }9\mathrm{ METERS FROM THE UTM GRID NORTHING VALUE AND
ADD 3O METERS TO THF. UTM GRID EASTING VALUE.
```


9-10 THE DECLINATION NOTE.

9-10.1 A grid declination note appears in the margin of each Combat Chart or Amphibious Assault Chart. The note identifies the grid declination from true north for the approximate mid-latitude of the east and west chart edges.
9-10.2 The note for the first major grid is shown in purple. The note for the second major or overlapping grid is shown in blue. If an overlapping grid occurs in combination with two mojor grids, the grid declination note for the overlapping grid is shown in red-brown.

The grid declination note for a secondary grid is shown in red-brown.
9-10.3 The grid declination note is madeled after the following:
CAljituN

9-10.4 Magnetic information will be derived from the magnetic compass rose.
9.11 THE GRID REFERENCE BOX.

9-11.1 A grid reference box, printed in purple appears in the margin of each chart. The box contains instructions and attendant data to enable the user to compose standard grid references.
9-11.2 The grid system(s) in use on the chart diciates the referencing instructions contained in the grid reference box. The grid reference boxes most commonly used on charts, $1: 100,000$ scale and larger, are illustrated in figure 23 . The boxes are subject to modifications.
9.11.3 The grid reference box also contains diagrams identifying applicable grid zone designations and grid square identifications.
9.11.3.1 For the UTM and UPS grids, the diagrams show the grid zone designation in black, the 100,000-meter grid lines and their values (in abbreviated form) in the appropriate grid color, and the 100,000 -meter square identification(s) in the appropriate grid color. Figure 24 illustrates the composition of the diagrams under various conditions.
9-11.3.2 For nonstandard grids, the diagram shows the 100,000 -unit square identifications and the values of the 100,000-unit grid lines in abbreviated form. These data are printed in the same color as the grid values to which they pertain. If the grid system identifies larger squares, their identifications are shown in smaller type just preceding the 100,000 -unit identifications. The 100,000 -unit grid lines are printed in purple. Grid junction lines ore printed in black. If a junction is a grid line, its value is shown in abbreviated form and printed in the same color as the grid values to which it pertains. Loxodromes are not labeled. Figure 25 illustrates the composition of this information under various conditions.
9-11.3.3 For charts that have an inset whose 100,000-unit square identification letters differ from those of the chart proper, the identification letters are shown in the interior of the inset, rather than in the grid reference box.
9-11.4 When more thon one major grid appears on a chart and the method for giving a reference is the same for all the grids, a common reference box is used.
9.11.5 When more than one major grid appears on a chart and the method for giving a reference yaries with the grids, circumstances control the treatment of the grid reference boxes.
9.11.6 On charts which do not show a full line grid, the grid reference box contains instructions for constructing a full line grid, for example:
ANIFRHE TICKS

9-12 WORLD GEODETIC SYSTEM (WGS) DATUM NOTE.

9-12.1 All nautical charts, other than Combat Charts, Amphibious Assault Charts, and certain modified facsimiles, are constructed on WGS wherever possible. When the chart is not on the latest World Geodetic System datum, a note is shown in black indicating the correction needed to convert a coordinate to that datum.
Example for Combat Chart:
COORDINATE CONVERSIONS ED TO WGS
Grid: Subtract $65 \mathrm{~m} \mathrm{E}_{\text {; Subtract }} 296 \mathrm{~m} \mathrm{~N}$
Geographic: Subtract $3.5^{\prime \prime}$ Long; Subtract 3.0^{\prime} Lat
9-12.2 When there is insufficient data available or inconsistant deviations result from the available geodetic control, one of the following notes, as appropriate, is shown in place of the WGS correction note:

WORLD GEODETIC SYSTEM DATA ADJUSTMENT
Due to unavailability of geodetic data, this chart
cannot be placed on the World Geodetic System (WGS)
Datum.
The available geodetic control does not indicate a uniform deviation; therefore, this chart carinot be placed on the World Geodetic System (WGS) Datum.
9-12.3 When a Mine Warfare or Harbor, Approach, and Coastal Chart is on WGS, a datum note is shown as follows:

DATUM NOTE
Positions obtained from sateliite navigation systems reierred to the World Geodetic System (WGS) can be plotted directly on this chart.

CHAPTER 10
 GRIDS ON NAUTICAL CHARTS AT SCALES SMALLER THAN 1:75,000

10-1 GENERAL.

10-1.1 Grids are required on nautical charts at scales from 1:75,000 to 1:300,000. For charts at scales smaller than 1:300,000, reference should be made to individual project instructicns to determine grid requirements.
10.1.2 Requirements for grid dara and grid formats on charts prepared for the DoD at scales smaller than 1:75,000 are essentially the same for Universal Transverse Mercator grids, Universal Polar Stereographic grids and nonstanda:d grids.
10-1.3 The grid data for DOD charts usually include the major grid. a grid reference box, and notes identifying the grid.
10-1.4 A chart may show a secondary grid which occurs in the area. The secondary grid is identified by margin notes.
10-1.5 No single chart in this scrale category ever shows more than three grids. When a chart covers an area which inr'ucies more than three leither major or secondary), those omitted are the ones whict. un considered of least military importance.
10-1.6 Specific dimensio , size and style of type, and placement of margin data relating to grids and grici formats at scales smaller than 1:75,000 are contained in Defense Mapping Agency (DMA) product specifications.
10-2 THE GRIC.
10-2.1 The grid is indicated by ticks at intarior intersections and along the neatline. The spacing of the ticks depends upon the scale and size of the chart and upon the need to keep th.s grid information within acceptable limits of accuracy. Nautical charts at scales smaller than 1:75,000 are typically constructed on Mercator projections. Grid lines which appear straight on Transverse Mercator projections will therefore appear curved when plotted on a Mercator. Since nautical charts do not normally show full grid lines, ticks are used to represent the grid allowing the user to construct a grid by drawing straight line segments between the ticks. The tirks must be positioned close enough together to allow the chart user to approximate the curve of the true grid line by drawing straight line segments. On charts at scales from $1: 75,001$ to $1: 150,000$ the maximum acceptable deviation between the true grid line and the one which the user would construct by jaining the tizks is 0.5 mm (0.02 in .). As a general rule, charts at this scale should indicate grids by ticks at 20,000 -unit intervals. For charts ot extreme latitudes, care should be taken to make sure that the maximum acceptable deviation is not exceeded. Similarly, for charts at scales from $1: 150,001$ to $1: 300,000$, the maximum acceptable deviation is $1.0 \mathrm{~mm}(0.04 \mathrm{in}$.) which genarally would require ticks at 50,000 -unit intervals. Again, care should be taken on charts in the extreme latitudes to see that the maximum acceptable deviation is not exceeded. This paragraph is summorized in table 10.

SCALE TICK SPACING MAXIMUM ACCEPTABLE DEVIATION

$1: 75,001-3: 150,000$	20,000	$0.5 \mathrm{~mm}(0.02 \mathrm{in})$.
$1: 150,001-1: 300,000$	50,000	$1.0 \mathrm{~mm}(0.04 \mathrm{in})$.

Tuhte $10 \frac{\text { Maximum acceptable deviation of the }}{\text { constructed grid from }}$

10-2.2 Grid numbers appear outside the neatiline on all four sides of the chart, labeling every grid rick. Every 100,000 -unit grid tick is labeled with the full coordinate value. The intermediate grid tick(s) is (are) labeled by the principal digits preceded by the 100,000unit digits. The first tick from each corner includes the \mathbf{E} for Easting and the \mathbf{N} for Northing. All grid values are printed in the same color as the tieks.
10-2.3 A note identifying the grid and ellipsoid appears in the margin or on the face of a chart depending on the available space. The note is modeled after the following:

10-2.4 figure 41 illustrates the treatment for the major grid.

10-3 MULTIPLE GRIDS.

10-3.1 In many instances a chart contains more than one major grid. There may be multiple major grids or there may be a special requirement for a secondary grid in addition to the required major grid.
10-3.2 Grid, datum, and zone junctions are indicated in the grid reference box and are not shown on the face of the chart.

10-3.3 Each grid is dopicied within its own area by the use of internal and neatline ticks as described in section 10-2. The grid is extended one tick beyond any grid junction line. The first major grid ticks and values are represented in purple. The second major grid ficks and values are represented in blue, and a third major grid is shown in red-brown. Figure 42 illustrates the treatment of multiple major grids.
10.3.4 Nütes identifying each grid appear on the chart. The notes are modeled after the following:


```
UNIVERSAL TRANSVERSE MERCATOR (UTM) GRID. ZONE 19.
NORTH AMERICAN 1983 DATUM. GRS 80 ELLIPSOID.
FOR MILITARY GRID RFFERENCE
```


10.4 SECONDARY GRIDS.

10.4.1 As a general rule, secondary grids are not required on nautical charts.

10-4.2 When required, the secondary grid is depicted within its own area by the use of internal and neatline ticks as described in section $\mathbf{1 0 - 2}$. Secondary grid ticks are printed in red-brown.

10-4.3 Values, similar in composition to those labeling the major grid lines, appear on all four sides of the chart. The first grid tick in each direction from the southwest corner of the chart is labeled with full values. Secondary grid values are printed in red-brown.

10-4.4 A grid note, identifying the secondary grid, appears in the margin or on the face of the chart depending on the available space.

Fiyure 41. Treatment for the Major Grid on Nautical Charts at Scales Smallor than 1:75,000.

figur.: fel Treatment for Muitiple Grids on Noutical Churts of Scales Smaller than 1:75,000.

10-4.5 When a seconclary grid differs uniformly from the major grid, a coordinate shift note may be used in lieu of showing the secondary grid. The note should be printed in red-brown and patterned after the following:

TO REFER THIS CHART TO EUROPEAN DATUM:
SUBTRACT 0.1 SECONDS FROM THE LATITUDE VALUE;
AND ADD 1.1 SECONDS TO THE LONGITUDE VALUE;
SUBTRACT 9 METERS FROM THE UTM GRID NORTHING VALUE AND
ADD 30 METERS IO THE UTM GRID EASTING VALUE.

> Figure 41. Treatment for Major and Secondary Grids on Nautical Charts

10-4.6 Figure 43 illustrates the treatment described for charts contnining major and secondary grids.

10.5 THE GRID REFERENCE BOX (OR NOTES).

A grid reference box, printed in purple appears in the margin or on the face of each chart depending an available space. The box contains instructions and attendant data to enable the user to compose standard grid references. Fo: information relating to the grid referonce box, see Chapter 9 paragraph 9-11.

10-6 WORLD GEODETIC SYSTEM (WGS) DATUM NOTE.

For information relating to the appropriate WGS Datum Note, see Chapter 9 paragraph 9-12.

CHAPTER 11

GRIDS ON AERONAUTICAL CHARTS AT 1:500,000 SCALE AND LARGER

11.1 GENERAL.

11-1.1 The treatment of the grid and isogonic data for the 1:250,000 scale Joint Operations Graphic Air (JOG-A) series is contained in Chapter 7.
11-1.2 Grid data and grid format for the aeronautical chart at 1:500,000 scale are essentially the same for Universal Transverse Mercator grids, Universal Polar Stereographic grids, and nonstandard grids. Sheet lines of charts at these scales are planned to provide a uniform sheet size. Details of the chart format and size are contained in the apprapriate product specification.

11-1.3 The grid data consist of grid lines and values, grid reference boxes, notes identifying the grids, and information concerning the magnetic declination over the sheet. Secondary, overlapping and extended grids are not shown.

11-2 THE MAJOR GRID.

11-2.1 The major grid is shown by full lines prinied in blue, at 100,000-unit intervals. Ticks are shown at 10,000-unit intervals along the grid lines and neatlines. (For sheets covering the United States, full lines will be shown at 50,000 -meter intervals, with intensified lines at 100,000 -meter intervals.) The unit of measure is predominately meters; yards are used for some nonstandard grids.
11-2.2 Grid lines are labeled along the margins as follows:
11-2.2.1 Full grid line values shall be shown at the first grid line in each direction from each corner. They are also shown if there is a change of the measuring unit. (Show four pair of full grid line values per unit of measurement only.) Except for the values labeling the first grid line from each corner, the last four digits (0000) of the values are omitted. The values are shown in two sizes of type, with the larger size being reserved for the principal digits.
11-2.2.2 Full grid tick values shall include the abbreviated designation of the measuring unit "m." for meters or "yds." for yards and the abbreviated geagraphic designation of the tick, "N." for Northings and "E." for Eastings.
11-2.2.3 Intermediate grid line and tick values are shown in the margins and include only the principal digits and digits prefixing the principal digits. The end of each grid line within the neatline are labeled in this manner. With most grids, one principal digit is used. This represents the 10,000 -unit digit of the grid values. Two principal digits are used with the Madagascar grid and the Lambert grids of northwest Africa. These represent the 100,000 - and 10,000 -unit digits of the grid values.
1-2.3 The grid square identification (100,000-unit squares) is shown near each 100,000unit grid line intersection. When the intersection is coincident with the west or south neatline, only the identification letters falling inside the neatline are shown. When the intersection is coincident with the east or north neatline, identification letters are shown on both sides of the neatline.

11-2.4 On aeronautical charts at 1:500,000 scale, all grid information is printed in blue.

11-2.5 A grid note appears in the lower margin of each sheet to identify the grid. The note is part of the grid reference box and is modeled after the following:

```
BLUE NIMEERED LINES IND:CATE {00.000 METERSS.
TICKS 10C00 ME:RRS UN vERSAL TRANSVERSE MERCATOR
GFIO. ZONE 535. ET.SSEL ELLIP5OID
El.ue NumbekEO linEs indicate 100.000 metefs
TICKS 10000 METERS. LANBEFT SUO MAROC GRID
```

11-2.6 When the entire grid falls within one ellipsoid, the ellipsoid is not identified within the grid reference box but beneath it as fallows:

Entire UTM Grid falls within International Ellipsoid.
11-2.7 In most instances a sheet contains more than one major grid. Grid, ellipsoid, and zone junctions are indicated by solid blue lines. Labels are shown on each side of the junction line. The labels may be shown more than once to facilitate identification. Where a grid, ellipsoid, or zone junction is coincident with the south or west neatline, only the identifying names within the chart area will be shown.

11-2.8 Junction line labels are modeled after the following:

BESSEL ELLIPSOIC
WORLD GEODETIC SYSTEM 1972 ELLIPSOID
SUD ALGERIE GRID
UTM GRID ZONE DESIGNATION: 3IR
UTM GRID ZONE DESIGNATION: 15C UPS GRID ZONE DESIGNATION: A

11-2.8.1 When the grids are different zones of the UTM grid, the note is modeled after the following:


```
TIEKS lUOCG MEIEFS. UNIVERSAL TRANSVERSE :WERCATOM
(GRO) ZONES 5C aivD 51. ClaRkE 18E6 ELLIP5OID
```

11-2.8.2 When more than one grid is involved, the notes are modeled after the following:

```
in AFEAS COVEPED BY UTM GRIO 8LUE NUMBERED LINEC
ivDICATE THE 100.000 meters. TǐkS 10.000 meTERS.
UNIVERSAL TRAMEVERSE MERCATOR GRID. ZONE 37^
INTERNATIONAL. ELLIPSOID
A AREAS COIERED bY UPS GRIN BLUE NUMBEREO liNES
INDIGATE THE 100.000 METERS. TICKS 10.000 METERS
UNIVEFSAL PGUAR STEREOGHAPHIC GRID. ZONE Z
INTEFIVATIONAL ELLIPSOID
```

11-2.8.3 A separate marginal note is not shown for the gria in the north or east overlap of a chart. Such a grid is identified on the face of the chart only.

11-2.9 When an ellipsoid junction occurs on a chart, the UTM grid traatment is the same as that followed when a sheet straddles a grid junction. The ellipsoids are identified on
each side of the junction line. See figure 30. A note, printed in the same color as the grid values, oppears in the lower margin of the sheet identifying the grid(s), zone(s), and ellipsoids.

```
Blue numbereo lines indicate 100.000 meters.
TICKS 10.00C METERS UNIVERSAL TRANSVERSE MERCATOR
GPIC. ZONF 52T. WGS ELLIPSOIU. AND ZONE 52T.
BE5SEL ELLIPSOIL
```

11-2.10 in certain cases, a sheet bearing the UTM grid may straddle a parallel which marks the division between different grid zone designations. The grid and corresponding labeling appear as previously described. A continuous line in black indicates the dividing parallel. The proper grid zone designations appear on each side of the line. The dividing parallel is omitted when it falls within $2.5 \mathrm{~mm}(0.10$ inch) of the north or south neatlines. figure 31 illustrates these principles.

11-3 GRID DECLINATION.

Grid declination from true north is not shown on 1:500,000 scale aeronautical charts.

11.4 MAGNETIC DECLINATION.

11-4.1 Isogonic lines are shown on the face of the sheet. In addition to the isogonic lines, a note modeled after the following is shown in the margin:

LINES OF EQUAL MAGNETIC VARIATION FOR 1985
(Annual rate of change, no change)
11-4.2 When the magnetic variation is approximately the same over the entire chart, no isogonic lines are shown, and the magnetic variation is indicated by a note modeled after the following:

```
MAGNETIC VARIATION FOR 1985 IS APPROXIMATELY
\(1{ }^{\circ} \mathrm{W}\) OVER THE ENTIRE AREA
(Annual rate of change 7' decrease)
```


11.5 THE GRID REFERENCE BOX.

11-5.1 A grid reference box appears in the margin of each sheet. The box contains step-by-step instructions for composing a grid reference. For examples, see figure 44. The applicable grid zone designation is also identified in the box.

11-5.2 The grid system(s) in use on the map dictates the referencing instructions contained in the grid reference box.
11-5.3 When more than one major grid appears on a sheet and the method for giving a reference is the same for all the grids, a common reference box is used.
11-5.4 When more than one major grid appears on a sheet and the method for giving a reference varies with the grids, circumstances control the treatment of the grid reference boxes. A grid reference box is shown in the margin for each grid, except those falling completely in open water area. At the top of each box appears a note limiting the use of the box to the grid or grids concerned.

Figure 14. Grid Reference Box Commonly Used on Aeronautical Charts at 1:500,000 Scale and Larger.

APPENDIX A
 TABLE OF MIL EQUIVALENTS

A. 2

APPENDIX B
 100,000-METER SQUARE IDENTIFICATIONS OF MILITARY GRID REFERENCE SYSTEM

TO DETERMINE THE UTM OR UPS 100,000-METER SQUARE MGRS IDENTIFICATION

B-1. These instructions provide a method for determining the correct UTM or UPS 100,000 meter square identification for any point in the world. See Chapter 3 for a full explanation of the 100,000 -meter square idantification. If geographic coordinates are the only coordinates given, they must be transformed to UTM or UPS grid coordinates. The following data are necessary to determine the correct 100,000 -meter square letters:

B-1.1 For the UPS grid:
B-1,1.1 UPS grid coordinates (easting and narthing).
B-1.1.2 The polar zone in which the coordinates fall.
B-1.2 For the UTM grid:
B-1.2.1 UTM grid coordinates (easting and northing).
B-1.2.2 UTM grid zone
B-1.2.3 Geographic coordinates or the 8° latitude band letter which is the Grid Zone Designation letter.
B-1.2.4 Ellipsoid and/or datum.
B-2 Determine by area, datum, and/or ellipsoid which of the following figures is appropriate:

Figure B-1: North of $84^{\circ} \mathrm{N}$.
Figure B-2: South of $80^{\circ} \mathrm{S}$.
Figure B-3: Australian National (GRS 67) Ellipsoid Clarke 1866 Ellipsoid (in the Philippines and the Mariana Islands)
GRS 80 Ellipsoid International Ellipsoid World Geodetic System

Figure B-4: Clarke 1866 Ellipsoid [in the area covered by North
American 1927 Datum (NAD 27)]
Bessel Ellipsoid
Clarke 1880 Ellipsoid
B-3 Method of use with the UPS grid:
B-3.1 If the coordlnates fall in the north Polar region, use figure B-1 to determine the correct square identification letters. If the coordinotes fall in the south Polar region, use figure B-2.

B-3.2 In figures B-1 and B-2, the easting lines are labeled every 500,000 meters from left to right with the $2,000,000$ meter line being coincident with the 0° and 180° line. If the easting is less than $2,000,000$ meters the Grid Zone Designation will be Y or A depending on whether the point is in the North or South Polar region. If the easting is greater than $2,000,000$ meters the Grid Zone Designation will be \mathbf{Z} or \mathbf{B}. The northing lines are labeled every 500,000 meters from bottom to top with the $2,000,000$ meter line coincident with the $90^{\circ} \mathrm{W}$ and $90^{\circ} \mathrm{E}$ line.

B-3.3 Reduce both easting and northing to the nearest 100,000 meters.

B-3.4 Find these grid lines on the figure.
8-3.5 The 100,000 -meter square will be to the right and above these lines.
B-3.6 The procedure is the same for the north Polar region or the south Polar region.
Example: At latitude $86^{\circ} 46^{\prime}$ north, longitude $132^{\circ} 30^{\prime}$ west, UPS grid coordinates were scaled, $\mathbf{E}=1,735,000$ $\mathbf{N}=2,243,000$ in the North Polar area.
Use figure B-1.
The easting is lass than $2,000,000$ meters, therefore the grid zone designation is Y.
The coordinates reduced to the nearest 100,000 meters are: $E=1,700,000 \mathrm{~N}=2,200,000$.
The 100,000 -meter square letters to the right and above the intersection of these lines are XK.
MGRS to the nearest 1,000 meters is YXK3543
B-4 Method of use with the UTM grid:
B-4.1 To determine the 100,000-meter square letters for UTM grid coordinates, first determine which figure, B-3 or B-4, is needed. The ellipsoid identifications are specified on each figure.

B-4.2 Locate the zone number in the list at the top of the figure. This identifies the set of designators in which the letters will be found.
B-4.3 If the 8° latitude band letter is given, it will be used as the grid designation letter. If the geographic coordinates ore given, use the latitude of the point to determine the grid zone designation letter from Appendix D.
B-4.4 Reduce the easting to the nearest 100,000 meters. Find the 100,000 -meter easting grid line within the grid zone identified in paragraph B-4.2. The easting lines are labeled below the figure, from 200,000 meters to 800,000 meters within each zone.
B-4.5 Reduce the grid northing by multiples of $2,000,000$ meters until the resulting value is beiween 0 and $2,000,000$ meters. Further reduce the grid nurthing to the nearest 100,000 meters. Find the 100,c00-meter northing grid line. The northing lines are labeled at the left side of the figure.
B-4.6 The 100,000 -meter square will be to the right and above the intersection of the lines found in paragraphs B-4.4 and B-4.5.
B-4.7 The procedure is the same for the northern hemisphere or the southern hemisphere.

Example: At latifude 34'15' north, longitude $88^{\prime \prime} 36^{\prime}$ east, UTM grid coordinates were scaled, $E=647,000$ $\mathrm{N}=3,791,000$ in UTM zone 45, grid zone designation letter S.
Grid zone designation is 455.
The point is referenced to the WGS ellipsoid, therefore use figure B-3 and set 3 of the zones.
The easting is reduced to 600,000 meters.
For an easting of 600,000 meters start ot the column x.
Reduce the northing by $2,000,000$ meters and then to the nearest 100,000 meters, obtaining $1,700,000$ and read across that grid line to the intersection with the 600,000 meter easting line in zone 45.
The 100,000 -meter square letters to the right and above this intersection is XT.
MGRS to the nearest 1,000 meters is $45 S \times T 4791$.
WEST EAST
INTERNATIONAL ELLIPSOID

USE THIS DIAGRAM FDR AUSTRALLAN TEFS 67: ELLIPADID

[^9]in the norih and jouth hemispheres

APPENDIX C
 GUIDE TO
 GEODETIC STATUS
 OF LARGE SCALE MAPPING

gUIDE TO GEODETIC STATUS Of LARGE SCALE MAPPING

DATUM CODES
A Map sheets are on preferred datum.
B Mapping is being converted to preferred datum.
C Map sheets are not on preferred datum.
Insufficient or unavailable information.
GRID CODES
1 Map sheets portray UTM or UPS grid.
2 Map sheets portray a nonstandard preferred grid.
3 Mapping is being converted to a preferred grid.
4 Map sheets portray a nonpreferred grid.

- Insufficient or unavailabla information.

SERIES	AREA	DATUM/GRID
A741	CANADA	B 1
A742	CANADA	B 1
C762	ICELAND	A 1
E703	LESSER ANTILLES	- *
E712	BAHAMAS; TURKS AND CAICOS	* *
E714	BAHAMAS	* *
E721	JAMAICA	A 1
E722	CAYMAN ISLANDS	* *
E724	CUBA	C 1
E732	HAITI	A 1
E733	DONINICAN REPUBLIC	A 1
E735	PUERTO RICO	A 1
E736	VIRGIN ISLANDS	A 1
E/41	MARTINIQUE	C 4
E742	TRINIDAD AND TOBAGO	A 4
E751	NICARAGUA	A 1
E752	HONDURAS	A 1
E753	El SALVADOR	A 1
E754	GUATEMALA	A 1
E755	BELIZE	A 1
E762	PANAMA	A 1
E763	COSTA RICA	A 1
E772	COLOMBIA	A
E785	VENEZUELA	A 1
E792	GUYANA	A
E793	SURINAME	* *
E794	FRENCH GUIANA	* *
F701	MEXICO	-
G712	CAPE VERDE	* *
G722 ${ }^{\text {² }}$	MAII	C 1
G7232	MAURRITANIA	$C \quad 1$
G724 ${ }^{\text {a }}$	THE GAMBIA	$C \quad 1$
G725*	SENEGAL	C 1

DMA TM 8358.1

17010	MALAYSIA	C	4
17014	VIETNAM	C	1
17015	LAOS	C	1
17016	CAMBODIA	C	1
17017	THAILAND	C	1
17021	CHINA	.	*
17023	MONGOLIA	*	*
1752	SOUTH KOREA, NORTH KOREA	A	1
1753	SOUTH KOREA, NORTH KOREA	A	1
1776	JAPAN	A	1
M619	SWEDEN	A	1
M7020	ALBANIA	A	1
M704	BULGARIA	A	1
M705	ROMANIA	B	I
M709	YUGOSLAVIA	A	1
M711	NORWAY	A	1
M713	FINLAND	B	1
M715	DENMARK	A	1
M716	SWEDEN	A	1
M726	UNITED KINGDOM	A	2
M733	NETHERLANDS	A	1
M736	BELGIUM	A	1
M745	WEST GERMANY, EAST GERMANY	A	1
M753	POLAND	B	1
M7S 1	fraince	A	1
M771	AUSTRIA	A	1
M774	CZECHOSLOVAKIA	B	1
M775	HUNGARY	B	1
M 781	SPAIN	A	1
M7812	AZORES	*	.
M782	PORTUGAL	A	1
M783	BALLEARIC ISLANDS	A	1
M792	ITALY	A	1
M795	SWITZERLAND	C	1
M796	MALTA		*
N:O1	USSR	B	1
N\%011	USSR	A	1
N707	USSR	A	1
N709	USSR	,	*
P'11	CANARY ISLANDS	-	*
P'22	MADEIRAS ISLANDS	*	-
P'33	MOROCCO	C	4
P:41S	AlGERIA		*
$p: 1432$	Algeria	C	4
P.751 ${ }^{2}$	TUNISIA	C	4
P7612	LIBYA	C	1
P7615:	LIBYA	C	1
P773:	EGYPT	C	1
P777 ${ }^{\text {2 }}$	EGYPT	C	1

Q701	UNITED STATES	C	1
R712	AUSTRALIA	-	*
R722	AUSTRALIA	*	-
R733	AUSTRALIA	A	1
R742	AUSTRALIA	-	-
R753	AUSTRALIA	*	*
R754	AUSTRALIA	-	*
R777	NEW ZEALAND	*	*
S701	PHILIPPINES	A	1
T702	PAPUA NEW GUINEA	A	1
T71:3	INDONESIA	C	1
T725	INDONESIA	.	1
T728	INDONESIA	C	*
T731	INDONESIA	C	*
T735	MALAYSIA, BRUNEI	C	4
1753	INDONESIA	C	-
U711	AFGHANISTAN	C	1
U722	PAKISTAN	B	3
U723	BANGLADESH	B	3
U744	BURMA	B	*
U753	INDIA	B	3
U763	NEPAL	B	3
U771	SRI LANKA	B	3
U782	BRITISH INDIAN OCEAN TERRITORY	.	*
U784	MALDIVES	*	-
V712	UNITED STATES	B	1
V713	UNITED STATES	B	1
V714	UNITED STATES	B	1
V715	UNITED STATES	B	1
V716	UNITED STATES	B	1
V721	UNITED STATES	B	1
V722	UNITED STATES	B	1
V731	UNITED STATES	B	,
V733	UNITED STATES	B	1
V734	UNITED STATES	B	1
V741	UNITED STATES	B	1
V742	UNITED STATES	3	1
V743	UNITED STATES	B	1
V744	UNITED STATES	B	1
V745	UNITED STATES	B	1
V746	UNITED STATES	B	,
V747	UNITED STATES	B	1
V751	UNITED STATES	B	1
V752	UNITED STATES	B	1
V753	UNITED STATES	B	1
V754	UNITED STATES	B	1
V761	UNITED STATES	B	1
V762	UNITED STATES	B	1
1763	UNITED STATES	B	1

DMA TM 8358.1

V772	UNITED STATES	B	
V774	UNITED STATES	B	
V775	UNITED STATES	B	
V776	UNITED STATES	B	
V777	UNITED STATES	8	1
V778	UNITED STATES	B	1
V779	UNITED STATES	B	1
V781	UNITED STATES	B	1
V782	UNITED STATES	B	1
V783	UNITED STATES	B	1
V784	UNITED STATES	8	1
V785	UNITED STATES	B	1
V791	UNITED STATES	B	1
V792	UNITED STATES	B	1
V793	UNITED STATES	B	1
V794	UNITED STATES	B	,
V795	UNITED STATES	B	1
V796	UNITED STATES	B	
V796	UNITED STATES	B	1
V797	UNITED STATES	B	1
V798	UNITED STATES	B	1
W721	WAKE ISLAND	B	*
W733	UNITED STATES	A	1
W743	GUAM, NORTHERN MARIANAS	A	1
W756	CAROLINE ISLANDS	A	1
W761	MARSHALL ISLANDS	*	*
X701	FRENCH POLYNESIA	-	*
X711	SOLOMAN ISLAND	*	*
X 72 ?	VANUATU	*	*
X73i	NEW CALEDONIA	*	*
X 7411	tuvalu	*	。
$\times 746$	KIRIBATI AND PHOENIX ISLAND	*	*
$\times 747$	WALLIS AND fUTUNA	*	*
$\times 754$	FiJl	*	*
X765	AMERICAN SAMOA	-	*
X769	WESTERN SAMOA	*	*
X773	TONGA	*	*
Y627	DJBOUTI	C	1
Y628	ETHICPIA	-	*
Y712	SUDAN	*	*
Y722²	ETHIOPIA	C	1
Y724	SOMALIA	C	1
Y731	KENYA	C	,
Y732	UGANDA	*	*
Y741	TANZANIA	*	*
Y742	ZANZIBAR ISI.AND	*	*
Y752	SEYCHELLES	-	*
Y761	MOZAMBIQUE	*	
Y775	MADAGASCAR	*	
Y83	MAURITIUS	*	*

Y784	REUNION	
2703	ZAIRE	
2721	BURUNDI	-
2722	RWANDA	-
2731	ANGOLA	-
2741	ZAMBIA	
2742	MALAWI	*
2745	ZIMBABWE	
2752	NAMIBIA	*
2753	SOUTH AFRICA	*
2762	BOTSWANA	*
2772	SWAZILAND	*
2783	LESOTHO	-
2784 ${ }^{2}$	SOUTH AFRICA	C

This quide provides information concerning unclassified mapping only. It is based on an appraisal of a majority of the mans available in the series. For information regarding map series not listed contast DMA (PR).
${ }^{2}$ This will be the correct status for these series if the present configuration of Appendix D is approved.

APPENDIX D
 INDEX TO
 PREFERRED GRIDS, DATUMS AND
 AND ELLIPSOIDS SPECIFIED
 FOR NEW MAPPING

APPENDIX E WORLD GEODETIC SYSTEM 1984

Prepared by DAA.A solely as input data for use in NAVSTAR GPS user equipment utilizing existing (Molodenskiy formula-based) sottware. To accomplish accurate geodetic datum transformations, future military equipment (and software) should utilize the "multiple regression' technique that DMA is developing. A complete description of this technique, and a listing of all available (required) transtormation coefficients will be published in the final WGS 84 Development Report.
E. 1 A list of WGS 84 Datum to Local Geodetic Datum transformation parameters has been prepared by the Defense Mapping Agency solely as input dara for use in NAVSTAR Global Positioning System (GPS) User Equipment (UE) utilizing existing software. The signs of the values were reversed to make them compatible with the values in Toble 2. This information is included to assist people working with systems using GPS for subsystem initialization. The Local Geodetic System to WGS 84 mean datum shifts $(\Delta X, \Delta Y, \Delta Z)$ and ellipsoid parameter differences ($\Delta a, \Delta f$), Table E-1, are for use with the software currently available in the User Equipment. Values for a and f are listed with figure 1.
E-2 The mean datum shifts ($\Delta X, \Delta Y, \Delta Z$) are of questionable accuracy for the following local geodetic systems identified by 2 :

Bukit Rimpah
Comp Area Astro
Gunung Segara
Herat North
Indian
Old Hawaiian, Maui
Old Hawaiian, Oahu
Old Hawaiian, Kauai
South American (Yacare)
Tananarive Observatory 1925

E-3 This questionable accuracy is due to the limited number (or total lack) of Doppler stations within the boundary of the local geodetic datum and/or insufficient reliable information in either the geodetic connections or for the local geodetic datum itself. Since the desired (appropriate) data was not available fo: the 10 above listed datums for a direct determination of their Local Geodetic System to WGS 84 datum shifts $(\Delta X, \Delta Y, \Delta Z)$, these values ore indirectly determined utilizing previously developed Local Geodetic System to WGS 72 datum shifts. Also, due to the absence of the required data, Local Geodetic System to WGS 84 mean datum shifts ($\Delta X, \Delta Y, \Delta Z$) could not be developed for the following seven local geodetic systems or datums:

> Ghana
> Gunung Serindung
> Hu-tzu-shan
> Local Astro
> Montjong Lowe
> Sierra Leone 1960
> Voirol

E-4 A discussion of the Molodenskiy Datum Transformatioulas is in paragraph 2-3.

ELIIPSOID	$\Delta \mathrm{X}(\mathrm{m})$	$\Delta Y(m)$	$\Delta z(m)$	$\Delta \mathrm{a}$	$\Delta i \times$	
Clarke 1880	-162	-12	206	-112.145	-0.54750	714
Clarke 1880	-143	-90	-294	-112.145	-0.54750	714
GPS 67	-133	-48	148	-23	-0.00081	204
Bessel	-384	664	-48	739.845	0.10037	483
International	-104	-129	239	-251	-0.14192	702
Bessel	-377	681	-50	739.345	-0.10037	483
International	-87	-98	-121	-251	-0.14192	702
International	84	-22	209	-251	-0.14192	702
War Office	not available			163.58	0.25567	714
Clarke 1866	-100	-248	259	-69.4	-0.37264	639
Bessel	-403	684	41	739.845	0.10037	483
Bessel	not available			739.845	0.10037	483
International	-333	-222	114	-251	-0.14192	702
Internationa:	-73	46	-86	-25i	-0.14192	702
Internaticnal	not available			-251	-0.14192	702
Everest	173	750	264	860.655	$0.2836)$	368
Mod. Airy	506	-122	611	796.811	0.11960	023
Mod. Everest	-11	851	5	832.937	0.28361	368
Clarke 1880	-90	40	88	-112.145	-0.54750	714
not available						
Clarke 1866	-133	-77	-54	-69.4	-0.37264	639
Clarke 1880	31	146	47	-112.145	-0.54750	?:4
Bessel	not available			739.845	0.10037	483
Clarke 1880	-92	-93	122	-112.145	-0.54750	714
Clarke :866	-8	160	176	-694	-0.37264	639

	tum
	Adindan
	. Arc 1950
3	Australian Geodetic
	. Bukir Rimpah ${ }^{2}$
5	Camp Area Astro ${ }^{2}$
	Djakarta
	European 1950
	Geodetic Daturi 1949
	Ghana
10.	Guam 1963
	Gunung Segara ${ }^{2}$
	Gunung Serindung 1962
	. Herat North ${ }^{2}$
	Hicrsey 1955
	. Hu-Tzu-Shan ${ }^{2}$
	Indian²
	$\begin{aligned} & \text { Irelard } 1965 \\ & \text { (Eire 1965) } \end{aligned}$
	Kertou 1948 (Maloyon Revised Triangulation)
	. Liberia 1964
	. Local Astro
	. Luzon
	. Merchich
	. Montiong Lowe
24	4. Nigeria
25	North American 1927 CONUS

－0．37264	639
－0．14192	702
－0．14192	702
－0．14192	702
0.11960	023
－0．14192	702
－0．54750	714
－0．14192	702
－0．14192	702
－0．14192	702
－0．14192	702
－0．14192	702
－0．14192	702
0.28361	368
0.10037	483
－0．54750	714
0.28361	368
－0．37264	639
0.10037	483
0.0	

$$
\begin{aligned}
& \text { North Americon } 1927 \\
& \text { Alaska and Conoda }
\end{aligned}
$$ Old Hawaiian，Oahu² z！DRDX＇UD！！OMOH PIO Ordnance Survey of

Great Britain 1936
 0961 әu0e1 סuals South America （Campo Inchauspe） South America
（Chuo Astro） South America
（Corrego Alegre） （Corrego Alegre） （Provisional South American 1956） South America （Yacare）${ }^{2}$
Tananarive Obsv． 1925^{2} Tananarive Obsv． 1925 ，
Timbalai 1948 Tokyo
Voirol
MGRS ：elated，

$$
\begin{aligned}
& \text { Clarke } 1866 \\
& \text { International } \\
& \text { International } \\
& \text { International } \\
& \text { Airy } \\
& \text { International } \\
& \text { Clarke } 1880 \\
& \text { Internationa! } \\
& \text { International } \\
& \text { International } \\
& \text { International } \\
& \\
& \text { International } \\
& \text { International } \\
& \text { Everest } \\
& \text { Bessel } \\
& \text { Clarke } 1880 \\
& \text { Everest } \\
& \hline \text { Clarke } 1866 \\
& \text { Bessel } \\
& \text { WGS } 84
\end{aligned}
$$

$$
\begin{aligned}
& -69.4 \\
& -251 \\
& -251 \\
& -251 \\
& 573.604 \\
& \\
& -251 \\
& -112.145 \\
& -251 \\
& \\
& -251 \\
& -251 \\
& \\
& -251 \\
& \\
& -251 \\
& -251 \\
& 860.655 \\
& 739.845 \\
& -112.145 \\
& 860.655 \\
& \\
& -69.4 \\
& 739.845 \\
& 0.0
\end{aligned}
$$

uopu
ploads uozn＇OS

$$
\begin{aligned}
& \text { z!now ‘UD!!OMDH PIO } \\
& \text { opouo puo סyfoly }
\end{aligned}
$$ $\overline{0}$

\vdots
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$\stackrel{\sim}{\sim}$
N～～～～～～
ふN戸゙ ल か 37.
ल熍 $\dot{寸}$ な゙チ

$$
\begin{aligned}
& \text { 46. Default Datum, } \begin{array}{l}
\text { WGS } 84 \\
\text { WG } 84
\end{array} \text { WGS } \begin{array}{l}
\text { WG } \\
\text { 47. WGS } 72^{3}
\end{array} \quad \text { WGS } 72
\end{aligned}
$$

$$
\begin{aligned}
& 0.0 \\
& 0.00031211
\end{aligned}
$$

INDEX TO PREFEF

I^{\prime} PREFERRED GRIDS, DATUMS, AND EILIPSOIDS SPEC

UNION OF SOVIET SOCIALIST REPUBLICS

BELLǺjhAUSEN SEA

AN:ARCTICA

DATUMS

(Dabums Limis and Keying Numbers are Shumal m: Blue.)

SOUTH AII.ANTIC OCEAN

WEDDCi.I SEA
SOUTH AIIANTIC OCEAN

> THE GRIDS, DATUMS, AND EILIPSOIDS SHOWN IN THIS INDEX ARE FOR USE IN THE PRODUCTION OF NEW AND REVISED TOPOGRAPHIC MAPS, JOIN OPERATION GRAPHICS, AND CERTAIN LARGE SCALE COASTAL NAUTICAL CHARTS. BECAUSE OF CONTINUING CHANGES TO GRIDS, DATUMS, AND EILIPSOIDS, USERS OF THIS INDEX SHOULD CONSULT THE DMAHTC, ATIN: DD/PPO. WASHINGTON, D.C. $20315-0030$ FOR VERIFICATION.
idmaname Ohsv 1925
lospor
1.. In In stann
! 11/ 111
i:mbiluesta 1974
Amsialan Geudent:
Liendeta: Datumi 1949

APfINDIX B comains the 100.000 Meter Squace Identicatonns used in the Biltary Gint: Roterenneng System. Since the identitications are based on ellipsoids ard then limits. thanges in the identifications will be necessary as the elltysords are changen

GRIOS -Unlass otherwise indicated, the apptoved grid fo. new map production is the Uniestsat Transverse Mercator Grid.

Th: aporoved Preferied Grids are represented in black Pitliculars tor each of the gords sliown on this index. i.e. gitid color. gud origin, grid referencing indentifications. etc are conia ned elsewhere in this manual.

Tire Unijersal Polar Sterengraphic Grid is used tor mapping north of $84^{\circ} \mathrm{N}$. and south ol $80^{\prime} \mathrm{S}$.

ZHOWN IN THIS INDEX ARE FOR -VISED TOPOGRAPHIC MAPS, JOINT IRGE SCALE COASTAL NAUTICAL ANGES TO GRILS, DATUMS, AND LO CONSULT THE DMAHTC, ATTN: FOR VERIFICATION.
 \therefore : in entusjods and then linuls.
\therefore :in'sedd= तार chanyed

[^10]

$A N 1 A \because C l i C A$

ELLIPSOIDS

Prepaced by tile:
 W:shmgian, DC

[^0]: Table 2. Molodenskiy Transformation Constants to Convert from Local Datum to WGS 72 - continued.

[^1]: Clarke 1880 Ellipsoid for Palestine, $a=6,378,300.79$ and $1 / f=293.466307656$
 2 Add $1,000,000.00 \mathrm{~m}$ to coordinate when corrdinate becomes negative.
 Table 6. Specifications for secondary grids.

[^2]:

[^3]: Table 7. Table of the 1927 State Plane Grids used ir, the United States

[^4]: PROJECTION: Lambert Conical Orthomorphic ELIIPSOID: Clarke 1880
 UNIT: Meter
 ORIGIN: $36^{\circ} \mathrm{N}$., $2^{\circ} 42^{\prime} \mathrm{E}$.
 FALSE COORDINATES OF ORIGIN: 500,000 meters E.; 300,000 meters N.
 SCALE FACTOR: . 999625544
 INCIDENCE OF GRID LETTERS: No letters used
 GRID TABLES: Tables des Constantes Numériques des Systèmes de Projections Lambert
 GRID "COLOR": Blue
 REFERENCING FOR 1,000-METER GRID (8-digit nume rical reference):
 Principal digits: (3); $100,000,10,000,1,000$
 REFERENCING FOR $10,000-$ METER GRID (6 -digit numerical reference):
 Principal digits: (2); 100,000, 10,000
 REFERENCING FOR 100,000-METER GRID (4-digit numerical reference):
 Principal digits: $\quad 2$; $100,000,10,000$

[^5]: PROJECTION: Lambert Conical Orthomorphic EILIPSOID: Clarke 1880
 UNIT: Meter
 ORIGIN: $33^{\circ} 18^{\prime} \mathrm{N}$., $5^{\circ} 24^{\prime} \mathrm{W}$.
 FALSE COORDINATES OF ORIGIN: 500,000 meters E., 300,000 meters N. (west of the false origin add $1,000,000$ meters to the easting)
 SCALE FACTOR: .999625769
 INCIDENCE OF GRID LETTERS: No Letters used.
 GRID TABLES: Tables des Constantes Numériques des Systèmes de Projections Lambert GRID "COLOR': Red (red-brown)
 REFERENCING FOR $1,000-M E T E R$ GRID ; 8 -digit numerical reference):
 Principal digits: (3); 100,000, 10,000, 1,000
 REFERENCING FOR 10,000 -METER GRID (6 -digit numerical reference):
 Principal digits: (2); 100,000, 10,000
 REFERENCING FOR 100,000-METER GRID (4-digit numerical reference):
 Principal digits: $\quad(2) ; 100,000,10,000$

[^6]: MAGNETIC DECLIMATION FOR 1985 IS
 $11 / 2$ (30 MLS)
 WESTERLY OVER THE ENTIRE AREA

[^7]: USE TWS BOX FOR GIVNG REFERFMES ON TH: UVIGRSAL TRANSVEFSK MEREATOI GRK

 LSE THIS BU \times FOR GUNING REFERENEES UN THE NAOAGASCAR GF:

[^8]: Figure 40. Ireatment for the Multiple Major Grids on a Mine Warfare, Harbor, Approach, and Coastal Charts at 1:75,000 scale and Larger

[^9]:

[^10]: . A. i's'tuiarals lat eath of the grids - Pumentig ratientifatoms, etc. are

