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HUMAN LEARNING OF SCHEMAS FROM EXPLANATIONS

IN PRACTICAL ELECTRONICS

David E. Kieras

Abstract

Training materials in practical electronics appear to follow a building blocks approach in
which common simple circuits are presented and then combined into more complex circuits. Each
circuit is presented in the form of a circuit diagram and an explanation of how the circuit works in
terms of a causal chain of events. Such materials suggest that learning electronics consists of
learning schemas for the building block circuits; complex circuits can then be understood as
combinations of these simpler schematic circuits. The process of learning appears to be based on
extracting schemas from the explanations. This report presents human experimental results based
on earlier artificial intelligence work in this project. Engineering students learned building block
circuits and then learned complex circuits; the time required to understand the explanations and
answer questions about the circuit behavior were compared to an Al system that learned from
explanations and a model of question-answering. Generally, learning the schematic building block
circuits facilitated performance, and the Al system and question-answering model could predict the
amount of facilitation. However, the benefit of learning circuit schemas under these conditions
was surprisingly mild.

Introduction

Explanations and Schemas in Electronics

Practical electronics textbooks, such as those used for training in the Navy (e.g., Van
Valkenburgh, Nooger, & Neville, Inc., 1955), seem to be organized in terms of what can be called
a building blocks approach. These textbooks present a series of circuit types, each of which
performs a specific function, and which are then combined into more complex circuits. Each
circuit is introduced with a diagram and explanatory text; the text typically explains how the circuit
performs the stated function. Often the explanation takes the form of a causal chain of events that
starts from some perturbation to the circuit, such as a change in the input signal, and finishes at a
statement of the desired effect. Figure 1 gives an example of such a circuit and a fragment of the
explanatory text from The Radio Amateur's Handbook (1961).
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When the load connected across the output terminals
increases, the output voltage tends to decrease. Ths makes the
voltage on the control grid of the 6AU6 less positive, causing the
tube to draw less current through the 2-megohm plate resistor.
As a consequence the grid voltage on the 807 series regulator
becomes more positive and the voltage drop across the 807
decreases, compensating for the reduction in output voltage.

Figure 1. A sample circuit, a voltage regulator, and excerpt
from the explanatory text.

These building blocks constitute schemas - each is a basic, frequently appearing unit;
complex circuits can be analyzed into a hierarchy of these simpler circuits. The learner is supposed
to learn each circuit schema by understanding its explanation, and then is expected to apply this
new schema to understanding the subsequent more complex circuits. As an example of how more
complex circuits can be viewed in terms of circuit schemas, Figure 2 shows a complex circuit
parsed into schematic subcircuits. The behavior of this circuit as a whole can be understood by
combining the behaviors of each of the schematic subcircuits.

The process of learning from such materials seems to be naturally explained in terms of
how schemas are learned and applied, and how learning them can be done from explanations.
Thus, this domain is a natural place to apply the concepts of schemas and explanation-based
learning as they have appeared in psychology and in artificial intelligence.

The circuits studied in this work have been DC vacuum tube circuits, such as that shown in
Figure 1. These are a good choice because: (1) They are well documented - this is a thoroughly
mature technology with considerable instructional material having been written. (2) At this time
vacuum tubes are unfamiliar to even technically sophisticated college students, so prior knowledge
on the part of experimental subjects is less of a problem. (3) The DC circuits are very simple;
circuits involving alternating current and multiple-state devices such as capacitors and inductors are
much more complex (See Mayer, 1990).

Judging from these training materials, research on such materials has value both for
instruction and AL. The schematic building blocks approach must be instructionally important;
there must be a shared belief that this is a good way to convey technical content. If we could
understand how people learn from this approach, we could make better choices of the content and
sequence of building blocks. There is also a possibility of automated knowledge acquisition for
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building AI knowledge bases. That is, considerable technical knowledge is already in textbooks
which are complete enough for humans to learn technical domains from this material from explicit
instruction. It is possible that large knowledge bases for AI systems could be constructed by
developing mechanisms to read and understand such textbook knowledge.

4 R
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Figure 2. An analysis of a complex circuit in terms of
schematic building block circuits. The basic form of each circuit
schema is shown.

The goals of the project responsible for the work in this report were (1) to develop a simple
Al system that learns from diagrams and text, and (2) compare it to human learning performance.
The ultimate goal was to go on to explore the effects of the choice of content and sequence ,f
explanations, but as will become more clear below, experimentation in this domain is very difficult,
and some of the basic premises of this kind of learning can be called into question.

An AI System for Learning Schemas from Explanations

The Al system was developed by John Mayer as his dissertation (Mayer, 1990). Figure 3
shows the system organization and processing in Mayer's system. The AI system will not be
described in detail because it is very thoroughly documented in Mayer (1990). The system is a
combination of standard approaches to text comprehension, common sense reasoning, schema
instantiation and construction, and explanation-based generalization The Al system processes
explanations using schemas, and then forms a schema for the new circuit described in the
explanation.
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schemas. The final result is a set of propositions about the circuit structure. The text information
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consists of hand-translated propositions about events in the circuit, listed in the order of appearance
in the text. The simulator/prover component takes each text proposition and proves its truth in the
circuit structure using the simulation rules. The simulation rules are either first-principle rules in
the domain theory of basic electricity and electronics, or schema behavior rules from previously
learned schemas. The simulator/prover does a forward simulation of the state of the circuit until it
arrives at an event described by the circuit that matches the event described by the input text
proposition. Then it moves on to the next input proposition, and repeats the process. When it has
matched the last proposition in the text, the explanation has been completed. As shown in Figure
3, the simulator/prover may have had to infer other propositions to complete the proof, such as
proposition X, which intervenes between the text propositions B and C.

The explanation is then used in a generalization process to arrive at the new structure and
behavior rules. The schema instantiation rule is based on the portions of the circuit structure that
were referred to in the proof. The behavior rule is formed by including the presence of the new
schematic structure and the first event proposition (A) in the condition, and the assertion of all
other event propositions (shown as B, X, and C) in the action.

Special properties of schema processing. It is important to note that the input and
outputs of a schematic subcircuit are not distinguished, nor is the overall circuit strictly partitioned
into the subcircuits. The substructure of the schematic circuit is still visible, and the simulation rule
constructed for the schematic subcircuit contains all of the inferences made about the internal
behavior of the schematic subcircuit. Thus, although the schema provides a short cut to the
inferences about the circuit, reasoning from first principles can still go on, and behaviors internal to
the schema can play a role in the reasoning.

The process of constructing the structure rule has a further important property. One
function of an explanation in learning is to distinguish important features in the training instance
from irrelevant ones. Thus, the only components included in a schema instantiation rule are the
components that were referenced in the course of constructing the proof from the explanation.
This principle had some odd effects in Mayer's system. The system recognized a cathode-biased
amplifier as just the configuration consisting of R2 and TI in Figure 4. As it happened, the
original explanation of the cathode-biased amplifier schematic circuit did not involve the cathode
resistor, which thus was not considered to be a mandatory component of a cathode-biased
amplifier. In retrospect, this was probably not a good approach; a clearer picture of the nature of
these circuits seems to result from taking the entire presented circuit as the structure of each
schema. Mayer suggests that this approach would be justified by the fact that these circuits are
designed to be economical, so each component that appears in the graphic accompanying the text
must be necessary, regardless of whether the explanation contacts it or not.

Benefits of schema availability. Mayer's system learns each circuit schema in terms
of the already-acquired schemas. If relevant schemas have been previously learned, learning a new
circuit is faster because the event propositions in the text can be proved sooner. The schema
behavior rules will immediately add all of the schema inferences to the explanation, resulting in an
earlier match to the text proposition to be proven. Thus, instead of the system having to construct
the causal chain step-by-step using first-principle rules, the schemas will skip ahead to the end
results. Thus the proof can be arrived at more quickly, and the simulator/prover should do less
processing when applicable schemas have been previously learned.
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for the building block circuits of a triode amplifier, series controller, regulator tube circuit, and

cathode-biased amplifier. Then it processed explanations for a set of target circuits: a two-stage
amplifier, a basic voltage regulator, a stabilized voltage regulator, and an additional circuit, the

vacuum tube voltmeter circuit. Compared to learning the targets without the building blocks, the

processing effort on the target circuits should be less if the system has already learned the building

block schemas.

Mayer considered different measures of processing effort, some of which are relevant to AI

technology concerns, such as CPU time. Mayer found that in terms of CPU time, the pattern
matching required to instantiate schemas can overwhelm the savings from the faster processing of

explanations. In addition, since even if a schema behavior rule applies, the system still makes
first-principle inferences, and so can end up doing more overall processing when the schemas are
available, resulting in a longer run time than when they are absent. But Mayer also considered a

psychologically relevant metric, the number of cycles of forward simulation that had to be done
while processing the explanation. Under this metric, the AI system is very similar to a production-

rule cognitive model; each cycle of simulation consists of applying all of the simulation rules, both
first-principle and schema rules, to deduce one set of new inferences about the circuit state. In

most psychological production system models, it is assumed that the conditions of all the rules are

matched in parallel, and so having additional rules in the system does not slow processing down.
Thus the number of cycles performed by the AI system is a measure of processing effort which is

not sensitive to underlying details of the implementation, and resembles common cognitive

theoretical measures of processing time.
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Figure 5. The schema relationships between circuits studied by
Mayer and used in Experiment 1.

Figure 6 shows the number of cycles in the simulator/prover required to process the text
event propositions for each of the target circuits. The voltmeter circuit is a special case in Mayer's
system. The explanation of the voltmeter takes the form of two descriptions of a steady state,
rather than a description of how a change propagates through the circuit. Mayer's system therefore
verifies the text propositions using its rules for reasoning about voltage relationships (see Mayer,
1990) rather than verifying using the simulation rules. Thus Mayer's system always requires zero
cycles of simulation to process this circuit.

But for the other three target circuits, the number of cycles is less when the schemas are
available than when they are not. In addition, the system could learn a schema from the basic
regulator circuit and apply it to the subsequent stabilized regulator circuit. Thus, the AI system can
learn schemas from the explanations, and then can use these schemas to more quickly process
future explanations.
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Figure 6. The number of cycles of processing needed by the
simulator/prover to process each explanation.

Do Humans Use Schemas in Learning Electronics?

It helps the Al system to have schemas, at least measured in terms of a psychologically-
relevant measure of processing effort. The psychological question is whether it helps people to
have schemas. That is, can people understand the target circuits more easily if they have already
learned the schematic building blocks? If so, the analysis of learning from these materials in terms
of schematic building blocks would be verified, and the instructional value of the building blocks
approach would be confirmed.

This question is especially relevant to the psychological theory of schemas. There has
actually been very little evidence that schemas benefit acquisition processing, as shown by online
measures, although this has always been claimed as an important advantage of schema knowledge
(e.g., see Rumelhart, 1980; Rumelhart & Ortony, 1977). More generally, the basic claim that it is
easier to learn about things one already has knowledge of is difficult to demonstrate (see Johnson
& Kieras, 1983). But most of the empirical work demonstrating the use of schemas has been done
in the context of recall or recognition paradigms. For example, subjects are asked to classify
various stimuli, and then these classifications seem to be governed by schema or prototype
representations. Or, subjects tend to make errors in memory for stories that are based on the
assimilation of a story into a schema structure. But there are relatively few studies that actually
demonstrate a benefit during online processing. For example, two such studies on reading
comprehension time are Haberlandt, Berian, & Sandson (1980), and Graesser, Hoffman, and
Clark (1980). Also, Kieras (1982) reported some results that suggest that devices seemed to evoke
schemas immediately upon presentation, and subjects' descriptions of the presented device seemed
to be organized in terms of schema knowledge for devices of that class. But clearly more evidence
is needed that schematic knowledge has immediate processing time benefits.

Furthermore, it is not clear whether schematic knowledge can be effectively acquired and
used in the time spans characteristic of classroom training of technical content. That is, within a
single hour or a single day, which typically separates one lesson from the next, students are
expected to form a schema for a particular type of circuit, and then are expected to apply this new

- 4 I8



knowledge to the next, more complex, circuit that they study. However, one common notion
about schema knowledge is that it takes considerable exposure to develop a schema; this would
accord with the general definition of a schema as being a well-learned familiar pattern or
configuration of information. But the context of classroom study consists of brief, single, or few
exposures to a concept, followed by its immediate use in a new context. The explanation-based
learning work in artificial intelligence, and specifically Mayer's system, show that it is possible to
acquire and make use of schemas in this single-exposure manner. But the question remains about
whether this characterization is psychologically accurate. Two experiments will be described that
seek to demonstrate a schema availability effect corresponding to that obtained by Mayer for the Al
system.

Experiment 1

This first study was simply an attempt to determine whether providing building block
information to learners would enable them to understand target circuits more readily. The
experiment had three groups: the No Building Blocks group studied the target circuits without any
prior study of the building blocks; the Building Blocks group studied the building block circuits
before the targets; the Descriptions group studied the building block circuits and were given a
description with the target circuits about how the schemas should be instantiated ii, the target
circuits. The rationale for this third group was to ensure that these subjects not only know the
schemas, but would also know how to apply them to the target circuits. After studying each circuit
explar,tion, all subjects answered a set of multiple-choice questions about the circuit. The
expected results were that learning and answering questions about the target circuits should be
facilitated by having previously studied the building block circuits; the descriptions might produce
further facilitation, depending on whether the Building Blocks subjects recognized and applied the
schemas on their own.

Method

Materials and design. There were three groups. Each group studied the introductory
training material. The No Building Blocks group then went directly on to study the target circuits.
The Building Blocks and Descriptions groups studied the building block circuits and then went on
to the target circuits. There was a deliberate confound of schema availability with the amount of
practice (the number of circuits studied); this first study was simply to see if a schema availability
effect would appear.

The DC vacuum tube circuit materials were based on actual textbook content, but were
simplified in order to get a reasonable variety of circuits presented in a short amount of time. The
training materials first reviewed the basic concepts of voltage, current, resistance, and voltage
dividers, and then introduced the electronic components that were used in the circuits, such as
resistors, variable resistors, voltage regulator tubes, and triode vacuum tubes. The building block
and target circuits are shown in the Figure 7; the arrows connecting the circuits show how the
circuits are assumed to be related in terms of their schema composition.

Accompanying each circuit was a diagram which was always present during reading, and
two pieces of textual information. The first piece was an introduction that gave the name and the
basic function of the circuit, the schematizing description (if appropriate), and the static facts about
the circuit, such as voltage relationships which were constant. The second piece contained the
explanation of the behavior of the circuit: this was a series of sentences that started with a

9



perturbation to the circuit and continued through to the final behavior corresponding to the circuit
function. Examples are shown in Figure 8, which shows a typical introductory screen for a
building block circuit, and Figure 9, which shows an example building block explanation screen.
Figure 10 shows the introductory screen for a target circuit, and Figure 11 shows the explanation
screen for the same target circuit.

Regulator Tube Circuit
Two Stage Ampliier

Seies Tube ConitrollerVoter

Basic Triode Amnplifier Basc Voltage Regulator

Calhode Bias Amplifier Stabilized Voltage Regulator

Figure 7. Circuits used in Experiment 1, with schema
instantiation relationships. The building block circuits are on
the left: target circuits on the right.
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Regulator Tube Circuit

This Is the basic circuit for +
using a voltage regulator tube.
The output voltage. Voutput, Is
constant, no matter what happens
to the source voltage, Vsource, or
the amount of current drawn by
the load.

Tevoltage regulator tube _,wm
Ttub

Is the bottom resistance in a
voltage divider, ed to can
control the output voltse .I

Figure 8. A sample introduction screen for a building block
circuit.

Regulator Tube Circuit (continued)

if the load current increases, the
voltage across the tube (Voutput) +

will start to decrease, which V.
Immediately Increases the
resistance of the tube, bringing 47
Voutput back up. Likewise. If
Vsource goes up, the voltage across
the tube (Voutput) will also start to
increase However, the resistance In
the tube immediately decreases.
which brings down Voutput
Conversely, if Vsource drops, the LOAD
resistance In the tube goes up,
which brings up Voutput. Therefore,
In this circuit, Voutput Is the same
regardless of the fluctuation in
Vsource or the load current

Figure 9. A sample explanation screen for a building block
circuit.
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V,. R2 2

R1 T1

Stabilized Vacuum Tube Voltage Regulator Circuit

This circuit maintains a constant output
voltage, regardless of changes In either the
load current or the source voltage.

RI and Tr form a regulator tube circuit. R2 and
T I Is a cathode bias amplifier with Tr serving as
the cathode resistor. T2 Is a series controller tube.
The output of the regulator tube circuit Is used as
the cathode bias voltage of TI. The output of the
amplifier is the input for the series controller
circuit. The input of the amplifier Is the voltage
across the load, reduced bU the voltage divider R3.

Figure 10. An example target circuit introduction.
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V.." R2T

T2 V2

Stabilized Voltage Regulator Circuit (continued)

If more current begins to flow through the load, the output voltage
begins to decrease. This makes the voltage an the grid of TI more

negative relative to the cathode, causing less current to flow through
TI. The grid of T2 then becomes less negative, decreasing the
resistance of T2, and thus keeping the output voltage the same. If the
load draws loss current, the output voltage rises, and the opposite
effects occur. The variable resistor R3 Is used to set the circuit for
the desired output voltage bI changing the grid voltage of T2.

If the source voltage decreases, the output voltage and the voltage
on the grid of TI will start to decrease. However, the voltage on the
cathode of Ti Is kept constant by the voltage regulator tube Tr. Thus,
the grid of TI will become more negative relative to the cathode,
causing the grid of T2 to become less negative, and the output voltage
to remain constant.

Figure 11. A sample explanation for a target circuit.

Subjects. The subjects were engineering students without specific electronics
coursework, but with background in electricity concepts. They had taken at least one physics
course, and so were familiar with the basic concepts of voltage, current, resistance, electron flow
and so forth, but they had not taken any courses specifically on electronic circuits. It was very
difficult to selectively recruit such subjects; eventually eighteen in each of the three groups were
obtained. Subjects were randomly assigned to groups.

Equipment. The experiment was run on a Macintosh computer running SuperCard (a
HyperCard-like program) on a two-page display. The first nineteen of the subjects were run using
an ordinary Macintosh Plus computer, due to the small screen, the larger diagrams were on paper
and constantly available to the subjects. The remaining subjects were run with a Macintosh Ilx
with a two-page display, with the circuit diagrams constantly present on the screen.

Procedure. The materials were divided into a series of segments in which subjects would
study the material and then answer a set of quiz questions. They would go on to the next segment
if they got all questions correct, or go back to reread the segment if not. This was intended to
ensure that subjects understood the material before they went on. The initial material on basic
electricity and each component consisted of several segments, and each of the building block and
target circuits was a separate segment. The computer software recorded how long the subjects
studied the introductory screen and the explanation screen for each target circuit, and the latency
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and answer to each question. The circuits were presented in a fixed order of increasing
complexity, as shown in Table 1, which lists the training segments in the order presented. The
experiment took 1 - 2 hours to complete.

Table 1
Order of Presentation of materials in Experiment 1.

Basic electricity
" Electricity, Current, Voltage
" Ohm's Law
" Voltages are Relative, Voltage Law
" Representing Circuits with Diagrams

Components
" Resistors
" Variable Resistor
• Voltage Regulator Tube
• Vacuum Tube Triode
* Power Supplies and Loads

Voltage Divider
Building Blocks

• Regulator Tube Circuit
" Series Controller
" Triode Amplifier
• Cathode Bias Amplifier

Target Circuits
" Two-stage Amplifier
" Vacuum-Tube Voltmeter
" Basic Voltage Regulator
• Stabilized Voltage Regulator

Results

Only data from the target circuits will be presented, because this is where the predictions of
the Al system are relevant. Analysis of variance were computed for each measure. Due to the data
being very noisy, few effects were significant at conventional levels.

Figure 12 shows the time spent studying the explanation screen on the first exposure, not
including any time spent rereading the material after answering questions. This is the data that
should be most related to the amount of processing done by the Al system. There appears to be a
general decreasing trend with increasing schema availability, but the effect is statistically weak.
The main effect of group in nonsignificant (p > .3), but is rather marginally significant if only the
No Building Block and Description groups are compared (F (1, 34) = 2.13, p =. 15). Generally,
study of the building blocks resulted in faster reading, and the presence of the schematizing
descriptions helped further. As confirmed by an individual t -test, the stabilized regulator is clearly
much faster than the basic regulator, suggesting that there is transfer between these two circuits.
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180" -0- Basic Rag

?160- -U- Stab. Reg.
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-80
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No Building Blocks Building Blocks Descriptions
Group

Figure 12. Mean time spent reading the explanation screen on
first appearance for each circuit and each group.

Figure 13 shows the mean number of tries that subjects took to answer a question
successfully, where one try means that the subject got the question right the first time, while four
tries means that the subject is obviously guessing because these questions had four alternative
answers. The fairly large number of tries shows that subjects were making many guesses. The
main effect of group was significant (F 2, 51) = 334, p = .04); increasing schema availability
resulted in fewer guesses. Also, the interaction of group and circuit was significant (F (6, 153) =
2.07, p = .02). The questions for the two-stage amplifier are much easier than the others, and
show no effect of schema availability. A closer examination showed that these questions can be
answered directly from the explanation without any reasoning about the circuit behavior. There is
also no effect for the basic regulator. This circuit had only three questions, one of which was the

-* Two Stage Amp.

3- ' Voltmeter
-0- Basic Reg.0 2' e- 1111- Stab. Reg.u

0

IWon

E

2-

z

No Building Blocks Building Blocks Descriptions
Group

Figure 13. Mean number of attempts to answer questions for

each circuit and group.
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only reference to the variable resistor component that could easily have been forgotten from the
initial training, and another question did not involve knowledge of the schemas. However, there
are clearly strong effects for the voltmeter and stabilized regulator circuits for which the questions
appeared to rely more heavily on schema knowledge.

The total reading time, shown in Figure 14, is the total time that subjects spent looking at
the explanation screen, both the first time they read it and when rereading it after missing
questions. This measure reflects both explanation difficulty and question difficulty. The main
effect was marginal in the analysis of all three groups (F (351) = 2.26, p = .11). Forjust the No
Building Blocks and Description groups, the main effect just missed conventional significance (F
(1, 34) = 4.04, p = .052). Total time tends to decrease with increasing schema availability;
subjects that had the building block knowledge tended to spend less total time reading the
explanation than subjects without the building blocks, and subjects given the schematizing
descriptions were even faster. The stabilized regulator is studied for much less time than the basic
regulator which was previously learned. The effect of schema availability is quite small for the
two-stage amplifier.

--- Two Stage Amp

300" Votmeter

- 4- Basic Reg.

- Stab. Reg.
- - Mlean

E 200-

C
V

I,-

No Building Blocks Building Blocks Descriptions
Group

Figure 14. Mean time spent reading explanations, totaled over
all rereadings, for each group and each circuit.

Comparison to the AI System

The number of simulation cycles performed by the Al system represents how much
processing is performed, and so should be positively related to processing time for subjects (cf.
Kieras,1984; Thibadeau, Just, and Carpenter, 1982). The number of simulation cycles was used
as a predictor variable in a regression analysis with the total reading time as the predicted variable.
Only the data for the No Building Blocks group and the Descriptions group (building blocks with
schematizing descriptions) were used. This subset of the data corresponds most closely to the
comparison in Figure 6.

Figure 15 presents the results of the regression analysis in a scatter plot showing reading
time as a function of the number of system cycles. For clarity, the data points corresponding to the
same circuit under the two different conditions are connected by arrows, with the tail of the arrovw
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at the No Building Blocks condition and the the head at the Description condition. The line shown

is for the regression equation :

Reading Time (sec) = 59.5 + 8.7 *Cycles.

While there are only eight data points, 79% of the variance is accounted for, which is significant
(p < .05.). The human total reading time and the Al system cycles depend on the amount of
material processed in each explanation; typically simpler circuits take less processing than the more
complex circuits, but the amount of processing also depends on the savings due to schemas from
previous learning. The Description (at arrow heads) condition is normally faster than the No
Building Block condition on the same circuit. Thus the Al system and human readers are clearly
related in terms of the amount of processing they do on individual explanations, and in terms of the
savings resulting from previous learning of schematic subcircuits.

175

1 50 Two Stage Amp.

125

m o Twab Reg.~m

S25.
0

0 2 4 6 8 10 12

Number of System Cycles

Figure 15. Scatter plot showing relation between Al system
cycles and observed reading times. The arrows connect points
for a circuit in the No Building Blocks condition (at tail of
arrow) with the same circuit in the Descriptions condition (at
head of arrow).

Discussion

Problems with the experiment. The results of the experiment were problematic due
to some problems in the materials and paradigm. The materials turned out to be fairly difficult for
the subjects, even though they were relatively highly selected undergraduates in technical fields.
The paradigm apparently allowed subjects to adopt a strategy of muddling through the experiment
simply by attempting to answer the questions and if they got it wrong, going back and either
rereading or just guessing again.

The experiment was designed under the assumption that the important data would be the
time spent reading the explanatory material, and so the purpose of the questions was simply to
encourage the subjects to read carefully. However, the subjects made many errors on the questions
and so did considerable rereading of the explanations. Thus the reading times on the explanations
are not very clean measurements of how difficult it was to understand the explanations. The
questions were not very uniform in content or difficulty. Some of the questions could be answered
simply by direct matches to the explanation text; that is, the subject could sometimes find a similar
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set of statements in the explanation, and answer the questions without making any deeper analysis
of what was happening in the circuit. Other questions could be answered simply by reversing the
statements made in the explanation, for example, by having a voltage increase rather than decrease.
But a more subtle and interesting problem, discussed more below, is that the questions sometimes
required reasoning which was not based on the circuit schemas overall behavior of a circuit
schema, but rather required reasoning inside the schematic subcircuits.

Finally, some of the questions required the subject to remember some aspect of a
component that had been presented early in the experiment and not mentioned subsequently. For
example, the variable resistor was mentioned late in the questions, but was presented very early in
the training. Since the experiment had a built-in confounding between whether the building blocks
were present and how many circuits the subjects studied, this could have differentially affected the
two groups. Many of the questions queried several intermediate states in the circuit, so that
subjects had to verify the accuracy of a whole chain of events. These were very confusing,
appearing to be a "word salad."

Summary of the results. The expected results were that the performance on the target
circuits should be facilitated by increasing the schema availability; this result did appear, but the
data is fairly noisy; they were both time and accuracy effects, and the effects were not uniform
across circuits. There should be facilitation on the second regulator circuit due to schema transfer
from the first regulator circuit, this appeared quite clearly. The amount of facilitation should have
some correspondence to the Al system processing effort, this correspondence does seem to be
present.

This first study shows strong suggestions of the expected effects, but clearly much cleaner
data is needed for a definitive answer to the basic question of whether studying the schematic
subcircuits improves the understanding of later more complex circuits. The materials and training
used in this experiment were reasonable, though surprisingly difficult, but there were definite
problems with the paradigm and the questions.

How applicable are schemas to the materials? A detailed examination of the
materials and questions from the point of view of the Al system reveals a new issue, that of
schema applicability. The questions and the explanations vary in the extent to which knowledge of
the subcircuit schemas suffices to process the explanation or to answer the questions. At the level
of the circuit itself, some of the target circuits parse cleanly into schematic subcircuit schemas while
others do not. For example, as shown in the upper panel of Figure 16, the basic regulator can be
parsed into discrete subcircuit schemas, and the entire circuit can then be simplified by replacing
each circuit with a "black box" for each subcircuit, as shown in the lower panel of the figure. The
cucgit behavior is then just the composition of the behavior of the black-box subcircuits. In
contrast, as shown in Figure 17, the stabilized voltage regulator cannot be parsed completely into
discrete subcircuit schemas; the triode TI does not correspond to a cathode-biased amplifier. Thus
there is a fundamental problem with the materials; in some of the circuits, the schemas are not fully
applicable. It would seem that the benefit of learning the schematic subcircuits would be greater if
the circuits could be understood in terms of the black-box behavior of the schematic subcircuits.

The explanations also did not fully make use of schema knowledge that subjects might
have. That is, the explanations often were in terms of events that would happen "inside" the
schemas, instead of treating the schemas as black boxes. For example, in the explanation for the
two-stage amplifier (see Figure 18), the line of reasoning is that if the input voltage increases, the
cathode-to-plate resistance of TI goes down, and the resistance of T2 goes up. But in the original
explanation of the amplifier schema circuit, the change of the cathode-to-plate resistance of the
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triode is a subsidiary event; the black box behavior of the amplifier is that if the input voltage
changes, the output voltage changes in the opposite direction and by a larger amount.

,, R1 T2

VSrce
v1- IPower

Power . . . .

... . Input se''' output

Cadiode -i asInput

Voltag'e.

Ip ut L)utput, O nder

Figure 16. An example of a circuit that can be fully parsed into
schema subcircuits.

19



4P

Power

R2. . . . . . . .

Input son"a Output
Contoler

TI.

Power Input

. .. . . . . . . .
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* Regulator Voltge
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Figure 17. A circuit that cannot be fully analyzed into
subcircuit schemas, assuming that schemas require complete
structure matches.

Thus, with the presented explanations, if subjects knew the subcircuit schemas, they
usually could not simply shortcut their analysis of the explanation, but instead would have to verify
each behavior of the circuit mentioned in the explanation, which included internal schema events.
For this reason, when Mayer's Al system instantiated a schema and triggered the behavior rule, it
simply added all of the internal propositions to the system's knowledge base, which could result in
immediate verification of schema-internal events contained in the explanation. But what would
happen if the explanations were simply in terms of the black box behavior of the schema circuit?
For example, in the same two stage amplifier circuit (Figure 18), a purely black-box schema line of
explanation would be that if the input voltage increases, the voltage on Ti's plate goes down, and
the voltage on T2's plate goes up. In this case, a reader with schema knowledge could simply
verify the main behaviors predicted by the schemas, whereas a person without the schema
knowledge would have to make the individual inferences required to go from the input voltage
change to the final output voltage change. Thus there should be a larger benefit of schema
knowledge, if the explanations could be understood directly in schema terms. In a similar way, the
questions used in the experiment often involved reference to events happening "inside" the
schemas. For example: if the input voltage goes up, what happens to T2's resistance? Again one
would predict a larger benefit of having schemas if the questions were posed strictly in terms of the
schematic behavior of the circuit. For example: if the input voltage goes up what happens to T2's
grid voltage?
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T1 Plate R1 •

. 7 Two Stage Amplifier

Figure 18. Reasoning based on an amplifier schema in the two-
stage amplifier would refer only to voltages on the plates and
grids of the triodes, not the cathode-to-plate resistance
changes.

Can a circuit be understood in terms of black-box schemas, or do the schemas have to be
unpacked into internal structure and behavior? The AI system does not black-box the schematic
subcircuits, but also suffers from not doing so. On the other hand, schemas would seem to be
most valuable if the schematic subcircuits can be treated as black boxes and reasoning done about a
larger circuit only in terms of the external input/output behavior of the subcircuits. Thus the value
of circuit schemas may depend on the extent to which the circuits, explanations, and questions
involve black-boxed schemas versus reasoning about events inside the schemas.

Experiment 2

The basic problem with the first study is that the presence of the building blocks was
confounded with the amount of practice (number of circuits studied) that subjects received. There
was also the problem with the experimental paradigm that allowed subjects to adopt a strategy of
guessing their way through the questions, and not enforcing a careful reading of the circuit
explanation on the first try. In addition, some of the circuits and questions may have been too
difficult for the subjects, further encouraging them to guess repeatedly. Also, as mentioned above,
the circuits, explanations, and questions may not have allowed subjects to take full advantage of
having schema knowledge, and so the benefit of studying the schema circuits may have been
weakened.

The second study was designed to produce a clean and definitive effect of the availability of
schemas. This was done by rewriting all of the materials used in Experiment I and adding new
circuits, so that as much as possible, the schema knowledge was fully applicable.
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Method

Design and materials. The experiment had two groups. The Irrelevant Building
Blocks group studied building block circuits that were irrelevant to the later target circuits; these
could not be instantiated as subcircuits in the target circuits. The Relevant Building Blocks group
studied the same schematic subcircuits as in the farst experiment, which were then instantiated in
the target circuits. The target circuits were changed so that they could all be rewritten in the form
of a black box parse with the build-ig block circuits. However, there is much less variety in the
circuits than in Experiment 1. Figure 19 shows the relevant building blocks and targets, with the
arrows connecting the building blocks to their instantiation in the target circuits. Figure 20 shows
the irrelevant building blocks and targets.

Regulator Tube Circuit

Two Stage Amplifier

" Volmeter
Series Tube Controller

/A

Basic Triode Amplifier Adjustable Voltage Regulator

8Biable Circuit

Cathode Bias Amplifier

Figure 19. Relevant group materials used in Experiment 2, with
schema relations shown.
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Two Stage Amplifier

Neon Indicator CVuie

Relay Driver Adjustable Voltage Regulator

AA ' 4

Cathode-Folower Ampfier Bistable Circuft

Figure 20. Irrelevant group materials; note the absence of any
schema instantiations of the building blocks (left side) with the
target circuits, which are the same as in the Relevant group
(see Figure 19).

In addition, both groups received a description in the introductory screen, similar in format
to the schematizing description in Experiment 1, thus controlling for the presence of prominent
additional information. Figure 21 shows the introduction and diagram for the two stage amplifier
target circuit. Figure 22 shows the two types of descriptions used. The Relevant Building Blocks
group received a schematizing description as in the first study, in which the circuit is described in
terms of the subcircuit schemas. The Irrelevant Building Blocks group got an irrelevant
description, containing a statement of a correct technical fact or aspect of the circuit, but which had
no bearing on the explanation.
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The two-stage amplifier is used to get a greater amplification effect
than is possible for a single triode amplifier. The values of the resistances
are chosen so that the grids of both tubes are always negative with respect
to their cathodes.

Figure 21. A sample target circuit introduction from
Experiment 2.

Schematizing Description

There are two cathode bias
amplifier circuits: T1, R1, R3, and
T2, R2, R4. They are connected so
that the output of the first is the
input of the second.

Irrelevant Description

This circuit is actually used very rarely,
because it is difficult to arrange so that
the grids are always negative with respect
to the cathodes. But the corresponding
circuit works very well with transistors,
due to their different electrical properties.

Figure 22. Example of the description boxes used in
introductions in Experiment 2.

Figure 23 shows an example explanation that illustrates how the chain of events always
referred to the input/output behavior of the circuit schemas. Likewise, the example question for the
same circuit shown in Figure 24 illustrates the homogeneous form of the questions used in this
experiment. The question presents a perturbing event, and the answers are a choice of a voltage
that either increases, decreases, or stays the same.

24



4R

If the input signal, Vinput, increases, the voltage on the plate of Ti
and the grid of T2 goes down, causing the output voltage, Voutput, to
increase. The changes in plate voltage of Ti are much greater than the
changes in Vinput, and the changes in plate voltage of T2 are even
greater. Thus, the total amplification effect is much greater than for a
single triode.

Figure 23. A sample explanation from Experiment 2.
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R34
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* Decreases
s Stays the same

Figure 24. Example target circuit question used in Experiment 2.

25



Procedure and apparatus. The overall paradigm was very similar to that in Experiment
1. During the training portion of the experiment, subjects were required to repeat the material and
questions on basic electricity, components, and the building blocks, until they answered all
questions correctly. But during testing on the target circuits the subjects were allowed only one try
on each question. The subjects were warned very explicitly that they would be allowed to read the
target circuit explanations only once, and would not get a chance to answer a question again if they
got it incorrect. The basic measures were the time to study the target circuit introduction and
explanation, and the latency and answer for each question. As in Experiment 1, a Macintosh Ix
with two-page display was used. The experiment required 1 -2 hours to complete.

Subjects. As in Experiment 1, the subjects were engineering undergraduate students who
had studied electrical concepts in physics courses, but who had not taken any specific coursework
in electronics. Again recruiting subjects was very difficult, but fifteen were obtained in each
group.

Results

Like Experiment 1, the data were very noisy, and performance was poor; 40% of the
subjects got two thirds or more of the questions incorrect on the target circuits. In some of the
statistical analyses to be reported, either data from these poor subjects, or times for questions that
were answered incorrectly, were removed from the analysis.

Figure 25 shows the mean time spent on the introduction screen for the four different
circuits. Surprisingly, more time was spent on the introduction screen if the subjects had studied
the relevant building blocks. The main effect was nonsignificant (p >. 13), but the interaction of
circuit with condition was significant (F (3, 84) = 7.32, p = .002). The effect is present on most
of the circuits. Removing poor subjects from the analysis produces a significant main effect (F (1,
16) = 5.05 p = .037) and interaction (F (3.48) = 5.04, p = .004), with an overall mean of 65 sec
on the irrelevant building blocks, and 86 sec on the relevant building blocks. This effect is
reminiscent of the disadvantage of schemas in Mayer's system being the extra computation time
required to instantiate them.

120 --- Irrelevant Building Blocks
2--- Relevant Building Blocks

. 100

.o 80

40

Ca0 20

E 20

Two Stage Amp. Voltmeter Adj. Reg. Bistable
Target Circuit

Figure 25. Mean time spent reading the introduction screen for
each circuit and each group.
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Figure 26 shows the mean time spent on the explanation for each circuit. There is an
overall trend in the desired direction, in that the mean time for subjects who studied the relevant
building blocks is less than those who studied the irrelevant ones. However both the main effect
and interaction are nonsignificant (p > .2) and removing poor subjects does not improve the
statistical situation. Comparing this figure with the reading time figures from the first experiment
(Figure 12 and Figure 14) shows that the overall time spent on reading the explanations is
substantially less than the times spent on the explanations in the first experiment. Perhaps again,
subjects were not reading carefully, or perhaps these explanations are much simpler than those in
the first experiment, resulting in a ceiling effect.

- --- Irrelevant Building Blocks

140 * Relevant Building Blocks

120-

C 100 .4
0

80

N 60

C 40
0

o0E
F, 0 ,,,

Two Stage Amp. Voltmeter Adj. Reg. Bistable
Target Circuit

Figure 26. Mean time spent reading the explanation in each
group.

Figure 27 shows the mean proportion of questions answered correctly for each circuit for
the two groups. Clearly there is no effect of schema availability. Notice also that the level of
accuracy is fairly low; the questions had three alternatives, so the chance level of performance
would be 0.33, but one of the alternatives would often be easy to eliminate (i.e., the choice stays
the same). Thus while the average level of accuracy is greater than chance, it is not impressively
so.

Figure 28 shows the latency of choosing the question answers, averaged over both correct
and incorrect answers. The main effect is nonsignificant (p >. 1), but the interaction is significant
(F (3, 84) = 3.68, p = .016); the effect appears for all but the bistable circuit. Removing poor
subjects does not change the situation statistically, and the same overall pattern appears if incorrect
question times are removed from the analysis as well. If the bistable circuit is not included, then
the main effect is significant (F (1, 28) = 4.84, p =.036). The question of why the bistable circuit
is different is interesting - perhaps the greater graphic complexity kept subjects from seeing it in
terms of schemas, regardless of the schematizing description.
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Figure 27. Mean proportion of correctly answered questions in
each group.
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Figure 28. Mean time required to answer questions averaged
over both correct and incorrect answers.

Discussion

It is clear that the methodological problems of experimentation in this domain are still
unsolved. Apparently the subjects can not be depended upon to read the explanations carefully
enough, or to perform well in answering the questions. Rather than an effect on the time spent
processing the explanation, there is an effect on the time spent answering the questions, and this
effect depends strongly on the circuit involved. Since the major effect of schema availability in this
experiment is on question answering times, the issue is now whether this effect can be explained
by mechanisms for using schemas during answering the questions. The next section presents a
simulation model for schema use in answering questions.
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A Model for a Schema-based Question-Answering

About Circuit Behavior

Overview of the Model

The model is an ACT-class model, consisting of declarative knowledge represented with
propositions, and procedural knowledge represented with production rules (see Anderson, 1983),
and is similar to the simulation of a mental model for a simple device described in Kieras (1988).
The circuit structure is represented with propositions assumed to be available constantly from the
diagram, while the state of the circuit is represented with propositions in working memory. For
convenience, shorthand notation is used for the propositions: no claim is being made of a specific
propositional representation notation.

The production rules in the model "run" the mental model, performing the inferences and
controlling the processing. The rules of most interest are those that represent the first principles in
the domain theory, and those that perform schema recognition and schema-based inferences. The
basic approach in the model is as follows: The question states a perturbation or change, such as to
the input of the circuit. The model propagates the change through the circuit, and waits for a
proposition that answers the question to appear in working memory. To simulate the Irrelevant
Building Blocks condition, the rules for instantiating and making use of the subcircuit schemas are
disabled; the Relevant Building Blocks condition is simulated by enabling the schema rules.

Before a comparison with the data was made, two models were developed that reflect two
different overall processing strategies. The stages of model processing in both models are: (1)
instantiate any schemas that might be present, (2) analyze the voltage relationships in the circuit,
(3) accept the input, (4) propagate the changes until the processing is completed, (5) determine the
answer. In the terminating model, flowcharted in Figure 29, the process of propagating the
changes is terminated as soon as a proposition answering the question appears in working
memory. If no more changes can be propagated, the question is answered using whatever
propositions are available. This is the typical case if the correct answer to the question is that a
voltage stays the same. The predictor of the time to answer the question is the number of
production-system cycles that elapses between when the input is accepted and when the answer is
determined (shown in Figure 29). According to the terminating model, there should be a large
benefit of having schema knowledge, because the changes will propagate more rapidly and the
answer will be computed faster than if schemas are not available.

The exhaustive model, flowcharted in Figure 30, continues the propagation of the input
change until quiescence (no more changes propagated), whereupon the question is answered using
the available propositions about the circuit state in working memory. The predictor for the time to
answer the question is again the time between when the input is accepted and when the answer is
determined (shown in Figure 30). This model predicts a mild effect of schemas, because the
model may well spend many cycles propagating irrelevant changes long after the answer to the
question has been determined.
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to describe basic voltage and resistance properties of the circuit or its components. The
connections between the components are described by a series of CONNECTION propositions; note
that each connection is one-way, so connection propositions in both directions are necessary.

Table 2
Sample circuit description.

;*CATHODE-BIAS-AMPLIFIER-STRUCTURE

(ISA VS POWER-SUPPLY)

(ISA HOT-PORT VOLTAGE-SOURCE)

(HAS VS HOT-PORT)

(HAS VS COLD-PORT)

(VOLTAGE AT HOT-PORT IS POSITIVE FIXED HIGH)

(ISA R1 RESISTOR)

(HAS R1 RI-PORTI)

(HAS R1 RI-PORT2)

(HAS R1 RESISTANCE)

(RESISTANCE BETWEEN RI-PORTI RI-PORT2 IS RIR)

(ISA R2 RESISTOR)

(HAS R2 R2-PORTI)

(HAS R2 R2-PORT2)

(HAS R2 RESISTANCE)

(RESISTANCE BETWEEN R2-PORTI R2-PORT2 IS R2R)

(ISA T TRIODE)

(HAS T T-PLATE)

(HAS T T-CATHODE)

(HAS T T-GRID)

(ISA T-PLATE ANODE)

(ISA T-PLATE PLATE)

(ISA T-CATHODE CATHODE)

(ISA T-GRID GRID)

(HAS T RESISTANCE)

(RESISTANCE BETWEEN T-PLATE T-CATHODE IS TR)

(ISA INP TERMINAL)

(LABEL INP INPUT)

(:SA OUT TERMINAL)

(LABEL OUT OUTPUT)

(CONNECTION HOT-PORT RI-PORT1) (CONNECT:CN RI-PORTI HCT-PORT)

(CONNECTION Rl-PORT2 T-PLATE) (CONNECTION T-PLATE Rl-PORT2)
(CONNECTION T-PLATE OUT) (CONNECTION OUT T-PLATE)

(CONNECTION INP T-GRID) (CONNECTION T-GRID iNP)

(CONNECTION COLD-PORT GND) (CONNECTION GND COLD-PORT)

(CONNECTION T-CATHODE R2-PORT!) (CONNECTION R2-PORTI T-CATHODE)

(CONNECTION R2-PORT2 GND) (CONNECTION GND R2-PORT2)
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Examples of each type of production rule will be given. Table 3 shows the production rule
used to recognize the presence of a cathode-biased amplifier in a circuit. The production system
used is the PPS system (see Covrigaru and Kieras 1987). In this notation, the clauses following
the IF must all be present in the production system data base in order for the rule to fire,
whereupon the actions listed after the THEN are taken. PPS has no built-in conflict resolution or
refractoriness mechanism; each rule must contain condition clauses to ensure that it fires only at the
right times. The condition of this sample rule is fairly elaborate; it consists mainly of a description
of the components and their connection pattern that make up the structure of a cathode-biased
amplifier. This can be seen by comparing the contents of the rule condition with Table 2. In the
PPS notation, an item preceded by a question mark in a clause, as in (ISA ?T TRIODE),
represents a variable that is assigned a value when the condition is matched. If this rule finds
matches in a target circuit a particular triode and two resistors which are connected as required,
then it adds to working memory a proposition (in shorthand) that there is a cathode-biased

Table 3
Sample schema instantiation rule.

(RecognizeCathodeBiasAmplifier

IF (

(GOAL PREPROCESS CIRCUIT)

(STRATEGY RECOGNIZE SCHEMAS)

(:SA ?T TRIODE)

(HAS ?T .T-PLATE)
(:SA ?T-PLATE PLATE)

(ISA ?T-CATHODE CATHODE)

(HAS ?T ?T-CATHODE)

(ISA ?T-GRID GRID)

(HAS ?T ?T-GR:D)

(CONNECT:ON ?RI-PORT2 ?T-PLATE)

(HAS ?R! ?RI-PCRT)

(ISA ?Ri RES:STOR)

(CONNECT:ON ?T-CATHOCE ?R2-PORT1)

(HAS ?R2 ?R2-PORTI)

(:SA ?R2 RES:STOR)

(HAS ?R ?RI-PORT2)

(HAS ?R2 ?R2-PCRT2)

(CONNECTION .R2-POR-2 GND)

(CONNECTHIN ?HCT-PORT ?R'-PCRTI)

(ISA O"A-PTC- VOLTAO-E-OCRCC

(NCT (SCH.A CATHODE-S -AYP'::t:ER 7T UT-CE:: - LATE)

THEN

(A='UU3 (NOTE CCUT FP ........

(ADDU7H (2UMMEN- AT
(A S (CHEMA CATCE-: .A,-AM ' ..- .-7 'T 2- T-. . :. "T-P: A:

;UT sed as label ,r sce- S
, 3 _-n

(AUDSB (SCHEMA PORT 7T 1T-S*'D) n

(AL-DDB (SCHEMA PCR ?T -- PAT-)) 'Jut(P

(ADDD (SCHEMA PORT ?T ) ;cower

(AUCUS (SCHEMA PART TR -'R2

A-.'C (S H7YA PART 7 A E)

A SU C (CHE.YA PA " T -
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amplifier based on the triode, and assigns the grid and plate of the triode as the input and output
ports of the schematic subcircuit. It also describes various parts of the schematic subcircuit as
being parts of the schema instantiation. Thus, if given the two-stage amplifier circuit shown in
Figure 18, the rule will fire and deposit in working memory propositions showing the presence of
a cathode-biased amplifier schema based on T1, and another based on T2. The negated clauses
(using NOT) in the condition prevent the rule from firing more than once for each instantiation.

Table 4 is an example of the rules for doing voltage analysis. In these circuits, a very
simple electrical theory suffices; the model does not need to do a full qualitative simulation of
circuit behavior, it is only necessary to determine the polarities and relative magnitudes of voltages
relative to the common ground. Since these circuits all have single voltage sources, all resistances
appear in a chain between the voltage source and the common ground. Thus, this rule simply
notices that if there is a resistor connected to a point at which there is a voltage, then the voltage at
the other side of the resistor is of the same polarity, but of lesser magnitude than that at the first
side.

Table 4

Sample voltage analysis rule.

(PropagateVoltageResistance

(GOAL PROPAGATE VOLTAGE)

(VCLTAGE AT ?P1 IS ?POLAR1TY ?RELAT:ON ?MAGN:TUDE)

(RESISTANCE BETWEEN ?P: ?P2 :S ?RV)

(DIFFERENT ?P! GND)

(DIFFERENT ?P2 GND)

(NOT (CONNECTION ?P'1 GND)

(NOT (CONNECTION ?P2 GNDo)

(NOT (VOLTAGE AT ?P2 IS ?POLARITY LESS-THAN ?PI))

THEN

(ADDOB (NOTE VOLTAGE PROPAGATED))

(ADDDB (VOLTAGE AT ?P2 :S ?POLARITY LESS-THAN ?P!))

Table 5 shows an example of the rules for propagating a change through a circuit. This
simple rule merely says that if the voltage at one point has changed, and that point is connected to
another point, then the voltage at that other point also changes, and in the same direction. Note that
if the points are marked as being part of a schema instantiation, then this rule can not apply. Thus.
unlike the Al system, in this model the first principle rules in the domain theory are not allowed to
reason about events inside instantiated schemas. Table 6 shows a propagation rule for an
individual component, the triode vacuum tube. The clauses in the condition of this rule recognize
the presence of a triode and the event in working memory that the voltage on the grid of the triode
has increased. The rule adds to working memory the information that the resistance between the
plate and cathode of the triode has decreased.
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Table 5
Sample basic change propagation rule.

(PropagateVoltageChangeConnection

IF (

(GOAL PROPAGATE CHANGE INFER)

(WM CHANGE ?DIRECTION VOLTAGE ?Pl)
(CONNECTION ?Pl ?P2)

(DIFFERENT ?PI GND)

(DIFFERENT ?P2 GND)

(NOT (CONNECTION ?PI GND))

(NOT (CONNECTION ?P2 GND))

(NOT (WM CHANGE ??? VOLTAGE ?P2))

(NOT (VOLTAGE AT ?P2 IS ??? FIXED ???))
(NOT (WM CHANGE HELD-CONSTANT VOLTAGE ?P2))

(NOT (SCHEMA PART ??? ?Pl)) ;hands off internal schema parts
(NOT (SCHEMA PART ??? ?P2))

THEN
(ADDDB (NOTE CHANGE PROPAGATED))

(ADDDB (WM CHANGE ?DIRECTION VOLTAGE ?P2))

Table 6
Sample change propagation rule for a component

(TriodeGridVoltageChangeIncrease

IF (
(GOAL PROPAGATE CHANGE INFER)

(ISA ?T TRIODE)
(HAS ?T ?T-PLATE)

(HAS ?T ?T-CATHODE)

(HAS ?T ?T-GRID)

(ISA ?T-PLATE PLATE)
(ISA ?T-CATHODE CATHODE)

(ISA ?T-GRID GRID)
(WM CHANGE INCREASE VOLTAGE ?T-GRID)

(NOT (WM CHANGE DECREASE RESISTANCE BETWEEN ?T-PLATE ?T-CATHCDE))
(NOT (SCHEMA PORT ??? ?T-GRID)) ;apply only if ?T not schematized

THEN

(ADDOB (NOTE CHANGE PROPAGATED))
(ADDDB (WM CHANGE DECREASE RESISTANCE BETWEEN ?T-PLATE ?T-CATHODE))

Table 7 shows the schema behavior rule for a cathode-biased amplifier, which would have
been earlier recognized by the rule shown in Table 3. This rule is remarkably simple; if the
cathode-biased amplifier has been instantiated with designated input and output ports, and the
voltage at the input port has increased, then this rule simply adds to working memory the
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proposition that the voltage at the output port has decreased. The inference that this change is
larger than the input change is not relevant in these materials, and so is not included.

Table 7
Sample behavior rule for a schema.

(CathodeBiasAmplifierlnpIncrease

IF (
(GOAL PROPAGATE CHANGE INFER)

(SCHEMA CATHODE-BIAS-AMPLIFIER ?SCHEMA ?INP ?OUT)

(WM CHANGE INCREASE VOLTAGE ?INP)

(NOT (WM CHANGE DECREASE VOLTAGE ?OUT))

THEN

(ADDDB (NOTE CHANGE PROPAGATED))

(ADDDB (WM CHANGE DECREASE VOLTAGE ?OUT))
))

Finally, Table 8 provides an example from the terminating model of how the answer to the
question is determined. If the query stored in working memory is a query about how a quantity at
a particular point in the circuit has changed, and in working memory is a proposition that quantity
at that point in the circuit has changed in a certain direction, then this rule designates the
proposition as being the answer to the question.

Table 8
Sample answer generation rule.

(PropagateChanqeAnswerQueryIncreaseOrDecrease

IF (
(GOAL PROCESS INPUT)

(STEP PROPAGATE CHANGE ANSWER)

(STRATEGY FINAL ANSWER)

(WM QUERY CHANGE HOW ?QUANTITY ?P1)

(WM CHANGE ?DIRECTION ?QUANTITY ?P1)

(NOT (WM CHANGE HELD-CONSTANT ?QUANTITY ?P())

THEN I
(ADDDB (COMMENT ANSWER IS ?QUANTITY ?Pi ?DIEC::CN

Comparison of the Model with Question-Answering Time Data

The processing time predictions of exhaustive and terminating models were compared by
regression analysis to the mean times averaged over subjects taken to answer the individual
questions. The average times included only times from the correctly answered questions. In
addition, the questions whose accuracy was not above one-third (chance level) were also dropped
from the comparison, giving N = 19. This subset of data is still quite noisy; although the
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questions are simple, the latencies are very long and variable as is usually the case with problem-
solving latencies. Using ipsatized data in the comparisons did not result in substantially cleaner
results, suggesting that most of the noise in the data is within-subject.

The predictor variable is the number of production system cycles required to answer the
question starting from when the input is accepted and the propagation of the change begins, and
stopping when the question answer is determined. These numbers were obtained by simply
running the model on each combination of circuit and question, and calculating how many cycles
were required until the answer was determined. A regression was then computed for each model
using the number of cycles as the predictor variable, and the observed mean question-answering
times as the predicted variable (see Kieras, 1984). Clearly the regression slope should be positive,
in that more cycles should correspond to more time, and r 2 gives a measure of the goodness of fit,

An important result of the comparison is that the terminating model fails completely to
account for the data. Figure 31 shows the relationship between the number of cycles required by
the terminating model and the question answering time. Although this model is intuitively
appealing, it clearly accounts for essentially none of the variance (r 2 = .02). While the utter failure
of the model is discouraging, it does demonstrate rather clearly that the comparison of these models
to the data is a valid exercise; a perfectly reasonable model can be disconfirmed, so one that
accounts for a substantial part of the variance can be taken seriously.
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Figure 31. Scatter plot of cycles versus question-answering
time for the terminating model.

Figure 32 shows the relationship between the number of exhaustive model cycles and the
question answering time. The regression equation is:

Time (sec) = 5.38 + 0.63 * Cycles

This model accounts for a significant portion of the variance (r 2 = .34, p < .0 1). Accounting for
34% of the variance is impressive, considering that the data are quite noisy. The regression
coefficient for the number of cycles is approximately 0.6 sec. There is reason to believe that
p iroluction rules should take on the order of 50- 100 msec per cycle to apply in the context of
simple procedural tasks (see Card, Moran, and Newell, 1983, Ch. 2; Bovair, Kieras, and Poison
1990). The fact that these rules take more time suggests that there might be some inaccuracy about
how the task is represented. For example, the propagation rules in the model can immediately
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apply to all points in the circuit, but perhaps subjects "trace" through the circuit and allow the rules
to apply to only one point in the circuit at a time. The result would be that the propagation rules
would appear to fire much more slowly. Resolving this issue would require more detailed study of
how people answer questions about electrical circuits.
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Figure 32. Scatter plot of cycles and question-answering time
for the exhaustive model.

Figure 33 shows the predicted and observed times for the individual questions in each
circuit, shown in the order in which they appeared in the experiment within each condition; the
Irrelevant group questions appear first on the horizontal axis followed by the questions in the
Relevant group. What this figure shows is that the model's predicted values track the observed
values fairly well, but with some definite mispredictions. Given the noisiness of the data, it is
probably not worthwhile to pursue the nature of the mispredictions in more detail. But the model
does capture the effect of schema availability; notice that the times to the Irrelevant group questions
tend to be longer than those for the Relevant group, and the model shows the same pattern.
However, the effect of schema availability is fairly mild, both in the case of the data, and the
number of cycles required by the model.

In the terminating model, the changes are propagated until quiescence; this strategy will
tend to reduce the benefits of having the schema rules. How the rules would apply to the
schematic subcircuits also suggests that the benefits would be relatively small. For example, in a
simple triode amplifier circuit, the first-principle reasoning would be that if the voltage on the grid
changes, then by the triode rule, the resistance of the triode changes, and by the voltage divider
rule, the result is a change in the voltage on the triode plate. Thus when using first principles,
going from a change in the voltage on the triode grid to a change in the voltage on the triode plate
takes only two rules. The schema rule for the amplifier circuit would make the same inference in
one rule instead of two. This is a relatively small change in the amount of inference required, so
perhaps only mild benefits of schema knowledge should be expected for these materials and this
task.
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General Discussion

Summary of Results

The basic question addressed by this work is whether schemas and their explanations are
involved in how practical electronics material is learned. The Al system and the question-
answering model shows that in principle, schemas can be learned from these explanations and then
used in further learning and answering questions about this kind of material, and thereby suggest
that the schematic structure of textbook material is important. The experimental work shows that
learning schemas from explanations can be effective in the classroom training of technical content.
In the course of one or two hours, subjects were able to learn circuit schemas, and then enjoyed
some benefit from applying them to understanding explanations and answering questions about
more complex circuits. The comparison of the models with the data shows that the magnitude of
the benefits of schemas for human learners can be predicted to some extent by the models, which
suggests that the schema mechanisms used in the Al system and in the question-answering model
are plausible as psychological models.

Difficulties of Experimentation in this Domain

The experimental work reported here shows that learning circuit schemas is beneficial in
later learning, but the effect is fairly small, and it is susceptible to the specific task strategies that
subjects adopt in dealing with the experimental paradigm. Several problems made it difficult to get
definitive data on this phenomenon. The type of experiment attempted here involves collecting
problem-solving latencies, which are highly variable, under conditions that severely limit the
sample size: (1) There are relatively few realistic circuits at a reasonable level of complexity. (2) It
is hard to get a large number of subjects willing and able to tackle these surprisingly difficult
materials. (3) There are only a small number of distinct schema-relevant questions about an
individual circuit. For example, in the two-stage amplifier circuit, all of the questions that are
relevant to the schema-based understanding consist simply of what happens to the output of either
the first or second stage when the input changes. Thus it is not possible to ask a large number of
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questions about each circuit. Clearly, if subjects were asked many questions about the same
circuit, their question-answering strategies would change altogether, as they simply memorized the
answers to the few possible questions.

Thus, although the electronics domain appears to be a clear-cut and relatively simple
domain to explore either from the Al or the cognitive modeling perspective, it seems to be a very
difficult one for collecting human data on complex learning processes.

The Need for Cognitive Analysis of Large-Scale Training Materials

This research focussed on the properties of realistic training materials in a technical domain.
While this research used only a very small subset of the materials, it encompassed a relatively large
set of concepts which were also relatively complex. The large scale of the complete set of training
materials for this domain must be appreciated. In the electronics series used here (Van
Valkenburgh, Nooger, & Neville, Inc., 1955) there are about 600 pages, and a similar quantity in a
prerequisite series on basic electricity. The U.S. Navy considered this to be the amount of
knowledge that should be taught to trainees to qualify them for basic electronics technician jobs.
However, when the learning of electricity or electronics has been studied under laboratory
constraints, the researchers typically use only a fragment that corresponds to a single page, or a
few pages at most, of this corpus. The result is that we have no understanding from a cognitive
science point of view of how such a mass of material is structured or learned.

The building-blocks approach is one important property of these materials, but the
dominant property is that most of the content is the design rationale and principles for electronic
circuits - how they work, and why they are configured the way they are. For example, a key
topic is that vacuum tubes and transistors must have their "bias" set by additional components to
place their operating characteristics in a desired range, for example, to produce a linear response
function. Considerable space is spent explaining this issue mathematically, with heavy use of
graphs, and formulas are supplied and illustrated for calculating the proper component values.

What is odd about this emphasis on design rationale is that these materials are not intended
to prepare students for electronics engineering and circuit design, but for electronics maintenance,
in which the trainee's future task is to diagnose and correct malfunctions in the equipment. As
argued elsewhere (Bond & Towne, 1979; Kieras, 1988), understanding of fundamental
quantitative principles and design rationale does not seem to be important in troubleshooting tasks.
In contrast, electronics troubleshooting must be learned by apprenticeship or haphazardly; there is
very little published material that presents general concepts of electronics troubleshooting. But
despite this misdirection, the practical electronics materials studied here contain a fairly standard
presentation of the complete domain theory of practical electronics, which many thousands of
people have mastered.

These materials would be an ideal place to attempt a large-scale analysis of training
materials. For example, a large semantic net could be constructed to show how each concept was
related to the other concepts. The kinds of pedagogical techniques used to present each concept
could be listed. There are many techniques used in these materials, and it would be valuable to
know whether there is any pattern to their usage. For example, specific circuits are presented with
diagram graphics and textual explanations, as was studied here. Some concepts (e.g.,
amplification) were introduced with several pages of relation to everyday life (e.g., amplifying the
size of the catch in a fish story), and with analogies (e.g., amplification as regulating the flow of
water from a tank). Illustrations of the actual physical appearance of components abound,
corresponding to these materials teaching about actual components and devices, rather than the
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idealized ones presented in non-practical treatments. Cartoons are used to show causal sequences
with a kind of animation. Static cartoons and humor often seem to be used to reinforce specific
concepts and excite interest. There are many mathematical arguments, presented both graphically
and algebraically. Finally, much information was just presented explicitly in text. Thus, trying to
determine why each concept was presented the way it was, and whether the presentation was
effective in theory, would yield many insights and hypotheses about technical training.

If cognitive science is to contribute toward improving instruction in real domains, such as
technical ones, it will be necessary to complement the traditional detailed analysis of fragments of
the domain with analysis of the domain in the large. By analyzing the structure and content of such
complete materials from a cognitive-theoretic point of view, we will be able to ensure that our
future detailed research is addressing the key properties of the materials and the domain.
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