
I I AL-TP-1991-0050

AD-A247 425

II A THEORY OF AUTOMATED DESIGN OF

A VISUAL INFORMATION PRESENTATIONS

R
M Stephen Westfold

S Cordell Green
Kestrel InstituteT 3260 Hillview Avenue

R Palo Alto, CA 94304

for X MA .1j 1"
N Systems Exploration, Incorporated U

G 5200 Springfield Pike, Suite 312
Dayton, OH 45431

LA HUMAN RESOURCES DIRECTORATE
LOGISTICS RESEARCH DIVISION

B Wright-Patterson Air Force Base, OH 45433-6503

0
R
A February 1992

T Interim Technical Paper for Period June 1990 - May 1991

0
R
Y Approved for public release; distribution is unlimited.

92-06127

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5000



NOTICES

This technical paper is published as received and has not been edited by the
technical editing staff of the Armstrong Laboratory.

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely Government-related procurement, the United
States Government incurs no responsibility or any obligation whatsoever. The fact that
the Government may have formulated or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication, or otherwise in any
manner construed, as licensing the holder, or any other person or corporation; or as
conveying any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

The Office of Public Affairs has reviewed this paper, and it is releasable to the
National Technical Information Service, where it will be available to the general public,
including foreign nationals.

This paper has been reviewed and is approved for publication.

DAVID R. GUNNING
Task Monitor

BERTRAM W. CREAM, Chief
Logistics Research Division



Form ApprovedREPORT DOCUMENTATION PAGE OMB No 0704-0188
Public repo ing burden for this collection of infoImation is estimated to average 1 howr esponse, including the time for rviewing itrctions sarching eaating data ioums , i
and maintainic e d needed, and completing Ond reviewing the collecon of Incnmen ts regarding this burden a21ma or ny other as of Di H Si
infatn , incuding suggetionre for reducing this burden, to Washington Headquarters Selvcs, Directrat for tnform on Operetions and Reports, 1215 Jeffeson D s Highway. Suite
1204 Aingto V 02-4302 and to the Offlce of Management and Budget, Paperwork Reduction Proect (0704-0188). Washington. CC 20D03.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 13. REPORT TYPE AND DATES COVERED

February 1992 Interim Paper - June 1990 - May 1991
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Theory of Automated Design of Visual Information Presentations C - F3361 5-88-C-0004
PE - 63106F
PR - 2950

6. AUTHOR(S) TA - 00
Stephen Westfold WU - 21

Cordell Green

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Kestrel Institute Systems Exploration, Incorporated REPORT NUMBER

3260 Hillview Avenue 5200 Springfield Pike, Suite 312
Palo Alto, CA 94304 Dayton, OH 45431

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
Armstrong Laboratory REPORT NUMBER
Human Resources Directorate AL-TP-1 991-0050
Logistics Research Division
Wright-Patterson Air Force Base, OH 45433-6503

11. SUPPLEMENTARY NOTES

Armstrong Laboratory Technical Monitor: David R. Gunning, (513) 255-2606

128. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This paper reports on an elaborated theory of graphical display that describes how to automate the
generation of tables and diagrams to represent relations occurring in technical data This theory is an
extension and reformulation of our earlier theory. It includes a semantic framework for expressing the
translation of relations into graphics. The framework allows for fine-grained control of synthesis and for
human factors guidance. Methods are presented for synthesis of multi-page and multi-screen graphics, for
the graceful integration of tables and diagrams, for composite maps such as used for color coding, and for
development of plot charts.

14. SUBJECT TERMS IS. NUMBER OF PAGES
Automated generation of formats 40Automated technical data

Computer generated maintenance aids 16. PRICE CODE

17. SECURITY CLASSIFICATION j8. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACTOF REPORT IOF THIS PAGE IOF A~kTCTifeUnLas

Unclassified Unclassified Unc assiied

SN 75401-20550 Standard Form 201 Qv2a
Preecrte by ANSI 3 1
2MI-02



TABLE OF CONTENTS

Page

I. INTRODUCTION ............................................................................... 1

II. OVERVIEW OF THEORY .................................................................. 3

I. LANGUAGES ................................................................................ 4

Data Language ................................................................................. 5
Visual Language ............................................................................... 5
Transformation Language .................................................................... 7

IV. BASIC VISUAL REPRESENTATIONS ................................................... 9

Adjacency ...................................................................................... 10
Arcs ............................................................................................ 10
Containment .................................................................................... 12
Visual Attributes ............................................................................... 12
Interference and Ambiguity .................................................................. 13

V. DERIVATIONS ............................................................................... 14

Composite Sequences ....................................................................... 14
Table Derivations ............................................................................. 14
Diagrams and Trees ........................................................................... 19
Map Decomposition .......................................................................... 23

VI. CONCLUSIONS ................................................................................. 27

REFERENCES ........................................................................................ 29

LIST OF FIGURES

Figure

1 Example of the Three Stages of Visual Presentation .............................. 3
2 Rendering of join(a, 1) Representing <"a", " I > ............................. 11
3 Example of a Call-out .............................................................. 11
4 Rendering of contain({a, b}) Representing {"a", "b"} ................... 12
5 Sample Set Layout ................................................................... 23

Aoossion For

NTIS GRA&
DTIC TAB Q
Unarnoun d 0
Justification

By ..
DistributionL
Avilability Cedou

Avail ad/or

Dist Speolal

iiIi_



PREFACE

The work described in this technical paper was performed at the Kestrel Institute under

subcontract from Systems Exploration, Inc. The work was accomplished for the Air Force Human
Resources Laboratory under Contract Number F33615-88-C-0004, Task Order Number 20. The

work is in support of AFHRL Project 2950, Integrated Maintenance Information System. Mr.

David R. Gunning monitored the contract for AFHRL.

This paper elaborates on our theory for the automated display of neutral maintenance data.
The feasibility of this technology was described in our earlier report, "Automated Design of

Displays for Technical Data," AFHRL-TP-90-66. Mr. Gunning suggested that the theory could be

elaborated and refined to allow graphics to scale up to multi-screen images, thereby allowing the

graceful integration of tables and diagrams. This report presents the new, elaborated theory.

We would like to acknowledge David Gunning, Peter Ladkin, David Zimmerman, and

Richard Jullig for their assistance and suggestions.

iv



SUMMARY

This paper presents an elaborated and reformulated theory documented in an earlier report,

"Automated Design of Displays for Technical Data," AFHRL-TP-90-66, which describes

automated design rules for display of technical data. The theory can be employed to create displays

of tables, diagrams, trees, and hybrid mixtures thereof.

The new capabilities presented herein include finer-grained control of synthesis; closer,

seamless integration of tables and diagrams (including tables with arcs); composite maps to

represent color coding, off-page pointers, or other forms of indirection; containment trees;

explication of plot chart derivations; and multi-screen graphics.

A semantic framework for expressing the theory of synthesizing and rendering graphic

representations of data is also presented. The framework includes formal languages for describing

the data, visual attributes, and transformations.

The concept of operations for the Integrated Maintenance Information System requires that

all technical data be stored in a data base, independent of screen formatting information. For

example, the electronic form includes no information about where a box of a diagram is to be

placed, or even that some information is to be displayed as a diagram instead of a table. Hence,

this format-neutral storage representation allows software to automatically reformat the data for

new computer screen sizes, portables, color capabilities, or methods including animation or head-

mounted displays. This separation of information content from formatting also permits better

analysis to check for consistency or to merge information from multiple sources. When there are

changes, minimal human re-engineering effort is required to update the information and the

displays, resulting in reduced costs and higher quality.

V



I. INTRODUCTION

This paper presents a theory for the visual display of electronic relational data. It assumes

that data are stored in format-free form (using high-level data structures such as sets and

sequences). The mappings and transformations defined herein are used to add desired structure

during display so information is presented in the most appropriate form.

A method such as ours is essential in an environment in which new information is

constantly being introduced or multiple versions of data must be continuously maintained. For

example, introducing a new connecting cable between electronic devices requires modifying the

maintenance manual in a non-local manner. Not only is a new entry required for the connecting

cable, but entries for the parts connected by the cable must be modified as well. Further, test
procedures, fault trees, and decision tables are all affected by the introduction of the new part. If

the data are kept in a format-free, object-oriented form such as the Content Data Model (CDM),

modifications to the data model are relatively easy and reformatting is an automatic by-product of

our display methodology. In contrast, reformatting the manuals by hand is time-consuming and

error-prone.

Furthermore, our methodology enables one to build a formal model of the data integration,

update, and reformatting process; this model may then be formally verified by computer.

Verification proves that implementing the integration and formatting in software is consistent with

the data model. Verification is infeasible with manual data update procedures. The formal model

also allows one to prove other properties of the display process and its implementation in software

(e.g., that warnings for any maintenance procedure must accompany a screen display of that

procedure or that every action in a vendor-supplied list of diagnosis actions is displayed during a

diagnosis procedure for the subsystem).

The theory presented here underlies and extends results presented in Westfold et al. (1990).

This theory, based on successive transformations of data from stored form to display form,

includes visual properties of displays such as color coding and containment. It also focuses on the

generation and display of tables and diagrams, and describes in detail the transformations required

for these presentation types and their meanings. A formal model of the data update, enhancement,

and display process allows for the use of methods, techniques, and tools similar to those used in

the formal development of software systems.



Our formulation of the problem is essentially that of MacKinlay (1986); however, our

analysis aims for finer granularity and a broader scope so that more types of visual representation

can be synthesized. To describe a general theory of visual representation, a data language and a

visual language is defined to describe the source and target domains, respectively, format-free data

and visual displays. The display of data in a particular format is divided into three stages:

transforming data language descriptions into (a) other data language descriptions, (b) visual

language descriptions, and (c) displays (rendering). Representation is the composition of these

three transformations. Representation is a one-to-many relation; data can be represented in many

ways, but each visual display of information represents a unique data set (otherwise the display

would be ambiguous). Interpretation is the inverse of representation; it is a many-to-one function.

These stages are detailed in Section II.

The data language includes data constructors such as strings, sequences, sets, and finite

maps. Visual representations include adjacency and arcs for pairs of regions; containment for sets

of regions; text boxes for strings; visual attributes (such as color, shape, font, and position) for

maps; and lengths for quantities. The language used to express the transformation rules is standard

first-order predicate logic enhanced by operators for manipulating sets, relations, and maps. These

languages are described in Section III. Section IV formally describes the basic visual

representations of adjacency, arcs, and containment. It also briefly considers the properties of

interference and ambiguity which may arise when the functionality condition on interpretation is

not maintained.

Applying specific transformation rules to examples is called derivation. Section V formally

specifies the derivations of tables (including tables with and without labeled columns) in one-page

or multi-page form, with distributed labels for each item, and interconnected by arcs within the

table. The derivation of a block-diagram representation of system-subsystem connectivity for a

radar control system is also specified. Section V shows how map decompositions are used to

communicate data relations between properties and derive plot charts. Finally, our research

conclusions are stated in Section VI.

2



IL OVERVIEW OF THEORY

Figure 1 illustrates the three stages of deriving a particular tabular display for the simple

relation {<" a" ," 1">, <"b"," 1> <"b" ," 2">).

RepresentI R

< a , ,RpFRoyt 1< a R coti(Render b
<"b", "lT' PP- {'T'> U oin(a,

<"b", "2"> ) <"b", contain(( 1))), b 1
['T',"2")>) join(b,

\k / contain(( 1,2)))))

Data Language Visual Language Displa

Interpret (by user)

Figur. .Example of the Three Stages of Visual Representation.

Stages 1 and 2 are broken into smaller transformations. This paper is not much concerned
with Stage 3, assuming for the most part a straightforward rendering of visual language

expressions with some simple constraint solving. R is the representation relation, relating
specifications to presentations. I is the interpretation function.

In general, a derivation of a visual display consists of a sequence of zero or more

transformations within the data language, followed by a transformation into the visual language,
and, finally, a rendering of the resulting visual language statement. Each transformation specifies

both how to convert the source expressions into target expressions and how to interpret target

expressions as source expressions. Each individual transformation is specified as a relation

between its input and output; a relation which, like R, is one-to-many in general, and whose

inverse, therefore, is an interpretation function. The interpretation of the visual expression consists

3



of applying the individual interpretations for each transformation in the reverse order. A visual

expression is ambiguous if it is the result of two different transformation sequences with different

starting specifications.

Our transformations preserve information so that the interpretation function is defined, but

they do not preserve equivalence. Thus, for the representations to work, the user must have some

knowledge of these transformations; the transformations may transform between forms the user

perceives as essentially the same, or they may embody standard conventions such as those for line

and page breaking.

In general, many visual representations exist for a given set of data language statements;

therefore, it is desirable to have a method that exist allows comparison of different representations.

A cost function on interpretation would provide such a method, as a primary measure of a

representation must be how easy it is to interpret. If a cost function is available to interpret each

transformation, these costs could be summed to provide a total cost for the whole interpretation.

This paper largely ignores the cost of interpretation; rather, it concentrates on specifying when a

unique interpretation is possible and showing the derivations of a large variety of displays.

The primitive visual representations are as follows:

* adjacency for pairs,
" arcs for pairs,
* containment for sets,
• text boxes for strings,
* visual attributes (color, shape, font, x-position, y-position) for maps, and

" lengths for quantities.

This list is similar to that from Bertin (1983) and MacKinlay (1986). Using these

primitives, more complex structures for tables, plot charts, and box and arrow diagrams can be

derived.

III. LANGUAGES

The specification of relational information consists of a set of expressions in the data

language. This is transformed into a set of expressions in the visual language that represent the

original expressions. This set of visual language expressions is then rendered in a display.

4



DaaLwag=

The data types and constructors of the data language are as follows:

IExpression in Data Lan gagre
string "a string"

Boolean true, false

tuple or sequence <x, y, ...>

set {x, y, ...}

map {1 w -> x, y -> z, ...

where w, x, y, and z are expressions in this language. This simple language is sufficient to

specify all the examples in this paper. Relations are modeled in this language as sets of tuples.

Although this language is sufficient to specify relational information, it may not be

convenient for user purposes. A user-oriented language that would be translated to this language

might be used. Such a user-oriented language may be graphical and have more structure to ensure

the specification is coherent.

As an example of some of the details in a specification, consider what may be necessary to

communicate a binary relation. As a minimum, the set of pairs must be shown. It may be

specified that some other properties of the relation should also be shown, such as the name of the

relation, the domain, the range, the name of the domain, and the name of the range. Additional

constraints may be specified that require additional information to be shown, such as some well-

ordering on the domain.

Visual Lan"age

The visual language domain consists of attributed regions and values of visual attributes

such as colors and shapes. 1 Regions are specified using primitive text boxes and region

constructors that take one or more regions and produce a new region. All constructors have a

common characteristic: they include all their region arguments as subregions, and all subregions

1 The form of the visual language is chosen to facilitate expression of the representation
relations and is not intended for general use.

5



within them are either arguments or subregions of arguments. Visual attributes are attached to
regions by cons-uctors that take a region and an attribute value and produce a region with that

attribute value.

The primitive constants of the language are:

* a-string: the region containing the text 'a-string,'
* red, blue, ... : colors,

* circle, square, shapes, and

* <1, 27>, <9, 2>, ... : positions.

The region constructors of the language are:

" join(x, y): the region containing precisely the adjacent regions x and y,
" contain(S): the region containing precisely the regions of the set S,
* arc(x, y): the region containing regions x, y and an arc connecting x to y,
* color(x, y): the region x with color y,
" shape(x, y): the region x with shape y, and
* position(x, y): the region x with position y.

For example, the expression below describes a region at position <4, 2> that includes an

arc joining a circled red "a" to a square-boxed, blue "b."

position(arc(shape(color(a, red), circle),

shape(color(b, blue), square)),

<4, 2>)

The constructors join and contain both specify constraints on regions; their value is the

region composed of the regions of their arguments. A specific definition of adjacent, beyond that

join be associative, is not required.

Visual attributes (color, shape, and position) are modeled as region constructors of two

arguments: the constructor value is the region of the first argument, the attribute value is given by

the second. Modeling attributes using constructors allows complex visual descriptions to be stated
with expressions rather than conjunctions of expressions. This, in turn, allows the representation

equations below to be stated more simply.

6



Since join is associative, it is natural to extend the binary join to an n-ary join:

join(x, y, ... ) = join(x, join(y, ... )).

To specify the properties of contain, it is convenient to introduce the region predicate

within that corresponds to set membership. It is defined as follows:

x within y <=> ex(S) (x in S & y = contain(S)).

For example, if

y = contain({a, b)

then

a within y and b within y but -c within y.

Transformation Language

In addition to the data and target languages, standard first-order predicate calculus is used

to specify the transformation relationships. In particular, the following constructs are used.

& - conjunction

or - disjunction

< => - logical equivalence

=> - logical implication

- equality

=def - defined equality (for presenting definitions)

fa(x) p - for all x, p is true

ex(x) p - there exists an x such that p is true

{x I P1 - set comprehension, the set of x such that p is true

reduce(op, Q) 2  - reduce the set or sequence Q by the associative operation op

domain, range - domain and range of a relation represented as a set of pairs

image(R, x) - the relational image of x with respect to R: {y I R(x,y))

2 Reduce(op, <x, y, z>) = x op y op z

7



X - cross product: A X B = {<x, y> I x in A & y in B}
- - subset predicate
U - set union

In logical statements, free variables are implicitly universally quantified.

Variables range over expressions in the specification, and each transformation replaces one

or more variables by one or more new variables. Each transformation is specified as a relation

defined by an equivalence relating expressions on the old variables with those on the new
variables. The equivalence must interdefine the old and new variables; it may underspecify the

new variables in terms of the old variables, but it must uniquely define the old variables in terms of

the new variables for the interpretation to be unambiguous. For example, Rprojectl, defined as:

Rprojectl(S, S') =def

<x, y> in S <=> ex(z) (<x,z > in S' & y in z)

gives a relation between the binary relations S and S' that includes S' as the projection on the first

field of the relation S. A data language specification involving some expression, S, may be
transformed to a new specification with S replaced by S' where Rprojectl(S, S'). For

example, given:

S = {<#fa",ll"o>, <"b",l")1>, <"lb","12">}

all the following values of S' satisfy Rprojectl(S, S') and, therefore, may replace S.
However, for each value of S', only this value of S satisfies Rprojectl(S, S'):

so = (<"a", {" 1"} <"b", VP,"12"}}

so = {<"a",1 {"1"}ts>, <"bill I{"1"}t>, <"b"9 {"12"} >}

s' = (<"a", {"1"},' <"b", {"1","2"}>, <c, {}>}.

Each representation relation has an inverse that is a function--the interpretation function.
The interpretation function, Iprojectl, corresponding to Rprojectl that converts each S' into S

is defined:

1projecti(S') =def {<x, y> I ex(z) (<xz> in S' & y in z)}.

8



For consistency, the equivalences with the expression involving the old variables are on the

left; thus, the left-hand side will be simple. The right-hand side will often have disjunctions or

existential quantification, reflecting the non-determinacy of the left-to-right transformation. For
each transformation, both the definition of the representation relation and its inverse (the
interpretation function whose form is often simpler) will be provided. Rv represents the Stage 2
representation relation that converts from the data language to the visual language; Iv is the

corresponding interpretation function.

IV. BASIC VISUAL REPRESENTATIONS

Representations of basic objects (e.g., strings) and simple relationships (e.g., pairs, sets,
and maps) can be combined to represent sequences and relations as well as more complex

structures. The only representation for a string that is addressed in this paper is a text box: a
region containing the string as text, possibly with font, style, and size attributes.

Two basic representations for pairs are considered: adjacency and connectedness.

Connectedness consists of a line or arc between two regions. This representation leads to
variations on such themes for images as the familiar "boxes and arrows" view of a system-

subsystem hierarchy. There may be additional constraints on the positions of the regions or arcs.

Arcs can generally be used to merge the different occurrences of objects so they only have

one visual incarnation. However, other constraints such as limits on the length of arcs can prevent

the merging of nodes. The connecting arc between two nodes allows the nodes to be relocated

arbitrarily as long as the connecting arc stretches to follow the nodes. However, human factors
and other constraints limit the acceptable or correct locations of arcs and nodes. A common

constraint is the need to show some ordering relation via increasing distance in some direction (an

organization chart typically has lower organizational levels placed at lower y positions).

The basic visual representations together specify Rv, the basic relation that directly relates a
subset of expressions in the data language to expressions in the visual language. Iv is defined

similarly. For each basic representation, the corresponding equations for Rv and Iv are provided.

9



Adjacogy

The representation equations for a pair as adjacency (join) are as follows:

Rv(<x, y>, join(vx, vy)) <=> Rv(x, vx) & Rv(y,vy)

Iv(join(vx, vy)) = <Iv(vx), Iv(vy)>.

These may be read, respectively, as:

A pair may be represented visually by the join of two regions whenever the first region

represents the first element of the pair and the second region represents the second element

of the pair.

A join of two regions is interpreted as the pair of the interpretation of the first region and

the interpretation of the second region.

For example, consider the visual representation of the pair <"a","I">. If "a" and "1" are

represented, respectively, by text boxes a and I (i.e., Rv ("a", a) and Rv ("1", 1)), then

join(a, 1) is a representation of <"a","1"> (i.e., Rv (<"a"," ">, join(a, 1))).

Figure 2 shows a fragment of a display that renders join(a, 1). Note that the call-outs

and dotted lines indicate regions and what they are rendering; they are not part of the display. In

this display, "a" and "1" both have two representations, but only one of each is used in the

representation of <"a","I">. The n-ary join may be used to represent n-tuples or sequences as

well as pairs.

Arc

The conditions on representing a pair as an arc are the same as those on representing a pair

by adjacency (i.e., whenever two regions represent two objects, the pair of those two objects may

be represented by making the two regions adjacent or by putting a line between them). Therefore,

the representation equations for a pair as an arc are the same as those for a pair as adjacency with

join replaced by arc:

Rv (<x,y>, arc(vx,vy)) <=> Rv (x,vx) & Rv (y,vy)

Iv (arc(vx,vy)) = <IV (vx), Iv (vy)>.

10



join(a 1)

a

image(Rv,"a")- , "-"

,. a ' :image(Rv," 1")

Figure.I Rendering of join(a, I) Representing <"a","1">.

A call-out is a label-pair represented as an arc. For example, consider a photograph of a

subsystem containing some component that is labeled with a call-out. The label-pair representation

could be <label, component>: the label is represented as its text box, the component is

represented by a pictorial view, and the association between them is represented by a connecting

line (Figure 3).

GROUND MAINTENANCE SAFETY PIN

Hig i3. Example of a Call-out

11



The representation equations for a set as a containing region are:

x in S <=> ex(vx, vS) (Rv (x, vx) & Rv (S, vS) & vx within vS)

Iv (contain(vSS)) = {Iv (x) I x in vSS).

Figure 4 is an example of a set represented as a containing region. This figure illustrates the

relationship between vS and vSS.

vS

a a
vS = contain(vSS)

a, b within vS
vSS = {a,b)

b
b I

Figure 4. Rendering of contain({a, b)) Representing 1"a","b").

VisualAttibutes

Visual attributes can be used to represent maps. For example, the color attribute might

represent a status map: the color of a region would represent the status of the object represented

by that region. The values of atuibutes are not regions; thus, they are very limited in what they can

represent directly. The solution is to use a level of indirection, using a composition of two maps to

represent a single map, where the intermediate value is an attribute value. Thus, in the color

example, the status map is represented by the composition of the color attribute and a "legend" map

12



that maps each color into a status value. This example is expanded in Section V along with

examples of an off-page pointer and plot chart. The latter exploits the two spatial dimensions of a

display to represent a map of two arguments.

Interference and Ambiui

Consider the following simple display.

a 1

b 1

b 2

This display has two interpretations in the visual language:

contain({join(a, 1), join(b, 1), join(b, 2))) and
contain({join(a, b, b), join(l, 1, 2))).

If the first interpretation is the intended option, there are numerous ways to disallow the second
interpretation. Borders can be placed around the pairs:

a 1

b 1
b 2

or lines between them:

a 1

b 1

b 2

For the remainder of this paper, such distinctions are added to the examples as necessary to avoid
misinterpretation at the visual-language level.

13



V. DERIVATIONS

Comosite Sec~uences

Sequences can be decomposed into a sequence of sequences. This is used, for example, in

line and page breaking. Consider a paragraph, P, as a sequence of characters. This paragraph

may be broken into a sequence of lines, BP; each line is a sequence of characters:

P = reduce(concat, BP).

Table Derivations

Consider the relation with domain and range presented in Section II:

S = WWI",""> <"1b",l"11>9 <"~b","12">).

Labels for the elements are introduced using a labeling map:

label = {I "a" -> "letter", "b" -> "letter",
"1" > "number", "2" -> "number" 1).

First S is represented, then the representation of label is added to it. S may be
represented visually by using adjacency to represent the pair and containment to represent the set:

contain((join(a, 1), join(b, 1), join(b, 2))).

Rendering join horizontally and contain vertically gives the following table:

a 1
b 1

b 2

14



The label could be converted to a set of pairs and presented as a similar table. The
derivation of the standard labeled-column table, however, is achieved by first inverting the label
map using the following equivalence:

y = label(x) <=> x in label-inv(y).

The resulting label-inv is

label-inv = {I "letter" -> ("a","b"), "number" -> {"1","2"1 }.

In the table generated for S, the sets {"a"," b"} and {" 1","2"} are represented

incidentally as vertical regions; therefore, they can be used to represent label-inv. First, label-

inv is converted to a set of pairs using the representation equivalence:

z = label-inv(y) <=> <y, z> in label-inv-s

giving:

label-inv-s = (<"letter", ("a","b"}>, <"number", {"1","2"}>).

A visual language representation of this is:

contain({join(letter, contain((a, b)),

join(number, contain((], 2)))).

With the joins represented vertically, the resulting table is:

letter number

a I

b I

b 2

15



Repetition of domain elements (in this case b) can be avoided by using the following projection

equivalence:

<x, y> in S <=> ex(z) (<x, z> in S' & y in z).

This allows many possible definitions of S'; the simplest is:

so = <"a", ("1")>, <"b", {- lot2"}>}.

Using the same visual representations as before and using containment to represent the new
sets, the visual expression is:

contain({join(a, contain({f})), join(b, contain({l, 2)))).

Presenting the new contains vertically creates the following table.

letter number
a1

b1
2

Multi-Pag; Table

The previous derivation can be extended to handle a multi-page table. Assume that the

relation is extended as follows and only four lines are allowed on a page.

S = {<a"," 1>, <"b","1l">, <"b","2">,
<"1c","2">, <"c", 3">, <"d","l"V>}

label = {1 "a" -> "letter", "b" -> "letter",
"C" -> "letter", "d" -> "letter",

"I" -> "number", "2" -> "number", "3" -> "number" I}.

16



The relation is too large to fit on one page; therefore, it is split using the following representation

equivalence:

<x,y> in S <=> ex(z) (z in SS & <x,y> in z).

This justifies an arbitrary split. Let us choose the following:

SS = {{<"a" ," li>9 <b",9"r f>, <"b",2">},
<"1c","10211>9 <"c","Y'f31>, <"d"#," 1">}

Each element may be represented as a table:

a I 1

b 1
b 2

and

c 2

c 3

d I

These representations have incidental representations for {"a","b"}, {"c","d"}, {"1","2"},

and {" 1","2","3"); these will be exploited in representing label.

Inverting label as before gives:

label-inv = {I "letter" -> ("a","b","c","d"},
"number" -> {"1","2","3") I).

However, to exploit the available sets from the representation of SS, a representation equivalence

is used that allows splitting the range elements of label-inv into subsets:

y in label-inv(x) <=> ex(z) (<x, z> in label-inv-s & y in z).

17



Choosing the subsets used to represent SS results in:

label-inv-s = (<"letter", {"a","b"}>, <"letter", {"c","d"}>,
<"number", {"r1",12"t,} >,

<" number", (" 1","1211,113t} >}.

Using the same representation strategy as before, the following two-page table results.

letter number

a 1

b 1

b 2

and

letter number

c 2

c 3

d 1

Distributed Labels

Consider an alternative visual representation of a relation with labeled elements in which the

labels are displayed next to the elements (i.e., the label map is distributed over the elements). The

specification is:

S = {< "a"l "1>9 < "lb "l" >, < "fb ,"2">}

label = {, "a" -> "letter", "b" -> "letter",
"1" -> "number", "2" -> "number" I).

A map may be distributed over its domain elements by replacing each occurrence of a

domain element by a pair of the element and the value of the map applied to the element. In this

case, the transformation to S is given by:

<x, y> in S <=> <<label(x), x>, <label(y), y>> in S'.

18



This has the precondition that label is defined for each x and y--in this case that

domain(label) 2 domain(S) U range(S). The distribution of label is complete if label(x)
appears for every x in the domain of label, which is true in this case when domain(S) L

range(S) 2 domain(label). If the distribution of label is complete, then the distribution

serves as a complete representation of label. The combination of these two preconditions is:

domain(label) = domain(S) U range(S).

This is true, so the new specification is:

s' = {<<"letter", "a">, <"number", "">>,
<<"letter", "b">, <"number", "1">>,

<<"letter", "b">, <"number", "2">>}.

Using horizontal adjacency to represent the pairs and vertical containment to represent the

set, the following table results.

letter a number 1

letter b number 1

letter b number 2

Diagrams and Trees

Arc Table

The pairs in the above examples can be represented using arcs instead of adjacency. The

relation:

S = 1<913","l"19>, "b","l"1>, <"b","12".})

can be represented by the visual language expression:

contain({arc(a, 1), arc(b, 1), arc(b, 2)))

19



giving the following diagram.

Labels can be added as before to give the following arc table.

Letter Number

ay

b 2

Block Diam=a

This section addresses the derivation of a diagram representing connectivity among

components of a radar control system. The following abbreviation map is used to save space.

{I rc -> "Radar Control Panel', fcc -> "FCC",
tg -> "Throttle Grip", re ->"REO",

ss -> "Side Stick Controller", co -> "Cool",
cw -> "Control Wiring", fcr -> "FCR" }

The connectivity specification is given by So, a reflexive, binary relation.

So = (<fcr, w>, <w, fcr>,
<fcc, re>, <re, fcc>, <fcc, co>, <co, fcc>,

<fcc, cw>, <cw, fcc>,

20



<re, co>, <co, re>, <re, cw>, <cw, re>,

<rc, ss>, <ss, rc>, <rc, tg>, <tg, rc>, <rc, cw>, <cw, rc>

<ss, tg>, <tg, ss>, <ss, cw>, <cw, ss>, <tg, cw>, <cw, tg>}

This graph has three cliques (maximal subsets of nodes where each node is connected to
every other node): {fcr, cw), {fcc, re, co, cw}, and {rc, ss, tg, cw}. This property can
be exploited to reduce the number of arcs in a visual display by introducing a nexus point for each

clique with more than two elements (i.e., by linking each node to the nexus point only rather than
to all other nodes in the clique). This is illustrated in the following diagram; instead of six arcs,

there are four short arcs to the nexus.

This transformation is performed in two steps: the first converts a reflexive relation to a set

of cliques; the second introduces a nexus node for each clique. The first representation equivalence

for the first step of the transformation is:

<x, y> in So <=> ex(z) (z in Si & x in z & y in z & x ~= y).

This merely specifies that Si contains strongly connected subsets. In practice, S1 should consist

of maximal strongly connected subsets. In this case:

S 1 = {{fcr, cw), (cc, re, co, cw}, {rc, ss, tg, cw)}.

21



The second transformation step introduces the set of nexus points, N; one for each set in
S1 whose size is greater than 2.

x in SI <=> size(x) = 2 & ex(y, z) (x = {y, zi & <y, z> in S2)
or size(x) > 2 & ex(n)(n in N & x = {y I <n,x> in S2})

Let N = {nl, n2}, then:

S2 = (<fcr, cw>, <nl, fcc>, <nl, re>, <nl, co>, <nl, cw>,

<n2, rc>, <n2, ss>, <n2, tg>, <n2, cw>}.

Because links are used to represent the pairs, there is considerable freedom in laying out the
nodes. Here connectivity was used to provide extra grouping. This provides redundancy in the

display (connectivity is already represented by the links) which makes it easier for the user to see

the connectivity. The transformation used exploits repetitions in the elements of S1 (in this case

cw occurs in all three elements).

x in SI <=> ex(y, z) (<y, z> in S3 & x = y UJ z)

The equivalence justifies any splitting of the sets in Si, but it is used to factor out a

common subset; in this case {cw}:

S3 = {<{cw), {fcr}>, <{cw), {fcc, re, co}>,

<{cw}, {rc, ss, tg}>}.

The layout is a two-level process: the sets are laid out, then the elements are laid out within

the sets. This structuring reduces the combinatorics of the layout algorithm and produces a layout

that reflects more of the structure of the original relation. Figure 5 shows a display that satisfies

the above specification, with the non-singleton sets surrounded by dashed lines (these do not

appear in the actual presentation).

Containmnt Tree

If a map forms a tree, the map function can be shown visually by a "containment" relation

such as nested boxes, nested parentheses, etc. The key is that the contained items cannot be both

inside and outside the same object (this would be required if the graph were cyclical).

22



- - - -

Throttle L WCool
Grip

I de Stic Contro l

Controller WiringRO

ControlFC
Panel |'

I I

Figure 5. Sample Set Lyout.

Map Deco ostn

Many properties can be represented by the composition of two maps; for example, color
codings, an off-page pointer, and a plot chart. A map, h, can be represented by two other maps, f
and g, such that applying first g, then f, is equivalent to h; that is:

h(x) = f(g(x)).

C I I

Conroler

As an example, color codings can be represented as a composition of two maps. Suppose
the repair status of a component, such as "repaired" or "faulty," is to be communicated via
color coding. A component's status can be modeled by the function status, which maps a
component into either "repaired" or "faulty."

23



status = {I "FCR" -> "repaired", "Cool" -> "faulty" i}

To communicate this status map, the computer will color faulty objects red and repaired objects

blue. In addition, the legend or color-decoding map must be communicated to the viewer to

explain what each color indicates. More formally, the function status can then be stated as the
composition of two maps: object-to-color and color-to-status:

status(x) = color-to-status(object-to-color(x))

where object-to-color maps a faulty object to red and a repaired object to blue.

object-to-color = {I "FCR" -> blue, "Cool" -> red I)
color-to-status = {I red -> "faulty", blue -> "repaired" I

Shown as a diagram, this example is:

object-to-color color-to-status

The user can check the status of the board by using the object-to-color map. The user must note

the color of the board (in this example, red), then input that color to the color-to-status table to

obtain the status.

Thus far, this paper has described how the user interprets the maps on the screen; now,

consider how the maps are computed. First, a one-to-one correspondence is made between status
values and colors, giving the map the color-to-status introduced above and its inverse status-

to-color. The actual correspondence selected is not important for our purposes. Given this
inverse, object-to-color can be computed using the formula:

object-to-color(x) = status-to-color(status(x)).

24



Off-Page Pointers

In this section, off-page pointers are derived as another example of using map composition

to communicate graphically. Suppose a system-subsystem relation is represented visually as links

between the visual representation of systems and subsystems.

Each link is called a system-to-subsystem link. Now, assume there is insufficient space to show

all four levels of this tree. One solution is to use off-page pointers. Thus, the first part of the tree

would appear on the first page:

sstpter -- {See node 17, p. 31

and the remainder would appear on page 3:

{node 17)

An off-page or out-of-window pointer is formalized as a map decomposition. The

composition of two maps to represent system-to-subsystem may be defined as:

system-to-subsystem(x)

= label -to-subsystem(system-to-label(x))

where the map system-to-label maps a system to a label, and the map label-to-subsystem

maps the label to a subsystem. Then, an implementation must be selected for the two maps. In

the example above, the same visual representation was used (directed arcs) to represent the two

composed maps as was used to represent the original map.

Plot Chart

A plot chart exploits the two spatial dimensions of visual space to display a two argument

map: P X Q -> R. It is an example of map decomposition extended to two dimensions. P is

25



mapped to one dimension--say the x-dimension--and Q is mapped to the other--the y-dimension.

Then, for each pair <a, b> in the domain of the map (a in P and b in Q), the corresponding

map value is displayed at the position where the x-value is a and the y-value is b.

As an example, a plot chart display of the following set of pairs was derived. This is

considered a characteristic map.

S = <"1a",l"911>, <"b",""I>, <"b","2">,

<"of," to9f2" >, <tic"," 13" >9 <" d"," 1" I>}

The first step is to represent S as its characteristic map Sm:

x in S <=> Sm(x).

Thus:

Sm(<"fa","I">) = true, Sm(<"b","'">) = true, Sm(<"b","2">) = true,

Sm(<"",9"2">) = true, Sm(<"c","3">) = true, Sm(<"d","1">) = true

and Sm is false elsewhere.

Next, Sm was decomposed into two maps as in the previous sections:

Sm (<x, y>) = position-to-Boolean(pair-to-position(<x, y>))].

The key to plot chart derivation is to choose pair-to-position to be the pairing of the x-
position of the first argument and the y-position of the second argument:

pair-to-position(<x, y>) = <x-position(x), y-position(y)>.

Then, if the following relations are selected:

x-position("a") = 1, x-position("b") = 2, x-position("c") = 3,

x-position("d") = 4

y-position("1") = 2, y-position("2") = 1, y.position("3") = 0

26



it follows from the decomposition equation for Sm that:

position-to-Boolean(<l, 2>) = true,

position-to-Boolean(<2, 2>) = true,

position-to.Boolean(<2, 1>) = true,

position-to-Boolean(<3, 1>) = true,

position.to-Boolean(<3, 0>) = true,

position-to-Boolean(<4, 2>) = tru.'

and position-to-Boolean is false elsewhere.

There is still freedom in choosing the y-position of "a", "b", "C" and "d"; and the
x-position of "1", "2" and "3". Choosing a single y-position and a single x-position has

the desirable side effect of representing the sets {"a", "b", "c", "d") and ("1", "2", "3").
Choosing this single y-position to be 3 and this single x-position to be 1, and representing
true by x and false by an empty region, results in the following plot chart, where the bottom-left

corner has position <0, 0>.

a b c d

1 x x x
2 x x
3 x

VI. CONCLUSIONS

We have developed a formal framework for transforming objects into different

representations. The framework allows for a fine-grained control for the synthesis of graphics. It
also provides handles for the inclusion of human factors and interactive displays. The framework

employs a data language and a visual representation relation. The framework allows the
formalization of conditions for determining visual interference or visual ambiguity.

A major issue that was resolved is that the theory does scale up to multi-page diagrams.

The rules that were presented allow objects to be broken into sub-objects (to appear on separate

pages); distributed maps allow the sub-objects to retain their proper labeling.

27



This paper demonstrated how composite maps can model visual techniques, such as color

coding and off-page pointers, and described their use in deriving plot charts.

The refined theory of adjacency and connectedness clarifies and illustrates the inter-

relationships of tables and diagrams. This theory will also lead to a more seamless integration of

table-like and diagram-like entities. The table derivations also allow better handles on rows,

columns, and headings.

Our formalization provides a deterministic procedure for interpreting displays relationally,

but a highly non-deterministic procedure for generating displays from relational data. Methods for

controlling this non-determinism must be examined. In particular, a criterion needs to be

incorporated for determining which displays are good, such as a cost function.

28



REFERENCES

Bertin, J. (1983). Semiology of graphics. Milwaukee, WS: University of Wisconsin Press.

MacKinlay, J. (1986). Automating the design of graphical presentations of relational

information. ACM Transactions on Graphics, 5 (4), 110-141.

Westfold, S. J., Green, C. C., & Zimmerman, D. L. (1990). Automated design of displays for

technial dat (AFHRL-TP-90-66). Wright-Patterson AFB, OH: Logistics and Human

Factors Division, Air Force Human Resources Laboratory.

29


