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ABSTRACT

The Tropospheric Electromagnetic Parabolic Equation Routine (TEMPER)
being developed by the Fleet Systems Department at the Applied Physics
Laboratory has proven to be a useful tool in predicting low-altitude radar
propagation. A marching procedure is used to step the field through what has been
assumed to be a deterministic spatially varying index of refraction profile. In an
actual environment, small-scale random fluctuations from atmospheric turbulence
are superimposed on the deterministic profile. In this report, a method for
coupling random refractivity fluctuations into TEMPER is proposed and tested
numerically. Three-dimensional spectral models from the atmospheric literature are
used to derive the one-dimensional transverse spectra of refractivity necessary for
parabolic simulations. Realizations consistent with the spectra are generated using
filtered white noise. Propagation studies are conducted for the canonical problem
of a plane wave transmitted through homogeneous isotropic turbulence. Good
agreement is observed between the rumerical results and existing theory for the
second moment of the scattered field. However, the agreement is less geod for
predicting the random fluctuations in the log-amplitude of the field as three-
dimensional effects become significant. Methods for simulating inhomogeneous
boundary layer turbulence are considered. The limits of spectral modeling for
simulating turbulence are discussed.
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1. INTRODUCTION AND OVERVIEW

The Tropospheric Electromagnetic Parabolic Equation Routine (TEMPER) has
proven to be a useful computational tool for modeling propagation through the
troposphere. The routine uses a scalar paraxial approximation to the vector
electromagnetic wave equation. The resulting equation can be solved by a
marching procedure; given an initial field distribution and a description of the
medium, the vertical field distribution can be calculated at arbitrary range. Standard
atmospheric models or experimentally derived data are used to quantify the
macroscopic features of the index of refraction. When sufficient atmospheric data
are available, TEMPER yields generally good agrecrzent with field experiments.
(Dockery t and Kuttler and Dockery,2 and the references therein, provide a more
detailed discussion of this method.)

In the actual atmosphere, small-scale fluctuations in the index of refraction are
superimposed upon the large-scale features. These fluctuations are random and
highly chaotic and are caused by atmospheric turbulence. Since the physical scale
of the turbulence can range from perhaps 100 m to as little as 1 mm, it is clearly
impractical to conduct environmental measurements with sufficient resolution to
characterize completely a medium that might extend for many kilometers.
Although the magnitude of these perturbations may be small, they can serve to
focus and defocus the propagating field. At sufficiently long ranges, the
cumulative effect can be significant. Consequently, it is desirable to include the
statistical nature of these random perturbations in the propagation model.

This report summarizes the progress to date of an ongoing effort to incorporate
random refractivity fluctuations in TEMPER. In the proposed approach,
appropriate spectral models for the surface layer turbulence are developed.
Individual realizations consistent with the desired spectrum are generated
numerically. The field is then propagated through the medium using the parabolic
equation/split-step algorithm. By averaging across an ensemble of realizations, the
statistical properties of the propagated field are estimated. The numerical
simulations presented in this report display excellent agreement with existing
theoretical expressions for canonical wave propagation problems. These solutions
provide a benchmark for evaluating the numerical algorithm.

Although the parabolic equation method has been widely used in optics and
acoustics to study wave propagation through random media, electromagnetic
propagation through the troposphere presents a unique set of problems. Unlike the
situations typically encountered in optics and acoustics, electromagnetic
propagaion is usually governed by weak scattering theory. This difference in
theoretic;i approach affects the statistical quantities that are estimated in the
numerica simulations. Unlike the spectra in analogous ocean acoustics problems,
multidim,;nsional spectral representations for atmospheric turbulence are not
separable into the products of simple, one-dimensional spectra. In addition, unlike

1G. D. Dockery, Description and Validation of the Electromagnetic Parabolic
Equation Propagation Model (EMPE), JHU/APL FS-87-152, Applied Physics
Laboratory, Laurel, Md. (1987).

2j. R. Kuttler and G. D. Doikery, "Theoretical Description of the Parabolic
Approximation/Fourier Split-Step Method of Representing Electromagnetic
Propagation in the Atmosphere'," Radio Scri 26, 381-394 (1991)
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the homogeneous turbulence of the free atmosphere usually encountered in optics,
surface layer turbulence at low altitudes is inhomogeneous and possibly
anisotropic. These features and others have a significant effect on the way in
which turbulence is modeled and coupled into a parabolic equation routine.

Section 2 briefly reviews the properties of homogeneous isotropic turbulence
and the associated Kolmogorov spectrum. Existing statistical models for
atmospheric turbulence are described and modified spectra useful in wave
propagation studies are considered. The effects of the turbulent inner and outer
scales on the spectrum are noted. The structure constant of I.-mulence is related to
the macroscopic mean refractivity profile. The height-dependent nature of the
turbulence for low altitudes is modeled, and the profile used by Levy and Craig 3 in
their parabolic equation simulations is pre, ented as a numerical example. The
advantages and limitations of spectral modeling for simulating turbulence are
discussed.

Section 3 begins by reviewing the classical theories for wave propagation
through random media. Both weak and strong scattering theories are discussed.
Whereas strong scattering theory is concerned with the statistical moments of the
total field, weak scattering theory typically deals with the moments of either the
log-amplitude or phase of the field. Existing results for plane wave and point
source propagation are summarized. The validity of using two-dimensional
simulations such as TEMPER to model three-dimensional propagation through a
random medium is studied for a plane wave. It is shown that although two-
dimensional modeling often suffices for calculating the moments of the field, it
may be inadequate for calculating the log-amplitude fluctuations. A numerical
example is given, illustrating the differences between two- and three-dimensional
propagation.

Section 4 details how random fluctuations can be included in TEMPER. The
transverse spectrum is shown to be the necessary statistical quantity for describing
the medium. Analytical expressions for the transverse spectrum of turbulence are
derived and presented in terms of special mathematical functions. Simplified
expressions valid at microwave frequencies are then deduced and compared to those
of Levy and Craig.3 Numerical realizations of the transverse process are generated
and the multiscale properties of turbulence are observed. Results of preliminary
wave propagation studies are presented. The three-dimensional effects in the log-
amplitude fluctuations predicted in section 3 are confirmed by numerical experi-
ments. Good agreement with three-dimensional theory is obtained for the second
moment of the scattered field.

Finally, section 5 summarizes the main results of this study. A program for
upgrading TEMPER by including random refractivity fluctuations is proposed.

3M. F. Levy and K. H. Craig, "Millimetre-Wave Propagation in the Evaporation
Duct," in Atmospheric Propagation in the UV, Visible, IR and MM-Wave Region
and Related Systems Aspects, AGARD Conf. Proc 454, Neuilly-sur-Seine, France,
pp. 26.1-26.10 (199).
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2. STATISTICAL MODELS FOR ATMOSPHERIC
TURBULENCE

In contrast to steady laminar flow, turbulence is chaotic and characterized by
random, highly rotational motion. Atmospheric parameters such as wind speed,
temperature, humidity, and pressure can all exhibit turbulent fluctuations. Since
some of these quantities determine the index of refraction, an electromagnetic wave
propagating through a turbulent medium will also acquire random variations. To
predict the statistical nature of the field fluctuations, it is necessary to describe the
statistical properties of the medium through which it propagates.

This section will emphasize the use of existing spectral models for turbulent
fluctuations in the index of refraction. The spectral modeling approach is attractive
for several reasons. For the theorist, existing wave propagation theories are
usually formulated in terms of the spectrum of the random medium. For the
experimentalist, spectra can often be quantified by a limited number of observable
parameters. Spectral models are also easy to implement numerically; to simulate
realizations of an assumed Gaussian random process, all that is required is a random
number generator and a fast Fourier transform (FFT) routine. The approach can be
adapted to temporal spectra and to spatial spectra of any number of dimensions.
Finally, of particular relevance to upgrading TEMPER, the spectral approach has
already been extensively applied in conjunction with the split-step algorithm to
study acoustic propagation through a random ocean.

2.1 LOCALLY HOMOGENEOUS ISOTROPIC TURBULENCE

Turbulence is a cascade process whereby large-scale eddies are broken into
successively smaller sizes until they are eventually dissipated in the form of heat.
The outer scale, Lo, for turbulence in the free atmosphere typically ranges from 10
tu 100 m. The inner scale, to, also called the Kolmogorov microscale, is on the
order of millimeters or centimeters. Eddies larger than Lo feed energy into the
turbulence. Between the two extremes, the eddies are said to be in the inertial
subr.,-ge, where the kinetic energy of the eddies dominates the dissipativeo effects.
Structures less than to are quickly dissipated owing to viscosity.

Fully developed turbulence is represented by the Kolmogorov spectrum. Since
fully developed turbulence is isotropic, the three-dimensional spectrum of the index
of refraction S, can be written as a function of a single variable K, where
K2  k2 +k2 :nd k ,ky, and k represent the spatial frequency components
in the different directions. As shown in Figure 2.1, the spectrum can be divided
into three regimes. No general expression applies for spatial frequencies
0 < K < 2r/ Lo, where energy is input into the turbulence. Within the inertial
subrange 21r / L0 < K < 2yr / to, the spectrum is described by a power law and goes
like K- 1 U3. In the dissipation range, the spectrum falls rapidly to zero.

In practice, meteorological parameters are often measured as a function of a
single spatial variable from which one-dimensional spectra V(K) are estimated.
Since for an isotropic process the three-dimensional spectrum is also a function of
a single variable, the two spectra for the refractive index n are related by (see Ref.
4, p. 517)

4A. Ishirnaru, Wave Propagation and Scattering in Random Media, Academic Press,
New York (1978).
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S'nputInertial subrange Dissipation
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.....!'.... ..... I...... .... 'i1.. I

2 Lo 2x/1 0  I
Log Frequency

Figure 2.1 Kolmogorov spectrum for turbulence. Spatial frequencies 0 < K <
21vLo, where Lo is the outer scale, constitute the energy input region. No general
form for the spectrum exists in this range. The inertial subrange is bounded by
21rILo <K<21rto, where to is the inner scale of the turbulence. Within this
region, the three-dimensional spectrum is proportional to K- 1113. The spectrum
rapidly decreases in the dissipation region, whera K > 27r/o. 1
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S.(K= '- a ffj(2.1)

Consequently, V. is proportional to K-513 in the inertial subrange. The transverse
spectrum, which is also one-dimensional but obeys a different power law, is
defined in section 4.1. It will be shown that the transverse spectrum and not V,(K)
is of relevance for including turbulent fluctuations in TEMPER simulations.

Usually, a spectrum is related to a correlation function by a Fourier transform
pair through the Wiener-Khinchin theorem. For this transform pair to exist, the
process must be statistically homogeneous. Statistical homogeneity is an

extension of the familiar time series concept of wide sense stationarity to multiple
spatial dimensions. 5 A statistically homogeneous process will have a constant
mean and its autocorrelation will depend only on the distance between the points
being correlated and not on the absolute position. Unfortunately, atmospheric
turbulence is not statistically homogeneous, since both of the mean characteristics
will fluctuate in space and the correlation function will depend on position. The
lack of homogeneity is reflected in the Fourier domain by the spectrum being
undefined for frequencies 0 < K < 2r/Lo. To circumvent these difficulties,
Kolmogorov extended the concept of stationarity to define a process that is locally
homogeneous. He noticed that although the wind velocity is not homogeneous,
the difference between the wind velocities taken at points less than LO apart wili
behave like a homogeneous process. This locally homogeneous process is called a
structure function. Denoting the three-dimensional position vector by r, the
structure function D,, of the index of refraction is

where the angle brackets indicate an ensemble average. If the process is also
isotropic, then D, = D(r), where r = Irl. For an isotropic, locally homogeneous
Kolmogorov process, the structure function is given by

D, (r) = CnrA for Lo >> r >> to (2.3a)

D,,(r)=C=,23 (r/o)2  for r <<t o  (2.3b)

where Cn is the structure constant. Equation 2.3a is a statement of the well-known
"Kolmogorov two-thirds law" that permeates the turbulence literature. The
structure function is not explicitly defined for distances greater than Lo, which acts
like the correlation length of the medium. For distances greater than the

correlation length, however, n(rl+r) and n(ri) in Equation 2.2 will become

5A. J. Devaney, "The Inverse Problem for Random Sources," J Math Phys. 20,
1687-1691 (1979).
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essentially uncorrelated and the structure function will become related to the
variance of the process. Finally, the structure function of an isotropic process is
related to the spectrum by

D, (r) = 87r7To [I - (Kr) - 1 sin(Kr)]S n (K)K2 dK (2.4)

(see Ref. 4, p. 524). Note from Equation 2.4 that spatial frequencies K < 21r/Lo
make minimal contributions to the integration for r << 4 and reasonable spectra;
consequently, the structure function and the spectrum can be related by a transformpair even when S, is not well known for low frequencies.

2.2 MODIFIED SPECTRAL REPRESENTATIONS

Figure 2.1 shows three separate spectral regimes for turbulence with the energy
input regime undefined. For mathematical convenience, it is often useful in wave
propagation theory to assign a spectral shape to the input regime and then to
combine all three regimes into a single function. The resulting expression is the
so-called von Karman spectrum (see Ref. 4, p. 337, and Ref. 6, p. 5),

S, (K) = 0.O33C,'(K2 + L 2 )-1116 exp(-K 2 / K' ), (2.5)

where K, = 5.92 /to. Equation 2.5 must be considered an approximate
representation of turbulence, since the spectral shape for low frequencies is
unknown. The von Karman spectrum is a well behaved function that has a
conventional inverse Fourier transform and hence a function that can be interpreted
as the autocorrelation; the von Karman spectrum consequently can describe a
process that is bcth locally homogeneous and statistically homogeneous. These
distinctions between locally homogeneous and statistically homogeneous processes
are subtle and are discussed in further detail by Ishimaru4 and Tatarskii. 7 The main
point is that if the von Karman spectrum is used in any wave propagation analysis,
the resulting solutions for the statistics of the field are at best reliable only for
correlation distaces less than the outer scale of the medium.,

Kolmogorov's original insights were based on dimensional analysis and the
assumption that the turbulence is isotropic. For well developed turbulence far
fiom any boundaries, the isotropic assumption is usually valid. At low altitudes,
however, turbulence becomes anisotropic. For example, as mentioned in section
1, a typical value for the outer scale in free turbuleaice is 100 m. At altitudes less
than 100 r., the horizontal outer scale might remain unchanged, but the vertical
correlatio,, scale must be reduced. The Kolmogorov spectrum can be modified to
model an anisotropic process yielding (Ref. 4, p. 339)

6B. J. Uscinski, The Elements of Wave Propagation in Random Media, McGraw,
Hill, New York (1978).

7V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation,
Keter Press, Jerusalem (1971).
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S (k,,,ky,k,)= O.O33C2(k.21 2 +k,21 k (2.6)

where 1X, ly, and 4, are the outer scales in the three directions. The lowest 100
m of the atmospheric boundary layer, where turbulence is often anisotropic, is
called the surface layer.8'9 Equation 2.6 is valid in the inertial subrange.
Presumably, some hybrid of Equations 2.5 and 2.6 could be developed to yield a
complete spectral representation of anisotropic surface layer turbulence.

For simplicity, the isotropic model of Equation 2.5 will be used in the majority
of this report. This is done with the understanding that a parallel development is
possible for the anisotropic model should it prove necessary.

A further complicating factor is that the "structure constant" C, is, in fact, not
constant for altitudes in the surface layer. This is discussed in further detail in
section 2.3.

2.3 STRUCTURE CONSTANT AND SURFACE
LAYER TURBULENCE

The structure constant C, determines the strength of the turbulence. In the free
atmosphere, it ranges typically between 10- 7 rn-1 3 for strong turbulence and 10-9

m- 1/3 for weak fluctuations. If the turbulence is approximated by a homogeneous
process by assuming the von Karman spectrum, C, can be related to the variance
of the randu;m part of the index refraction fluctuations < n > and the outer scale
(Ref. 4, p. 543):

C =1.91(n2)CI (27

Clearly, the numerical determination of the structure constant for a given wave
propagation problem is of crucial importance; as will be shown in a later section,
the solution for the electromagnetic field fluctuations will be specified in terms of
C,2 . One approach to calculating C2 begins by specifying the index of refraction
in terms of the measurable meteorological parameters. A standard expression for
the microwave index of refraction is

n - I = 7. 6 (P + 4810e / T) x 10-6 , (2.8)

where T is the temperature in degrees Kelvin, P is the pressure in milhbars, and e
is the water vapor pressure in millibars. Rather than use the index of refraction,
meteorologists prefer to use the potential index of refraction and write an analogous
expression in terms of the potential temperature and the potential vapor pressure

8H. A. Panofsky and J. A. Dutton, Atmospheric Turbulence Models and Methods
for Engineering Applications, John Wiley and Sons, New York (1984).

9Z. Sorbjan, Structure of the Atmospheric Boundary Layer, Prentice Hall, Engle-
wood Cliffs, N. J. (1989).

13



(specific humidity). 10 These potential functions are called conservative passive
additives. Unlike T and e, a volume element of a conservative passive additive
preserves its value as it moves through space, and it does not exchange energy with
the turbulence. If we are only interested in refractivity at a constant height, no
distinction is necessary.11

The index of refraction is written as the sum of a mean deterministic part <n>
that may vary slowly in height and range owing to atmospheric stratification, and
by a small, randomly fluctuating part nj due to turbulence. By expanding Equa-
tion 2.8, nf can be written in terms of small perturbations in temperature,
pressure, and humidity. The variance of the randomly fluctuating part of the index
of refraction can thus be expressed as a function of the variances of the individual
meteorological parameters along with certain cross terms that include coupling
between the atmospheric variables; for example, temperature and humidity
fluctuations are usually correlated. The result is an expression for C2 in terms of
the presumably measurable structure constants of the meteorological parameters;
various expressions are available in the literature.8 11.14 The relative importance
of the various terms depends on the atmospheric conditions, the altitude of interest,
and the frequency of the probing wave. The structure constant at optical
frequencies is primarily a function of temperature fluctuations, whereas in the
microwave range both the humidity and the coupling between temperature and
humidity must be censidered.

If the mean profile of the index of refraction is known (presumably by
measuring the atmospheric parameters), C,2 can be written in terms of the outer
scale of the turbulence and the gradient of the mean profile. Tatarskii7 gives

C' -= a2a'L4/3(d < n >/odZ) 2 , (2.9)

where z is the height and a' is a correction term. The constant a2 is taken to be a
"universal constant" but its precise value is not well known. Various estimates
place it between 1.5 and 3.5. For the atmospheric boundary layer, Sorbjan9 uses
1.6. Ishimaru4 follows Monin and Yaglom 15 and uses 2.8. In a series of papers,
Gossard11 , 12.16 uses 3.2. Panofsky and Dutton8 make no pretense of knowing
this "universal constant" to any more than one significant figure and use 3. The
correction term a' suggested by Tatarskii is invariably taken to be 1.

10D. E. Kerr (ed.), Propagation of Short Radio Waves, Dover, New York (1951).
11E. E. Gossard, "Clear Weather Meteorological Effects on Propagation at Fre-

quencies above 1 GHz," Radio Sci. 16, 589-608 (1981).
12E. E. Gossard, "Refractive Index Variation and lis Height Distribution in Different

Air Masses," Radio Sci. 12, 89-105 (1977).13S. D. Burk, "Temperature and Humidity Effects on Refractive Index Fluctuations in
Upper Regions of the Convective Boundary Layer," J. Appl. Meteorol. 20, 717-
721 (1981). 2

14 E. L. Andreas, "Estimating C2 Over Snow and Sea Ict fron Meteorological Data,"
J. Opt. Soc Am. A. Opt Image Sci. 5, 481-495 (198,'

15A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, MIT Press, Cam-
bridge, Mass. (1971).

16E. E. Gossard, "The Height Distribution of Refractive Index Structure Parameter in
an Atmosphere Being Modified by Spatial Transition at Its Lower Boundary,"
Radio Sci. 13, 489-500 (1978).
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Even if the mean profile is well known and a reasonable va!ue for a2 is selected,
it is still difficult to calculate C,2 by means of Equation 2.9, owing to its
dependence on the outer scale Lo. As noted by Van Zandt et al., 17 the outer scale
is notoriously difficult to measure, although the outer scale for turbulence in the
free atmosphere is usually taken to be between 10 and 100 m. By examining the
backscatter from free atmosphere turbulence, Van Zandt estimated that, on average,
Lo= 10 m.

For altitudes less than about 100 m, the turbulence can no longer be assumed to
be locally homogeneous and isotropic. A first-order expression for the outer scale
as a function of height z is

-kz3/2 - 1/ 4  (.0
4L =kaZ0 3 1 ot 4  (2.10)

where ka is von Karman's constant, 0 is the normalized wind sheer, and 0. is the
normalized dissipation. The von Karman constant is traditionally taken to be 0.4,
with values measured in the wind tunnel and the atmosphere ranging from 0.35 to
0.43 (see Ref. 8, p. 122, and Ref. 9, p. 73). For a neutral atmosphere, the
normalized parameters are equal to 1, Panofsky and Dutton8 give formulas for the
parameters in both stable and unstable conditions. Combining Equations 2.9 and
2.10 and setting a'= 1 yields the structure constant in the boundary layer:

C2 = a2 (kaZ) 413 0-20-1/3(d < n > /dz) 2 . (2.11)

2.4 NUMERICAL EXAMPLE: PROFILE OF LEVY
AND CRAIG

The ultimate goal of this study is to generate numerical realizations of
atmospheric turbulence and then do wave propagation studies using the parabolic
equation. A similar study was attempted by Levy and Craig.3 In order to
eventually compare numerical results, we now calculate the structure constant for
the index of refraction profile used in their study.

Referencing a report by Battaglia, 18 and after converting from modified
refractivity to the index of refraction, Levy and Craig use as their profile

<n(z) > -1 = 10-6(a - 106/ a) z - adl0- 6 log(z ), (2.12)

where ac is the radius of the Earth and 106/ac = 0.157 n-1, a is approximately
0.120 M-units per meter for standard conditions, d is the duct height, and zo is the

17T. E. Van Zandt, J. L. Green, K S. Gage, and W. L. Clark, "Vertical Profiles of
Refractivity Turbulence Structure Constant- Comparison of Observations by the
Sunset Radar with a New Theoretical Model," Radio Sci 13, 819-829 (1978).

iM. R Battaglia, Modelling the Radar Evaporative Duct, Department of Defence,
Defence Science and Technology, RAN Research Laboratory, Australia (19,15).
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"momentum roughness length." Levy and Craig set a numerical value zo = 1.5 x
10- 4 m, which is consistent with a calm open sea. (Panofsky and Dutton have
tabulated values of zo for various sea states and terrains [see Ref. 8, p. 123].)
Taking the derivative of Equation 2.12 and substituting the numerical constants
yields

d <n>[ .120d _ 0.037 10-6,. (2.13)

assuming a natural logarithm in Equation 2.12. Substituting Equation 2.13 into
Equation 2.11 gives the structure function. For heights zo << z < d, zo and the
height-independent part of Equation 2.13 can be neglected. Setting I = = 1
yields

C2 (z) = a2k413 (0.120d) 2 Z-21310-12, (2.14)

which agrees with the corrected equation given by Levy and Craig. (Levy and
Craig erroneously neglect the factor 10-12 in their equation, but include it in their
subsequent figures.) Equation 2.14 shows the familiar z- 2/3 dependence
characteristic of the atmospheric surface layer. 14 Clearly, however, Equation 2.14
is valid only over a limited regime; near the surface, zo becomes important to avoid
the singularity at z = 0, and for z 5 d the constant part of Equation 2.13 should be
included.

Although Levy and Craig present plots of the transmission loss versus height
and range only up to 20 m, it is interesting to consider the behavior of the
structure constant at higher altitudes outside the surface area. Above the boundary
layer, the outer scale is approximately constant for z >> d and Equation 2.9 reduces
to

C2 = (2.8)L413 (0. 037)210 - 12. (2.15)

Equating Equations 2.7 and 2.15 relates the variance of the medium to the outer
scale:

(n') = 2.0× 10-1 (2.16)

A typical value of the variance is 10-12, which gives an outer scale of 22 m and is
within the range of acceptable values.
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2.5 LIMITS OF SPECTRAL MODELING

As discussed in section 2, the spectral modeling approach for generating
numerical realizations of turbulence has a number of attractive features. It has also
been the traditional method used in conjunction with the parabolic equation. 19 It is
not, however, without certain drawbacks and limitations. These limitations and
prospective alternative approaches are considered in the discussion that follows.

In the proposed spectral approach for generating realizations, a Gaussian white
noise process is first generated using a random number generator. The resulting
process is then filtered in accordance with the desired spectrum to yield a Gaussian
process. The details of this procedure are given in Appendix A. It is well known
from probability theory that a Gaussian process is completely characterized by its
second moment and associated spectrum. 20 Consequently, when used with the
parabolic equation method, this should produce reasonable results for the second-
order statistics of the propagating field.

Unfortunately, atmospheric turbulence is typically an intermittent phenomena
obeying non-Gaussian statistics; areas of strong turbulence may be surrounded by
quiescent regions. Incorporating these features in a model could be crucial if the
objective of a numerical study is to identify potentially catastrophic events and to
assign a probability to their occurrence. Intermittency is primarily a factor at
higher altitudes outside the surface layer, 8 but it can, to a lesser extent, also occur
at lower altitudes. Although filtered whitc noise models, as noted by Panofsky and
Dutton, produce the correct average results, they are incapable of simulating these
low-probability events.

A possible alternative to spectral modeling is the so-called full simulation
method (see Ref. 9, pp. 159-161). In this approach, the underlying Navier-Stokes
equations that describe the dynamics of the turbulence are solved for quantities like
temperature and pressure. Using Equation 2.8 or a similar expression, these
parameters are converted to an index of refraction. The electromagnetic propagation
can then be simulated using the parabolic equation. This approach was used by
Rouseff et al. 21 to study the effects of oceanic microstructure on acoustic
propagation over short ranges. Although the entire procedure was conceptually
complete, it is likely to be impractical for large-scale atmospheric simulations.
The inner and outer scales of turbulence differ by perhaps five orders of magnitude;
to simulate the entire medium with the necessary resolution out to ranges on the
order of tens of kilometers would be computationally prohibitive. The increased
availability of super computing technology may make this approach more
attractive in the future.

Wave propagation theories for random media have traditionally been formulated
in terms of the spectrum of the medium. More recently, research has started to

19C. Macaskill and T. E. Ewart, "Computer Simulation of Two-Dimensional Random
Wave Propagation," IMA J. Appl. Math. 33, 1-15 (1984).

20A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-
Hill, New York (1984).2 1D. Rouseff, K. B. Winters, and T. E. Ewart, "Reconstruction of Oceanic Micro-
structure by Tomography," J. Geophys. Res. 96, 8823-8834 (1991).
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focus on calculating the probability distribution of the field.2 3 As these theories
become more fully developed, it is possible that they could be used to assign
probabilities of occurrence to abnormal events.

A new approach using fractals also has some potential for modeling turbulence.
Kim and Jaggard24 used fractals to simulate events exhibiting both turbulence-like
spectra and intermittency. Jaggard25 developed analytical solutions for optical
propagation through a succession of fractal phase screens. Because of the close
parallels between propagation through phase screens and what is actually
implemented in a parabolic equation routine (see section 4.1), it seems likely that
fractal phase screens could be used in TEMPER. It appears unlikely, however, that
fractal phase screens could be generated using efficient numerical techniques like
the FFT.

To summarize, spectral models are relatively easy to implement and have
traditionally been used in conjunction with the parabolic equation method. Useful
results have long been obtained in ocean acoustics applications. Spectral modeling
can be a fruitful approach if the objective of a numerical study is to calculate the
average fluctuations in the field caused by randomness. The method cannot,
however, be used to simulate low-probability events.

22T. E. Ewart. "A Model of the Intensity Probability Distribution for Wave Propa-
gation in Random Media," J. Acoust. Soc. Am. 86, 1490-1498 (1989).

23E. Jakeman, "Scattering by Gamma-Distributed Phase Screens," Waves in Random
Media 2, 153-167 (1991).

24Y. Kim and D. L. Jaggard, "Band-Limited Fractal Model of Atmospheric Re-
fractivity Fluctuation," J. Opt. Soc. Am. A: Opt. Image Sci. 5, 475-481 (1988).

25D. L. laggard, "On Fractal Electrodynamics," in Recent Advances in Electro-
magnetic Theory, H. N. Kritikos and D. L. laggard (ed.), Springer-Verlag, New
York (1991).
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3. THEORETICAL SOLUTIONS FOR PROPAGATION
THROUGH RANDOM MEDIA

Tractable analytical solutions for predicting the statistical properties of an
electromagnetic wave propagating through a random medium are available only for
certain idealized source configurations such as a plane wave or a point source.
These solutions usually neglect both deterministic index of refraction profiles and
the interaction of the field with any boundaries. To solve these more difficult
problems, numerical techniques such as the parabolic equation method are
necessary. For two important reasons, however, it is still crucial to consider the
analytical solutions, despite their limited applicability. First, the solutions for the
canonical problems provide a benchmark for testing numerical algorithms.
Second, the analytical solutions provide insight as to how three-dimensional
turbulent fluctuations should be modeled for inclusion in two-dimensional
numerical simulations.

Fundamentally, TEMPER solves a two-dimensional wave propagation
problem. This two-dimensional problem is interpreted as representing a cross-
sectional slice of the true three-dimensional reality, which is reasonable for
propagation through deterministic media that are varying in a scale very large
compared to the wavelength. Random turbulent fluctuations, however, can vary on
scales as small as a millimeter. Consequently, the relationship between the two-
and three-dimensional problems is no longer clear. In section 3.4, this relationship
is examined in detail for plane wave propagation. If the statistical quantity of
interest is the second moment of the field, then the two-dimensional result
accurately predicts the cross-sectional behavior of the true three-dimensional
problem. Two-dimensional simulations cannot, however, accurately predict the
true log-amplitude fluctuations except in the very far field.

3.1 STRONG AND WEAK SCATTERING THEORIES

First, neglect atmospheric ducting and sea surface interaction and consider the
idealized problem of a wave propagating through a medium characterized by small
random fluctuations in its index of refraction. After propagating a short distance,
the wavefront will start to acquire small deviations from its expected value owing
to the randomness. The total field can be interpreted as the original coherent wave
front plus a small random incoherent component. At greater distances, the
cumulative effect of the random scattering will produce fluctuations on the same
order as the original signal. Finally, at still greater ranges, the random component
completely dominates and the field is essentially incoherent.

The theoretical approach used to calculate the statistical properties of the
propagating wave depends on the range of interest. At sufficiently short ranges,
where the contribution due to randomness is small, weak scattering theory is
applicable. Weak scattering theory uses either the Born or the Rytov
approximation to model the propagating field within the medium. For forward
propagation through smoothly fluctuating media, the Rytov approximation is
generally regarded as superior. If the scattering is sufficiently weak, there is no
practical difference between the two approximations. At longer ranges, where the
incoherent component of the field is large, strong scattering theory is required. In
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this approach, partial differential equations are derived to describe the first, second,
and higher moments of the total field. Beyond the second moment, numerical
techniques are generally necessary to solve the equations approximately; this is the
subject of active research.

Microwave propagation through a random medium differs from the analogous
optical and ocean acoustic scattering problems in that most practical problems can
be modeled by weak scattering theory.. Figure 3.1 shows the rough regions of
validity of the alternate theoretical approaches for plane wave propagation through
a strongly turbulent atmosphere. At optical frequencies, strong scattering theory is
necessary beyond about 1 km., At a frequency of 10 GHz, however, weak
scattering is valid to a height of roughly 1000 km. Consequently, weak scattering
theory will be emphasized in this analysis. It can be shown that strong scattering
theory produces expressions that are consistent with weak scattering predictions in
the appropriate limiting cases and for the appropriate statistical quantities.

Weak scattering theory gives integral expressions for various statistics of the
field in terms of the fluctuations of the medium. The approach used to solve the
integrals depends on the frequency and range of interest, and also on the scale of the
irregularities. As noted in section 2, turbulence is characterized by an inner scale
to and an outer scale L0. Figure 3.1 shows the subregions of weak scattering for
various values of to and Lo. Consider a range L and an illuminating wavelength
X. If L << 2 / A, the Rytov integral is approximated using geometric optics; for
microwave frequencies, this region is of little practical interest. For ranges
0i / X << L <</4 / A, both tl.e inner and outer scales can affect the propagation

and the field is said to be in the diffraction (Fresnel) regime. (A note of caution is
in order. The phrase "diffraction regime" is used here differently than in radar work,
where it commonly refers to over-the-horizon propagation. 1) Finally, for
L >>/ /, the Rytov integral is well approximated using the far field or
Fraunhofer approximation.

Let the field at point r after propagating from the source through randomness be
given by U(r) = A(r) exp '(iPr)]. Designate the field that would exist at the same
point, coming from the same source but without randomness, as Uo(r) =
A0 exp [iPo(r)]. As noted earlier, weak scattering theory gives expressions for
various statistical quantities. Amor.g these are the autocorrelation BX of the
normalized log-amplitude of the field and the autocorrelation Bp of the normalized
phase:

B, (rl,r 2 ) = (Z(rl)X(r 2)) (3.1a)

BP (rl , r2) = (P (r,)P (r2)), (3. lb)

where the angle brackets indicate an ensemble average and

20



1015 Geometric .

optics /
1014 r.egime J*s

i J+ Strong Scattering

103 / 4 
regime

1012 /•• , '

Diffraction
1011 Frsn)

• • regime o

C 1010

,. lo9
*. Fraunhofer

10 Z'.'* regime

108 ,, ,me

106t °,,
, * *

10-3 10-2 10-1 100 10' 102 103 104  101 106 101 108

Range (m)

Figure 3.1 Scattering regimes for a plane wave propagating through strong
turbulence. The negatively sloping shaded line indicates the break between strong
and weak scattering theories. Weak scattering, based on the Rytov
approximation, is further divided into the geometric optics, the diffraction, and the
Fraunhofer subregions. The broken lines between the weak scattering subregions
depend on the inner scale to and the outer scale Lo of the turbulence. The line
between strong and weak scattering is set where the variance of the field log-
amplitude fluctuations equals 0.2 (see Eq. 3.9) and the structure constant Cn for
turbulence is set to 10- 7.
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x(r) = In [A(r)/ Ao (r)] (3.2a)

P(r) = P(r)- Po (r). (3.2b)

The log-amplitude is frequently a quantity of interest for radar work. Since the
phase is related to the travel time of the wave, the phase fluctuations are often the
quantities of interest in ocean acoustics. The associated structure functions are
given by

D. (r, r2 )= ((rl)-Z(r 2I2) (3.3a)

Dp (rIr 2) = (Pi (ri)- (r2 A2). (3.3b)

Both the log-amplitude and the phase are quantities that are natural to calculate
within the Rytov approximation. Within the Born approximation, it is natural to
consider the scattered field

U, (r) = U(r) - Uo (r) (3.4)

with the associated autocorrelation

B,(r, ,r2) = (U(r)U(r2)). (3.5)

Although the log-amplitude and phase are both real functions of position, the
scattered field is complex. Note also that the mean incident field is subtracted from
the total in Equation 3.4 to yield the scattered field. Hence for weak scattering the
autocorrelation of the scattered field can be interpreted as the autocovariance of the
total.

Strong scattering theory produces expressions for the statistical moments of the
total complex field U(r) = A(r) exp[iP(r)]. Much of the current research
concentrates on solving for the fourth moment, which can be related to intensity
scintillation. For comparison with weak scattering theory, howevet, the secondmoment of the field will be emphasized at range L, defined by

r(x = L;yl,zi;y2 ,z2) = (U(x = L,yl,zl)U * (x = L, Y2 ,z2)) . (3.5)

Particularly in optics, the second moment is called the mutual coherence function.
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3.2 PLANE WAVE PROPAGATION

Consider the correlation of the field at points r1 and r2 at common range x, =
x2 = L. If the medium is statistically homogeneous, the field statistics will be a
function of the difference coordinates Yd = Yl- Y2 and zd = z - z2. The integral
expressions within the Rytov approximation are26

BX (L,yd,zd)= rk2LJ d5 E A, dkZS, (0, ky,kZ)cxp[-i(kyyd + kzZd)Ifz (),
(3.7a)

Bp (L, yd, Zd) = Irk2LF dk F dkzSn (0,ky,kZ)exp[-i(kyyd + kz zd)]fp(K),
(3.7b)

where k 2nr/ is the wave number, K = ky + kz , and S. is the three-

dimensional spectrum of the index of refraction. The functionsfz andfp are called
the spectral filter functions for the log-amplitude and phise, respectively, and are
given by

f( =I-iKL/k) (3.8a)

f/,(K) = I + sin(t2L/k) (.b
K2L/k .(.b

If the medium is also isotropic, single integr,l expressions are available (see Ref.,
4, p. 359).

For a turbulent medium within the Fresnel regime, 2 / X << L << X ., the
dominant contribution to the integration in Equation 3.7a comes from the inertial
subrange of the Kolmogorov spectrum and S, = 0.033K - 1 1/3 can be used for all Kc.
Evaluating at Yd = zd= 0 gives the variance of the log-amplitude (see Ref. 4, p.
370):

2  B,- (L, yd = Zd = 0) = 0.307C2k T1 6L 116 . (3.9)

Equation 3.9 was used to define the transition between weak and strong scattering
in Figure 3.1. Weak scattering theory can be used for 2 < 0.2-0.5. Within
the Fresnel regime, Equation 3.7a can also be approximated for arbitrary correlation
distance. The resulting expression is extremely cumbersome (see Ref. 4, p. 370).

The general expressions for the autocorrelations simplify considerably within
the Fraunhofer regime. Except for very small K, thc spectral filter functions of

26S. M. Rytov, Y A. Kravtsov, and V I. Tatarsku, Principles of Statistical
Radiophysics, Vol. 4, Springer-Verlag, New York (1989).
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Equation 3.7 are both approximately equal to 1 for the significant part of the
integration (see Ref. 4, p. 364, and Ref. 26, p. 57): 1

f =- f/, = I (Fraunhofer regime). (3.10)

Equation 3.7 can thus be approximated by

Bz = Bp E-k2LoBn(xd,yd,z)dxd, (3.11)

where it has been assumed that the autocorrelation of the medium exists.
Approximating the spectral filters by a constant simplifies the resulting integral

expressions for the log-amplitude and phase fluctuations. However, the
approximate expressions are only marginally useful for propagation through
turbulence. For example, consider a 3.3-GHz plane wave propagating through a
turbulent medium with an outer scale of 100 m. The Fraunhofer criterion is met
for ranges much greater than 110 km. For an outer scale of 10 m, the far field
applies at ranges much greater than 1.1 km.

For the scattered field, the autocorrelation is given by I
Bs(Lyd,Zd) = rk2Lr dk. c'*JdkZS, (0,kYkz)exp[-i(kyyd + kzZd)]fs(K),

(3.12a)

where f, the spectral filter for the scattered field, can be writte,, in terms of the
speztral filters for the log-amplitude and the phase:

f, = fX + fp = 2. (3.12b)

Note that the spectral filter for the scattered field is constant fcr arbitrary range.
This is in contrast to the log-amplitude and the phase, where the the associated
spectral filters are approximately constant only at very distant ranges. Assuming
the autocorrelation of the medium exists, Equation 3.12a can be rewritten as

Bs(L,Yd,zd)=2k2 LoBn (xd,Yd,zd)dd. (3.13)

Equation 3.13 will be used in section 4 to calculate the expected solutions to
which numerical simulations will be compared.

For strong scattering theory, the mutual coherence function is given by (see
Ref. 4, p. 414, and Ref. 6, p. 31)
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17= C, exp[-j2Dydzd)] (3.14)

where C, = 1 for a plane wave. D(yd,zd) is the wave structure function and is
related to the log-amplitude and phase structure functions used in Rytov theory (Eq.
3.2) by

D(yd,zd) = DZ(yd,zd)+ Dp(yd,zd)., (3.15)

By appropriate expansions, it can be shown than Equation 3.14 is consistent with
Equation 3.13 when IDI << 1.

Equation 3.14 is a typical strong scattering result. When the random fluctua-
tions in the index of refraction are assumed to occur about some deterministic mean
profile, the wave structure function can be written in terms of path integrals
through the medium. 27,28 Evaluation of these path integrals is the subject of
current research in the scattering community.

3.3 POINT SOURCE PROPAGATION

Point source illumination is another important geometry for which closed form
expressions are available. Because the numerical simulations in section 4
emphasize plane waves, only the primary point source results are summarized here.
(For greater detail, see Refs. 4 and 7.) In weak scattering, the derivation begins by
making the Rytov approximation to the scattering integral. A paraxial approxima-
tion is then made for both the incident field and the free space Green's function.
The variance of the normalized log-amplitude fluctuations for a turbulent medium
is given by (Ref. 4, p. 379)

2 = 0.124C'k716 , 11/6 , (3.16)

which can be compared to the analogous plane wave result in Equation 3.9.
For strong scattering, the mutual coherence is again given by Equation 3.14

with C, = L- 2.

3.4 RELATIONSHIP BETWEEN TWO. AND THREE.
DIMENSIONAL PROBLEMS

The parabolic equation/split-step algorithm as implemented in TEMPER solves
a two-dimcnsional propagation problem. The results are interpreted as representing
propagation in a vertical cross-section of the true three-dimensional geometry.

27S. M. Fiatt6, R. Dashen, W. H. Munk, K. M. Watson, and F. Zachariasen, Sound
Transmission Through a Fluctuating Ocean, Cambridge University Press, New York
(1979).

28S. M. Flatt6, "Wave Propagation through Random Media- Contributions from
Ocean Acoustics," Proc IEEE 71, 1267-1294 (1983).
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This is reasonable for propagation through a deterministic medium, since it is
typically fluctuating on a scale that is very large compared to the wavelength A and
out-of-plane scatter is small. It is not obvious, however, that this approximation
remains valid when random turbulent fluctuations are included. As noted in section
2.1, the inner scale of turbulence can be as little as a millimeter. Consequently, a
turbulent medium will contain fluctuations that are small compared to A at
microwave frequencies. In this section, theoretical solutions for the two-
dimensional problem that is actually simulated by TEMPER are considered. The
conditions under which the two-dimensional solutions might be legitimately
interpreted as representing a cross-section of the three-dimensional problem are
given.

Consider the statistics of the propagating field evaluated along a vertical line.
The weak scattering plane wave results given in Equations 3.7 and 3.12 can be
written in a compact notation as

BQ(L,Yd,Zd) = irk2L dkS(O,kyk,) exp[-i(kyYd + kzZd)]fQ(1),
F_! fm(3.17)

where Q can be X, P, or s to represent the log-amplitude, the phase, or the
scattered field, respectively. Following the derivation of Ishimaru, 4 it can be
shown that the same statistical quantities in the two-dimensional problem are
given by

B(2)(x = L,zd) = k2Lf dkzS(2)(k x = O,k ) exp(+ikzzd)fo(kz). (3.18)

Comparing the two expressions, we see that Equation 3.17 reduces to Equation
3.18 for any specual filter function fQ if the three-dimensional spectrum is of the
form I

S,(kx,ky,kz) = S(2)(k, kz)3(ky). (3.19) 1
Equation 3.19 states the trivial result that the three-dimensional problem reduces to
two dimensions if there is no variation in the transverse coordinate; this clearly is
not the case for atmospheric turbulence. As an alternative, we must design the
two-dimensional spectrum to mimic the three-dimensional fluctuations. The way
in which this is done will depend on the spectral filter function fQ. For the 1
scattered field, Q = s and the spectral filter is constant. Under these circumstances,
Equations 3.17 and 3.18 are equivalent at Yd = 0 if I

S2 ) =f

S)(,kz) L {ckyS(kx,ky,k,). (3.20)

Taking the inverse transform of Equation 3.20 relates the two autocorrelations
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B (2 (xd,zd)= B,.(xd,Yd = O,zd). (3.21)

Hence the two-dimensional random process is simply a cross-section of the three-
dimensional process evaluated along a vertical plane.

Equation 3.21 is a significant result; it implies that meaningful results can be
obtained from two-dimensional simulations. Further, it gives a simple
relationship between the three-dimensional statistics of the medium that are
measured and the two-dimensional statistics that will be used in the simulations.
This cross-sectional notion has been routinely used in numerical studies of strong
scattering phenomena.' 9 This analysis suggests that this assumption is also true
for weak scattering provided the statistical quantity of interest is the fluctuations of
the scattered field.

Mathematically, this dimensional simplification was possible because the
spectral filter for the scattered field is a constant. Except in the far field, however,
the spectral filter functions for the log-amplitude and the phase fluctuations are not
constant and the simple partitioning used above is not valid. At ranges in the
Fresnel regime, the oscillatory part of the spectral filters in Equation 3.8
contributes to the autocorrelation integrals. At distant ranges in the Fraunhofer
regime, the oscillatory contribution can be neglected, the spectral filters
approximated by constants (Eq. 3.10), and the cross-sectional assumption again
becomes reasonable.

To summarize, if the statistical quantity of interest is the autocorrelation of the
scattered field, then it is valid to simulate a cross-section of the three-dimensional
medium. The result holds for arbitrary range. In calculations of the log-amplitude
fluctuations or the phase fluctuations, however, the cross-sectional assumption is
approximately correct only in the far field.

To quantify the results of the preceding section, consider a medium characterized
by an isotropic Gaussian autocorrelation:

Bn(xd,Yd,Zd)= nexp[-(x2 + + z2)/12]. (3.22)

While the Gaussian spectrum does not represent any true medium, it is
mathematically more convenient to manipulate than the von Karman spectrum and
is adequate for this example. An expression for the variance of the log-amplitude
is given by Ref. 26 (p. 77). Converting to the notation used in this paper,

2 = _" fr2 k2 L 1o)l - D- tan-'(D)], (3.23)

where D = kL / (k t / 2)2. The first term inside the square brackets in Equation
3.23 is from the constant part of the spectral filter and is the far field (large D)
result. The second term, D- 1 tan-(D), is due to the oscillatory part of the spectral
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filter; it can be interpreted as the Fresnel (diffraction) correction. For ranges
L>> 12 /;L, that is, D >> 1, this term falls like D-1 .

A similar derivation is possible for a two-dimensional geometry. Evaluating
Equation 3.22 at Yd = 0 yields the two-dimensional autocorrelation. Taking the
Fourier transform yields the spectrum. The spectrum along with the log-amplitude
spectral filter (Eq. 3.8a) are substituted into Equation 3.18. With Zd = 0 and a
suitable change of variables, the resulting integral can be evaluated, 29 yielding

2 -1 2 -2 2)1/4 [ - l
~= n f kLo{1-2D-1 +oD)4s1n[. tan(D)J}. (3.24)

As expected, the first term, that is, the fta field Fraunhofer result, is equivalent in
the two expressions. Note, however, that the second term falls like D- 112 for
D >> 1 This is a significantly slower falloff than is observed for the three-
dimensional case; the two-dimensional case reaches the far field more slowly.

As a numerical example, consider the following typical values:

Frequency 3.3 GHz (k = 69.12 m-1)
Range 4.9 nautical miles (L = 9075 m)

Correlation length 10 feet (to = 3.04 m)
Variance of medium (72 = 10-12

D = (k L) / (k 0 /2) 2 = 56.8

Substituting into Equations 3.23 and 3.24 yields

Three-dimensions:
r2 -= r ar2 k2L 1o(l_ 0.027) = 11.36 x 10- 5 ,

Two-dimensions:

aC = f nk2 Lo(l-0.186)=9.5lx10-5 .

While the correction term in the three-dimensional case makes only a 2.7%
contribution, the corresponding term in two-dimensions contributes 18.6%. This
example suggests that the use of two-dimensional simulations to calculate the
three-dimensional log-amplitude fluctuations must be viewed skeptically.

291. S. Gradshteyn and I. M. Ryzhick, Tables of Integrals, Series and Products,

Academic Press, Orlando, Fla., p. 490 (1980).
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4. MODELING TURBULENT FLUCTUATIONS
IN TEMPER

Having developed the necessary background theory, we are now ready to
consider proposed methods for including turbulent refractive index fluctuation in
TEMPER.

As shown by Ko et al., 30 derivation of the electromagnetic parabolic equation
usually begins by assuming a sphericai coordinate system with the origin at the
center of an Earth of radius ae and a vertical electric (or magnetic) dipole source
located at r = ae +h and 0 = 0. In deriving the time-independent wave equation, all
derivatives with respect to the 0 coordinate are ignored. This is justified through
the rotational symmetry of the source and by assuming the medium is rotationally
symmetric about the source point. The problem is reduced to two dimensions and
through a conformal transformation it is written in pseudo-rectangular coordinates. 2

Some form of the parabolic approximation is then made to admit a marching
solution through the Fourier split-step method. Using this two-dimensional
assumption as a starting point, a method for including random fluctuations is
developed.

4.1 INCLUDING RANDOMNESS IN TEMPER

TEMPER solves the two-dimensional parabolic equation with height z and
range x. The field u at range x is propagated to x + & by the algorithm1

u(x + 3x,z)=-9. exp[iko(z)] { p exp(ipz) exp[ 2k]

dz'u(x z') exp(-ipz'), (4.1)

where k = 2r/A is the free space wavc number and exp[iko(z)] is the transmittance
function with

(z)= {x+ dx'[2(x",z) - 11+ ztx/ae, (4.2)

where n is the index of refraction.
The procedure can be summarized as follows: take the Fourier transform with

respect to height of the given initial field distribution, multiply by a propagation
filter, inverse transform, and finally multiply by a transmittance function that
represents the effects of the medium between x and x + 6x. The split-step
algorithm separates the propagation effects from the effects of the medium; the
field is propagated a distance dx as if through free space and then a posteriori
multiplied by the transmittance that modulates the phase of the field to account for

30H. W. Ko, J. W. Sari, and J. P. Skura, "Anomalous Microwave Propagation
through Atmospheric Ducts," Johns Hopkins APL Tech Dig. 4, 12-26 (1983)
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I
the integrated effects of the medium. In analogy with optics, the transmittance j
function is usually called a phase screen.

The index of refraction includes a deterministic, height-dependent mean profile
<n(z)> and a small randomly fluctuation part nf(x, z):

n(x, z) = 1+ < n(z) > +nf (x, z). (4.3) 1
The profile may be weakly range dependent, but for simplicity is assumed here to
be independent of x over the step size. Assuming I<n> + nfI << 1 and neglecting
second-order terms yields

(z) = [<.n > +z / a, ]3x + 0, (z), (4.4a)

where 01 represents the integrated random refractive index fluctuations,

x+6x01 (Z) = f dxnf (x', z). (4.4b)

The objective is to generate random realizations of 01 consistent with the
assumed statistics of nf. For this two-dimensional problem, the random part of the
refractive index is modeled as a zero mean, statistically homogeneous process with I
an autocorrelation function B(2)(xd, zd). It follows from Equation 4.4b that 01 is
zero mean, with autocorrelation given by

(0=Z 1(2 f dx, f. dx2 B. XlX24Zl-Z2)" (4.5)

Changing the integration variables to XS = (xI + x2)/2 and Xd = (xI - x2), and
assuming that the step size tx is large compared to the correlation length of the
medium, yields approximately

(01(zO0)1(z2)) -6xf_ ldXdB)(XZd)=Bt(zd), (4.6)

The quantity Bt is called the transverse autocorrelation and plays an important role
in strong scattering theory.6 With an eye toward eventual implementation in
Appendix A using the fast Fourier transform, we define the associated transverse
spectrum by

S1(k,) = dzdB(zd) exp(-ikzzd). (4.7)
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For consistency with the three-dimensional spectra used in section 2, the two-
dimensional spectrum of the medium is defined by

n(kx,kz) = (r f dd __~ ()x~dep[ikx~zd
(4.8)

Combining Equations 4.6-4.8 relates the transverse spectrum to the two-
dimensional spectrum of the medium

St (k..) = (2,r) 2 3x Sn2 )(k = 0, kz ). (4.9)

Realizations of 01 consistent with this transverse spectrum can be generated using
the algorithm in Appendix A. These fluctuations can then be included in the
marching algorithm of Equation 4.1 to simulate propagation through a single
realization of a random medium. The statistical properties of the propagating field
for any given realization can be estimated. As part of a Monte Carlo procedure, the
simulation can be repeated for many independent realizations. By averaging the
estimates, an overall estimate of the true ensemble characteristics is obtained.

One of the central assumptions of this derivation is that the step size 8x is
large compared to the outer scale of the medium Lo. With this assumption, the
phase screens at adjacent range steps are essentially uncorrelated and can be
generated independently. If 3x < Lo, then the individual screens are correlated and
the medium must be generated using a two-dimensional FFT routine. Spivak3t

has shown that if the objective of a numerical study is to predict the correct
ensemble statistics, then uncorrelated phase screens are adequate. Correlated screens
are necessary if the objective is to mimic the fine detail that would truly exist in
individual realizations. Correlated screens were also used by Rouseff and Porter32

to test stochastic inverse scattering algorithms. Since the generation of correlated
phase screens is much more computationally expensive, and since using filtered
white noise to model turbulence is at best valid only in an ensemble sense anyway
(section 2.5), uncorrelated screens will be used in this study.

The basic split-step algorithm of Equation 4.1 can be extended to three dimen-
sions. The one-dimensional forward and inverse transforms are replaced by two-
dimensional transforms along the transverse y-z plane. The dimensionality of the
phase screens is also increased. This approach was used by Martin and Flattd33 to
model optical propagation through turbulence. Unfortunately, adding the extra
dimension makes the problem very computationally intensive: Martin and Flattd
required a Cray super computer to implement their algorithm. As computer

3 1M. Spivack, "Accuracy of the Moments from Simulation of Waves in Random
Media," J. Opt Soc Am A 7, 790-793 (1990).

32D. Rouseff and R. P. Porter, "Diffraction Tomography and the Stochastic Inverse
Scattering Problem," J Acoust Soc. Am. 89, 1599-1605 (1991)

33j. M. Martin and S. M Flatt6, "Intensity Images and Staistics from Numerical
Simulation of Wave Propagation in 3-D Random Media," Appl Opt. 27, 2111-
2127 (1988)

31



technology improves, full three-dimensional simulations may become practical for
desk-top calculations. In the meantime, we are left with two-dimensional
numerical models that attempt to predict three-dimensional phenomena.

The relationship between the two- and three-dimensional problems was
discussed in section 3.4. If the quantity of interest is the scattered field, then at
least for plane wave propagation it suffices to simulate a two-dimensional cross-
section of the true three-dimensional medium. If the statistical quantity of interest
is the log-amplitude or phase fluctuations of the field, then other strategies for
simulating the medium must be developed. For simplicity, this preliminary
numerical study will concentrate on calculating the second moment. The two- and
three-dimensional spectra for the medium are related by Equation 3.20:

S(2)(kx,kz)= dkS.n(k.,ky,,k).

Combining Equations 3.20 and 4.9 relates the one-dimensional transverse spectrum
used in parabolic equation simulations to the three-dimensional spectrum of the
medium:

S, (k,) = (2 k)25x. d (4.10)

4.2 NUMERICAL EXAMPLE: PROPAGATION THROUGH
A GAUSSIAN SPECTRUM

As a numerical example, we consider plane wave propagation through a
medium described by a Gaussian spectrum. Although the Gaussian spectrum does
not describe an actual medium, its properties lead to both a simple expression for
the transverse spectrum and relatively rapid convergence in the Monte Carlo
simulations.

The autocorrelation for an isotropic Gaussian correlated medium is given by
Equation 3.22. The corresponding three-dimensional spectrum is easily calculated
and substitited into Equation 4.10 to yield the transverse spectrum.

In the simulations, a 3.3-GHz plane wave is assumed, with the same set of
parameters as used in section 3.4. The mediun, 9075 m in extent, was represented
by forty-nine equally spaced phase screens. In the vertical, a sampling interval of
0.2381 m was used with 1024 points.

The FFT routine of Press et al. 34 was used to implement the split-step
algorithm of Equaioi 4.1. The random number generator RAN1 developed by
Press e( al. was used In the random phase model of Appendix A to produce the
phase screens. T.- autocorrelation of the log-arziplitude, the phase, and the
scattered field of each realization was estimated using a standard unbiased
estimator. 35 The procedure was repeated for 250 independent realizations; the

34W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes, Cambridge University Press, Cambridge, England (1986).

35A. V. Oppenheim and R. V. Schafer, Digital Signal Processing, Prentice-Hall,

Englewood Cliffs, N. J. (1975).
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resulting averaged estimates and the theoretical prediction are plotted in Figure 4.1.
The autocorrelation of the scattered field displays excellent agreement with the
theoretical result calculated via Equation 3.13. At zero lag, the observed variance
of the log-amplitude fluctuation is 9.56 x 10-5, which is in good agreement with
the predicted result (9.51 x lO-- ) in section 3.4.

As expected, the two-dimensional numerical algorithm accurately predicts the
vertical autocorrelation of the three-dimensional scattered field, but is unable to
produce the desired log-amplitude fluctuations.

4.3 HOMOGENEOUS ISOTROPIC TURBULENCE

Within the constraints discussed in section 4.1, Equation 4.10 is valid for any
three-dimensional homogeneous spectrum. The numerical example in section 3.2
used a Gaussian spectrum. One of the attractive features of this spectrum is that it
is separable; the three-dimensional spectrum can be written as the product of three
one-dimensional spectra. This simplifies the calculation of the transverse
spectrum. Spectral models for internal waves and fine structure in the ocean are
also separable.36 Homogeneous isotropic turbulence is unfortunately not
separable, and the resulting transverse spectrum must be expressed in terms of
special functions. In this section, we calculate the transverse spectrum and
associated autocorrelation function for homogeneous isotropic turbulence.

The von Karman spectrum is used to describe the three-dimensional index of
refraction fluctuations. Substituting Equation 2.5 into Equation 4.10 yields

J~o ep(- I 2 )
S,2  exp(-kq / K2 )dk /K . (4.11)

S,(k,)= 0.066(21r) 2 & xp( .KJy (k2+k2+l 2)116

After some manipulation, the integral in Equation 4.11 can be expressed exactly in
terms of the confluent hypergeometric function V/:37

St(k,)= 0 .327)2XC 2 1 2 exp(-k 2/K2 )V ';-!;K4 (k? +L2)1Sz( 1  )-(4.12)

Equation 4.12 can be simplified in the inertial subrange. For spatial frequencies ic
in the inertial subrange and below, K,2 k' << 1. Hence the exponential can be set
to 1 and Vcan be replaced by its small argument approximation,

S(k)-0.033(2z) 2  2 1/2 (4/3)2(k +L 2 )413 ' I 170 , (4.13)

36T. E. Ewart and S. A. Reynolds, "Experimental Ocean Acoustic Field Moments
versus Predictions," in Ocean Variability and Acoustic Propagation, J. Potter and
A. Warn-Varnas (ed.), Kluwer Academic Publishers, Boston, Mass., pp. 23-40
(1991).

37M. Abramowitz and 1. M. Stegun, Handbook of Mathematical Functions, National
Bureau of Standards, Washington, D. C. (1965).
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Figure 4.1 Autocorrelations of field that has propagated through a medium with a
Gaussian spectrum. Medium of variance 10-12 and correlation length 3.04 m areI
probed by 3.3-GHz plane wave. Theoretical scattered field autocorrelation is
compared to numerical result. Phase and log-amplitude autocorrelations are also
raiainhdfrynneqalspcdpaesreso104pitanshown. Statistics are based on an ensemble average over 250 realizations. EachI
vertical sampling interval of 0.2381 m. Read 2.5e-4 as 2.5 x 101.I
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where r is the gamma function. For parabolic equation simulations, the
maximum spatial frequency of interest is determined by the wavelength A of the
illuminating wave. Since typically for microwaves A > to, the maximum
frequency divided by Km will be much less than 1, and Equation 4.13 can be used
for all spatial frequencies in parabolic simulations. For spatial frequencies in the
inertial subrange, we observe that S, is proportional to k4 1 3.

Corresponding to the forward transform in Equation 4.7, the transverse
autocorrelation function is given by the inverse transform

Bt (Zd) = . j dkzS t (k,) exp(ikzd). (4.14)

Substituting the approximate transverse spectrum of Equation 4.13, the integral
can be expressed in terms of a modified Bessel function,38

BI(Zd)= 0033/6 ,c ( ~2-) K516,(Zd /L-0).- (4.15)

Using Equation 2.7, the transverse autocorrelation can also be written in terms of
the variance of the index of refraction < nf > as

B (zd) 2.6475x(n) ( 1  K516 (zd / LO), (4.16)

where we have evaluated the gamma function. Equation 4.16 will be used as
"truth" for the numerical simulations. This factorization is convenient for
evaluating by a series expansion.

We note that Equation 4.16 is independent of the turbulent inner scale to. For
microwaves, A >> to and the probing wave does not "see" the very small scale
fluctuations. This is another case where the microwave problem differs from
analogous propagation problems in optics.

As zd -4 0, the small argument expansion of the modified Bessel function can
be used to yield the variance of the transverse process:

B, (0)= 1.4948x(nf)L0. (4.17)

The transverse variance is proportional to the variance of the medium and to the
outer scale of the turbulence Lo.

Individual realizations of Ot were generated using the transverse spectrum of
Equation 4.13 and the algorithm in Appendix A. Figure 4.2 shows a 1024-point

38K. H. Craig and M. F. Levy, "Parabolic Equation Modelling of the Effects of Multipath and
Ducting on Radar Systems," lEE Proc. F 138, 153-162 (1991).
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Figure 4.2 Realization of Ot. Based on transverse spectrum in Equaticn 4.13
with Lo. 10 m. Step size is equal to 100 m. Unit variance and sampling.
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2realization with Lo = 10 m, step size 8x = 100 m, and unit variance < nf >.
Figure 4.3 shows an example where the outer scale has been increased to 100 m.
This example vividly exhibits both the large- and small-scale fluctuations
characteristic of power-law spectra. For comparison, Figure 4.3 also shows a
realization generated using the same set of random numbers and the same outer

scale but with a Gaussian spectrum, as was used in section 4.2. In contrast to a
turbulent process that has both an inner and outer scale, a Gaussian spectrum is
characterized by a single correlation length. As a result, the realization exhibits

little of the detailed structure present in turbulence example.
Five hundred realizations of the process with Lo = 10 m were generated. The

autocoielation of each was estimated using a standard unbiased estimator (see Ref.
35, p. 539). The estimates were then averaged across the ensemble and compared
to the theoretical expression in Equation 4.21. The agreement is excellent and is
shown in Figure 4.4. The study was repeated with the outer scale increased to 100
m. The average of 5000 estimates are compared to theory in Figure 4.5 with
similar results. When the correlation length was increased, it was necessary to
increase the number of realizations to get good agreement.

Realizations of the turbulent process with Lo = 10 m were used in a
propagation study. Aside from the different spectrum and outer scale, the
remaining parameters are unchanged from the numerical example in section 4.2.
Two hundred fifty independent simulations were used to estimate the ensemble
statistics of the field. Figure 4.6 compares the predicted autocorrelation of the
scattered field to three-dimensional theory. The agreement is excellent, particularly
at short lags. Beyond the correlation length of the medium, the error becomes

more noticeable. This is to be expected, since less information is available at large
lags to make the estimates. To improve the agreement, the averaging could be
conducted over more realizations. But since the validity of the turbulence model
itself becomes questionable beyond the correlation length (section 2), it is probably
not worth the effort.

Also shown in Figure 4.6 are the estimated log-amplitude and phase
autocorrelation. Since the two curves differ significantly, we are clearly not in the
two-dimensional Fraunhofer regime. At zero lag, the simulations give the log-
amplitude variance to be 1.02 x 10-4. The theoretical value calculated by Equation
3.9 is 3.19 x 10-4. This example again illustrates that while the cross-sectional
model produces good results for the moments of the field, it fails to calculate the
log-amplitude fluctuations.

4.4 SURFACE LAYER TURBULENCE

The procedure for generating random realizations must be modified in the
atnospheric surface layer. Sections 2.3 and 2.4 showed that at low altitudes both

the structure constant C2 and the outer scale Lo must be treated as height-dependent
variables. The only study known to model electromagnetic propagation through
surface layer turbulence using the parabolic equation was conducted by Levy and
Craig. 3.38 In this section, the algorithm used by Levy and Craig is critiqued, and

it is suggested that they used an incorrect power law spectrum in their simulations.
Possible modifications to existing meteorological models for surface layer
turbulence are then considered to produce expressions compatible with our simula-
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Figure 4.3 Realization of Ot. Same as Figure 4.2 except with outer scale
increased to 100 m. For comparison, realization of a process with the same outer
scale but with a Gaussian spectrum is also shown. Step size is equal to 100 m.
Unit variance and sampling.
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Figure 4.4 Transverse autocorrelation for process with Lo - 10 m. Theory (solid
curve) compared to ensemble average of 500 realizations (dots), using 1024 point
realizations. Step size is equal to 100 m.
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Figure 4.5 Transverse autocorrelation for process with L0 = 100 m. Theory
compared to ensemble of 5000 realizations, using 1024 points. Step size is equal
to 100 m.
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Figure 4.6 Autocorrelations of field that has propagated through a medium with a
Kolmogorov spectrum. Medium of variance 10-12 and outer scale 10 m are probed
by 3.3-GHz plane wave. Theoretical scattered field autocorrelation is compared to
numerical result. Phase and log-amplitude autocorrelations are also shown.
Statistk,s are based on an ensemble average over 250 realizations. Each
realization had forty-nine equally spaced phase screens of 1024 points and a
vertical sampling interval of 0.2381 m. Read 7.0e-4 as 7 x 101.
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tion approach. Finally, the modified spectra are used to calculate the transverse
spectra necessary for parabolic equation simulations.

4.4.1 Approach of Levy and Craig

The random index of refraction nf is inhomogeneous and possibly anisotropic in
the atmospheric surface layer. Unfortunately, the spectral filtering method for
generating realizations is limited to homogeneous processes and hence
inapplicable. To circumvent these difficulties, Levy and Craig define an
intermediate process ' = nf / C,. They then make the simplifying assumption
that 4 is statistically homogeneous and isotropic and therefore can be simulated
using spectral filtering. By assuming 8x >> L0, they generate independent one-
dimensional realizations of 4 at uniform range steps. They use the one-
dimensional form of the Kolmogorov spectrum V, that shows a K-5M3 frequency
dependence to design the spectral filter (Eq. 2.1) and then the produce realizations
using the algorithm in Appendix A. The fluctuating index of refraction is
recovered by n1 = C.4. Numerical propagation studies are presented without
comparison to theory.

The main error made by Levy and Craig is in selecting the wrong spectrum to
generate realizations. The quantity of relevance to parabolic simulations is the
integrated refractive index fluctuations (Eq. 3.4b); consequently, realizations should
be generated using the transverse spectrum St (Eq. 4.7). For turbulent fluctuations,
St exhibits a K-83 frequency dependence in the inertial subrange rather than the
K-513 power law used by Levy and Craig. Selecting the wrong spectrum also
introduces errors in scaling and dimensionality. (The one-dimensional spectrum V.
has dimensions of meters, whereas St, like S,. has dimensions of meters cubed.)

4.4.2 Modified Spectral Models for Surface Layer Turbulence

Levy and Craig define an (incorrect) intermediate process and then assume it is
stationary. A more fundamental approach is to return to the three-dimensional
spectral model for the turbulence and then determine what properties it must
possess to force an appropriately defined intermediate process to be stationary. In
this section, two possible models for boundary layer turbulence are considered that
might be numerically tractable. Both models treat the spectral bandwidth as a
height-independent constant. One approach considers the height-dependent structure
constant to be a separable, deterministic function. The second model treats the
turbulence as a quasi-nomogna.. prus',ss. In section 4.4.3, the transverse
spectra for both models are discussed.

We begin with the standard one-dimensional spectrum for inhomogeneous,
height-dependent, surface layer turbulence II

V^ (K; z) = 0.124 C (z) K 5 3 , (4.18)

where the structure constant C2 can be written in terms of the turbulent outer scale
and the gradient of the mean profile (Eq. 2.9). For wave propagation studies, the
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II
3full three-dimensional spectrum is required. Assuming the medium is isotropic,

the three-dimensional Kolmogorov spectrum follows from Equation 2. 1:

S,(K;z)= O.033C (z)K-1n 3. (4.19)

U Although it is not often mentioned in the atmospheric literature, spectral
representations such as those given in Equation 4.19 are limited to frequencies in3the inertial subrange. From section 2, the inertial subrange is defined by spatial
frequencies within the band 2r / Lo < K < 2r / t0. In the surface layer, however,
the outer scale L0 is itself a function of height through Equation 2.10. Hence we
have the cumbersom', situation where both the amplitude (through C2 ) and the
lower break frequency (2,r / L) of the surface layer spectrum are dependent on
height. For example, inferring an inhomogeneous von Karman spectrum directly
from Equations 2.5 and 4.19 yields

S, S(K; z) =0.033 C2'.(z) exp(-K 2 /K.2)[(K 2 +/-92(z)]-11/6. (4.20)

Following the procedure of section 4.3, an inhomogeneous transverse spectrum can
presumably be derived. But since the lower break frequency of the spectrum will
depend on height, realizations of the transverse process cannot be generated using
the filtered white noise approach detailed in Appendix A.

As a first approximation, we retain the height dependence through C but
replace the explicit Lo(z) in Equation 4.20 with a height-independent constant L.
This is probably reasonable, since we are primarily interested in the inertial
subrange of turbulence and in this regime the only height dependence appears in
C2,n In making this approximation, the spectral bandwidth of the inertial subrange
is made height independent. To estimate an appropriate numerical value for Lc,

one possible approach is to relate it to the variance of the index of refraction. This
is detailed in Appendix B.

There is a second problem with the hypothesized spectrum in Equation 4.20.
This inhomogeneous spectrum can presumably be related to a structure function or
an autocorrelation by an appropriate transform pair. These are two-point statistical

quantities, but Equation 4.20 depends on only a single height z. A more general
model would show the explicit two-point dependence.

With these two conditions in mind, we hypothesize a modified three-
dimensional spectral model for turbulence as

where 
S, (K ; zj, z2 ) = C01, z2 ) n (K), 

(4.21)

(1) (K) = exp(-K 
2K ) + L 2 (4.-11/62

exp(- (4.22)
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This model partitions the turbulence into a height-independent spectrum 0,, and
the quantity (zz,;2), which in general depends on two heights. There is some
latitude in defining C, but it should be chosen to be consistent with existing
meteorological expressions. We will consider two possible models. In the first,
the structure constant is treated as a deterministic quantity. The ambiguous term
C, (z) is separated to show explicit two-point dependence:

C(zI,z2) = 0.033C,,(z 1)C,(z 2 ). (4.23a)

Note that at zt = z2, Equation 4.23a is consistent with the standard representations
in Equations 4.18 and 4.19.

A second model treats the medium as being quasi-homogeneous. The
two-point statistics of a quasi-homogeneous process can be written as the product
of a term depending on the difference coordinate and a term depending on the
average position. The spectrum (D, is the Fourier transform of the difference
coordinate component, and hence C is written as

(zI ,z2 ) = 0.033Cn2 [(zt + z2) / 2]. (4.23b)

The component of a quasi-homogeneous process that depends on the average
coordinate is generally a slowly varying function of its argument. Turbulent media
are often modeled as quasi-homogeneous processes in theoretical wave propagation
studies.4 7 26

For either model, it is useful to define the autocorrelation of the medium by an
inverse transform,

(nf(xl,yl,zl)nf(x2,Y2,Z2)) Bn(Xd,Yd,Zd;zl,Z2)

-(z 2 )f dK O(K) exp(iK, r), (4.24)

where K = (kr, ky, k,) and r = (xd,yd,zd). This formulation is useful for
calculating the transverse spectrum for inhomogeneous media. The .kiverse
transform is evaluated in Appendix B.

4.4.3 Transverse Spectrum

The pertinent statistical quantities for parabolic equation simulations are the
autocorrelation of the integrated refractive index fluctuations Ot and the associated
transverse spectrum. Using Equations 4.4b and 4.24, and again assuming t,,, step
size is large compared to the correlation length, it follows that
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(Qt(z)O/(z 2)) = B,.(Xd,Yd = O,zd;zl,z2)

xX (Z'Z 2)--d ky 7-dk (kx = Oky k') exp(ik 'zz ) (4.25)

Equation 4.25 is valid for either form of (z1 D2). We now consider the separable
model of Equation 4.23a. It is useful to define the intermediate function,

4(z) = (0.033) - 1/2 0t (z) / C. (z). (4.26)

Since C is deterministic in this model, it can be brought inside the ensemble
averaging brackets and

I (40)4(2)) &fx . d/ * dk;'O(k., = 0, ky,k4) exp(+ik'zd )

B4 (z, - z2). (4.27)

The autocorrelation of 4 depends solely on the difference coordinate; hence the
intermediate process is statistically homogeneous. Taking the Fourier transform
gives the spectrum S :

S k) (2x)2 &, 1r/2 r(4 /3) (4.28)
S( + ) 4 (l/6
(kr + L~eraI/))

This spectrum can be used with the algorithm in Appendix A to generate
realizations of ,. Realizations of 01 that are necessary for the parabolic equation
simulations are recovered via Equation 4.26.
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5. SUMMARY AND SUGGESTIONS FOR
FURTHER WORK I

Based on the analysis and numerical results of the preceding sections, we can
conclude that the parabolic equation/split-step algorithm is a viable approach for
modeling electromagnetic propagation through atmospheric turbulence. The I
propagation studies presented in this report were generated independently from
TEMPER. It is a relatively simple task to design a subroutine that would also add
"randomness" to the existing TEMPER code; all that is required is an appropriate 1
spectral model, a random number generator, and access to a fast Fourier transform
routine. The procedure should produce reliable results in an ensemble sense; the
correct second-order statistics of the propagating field can be predicted by averaging
across many realizations. As used in this report, spectral modeling assumes
Gaussian statistics for the random medium. Consequently, the method is incapable
of modeling low-probability events governed by non-Gaussian statistics.

The specific conclusions are summarized as follows:
1. Although the parabolic equation method has previously been used to study

optical and acoustical propagation through random media, microwave propagation
presents a unique set of problems. Since the perturbations to the field are
rclatively small, weak scattering theory can usually be used to estimate the
propagating field. The inhomogeneous and possibly anisotropic nature of surface
layer turbulence must be considered for low-altitude propagation.

2. Two-dimensional models like TEMPER are probably adequate for
calculating the statistical moments of the propagating field. They may not,
however, suffice for calculation of the log-amplitude fluctuations except in the very
far field. The term "far field" itself has different interpretations in two and three
dimensions.

3. Provided that the step size is large compared to the turbulent outer scale, the
medium can be modeled by uncorrelated random phase screens. The relevant
statistical quantity for generating the phase screens is the transverse spectrum. For
homogeneous isotropic turbulence in the inertial subrange, the transverse spectrum I
shows a K- 8/3 frequency dependence. This is in contrast to the one-dimensional
spectrum with a K-513 power law used by Levy and Craig.

4. The transverse spectrum of homogeneous isotropic turbulence can be I
expressed in terms of a confluent hypergeometric function (Eq. 4.12). At
microwave frequencies, a small argument approximation can be used to show the
K- 8/3 behavior in the inertial subrange (Eq. 4.13). For a statistically
homogeneous medium, the transverse autocorrelation can be evaluated and
expressed using a modified Bessel function (Eq. 4.15).

5. Turbulence is inhomogencous in the surface layer comprised of altitudes less
than approximately 100 m. Both the structure constant and the outer scale depend
on height. Since the outer scale determines the lower spatial frequency bound of
the inertial subrange (Fig. 3.1), the implication is a specLrum where both the
amplitude and the bandwidth depend on altitude. Such a spectrum is incompatible
with the parabolic equation/split-step algorithm. As an approximation, the
bandwidth was made constant and independent of height. Two plausible forms of I
the structure constant were considered. In one model, the structure constant was

I
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treated as a separable, deterministic function. In the second model, the structure
constant was treated as a quasi-homogeneous function.

The expressions derived for the transverse spectra and autocorrelations derived in
section 4 are amenable to numerical implementation. A limited number of
independent simulations were presented in this report. A possible program
validating the proposed algorithm when coupled with TEMPER is outlined below:

1. Classical results for the canonical problems should be used as benchmarks
in validating the computer routines. Analytical solutions are available for point
source and plane wave propagation. Since these pristine solutions neglect
interaction with deterministic refractive index profiles and rough surfaces, these
features should be "turned off" when first testing randomness in TEMPER.

2. Initial numerical tests for both the plane wave and point source problems
might best be done by assuming a Gaussian spectrum for the medium. Because a
Gaussian spectrum is characterized by a single scale size, the resulting realizations
do not exhibit the detailed fine structure of processes with power-law spectra (Fig.
4.3). Consequently, Monte Carlo simulations should converge relatively rapidly.
Agreement with the simulations presented in section 4.2 should be expected.

3. The second set of tests for both the plane wave and the point sour-c can be
conducted for homogeneous isotropic turbulence. The effect of varying the
numerical values of the various parameters (outer scale, "universal constants," etc.)
can be studied. Required sampling rates can be defined, and the number of
realizations necessary for convergence of the ensemble averages can be estimated.
The numerical experiments presented in section 4.3 should be replicated.

4. Finally, the full features of TEMPER can again be "turned on." The
structure constant for representative atmospheric profiles can be calculated.
Realizations of inhomogeneous surface layer turbulence can be generated and
included in TEMPER. The variance of the propagating field can be estimated.
Numerical results should ultimately be compared to experimental observations.

Beyond the simple expedient of adding atmospheric randomness to TEMPER,
this work has suggested directions for continued research:'

1. Independent from TEMPER, additional simulations should be done for the
point source problem. The analysis comparing the two- and three-dimensional
problems should also be repeated for this configuration.

2. A good three-dimensional spectral model for boundary layer turbulence is
needed. For a lack of quantitative data, the emphasis in this report is on isotropic
models. Boundary layer turbulence is surely anisotropic, with relatively long
correlation lengths in the horizontal. It would also be of interest to analyze the
effect anisotropy would have on the various statistics of the field.

3. Numerical techniques could be developed for simulating quasi-homogeneous
random media. It seems likely that an algorithm could be developed that would
parallel that used for homogeneous media in Appendix A. Such an algorithm
would also be of interest *o researchers working in rough surface scattering.

4. Fractals appear to be a promising method for simulating turbulence; their
most attractive feature is the ability to model intermittency. A good appreciation
of atmospheric dynamics is needed to understand the role of intermittency and how
it should be modeled with fractals. Further analytical work is necessary to predict
the properties of a wave propagaung through a fractal medium.

5. To validate an upgraded version of TEMPER containing turbulent
fluctuations, the philosophy of this report has been to compare the numerical
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results to established theoretical solutions. Only theoretical solutions to relatively
simple problems have been considered, such as plane wave and point source
propagation. Solutions to other problems are available in the literature; for
example, Ishimaru 4 considers the propagation of a Gaussian beam. Path integral
methods that reportedly combine large-scale deterministic features with randomness
might be adapted to our purposes.27,28 Modal techniques for propagation through
deterministic profiles perhaps could be modified to include randomness.

6. At microwave frequencies, the turbulence possesses structure on the same
scale as the wavelength. It is possible that this would induce polarization effects
that are ignored in our scalar model. If possible, the magnitude of these effects
should at least be estimated. It is unclear whether these features could be included
in TEMPER.
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APPENDIX A.

GENERATING RANDOM REALIZATIONS

Realizations of atmospheric turbulence can be simulated in various ways. The
most complete method is to solve the governing Navier-Stokes equations describing
the fluid motion numerically. Unfortunately, this procedure is not feasible at the
large scales necessary for wave propagation studies. As an alternative, we are left
with numerical techniques that produce realizations consistent with some order
(usually second) of the statistics describing the medium. While these methods yield
realizations exhibiting the correct statistics, the individual realizations may or may
not actually "look" like the true process. As a result, these methods are best used as
part of an algorithm where the entire procedure (in this case, wave propagation
through a random medium) is simulated many times and then the statistics are
inferred by averaging across an ensemble of realizations. These procedures fall under
the general heading of Monte Carlo techniques.

One of the first studies of wave propagation through random media using the
parabolic eqtation was conducted by Macaskill and Ewart.AI Following their
example, most subsequent studies have simulated realizations of the random medium
using spectral filtering. In this approach, realizations of Gaussian white noise are
first generated using a random number generator and then filtered. To obtain the
desired output process, the filter is designed based on the square root of the desired
spectrum.A2 An efficient algorithm based on the fast Fourier transform (FFT) is now
presented. This approach is particularly attractive in the present context, since the
FF1 is already used in the parabolic equation/split-step algorithm.

Consider an N point process 0,[1] defined by

ot V]- ( ) 0=0, ... 6-), (Al)

where the square brackets indicate a sampled version of the continuous process and
the sampling interval is 6z. The discrete spectrum is a sampled version of the
continuous spectrum

St(j) = (3z)-I s(jI(N~z)), i = 0,1 .1 . N/2
(A2)

S1[j= (&z)-S,((N-j)/(NSz)), j = N/2, .. (N - 1).

The discrete realization is recovered via an inverse discrete transform,

N-I0,t(1] = N- ' I , [j] exp[-i21rj11N], (A3)

j=0

where the spectral components are generated according to the rule

= [j]=[-S,[j]N In(q,)]l/2 exp(i21r) for j0, j N / 2

(A4)

1iI=[-Sjj2N ln(qj]'cos(21rr,) for j=O or j=N12.

AIC Macaskill and F E Ewarn, "Computer Simulation of Iwo Dimen~ional Random Wave Propagation,"

IMA J Appl Math 33, 1-15 (1984)
A'A Papoulis, Probabihty, Random Vartavles, and Stochastic Processes, McGraw-lll, Nev York (1984)
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In Equation A4, q, and rj are random numbers uniformly .istributed between zero and
1. Note that both the zero frequency and the Nyquist component are purely real. To
make the realization purely real, there is the additional symmetry constraint that

qj=qN-j, j=1,2. ... N/2 (A5)

rj = rN-j, j =1,2, ... N / 2.

The inverse transform in Equation A3 is efficiently evaluated using an FFT., The
resulting realization of the process is purely real. A marginal increase in efficiency
can be gained by relaxing the symmetry constraint, generating a complex 0', and
then treating the real and imaginary parts as independent realizations.A3 Explicit
evaluation of the probability integrals shows that this algorithm produces
realizations with the desired spectrum.

A3J M Martin and S. AM ~atti, "Intensity Images and Statistics from Numerical Simnulation of Wave
Propagation in 3-D Random Media," Appi Opt 27, 2111-2127 (1988)
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APPENDIX B.

VARIANCE OF REFRACTIVE INDEX IN THE
SURFACE LAYER

As discussed in section 2. atmospheric turbulence is typically modeled as a
locally homogeneous random process; as such, it must be characterized by a structure
function rather than an autocorrelation. In the frequency domain, the locally
homogeneous character is reflected in the spectrum being undefined for the low
spatial frequencies in the energy input regime. For mathematical convenience,
however, a spectral shape is often assigned, making an inverse transform possible,
and hence a function that can be interpreted as an autocorrelation.

In section 4.4.3, a model for surface layer turbulence was developed. A parameter
L C was defined with units of meters, where the upper bound of the energy input
regime was defined by 2n/L. One method for assigning a numerical value to Lc is to
examine its relationship to the variance of the medium. To calculate the variance,
we must first calculate the autocorrelation.

The autocorrelation was related to the spectrum in Equation 4.24. If the spectrum
is isotropic, the three-dimensional integral can be converted to a single integral,BI
and

Bn (rd;Zl,z 2 )= (zl,z 2 )47ld f 0 (D(K)Ksin(Krd)dK. (Bl)

Let z= z! =z2. Substituting the spectrum into (B1), neglecting the exponential
term, and evaluating the resulting integral yieldsB2

Bn(rd;z)= 0.39lC'(z)L / 3 (rdLj2)'l 3 Kll 3 (rL'). (B2)

The variance is derived by evaluating Equation B3 at rd = 0:

2/,2 _B.(rd=0)=0.523C,(z)LC/3 . (B3)

Hence the variance of the medium is proportional to L213 The structure constant
C,(z) is given by Equation 2.9. C .

BA Ishimaru, Wave Propagation ard Scattering in Random Media, Academic Press, New York, p 517

(1978)
821 S Gradsheyn and I M Ryzhick, Tables of Integrals, Series and Products, Academic Press, Orlando,
F4 (1980)
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