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1 Introduction

In this paper we present an algorithm to test whether a bipartite graph
G(Vr, VC; E) is balanced. The running time of the algorithm is bounded by
a polynomial function of the cardinalities m and n of the node sets V r and
Vc.

Recall from Part I that a node cutset S of G is a double star cutset if
there exist two adjacent nodes, u, v E V such that S = N(u) U N(v). The
algorithm in this section decomposes G using double star cutsets. The lemma
below shows a relation between double star cutsets and extended star cutsets
for undominated bipartite graphs as defined below.

Definition 1.1 A node u in a bipartite graph G is said to be dominated if
there exists a node v, distinct from u, such that N(u) C N(v). A bipartite
graph G is said to be undominated if G contains no dominated nodes.

Lemma 1.2 If G is an undominated graph containing an extended star cut-
set, then G contains a double star cutset.

Proof: Let S = (u; T; A; N) be an extended star cutset of G and let G1 , G2 ,

... , G, be the connected components of G \ S. Define S* = N(u) U N(v),
where v is a node in A. Clearly, S C S*. Suppose S* is not a double star
cutset of G. Then all the nodes in one of the connected components of G \ S,
say Gk, belong to S" \ S. Hence l/(Gk) C N(u) U N(v). Consider a node
x E V(Gk) and assume w.l.o.g. that x, u E V r. Now N(x) n V(Gk) C N(u)
and N(x) n V(Gj) = 0, for all j 0 k. Hence x is a dominated node. 0

From the bipartite graph G, the algorithm creates a number of undomi-
nated induced subgraphs of G and decomposes each of them by double star
cutsets. A proof of the validity of this approach is given in the last sectio.cc.i,: Fc _

A 2-join in a bipartite graph G, as defined in Part I, is a set of edgeiS j ,As
E" = E(KAB)UE(KDF) belonging to two bicliques KAB and KDP such th a' ,

E(KAB) and E(KDF) are not cutsets of G and no connected component
the partial graph G \ E" contains a node in A and a node in B or a node -n
D and a node in F. By

Definition 1.3 A 2-join E = E(A'B) U E(KDF) is stable if it satisfies t .- ..
following properties:
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" No node in A is adjacent to a node in D and no node in B is adjacent
to a node in F.

" Sets A and B contain at least two nodes each or sets D and F contain
at least two nodes each.

Since 1-joins and strong 2-joins imply the existence of an extended star
cutset, Theorem 1.1(IVJ and Theorem 10.1[V] imply the following version of
Theorem 4.91I].

Theorem 1.4 Let G be a balanced bipartite graph which is not restricted
balanced. Then G has an extended star cutset or a stable 2-join.

Now Lemma 1.2 and Theorem 1.4 above imply the following version of
Theorem 4.9[I] for undominated balanced bipartite graphs.

Theorem 1.5 Let G be an undominated balanced bipartite graph which is
not restriced balanced. Then G has a double star cutset or a stable 2-join.

The next section contains definitions and some properties of bipartite
graphs that are essential for the validity of the algorithm given in Section
3. The algorithm uses four procedures which are described in Sections 4 to
7. The validity and polynomiality of each of the procedures is shown in the
respective sections. The last section contains a proof of the validity of the
algorithm.

2 Smallest unquad holes

Let H* be a smallest unquad hole in a bipartite graph G which is not bal-
anced. In this section we study properties of strongly adjacent nodes to
H.

Definition 2.1 A node u strongly adjacent to a hole H in G is odd-strongly
adjacent if u has an odd number of neighbors in H. If u has an even number
of neighbors in H, then u is even-strongly adjacent. The sets A,(H) and
A,(H) contain the odd-strongly adjacent nodes to H which belong to Vr and
Vc respectively.
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The following fundamental properties of the sets A,(H) and Ac(H*),
associated with a smallest unquad hole H" have been proven by Conforti
and Rao in [15].

Property 2.2 There exists a node X, E Vr n V(H*) which is adjacent to all
the nodes in A,(H*).

Property 2.3 There exists a node x, E V, n V(H*) which is adjacent to all
the nodes in A,(H*).

Property 2.4 Every even strongly adjacent node to H* is a twin of a node
in H*

The above properties have been used in [16] to design a polynomial al-
gorithm to test whether a linear bipartite graph is balanced. To test bal-
ancedness of a bipartite graph, we need the following additional properties
of strongly adjacent nodes.

Definition 2.5 A tent r(H, u, v) is a configuration of G induced by a hole
H and two adjacent nodes u and v which are even strongly adjacent to H
with the following property:

The nodes of H can be partitioned into two subpaths P, and P,, containing
the nodes in N(u) n H and N(v) n H respectively.

A tent r(H,u,v) is referred to as a tent containing H. We now study
properties of a tent r(H*, u, v) containing a smallest unquad hole H* and we
assume throughout the paper that the first node, say u in the definition of
a tent r(H, u, v) belongs to VT and that node v belongs to V'. We use the
notation of Figure 1, where nodes u1 , uo, u2 , vI, vo, v2 are encountered in this
order, when traversing H" counterclockwise, starting from ul.

Lemma 2.6 Nodes v0 , ul, u 2 satisfy at least one of the following properties:

* The set Ar(H*) is contained in N(vo) U N(ul).

" The set Ar(H*) is contained in N(vo) U N(u 2 ).

Nodes u0 , t 1 , v2 satisfy at least one of the following properties:
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Figure 1: A tent

" The set A,(H*) is contained in N(uo) U N(v 1 ).

* The set A,(H*) is contained in N(uo) U N(V2 ).

Proof: We prove the first part. Suppose w E Ar(H*) is not adjacent
to v0 . Consider the hole H1" obtained from H* by replacing vo with node
v of -r(H*,u,v). Now w cannot be adjacent to v, for otherwise w is even
strongly adjacent to H,*, violating Property 2.4. Node u is in Ar(Hf) and
has neighbors ul, u 2 and v in H,*. Since w is in A,(Hf) and w is not adjacent
to v, by Property 2.3 it follows that w is adjacent to ul or u2. By Property
2.3, all nodes in A(Hf) must have a common neighbor in H,*. It follows
that this common neighbor must be ul or u2 . The proof of the second part
is identical. 0

Lemma 2.7 Let r(H*,u,v) and T(H',w,y) be two tents, where w1 , w2 are
the neighbors of w and yl, Y2 are the neighbors of y in HJ. Let wo and yo be
the common neighbors of w, w2 and yl, Y2 respectively. Then at least one
of the following properties holds:

e Nodes ul and u2 coincide with w, and w2 .
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Figure 2:

* Nodes v, and v2 coincide with y] and Y2.

* Nodes uo and y are adjacent.

0 Nodes vo and w are adjacent.

Proof: Suppose the contrary. Then node u does not coincide with w, node
v does not coincide with y, nodes u0 and y are not adjacent and nodes vo
and w are not adjacent. Let P denote the u 2 vI-subpath of H" not containing
any other neighbor of u or v. Similarly, let Q denote the v2u-subpath of H*
not containing any other neighbor of u or v, see Figure 2.

Now it follows that yi and Y2 are contained in P or Q and wi and w2

are contained in P or Q. Assume w.l.o.g. that y, and y2 are contained in

P. Since H* is an unquad hole of smallest cardinality, it follows that both P
and Q must be of length 1 mod 4. We now prove the following two claims:

Claim 1 Node y is not adjacent to u and node w is not adjacent to v.

Proof of Claim 1: Suppose that y and u are adjacent. Since u0 and y
are not adjacent, it follows that yo does not coincide with ul or u 2. By the
definition of a tent, v0 does not coincide with it, or u2 . Furthermore, since
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v, and v2 do not coincide with y, and Y2, we have that v0 does not coincide
with yo.

Consider the unquad hole Hl*, obtained from H* by replacing v0 and yo
with v and y respectively. Now u has four neighbors in a smallest odd hole
Hl*, violating Property 2.4. Hence y is not adjacent to u. By symmetry, it
follows that w is not adjacent to v.

Claim 2 Nodes w, and w2 belong to Q.

Proof of Claim 2: Suppose the claim is false. Then w1 and w2 belong to
P. By assumption, y, and Y2 belong to P. Note that the wIy 2-subpath of
P is of length 1 mod 4 and contains nodes w2 and y, and at least five edges.
Now C = v, v1, P, u2, u, v is an even hole of length at least eight. By Claim 1,
y is not adjacent to u and w is not adjacent to v. Let C* be the hole obtained
from C by replacing the subpath Py2, of P with the path y2, y, w, wl. Now
C* is an unquad hole of smaller cardinality than H*. This completes the
proof of Claim 2.

Now a simple counting argument shows that the hole H = u, v, v1, P1,V, Y2,

y, w, w2 , Q,, ,. ul, u is unquad and is of smaller cardinality than H*. 0
Definition 2.8 A hole H is said to be clean in G if the following three

conditions hold:

(i) No node is odd-strongly adjacent to H.

(ii) Every even-strongly adjacent node is a twin of a node in H.

(iii) There is no tent containing H.

We show in Section 6 that if G is not balanced, an unquad hole of smallest
cardinality which is clean belongs to one of the final blocks of a decomposition
of a bipartite graph with extended star cutsets. In Section 5 we show how
to obtain a clean unquad hole in a bipartite graph which is not balanced.

3 A Recognition Algorithm

In this section we give an algorithm to test whether a bipartite graph is
balanced.



Definition 3.1 A wheel with three spokes and at least two sectors having
length 2 is said to be a short 3-wheel.

ALGORITHM

Input: A bipartite graph G.
Output: G is identified as balanced or not balanced.

Step 1 Apply Procedure 1 to check whether G contains a short 3-wheel.
If so, G is not balanced, otherwise go to Step 2.

Step 2 Apply Procedure 2 to create at most m4 n4 induced subgraphs
of G, say G1,...,Gj,...,GP such that, if G is not balanced, at least one of
the induced subgraphs created, say Gi, contains an unquad hole of smallest
cardinality which is clean in Gi.

Step 3 Apply Procedure 3 to each of the induced subgraphs GI,..., Gi,
... , GP to decompose them into undominated induced subgraphs F1,..., Fj,
.... Fq that do not contain a double star cutset. While decomposing a graph
with a double star cutset N(u) U N(v), Procedure 3 also checks the exis-
tence of a 3-path configuration containing nodes u and v and nodes in two
distinct connected components resulting from the decomposition. If such a
configuration is found, then G is not balanced, otherwise go to Step 4.

Step 4 Apply Procedure 4 to each of the induced subgraphs F1 ,..., Fj,
... , Fq to decompose them using 2-joins into blocks B 1,...,Bk,. .. ,Br 1ct
containing an extended star cuset or a 2-join.

Step 5 Test whether any of the blocks B 1 ,...,Bk,.. .,Br contains an
unquad cycle. If so, G is not balanced, otherwise G is balanced.

Remark 3.2 An algortthm to test whether a ipartite graph contains an un-
quad cycle can be found in [11] or [25]. Hence the details of Step 5 are
omitted in this paper.

4 Identification of Short 3-wheels

The following procedure tests whether a bipartite graph contains a short
3-wheel.

PROCEDURE I



Input: A bipartite graph G.
Output: G contains a short 3-wheel or G does not contain such a con-

figuration.

Step 1 Enumerate all distinct subsets of six nodes with three nodes in
V and three nodes in Vc and declare them as unscanned. Go to Step 2.

Step 2 If all subsets are scanned, G does not contain a short 3-wheel,
stop. Otherwise choose an unscanned subset U. If U induces a 6-cycle C =
a l ,a 2, a3 , a4, a5, a6, a,, having unique chord a2a5 , go to Step 3. Otherwise
declare U as scanned and repeat Step 2.

Step 3 Remove the nodes in N(a2 ) U N(a4) U N(a 5 ) U N(a 6 ) \ {ai, a3 }.
If a, and a 3 are in the same connected component, then a short 3-wheel
with spokes a2aj, a 2a3 , a2a5 is identified, stop. If not, remove the nodes
in N(a 1 ) U N(a2 ) U N(a 3) U N(as) \ {a4,a 6}. If a4 and a6 are in the same
connected component, then a short 3-wheel with spokes a5a2 , a5 a4, a5 a6 is
identified, stop. Otherwise declare U as scanned return to Step 2.

Remark 4.1 The complexity of this procedure is of order O(m 4 n 4).

5 Induced Subgraphs Containing Clean Un-
quad Holes

In this section, we show how to create at most M 4 n4 induced subgraphs of
G such that, if G is not balanced, one of the subgraphs, say Gj, contains a
smallest unquad hole which is clean in Gt.

Definition 5.1 Given a configuration F(V(F),E(F)), and a node v in F,
we denote with NF(V) the set N(z,) n 11(F).

We define Fijkl to be the induced subgraph obtained by removing the nodes
in Nt(j) \ {i,k} and the nodes in NF(k) \ {j,l}.

PROCEDURE 2

Input: A bipartite graph G.
Output: A family C = G1,G 2 . .,G, where p <_ r1'4n 4 , of induced

subgraphs of C7 such that if G is not balanced, one of the subgraphs in ,
say G1 , contains a smallest unquad hole that is clean in G.
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Step 1 Let C* = {Gikl j nodes i,j, k, I induce the chordless path i,j, k, 1)
Step 2 Let L = {Qijki j the graph Q is in C*, nodes in {i,j,k,l} belong

to Q and induce the chordicss path i,j, k, l}.

We now prove the validity of Procedure 2.

Lemma 5.2 If G is not balanced, one of the graphs in L, say Gt, contains
an unquad hole H', smallest in G, and H' is clean in Gt.

Proof: Assume G is not balanced. Then G contains a smallest unquad hole
H*. Recall that the sets A,(H') and Ac(H') are defined with respect to G.
Consider the following two cases:

Case 1 There is no tent in G containing H*.
Proof of Case 1: By Property 2.2, there exists a node j E V r(G) n V(H')

that is a common neighbor of all nodes in Ac(H*). Let i, k be the neighbors
of J in H' and let I be the other neighbor of k in H*. Then the graph Gjkl

contains H', but does not contain any node in A,(H*), and belongs to 1*.
By considering Gijkl and applying Property 2.3, it follows that L contains a
graph Gt and H* is clean in Gi.

Case 2 The graph G contains a ent r(H*, u, v).
Proof of Case 2: By Lemma 2.6, the set A,(H*) is contained in N(vo) U

N(ul) or in N(vo)UN(u 2) and the set A,(H") is contained in N(uo)UN(vi) or
in N(uo)UN(v 2). Assume w.l.o.g. that Ar(H') is contained in N(vo)UN(ui).

Suppose A,(H') is contained in N(uo) U N(vi) and let u' and v* be the
neighbors of ul and vI, which are distinct from u0 and v0 respectively. By
Lemmas 2.6 and 2.7, it follows that the graph Gu. U1 which belongs to
£*, contains H* and satisfies the following properties:

" No node in A,(H*) that is adjacent to uo belongs to Gu,o, 2

" No node in Ar(H') that is adjacent to ul belongs to Gu.,,o,,2-

" The graph Gu,,ou, does not contain a node w, in a tent "r(H',w,y),
where w, and w2 coincide with i, and u2.

" The graph G,.,,,, does not contain a node y, in a tent r(H*,w,y),
where y and uo are adjacent.

10



As a consequence of Lemmas 2.6 and 2.7, applied to G it follows
that £ contains an induced subgraph of G, say Gt, which contains H" and
H* is clean in Gt. If AC(H*) is contained in N(uo) U N(v 2 ), the proof is
identical. []

6 Double Star Cutset Decompositions

We describe a procedure to decompose a bipartite graph into blocks which are
induced subgraphs and do not contain a double star cutset. While decompos-
ing the graph into blocks, the procedure also checks the existence of a 3-path
configuration that contains nodes in at least two connected components.

PROCEDURE 3

Input: A bipartite graph F not containing a short 3-wheel.
Output: Either F contains a 3-path configuration, hence F is not bal-

anced or a list of undominated induced subgraphs F1 ,..., Fj,..., Fq of F,

where q < JVc(F)J12 Vr(F) 2 < n, 271 with the following properties:

* The graphs F1,..., F . Fq do not contain a double star cutset.

* If the input graph F contains a smallest unquad hole which is clean in
F, then one of the graphs in the list, say F, contains an unquad hole
H*, that is smallest in F and H* is clean in F.

Step 1 Delete dominated nodes in F until F becomes undominated. Let
M = {F), T = 0.

Step 2 If M is empty, stop. Otherwise remove a graph R from M.
If R has no double star cutset, add R to T and repeat Step 2. Otherwise,
let S = Nn(u) U NR(V) be a double star cutset of R. Let R 1 ,.... , R, be the
connected components of R \ S, let R ,..., Rf7 be the corresponding blocks,
i.e. R, is induced by V(R,) U S. Go to Step 3.

Step 3 Consider every ',air of noniadjacent nodes up and vq such that
node up is adjacent to ti and node vq is adjacent to v. If both up and vq

have neighbors in two Jistinct connected components of R \ S, there is a
3PC(u,, vq) and F ;s not balanced. Otherwise go to Step 4.
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Step 4 From each block R, remove dominated nodes in (N(u) U N(v)) \
{u, v}, until no such node exists. Now remove further any dominated node
until the block becomes undominated.

Add to M all the undominated blocks that contain at least one chordless
path of length 3. Go to Step 2.

Remark 6.1 If a node w E (N(u)UN(v))\{u, v} belongs to the undominated
block R* at the end of Step 4, Then w is adjacent to at least one node in the
connected component Ri.

Before proving the validity of Procedure 3, we need the following defini-
tion:

Definition 6.2 Let G be a graph containing a hole H. Then C(H) = {Hi I Hi
is obtained from H by a sequence of holes H = Ho, H1,...,Hi, where H, and
HJ-1, forj = 1,2,...,i, differ in at most one node }.

Lemma 6.3 Let G be a graph containing a smallest unquad hole H*, but
not containing a short 3-wheel. If H" is clean in G, then every hole H* in
C(H*) is clean in G.

Proof: Let H1* be a hole that differs from H' in only one node. In order to
prove the lemma, it is sufficient to show that H1* is clean in G.

Since HI is an unquad hole of smallest cardinality, by Property 2.4, con-
dition (ii) of Definition 2.8 is satisfied. Hence, if the lemma is false, condition
(i) or (iii) of Definition 2.8 is not satisfied. Therefore we consider the follow-
ing two cases.

Case 1 Condition (i) of Definition 2.8 is not satisfied.
Proof of Case 1: Now a node w must be odd-strongly adjacent to Hl*.

Since no node is odd-strongly adjacent to H*, it follows that w has three
neigbors, say w1 , w2, W3 in H. Two of these neighbors, say w, and w 2 must
be in H" and have a common neighbor, say w0 in H*. Since w3 is in H,*
but not in H*, it follows that H,* is obtained from H* by replacing some
node u 5 ul, u 2 in H" with w3 . Let u, and u2 be the neighbors of u in H.
Note that W3 is adjacent to it and U'2 and u does not coincide with w, or
w72 . Hence ut and u2 do not coincide with w0 . Now r(H*,U'3, W) is a tent,
contradicting the assumption that H" is clean in G.

12



Case 2 Condition (iii) of Definition 2.8 is not satisfied.
Proof of Case 2: There must be a tent r(Hj, u,v). We first show the

following claim:
Claim At least one of the nodes u1 ,u2 , v1 ,v 2 does not belong to the hole

H*.
Proof of Claim: Assume not. Since u and v are not in Hl', it follows that

at most one of them is in H*. If u is in H*, then u0 is not in H* and vis
odd-strongly adjacent to H*. So u is not in H* and, by symmetry, node v is
not in H*.

Assume that neither u nor zy belong to H* and let w € U1 ,U2, V1 ,V 2 be
a node in H* but not in Hi*. Nodes w and u are not adjacent, otherwise
node u is odd-stongly adjacent to H*, contradicting the assumption that H*
is clean. By symmetry, it follows that nodes w and v are not adjacent. Now
-(H*, u, v) is a tent, contradicting the assumption that H* is clean and the

proof of the claim is complete.

By the above claim, one of the nodes u1 ,u2 , v1 ,v 2 is not in H*. Assume
w.l.o.g. that u2 is not in H*. Clearly, node u is not in H*. Node v is not in
H*, otherwise node v0 is not in H*, node u2 coincides with v0 and r(Hi' , u, v)
is not a tent.

Thus the hole HI' is obtained from H* by replacing a node w with u2 ,

where w is adjacent to u0 . Let u3 in H* be the other neighbor of u 2. It
follows that u 3 is adjacent to w. Let Q denote the vIu 3-subpath of H* not
containing v2 , see Figure 3. Consider the hole C = u, v, v1 , Q,u 3 , w, uO, U1 , u.
Now the wheel (C, u2 ) is a short 3-wheel, contradicting the fact that G does
not contain a short 3-wheel. 0

Remark 6.4 Assume that the graph F contains a smallest unquad hole H*
that is clean in F. If F does not contain a short 3-wheel, an undominated
graph obtained from F in Step I of Procedure 3 contains a clean unquad hole
in the family C(H*).

Lemma 6.5 Let F be a bipartite graph satisfying the following properties:

" The graph F does not contain a short 3-wheel.

" The graph F contains a smallest unquad hole H* that is clean in F.

Then the output of Procedure 3 is one of the following:

13
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" A 3-path configuration is defected in Step 3.

" One of the undominated blocks, say Fi, obtained as ouput of Procedure
3, contains an unquad hole in C(H*).

Proof: Let S = N(u) U N(v) be a double star cutset of F. Let F 1,. Ft
be the connected components of F \ S and Fj*,..., F,* be the corresponding
blocks. We first show that an unquad hole H' E C(H*) is contained in some
block Fj" obtained at the end of Step 3. There are three cases to consider.

Case 1 Both nodes u and v belong to H.
Proof of Case 1: Let ul and v1 in H* be the other neighbors of u and v

respectively. Now the nodes in V(H*) \ {u, v, ul, v,} are in some connected
component F and Fj" contains H*.

Case 2 Either node u or node z, is in H*.
Proof of Case 2: Assume w.l.o.g. that u is in H" and v is not in H*.

Let u1 and u2 be the neighbors of u in H. Note that v can have at most
one neighbor distinct from it in H*. Suppose v does not have any neighbor
other than u in H*. Then the nodes in the set V(H*) \ {u,uj,u 2} are in
some connected component F and F contains H.

14



Suppose v has one other neighbor, say vi, in H*. Now vi and u must
have a common neighbor, say ul, in H*. Now the nodes in the set V(H*) \
{ u, u1 , u2} are in some connected component F and it follows that Fi* con-
tains H*.

Case 3 Neither u nor v belongs to H*.
Proof of Case 3: Assume w.l.o.g. that IN(u) n V(H*)I IN(v) n V(H*)

There are three subcases to consider:
Case 3.1 The set N(u) n V(H) is empty.
Proof of Case 3.1: If IN(v) n V(H*)I = 0 or 1, the unquad hole H* is

preserved in some block F,*. Suppose now that N(v) n V(H*) = {v 1 , v 2}. Let
vo be the common neigbor of v, and v2 in H*. Now the nodes in V(H*) \
{Vo, v1 , v2} will be in some connected component F. If vo is in F, then the
block F[ contains H*. If vo is not in Fi, let H" be obtained from H* by
replacing v0 with v. Now H" belongs to C(H*) and the block Fi" contains
H".

Case 3.2 N(u) l V(H*) = {i,}.
Proof of Case 3.2: Now IN(v)fV(!Jt) = 1 or 2. Suppose N(z)nV(H*) =

{vi }. If ul and vi are adjacent in H*, then H* is preserved in some block F*.
Suppse ul and vi are not adjacent. Let P and Q be the two ulvl-subpathb
of H*. The nodes in V(P) \ {ul, v, } will be in some connected component F
and the nodes in V(Q) \ {u,, v'} will be in some connected component Fj.
If the two connected components coincide, H* is preserved in Fi*. If the two
connected components do not coincide, there is a 3PC(ul, v1) and Step 3 in
Procedure 3 detects this 3-path configuration.

Suppose N(v) n V(H*) = {v1 ,v 2}. Let v0 be the common neighbor of
v, and v2 in H ° . Now ul must be adjacent to either v, or V2 for otherwise
we have an unquad hole of smaller cardinality than H*. Suppose ul and
vl are adjacent. Now the nodes in V(H*) \ {u 1 ,v 1 ,vo,v 2} will be in some
connected component F. If vo is in the same connected component Fi then
H* is preserved in Fi*. Suppose v0 is not in the same connected component
Fi. Let H" be obtained from H* by replacing v0 with v. Now H" belongs to
C(H*) and the block Fi* contains H".

Case 3.3 N(u) nV(H*) = ui,u.2}.

Proof of Case 3.3: Now N (v) n V(H) = {vi,v 2}.Let uo be the common
neighbor of ul and u2 in H" and let v0 be the common neighbor of v, and
v2 in H*. If u0 is not adjacent to i' and vo is not adjacent to u there is a
tent r(H*,u,v). So assume w.l.o.g. that uO coincides with vl. Then v2 is
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adjacent to u2 and H" is preserved in some block Fie.

Thus in all cases some block F," contains the unquad hole H" or an unquad
hole H" in C(H*) . Now by Lemma 6.2 the unquad hole H" is clean in F and
hence H" clean in Fi7. By Remark 6.3 the undominated graph Fi" defined in
Step 4 of Procedure 3 must contain an unquad hole in C(H*). Repeating the
same argument for every undominated block Fi*, which contains an unquad
hole in the family C(H*) and is added to the list M, the lemma follows. 0

Lemma 6.6 The number of induced subgraphs in the list T produced by Pro-
cedure 3 is bounded by IVc(F)121Vr(F) 2 .

Proof. Let S = N(u) U N(v) be a double star cutset of F. Let F1,..., Ft be
the connected components of F \ S and let FI,..., Ft be the corresponding
undominated blocks. We prove the following two claims.

Claim 1 No two distinct undominated blocks contain the same chordless
path of length 3.

Proof of Claim 1: Suppose by contradiction that a chordless path P =
a, b, c, d belongs to two distinct undominated blocks F," and F'. Then {a, b, c,
d} C NF(u) U NF(V). There are three cases to consider.

Case 1 Both nodes u and v belong to {a, b, c, d}.
Proof of Case 1: Node d cannot coincide with u for otherwise a and d

are adjacent and P is not a chordless path. Similarly d does not coincide
with v and a does not coincide with i or v. Hence we can assume that
u = b and v = c. From Step 4 of Procedure 3 it follows that node a has
at least one neighbor in each of the connected components F and F for
otherwise it would have been deleted from one or both the undominated
blocks Fi" and F;. Similarly node d has at least one neighbor in each of
the connected components Fi and F. Now Step 3 of Procedure 3 detects a
3-path configuration.

Case 2 Either u or v belongs to {a, b, c, d}.
Proof of Case 2: The same argument used in Case 1 shows that node u

coincides with b or c. Assume w.l.o.g. that u and b coincide. Now a and c
are neighbors of u, d is adjacent to v and both a and d must have at least
one neighbor in Fi and Fj. Again Step 3 of Procedure 3 detects a 3-path
configuration.

Case 3 Both u and v do not belong to {a, b, c, d).
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Proof of Case 3: As in the previous cases both a and d must have at least
one neighbor in F, at least one neighbor in Fj and Step 3 of Procedure 3
detects a 3-path configuration. This completes the proof of Claim 1.

Claim 2 The graph F contains at least one chordless path of length 3
which is not contained in any of the undorninated blocks Ft.

Proof of Claim 2: Each of the connected components F,...,Ft must
contain at least two nodes, since F is an undominated graph. At least one
node in F must be adjacent to a node in NF(u) U NF(v). Assume w.l.o.g.
that node pi in Fi is adjacent to a neighbor of v, say di. Suppose now no
node in F is adjacent to a node in N(u). Then by Step 4 of Procedure 3, the
undominated block Fi" does not contain any neighbor of u other than v. This
in turn implies that in the same step node a would have been deleted from
Fi. Now P = pi,d,,v,u is a chordless path of length 3 in F but P is not in
any of the undominated blocks Ft,..., F,. So a node in F must be adjacent
to a node, say si, which is a neighbor of u. Repeating the same argument for
j = 1,... , t, it follows that each connected component Fj contains a node,
say wj, which is adjacent to a node, say s. E NF(u). Suppose now s, has
a neighbor, say g in a connected component Fk, distinct from F,. Let q be
a neighbor of g in Fk. Then P = q, g. sj, tw, is a chordless path of length 3
which is contained in F but not in any of the undominated blocks Fe",..., Ft.

Suppose now that s, does not have any neighbor in a connected com-
ponent, say F. Then in Step 4 of Procedure 3, node s, is deleted from
the undominated block F,*. Now the path WI, sI, a, s. is a chordless path of
length 3 which is contained in F but not in any of the undominated blocks
F*, . . , F,*. This completes the proof of the claim.

Every undominated block that is added to the list M in Step 4 of Proce-
dure 3 contains a chordless path of length 3. Hence every undominated block
that is added to the list T in Step 2 conta-ins a chordless path of length 3. By
Claim 1, the same chordless path of length 3 is not in any other undominated
block that is added to the list T. By Claim 2, it follows that the number of
double star cutsets used to decompose the graph F with Procedure 3 is at
most IVc(F)I21Vr(F)12. Hence the lenna follows. 10
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7 2-Join Decompositions

In this section we describe a procedure to decompose a bipartite graph into
blocks that do not contain an extended star cutset or a stable 2-join, as
defined in Definition 1.3. Cornu~jols and Cunningham [171 give a set of rules
to construct an efficient algorithm for the identification of a 2-amalgam, of
which a 2-join is a special case. The rules are applicable to any graph, not
necessarily bipartite. We specialize their rules to construct an algorithm to
identify a stable 2-join in a bipartite graph.

Our procedure considers every possible set of six edges to obtain a stable
2-join containing the given set of edges.

PROCEDURE 4
Input A bipartite graph G, not containing an extended star cutset.
Output A list of bipartite graphs Al' = B 1, B 2,. Br, where r < m2 n2 ,

satisfying the following properties:

i No graph in the list A( contains a stable 2-join.

ii The graph G is balanced if and only if all the graphs in the list A" are
balanced.

Step I Let £ = {G}, and =0.

Step 2 If C = 0, stop. Otherwise remove a graph R from £. Enumerate
all distinct subsets of six nodes with three nodes in V/r(R) and three nodes
in Vc(R) and declare them as unscanned. Go to Step 3.

Step 3 If all subsets in 1r(R) are scanned, add R to A, and return to Step
2. Otherwise choose an unscanned !ubset U. If the subgraph of R induced
by the nodes in U does not consist of two connected components, one being
a cycle of length four and the other containing a single edge, declare U as
scanned and repeat Step 3.

Otherwise let cl, ri, c 2, r2, c) be the cycle and c3r 3 be the edge and go to
Step 4.

Step 4 Define A = {cx,c 2}, B = {r1 ,r 2}, D = {c3}, F = {r31, S =,

T = V(R) \ U. Apply Procedure 5 to check whether there exists a stable
2-join E(KA'B') U E(KD'F'), where A C A', B C B', D C D', F C F'. If no
such stable 2-join exists, go to Step 5. If a stable 2-join has been identified,
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construct the blocks R and R;, add them to the list £ and return to Step
2.

Step 5 Define A = {c1,c2}, B = {r 1 ,r 2}, D = {r 3}, F {c 3 }, S = 0,
T = V(R) \ U. Apply Procedure 5 to check whether there exists a stable
2-join E(KAB,) U E(KDF,), where A C A', B C B', D C D', F C F'. If
no such stable 2-join exists, declare U as scanned and return to Step 3. If a
stable 2-join has been identified, construct the blocks R and R;, add them
to the list £ and return to Step 2.

PROCEDURE 5
Input A bipartite graph R and node disjoint bicliques KAB and KDF

such that no node in A is adjacent to a node in D and no node in B is
adjacent to a node in F.

Output Either a stable 2-join E" = E(KAB,)UE(KDF,), where A C A',
B C B', D C D', F C F' is identified, or no such stable 2-join exists.

Step 1 Let S= 0 and T= V(R) \(AUBUDUF). Go to Step 2.
Step 2 All nodes in T are unscanned. Go to Step 3.
Step 3 If all nodes in T are scanned, go to Step 5. Otherwise consider

an unscanned node u E T and go to Step 4.
Step 4 Apply the Rules 1 to 11 in sequence. If an), of the Rules 1 to 5

is applicable, there is no stable 2-join E', stop. If any of the rules 6 to 11 is
applicable, return to Step 2. If none of the rules is applicable, declare u as
scanned and return to Step 3.

Rule 1 If u is adjacent to a node in .4 and a node in F, there is no stable
2-join E(KA'B,) U E(KD'F,).

Rule 2 If u is adjacent to a node in B and a node in D. there is no stable
2-join E(KABI) U E(KDF,).

Rule 3 If u is adjacent to a node in S, a node in B and a node in F, there
is no stable 2-join E(KA'w) U E(IKD'F).

Rule 4 If u is adjacent to a node in S and there exist two nodes fl, f 2 G F
such that u and f, are adjacent but u and f2 are nonadjacent, there is no
stable 2-join E(KAB,) U E(KD,.,).

Rule 5 If u is adjacent to a node in S and there exist two nodes bi, b2 E B
such that u and b, are adjacent but it and b2 are nonadjacent, there is no
stable 2-join E(KA's',) U E(ADF,).

Rule 6 If u is adjacent to a node in A and a node in D, remove u from T
and add u to S.
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Rule 7 If u is not adjacent to any node in A U B and there exist two nodes
dl ,d 2 E D such that u and d, are adjacent but u and d2 are nonadjacent,
remove u from T and add it to S.

Rule 8 If u is not adjacent to any node in DUF and there exist two nodes
a1 ,a 2 E A such that u and a, are adjacent but u and a2 are nonadjacent,
remove u from T and add it to S.

Rule 9 If u is adjacent to all nodes in F and to at least one node in S,
but u is not adjacent to any node in A U B, remove u from T and add it to
D.

Rule 10 If u is adjacent to all nodes in B and to at least one node in S,
but u is not adjacent to any node in D U F, remove u from T and add it to
A.

Rule 11 If u is adjacent to at least one node in S, but u is not adjacent
to any node in B U F, remove u from T and add it to S.

Step 5 Remove from T every node u that is adjacent to all nodes in A
and add u to B. Remove from T every node v that is adjacent to all nodes
in D and add v to F. Let A' = A. B' = B, D' = D and F' = F. Now
E(KAB,) U E(KDF,) defines a stable 2-join, separating A' U D' U S from
B'u F'uT.

Remark 7.1 The rules in Step 4 of Procedure 5 are forcing in the sense that
if any of them holds, node u must be removed from T and added to one of the
sets A, D or S if there is a stable 2-join E(KAB,)UE(KDF'), where A C A',
B C B', D C D', F C F'. Rules I to 5 detect a contradiction that arises
as a consequence of removing u f]-oro T and adding to one of the sets A, D
or S. If all the nodes in T are scann.d in Step 3 of Procedure 5, it follows
that the bicliques identified by Procedure 5 define a stable 2-join. Moreover
the graphs in the list N do iot contain a stable 2-join.

Lemma 7.2 Let G be a bipartite graph not containing an extended star cut-
set, and .K = B 1 , B2 ,.... Br be the list of graphs produced from G by Proce-
dure 4. Then r < m 2n2 and the graphs in A = B 1, B 2 .. , B, do not contain
an extended star cutset or a stable 2-join. Moreover if G is balanced all the
graphs in the list A arc balanced and if G is not balanced at least one graph
in the list KV is not balanced.

Proof: Let G be a bipartite graph, not containing an extended star cutset,
that is decomposed by Procedure 4. Suppose E* = E(KAB) U E(KDF) is
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a stable 2-join of G that separates G, from G2 and let G7 and G; be the
corresponding blocks. We now show that G: and G; do not contain an
extended star cutset. Suppose G7 contains an extended star cutset S =
(x; X; Y; N). Let the nodes in A and D belong to G1 and let nodes b and f
in G* represent the nodes in B and F respectively. The nodes b and f are
connected by a path Pbf which is of length 3, 4, 5 or 6.There are four cases
to consider.

Case 1 Node x coincides with b or f.
Proof of Case 1: Assume w.l.o.g. that x coincides with b. Since Pbf is

of length at least 3 and E" defines a stable 2-join, it follows zhat node f
and the nodes in D are not in S. Hence S separates the nodes in D from
a node in G, \ A. If X = {'}, then S is a star cutset of GI separating
the nodes in D from a node in G, \ A. Now every node in B defines a star
cutset of G separating ie nodes in D from a node in G1 \ A. Hence X must
contain at least two nodes. Then at least two nodes in A are contained in
Y. Let x" beanodein B. Let N= N=c,(x) \ and X = (A ,{x})UB.
Now S" = (x*, X*, Y, N*) defines an extended star cutset of G separating the
nodes in D from a node in G, \ A.

Case 2 Node x is an intermnediat node of P 1 .
Proof of Case 2: At least one of the nodes b or f is not in S since Pb1 is

of length at least 3. Assume w.l.o.g. that node f is not in S. Now S is a star
cutset of G7 separating the nodes in D from a node in G1 \ A. Then node d
must be a star cutset of G separating the nodes in D from a node in G1 \ A
and we are in Case 1.

Case 3 Node x is in A or in D.
Proof of Case 3: Assume w.l.o.g. that x is in A. Now node f V X since

E" defines a stable 2-join. Then q is an extended star cutset of G*1 separating
f from a node in Gi \ S. If node b is not in S, it follows that X is a star
cutset of G separating the nodes in F from a node in G1 \ S. Suppose now
node b is in S. Then it follows that b is in N. Let N" = (N \ {b}) U B. Now
S" = (x, X, Y, N*) is an extended star cutset of G separating the nodes in F
from a node in GI.

Case 4 Node x is in G, but not in A U D.
Proof of Case 4: Now node b or f is not in S. Assume w.l.o.g. that f is

not in S. Then S is an extended star cutset of G separating node f from a
node in G1 \ S. If node b is not in .S' it follows that X is an extended star
cutset of G separating the nodes in F from a node in G1 \ S. Suppose now
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node b is in S. Then b must be in X and Y must contain at least two nodes
in A. Let X* = (X \ {b}) U B. Now S" = (x,X*,Y,N) is an extended star
cutset of G separating the nodes in F from a node in G1.

Hence G T does not contain an extended star cutset. By symmetry, G;
does not contain an extended star cutset. Now repeating the same argument
for every graph that is added to the list C, it follows that every graph in the
list K produced by Procedure 4 does not contain an extended star cutset.
By Remark 7.1, the graphs in the list V do not contain a stable 2-join. Now
a repeated application of Theorem 2.4[I] shows that if G is balanced, all the
graphs in the list K/ are balanced and if G is not balanced at least one graph
in the list A is not balanced.

In order to complete the proof of the lemma we now show that the number
of graphs in the list A is less than or equal to r 2n 2 . Let G and G; be the
two blocks defined by a stable 2-join of the graph G. Now a cycle of length
4 in one of the two bicliques of the stable 2-join is in G but not in G or G2.
Moreover neither GI nor G2 contains a cycle of length 4 that is not contained
in G. Hence the number of stable 2-joins identified by Procedure 4 is less
than or equal to m 2n 2 and consequently the number of graphs in the list K
is less than or equal to m n22.

This completes the proof of the lemma. 0

8 Validity of the Algorithm

We now prove the validity of the algorithm given in Section 3.

Theorem 8.1 The running time of the algorithm described in Section 3 is
bounded from above by a polynomial function of the cardinalities Mn and n
of the node sets V' and 11 c respectively. Moreover the algorithm correctly
identifies a bipartite graph G as balanced or not.

Proof: The algorithm described in Section 3 applies the four procedures
given in Sections 4 to 7 respectively. The running time of each of these
procedures has been shown in its respective section to be bounded from
above by a polynomial function of 7n and n. The algorithms in [11] and [25],
to check whether a bipartite graph contains an unquad cycle, are bounded
from above by a polynomial function of m and n. Hence the running time of
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the algorithm described in Section 3 is bounded from above by a polynomial
function of m and n.

Suppose G is balanced. Clearly G cannot contain a short 3-wheel or
a 3-path configuration. All the induced subgraphs of G are balanced and
the graphs produced by Procedures 2 and 3 are balanced. Consequently, by
Lemma 7.2, all the graphs in the final list N produced by Procedure 4 are
balanced and do not contain an extended star cutset or a stable 2-join. Now
by Theorem 1.4 every graph in th! list K does not contain an unquad cycle.
Then Step 5 of the algorithm identifies G as balanced.

Suppose G is not balanced. If G contains a short 3-wheel, Step 1 of the
algorithm identifies G as not balanced. Suppose G does not contain a short
3-wheel. Clearly G contains an unquad hole of smallest cardinality. Now by
Lemma 5.2 one of the induced subgraphs of G, say Gi, in the list produced
by Procedure 2 contains an unquad hole H*, of smallest cardinality, which
is clean in Gi. Now G is one of the graphs considered for double star cutset
decompositions by Procedure 3. By Lemma 6.4, Procedure 3 either detects
a 3-path configuration or one of the undominated blocks, say F, in the final
list produced by Procedure 3 contains an unquad hole in the family C(H*).
In the former case clearly G is not balanced. In the latter case, F is one
of the graphs considered for stable 2-join decompositions by Procedure 4.
Now by Lemma 7.2, one of the blocks, say Bj, produced by Procedure 4 is
not balanced. Clearly the block B, contains an unquad hole and hence an
unquad cycle. Hence Step 5 of the algorithm identifies G as not balanced.

This completes the proof of the theorem. 0

23



REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENTS CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

DECOMPOSITION OF BALANCED MATRICES. Technical Report, Oct 1991

PART VII: A POLYNOMIAL RECOGNITION ALGORITHM 6. PERFORMING ORG. REPORT NUMBER

"7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(S)

Michele Conforti DDM-8800281
Gerard Cornuejols DDM-8901495
M.R. Rao DDM-9001705

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA

Graduate School of Industrial Administration &WORKUNITNUMBERS

Carnegie Mellon University
Pittsburgh, PA 15213

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Personnel and Training Research Programs October 1991
Office of Naval Research (Code 434) 13. NUMBER OF PAGES
Arlington, VA 22217 23

14. MONITORING AGENCY NAME & ADDRESS (It different from Controfling Office) 15. SECURITY CLASS (of this report)

15a. DECLASSIFICATION/IDOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block numb',r)

20. AISTRACT (Continue on reverse side it necessary and identify by block number)

In this seven part paper, we prove the following theorem:

At least one of the following alternatives occurs for a bipartite graph G:

The graph G has no cycle of length 4k+2.
. The graph G has a chordless cycle of length 4k+2,



There exist two complete bipartite graphs Klk,in G aving disjoint node sets, with/

the property that the removal of the edges in K,,Kl disconnects G.
° There exists a subset S of the nodes of G with the property that the removal of S

disconnects G, where S can be partitioned into three disjoint sets TAN such that
T 0, some node xET is adjacent to every node in AuN and, if IT[ > 2,hen /A/>
2 and every node of T is adjacent to every node of A.

A 0,1 matrix is balanced if it does not contain a square submatrix of odd order with
two ones per row and per column. Balanced matrices are important in integer
programming and combinatorial optimization since the associated set packing and set
covering polytopes have integral vertices.

To a 0,1 matrixA we associate a bipartite graph G(V,VT;E) as follows: The node nets
VT and V represent the row set and the column set of A and edge ij belongs to E if
and only if aVl. Since a 0,1 matrix is balanced if and only if thE associated bipartite
graph does not contain a chordless cycle of length 4k+2, the above theorem provides
a decomposition of balanced matrices into elementary matrices whose associated
bipartite graphs have no cycle of length 4k+2. In Part VII of the paper, we show how
to use this decomposition theorem to test in polynomial time whether a 0,1 matrix
is balanced.


